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Abstract

The Standard Model (SM) of particle physics provides the fundamental framework of
elementary particles and interactions between them. Although it explains most results of
terrestrial experiments, the SM is still on the way to the Theory of Everything. In order
to search for a hint of physics beyond the SM, stars have been used as a probe of new
physics which complements terrestrial experiments. In this thesis, I study the effects of
the neutrino magnetic moment (NMM) and the large extra dimensions (LEDs) on low- and
intermediate-mass stars.

Observations of neutrino oscillation have revealed that neutrinos are massive, although
their mass is still unknown. Particle theories predict that such massive neutrinos have a
magnetic moment. The SM with Dirac neutrinos predicts NMM of ∼ 10−19µB, where µB

is the Bohr magneton. This value is so small that terrestrial experiments and astrophysical
observations cannot find its signature in near future. However, some theories beyond the
SM predict that NMM can be as high as ∼ 10−12µB. Since its value is model-dependent,
measurement of NMM is a key to physics beyond the SM. NMM has been explored by
neutrino-electron scattering experiments, but it is desirable to search for astrophysical sig-
natures of NMM to obtain tighter limit.

Gravity is another open problem in particle physics. Since it is difficult to quantize it,
gravity is not included in the SM. Also, the reason why gravity is much weaker than the
other interactions is not known. In order to solve this hierarchy problem, the idea of LEDs
has been discussed. If n extra dimensions are compactified, the gravitational scale in the (n+
4)-spacetime can be as low as the electroweak scale. LEDs have been explored by torsion
balance experiments because they modify the inverse-square law. Also, Kaluza-Klein (KK)
gravitons excited by LEDs have been searched by high-energy collider experiments. KK
gravitons emitted from hot plasma potentially affect stellar evolution.

In Chapter 2, I study the effects of NMM and LEDs on intermediate-mass stars which
form a blue loop on the Hertzsprung-Russell diagram during central helium burning. Since
morphology of the blue loop is sensitive to input physics, it is expected that new physics
also affects the evolution of intermediate-mass stars. If neutrinos have a finite magnetic



2 Chapter 0 Abstract

moment, an extra energy loss is induced by neutrino emission. Similarly, LEDs induce an
energy loss from stellar plasma because of KK graviton emission. I implement additional
energy losses induced by NMM and LEDs in a stellar evolution code and calculate the
evolution of intermediate-mass stars. I find that the NMM leads to elimination of the blue
loops during core helium burning. Some of stars in the blue loop are observed as a Cepheid
variable when they cross the instability strip. In order for Cepheids to exist, the NMM
should be smaller than the range ∼ 2× 10−10 to 4× 10−11µB depending on the 12C(α, γ)16O
reaction rates.

LEDs are also explored in my study. Since the n = 1 model is clearly excluded by the
square-inverse law on a large scale, I focused on the n = 2 case which is the simplest
possible model. It is found that the fundamental scale in the (4+2)-spacetime should be
larger than ∼ 2 to 5 TeV in order for the blue loop not to be eliminated. The constraints
given by intermediate-mass stars are found to be weaker than the current experimental and
astrophysical limits, but they offer an independent method to explore new physics.

In Chapter 3, I study the effect of NMM on the lithium abundance in low-mass stars.
This part is motivated by a recent study that discovered ubiquitous lithium production in
advanced evolutionary stages of low-mass stars. Since lithium is easily destroyed when it is
conveyed to the inner hot region, the high surface lithium abundance has not been predicted
by stellar theories. In order to mitigate this problem, I applied the effect of the NMM on
the low-mass stellar evolution. Because of the additional energy loss, a more massive and
smaller helium core is formed at the tip of the red giant branch. The smaller core leads
to a less dense envelope. As a result, thermohaline mixing at the bottom of the envelope
becomes more active and 7Be produced in the hydrogen burning shell is conveyed to the
convective envelope. The lithium abundance in red clump stars hence becomes larger when
the NMM is considered. I conclude that the lithium problem is mitigated when the NMM
of ∼ (2 − 5) × 10−12µB is adopted. Although this value is higher than the tightest upper
limit that comes from stellar evolution, the constraint is not robust because it can depend
on numerical codes for stellar evolution which are used to compare stellar models with
observed stars. Also, additional energy losses can be induced by other physics including
coupling between axion-like particles and electrons. This result opens up a new possibility
of mitigating the lithium problem with additional energy losses induced by physics beyond
the SM.
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Chapter 1

Introduction

1.1 Astrophysical Objects as a Laboratory of Fundamental Physics

The Universe has been a laboratory for contemporary physics since the dawn of modern
science. In the seventeenth century, Johannes Kepler discovered his empirical laws (Kepler,
1609, 1619) on the planetary motion from careful analysis of Tycho Brahe’s astronomical
data. Kepler’s laws provided an observational support for Classical Mechanics, which ap-
peared in Philosophiæ Naturalis Principia Mathematica (Newton, 1687) written by Issac
Newton.

In the twentieth century, Albert Einstein constructed the Theory of Relativity (Einstein,
1905, 1916a). Some of the earliest observational evidence of Relativity came from objects
in the Solar System. Einstein successfully explained anomalous precession of Mercury
with his theory (Einstein, 1915), which had been an open problem since the previous cen-
tury (Le Verrier, 1859). In 1919, Arthur Eddington observed stars during a Solar eclipse
and discovered bending of light caused by the Solar gravitational field (Dyson, Edding-
ton & Davidson, 1920) as predicted by the General Theory of Relativity (Einstein, 1915).
Einstein predicted the existence of gravitational waves (GWs) as well (Einstein, 1916b).
Because of difficulties in detecting them, he could not see his prediction verified by obser-
vations. However, in 1975, Alan Hulse and Joseph Taylor found that the orbital decay of
a binary pulser PSR B1913+16 is consistent with the prediction of the energy loss by the
GW emission (Hulse & Taylor, 1975). This was the first indirect evidence of the existence
of GWs. Recently, the first GW event GW150914 from a black hole binary merger was
detected by the Laser Interferometer Gravitational-Wave Observatory (Abbott et al., 2016).
This discovery was the first direct evidence of the existence of GWs and opened up the new
field of GW and multi-messenger astronomy.

This kind of interplay between fundamental physics and astronomy has happened in stel-
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lar physics as well. In the nineteenth century, Hermann von Helmholtz and William Thom-
son proposed the gravitational contraction as a major energy source of the Sun. However,
the Kelvin-Helmholtz mechanism can support the Sun only for ∼ 30 Myr, so an alternative
mechanism was needed. Eddington came up with the idea of nuclear fusion of hydrogen
(Eddington, 1920), but the quantum theory of nuclear reactions was immature at that time,
so he could not show that such reactions occur in the stellar interior. Later, George Gamow
developed the quantum theory of nuclear fusion (Gamow, 1928). The theory was applied to
stars by astrophysicists including Hans Bethe (e.g. Atkinson, 1931; Gamow, 1938; Bethe,
1939) and the outline of stellar nuclear energy generation was understood. The classical
results on nucleosynthesis in the Universe were reviewed in the celebrated B2FH paper
written by Margaret Burbidge, Geoffrey Burbidge, William Fowler, and Fred Hoyle (Bur-
bidge et al., 1957). The research field of nuclear astrophysics is still active in the present
day and is developing as an intersection of astronomy and theoretical and experimental
nuclear physics (e.g. Bertulani & Kajino, 2016; Arnould & Goriely, 2020).

The most fundamental paradigm of modern physics is the Standard Model (SM) of par-
ticle physics. The model includes seventeen kinds of elementary particles shown in Fig.
1.1. According the SM, fermions are classified into two categories: quarks and leptons.
Quarks are engaged in the strong interaction and form baryons and mesons. On the other
hand, leptons are engaged in the weak interaction. The interactions between particles are
mediated by the gauge bosons.

Almost all ground experiments can be understood within the framework of the SM and
astrophysical discussions are usually based on the SM as well. In spite of its succuss, the
SM cannot be the Theory of Everything because it has several problems. One is that the
SM treats neutrinos as a massless particle, while they have finite masses in reality. This
point will be discussed in Section 1.2. Another problem is that the SM does not explain
gravity. In particular, the reason why gravity is much weaker than the other interactions
is not understood. In order to solve this hierarchy problem, particle theorists proposed the
idea of extra dimensions. This will be discussed in the next Section 1.3.

1.2 Magnetic Moment of Neutrinos

Neutrinos are neutral leptons which are included in the SM. They play important roles
not only in particle physics but also in astrophysics. For example, core-collapse super-
novae are thought to explode because of interactions between the background matter and
neutrinos (e.g. Sato, 1975). Also, the neutrino-antineutrino annihilation is one of possible
mechanisms to power relativistic jets in γ-ray bursts (e.g. Eichler et al., 1989).
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Fig. 1.1 The list of elementary particles included in the SM.

Historically, the idea of neutrinos were introduced by Wolfgang Pauli to explain contin-
uous spectra of β-decays in 1930. In 1956, Clyde Cowan and Frederick Reines performed
an experiment to discover ν̄e from a reactor (Cowan et al., 1956), focusing on the reaction
with a proton in water: ν̄e+ p→ n+e+. They succeeded in detecting neutrons and positrons
which are produced by this reaction and confirmed the existence of neutrinos. The other
types of neutrinos, muon and tau neutrinos, were discovered in 1962 and 2001, respectively
(Danby et al., 1962; DONUT Collaboration et al., 2001).

In the SM, neutrinos are treated as massless particles. However, the flavor oscillation of
atmospheric neutrinos was discovered by Super-Kamiokande (Fukuda et al., 1998). Since
it happens only if neutrinos are massive, the neutrino oscillation undoubtedly shows the
massive nature of neutrinos. Exploring the mass of neutrinos is hence a key to physics be-
yond the SM. As we see later, particle theories predict that massive neutrinos have magnetic
moments, which potentially affect the stellar evolution.

Let us discuss possible mechanisms of the neutrino mass. When we introduce the Dirac
mass term, we have to add a right-handed neutrino νR to the SM Lagrangian. Then the
Yukawa term can be written as

LY = −yH0νRνL + h.c., (1.1)

where νL is the left-handed neutrino, H0 is the neutral Higgs boson, and y is the Yukawa
coupling constant. The Higgs mechanism (Higgs, 1964; Englert & Brout, 1964) produces
the Dirac mass term

LD = −yvνRνL + h.c., (1.2)
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where v = 174 GeV is the vacuum expectation value of the Higgs field. The neutrino mass
is then written as mD = yv. If we assume mD ∼ 0.1 eV, the Yukawa coupling is y ∼ 10−12.
This tiny value of y looks unnatural and motivates us to consider another possibility, namely
the Majorana mass term. The Majorana term for left-handed neutrinos is written as

LL = −
mL

2
νc

LνL + h.c. (1.3)

The origin of this term is not known. The most natural mechanism is the so-called seesaw
mechanism (Yanagida, 1980; Mohapatra & Senjanovic, 1980; Schechter & Valle, 1980),
which concludes that mL = m2

D/mR. Here mR is the Majorana mass of right-handed neu-
trinos. If we assume that mD is similar to the muon mass and mL ∼ 0.1 eV, the mass of
right-handed neutrinos is estimated to be mR ∼ 108 GeV.

In order to determine the nature of the neutrino mass, experimentalists have searched the
neutrinoless double β-decay: (0νββ; Zyla et al., 2020)

(N, Z)→ (N, Z + 2) + 2e−. (1.4)

If neutrinos are Majorana, this decay mode is allowed because neutrinos and antineutrinos
are identical. At the time of writing of this thesis, the 0νββ has not been detected by any
experiment. Recent results of KamLAND-Zen experiment argue that the half-life of the
136Xe 0νββ should be longer than 1.07 × 1026 yr and the effective Majorana mass should
be lower than 61-165 meV (Gando et al., 2016). Also, the absolute mass of neutrinos have
been pursued experimentally, although only upper limits have been obtained by current
studies. Recently, the end part of the β-decay spectrum of tritium was measured by the
KATRIN (Karlsruhe Tritium Neutrino) experiment (Aker et al., 2019). They gave an upper
limit < 1.1 eV on the effective νe mass.

The massive nature of neutrinos gives rise to electromagnetic properties (e.g. Giunti &
Studenikin, 2015; Balantekin & Kayser, 2018). Shrock (1982) evaluated the neutrino mag-
netic moment (NMM) µD

k j using the Weinberg-Salam theory with massive Dirac neutrinos.
They obtained

µD
k j =

3eGF

16
√

2π2
(mk + m j)

δk j −
1
2

∑
l

U∗lkUl j
m2

l

m2
W

 , (1.5)

where GF is the Fermi coupling constant, mW is the mass of the weak boson, U is the
Pontecorvo-Maki-Nakagawa-Sakata matrix (Maki, Nakagawa & Sakata, 1962), and ml is
the mass of the charged lepton. It easily follows that the diagonal magnetic moment is
given as

µD
kk =

3eGFmk

8
√

2π2
= 3.2 × 10−19

(mk

eV

)
µB, (1.6)
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Fig. 1.2 The upper limit on µ12 = µ/(10−12µB) which has been obtained by recent reactor ν̄e − e− experiments.

where µB is the Bohr magneton. On the other hand, Majorana neutrinos do not have the
magnetic moment, i.e. µM

kk = 0 (Shrock, 1982). Since the magnetic moment given by Eq.
(1.6) is tiny, it is difficult to detect it with ground experiments or astrophysical discussion.
However, some of models beyond the SM predict much higher magnetic moment. For
example, the minimal supersymmetric SM (Aboubrahim et al., 2014) predicts µ ∼ (10−12 −
10−14)µB.

The model-dependence of the NMM makes it a key to beyond-standard physics. Be-
cause of its importance, the NMM has been pursued experimentally. The earliest mea-
surement was performed by Cowan, Reines & Harrison (1954), who obtained a constraint
µ < 10−7µB. Fig. 1.2 summarizes the upper limits on the NMM obtained by recent reactor
ν̄e − e− experiments (Vidyakin et al., 1992; Derbin et al., 1993; Daraktchieva et al., 2005;
Wong et al., 2007). The most stringent limit µ < 2 × 10−11µB comes from the Germanium
Experiment on Measurement of Magnetic Moment of Antineutrino (GEMMA; Beda et al.,
2013). In GEMMA, neutrinos from Kalinin Nuclear Power Plant in Russia were used. The
ν̄e − e− cross sections are given by the sum of the weak (dσW/dT ) and electromagnetic
(dσEM/dT ) components.

dσW

dT
=

G2
Fme

2π

(
4x2 + (1 + 2x2)2

(
1 − T

E

)2

− 2x2(1 + x2)
meT
E2

)
(1.7)

dσEM

dT
= πr2

(
µ

µB

)2 (
1
T
− 1

E

)
(1.8)

Here T is the electron recoil energy, E is the incident neutrino energy, GF is the Fermi
coupling constant, me is the electron mass, r is the classical electron radius, x = sin θW is
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the Weinberg parameter. These equations show that the NMM can be measured from the
ν̄e − e− spectrum. In GEMMA, a high purity germanium detector was used to measure
dσ/dT .

Eqs. (1.7) and (1.8) can be used to constrain the NMM with the Solar neutrinos too.
The Super-Kamiokande Collaboration (Liu et al., 2004) and the Borexino Collaboration
(Arpesella et al., 2008) obtained the constraints of µ < 1.1×10−10µB and µ < 5.4×10−11µB,
respectively.

The ν̄e − e− scattering flips the neutrino helicity. It is hence possible that a left-handed
Dirac neutrino is transformed into a right-handed sterile neutrino. This process potentially
prevent neutrino-driven explosion of core-collapse supernovae. Ayala, D’olivio & Torres
(1999) estimated that the energy QνR carried away by sterile neutrinos is

QνR =
(
µ

µB

)2

(0.7 − 4.3) × 1076 erg/s. (1.9)

In order for the neutrino-driven explosion mechanism to work, QνR should be lower than
1053 erg/s. This leads to a constraint µ < (0.1 − 0.4) × 10−11µB.

The NMM has been constrained by astronomical observations as well. Evolution of low-
mass stars are sensitive to the additional energy loss induced by the NMM. The neutrino
emission rate in stellar plasma is enhanced by the processes shown in Fig. 1.3. Haft, Raffelt
& Weiss (1994) calculated the plasmon decay rate as a function of the density ρ and the
temperature T . Their result is

ϵ
µ

plas = 0.318
( ωpl

10 keV

)−2
(
µ

10−12µB

)2

ϵplas, , (1.10)

where ϵplas is the standard plasmon decay rate (Itoh et al., 1996) and ωpl is the plasma
frequency written as (Raffelt, 1996)

ωpl = 28.7 eV
(Yeρ)

1
2

(1 + (1.019 × 10−6Yeρ)
2
3 )

1
4

. (1.11)

Here Ye is the electron fraction. The pair production rate of neutrinos are given as (Heger
et al., 2009)

ϵ
µ

pair = 1.6 × 1011 erg g−1 s−1
(
µ

10−10µB

)2 e−
118.5

T8

ρ4
, (1.12)

where T = T/(108 K) and ρ4 = ρ/(104 g/cm3). These processes will be discussed in
Appendices A and B in detail.
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Fig. 1.3 The Feynman diagrams that show (left) the plasmon decay and (right) the pair creation induced by the NMM.

The enhanced energy loss rates have been applied to low-mass stellar models to constrain
the NMM (Bernstein, Ruderman & Feinberg, 1963; Raffelt & Dearborn, 1988; Raffelt,
1990; Viaux et al., 2013a,b). Since the luminosity of stars at the tip of the red giant branch
(TRGB) becomes larger because of the additional energy loss, it is possible to constrain the
NMM with low-mass stars. The most recent study (Arceo-Dı́az et al., 2015) implemented
the effect of the NMM in models of low-mass red giants (RGs) and compared them with
stars at the TRGB in a globular clusterωCen. They obtained an upper limit µ < 2×10−12µB.

The NMM can induce the radiative decay of neutrinos. If a neutrino νi is heavier than νf ,
νi can emit a photon to produce νf . The decay photon affects the spectrum of the cosmic
microwave background. The constraint from the cosmic microwave background is µ <
3 × 10−11µB(eV/mν)2.3 (Ressell & Turner, 1990).

It is notable that the neutrino radiative decay can also affect Big Bang nucleosynthesis
(BBN) (e.g. Terasawa, Kawasaki & Sato, 1988; Kusakabe et al., 2013). BBN offers tight
constraints on the mass and the lifetime of massive unstable neutrinos. Since the primordial
abundances of light elements are determined precisely by recent astronomical observations,
the non-standard BBN scenarios are actively studied from the theoretical viewpoints.

1.3 Large Extra Dimensions

The idea of extra dimensions was proposed by Theodor Kaluza and Oskar Klein (Kaluza,
1921; Klein, 1926). They constructed a 5-dimensional theory with the generalized Einstein-
Hilbert action

S = − 1
16πĜ

∫
R̂

√
−ĝd4xdy, (1.13)

where the hats show 5-dimensional quantities. The classic Kaluza-Klein (KK) theory nat-
urally unifies gravity and electromagnetism, but it predicts that the electron mass would be
the Planck scale (Overduin & Wesson, 1997), which clearly contradicts the reality.
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Later, Arkani-Hamed, Dimopoulos & Dvali (1998) proposed the idea of the large extra
dimensions (LEDs). They considered compactified extra dimensions with the size of ∼mm.
They assumed that only gravity can propagate in the extra dimensional space. In this theory,
the gravitational potential V(r) between masses m1 and m2 is given by

V(r) = −G(3+n) m1m2

r1+n (r < Λ), (1.14)

where G(3+n) is the gravitational constant with n extra dimensions, when the distance r
between the masses is smaller than the size Λ of the extra dimensions. On the other hand,
we can show from Gauss’ law that

V(r) = −G(3+n) m1m2

r
1
Vn

(r > Λ), (1.15)

where Vn is the volume of the extra dimensions. Comparison between the Newtonian law
of gravity and Eq. (1.15) shows that G(3) = G(3+n)/Vn, where G(3) is the usual gravitational
constant. This relation implies that En+2

(n) ∝ E2
Pl/Vn, where E(n) is the true Planck scale in the

(4 + n)-dimensional spacetime and EPl ∼ 1019 GeV is the Planck scale which we know. It
is seen that E(n) can be down to the electroweak scale if Vn is sufficiently large.

How large should the extra dimensions be? Assuming that E(n) ∼ 1 TeV and Vn ∼ Λn,
we can estimate the values of Λ that can solve the hierarchy problem. In the case of n = 1,
2, and 3, the size of the extra dimension should be Λ ∼ 1013 m 10−3 m, and 10−8 m,
respectively. The n = 1 case clearly contradicts observations, because Λ is so large that
gravity deviates from the inverse-square law on the scale of the Solar System. However, the
n ≥ 2 cases still survive, so studying them are worthwhile. In this thesis, we mainly focus
on the n = 2 case, which is the simplest possible model.

If the LEDs exist, the gravitational potential deviates from the square-inverse law on the
small scale. The gravitational force on the mm scale have been measured using a torsion
pendulum (Long, Chan & Price, 1999; Hoyle et al., 2001; Chiaverini et al., 2003; Hoyle
et al., 2004; Smullin et al., 2005; Kapner et al., 2007; Tu et al., 2007; Geraci et al., 2008;
Sushkov et al., 2011; Yang et al., 2012; Murata & Tanaka, 2015; Tan et al., 2016, 2020),
but deviation from the square-inverse law has not been discovered. The most recent torsion
experiment (Lee et al., 2020) concludes that the inverse-square law holds down to 52 µm.
A typical setup of such torsion balance experiments is schematically shown in Fig. 1.4.

The LEDs give rise to the KK modes of gravitons GKK with masses mn2 = |n|2/Λ2.
Collider experiments have been performed to search for the missing energy due to the
production of KK gravitons (Aaltonen et al., 2008; Aad et al., 2011, 2013; Sirunyan et al.,
2018; Aaboud et al., 2018). The Compact Muon Solenoid (CMS) experiment at the Large
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Fig. 1.4 A schematic picture for a typical setup of torsion balance experiments.

Hadron Collider reports MD > 9.9 TeV for the n = 2 model (Sirunyan et al., 2018), where
MD is the fundamental scale defined as

M2
Pl = Λ

nMn+2
D . (1.16)

The current constraints on n and MD are summarized in Fig. 1.5. It is seen that the tor-
sion and collider experiments give comparable constraints when n = 2, while the collider
experiments become advantageous when n > 3.

LEDs can be constrained by astrophysical and cosmological ways as well. Detection of
a neutrino burst from SN 1987A at Kamiokande (Hirata et al., 1987) and the IMB detec-
tor (Bionta et al., 1987) revealed that a lot of neutrinos are emitted from a core-collapse
supernova. If the graviton emission in a supernova explosion is too efficient, the expected
number of supernova neutrinos becomes lower and thus the observed neutrino counts can-
not be explained. Hanhart et al. (2001) obtained a limit Λ < 0.66 µm from the neutrinos
from SN 1987A. Gravitons produced by a supernova are expected to be bound in a neutron
star and decays to photons. Fermi-LAT Collaboration et al. (2012) set a limit on the γ-ray
flux from γ-ray quiet neutron stars and obtained a limit MD > 230 TeV. The radiative decay
of gravitons will contribute to the cosmic γ-ray radiation and Hall & Smith (1999) obtained
a limit MD > 110 TeV.

KK gravitons can be produced in stellar plasma as well. The new energy loss channel can
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Fig. 1.5 The constraints on n and MD given by the torsion and the collider experiments. This figure is
reprinted from Fig. 12 in Murata & Tanaka (2015) with permission.

be used to constrain the LEDs in principle. The energy loss rate was calculated by Barger
et al. (1999). In the stellar condition we are interested in, photon-photon annihilation,
gravi-Compton-Primakoff scttering, and gravi-bremsstrahlung are effective processes. The
energy loss rates due to these processes are evaluated as follows (Hansen et al., 2015):

1. Photon-photon annihilation (γ + γ → GKK)

ϵγγ = 5.1 × 10−9T 9
7ρ
−1
6

(
MSc2

1 TeV

)−4

erg g−1 s−1 (1.17)

2. Gravi-Compton-Primakoff scttering (e− + γ → e−GKK)

ϵGCP = 4.5 × 10−6T 7
7

(
MSc2

1 TeV

)−4

erg g−1 s−1 (1.18)

3. Gravi-bremsstrahlung (e− + N → e− + N +GKK)

ϵGB = 5.8 × 10−3Z̄2
7T 3

7

(
MSc2

1 TeV

)−4

erg g−1 s−1 (1.19)

Here T7 = T/(107 K), ρ6 = ρ/(106 g cm−3), and Z̄7 is the mean ion charge relative to
nitrogen. MS is the fundamental energy scale given by

M−(n+2)
S = ΩnM−2

Pl Λ
n, (1.20)
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where Ωn is the n-dimensional spherical volume. Cassisi et al. (2000) applied these rates to
the evolution of low-mass stars. They found that stars at the TRGB become luminous when
the additional energy loss is considered. Comparison between the models and observed
stars in a globular cluster gave a constraint MS > 3 − 4 TeV.

1.4 Stellar Energy-loss Argument

Modern stellar physics tells us that stars are the result of all of the four fundamental
interactions (i.e. gravity, electromagnetism, and strong and weak nuclear forces). Stars
are bound by gravity, emit electromagnetic waves, and are powered by nuclear reactions.
This fact enables us to use stars as a laboratory for new physics which cannot be tested
by ground experiments (e.g. Raffelt, 1996). Such attempts can be divided into two classes.
One is to use a large distance between stars and the Earth. Particles from stars may decay
or oscillate during the propagation toward an observer. The most successful example of
this method is the discovery of the flavor oscillation of the Solar neutrinos at the Sudbury
Neutrino Observatory (Ahmad et al., 2001). The other method is to study the effect of new
physics on stellar structure and evolution. One of the earliest examples for this method was
performed by Katsuhiko Sato and Humitaka Sato (Sato & Sato, 1975). They considered
a possible Higgs emission from central helium burning stars. If the Higgs mass is too
small, the energy loss rate becomes so large that the lifetime of stars becomes shorter than
observed. They argued that the Higgs mass should be larger than 0.36 MeV. Their lower
limit is correct from modern points of view, as the Higgs mass is estimated to be 125 GeV
(Zyla et al., 2020) by recent collider experiments.

Since then, the energy loss argument has been mainly applied to low-mass stars, because
the luminosity of the brightest red giants and the lifetime of horizontal branch (HB) stars
are sensitive to the additional energy loss. The structure of these stars is schematically
shown in Fig. 1.6. In red giant branch (RGB) stars, a degenerate helium core is surrounded
by a hydrogen burning shell. When the core mass reaches a critical value, the helium
flash occurs and the core becomes non-degenerate. The star then starts stable core helium
burning and evolves on the horizontal branch (HB).

It is possible to constrain the additional energy loss in low-mass stars with a simple
analysis (Raffelt, 1996). In stars on the red giant branch, the helium core grows because
of hydrogen shell burning. As the core mass grows, the radius of the core shrinks and the
gravitational binding energy is released. If we treat the core as a white dwarf, the total
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Fig. 1.6 The schematic structure of advanced evolutionary stages of low-mass stars. The radius is not to scale.

energy of the core is written as

E = −3
7

GM2
He

RHe
, (1.21)

where MHe is the helium core mass, RHe is the core radius, and G is the gravitational con-
stant. The gravitational energy release is then estimated as

ϵgrav = −
Ė

MHe
=

GṀ
R∗

(
MHe

M⊙

)
, (1.22)

where the M-R relation of a white dwarf R = R∗(M⊙/M)
1
3 is used with R∗ = 8800 km.

If we put MHe = 0.5M⊙ and Ṁ = 0.8 × 10−15M⊙ s−1 for stars near the TRGB, we obtain
ϵgrav ∼ 100 erg g−1 s−1. If the additional energy loss ϵX is larger than ϵgrav, the helium core
mass at the TRGB becomes larger than the values estimated from observations. It is then
concluded that ϵX < 100 erg g−1 s−1.

A similar argument can be applied to HB stars too. The number of HB stars in a globular
cluster is determined by the duration tHe of central helium burning. If an additional energy
loss ϵX is introduced, the duration is reduced by a factor of LHe/(LX + LHe), where LHe is
the luminosity of helium burning and LX is the additional energy loss rate. It is known that
tHe in the standard stellar model agrees with observational estimates within 10% (Raffelt,
1996). This leads to a constraint LX < 0.1LHe. Since the typical energy generation rate is
ϵHe ≈ 80 erg/g/s, the additional energy loss is limited to ϵX < 10 erg/g/s.
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Fig. 1.7 The HR diagram of low-mass stars with the NMM µ = 0 − 3 × 10−12µB, where µB is the Bohr
magneton. The metallicity is Z = 0.01. This figure is reprinted from Fig. 4 in Arceo-Dı́az et al. (2015)
with permission.

This effect of the additional energy loss on a modern stellar model is shown in Fig. 1.7,
which is the Hertzsprung-Russell (HR) diagram of 1M⊙ stars (Arceo-Dı́az et al., 2015) with
different values of the NMM. It is seen that the luminosity at the TRGB becomes higher
when the NMM is adopted. This prediction is compared with observations of globular clus-
ters to constrain new physics. This method has been adopted to constrain various physics
including the NMM (Bernstein, Ruderman & Feinberg, 1963; Raffelt & Dearborn, 1988;
Raffelt, 1990; Viaux et al., 2013a,b; Arceo-Dı́az et al., 2015), the large extra dimensions
(Barger et al., 1999; Cassisi et al., 2000), and axion-like particles (Krauss et al., 1984;
Dearborn et al., 1986; Raffelt & Dearborn, 1987; Ayala et al., 2014).

The additional energy loss can be constrained also by cooling of compact objects. Cool-
ing of hot white dwarf (WD) is dominated by the neutrino emission due to the plasmon
decay. If the energy is lost by a new physical process, it will be leave a trace in the lumi-
nosity function (Blinnikov & Dunina-Barkovskaya, 1994; Miller Bertolami, 2014; Hansen
et al., 2015). The luminosity function dN/dMbol is written as

dN
dMbol

= −B
dU/dMbol

Lγ + Lν + LX
, (1.23)

where N is the number density of WDs, Mbol is the bolometric magnitude, U is the in-
ternal energy, Lγ is the electromagnetic luminosity, Lν is the neutrino luminosity, and
B ≈ 10−3 pc−3Gyr−1 is the WD birthrate. A recent study (Hansen et al., 2015) obtained
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Fig. 1.8 The effect of the NMM on the fate of massive stars. This figure is drawn on the basis of the
stellar evolution models shown in Heger et al. (2009).

constraints µ < 3.4 × 10−12µB and MS > 0.54 TeV using WDs in the globular cluster 47
Tucanae. Although the NMM can affects cooling of neutron stars in principle, Iwamoto et
al. (1995) concluded that the constraint that can be obtained from neutron star cooling is
µ < 5 × 10−7µB, which is much weaker than the constraints from low-mass stars and WDs.

The energy loss induced by new physics affects massive stars as well. Heger et al. (2009)
studied the effect of the NMM on stars with 7-18M⊙ and found that the fate of massive stars
is significantly affected. Their result is summarized in Fig. 1.8. They showed that the NMM
makes the threshold between a white dwarf and a core-collapse supernova more massive.
Also, they predicted that ∼ 10M⊙ stars explode as “Type I.7” supernovae when the NMM is
larger than 2×10−11µB, where µB is the Bohr magneton. Straniero et al. (2019) found that the
energy loss induced by axion-like particles affects the initial mass-final luminosity relation
of core-collapse supernova progenitors. It is difficult to constrain axions from this relation
because of the current limited number of supernova samples. However, it is potentially a
powerful tool to explore new physics when the number of samples is accumulated.
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1.5 Summary: Constraints on the Neutrino Magnetic Moment and
Large Extra Dimensions

In this Chapter, the concept of the NMM and LEDs was introduced and experimental
and astrophysical constraints on them were explained. The current constraints on the NMM
mentioned in this Chapter are summarized in Table 1.1. The most stringent experimental
limit is obtained by reactor neutrinos and the most stringent astrophysical limit is obtained
by the evolution of low-mass stars.

The current constraints on the model with two LEDs (i.e. n = 2) are summarized in Table
1.2. The most stringent experimental limit is obtained by the collider experiments and the
most stringent astrophysical limit is obtained by non-detection of γ-rays from neutron stars.

In this thesis, I provide an independent method to constrain the NMM and the LEDs and
point out that the additional energy loss induced by new physics can be a partial solution
to the lithium problem in low-mass stars. In Chapter 2, I will discuss the effects of physics
beyond the Standard Model on intermediate-mass stellar evolution. In Chapter 3, I will
discuss the effects of beyond-standard physics on low-mass stars to explain the lithium
abundance in red clump stars.

*1 This value is not a limit. If the NMM in a range of µ12 = 2 − 5 is assumed, the lithium abundance in low-mass red clump stars is
significantly enhanced. As a result, discrepancy between stellar models and observed stars is mitigated.
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Table. 1.1 Current experimental and astrophysical constraints on the NMM.

Method Upper limit on µ12 Reference

Reactor neutrino 29 Beda et al. (2013)

Solar neutrino 54 Arpesella et al. (2008)

Core-collapse supernova 1-4 Ayala et al. (2014)

Cosmic microwave background 30(eV/mν)2.3 Ressell & Turner (1990)

White dwarf 3.4 Hansen et al. (2015)

Neutron star 5 × 105 Iwamoto et al. (1995)

Low-mass red giant 1.2 Capozzi & Raffelt (2020)

Intermediate-mass star 40-200 This work (Chapter 2)

Li abundance in low-mass stars 2-5*1 This work (Chapter 3)

Table. 1.2 Current experimental and astrophysical constraints on the LED model with n = 2.

Method Upper limit on Λ [µm] Reference

Collider 4.9 Sirunyan et al. (2018)

Tortion balance 30 Lee et al. (2020)

Core-collapse supernova 0.66 Hanhart et al. (2001)

Cosmic γ-ray background 4.0 × 10−2 Hall & Smith (1999)

White dwarf 2 × 103 Hansen et al. (2015)

Neutron star 8.7 × 10−3 Fermi-LAT Collaboration et al. (2012)

Low-mass red giant 40-70 Cassisi et al. (2000)

Intermediate-mass star 30-170 This work (Chapter 2)
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Chapter 2

Evolution of Intermediate-mass Stars
with the NMM and LEDs

インターネット公表に関する使用承認が出版社から得られないため、本章について
は、非公開。

“Elimination of the Blue Loops in the Evolution of Intermediate-mass Stars by the Neutrino
Magnetic Moment and Large Extra Dimensions”
The Astrophysical Journal, 901, 115.
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Chapter 3

Enhancement of Lithium in Red Clump
Stars by the NMM

3.1 Introduction

Since 7Li is a fragile nucleus which is easily destroyed by the proton capture reaction,
its surface abundance reflects detailed stellar structure. In low-mass giants, stellar models
predict the surface lithium depletion (Iben, 1967). However, spectroscopic surveys have
shown that ∼ 1% of giant stars have the lithium abundance as high as A(Li) = log(Li/H) +
12 > 1.5 (Castilho et al., 2000; Gonzalez et al., 2009; Monaco et al., 2011; Kumar et al.,
2011; Ruchti et al., 2011; Martell & Shetrone, 2013; Adamów et al., 2014; Casey et al.,
2016; Yan et al., 2018; Smiljanic et al., 2018; Deepak & Reddy, 2019). This is a long-
standing problem in my understanding of low-mass stars (Wallerstein & Sneden, 1982;
Brown et al., 1989).

Stars in the RG branch and the red clump (RC) have the similar luminosity and the
effective temperature, so the boundary between them is ambiguous in the Hertzsprung-
Russell diagram. Some authors have suggested that a part of the lithium-rich giants are
RC stars (Silva Aguirre et al., 2014; Monaco et al., 2014). Recent works (Singh, Reddy
& Kumar, 2019; Singh et al., 2019; Kumar et al., 2020) distinguished RC stars from RGs
in data of spectroscopic surveys with the help of asteroseismological data (Bedding et al.,
2011; Vrard, Mosser & Samadi, 2016). They concluded that all of RC stars have the lithium
abundances of A(Li) > −0.9, which are higher than the predicted values by stellar models.
This implies that a ubiquitous process produces 7Li during or before central helium burning.

Kumar et al. (2020) pointed out that the lithium abundances in RC stars are distributed
around A(Li) = 0.71, while classical lithium-rich giants with A(Li) > 1.5 account for
only ∼ 3% of RC stars. Fig. 3.1 is the histogram of A(Li) in RC stars. In my study,
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Fig. 3.1 The histogram of A(Li) in RC samples reported by Kumar et al. (2020). The total number of the
RC samples is 9284.

I hypothesize that A(Li) in the majority with A(Li) ∼ 0.71 is enhanced by a ubiquitous
process which occurs in all low-mass stars and the minority with A(Li) > 1.5 is explained
by other mechanisms which work only in specific types of stars. It should be noted that
a recent observational study (Yan et al., 2020) found that 86% of lithium-rich giants with
A(Li) > 1.7 is RC stars. This motivates one to study possible mechanisms to produce such
rare but extremely lithium-rich RC stars, although my work focuses on the peak of the A(Li)
distribution.

The mechanism of the lithium enhancement is under debate. Some authors suggest en-
gulfment of substellar objects which keep high lithium abundances (e.g. Siess & Livio,
1999; Lebzelter et al., 2012; Aguilera-Gómez et al., 2016). Others discuss in situ produc-
tion by the Camelon-Fowler (CF) mechanism (Cameron & Fowler, 1971). In the hydrogen
burning shell, 7Be is produced via the 3He(α, γ)7Be reaction. The produced 7Be is con-
veyed to the stellar surface and decays to 7Li by the electron capture. In the standard model,
the CF mechanism is insufficient to reproduce the abundance in lithium-rich giants. How-
ever, Casey et al. (2016) point out that extra mixing induced by the tidal interaction with a
binary companion can drive the lithium production.

In order to explain the ubiquitous enhancement of lithium in RC stars, I introduce the
additional energy loss induced by the NMM. The NMM induces the additional energy loss
in stellar plasma (Haft, Raffelt & Weiss, 1994), which delays the helium flash. As a result, a
heavier inert helium core is formed and the luminosity of the tip of the RG branch (TRGB)
increases (e.g. Raffelt, 1996). The NMM may increase A(Li) in RGs because the delayed
helium flash may result in activation of the CF mechanism induced by thermohaline mixing
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(Sackmann & Boothroyd, 1999; Lattanzio et al., 2015).
The NMM has been constrained using RGs near the TRGB in globular clusters.

As I discussed in Section 1.4, the helium core releases the gravitational energy
ϵgrav ∼ 100 erg g−1 s−1 near the TRGB. It is therefore concluded that the additional
energy loss should not exceed ∼ 100 erg g−1 s−1 to avoid the significant delay of the
helium flash. This argument, which does not depend on numerical stellar models, cor-
responds to an upper limit of µ12 ≲ 10. In order to make tighter constraints, detailed
comparison between stellar models and observed RGs has been performed and upper
limits µν < 2.2 × 10−12µB (Arceo-Dı́az et al., 2015) and µν < 1.2 × 10−12µB (Capozzi &
Raffelt, 2020) are obtained. The most recent work (Capozzi & Raffelt, 2020) improved the
conventional limits using a recent distance determination of ω-Centauri by the Gaia DR2
data (Baumgardt et al., 2019). The magnitude of the TRGB is, on the other hand, estimated
by applying an edge-filter on the luminosity function of the RG branch (Bellazzini et
al., 2001). Considering uncertainties in the TRGB magnitude, extinction, and distance,
Capozzi & Raffelt (2020) obtain the TRGB absolute magnitude Mobs

I = −3.96 ± 0.05 mag
in ω-Centauri. On the other hand, the model gives

Mtheory
I = −4.08 − δMµ ± σµ (3.1)

where δMµ is the effect of the NMM and σµ is the uncertainty. The fiducial value MI =

−4.08 is based on Serenelli et al. (2017) and the other terms are given as (Viaux et al.,
2013a)

δMµ = 0.23
(√
µ2

12 + 0.802 − 0.80 − 0.18µ1.5
12

)
(3.2)

σµ =
√

0.0392 + (0.046 + 0.0075µ12)2. (3.3)

Viaux et al. (2013a) consider various possible origins of theoretical uncertainties. In par-
ticular, they point out that the largest uncertainty originates from the mixing length and
the bolometric correction. Comparing Mtheory

I and Mobs
I leads to the upper limit µ12 < 1.2.

Although this limit is very stringent, there are several points to note. The theoretical un-
certainty (3.3) is derived to compare their model with the globular cluster M5. Because
the age and the metallicity are different, it might be desirable to estimate the uncertainty
for ω-Centauri. Also, it is pointed out that Mtheory

I can significantly depend on stellar evo-
lution codes (Serenelli et al., 2017), although Viaux et al. (2013a) do not include the code
dependence in their uncertainty.

The aim of this Chapter is to show that a sufficiently large NMM can enhance A(Li) in
RC stars and reduce the discrepancy between the observations and the theory. Because it is
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ubiquitous physics, the NMM is a candidate to explain the peak in the A(Li) distribution.
The rare population with A(Li) > 1.5 is beyond the scope of this study. Section 3.2 de-
scribes the stellar models and the treatment of the NMM. Section 3.3 shows the results of
my calculations and compares them with the observational data. In Section 3.4, I summa-
rize my results and discuss the future perspective. A part of this Chapter has been submitted
to a journal (Mori et al., 2020b).

3.2 Stellar Model

I use Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al., 2011, 2013,
2015, 2018, 2019) version 10398 to construct one-dimensional low-mass stellar models.
MESA adopts the equation of state of Rogers & Nayfonov (2002) and Timmes & Swesty
(2000) and the opacity of Iglesias & Rogers (1996, 1993) and Ferguson et al. (2005). I
adopt nuclear reaction rates compiled by NACRE (Angulo et al., 1999) and Caughlan &
Fowler (CF88; 1988). If a reaction rate appears in both, the one tabulated in NACRE is
adopted. Notably, the rates for the triple-α reaction and 14N(p, γ)15O are from NACRE
and the electron capture rate of 7Be is from CF88. The adopted nuclear reaction network
is pp extra.net, which includes 1,2H, 3,4He, 7Li, 7Be, 8B, 12C, 14N, 16O, 20Ne, and 24Mg.
Treatment of electron screening is based on Alastuey & Jancovici (1978) and Itoh et al.
(1979). The mass loss formula in Reimers (1975) is adopted.

MESA makes use of the mixing length theory (Cox & Giuli, 1968) to calculate the con-
vective luminosity from the temperature gradient. I adopt the Ledoux criterion (Ledoux,
1947) to calculate the convective instability. My model considers thermohaline mixing as
well because it affects the lithium abundance (Sackmann & Boothroyd, 1999; Lattanzio et
al., 2015). Thermohaline mixing is treated as a diffusive process with the diffusion coeffi-
cient (Paxton et al., 2013)

Dthm = αthm
3K

2ρCP

B
∇T − ∇ad

, (3.4)

where αthm is a free parameter, ρ is the density, CP is the specific heat, B is the Ledoux
term (Unno et al., 1989), ∇T is the actual temperature gradient, and ∇ad is the adiabatic
temperature gradient. K is the thermal conductivity written as

K =
4acT 3

3κρ
, (3.5)

where a is the radiation density constant, c is the speed of light, T is the temperature, and κ
is the opacity.
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Fig. 3.2 The energy loss rates induced by the neutrino emission with µν = 5 × 10−12µB. The density of
ρ = 106 g cm−3 is assumed. The black line shows the total standard rate and the other lines show the rates
enhanced by the NMM.

The effect of mixing is coupled with the stellar structure as follows. The equation for the
mass fraction Xi,k of a nucleus i in the k-th cell is (Paxton et al., 2011)

Xi,k(t + δt) − Xi,k(t) = dXburn + (Fi,k+1 − Fi,k)
δt

dmk
. (3.6)

The first term on the right-hand side represents the change in Xi,k due to nuclear burning.
The second term counts in the effect of mixing, where dmk is the mass of the k-th cell and
Fi,k is defined as

Fi,k = (Xi,k − Xi,k−1)
σk

dmk

. (3.7)

where σk = Dk(4πr2ρ)2 is the Lagrangian diffusion coefficient and dmk = 0.5(dmk−1+dmk).
The parameters in my models follow those in Kumar et al. (2020). The initial mass is

fixed to 1M⊙ and the initial metallicity is fixed to be solar: Z = 0.0148 (Lodders, 2020).
However, the initial lithium abundance in the pre-main sequence is set to A(Li) = 2.8 to fit
data. The mixing length is α = 1.6 and the thermohaline coefficient is αthm = 100 and 50,
because A(Li) after the RG branch bump is sensitive to thermohaline mixing.

I consider the plasmon decay and neutrino pair production as the additional energy loss
induced by the NMM. The energy loss rates due to the plasmon decay and the the pair
production are given by Eqs. (1.10) and (1.12), respectively. Fig. 3.2 shows the energy
loss rates with µν = 5 × 10−12µB at ρ = 106 g cm−3, which is the typical central density
at the helium flash. At the temperature of ∼ 108 K, the enhanced energy loss rate is com-
parable with the standard rate. Also, it is seen that the pair production is negligible in the



28 Chapter 3 Enhancement of Lithium in Red Clump Stars by the NMM

αthm µ12 MHe,TRGB/M⊙ log(L/L⊙)TRGB A(Li)RC

100 0 0.467 3.39 −0.90

100 2 0.480 3.46 −0.57

100 3 0.490 3.52 −0.23

100 4 0.500 3.57 0.10

100 5 0.509 3.61 0.38

50 0 0.467 3.39 −0.56

50 2 0.480 3.46 −0.39

50 3 0.490 3.52 −0.16

50 4 0.500 3.57 0.12

50 5 0.509 3.61 0.39

Table. 3.1 The parameters of the models. The zero age main sequence mass and the initial metallicity
are fixed to MZAMS = 1M⊙ and Z = 0.0148, respectively. αthm is the thermohaline coefficient, µ12 is the
NMM, MHe,TRGB is the mass of the helium core at the TRGB, LTRGB is the luminosity at the TRGB, and
A(Li)RC is the lithium abundance of RC stars. Since A(Li) decreases during the evolution of RC stars, the
initial values just after the helium flash are shown.

temperature range of interest.

3.3 Results

3.3.1 Evolution of the Fiducial Model

In this Section, I describe the fiducial model with µν = 0. Fig. 3.3 shows the evolution of
the stellar models in the L − A(Li) plane, where L is the luminosity. The solid lines show
the evolution of the fiducial model. The upper panel adopts αthm = 100 and the lower panel
adopts αthm = 50. The points are the stellar samples selected by Kumar et al. (2020). The
lithium abundances of the samples are estimated by the 6707 Å Li line. It should noted that
the data should be biased because lithium cannot be detected when the line is weak.

The evolution starts from a low luminosity (the lower-left side of Fig. 3.3). The lithium
abundance A(Li) stays constant during the main sequence. When the star reaches the main-
sequence turnoff at log(L/L⊙) = 0.4, A(Li) starts to decrease from 2.4 to 0.8. This is
because surface lithium is conveyed to the stellar interior due to the first dredge-up (Iben,
1967), and is destroyed by the proton capture. The lithium depletion becomes slower as
the star evolves, but A(Li) starts to decrease again when the star reaches the RG branch
bump at log(L/L⊙) = 1.5. At this point, the star develops thermohaline mixing between the
convective envelope and the hydrogen burning shell (Charbonnel & Zahn, 2007; Lattanzio
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et al., 2015). This happens because the mean molecular weight is inverted by 3He(3He,
2p)4He. Because of thermohaline mixing, lithium in the envelope is conveyed to the inner
hot region and destroyed. One can see that A(Li) after the RG branch bump is smaller
when a larger αthm is adopted. The decrease of A(Li) stops when log(L/L⊙) = 3.2 and it
starts increasing. This is because thermohaline mixing becomes more effective as the star
expands (Lattanzio et al., 2015). The effective mixing helps the CF mechanism work and
hence increases A(Li). After the TRGB, the core becomes non-degenerate because of the
helium flash and L decreases suddenly. As a result, core helium burning begins and a RC
star is formed.

Fig. 3.4 shows the time evolution of A(Li) as a function of the helium core mass MHe.
The behavior of A(Li) is not monotonic. In the fiducial model, thermohaline mixing sets in
when MHe ∼ 0.25M⊙ and A(Li) starts decreasing because of extra mixing. However, when
the core mass reaches MHe ∼ 0.42M⊙, A(Li) starts increasing.

In order to understand the evolution of A(Li), I introduce three timescales. I denote the
timescale for the electron capture of 7Be as tprod, the timescale for 7Li(p, α)4He as tdest,
and the timescale on which the material at a given radius is conveyed to the bottom of the
convective envelope by thermohaline mixing as tmix.

Fig. 3.5 shows the profile of the Dthm, the mixing and nuclear reaction timescales, and the
7Be and 7Li abundances in the region where 7Be is produced. The solid lines indicate the
time when MHe = 0.45M⊙ and the broken lines indicate the time when MHe = 0.26M⊙. It is
seen that thermohaline mixing becomes more effective as the core grows. This is because
the density in this region decreases as a function of time. The lower density leads to a larger
K as we can see from Eq. (3.5) and thus a larger Dthm (Lattanzio et al., 2015).

This effective mixing below the convective envelope explains why A(Li) decreases
after reaching the RG branch bump and increases near the TRGB. 7Be is produced by
3He(α, γ)7Be at R ∼ 10−1.3R⊙. In order for the CF mechanism to work, mixing in this
region should be efficient enough to convey 7Be to the bottom of the convective envelope.
When MHe = 0.26M⊙, 7Be decays into 7Li and is destroyed by the proton capture before
being conveyed to the convective envelope, because tmix is much longer than tprod in
R < 10−0.2R⊙. Rather, since 7Li in the envelope diffuses into the thermohaline region, A(Li)
decreases in time. On the other hand, when M = 0.45M⊙, tmix becomes shorter than before.
As a result, a part of 7Be is conveyed to the envelope before it decays and A(Li) increases.
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Fig. 3.3 The lines show the evolution of my models with µ12 = 0 − 5 in the L − A(Li) plane. The upper
panel adopts αthm = 100 and the lower panel adopts αthm = 50. The grey dots are GALAH DR2 samples
(Buder et al., 2018) with reliable lithium abundances and the red dots are RC samples selected by Kumar
et al. (2020).
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Fig. 3.4 The evolution of the surface lithium abundance as a function of (upper) the helium core mass
and (lower) the stellar age. The thermohaline coefficient is fixed to αthm = 100.

3.3.2 Dependence on the Neutrino Magnetic Moment

I perform stellar evolution calculations with µ12 = 1 − 5, where µ12 = µν/(10−12µB).
Even though the higher values of the magnetic moment in this range are ruled out by the
constraints from low-mass stars in globular clusters, it is instructive to examine the effect as
the magnetic moment values, and hence energy losses, get larger. The adopted parameters
and results are summarized in Table 1.

Fig. 3.3 shows the Li abundance evolution for models with µν > 0, indicated by the
broken lines. A(Li) and L at the TRGB increase when a larger value of µν is adopted. The
fact that TRGB stars become luminous when µν is adopted has been used to constrain µν
(e.g. Raffelt, 1996; Arceo-Dı́az et al., 2015; Capozzi & Raffelt, 2020). Fig. 3.4 shows
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αthm µ12 MHe,TRGB/M⊙ log(L/L⊙)TRGB A(Li)RC

100 0 0.467 3.39 −0.90

100 1 0.471 3.41 −0.82

100 2 0.480 3.46 −0.57

100 3 0.490 3.52 −0.23

100 4 0.500 3.57 0.10

100 5 0.509 3.61 0.38

50 0 0.467 3.39 −0.56

50 1 0.471 3.41 −0.52

50 2 0.480 3.46 −0.39

50 3 0.490 3.52 −0.16

50 4 0.500 3.56 0.12

50 5 0.509 3.60 0.39

Table. 3.2 The parameters of the models. The zero age main sequence mass and the initial metallicity
are fixed to MZAMS = 1M⊙ and Z = 0.0148, respectively. αthm is the thermohaline coefficient, µ12 is the
NMM, MHe,TRGB is the mass of the helium core at the TRGB, LTRGB is the luminosity at the TRGB, and
A(Li)RC is the lithium abundance of RC stars. Since A(Li) decreases during the evolution of RC stars, the
initial values just after the helium flash are shown.

the evolution of A(Li) as a function of the helium core mass MHe when αthm = 100. It is
seen that A(Li) decreases when MHe exceeds ∼ 0.25M⊙ in each model. This is because
thermohaline mixing starts being induced by the inversion of the mean molecular weight
when MHe ∼ 0.25M⊙. The peaks around MHe ∼ 0.5M⊙ correspond to the helium flash. One
can confirm that A(Li) at the TRGB is higher when µν is larger.

The physical effects of the lithium enhancement from a non-zero NMM are twofold. One
is the formation of a more massive core due to the additional energy loss. Fig. 3.4 shows the
time evolution of the core mass. It is seen that the model with µ12 = 5 reaches the helium
flash ∼ 36 Myr earlier than the fiducial model does. Although the models reach the helium
flash earlier in time because of the additional energy loss, the helium core at the ignition
of central helium burning becomes heavier when the NMM is adopted. This is because
central helium burning is ignited when the nuclear energy production exceeds the energy
loss rate. If the energy loss rate is larger, the critical temperature for the ignition becomes
higher. The more massive core leads to a smaller density above the hydrogen burning shell
and hence a larger thermal conductivity (Lattanzio et al., 2015). Since Dthm increases as a
fuction of conductivity, thermohaline mixing at the TRGB becomes more efficient with a
larger NMM. Fig. 3.6 shows the profile of Dthm and the mass fractions of 7Be and 7Li at
the TRGB. It is seen that Dthm is larger if the NMM is larger. Therefore the CF mechanism
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Fig. 3.6 Structure of my model at the TRGB with µ12 = 0, 2, and 5. The upper panel shows the
thermohaline diffusion coefficient and the lower panel shows the mass fractions of 7Li and 7Be as a function
of the radius. The thermohaline coefficient is fixed to αthm = 100.

can convey 7Be to the convective envelope more effectively and A(Li) in RC stars becomes
higher.

It is seen from Fig. 3.4 that A(Li) starts to deviate from the standard model even before
the helium flash. This is explained by changes of stellar structure induced by the NMM.
Fig. 3.7 shows the thermohaline diffusion coefficient Dthm and the mass fractions of 7Li
and 7Be for the models with µ12 = 0, 2, and 5 in the region where thermohaline mixing is
effective. In this figure, the helium core mass is fixed to MHe = 0.45M⊙. When a larger
NMM is adopted, the radius of the helium core becomes smaller and the density in the
envelope decreases. The smaller density results in a larger thermal diffusivity and a larger
Dthm (Lattanzio et al., 2015). Since 7Be produced via 3He(α,γ) is conveyed to the outer
region by thermohaline mixing, the more efficient mixing leads to a larger A(Li).
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Fig. 3.7 Same as Figure 3.6, but for the time at MHe = 0.45M⊙.

Recently, the GALAH (Galactic Archaeology with HERMES) survey second data re-
lease (DR2) provided spectroscopic data of 342,682 stars in the Milky Way (Buder et al.,
2018). Kumar et al. (2020) selected stars with log L/L⊙ ∈ [1.55, 1.85] and the effective
temperature Teff ∈ [4650, 4900] K from the GALAH DR2 samples and identified them
as RC stars. Kumar et al. (2020) used GALAH samples that overlap with an astroseismic
catalog (Ting, Hawkins & Rix, 2018) to distinguish RC and RG stars. They concluded that
the contamination of RGs in their RC samples accounts for only ∼ 10%.

Kumar et al. (2020) found that the lithium abundance in RC stars is distributed around
A(Li) ∼ 0.71 ± 0.39. This ubiquitous enhancement of lithium has not been predicted by
stellar models. When the NMM is not adopted in my model, the lithium abundance in RC
stars is only A(Li) = −0.90 (−0.56) when αthm = 100 (50). We find that, if µ12 = 5 is
adopted, A(Li) reaches 0.38 (0.39), which is consistent with the observed A(Li). When αthm

is larger, 7Li is destroyed to a greater extent after the RG branch bump and thus A(Li) in
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RC stars becomes smaller. Although A(Li) is not sufficiently large when µ12 = 2−4 in both
cases, the discrepancy in A(Li) becomes smaller if the NMM is adopted. The additional
energy loss induced by the NMM is thus a candidate of a ubiquitous mechanism of the high
A(Li) in RC stars.

Traditionally, giants with A(Li) > 1.5 have been called lithium-rich giants (Brown et al.,
1989). It is difficult to explain such extremely high lithium abundances with the NMM
only. Kumar et al. (2020) point out that lithium-rich giants with A(Li) > 1.5 account only
for ∼ 3.0% of RC stars. The rare population implies another mechanism which works only
in a certain kind of stars.

3.3.3 Dependence on the Initial Lithium Abundance

In the previous Sections, the initial lithium abundance is fixed to A(Li) = 2.8. Since
a portion of lithium is destroyed during the pre-main sequence, the lithium abundance at
the zero-age main sequence is A(Li) = 2.6. As we can seen in Fig. 3.3, this value agrees
with the observed abundances. However, since the dispersion of the observed abundances
is large, it is important to study the effect of the initial lithium abundance.

In order to study the effect of the initial abundance on the abundance evolution in RC
stars, I adopt three initial values: A(Li) = 2.5, 2.8, and 3.1. Fig. 3.8 shows trajectories in
the plane of the luminosity and A(Li) of the models with different initial abundances. The
NMM is fixed to µ12 = 0 and 5. It is seen that A(Li) in the models with a larger initial
abundance stays larger until the star evolves up to log L/L⊙ ∼ 3.5, while the difference
among the models becomes smaller at and after the helium flash. Especially, A(Li) in RC
stars with the different initial abundances becomes indistinguishable in the case of µ12 = 5.
This is because most of the lithium is produced by the CF mechanism near and after the
helium flash. Thus, the contribution of the initial abundance is minor.

3.3.4 Dependence on the Stellar Mass and the Mass Loss

In the previous Sections, the stellar mass is fixed to 1M⊙ because the samples in Kumar
et al. (2020) have a peak at 1.0M⊙. However, the additional energy loss works in stars with
a wide range of masses if it exists. In this Section, I investigate the effect of the NMM on
0.9M⊙ and 1.2M⊙ models as well.

Fig. 3.9 shows L and A(Li) in 0.9, 1.0, and 1.2M⊙ models. The NMM is fixed to µ12 = 0
and 5. It is seen that a lighter star has a smaller A(Li) in every evolutionary phase. A recent
Letter (Schwab, 2020) reported A(Li) in 0.9 and 1.2M⊙ models as well. They assume an
extra mixing induced by the helium flash and claim that A(Li) in RC stars does not depend
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Fig. 3.8 The evolution in the plane of the luminosity and the lithium abundance of the 1M⊙ models with
the initial lithium abundances of A(Li) = 2.5, 2.8, and 3.1. The NMM is fixed to (upper) µ12 = 0 and
(lower) µ12 = 5 and the thermohaline coefficient is fixed to αthm = 100.

on the initial mass. Although this difference can be potentially used to distinguish the
helium-flash-induced mixing from the enhanced energy loss, further studies are desirable
because the evolution of A(Li) depends on input parameters (e.g. α and αthm).

The mass loss is another possible origin of uncertainties. In the previous Sections, the
scaling factor in Reimers (1975) is fixed to η = 0.3. I adopt η = 0.1 and 0.4 to study the
effect of mass loss rates on A(Li). Fig. 3.10 shows L and A(Li) in models with different
mass loss rates. The different values of η do not lead to significant differences in A(Li)
through the evolution. This is because the envelope is convective and thus the chemical
composition is uniform.
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Fig. 3.9 Same as Figure 3.8, but for the 0.9M⊙, 1.0M⊙, and 1.2M⊙ models.

3.3.5 Comparison with Previous Works

The lithium production in RG stars via the CF mechanism has been studied by several
works (Lattanzio et al., 2015; Schwab, 2020). They used MESA to produce their stellar
models, as I do in this study. In this Section, I compare my models with µν = 0 with the
ones shown in the previous studies.

Lattanzio et al. (2015) studied the effects of numerical treatments on thermohaline mix-
ing in RGs. In order to study differences between stellar evolution codes, they used sev-
eral codes including MESA. They found that the lithium abundance in RGs depends on
the codes and temporal resolution. Their test model adopted the initial mass 1.25M⊙, the
metallicity Z = 0.0122 (Asplund, Grevesse & Sauval, 2005), and the initial lithium abun-
dance A(Li) = 3.25. Here I adopt the same parameters and produce a model that mimics
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Fig. 3.10 Same as Figure 3.8, but for the mass loss rates of η = 0.1, 0.3, and 0.4.

their model to compare their result with ours. Lattanzio et al. (2015) produced three models
with Ct = 100, 1000, and 10000 using MESA, where Ct = 3αthm/2. I adopt αthm = 666,
which corresponds to Ct = 1000. Table 2 shows the maximum and minimum luminosities
Lb,max and Lb,min in the bump of the RG branch, the luminosity Lthm at which A(Li) starts
decreasing due to thermohaline mixing, and the lithium abundance A(Li)TRGB at the TRGB
in both models. Both models show similar trends. In particular, both show the lithium
enhancement near the TRGB. Although the luminosities and A(Li) shown in Table 2 have
variations between the models, they are comparable to or even smaller than the variations
among the codes (Lattanzio et al., 2015).

Recently, Schwab (2020) studied mixing induced by the helium flash and claimed that
it can naturally solve the lithium problem in RC stars proposed by Kumar et al. (2020).
They calculated 0.9M⊙ − 2.0M⊙ models with and without extra mixing during the helium
flash. Their models without extra mixing show smaller values of A(Li) in RC stars when
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Lb,max/L⊙ Lb,min/L⊙ Lthm/L⊙ A(Li)TRGB

This work 50 45 48 −0.72

Lattanzio et al. (2015) 47 40 43 −0.85

Table. 3.3 The properties of the 1.25M⊙ models in this work and Lattanzio et al. (2015). Lb,max and Lb,min

are the maximum and minimum luminosities in the bump of the RG branch, Lthm is the the luminosity at
which A(Li) starts decreasing due to thermohaline mixing, and A(Li)TRGB is the lithium abundance at the
TRGB.
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Fig. 3.11 The evolution in the plane of the luminosity and the lithium abundance of the 0.9M⊙ models
with different 7Be electron capture rates. The black line shows the model that adopts the CF88 rate and
the red line shows the model that adopts the rate in Vescovi et al. (2019). The purple line is the model in
Schwab (2020) without extra mixing induced by the helium flash.

the stellar mass is smaller. This is consistent with my results shown in Section 3.3.4.
Interestingly, the models in Schwab (2020) do not show the enhancement of lithium

near the TRGB in contrast to my models. In order to clarify the origin of the difference,
I produce 0.9M⊙ models with the mixing length α = 1.8, the initial lithium abundance
A(Li) = 3.26, and the metallicity Z = 0.014 (Asplund et al., 2009). These parameters
follow the prescription in Schwab (2020). Fig. 3.11 compares the 0.9M⊙ models in Schwab
(2020) and this work. Schwab (2020) adopted a recent 7Be electron capture rate calculated
by Simonucci et al. (2013) and Vescovi et al. (2019) while I adopted the CF88 rate in the
previous Sections. In Fig. 3.11, I use both rates to calculate the models. Fig. 3.11 shows
that all models evolve similarly until the luminosity reaches L ∼ 103L⊙. However, the
lithium abundance starts increasing when I adopt the CF88 rate, while it does not when the
other rate is used. Therefore the 7Be electron capture rate has a crucial role in the lithium
abundance near the TRGB and in RC stars.
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Fig. 3.12 The 7Be electron capture rates as a function of the radius from different works (Bahcall, 1962;
Caughlan & Fowler, 1988; Vescovi et al., 2019) in the 1M⊙ fiducial model with µ12 = 0 and MHe = 0.45M⊙.
In the previous works, the reaction rates are given as functions of T and ρ. Since T and ρ are given as
functions of the radius in my stellar model, the rates are plotted as a function of the radius in this figure.

This behavior can be qualitatively explained as follows. Fig. 3.12 shows the 7Be electron
capture rates from different works in the 1M⊙ fiducial model with MHe = 0.45M⊙. The rate
in fully-ionized plasma

R = 6.12 × 10−9

 ρ
µT

1
2

6

 s−1 (3.8)

was first derived by Bahcall (1962). Here µ is the mean molecular weight and Tn =

T/(10n K) for an interger n. Later, CF88 proposed a simple analytic formula

R = 1.34 × 10−10

 ρ
µT

1
2

9

 (1 − 0.537T
1
3

9 + 3.86T
2
3

9 + 0.0027T−1
9 e2.515×10−3T−1

9 ) s−1 (3.9)

which was often used in stellar models. Recently, Simonucci et al. (2013) performed ab-
initio calculation beyond the Debye-Hückel approximation of the rate and claimed that it
is valid in a wider range of density and temperature. This rate is tabulated in Vescovi et al.
(2019). It is seen from Fig. 3.12 that the recent rate (Simonucci et al., 2013; Vescovi et al.,
2019) is higher than the traditional rates in the thermohaline region. This means that 7Be
decays faster when the recent rate is adopted. If the mixing timescale is fixed, it becomes
more difficult to convey 7Be to the envelope before 7Be decays. As a result, A(Li) becomes
smaller near the TRGB.
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3.4 Discussion

In this Chapter, I discussed the effects of the NMM on A(Li) in RC stars. I found that the
production of 7Li near the TRGB is activated when µ12 = 2 − 5 is adopted. The ubiquitous
high A(Li) in RC stars (Kumar et al., 2020) may be explained by the additional energy loss
induced by the NMM.

The destruction and production of 7Li are dependent on deep mixing including ther-
mohaline mixing (Charbonnel & Zahn, 2007; Lattanzio et al., 2015), magnetic buoyancy
(Busso et al., 2007), and rotation-induced mixing (Palacios et al., 2003; Charbonnel & La-
garde, 2010; Charbonnel et al., 2020). Fig. 11 in Charbonnel et al. (2020) shows A(Li) in
low-mass stellar models with both rotation-induced and thermohaline mixing. The solid
lines are non-rotating models and the other lines are rotating models. The lithium abun-
dance stays constant in the non-rotating models while it starts decreasing during the main-
sequence in the rotating models. The decrease in A(Li) around Teff ∼ 5500 K is due to the
first dredge-up and the decrease around Teff ∼ 4000 K is the effect of thermohaline mixing.
It is seen that rotation helps the models reproduce the dispersion in the observed samples,
although lithium-rich giants are not explained by this model.

The additional energy loss can be induced also by other physics like extra dimensions
(Cassisi et al., 2000) and axion-like particles (Raffelt & Dearborn, 1987; Ayala et al., 2014).
Since they are expected to result in the similar enhancement of A(Li), they can be a candi-
date of the mechanism of the lithium enhancement as well.

The enhancement of energy loss rate from neutrino emission affects Li abundances on
stellar surfaces through a change in stellar structure, including He core mass and total
mass, and its evolution time scale. This characterizes the current theoretical prediction
distinguished from other possibilities. For example, in addition to the 7Be production via
the 3He(α,γ) reaction operating deep inside the stars, stellar surfaces can be polluted from
outside by accretion of companion stellar ejecta or nucleosynthesis via flare-accelerated
nuclei on stellar surfaces. If the observed high abundances of Li originate from nucleosyn-
thesis in companion asymptotic giant branch stars (Ventura & D’Antona, 2010), observed
stars can have enhanced abundances of carbon and s-nuclei. On the other hand, if nuclear
reactions of flare-accelerated nuclei (Tatischeff & Thibaud, 2007) are providing 6,7Li, the
isotopic fraction of 6Li is expected to be high. Furthermore, the observed Li-rich stars must
be associated with very strong flare activities and simultaneous production of Be and B. In
this way, respective possibilities are associated with different astronomical observables to
be measured in future.
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Fig. 3.13 The time evolution of L and A(Li) in the models with αthm = 100. The solid line shows the
model without the NMM and the other lines show the models with finite values of the NMM.

In principle, it is possible to test my scenario with astronomical observations. Fig. 3.13
shows L and A(Li) of stars near the TRGB as a function of time. It is seen that RGs become
luminous rapidly as they evolve toward the TRGB. When a finite NMM is adopted, A(Li) is
abruptly enhanced just before the helium flash. The model with µ12 = 5 predicts that A(Li)
starts increasing ∼ 3 Myr before the helium flash. Although such stars are rare, exploring
the lithium abundance in the most luminous RGs would be interesting.
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Chapter 4

Summary and Future Prospect

In this thesis, I investigated the effects of the NMM and the LEDs on low- and
intermediate-mass stars. The additional energy loss induced by them affects the stellar
structure and evolution and leads to observable signatures. These concepts were introduced
in Chapter 1. I implemented the additional energy loss in a stellar evolution code.

In Chapter 2, I discussed the evolution of intermediate-mass stars which form the blue
loops in the HR diagram during their central helium burning. I found that the blue loops
are eliminated because of the additional energy loss. Since stars in the instability strip are
observed as Cepheid variables, the elimination of the loops can be used to constrain the
NMM. It is concluded that µν should be smaller than ∼ (2 × 10−10 − 4 × 10−11)µB and the
fundamental scale in the (4+2)-spacetime should be larger than ∼ 2 − 5 TeV, depending on
the 12C(α, γ)16O reaction rates and the metallicity.

In Chapter 3, I calculated the surface lithium abundance in low-mass stars. While 7Li is
destroyed by the proton capture reaction when it is conveyed to the hot inner region, 7Li is
produced via the Cameron-Fowler mechanism near the TRGB when thermohaline mixing
is taken into account. I found that the lithium production becomes more active if the NMM
of (2 − 5) × 10−12µB is considered because thermohaline mixing becomes more efficient
and a heavier helium core is formed. This study is motivated by a recent work (Kumar et
al., 2020) which discovered that all of RC stars have high lithium abundances that had not
been predicted by stellar models. My result shows that the additional energy loss induced
by physics beyond the SM can mitigate the lithium problem in low-mass stars.

In this thesis, I focused on the energy loss induced by the NMM and LED. However, sim-
ilar effects can be induced by other processes too. Especially, the XENON1T experiment
reported excess electronic recoil events that can be interpreted as a signature of Solar axions
(Aprile et al., 2020). Although contamination of tritium is not excluded, this experimental
result motivates astrophysical studies on the effect of axions on stars.
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Fig. 4.1 The energy loss rate induced by axions. The temperature is fixed to 108 K and the axion-electron
coupling constant is fixed to 3.5 × 10−13. The prescription derived by Raffelt & Weiss (1995) is adopted.

Axions couple with electrons and photons and induce an energy loss in stellar plasma.
Fig. 4.1 shows the axionic energy loss rate at T = 108 K. It is desirable to study the
impact of the energy loss in the future. Also, the Li production in low-mass RGs is highly
dependent on nuclear physics like 7Be electron capture rates as Fig. 3.11 shows. Thorough
understanding of the interplay among stellar macrophysics, nuclear reactions, and exotic
physics is desirable to explore possible mechanisms of the Li enhancement.
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Appendix A

Plasmon Decay

In stellar plasma, photons acquire an effective mass because of the interaction with elec-
trons. As a result, a quasiparticle called plasmons is excited. If the mass of a neutrino pair
is sufficiently small, plasmons can decay into neutrino-antineutrino pairs as Fig 1.3 shows.
The plasmon decay is a major channel for the energy loss from stars. In this Appendix, the
plasmon decay rates are briefly reviewed on the basis of Haft, Raffelt & Weiss (1994).

The dispersion relation of plasmons is written as

ω2 − k2 = πs(ω, k), (A.1)

where ω is the frequency and k is the magnitude of the three-dimensional wave number.
The subscript s = T or L stands for the transverse and longitudinal plasmons, respectively.
The solution of the dispersion is written as ωs,k. The right hand side of Eq. (A.1) is written
as (Braaten & Segel, 1993)
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where ωP is the plasma frequency and v∗ = ω1/ωP. The frequencies are defined as

ω2
P =

4α
π

∫ ∞

0
dp

(
v − 1

3
v3

)
p f (Ep), (A.4)

ω2
1 =

4α
π

∫ ∞

0
dp

(
5
3

v3 − v5
)

p f (Ep), (A.5)

where v = p/Ep and f (E) is the distribution function. The function G(x) is defined by

G(x) = 6
∞∑

n=1

xn

(2n + 1)(2n + 3)
. (A.6)
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Eqs. (A.2) and (A.3) are exact to O(α). I define the renormalization constant

Zs,k =

(
1 − ∂πs(ω, k)

∂ω2

∣∣∣∣∣
ω=ωs,k

)−1

. (A.7)

Zs is explicitly written as

ZT,k =
2ω2

T,k(ω
2
T,k − v2

∗k
2)

ω2
T,k(3ω

2
P − 2πT(ωT,k, k)) + (ω2

T,k + k2)(ω2
T,k − v2

∗k2)
, (A.8)

ZL,k =
2ω2

L,k(ω
2
L,k − v2

∗k
2)

(3ω2
P − (ω2

L,k − v2
∗k2))πL(ωL,k, k)

. (A.9)

Evaluation of the Feynman diagrams leads to the plasmon decay widths. In the Standard
Model, the width is (Adams et al., 1963; Zaidi, 1965)

Γs,k =
C2

VG2
F

48π2α

Zs,kπs(ωs,k, k)3

ωs,k
, (A.10)

where GF is the Fermi coupling constant and

C2
V =

(
1
2
+ 2 sin2 θW

)2

+ 2
(
1
2
− 2 sin2 θ2W

)2

≈ 0.9325 (A.11)

is the effective vector coupling constant. Here θW is the Weinberg angle. On the other hand,
the plasmon decay induced by the NMM is given by

Γ
µ
s,k =

µ2
ν

24π
Zs,kπs(ωs,k, k)2

ωs,k
. (A.12)

Once Γs,k is given, the energy loss rate per unit volume is calculated by

QT = 2
∫ ∞

0

dk k2

2π2

ΓT,kωT,k

e
ωT,k

T − 1
, (A.13)

QL =

∫ kmax

0

dk k2

2π2

ΓL,kωL,k

e
ωL,k

T − 1
. (A.14)

The factor 2 in QT stands for the two degrees of freedom of the transverse mode. Be-
cause the plasmon decay is possible only if the plasmon four-momentum is timelike, the
longitudinal mode should satisfy the condition

k < kmax = ωP

(
3
v2
∗

(
1

2v∗
log

(
1 + v∗
1 − v∗

)
− 1

)) 1
2

. (A.15)
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Inserting Eqs. (A.10) and (A.12) into Eqs. (A.13) and (A.14) gives the energy loss rates for
the standard coupling and NMM:

Qplas =
C2

VG2
F

96π4α
T 3ω6

PQ3, (A.16)

Qµplas =
µ2
ν

48π3 T 3ω4
PQ2. (A.17)

Here Qn = QT
n + QL

n (n = 2, 3) is defined as

QT
n = 2

∫ ∞

0

dk k2

T 3 ZT,k

(
πT(ωT,k, k)
ω2

P

)n 1

e
ωT,k

T − 1
, (A.18)

QL
n =

∫ kmax

0

dk k2

T 3 ZL,k

(
πL(ωL,k, k)
ω2

P

)n 1

e
ωL,k

T − 1
. (A.19)

The ratio between the standard decay rate and the one with NMM is given as

ϵ
µ

plas

ϵplas
=

2παµ2
ν

C2
VG2

Fω
2
P

Q2

Q3
= 0.318µ2

12

(
10 keV
ωP

)2 Q2

Q3
. (A.20)

Haft, Raffelt & Weiss (1994) numerically evaluated the ratio Q2/Q3 and found that its value
is O(1). This factor is hence replaced by unity in Eq. (1.10).
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Appendix B

Pair Production

When the temperature T in stellar plasma is higher than ∼ 0.5 GK, the contribution of
the neutrino pair production to the energy loss rate becomes significant (Fig. ??). In this
Appendix, I discuss the pair production induced by NMM on the basis of Heger et al.
(2009).

The pair production is represented by the diagram shown in the right panel of Fig. 1.3.
The four-momentum of electrons and positrons is denoted by pi = (Ei, pi) and that of
neutrinos and antineutrinos is denoted by qi = (ωi, qi). The energy loss rate per unit
volume is defined as

Qpair =
4

(2π)6

∫
d3 p1

e
E1−µ

T + 1

d3 p2

e
E2+µ

T + 1
(E1 + E2)vrelσpair, (B.1)

where µ is the chemical potential, vrel is the relative velocity, and σpair is the spin-averaged
cross section. The factor E1E2vrelσpair is written as

E1E2vrelσpair =
1
4

∫
d3q1d3q2

(2π)32ω1(2π)32ω2
|M|2(2π)4δ(4)(p1 + p2 − q1 − q2), (B.2)

where |M|2 is the spin-averaged amplitude. Using the Mandelstam variables s, t, and u
(Mandelstam, 1958), |M|2 is written as

|M|2 = e2µ2
ν

s
(s2 − (u − t)2). (B.3)

The integration is then evaluated as

E1E2vrelσpair =
αµ2
ν

12
(s + 2m2

e), (B.4)

where me is the electron mass. Putting this result into Eq. (B.1) results in

Qplas =
αµ2
ν

6π4

∫ ∞

me

dE1

∫ ∞

me

dE2 p1 p2
(E1 + E2)(E1E2 + 2m2

e)

(e
E1−µ

T + 1)(e
E2+µ

T + 1)
. (B.5)
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If the dimensionless parameters λ = T/me and ν = µ/T are introduced, Qpair can be written
as

Qpair =
αµ2
νm

7
e

6π4 (2G−− 1
2
G+0 + 2G−0 G+− 1

2
+G−0 G+1

2
+G−1

2
G+0 ), (B.6)

where the function G±n (λ, ν) is defined by

G±n (λ, ν) = λ3+2n
∫ ∞

λ−1
dx

x2n+1(x2 − λ−2)
1
2

ex±ν + 1
. (B.7)

This formula cannot be evaluated analytically. However, Heger et al. (2009) suggested that
the energy loss rate per unit mass is approximated by a simple formula (1.12) when the pair
production is the dominant process.

The Standard Model gives the pair production rate of (Dicus, 1972)

Qpair =
G2

Fm9
e

18π5 ((7C2
V − 2C2

A)(G−0 G+− 1
2
+G−− 1

2
G+0 ) + 9C2

V(G−1
2
G+0 +G−0 G+1

2
) +

(C2
V +C2

A)(4G−1 G+1
2
+ 4G−1

2
G+1 −G−1 G+− 1

2
−G−1

2
G+0 −G−0 G+1

2
−G−− 1

2
G+1 )), (B.8)

where CV = 1/2 + 2 sin2 θW and CA = 1/2. Fig. ?? shows the energy loss rates with the
standard interaction and NMM of µ12 = 200. It is seen that the pair production is a dominant
neutrino emission process at T > 0.5 GK. However, the non-standard pair production rate
ϵ
µ

plas is smaller than the standard rate ϵplas. This shows that ϵµplas is not important if NMM is
in the range of interest (i.e. µ12 < O(100)).
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Appendix C

MESA Inlists

Files that define the configuration of calculations in MESA are called inlists. In this Ap-
pendix, MESA inlists used in this study are shown to help readers reproduce the results
described in this thesis.

C.1 The inlist used in Chapter 2

&s t a r j o b

s h o w l o g d e s c r i p t i o n a t s t a r t = . f a l s e .
s a v e m o d e l w h e n t e r m i n a t e = . t rue .
s a v e m o d e l f i l e n a m e = ’ f i n a l . mod ’
c h a n g e i n i t i a l n e t = . t rue .
new net name = ’ a p p r o x 2 1 p l u s c o 5 6 . n e t ’
p g s t a r f l a g = . f a l s e .
k a p p a f i l e p r e f i x = ’ gs98 ’

/ ! end o f s t a r j o b n a m e l i s t

&c o n t r o l s

u s e g o l d t o l e r a n c e s = . t rue .
s m o o t h c o n v e c t i v e b d y = . t rue .
c o n v e c t i v e b d y w e i g h t = 1
u s e o t h e r n e u = . t rue .
i n i t i a l m a s s = 10
i n i t i a l z = 2d−2

p h o t o i n t e r v a l = 50
p r o f i l e i n t e r v a l = 50
h i s t o r y i n t e r v a l = 1
t e r m i n a l i n t e r v a l = 1
w r i t e h e a d e r f r e q u e n c y = 10
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n u m t r a c e h i s t o r y v a l u e s = 0
t r a c e h i s t o r y v a l u e n a m e ( 1 ) = ’ p o w e r n e u t r i n o s ’

x a c e n t r a l l o w e r l i m i t s p e c i e s ( 1 ) = ’ he4 ’
x a c e n t r a l l o w e r l i m i t ( 1 ) = 1d−8

p r u n e b a d c z m i n H p h e i g h t = 0
r e m o v e m i x i n g g l i t c h e s = . t rue .

c l i p D l i m i t = 0
o k a y t o r e m o v e m i x i n g s i n g l e t o n = . t rue .

m i n c o n v e c t i v e g a p = −1

m i n t h e r m o h a l i n e g a p = 0

m i n t h e r m o h a l i n e d r o p o u t = 0
m a x d r o p o u t g r a d L s u b g r a d a = 1d−3
m i n s e m i c o n v e c t i o n g a p = 0
r e mo v e em be d de d se mi c on ve c t i o n = . f a l s e .

m e s h d e l t a c o e f f = 1
cool wind RGB scheme = ’ Dutch ’
cool wind AGB scheme = ’ Dutch ’
RGB to AGB wind switch = 1d−4
D u t c h s c a l i n g f a c t o r = 0 . 8

l o g c e n t e r d e n s i t y l i m i t = 12
l o g c e n t e r t e m p l i m i t = 1 0 . 3 d0

x a s c a l e = 1d−5
n e w t o n i t e r m i n = 2

m i x i n g l e n g t h a l p h a = 1 . 6
m a x n u m p r o f i l e m o d e l s = 10000
m i n t i m e s t e p l i m i t = −1
d e l t a l g L H e l i m i t = −1

d X n u c d r o p m a x A l i m i t = −1
d X n u c d r o p m i n X l i m i t = 1d−4
d X n u c d r o p l i m i t = 5d−3
d X n u c d r o p h a r d l i m i t = 1d99

d e l t a l g T e f f l i m i t = 0 .005
d e l t a l g L l i m i t = 0 . 0 5
d e l t a l g R h o c n t r l i m i t = 0 . 0 2

max a l lowed nz = 80000

m e s h d l o g p p d l o g P e x t r a = 0 . 1 5
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m e s h d l o g c n o d l o g P e x t r a = 0 . 1 5

m e s h d l o g 3 a l f d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n n d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n o d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n n e d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n n a d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n m g d l o g P e x t r a = 0 . 1 5

m e s h d l o g c c d l o g P e x t r a = 0 . 1 5
m e s h d l o g c o d l o g P e x t r a = 0 . 1 5

m e s h d l o g o o d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n s i d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n s d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n a r d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c a d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n t i d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c r d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n f e d l o g P e x t r a = 0 . 1 5

m e s h d l o g p n h e 4 d l o g P e x t r a = 0 . 1 5
m e s h d l o g o t h e r d l o g P e x t r a = 0 . 1 5
m e s h d l o g p h o t o d l o g P e x t r a = 1

o v e r s h o o t f a b o v e n o n b u r n c o r e = 0 . 0 1
o v e r s h o o t f a b o v e n o n b u r n s h e l l = 0 . 0 1
o v e r s h o o t f b e l o w n o n b u r n s h e l l = 0 . 0 1
o v e r s h o o t f a b o v e b u r n h c o r e = 0 . 0 1
o v e r s h o o t f a b o v e b u r n h s h e l l = 0 . 0 1
o v e r s h o o t f b e l o w b u r n h s h e l l = 0 . 0 1

o v e r s h o o t f 0 a b o v e n o n b u r n c o r e = 0 .00 5
o v e r s h o o t f 0 a b o v e n o n b u r n s h e l l = 0 .0 05
o v e r s h o o t f 0 b e l o w n o n b u r n s h e l l = 0 .0 05
o v e r s h o o t f 0 a b o v e b u r n h c o r e = 0 .005
o v e r s h o o t f 0 a b o v e b u r n h s h e l l = 0 .005
o v e r s h o o t f 0 b e l o w b u r n h s h e l l = 0 .00 5

m e s h d l o g p p d l o g P e x t r a = 0 . 1 5
m e s h d l o g c n o d l o g P e x t r a = 0 . 1 5

m e s h d l o g 3 a l f d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c d l o g P e x t r a = 0 . 1 5
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m e s h d l o g b u r n n d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n o d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n n e d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n n a d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n m g d l o g P e x t r a = 0 . 1 5

m e s h d l o g c c d l o g P e x t r a = 0 . 1 5
m e s h d l o g c o d l o g P e x t r a = 0 . 1 5

m e s h d l o g o o d l o g P e x t r a = 0 . 1 5

m e s h d l o g b u r n s i d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n s d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n a r d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c a d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n t i d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n c r d l o g P e x t r a = 0 . 1 5
m e s h d l o g b u r n f e d l o g P e x t r a = 0 . 1 5

m e s h d l o g p n h e 4 d l o g P e x t r a = 0 . 1 5
m e s h d l o g o t h e r d l o g P e x t r a = 0 . 1 5
m e s h d l o g p h o t o d l o g P e x t r a = 1

x a f u n c t i o n s p e c i e s ( 1 ) = ’ ne20 ’
x a f u n c t i o n w e i g h t ( 1 ) = 20
x a f u n c t i o n p a r a m ( 1 ) = 1d−2

x a f u n c t i o n s p e c i e s ( 1 ) = ’ s i 2 8 ’
x a f u n c t i o n w e i g h t ( 1 ) = 20
x a f u n c t i o n p a r a m ( 1 ) = 1d−2

x a f u n c t i o n s p e c i e s ( 1 ) = ’ s32 ’
x a f u n c t i o n w e i g h t ( 1 ) = 20
x a f u n c t i o n p a r a m ( 1 ) = 1d−2

x a f u n c t i o n s p e c i e s ( 1 ) = ’ f e54 ’
x a f u n c t i o n w e i g h t ( 1 ) = 20
x a f u n c t i o n p a r a m ( 1 ) = 1d−2

x a f u n c t i o n s p e c i e s ( 1 ) = ’ f e56 ’
x a f u n c t i o n w e i g h t ( 1 ) = 20
x a f u n c t i o n p a r a m ( 1 ) = 1d−2

m i n o v e r s h o o t q = 1d−3
T m i x l i m i t = 1d4

/ ! end o f c o n t r o l s n a m e l i s t
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C.2 The inlist used in Chapter 3

&s t a r j o b

s h o w l o g d e s c r i p t i o n a t s t a r t = . f a l s e .
c r e a t e p r e m a i n s e q u e n c e m o d e l = . t rue .
s a v e m o d e l w h e n t e r m i n a t e = . t rue .
s a v e m o d e l f i l e n a m e = ’ f i n a l . mod ’
k a p p a f i l e p r e f i x = ’ gs98 ’
c h a n g e i n i t i a l n e t = . t rue .
new net name = ’ p p e x t r a s . n e t ’
h i s t o r y c o l u m n s f i l e = ’ h i s to ry co lumns KM . l i s t ’

p r e m s r e l a x n u m s t e p s = 50

s e t a b u n d a n c e = . t rue .
s e t i n i t i a l a b u n d a n c e = . t rue .
chem name = ’ l i 7 ’
n e w f r a c = 3 .135858 e−9
p g s t a r f l a g = . t rue .

/ ! end o f s t a r j o b n a m e l i s t

&c o n t r o l s

use eosELM = . t rue .
use eosDT2 = . t rue .

u s e o t h e r n e u = . t rue .

i n i t i a l m a s s = 1 . 0
i n i t i a l z = 0 .0148 d0

u s e T y p e 2 o p a c i t i e s = . t rue .
Zbase = 0 .0148 d0

l o g L l o w e r l i m i t = −1
u s e L e d o u x c r i t e r i o n = . t rue .
a l p h a s e m i c o n v e c t i o n = 4d−2
t h e r m o h a l i n e c o e f f = 100 d0
m i x i n g l e n g t h a l p h a = 1 . 6

o k a y t o r e d u c e g r a d T e x c e s s = . t rue .

g r a d T e x c e s s f 1 = 1d−4
g r a d T e x c e s s f 2 = 1d−2
g r a d T e x c e s s a g e f r a c t i o n = 0 . 9 d0
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g r a d T e x c e s s l a m b d a 1 = 1 . 0
g r a d T e x c e s s b e t a 1 = 0 . 5
g r a d T e x c e s s l a m b d a 2 = 1 . 0
g r a d T e x c e s s b e t a 2 = 0 . 5
g r a d T e x c e s s d l a m b d a = 1
g r a d T e x c e s s d b e t a = 1

c o o l w i n d f u l l o n T = 9 . 9 9 d9
h o t w i n d f u l l o n T = 1d10
cool wind RGB scheme = ’ Reimers ’
cool wind AGB scheme = ’ B l o c k e r ’
RGB to AGB wind switch = 1d−4
R e i m e r s s c a l i n g f a c t o r = 0 . 3 d0
B l o c k e r s c a l i n g f a c t o r = 0 . 7 d0

/ ! end o f c o n t r o l s n a m e l i s t
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