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Abstract

Bose-Einstein condensates (BECs) in ultracold atomic gas have been studied intensively,
since the state of atoms is well controlled by lasers and external electromagnetic fields.
Synthetic gauge fields can be induced in a charge-neutral system by mechanical rotation
of the system or by using lasers. In a BEC under a synthetic gauge fields, a quantized
vortex or a vortex lattice, where multiple quantized vortices are periodically located, are
observed. In binary BECs composed of bosonic atoms in two hyperfine states, parallel
and antiparallel synthetic gauge fields are induced by the former (mechanical rotation)
and the latter (laser) techniques, respectively. In the mean-field theory, vortex lattices
appear with various configurations which depend on the ratio of the intercomponent
interaction to the intracomponent one. While the ground-state phase diagrams for parallel
and antiparallel fields are the same in the mean-field regime, two phase diagrams are
significantly different in the quantum Hall regime, where a magnetic field is strong.

In the first part of this thesis, we study the excitation spectra, correlation functions
and the quantum depletion of vortex lattices by means of the effective-field theory and the
Bogoliubov theory under the lowest-Landau-level (LLL) approximation. We obtain the
effective-field theory of vortex lattices in binary BECs by introducing the missing elastic
energy term from the symmetry consideration. By renormalizing the coupling constants,
we find the effective-field theory for strong magnetic fields so that we can compare it with
the Bogoliubov theory. We obtain the analytical expression of the dispersion relations for
parallel and antiparallel fields by diagonalizing the effective Hamiltonian and the rescaling
relations between them. From the rescaling relations, we clarify that the different excited
states for parallel and antiparallel fields are indeed related to each other. By calculating
the correlation function, we show that a one-particle density matrix exhibits a quasi-long-
range order and that the fraction of depletion increases logarithmically with respect to
the number of fluxes. By means of the Bogoliubov theory, we numerically obtain energy
spectra with quadratic and linear dispersion relations for parallel and antiparallel fields
and confirm the rescaling relations for all the phases. We find that the quantum depletion
depends crucially on the direction of synthetic gauge fields and diverges logarithmically
with respect to the number of fluxes. By calculating the correction to the ground-state
energy due to zero-point fluctuations by the Bogoliubov theory, we show that the transi-
tion points shift appreciably due to quantum fluctuations. Furthermore, we show that the
variations of an inner angle and an aspect ratio with respect to the ratio of interactions
are altered from those obtained by the mean-field theory for rhombic and rectangular
lattices, respectively. We find that the quantum fluctuation changes the ground-state
phase diagram and leads to the distinction between the phase diagrams for parallel and
antiparallel fields which are unique to binary BECs. Moreover, we relate the quantum
depletion to shifts of the transition points since the phase diagram is largely modified
when the quantum depletion which characterizes the quantum fluctuation is also large.

In the second part of the present thesis, we study the intercomponent entanglement
spectrum (ES) and entanglement entropy (EE) of vortex lattices in binary BECs by ex-
ploiting the formalisms developed in the first part. By means of the effective-field theory,
we show that the ES exhibits a square-root dispersion relation for all the phases and that
the rescaling relation holds between the ESs for parallel and antiparallel fields, similarly
to the energy spectra. We confirm these predictions through a numerical calculation by
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the Bogoliubov theory. We discuss which collective modes contribute to the EE since
the ES characterizes the intercomponent entanglement of the excited states. Further-
more, we show that the unusual square-root dispersion relation of the ES is related to
the emergence of a long-range interaction in the entanglement Hamiltonian, similarly to
the case of two coupled non-chiral Tomonaga-Luttinger liquids studied previously, which
may be related to the emergence of the long-range interaction in the subsystem. In par-
ticular, we derive the explicit form of the entanglement Hamiltonian for the overlapping
triangular lattices. Using the obtained ES, we further show that the leading term of the
intercomponent EE is proportional to the volume of the system, as is typical of an ex-
tensive partition, and that for the repulsive (attractive) intercomponent interaction, the
proportionality constant for parallel (antiparallel) gauge fields is larger than that for an-
tiparallel (parallel) gauge fields. This behavior of the intercomponent EE is qualitatively
consistent with the ground-state phase diagrams in the quantum Hall regime. Since both
the ground-state phase diagram with the quantum correction and the EE are determined
by the excitation spectra, the feature of the EE is reflected in the corrected ground state,
so that we can impose a restriction to the corrected ground state although the rigorous
ground state is hard to obtain. For instance, we infer that the regime where the ground
states similar to the product states appear can be determined from the EE. In a system
with a continuous symmetry breaking, the EE is known to have a subleading term that
scales logarithmically with respect to the length scale L. By studying an analogous term
in the present setup, we show that the subleading term scales logarithmically with respect
to the number of fluxes and numerically confirm that the coefficient of the logarithmic
term is close to 1/4. Since the subleading term is obtained from the Nambu-Goldstone
modes, we find that the logarithmical contribution to the intercomponent EE is related
to the symmetries which are spontaneously broken in the vortex lattices.
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Chapter 1

Introduction

1.1 Bose-Einstein condensates of ultracold atoms and

vortex lattices

Bose-Einstein condensates (BECs) in the ultracold dilute gases of alkali atoms have been
created by using laser cooling techniques [1–3]. With the development of atomic, molecu-
lar and optical physics, a quantum-state engineering of the BEC has been carried out. For
instance, alkali atoms have internal degrees of freedom due to their hyperfine spin states,
which can be manipulated by an external fields. Moreover, the atom-atom interaction
can be tuned by a field-induced Feshbach resonance. The static and dynamic features
of the BECs described in terms of a macroscopic condensate wave function Φ have been
studied by a nonlinear Schrödinger equation which is called the Gross-Pitaevskii (GP)
equation.

BECs have also been observed in multi-component systems. Two-component (binary)
BECs have been created in a mixture of 87Rb atoms in two different hyperfine states [4].
Binary BECs have also been created by using a mixture of two different species of bosons
of, e.g., 41K and 87Rb [5]. Furthermore, spinor BECs using atoms with the magnetic
quantum numbers mF = 0,±1 and the total spin F = 1 have been investigated. Spinor
BECs exhibit various phases depending on the coupling constants and the strength of
the magnetic field [6]. BECs with three or more components have also been created in
experiments [7–9].

A quantized vortex was observed for the first time in a rotating superfluid helium
4 [10]. In BEC, a quantized vortex has been first realized by the phase imprinting
technique [11]. Later a single vortex and multiple vortices have been observed by rotating
the potential which traps the atoms [12]. When a vortex appears in the two-dimensional
system, the vorticity of the superfluid velocity v = ℏ∇ϕ/M , where ϕ is the phase of
the condensate wave function Φ = |Φ|eiϕ, is nonzero. This fact indicates that the phase
ϕ has a singularity at the location of the vortex. By integrating the vorticity over the
two-dimensional surface S containing the singularity, we obtain the nonzero circulation
κ =

∫
S
dS · ∇ × v =

∮
C
dl · v = h/M ×m (m ∈ integer), which is quantized in units of

h/M . Although atomic gases are charge-neutral, the mechanical rotation of the system
creates a synthetic magnetic field because of the equivalence between the Lorentz force
and the Coriolis force in the rotating frame of reference. By considering the effective
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Hamiltonian in the rotating frame of reference, we find the strength of the magnetic field
increases as the angular frequency of the rotation increases.

When the angular frequency of the rotation increases, the BEC establishes an array of
singly quantized vortex lines (|m| = 1) along the rotation axes rather than a single multi-
ply charged vortex line (|m| > 1). The ground state of the vortex lattices for a relatively
slowly rotating regime has been studied using the Thomas-Fermi approximation. Here, it
is assumed that the intervortex separation is larger than the healing length, which gives
a typical length scale of the vortex core. In a rapidly rotating regime which we consider
in this thesis, the ground state is given by a wavefunction in the LLL manifold [13]. By
rotating the trapping potential for a scalar BEC, the triangular vortex lattice has been
observed in both the slowly rotating regime [14,15] and the rapidly rotating regime [16].

When a system of binary BECs is rotated, parallel synthetic magnetic fields, whose
magnitudes and directions are the same between the two components, emerge. Vortex
lattices for a binary system present various structures depending on the ratio of the inter-
component interaction to the intracomponent one [17, 18]. In particular, square lattices,
which are unique to the binary case, have been observed in a gas of 87Rb atoms [19].
Meanwhile, antiparallel synthetic magnetic fields, whose directions are opposite for the
two components, are induced by controlling the phase of the atoms via an atom-light
coupling [20]. A geometric vector potential has been realized by utilizing spatially vary-
ing internal states, which have been obtained by extending the scheme for creating a
spin-orbit coupling in BECs [21]. Antiparallel fields can be naturally induced in the
two components because of the zero-sum rule for the geometric potentials. By using the
synthetic gauge field technique, vortices have been created in a scalar BEC [22]. While
vortex lattices under antiparallel synthetic magnetic fields have not been realized, the
ground state has been shown to exhibit a phase diagram equivalent to the case of paral-
lel magnetic fields within a GP mean-field theory [23]. However, for a strong magnetic
field, i.e. for a small filling factor, the mean-field theory in general breaks down and the
equivalence between the parallel- and antiparallel-field cases no longer holds. Exact diag-
onalization analyses for small filling factors have shown that for an attractive (repulsive)
intercomponent interaction for parallel (antiparallel) magnetic fields, the ground state is
well approximated by the product state of a pair of the quantum Hall states [23, 24]. In
contrast, for a repulsive (attractive) intercomponent interaction for parallel (antiparallel)
magnetic fields, the ground state is a spin-singlet state in which two components are
highly entangled.

1.2 Entanglement entropy and spectrum

In condensed-matter systems, quantum entanglement has been utilized to explore a num-
ber of interesting properties [25]. Since the entanglement does not appear in the mean-
field theory, a number of unique features of a system beyond the mean-field theory can
be investigated by examining quantum entanglement. The entanglement of a many-body
system is characterized by the entanglement entropy (EE), which is obtained as the von-
Neuman entropy of a reduced density matrix on a subsystem. In a variety of quantum
many-body systems, the leading term of the EE is proportional to the surface of the
subsystem, which is known as the area law. The subleading term of the EE can be often
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used to characterize the system. For instance, the subleading term that logarithmically
diverges with respect to the surface of subsystem [26] appears in systems with the contin-
uous symmetry breaking. In topologically ordered systems, a constant subleading term
called a topological EE emerges [27] and it is used to detect the topological property of
a system.

The entanglement spectrum (ES), which is calculated as the eigenspectrum of the
reduced density matrix on a subsystem, can characterize the entanglement of the sys-
tem in more detail. In topological systems in two dimensions, the ES exhibits a linear
dispersion relation analogous to the edge-state energy spectrum and this fact has been
proved analytically for fractional quantum Hall states [28,29]. For two coupled non-chiral
Tomonaga-Luttinger liquids (TLL), the ES between two components features a square-
root dispersion relation when the energy spectrum of the bulk is partially gapless [29].
This interesting feature is related with the long-range interaction in the entanglement
Hamiltonian of the subsystem. For binary BECs, the intercomponent ES exhibits a
square-root dispersion relation when the two components are coupled by the Rabi cou-
pling; the ES is gapful when there is no intercomponent tunneling. These ES are also
related to long-range interactions in the entanglement Hamiltoinan [30].

1.3 Issues of binary BECs

The excitation spectra for parallel and antiparallel fields are different due to the difference
of the time-dependent GP equations between the two cases. It is an interesting question
to ask whether the relation between the excited states for parallel and antiparallel fields
which are completely different due to the distinction between the two fields exists while the
ground-state phase diagrams of vortex lattices in binary BECs for parallel and antiparallel
fields are equivalent in the mean-field regime. It is also important to understand the
excited state in antiparallel fields since the antiparallel fields become accessible recently
due to the development of the technology.

It is also an interesting question to ask how quantum fluctuations change the ground-
state phase diagram, since the phase diagrams for parallel and antiparallel fields are equiv-
alent in the mean-field theory while they are not in the quantum Hall regime. We would
like to find out how quantum fluctuations correct the phase diagram in the mean-field
theory and create the difference in the phase diagrams between parallel and antiparallel
fields. Such a distinction in the phase diagrams between the parallel and antiparallel
fields is unique in the binary system.

The ground-state phase diagram for an arbitrary filling factor has not been obtained
rigorously yet. However it is hard to obtain it since the ground-state energy with the
quantum correction is determined by both the ground and excited states. It is an interest-
ing question to ask how the ground state are restricted by the intercomponent EE, which
are easier to calculate and which excited states largely contribute to the intercomponent
entanglement. We would like to find out whether the long-range interaction appears in
the entanglement Hamiltonian since it may be related with the emergence of the long-
range interaction in the subsystem. Finally, whether the logarithmic contribution of the
intercomponent EE which appears in a system with a continuous symmetry breaking,
also appears in the vortex lattices is important since it may relate the symmetries which

10



are spontaneously broken and their numbers with the EE.

1.4 Purpose of this thesis

The purpose of this thesis is to study the excited states, the ground state with the
quantum correction and the intercomponent entanglement for vortex lattices in binary
BECs.

First, to consider the relation between the excited states for parallel and antiparallel
fields, we formulate the Bogoliubov theory and the effective-field theory of vortex lattices
to study the excitation spectra. By obtaining the dispersion relations for parallel and
antiparallel fields, we clarify the relation between them by deriving the rescaling relations
which can be compared by the two methods. In particular, we note that a missing
term in the effective-field theory, which is important for interlaced triangular lattices,
is identified. Furthermore, the issue of the violation of the rescaling relations, which
remained an open question in the previous research [31], is resolved by renormalization
which is a prescription proposed to correct the effective-field theory.

By obtaining the quantum correction to the ground-state energy by the Bogoliubov
theory, we investigate the ground-state phase diagram with the quantum correction by
discussing how the transition points shift from the original points given by the mean-
field theory. We explicitly find the phase diagram by taking the quantum correction into
account. We also find that the quantum fluctuations leads to the distinction between the
ground-state phase diagrams for parallel and antiparallel fields. Since the existence of the
two types of magnetic fields are unique to the binary system, the result is also unique to
such a system. Furthermore, since the quantum fluctuation is measured by the quantum
depletion, we obtain its value and find that large shifts of the transition point are related
to large values of the quantum depletion.

We obtain the intercomponent EE to discuss the behavior of the ground-state phase
diagram with the quantum correction since both the EE and the corrected phase diagram
are calculated by using the excitation spectra. Previous exact-diagonalization studies for
the quantum Hall regime have shown that the product state with a small intercomponent
EE appears for parallel (antiparalell) fields with an attractive (repulsive) intercomponent
interaction and the spin-singlet state with a large intercomponent EE appears for parallel
(antiparalell) fields with a repulsive (attractive) intercomponent interaction [23, 24]. If
a similar behavior of the intercomponent EE is found in vortex lattices, we can restrict
their ground-state phase diagram and expect that the restriction can be used in a wide
intermediate regime between the mean-field regime and the quantum Hall regime since
the vortex lattices appear when the strength of the magnetic field is lowered. In order
to consider which excited states have a large contribution to the intercomponent EE, we
calculate the ES whose value increases when two components are disentangled. We also
discuss the ES with a square-root dispersion relation of the vortex lattices in the binary
system which is expected from the gapless excitation spectra, since the ES in the cases
of two coupled non-chiral TLLs and binary BECs where a gapless excitation spectrum
appears has a fractional-power or gapped dispersion relation. Then, we derive an effective
long-range interaction in the entanglement Hamiltonian. Finally, we obtain an additional
logarithmic term in the intercomponent EE, which has appeared as a consequence of the

11



continuous symmetry breaking in the binary BECs. We show that it actually appears as
vortex lattices of binary BECs break the U(1)× U(1) gauge symmetry and the transla-
tional symmetries. Since the subleading term of the intercomponent EE originates from
the Nambu-Goldstone mode, we find that the symmetries which are spontaneously broken
are related with the EE.

1.5 Organization of this thesis

This thesis is constituted by reviews and the original works on vortex lattices, and orga-
nized as follows.

In Chap. 2, we review binary BECs and synthetic gauge fields in ultracold atomic
gases. In Sec. 2.1, we review the ground state of binary BECs. We discuss that the
two components are separated or mixed depending on the value of the ratio of the in-
tercomponent interaction to intracomponent one. In Sec. 2.2, we review binary BECs
under parallel synthetic gauge fields. We explain that rotating neutral-charged atomic
gases experience a synthetic magnetic field because of the equivalence between the Cori-
olis force and the Lorentz force. In analyzing the low-energy properties of a rotating
system, we introduce the LLL approximation, in which the state is expanded in terms
of the basis states of the LLL. This approximation is valid for a sufficiently strong mag-
netic field. Then we describe the mean-field theory for rapidly rotating binary BECs, in
which the two components experience parallel synthetic magnetic fields. We present the
ground-state phase diagram of vortex lattices under the LLL approximation with various
vortex structures which depend on the ratio of the intercomponent interaction to the
intracomponent one. In Sec. 2.3, we discuss the binary BECs under antiparallel synthetic
magnetic fields. Using a minimal model, we explain that the synthetic gauge field is
induced by the spatially dependent interaction of atoms and lasers. Then we review an
experimental realization of antiparallel fields in the ultracold atomic system [20]. We
argue that the phase diagram of vortex lattices for antiparallel fields are equivalent to the
phase diagram for parallel fields by showing that the equivalence of the energy functionals
for parallel and antiparallel fields. In Sec. 2.4, we review the ground-state phase diagrams
of the binary bosonic system under parallel and antiparallel magnetic fields in the regime
where the mean-field theory breaks down. These phase diagrams are presented in the
plane spanned by the ratio of the coupling constants for inter- and intra-component in-
teractions and the filling factor. We also explain that the ground states with a repulsive
(attractive) intercomponent interaction for parallel fields is similar to the ground states
with an attractive (replusive) intercomponent interaction for antiparallel fields.

In the following chapters, we present our original works.
In Chap. 3, we develop an effective-field theory of the vortex lattices for the binary

system. In Sec. 3.1, we review the mean-field description of a vortex lattice for a scalar
BEC. We separate the short-distance structure of vortices from a large-scale structure
of a vortex lattice in order to introduce the renormalized coupling constant. In Sec.
3.2, we derive an effective-field theory of vortex lattices in binary BECs by extending
the derivation for a scalar case. After introducing the setup of our system, we obtain
an effective Hamiltonian by keeping leading terms in the derivative expansion. Then
we introduce an elastic energy from a symmetry consideration. Here, we identify a
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missing term which is important in discussing interlaced triangular lattices. We discuss
the renormalization of the coupling constants by generalizing the argument in Sec. 3.1 to
the binary system. The renormalization is crucial in order for the effective-field theory to
be consistent with the Bogoliubov theory under the LLL approximation. We present the
renormalization factors for inter- and intracomponent interactions in terms of the ratio
of the coupling constants. In Sec. 3.3, we diagonalize the Hamiltonian obtained from the
effective-field theory to obtain analytic forms of the dispersion relations. We then find
rescaling relations between the dispersion relations for parallel and antiparallel fields.
From rescaling relations, we relate the excited states in parallel and antiparallel fields
for all the phase as the ground states for the two cases are equivalent in the mean-field
theory. We also discuss that the quadratic and linear dispersion relations for parallel
(antiparallel) fields are related to the in- and anti- (anti- and in-) phase oscillations,
respectively, by the equation of motion. For the following chapters, we also calculate the
correlation function which demonstrate a quasi-long-range order from the one-particle
density matrix and the depleted density which logarithmically increases with respect to
the number of the fluxes.

In Chap. 4, we formulate the Bogoliubov theory for vortex lattices in binary BECs
under the LLL approximation. In Sec. 4.1, we formulate the Bogoliubov theory in the
LLL approximation for a binary system. After introducing the LLL magnetic Bloch
state, which is a complete orthogonal basis of the LLL manifold, we show that a periodic
pattern of zeros of the basis state can be shifted by controlling the value of a wave
vector so as to reproduce the displacement of vortex lattices in binary BECs. Then we
employ the Bogoliubov approximation to obtain the Bogoliubov Hamiltonian in the LLL
approximation. By diagonalizing the Bogoliubov Hamiltonian, we calculate the excitation
spectrum and the quantum correction to the ground-state energy and we express the
fraction of depletion in terms of the eigenvector. In Sec. 4.2, we present numerical results.
We present the excitation spectra with quadratic and linear dispersion relations for both
parallel and antiparallel synthetic gauge fields. We discuss the criterion to determine the
type of the Nambu-Goldstone modes and the experiments observing the oscillation of the
vortex lattices in scalar and binary BECs. We confirm the rescaling relations which are
obtained in the previous chapter. Then we determine the elastic constants introduced
in the effective-field theory by fitting the analytical expressions of the excitation spectra
to the numerical results, so that all the parameters are determined. For all the phases,
we obtain the quantum depletion and confirm its divergence with respect to the number
of quantum fluxes. Finally we obtain the ground-state energy by taking the quantum
correction into account and minimize it with respect to an inner angle and an aspect
ratio for rhombic and rectangular lattices, respectively. We show that transition points
shift appreciably and an inner angle and an aspect ratio in terms of the ratio of coupling
constants vary due to the quantum correction. We discuss that quantum fluctuations
lead to the distinction in the phase diagrams between parallel and antiparallel fields; we
note here that these phases are equivalent in the mean-field theory. We point out such a
result is unique to the binary system as the parallel and antiparallel fields only appear in
such a system. We also relate a shift in the transition points to the quantum depletion.

In Chap. 5, we study the intercomponent ES and EE for vortex lattices of binary
BECs. In Sec. 5.1, we review the ES and EE in condensed-matter systems. We discuss
that the EE for a d-dimensional system with continuous symmetry breaking exhibits an
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additional term which scales logarithmically with respect to Ld−1, where L is the length
scale of the system. We also briefly review the studies of the ES for topological systems
and spontaneously symmetry-broken systems. The low-energy regime of the ES has been
found to be proportional to the dispersion relation of the edge state for topological sys-
tems. Meanwhile, the ES for two non-chiral TLLs has been found to show a square-root
dispersion relation due to the emergence of the long-range interaction in the entanglement
Hamiltonian. In Sec. 5.2, we calculate analytical forms of the intercomponent ES and EE
for vortex lattices by means of the effective-field theory derived in Chap. 3. We obtain an
analytical expression of the ES and find a rescaling relation between the ESs for parallel
and antiparallel fields. Then, we find that a long-range interaction appears by calculating
the entanglement Hamiltonian in a real space and its analytical expression for overlapping
triangular lattices. We show that the leading contribution of the intercomponent EE is
proportional to the area and its subleading term logarithmically decreses with respect
to the area of the system. In Sec. 5.3, we obtain the intercomponent ES and EE using
the Bogoliubov theory. After the formulation of the ES and EE, we present a numerical
result of the ES, which shows a square-root dispersion relation, and confirm the rescaling
relation. By calculating the intercomponent EE for all the phases, we find that its value
for parallel (antiparallel) fields is larger than the other in the case of the repulsive (at-
tractive) intercomponent interaction. The behavior of the EE is qualitatively consistent
with what is expected in the quantum Hall regime. We discuss the ground-state phase di-
agram with the quantum correction from the standpoint of the intercomponent EE since
both the quantum correction and the intercomponent EE arise from the same excitation
spectra. Then we discuss which excited states have a large contribution to the EE from
the ES. We find that the ES is consistent with the behavior of the EE. We also obtain
the square-root dispersion of the ES as expected from the ladder system and relate it
with the emergence of the long-range interaction which may appear in the subsystem at
absolute zero. Finally we consider the logarithmic contribution of the intercomponent
EE which arise from the Nambu-Goldstone modes, so that the obtained EE is related
with the continuous symmetry breaking.

In Chap. 6, we conclude the thesis by giving a summary and future prospects.
The relations between chapters are depicted in Fig. 1.1.
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Chapter 2

Review of binary Bose-Einstein
condensates

In this chapter, we review binary (i.e., two-component) BECs. In Sec. 2.1, we consider
binary BECs which are not subjected to the synthetic gauge fields. In Sec. 2.2, we discuss
the ground-state phase diagram and the experimental realization of binary BECs under
the parallel synthetic gauge fields. In Sec. 2.3, we discuss the synthetic gauge fields
created by the laser using the minimal model and review an experiment which observed
the spin Hall effect induced by the antiparallel magnetic fields in a cold-atom system. In
Sec. 2.4, we review the quantum Hall state of binary BECs.

2.1 Binary Bose-Einstein condensates

Two-component BECs without rotation have been studied on the basis of the mean-field
theory [32]. The solution of the Gross-Pitaevski (GP) equation shows a rich ground-state
structure depending on the parameters of the system. In particular, the two components
go under phase separation owing to the intercomponent interaction. We consider a binary
system whose components are labeled by 1 and 2. We assume that the coupling constant
of an intracomponent interaction for each component is given by gi, (i = 1, 2) and that
for intercomponent interaction by g12. By using the Thomas-Fermi approximation for
the Schrödinger equation for the trapped binary BECs, the two components are mixed
when g1g2 − g212 > 0. Otherwise, when g1g2 − g212 < 0, two components are separated
so that the symmetry of the ground state is broken while the symmetry is restored in
the mixed case [33–35]. In this thesis we only consider the parameters which create the
mixed BECs.

The two-component BECs have been observed experimentally by using the different
spin states of 87Rb [36,37] and 87Na [38]. In the case of 87Rb, the separation of the BECs
is weak since the coupling constants g1, g2 and g12 are nearly equal. In contrast, the values
of the coupling constants satisfy g1g2 − g212 < 0 for 23Na, so that the two components are
separated and form spin domains.
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2.2 Binary Bose-Einstein condensates under parallel

synthetic gauge fields

In this section, we discuss the vortex lattices in binary BECs under the parallel synthetic
magnetic fields. In Sec. 2.2.1, we show that the synthetic magnetic field is induced
by rotating the system. In Sec. 2.2.2, we introduce the LLL approximation, which is
validated when the magnetic field is sufficiently strong. In Sec. 2.2.3, we obtain the
mean-field theory for the binary BECs and apply the LLL approximation. In Sec. 2.2.4,
we review that the various configurations of vortex lattices appear as the ground-state
phase diagram. We also see that the square lattices are observed in experiment.

2.2.1 Rotating Bose gas

We consider a particle of mass M in the two-dimensional xy plane [39]. The Schrödinger
equation of the particle is given by

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2M

(
∂2

∂x2
+

∂2

∂y2

)
+ V (r, t)

]
ψ(r, t), (2.1)

where V (r, t) is a time-dependent potential. The Schrödinger equation (2.1) is rewritten
in the polar coordinate (x, y) = (r cos θ, r sin θ) as

iℏ
∂

∂t
ψ(r, θ, t) =

[
− ℏ2

2M

(
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)
+ V (r, θ, t)

]
ψ(r, θ, t). (2.2)

When the system is rotating with an angular velocity vector Ω = Ω(0, 0, 1) by the time
dependent potential V = V (r, θ−Ωt), the Schrödinger equation in the rotating frame of
reference is given by

iℏ
∂

∂t
ψ(r, θ, t) =

[
p2

2M
+ V (r, θ)− Ωℓz

]
ψ(r, θ, t), (2.3)

where p = −iℏ∇ and ℓz is the angular momentum operator in the z direction written as

ℓz = xpy − ypx = −iℏ
(
x
∂

∂y
− y

∂

∂x

)
= −iℏ ∂

∂θ
. (2.4)

To derive Eq. (2.3), we utilize the fact that the Schrödinger equation in the rotating frame
of reference is given by the new degrees of freedom introduced as (θ′, t′) := (θ − Ωt, t).
Since the derivatives with respect to t and θ are given by

∂

∂θ
=

∂

∂θ′
,

∂

∂t
=

∂

∂t′
− Ω

∂

∂θ′
, (2.5)

the left-hand side of Eq. (2.2) is rewritten as

iℏ
∂

∂t
ψ =

(
iℏ
∂

∂t′
+ Ωℓz

)
ψ. (2.6)
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and the right-hand side of Eq. (2.2) is rewritten by simply replacing θ by θ′. By omitting
the primes on θ and t, which indicate the rotating frame of reference, we obtain Eq. (2.3).

From Eq. (2.3), we obtain the Hamiltonian in the rotating frame of reference HΩ as

HΩ =
p2

2M
+ V (r)− Ωℓz =

(p−MΩ× r)2

2M
+ Ṽ (r), (2.7)

where

Ṽ (r) = V (r)− 1

2
M(Ω× r)2. (2.8)

This is analogous to the Hamiltonian of a particle with a charge q under the magnetic
field B = B(0, 0, 1) in the z direction given as

H =
(p− qA(r))2

2M
+ V (r), (2.9)

with the vector potential A(r) = 1
2
(B× r) in the symmetric gauge. From Eqs. (2.7) and

(2.9), we find the effective magnetic field B = 2MΩ/q is induced, where q is the fictitious
charge of a particle. The reduction of the potential Ṽ in Eq. (2.8) by the mechanical
rotation corresponds to the centrifugal force due to a rotation in classical mechanics.

For a gas of N particles, a synthetic gauge field appears by rotating the gas. As the
interaction for each pair of particles, we assume the rotationally invariant interaction
term that depends only on the distance between the two particles U(ri, rj) = U(|ri−rj|),
where ri is the position of the i th particle. A similar discussion for Eq. (2.7) is followed
by the Hamiltonian for identical N particles in the rotating frame of reference of the
form,

HΩ =
N∑
i=1

[
p2
i

2M
+ V (ri)

]
+
∑
i<j

U(|ri − rj|)−Ω · L, (2.10)

where L =
∑N

i=1 ri × pi is the total angular momentum. This Hamiltonian can also be
written as

HΩ =
N∑
i=1

[pi − qA(ri)]
2

2M
+

N∑
i=1

Ṽ (ri) +
∑
i<j

U(|ri − rj|). (2.11)

When the trapping potential in the xy plane is the harmonic potential V (r) = 1
2
Mω2r2,

where ω is the trapping frequency, the effective potential Ṽ is given by

Ṽ (r) =
1

2
M(ω2 − Ω2)r2. (2.12)

Since the effective potential vanishes if the rotation speed is fast enough Ω ≃ ω, we
effectively obtain a system without the trapping potential but with a uniform synthetic
magnetic field. In ultracold atoms, the interaction is described by a contact interaction
U(ri − rj) = gδ(ri − rj). As a gas is tightly confined in the z direction by a harmonic
trapping potential of frequency ωz, the ground state in the z direction is given by the
Gaussian ground state ψz(z) = exp(−z2/2d2z)/(πd2z)1/4 with dz =

√
ℏ/Mωz. Therefore

the interaction parameter g is renormalized as g = g3D
∫
dz|ψz(z)|4 = g3D/

√
2πdz. We

find that the effective coupling constant is given by

g = g3D

√
Mωz

2πℏ
, g3D =

4πℏ2as
M

, (2.13)
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where g3D is the coupling constant in the three-dimensional case and as is the s-wave
scattering length.

2.2.2 Lowest-Landau-level approximation

From Eq. (2.7), we find the Hamiltonian in the rotating frame of reference for a particle
trapped in a harmonic potential with trapping frequency ω as

ĥΩ = ĥ− Ωl̂z, (2.14)

with

ĥ =
1

2M
(p̂2x + p̂2y) +

Mω2

2
(x̂2 + ŷ2), l̂z = x̂p̂y − ŷp̂x, (2.15)

where x̂ and p̂ are the position and momentum operators, respectively, satisfying the
canonical commutation relations [x̂, p̂x] = [ŷ, p̂y] = iℏ and [x̂, p̂x] = [ŷ, p̂x] = 0 and l̂z is
the angular momentum operator in the z direction. The Hamiltonian is diagonalized in
terms of the creation and annihilation operators

âx =

√
Mω

2ℏ

(
x̂+ i

p̂x
Mω

)
, ây =

√
Mω

2ℏ

(
ŷ + i

p̂y
Mω

)
, (2.16)

satisfying the commutation relations [âx, â
†
x] = [ây, â

†
y] = 1 and [âx, ây] = [âx, â

†
y] = 0.

Using âx and ây, Eq. (2.15) is rewritten as

ĥ = ℏω(â†xâx + â†yây + 1), l̂z = iℏ(âxâ†y + â†xây). (2.17)

Furthermore, since ĥ and l̂z are commutable ([ĥ, l̂z] = 0), these two operators can be
diagonalized simultaneously. By introducing

â± =
1√
2
(âx ∓ iây), (2.18)

we find that
ĥ = ℏω(â†+â+ + â†−â− + 1), l̂z = ℏ(â†+â+ − â†−â−). (2.19)

From the expression of l̂z in Eq. (2.19), we find that the creation operators â†± correspond
to the modes rotating anti-clockwise (+) and clockwise (-), respectively. Let n+ and n−
be the eigenvalues of â†+â+ and â†−â−, respectively. Then the eigenenergy of Eq. (2.14) is
obtained as

ϵ = ℏ[(ω − Ω)n+ + (ω + Ω)n− + ω], (2.20)

where the corresponding energy spectrum is presented in Fig. 2.1. When the rotation
frequency Ω approaches the trapping frequency ω, we find that the energy levels are
highly degenerate and that they are equally separated by 2ℏω as the Landau levels in a
magnetic field. Therefore the low-energy physics is dominated by the states in the energy
level n− = 0, which we call the lowest Landau level (LLL).

We find that the eigenfunctions of Eq. (2.14) are given by

ψn+,n−(z, z
∗) =

1√
n+!n−!

(â†+)
n+(â†−)

n−Φ0(z, z
∗), (2.21)
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Figure 2.1: Energy spectrum of (2.20) for (a) Ω = 0, (b) Ω < ω, and (c) Ω ≃ ω. The
number below each level shows the angular momentum n+. When the system is rapidly
rotating as in the case (c), the ground state is approximated by a superposition of n− = 0
states and the energy gap between the ground state and the first excited state is 2ℏω.
Reproduced from Fig. 18 of Ref. [13]. Copyright c⃝ 2009 by the American Physical
Society.

where

Φ0(z, z
∗) =

1√
π
e−

|z|2
2 , (2.22)

is the most localized LLL state described by a Gaussian wave function. Here z = (x+iy)/ℓ
is a complex coordinate and ℓ =

√
ℏ/2MΩ is an effective magnetic length. Then the LLL

states with n− = 0 are given by

ϕm(z, z
∗) =

1√
m!

(â†+)
mΦ0(z, z

∗) =
zm√
πm!

e−
|z|2
2 (m = 0, 1, 2, . . . ), (2.23)

where we replace n+ to m. Using Eq. (2.23) as a basis, we can express an arbitrary
single-particle state in the LLL manifold as

ϕLLL(z, z
∗) =

∑
m≥0

cmϕm(z, z
∗) = f(z)e−

|z|2
2 , (2.24)

where f(z) =
∑

m≥0 cmz
m/

√
πm! is an analytic function of z. We can factorize the

function f(z) as f(z) = C
∏

m≥0(z− zm), where C is a constant. Since the wave function
vanishes at z = zm, these zeros correspond to the positions of vortices.

2.2.3 Mean-field theory

We consider N identical bosons in the rotating frame of reference. From Eq. (2.10), we
have the Hamiltonian in the second-quantized form as

H =

∫
d3r ψ̂†(r)

[
− ℏ2

2M
∇2 + V (r)− Ωℓz +

g

2
ψ̂†(r)ψ̂(r)

]
ψ̂(r), (2.25)

where ℓz = −iℏ[r×∇]z is the angular momentum operator in the z direction and ψ̂(r) is
the bosonic field operator satisfying the canonical commutation relations [ψ̂(r), ψ̂†(r′)] =
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δ(r−r′) and [ψ̂(r), ψ̂(r′)] = [ψ̂†(r), ψ̂†(r′)] = 0. Furthermore, the total number of particles
is given by N =

∫
dr ψ̂†(r)ψ̂(r). As for the interaction term, we assume a contact

interaction (2.13).
From Eq. (2.25), we have the Heisenberg equation of motion for ψ̂(r) as

iℏ
∂

∂t
ψ̂(r) = [ψ̂(r), H] =

[
− ℏ2

2M
∇2 + V (r)− Ωℓz + gψ̂†(r)ψ̂(r)

]
ψ̂(r). (2.26)

Since the system forms a BEC in which a large number of particles occupy a single-particle
state at sufficiently low temperatures, we can replace the bosonic field operator ψ̂(r) by
a mean field ψ(r) representing a macroscopic wave function subject to the normalization∫
dr|ψ(r)|2 = N . By the mean-field approximation, we obtain the time-dependent GP

equation given as

iℏ
∂

∂t
ψ(r, t) =

(
− ℏ2

2M
∇2 + V (r)− Ωℓz + g|ψ(r)|2

)
ψ(r, t). (2.27)

By assuming a stationary solution of the form ψ(r, t) = ψ(r)e−iµt/ℏ, we find the time-
independent GP equation as(

− ℏ2

2M
∇2 + V (r)− Ωℓz + g|ψ(r)|2

)
ψ(r) = µψ(r), (2.28)

where µ is a chemical potential. We find the GP ground state which minimizes the
chemical potential µ for the solution. By replacing ψ̂(r) by ψ(r) in H − µN , we obtain
the GP energy functional as

EΩ =

∫
d3r

[
ψ∗(r)

(
− ℏ2

2M
∇2 + V (r)− Ωℓz − µ

)
ψ(r) +

g

2
|ψ(r)|4

]
. (2.29)

By assuming that the potential is a harmonic potential V (r) = 1
2
Mω2r2, the energy

functional (2.29) is rewritten as

EΩ =

∫
d3r

{
|[−iℏ∇− qA(r)]ψ(r)|2

2M
+
M

2
(ω2 − Ω2)r2|ψ(r)|2 − µ|ψ(r)|2 + g

2
|ψ(r)|4

}
.

(2.30)
When the rotation frequency Ω and the trapping frequency ω are close to each other, the
trapping potential vanishes and the wave function can be given by the LLL states. We
further assume that the scale of the interaction energy gn, where n is the particle density,
is much smaller than the single-particle energy gap ℏΩ i.e. gn ≪ ℏΩ, so that a particle
is not excited out of the LLL manifold by the interaction term. If the mean field ψ(r) is
approximated by the LLL wave function (2.24), it is called the LLL approximation [40]
and we call this regime the “mean-field LLL regime”1 [41]. From Eq. (2.24), we find that
the mean-field ground state ψ(r) has vortices located at zero points zm . The ground
state of Eq. (2.30), which is similar to the Ginzburg-Landau energy functional for type-II
superconductors, has been found to be a triangular vortex lattice known as the Abrikosov
lattice [42].

1This regime is sometimes called the “mean-field quantum Hall regime”. Here, we do not use this
term to distinguish it from the regime of bosonic quantum Hall states where the mean-field theory is
violated.
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2.2.4 Vortex lattices in binary BECs

We consider a two-dimensional Bose gas with two hyperfine spin states labeled as α =↑, ↓.
The GP energy functional for this binary system is given by

E =

∫
d2r

[∑
α=↑,↓

{
ψ∗
α(ĥ− Ωl̂z − µ)ψα

}
+
∑

α,β=↑,↓

gαβ
2

|ψα|2|ψβ|2
]
, (2.31)

with

ĥ = − ℏ2

2M
∇2 +

1

2
Mω2r2, l̂z = −iℏ[r×∇]z, (2.32)

where ψα is the condensate wave function for the component α. We assume that the
coupling constants for intracomponent and intercomponent interactions are given by g =
g↑↑ = g↓↓ and g↑↓ = g↓↑, respectively. Since the gas is confined in the z direction by the
harmonic potential, the coupling constants are renormalized as discussed in the previous
section. We also assume that the number of particles in each component is the same.
The parallel synthetic magnetic fields are caused by the mechanical rotation.

Mueller and Ho [17] obtained the ground state of a rapidly rotating binary BECs
in the mean-field theory by minimizing the GP energy functional (2.31) under the LLL
approximation. By assuming that BECs are subjected to a sufficiently shallow effective
potential, they minimized the interaction part by using trial wave functions ψα (α =↑, ↓)
involving the Jacobi theta function, which has periodic zeros apart from the Gaussian
factor. In (a)-(e) of Fig. 2.2, the five equilibrium vortex-lattice configurations are shown
by black and grey dots representing the vortex cores of the two components. In the
last figure of Fig. 2.2, the parameters specifying the structure of the vortex lattices in
the complex plane are presented, where τ = x + iy, η is the inner angle and a and
b parametrizes the displacement of vortex cores between two components. In Fig. 2.3,
the phase diagram of vortex lattices for the binary system is shown by presenting the
parameters η, a and |τ | as a function of the ratio of the intercomponent interaction to the
intracomponent one α = g↑↓/g. In Ref. [18], the behavior of the slowly rotating BECs
has been numerically studied. Various vortex-lattice configurations consistent with the
rapidly rotating case [17] have been found.

The vortex lattices of binary BECs have been observed by the JILA group in 2004 [19].
They prepared a single-component triangular vortex lattice by using the |1⟩ = |F =
1,mF = −1⟩ state of 87Rb as observed in Fig. 2.4 (a). Then they excited about 80% of
atoms to |2⟩ = |F = 2,mF = 1⟩ by a short pulse and waited until the number of each
component became the same by deexcitation. In Fig. 2.4 (b), the image of one of the
two components for binary BECs is displayed. They observed the square lattices. In Fig.
2.4 (c) and (d), six peaks and four peaks are obtained by the two-dimensional Fourier
transformation of the images of the triangular vortex lattice and the square vortex lattice,
respectively. In particular, Fig. 2.4 (d) is clear evidence of creation of square lattices.
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Figure 2.2: Vortex lattice structures of rapidly rotating binary BECs. Vortices of two
different components are indicated by black and grey circles. (a) Overlapping triangular
lattices. (b) Interlaced triangular lattices. (c) Rhombic lattices. (d) Square lattices.
(e) Rectangular lattices. The right bottom panel depicts the geometry of the lattices.
Vortices of the first and second components are located at m+nτ and (a+m)+(b+n)τ ,
respectively, in the complex plane, where m and n are integers. All configurations have
a = b. Reproduced from Fig. 1 of Ref. [17]. Copyright c⃝ 2002 by the American Physical
Society.

2.3 Binary Bose-Einstein condensates under antipar-

allel synthetic gauge fields

In this section, we review the binary BECs under antiparallel synthetic gauge fields. In
Sec. 2.3.1, we use the minimal model to explain that synthetic gauge fields are created
by lasers. In Sec. 2.3.2, we review an experiment in which the antiparallel magnetic fields
has successfully been created in the atomic gas of 87Rb. In Sec. 2.3.3, we explain that
within the mean-field theory, the phase diagram of the vortex lattices for antiparallel
fields is equivalent to that for parallel fields.

2.3.1 Creation of synthetic gauge fields by using lasers

In this section, we consider the minimal model of generating the synthetic gauge fields by
lasers [43]. The two basis states of the two-dimensional Hilbert space {|g⟩, |e⟩} associated
with the internal degrees of freedom of an atom represent the ground state and the excited
state of an atom, respectively. We assume that two states are coupled by space-dependent
external fields. The general form of the Hamiltonian of a particle is given by

H =

(
p̂2

2M
+ V

)
1̂ + Û, (2.33)

whereM is the mass, p̂ = −iℏ∇ is the momentum operator and 1̂ is the identity operator
of the internal Hilbert space. The potential V does not depend on the internal state of
the particle and the internal states are coupled by the coupling operator Û , which is
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Figure 2.3: Parameters of vortex lattices η, a and |τ | as a function of α = g↑↓/g. The
configurations of vortex lattices are illustrated in Fig. 2.2, where τ = |τ |eiη. Vertical solid
and dashed lines indicate the first and second-order phase transitions, respectively. The
open circle on the horizontal axis denotes α = 1. Reproduced from Fig. 2 of Ref. [17].
Copyright c⃝ 2002 by the American Physical Society.
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Figure 2.4: (a) Triangular vortex lattice observed in a scalar BEC. (b) Square vortex
lattice observed in the |1⟩ component of binary BECs. (c) Reciprocal space of the tri-
angular lattices by two-dimensional Fourier transformation of (a). The center peak is
at the Γ point. Six peaks emerge in an equiangular configuration at every 60◦. (d) Re-
ciprocal space of the square lattice. Four peaks clearly indicate the formation of square
vortex lattices. Reproduced from Fig. 1 of Ref. [19]. Copyright c⃝ 2004 by the American
Physical Society.
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written in the matrix form as

U =
ℏΩ
2

(
cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
, (2.34)

where Ω is the generalized Rabi frequency characterizing the coupling strength, θ is the
mixing angle and ϕ is the phase angle. In the case of a two-level atom in a monochromatic
laser field, Ω cos θ is the detuning of a laser, Ω sin θ is the strength of the atom-laser
coupling and ϕ is the laser phase. The parameters V,Ω, θ and ϕ depend on the position
vector r, so that the dynamics of the particle is governed by them.

To analyze the Hamiltonian (2.33), we introduce a useful basis in terms of the eigen-
vectors of the matrix U , which are given by

|χ1⟩ =
(

cos(θ/2)
eiϕ sin(θ/2)

)
, |χ2⟩ =

(
−e−iϕ sin(θ/2)

cos(θ/2)

)
, (2.35)

with eigenvalues ℏΩ/2 and −ℏΩ/2, respectively. These states called “dressed states” are
spatially dependent since the matrix U depends on r. From the orthogonality of these
normalized states, we find that i⟨χj|∇χj⟩ is real and the relation ⟨∇χ2|χ1⟩ = −⟨χ2|∇χ1⟩
is satisfied.

In terms of these dressed states, the full state vector of the particle is given as

|Ψ(r, t)⟩ =
∑
j=1,2

ψj(r, t)|χj(r)⟩. (2.36)

We derive the equation of motion for ψ1 assuming that ψ2 is negligible. Since both ψj(r, t)
and |χj⟩ are spatially dependent, we find ∇[ψj|χj⟩] = [∇ψj]|χj⟩+ ψj[|∇χj⟩] . By acting
the momentum operator on the state, we obtain

P|Ψ⟩ =
2∑

j,l=1

[(δj,lP−Ajl)ψl]|χj⟩, (2.37)

with
Ajl = iℏ⟨χj|∇χl⟩. (2.38)

Since we assume ψ2 is negligible, we obtain the time-dependent Schrödinger equation for
ψ1 by projecting the Schrödinger equation iℏ|Ψ̇⟩ = H|Ψ⟩ onto the dressed state |χ1⟩. This
assumption is called the adiabatic approximation. In this approximation, the Schrödinger
equation for ψ1 is given by

iℏ
∂ψ1

∂t
=

[
(P−A)2

2M
+ V +

ℏΩ
2

+W

]
ψ1. (2.39)

Here, the two geometric potentials A(r) and W (r) are related to the spatial dependence
of the dressed state as

A(r) = iℏ⟨χ1|∇χ1⟩ =
ℏ
2
(cos θ − 1)∇ϕ, (2.40)

W (r) =
ℏ2

2M
|⟨χ2|∇χ1⟩|2 =

ℏ2

8M
[(∇θ)2 + sin2 θ(∇ϕ)2]. (2.41)
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We see that Eq. (2.39) is analogous to the Schrödinger equation for a charged particle
with the scalar potential W (r) and the vector potential A(r). A synthetic magnetic field
appears when the effective magnetic field

B(r) = ∇×A(r) =
ℏ
2
(∇ cos θ)×∇ϕ, (2.42)

is nonzero. From the analytical expression of B in Eq. (2.42), we obtain a nonzero
magnetic field when both the gradient of the mixing angle θ and that of the phase
angle ϕ are nonzero and when they are not parallel to each other. The second geometric
potentialW (r) is a scalar potential creating a force on the particle. When we adiabatically
eliminate |χ1⟩ instead of |χ2⟩, the Schrödinger equation for ψ2 is obtained. In this case,
the same scalar potential W (r) and the vector potential with a reversed sign, −A(r), are
obtained in the equation for ψ2.

2.3.2 Experimental realization

The antiparallel synthetic magnetic fields are applied to the pseudospin-1/2 87Rb BECs
with the atomic mass m by coupling two states via the two laser beams (“Raman lasers”)
with wavelength λ [20]. Two beams parallel to the x axis propagate in opposite directions
and couples the states |f = 1,mF = 0,−1⟩ = | ↑, ↓⟩ with strength Ω. We introduce the
single-photon recoil energy as ER = ℏ2k2R/2m, where ℏkR = 2πℏ/λ is the momentum.
For a resonant Raman coupling, the Hamiltonian of a single particle is given by

H =
ℏ2k2

2m
I +

ℏΩ
2
σ1 −

ℏ2kRkx
m

σ3 + ERI, (2.43)

where ℏk is the vector of the momentum operator and I and σi (I = 1, 2, 3) are the identity
matrix and the Pauli matrices for the pseudospin degrees of freedom, respectively. The
eigenenergy of the Hamitonian E± is given by

E± = ε±(kx) +
ℏ2(k2y + k2z)

2m
, (2.44)

with

ε±(kx) =
ℏ2k2x
2m

+ ER ±

√(
ℏΩ
2

)2

+

(
ℏ2kRkx
m

)2

. (2.45)

Since the wavenumber kx which minimizes the lower dispersion relation E−(kx) is calcu-
lated from ∂ε±(kx)/∂kx = 0, we find that two ground states have the nonzero wavenumber
kx = ±q with q = kR[1− (ℏΩ/4ER)

2]1/2 and they represent the dressed states ↑′ and ↓′,
respectively. We assume ℏΩ < 4ER. By performing the Taylor expansion of ε−(kx) about
the minima ±q, the dispersion relation is rewritten as

ε−(kx) = −(ℏΩ)2

16ER

+
1

2m∗ (ℏkx ∓ ℏq)2 + · · · , (2.46)

wherem∗ = 2m/[1−(ℏΩ/4ER)
2] is an effective mass. From Eq. (2.46), we find a synthetic

magnetic field depending on the dressed state and the scalar potential independent of the
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dressed state. Since the scalar potential is compensated by an additional potential in the
experiment, we omit this term in the following. The effective Hamiltonian is obtained as

H =
(pI − Aexσ3)

2

2m∗ + · · · , (2.47)

with
A = ℏkR[1− (ℏΩ/4ER)

2]1/2, (2.48)

where I and σ3 are the 2 × 2 identity matrix and the z component of the Pauli matrix,
respectively, in terms of dressed states. The antiparallel synthetic magnetic fields are
obtained when the strength Ω is spatially dependent: Ω = Ω(y).

To prepare the binary BECs from an ultracold atomic gas with N ≃ 5 × 104 atoms,
the energy level of |F = 1,mF = 0,±1⟩ states are shifted by a bias magnetic field. The
energy shifts due to the linear and quadratic Zeeman effects are proportional to mF

and (mF )
2, respectively. Therefore the degeneracy of the levels are lifted by the linear

Zeeman effect and the |F = 1,mF = 1⟩ state is eliminated while the |F = 1,mF = −1⟩
state approachs the |F = 1,mF = 0⟩ state by the quadratic Zeeman effect in order to
prepare the binary system. The energy difference between the remaining two levels is
∆E = 2πℏ × 15 MHz. Two Raman lasers with frequencies ω and ω + δω couple the
two hyperfine states |F = 1,mF = 0,−1⟩ to the same highly excited state, producing an
effective coupling between |F = 1,mF = 0,−1⟩. The spin-dependent Lorentz force has
been observed from the shear of the gas and the antiparallel magnetic fields are confirmed
from the observation of the spin current.

2.3.3 Equivalence of parallel and antiparallel fields within a
mean-field regime

When the filling factor ν ≡ N/Nv, where N is the number of particle and Nv is the
number of quantized vortices, is large (ν ≫ 1), the magnetic field is so weak that the
system is well described by GP mean-field theory as in Eq. (2.30). Since the energy
functional for the system in antiparallel magnetic fields is given by

E[ψ↑, ψ↓] =

∫
d2r

[
ψ∗
↑K(B)ψ↑ + ψ∗

↓K(−B)ψ↓ +
∑
α,β

gαβ
2

|ψα|2|ψβ|2
]
, (2.49)

with the single-particle Hamiltonian in the symmetric gauge given by

K(±B) =
1

2M

[(
−iℏ ∂

∂x
± qB

2
y

)2

+

(
−iℏ ∂

∂y
∓ qB

2
x

)2
]
, (2.50)

we find the GP energy functionals for the cases of parallel and antiparallel magnetic fields
are connected to each other as [23]

Eantiparallel[ψ↑, ψ↓] = Eparallel[ψ↑, ψ
∗
↓]. (2.51)

We can prove the equivalence of the energy functionals for parallel and antiparallel fields
by performing the partial integrations twice as∫

d2r ψ∗
↓K(−B)ψ↓ =

∫
d2r ψ↓K(B)ψ∗

↓, (2.52)
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and replacing ψ↓ to ψ∗
↓ for parallel fields. Since the ground-state wave function is de-

termined by minimizing the energy functional, Eq. (2.51) implies that the ground-state
phase diagram of vortex lattices in the mean-field theory under the antiparallel magnetic
fields is equivalent to that for parallel magnetic fields as shown in Fig. 2.2. Later, we use
this fact in formulating the Bogoliubov theory of the vortex lattices for antiparallel fields.

2.4 Binary Bose-Einstein condensates in the quan-

tum Hall regime

In the mean-field theory, we have seen that the ground-state phase diagrams of the vor-
tex lattices in binary BECs for parallel and antiparallel fields are equivalent. However,
in the quantum Hall regime, where the magnetic field is so strong that the mean-field
theory breaks down, the ground-state phase diagrams for parallel and antiparallel fields
are different. The strength of the magnetic field for a binary system is given by the total
filling factor ν = (N↑ + N↓)/Nv, where Nα (α =↑, ↓) denotes the numbers of particles
in the component α and Nv is the number of magnetic flux quanta piercing through
each component. By the exact diagonalization, the ground-state phase diagrams in the
space of the total filling factor and the ratio of the intercomponent interaction g↑↓ to
the intracomponent interaction g for parallel and antiparallel fields are presented in Fig.
2.5 [24] and Fig. 2.6 [23], respectively. The authors of Refs. [24] and [23] found that the
product states given by a pair of various quantum Hall states, where two components
are disentangled, are robust for an attractive (repulsive) intercomponent interaction in
parallel (antiparallel) fields. In contrast, the spin-singlet quantum Hall (pairing) states,
in which two components are highly entangled, appear for the repulsive (attractive) in-
tercomponent interaction in parallel (antiparallel) fields.

Therefore it is interesting to discuss the quantum correction to the ground state for
parallel and antiparallel fields by calculating the Lee-Huang-Yang correction based on
the Bogoliubov theory as a step to go beyond the mean-field theory. We expect that
the intercomponent EE is large in the regime where the spin-singlet states appear, while
we expect that the intercomponent EE is small in the regime where the product states
appear. The intercomponent EE of vortex lattices in binary BECs is expected to show
similar behavior since the vortex lattices turn into the quantum Hall states by increasing
the strength of the magnetic fields. We address these problems in Chap. 5.
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Figure 2.5: Ground-state phase diagram for parallel fields in terms of the total filling
factor ν and the ratio g↑↓/g = tan γ of the intercomponent coupling constant g↑↓ to the
intracomponent one g. We assume g > 0. For an attractive intercomponent interaction,
the product states of a pair of nearly uncorrelated quantum Hall states appear. The
quantum Hall (QH) states (Laughlin, composite Fermion and Moore-Read states) depend
on the filling factor ν. In contrast, various spin-singlet QH states appear in the region
of repulsive intercomponent interactions, such as a SU(3)1 state at ν = 2/3, a composite
Fermion spin-singlet state (CFSS) at ν = 4/3 and a bosonic integer quantum Hall (BIQH)
state at ν = 2. Furthermore, a gapless spin-singlet composite Fermi liquid (CFL) appears
at ν = 1. At larger g↑↓/g, a phase separation (PS) occurs. The shaded bars indicate the
regimes of the different phases. The phase boundaries are not precisely given due to
the finite-size effect or ambiguity in setting the condition. Reproduced from Fig. 1 of
Ref. [24]. Copyright c⃝ 2017 by the American Physical Society.
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Figure 2.6: Ground-state phase diagram for antiparallel fields in terms of the total filling
factor ν and the ratio g↑↓/g of the intercomponent coupling constant g↑↓ to the intercom-
ponent one g. We assume g > 0. In the mean-field regime with a large filling factor,
vortex lattices appear. For small ν, various quantum spin Hall states given by product
states of a pair of nearly independent quantum Hall states such as the Laughlin state at
ν = 1, the composite Fermion state at ν = 4/3 and the Moore-Read state at ν = 2 appear.
For ν = 1, the range of the phase is determined by an appropriate extrapolation to the
thermodynamic limit while the ranges of the phases for ν = 4/3 and 2 are not determined
precisely due to the finite-size effect. At g↑↓/g = −1, an exact pairing ground state is
obtained and beyond this point the system collapses in the thermodynamic limit. At a
large g↑↓/g, the phase separation occurs. Reproduced from Fig. 1 of Ref. [23]. Copyright
c⃝ 2014 by the American Physical Society.
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Chapter 3

Effective-field theory of vortex
lattices in binary BECs

In this chapter, two different excited states in parallel and antiparallel fields in contrast to
the ground states in the mean-field theory are related by the rescaling relations. In Sec.
3.1, we start by reviewing a mean-field description of vortex lattices for a scalar BEC [44].
In particular, we highlight the importance of renormalization of the coupling constant.
In Sec. 3.2, we derive a low-energy effective-field theory of vortex latices in binary BECs.
We introduce a new term for the elastic energy and renormalization factors for coupling
constants of intercomponent and intracomponent interactions. In Sec. 3.3, we calculate
the excitation spectra and obtain rescaling relations between the dispersion relations for
parallel and antiparallel fields. We also discuss oscillation modes which correspond to
quadratic and linear dispersion relations.

3.1 Mean-field description of vortex lattices

3.1.1 System and formalism

We consider a system of a three-dimensional scalar BEC rotating at an angular velocity
Ω with a rotation axis along the z-axis. A BEC is trapped in a harmonic potential
V (r) = 1

2
M(ω2r2⊥ + ω2

zz
2), where r⊥ = (x, y, 0), M is the mass of an atom, and ω⊥ and

ωz are the trapping frequency in the xy plane and z-axis, respectively. We assume that
the vortices are rectilinear and they form a triangular lattice. At a large rotation rate,
in which the number of quantized vortices Nv satisfy Nv ≫ 1, the angular velocity Ω is
close to the angular frequency

Ωv =
πℏnv

M
, (3.1)

where nv = Nv/A is the two-dimensional density of vortices. We obtain the mean angular

velocity Ωv from the condition of quantization of vorticity
∮
C dℓ⃗ · v = Nv(C)h/M , where

v is the superfluid velocity and Nv(C) is the number of vortices inside the contour C. By
substituting v = Ωez × r, where ez is the unit vector along the z-axis, into the condition
of the quantization of vorticity, we find the angular velocity Ωv in Eq. (3.1). In terms
of the magnetic length given by ℓ =

√
ℏ/2MΩv, the area of the unit cell is given by
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2πℓ2 = 1/nv. We note that the mean angular velocity Ωv is usually smaller than the
angular velocity Ω.

We separate the short-distance structure of vortices from the large-scale structure to
consider the large-scale property of the vortex lattice. The order parameter is written as

ψ(r) = eiΦ(r)f(r)
√
n(r), (3.2)

where f(r) is a rapidly varying periodic real function vanishing at each vortex core,
√
n(r)

is a slowly varying real envelope function and Φ(r) is the phase factor. We normalize f 2,
so that its average over each unit cell of the lattice is equal to unity:

∫
d2rf 2/2πℓ2 = 1.

Here, n(r) is the density profile of the system, which varies slowly in the unit cell of the
vortex lattice. The phase Φ(r) varies by an integer multiple of 2π around each vortex.

In the laboratory frame, the mean-field energy of the BEC is given by

E =

∫
d3r

[
ℏ2

2M
|∇ψ(r)|2 + V (r)n(r)f 2(r) +

g

2
n2(r)f 4(r)

]
, (3.3)

where a coupling constant of the interaction term g is given by g = 4πasℏ/M using an
s-wave scattering length as. By substituting Eq. (3.2) in Eq. (3.3), the kinetic term of
Eq. (3.3) given by K is rewritten as

K :=

∫
d3r

ℏ2

2M
|∇ψ(r)|2 =

∫
d3r

ℏ2

2M

[
(∇

√
n)2f 2 + (∇Φ)2nf 2 + n(∇f)2 + 1

2
∇f 2 · ∇n

]
.

(3.4)
We now replace f 2 in the first term on the right-hand side of Eq. (3.4) by its average,
which is unity because the variation of the density n across the unit cell of a vortex
lattice is small. This approximation will be used repeatedly in a later part. In the second
term of Eq. (3.4), we keep f 2 since the phase Φ varies rapidly in the unit cell. For the
fourth term, we integrate it by parts to obtain −

∫
d3rf 2∇2n. Then by replacing f 2 by

its average in a unit cell, we find that this surface term vanishes since both the density
and its derivative vanish at large distance. We thus find that the kinetic term is rewritten
as

K =

∫
d3r

ℏ2

2M

[
(∇

√
n)2f 2 + (∇Φ)2nf 2 + n(∇f)2

]
. (3.5)

We determine the unit cell in the xy plane in such a way that a vortex j locates at
the center of the cell Rj. The superfluid velocity ℏ∇Φ/M around a vortex j is given by
the sum of a rate of a solid body rotation Ωv × Rj which is determined by the vortex
density and the position of the vortex and a local velocity around the vortex ℏ∇ϕj/M ,
where ϕj is the azimuthal angle with respect to the center of the cell j:

ℏ∇Φ/M ≃ Ωv ×Rj + ℏ∇ϕj/M, (3.6)

with Ωv = Ωvez. By substituting the superfluid velocity into the second term of the
kinetic term of Eq. (3.5), we obtain∫

d3r
ℏ2

2M
(∇Φ)2nf 2 =

∑
j

∫
j

d3r nf 2

[
ℏ2(∇ϕj)

2

2M
+

1

2
MΩvR

2
j + ℏΩv · (Rj ×∇ϕj)

]
,

(3.7)
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where
∫
j
d3r indicates the integration over the unit cell j and the sum

∑
j represents

the summation over all cells. The last term in Eq. (3.7) remains nonvanishing when the
density n varies in the unit cell. By introducing ρ as Rj = r⊥ − ρ in the unit cell j, the
second term on the right-hand side of Eq. (3.7) is given as

1

2
IΩ2

v +
1

2
MΩ2

v

∑
j

∫
j

d3r nf 2(ρ2 − 2r⊥ · ρ), (3.8)

where I =
∫
d3rMnf 2r2⊥ is the total moment of inertia of the system. Using the moment

of inertial I again, the trapping potential term in the xy plane is written as∫
d3r

M

2
ω2
⊥r

2
⊥nf

2 =
1

2
Iω2

⊥. (3.9)

The total energy is given by

E =
1

2
I(ω2

⊥ + Ω2
v) +

∫
d3r

[
ℏ2(∇

√
n)

2M
+
M

2
nω2

zz
2

]
+
∑
j

∫
j

d3r n(r)

[
ℏ2(∇f)2

2M

+ f 2

(
ℏ2(∇ϕj)

2

2M
+

1

2
MΩ2

v(ρ
2 − 2ρ · r⊥) + ℏΩv · (Rj ×∇ϕj)

)
+
g

2
nf 4

]
.

(3.10)

In the rotating frame of reference, the total energy of the system rotating at the
angular velocity Ω is given by E ′ = E − ΩL, where L is the angular momentum along
the z-axis given by

L =

∫
d3r ψ∗(r× p)zψ =

∫
d3r n(r)f 2(r)ℏ[r×∇Φ(r)]z. (3.11)

By substituting Eq. (3.6) in Eq. (3.11) and using ρ again, we find

L = IΩv +
∑
j

∫
j

d3r nf 2[ℏ(r⊥ ×∇ϕj)z −MΩvρ · r⊥]. (3.12)

3.1.2 Structure of vortices

We determine the structure of a vortex in the unit cell and obtain the total energy of the
vortex lattices on a long-distance scale. To calculate the integral over the unit cell, we
introduce the Wigner-Seitz approximation, which replaces the hexagonal unit cell into a
circle of radius

√
2ℓ, so that the area is invariant. The vortex is located at the center of

the circle and we assume that f is cylindrically symmetric in the cell. We also assume
that the vortex spacing is smaller than the characteristic length in the z direction. Then
we can neglect ∂f/∂z in Eq. (3.10) and f depends only on transverse coordinates x, y and
the average local density. From Rj = r⊥−ρ, we find (∇ϕj)

2 = 1/ρ2 and ℏ(ρ×∇ϕj)z = ℏ.
Therefore the angular momentum in the Wigner-Seitz approximation is given by

L = IΩv +
∑
j

∫
j

d3r nf 2(ℏ−MΩvρ · r⊥). (3.13)
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To calculate the third term on the right-hand side of Eq. (3.13), we expand the
spatially dependent mean density n(r) about the center of cell j as n(Rj + ρ) ≃ n(Rj) +
ρ · ∇n(Rj). We find∑

j

∫
j

d3r nf 2ρ · r⊥ ≃ 1

2

∑
j

∇j · [Rjn(Rj)]

∫
j

d3r
⟨
ρ2
⟩
≃ 1

2

∫
d3r ∇ · [rn(r)]

⟨
ρ2
⟩

=
1

2

∫
d3r ∇ · [rn(r)

⟨
ρ2
⟩
]− 1

2

∫
d3r rn(r) · ∇

⟨
ρ2
⟩
,

(3.14)

where ⟨g⟩ =
∫
j
d3r gf 2/

∫
j
d3r is the average of an arbitrary function g within the unit

cell j. The details of the calculation are given in App. A.1.1. When the density is zero at
large distance, the first term in the last expression in Eq. (3.14) vanishes. Furthermore,
when ⟨ρ2⟩ does not depend on position, the second term also vanishes owing to ∇⟨ρ2⟩ = 0
and the last term of the angular momentum (3.13) is zero. In the fast rotating system of
our interest, this approximation is legitimate, since the interaction does not change the
structure of each cell and the wave function is described by the LLL approximation. We
note that this approximation was not used in Ref. [45], which took account of the leading
term of the total energy in terms of the number of vortices Nv. From the approximation,
the angular momentum becomes L = IΩv + Nℏ. We omit the constant second term in
the following.

From Eq. (3.14), we find that the term ρ · r⊥ in Eq. (3.10) vanishes. From a similar
calculation in Eq. (3.14), the term ℏΩv · (Rj ×∇ϕj)z in the total energy (3.10) is given
by ∑

j

∫
j

d3r nf 2ℏΩv · (Rj ×∇ϕj) ≃ −ℏΩv

∫
d3r nf 2. (3.15)

The details of the calculation are given in App. A.1.2. The total energy in the rotating
frame of reference E ′ = E − ΩL is given by

E ′ =
1

2
I(ω2

⊥ + Ω2
v − 2ΩΩv) +

∫
d3r

{
ℏ2(∇

√
n)

2M
+
M

2
nω2

zz
2

}
+
∑
j

∫
j

d3r n(r)

[
ℏ2(∇f)2

2M
+

(
ℏ2(∇ϕj)

2

2M
+

1

2
MΩ2

vρ
2 − ℏΩv

)
+
g

2
nf 4

]
.

(3.16)

To separate the term in I that depends on f 2, we rewrite I as

I = Ī +
∑
j

∫
j

d3r n(f 2 − 1)r2⊥, (3.17)

where Ī =
∫
d3r Mnr2⊥ is the moment of inertia. The second term of Eq. (3.17) is given

by ∑
j

∫
j

d3r n(f 2 − 1)r2⊥ ≃ −
∑
j

∫
j

d3r n(f 2 − 1)ρ2. (3.18)
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The details of the calculation are given in App. A.1.3. The total moment of inertia of
the system I becomes

I = Ī −
∑
j

∫
j

d3r n(f 2 − 1)ρ2 = Ī +
ℏN
2Ωv

−
∑
j

∫
j

d3r nf 2ρ2. (3.19)

We find

E ′ =
1

2

(
Ī +

ℏN
2Ωv

)
(ω2

⊥+Ω2−2ΩΩv)+

∫
d3r

{
ℏ2(∇

√
n)

2M
+
M

2
nω2

zz
2

}
−ℏΩvN+

∑
j

Ej,

(3.20)
where

Ej =

∫
j

d3r n(r)

{
ℏ2

2M

[(
∂f

∂ρ

)2

+
f 2

ρ2

]
+
M

2
(2ΩΩv − ω2

⊥)f
2ρ2 +

g

2
nf 4

}
, (3.21)

includes all terms that depend on f . Here we ignore the difference Ω − Ωv. To find the
structure of a vortex at each unit cell, we minimize Eq. (3.21) with respect to f with∫
j
d2ρ(f 2 − 1) = 0 and the boundary condition f(0) = 0 and ∂f

∂ρ
= 0 at ρ = ℓ. In the

following, we give the form of f in the LLL approximation.
We define the averages over the unit cell of the following quantities depending on the

distribution of the density in the unit cell as

a =
ℓ2

2

⟨(
∂f

∂ρ

)2

+
f 2

ρ2

⟩
, b′ =

1

ℓ2
⟨
ρ2f 2

⟩
, b =

⟨
f 4
⟩
. (3.22)

Then the structure of a vortex is removed from Eq. (3.21) and its energy is rewritten as

Ej =

∫
j

d3r n

{
ℏΩva+ b′ℏ

(
Ω− ω2

⊥
2Ωv

)
+
gnb

2

}
. (3.23)

We obtain the total energy of the vortex lattice on a scale much larger than that of the
unit cell. In the mean-field LLL regime, where the system is rapidly rotating, we assume
that f has the structure of a p-state of oscillator to the lowest order, which is given by

f(ρ) = C
ρ

ℓ
e−ρ2/2ℓ2 , (3.24)

where C = (1−2/e)−1/2 is the normalization factor. By substituting the state (3.24) into
the energy in the unit cell (3.21), we find

Ej =

∫
j

d3r n

(
2ℏΩv −

M

2
(ω2

⊥ + Ω2
v − 2ΩΩv)f

2ρ2 +
g

2
nf 4

)
, (3.25)

so that the total energy is given by

E ′ =
1

2
I(ω2

⊥ + Ω2 − 2ΩΩv) +

∫
d3r

(
ℏ2(∇

√
n)

2M
+
M

2
nω2

zz
2 +

gbn2

2

)
+NℏΩv. (3.26)
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The average of ρ2/ℓ2 is given by

b′ =
1

ℓ2

∫
j
d2ρ ρ2f 2∫
j
d2ρ

=
2e− 5

e− 2
≃ 0.608, (3.27)

and we find a = 2− b′/2. The renormalization factor of the coupling constant in the LLL
approximation is given by

b =

∫
j
d2ρ f 4∫
j
d2ρ

=
e2 − 5

4(e− 2)2
≃ 1.158. (3.28)

To obtain Ωv, we minimize Eq. (3.26) (δE ′/δΩv = 0) with respect to Ωv. For an angular
velocity Ω, we obtain

Ωv = Ω−N/I. (3.29)

By substituting Eq. (3.29) into Eq. (3.26), the total energy of the system is given by

E ′ =
1

2
I(ω2

⊥ − Ω2) +NℏΩ− N2

2I
+

∫
d3r

(
ℏ2(∇

√
n)

2M
+
M

2
nω2

zz
2 +

gbn2

2

)
, (3.30)

which is consistent with the exact result in [46].

3.2 Effective-field theory of vortex lattices

In this section, we derive the effective-field theory of vortex lattices in binary BECs
in the LLL approximation. In Sec. 3.2.1, we describe the system under consideration.
In Sec. 3.2.2, we derive the effective-field theory for the binary systems by extending
the derivation for a scalar case. In Sec. 3.2.3, we discuss the elastic energy used for the
effective-field theory. We find that the elastic energy terms which are unique to the binary
system are related to the quadratic and linear dispersion relations and an important term
is missing in the previous study [47]. In Sec. 3.2.4, we discuss the renormalization of the
coupling constants in a binary system.

3.2.1 Description of the system

We consider a system of two-dimensional binary (pseudospin-1/2) BECs having two hy-
perfine spin states, which we label by α =↑, ↓. The two components are subjected to
synthetic magnetic fields B↑ and B↓ in mutually parallel or antiparallel directions. The
Lagrangian density of the system is given by

L =
∑
α=↑,↓

[
iℏ
2
(ψ†

αψ̇α − ψ̇†
αψα)−

1

2M
|(−iℏ∇− qAα)ψα|2

]
−
∑

α,β=↑,↓

gαβ
2

|ψα|2|ψβ|2, (3.31)

where ψα(r, t) is the bosonic field of the spin-α component and q is the fictitious charge
of an atom whose mass is M . The gauge field Aα(r) for the spin-α component is given
by

Aα =
Bα

2
ez × r = ϵα

B

2
(−y, x, 0), (3.32)

37



where ϵ↑ = ϵ↓ = 1 (ϵ↑ = −ϵ↓ = 1) for parallel (antiparallel) fields. We assume qB > 0
in the following. For a two-dimensional system whose area is given by A, the number
of magnetic flux quanta piercing each component, which is equivalent to the number of
vortices, is given by Nv = A/(2πℓ2), where ℓ :=

√
ℏ/qB is the magnetic length. In

this system, the numbers of spin-↑ and ↓ atoms, N↑ and N↓, respectively, are separately
conserved. We define the total filling factor as ν := N/Nv, where N := N↑ + N↓ is the
total number of atoms.

We assume that the two-body interaction between atoms is a contact interaction and
we set g↑↑ = g↓↓ ≡ g > 0, |g↑↓| < g. We also assume that N↑ = N↓ in the following. From
these conditions, the system in parallel fields is invariant under the interchange of the
two components while the system in antiparallel fields is invariant under time reversal. In
order to use the LLL approximation, the energy scale of the interaction per atom |gαβ|n
must be much smaller than the Landau-level spacing ℏωc, where n := N↑/A = N↓/A is
the average density of ↑ or ↓ atoms and ωc := qB/M is the cyclotron frequency. We
assume that the synthetic magnetic fields Bα are sufficiently strong or the interactions
are sufficiently weak.

3.2.2 Derivation of effective-field theory

To derive the low-energy effective-field theory, we rewrite the field as ψα = e−iθα
√
nα,

where nα(r, t) and θα(r, t) are the density and phase variables, respectively. Using these
variables, the Lagrangian density (3.31) is given by

L =
∑
α

[
ℏnαθ̇α − nα

2M
(ℏ∇θα + qAα)

2 − ℏ2(∇nα)
2

8nαM

]
−
∑
α,β

gαβ
2
nαnβ. (3.33)

In the presence of vortices, the phase variables {θα(r, t)} involve singularities. We
decompose the phase θα into its regular and singular parts as θα = θreg,α + θsing,α. We
also introduce the displacement of a vortex from the equilibrium position as uα(r, t) =
r −Xα(r, t), where r is the equilibrium position of the vortex and Xα is its position at
time t. The displacement fields uα can be related to the derivatives of the singular part
θsing,α of the phase as [48,49]

ℏθ̇sing,α = −qB
2
(uα × u̇α)z, ℏ∇θsing,α + qAα = qBαez × uα − qBα

2
ϵiju

i
α∇ujα, (3.34)

where ϵij is the antisymmetric tensor with ϵxy = −ϵyx = +1. The displacement uα(r, t)
determines the elastic energy

∫
d2r Eel(uα, ∂iuα), whose form is constrained by the sym-

metry of the ground state of vortex lattices. Details will be discussed in Sec. 3.2.3. The
Lagrangian density in terms of {θreg,α,uα, nα} is expressed as

L =
∑
α

[
ℏnαθ̇reg,α − qBαnα

2
(uα × u̇α)z −

nα

2M

(
ℏ∇θreg,α + qBαez × uα − qBα

2
ϵiju

i
α∇ujα

)2

− ℏ2(∇nα)
2

8nαM

]
−
∑
α,β

ḡαβ
2
nαnβ − Eel.

(3.35)
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In the following, we omit the subscript “reg” for θreg,α.
In the interaction term in Eq. (3.35), we have introduced renormalized coupling con-

stants ḡαβ with ḡ↑↑ = ḡ↓↓ ≡ ḡ and ḡ↑↓ = ḡ↓↑, since we have coarse-grained the model
by introducing vortex displacement fields. This modification is important to discuss the
vortex lattices in the LLL and compare the theory with the Bogoliubov theory in Chap.
4. We discuss details about how to obtain the renormalized coupling constants in Sec.
3.2.4.

Since {uα} have the mass term −u2
α in Eq. (3.35), we expect that they are integrated

out safely in discussing the low-energy dynamics. The Euler-Lagrange equations for {uα}
are given by

uα − ϵαℓ
2ez ×∇θα − ϵα

ωc

ez × u̇α +
ℓ2

nℏωc

[
∂Eel
∂uα

−
∑
j

∂j

(
∂Eel

∂ (∂juα)

)]
= 0, (3.36)

where we have made the approximation nα ≈ n. We can ignore the third and fourth
terms on the left-hand side in the LLL approximation, since ℏω, ℓ2Eel ≪ ℏωc, where ω is
the frequency of our interest.

Since the elastic energy depends on u± := u↑ ± u↓ as we will see in Sec. 3.2.3, we
rewrite the Euler-Lagrange equation (3.36) as

u± =

{
ℓ2ez ×∇θ± (parallel fields);

ℓ2ez ×∇θ∓ (antiparallel fields),
(3.37)

where θ± := θ↑ ± θ↓. These relations indicate that in parallel fields the symmetric u+

(antisymmetric u−) is coupled to the symmetric θ+ (antisymmetric θ−), while in antipar-
allel fields they are coupled in a crossed manner. We also find the vortex is displaced in
the direction perpendicular to the wave vector k. We introduce ℏn± = ℏ(n↑ ± n↓)/2 as
the conjugate momenta of θ± since nα are the conjugate momenta of θα, as can be seen
from the first term of Eq. (3.35).

By eliminating the displacement fields uα in Eq. (3.35) by substituting Eqs. (3.36)
and (3.37) in Eq. (3.35), the Lagrangian density in terms of {θν , nν} is given as

L =
∑
ν=±

[
ℏnν θ̇ν −

ℏ2(∇nν)
2

4nM
− ḡνn

2
ν

]
− Eel, ḡ± := ḡ ± ḡ↑↓, (3.38)

where we ignore the higher-derivative terms. The Hamiltonian density is obtained as

H =
∑
ν=±

[
ḡνn

2
ν +

ℏ2(∇nν)
2

4nM

]
+ Eel. (3.39)

We require the canonical commutation relations

[θν(r), nν′(r
′)] = iδνν′δ(r− r′) (ν, ν ′ = ±), (3.40)

in quantizing the theory of vortex lattices.
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3.2.3 Elastic energy

Since the elastic energy is invariant under the translation of the lattices, Eel is a function
of ∂iu+ (i = x, y) and u−, which are invariant under a constant change in uα(r, t), to the
leading order in the derivative expansion. Therefore we can decompose it as

Eel = E (+)
el (∂iu+) + E (−)

el (u−) + E (+−)
el (∂iu+,u−). (3.41)

To express E (+)
el , it is useful to introduce the stress tensors given by

w0 := ∂xu
x
+ + ∂yu

y
+, w1 := ∂xu

x
+ − ∂yu

y
+, w2 := ∂yu

x
+ + ∂xu

y
+. (3.42)

Since the vortex density stays constant in the LLL regime, we find w0 = 0. This can also
be confirmed by substituting Eq. (3.37) into w0. From a symmetry consideration which
we will describe in App. A.2, the three terms in Eq. (3.41) are expressed as

E (+)
el (∂iu+) =

gn2

2

(
C1w1

2 + C2w2
2 + C3w1w2

)
,

E (−)
el (u−) =

gn2

2ℓ2

[
D1

(
ux−
)2

+D2 (u
y
−)

2 +D3u
x
−u

y
−

]
,

E (+−)
el (∂iu+,u−) =

gn2

2ℓ
F1

(
w1u

y
− + w2u

x
−
)
,

(3.43)

where Ci, Di (i = 1, 2, 3) and F1 are the dimensionless elastic constants. For each of the
vortex lattices in Fig. 2.2 (a)-(e), the dimensionless elastic constants {C1, C2, C3, D1, D2, D3, F1}
satisfy

(a) C1 = C2 ≡ C > 0, D1 = D2 ≡ D > 0, C3 = D3 = F1 = 0;

(b) C1 = C2 ≡ C > 0, D1 = D2 ≡ D > 0, C3 = D3 = 0, F1 ̸= 0;

(c) C1, C2, D1, D2 > 0, C3, D3 ̸= 0, F1 = 0;

(d) C1, C2 > 0, D1 = D2 ≡ D > 0, C3 = D3 = F1 = 0;

(e) C1, C2 > 0, D1, D2 > 0, C3 = D3 = F1 = 0.

(3.44)

In a scalar case, the elastic energy of a triangular vortex lattice is only given by the
stress tensors due to the invariance of the elastic energy with respect to the translation
of the lattice. In the following section, the linear dispersion relation is obtained by E (−)

el

and the quadratic dispersion relation is obtained by E (+)
el and E (+−)

el . The emergence of
the linear dispersion relation originates from the invariance of u− against the translation
of lattices, which is unique to the binary system.

We note that the term E (+−)
el was missing in the previous study by Keçeli and Oktel [47]

from the symmetrical consideration since they impose the invariance of the elastic energy
under the exchange of components, which does not occur in interlaced vortex lattices (b).
The F1 term is allowed by the C3 symmetry of interlaced vortex lattices (b). As this term
couples the symmetric and antisymmetric displacement u±, the low-energy spectrum of
interlaced vortex lattices with a quadratic dispersion relation changes drastically. An
anisotropy of the quadratic dispersion relation f2(φ) depicted in Fig. 4.4 (b) has C6

symmetry owing to the new term while the anisotropy function f2(φ) was constant in the
previous research [47].
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From the calculation of the change of the energy due to the deformation of the vor-
tex lattices in the mean-field theory, Keçeli and Oktel [47] determined the constants
{C1, C2, C3, D1, D2, D3}. We calculate the dimensionless elastic constants {C1, C2, C3, D1, D2, D3, F1}
by fitting an analytical forms of excitation spectra to the numerical results based on the
Bogoliubov theory in Chap. 4. From the one-to-one correspondence of the GP energy
functionals between parallel and antiparallel fields, we find that the values of the elastic
constants are the same between two cases. This correspondence will be confirmed for
each of the vortex lattices in Sec. 4.2.1.

3.2.4 Renormalization of coupling constants

On the basis of the study about a vortex lattice in a scalar BEC [44], we show that the
coupling constant in the LLL approximation is renormalized according to Eq. (3.28). To
obtain the renormalization factor for a binary system, we first note that the value of the
renormalization factor remains the same even if the integral over the unit cell is changed
into the integral over the system. Since the order parameter of the spin-α component is
given by ψα(r) =

√
nAΨqα,α(r), where Ψqα,α(r) is the LLL magnetic Bloch state, which

we will discuss in Chap. 4, we find that the density is constant and a rapidly varying
part is given by fα =

√
AΨqα,α(r). Therefore the coupling constant gαβ is renormalized

as ḡαβ = βαβgαβ with the renormalization factor βαβ given as

βαβ =

∫
d2r f 2

αf
2
β∫

d2r
=

∫
d2r |Ψqα,α(r)|2|Ψqβ ,β(r)|2, (3.45)

where the integration runs over the system instead of a unit cell. By assuming that the
renormalized coupling constants ḡαβ satisfy ḡ↑↑ = ḡ↓↓ ≡ ḡ > 0 and ḡ↑↓ = ḡ↓↑, we find that
βαβ is obtained by the numerically calculation of

βαβ =
A

gαβ
Vαβ(qα,qβ,qβ,qα), (3.46)

where Vαβ is the interaction matrix element discussed in Chap. 4. As we see from Eq.
(3.45), ḡαβ is determined by the contribution of each interaction term to the mean-field
ground-state energy.

Figure 3.1 presents the renormalization factors β := ḡ/g and β↑↓ := ḡ↑↓/g↑↓ calculated
for the mean-field vortex lattice structures. We find that β and β↑↓ are independent
of g↑↓/g for overlapping triangular, interlaced triangular, and square lattices since the
lattice structures remain unchanged in the corresponding regions. In contrast, β and β↑↓
do depend on g↑↓/g for the other lattices, since the inner angle θ and the aspect ratio b/a
continuously vary within the regime of rhombic and rectangular lattices, respectively.

We find that the intracomponent coupling is always enhanced by the renormalization.
We indeed confirm that β > 1 in all the regions in Fig. 3.1. We also find that the
intercomponent repulsion g↑↓ > 0 (attraction g↑↓ < 0) is reduced (enhanced) by the
renormalization owing to the displacement (overlap) of vortices between the components.
In Fig. 3.1, we indeed confirm β↑↓ < 1 (β↑↓ > 1) for g↑↓ > 0 (g↑↓ < 0). Furthermore, β
(β↑↓) monotonically increases (decreases) as a function of g↑↓/g for g↑↓ > 0. This reflects
the fact that with increasing g↑↓/g, vortices in different components tend to repel more
strongly with each other at the cost of increasing the intracomponent interaction energy.

41



 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1

β

β↑↓

β=β↑↓

Overlapping
triangular

Interlaced
triangular

Rhombic Square Rectangular

R
en

or
m

al
iz

at
io

n 
fa

ct
or

g↑↓/g

Figure 3.1: Renormalization factors β := ḡ/g (black) and β↑↓ := ḡ↑↓/g↑↓ (green) for
the intracomponent and intercomponent coupling constants. For the mean-field vortex
lattice structure for each g↑↓/g, these factors are calculated from Eq. (3.46). Vertical
dashed lines indicate the transition points in the mean-field phase diagram [17]. They
take the same values for parallel and antiparallel fields. We set Nv = 972, with which a
sufficient convergence to the thermodynamic limit is achieved. For overlapping triangular
lattices (−1 < g↑↓/g < 0), we have β = β↑↓, so that the two curves are overlapping and
the value is β = β↑↓ = 1.1596. The value in this region coincides with the renormalization
factor obtained for a scalar BEC [13,50,51].

3.3 Diagonalization of the Hamiltonian

In this section, we diagonalize the Hamiltonian to obtain the dispersion relations an-
alytically (Sec. 3.3.1). The quadratic and linear dispersion relations appear in all the
phases. We obtain the rescaling relations between the dispersion relations for parallel
and antiparallel fields, so that we relate the excitation modes in parallel and antiparallel
fields although the two modes are different. We also obtain analytic forms of correlation
functions and the fraction of depletion for the next discussion (Sec. 3.3.2).

3.3.1 Dispersion relations

We calculate the energy spectrum of the Hamiltonian H =
∫
d2r H, where the Hamilto-

nian density H is given by Eq. (3.39). We perform Fourier expansions

θν(r) =
1√
A

∑
k

θk,νe
ik·r, nν(r) =

1√
A

∑
k

nk,νe
ik·r (ν = ±), (3.47)

where the Fourier components satisfy

[θk,ν , n−k′,ν′ ] = iδνν′δkk′ , θ†k,ν = θ−k,ν , n†
k,ν = n−k,ν (ν, ν ′ = ±), (3.48)

since n(r) and θ(r) are real functions and satisfy the commutation relation (3.40). We
note that the k = 0 component of the densities n0,± and the atom numbers are related
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to n0,± = (N↑ ±N↓)/(2
√
A). The Hamiltonian H is given by

H =
n

2

∑
k

(
θ−k,+ θ−k,−

)( Γ±(k) ±iΓ(k)
∓iΓ(k) Γ∓(k)

)(
θk,+
θk,−

)
+

1

2n

∑
k

∑
ν=±

ek,νn−k,νnk,ν , (3.49)

where1

ek,ν = 2gνn+ ϵk,

Γ+(k) = gnℓ4
[
C1 (2kxky)

2 + C2

(
k2x − k2y

)2 − C3 (2kxky)
(
k2x − k2y

)]
,

Γ−(k) = gnℓ2
(
D1k

2
y +D2k

2
x −D3kxky

)
,

Γ(k) =
1

2
gnℓ3F1

(
3k2xky − k3y

)
.

(3.50)

In Eq. (3.49), the upper and lower signs correspond to the cases of parallel and antiparallel
fields, respectively.2

The Hamiltonian (3.49) is decomposed into a part of the zero mode (k = 0) and a
part of the oscillator mode (k ̸= 0) for usefulness. The former is given by

Hzero =
∑
ν=±

ḡνn
2
0,ν =

ḡ+
4A

N2 +
ḡ−
4A

(N↑ −N↓)
2. (3.51)

We find that the atom numbers N↑ and N↓ specify the zero-mode energy. In our setting
of balanced population N↑ = N↓, the zero-mode state is given by the product state
|N↑ = N/2⟩ |N↓ = N/2⟩, which has no intercomponent entanglement as we will discuss in
Chap. 5.

Next, we discuss the oscillator-mode part Hosc of the Hamiltonian (3.49). We perform
canonical transformations in two steps to diagonalize it. The first transformation reads

θ̃k,+ = r−1
k θk,+, θ̃k,− = rkθk,−, ñk,+ = rknk,+, ñk,− = r−1

k nk,−, (3.52)

where rk := (ek,+/ek,−)
1/4. We find that Hosc is rewritten as

Hosc =
n

2

∑
k̸=0

(
θ̃−k,+ θ̃−k,−

)
M(k)

(
θ̃k,+
θ̃k,−

)
+

1

2n

∑
k ̸=0

∑
ν=±

ekñ−k,νñk,ν , (3.53)

where ek :=
√
ek,+ek,−. The 2× 2 matrix M(k) is given by

M(k) =

(
Γ̃±(k) ±iΓ(k)

∓iΓ(k) Γ̃∓(k)

)
=

Γ̃+(k) + Γ̃−(k)

2
I ∓ Γ(k)σy ±

Γ̃+(k)− Γ̃−(k)

2
σz, (3.54)

where Γ̃+(k) := r±2
k Γ+(k), Γ̃−(k) := r∓2

k Γ−(k), I is the identity matrix, and (σx, σy, σz)
are the Pauli matrices. The second canonical transformation is performed by using the
unitary matrix U(k) as(

θ̃k,+
θ̃k,−

)
= U(k)

(
θ̄k,1
θ̄k,2

)
,

(
ñk,+

ñk,−

)
= U(k)

(
n̄k,1

n̄k,2

)
. (3.55)

1The definitions of Γ±(k) and Γ(k) are changed from Ref. [31]. We divide them by n so that the
dimension is an energy.

2The same sign rule applies to Eqs. (3.54), (3.57), (3.62), (3.64), (3.65), (3.71), (3.73), and (3.77)
below.
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We note that if U(−k)tU(k) = I for all k ̸= 0, the second term of Eq. (3.53) is invariant
under this transformation. We choose U(k) which diagonalizes the Hermitian matrix
M(k) as

U−1(k)M(k)U(k) =

(
mk,1 0
0 mk,2

)
, U(k) = eiχkσx/2 =

(
cos(χk/2) i sin(χk/2)
i sin(χk/2) cos(χk/2)

)
,

(3.56)
where

mk,j =
Γ̃+(k) + Γ̃−(k)

2
+ (−1)j−1Λ(k) (j = 1, 2),

cosχk = ± Γ̃+(k)− Γ̃−(k)

2Λ(k)
, sinχk = ∓Γ(k)

Λ(k)
, Λ(k) =

[
1

4

(
Γ̃+(k)− Γ̃−(k)

)2
+ Γ(k)2

]1/2
.

(3.57)

Since Γ̃±(k) = Γ̃±(−k) and Γ(−k) = −Γ(k), we find χ−k = −χk and thus U(−k)t =
U(k)† = U(k)−1 is satisfied. Therefore the aforementioned condition U(−k)tU(k) = I is
met. In terms of the new set of canonical variables, the Hamiltonian (3.53) is rewritten
as

Hosc =
1

2

∑
k ̸=0

∑
j=1,2

(
nmk,j θ̄−k,j θ̄k,j +

ek
n
n̄−k,jn̄k,j

)
, (3.58)

where the new variables θ̄k,j and n̄k,j satisfy [θ̄k,j, n̄−k′,j′ ] = iδjj′δkk′ (k,k′ ̸= 0; j, j′ =
1, 2) since the canonical transformations in Eq. (3.52) and (3.55) leave the commutation
relations unchanged. Finally, introducing the annihilation and creation operators

γk,j =
1√
2

(√
nζk,j θ̄k,j +

in̄k,j√
nζk,j

)
, γ†k,j =

1√
2

(√
nζk,j θ̄−k,j −

in̄−k,j√
nζk,j

)
(k ̸= 0; j = 1, 2),

(3.59)
with ζk,j := (mk,j/ek)

1/4, the Hamiltonian is diagonalized (3.58) as

Hosc =
∑
k̸=0

∑
j=1,2

Ej(k)

(
γ†k,jγk,j +

1

2

)
, Ej(k) =

√
mk,jek. (3.60)

The ground state |0osc⟩ of this Hamiltonian is specified by the condition γk,±|0osc⟩ = 0
for all k ̸= 0.

In order to obtain the single-particle spectrum Ej(k) (j = 1, 2) in the long-wavelength
limit kℓ ≪ 1, we keep the leading term. As Γ−(k) ≫ Γ(k) ≫ Γ+(k) in this limit, we
approximate mk,j in Eq. (3.57) as

mk,j ≈
Γ̃+(k) + Γ̃−(k)

2
+ (−1)j−1 Γ̃−(k)

2

[
1− Γ̃+(k)

Γ̃−(k)
+

2Γ(k)2

Γ̃−(k)2

]

≈

{
Γ̃−(k) (j = 1);

Γ̃+(k)− Γ(k)2/Γ̃−(k) (j = 2).

(3.61)

By parametrizing the wave vector in the polar coordinate as (kx, ky) = k(cosφ, sinφ)
where k and φ are the radial coordinate and the azimuth angle, respectively, mk,j are
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expressed as

mk,1 ≈
(
ḡ∓
ḡ±

)1/2

gnD(φ)(kℓ)2, mk,2 ≈
(
ḡ±
ḡ∓

)1/2

gnC(φ)(kℓ)4, (3.62)

where

C(φ) = C1 sin
2(2φ) + C2 cos

2(2φ)− C3 sin(2φ) cos(2φ)− C4 sin
2(3φ),

D(φ) = D1 sin
2(φ) +D2 cos

2(φ)−D3 sin(φ) cos(φ),
(3.63)

with C4 := F 2
1 /4D1. We thus obtain the low-energy dispersion relations as

Ej(k) ≈
√
2(ḡ+ḡ−)1/2nmk,j ≈

√
2gn(kℓ)jfj(φ) (j = 1, 2), (3.64)

where the dependence on the azimuth angle φ is given by the dimensionless functions

f1(φ) =
√
ḡ∓D(φ)/g, f2(φ) =

√
ḡ±C(φ)/g. (3.65)

The anisotropy of the linear and quadratic dispersion relations of the low-energy modes
depends on the lattice structure as the elastic constants are subjected to the constraints
(3.44). Furthermore, we find rescaling relations between the low-energy dispersion rela-
tions for parallel (P) and antiparallel (AP) fields as

EP
1 (k)/

√
ḡ− = EAP

1 (k)/
√
ḡ+, EP

2 (k)/
√
ḡ+ = EAP

2 (k)/
√
ḡ−. (3.66)

More specifically, the rescaling relations for the two types of fields are rewritten by using
the angular part of the dispersion relations fj(φ) (j = 1, 2) as

fP
1 (φ)

√
g

ḡ−
= fAP

1 (φ)

√
g

ḡ+
=
√
D(φ), fP

2 (φ)

√
g

ḡ+
= fAP

2 (φ)

√
g

ḡ−
=
√
C(φ). (3.67)

In Chap. 4, we confirm these relations by numerically obtaining the energy spectra by
the Bogoliubov theory for all the five vortex-lattice structures in Fig. 2.2 (a)-(e).3

In Sec. 2.3.3, we review that the ground states for parallel and antiparallel fields are
equivalent in a mean-field regime, while the excited states are not. From the rescaling
relations, we relate the excited states for parallel and antiparallel fields at low energies.

Since u+(u−) is coupled to θ+(θ−) in parallel fields due to the equation of motion in
Eq. (3.37) while they are coupled in a crossed manner in the antiparallel fields, the linear
and quadratic dispersion relations are related to the symmetric n+ and the antisymmetric
n−, respectively, in parallel fields while they are related in an opposite manner in antipar-
allel fields. Therefore, the oscillation modes corresponding to the quadratic and linear
dispersion relations are the in- and anti- (anti- and in-) phase oscillations, respectively,
in parallel (antiparallel) fields. Since the quadratic dispersion relation has energy smaller
than the linear one, we expect that the oscillation mode corresponding to the quadratic
dispersion relation appears at low energies in experiment.

3 The important difference between Eq. (3.66) and similar rescaling relations in Ref. [31] is that we
use the renormalized coupling constants ḡ± in Eq. (3.39). The dispersion relations for overlapping vortex
lattices have accidentally satisfied the rescaling relations without the renormalization in Ref. [31] due to
β = β↑↓.
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3.3.2 Correlation functions and quantum depletion

Finally, we calculate some correlators of the spin-↑ component in the oscillator part for
the following chapters. By using Eqs. (3.52), (3.55), and (3.59), we express the phase and
the density of the spin-↑ component in terms of the bogolon operators as

θk,↑ =
1

2
(θk,+ + θk,−) =

1

2

∑
j=1,2

Rk,j θ̄k,j =
1

2
√
2n

∑
j=1,2

Rk,jζ
−1
k,j

(
γk,j + γ†−k,j

)
,

nk,↑ = nk,+ + nk,− =
∑
j=1,2

Rk,3−jn̄k,j =
1

i

√
n

2

∑
j=1,2

Rk,3−jζk,j

(
γk,j − γ†−k,j

)
,

(3.68)

where we introduce

Rk,1 = rk cos
χk

2
+ ir−1

k sin
χk

2
, Rk,2 = r−1

k cos
χk

2
+ irk sin

χk

2
, (3.69)

which satisfy R−k,j = R∗
k,j (j = 1, 2). Using Eq. (3.68), the correlators with respect to

the phase and the density are given by

⟨0osc|θ−k,↑θk,↑|0osc⟩ =
1

8n

∑
j=1,2

|Rk,j|2ζ−2
k,j =

1

8nζk,1ζk,2

(
|Rk,1|2

ζk,2
ζk,1

+ |Rk,2|2
ζk,1
ζk,2

)
,

⟨0osc|n−k,↑nk,↑|0osc⟩ =
n

2

∑
j=1,2

|Rk,3−j|2ζ2k,j =
nζk,1ζk,2

2

(
|Rk,1|2

ζk,2
ζk,1

+ |Rk,2|2
ζk,1
ζk,2

)
.

(3.70)

In the long-wavelength limit kℓ≪ 1 where Γ−(k) ≫ Γ(k) ≫ Γ+(k), we find

ζk,1 ≈
[
gD(φ)

2ḡ±

]1/4 √
kℓ, ζk,2 ≈

[
gC(φ)

2ḡ∓

]1/4
kℓ, cosχk ≈ ∓1,

|Rk,1|2 = r2k
1 + cosχk

2
+ r−2

k

1− cosχk

2
≈ r∓2

0 =

√
ḡ∓
ḡ±
,

|Rk,2|2 = r−2
k

1 + cosχk

2
+ r2k

1− cosχk

2
≈ r±2

0 =

√
ḡ±
ḡ∓
.

(3.71)

In this limit, the correlators are rewritten as

⟨θ−k,↑θk,↑⟩ ≈
1

nF (φ)k2ℓ2
, ⟨n−k,↑nk,↑⟩ ≈

nkℓ

G(φ)
(k ̸= 0), (3.72)

where

F (φ) = 4

√
2gC(φ)

ḡ±
, G(φ) = 2

√
2ḡ∓
gD(φ)

, (3.73)

express the dependences on the azimuth angle φ.
The one-particle density matrix characterizes the BEC [52–54]. In our coarse-grained

description, we introduce the modified bosonic field ψ̃↑ = e−iθ↑√n↑. Since θ↑(r) is the
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regular part of the phase and n↑(r) is the coarse-grained density, we expect that ψ̃(r)
varies slowly over space. The modified one-particle density matrix is given by

⟨ψ̃↑(r)
†ψ̃↑(0)⟩ =

⟨√
n↑(r)e

i(θ↑(r)−θ↑(0))
√
n↑(0)

⟩
. (3.74)

We find that Eq. (3.74) describes the slowly varying component of the original one-
particle density matrix. The behavior of the density matrix is determined dominantly
by the phase fluctuation. Here we consider overlapping triangular lattices in Fig. 2.2 (a)
where F (φ) is constant. Then by using Eq. (3.72), the phase correlation function in real
space is obtained as⟨

[θ↑(r)− θ↑(0)]
2⟩ = 2

A

∑
k̸=0

e−αk [1− cos (k · r)] ⟨θ−k,↑θk,↑⟩ ≈
1

πnFℓ2
ln

r

2α
(r ≫ α),

(3.75)
where the convergence factor e−αk is introduced to regularize the infinite sum. The details
of the derivation will be discussed in App. A.3. Then the modified one-particle density
matrix is obtained as

⟨ψ̃↑(r)
†ψ̃↑(0)⟩ ≈ n exp

[
−1

2

⟨
[θ↑(r)− θ↑(0)]

2⟩] ≈ n
( r

2α

)− 1
2πnFℓ2

. (3.76)

We find a quasi-long-range order from the one-particle density matrix.
The density n0 of the condensate is estimated by the one-particle density matrix

(3.76) at the large separation r =
√
A/2 for a finite system of area A. The density of the

depletion n′ is given by n′ = n − n0. Assuming n′ ≪ n as required for the Bogoliubov
theory and the present effective theory, the fraction of depletion is estimated as

n′

n
≈ 1

2

⟨
[θ↑(r)− θ↑(0)]

2⟩ ∣∣∣∣
r=

√
A/2

≈ 1

2πnFℓ2
ln

√
A

4α
=

1

2ν

(
ḡ±
2gC

)1/2

ln

√
A

4α
, (3.77)

where we introduce the filling factor

ν =
N

Nv

=
2nA

A/(2πℓ2)
= 4πnℓ2. (3.78)

From Eq. (3.77), we find that the quantum depletion is larger for parallel (antiparallel)
fields when the intercomponent interaction is repulsive (attractive). By substituting
A = 2πℓ2Nv into Eq. (3.77), we find that νn′/n is proportional to lnNv. We confirm
these properties of the quantum depletion by the Bogoliubov theory in Chap. 4.
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Chapter 4

Bogoliubov theory of vortex lattices
in binary BECs

In this chapter, we find shifts of the transition points of the ground-state phase diagram
of vortex lattices in binary BECs due to the the quantum correction of the ground-
state energy, so that the phase diagrams with the quantum correction for parallel and
antiparallel fields are different, while the two diagrams in the mean-field theory without
the quantum correction are equivalent, by formulating the Bogoliubov theory of binary
BECs in the LLL approximation by extending the derivation for a scalar case [50,55,56].
Since shifts of the transition points and the quantum depletion for parallel fields are
larger than those for antiparallel fields, we indicate that the modification of the phase
diagram is enhanced as the quantum fluctuation increases. In Sec. 4.1, we obtain the
Bogoliubov Hamiltonian using the LLL magnetic Bloch states as a basis set of states,
and derive expressions of the Lee-Huang-Yang correction and the quantum depletion. In
Sec. 4.2, we present numerical results on ground-state and excitation properties. From
the energy spectra, we confirm the quadratic and linear dispersion relations and the
rescaling relations. Then we find the phase diagram with the quantum corrections and
the ground-state energy with respect to the interaction ratio g↑↓/g. Finally we present
the quantum depletion to make comparison with the corrected phase diagram.

4.1 Bogoliubov Hamiltonian

In this section, we formulate the Bogoliubov theory of the vortex lattices in binary BECs.
In Sec. 4.1.1, the LLL magnetic Bloch state in which zero points appear periodically is
introduced to develop the theory of vortex lattices. In Sec. 4.1.2, the Bogoliubov theory
using the magnetic Bloch states as a basis set of states is given. In Sec. 4.1.3, we consider
the diagonalization of the Bogoliubov Hamiltonian via the Bogoliubov transformation, so
that we obtain the excitation spectra, the quantum depletion and the Lee-Huang-Yang
correction.

4.1.1 Lowest-Landau-level magnetic Bloch state

To discuss the Bogoliubov theory of the vortex lattice, we choose the basis which is
consistent with the periodicity of the lattice. In the LLL approximation, we use the LLL
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magnetic Bloch states [56–59] as a basis set of states. Let a1 and a2 be the primitive
vectors of a vortex lattice and let b1 and b2 be the reciprocal primitive vectors. The
primitive vectors satisfy (a1 × a2)z = 2πℓ2 = A/Nv, which implies that a single vortex
appears in each unit cell of the lattice. The reciprocal vectors are written as b1 =
−ez × a2/ℓ

2 and b2 = ez × a1/ℓ
2, which satisfy ai · bj = 2πδij. The first Brillouin zones

for the five types of vortex-lattice structures in Fig. 2.2 are depicted in Fig. 4.1 (a)-(e)
and the primitive vectors are presented in Fig. 4.1 (f). Using the pseudomomentum
Kα = p − qAα + qBαez × r = (Kα,x, Kα,y) for a spin-α component, which satisfies the
commutation relation [Kα,x, Kα,y] = −iϵαℏ2/ℓ2, we introduce the magnetic translation
operator as Tα(s) = e−iKα·s/ℏ [60]. By translating the most localized symmetric LLL
wave function c0(r) = e−r2/4ℓ2/

√
2πℓ2 in the a1 and a2 directions by multiplying two

translation operators, we construct a set of LLL wave functions as

cmα(r) = Tα(m1a1)Tα(m2a2)c0(r) =
(−1)m1m2

√
2πℓ2

exp

[
− 1

4ℓ2
(r− rm)2 − iϵα

2ℓ2
(r× rm)z

]
,

(4.1)
where rm = m1a1 + m2a2, with m = (m1,m2) ∈ Z2. Here Tα(m1a1) and Tα(m2a2)
commute with each other since a single magnetic flux quantum pierces each unit cell. By
superposing cmα(r) for Nv possible translations m on a torus, we can construct the LLL
magnetic Bloch state as1

Ψkα(r) =
1√

Nvζ(k)

∑
m

cmα(r)e
ik·rm , (4.2)

with the normalization factor

ζ(k) =
∑
m

(−1)m1m2e−r2m/4ℓ2−ik·rm . (4.3)

The LLL magnetic Bloch state Ψkα(r) is an eigenstate of Tα(aj) with an eigenvalue
e−ik·aj (as expected for a “Bloch state”). Therefore, by taking Nv discrete wave vectors
k consistent with the boundary conditions of the system, Ψkα(r) forms a complete or-
thogonal basis of the LLL manifold. Secondly, Ψkα(r) has a periodic pattern of zeros
at [58]

r = rn +
1

2
(a1 + a2)− ϵαℓ

2ez × k, n = (n1, n2) ∈ Z2. (4.4)

Therefore, Ψkα(r) represents a vortex lattice with primitive vectors a1 and a2 for any k,
and the locations of vortices (zeros) can be shifted by varying k. We can prove this by
rewriting Eq. (4.2) as√

Nvζ(k)Ψkα(r) =
∑
m

c∗mα(r) exp
[
i
(
−ϵα
ℓ2
ez × r+ k

)
· rm

]
=
∑
m

c∗mα(r) exp

{
− iϵα

ℓ2
[
ez ×

(
r+ ϵαℓ

2ez × k
)]

· rm
} (4.5)

1In numerical calculations to be presented later, we set k = n1

Nv1
b1+

n2

Nv2
b2 with nj ∈ {0, 1, . . . , Nvj−1}

and Nv1Nv2 = Nv.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: First Brillouin zones for (a) overlapping triangular, (b) interlaced triangular,
(c) rhombic, (d) square, (e) rectangular lattices which are depicted in Fig. 2.2. Letters
indicate high-symmetry points. Energy spectra and entanglement spectra are calculated
along the paths indicated by dotted arrows. In (f), the primitive vectors a1 = (a, 0) and
a2 = b(cosφ, sinφ) and the displacement u1a1+u2a2 of the vortex of one component from
the other are depicted. The inner angle φ and the aspect ratio b/a change continuously as
a function of g↑↓/g, for rhombic and rectangular lattices, respectively; these correspond
to η and |τ | in Fig. 2.3.
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and comparing it with the complex conjugate of the Perelomov overcompleteness equation∑
m(−1)m1+m2cmα(r) = 0 [61].
The vortex lattice for each component in binary BECs is given by the LLL magnetic

Bloch state Ψqα,α(r), where the wave vectors qα (α =↑, ↓) are chosen in consistency with
the displacement u1a1 + u2a2 between the components [see Fig. 4.1(f)]. We choose its
value as

q↑ = +
ϵ↑
2ℓ2

ez × (u1a1 + u2a2) =
ϵ↑
2
(−u2b1 + u1b2),

q↓ = − ϵ↓
2ℓ2

ez × (u1a1 + u2a2) =
ϵ↓
2
(+u2b1 − u1b2).

(4.6)

With this choice, the vortices for the spin-↑ and spin-↓ components are shifted by (u1a1+
u2a2)/2 and −(u1a1 + u2a2)/2 [relative to the k = 0 case of Eq. (4.4)], respectively,
realizing the mutual separation by u1a1+u2a2. Instead of displacing the spin-↑ component
by u1a1+u2a2, we displace the vortices as explained above in order to avoid the divergence
of the denominator and the numerator of the LLL magnetic Bloch state (4.2) at the high-
symmetry point in the first Brillouin zone.

4.1.2 Bogoliubov approximation

In the LLL approximation, the kinetic term of the Hamiltonian can be omitted, because
the single-particle energy is the constant term ℏωc. We focus on the interaction term
given by

Hint =
∑
α,β

gαβ
2

∫
d2r ψ̂†

α(r)ψ̂
†
β(r)ψ̂β(r)ψ̂α(r), (4.7)

where ψ̂α(r) is a bosonic field operator of the spin-α component and the properties of the
coupling constants gαβ of the contact interactions satisfy g↑↑ = g↓↓ ≡ g > 0, |g↑↓| < g as
explained in Sec. 3.2.1. Using the magnetic Bloch states (4.2), we can expand the field
operator as ψ̂α(r) =

∑
kΨkα(r)bkα, where bkα is a bosonic annihilation operator satisfying

[bkα, b
†
k′α′ ] = δkk′δαα′ , and k runs over the discrete momenta in the first Brillouin zone.

Substituting this expansion into Eq. (4.7), we obtain

Hint =
1

2

∑
α,β

∑
k1,k2,k3,k4

Vαβ(k1,k2,k3,k4)b
†
k1α

b†k2β
bk3βbk4α, (4.8)

where

Vαβ(k1,k2,k3,k4) = gαβ

∫
d2r Ψ∗

k1α
(r)Ψ∗

k2β
(r)Ψk3β(r)Ψk4α(r). (4.9)

The interaction matrix element Vαβ(k1,k2,k3,k4) is calculated to be

Vαβ(k1,k2,k3,k4) = δPk1+k2,k3+k4

gαβ
2A

Sαβ(k1,k2,k3)√
ζ(k1)ζ(k2)ζ(k3)ζ(k4)

, (4.10)

as described in App. B. Here, δPkk′ :=
∑

G δk,k′+G is the periodic Kronecker’s delta, where
G runs over the reciprocal lattice vectors. For parallel fields, the function Sαβ(k1,k2,k3),
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which is independent of α or β, is given by

S(k1,k2,k3) =
∑

p∈{0,1}2
(−1)p1p2e−r2p/4ℓ

2+ik3·rp ζ̃
(
k1 + k2 − 2k3 + (rp × ez − irp)/2ℓ

2
)

× ζ
(
k1 + (rp × ez + irp)/4ℓ

2
)
ζ
(
k2 + (rp × ez + irp)/4ℓ

2
)
,

(4.11)

where
ζ̃(k) :=

∑
m

e−r2m/2ℓ2−ik·rm . (4.12)

For antiparallel fields, Sαβ(k1,k2,k3), which depends on α and β, is given in terms of
S(k1,k2,k3) in Eq. (4.11) [31] by

S↑↑(k1,k2,k3) = S(k1,k2,k3), S↓↓(k1,k2,k3) = S(−k1,−k2,−k3)
∗,

S↑↓(k1,k2,k3) = S(k1,−k3,−k2), S↓↑(k1,k2,k3) = S(−k1,k3,k2)
∗.

(4.13)

The condensate is only weakly depleted at high filling factors. This is true in typical
experiment of ultracold atomic gases, in which the number of flux Nv is of the order of
100. In this case, we can apply the Bogoliubov approximation [50, 52, 55, 56]. When the
condensation occurs at the wave vector qα in the spin-α component as in Eq. (4.6), we
introduce

b̃kα := bqα+k,α, Ṽαβ(k1,k2,k3,k4) := Vαβ(qα + k1,qβ + k2,qβ + k3,qα + k4). (4.14)

By setting

b̃0α ≃ b̃†0α ≃
√
Nα −

∑
k ̸=0

b̃†kαb̃kα, (4.15)

and retaining terms up to the second order in b̃kα and b̃†kα (k ̸= 0), we obtain the
Bogoliubov Hamiltonian

Hint =
1

2

∑
α,β

NαNβṼαβ(0,0,0,0)−
1

2

∑
k̸=0

∑
α

[hα(k) + ωαα(k)]

+
1

2

∑
k̸=0

(
b̃†k↑, b̃

†
k↓, b̃−k,↑, b̃−k,↓

)
M(k)


b̃k↑
b̃k↓
b̃†−k,↑
b̃†−k,↓

 .

(4.16)

Here, the matrix M(k) is given by

M(k) =


h↑(k) + ω↑↑(k) ω↑↓(k) λ↑↑(k) λ↑↓(k)

ω↓↑(k) h↓(k) + ω↓↓(k) λ↓↑(k) λ↓↓(k)
λ∗↑↑(k) λ∗↓↑(k) h↑(−k) + ω↑↑(−k) ω↓↑(−k)
λ∗↑↓(k) λ∗↓↓(k) ω↑↓(−k) h↓(−k) + ω↓↓(−k)

 ,

(4.17)
where

hα(k) :=
∑
β

Nβ

[
Ṽαβ(k,0,0,k)− Ṽαβ(0,0,0,0)

]
,

ωαβ(k) :=
√
NαNβṼαβ(k,0,k,0), λαβ(k) :=

√
NαNβṼαβ(k,−k,0,0).

(4.18)
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4.1.3 Diagonalization of the Bogoliubov Hamiltonian

We diagonalize the Bogoliubov Hamiltonian (4.16) by performing the Bogoliubov trans-
formation 

b̃k↑
b̃k↓
b̃†−k,↑
b̃†−k,↓

 =W (k)


γk,1
γk,2
γ†−k,1

γ†−k,2

 , W (k) =

(
U(k) V∗(−k)
V(k) U∗(−k)

)
, (4.19)

where W (k) is a paraunitary matrix which satisfies

W †(k)τ3W (k) = W (k)τ3W
†(k) = τ3 := diag(1, 1,−1,−1), (4.20)

so that the bosonic commutation relation is invariant. By choosing the matrix W (k)
satisfying

W †(k)M(k)W (k) = diag(E1(k), E2(k), E1(−k), E2(−k)), (4.21)

the Bogoliubov Hamiltonian is diagonalized as

Hint =
1

2

∑
α,β

NαNβṼαβ(0,0,0,0)−
1

2

∑
k̸=0

∑
α

[hα(k) + ωαα(k)]

+
∑
k̸=0

∑
j=1,2

Ei(k)

(
γ†kjγkj +

1

2

)
.

(4.22)

By multiplying Eq. (4.21) from the left by W (k)τ3 and using Eq. (4.20), we find

τ3M(k)W (k) = W (k)diag(E1(k), E2(k),−E1(−k),−E2(−k)). (4.23)

We calculate the excitation energies Ej(k) (j = 1, 2) by obtaining the right eigenvectors
of τ3M(k) numerically.

The ground state of Eq. (4.22) is given by the bogolon vacuum |0⟩, which is determined
from the condition γkj|0⟩ = 0 for all k ̸= 0 and j = 1, 2. The ground-state energy EGS

scaled by the interaction energy scale gn2A is given by

EGS

gn2A
=
1

2

∑
α,β

A

g
Ṽαβ(0,0,0,0) +

1

gnνNv

∑
k̸=0

{∑
j

Ej(k)−
∑
α

[hα(k) + ωαα(k)]

}

=
1

2

∑
α,β

A

g
Ṽαβ(0,0,0,0) +

1

2πgnν

∫
BZ

d2kℓ2

{∑
j

Ej(k)−
∑
α

[hα(k) + ωαα(k)]

}
.

(4.24)

Here, in the second line, we take the thermodynamic limit Nv → ∞ so that the sum
may be replaced by the integral over the Brillouin zone as 1

Nv

∑
k̸=0 → 1

|b1×b2|

∫
d2k =

1
2π

∫
BZ

d2kℓ2. The first term on the right-hand side of Eq. (4.24) gives the mean-field
ground-state energy of vortex lattices which has been analyzed by Mueller and Ho [17].
The renormalization factors for the intracomponent and intercomponent interactions
(3.46) are obtained from this term due to the similar calculation. The other terms in
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Eq. (4.24) give a quantum correction (known as the Lee-Huang-Yang correction), which
is inversely proportional to the filling factor ν. In Sec. 4.2.4, we numerically evaluate the
first line of Eq. (4.24) to discuss how the quantum correction affects the ground-state
phase diagram and shifts the transition points.

Using Eq. (4.19), we calculate correlators in the ground state as

⟨0|b̃†k,αb̃k,α|0⟩ =
∑
j

|Vα,j(−k)|2, ⟨0|b̃−k,αb̃
†
−k,α|0⟩ =

∑
j

|Uα,j(−k)|2, (4.25a)

⟨0|b̃−k,αb̃k,α|0⟩ =
∑
j

Uα,j(−k)V∗
α,j(−k), ⟨0|b̃†k,αb̃

†
−k,α|0⟩ =

∑
j

U∗
α,j(−k)Vα,j(−k).

(4.25b)

Here, we have nonzero “anomalous” correlators in Eq. (4.25b) since the particle numbers
N↑ and N↓ are not conserved in the Bogoliubov Hamiltonian (4.16). From Eq. (4.25a),
we obtain the fraction of depletion n′/n, which is equal for the two components, as

n′

n
=

1

Nα

∑
k̸=0

⟨0|b̃†k,αb̃k,α|0⟩ =
2

νNv

∑
k̸=0

∑
j=1,2

|Vα,j(−k)|2 (α =↑, ↓). (4.26)

As discussed in Chap. 3, we expect that the fraction of depletion diverges logarithmically
as a function of Nv since |Vα,2(−k)|2 in Eq. (4.26) diverges for k → 0. We confirm
this behavior numerically in the following section. In contrast, all the quantities in the
summand of Eq. (4.24) are finite over the entire Brillouin zone and Eq. (4.24) is convergent
even in the limit Nv → ∞. However, the Bogoliubov theory should be applied in the
condition of weak depletion n′/n≪ 1. We note that since the order of Nv is at most 100
in typical experiments of ultracold atomic gases [16], the condition of weak depletion is
validated.

4.2 Numerical calculation

In this section, we present the numerical results based on the Bogoliubov theory described
above. In Sec. 4.2.1, we show the excitation spectra and analyze their anisotropy. We
argue that the linear and quadratic dispersion relations are expected to be related with
the symmetries which are spontaneously broken. The experiments which observe the
excitation modes are discussed. Then, we numerically confirm their anisotropy and the
rescaling relations obtained by the effective-field theory in Chap. 3. In Sec. 4.2.2, we
obtain the elastic constants by fitting the excitation spectra to the analytic expressions,
so that all the parameters introduced in the effective-field theory are determined. In Sec.
4.2.3, we calculate the fraction of depletion in Eq. (4.26) and confirm its logarithmical
divergence with an increase in the number of quantum fluxes Nv. In Sec. 4.2.4, we present
shifts of the transition points by minimizing the ground-state energy that includes the
quantum correction. We discuss the difference between the phase diagrams for parallel
and antiparallel fields, which is induced by the quantum fluctuation, and its uniqueness
in the binary system. We also relate the large shifts of the transition points with an
increase in the quantum depletion.
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4.2.1 Excitation spectrum

We obtain the excitation spectrum Ej(k) (j = 1, 2) by numerically calculating the right
eigenvectors of the 4 × 4 matrix τ3M(k) in Eq. (4.23) for given k. We note that the
component of the matrix involves an infinite sum with respect to two integer variables.
Since the summand in Eqs. (4.3) and (4.12) decays exponentially with respect to integers
m1,m2, we numerically obtain its value in high accuracy even we exclude the summands
with large integers.

In Fig. 4.2, we present the excitation spectra for all the lattice structures (a)-(e)
shown in Fig. 2.2 for both parallel and antiparallel fields. From the figure, we find
that the spectra at low energies are consistent with the linear and quadratic dispersion
relations obtained analytically in the effective-field theory. In the case of the scalar case,
the energy spectrum has a quadratic dispersion relation at low energies and its excited
states are called the Tkacehnko mode [50,55,56,62,63].

In non-relativistic systems, the dispersion relations can be either linear or quadratic
and the corresponding Nambu-Goldstone modes with linear and quadratic dispersion re-
lations are classified as type-I and type-II, respectively. Recently, the criterion which gives
the number of two types of Nambu-Goldstone modes has been found [48,64,65]. From the
criterion, we find that the type-II Nambu-Goldstone modes appear when the generators
of broken symmetries are noncommutable such as spin operators in the Heisenberg model.
These theories are formulated for the internal symmetries, so that the Nambu-Goldstone
modes which appear when the spacetime symmetry are spontaneously broken, such as a
quantized vortex or a domain wall, cannot be discussed. However, a similar criterion is
expected to hold in the case of the spacetime symmetry breaking [66]. In the case of the
vortex lattices, the generators are pseudomomenta which are noncommutable. Since the
oscillations in the x and y direction are coupled, a quadratic dispersion relation emerges.
Although the generators of broken symmetries for the vortex lattices in binary BECs
have not been identified yet, we infer that the emergence of a pair of linear (type-I) and
quadratic (type-II) dispersion relations can be clarified by a similar procedure.

The excited states of a vortex lattice for a scalar BEC were first observed by JILA
group [67]. By blasting the atoms at the center of BEC with the blasting laser, the vortex
lattice is made to oscillate. Since the average angular momentum per particle increases
due to the reduction of the numbers of the atoms with a small angular momentum by
blasting, the strength of the synthetic magnetic field increases. Also a dip in the density
created by the blasting laser creates an inward flow to fill the dip. By the Coriolis force
acting on the gas, the vortices are dragged from their equilibrium position. In the case
of vortex lattices in binary BECs, the oscillation of square lattices for parallel fields is
observed in the JILA experiments [19]. By extending the effective-field theory and the
Bogoliubov theory for a uniform system to a trapped system, the excitation modes for
parallel and antiparallel fields, which may be observed in experiment, can be illustrated
and two modes can be compared while only the dynamics of vortex lattices for parallel
fields has been discussed [68]. We may observe the in-phase oscillation in the parallel
fields and the anti-phase oscillation in the antiparallel fields as discussed in Sec. 3.3.1.
By observing the oscillation of the vortex lattices depending on the direction of magnetic
fields, we will find an interesting character of the oscillation, which is unique to the binary
system.
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We note that the emergence of line and point nodes at high energies is related to a
fractional translation symmetry as discussed in Ref. [31]. Although we do not explain
it in detail in this thesis, we find that the Bogoloubov matrix M(k) at some of these
points can be divided into two independent blocks. When the two components are de-
coupled at the particular points, we find the divergence of the ES (Fig. 5.2) indicating
the disentanglement of two components.

In Fig. 4.3, we display excitation spectra for the five lattice structures rescaled accord-
ing to the rescaling relations in Eq. (3.66). We can confirm that the rescaling relations
hold at sufficiently low energies around the Γ point. At such low energies, we find that
the spectrum can be fit well by linear and quadratic dispersion relations given by

Ej(k) =
√
2gn(kℓ)jfj(φ) (j = 1, 2), (4.27)

where the wave vector is parametrized as k = k(cosφ, sinφ) and {fj(φ)} are dimension-
less functions that express the anisotropy of the spectra as in Eq. (3.64). In Fig. 4.4,
we depict the functions {fj(φ)} obtained numerically for the same cases as in Fig. 4.3,
where the superscripts P and AP indicate parallel and antiparallel fields, respectively.
From the rescaling relation (3.67), we obtain the functions

√
C(φ) and

√
D(φ) whose

square are related to the elastic constants as in Eq. (3.63). We find that the anisotropy
of the energy spectra is consistent with the symmetry of the vortex lattices since the
numerical results of

√
C(φ) and

√
D(φ) are consistent with the analytic forms obtained

by the effective-field theory. In particular, the function
√
C(φ) for interlaced triangular

lattices is consistent with the effective-field theory as we introduce the elastic constant F1

in Sec. 3.2.3. We infer that the elastic constant F1 can be observed in an experiment by
determining the excitation spectra for interlaced triangular lattices from the oscillation
of the lattices. If interlaced triangular lattices are prepared by controlling the coupling
constants, the lattices can be oscillated as in the JILA experiment [19].

We also find that the functions
√
C(φ) and

√
D(φ) obtained from the excitation

spectra for parallel and antiparallel fields agree perfectly up to numerical precision. Since
the rescaling relations are confirmed numerically at low energies, we verify that the excited
states for parallel and antiparallel fields are indeed related to each other. In my master
thesis and Ref. [31], the problem that the rescaling relations hold only for overlapping
triangular lattices has remained unsolved. We identify the origin of the problem as due
to the fact that we used the bare coupling constants gαβ for the rescaling relations. Using
the renormalized coupling constants introduced in Chap. 3, we demonstrate the rescaling
relations (3.66) for all the five structures (a)-(e) shown in Fig. 2.2 and we obtain the
elastic constants consistently for parallel and antiparallel fields as discussed in the next
section.

4.2.2 Elastic constants

In the previous section, we numerically determined
√
C(φ) and

√
D(φ). We can de-

termine the dimensionless elastic constants {Ci} and {Di} by comparing the analytical
expressions in Eq. (3.63) with the numerical results. Figure 4.5 shows the determined
elastic constants as a function of g↑↓/g. Since we use the renormalized coupling constants,
we find that the elastic constants obtained for parallel and antiparallel fields are equal in
contrast to Ref. [31], where only the elastic constants for overlapping triangular lattices
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Figure 4.2: Bogoliubov excitation spectra {Ej(k)} scaled by gn for (a) overlapping trian-
gular, (b) interlaced triangular, (c) rhombic, (d) square, (e) rectangular lattices, whose
structures are shown in Fig. 2.2 (a)-(e). For each value of g↑↓/g, we show both results of
parallel (blue) and antiparallel (red) magnetic fields. The energy spectra are calculated
along the paths indicated by dotted arrows shown in the first Brillouin zone for each
structure in Fig. 4.1.
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Figure 4.3: Rescaled Bogoliubov excitation spectra for the five cases (a)-(e) shown in
Fig. 4.2 along the paths indicated by dotted arrows shown in Fig. 4.1. Blue curves
show EP

1 (k)/(
√
gḡ−n) and E

P
2 (k)/(

√
gḡ+n) for parallel (P) fields while red curves show

EAP
1 (k)/(

√
gḡ+n) and E

AP
2 (k)/(

√
gḡ−n) for antiparallel (AP) fields. We can confirm that

the rescaling relations in Eq. (3.66) hold at sufficiently low energies around the Γ point.
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Figure 4.4: Dimensionless functions f
P/AP
2 (φ) (left) and f

P/AP
1 (φ) (right) for parallel

(P; blue) and antiparallel (AP; red) fields for the same cases as in Fig. 4.2(a)-(e). The
anisotropy of the low-energy spectra given in Eq. (4.27) is calculated from the Bogoliubov
excitation spectra {Ej(k)} along a circular path k = k(cosφ, sinφ) with k = 0.001a/ℓ2

and φ ∈ [0, 2π). After proper rescaling given in Eq. (3.67), the curves for parallel and
antiparallel fields coincide up to high numerical precision. In the left panels, the rescaled
functions fP

2 (φ)
√
g/ḡ+ and fAP

2 (φ)
√
g/ḡ− give the common function

√
C(φ), and in the

right panels, the rescaled functions fP
1 (φ)

√
g/ḡ− and fAP

1 (φ)
√
g/ḡ+ give the common

function
√
D(φ).

√
C(φ) and

√
D(φ) are both depicted by black curves. We note that

the obtained functions
√
C(φ) and

√
D(φ) are consistent with the analytic forms given

in Eq. (3.63).
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are equal. The values of the elastic constants are also corrected because of the renormal-
ization of the coupling constants. We note that the dependence of elastic constants on
g↑↓/g has also been analyzed in Ref. [47]; the results in the reference are similar to ours
except for interlaced triangular lattices where we have identified the missing term. By ob-
taining the elastic constants, all parameters which appear in the effective-field theory are
determined. Therefore any quantity which is numerically calculated with the Bogoliubov
theory can be compared with its analytic form obtained by the effective-field theory.

4.2.3 Quantum depletion

In the left panel of Fig. 4.6, we plot the quantum depletion obtained from Eq. (4.26)
for all the vortex structures in the mean-field regime. We find that the quantum deple-
tion for parallel (antiparallel) fields is larger than that for antiparallel (parallel) fields
with repulsive (attractive) g↑↓. We will see similar behavior in EE in Chap. 5. At the
transition point between interlaced triangular lattices and rhombic lattices, the quantum
depletion changes discontinuously owing to the discontinuous change of the lattice struc-
ture. Meanwhile, the quantum depletion diverges at both the transition points between
rhombic, square and rectangular lattices; this is likely to be related to the rapid changes
in the inner angle and the aspect ratio as shown in Fig. 2.3.

The field-theoretical result in Eq. (3.77) shows that the quantum depletion logarith-
mically diverges with an increase in the number of flux quanta Nv. In the right panel of
Fig. 4.6, we show the quantum depletion as a function of Nv for a representative point
in the square-lattices phase. Due to a repulsive intercomponent interaction in square
lattices, the quantum depletion for parallel fields is larger than that for antiparallel fields
as we expect from Eq. (3.77). Since the quantum depletion indeed shows a logarithmic
increase, we find that the quantum fluctuation is enhanced as the system size is enlarged
and the quantum fluctuation will diverge in the thermodynamic limit.

4.2.4 Lee-Huang-Yang correction

We analyze the effect of quantum fluctuations on the ground-state phase diagrams for
parallel and antiparallel fields. Mueller and Ho [17] found that five types of vortex-lattice
structures which depend on the interaction ratio g↑↓/g appear within the mean-field
theory as shown in Fig. 2.3. We consider how the transition points vary due to the Lee-
Huang-Yang correction in Eq. (4.24). By assuming that the same types of structures as
the mean-field case appear, we calculate the correction to the ground-state energy due to
zero-point fluctuations in Eq. (4.24), which is proportional to ν−1.

In Fig. 4.7, we present the mean-field ground-state energy as well as those with quan-
tum corrections for parallel and antiparallel fields, where the filling factor is ν = 20.
We minimize the ground-state energy in Eq. (4.24) with respect to the inner angle θ
for rhombic lattices and the aspect ratio b/a for rectangular lattices. As seen in Fig.
4.7 (a), the transition points between rhombic, square and rectangular lattices shift to
the left due to the quantum corrections. We find that the transition points shift more
significantly for parallel fields. In contrast, the transition point g↑↓/g = 0 between the
overlapping and interlaced triangular lattices remains unchanged against quantum cor-
rections. The transition point does not shift to minimize (maximize) the contact area for
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Figure 4.5: Dimensionless elastic constants Ci (i = 1, 2, 3, 4) (left) and Di (i = 1, 2, 3)
(right) for the lattice structures (a)-(e) shown in Fig. 2.2: (a) overlapping triangular,
(b) interlaced triangular, (c) rhombic, (d) square, and (e) rectangular lattices. These
constants are obtained by fitting the numerically obtained functions

√
C(φ) and

√
D(φ),

which are common for parallel and antiparallel fields as shown in Fig. 4.4, to the analytic
expressions of the dispersion relations given in Eq. (3.64). See Eq. (3.44) for the symmetry
constraints on the constants. Vertical dashed lines indicate the transition points in the
mean-field ground state.
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repulsive (attractive) intercomponent interactions. While the shift of the transition point
between the interlaced triangular and rhombic lattices is not clearly seen in Fig. 4.7 (a),
we find that the shift indeed occurs in the zoomed plot in Fig. 4.7 (b). The transition
point moves to the right (left) for parallel (antiparallel) fields. We find that the energy
(scaled by gn2A) for rhombic lattices has a nonzero imaginary part of the order of 10−6

in the regime 0.318 < g↑↓/g < 0.3733 for parallel fields and 0.337 < g↑↓/g < 0.3733 for
antiparallel fields (not shown) while the order of the real part is 1. We note that the
imaginary part only appears in the rhombic lattices and does not appear in minimizing
the energy for rectangular lattices.

We present the inner angle θ of the rhombic lattices in Fig. 4.8 (a) and the aspect
ratio b/a of the rectangular lattices in Fig. 4.8 (b). They are obtained through the
one-parameter minimization of the ground-state energy (4.24). The corrected transition
point between rhombic and square lattices is determined when the inner angle becomes
90◦ and the transition point between square and rectangular lattices is determined when
the aspect ratio becomes larger than 1.

In Sec. 2.3.3, we reviewed the equivalence of the ground-state phase diagrams for par-
allel and antiparallel fields in the mean-field theory while the phase diagrams for parallel
and antiparallel fields are different in the quantum Hall regime, where the mean-field
theory breaks down. Since the ground-state phase diagrams with the quantum correction
are different from those in the mean-field theory, we find that the quantum correction
affects the ground-state phase diagram. Furthermore, we see that the ground-state phase
diagrams for parallel and antiparallel fields are different from each other due to the quan-
tum correction. This result indicates that the quantum fluctuation causes the difference
between the cases of parallel and antiparallel fields. Since the parallel and antiparallel
fields are unique to the binary system, the difference does not appear in the scalar sys-
tem. We also note the relation between shifts of the transition points and the values
of the quantum depletion since both the shifts and the quantum depletion for parallel
fields are significantly larger than those for antiparallel fields when the intercomponent
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Figure 4.7: (a) Ground-state energy as a function of the interaction ratio g↑↓/g. The
mean-field energy (black and grey) is changed sufficiently by the quantum correction, as
shown for both parallel (blue and purple) and antiparallel (red and brown) fields for ν =
20. The mean-field energy for the square lattices, Esqu

MF/gn
2A = 1.18034+0.834627g↑↓/g, is

subtracted to emphasize the changes due to quantum fluctuations. Alternating colors for
each case correspond to different phases, and vertical dashed lines indicate the transition
points. In particular, the transition points between rhombic-, square- and rectangular
lattices shift appreciably owing to the quantum corrections. In contrast, the transition
point at g↑↓/g = 0 between the overlapping and interlaced triangular lattices remain
unchanged by the quantum corrections. (b) Enlarged figure of (a) around the transition
point between the interlaced triangular and rhombic lattices, which also shows small
shifts due to the quantum corrections.

interaction is repulsive. The result implies that the ground-state phase diagram is mod-
ified significantly when the quantum fluctuation increases. Since the quantum depletion
increases logarithmically with respect to the system size, the transition points will shift
significantly as the area of the system is extended.
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Chapter 5

Intercomponent entanglement
entropy and entanglement spectrum

In this chapter, we discuss the EE and the ES between two components in binary BECs
under synthetic magnetic fields. We find that the behavior of the intercomponent EE
is reflected in the ground-state phase diagram with the quantum corrections since both
need the excitation spectra in calculation, so that we give the restriction to the ground
states in the intermediate regime between the mean-field regime and the quantum Hall
regime. From the ES, we find excitation modes which contribute to the intercomponent
entanglement and discuss the emergence of the long-range interaction in the entanglement
Hamiltonian from the correlation functions. Finally, we discuss that the logarithmic
contribution of the intercomponent EE may be related with the continuous symmetry
breaking. In Sec. 5.1, we review the EE and the ES in condensed-matter systems. In Sec.
5.2, we obtain analytical expressions of the EE and ES using the effective-field theory of
vortex lattices. In Sec. 5.3, we numerically calculate the EE and ES using the Bogoliubov
theory and compare them with analytical forms. Then we discuss the correspondence
between the intercomponent EE and the ground-state phase diagrams. We also discuss
the intercomponent ES and the subleading term of the EE.

5.1 Review of entanglement in condensed-matter sys-

tem

In this section, we review the entanglement in condensed-matter systems. In Sec. 5.1.1,
we review the EE in systems with the continuous symmetry breaking and topological
systems. We consider both the leading term of the EE and its subleading term which
logarithmically increases with respect to the boundary size. In Sec. 5.1.2, we define the
ES and review the ES of topological systems and ladder systems.

5.1.1 Entanglement entropy

There has been a lot of interest in the entanglement of condensed-matter systems. The
entanglement of a many-body state |Ψ⟩ is usually characterized by the EE. By dividing
the system into subsystem A and its complement Ā, the reduced density matrix for the
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subsystem is given by ρA = TrĀ|Ψ⟩⟨Ψ|. Then the EE (von Neuman entropy) of the
subregion A is given by

SA = −TrA[ρA ln ρA]. (5.1)

In many cases, the system is divided in real space. In our work, we instead divide the
binary system in terms of components to discuss the intercomponent entanglement.

The EE of a d-dimensional condensed-matter system presenting a spontaneous sym-
metry breaking of a continuous symmetry at absolute zero in the thermodynamic limit
has been investigated. Metlitski and Grover [26] have obtained an analytic form of EE
based on a quantum rotor and a non-linear sigma model as

SA = CLd−1 +
nG

2
ln
(ρs
v
Ld−1

)
+ γord + · · · , (5.2)

where C is a non-universal constant and L is the length scale of the system. In the
second term, nG is the number of Nambu-Goldstone modes, ρs is the stiffness, v is the
spin wave velocity and γord is a universal geometric constant. It is known that in a variety
of quantum many-body systems, the leading contribution of EE in the ground state scales
with the boundary size of the subsystem as in the first term of Eq. (5.2). This is known
as the area law. However, the area law is violated in one-dimensional critical systems,
where the EE exhibits a logarithmic scaling [69].

Corrections to the area law give important pieces of information about the system. In
systems with the continuous symmetry breaking, an additive correction which logarith-
mically diverges with respect to the boundary size appears as in the second term of Eq.
(5.2). This term appears from the spin wave excitations (Nambu-Goldstone modes) and
the “tower of state” due to the symmetry restoration in a finite volume. For binary BECs,
the logarithmic term has been obtained for the intercomponent EE and its coefficient is
related to the Nambu-Goldstone mode and the “tower of state” [30]. In the third term
of Eq. (5.2), a universal constant term appears. Reference [26] has shown that the third
term depends on the geometry of the subsystem. In contrast, in topological systems, this
constant subleading term of EE characterizes the topological order of the system. The
term is called a topological EE. For instance, the topological EE for the toric code is
γ = ln 2.

From the ground-state phase diagrams in Figs. 2.5 and 2.6, we naturally expect that
the intercomponent EE for parallel (antiparallel) fields is larger for a repulsive (attractive)
intercomponent interaction even in the regime of vortex lattices. It is also an interesting
question to ask whether the logarithmic additional term appears in the scaling of the EE.

5.1.2 Entanglement spectrum

The detail of the entanglement is further investigated by the ES. When the reduced
density matrix of the subsystem is written as

ρA = exp(−He), (5.3)

the ES is calculated as the energy spectrum of the entanglement Hamiltonian He. For
topological systems, in particular, a remarkable correspondence between the ES and the
energy spectrum of the edge state for quantum Hall states has been found by Li and
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Figure 5.1: “Cut and glue” approach. (a) The system on the cylinder of circumference
L is divided into two halves. The ES between subsystems A and B is investigated.
(b) At the boundary of two subsystems, gapless modes described by two chiral TLLs
with Hamiltonians HR and HL appear. They are glued along the edges by turning
on the interaction between A and B with the interaction Hamiltonian HRL. (c) The
entanglement of the quantum Hall state is reduced to the entanglement between two
chiral TLLs. Reproduced from Fig. 1 of Ref. [29]. Copyright c⃝ 2013 by the American
Physical Society.

Haldane [70]. In a two-dimensional fractional quantum Hall state on a cylinder, the
linear energy spectrum of the edge state has been shown to correspond to the ES at the
low-energy regime, where the subsystem is given by the upper half of the entire system.
By the “cut and glue” approach, the correspondence has been analytically proved by
coupling two chiral TLLs [28].

However, when two non-chiral TLLs which are not the edge state of a topological
system are coupled, the ES is not always linear. When the energy spectrum of the two
coupled non-chiral TLLs is partially gapless (i.e. one of the symmetric and antisymmetric
channels is gapless) or fully gapless, the ES has square-root or gapped dispersion relations,
respectively [29]. These interesting features of the ES are related to the long-range
interaction proportional to the logarithm of the chord distance on a unit circle in the
entanglement Hamiltonian .

In a related work for homogeneous binary BECs (without synthetic gauge fields) [30],
we have found that the intercomponent ES featuring a square-root dispersion relation
appears when two components are coupled by a Rabi coupling. We have found that a
long-range interaction appears in the entanglement Hamiltonian for one-, two- and three-
dimensional systems, similarly to the case of coupled TLLs in one spatial dimension.
In the following sections, we calculate the intercomponent ES of vortex lattices and
investigate the long-range interaction in the entanglement Hamiltonian.
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5.2 Effective-field theory

In this section, we discuss the intercomponent entanglement of binary BECs under syn-
thetic gauge fields by using the effective-field theory. In Sec. 5.2.1, we obtain an analytic
expression of the ES of our system. We find that a new long-range interaction term
appears in the entanglement Hamiltonian. In Sec. 5.2.2, we calculate an analytic form of
the intercomponent EE.

5.2.1 Entanglement Hamiltonian and entanglement spectrum

We calculate the reduced density matrix ρ↑ for the spin-↑ component, which is defined
by tracing out the degrees of freedom in the spin-↓ component from the ground state
|0zero⟩ ⊗ |0osc⟩ of the total system. Since the zero and oscillator modes are decoupled,
the reduced density matrix is given as ρ↑ = ρzero↑ ⊗ ρosc↑ . As the zero-mode ground state
|N↑ = N/2⟩ |N↓ = N/2⟩ is a product state, there is no intercomponent entanglement in
the zero-mode part and the reduced density matrix in this part is written as ρzero↑ = |N↑ =
N/2⟩⟨N↑ = N/2|. We only consider the oscillator-mode part ρosc↑ in the following.

For the oscillator-mode part of the reduced density matrix ρosc↑ , we introduce the
following Gaussian ansatz [26,29,30,71–73]:

ρosc↑ =
1

Zosc
e

e−Hosc
e , Zosc

e = Tre−Hosc
e , Hosc

e =
1

2

∑
k̸=0

(
nFkθ−k,↑θk,↑ +

Gk

n
n−k,↑nk,↑

)
, (5.4)

where Fk and Gk are positive dimensionless coefficients which are to be determined
later. We assume Fk = F−k and Gk = G−k without loss of generality. By introducing
annihilation and creation operators as

ηk =
1√
2

[
√
n

(
Fk

Gk

)1/4

θk,↑ +
i√
n

(
Gk

Fk

)1/4

nk,↑

]
,

η†k =
1√
2

[
√
n

(
Fk

Gk

)1/4

θ−k,↑ −
i√
n

(
Gk

Fk

)1/4

n−k,↑

]
(k ̸= 0),

(5.5)

the entanglement Hamiltonian Hosc
e in Eq. (5.4) is diagonalized as

Hosc
e =

∑
k̸=0

ξk

(
η†kηk +

1

2

)
, (5.6)

where ξk =
√
FkGk is the single-particle ES.

Using the relations in Eq. (5.5) and the Bose distribution function

Tr
(
η†kηkρ

osc
↑

)
=

1

eξk − 1
≡ fB(ξk), (5.7)
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we obtain the phase and density correlations as

Tr
(
θ−k,↑θk,↑ρ

osc
↑
)
=

1

2n

(
Gk

Fk

)1/2

Tr
[(
η†k + η−k

)(
ηk + η†−k

)
ρosc↑

]
=

1

n

(
Gk

Fk

)1/2[
fB(ξk) +

1

2

]
,

Tr
(
n−k,↑nk,↑ρ

osc
↑
)
=
n

2

(
Fk

Gk

)1/2

Tr
[(
η†k − η−k

)(
ηk − η†−k

)
ρosc↑

]
= n

(
Fk

Gk

)1/2[
fB(ξk) +

1

2

]
.

(5.8)

We require that they are equivalent to the correlators for the oscillator ground state |0osc⟩
calculated in Eq. (3.70). We then find

fB(ξk) +
1

2
=
√

⟨0osc|θ−k,↑θk,↑|0osc⟩⟨0osc|n−k,↑nk,↑|0osc⟩ =
1

4

(
|Rk,1|2

ζk,2
ζk,1

+ |Rk,2|2
ζk,1
ζk,2

)
,√

Fk

Gk

=
1

n

√
⟨0osc|n−k,↑nk,↑|0osc⟩
⟨0osc|θ−k,↑θk,↑|0osc⟩

= 2ζk,1ζk,2.

(5.9)

From Eq. (3.71) in the long-wavelength limit kℓ ≪ 1, we find that fB(ξk) and
√
Fk/Gk

in Eq. (5.9) are given as

fB(ξk) ≈
1

4

[
ḡ±D(φ)

ḡ∓C(φ)

]1/4
(kℓ)−1/2,

√
Fk

Gk

≈
[
4g2C(φ)D(φ)

ḡ+ḡ−

]1/4
(kℓ)3/2. (5.10)

where the upper and lower signs correspond to the cases of parallel and antiparallel fields,
respectively.1 We obtain the long-wavelength expressions of the single-particle ES ξk and
the coefficients Fk and Gk as

ξk = ln

[
1 +

1

fB(ξk)

]
≈ 1

fB(ξk)
≈ c(φ)

√
kℓ,

Fk = ξk

√
Fk

Gk

≈ F (φ)(kℓ)2, Gk = ξk

√
Gk

Fk

≈ G(φ)

kℓ
,

(5.11)

where the dependences on the angle φ for the ES and the entanglement Hamiltonian are
expressed in terms of the dimensionless functions

c(φ) = 4

[
ḡ∓C(φ)

ḡ±D(φ)

]1/4
, F (φ) = 4

√
2gC(φ)

ḡ±
, G(φ) = 2

√
2ḡ∓
gD(φ)

. (5.12)

From Eq. (5.11), we find that the ES shows an anomalous square-root dispersion relation
with anisotropy depending on the lattice structure. Similarly to the rescaling relations

1The same sign rule applies to Eqs. (5.12) and (5.30) below.
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of the excitation spectra in Eq. (3.66), the single-particle ESs ξk for parallel (P) and
antiparallel (AP) fields are related to each other by the rescaling relation given as(

ḡ+
ḡ−

)1/4

ξPk =

(
ḡ−
ḡ+

)1/4

ξAP
k . (5.13)

Moreover, the dimensionless functions c(φ) for the two types of fields are related to each
other as (

ḡ+
ḡ−

)1/4

cP(φ) =

(
ḡ−
ḡ+

)1/4

cAP(φ) = 4

[
C(φ)

D(φ)

]1/4
. (5.14)

We obtain the entanglement Hamiltonian by substituting Fk and Gk in Eq. (5.11) in
the long-wavelength limit into Hosc

e in Eq. (5.4). By using the fields θ↑(r) and n↑(r) in
real space, it is expressed as

He =

∫
d2r

∫
d2r′

[
nℓ2

2
UF (r− r′)∇θ↑(r) · ∇θ↑(r′) +

1

2n
UG(r− r′)n↑(r)n↑(r

′)

]
, (5.15)

where we introduce the interaction potentials as

UF (r− r′) =
1

A

∑
k

F (φ)eik·(r−r′), UG(r− r′) = lim
α→0+

1

A

∑
k ̸=0

G(φ)

kℓ
e−αk+ik·(r−r′). (5.16)

To regularize the infinite sum for UG(r − r′), we use the convergence factor e−αk. For
simplicity, we consider the case of overlapping triangular lattices, in which we obtain
constant C(φ) and D(φ) due to the elastic constants for overlapping triangular lattices
in Eq. (3.44) (a). In this case, F (φ) and G(φ) are constant, and thus the potentials in
Eq. (5.16) are given by

UF (r− r′) = Fδ(r− r′), UG(r− r′) =
G

2πℓ|r− r′|
. (5.17)

The detail of the calculation of UG(r− r′) is given in App. C. We note that θ↑(r) is the
regular part of the superfluid phase of the spin-↑ component, so that its gradient in Eq.
(5.15) is related to the regular part of the superfluid velocity vs,↑(r) = − ℏ

M
∇θ↑(r). From

Eqs. (5.15) and (5.17), we find that the entanglement Hamiltonian has a short-range
interaction in terms of the superfluid velocity vs,↑(r) and a long-range one in terms of the
density n↑(r). If the density interaction were instead short-ranged, the ES would show
a phonon mode with a linear dispersion relation. Therefore, the anomalous square-root
dispersion relation in Eq. (5.11) is related to the presence of a long-range interaction in
He.

5.2.2 Entanglement entropy

Since the zero-mode part of the ground state is a product state, we only consider the
oscillation part of the EE. From the single-particle ES ξk in Eq. (5.11), the intercomponent
EE Se is calculated. We consider the canonical ensemble obtained from Hosc

e with a

fictitious temperature T . We then find the Bose distribution ⟨η†kηk⟩ =
(
eξk/T − 1

)−1
=
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fB (ξk/T ) obeyed by the number operator η†kηk in Eq. (5.7). By calculating the internal
energy, we obtain the EE Sosc

e as the thermal entropy at T = 1. For simplicity, we assume
that ξk is isotropic, i.e., c(φ) is constant, as in the case of overlapping triangular lattices;
however, we expect that the result holds qualitatively for all the lattice structures.

The internal energy Eosc
e (T ) at a fictitious temperature T is calculated as

Eosc
e (T ) =

∑
k̸=0

ξkfB (ξk/T ) =
∑
k

ξkfB (ξk/T )− ξ0fB (ξ0/T ) = e(T )A− ξ0fB (ξ0/T ) ,

(5.18)

where

e(T ) =

∫
d2k

(2π)2
ξk

eξk/T − 1
=

S2

(2π)2

∫ ∞

0

kdk
c
√
kℓ

ec
√
kℓ/T − 1

=
T 5

π(c
√
ℓ)4

∫ ∞

0

dx
x4

ex − 1
,

(5.19)

where S2 = 2π is the circumference of a unit circle and we introduce a new variable x by√
k = Tx/c

√
ℓ. Since Γ(s)Lis(z) =

∫∞
0

dx xs−1

ex/z−1
, where Γ(x) and Lis(z) are the Gamma

function and the Polylogarithm, respectively, we find

e(T ) =
Γ(5)ζ(5)T 5

π(c
√
ℓ)4

, (5.20)

where ζ(s) = Lis(1) is the Riemann zeta function. By assuming ξk ≪ 1, we find

ξkfB (ξk/T ) =
ξk

ξk/T + (ξk/T )2/2 + · · ·
. (5.21)

Since ξk = 0 for k = 0, we find ξ0fB (ξ0/T ) = T for the second term of Eq. (5.18). The
internal energy is given as

Eosc
e (T ) =

Γ(5)ζ(5)AT 5

π(c
√
ℓ)4

− T. (5.22)

The EE is obtained by

Sosc
e =

∫ 1

0

dT

T

(
∂Eosc

e

∂T

)
V

. (5.23)

From the second term of Eq. (5.22), the EE for the oscillator part diverges. Since the
approximation of changing the k sum into integration in Eq. (5.19) may be invalidated
at low T , where the discrete nature of k becomes important, we can interpret the above
divergence as a consequence of using such an invalid expression at low T . Above a certain
temperature we can still use an integral over T for the thermal entropy Sosc

e (T ) and we
find a contribution − lnT . Since the entire energy spectrum is proportional to c

√
ℓ/L,

this contribution should appear in the form − ln(T
√
L/c

√
ℓ).

This logarithmic term is also obtained in a different way. The EE Sosc
e is expressed as

Sosc
e =

∑
k ̸=0

[
ξk

eξk − 1
− ln

(
1− e−ξk

)]
, (5.24)
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by using a discrete sum. We find that the summand of Eq. (5.24) is the entropy of a
harmonic oscillator with the energy-level spacing ξk for T = 1. For the wave vector
k = (k1, k2), we require that each element ki run over ki = 2πni/L with ni ∈ {−Λ,−Λ+
1, . . . ,Λ − 1}. Here, we introduce an ultraviolet cutoff by Λ which is proportional to L,
so that Eq. (5.24) is a finite sum. The EE in Eq. (5.24) can be rewritten as

Sosc
e =

∑
k ̸=0

[
ξk

eξk − 1
− ln

1− e−ξk

ξk

]
−
∑
k ̸=0

ln ξk. (5.25)

We find that the summand in the first sum converges in the limit k → 0. From the
Euler-Maclaurin formula at the order of the trapezoid formula, the first sum of Eq. (5.25)
is rewritten as

A

∫ λ

−λ

d2k

(2π)2

[
ξk

eξk − 1
− ln

1− e−ξk

ξk

]
− 1, (5.26)

where λ := 2πΛ/L. In the second sum of Eq. (5.25), the summand diverges for k → 0.
This part is rewritten as

−
∑
k̸=0

ln ξk = −

[(
λL

π

)2

− 1

]
ln c

√
ℓ− 1

4

∑
k ̸=0

lnk2. (5.27)

We focus on the second term
∑

k̸=0 lnk
2. By introducing δ = 2π/L and applying the

Euler-Maclaurin formula (see Ref. [74] for a related calculation), we obtain∑
k ̸=0

ln(k2) =
∑
k2 ̸=0

∑
k1

ln(k21 + k22) +
∑
k1 ̸=0

ln k21

=
L

2π

∑
k2 ̸=0

∫ λ

−λ

dk1 ln(k21 + k22) +
L

π

∫ λ

δ

dk1 ln k21 + ln δ2

=
L

2π

∑
k2 ̸=0

[
2λ ln(λ2 + k22) + 4|k2| arctan

λ

|k2|
− 4λ

]
+

2L

π
(λ lnλ− λ− δ ln δ + δ) + ln δ2

=
L2

(2π)2

∫ λ

−λ

dk2

[
2λ ln(λ2 + k22) + 4|k2| arctan

λ

|k2|
− 4λ

]
− 2 ln δ + 4.

(5.28)

By combining these results, we obtain

Se =
σA

c4ℓ2
− 1

2
ln

√
A

2πc2ℓ
+O(1) =

2πσNv

c4
− 1

4
ln

Nv

2πc4
+O(1). (5.29)

The first term gives the leading contribution proportional to the area A = L2, where
σ is a non-universal coefficient depending on the choice of the high-momentum cutoff.
Besides, a subleading logarithimic term with the universal coefficient −1/4 appears when
the EE is written as a function of Nv which is proportional to the area A. This term
is obtained by carefully examining small-k contributions, and thus it originates from the
Nambu-Goldstone modes. In the thermodynamic limit, the intercomponent EE per flux
is given as

lim
Nv→∞

Se

Nv

=
2πσ

c4
=
πσḡ±D

128ḡ∓C
. (5.30)
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From the factor ḡ±/ḡ∓ in Eq. (5.30), we find that the intercomponent EE is larger for
the case of parallel (antiparallel) fields if the intercomponent interaction is repulsive (at-
tractive). We note that this behavior of the EE for a particular interaction ratio g↑↓/g
originates from the equation of motion in Eq. (3.37) from which the rescaling relations
originate. This behavior qualitatively agrees with numerical results in the quantum Hall
regime [23, 24] and the Bogoliubov theory as shown in the following. From Eq. (5.30),
we find a large intercomponent EE when the elastic constant C is small and D is large.
Since the energy difference between linear and quadratic dispersion relations becomes
larger as g↑↓/g gets closer to −1, the constant C becomes smaller and D becomes bigger
(Fig. 4.5). Therefore, the EE is determined by the excitation spectra. Furthermore, the
ES becomes smaller from Eq. (5.11), so that two components are highly entangled in the
excited states. We find that the excited states contribute to the increase of the inter-
component EE. For example, while the two same quadratic dispersion relations appear
and the intercomponent EE is zero in the case of g↑↓/g = 0, where two vortex lattices
are independent, when an intercomponent interaction which correlates two components
is turned on, the linear and quadratic dispersion relations appear and the intercompo-
nent EE becomes nonzero. A pair of linear and quadratic dispersion relations indicates
the intercomponent entanglement in the excited states, which determines the EE of the
ground state.

5.3 Bogoliubov theory

In this section, we numerically obtain the EE and ES from the Bogoliubov theory. In Sec.
5.3.1, we describe the formulation to obtain the intercomponent EE and ES in the binary
system. In Sec. 5.3.2, we present the numerical results and compare them with the results
of the effective-field theory. Then, we discuss the restriction of the ground state due to
the intercomponent EE and the excited states which contribute to the intercomponent
entanglement by the ES. We also discuss the long-range interaction in the entanglement
Hamiltonian which may emerge in the subsystem and the logarithmic contribution to the
EE, which is related to the Nambu-Goldstone modes.

5.3.1 Entanglement in binary BECs

For the reduced density matrix ρ↑ for the spin-↑ component, we introduce the following
Gaussian ansatz [29,71–73]:

ρ↑ =
1

Ze

e−He , He =
1

2

∑
k̸=0

(
b̃†k,↑, b̃−k,↑

)
Me(k)

(
b̃k,↑
b̃†−k,↑

)
, Ze = Tr e−He , (5.31)

with

Me(k) =

(
hk −λk

−λ∗−k h−k

)
, λk = λ−k. (5.32)

By performing a Bogoliubov transformation(
b̃k↑
b̃†−k,↑

)
= We(k)

(
ηk
η†−k

)
, We(k) =

(
cosh θk e−iϕk sinh θk

eiϕk sinh θk cosh θk

)
, (5.33)
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with

cosh 2θk =
hk + h−k

2h̃k
, e−iϕk sinh 2θk =

λk

h̃k
, h̃k =

√
1

4
(hk + h−k)

2 − |λk|2, (5.34)

the entanglement Hamiltonian He in Eq. (5.31) is diagonalized as

He =
1

2

∑
k̸=0

(
ξkη

†
kηk + ξ−kη−kη

†
−k

)
=
∑
k ̸=0

ξk

(
η†kηk +

1

2

)
, (5.35)

where

ξk = h̃k +
hk − h−k

2
, (5.36)

is the single-particle ES.
Using the relation (5.33) and the Bose distribution function fB(ξk), which satisfies

Tr
(
η†kηkρ↑

)
=

1

eξk − 1
≡ fB(ξk), Tr

(
η−kη

†
−kρ↑

)
= 1 + fB(ξ−k) = −fB(−ξ−k), (5.37)

we find that correlators are given as

Tr
(
b̃†k,↑b̃k,↑ρ↑

)
= fB(ξk) cosh

2 θk − fB(−ξ−k) sinh
2 θk, (5.38a)

Tr
(
b̃−k,↑b̃

†
−k,↑ρ↑

)
= −fB(−ξ−k) cosh

2 θk + fB(ξk) sinh
2 θk, (5.38b)

2Tr
(
b̃−k,↑b̃k,↑ρ↑

)
= 2 [fB(ξk)− fB(−ξ−k)] e

−iϕk cosh θk sinh θk

= [fB(ξk)− fB(−ξ−k)] e
−iϕk sinh (2θk) .

(5.38c)

We require that these are equal to the correlators with respect to the Bogoliubov ground
state in Eq. (4.25). We express fB(ξk) in terms of the correlators (4.25). By taking the
sum and the difference of Eqs. (5.38a) and (5.38b), we respectively have

⟨b̃†k↑b̃k↑⟩+ ⟨b̃−k,↑b̃
†
−k,↑⟩ = [fB(ξk)− fB(−ξ−k)] cosh (2θk) , (5.39a)

⟨b̃†k↑b̃k↑⟩ − ⟨b̃−k,↑b̃
†
−k,↑⟩ = fB(ξk) + fB(−ξ−k), (5.39b)

where we take the shorthand notation ⟨·⟩ := ⟨0|·|0⟩. Next, using Eqs. (5.38c) and (5.39a),
we find

fB(ξk)− fB(−ξ−k) =

√(
⟨b̃†k↑b̃k↑⟩+ ⟨b̃−k,↑b̃

†
−k,↑⟩

)2
− 4
∣∣⟨b̃−k,↑b̃k↑⟩

∣∣2. (5.40)

Finally, by using Eqs. (5.39b) and (5.40), we obtain

fB(ξk) =
1

2

(
⟨b̃†k↑b̃k↑⟩ − ⟨b̃−k,↑b̃

†
−k,↑⟩

)
+

√
1

4

(
⟨b̃†k↑b̃k↑⟩+ ⟨b̃−k,↑b̃

†
−k,↑⟩

)2
−
∣∣⟨b̃−k,↑b̃k↑⟩

∣∣2.
(5.41)

The single-particle ES is numerically obtained from Eq. (5.41) by calculating

ξk = ln
[
1 + fB(ξk)

−1
]
. (5.42)
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To obtain the intercomponent EE, we calculate

Se =
∑
k̸=0

{−fB(ξk) ln fB(ξk) + [1 + fB(ξk)] ln [1 + fB(ξk)]} , (5.43)

by using the obtained ξk. As discussed in the previous section using the effective-field
theory, Se is expected to show a volume-law behavior followed by a subleading logarithmic
term. The EE per quantum flux in the thermodynamic limit is expressed in the integral
form

lim
Nv→∞

Se

Nv

=
1

2π

∫
BZ

d2kℓ2 {−fB(ξk) ln fB(ξk) + [1 + fB(ξk)] ln [1 + fB(ξk)]} . (5.44)

We note that the correlators (4.25) are independent of ν once the lattice structure is
fixed. Therefore, the EE per quantum flux in Eq. (5.44) is also independent of ν in a
similar manner. In the next section, we study the EE per quantum flux by assuming
the structure in the mean-field ground state. When the lattice structure changes by the
quantum correction, the EE per quantum flux will also change accordingly.

5.3.2 Numerical results

Based on the formulation in Sec. 5.3.1, we present numerical results on the intercomponent
ES and EE in the Bogoliubov ground state. The left panels of Fig. 5.2 display the single-
particle ES ξk for all the five lattice structures in parallel and antiparallel fields. The
value of g↑↓/g for each lattice is similar to Fig. 4.2. Around the Γ point, we find the
square-root dispersion relation for all the five lattice structures. At a low-energy regime,
it can be well fitted by

ξk = c(φ)
√
kℓ, (5.45)

for k = k(cosφ, sinφ), where c(φ) is a dimensionless function that expresses the anisotropy.
The right panels of Fig. 5.2 show the function c(φ) determined from the data of ξk along
a circular path around the Γ point. By rescaling the c(φ) for parallel and antiparallel
fields according to the rescaling relation (5.14), we find that curves for parallel and an-
tiparallel fields coincide perfectly up to numerical precision. The rescaled values of c(φ)’s
are depicted by the black curves.

In the left panels of Fig. 5.2, we also find that ξk diverges at some high-symmetry
points or along lines in the Brillouin zone. For the square (d) and rectangular (e) lattices
in antiparallel fields, in particular, divergence occurs along the edges of the Brillouin zone,
so that ξk is not shown along the paths R → M1 and R → M2. It has been found [31]
that at theM1 andM2 points for rhombic, square and rectangular lattices in both parallel
and antiparallel fields, the Bogoliubov Hamiltonian matrixM(k) has a structure in which
the spin-↑ and ↓ components are decoupled (see Appendix D in Ref. [31]). Since the two
components are decoupled at these points, the ES diverges.

In Fig. 5.3 (a), the intercomponent EEs per vortex as a function of the interaction
ratio g↑↓/g for parallel (blue) and antiparallel (red) fields are presented. From Fig. 5.3 (a),
we find that the EE tends to be larger for repulsive (attractive) g↑↓ in the case of parallel
(antiparallel) fields. In exact-diagonalization analyses for ν = O(1), the product state
of two quantum Hall states has been shown to be robust for intercomponent attraction
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Figure 5.2: Left panels: single-particle ESs ξ
P/AP
k in parallel (P; blue) and antiparallel

(AP; red) fields for the same cases as in Fig. 4.3 (a)-(e). Calculations are done along the
paths indicated by dotted arrows shown in Fig. 4.1. The spectra ξk show divergences
at some high-symmetry points or along lines in the first Brillouin zone. In (d) and (e),
in particular, the divergence occurs along the edges of the Brillouin zone for antiparallel
fields and thus the value of ξk is not shown there. Right panels: dimensionless functions
cP/AP(φ) that express the anisotropy of the ES around the Γ point as in Eq. (5.45). These

are calculated from ξ
P/AP
k along a circular path k = k(cosφ, sinφ) with k = 0.001a/ℓ2

and φ ∈ [0, 2π). With proper rescaling, the curves for parallel and antiparallel fields
coincide perfectly up to numerical precision, confirming the rescaling relation in Eq.
(5.14). Namely, (ḡ+/ḡ−)

1/4cP(φ) and (ḡ−/ḡ+)
1/4cAP(φ) share the same curves as shown

in black.
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(repulsion) and the spin-singlet state is robust for intercomponent repulsion (attraction)
in the case of parallel (antiparallel) fields [23,24]. Since we expect that the intercomponent
EE for the product state vanishes and the EE for the spin-singlet states is large, the
interesting behavior of the EE in Fig. 5.3 (a) for the vortex-lattice regime is qualitatively
consistent with the results for the quantum Hall regime with ν = O(1).

In Fig. 5.3 (b), we find that the leading term of the EE is proportional to the number
of fluxes and its subleading term scales logarithmically for square lattices. As expected
from the effective-field theory, we find that the coefficient of the subleading term (α2 in
Fig. 5.3) is almost equal to 1/4. In Fig. 5.3 (c), we confirm a logarithmical decrease
of its subleading term by subtracting the leading term from the EE. We expect that
the deviation from 1/4 can be understood as being due to the correction to the Euler-
Maclaurin formula.

When we obtain the ground state where the order of the filling factor ν is 10, we
consider the ground-state energy by taking the quantum correction into account by using
the excitation spectra. Therefore the behavior of the intercomponent EE calculated by
the excitation spectra whose ground state is given from the mean-field theory will be
reflected to the ground state corrected by the quantum fluctuation although the EE
vanishes in the mean-field theory. Since the intercomponent EE will restrict the ground
state for each interaction ratio g↑↓/g by taking the quantum correction into account,
it will partially clarify the feature of the ground-state phase diagram. For example, it
will predict the regime where the ground state similar to the product state appears.
Furthermore, the qualitative consistency between the behavior of the EE for the vortex-
lattice regime and that for the quantum Hall regime strongly supports an expectation
that the intercomponent EE expresses the feature of the ground-state phase diagram for
the intermediate regime between the mean-field regime and the quantum Hall regime,
which has not been investigated without any approximation.

The EE is also obtained as the thermal entropy of the entanglement Hamiltonian
at temperature T = 1 as in Eq. (5.23). The excited modes with the small ES largely
contribute to the EE. Actually, the ES for antiparallel (parallel) fields is smaller than the
other with an attractive (repulsive) interaction (Fig. 5.2) and this feature of the ES is
consistent with the interesting behavior of the intercomponent EE. In particular, the ESs
far from the Γ points in the cases of parallel and antiparallel fields are significantly differ-
ent, so that the excited modes in this regime contribute to the behavior of the EE. Since
the decoupling of two components at some high symmetry points (Fig. 5.2) appears due
to the fractional translation symmetry [31], we can relate the different fractional transla-
tion symmetries for parallel and antiparallel fields with the behavior of the EE. We also
find the emergence of the long-range interaction between densities in the entanglement
Hamiltonian from the effective-field theory. In binary BECs with a Rabi coupling, a
long-range interaction between currents emerges and both a long-range interaction be-
tween densities and that between currents appear when a Rabi coupling is turned off [30].
Such a difference appears since the correlation functions in the long-wavelength limit are
different among two cases in binary BECs and the case of the vortex lattices, which are
related to the leading order of the dispersion relations of the whole system. For instance,
the correlation functions for a phase and a density for binary BECs with the Rabi cou-
pling are proportional to k−1 and a constant, respectively, in the long-wavelength limit
due to a pair of the linear and gapped dispersion relations. Meanwhile, the correlation
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functions for a phase and a density for the vortex lattices are proportional to k−2 and
k−1, respectively, from Eq. (3.72), due to a pair of the linear and quadratic dispersion
relations, although both two cases have the ES with a square-root dispersion relation.
Furthermore, the long-range interaction is expected to emerge in the subsystem at ab-
solute zero and we expect the creation of a highly controllable system with a long-range
interaction by using the ultracold atoms.

Finally, we discuss the subleading term of the EE. In the case of binary BECs, the
logarithmic contribution of the intercomponent EE with respect to the system size orig-
inates from both the Nambu-Goldstone modes and the zero mode due to the continuous
symmetry breaking [30]. From the effective-field theory, we find that the term also orig-
inates from the Nambu-Goldstone modes, so that the term is also related to the contin-
uous symmetry breaking for the vortex lattices in the binary system. In the case of the
d-dimensional nonlinear sigma model, the coefficient of the logarithmic contribution is
determined by the number of symmetries broken in the system [26]. Although, the con-
tinuous symmetry which is spontaneously broken in the present system is hard to identify
as we discussed in Sec. 4.2.1, we infer that its coefficient is related to the type and the
number of the symmetry which is spontaneously broken. Our case is also intriguing since
the excited spectra have a pair of quadratic and linear dispersion relations, so that the
spectra contain both type I and type II while the previous studies discussed only the type
I case.
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Figure 5.3: (a) Intercomponent EE per flux, Se/Nv, as a function of g↑↓/g for paral-
lel (blue) and antiparallel (red) fields for Nv = 972. Vertical dashed lines indicate the
transition points. In consistency with the field-theoretical result in Sec. 5.2.2 [see, in
particular, Eq. (5.29) therein], Se/Nv is found to be larger for parallel (antiparallel)
fields when the intercomponent interaction g↑↓ is repulsive (attractive). (b) Intercompo-
nent EE Se versus Nv for g↑↓/g = 0.75. A fit to the form Se = α1Nv − α2 lnNv + α3

(solid line) gives (α1, α2, α3) = (0.559702, 0.235899,−0.701552) for parallel fields and
(α1, α2, α3) = (0.130402, 0.243383,−0.0583632) for antiparallel fields. (c) Se − α1Nv ver-
sus Nv for g↑↓/g = 0.75. The logarithmic contribution of the intercomponent EE and its
coefficient can be confirmed.
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Chapter 6

Summary and Outlook

In this thesis, we have studied the ground-state, collective modes, and the intercomponent
entanglement of vortex lattices in binary BECs.

In Chap. 2, we have reviewed the ground state of binary BECs and the techniques
of creating synthetic gauge fields. From the theoretical and experimental studies of
binary BECs without synthetic gauge fields, we have discussed that two components are
mixed or separated by changing the coupling constants for the intra- and intercomponent
interactions. We have discussed the emergence of parallel synthetic magnetic fields in the
rotating neutral-charged atomic gases in the mean-field theory. After introducing the LLL
approximation, in which the ground-state wave function is expanded in terms of the basis
states in the LLL [13], we have presented the ground-state phase diagram of vortex lattices
with various configurations under the LLL approximation, whose structures depend on
the ratio of the intercomponent interaction to the intracomponent one [17, 18]. Then
we have reviewed the creation of antiparallel synthetic magnetic fields by utilizing the
interaction between atoms and lasers. We have discussed a synthetic gauge field in a
minimal model, which uses the spatial dependence of a coupling between two levels and
a phase of a laser. We have reviewed an experiment of an ultracold atomic system in
which antiparallel fields are observed [20]. Based on the equivalence of the GP energy
functional for parallel and antiparallel fields, we have explained that the phase diagram of
vortex lattices for antiparallel fields is the same as that for parallel fields in the GP mean-
field regime [23]. Meanwhile, in the quantum Hall regime, where the mean-field theory
breaks down due to strong magnetic fields, the ground-state phase diagrams of binary
bosonic systems under parallel and antiparallel magnetic fields have been obtained by
exact diagonalization [23,24]. These phase diagrams are presented in the plane spanned by
the ratio of the coupling constants and the filling factor. Although the phase diagrams are
significantly different between the two cases, we have pointed out that the ground states
for parallel fields with a replusive (attractive) intercomponent interaction are similar to
those for antiparallel fields with an attractive (replusive) intercomponent interaction.

In Chap. 3, we have developed an effective-field theory of vortex lattices in binary
BECs. After reviewing the vortex lattice for a scalar BEC in the mean-field theory, we
have discussed the renormalization of the coupling constant, which depends on a fine
structure of each vortex. In deriving the effective-field theory of vortex lattices for binary
BECs, we have identified a missing term in the elastic energy from a symmetry considera-
tion of each vortex lattice, which has drastically changed the quadratic dispersion relation
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for interlaced triangular lattices. We have also considered renormalization of the coupling
constants under the LLL approximation by generalizing the renormalization procedure
for the scalar case to a binary system. By diagonalizing the effective Hamiltonian, we
have analytically obtained the dispersion relations for parallel and antiparallel fields and
the rescaling relations between them. From the rescaling relations, we have clarified that
the different excited states for parallel and antiparallel fields are indeed related to each
other. The oscillation modes for the quadratic and linear dispersion relations have been
related to in- and anti-phase oscillations, respectively, in parallel fields and in the oppo-
site manner in antiparallel fields. We have demonstrated a quasi-long-range order of the
system by using the one-particle density matrix. We have found a logarithmic increase
of the fraction of depletion with respect to the number of fluxes, which implies vanishing
of the condensate fraction in the thermodynamic limit.

In Chap. 4, we have presented the Bogoliubov theory of vortex lattices in binary BECs
under the LLL approximation by utilizing the LLL magnetic Bloch state as a complete
orthonormal basis of the LLL manifold. By employing the Bogoliubov approximation
and diagonalizing the Bogoliubov Hamiltonian, we have obtained the excitation spectra,
the density of depletion and the quantum correction to the ground-state energy. We have
numerically obtained these values and compared them with their analytic forms obtained
by the effective-field theory in the preceding chapter. We have found that the excitation
spectra with quadratic and linear dispersion relations appear and that they satisfy the
rescaling relations at low energies. We have revealed that the problem in the previous
research [31], where the relations hold only for overlapping triangular lattices, can be
solved by renormalization of the coupling constants of the interactions. We have also
confirmed the consistency of the anisotropy of the energy spectra around the Γ point
with the effective-field theory. In particular, the importance of the missing term has
been clarified from the energy spectra for interlaced triangular lattices. By using the
renormalized coupling constants, we have obtained the elastic constants, whose values
are corrected in comparison with the results in Ref. [31], so that we have determined
all parameters introduced in the effective-field theory. For all the phases on the basis of
the ground-state phase diagram in the mean-field theory, we have obtained the quantum
depletion, which for parallel (antiparallel) fields is found to be larger than the other in the
case of a repulsive (attractive) intercomponent interaction. We have also demonstrated
that it scales logarithmically with respect to the number of quantum fluxes as expected
from its analytical expression. From the minimization of the ground-state energy with the
quantum correction for the five types of structures of vortex lattices which appear in the
mean-field theory, the transition points shift appreciably and the inner angle for rhombic
lattices and the aspect ratio for rectangular lattices in terms of the ratio of the coupling
constants are altered due to the quantum correction. We have found that the quantum
fluctuation changes the ground-state phase diagram appreciably and causes the difference
between the phase diagrams for parallel and antiparallel fields. Such a difference is unique
to the binary system, since parallel and antiparallel fields do not appear in a scalar BEC.
Then we have found that shifts of transition points increase as the quantum fluctuation
is enhanced, since shifts of the transition points and the quantum depletion for parallel
fields are larger than those for antiparallel fields when an intercomponent interaction is
repulsive.

In Chap. 5, we have studied the intercomponent ES and EE for vortex lattices in binary

81



BECs. First, we have reviewed the ES and EE in condensed-matter systems. We have
discussed that the subleading term of the EE of a d-dimensional system with a continuous
symmetry breaking scales logarithmically with respect to Ld−1, where L is the length
scale of the system [25, 26]. The intercomponent ES for two coupled non-chiral TLLs or
binary BECs has been found to show a square-root dispersion relation, which is related
to the emergence of a long-range interaction in the entanglement Hamiltonian [29, 30].
By means of the effective-field theory, we have analytically obtained the intercomponent
ES for vortex lattices, which shows a square-root dispersion relation for both parallel and
antiparallel fields. We have also obtained the rescaling relation between ESs for parallel
and antiparallel fields. We have shown for overlapping triangular lattices that in relation
to the anomalous square-root dispersion relation of the ES, the long-range interaction
emerges in the entanglement Hamiltonian. We have also derived the intercomponent
EE whose subleading term logarithmically scales with respect to the number of quantum
fluxes. Based on the Bogoliubov theory, we have numerically obtained the intercomponent
ES and EE for all the phases. We have shown that the ES exhibits a square-root dispersion
relation and confirmed the consistency of its anisotropy with the effective-field theory. We
have also confirmed the rescaling relation between the ESs for parallel and antiparallel
fields. In the quantum Hall regime studied previously [23,24], the product states, in which
two components are disentangled, appear for a repulsive (attractive) intercomponent
interaction and the spin-singlet quantum Hall states, in which two components are highly
entangled, appear for an attractive (repulsive) intercomponent interaction in parallel
(antiparallel) fields. We have found that the behavior of the intercomponent EE for
vortex lattices in parallel and antiparallel fields are qualitatively consistent with that for
the quantum Hall regime, which is described above. We have restricted the ground-state
phase diagram with the quantum correction by the EE since both the corrected ground-
state energy and the EE are obtained by the excitation spectra, so that the EE reflects
the corrected ground states. For example, we can identify the regime where the ground
states similar to the product states appear. We presume that this behavior of the EE
appears in the wide intermediate range from the mean-field regime to the quantum Hall
regime. We have discussed which excited states largely contribute to the EE from the ES
and the emergence of the long-range interaction in the entanglement Hamiltonian. We
have numerically demonstrated that the subleading term of the EE scales logarithmically
with respect to the number of quantum fluxes and its coefficient is close to 1/4. We have
obtained the subleading term from the Nambu-Goldstone modes, so that the continuous
symmetry breaking of vortex lattices is related to the EE.

As an outlook, we may discuss the oscillation of the vortex lattices in binary BECs
trapped by the potential. It is of interest to compare the theoretical analysis with the
experiment for parallel fields. It is also worthwhile to discuss the oscillation modes for
antiparallel fields and an experiment to confirm the rescaling relations.

We have explained that various configurations of vortex lattices appear in binary
BECs [17] while only a triangular lattice appears in a scalar BEC. In the case of spin-1
BECs, the ground state has been found to show a rich variety of structures of vortex
lattices, which depend on the ratio of two interaction parameters of a spin-1 Bose gas,
within the mean-field theory under the LLL approximation [75]. In the present thesis, we
have obtained the energy spectra, the quantum depletion, and the quantum correction
to the ground-state energy. As we have found a pair of linear and quadratic dispersion
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relations which are unique to the binary system, we might obtain the interesting excitation
spectra of vortex lattices in spin-1 BECs. We can also discuss whether the powers of the
dispersion relations change by controlling the two interaction parameters of a spin-1 Bose
gas as in the non-rotating spin-1 BECs [6]. Furthermore, we may consider shifts of the
transition points due to quantum fluctuations.

We have found the intercomponent ES with a square-root dispersion relation, which is
related to the emergence of the long-range interaction in the entanglement Hamiltonian,
for vortex lattices in binary BECs; this result is similar to what was found for the binary
homogeneous BECs with a Rabi coupling [30]. For vortex lattices in spin-1 BECs, we
might obtain an interesting ES which is related to the long-range interaction in the
entanglement Hamiltonian. We have also shown that the behavior of the intercomponent
EE in vortex lattices is consistent with the ground-state phase diagram of the binary
Bose gases in the quantum Hall regime. By calculating the intercomponent EE of the
vortex lattices in spin-1 BECs, we might find features related to the ground state of the
rapidly rotating spin-1 bosons in the quantum Hall regime [76].
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Appendix A

Details of derivations in Chapter 3

A.1 Detailed derivation of Eqs.(3.14), (3.15) and (3.18)

A.1.1 Equation (3.14)

From the cylindrical symmetry of f and
∫ 2π

0
dϕ cosnϕ =

∫ 2π

0
dϕ sinnϕ = 2πδn,0 (n ∈ Z),

we find∑
j

∫
j

d3r nf 2ρ · r⊥ ≃
∑∫

j

d3r f 2 [n(Rj) + ρ · ∇jn(Rj)] ρ · (Rj + ρ)

=
∑
j

∫
dz

∫ ℓ

0

ρdρ f 2(ρ)

∫ 2π

0

dϕ

[
nρ (Rjx cosϕ+Rjy sinϕ) + nρ2

+ ρ3
(

∂n

∂Rjx
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sinϕ

)
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1 + cos 2ϕ
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1− cos 2ϕ

2

∂n

∂Rjy

Rjy

+
1

2
ρ2 sin 2ϕ

(
∂n

∂Rjx

Rjy +
∂n

∂Rjy

Rjx

)]

=
∑
j

∫
dz

∫ ℓ

0

ρdρ f 2(ρ)

∫ 2π

0

dϕ ρ2[n(Rj) +
1

2
Rj · ∇jn(Rj)]

=
∑
j

1

2
∇j · [Rjn(Rj)]

∫
dz

∫
j

d2r ρ2f 2.

(A.1)

By using the fact that the density slowly varies in the cell, we obtain the integral over
the system by connecting the integral over each unit cell. Equation (A.1) becomes

1

2

∑
j

∇j · [Rjn(Rj)]

∫
j

d3r
⟨
ρ2
⟩
≃ 1

2

∫
d3r ∇ · [rn(r)]

⟨
ρ2
⟩

=
1

2

∫
d3r ∇ · [rn(r)

⟨
ρ2
⟩
]− 1

2

∫
d3r rn(r) · ∇

⟨
ρ2
⟩
,

(A.2)

where ⟨g⟩ =
∫
j
d3r gf 2/

∫
j
d3r is the average of an arbitrary function g within the unit

cell j.
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A.1.2 Equation (3.15)

The term ℏΩv · (Rj ×∇ϕj)z in the total energy (3.10) is given by∑
j

∫
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(A.3)

where we assume that the density slowly varies in the cell and it is zero at large distance.

A.1.3 Equation (3.18)

The second term of Eq. (3.17) is given by∑
j
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j

d3r n(f 2 − 1)r2⊥

≃
∑
j

∫
j

d3r

[
n(Rj) + ρ

(
∂n

∂Rjx

cosϕ+
∂n

∂Rjy

sinϕ

)]
(f 2 − 1)

×
[
R2

j + ρ2 + 2ρ(Rjx cosϕ+Rjy sinϕ)
]

=
∑
j

∫
dz

∫ ℓ

0

ρdρ f 2(ρ)

∫ 2π

0

dϕ

[
n(R2

j + ρ2) + 2nρ(Rjx cosϕ+Rjy sinϕ)

+ ρ

(
∂n

∂Rjx

cosϕ+
∂n

∂Rjy

sinϕ

)
(R2

j + ρ2)

+ 2ρ2
{
1 + cos 2ϕ

2

∂n

∂Rjx

Rjx +
1− cos 2ϕ

2

∂n

∂Rjy

Rjy +
1

2
sin 2ϕ

(
∂n

∂Rjx

Rjy +
∂n

∂Rjy

Rjx

)}]

=
∑
j

∫
dz

∫ ℓ

0

ρdρ (f 2 − 1)

∫ 2π

0

dϕ

[
n(Rj)R

2
j + ρ2(n+

∂n

∂Rjx

Rjx +
∂n

∂Rjy

Rjy)

]
.

(A.4)
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By using ∂n
∂Rjx

Rjx +
∂n

∂Rjy
Rjy = Rj · [∇jn(Rj)] − 2n, the last expression in Eq. (A.4) is

rewritten as∑
j

∫
dz

∫ ℓ

0

ρdρ (f 2 − 1)

∫ 2π

0

dϕ
[
n(Rj)R

2
j + ρ2(Rj · [∇jn(Rj)]− n)

]
≃
∫

d3r (f 2 − 1)n(r)r2⊥ −
∑
j

∫
j

d3r n(r)(f 2 − 1)ρ2 +

∫
d3r ∇ · [r⊥n]

(⟨
ρ2
⟩
− ℓ2

2

)
.

(A.5)

Since we can replace f 2 by its average due to the slow variation of the density, the first
term in Eq. (A.5) vanishes. By integrating the last term by parts, Eq. (A.5) becomes

−
∑
j

∫
j

d3r n(r)(f 2 − 1)ρ2 +

∫
d3r

{
∇ ·
[
r⊥n

(⟨
ρ2
⟩
− ℓ2

2

)]
− r⊥n · ∇

(⟨
ρ2
⟩
− ℓ2

2

)}
= −

∑
j

∫
j

d3r n(f 2 − 1)ρ2,

(A.6)

since the surface term vanishes as the density is zero at large distance and ⟨ρ2⟩ does not
depend on the position.

A.2 Detailed derivation of elastic constants

In Chap. 3, we introduce the elastic energy density Eel(uα, ∂iuα) of the vortex lattices in
binary BECs. We discuss how we can constrain its form as in Eqs. (3.41), (3.43) and
(3.44) due to the symmetry of vortex lattices.

The most general form of the elastic energy density is given by the quadratic forms
of w := (w1, w2)

t and u−, such as

E (+)
el =

gn2

2
wtCw, E (−)

el =
gn2

2ℓ2
ut
−Du−, E (+−)

el =
gn2

ℓ
wtFu−, (A.7)

where C, D, and F are real 2 × 2 matrices, whose elements are written as Cij, Dij and
Fij (i, j = 1, 2), respectively, and we can assume C and D to be symmetric. We assume
that the vortex lattices are symmetric under the coordinate transformation given by(

x
y

)
→
(
x′

y′

)
= Λ

(
x
y

)
, (A.8)

where Λ is a real 2×2 matrix. Under this transformation, we find thatw is transformed by
a different matrix Λ̃ in general due to the spatial derivative, while u− is transformed by the
same matrix Λ. To obtain the elastic energy which is invariant under this transformation,
the matrices have to satisfy

Λ̃tCΛ̃ = C, ΛtDΛ = D, Λ̃tFΛ = F. (A.9)
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To discuss the symmetry of vortex lattices, we consider the following transformations
given as

Rotation through the angle ϕ : Λ = R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, Λ̃ = R(2ϕ); (A.10)

Mirror about the yz plane : Λ =Mx =

(
−1 0
0 1

)
, Λ̃ =

(
1 0
0 −1

)
; (A.11)

Mirror about the xz plane : Λ =My =

(
1 0
0 −1

)
, Λ̃ =

(
1 0
0 −1

)
. (A.12)

Each lattice structure depicted in Fig. 2.2 (a)-(e) is invariant under the following trans-
formation:

(a) R(π/3),Mx (b) R(2π/3),Mx (c) R(π) (d) R(π/2),Mx,My (e) R(π),Mx,My,
(A.13)

so that we require Eq. (A.9) for these transformations to obtain constraints on C, D, and
F . For instance, we find that (i) F = 0 from the invariance under rotation through ϕ = π,
which is satisfied by all vortex lattices except (b), since Λ = −I and Λ̃ = I (identity).
(ii) From the invariance under rotation through ϕ, we obtain

(C11 − C22) sin(2ϕ) = C12 sin(2ϕ) = (D11 −D22) sinϕ = D12 sinϕ = 0. (A.14)

We find C11 = C22 and C12 = 0 for ϕ ̸= nπ/2 and D11 = D22 and D12 = 0 for ϕ ̸=
nπ (n ∈ Z). (iii) From the invariance under the mirror reflection about the yz plane,
we find C12 = D12 = F11 = F22 = 0. (iv) From the invariance under rotation through
ϕ = 2π/3, we find F12 = F21. By combining these results, we obtain Eqs. (3.43) and
(3.44) after setting the elastic constants as

(C1, C2, C3, D1, D2, D3, F1) := (C11, C22, 2C12, D11, D22, 2D12, 2F12). (A.15)

A.3 Phase correlation function

In this section, we describe the derivation of the phase correlation function (3.75). By
substituting the correlator with respect to the phase in Eq. (3.72) into Eq. (3.75), this
correlation function is expressed as

⟨[θ↑(r)− θ↑(0)]
2⟩ ≈ 2

nFℓ2
[G(0;α)−G(r;α)] , (A.16)

where F is constant, since we are considering overlapping triangular lattices. We obtain
a Green’s function for two-dimensional Poisson’s equation G(r;α) as

G(r;α) =
1

A

∑
k̸=0

1

k2
e−αk+ik·r =

1

A

∑
k̸=0

1

k2
e−αk+ikr cos θ, (A.17)

where we express the wave vector k using the polar coordinate (k, θ) with θ which is
the angle relative to r. Though the logarithmic behavior of a Green’s function for two-
dimensional Poisson’s equation is standard, we derive it for the present regularization
scheme using the convergence factor e−αk.
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By differentiating Eq. (A.17) with respect to r, we have

− ∂

∂r
G(r;α) =

1

A

∑
k̸=0

−i cos θ

k
e−αk+ikr cos θ =

1

(2π)2

∫ 2π

0

dθ

∫ ∞

0

dk (−i cos θ)e−k(α−ir cos θ)

=
1

(2π)2

∫ 2π

0

dθ
−i cos θ

α− ir cos θ
.

(A.18)

By defining z = eiθ, we can rewrite the last integral as a contour integral along the unit
circle, which is given by

− ∂

∂r
G(r;α) =

1

(2π)2

∮
dz

iz

z2 + 1

r(z2 + 1) + 2iαz
=

1

(2π)2ir

∮
dz

z2 + 1

z(z − z+)(z − z−)
, (A.19)

where z± = i(−α ±
√
r2 + α2)/r are the locations of poles. Since |z+| < 1 < |z−|, the

integral picks up the residues at z = 0 and z+, leading to

− ∂

∂r
G(r;α) =

1

2πr

[
1

z+z−
+

z2+ + 1

z+(z+ − z−)

]
=

1

2πr

(
1− α√

r2 + α2

)
. (A.20)

Therefore, G(0;α)−G(r;α) in Eq. (A.16) can be calculated as

G(0;α)−G(r;α) =
1

2π
lim
a0→0

∫ r

a0

dr′
(
1

r′
− α

r′
√
r′2 + α2

)
=

1

2π
lim
a0→0

(
ln

r

a0
+ arsinh

α

r
− arsinh

α

a0

)
=

1

2π

(
ln

r

2α
+ arsinh

α

r

)
.

(A.21)

By substituting the above equation into Eq. (A.16) and taking the limit r ≫ α, we obtain
Eq. (3.75).
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Appendix B

Details of calculation of interaction
matrix elements

In this chapter, we describe the derivation of the representation of the interaction matrix
element (4.10) by calculating Eq. (4.9). We rewrite the LLL magnetic Bloch state (4.2)
as

Ψkα(r) =
1√
Aζ(k)

∑
m

(−1)m1m2 exp

[
− 1

4ℓ2
(r2 + r2m) +

1

2ℓ2
r · (rm − iϵαrm × ez)

+ ik · rm
]
.

(B.1)

The product of the four wave functions in Eq. (4.9) is integrated as[∏
j

ζ(kj)

]1/2 ∫
d2r Ψ∗

k1α
(r)Ψ∗

k2β
(r)Ψk3β(r)Ψk4α(r)

=
1

A2

∑
{mj}

(−1)
∑

j mj1mj2

∫
d2r exp

[
− 1

ℓ2
r2 +

1

2ℓ2
r ·
∑
j

(rmj
− iϵjrmj

× ez)

− 1

4ℓ2

∑
j

r2mj
+ i
∑
j

k̃j · rmj

]

=
1

2ANv

∑
{mj}

(−1)
∑

j mj1mj2 exp

[
Fαβ(rm1 , rm2 , rm3 , rm4) + i

∑
j

k̃j · rmj

]
,

(B.2)

where we define (ϵ1, ϵ2, ϵ3, ϵ4) := (−ϵα,−ϵβ, ϵβ, ϵα), k̃1,2 := −k1,2, k̃3,4 := k3,4, and

Fαβ(rm1 , rm2 , rm3 , rm4) :=
1

16ℓ2

[∑
j

(rmj
− iϵjrmj

× ez)

]2
− 1

4ℓ2

∑
j

r2mj
. (B.3)
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After we introduce nj = mj − m4 (j = 1, 2, 3), we find that Fαβ(rm1 , rm2 , rm3 , rm4) is
rewritten as

Fαβ(rm1 , rm2 , rm3 , rm4)

=
1

16ℓ2

[
4rm4 +

3∑
j=1

(rnj
− iϵjrnj

× ez)

]2
− 1

4ℓ2

[
3∑

j=1

(rm4 + rnj
)2 + r2m4

]

= − i

2ℓ2
rm4 ·

3∑
j=1

ϵj(rnj
× ez) + F̃αβ(rn1 , rn2 , rn3)

= −iπ
3∑

j=1

ϵj(m41nj2 −m42nj1) + F̃αβ(rn1 , rn2 , rn3),

(B.4)

where we define

F̃αβ(rn1 , rn2 , rn3) :=
1

16ℓ2

[
3∑

j=1

(rnj
− iϵjrnj

× ez)

]2
− 1

4ℓ2

3∑
j=1

r2nj

=
1

8ℓ2

∑
i<j

[
(1− ϵiϵj)rni

· rnj
+ i(ϵi − ϵj)(rni

× rnj
)z
]
− 1

4ℓ2

3∑
j=1

r2nj
.

(B.5)

We find that Eq. (B.2) is rewritten as

1

2ANv

∑
m4,n1,n2,n3

(−1)m41m42+
∑3

j=1(m41+nj1)(m42+nj2)(−1)−
∑3

j=1 ϵj(m41nj2−m42nj1)

× exp

[
F̃αβ(rn1 , rn2 , rn3) + i

(
4∑

j=1

k̃j

)
· rm4 + i

3∑
j=1

k̃j · rnj

]

=
1

2A
δP∑4

j=1 k̃j ,0

∑
n1,n2,n3

(−1)
∑3

j=1 nj1nj2 exp

[
F̃αβ(rn1 , rn2 , rn3) + i

3∑
j=1

k̃j · rnj

]
,

(B.6)

where δPk,k′ =
∑

G δk,k′+G is the periodic Kronecker’s delta with G running over the
reciprocal lattice vector. The interaction matrix element is given as in Eq. (4.10) with

Sαβ(k1,k2,k3)

=
∑

n1,n2,n3

(−1)
∑

j nj1nj2 exp[F̃αβ(rn1 , rn2 , rn3)− ik1 · rn1 − ik2 · rn2 + ik3 · rn3 ].
(B.7)

We discuss the case of parallel fields (ϵ↑ = ϵ↓ = +1). In this case, the function
Sαβ(k1,k2,k3) does not depend on both α and β, so that we can drop the subscripts
α, β. By utilizing

4ℓ2F̃ (rn1 , rn2 , rn3) = −
∑
j

r2nj
+ (rn2 · rn3 + rn1 · rn3)− i(rn2 × rn3 + rn1 × rn3)z, (B.8)
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we obtain

S(k1,k2,k3) =
∑
n

(−1)n1n2 exp
(
−r2n/4ℓ

2 + ik3 · rn
)

× ζ
(
k1 + (rn × ez + irn)/4ℓ

2
)
ζ
(
k2 + (rn × ez + irn)/4ℓ

2
)
,

(B.9)

where we rewrite the sums over n1 and n2 in terms of ζ(k) given in Eq. (4.3) and change
the remaining dummy variable n3 to n. To rewrite this, we exploit the following property
of ζ(k) for s ∈ Z2 given as

ζ
(
k+ (rs × ez + irs)/2ℓ

2
)

=
∑
m

(−1)m1m2 exp
[
(−r2m + 2rm · rs)/4ℓ2 − i(rm × rs)z/2ℓ

2 − ik · rm
]

=
∑
m

(−1)m1m2 exp
[
−(rm − rs)

2/4ℓ2 + r2s/4ℓ
2 − iπ(m1s2 −m2s1)− ik · rm

]
= (−1)s1s2 exp

(
r2s/4ℓ

2 − ik · rs
)∑

m

(−1)(m1−s1)(m2−s2)

× exp
[
−(rm − rs)

2/4ℓ2 − ik · (rm − rs)
]

= (−1)s1s2 exp
(
r2s/4ℓ

2 − ik · rs
)
ζ(k).

(B.10)

By setting n = 2s + p with s ∈ Z2 and p ∈ {0, 1}2 and using the property above, Eq.
(B.9) is rewritten as

S(k1,k2,k3)

=
∑

p∈{0,1}2

∑
s

(−1)p1p2 exp
[
− (2rs + rp)

2/4ℓ2 + ik3 · (2rs + rp) + r2s/2ℓ
2

− i(k1 + k2) · rs − i(rp × ez + irp) · rs/2ℓ2
]

× ζ
(
k1 + (rp × ez + irp)/4ℓ

2
)
ζ
(
k2 + (rp × ez + irp)/4ℓ

2
)

=
∑

p∈{0,1}2
(−1)p1p2 exp

(
−r2p/4ℓ

2 + ik3 · rp
)
ζ̃
(
k1 + k2 − 2k3 + (rp × ez − irp)/2ℓ

2
)

× ζ
(
k1 + (rp × ez + irp)/4ℓ

2
)
ζ
(
k2 + (rp × ez + irp)/4ℓ

2
)
.

(B.11)

For antiparallel fields, S↑↑(k1,k2,k3) is given by S(k1,k2,k3) in Eq. (B.11). The other
quantities which are given in Eq. (4.13) are obtained by using the relation Ψk↓(r) =
Ψ∗

−k↑(r) only for antiparallel fields to Sαβ(k1,k2,k3).
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Appendix C

Details of calculation of a long-range
interaction potential

We have introduced the long-range interaction potential UG(r− r′)1 in Eq. (5.17), which
appears in the entanglement Hamiltonian for overlapping triangular lattices. To derive
UG(r− r′), we set r′ = 0 and calculate

U2(r;α) =
∑
k̸=0

1

V |k|
e−α|k|+ik·r. (C.1)

By taking the infinite-volume limit V → ∞, this is rewritten in the integral form as

U2(r;α) =

∫
d2k

(2π)2
1

|k|
e−α|k|+ik·r. (C.2)

We obtain U2(r) by taking the limit α → 0+.
By introducing the polar coordinate (k, θ), the integral (C.2) is rewriten as

U2(r;α) =
1

(2π)2

∫ 2π

0

dθ

∫ ∞

0

dk e−αk+ikr cos θ =
1

(2π)2

∫ 2π

0

dθ
1

α− ir cos θ
. (C.3)

By defining z = eiθ to rewrite the last integral in Eq. (C.3) into a contour integral along
the unit circle, we obtain

U2(r;α) =
1

2π2

∮
dz

1

r(z2 + 1) + 2iαz
=

1

2π2r

∮
dz

1

(z − z+)(z − z−)
, (C.4)

where z± = i
(
−α±

√
r2 + α2

)
/r give the locations of poles. As the integral picks up the

residue at z = z+ due to |z+| < 1 < |z−|, this leads to

U2(r;α) =
i

πr(z+ − z−)
=

1

2π
√
r2 + α2

→ 1

2πr
(α→ 0+). (C.5)

From Eq. (C.5), we find the long-range interaction potential UG(r− r′) in Eq. (5.17).

1The long-range interaction potentials for one- and three-dimensional systems are discussed in App.
A of Ref. [30].
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[35] M. Trippenbach, K. Góral, K. Rzazewski, B. Malomed, and Y. B. Band. Structure
of binary Bose-Einstein condensates. J. Phys. B: At. Mol. Opt. Phys. 33 4017, 2000.

[36] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production
of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev.
Lett., 78:586–589, 1997.

[37] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Measurements of
Relative Phase in Two-Component Bose-Einstein Condensates. Phys. Rev. Lett.,
81:1543–1546, 1998.

[38] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and
W. Ketterle. Observation of Metastable States in Spinor Bose-Einstein Condensates.
Phys. Rev. Lett., 82:2228–2231, 1999.

[39] A. J. Leggett. Quantum liquids Bose condensation and Cooper pairing in condensed-
matter systems. Oxford University Press, 2006.

[40] D. A. Butts and D. S. Rokhsar. Predicted signatures of rotating Bose–Einstein
condensates. Nature, 397:327, 1999.

[41] N. R. Cooper. Rapidly rotating atomic gases. Advances in Physics, 57(6):539, 2008.

[42] A. A. Abrikosov. On the Magnetic properties of superconductors of the second group.
Sov. Phys. JETP, 5:1174, 1957. [Zh. Eksp. Teor. Fiz.32,1442(1957)].
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