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Abstract

The formation of gas giant planets is a complicated process composed of many
underlying physical sub-processes such as circumstellar disk evolution, core for-
mation, gas accretion, and planetary migration. Thanks to progresses in respec-
tive theoretical studies, we can construct unified planetary formation models
from planetesimals to gas giant planets; however, there are still many uncer-
tainties related to each process and initial conditions. The bulk composition of
gas giant planets is used for retrieving the information of planetary formation
because the composition evolution of gas giant planets is strongly related to the
evolution paths of gas giant planets. According to the theoretical estimation
(Thorngren et al. 2016, The Astrophysical Journal, 831, 64) based on transit
observations, close-in gas giant planets contain large amounts of heavy elements,
suggesting need for an additional process for increasing the amount of heavy
elements other than the standard formation processes. Planetesimal accretion is
regarded as one of the main sources of such massive heavy elements; however,
how many planetesimals can be captured by a gas giant planet has not been
known because of a lack of understanding about the role of mean motion reso-
nances in planetary migration phase. In this thesis, we focus on the role of mean
motion resonances in the planetesimal accretion onto a migrating proto-gas gi-
ant planet. Using numerical simulations, we show that mean motion resonances
play an important role in the planetesimal accretion. Comparing the numerical
results with the theoretical estimations of heavy elements contents, we discuss
the formation history of gas giant planets.

Chapter 1 is the introduction and chap. 2 is the review of the important
physics in planetesimal accretion and mean motion resonances. Using those
parameters, we show the reason why the mean motion resonances are expected
to play important roles in planetesimal accretion onto a migrating proto-gas
giant planet.

In chap 3, we consider the limiting case where the mean motion resonances
with a migrating planet work most strongly with the aim to reveal the fundamen-
tal physics of mean motion resonances in planetesimal accretion. Using direct
orbital integration of planetesimals, we find that mean motion resonances play
important roles in planetesimal accretion. Planetesimal accretion is inhibited by
two kinds of shepherding, aerodynamic shepherding and resonant shepherding.
When both shepherdings become ineffective, planetesimal accretion occurs effi-
ciently. The relatively narrow region of a circumstellar disk where planetesimal
accretion occurs is named as the sweet spot in this thesis. The total amount
of planetesimals captured by the migrating planet increases with the amount
of planetesimals shepherded into the sweet spot during the planetary migration.
Deriving the conditions of the sweet spot analytically, we find that the location of
the sweet spot barely depends on the structure and evolution of the circumstellar
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disk.
In chap 4, we focus on the effects of high-velocity mutual collisions of plan-

etesimals. Such collisions have a possibility to break the resonant trapping,
which is an important process triggered by mean motion resonances. We derive
the condition for breaking the resonant trapping analytically and find that the
planetesimal collisions are strong enough to break the resonant trapping. Includ-
ing the effect of planetesimal collisions in orbital integration code, we investigate
the effect of high-velocity collisions on planetesimal accretion. Using the numeri-
cal simulations, we find that high-velocity collisions break the resonant trapping
and change the total amount of captured planetesimals by a factor of ∼ 2 at
most. On the other hand, the location of the sweet spot is barely changed by
the high-velocity collisions.

In chap. 5, we discuss the effect of planetesimal accretion on the composition
evolution of gas giant planets. Using the results obtained above, we construct
a simple model for estimating the amount of heavy elements brought by plan-
etesimal accretion. Our model shows that a Jupiter-mass planet can capture the
large amount of planetesimals if the core forms in the outer disk. The amount
of heavy elements in gas giant planets increases with the semi-major axis of core
formation location and strongly depends on the planetesimal disk mass. Due to
the planetesimal accretion in planetary migration phases, gas giant planets cur-
rently observed in the region interior to the sweet spot have more heavy elements
than those exterior to the sweet spot. Comparing the theoretically and observa-
tionally estimated amounts of heavy elements in close-in gas giant planets, we
conclude that close-in gas giant planets migrated over tens AU in their forma-
tion stages and the migration distance was longer for heavier planets. The large
scattering in the amount of heavy elements likely comes from the circumstellar
disk diversity. Our model also suggests that the extremely enriched close-in gas
giant planets with more than ∼ 100M⊕ heavy elements formed via gravitational
instability. The planetesimal accretion model can explain the various character-
istics found in the heavy element contents of close-in gas giant planets. If we
can observe the amount of heavy elements in gas giant planets orbiting far from
their central star, we can constrain the source of heavy elements more strongly.

In chap. 6, we make future prospects and summarise this thesis.
In this thesis, we have focused on the role of mean motion resonances in plan-

etesimal accretion, which is neglected in previous studies of the formation of gas
giant planets. We have found that mean motion resonances regulate the location
where planetesimal accretion occurs and increase the efficiency of planetesimal
accretion. The numerical calculations performed in this thesis shed light on the
importance of mean motion resonances and show that mean motion resonances
affect the heavy element contents in gas giant planets. The amounts of heavy
elements in gas giant planets mainly depend on the migration distance of those
planets and the size of the planetesimal disk. These results show that the migra-
tion distances of gas giant planets can be retrieved from the amounts of heavy
elements and that the various features found in the heavy element contents in
close-in gas giant planets can be explained by the planetesimal accretion. The
findings in this thesis make a great contribution in linking the current compo-
sition of gas giant planets with their formation history. Along with the future
development of observation and characterisation of exoplanets, the formation
paths of gas giant planets will be constrained by the models including the effects
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of planetesimal accretion in planetary migration phase.



Contents

1 General Introduction 1
1.1 Formation of gas giant planets . . . . . . . . . . . . . . . . . . . . 1
1.2 Composition evolution of gas giant planets . . . . . . . . . . . . . 5
1.3 Objective of this doctoral thesis . . . . . . . . . . . . . . . . . . . 8

2 Review of mean motion resonances and planetesimal accretion 9
2.1 Mean motion resonances . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Disturbing function and Lagrange’s equations . . . . . . . 9
2.1.2 Libration timescale and resonant width . . . . . . . . . . . 11

2.2 Resonant trapping . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Feeding zone and planetesimal accretion . . . . . . . . . . . . . . 15

2.3.1 Jacobi Energy . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Planetesimal accretion onto a growing protoplanet . . . . . 18
2.3.3 Planetesimal accretion onto a migrating protoplanet . . . . 19

3 Accretion of Planetesimals under the Effective Resonant Trapping 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Method and Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Forces exerted on planetesimals and planet . . . . . . . . . 23
3.2.2 Aerodynamic gas drag . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Gravitational tidal drag . . . . . . . . . . . . . . . . . . . 23
3.2.4 Disk model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Treatment of planetesimals . . . . . . . . . . . . . . . . . . 25
3.2.6 Model settings . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Results in reference case . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Dynamics of planetesimals around a migrating planet . . . 26
3.3.2 Role of accretion band . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Analytical expressions for sweet spot . . . . . . . . . . . . 31
3.3.4 Dependence on the initial semi-major axis . . . . . . . . . 35

3.4 Results of parameter studies . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Parameter study of planetesimal accretion . . . . . . . . . 36
3.4.2 Dependence on planetesimal radius . . . . . . . . . . . . . 36
3.4.3 Dependence on migration timescale . . . . . . . . . . . . . 38
3.4.4 Dependence on planetary mass . . . . . . . . . . . . . . . 40
3.4.5 Dependence on size of planetesimal disk . . . . . . . . . . 41

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Location of sweet spot in evolving protoplanetary disk . . 42
3.5.2 Comparison with Tanaka & Ida (1999) . . . . . . . . . . . 44
3.5.3 Model limitation . . . . . . . . . . . . . . . . . . . . . . . 45

v



CONTENTS vi

3.6 Summary of Chapter3 . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Break of Resonant Trapping via High-Velocity Collisions between Plan-
etesimals 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Condition for stable resonant trapping . . . . . . . . . . . . . . . 49
4.3 Numerical investigation in stability of resonant trapping . . . . . 52

4.3.1 Case of external resonance . . . . . . . . . . . . . . . . . . 52
4.3.2 Case of internal resonance . . . . . . . . . . . . . . . . . . 55

4.4 Collision timescale of highly eccentric planetesimal . . . . . . . . . 58
4.4.1 Basic picture . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Collision probability of eccentric planetesimal . . . . . . . 60
4.4.3 Collision timescale of eccentric planetesimal . . . . . . . . 61

4.5 Effects of resonant breaking on planetesimals accretion . . . . . . 62
4.5.1 Relation between impact parameter and velocity kick . . . 62
4.5.2 Model and settings . . . . . . . . . . . . . . . . . . . . . . 64
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.1 Validity of collision model . . . . . . . . . . . . . . . . . . 68
4.6.2 Value of momentum transfer efficiency εp . . . . . . . . . . 68
4.6.3 Effects neglected in our model . . . . . . . . . . . . . . . . 70

4.7 Summary of Chapter4 . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Application to planet formation 73
5.1 Planetesimal accretion of gas giant planets . . . . . . . . . . . . . 73

5.1.1 Location of sweet spot . . . . . . . . . . . . . . . . . . . . 73
5.1.2 A simple model of planetesimal accretion along formation

paths of gas giant planets . . . . . . . . . . . . . . . . . . 75
5.2 Heavy element contents in inner gas giant planets . . . . . . . . . 79

5.2.1 Model estimation . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Comparison with Thorngren et al. (2016) . . . . . . . . . . 80

5.3 Heavy element contents in outer gas giant planets . . . . . . . . . 82
5.3.1 In exoplanets . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 In Jupiter and Saturn . . . . . . . . . . . . . . . . . . . . 83

5.4 Model limitation and comparison with other models . . . . . . . . 84

6 Future perspectives and summary 87
6.1 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Unresolved problems . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Future application to observations . . . . . . . . . . . . . . 88

6.2 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . 89

Acknowledgements 91

A Benchmark test of our orbital integration code 93

B Geometrical picture used in Adachi et al. (1976) 95



Chapter 1

General Introduction

The formation of gas giant planets is one of the main topics in planetary science.
The final goal of the field of giant planets formation is clarifying when and where
formation of gas giant planets starts and how the planets evolve in a circumstellar
disk and explaining the observed diversity of exoplanetary systems.

Formation of gas giant planets is a complicated process composed of many
underlying physical sub processes. The main ingredients of planet formation are
circumstellar disk evolution, core formation, gas accretion and planetary migra-
tion. Thanks to progresses in respective theoretical studies, we can construct
unified planetary formation models from the growth of planetesimals to the ter-
mination of gas giant planet formation. However, there are still many uncertain-
ties related with each processes and initial conditions, which are not observable
in current planetary systems. Updating proposed theories using observed phys-
ical parameters is crucial for understanding the formation of gas giant planets.
Along with the development of observation and characterisation of exoplanets,
many studies have tried to validate theoretically proposed formation models and
give constraints to the initial parameters shaping the formation fields of gas gi-
ant planets. Chemical composition of gas giant planets is one of the notable
characteristics because the formation history of gas giant planets is imprinted
in the current composition of gas giant planets. Recently, composition data of
exoplanets have been obtained and used for retrieving the initial conditions of
planetary formation. Studies connecting the observed composition and forma-
tion processes of gas giant planets are required for further progress in the field
of planet formation.

1.1 Formation of gas giant planets

There are two competing theories for gas giant planet formation. The first one
is referred to the disk instability model, where gas giant planets form directly
from the circumstellar disk gas. A massive gaseous disk triggers gravitational
instability and formed fragments collapse into massive planets. The possibility
of disk instability was suggested in Kuiper (1951) and Cameron (1978). Recent
computational methods enable a quantitative discussion of disk instability (e.g.
Boss 1997, 2019). The final mass of gas giant planets formed through disk
instability is regulated by the wavelength of the instability and the typical planet
mass is a few Jupiter-masses (Rafikov 2005). The second formation model is
referred to the core accretion model, where a massive solid core triggers the
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1.1 Formation of gas giant planets 2

rapid accretion of surrounding disk gas on top of the core (Perri & Cameron
1974; Mizuno 1980). In the core accretion model, the final mass of gas giant
planets is regulated by the amount of available disk gas around the planets.
The core accretion model has a potential to form gas giant planets with various
masses as observed in our solar system and exoplanetary systems (Tanigawa &
Ikoma 2007; Tanigawa & Tanaka 2016; Tanaka et al. 2020). In this thesis, we
consider the formation of gas giant planets through the core accretion model.

The core accretion model requires a seed object, the mass of which exceeds
a certain critical mass prior to the dissipation of the circumstellar disk gas. The
critical mass of the seed object, which ends up a core of a giant planet, is esti-
mated as tens of Earth-masses for a solar-composition envelop (Perri & Cameron
1974; Mizuno 1980; Ikoma et al. 2000). Hori & Ikoma (2011) investigated the
contraction of envelopes polluted by falling solid materials and found that the
critical core mass was reduced by the envelope pollution. The critical core mass
is theoretically estimated to be much smaller than ∼ 10M⊕ (Venturini et al. 2015,
2016). Cores of the critical mass must be formed by the dissipation time of cir-
cumstellar disks, which is typically estimated as a few Myr (Haisch, Jr. et al.
2001; Briceño et al. 2001; Hillenbrand et al. 2008). Formation of solid cores of
the critical mass within a few Myr is a long standing problem in gas giant planet
formation, as described below.

There are two typical formation processes of cores of gas giant planets; plan-
etesimal accretion and pebble accretion. In the case of planetesimal accretion,
planetesimals continue to grow by their mutual collisions. The growth speed
of planetesimals depends on the gravitational focusing effect, which increases
the planetesimal-planetesimal collision cross-section. Small relative velocities
between planetesimals enhances the gravitational focusing effect and results in a
high collision probability. Due to the aerodynamic gas drag, collisional damping
and dynamical friction, relative velocities are kept small enough to trigger the
so-called runaway growth (Greenberg et al. 1978; Wetherill & Stewart 1989, 1993;
Kokubo & Ida 1996). In the runaway growth mode, growth timescale is shorter
for larger planetesimals, which brings a situation where a small difference in mass
originated among planetesimals is rapidly magnified. As a consequence of the
runaway growth, a small population of large bodies called planetary embryos, or
simply embryos, is formed. These embryos keep their orbital separations. The
growth of the embryos are brought by the accretion of surrounding small plan-
etesimals. The relative velocities between the embryos and the planetesimals
increase with the embryos mass and the gravitational focusing effect vanishes for
massive embryos. After the end of the runaway growth, the embryos grow in the
so-called oligarchic growth mode (Kokubo & Ida 1998, 2000). In the oligarchic
growth mode, growth timescale is longer for larger embryos. The oligarchic
growth mode leads to the formation of a small number of roughly-equal-mass
protoplanets.

The growth of protoplanets in the runaway/oligarchic growth modes contin-
ues until planetesimals around the protoplanets are depleted. The final mass
of protoplanets is determined by the isolation mass. The orbital separation be-
tween protoplanets is about 10 mutual Hill radii (Kokubo & Ida 2000, 2002). In
this case, the isolation mass of protoplanets around 5 AU in the minimum-mass
solar nebula (Hayashi 1981) is ∼ 3M⊕. The final mass of protoplanets, however,
is reduced by other effects. For massive protoplanets (∼ 1M⊕), close encounters
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with protoplanets tend to result in scattering of planetesimals away rather than
accretion of planetesimals (Lin & Ida 1997). Scattering of planetesimals reduces
the collision probability and limits the growth of the protoplanet (Levison et al.
2010). On the other hand, the fragmentation of planetesimals brought by colli-
sions between planetesimals results in depletion of planetesimals (Inaba & Ikoma
2003; Kobayashi et al. 2010). The relative velocities between planetesimals are
excited by the gravitational scattering of protoplanets. High-velocity collisions
lead to breaking planetesimals and ejecting numerous fragments. Ejected frag-
ments trigger the further destructive collisions; such a phenomena is called the
collision cascade (e.g. Tanaka et al. 1996; Kobayashi & Tanaka 2010). At the end
of the collision cascade, fragments are small (∼ 10m) enough to drift out from
the formation region of planets before being accreted by the protoplanets. The
depletion of planetesimals stop the growth of protoplanets and makes it difficult
to form solid cores triggering rapid gas accretion in outer disk (Inaba & Ikoma
2003; Kobayashi et al. 2011). To solve this problem, Inaba & Ikoma (2003) in-
vestigated the effects of protoplanet’s atmosphere, which enhances the collision
probability of small fragments, and Kobayashi et al. (2016) and Kobayashi &
Tanaka (2018) investigated the effects of turbulent disk, which weakens the de-
pletion of planetesimals. According to their results, the cores with critical mass
can be formed before disk dissipation.

The second formation path of solid cores triggering rapid gas accretion is the
pebble accretion (mm-cm size solid materials). The pebble accretion was first
suggested by Ormel & Klahr (2010) and investigated in detail by Lambrechts &
Johansen (2012). The pebble-protoplanet collision cross-section is much larger
than that of planetesimal-protoplanet or planetesimal-planetesimal. If the orbits
of pebbles are deflected by the protoplanet gravity, the pebbles feel strong gas
drag due to the increased relative velocity with the surrounding disk gas. The
gas drag exerted on pebbles is much stronger than that of planetesimals and
comparable to the protoplanet gravity. The orbit of pebbles are deflected in the
direction onto the protoplanet. For the optimally-accreted pebbles, the accre-
tion radius of pebbles extends to the Bondi radius, which is defined using the
relative velocity between protoplanets and pebbles instead of the sound speed
of disk gas, and the pebble accretion rate increases with the protoplanet mass
(Lambrechts & Johansen 2012). Due to the rapid drift of pebbles from the outer
disk, protoplanets continue pebble accretion without the depletion of solid mate-
rials. If a seed protoplanet of Moon-mass is formed in the disk, pebble accretion
can form a core of several Earth-masses before disk dissipation (Johansen &
Lambrechts 2017). Pebble accretion continues until the protoplanet reaches the
pebble isolation mass (Morbidelli & Nesvorny 2012), at which a gap is opened
in the circumstellar gas disk and pebbles are halted at the local pressure bump.
The pebble isolation mass depends on the disk condition, such as disk viscosity
and disk scale height, and is estimated from several Earth-masses to several tens
Earth-masses (Bitsch et al. 2018). Thus, the formation path of cores with critical
mass exists in the pebble accretion scenario.

The formation of gas giant planets’ cores has still been actively discussed.
However, both planetesimal accretion model and pebble accretion model (and
combined model) enable the formation of cores with critical mass in the wide
range of gas giant planets before disk dissipation. Thus, gas giant planets can
start their formation in the wide region of circumstellar disk (Bitsch et al. 2015;
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Kobayashi & Tanaka 2018; Bitsch et al. 2019). After reaching the critical core
mass, the protoplanet enters the so-called runaway gas accretion phase. The
gas accretion rate in this runaway phase is investigated by the 1D (Pollack et al.
1996; Tajima & Nakagawa 1997; Ikoma et al. 2000) and 3D numerical simulations
(Kurokawa & Tanigawa 2018; Lambrechts et al. 2019). In both simulations, the
gas accretion rate is regulated by the quasi-static contraction, or cooling, of a
nearly hydrostatic envelope. The accretion rate increases with the planetary
mass because the surface area of the contracting envelop expands and total
luminosity increases. In any simulations, the gas accretion timescale of a Jupiter-
mass planet is much shorter than the disk dissipation timescale. This rapid
gas accretion is halted by the supply limitation of disk gas. The gas accretion
mode shifts into the so-called detached phase, or supply-limited phase, when the
potential gas accretion rate in the runaway mode exceeds the maximum supply
rate of disk gas. The maximum supply rate of disk gas is determined by the local
gas flow around the Hill sphere (Tanigawa & Watanabe 2002; Machida et al.
2010) and global radial disk flow, or disk accretion rate (Tanigawa et al. 2014;
Tanaka et al. 2020). Using 2D hydrodynamic simulations of accretion flow onto
a growing planet, Tanigawa & Watanabe (2002) found the existence of accretion
bands through which disk gas flows into the Hill sphere. These accretion bands
were also found in 3D hydrodynamic simulations (Machida et al. 2010) and the
gas accretion rate decreases with planetary mass once the planet mass exceeds
a certain mass. The gap formation in a circumstellar disk is also suggested as a
cause of reducing the gas accretion rate in the supply-limited phase (Tanigawa
& Ikoma 2007; Tanigawa et al. 2014). The gas accretion onto gas giant planets
is finally terminated by disk dissipation. The timing of the onset of runaway gas
accretion is an important parameter that determines the final mass of forming
gas giant planets.

Another important mechanism in the formation of gas giant planets is plane-
tary migration. Planets embedded in a circumstellar disk exert positive torques
on the outer part of the disk and negative torques on the inner part of the disk
through the gravitational interaction (e.g. Lin & Papaloizou 1979; Goldreich &
Tremaine 1980). If the planet is small, the gravitational torque is smaller than
the disk’s viscous torque that the differential rotating annuli of the disk exert
on each other and the global surface density profile is not changed. In this case,
the planet migrates in the type I regime (e.g. Ward 1997; Tanaka et al. 2002;
Paardekooper et al. 2010). Once the gravitational torque overwhelms the disk’s
viscous torque, the planet opens a gap in the gas disk around its orbit. Plane-
tary migration regime shits into the type II regime (e.g. Lin & Papaloizou 1993).
The mass of planets at which a gap opens in the disk depends on the disk condi-
tions, however, protoplanets open the gap and their migration shift to the type
II regime soon after the onset of the runaway gas accretion.

In the classical model of type II migration, planets migrate with the disk gas
which radially drifts due to the viscous torque because the gap is assumed to be
deep enough that disk gas cannot cross the gap bottom. The planet is locked
in the gap and viscously accreting disk gas pushes the planet. Hydrodynamic
simulations, however, showed that the gap is not deep enough even if the planet
is as massive as Jupiter (Duffell & Macfadyen 2013; Fung et al. 2014; Kanagawa
et al. 2015, 2016, 2017). Due to the existence of gas flow crossing the gap bottom,
the planetary migration timescale differs from that in the classical regime (Duffell
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et al. 2014; Dürmann & Kley 2015; Kanagawa et al. 2018). Kanagawa et al.
(2018) suggested that the torque exerted on the planet came from the Lindblad
torques at the gap bottom. The formulae obtained in Kanagawa et al. (2018)
showed that planetary migration speed in the type II regime is slower than that
in the classical picture with appropriate disk viscosity. The planetary migration
is also stopped by the disk dissipation.

After the onset of runaway gas accretion, the formation of gas giant planets
is controlled by the gas accretion and planetary migration. The recent popu-
lation synthesis models focus on the evolution track of planets with respect to
semi-major axis and planetary mass (Ida & Lin 2004a,b, 2005, 2008, 2010; Mor-
dasini et al. 2009a,b; Bitsch et al. 2015; Ndugu et al. 2018). Ida et al. (2018)
suggested that the distribution of observed gas giant planets in exoplanetary
systems could be reproduced by the effect of slow type II planetary migration
suggested by Kanagawa et al. (2018). Assuming that not only the planetary
migration timescale but also the gas accretion timescale depends on the gap
structure, Tanaka et al. (2020) also modeled the evolution track of gas giant
planets and found that the mass distribution of observed gas giant planets in
exoplanetary systems can be explained with the observed mass distribution of
circumstellar disks. Considering the pebble accretion for the formation of cores
with critical mass, Bitsch et al. (2015) suggested that gas giant planets observed
in the inner disk region had migrated over several tens AU radial distances. The
differences between above models come from the different formation ingredients,
such as core formation, gas accretion and planetary migration, used in each
models. Each formation process has uncertainties coming from the model as-
sumptions or numerical simulation settings. In addition, some of these processes
are related with each other because both gas accretion and planetary migration
processes are affected by the density profile of surrounding disk gas and the
planet also affects on the disk gas profile. Comparing with the observed physical
parameters, we can constrain the complicated formation models. Thus, it is im-
portant to use the various observed physical parameters not only the semi-major
axis and mass of gas giant planets.

1.2 Composition evolution of gas giant planets

Recent observations and characterisation of exoplanets shed light on the chemi-
cal composition of gas giant planets. Metallicity and amount of heavy elements
are most used composition parameters for gas giant planets. Heavy elements
are materials heavier than hydrogen and helium and the metallicity is the mass
fraction of heavy elements. The composition of gas giant planets was first con-
strained for the solar-system giant planets Jupiter and Saturn (e.g. Guillot 1999;
Saumon & Guillot 2004). Gravitational moments observed by spacecrafts obser-
vations give the constraints on the mass distribution in gas giant planets. The
bulk amount of heavy elements and the distribution of heavy elements have been
estimated in Jupiter and Saturn. The gravitational moments observed by Juno
spacecraft (Bolton et al. 2017) show the possibility of discontinuity in the heavy
elements distribution in Jupiter envelope (Wahl et al. 2017; Nettelmann 2017;
Guillot et al. 2018). Using various internal models suggested by the observed
gravitational moments, Wahl et al. (2017) estimated the bulk amount of heavy
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elements in Jupiter MZ,Jup as ∼ 24-46M⊕ (M⊕: Earth mass), which is the sum
of the core ∼ 6.2-24M⊕ and the heavy elements in envelope ∼ 3.3-40M⊕. The
gravitational moments for Saturn have been observed by Cassini spacecraft. The
estimated bulk amount of heavy elements in Saturn MZ,Sat is ∼ 16-30M⊕, which
is the sum of the core ∼ 5-20M⊕ and the heavy elements in envelope ∼ 0-7M⊕
(e.g. Helled 2019). The existence of cores is consistent with the core accretion
model; however, the enriched envelope of Jupiter and the difference of metallic-
ity between Jupiter and Saturn bring a question for the origin of those heavy
elements. The gaseous envelopes come from the circumsolar disk gas whose
bulk composition is the same as the solar composition. Due to the condensation
of solid materials, the metallicity of circumsolar disk gas is less than the solar
metallicity. Both Jupiter and Saturn, however, have higher bulk metallicities
than the solar metallicity and core of critical mass is not enough to explain the
origin of the estimated bulk metallicity.

In exoplanetary systems, the enrichment of gas giant planet metallicity has
also been discovered (Guillot et al. 2006; Miller & Fortney 2011; Thorngren
et al. 2016). After the end of the rapid gas accretion, gas giant planets keep
loosing their internal thermal energy through their surface radiative emission.
The radius of gas giant planets shrinks with time and this process is called
thermal evolution. Given the planetary mass, radius and age, a thermal evolution
model constrains the internal bulk metallicity of a gas giant planet. According
to the results by Thorngren et al. (2016), close-in gas giant planets contain large
amounts of heavy elements. The bulk metallicities of those planets are much
higher than the central star’s metallicity. Surprisingly, some of those planets
contain more than ∼ 100M⊕ heavy elements.

From the above observational facts, the metallicity enhancement of gas gi-
ant planets is considered as an universal process accompanying the formation
of gas giant planets. High metallicity of gas giant planets requires the enrich-
ment of disk gas metallicity or the additional accretion of solid materials. The
disk enrichment mechanisms are proposed to be brought by the dissipation of
disk gas due to photo-evaporation concentrating heavy elements (Guillot et al.
2006). Pebbles drifting in radial direction transport condensed materials from
outer to inner disk and increase the metallicity of disk gas around snow lines
due to the sublimation of volatile ices (Booth et al. 2017; Booth & Ilee 2019).
Accretion of these enriched disk gas brings large amount of heavy elements in
gas giant planets. The enrichment of disk gas metallicity is at most 20 times
larger than the metallicity of central star, however, such highly enriched disk is
limited in the narrow region around the snow lines. The additional accretion of
solid materials is also regarded as potential sources of large amounts of heavy
elements. The pebble accretion is halted by the gap formation as above, so the
accretion of larger solid materials than pebbles is required for the accretion of
large amounts of heavy elements. Giant impact of protoplanets was investigated
as a source of massive heavy element contents (Ikoma et al. 2006; Liu et al. 2015,
2019; Ginzburg & Chiang 2020). Liu et al. (2019) investigated the giant impact
of embryos to explain the heavy element distribution in Jupiter. Ginzburg &
Chiang (2020) focused on the multiple giant impacts and derived the frequency
of giant impacts of equally growing gas giant planets. In their model, the highly
enriched planets more than MZ,tot ∼ 100M⊕ needs several times impacts of plan-
ets containing massive solid core ∼ 30M⊕ The critical core mass, however, is
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estimated smaller as shown above. Accretion of enriched disk gas and giant im-
pact of other protoplanet increases the metallicity of gas giant planets, however,
the accretion of ≳ 100M⊕ heavy elements as found in Thorngren et al. (2016) is
difficult.

Planetesimal accretion after the onset of runaway gas accretion is also con-
sidered as a source of heavy elements in gas giant planets. Even after the onset
of runaway gas accretion, planetesimals are left around the growing protoplanet.
With the rapid increase of planetary mass, the feeding zone of the protoplanet
(see the definition in sec. 2.3) expands and engulfs the surrounding planetes-
imals. Continuous supply of planetesimals to the feeding zone also brings a
large amount of planetesimals onto the growing protoplanet (Zhou & Lin 2007;
Shiraishi & Ida 2008; Shibata & Ikoma 2019). In addition, additional supply of
planetesimals to the feeding zone takes place by the planetary migration (Tanaka
& Ida 1999; Alibert et al. 2005; Mordasini et al. 2016). The amount of plan-
etesimals accreting onto gas giant planets would depend on the radial migration
distance of the planets. The migration distance largely differs between formation
models of gas giant planets and is from less than few AU (Tanaka et al. 2020)
to more than tens AU (Bitsch et al. 2015, 2019). If the planetesimal accretion
occurs in planetary migration phase, the amounts of heavy elements in gas giant
planets would indicate the migration distance of the planets. It is important
to investigate the planetesimal accretion along the evolution track of gas giant
planets for clarifying the origin of heavy elements observed in gas giant planets.

Considering the composition evolution of gas giant planets, many studies
try to retrieve the initial formation conditions from the observed composition
of exoplanets (Madhusudhan et al. 2014, 2017; Mordasini et al. 2016; Hasegawa
et al. 2018, 2019; Notsu et al. 2020). Changing the formation area of solid cores,
Madhusudhan et al. (2017) estimated the final composition of gas giant planets
considering the enrichment of envelopes due to pebble accretion. They succeeded
in linking the current atmospheric composition with where the solid core formed
in the disk. Hasegawa et al. (2018, 2019) considered planetesimal accretion af-
ter the onset of the runaway gas accretion and estimated the metallicity of gas
giant planets. Their result suggests that close-in gas giant planets had migrated
from outer disk region. Mordasini et al. (2016) also linked the atmospheric com-
position of gas giant planets with their formation history using the population
synthesis model. In above models, the effects of planetesimal accretion in plan-
etary migration phase is neglected (Madhusudhan et al. 2017; Hasegawa et al.
2018, 2019) or included but simplified using an analytical model (Madhusud-
han et al. 2014; Mordasini et al. 2016). The difference of the modeling about
planetesimal accretion comes from the lack in the understanding of planetesi-
mal accretion in planetary migration phase. The basic physics of planetesimal
accretion during migration of gas giant planets is not clear because of the lack
in the numerical simulations using direct orbital integration in the planetary
migration phase. The accretion of planetesimals onto a migrating planet was
investigated by Tanaka & Ida (1999). They used the direct orbital integration
of planetesimals; however their main purpose was accelerating the formation of
Jupiter core and the numerical calculation was performed with planets of a few
Earth-masses. In the cases of Jupiter-mass planets, their result might be signifi-
cantly altered by the mean motion resonances, the effects of which are neglected
in Tanaka & Ida (1999). Mean motion resonances are more effective for heavier
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planets (e.g. Murray & Dermott 1999) and known to play important roles in
the orbital evolution of planetesimals (Walsh et al. 2011; Batygin & Laughlin
2015). We will give a detailed review in sec. 2. Thus, we need to investigate the
planetesimal accretion onto a migrating proto-gas giant planet using the direct
orbital integration method.

1.3 Objective of this doctoral thesis

Formation of gas giant planets is a complicated process composed of many un-
derlying physical sub processes. We can construct unified planetary formation
models from the growth of planetesimals to the termination of gas giant planet
formation, however, there are still many uncertainties related with each pro-
cesses and initial conditions. Along with the development of observation and
characterisation of exoplanets, many studies have tried to validate theoretically
proposed formation models and give constraints to the initial conditions of plan-
etary formation. Recently, composition data of exoplanets have been obtained
and used for retrieving the initial conditions. Studies connecting the observed
composition and formation processes of gas giant planets are required for further
progress in the field of planet formation. Planetesimal accretion is considered as
an important source of heavy elements in gas giant planets, however, the basic
physics of planetesimal accretion during migration of gas giant planets is not
clear because of the lack in the numerical simulations. In this study, we focus
on the effects of mean motion resonances on planetesimal accretion which have
not been investigated so far.

The main purpose of this thesis is investigating the role of mean motion reso-
nances in the planetesimal accretion onto gas giant planets. In chap. 2, we review
the important physics of planetesimal accretion, including Jacobi energy and
mean motion resonances. We show the importance of mean motion resonances
for planetesimal accretion onto a migrating Jupiter-mass planet. In chap. 3, we
consider the extreme cases where the effects of mean motion resonances work
most effectively. Using the orbital integration method, we investigate the plan-
etesimal accretion onto a migrating gas giant planet and reveal the fundamental
roles of mean motion resonances in planetesimal accretion. Standing on the re-
sults obtained in chap. 3, we focus on the break of resonant trapping in chap. 4.
We consider the break of mean motion resonances via mutual collisions of plan-
etesimals and investigate the effect of resonant breaking on the planetesimal
accretion. In chap. 5, we investigate the possibility of massive planetesimal ac-
cretion during the formation of gas giant planets using the results in chap. 3 and
4. We discuss the origin of heavy elements in gas giant planets in exoplanetary
systems and in the solar system. And in chap. 6, we conclude and summarise
this thesis.



Chapter 2

Review of mean motion resonances and
planetesimal accretion

2.1 Mean motion resonances

In this section, we review the basic physics of mean motion resonances and
introduce some important resonance parameters. We consider the motion of
two particles with mass m and m′ orbiting around a central star with mass mc.
The orbital elements of the inner particle are given by a (semi-major axis), e
(eccentricity), i (inclination), Ω (longitude of ascending node), ϖ (longitude of
pericenter) and ε (mean longitude at epoch), respectively. λ is a mean longitude
defined as

λ = nt + ε, (2.1)

where n is the mean motion. The orbital parameters of the outer particle are
denoted with prime. When the mean motion of the inner particle has a simple
relation with that of the outer particle, namely

n′

n
∼ p

p+q
, (2.2)

where p and q are integers, the inner particle is in the p+ q : p mean motion
resonance with the outer one. In this case, the conjunction with the outer parti-
cle is limited at some fixed points on the orbit. The accumulative gravitational
perturbation from the outer particle deforms the orbit of the inner particle sig-
nificantly.

2.1.1 Disturbing function and Lagrange’s equations

To derive the change rates of orbital elements by mean motion resonances, we
introduce the disturbing function R (R ′), which is the potential of the inner
(outer) particle associated with perturbation from the outer (inner) particle.
The disturbing function is given as (Murray & Dermott 1999)

R =
G m′

mc
∑
ji

Scosφ, (2.3)

R ′ =
G m
mc

∑
ji

Scosφ, (2.4)

9
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where

S ≈ f (α)

a′
e| j4|e′| j3|s| j6|s′| j5|, (2.5)

with G is a gravitational constant, f (α) is a function of Laplace coefficients (see
Murray & Dermott 1999), s = sin1/2i, s′ = sin1/2i′, and ϕ is an argument given
by

φ = j1λ ′+ j2λ + j3ϖ ′+ j4ϖ + j5Ω′+ j6Ω, (2.6)

with ji being integers that sustain the d’Alembert relation

6

∑
i=1

ji = 0. (2.7)

The function S indicates the strength of each term of the disturbing function.
The disturbing function is given as an infinite series and each term contains
cosφ . Outside the mean motion resonances, cosφ changes on the conjunction
timescale because the argument φ increases or decreases with time. Inside the
p+ q : p mean motion resonance, however, there is a resonant argument that
barely changes with time because the time derivative of the resonant argument
φ̇ is given as

φ̇ ∼ (p+q)n′− pn ∼ 0. (2.8)

In the long-term orbital evolution, integrated terms except the resonant terms of
the disturbing function are almost zero. Thus, the orbital evolution of particles
in mean motion resonances are regulated by only a few resonant terms in the
disturbing function.

Considering the long period orbital evolution of each particle, we integrate
and average Lagrange’s equations of motion below. As discussed above, almost
all terms except the resonant terms in the disturbing function are negligibly
small. In practice, we use the averaged disturbing function ⟨R⟩ and ⟨R ′⟩ given
as

⟨R⟩= G m′

a′

[
R

(sec)
D + e| j4|e′| j3|s| j6|s′| j5| { fd(α)+ fe(α)}cosφ

]
, (2.9)〈

R ′〉= G m
a

[
αR

(sec)
D + e| j4|e′| j3|s| j6|s′| j5| {α fd(α)+ fi(α)}cosφ

]
, (2.10)

where α = a/a′, R(sec)
D is a secular term, and fd, fe and fi are a direct term, exter-

nal indirect term and internal indirect term, respectively (see also below). The
equations of motion in orbital elements are called as Lagrange’s equations and
written with the disturbing function. The Lagrange’s equations in the lowest-
order terms in terms of e and i are given by

ȧ =
2

na
∂ ⟨R⟩

∂λ
, (2.11)

ė =− 1
na2e

∂ ⟨R⟩
∂ϖ

, (2.12)

(2.13)



2.1 Mean motion resonances 11

p+q : p fs fd
2:1 0.387627 −1.19049
3:2 1.15279 −2.02521
4:3 2.27923 −2.84042
5:4 3.76541 −3.64962

Table 2.1: Values of the secular term fs and the direct term fd for the first order
mean motion resonances.

Hereafter, we consider a restricted three-body problem where the perturbing
particle is much heavier than the perturbed particle (m ≪ m′ or m ≫ m′) and
the former is in a circular orbit. Both particles move on the reference plane.
This situation is close to the cases that we consider in the following chapters.
The averaged disturbing function is reduced to

⟨R⟩= G m′

a′

[
fs(α)e2 + fd(α)e| j4| cosφ

]
, (2.14)〈

R ′〉= G m
a

[
α fs(α)e2 +α fd(α)e| j3| cosφ ′

]
, (2.15)

where fs is a secular term coming from R
(sec)
D . The resonant arguments are

φ = j1λ ′+ j2λ + j4ϖ , (2.16)

φ ′ = j1λ ′+ j2λ + j3ϖ ′. (2.17)

We can reduce the above equations of motion for the inner particle into

ṅ = 3 j2Crne| j4| sinφ, (2.18)

ė = j4Cre| j4|−1 sinφ, (2.19)

with

Cr =
m′

mc
nα fd(α), (2.20)

and for the outer particle into

ṅ′ = 3 j1C′
rn

′e′| j3| sinφ ′, (2.21)

ė′ = j3C′
re
′| j3|−1 sinφ ′, (2.22)

with

C′
r =

m
mc

n′ fd(α). (2.23)

Table 2.1 gives the values of fs and fd.

2.1.2 Libration timescale and resonant width

Inside the mean motion resonances, the resonant argument librates on a libration
timescale τlib. Along with the libration of the resonant argument, the semi-major
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axis of the inner and outer particle also librate and the maximum change in the
semi-major axis δamax and δa′max can be written as (Murray & Dermott 1999)

δamax,±
a

=±
(

16
3
|Cr|
n

e
)1/2(

1+
1

27 j22e3

|Cr|
n

)1/2

− 2
9 j2e

|Cr|
n

, (2.24)

δa′max,±
a′

=±
(

16
3
|C′

r|
n′

e′
)1/2(

1+
1

27 j12e′3
|C′

r|
n′

)1/2

− 2
9 j1e′

|C′
r|

n′
. (2.25)

The libration timescale of internal and external resonances are (Murray & Der-
mott 1999)

τlib =
2π
n

∣∣∣∣∣
∣∣∣∣ j2

j1

∣∣∣∣4/3(m′

mc

)2 fd
2(α)

e2 −3 j22
∣∣∣∣ j2

j1

∣∣∣∣2/3 m′

mc
fd(α)e

∣∣∣∣∣
−1/2

, (2.26)

τ ′lib =
2π
n′

∣∣∣∣∣
(

m
mc

)2 fd
2(α)

e′2
−3 j12 m

mc
fd(α)e′

∣∣∣∣∣
−1/2

. (2.27)

Figure 2.1 shows the locations of the three first-order inner mean motion reso-
nances with a Jupiter-mass planet orbiting at 5AU in the a-e plane. Inside the
color-coded regions, the resonant arguments librate on a timescale of τlib and
the semi-major axis and eccentricity of the perturbed particle evolve according
to eq. (2.18) and eq. (2.19). The width of the resonance is defined as

∆ares = |δamax,+−δamax,−| , (2.28)

and takes the minimum value at

e =
21/3

3

(
| j1|−2/3 | j2|−4/3 fd

m
mc

)1/3

. (2.29)

2.2 Resonant trapping

When the radial distance between two objects decreases, which is referred to
convergent orbital evolution, the objects reach the position of a mean motion
resonance and are locked in a resonant state. This phenomena is known as a
resonant capture or resonant trapping. Resonant trapping has been discussed in
the contexts of formation of satellite pairs (Goldreich 1965; Dermott et al. 1988;
Malhotra 1993b), transport of small bodies (Yu & Tremaine 2001; Batygin &
Laughlin 2015) and formation of exoplanet pairs (Fabrycky et al. 2014; Goldreich
& Schlichting 2014); see references in Batygin (2015). Not all resonant encoun-
ters result in the resonant trapping because resonant trapping requires several
conditions. Here, we consider the trap of a planetesimal in the inner mean mo-
tion resonances with a planet migrating inward. We assume the mass of the
planetesimal is negligibly small relative to the mass of the planet. In this case,
the resonant trapping requires the following conditions (e.g. Malhotra 1993a): (i)
the orbits of the planetesimal and the planet converge with each other, (ii) the
eccentricity of the planetesimal before being trapped in the resonance is smaller
than the critical value ecrit (see eq. (2.31)), (iii) the timescale for the planetesimal
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Figure 2.1: The locations of the first-order mean motion resonances with a
Jupiter-mass planet at 5AU in the a-e plane. Here, we show the 2 : 1 (red), 3 : 2
(green) and 4 : 3 (blue) resonances.

to cross the resonant width τcross is longer than the libration timescale τlib (see
eq. (2.26) and (2.27)).

The first condition can be obtained by comparing the timescales of change
in the semi-major axis of the planetesimal and the planet. In a circumstellar
gas disk, orbits of objects shrink or (are damped) by the aerodynamic gas drag
and gravitational tidal drag from the disk gas. The former drag is dominant for
planetesimal-size objects (≲ 1024g) and the latter drag is for planet-size objects
(≳ 1024g) (Zhou & Lin 2007). Given the aerodynamic damping timescale of
semi-major axis τdamp,a for the planetesimal and the tidal damping timescale of
semi-major axis τtide,a for the planet, we obtain the first condition as

τdamp,a > τtide,a. (2.30)

For the j : j− 1 first-order resonances, the critical eccentricity is given by (e.g.
Murray & Dermott 1999)

ecrit =
√

6
[

3
fd
(1− j)4/3 j2/3 Ms

Mp

]−1/3

, (2.31)

where Mp and Ms are mass of planet and central star. When τdamp,a ≫ τtide,a, the
timescale for the planetesimal to cross the resonant width τcross is given as

τcross =

∣∣∣∣∆ares

ȧc

∣∣∣∣∼ ∣∣∣∣∆ares

ac

∣∣∣∣τtide,a, (2.32)

where ac is the semi-major axis of the resonance centre defined by

ac =

(
j−1

j

)2/3

ap, (2.33)
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Figure 2.2: The ratio of the crossing timescale τcross to the libration timescale
τlib. Here, we consider a Jupiter-mass planet (Mp/Ms = 10−3) and the type II
regime for migration timescale τtide,a used in Ida & Lin (2004a), which is the
same as the model used in chap. 3. Here, we show the cases of different scaling
factor of migration timescale τtide,0 (see the definition in chap. 3) and 2 : 1 (solid)
and 3 : 2 (dashed) resonances.

where ap is the semi-major axis of the planet. Note that the resonance centre
migrates with the same rate of the protoplanet during the planetary migration
phase. Substituting eq. (2.29) into eq. (2.28), we obtain the minimum width of
the resonance as

∆ares

ac

∣∣∣∣
min

= 4.4 j−4/9( j−1)1/9 fd
2/3
(

Mp

Ms

)2/3

. (2.34)

The corresponding libration timescale is

τlib = 0.87 j4/9( j−1)−10/9 fd
−2/3

(
Mp

Ms

)−2/3

TK, (2.35)

where TK is the Kepler period of the planetesimal. Using eqs. (2.32),(2.34) and
(2.35), we obtain the third condition as

τcross

τlib
= 5.1 j1/9 ( j−1)2/9 fd

4/3
(

Mp

Ms

)4/3 τtide,a

TK,p
≳ 1, (2.36)

where TK,p is the Kepler period of the migrating planet.
Far from the planet and outside mean motion resonances, the eccentricity of

the planetesimal is determined by a balance between the viscous stirring from
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the planetesimal swarm and aerodynamic gas drag. The mean value of r.m.s.
eccentricities of the planetesimal swarm is on the order of ≲ 10−2 (Ohtsuki et al.
2002). For km-size planetesimals with e = 10−2, the radial drift timescale τdamp,a
is longer than the planetary migration timescale in the type II regime (τtide,a ≲
107 yr) over a wide region of a circumstellar disk (Adachi et al. 1976). Also,
the critical eccentricity is ecrit ∼ 0.15 for j = 2 and Mp/Ms = 10−3. Thus, the
first and second conditions are easily achieved. Figure 2.2 shows the timescale
ratio τcross/τlib as a function of the semi-major axis. Here, we show the case
of Jupiter-mass planet (Mp/Ms = 10−3) and consider the type II regime for the
migration timescale τtide,a used in Ida & Lin (2004a) (see chap. 3). The ratio of
timescales τcross/τlib is larger than unity except for the case of rapid planetary
migration τtide,a ∼ 104yr. Thus, we conclude that resonant trapping occurs during
the migration of a gas giant planet at least once.

2.3 Feeding zone and planetesimal accretion

Here, we review the planetesimal accretion onto the protoplanet. First, we intro-
duce the important physical parameter, the Jacobi energy EJ, and then, review
the relation between the planetesimal accretion and the Jacobi energy. The re-
view is based on the discussion in Shibata & Ikoma (2019). Here, we extend the
discussion to the planetary migration phase and show the potential role of mean
motion resonances in the accretion of planetesimals onto a migrating planet.

2.3.1 Jacobi Energy

In the late formation stage of gas giant planets, the mass of the protoplanet
becomes much larger than the total mass of planetesimals surrounding the pro-
toplanet. The gravitational tidal drag from the surrounding disk gas damps the
eccentricity of the protoplanet and the orbit of the protoplanet is in almost cir-
cular orbit. The orbital evolution of planetesimals can be treated approximately
as a restricted three-body problem, where the protoplanet is in a circular orbit
and the gravitational forces exerted on the protoplanet from the surrounding
planetesimals and mutual interaction among the planetesimals are negligible. In
this case, the Jacobi energy is a useful parameter that regulates the orbital evo-
lution of planetesimals (Hayashi et al. 1977). The Jacobi energy is defined as
(e.g. Murray & Dermott 1999)

Ejacobi ≡
1
2

v′pl
2
+Ujacobi, (2.37)

Ujacobi =−1
2

ΩK,p
2
(

x′2 + y′2
)
−G

Ms

rpl,s
−G

Mp

rpl,p
+U0, (2.38)

where rpl,s is the distance between the planetesimal and the central star, rpl,p
is the distance between the planetesimal and the protoplanet, ΩK,p is angular
velocity of the protoplanet, (x′, y′) and v′pl are, respectively, the position and
velocity of the planetesimal in the coordinate system co-rotating with the pro-
toplanet. The constant U0 is set such that Ujacobi vanishes at the Lagrange L2
point. With orbital elements, the Jacobi energy of the planetesimal is expressed
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as

Ejacobi =
G Ms

ap

{
−

ap

2a
−
√

a
ap

(1− e2)cos i+
3
2
+

9
2

h2 +O(h3)

}
, (2.39)

where h is the reduced Hill radius defined as

h =

(
Mp

3Ms

)1/3

. (2.40)

In the vicinity of the protoplanet, eq. (2.39) can be written as

Ejacobi ∼
G Msh2

ap

{
1
2
(
ẽ2 + ĩ2

)
− 3

8
b̃2 +

9
2

}
, (2.41)

where

b̃ ≡
a−ap

h
, (2.42)

ẽ ≡ e
h
, (2.43)

ĩ ≡ i
h
. (2.44)

We define the normalised Jacobi energy Ẽjacobi as

Ẽjacobi =
ap

G Ms

Ejacobi

h2 . (2.45)

If h≪ 1, the constant Ẽjacobi lines are fixed in the b̃− ẽ plane even if the planetary
mass increases or the protoplanet migrates in radial direction. Figure 2.3 shows
the constant Ẽjacobi lines in the b̃− ẽ plane where i ≪ 1 and Mp/Ms = 10−3. The
gray region where Ẽjacobi > 0 corresponds to the so-called feeding zone.

The Jacobi energy is the total mechanical energy of a planetesimal defined in
the coordinate system rotating with the protoplanet. The potential Ujacobi is the
sum of the centrifugal potential and the gravitational potentials of the central
star and the protoplanet. The potential curves in this coordinate are fixed for
a given set of mass ratio Mp/Ms and semi-major axis ap. Thus, the Jacobi
energy is a constant of motion. As show in Fig. 2.4, there is a potential barrier
for planetesimals to enter the Hill sphere of the protoplanet. Planetesimals
initially having Ẽjacobi < 0 cannot enter the Hill sphere because the gravitational
force of the protoplanet does not change the Jacobi energy. Inside the feeding
zone, planetesimals can enter the planet’s Hill sphere and have possibilities to be
captured by the protoplanet. To enter the Hill sphere, or to be captured by the
protoplanet, planetesimals with negative value of Ejacobi need to increase their
Jacobi energy.

The time derivative of the Jacobi energy at the feeding zone boundary is
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Figure 2.4: The map of the Jacobi potential Ujacobi on the rotating frame with
the protoplanet. Here the planet-star mass ratio Mp/Ms = 10−1 and the mass
centre is at the origin of the coordinate.
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written as

dẼJacobi

dt
=

1
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dt
3h2

+
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√
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cos i

+
1
i

di
dt

√
a
ap

(1− e2)icos i. (2.46)

There are two factors that lead to increasing the Jacobi energy of planetesimals:
(i) mass growth of the protoplanet, and (ii) convergence of the orbits of the
planetesimal and protoplanet. The first one is most effective in the runaway gas
accretion phase of the protoplanet. The second one is brought by the radial drift
of planetesimals due to the aerodynamic gas drag, or planetary migration due
to the gravitational tidal drag. As for gas giant planets, the type II migration is
the most effective factor of orbital convergence. The eccentricity damping and
inclination damping of planetesimals due to the aerodynamic gas drag from the
disk gas always decreases the Jacobi energy. Thus, the accretion of planetesi-
mals onto the gas giant planet occurs in the mass growth phase and planetary
migration phase.

2.3.2 Planetesimal accretion onto a growing protoplanet

The accretion of planetesimals onto a protoplanet growing in situ via gas accre-
tion has been investigated with numerical orbital integration of planetesimals by
a few groups (Zhou & Lin 2007; Shiraishi & Ida 2008; Shibata & Ikoma 2019).
Shiraishi & Ida (2008) considered that the accretion rate of planetesimals is de-
termined by the surface density of planetesimals inside the feeding zone. From
their numerical simulations, they found that the accretion of planetesimals in
the protoplanet’s mass growth phase is divided into two cases; the nongap case
where planetesimals flow into the feeding zone smoothly, and the gap case where
inflow of planetesimals is regulated by the competition between the expansion
speed of the feeding zone and the damping speed of planetesimal orbits (or the
competition between the growth timescale and the damping timescale). Shibata
& Ikoma (2019) detailed the structure of the circumstellar disk in the vicinity of
the massive protoplanet, including the gap formation, and investigated its effect
on planetesimal accretion. They improved understanding of the mechanism of
planetesimal inflow into the feeding zone using the change rate of the Jacobi
energy (see eq. (2.46)). Performing the orbital integration of planetesimals with
various disk models, planetary growth models and planetesimal sizes, which de-
termine the value of ˙̃Ejacobi, they concluded that the change rate of the Jacobi
energy regulates the planetesimal accretion onto gas giant planets. According
to the results in Shibata & Ikoma (2019), up to ∼ 30% of planetesimals inside
the feeding zone can be captured by the protoplanet until the end of the mass
growth phase.

The role of the mean motion resonances on the planetesimal accretion was
pointed in Zhou & Lin (2007). From their simulation, they found that the
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planetesimals initially located inside mean motion resonances keep standing in
for a while. Accretion timing of trapped planetesimals is, thus, delayed by the
resonant trapping because trapped planetesimals avoid close-encounters with the
protoplanet. The width of mean motion resonances expands with the planetary
mass growth (see eq. (2.28)) and adjacent resonances overlap each other when
the planet mass becomes larger than a certain mass. This phenomena is called
as resonance overlap (e.g. Murray & Dermott 1999), which makes the resonance
unstable and breaks the resonant trapping. In the mass growth phase, mean
motion resonances change the timing of accretion of trapped planetesimals, but
the capture probability is not affected by the resonances.

2.3.3 Planetesimal accretion onto a migrating protoplanet

The accretion of planetesimals onto a migrating planet was first investigated
in the context of the formation of Jupiter’s core. Ward (1986, 1989) suggested
the acceleration of planetesimal accretion by the low-mass planet migrating in
the type I regime. Ward & Hahn (1995) investigated whether the migrating
planet can capture the planetesimals considering the interaction between the
protoplanet and the planetesimal disk, which is a group of planetesimals in cir-
cumstellar disk. According to their result, a small protoplanet, which migrates
slowly, makes a gap in the planetesimal disk and shepherds the inner planetes-
imals, which prevents planetesimal accretion. On the other hand, a large pro-
toplanet, which migrates fast, cannot shepherd planetesimals and can capture
planetesimals. Direct integration of planetesimal orbits around the migrating
planet was performed by Tanaka & Ida (1999). Using the numerical results,
they derived the threshold migration timescale for planetesimal accretion as

τtide,a,crit = 0.81


√

1+0.45
(

τdamp,0

TK,p

)2/3

+1


2

h−2TK,p, (2.47)

where τdamp,0 is the characteristic timescale of orbital damping due to disk gas
drag (see eq. (3.25) in chap. 3). When τtide,a < τtide,a,crit (i.e. fast migration),
the protoplanet rushes into the planetesimal disk and the planetesimals flow
into the feeding zone smoothly. When τtide,a > τtide,a,crit (i.e. slow migration),
however, planetesimals cannot enter the feeding zone. The former case is called
as predator and the later case is called as shepherding. In their study, all the
physical parameters are normalised and their results seem to be applicable for
Jupiter-mass or more massive planets. In Tanaka & Ida (1999), however, the
effects of mean motion resonances are artificially removed in the way explined
below.

The effect of resonant trapping is important for orbital evolution of plan-
etesimals around a migrating protoplanet, as shown in sec. 2.1. Even for the
cases of Earth-mass planets, mean motion resonances can trap the planetesimals
during planetary migration. Resonant trapping prevents planetesimals from en-
tering the feeding zone of the migrating planet, because it stops their convergent
orbital evolution. Tanaka & Ida (1997, 1999), however, assumed that the in-
teractions between planetesimals break the resonant trapping immediately. The
interactions between planetesimals like mutual collisions change the planetesi-
mals’ orbits and resonant arguments. The possibility of resonant breaking by the
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collisions between planetesimals was investigated by Malhotra (1993a). Using
the orbital integration, they found that the collision of planetesimals is strong
enough to kick the trapped planetesimals out from the mean motion resonances
with Earth-mass planets. Following that, Tanaka & Ida (1997, 1999) consid-
ered the limiting cases where the effects of mean motion resonances are perfectly
removed by the interactions between planetesimals.

In the direct orbital integration, the required number of particles simulating
the orbital evolution of planetesimals is larger than ≳ 107 if we consider the
equal-size planetesimals of 107 cm in minimum mass solar nebula around 5AU.
Orbital integration of such a huge number of particles takes too much calculation
time. To reduce the calculation costs, many studies (Tanaka & Ida 1997, 1999;
Zhou & Lin 2007; Shiraishi & Ida 2008; Levison et al. 2010; Shibata & Ikoma
2019) treated the planetesimals as test particles, which are mass less particles
tracking the orbits of planetesimals and never exert gravitational forces on the
other particles in the simulations. In the vicinity of the protoplanet, the gravita-
tional scattering from the protoplanet dominates over the mutual gravitational
interactions from planetesimals. So treating planetesimals as test particles is an
appropriate modeling for investigating the accretion of planetesimals onto the
growing protoplanet (Zhou & Lin 2007; Shiraishi & Ida 2008; Shibata & Ikoma
2019). In the planetary migration phase, however, test particles are trapped into
the mean motion resonances of the migrating protoplanet. In some mean mo-
tion resonances, the interactions between planetesimals are important, as shown
in Malhotra (1993a). To include the effect of breaking the resonant trapping,
Tanaka & Ida (1997, 1999) artificially input the random perturbations on reso-
nant arguments of test particles. By this artificial perturbations, test particles
are free from the effects of mean motion resonances. As mentioned in Tanaka
& Ida (1997), this manipulation makes their model the limiting case where the
effects of mean motion resonances are perfectly removed. Their assumption is
valid for the formation of Jupiter’s core where Mp ∼ M⊕ and ap ∼ 5AU, however
not appropriate for the cases of migrating gas giant planets where Mp ∼ MJup and
ap ∼ 1-100AU. The resonant trapping is stronger for heavier protoplanets be-
cause the width of resonances is larger for heavier protoplanets (see eq. (2.28)).
In addition, the collision frequency of planetesimals decreases with the radial
distance from the central star (see chap. 4). Thus, we need to consider the ef-
fect of mean motion resonances on the planetesimal accretion in the planetary
migration phase of gas giant planets.

As shown in sec. 1, recent formation models of gas giant planets combining
the gas accretion and planetary migration have been presented by many authors
(Alibert et al. 2005; Madhusudhan et al. 2014, 2017; Mordasini 2018; Hasegawa
et al. 2018, 2019). Some of those studies include the effect of planetesimal
accretion of a migrating planet using the analytical formulae of solid accretion
(e.g. Greenzweig & Lissauer 1992). In their model, the effects of expansion and
move of the feeding zone are not included, so the cases where a large amount
of planetesimals flow into or eliminate from the feeding zone are not considered.
Alibert et al. (2005) considered that the planetesimals flow into the feeding
zone smoothly if the condition τtide,a < τtide,a,crit is achieved, following Tanaka &
Ida (1999), but the effects of mean motion resonances are not included. On the
other hand, some studies (Madhusudhan et al. 2017; Hasegawa et al. 2018, 2019)
neglect the planetesimal accretion in planetary migration phases because of the
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low capture efficiency of planetesimals (≲ 0.1) for Earth-mass planets shown
in Tanaka & Ida (1999). Those studies constructed the planetesimal accretion
models standing on the results of Tanaka & Ida (1999), however, as described
above, we need to consider the effects of mean motion resonances on planetesimal
accretion appropriately especially in the case of massive migrating protoplanets.



Chapter 3

Accretion of Planetesimals under the
Effective Resonant Trapping

3.1 Introduction

During the formation stages of gas giant planets, planetesimal accretion onto
gas giant planets is an important factor of their composition evolution. Espe-
cially in the planetary migration phase, a large amount of planetesimals could
accrete onto the planets. Around a massive planet, mean motion resonances
are expected to play important roles in the orbital evolution of planetesimals,
however, their effects on planetesimal accretion rate are not clear. As shown in
chap. 2, mean motion resonances trap planetesimals and prevent the planetesi-
mals from entering the feeding zone of the migrating planet. The accretion rate
in this situation must be investigated by the direct orbital integration of plan-
etesimals. In this chapter, we focus on the effects of mean motion resonances on
planetesimal accretion onto a migrating proto-gas giant planet. We consider the
limiting cases where mean motion resonances work most effectively, in contrast
to Tanaka & Ida (1999). Analysing the numerical results, we will derive the
required conditions for effective planetesimal accretion. Performing parameter
studies with respect to the planetesimal size, migration timescale, migration dis-
tance and planet mass, we investigate how many planetesimals are captured by
the migrating planet.

The method and model used in this chapter are written in sec. 3.2. In sec. 3.3,
we show the results in the reference case. We analyse the results and reveal the
fundamental physics which controls the planetesimal accretion in the planetary
migration phase. We perform the parameter studies in sec. 3.4. Comparison
with Tanaka & Ida (1999) and model limitations are discussed in sec. 3.5. And
in sec. 3.6, we summarise this chapter. This chapter contains the results of
Shibata et al. (2020).

3.2 Method and Model

In this study we assume the following situation: a giant planet has finished
gas accretion and the planet is no longer growing in mass. The planet then
migrates radially inward in the type II regime from a given semi-major axis in
a circumstellar disk. Initially there are many single-sized planetesimals interior
to the planet’s orbit. The migrating planet then encounters these planetesimals

22
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and captures some of them. The planetesimals are represented by test particles
and, therefore are affected only by the gravitational forces from the central star
and planet, and the drag force by the disk gas. The dynamical integration
for these bodies is performed using the numerical simulation code developed
in Shibata & Ikoma (2019). In the code, we integrate the equation of motion
using the forth-order-Hermite integration scheme (Makino & Aarseth 1992). For
timestep, we adopt the method of (Aarseth 1985). We summarise the method
and the benchmark results in App. A.

3.2.1 Forces exerted on planetesimals and planet

The equation of motion is given by

dri

dt
= ∑

i ̸= j
fgrav,i, j + faero + ftide, (3.1)

where t is the time, ri is the position vector relative to the initial (i.e., t = 0)
mass centre of the star-planet-planetesimals system, fgrav,i, j is the mutual gravity
between particles i and j given by

fgrav,i, j =−G
Mj

ri, j3
ri, j (3.2)

with ri, j being the position vector of particle i relative to particle j (ri, j ≡ |ri, j|),
Mj is the mass of particle j, and G is the gravitational constant, faero is the
aerodynamic gas drag, and ftide is the gravitational tidal drag from the circum-
stellar disk gas. The central star, planet, and planetesimals are denoted by the
subscripts i (or j) = 1, 2, and ≥ 3, respectively. The planetesimals are treated
as test particles; therefore fgrav,i, j = 0 in Eq. (3.1) for j ≥ 3. Also, given the
range of the planetesimal mass (∼ 1016-1022g) and planet (∼ 1030g), we assume
ftide = 0 for the former and faero = 0 for the latter. The central star is not affected
by faero and ftide.

3.2.2 Aerodynamic gas drag

The aerodynamic gas drag force is given by (Adachi et al. 1976)

faero =− u
τaero

=− 1
2mpl

CdπR2
plρgasuu. (3.3)

Here u = vpl − vgas (u = |u|) is the planetesimal velocity (vpl) relative to the
ambient gas (vgas), τaero is the timescale of aerodynamic gas drag, mpl is the
planetesimal’s mass, Cd is the non-dimensional drag coefficient and given as
Cd = 1, ρgas is the gas density, and Rpl is the planetesimal’s radius. The velocity
and density of the ambient disk gas are calculated from the circumstellar disk
model (see Section 3.2.4).

3.2.3 Gravitational tidal drag

We also consider the effect of the planetary migration of the gas giant planet,
using the following form of the tidal drag force,

ftide =−
vp

2τtide,a
, (3.4)
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where vp and τtide,a are the planet’s velocity and the migration timescale, re-
spectively. In this formula, the planet’s eccentricity is assumed to be negligibly
small. As for τtide,a, we consider the planetary migration with the dependence
on the planet’s semi-major axis ap being:

τtide,a = τtide,0

( ap

1AU

)1/2
, (3.5)

where the constant τtide,0 is set as a free parameter. In type II regime, the
dependence on ap changes with the condition of surrounding disk gas and τtide,0
depends on the planetary mass and the disk profiles around the planet (e.g. Lin
& Papaloizou 1993; Kanagawa et al. 2018). However, we fix the exponent of
ap as 1/2, which is the limiting case where the planet mass is heavier than the
surrounding disk gas, and τtide,0 as constant in our simulation. This simplification
allows a systematic investigation of the effect of planet migration on the efficiency
of planetesimal accretion. The dependence of numerical results on migration
timescale is discussed in sec. 3.5.1.

3.2.4 Disk model

We adopt the minimum-mass solar nebula model (Hayashi 1981) as our gas disk
model. The surface density Σgas is expressed as

Σgas = Σgas,0

( r
1AU

)−αdisk
, (3.6)

where r is a radial distance from initial mass centre of the star-planet system,
Σgas,0 = 1.7× 103g/cm3 and αdisk = 3/2. The temperature of the circumstellar
disk Tdisk is given by:

Tdisk = Tdisk,0

( r
1AU

)−2βdisk
, (3.7)

where Tdisk,0 = 280 K and βdisk = 1/4. The circumstellar disk being assumed to
be vertically isothermal, the gas density ρgas is expressed as

ρgas =
Σgas√
2πhs

exp
(
− z2

2hs
2

)
, (3.8)

where z is the height from the disc mid-plane and hs is the disk’s scale height.
The aspect ratio of the circumstellar disk is

hs

r
=

cs

rΩK
, (3.9)

where ΩK is a Kepler angular velocity and cs is a sound speed of disk gas. The
sound speed is given as

cs =

√
kBTdisk

µdiskmH
∝ r−βdisk, (3.10)

where kB is the Boltzmann constant and µdisk is a mean molecular weight in a
unit of proton mass mH. In this study, µdisk is set as 2.3 and the aspect ratio of
the disk gas at 1AU is ∼ 0.03.
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The gas in the circumstellar disk rotates with a sub-Keplerian velocity be-
cause of pressure gradient; namely

vgas = vK (1−ηdisk) (3.11)

with ηdisk defined as

ηgas ≡−1
2

(
hs

r

)2 dlnPgas

dlnr
, (3.12)

=
1
2

(
hs

r

)2[3
2

(
1− z2

hs
2

)
+αdisk +βdisk

(
1+

z2

hs
2

)]
, (3.13)

where Pgas is the gas pressure. For deriving the above equation, we assume
ηgas ≪ 1 and use the ideal-gas relation for isothermal sound speed, i.e., c2

s =
Pgas/ρgas.

3.2.5 Treatment of planetesimals

We adopt a simple disk model for the solid surface density Σsolid, which is ex-
pressed as

Σsolid = Σsolid,0

( r
1AU

)−α ′
disk

(3.14)

In our model, we set α ′
disk = αdisk = 3/2 and

Σsolid,0 = ZsΣgas,0, (3.15)

where Zs is the solid-to-gas ratio, which is assumed equal to the metallicity of the
central star. The planetesimal’s mass mpl is calculated as 4πρplRpl

3/3, where ρpl
is the planetesimal’s mean density. The surface number density of planetesimals
is given as Σsolid/mpl which gives ∼ 106 /AU2 at maximum. To speed up the
numerical integration, we adapt super-particles, which represent the orbits of
several planetesimals, for the integration of planetesimal orbits.

We follow the orbital motion of super-particles, each of which contains sev-
eral equal-size planetesimals. The super-particles are distributed in a given ra-
dial region, where the inner and outer edges are denoted by apl,in and apl,out,
respectively. The surface number density of super-particles ns is given as

ns = ns,0

( r
1AU

)−αsp
(3.16)

where

ns,0 =
Nsp

2π
2−αsp(

apl,out/1AU
)2−αsp −

(
apl,in/1AU

)2−αsp

[
1

AU2

]
. (3.17)

Nsp is the number of super-particles used in a given simulation. In our simulation,
we set Nsp = 12,000 and αsp = 1, which distribute super-particles uniformly in
radial direction. The mass per super-particle Msp is given by

Msp(a0) =
Σsolid(a0)

ns(a0)
, (3.18)
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where a0 is the initial semi-major axis of the super-particle.
As for eccentricity and inclination, assuming that planetesimals are scattered

by their mutual gravitational interaction, we adopt the Rayleigh distribution as

the initial eccentricities e and inclinations i of planetesimals. We set ⟨e⟩1/2 =

2⟨i⟩1/2 = 10−3. The orbital angles Ω, ϖ and ε are distributed uniformly.
During the orbital integration, we judge that a super-particle has been cap-

tured by the planet once (i) the super-particle enters the planet’s envelope or
(ii) its Jacobi energy becomes negative in the Hill sphere. The planet’s radius
Rp is calculated as

Rp =

(
3Mp

4πρp

)1/3

, (3.19)

where ρp is the planet’s mean density. We consider that the planet radius is
still expanded because of the rapid gas accretion before planetary migration.
We set ρp = 0.125 g cm−3, which gives two times expanded planetary radius for
Jupiter-mass planet relative to the current Jupiter radius.

3.2.6 Model settings

In Sec. 3.3, we investigate the fundamental physics of the planetesimal accretion
onto the migrating gas giant planet. The planetesimals are initially distributed
in apl,in < r < apl,out and apl,in is fixed at 0.3AU in our simulation. The planet
is initially located in such a way that the inner boundary of the feeding zone is
consistent with the outer edge of the planetesimals disk, namely

ap,0 =
apl,out

1−2
√

3h
. (3.20)

The calculation is artificially stopped once the planet reaches the orbit of ap,f =
0.5AU. In Sec. 3.3, we investigate the planetesimal accretion in the reference
case, where τtide,0 = 105 yr, Rpl = 107 cm, apl,out = 20 AU and Mp = 10−3Ms. In the
reference case, the total amount of planetesimals are Mtot ∼ 43M⊕. The choices
of the parameter values for the reference model are summarised in Table 3.1. In
Sec. 3.4, we perform a parameter study for different values of τtide,0, Rpl, apl,out
and Mp and investigate their effects on the captured heavy-element mass.

Again, in this study, to focus on the effect of planetary migration on the
planetesimal accretion, we do not consider planetary growth nor disk evolution.
While our setup is simplified, it allows us to identify the parameters that strongly
influence the planetesimals orbital evolution and the efficiency of planetesimal
accretion. This is discussed in detail in Sec. 3.5.

3.3 Results in reference case

3.3.1 Dynamics of planetesimals around a migrating planet

Figure 3.1 shows three snapshots of the orbital evolution of planetesimals for
the reference case in the semimajor-axis vs. eccentricity plane. In each panel,
the migrating planet is represented by the orange circle, while planetesimals of
Ẽjacobi > 0 and Ẽjacobi < 0 are indicated by the red and blue circles, respectively.
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Ms Mass of central star 1.0 M⊙
Zs Metallicity of central star 0.018 -
Mp Mass of planet 1.0 MJup
Rp Radius of planet eq. (3.19)
ρp Mean density of planet 0.125 g cm−3

ap,0 Initial semi-major axis of planet eq. (3.20)
ap,f Final semi-major axis of planet 0.5 AU
τtide,0 Scaling factor of migration timescale 1.0×105 yr
Σdisk,0 Surface density of disk gas at 1AU 1.7×103 g/cm2

Tdisk,0 Temperature at 1AU 280 K
αdisk Exponent of disk gas profile 3/2 -
βdisk Exponent of disk temperature profile 1/2 -
Rpl Radius of planetesimal 1.0×106 cm
apl,in Inner edge of planetesimal disk 0.3 AU
apl,out Outer edge of planetesimal disk 20 AU
αsp Exponent of test particle distribution 1 -
ρpl Mean density of planetesimal 2.0 g cm−3

Nsp Initial number of super-particles 12 000 -

Table 3.1: Parameters used in the reference model.

The positions of the three mean motion resonances (MMRs) with the planet are
indicated by the green-dotted lines. The orbital evolution of planetesimals is
summarised below.

Panel (a): As the planet migrates inward, planetesimals encounter the planet
and are trapped in the mean motion resonances; this phenomenon is referred to
resonant trapping. The planetesimals trapped in the mean motion resonances are
transported inward together with the migrating planet and their eccentricities
are highly enhanced. This phenomena is known as resonant shepherding (Batygin
& Laughlin 2015). Even entering the feeding zone, the trapped planetesimals
are not captured by the planet due to the effect of mean motion resonances. In
the resonant trapping, planetesimals are prevented from entering the planet’s
Hill sphere ( see sec. 3.3.2 for more details), so no planetesimal accretion occurs
in this phase.

Panel (b): Over the course of time, the resonantly-trapped planetesimals
start to escape from the mean motion resonances. This is because the stronger
aerodynamic drag in inner regions allows the planetesimals to escape from the
mean motion resonances. The breakup of resonant trapping was investigated
by Malhotra (1993a) in the context of the formation of Jupiter’s core and by
Goldreich & Schlichting (2014) in the context of the formation of multiple plan-
etary systems. The break up shown in our simulation can be explained by the
overstable liblation found in Goldreich & Schlichting (2014). The eccentricity of
trapped planetesimal is excited by the planetary migration and damped by the
disk gas drag at the same time. This overstable equilibrium condition makes the
planetesimal orbit unstable and breaks the resonant trapping.

Panel (c): In the further inner region, the disk gas becomes dense enough
that the resonantly-trapped planetesimals have their eccentricities damped faster
than the planetary migration and, therefore, they are outside the feeding zone.
We refer to this phenomenon as aerodynamic shepherding, which was found by
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Figure 3.1: Snapshots of the orbital evolution of planetesimals for (a) t =
305,752 yr, (b) 656,093 yr, and (c) 796,229 yr in the reference case (see Table 3.1
for the setting). The horizontal and vertical axes are the semi-major axis and
eccentricity, respectively. The red and blue circles indicate the planetesimals with
positive and negative values of the Jacobi energy, respectively; the orange circle
represents the migrating planet. The green dotted lines indicate the positions of
2:1 and 3:2 mean motion resonances with the planet.

Tanaka & Ida (1999) in the context of terrestrial planet formation.
Figure 3.2 shows the temporal change in the cumulative mass of captured

planetesimals. The semi-major axis of the migrating planet is shown in the top
x-axis. We find that most of the accreted planetesimals are captured mainly in
the period between 4 × 105 and 7 × 105 years, when the planet migrates from
∼ 9 to ∼ 3 AU; hereafter, we call such a region the the sweet spot. As shown
in Fig. 3.1, the resonant shepherding and the aerodynamic shepherding work
effectively for t ≲ 4 × 105 yrs(ap ≳ 9AU) and t ≳ 6 × 105 yrs(ap ≲ 3AU),
respectively. Most of the planetesimals are captured when both shepherding pro-
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Figure 3.2: The temporal change in the cumulative mass of captured planetes-
imals in the reference case (see Table 3.1 for the setting). Top x-axis shows the
semi-major axis of the migrating planet.

cesses are inefficient. This result demonstrates that the resonant shepherding and
the aerodynamic shepherding inhibit planetesimal capture by a migrating giant
planet. The cumulative captured mass at the end of the calculation (hereafter,
the total captured mass Mcap,tot) is found to be ∼ 6 M⊕, which corresponds to
∼ 14% of the total mass of the available planetesimals (∼ 43 M⊕ of planetesimals
were distributed at the beginning of the simulation).

3.3.2 Role of accretion band

Here, we focus on the orbital evolution of each planetesimals. Figure 3.3 show
the orbital evolution of a single planetesimal initially located (a) at 18.0AU
(between the 3 : 2 and 2 : 1 mean motion resonances) and (b) 12.2AU (inner
than 2 : 1 mean motion resonance), respectively. In the reference case, 3 : 2 and
2 : 1 mean motion resonances are initially located around 20.1AU and 16.6AU,
respectively.

In the case of panel (a), the planetesimal is first trapped by the 3 : 2 mean
motion resonance. After trapped in the resonance, the convergence in the orbits
is halted and the eccentricity starts to increase with the planetary migration.
As the planet migrates inward, the aerodynamic gas drag from the disk gas
becomes stronger because the planetesimal is shepherded into the inner disk
and the eccentricity is excited higher value. Both effects make the aerodynamic
gas drag strong (Adachi et al. 1976, see also eq. (3.24)). Around t ∼ 4×105yr,
the eccentricity reaches equilibrium value. Under the equilibrium condition,
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Figure 3.3: Orbital evolution of a single planetesimal initially located at (a)
18.0AU and (b) 12.2AU on b̃-ẽ plane. Gray areas show the 2 : 1 and 3 : 2 mean
motion resonances. The dashed black line shows the boundary of the feeding
zone. The color-coding of dots is done according to the simulation time.

the planetesimal orbit becomes unstable due to the overstable libration. As a
result of the overstable libration, the planetesimal escapes from the resonance.
Being trapped in the resonance, the resonant argument converges to ∼ 0 and the
conjunction point is aligned with the perihelion of the planet, which prevents
close encounters between the trapped planetesimals and the planet.

In the case of panel (b), the planetesimal is first trapped by the 2 : 1 mean
motion resonance. In contrast to the case of panel (a), the planetesimal once
enters the feeding zone, but then gets out of the feeding zone through the 2:1
mean motion resonance before escaping the resonant trapping. This is because
the transport of the resonantly-trapped planetesimal to inner high-density region
leads to a lowering of the equilibrium eccentricity. After escaping from the 2:1
resonance, the planetesimal undergoes other resonant trappings. We find that
the planetesimal escaping from the 2:1 resonance is trapped in the 3:2 resonance.
After staying in the 3:2 resonance for a while, the planetesimal ends up entering
the feeding zone. Because of the same reason as the 3:2 resonant trapping,
the planetesimal never enters the Hill sphere during being trapped in the 2 : 1
resonant trapping.

Almost all other planetesimals obey the similar orbital evolution during the
planetary migration phase, because 2 : 1 and 3 : 2 mean motion resonances sweep
the planetesimal disk. The way for planetesimals to enter the feeding zone is
limited to the regions where the mean motion resonances cross the feeding zone
boundary. Hereafter, we call the regions as accretion bands. In the reference
case, there are two accretion bands, 2 : 1 mean motion resonance and 3 : 2 mean
motion resonance.

From the result in the reference case, we find that: (i) planetesimals enter
the feeding zone through the accretion bands, (ii) to be captured by the planet,
planetesimals have to escape from the resonant trapping. In the following sec-
tions, we derive the conditions required for planetesimal accretion analytically
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based on these findings.

3.3.3 Analytical expressions for sweet spot

As shown above, mean motion resonances play important roles in the accretion
of planetesimals onto a migrating planet. Hereafter, we focus on the 1st-order
inner resonances with the migrating planet (or j : ( j−1) resonances). Trapped
planetesimals suffer from resonant perturbation and aerodynamic gas drag. The
Lagrange’s equation of motion under the aerodynamic gas drag is given as

ȧ = 2( j−1)Craesinφ − a
τdamp,a

, (3.21)

ė =−Cr sinφ − e
τdamp,e

, (3.22)

where τdamp,a and τdamp,e are the aerodynamic damping timescales for semi-major
axis and eccentricity, which are given as (Adachi et al. 1976)

τdamp,a =
τdamp,0

2
{
(0.97e+0.64i+ |ηgas|)ηgas

}−1
, (3.23)

τdamp,e = τdamp,0
(
0.77e+0.64i+1.5|ηgas|

)−1
, (3.24)

where

τdamp,0 =
2mpl

CdπRpl
2ρgasvK

. (3.25)

Note that we neglect the high order terms in eccentricity here; however, the
eccentricity of the trapped planetesimals is easily excited to e2 ∼ 0.1. Even for
this approximation, the analysis of the sweet spot shown below reproduces the
numerical results well.

3.3.3.1 Orbital evolution under resonant trapping

Hereafter, we consider the case where the resonant trapping occurs. The period
ratio between the planet and trapped planetesimal is kept to be

j−1
j

=
np

n
=

(
a
ap

)3/2

= const., (3.26)

where np is the mean motion of the planet. Taking a time derivative of eq. (3.26),
we find

a
ȧ
=

ap

ȧp
=−τtide,a. (3.27)

Using eqs. (3.21), (3.22), (3.27) and τdamp,a ≫ τtide,a, we obtain

ė =
1

2( j−1)eτtide,a
− e

τdamp,e
, (3.28)

sinφ =− 1
2( j−1)Creτtide,a

. (3.29)
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Just after trapped into the resonances, e is small and ė is positive. Equa-
tion (3.28) indicates that e increases on a timescale ∼ e2 τtide,a (≪ τtide,a)
and reaches an equilibrium value. Solving eqs. (3.28) and (3.29) with ė = 0, we
obtain the equilibrium eccentricity and resonant argument as

eeq =

{
1

2( j−1)
τdamp,e

τtide,a

}1/2

, (3.30)

sinφeq =−
eeq

Crτdamp,e
. (3.31)

In contrast to the eccentricity, the inclination of the planetesimals are not excited
by the migration planet because the planetesimals are far from the planet. When
e ≫ i and e ≫ ηgas, both are written approximately as

eeq ∼
{

1
1.54( j−1)

τdamp,0

τtide,a

}1/3

, (3.32)

sinφeq ∼−
0.77eeq

2

Crτdamp,0
. (3.33)

In our simulation, since τdamp,0/τtide,a is assumed to ∝ a11/4, eeq is higher at larger
semi-major axes. Remember that we neglect the high order terms in eccentricity
and the equilibrium eccentricity is smaller than that given in eq. (3.30) for e≳ 0.3.

3.3.3.2 Condition for aerodynamic shepherding

The trapped planetesimals first undergo a rapid excitation of eccentricity and
have their eccentricities gradually reduced after the equilibrium condition is
reached. As shown in sec. 3.3.2, planetesimals flow into the feeding zone through
the accretion bands. From the above analysis, the condition required for entering
the feeding zone is that equilibrium eccentricity eeq is larger than the eccentricity
where the resonance centre crosses the feeding zone boundary ecross. Substituting
Ejacobi = 0 and a/ap = ( j−1/ j)2/3 into eq. (2.39), ecross is obtained as

ecross =

1− 1
cos2 i

(
j

j−1

)2/3
{

3
2
+

9
2

h2 − 1
2

(
j

j−1

)2/3
}2
1/2

. (3.34)

The required condition for trapped planetesimals to enter the feeding zone through
the accretion bands is given

1.54( j−1)ecross
3 <

τdamp,0

τtide,a
. (3.35)

The eccentricity of the crossing point ecross is a function of Mp/Ms and j, ac-
cording to eq. (3.34). Figure 3.4 shows the relationship between ecross/h and
Mp/Ms for different values of j. Note that as the planet mass increases, feed-
ing zone expands and the point where the resonance centre crosses the feeding
zone boundary disappears once the planetary mass exceeds a certain value. The
accretion bands change with the planetary mass, e.g. there are three accretion
bands j = 2,3,4 when Mp/Ms = 10−3.5, however there is only one accretion band
j = 2 when Mp/Ms = 10−2.5.
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Figure 3.4: The dependence of the eccentricity of the crossing point ecross on
the mass ratio Mp/Ms. Solid lines show the cases of j = 2 (red), j = 3 (green),
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3.3.3.3 Condition for resonant breaking

Planetesimals trapped in the mean motion resonances escape from the resonant
trapping due to the aerodynamic force. Under the forces damping and enhancing
planetesimal eccentricity, the orbit of the trapped planetesimal becomes unstable
and starts to oscillate. Once the amplitude of oscillation exceeds the resonant
width, resonant trapping is broken. This phenomena is called overstable libra-
tion and found by Goldreich & Schlichting (2014). They derived the condition
required for instability to grow, which is given by

τa < 0.30

{
j3/2

( j−1)
Mp

Ms

}−2/3

τe, (3.36)

where τa and τe are timescales of change in semi-major axis and eccentricity.
Adapting this equation to our model, we use τa = τtide,a, τe = τdamp,e. Sub-

stituting eqs. (3.24) and (3.30), we obtain the breaking condition for resonant
trapping due to overstable libration as

3.29
(

j
j−1

)3/2 Mp

Ms
<

τdamp,0

τtide,a
. (3.37)

Even once this condition is achieved, it takes time ∼ τdamp,e for the instability
to grow. If τdamp,e > τtide,a, the trapped planetesimal is shepherded into the
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Figure 3.5: The accretion rate of planetesimals with the semi-major axis of the
migrating planet. Vertical solid, dashed and dotted lines show the boundaries
of the sweet spot written by eqs. (3.35), (3.37) and (3.38). The red lines are for
the case of j = 2 and the green lines are for j = 3. The filled areas are called the
sweet spots in this thesis.

inner disk region before escaping the resonance. The second condition required
for overstable libration is τdamp,e < τtide,a and approximated into

τdamp,0

τtide,a
< 0.54( j−1)−1/2. (3.38)

3.3.3.4 Short summary and comparison with the numerical result

The location of the sweet spot is determined by the following two conditions,

1.54( j−1)ecross
3 <

τdamp,0

τtide,a
,

3.29
(

j
j−1

)3/2 Mp

Ms
<

τdamp,0

τtide,a
< 0.54( j−1)−1/2,

characterised by the ratio of the gas drag damping timescale τdamp,0 and the
planetary migration timescale τtide,a. These equations could apply to general
cases where the disk model and planetary migration model are different from
those in our model.
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In the reference model, the timescale ratio is written as

τdamp,0

τtide,a
=

∣∣∣∣τdamp,0

τtide,a

∣∣∣∣
1AU

(
j−1

j

)1/3

a11/4, (3.39)

=

∣∣∣∣τdamp,0

τtide,a

∣∣∣∣
1AU

(
j−1

j

)13/6

ap
11/4, (3.40)

where ∣∣∣∣τdamp,0

τtide,a

∣∣∣∣
1AU

= 4.2×10−3
(

Rpl

107 cm

)(
τtide,0

105 yr

)−1

. (3.41)

Figure 3.5 shows the accretion rate of planetesimals in the reference model
with the location of the sweet spot given by above equations. Equations (3.35),
(3.37), (3.38) and (3.40) give the location of the sweet spot 5 AU ≲ ap ≲ 10 AU
for j = 2 and 1 AU ≲ ap ≲ 7 AU for j = 3, which covers the area where the
accretion rate takes high values as ≳ 10−5 M⊕/yr. We conclude that the above
equations reproduce the numerical results in the reference model well.

3.3.4 Dependence on the initial semi-major axis

Figure 3.6 shows the fraction of captured planetesimals as a function of their
source semi-major axis a0. Note that the sweet spots are also plotted, same as
Fig. 3.5, but as a function of a instead of ap. From a physical point of view,
the histogram can be divided into three regions including (1) a0 < 5 AU, (2)
5 AU < a0 < 15 AU, (3) 15 AU < a0 < 20 AU. In the first region, where the
sweet spots for j = 2 and j = 3 cover, the capture fraction is quite small. This is
because planetesimals initially located in the first region are shepherded by the
resonance to the region inner than the sweet spot before escaping the resonant
trapping. Those from the second region are first trapped in the 2:1 mean motion
resonance and, then, about 20-40 % of them are captured by the planet. The
planetesimals from the third region are trapped in 3:2 mean motion resonance
and, then, less than 10 % of them are captured by the migrating planet.

The difference in capture probability between the second and third regions
arises from the difference of the mean motion resonances by which planetesimals
are first trapped. As a result, the dynamical configuration of planetesimals inside
the feeding zone is changed. The main difference is the planetesimals eccentricity
when the resonant trapping is broken; the eccentricity of planetesimals from the
third region ẽ ∼ 7 is higher than that of planetesimals from the second region
ẽ∼ 3 as shown in Fig. 3.3. Since the capture probability decreases with increasing
eccentricity (Ida & Nakazawa 1989), the capture probability for the third region
is smaller than that for the second one.

From the results shown in Fig. 3.5 and Fig. 3.6, we conclude that planetes-
imals initially located outer than the sweet spots are shepherded by the mean
motion resonances into the sweet spots and up to ∼ 40% of shepherded plan-
etesimals are captured by the planet.
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Figure 3.6: Fraction of planetesimals captured by the planet versus their source
semi-major axis for the reference case. Red and green filled area show the sweet
spots for j = 2 and j = 3. The red and green vertical solid lines are initial
positions of j = 2 and j = 3 1st-order mean motion resonances. The distribution
of capture fraction is divided into the three regions, where inside the sweet spot,
The bin width of the histogram is 0.3 AU.

3.4 Results of parameter studies

3.4.1 Parameter study of planetesimal accretion

As shown in the reference model, the accretion of planetesimals onto a migrating
planet occurs in the sweet spot and the location of the sweet spot depends on
the ratio of timescales τdamp,0 to τtide,a. In this section, we perform a parameter
study where we change the planet’s migration timescale τtide,0 (see eq. (3.5)),
the radius of planetesimals Rpl, the size of the planetesimal disk apl,out (or the
initial position of the planet ap,0) and planet’s mass Mp, in order to investigate
the effects of these parameters on the shepherding processes and the capture
processes of planetesimals.

3.4.2 Dependence on planetesimal radius

First, we perform a parameter study for the size of planetesimals. The damping
timescale τdamp,0 increases with the size of planetesimals, so the location of the
sweet spot is closer to the central star for larger planetesimals. We change the
size of planetesimals from 105 cm to 108 cm (or ∼ 0.01M⊕). The assumption that
mutual gravitational interaction of planetesimals is negligible is not correct for
large planetesimals of Rpl ∼ 108 cm. This wide parameter range, nevertheless, is



3.4 Results of parameter studies 37

 0  2  4  6  8  10  12

Captured Mass [M⊕]
-0.2  0  0.2  0.4  0.6  0.8  1  1.2

Semi-Major Axis of Planet log10 ap/AU

 5

 5.5

 6

 6.5

 7

 7.5

 8

P
la
ne
te
si
m
al

 
R
ad
iu
s 
lo
g
10

 
R
pl
/c
m

-7 -6.5 -6 -5.5 -5 -4.5 -4
Accretion Rate log10 dMcap / dt [M⊕/yr]

j=2
j=3
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Figure 3.9: Same as Fig. 3.7, but for the results of the parameter study regarding
the migration timescale τtide,0.

useful to deepen a physical understanding of the effect of the damping timescale
on planetesimal accretion.

Figure 3.7 shows the results of the parameter study regarding the size of
planetesimals Rpl. In the left panel, the accretion rate of planetesimals is shown
as a color contour on a plane of the semi-major axis of the migrating planet
and the planetesimal radius. The inner and outer boundaries of the sweet spot
derived in sec. 3.3.3 are shown with solid and dashed lines. Red lines are for
j = 2 and yellow lines are for j = 3. In the right panel, the total mass of captured
planetesimals are plotted as a function of the planetesimal radius.

The location of the sweet spot is found to be well reproduced by the analytical
expressions derived in sec. 3.3.3. The maximum accretion rate and the total
captured amount of planetesimals take higher values for larger planetesimals.
This is because as the sweet spot moves inward, the amount of planetesimals
shepherded into the sweet spot increases. More planetesimals are shepherded
into the sweet spot in the case of larger planetesimals, where the sweet spot
locates farther from the initial planet location (or closer to the central star).
Figure 3.8 is the same as Fig. 3.6, but for the cases of Rpl = 105 cm (red),
Rpl = 106 cm (green), Rpl = 107 cm (blue) and Rpl = 108 cm (black). The region
where the capture fraction takes high values ∼ 0.3 shifts with the sweet spot.
From the above results, we conclude that the amount of captured planetesimals
increases with the amount of planetesimals shepherded by the migrating planet
before the planet reaches the sweet spot.

3.4.3 Dependence on migration timescale

Next, we perform a parameter study for the planetary migration timescale. The
location of the sweet spot would be closer to the central star for faster planetary
migration. We change the scaling factor of migration timescale τtide,0 from 104 yr
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Figure 3.10: The change in the phase angle of a planetesimals initially located
at a0 = 13.8 AU. Panel (a) shows the case of τtide,0 = 104 yr and panel (b) shows
the case of τtide,0 = 105 yr.

to 106 yr.
Figure 3.9 shows the results of the parameter study regarding τtide,0. The

sweet spot is found to locate closer to the central star for faster planetary migra-
tion, or smaller τtide,0. The total amount of captured planetesimals also increases
with decreasing τtide,0. In the right panel, the results of parameter study in Rpl are
also plotted with grey circles. The right axis shows the ratio of the timescales at
1AU. Except for the cases of τtide,0 ≲ 104.6yr, the results of the parameter study
in τtide,0 are almost same as the results of the parameter study in Rpl, because
the ratio of the timescales τdamp,0 and τtide,a takes the same value.

The results, however, differ in the cases of fast planetary migration τtide,0 ≲
104.6 yr. This is because the planetary migration is too fast for mean motion
resonances to stably trap the planetesimals. As discussed in sec. 2.2, the con-
dition required for resonant trapping is that the timescale for planetesimals to
across mean motion resonances is longer than the libration timescale. As shown
in Fig. 2.2, stable resonant trapping is difficult for fast planetary migration as
τtide,0 ∼ 104 yr.

In this case, the planetesimals are barely trapped into the resonances, but
the resonant trapping is unstable due to the fast planetary migration. Fig-
ure 3.10 shows the changes in the phase angle of planetesimals initially located
at a0 = 13.8 AU in the cases of (a) τtide,0 = 104 yr and (b) τtide,0 = 105 yr. In
panel (a), phase angle continues libration after trapped into the resonance. Fast
planetary migration perturbs the orbits of trapped planetesimals and accelerates
the overstable libration. The resonant trapping is broken earlier in the case of
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Figure 3.11: Same as Fig. 3.7, but for the results of the parameter study
regarding planetary mass Mp.

τtide,0 = 104 yr than in the case of τtide,0 = 105 yr, which results in the expansion of
the sweet spot outward. The outer edge of the sweet spot expands, however, the
total mass of captured planetesimals does not increase with decreasing τtide,0 for
τtide,0 ≲ 104.6 yr. This is because fast planetary migration breaks the resonant
trapping as soon as the trapped planetesimal reaches the equilibrium condition.
The planetesimal in panel (a) escapes from the resonant trapping with e ∼ 0.7
and that in panel (b) with e ∼ 0.4. The difference in the eccentricities makes
the difference of the capture probability, thus the total mass of captured plan-
etesimals does not increase with the expansion of the sweet spot in the cases of
τtide,0 ≲ 104.6 yr.

3.4.4 Dependence on planetary mass

Next, we perform a parameter study for the mass of migrating planet. The loca-
tion of the sweet spot depends on the planetary mass. We change the planetary
mass Mp/Ms from 10−4 to 10−2.

Figure 3.11 shows the results of the parameter study regarding Mp. As shown
in the right panel, the total mass of captured planetesimals changes with the
planetary mass in a non-monotonic manner and takes local maxima at Mp/Ms ∼
10−3.6, 10−3.3, 10−2.7 and 10−2.2 local and minima at 10−3.5, 10−3.0 and 10−2.5.
The global decreasing trend with increasing planetary mass comes from that the
inner boundary of the sweet spot moves outward. The periodical change reflects
the change in the sweet spot width, as shown in the left panel.

The periodical change of the total mass of captured planetesimals comes from
the shift of the effective accretion bands. The feeding zone boundary expands
with the planetary mass. The cross points between the resonances and the
feeding zone boundary change with the planetary mass, and some of the cross
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points disappear for larger planetary mass as shown in Fig. 3.4. Figure 3.12 shows
the total mass of planetesimals that enter the feeding zone, or the total mass flow
of planetesimals, as a function of their period ratio with the migrating planet at
the time of entry. From top panel to bottom panel, planetary mass is Mp/Ms =
1.0× 10−4, Mp/Ms = 2.0× 10−4, Mp/Ms = 7.9× 10−4 and Mp/Ms = 1.6× 10−3,
respectively. In the case of Mp/Ms = 1.0× 10−4, effective accretion bands are
3 : 2, 4 : 3 and 5 : 4 mean motion resonances. As the planetary mass increases,
the effective accretion bands shift for those with smaller j. Accretion bands of
5 : 4, 4 : 3 and 3 : 2 resonances are disappear in the case of Mp/Ms = 1.6×10−3.

3.4.5 Dependence on size of planetesimal disk

Finally, we perform a parameter study for the size of the planetesimal disk apl,out.
We change the size of planetesimal disk apl,out from 1 AU to 50 AU.

Figure 3.13 shows the total mass of captured planetesimals Mcap,tot as a func-
tion of apl,out. When apl,out ≲ 6 AU, Mcap,tot decreases rapidly with the decreasing
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Figure 3.13: Total captured amount of planetesimals as a function of the plan-
etesimals disk size apl,out. The dashed line show the total disk mass. The red
and green areas show the sweet spot of j = 2 and j = 3, respectively.

apl,out. This is because there are no planetesimals which are shepherded into
the sweet spot from the region outer than the sweet spot. On the other hand,
when apl,out ≳ 6 AU, Mcap,tot increases with the increasing apl,out almost linearly
with the total mass of planetesimals used in the simulation. In this case, the
mass of planetesimals shepherded into the sweet spot increases with apl,out. The
capture fraction of planetesimals initially located between the outer boundary
of the sweet spot and 2 : 1 mean motion resonance is almost constant as shown
in Fig. 3.6, which results in the constant increase with the total mass of plan-
etesimals.

3.5 Discussion

3.5.1 Location of sweet spot in evolving protoplanetary disk

The location of the sweet spot depends on the ratio of the two timescales, plan-
etary migration and aerodynamic gas drag. Here we discuss the effect of disk
structure on the timescale ratio.

In the classical picture of the Type II migration (e.g. Lin & Papaloizou 1993),
the planet migrates with a deep gap opened by the planet itself. The radial gas
flow is halted by the gap and the planet migrates with the accretion gas. Recent
hydrodynamic simulations, however, revealed that the gap bottom is not so deep
and the gas can cross the gap (Kanagawa et al. 2015, 2016, 2017). In this case,
the planetary migration is not in the classical regime. Kanagawa et al. (2018)
found that even if a gap is opened by the planet, the torque exerted onto the
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planet is given by a similar expression to that for the Type I regime. The
migration timescale in the new type II regime is written as

τtide,a,II ∼
1
2c

(
Mp

Ms

)−1(rp
2Σgap

Ms

)−1(
hs

rp

)2

ΩK
−1, (3.42)

where c is a constant estimated as 1−3 and Σgap is the surface density of disk
gas at the gap bottom. Σgap depends on the unperturbed surface density of disk
gas Σgas and given from the hydrodynamic simulations of Kanagawa et al. (2017)
as

Σgap =
Σgas

1+0.04K
, (3.43)

with

K =

(
Mp

Ms

)2(hs

rp

)−5

αvis
−1, (3.44)

where αvis is the alpha parameter for disk gas viscosity (Shakura & Sunyaev
1973). Assuming 0.04K ≫ 1, we obtain

τtide,a,II ∼
0.02

c
αvis

−1
(

rp
2Σgas

Mp

)−1(
hs

rp

)−3

ΩK
−1, (3.45)

∝ Σgas(rp)
−1
(

hs

rp

)−3

. (3.46)

The damping timescale of aerodynamic gas drag τdamp,0 also depends on the disk
structure (see eq. (3.25)) as

τdamp,0 =
8
√

2π
3Cd

ρplRpl

Σgas

hs

rpl
ΩK

−1, (3.47)

∝ Σgas(rpl)
−1 hs

rpl
. (3.48)

Note that we assume that the planetesimals trapped in mean motion resonances
are outside the gap. If the disk viscosity is small, however, the gap slope reaches
the resonances and the damping timescale increases a few times. For simplicity,
we neglect the effect.

From the above discussion, the ratio of the two timescales is given as

τdamp,0

τtide,a,II
= 1.21×10−6C−1

(
Mp

Ms

)−1( rp

1AU

)4−2βdisk
(

j
j+1

)−2γ/3

, (3.49)

with

C =
( αvis

10−3

)−1
(

ρpl

2g/cm3

)−1( Rpl

107 cm

)−1(Ms

M⊙

)(
|hs/r|1AU

0.03

)4

, (3.50)

γ =−αdisk +
βdisk

2
− 1

2
. (3.51)

Equation (3.49) indicates that the surface gas density profile only weakly affects
the ratio of timescales, which is found to depend not explicitly on Σgas and

weakly on αdisk, namely, ( j/ j+1)2αdisk/3. This means that while a circumstellar
disk evolves during the planetary formation stages, the timescale ratio hardly
changes, which also means the location of the sweet spot is fixed during the
planetary formation stage.
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Figure 3.14: Same as Fig. 3.10, but (a) for the case with artificial perturbation
given by eq. (3.52) and (b) without artificial perturbation.

3.5.2 Comparison with Tanaka & Ida (1999)

From our numerical calculation, we have found that mean motion resonances
and resonant breaking play important roles in the accretion of planetesimals
onto a migrating planet. Here, we compare our results with those in Tanaka
& Ida (1999), where resonant traps are broken instantaneously by artificial per-
turbations. First, we add artificial perturbations in the same way as Tanaka &
Ida (1999). We randomise the phase angle by adding displacements in orbital
elements except a, e and i. The size of the displacement is set as

∆θ = 2π fp, (3.52)

where fp is a scaling factor of perturbation strength and randomly given from
−0.01 to 0.01. We add ∆θ to Ω, ϖ and ψ every conjunction time. As shown
in eq. (2.24), the resonant width is larger for Jupiter-mass planets than the
Earth-mass planet considered in Tanaka & Ida (1999). Even under this strong
perturbations (1 % displacement in phase angle every conjunction time), mean
motion resonances with a Jupiter mass planet are effective in trapping planetesi-
mals and resonance shepherding occurs. However, resonant trapping is weakened
and overstable libration is accelerated. Figure 3.14 shows the temporal change
in the phase angle in the case with artificial perturbation. Resonant trapping
occurs in both cases but the time of resonant breaking is much earlier than that
in the case without the perturbation.

Adding this artificial perturbation, we perform a parameter study regarding
planetary mass Mp/Ms, same in sec. 3.4.4. Figure 3.15 shows the results of the
parameter study with the strong artificial perturbations. In the right panel,
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Figure 3.15: Same as Fig. 3.11, but for the results of a parameter study for
planetary mass Mp with the artificial perturbations (see Eq. (3.52)).

the results with (cross) and without (open circle) artificial perturbations are
plotted. Due to the artificial perturbations, the sweet spot shifts outward and the
total mass of captured planetesimals is reduced. The black solid line shows the
condition of shepherding obtained in Tanaka & Ida (1999) (see eq. (2.47)). This
equation shows the inner boundary of the sweet spot in the case where resonant
traps are perfectly broken. Comparing the results with and without artificial
perturbations, although it might sound opposite to intuition, we conclude that
resonant trapping leads to shifting the sweet spot inward and enhancing the
accretion of planetesimals due to the effect of accretion bands.

3.5.3 Model limitation

Here, we discuss the assumptions used in our model. We assume that all solid
materials are in the form of the planetesimals and the formation of embryos or
other protoplanets are neglected. In addition, planetesimals are treated as test
particles in our model. This manipulation neglects collision between planetes-
imals and gravitational force of planetesimals on a migrating planet. Here, we
discuss these effects.

In our simulation, we considered the single planet migration, however, when
a gas giant planet starts to migrate, many other planets may exist within the
orbit of the gas giant in the same system. If the relative radial distance between
the gas giant planet and other planets decreases due to their different migration
timescales (converging process), the planets ahead of the gas giant planet could
add the gravitational perturbation upon planetesimals trapped in mean motion
resonances, which would amplify the libration of their orbits, thereby breaking
the resonant shepherding process as same as the artificial perturbations added
in sec. 3.5.2. Thus, in the converging processes, the existence of other planets
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is expected to reduce the efficiency of capture of planetesimals by the migrating
giant planet. On the other hand, if the relative radial distance increases (diverg-
ing process), planetesimals would be swept up by those planets, reducing the
amount of planetesimals captured by the gas giant planet. These effects should
be investigated in future research.

The collision between planetesimals is divided into two cases. First one is
the collision between a planetesimal trapped in the resonance and a planetesimal
located outside the resonances. The eccentricity of trapped planetesimals is so
high as ∼ 0.1 and collision velocity becomes so fast as ∼ e vK. High velocity
collision largely changes the energy and angular momentum of collided planetes-
imal, which results in the change in semi-major axis and, in some cases, the
trapped planetesimal is pushed out the resonant width. Thus, collision between
planetesimals might break resonant trapping and reduce the accretion rate of
planetesimals as shown in sec. 3.5.2. This effect would be more important for
inner disk, where sweet spot locates, because number density of planetesimals is
higher in inner disk. We will investigate the effect of high velocity collision on
resonant trapping and planetesimal accretion in chap. 4.

Second one is the collision between planetesimals trapped in a resonance.
Inside the resonance, phase angle is aligned with φ ∼ 0 and relative velocity be-
tween trapped planetesimals is too small to break resonant trapping. In this case,
collisions result in the growth of planetesimals. During the planetary migration
outer than sweet spot (or before overstable libration occurs), many planetesimals
are shepherded by the inner most resonance, like 2 : 1 mean motion resonances
for Jupiter-mass planet. The surface density of planetesimals inside the reso-
nance becomes ten-times or more higher than that outside the resonance. So the
growth of planetesimals due to the mutual collision occurs and some embryos
might be formed inside the resonance. The embryo inside the resonance scatters
surrounding planetesimals, which breaks resonant trapping. The efficiency of the
resonant breaking by the embryo scattering would depends on the mass of the
embryo. Thus, the growth rate of the embryo inside the resonance is important.
The growth of planetesimals inside the resonance should be investigated by the
full N-body simulation because the effect of resonant trapping, which align the
orbit of trapped planetesimals, must be correctly included. This problem is one
of our future studies.

When many planetesimals are shepherded by the planet, the gravitational
back reaction from the shepherded planetesimals slows down the migration speed
of the planet. Given total mass of shepherded planetesimals as Mtot,sh, the mi-
gration speed becomes (Mp +Mtot,sh)/Mp times slower. For Jupiter mass planet,
the back reaction can be negligible because Mtot,sh ∼ 10M⊕ in the reference case,
but for Neptune mass planet. The slowing down of the planetary migration re-
sults in the shift of the sweet spot and reduction in the total captured amount
of planetesimals as shown in sec. 3.4.3. Thus, the back reaction of shepherded
planetesimals would weaken the dependence of sweet spot on the planetary mass
for Neptune mass planet.
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3.6 Summary of Chapter3

Planetesimal accretion during the formation of gas giant planets is a source of
the heavy elements in the interior of gas giant planets. In this chapter, we have
investigated the planetesimal accretion onto a migrating proto-gas giant planet.
We focused on the effect of mean motion resonances which was expected to
play important roles in planetesimal accretion. We have performed the direct
orbital integration of planetesimals around a migrating proto-gas giant planet,
taking into account the effects of mean motion resonances, and investigated
the fundamental physics for planetesimal accretion during planetary migration.
From the numerical results, we found the basic physics of planetesimal accretion
as follows:

• There are two shepherding processes, resonant shepherding and aerody-
namic shepherding, that act as barriers for planetesimal accreting onto a
migrating gas giant planet.

• Planetesimal accretion occurs where both shepherding processes are inef-
fective, which we call ”sweet spot” in this thesis.

• We analytically derived the required conditions for the effective planetesi-
mal accretion, which show that the location of the sweet spot is determined
by the ratio of damping timescale τdamp,0 and migration timescale τtide,a.

• The total amount of planetesimals captured by the planet increases with
the amount of planetesimals shepherded into the sweet spot during the
planetary migration.

• The captured heavy-element mass increases with the migration length al-
most linearly.

We conclude that mean motion resonances play important roles in planetesimal
accretion onto a migrating proto-gas giant planet. Comparing the results of
Tanaka & Ida (1999), although it might sound opposite to intuition, we conclude
that resonant trapping leads to shifting the sweet spot inward and enhancing the
accretion of planetesimals due to the effect of accretion bands.



Chapter 4

Break of Resonant Trapping via
High-Velocity Collisions between
Planetesimals

4.1 Introduction

Mean motion resonances play important roles in planetesimal accretion as shown
in chap. 3. Resonant trapping and break of resonant trapping control the timing
of planetesimal accretion, or location of sweet spot, which also determines the
total amount of captured planetesimals. In chap. 3, resonant trapping is broken
by the overstable libration triggered by the aerodynamic gas drag. If the other
effects break the resonant trapping more effectively than the overstable libration,
the planetesimal accretion can be changed from the results in chap. 3.

The break of resonant trapping is triggered by the perturbation on the reso-
nant arguments. The break of resonant trapping is well discussed in the planet-
planet resonances found in exoplanetary systems. The formation of compact
multi-planetary systems easily results in a formation of planet pairs trapped in
mean motion resonances (Hands et al. 2014; Hands & Alexander 2016). These
results are inconsistent with the distribution of period ratios in observed multi-
planetary systems (Fabrycky et al. 2014). To break such planet-planet reso-
nances, several mechanisms are proposed (Goldreich & Schlichting 2014; Hands
& Alexander 2016, 2018; Pichierri & Morbidelli 2020). On the other hand,
planet-planetesimal resonances can be broken by the other mechanisms. Aero-
dynamic gas drag exerts strong perturbation on trapped planetesimals. If the
radial drift timescale is much shorter than the libration timescale, the trapped
planetesimals can escape from the resonant trapping (Malhotra 1993b; Kary
et al. 1993; Kary & Lissauer 1995). Even for large planetesimals as ∼ 100km, ec-
centricities of trapped planetesimals are highly excited and strong aerodynamic
damping in eccentricity triggers overstable libration (Goldreich & Schlichting
2014) as shown in the cases of planetary migration in chap. 3. Aerodynamic gas
drag enhances the libration amplitude in the semi-major axis of trapped plan-
etesimals. Once the amplified libration in the semi-major axis exceeds the width
of the mean motion resonances, the resonant trapping is broken and the trapped
planetesimals escape from the mean motion resonances. Even in the cases with-
out aerodynamic gas drag, the break of resonant trapping occurs. Malhotra
(1993b) investigated the break of resonant trapping by adding a velocity kick on
the trapped planetesimals, which is mainly generated by the mutual collisions of

48
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Figure 4.1: Geometrical picture of impact model.

planetesimals. They found that resonant trapping could be broken by the veloc-
ity kick when the displacement in the semi-major axis brought by the velocity
kick exceeded the width of the mean motion resonances. The width of the mean
motion resonances increases with the planetary mass (see eq. (2.24) and (2.25))
and the break of resonant trapping is more difficult for larger planets (Malhotra
1993b). Velocity kicks which are strong enough to break the resonant trapping,
however, might be exerted on the trapped planetesimals in the planetary migra-
tion phase of proto-gas giant planets because the strength of the velocity kick
depends on the relative velocity between planetesimals. The relative velocity
between a planetesimal trapped in the resonance and a planetesimal outside the
resonances is more than ∼ 10% of Kepler velocity. Even for the massive planet
as Jupiter, such a high-velocity collision has a possibility to break the resonant
trapping and affect the planetesimal accretion in planetary migration phase.

In this chapter, we investigate the effect of resonant breaking on planetesi-
mal accretion. In sec. 4.2, we derive the requirement for the break of resonant
trapping, which is approximately obtained by Malhotra (1993b). We expand
the parameter region and derive a new formula for the break of resonant trap-
ping. Using the direct orbital integration, we investigate the break of resonant
trapping via velocity kick and compare the derived formula with the numerical
results in sec. 4.3. In sec. 4.4, we investigate the collision timescale of eccen-
tric planetesimals. In sec. 4.5, to investigate the effect of breaking the resonant
trapping on planetesimal accretion onto a migrating proto-gas giant planet, we
include the effect of high-velocity collisions in the orbital evolution code used in
chap. 3. In sec. 4.6, we discuss the validity of collision model and parameters
used in our simulations. We summarise this chapter in sec. 4.7.

4.2 Condition for stable resonant trapping

Malhotra (1993a) derived an analytical formula for breaking the resonant trap-
ping, however, their formula cannot reproduce the numerical results, especially
when the velocity kick is perpendicular to the velocity vector of the trapped
planetesimal. In this section, we derive a required condition for breaking the
resonant trapping including the direction of velocity kick which is neglected in
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Malhotra (1993a).
For the stable resonant trapping, perturbations exerting on the trapped plan-

etesimals must be small enough that the libration in the resonant argument φ
is small. The maximum libration amplitude ∼ 2π in resonant argument can be
converted into the maximum libration in the semi-major axis, which is defined
as resonant width and given by eqs. (2.24) and (2.25). The condition for stable
resonant trapping can be written as∣∣∣∣∫ t0+Tlib

t0

ȧptb

a
dt
∣∣∣∣≲ ∣∣∣∣∆ares

a

∣∣∣∣ , (4.1)

where ȧptb is a change in the semi-major axis due to the perturbation of the
external forces. If the perturbation is discontinuous and the timescale of the
perturbation is much shorter than the libration timescale, e.g. collision of plan-
etesimals, the external force can be regarded as an impact force. In this case,
the condition for stable resonant trapping is transformed into∣∣∣∣∆akick

a

∣∣∣∣≲ ∣∣∣∣∆ares

a

∣∣∣∣ , (4.2)

where ∆akick is a displacement of semi-major axis of the target planetesimal due
to the impact.

We consider a high-velocity collision of an impact planetesimal on a target
planetesimal trapped in the mean motion resonance. Due to the collision, the
target planetesimal obtain kinetic energy and angular momentum from the im-
pact planetesimal. The change in the velocity of the target planetesimal due to
the planetesimal collision can be regarded as a velocity kick. In order to model
the velocity kick, we parameterize the velocity kick using a scaling factor fimp
and angles of velocity kick αx̃ỹ and αz̃. The velocity kick ∆vkick is given as

∆vkick = fimpvKPz̃(αx̃ỹ)Px̃(αz̃)v̂, (4.3)

where vK is the Kepler velocity of the target planetesimal and v̂ is the unit
vector along the velocity vector of the target planetesimal. Px̃(αz̃) and Pz̃(αx̃ỹ)
are rotation matrixes around x̃ and z̃ axis by the angle αz̃ and αx̃ỹ, respectively.
Here, x̃, ỹ, z̃ are local coordinates where x̃− ỹ plane consistent with the orbital
plane of the target planetesimal and the velocity vector of the target planetesimal
consists with the ỹ axis. The geometrical picture of our model is shown in
Fig. 4.1.

First, we consider the change in the kinetic energy and the semi-major axis
of target planetesimal. Just before and after the impact, there are relations of

v0
2 = GMs

(
2

R0
− 1

a0

)
, (4.4)

v1
2 = GMs

(
2

R1
− 1

a1

)
, (4.5)

where R is the distance from the central star and subscripts of 0 and 1 indicate
before and after giving velocity kick, respectively. On the time of the impact,
R0 = R1 and the displacement in the semi-major axis ∆akick = a1 − a0 can be
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written as

∆akick

a0
=

A

1−A
, (4.6)

A =

(
v0

vK

)2
{

2
(

∆v10

v0

)
+

(
∆v10

v0

)2
}
, (4.7)

where ∆v10 = v1 − v0. The relation between ∆v10 and input parameters is

∆v10

v0
=

{
1+2 fimp

(
vK

v0

)
cosαx̃ỹ cosαz̃ + fimp

2
(

vK

v0

)2
}1/2

−1. (4.8)

From above equations, the change in the semi-major axis by the velocity kick
can be written as a function of fimp, αx̃ỹ and αz̃.

Next, we consider the change in the angular momentum and the eccentric-
ity of the target planetesimal. Just before and after the impact, the angular
momentum of the target planetesimal is given as

h0 =
√

GMsa0 (1− e02), (4.9)

h1 =
√

GMsa1 (1− e12), (4.10)

where h is the reduced angular momentum and subscripts 0 and 1 indicate before
and after giving velocity kick, respectively. The change in the angular momentum
∆hkick ≡ h1 −h0 is given as

∆hkick

h0
=−1+

(
a1

a0

)1/2(1− e1
2

1− e02

)1/2

. (4.11)

Transforming this equation, we obtain the displacement in the eccentricity ∆e ≡
e1 − e0 as

∆e
e0

=−1+

√√√√1+
1− e02

e02

{
1−
(

1+
∆hkick

h0

)2(
1+

∆a
a0

)−1
}
. (4.12)

A component of the velocity kick perpendicular to the orbital plane does not
change the absolute value of the angular momentum, so the change in the angular
momentum due to the velocity kick is

∆hkick

h0
= fimp cosαz̃

cosαx̃ỹ + e0 cos(ψ0 −αx̃ỹ)

1+ e0 cosψ0

√
1− e02

1+2e0 cosψ0 + e02 , (4.13)

where ψ0 is the true anomaly of the target planetesimal just before the impact.
From above equations, the change in the eccentricity by the velocity kick can be
written as a function of fimp, αx̃ỹ, αz̃ and ψ0.

The width of the resonance depends on the eccentricity of the target plan-
etesimal. As shown in below, however, the change in the eccentricity is less than
∼ 30% and the change in the resonant width is negligibly small. For simplicity,
we approximate that e1 ∼ e0. Substitute eq. (4.6), (4.7) and (4.8) into eq. (4.2)
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and taking terms of first order in fimp and e0, we obtain the condition for stable
resonant trapping as

fimp cosαx̃ỹ cosαz̃ ≲
1− e0 cosψ0

4

∣∣∣∣∆ares

a
(e0)

∣∣∣∣ . (4.14)

Under the appropriate approximations, the condition for the stable resonant
trapping can be written in a simple formula. The left hand side of this equa-
tion means the velocity of impact in the direction of the velocity of the target
planetesimal. As shown in this equation, the angle of the velocity kick is an
important factor for the resonant breaking.

4.3 Numerical investigation in stability of resonant trapping

Here, we numerically investigate the stability of resonant trapping. We perform
orbital integration for the system composed with a central star of mass Ms,
a planet of mass Mp and a mass-less target planetesimal, namely, the target
planetesimal is treated as a test particle.The orbit of the target planetesimal
is damped by the aerodynamic gas drag and reaches the equilibrium condition.
After reaching the equilibrium condition, we add a velocity kick on the target
planetesimal. If the change in the phase angle during one libration time is smaller
than 2π, we judge that the target planetesimal is kept in the resonant trapping;
which condition is written as

∆φ(t)≡
∫ t

t−τlib

dφ
dt̃

dt̃ < 2π, (4.15)

We integrate above equation numerically and judge the condition of resonant
trapping in every libration time.

First, we investigate the stability of the external j : j+1 mean motion reso-
nances in sec. 4.3.1, which is investigated by Malhotra (1993b). In sec. 4.3.2, we
investigate the stability of the internal j : j−1 mean motion resonances.

4.3.1 Case of external resonance

4.3.1.1 Numerical settings

First, we focus on the j : j+1 external resonances. In this case, we consider that
the planet does not migrate in radial direction and the target planetesimal is
radially drifted due to the aerodynamic gas drag. The model is basically same
as that used in Chap. 3, except for the disk model. We use a flat disk model,
namely αdisk = 0 and βdisk = 3, which gives hs = const.. Here, we set ηdisk as
an input parameter. Note that this model is unrealistic and not self-consistent,
however, useful for investigating the stability of resonant trapping.

The phase angle is given as

φ = ( j+1)λ − jλp −ϖ . (4.16)

The planetesimal is inwardly drifted by the aerodynamic gas drag and reaches
j : j + 1 resonance. Inside the resonance, the orbital elements of the target
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Figure 4.2: The change in (a) the semi-major axis, (b) the eccentricity and
(c) the resonant argument of the target planetesimal. The target planetesimal
is trapped into the 4 : 5 external resonance of the planet of Mp/Ms = 3× 10−5.
Here, we show the case of αz̃ = 0 and αx̃ỹ = 0.At t = 1.75× 104yr, the velocity
kick with fimp = 1×10−3 (red points) and 5×10−3 (blue points) are added on
the target planetesimal. The dashed lines in panel (a) show the width of the
resonance, which is written using e = e0.

planetesimal reaches equilibrium eccentricity and resonant argument, which is
given as

eeq ∼ 1.12
√

ηdisk

j+1
, (4.17)

sinφeq ∼
0.97ηdisk

( j+1)C′
rτdamp,0

. (4.18)

We consider the case which is similar to that in Malhotra (1993a). We set
Mp/Ms = 3×10−5, Rpl = 8.4×104 cm, ap = 5 AU and ηdisk = 5×10−3. The gas
density at the mid-plane of the circumstellar disk is ρgas,0 = 5.3× 10−11g/cm3,
which brings the damping timescale as τdamp,0 ∼ 1× 102 yr. After reaching the
equilibrium condition and passing the true anomaly ψ = 0, the target planetesi-
mal is impacted by a velocity kick given by eq. (4.3). fimp, αx̃ỹ and αz̃ are input
parameters which determine the strength, direction and timing of velocity kick.

4.3.1.2 Results

Figure 4.2 shows the change in (a) semi-major axis, (b) eccentricity and (c)
resonant argument of the target planetesimal in our simulation. The target
planetesimal is initially located at a = 5.85AU and radially drifted inward by the
aerodynamic gas drag. After reaching the 4 : 5 external resonance, the target
planetesimal is trapped into the resonance and reaches the equilibrium condition
with eeq ∼ 0.035. A velocity kick is added at t = 1.75×104yr with αx̃ỹ = 0, αx̃ỹ = 0
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Figure 4.3: Same as fig. 4.2, but for αx̃ỹ = π.

and ψ0 = 0. The red points are the case of fimp = 1×10−3 and blue points are
the case of fimp = 5×10−3. In the case of fimp = 1×10−3, the displacement in
the semi-major axis ∆akick is smaller than the resonant width. The resonant ar-
gument keeps libration around sinϕeq and the planetesimal keeps trapped in the
4 : 5 resonance. Due to the velocity kick, the semi-major axis and the eccentric-
ity of the target planetesimal start libration, but converge into the equilibrium
condition after a few libration time. Hereafter, we denote this result as ”sta-
ble”. In the case of fimp = 5×10−3, on the other hand, the displacement in the
semi-major axis is larger than the resonant width. The resonant argument starts
circulation and the planetesimal is eliminated from the resonant trapping. The
planetesimal, however, is radially drifted inward and trapped into the resonance
again. This is because ∆akick is positive for cosαx̃ỹ > 0. After the planetesimal
reaches the resonance, the resonant argument restarts libration. We denote this
result as ”recaptured”. Figure 4.3 shows the cases of αx̃ỹ = π. In this case, the
displacement in the semi-major axis ∆akick is negative. Unlike the case of αx̃ỹ = 0,
the planetesimal escaped from the resonant trapping cannot be trapped in the
resonance again. The resonant argument once starts circulation never stop its
circulation. We denote this result as ”escaping”.

We summarise the results of parameter study regarding αx̃ỹ and fimp in
Fig. 4.4. The green, orange and red symbols mean that the target planetesimal is
resulted in the stable, recaptured and escaping conditions, respectively. The sta-
bility of the resonance strongly depends on the angle of the velocity kick. If the
velocity kick is perpendicular to the velocity vector of the target planetesimal,
the planetesimal can be kept in the resonance even if the velocity kick is strong
as fimp ∼ 10−2. When αx̃ỹ ∼ 0, the resonance is broken for fimp ≳ 2.3× 10−3,
but recaptured by the same resonance because the target planetesimal is pushed
into the exterior of the resonance and migrated back to the same resonance by
the aerodynamic gas drag. On the other hand, when αx̃ỹ ∼ π, the resonance
is broken for fimp ≳ 2.6× 10−3 and the target planetesimal is never recaptured
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Figure 4.4: Results after giving a velocity kick on the target planetesimal
trapped in the 4 : 5 external resonance. Here we set η = 5× 10−3 and ψ0 = 0.
The green, orange and red symbols mean that the target planetesimal is kept in
the resonant trapping, eliminated from but recaptured by the same resonance,
and eliminated from the resonance, respectively. Solid lines show the estimated
boundary between stable and unstable velocity kick given by using eq.( 4.14).

by the same resonance because it is pushed into the interior of the resonance.
The black solid line shows the boundary for stable resonant trapping given by
eq. (4.14). This analytical expression consists well with the numerical results.

In Fig. 4.5, we summarise the results of parameter study regarding αz̃ and
fimp. As shown in eq. (4.14), the dependence on αz̃ is same as that on αx̃ỹ. This
is because the most important factor for resonant breaking is the displacement in
the semi-major axis ∆akick and which depends on both cosαx̃ỹ and cosαz̃. Further
more, we performed parameter studies in other cases where ηdisk = 1×10−3 and
ψ0 = π. In any cases, the analytical expression of stable resonant trapping
consists well with the numerical results.

4.3.2 Case of internal resonance

4.3.2.1 Numerical settings

Next, we focus on the j : j−1 internal resonance. The phase angle is given as

φ = jλp − ( j−1)λ −ϖ . (4.19)

Here, we consider that a protoplanet migrates inward and traps a target plan-
etesimal in the internal resonance. We use a flat disk model same as that used
in sec. 4.3.1. For simplicity, we set ηdisk = 0. The migration timescale is same
as that in chap. 3, which is given by eq. (3.5).The equilibrium eccentricity and
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Figure 4.5: Same as Fig. 4.4, but horizontal axis shows αz̃.

resonant argument are given by eq. (3.32) and eq. (3.33) as

eeq ∼
{

1
1.54( j−1)

τdamp,0

τtide,a

}1/3

,

sinφeq ∼−
0.77eeq

2

Crτdamp,0
.

We consider the similar conditions as previous subsection, but Rpl = 4 ×
104 cm, which brings the damping timescale as τdamp,0 ∼ 4× 10 yr. Here, we
set ηdisk = 0, for simplicity. The planet migrates inwardly from 10AU and the
target planetesimal initially locates at 8.3AU with i= 0. The target planetesimal
will be trapped by the 5:4 internal resonance. The migration timescale is set as
τtide,0 = 106yr. In this case, the equilibrium eccentricity is ∼ 0.019 and constant
during the whole migration process.

After reaching the equilibrium condition and passing the true anomaly ψ = 0,
the target planetesimal is impacted by a velocity kick given by eq. (4.3). fimp
and αx̃ỹ are input parameters which determine the strength and direction of the
velocity kick.

4.3.2.2 Results

As the planet migrates inward, the orbits of target planetesimal initially located
at a = 8.3AU and the planet converges, namely a/ap approaches 1. At 5 : 4
mean motion resonance, or a/ap ∼ 0.86, the target planetesimal is trapped in
the resonance and the eccentricity reaches the equilibrium value eeq ∼ 0.019. Af-
ter reaching the equilibrium condition, the velocity kick is added on the target
planetesimal. Figure 4.6 shows the change in (a) semi-major axis, (b) eccen-
tricity and (c) resonant argument of the target planetesimal when αx̃ỹ = 0. The
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Figure 4.6: The change in (a) the semi-major axis, (b) the eccentricity and
(c) the resonant argument of the target planetesimal. The target planetesimal
is trapped into the 5 : 4 internal resonance of the planet of Mp/Ms = 3× 10−5.
Here, we show the case of αx̃ỹ = 0. At t = 1.6× 105yr, the velocity kick with
fimp = 1×10−3 (red points) and 5×10−3 (blue points) are added on the target
planetesimal. In panel (a), the width of the resonance is drawn with the dashed
lines, which is written using e = e0.
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velocity kick is added at t = 1.6× 105yr. As same as the case of the external
resonance shown in sec. 4.3.1, the displacement in the semi-major axis ∆akick
is positive. When fimp = 1× 10−3, ∆akick is smaller than the resonant width,
which is shown with the dashed lines in panel (a), and the target planetesimal
is kept in the resonant trapping. The resonant argument keeps libration and the
result is ”stable”. This result is same as that in the case of external resonance.
When fimp = 5× 10−3, however, ∆akick is larger than the resonant width and
the target planetesimal is kicked out outer direction. Outside the resonances,
a/ap increases due to the planetary migration, so the target planetesimal cannot
be recaptured by the same resonance. After escaping from the 5 : 4 resonance,
the target planetesimal reaches 11 : 9 second-order resonance and, then, 6 : 5
first-order resonance. Finally, the target planetesimal is stably trapped in the
6 : 5 resonance. Figure 4.7 shows the case when αx̃ỹ = π. In this case, the dis-
placement in semi-major axis is ∆akick negative. When fimp = 5×10−3, ∆akick is
larger than the resonant width and the target planetesimal is kicked out inner
direction. The target planetesimal is recaptured by the same resonance again.

In Fig. 4.8, we summarise the results of parameter study regarding αx̃ỹ and
fimp. As same as the external resonance, the stability of internal resonance also
depends on the impact angle strongly. The main difference from the external
resonance is that target planetesimal can be recaptured by the resonance for
α ∼ π. This is because ∆akick is negative for π/2 < α < 3π/2 and the planet
migrates inwardly. The analytical expression for the boundary reproduces the
numerical results well.

From above results, we conclude that the stability of resonant trapping can
be evaluated by eq. (4.14). We performed the numerical simulations in the cases
of Mp/Ms = 3×10−5 and the 4 : 5 external resonance or 5 : 4 internal resonance
only. However, these parameters only changes the width of the resonances, thus
the derived expression can be used for other parameter cases.

4.4 Collision timescale of highly eccentric planetesimal

As shown in the previous section, resonant trapping can be broken by a velocity
kick which gives the target planetesimal a sufficient semi-major axis displace-
ment. The displacement in semi-major axis depends on the direction of velocity
kick strongly. If the velocity kick vector is perpendicular to the velocity vector of
the target planetesimal, breaking the resonant trapping is difficult. To evaluate
the break of resonant trapping, we need to know the collision timescale and the
relationship between the parameters of the velocity kick, such as fimp, αx̃ỹ and
αz̃, and collision properties, such as relative velocity, collision probability and
impact parameter. The final object of this section is deriving a timescale for
breaking a resonant trapping by the collisions of planetesimals.

First, we show the basic picture of collisions of planetesimals which we con-
sider here in sec. 4.4.1. We derive a collision frequency and collision probability
in sec. 4.4.2, then a collision timescale in sec. 4.4.3.

4.4.1 Basic picture

Around a massive migrating planet, planetesimals are divided into two char-
acteristic swarms: cold, damped planetesimal swarm out of the mean motion
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Figure 4.8: Results after giving a velocity kick on the target planetesimal
trapped in the 5 : 4 internal resonance. The green, orange and red symbols mean
that the target planetesimal is kept in the resonant trapping, eliminated from
but recaptured by the same resonance, and eliminated from the resonance, re-
spectively. Solid lines show the estimated boundary between stable and unstable
velocity kick given by using eq.( 4.14). The main difference from the cases of
external resonance is that the results are recaptured for π/2 < α < 3π/2. This
difference comes from the difference of converging processes.

resonances and hot, excited planetesimal swarm in the mean motion resonances.
Outside the mean motion resonances, the dominant excitation force is gravita-
tional scattering of planetesimals, which is so weak that eccentricities of plan-
etesimals are on the order of ≲ 10−2 (e.g. Ohtsuki et al. 2002). On the other
hand, inside mean motion resonances, the dominant excitation force is the accu-
mulated gravitational force from the planet. Mean motion resonances are strong
enough to excite the eccentricities of trapped planetesimals up to the order of
∼ 0.1 during the planetary migration. This bimodal distribution is remarkable
around a migrating proto-gas giant planet.

To investigate the break of resonant trapping, we need to consider the two
type of collisions between planetesimals: (i) collisions between planetesimals in
the same swarm, and (ii) collisions between planetesimals in the different swarms.
Inside the mean motion resonances, the resonant argument converges to ∼ 0 and
the conjunction point is aligned with the perihelion of the planet. The orbits of
trapped planetesimals take similar shapes. The relative velocity between trapped
planetesimals would be sufficiently small. On the other hand, the relative velocity
between the trapped planetesimal and the planetesimal outside the resonance,
which is in almost circular orbit, becomes ∼ evK. As shown in sec. 4.2, the former
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type collision is difficult to break the resonant trapping, however, the latter type
collision is strong enough to break the resonant trapping. In this chapter, we
consider the latter type of collisions, namely collisions between planetesimals in
the resonances (hereafter, target planetesimals) and planetesimals outside the
resonances (hereafter, impact planetesimals).

4.4.2 Collision probability of eccentric planetesimal

Collision frequency of a target planetesimal with the surrounding impact plan-
etesimals is given as a time derivative of mean collision number Ncol, which is
written as

dNcol

dt
= nimpΓcolu, (4.20)

=
3
4

ρsolid

ρpl

Rcol
2u

Rimp
3 , (4.21)

dNcol

dψ
=

3
8π

(
1− e2)3/2

(1+ ecosψ)2
ρsolid

ρpl

Rcol
2uTK

Rimp
3 , (4.22)

where nimp, Γcol and u are number density of impact planetesimals in the cir-
cumstellar disk, effective collision cross section, and relative velocity, respec-
tively. ρsolid is a density of impact planetesimals in the circumstellar disk. Rcol
is a radius of the collision cross section given as Rcol = Rtg +Rimp, where Rtg
and Rimp are radii of the target planetesimal and the impact planetesimal. In
this paper, we use a geometrical cross section for Γcol = πRcol

2, which means we
neglect the gravitational focusing effect of the target planetesimal. This manip-
ulation is appropriate for our purpose because the gravitational focusing effect
of planetesimal-size object, e.g. Rtg = 100km, can be ignored for high-relative-
velocity case as u ∼ e vK with e ≳ 0.1. To calculate the relative velocity u, we
adapt a method used in Adachi et al. (1976), the details of which are written in
Appendix B.

The structure of the planetesimal swarm is given by

ρsolid(l,z) =
Σsolid(l)√

2πhpl
exp

(
− z2

2h2
pl

)
, (4.23)

hpl(l) = l tan
〈
iimp

2〉1/2
, (4.24)

where hpl and iimp are a scale height of the planetesimal disk and the inclination
of the impact planetesimals. Σsolid is same as chap. 3 and set by eq. (3.14). l is
the radial distance of the target planetesimal from the central star.

The planetesimals in the circumstellar disk has a uniform size Rtg = Rimp =
Rpl = 107cm and a uniform density ρpl = 2g/cm3. The eccentricity and inclina-

tion of the impact planetesimals is set as
〈
eimp

2〉1/2
= 2

〈
iimp

2〉1/2
= 10−3. The

mean velocity of the impact planetesimals in the vicinity of the target plan-
etesimal is given as vimp ≃ (0,vK(l),0)polar coordinate. Using this disk model and
above equations, we can calculate the collision probability, which is defined as
normalised collision frequency

Pcol(ψ) =
dNcol/dψ∫ 2π

0 dNcol/dψ ′dψ ′
. (4.25)
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Figure 4.9: The collision probability of target planetesimal with the true
anomaly. The color of solid lines show the eccentricity of target planetesimal.

Figure 4.9 shows the collision probability as a function of true anomaly ψ .
The collisional probability becomes higher for ψ ∼ π/2,3π/2, which comes from
the higher relative velocity u. When e ≲ 0.1, Pcol is almost same at perihelion
and aphelion (ψ = 0 and π), but Pcol becomes larger at perihelion for e ≳ 0.1.
This is because the number density of the impact planetesimals at perihelion is
larger than that at aphelion, and the difference is larger for larger e.

Next we consider the angle α between the relative velocity vector u and the
velocity vector of the target planetesimal v0. α is given as

cosα =
u ·v0
|u||v0|

. (4.26)

Fig. 4.10 shows α as a function of ψ when i = 0. At ψ ∼ π/2,3π/2, where
Pcol takes maximum values, the relative velocity is almost perpendicular to the
velocity of the target planetesimal. As shown in sec. 4.2, resonant trapping is
strong for such a perpendicular impact.

4.4.3 Collision timescale of eccentric planetesimal

The collision timescale τcol is defined as a time when the mean collision number
Ncol becomes 1, which is given as

1 =
∫ τcol

0

dNcol

dt
dt, (4.27)

τcol =
2π
3

{∫ 2π

0

(
1− e2)3/2

(1+ ecosψ)2
ρsolid

ρpl

u
Rpl

dψ

}−1

. (4.28)

ρsolid and u are function of a,e, i,ϖ ,ψ . Giving i and ϖ , we can calculate τcol as
a function of a and e.

Figure 4.11 shows the collision timescale map in the a− e plane in the case
of i = 5× 10−4,ω = 0. τcol increases with a because ρsolid and u decrease with
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Figure 4.10: The angle between relative velocity u and the velocity of target
planetesimal v0 as a function of true anomaly of target planetesimal ψ . Here we
show the case where i = 0 or αz̃ = 0. The color of solid lines show the eccentricity
of target planetesimal.

a. In our model, τcol increases with ∼ a3. On the other hand, τcol decreases
with e because u increases with e: u ∼ e vK. ρsolid at perihelion also increases
with e: at a = 10 AU, for example, the perihelion is around ∼ 10AU for e = 0.05
but = 5AU for e = 0.5, which results in about 10 times higher ρsolid for e = 0.5
than that for e = 0.05. τcol is about 100 times smaller for e = 0.5 than that for
e = 0.05. When the planetesimals are shepherded by the resonant trapping, τcol
increases during the shepherding process and planetesimal collisions start when
τcol ≲ τtide,a is achieved.

4.5 Effects of resonant breaking on planetesimals accretion

Above results suggest the possibility that planetesimal collisions break the reso-
nant trapping earlier than the overstable libration, which controls the boundary
of the sweet spot as shown in chap. 3. In this section, we model the mutual col-
lision of planetesimals using the collision probability derived above. We include
the collision model in the orbital evolution code used in chap. 3. Performing the
numerical calculations, we investigate the effect of resonant breaking due to the
planetesimal collisions on the accretion of planetesimals and the location of the
sweet spot.

4.5.1 Relation between impact parameter and velocity kick

As shown in sec. 4.2, the size of velocity kick fimp and the angle of velocity kick
αx̃ỹ and αz̃ is important for breaking the resonant trapping. These parameters
must relates with the relative velocity between the target planetesimal and the
impact planetesimal u, which depends on the collision point ψ = ψ0. Not only
where the impact planetesimal collides on the target planetesimal but also how
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Figure 4.11: The collision timescale of the target planetesimal with the impact
planetesimals in the circumstellar disk in the a− e plane. Here we consider the
case of i = 5×10−4 and uniform size planetesimal disk with Rtg = Rimp = 107cm.
The distribution of impact planetesimals is same as the distribution of solid
materials in minimum mass solar nebulae.

Figure 4.12: Geometrical picture for the relationship between the relative ve-
locity u and impact parameter b. x̃, ỹ, z̃ coordinate is a Cartesian coordinate
where ỹ axis has a same direction as the relative velocity vector u.
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the impact planetesimal collides on the target planetesimal affects the velocity
kick. Here, we consider the impact parameter and the damping of velocity kick
due to the break of planetesimals.High-velocity collision like ∼ 0.1 vK results in
the partial break of planetesimals(e.g. Sugiura et al. 2018), which reduces the size
of velocity kick. We include these effects in our model using a simple geometrical
model.

We consider that the impact planetesimal collides with the target planetesi-
mal with impact parameter b and relative velocity u. The impact parameter b
is defined as a position vector measured from the centre of the impact planetes-
imal to the centre of the target planetesimal. The geometrical image of b and
u is shown in Fig. 4.12. Assuming that planetesimals have spherical shapes, we
obtain the velocity kick impacted on the target planetesimal as

∆vkick = εp
u ·b
|u||b|

, (4.29)

where εp is a parameter defining the momentum transfer efficiency, which is
1 for perfectly elastic collision and 0.5 for complete merging. If the collision
results in a break of the target planetesimal, fragments scattered from the target
planetesimal remove momentum from the impact planetesimal and εp is smaller
than unity. Now, we can obtain the velocity kick ∆vkick from collision properties
ψ0, εp and b.

4.5.2 Model and settings

We investigate the effect of resonant breaking on the planetesimal accretion rate
and the location of the sweet spot found in chap. 3. We use the same model as
chap. 3, but add a velocity kick simulating planetesimal collisions.

In the every timestep ∆t, we calculate a collision probability given as

Pcol(∆t) =
dNcol

dt
∆t. (4.30)

To calculate the collision frequency dNcol/dt, we use eqs. (4.21), (4.23) and (4.24).
We assume that the distribution of planetesimals outside the mean motion res-
onances are fixed during the planetary migration and given by the same model
used in chap. 3 (see eq. 3.14). This assumption is not self-consistent because
planetesimal distribution is largely changed by the resonant shepherding during
the planetary migration as shown in chap. 3. The surface density of planetesi-
mal inside the resonance increases with the planetary migration. However, we
focus on the collisions between the trapped planetesimals and the planetesimals
outside the resonances. Our purpose is investigating the effect of breaking the
resonant trapping triggered by the high-velocity collision of planetesimals. So we
neglect the change in the surface density profile of planetesimals for simplicity.
The validity of this assumption is discussed in sec. 4.6.1.

We also generate a random number pran in the range of 0 ≤ pran ≤ 1 in every
timestep. If Pcol(∆t) > pran, we add a velocity kick ∆v generated by eq. (4.29).
In this thesis, εp is set as an input parameter. For obtaining b, we consider a
Cartesian coordinate (ĩ, j̃, k̃), where j̃ axis consists with the relative velocity vec-

tor u, as shown in fig. 4.12. The components of b =
(

bĩ,b j̃,bk̃

)
in this coordinate
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are given in the range of

−1 ≤ bĩ
Rcol

≤ 1, (4.31)

−1 ≤
bk̃

Rcol
≤ 1, (4.32)

bĩk̃ ≡
√

bĩ
2 +bk̃

2 ≤ 1, (4.33)

and

b j̃

Rcol
=

√
1−
(

bĩk̃
Rcol

)2

. (4.34)

When the gravitational focusing effect is negligibly small, probability distribu-
tions for bĩ and bk̃ take uniform function. We generate bĩ and bk̃ randomly in
the above ranges. We perform a parameter study in εp taking from 0.01 to 1.
The other parameters are same as those of the reference model in chap. 3 (see
table. 3.1).

4.5.3 Results

Figure 4.13 shows the change in the cumulative captured mass of planetesimals.
The red, green and blue solid lines show the cases of εp = 10−2, 10−1, and
100, respectively. For comparison, the result in the reference case of chap. 3,
namely the case without planetesimal collisions, is plotted with the black dashed
line. When εp = 10−2 and 10−1, the planetesimal accretion occurs efficiently in
10AU ≲ ap ≲ 3AU, which is the same results in no collision case. On the
other hand, when εp = 100, the planetesimal accretion continues even the planet
migrates inner than 3AU where aerodynamic shepherding prevents planetesimals
to enter the feeding zone in no collision case. In this case, the displacement in
the semi-major axis due to the planetesimal collisions becomes large enough to
push planetesimals into the feeding zone. The expansion of the accretion region
is only found in the case of εp ∼ 100. When εp ≲ 10−0.2 = 0.63, the location
where planetesimal accretion occurs efficiently is barely changed by the collision
of planetesimals.

Figure 4.14 shows the change in the total mass of captured planetesimals as
a function of εp. When εp ≲ 0.1, the total captured mass is larger than that in
the no collision case. When εp ≳ 0.1, however, the total captured mass is smaller
than that in the no collision case. This is because the collision of planetesimals
have two effects on planetesimal accretion. First one is the acceleration of break-
ing the resonant trapping of 2 : 1 resonance which is triggered by the overstable
libration in the no collision case. Fig. 4.15 shows the fraction of planetesimals
captured by the planet as a function of their source semi-major axis. In the no
collision case, planetesimals initially located around the sweet spot cannot be
captured by the planet because they are shepherded in the region inner than
the sweet spot before escaping the resonant trapping. As shown in this figure,
those planetesimals can be captured by the planet because the collisions of plan-
etesimals break the resonant trapping earlier than the overstable libration and
prevent the planetesimals shepherded inner than the sweet spot. This effect is
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Figure 4.13: The change in cumulative captured mass of planetesimals. The
semi-major axis of migrating planet at each calculation time t is written in the
upper x axis. The red, green and blue solid lines show the cases of εp = 10−2,
10−1 and 100, respectively. The thin lines show the cases of 10−1 < εp < 100,
in which line colors change from green to blue with increasing εp. The black
dashed line show the result of the reference case in chap. 3, namely there are no
planetesimal collisions.

more remarkable for larger εp. Second effect is the weakening of accretion band
of 3 : 2 resonance. Accretion bands help planetesimals to enter the feeding zone
deeply. By the collisions of planetesimals, this effect is hindered and capture
fraction is reduced as shown in Fig. 4.15. The fraction of captured planetesi-
mals in the sweet spot is ∼ 0.3 for εp = 10−2, ∼ 0.2 for εp = 10−1 and ∼ 0.1 for
εp = 100. Thus, we conclude that the effect of accretion band is weakened by the
planetesimal collisions and the fraction of captured planetesimals decreases with
εp. The gradual decrease in the total amount of planetesimals captured with εp
is a result of these effects. Even under the effect of the collisions of planetesimals,
the planetesimals captured by the planet are limited those planetesimals initially
located in the regions inside or exterior to the sweet spot even for the case of
εp = 1 as shown in Fig. 4.15. We conclude that the location of the sweet spot
is barely changed by the collisions of planetesimals, but the capture fraction of
planetesimals reduces with the increasing εp.
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4.6 Discussion

4.6.1 Validity of collision model

In this chapter, we make many assumption to include the collisions of plan-
etesimals in our model in a simple manner. Here we discuss the validity and
limitation of our model.

In our collision model, we neglect the effect of the gravitational interactions
between the target planetesimal and the impact planetesimal. The gravitational
focusing effect increases the collision cross section Γcol. The fraction between the
collision cross section and geometrical cross section is defined as a gravitational
focusing factor Fgrav and given as

Fgrav ≡
Γcol

πR2
col

= 1+
(vesc

u

)2
, (4.35)

where vesc is the escape velocity from the point of contact. The relative velocity
between the target planetesimal and the impact planetesimals u becomes ∼ e vK
and Fgrav is almost unity when e ≳ 0.01 and Rtg = Rimp = 107 cm. Thus, the
assumption where we set Fgrav = 1 never affects above results in our model.

In our simulation, we neglect the change in the planetesimal disk due to the
gravitational scattering by the migrating planet. As discussed in sec. 4.5.2, the
resonant arguments of shepherded planetesimals are aligned with φ ∼ 0. In this
case, it is expected that the relative velocity between trapped planetesimals is
too small to break the resonant trapping. Thus the distribution of planetesi-
mals inside the resonances is not important for the resonant breaking due to
planetesimal collisions. The distribution of planetesimals outside the resonance,
however, changes the collision frequency and the accretion rate of planetesi-
mals. To investigate the effect of the different planetesimal distribution, we
performed additional calculations where the solid-to-gas ration Zs is changed
from 0.1 Z⊙ ≤ Zs ≤ 10 Z⊙. Figure 4.16 shows the results of a parameter study
regarding Zs where we set εp = 0.1 The total mass of captured planetesimals
Mcap,tot normalised by the total mass of planetesimals initially distributed in our
model Mdisk,tot barely depends on Zs. This is because the collision frequency
strongly changes with the semi-major axis ∼ a−3 and relatively weekly depends
on ∼ Zs. Thus, we conclude that the change in the planetesimal distribution
during the planetary migration is week relative to the effect of εp and changes
less than ∼ 20% in the total captured mass of planetesimals.

4.6.2 Value of momentum transfer efficiency εp

As shown in sec. 4.5, we find that break of resonant trapping by high-velocity
collisions of planetesimals have two effects which help and hinder the planetes-
imal accretion. Both effects depends on εp and the value of εp is an important
factor for the accretion of planetesimals.

The outcomes of planetesimal collision can be grouped in three categories;
cratering, shattering and dispersing. In the first category, all or most of the mass
of the impact planetesimal becomes a part of the mass of the target planetesimal.
In the second category, the impact breaks up the target body into a number of
pieces, but the pieces are gravitationally re-accumulated into a single body. In
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Figure 4.16: The results of a parameter study regarding the metallicity of
the central star Zs, which changes the number density of planetesimals nimp
and collision frequency in our model. The vertical axis shows the total mass
of captured planetesimals Mcap,tot normalised by the total mass of planetesimals
initially distributed in our model Mdisk,tot. Here we set εp = 0.1. The normalised
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the cratering and shattering, the fraction of the ejected material is negligibly
small. In the third category, dispersing, however, the target planetesimal is
fragmented into two or more pieces and the pieces are never re-accumulated. To
delineate the boundaries between these categories, the specific energy Q is used
in the literature and defined as

Q ≡
mimpu2

2mtg
, (4.36)

∼ 4.4×1010erg/g
( e

0.1

)2
(

mimp

mtg

)(
Ms

M⊙

)( a
1AU

)−1
, (4.37)

where mimp and mtg are mass of the impact planetesimal and mass of the target
planetesimal, respectively. Conventionally, the minimum specific energies needed
for the shattering and dispersing are defined as Q∗

D and Q∗
S, respectively, and

Q∗
D >Q∗

S. There are two distinct regimes, strength dominated regime and gravity
dominated regime, determining the values of Q∗

D and Q∗
S. The bodies in the

former regime are gathered by the material strength. The value of Q∗
D decreases

with the size of the bodies. On the other hand, the bodies in the later regime are
held together by gravitational forces. Q∗

D increases with the size of the bodies
because the gravitational binding energy increases.

The outcome of planetesimal collisions are investigated by experiments for
small targets in the strength dominated regime (e.g. Fujiwara et al. 1989; Davis
& Ryan 1990; Arakawa et al. 2002). Using a smooth particle hydrodynamic
method and a N-body code, the values of Q∗

D in the gravity dominated regime
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are also investigated. The transition of the regimes occurs around Rtg ∼ 104cm-
105cm and planetesimals with Rtg ∼ 107cm are in the gravity dominated regime.
According to results of the numerical simulations (Benz & Erik 1999; Leinhardt
& Stewart 2009), Q∗

D is estimated to be∼ 109erg/g at most for planetesimals with
Rtg ∼ 107cm. As shown in eq. (4.37), the collisions of planetesimals considered
in our simulation would result in the dispersing. Sugiura et al. (2018) also shows
that the high-velocity collisions of planetesimals result in the dispersing and the
large parts of the target planetesimals are removed by the collisions. The fraction
of the mass loss due to the collision increases with the collision velocity.

The high-velocity collisions considered in our model would result in the dis-
persing and a large fraction of the mass of the target planetesimal would be
removed by the collisions. Such destructive collisions would make the value of
εp smaller than 1 because the moment brought by the impact planetesimal is
partially removed by the escaping fragments from the largest remnant of the
target planetesimal. The value of εp, however, is not clear because the change
in the orbit of the impacted planetesimal is not the main purpose of above stud-
ies. In addition, the velocity range of their numerical simulations is not enough
for collisions of planetesimals with e ≳ 0.1, which gives the impact velocity of
≳ 103 m/sec around ∼ 10AU. The value of εp should be investigated in the
future.

The value of εp is not clear, however, the effect of εp on the accretion of
planetesimals is limited, especially for the location of the sweet spot as shown
in sec. 4.5. The location of the sweet spot is barely changed by the collisions
of planetesimals except the case of ε = 1. εp = 1 means the perfectly elastic
collision, which is unrealistic condition for the high-velocity collisions consid-
ered in our model. The difference in the total mass of captured planetesimals
shown in fig. 4.14 mainly comes from the difference in the capture fraction of
planetesimals. The capture fraction decreases with the increasing εp as shown
in fig. 4.15. Our numerical simulations show that the uncertainty in the value
of εp is not important for the location of the sweet spot and changes the total
mass of captured planetesimals by a factor of 2 at most.

4.6.3 Effects neglected in our model

In our model, we consider the high-velocity collisions of planetesimals for break-
ing the resonant trapping. The gravitational interactions between planetesimals,
which are neglected in our model, also have a possibility to break the resonant
trapping. The gravitational interactions between the trapped planetesimals gen-
erate the effects of dynamical friction and gravitational scattering of planetesi-
mals. If the planetesimals have a size distribution, the orbits of larger planetes-
imals are damped by the dynamical friction from smaller planetesimals. If the
eccentricity damping of dynamical friction is faster than that of aerodynamic
gas drag, the overstable libration can be triggered by the dynamical friction. On
the other hand, planetesimal swarms are diffused by the gravitational scatter-
ing. The diffusion in the semi-major axis of the planetesimals can push those
planetesimals out from the resonant trapping. If the diffusion timescale needed
for crossing the resonant width becomes shorter than the libration timescale, the
diffused planetesimals would be eliminated from the resonant trapping. These
effects depend on the distribution of orbital elements of planetesimals trapped
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in the mean motion resonances. To investigate these effects quantitatively, we
need to consider the orbital evolution of planetesimals inside the mean motion
resonances.

As shown in sec. 4.6.2, the high-velocity collisions considered in our model
can destruct planetesimals. The destructive collisions result in the change of size
distribution of planetesimals. The change in the planetesimal size (or aerody-
namic damping timescale τdamp,0) shifts the location of the sweet spot as shown
in sec. 3. If the planetesimal radius gets smaller in a several orders of magni-
tude, the location of the sweet spot shifts outward largely. Thus, planetesimal
collisions might hinder the planetesimal accretion via reduction of planetesimal
radius.

Above effects should be investigated using a statistical method of planet
formation or a direct orbital integration of planetesimal swarms including the
interactions between planetesimals inside the mean motion resonances. We need
to investigate them in future works.

4.7 Summary of Chapter4

The break of the resonant trapping regulates the planetesimal accretion onto a
migrating proto-gas giant planet. In this chapter, we have investigated the break
of resonant trapping due to the high-velocity mutual collisions of planetesimals.
Such collisions occur in the planetary migration phase of proto-gas giant plan-
ets because planetesimals trapped in the resonances are highly excited in their
eccentricities. The relative velocity between the eccentric planetesimals and cir-
cularised planetesimals is high enough to generate a strong velocity kick. First,
we have derived the required condition for breaking the resonant trapping ana-
lytically. We found that the stability of resonant trapping depends not only on
the strength of the velocity kick, but also the direction of the velocity kick. When
the direction of the velocity kick is align to the velocity vector of the trapped
planetesimal, the resonant trapping is most easily broken. On the other hand,
if the direction of the velocity kick is perpendicular to the velocity vector of the
trapped planetesimal, the break of resonant trapping becomes so difficult. We
checked the derived condition comparing with results of the numerical simula-
tions and found that the derived analytical expression reproduces the numerical
results well. Then, we have derived the collision timescale of highly eccentric
planetesimals. The collision timescale decreases with the eccentricities of the
trapped planetesimals because the relative velocity and number density of the
surrounding planetesimals at pericentre is higher for higher eccentricity. Finally,
we have constructed a high-velocity collision model and included the model in
the orbital evolution code used in chap. 3. In the collision model, the momentum
transfer efficiency εp is set as an input parameter. From the numerical results,
we found the effects of breaking the resonant trapping on planetesimal accretion
as follows:

• The collisions of planetesimals break the resonant trapping of the inner
most resonance earlier than the overstable libration.

• The effect of accretion band is weakened by the resonant breaking and the
capture fraction is reduced.
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• The total mass of captured planetesimals gradually decreases with εp.

• The location of the sweet spot is not changed by the collisions of planetes-
imals.

We conclude that high-velocity collisions of planetesimals affect the total mass
of captured planetesimals, but the location of sweet spot is barely affected by
the collisions. The value of εp changes the total mass of captured planetesimals
by a factor of 2 at most. Therefore, investigating the value of εp for high-velocity
collisions is important for estimating the metallicity enrichment via planetesimal
accretion in high accuracy.



Chapter 5

Application to planet formation

In chap. 3 and chap. 4, we investigated the accretion of planetesimals onto the
migrating planet. The planetesimal accretion is considered as one of the main
sources of heavy elements in gas giant planets. In this chapter, we discuss the
composition evolution of gas giant planets standing on the planetesimal accretion
model.

5.1 Planetesimal accretion of gas giant planets

5.1.1 Location of sweet spot

Recent observations have revealed many characteristics of exoplanets. Com-
bining the observed parameters with the internal models of gas giant planets,
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Figure 5.1: Distribution of confirmed exoplanets in the semi-major axis vs.
planetary mass plane. The black points are exoplanets observed by the radial-
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the observe values of Mp sin i are simply used. The gray area shows the theoretical
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Thorngren et al. (2016) estimated the amounts of heavy elements contained in
close-in gas giant planets. In this section, we estimate the amounts of metal in
gas giant planets from the perspective of planet formation accompanied by plan-
etesimal accretion. First, we construct a simple model of planetesimal accretion
based on the results in chap. 3 and 4.

As shown in chap. 3, planetesimal accretion onto the migrating planet occurs
in the sweet spot. The location of the sweet spot depends on the ratio of the two
timescales of gas drag and tidal damping (see eq. (3.49)) and barely depends on
the structure and evolution of a circumstellar disk. The planetesimals that can
be captured by the migrating planet are those initially located in regions exterior
to the sweet spot. In chap. 4, we consider the resonant breaking due to the high-
velocity collisions of planetesimals. Using numerical calculations, we found that
the location of the sweet spot is barely changed by the planetesimal collisions.
The total mass of captured planetesimals is changed by the momentum transfer
efficiency εp, but, by a factor of 2 at most. For simplicity, we neglect the effect
of planetesimal collisions on the planetesimal accretion. We discuss the effects
of planetesimal collisions on the planetesimal accretion later.

We consider that the planet migrates in the type II regime, the migration rate
for which is give by Kanagawa et al. (2018) and that the surface density profile in
the circumstellar disk is given by the so-called self-similar solution (Lynden-Bell
& Pringle 1974), where αdisk ∼ 1 except around the outer edge of the circumstellar
disk. Assuming the optically thin disk βdisk = 1/2 and substituting eq. (3.49)
into the analytical expressions of the sweet spots, eqs. (3.35), (3.37) and (3.38),
we obtain

1.4C1/3
(

Mp/Ms

10−3

)2/3( j
j−1

)7/9

<
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< 7.6C1/3
(
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,

(5.1)

1.1C1/3
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)5/18 ecross

0.1
<

rp

1AU
. (5.2)

Hereafter, we consider the case of C = 1 (see eq. (3.50)).
Figure 5.1 shows observed exoplanets and the location of the sweet spot in the

ap-Mp plane. The sweet spot locates from ∼ 0.3AU to 10AU and shifts outward
with the increase of planetary mass. The red and black dots show exoplanets
observed by the transit method and the radial velocity method, respectively.
After the onset of runaway gas accretion, Mp increases. Also, ap decreases due
to type II planetary migration. The evolution paths of gas giant planets plane can
be drawn from right-bottom to left-top direction in the ap-Mp. If the runaway gas
accretion started in the region exterior to the water snow line, which is considered
to locate at ∼ 1-3AU, the exoplanets currently observed in the region interior
to the sweet spot crossed the sweet spot during their migration stages. On the
other hand, the exoplanets currently observed in the region exterior to the sweet
spot did not crossed the sweet spot. The amounts of planetesimals accreted
onto the planets would differ between those two populations of planets. If we
observe the difference in the amount of heavy elements between gas giant planets
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inside and outside the predicted sweet spot, it would be a piece of the evidence
of planetesimal accretion during planetary migration. Hereafter, we estimate
the amounts of heavy elements contained in gas giant planets by constructing a
simple model for planetesimal accretion.

5.1.2 A simple model of planetesimal accretion along formation paths of gas
giant planets

We consider that a solid protoplanet of critical core mass Mp = Mp,0 starts run-
away gas accretion at ap = ap,0. The planet grows in mass to Mp = Mp,f thorough
a rapid gas accretion, then the planet starts inward migration in the Type II
regime and stops at ap = ap,f with Mp = Mp,f due to disk dissipation. The forma-
tion phase can be divided into two phases, mass growth phase (Mp : Mp,0 → Mp,f)
and planetary migration phase (rp : rp,0 → rp,f), and planetesimal accretion oc-
curs in both phases. In the real formation process, the protoplanet starts mi-
gration before the gas accretion stops, but we assume that migration and gas
accretion occur separately for simplicity. In this case, the total amount of heavy
elements accreting onto the gas giant planets MZ,tot can be written as

MZ,tot = MZ,core +MZ,grow +MZ,mig, (5.3)

where MZ,core, MZ,grow and MZ,mig are the solid core mass, the amount of plan-
etesimals accreting onto the planet in the mass growth phase, and that in the
planetary migration phase, respectively.

The solid core mass is set as the critical core mass Mcrit, at which the pro-
toplanet starts runaway gas accretion. Planetesimal accretion after the onset
of the runaway gas accretion and core erosion have possibilities to change the
core mass from the critical core mass. However, we neglect those effects in our
model. Some parts of planetesimals accreting onto the planet during the gas
accretion phase might reach the surface of the core before perfectly eroded into
the envelope (Mordasini et al. 2006). The convection of envelope gases can erode
the solid core and reduce the core mass from Mcrit (Guillot et al. 2004). Both
effects change the distribution of heavy elements inside the gas giant planet,
but the total amount of heavy element MZ,tot is conserved. Thus, we consider
that the core mass does not change after the onset of the rapid gas accretion.
Recent studies suggest Mcrit ≲ 10M⊕ (Hori & Ikoma 2011; Venturini et al. 2015;
Brouwers et al. 2018). Here we set MZ,core = 10M⊕.

In the mass growth phase, the amount of planetesimals accreting onto the
planet depends on the amount of planetesimals inside the feeding zone. The
accretion rate and capture probability of planetesimals depends on the timescales
of planetary mass growth and gas damping of planetesimal orbits (Shiraishi & Ida
2008; Shibata & Ikoma 2019). We define the fraction of planetesimals captured
by the planet in the mass growth phase fgrowth as

fgrowth ≡
MZ,grow

MZ,fz(ap,0,Mp,f)
. (5.4)

where MZ,fz is the amount of planetesimals inside the feeding zone given as

MZ,fz(ap,Mp) =
∫ afz,out(ap,Mp)

afz,in(ap,Mp)
2πrΣsoliddr, (5.5)
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with

afz,in = ap

{
1−2

√
3
(

Mp

3Ms

)1/3
}
, (5.6)

afz,out = ap

{
1+2

√
3
(

Mp

3Ms

)1/3
}
. (5.7)

According to the results of numerical simulations by Shibata & Ikoma (2019),
fgrowth takes ≲ 0.3.

On the other hand, in the planetary migration phase, the migrating planet
can capture planetesimals which are shepherded into the sweet spot MZ,shep.
During the planetary migration, planetesimals initially located from the inner
edge of the sweet spot aSS,in to the inner edge of the feeding zone when the
planet starts migration afz,in(ap,0,Mp,f) have a possibility to be shepherded into
the sweet spot. MZ,shep is given by

MZ,shep =
∫ afz,in

aSS,in

2πrΣsoliddr. (5.8)

aSS,in is given by eqs. (5.1) and (5.2). We define the fraction of planetesimals
captured by the planet in the planetary migration phase as

fmig ≡
MZ,mig

MZ,shep
. (5.9)

According to the results in out study, fmig takes ≲ 0.3.
The both amounts MZ,growth and MZ,mig depend on the radial distribution

of planetesimals in the circumstellar disk. Planetesimal formation has been dis-
cussed in the two formation paths: continuous coagulation of fluffy dust particles
(Okuzumi et al. 2012) and gravitational contraction of particle clumps formed
by the streaming instability (Youdin & Goodman 2005). In recent studies, the
planetesimal formation through the streaming instability is actively discussed
because it can directly form km-size planetesimals from pebble size particles
skipping problems concerning the continuous growth of small particles, such as
the bouncing problem of collision growth (Windmark et al. 2012). In addition,
observed features in solar system Kuiper belt objects support the formation of
planetesimals through the streaming instability. The Kuiper belt binaries are
typically made of the similar size and the same color objects (Noll et al. 2008),
which is consistent with the result that the formation of a binary is the natural
result of the gravitational collapse of the pebble clump (Nesvorný et al. 2010).
The streaming instability requires sedimentation of particles in disks with more
than ∼ 1% metallicity (Youdin & Shu 2002; Johansen et al. 2009; Simon et al.
2016). Certain locations like the vicinity of snowline (Armitage et al. 2016) or
the vicinity of disk inner edge (Dra̧zkowska et al. 2016) enhance the local disk
metallicity due to the pile up of radially drifted pebbles. Even in other locations,
non-laminar flow, or zonal flow originating from various instabilities, traps ra-
dially drifted solid particles and enhances local solid-to-gas ratio (see references
in Klahr et al. 2018; Lenz et al. 2019). These studies suggest that planetesimal
formation through the streaming instability can be triggered everywhere in the
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Figure 5.2: The estimated amount of heavy elements contained in the gas giant
planet as a function of the initial semi-major axis of the planet ap,0. We consider
the case of fdisk = 2 and Mp,f/Ms = 10−3. The red, green and blue lines show
MZ,core, MZ,grow and MZ,mig, respectively. The black solid line shows MZ,tot for
planets which crossed the sweet spot in the planetary migration phase. The
black dashed line shows MZ,tot for planets which did not reach the sweet spot,
namely MZ,tot = MZ,core +MZ,mig.

circumstellar disk. Assuming the planetesimal formation rate depends on the
instantaneous radial pebble flux, Lenz et al. (2019) found that the surface den-
sity profile of planetesimals tends to be steeper than that of gas. Their model
helps explain the discrepancy between the minimum-mass solar nebula, which is
modeled from the distribution of solid materials in our solar system, and viscous
accretion disks. Here, we consider the limiting case where planetesimal forma-
tion occurs everywhere in the disk and all solid materials are in the form of
planetesimals. We set α ′

disk = 3/2 and parameterize Σsolid using a scaling factor
fdisk as

Σsolid = fdisk ×

{
7.1×

( r
1AU

)−3/2
for r < rice

30.×
( r

1AU

)−3/2
for rice < r,

(5.10)

where rice is the radial distance of the water ice line and given as rice ∼ 2.7AU
in our disk model. The values of Σsolid for fdisk = 1 is the same as that in the
minimum-mass solar nebula. Given the initial formation location ap,0 and ob-
served parameters ap,f and Mp,f, we can calculate the amounts of heavy elements
in gas giant planets from the above equations.
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Figure 5.3: Same as Fig. 5.2, but as a function of the final planet mass Mp,f.
We consider the case of fdisk = 2 and ap,0 = 20 AU.
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Figure 5.4: The distribution of fdisk of circumstellar disks in star formation
regions. fdisk is calculated from the disk total mass Mdisk and disk characteristic
radius Rdisk obtained in Andrews et al. (2010). Here, we assume that the disk
inner edge locates at 0.1 AU and Zs = Z⊙ for simplicity.
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5.2 Heavy element contents in inner gas giant planets

5.2.1 Model estimation

Here we consider the amounts of heavy elements contained in gas giant planets
in regions interior to the sweet spot. These planets crossed the sweet spot during
their formation stages if the planets started runaway gas accretion in the outer
disk as 1AU ≲ ap,0. We set fgrowth = 0.3 and fmig = 0.15, which was obtained
from our numerical calculations in chap. 3. The mass of the planetesimal disk is
set as fdisk = 2.

Figure 5.2 shows the estimated amounts of heavy elements contained in gas
giant planets MZ,tot with the initial semi-major axis of the planet ap,0. Both of the
amounts of planetesimals accreting onto the planet during the mass growth phase
MZ,grow and planetary migration phase MZ,mig increase with ap,0. In the mass
growth phase, the amount of planetesimals inside the feeding zone MZ,fz increases
with ap,0 because the area of the feeding zone increases approximately with ap,0

2.
In the planetary migration phase, the amount of planetesimals shepherded into
the sweet spot MZ,shep increases with ap,0. MZ,mig more rapidly increases with
ap,0 than MZ,grow and MZ,mig becomes larger than MZ,grow around ∼ 10AU. The
total amount of heavy elements MZ,tot also increases with ap,0 and several tens
Earth-masses of planetesimals are captured by the planet if the planet starts the
runaway gas accretion ap,0 ≳ 10AU.

Figure 5.3 shows MZ,tot with the final planetary mass Mp,f. Here, we set
ap,0 = 20AU. As the planetary mass increases, MZ,grow increases because the
feeding zone expands with Mp,f. On the other hand, MZ,mig decreases with Mp,f
because the inner edge of the sweet spot aSS,in moves outward. As a result, the
total amount of heavy elements MZ,tot increases slightly with Mp,f.

In the above results, we considered the case where the mass of the planetesi-
mal disk fdisk is set as 2. However, fdisk must be different from circumstellar disk
to disk and MZ,tot linearly increases with fdisk. fdisk relates with the disk total
mass Mdisk, the characteristic disk radius Rdisk and the metallicity of central star
Zs. According to observations of circumstellar disks in star formation regions
(Andrews et al. 2010), the most frequent disk total mass and characteristic disk
radius are ∼ 0.03M⊙ and ∼ 50AU, respectively. The disk mass and radius also
have large scatterings: from 0.004M⊙ to 0.136M⊙ in disk total mass and from
14AU to 198AU in characteristic disk radius. Given Mdisk and Rdisk, we can
obtain the value of fdisk solving

ZsMdisk =
∫ Rdisk

Rdisk,in

2πΣsoliddr, (5.11)

where Rdisk,in is the radial distance of the disk inner edge. Assuming the disk
inner edge locates at 0.1AU and Zs = Z⊙, we can obtain fdisk from observed
Mdisk and Rdisk. Figure. 5.4 shows the distribution of fdisk of circumstellar disk
used in Andrews et al. (2010). Around stars with the solar metallicity, fdisk
is most frequent around ∼ 2 and scattered in a wide range. Considering the
scattering in the metallicity of central stars, we argue that fdisk changes from
∼ 0.2 to ∼ 10. Thus, the distributions of MZ,tot also has large scattering. The
scattering in MZ,tot also comes from the scattering of other parameters. MZ,tot
depends on MZ,shep, which decreases with the location of the inner edge of the
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Figure 5.5: The amounts of heavy elements of gas giant planets estimated in
Thorngren et al. (2016) with the mass fraction Mp/Ms.

sweet spot aSS,in. The location of the sweet spot depends on many parameters,
such as disk viscosity αvis, planetesimal density ρpl, planetesimal size Rpl, mass
of central star Ms and disk temperature at 1AU Tdisk,0 as shown in eqs. (3.50)
and (5.2). From eqs. (3.50), (5.2) and (5.8), we find that MZ,tot depends on the
−1/6 power of αvis, ρpl, Rpl and Ms, and the 1/3 power of Tdisk,0. Here, we use

the relation of |hs/r|1AU ∝ Ms
−1/2Tdisk,0

1/2. The effects of the scatterings in these
parameters are smaller than the effect of the scattering in fdisk, with which MZ,tot
increases linearly. We conclude that the scattering in MZ,tot mainly comes from
the scattering in the disk mass fdisk.

5.2.2 Comparison with Thorngren et al. (2016)

Some of the gas giant planets that locates in the inner disk interior to the sweet
spot are observed by both the radial velocity and transit methods and, thereby,
their mass and radius are both measured. Thorngren et al. (2016) estimated the
amounts of heavy elements in close-in gas giant planets and found some impor-
tant features in the distribution of MZ,tot. Figure 5.5 shows the MZ,tot estimated
in Thorngren et al. (2016) with Mp/Ms. Here, we focus on the features found in
the distribution of MZ,tot; (i) MZ,tot increases with Mp/Ms, (ii) MZ,tot have large
diversity between similar mass planets, (iii) there are some extremely enriched
planets as MZ,tot ≳ 100M⊕. Note that Müller et al. (2020) showed that the uncer-
tainties originating from the model assumptions used in Thorngren et al. (2016)
are comparable or even larger than those from observation. Hereafter we focus
on the qualitative features obtained by Thorngren et al. (2016) and discuss the
formation of close-in gas giant planets using our model.

Thorngren et al. (2016) derived a relation MZ,tot ∝ Mp
2/3 by fitting their

estimated values. In Fig. 5.5, we take Mp/Ms as the horizontal axis instead
of Mp and find that MZ,tot also increases with Mp/Ms. In our model, MZ,tot
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Figure 5.6: The histogram of the amount of heavy elements MZ,tot estimated
in Thorngren et al. (2016). We select only the data the errors of which are less
than 50% from the samples in Thorngren et al. (2016) and the number of selected
samples is 32. The black bars show the histogram of all the samples and the red
bars are Jupiter-size planets which have 10−3.5 < Mp/Ms < 10−2.5. The width of
the bin is set as 0.2 in logarithmic scale.

depends on Mp/Ms but the dependence is too weak to explain the observed
relation between MZ,tot and Mp/Ms (see Fig. 5.3). On the other hand, MZ,tot
increases with ap,0 (see Fig. 5.2). To explain the relation between MZ,tot and
Mp/Ms, we suggest that heavier close-in gas giant planets had formed cores of
critical mass farther away from the central stars and then migrated over longer
radial distances. Such a relation between the initial formation location and
the final planet mass of gas giant planet is also suggested from the formation
theories of gas giant planets. The model combining the gas accretion rate and
planetary migration rate (Tanigawa & Ikoma 2007; Tanigawa & Tanaka 2016)
showed that planets which start runaway gas accretion in the outer disk grow to
be heavier planets. The evolution paths shown in population synthesis models
(e.g. Bitsch et al. 2015; Mordasini 2014; Ida et al. 2018) also imply that heavier
gas giant planets migrate longer radial distances and the possibility for Jupiter-
mass planets to migrate several tens AU in planetary migration phase. On the
other hand, Tanaka et al. (2020) showed that close-in gas giant planets with
Mp/Ms ≲ 10−2 had started runaway gas accretion interior to the water snow line
and migrated only a few AU in their formation stages. Along their formation
paths, close-in gas giant planets barely capture planetesimals and the outcome
is inconsistent with the result in Thorngren et al. (2016).

In the above formation models, the radial migration distance of gas giant
planets is determined by the competitions between the timescales of gas accre-
tion and planetary migration. Both timescales depend on the gap structure
opened by the planet and the studies of these timescales are still under discus-
sion, especially for the gas accretion timescale. Tanigawa & Watanabe (2002)
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investigated the gas accretion rate of giant planets using a two-dimensional hy-
drodynamic simulations. They found that gas accretion occurs through a nar-
row band and derived an analytical formula for the width of the accretion band.
Three-dimensional hydrodynamic simulations, however, showed the possibilities
that gas accretion rate is smaller than that obtained in two-dimensional hydro-
dynamic simulations (Lissauer et al. 2009; Machida et al. 2010). The timescale
of type II migration is regulated by the viscous timescale of the circumstellar
disk in the classical regime (e.g. Lin & Papaloizou 1993). However, Kanagawa
et al. (2018) investigated the migration timescale using two-dimensional hydro-
dynamic simulations and found that the migration timescale for gap opening
planets is longer than the classical one. In the model of Tanaka et al. (2020),
the migration timescale is long relative to the gas accretion timescale, which
results in the short migration distance. If the migration rate is faster than that
used in their model, the migration distance becomes longer. Thus, our model
suggests the possibility that gas accretion timescale is longer than that obtained
in two-dimensional hydrodynamic simulations.

The large scattering in MZ,tot between similar mass planets is also important
characteristic of close-in gas giant planets. Figure 5.6 shows the histogram of
MZ,tot estimated in Thorngren et al. (2016). To draw this figure, we select only
the data, the errors of which are less than 50% from the samples in Thorngren
et al. (2016) and the number of selected samples is 32. The black bars show
the histogram of all the samples and the red bars are Jupiter-size planets which
have 10−3.5 < Mp/Ms < 10−2.5. The distribution of MZ,tot of Jupiter-size planets
spreads from 10M⊕ to 200M⊕ and the peak of the distribution is around 50M⊕.
As discussed in sec. 5.1.2, the scattering in MZ,tot mainly comes from the scatter-
ing of 0.2 ≲ fdisk ≲ 10, which covers the scattering found in MZ,tot estimated
by Thorngren et al. (2016). The effects of other parameters, such as the disk
viscosity or planetesimal radius, are not enough to generate such a large scat-
tering. We suggests that the large scattering shown in the distribution of MZ,tot
comes from the scattering of fdisk. This suggestion should be discussed in future
when the number of observations in MZ,tot and circumstellar disk increases.

Finally, we focus on some close-in gas giant planets that contain more than
100M⊕ heavy elements as shown in Fig. 5.5. To capture such massive heavy el-
ements via planetesimal accretion, those planets need to be formed in a massive
circumstellar disk as fdisk ∼ 10 and migrate more than ≳ 50AU. Disk instability
model is preferred for such formation paths of gas giant planets than core accre-
tion model. Our model suggests that close-in gas giant planets containing more
than 100M⊕ heavy elements formed via disk instability.

5.3 Heavy element contents in outer gas giant planets

Gas giant planets which locate in the region exterior to the sweet spot are ob-
served by radial velocity method and, thereby, their masses are measured as
shown in fig. 5.1. Jupiter and Saturn also locate in this region. Here we consider
the amounts of heavy elements contained in gas giant planets which locate in
the region exterior to the sweet spot.
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5.3.1 In exoplanets

We consider the heavy elements contents in exoplanets observed in the region
exterior to the sweet spot. Here, we consider the single gas giant planet and do
not consider the outward migration as considered in Grand-Tuck model (Walsh
et al. 2011), which occurs in multi-planetary systems. During the formation
phase, the circumstellar disk dissipated before the planets reached the sweet
spot. In this case, the accretion of planetesimals did not occur in the planetary
migration phase. A clear difference in MZ,tot would exist between the populations
of planets which locate in the regions interior and exterior to the sweet spot. If we
can observe the clear difference in MZ,tot between these populations, it suggests
that the heavy elements in gas giant planets are mainly brought by planetesimal
accretion.

The transition frequency decreases with the orbital period of planets. The
transition probability also decrease with the orbital period of planets. So the
transit observation of planets in the region exterior to the sweet spot is lack
now. Considering the scattering of MZ,tot, we need large number of observations
to compare the populations.We need long term and wide field observations.In
addition, we need high accuracy in measuring the radius of those gas giant plan-
ets. If the formation of core starts around ap,0 ∼ 20AU in the disk of fdisk = 2, the
planets which crossed the sweet spot contain more ∼ 10M⊕ heavy elements than
the planets which did not reached the sweet spot during the planetary migration
phase. The 10M⊕ difference in the amount of heavy elements in Jupiter-mass
planet makes a few percent difference in the radius of the planets ∼ 0.01 RJup
(Thorngren et al. 2016). ∼ 1% accuracy in the observation of planet radius is
limited for some planetary systems (e.g. Kostov et al. 2016). In conclusion, long
term and wide field observations with high accuracy are required for comparing
the populations of planets in the regions interior and exterior to the sweet spot.
Such observation should be done in future.

5.3.2 In Jupiter and Saturn

For the gas giant planets in our solar system, not only the mass and radius
but also the gravitational moments Jn are observed by spacecrafts exploration.
As already described in chap. 1, the bulk amounts of heavy elements contained
in Jupiter and Saturn are estimated ∼ 24-46M⊕ and ∼ 16-30M⊕, respectively.
Jupiter and Saturn locate in the region exterior to the sweet spot. The accretion
of planetesimals did not occur in planetary migration phase. The heavy elements
in Jupiter comes from the initial core and accretion of planetesimals in mass
growth phase. In this case, the amount of heavy elements increases with fdisk,
ap,0 and Mp,f. Several tens Earth-masses of heavy elements estimated in Jupiter
suggests that Jupiter formed in more than five times heavier circumstellar disk
than the minimum-mass solar nebula (Shibata & Ikoma 2019), or Jupiter’s core
formed in outer disk. Jupiter and Saturn formed in the same circumsolar disk, so
the difference in the amount of heavy elements comes from the different values of
ap,0 and Mp,f. Considering that Saturn contains comparable or smaller amount
of heavy elements relative to Jupiter, we suggests that the core formation region
of Saturn was outer than that of Jupiter, but at most two times outer than that
of Jupiter.
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Asteroid belt also gives important constraints on the formation of Jupiter and
Saturn. If Jupiter core formed in outer disk as several tens AU, much amount
of planetesimals were shepherded by the mean motion resonances. More than
several M⊕ planetesimals were shepherded into the asteroid belt even in the
disk of fdisk = 1, which is inconsistent with the estimated total amount of solid
materials currently distributes in asteroid belt 4× 10−4M⊕ (Pitjeva & Pitjev
2018). Formation mechanisms of Kirkwood gaps could reduce the amount of
planetesimals around the mean motion resonances of Jupiter, however, removing
several Earth-masses planetesimals was difficult because removed planetesimals
had been brought into the inner rocky planets. So the migration distance of
Jupiter need to be small.

Grand-Tuck model (Walsh et al. 2011) proposed the solution for the small
total mass of asteroid belt considering the orbital evolution where Jupiter and
Saturn had interacted each other. In their model, Jupiter and Saturn changes
migration direction at 1.5AU from inward to outward, which makes possible for
gas giant planets observed outer than the sweet spot to accrete planetesimals
during their planetary migration phase. Planetesimals initially located around
1-3AU are shepherded into the inner planetesimals disk and terrestrial plan-
ets formed in the concentrated planetesimal disk. After the passage of Jupiter
migrating outward, a small amount of planetesimals are scattered from other
regions and left in the asteroid belt. In this case, Jupiter crossed the sweet spot
and some parts of shepherded planetesimals accreted onto the planet. In their
original model, however, only a few Earth-masses of planetesimals is captured
by Jupiter because the radial distance of inward migration is small ap,0 = 3AU
and the initial distribution of solid material is similar to minimum-mass solar
nebula fdisk ∼ 1. To accrete several tens Earth-masses of planetesimals, we need
to consider the case where ap,0 and fdisk are larger than those in their original
model. For Saturn, MZ,mig might be much smaller than that of Jupiter because
planetesimals had been shepherded by Jupiter when Saturn migrates inward.
Thus, Grand-Tuck model has a possibility that the structure of asteroid belt
and the amount of heavy elements in Jupiter and Saturn are explained in one
model. However, large amount of planetesimals are shepherded into the inner
disk and final structure of terrestrial planets might be changed from that of the
original model. Numerical simulations must be done for further discussions.

5.4 Model limitation and comparison with other models

In this chapter, we discussed the origin of heavy elements in gas giant planets
considering that the planetesimal accretion is a main source of those heavy ele-
ments. Our model stands on several important assumptions and neglects other
mechanisms proposed as a source of heavy elements. Here, we discuss the model
assumptions and compare our model with other composition evolution models.

The key assumption of our model is that all solid materials are in the form of
planetesimals. In our model, we neglect the continuous growth of planetesimals
via mutual collision of planetesimals. As already discussed in the sec. 3.5.3,
many other planets would form before a gas giant planet starts migration. The
existence of other planets would reduce the accretion of planetesimals because
the gravitational scattering of other planets breaks the resonant trapping. So
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the amount of heavy elements obtained by the planetesimal accretion would be
reduced by the existence of other planets. In addition, we neglect the effect of
planetesimal collisions on the capture of planetesimals. As shown in chap. 4, the
planetesimal collisions change the amount of captured planetesimals by a factor
of 2 at most. These effects change the value of fmig used in our model. In this
thesis, we set fmig = 0.15 based on the results of numerical simulations in chap. 3.
In future work, the value of fmig should be investigated in the model including
above effects neglected in our model. Some important features obtained in our
model would be valid even in the case where fmig is altered by the above effects.
The first one is that the amount of heavy elements increases with the semi-
major axis of core formation region. The second one is that the scattering in
MZ,tot mainly comes from the diversity of the planetesimal disk mass. There
features could explain the distribution of MZ,tot obtained in close-in gas giant
planets in Thorngren et al. (2016).

Other than the planetesimal accretion, the giant impacts of gas giant planets
and the accretion of enriched disk gas are proposed as sources of the heavy
elements in gas giant planets. Ginzburg & Chiang (2020) considered the giant
impacts of growing gas giant planets. In their model, the decreasing trend in
the metallicity of close-in gas giant planets with the planetary mass found in
Thorngren et al. (2016) is well reproduced. The scattering in MZ,tot can be
explained by the difference of the number of giant impacts and initial core mass.
In their model, however, the highly enriched planets which contain more than ∼
100M⊕ heavy elements need several times impacts of planets containing massive
solid core ∼ 30M⊕. As described in chap. 1, recent studies suggest that critical
core mass is ≲ 10M⊕ and the formation of massive solid core is difficult (Hori &
Ikoma 2011; Venturini et al. 2015, 2016).In addition, the region where the giant
impacts of growing gas giant planets occur is limited around ∼ 10AU in their
model. If the core formation region is fixed around ∼ 10AU, forming the diversity
of gas giant planets observed in exoplanetary systems might be difficult.

The accretion of enriched disk gas is also proposed as a source of heavy ele-
ments (Guillot et al. 2006; Madhusudhan et al. 2014; Booth et al. 2017; Notsu
et al. 2020). The metallicity of disk gas is enhanced by the photo-evaporation
(Guillot et al. 2006) and reduced by the condensation of disk gas (Madhusudhan
et al. 2014). Pebbles drifting in radial direction transport condensed materials
from outer to inner disk and increase the elemental abundances of gas around
snow lines due to the sublimation of volatile ices (Booth et al. 2017; Booth &
Ilee 2019). The disk gas metallicity can be increased by these effects and the
enhancement values differ in each region divided by snow lines. The accretion
of these enriched disk gas brings large amount of heavy elements in gas giant
planets. However, the enrichment of gas giant planets metallicity in this process
is estimated as ten times larger than that of central star at most Madhusud-
han (2019), which cannot explain the highly enriched close-in gas giant planets
estimated in Thorngren et al. (2016).

Relative to other composition evolution models, we conclude that planetes-
imal accretion is good at three points: (i) The large scattering found in MZ,tot
of close-in gas giant planets can be explained by the diversity of circumstellar
disk. (ii) The relationship between MZ,tot and Mp/Ms found in the close-in gas
giant planets can be explained if the cores of heavier planets form in the region
farther from the central star. (iii) The planetesimal accretion has a potential
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to bring ∼ 100M⊕ heavy elements into gas giant planets. In addition, due to
the existence of the sweet spot, planetesimal accretion model makes a gap in
the mean value of MZ,tot between the populations of planets locate in the region
interior and exterior to the sweet spot. This feature cannot be seen in other
models. Thus, the observation of this gap will be a smoking gun of planetesimal
accretion as a main source of heavy elements in gas giant planets.



Chapter 6

Future perspectives and summary

6.1 Future perspectives

6.1.1 Unresolved problems

The numerical simulations performed in this thesis have revealed the physical
mechanisms underlying in the planetesimal accretion. The numerical results
in this thesis, however, also shed light on the importance of physical processes
neglected in our models.

The existence of other planets should be considered in future works. As
pointed in sec. 3.5.3, the gravitational scattering from the other planets changes
the effects of mean motion resonances and the distribution of planetesimals in
the circumstellar disk. The effects of other planets can be investigated by the
numerical simulations of multi-planetary systems, but the conditions of the for-
mation of multi-planetary systems depends on many parameters, such as masses
and initial semi-major axes of each planet. The interactions between planets are
also expected to play important roles in the cases. Thus, we need to investigate
the formation of multi-planetary systems at the same time. The multi-planetary
systems are already observed and there are three multi-gas-giant-systems in the
samples of Thorngren et al. (2016), that are K2-24, Kepler-9 and Kepler-30.
The number of multi-planetary systems where the compositions of each planet
are estimated will increase with the progress of transit observations. We should
improve our knowledge about the composition evolution of planets in multi-
planetary systems from the theoretical approach.

The effect of the collisions between planetesimals on planetesimal accretion
is investigated in chap. 4, but the effects of collisional growth and destructive
collision are neglected in our study. To investigate these effects, we need to con-
sider the size distribution of planetesimals. The N-body integration would not
be applicable to this simulation because we need to use large number of particles
for each size of planetesimals. Thus, we should combine the statistical model
with our model. In addition, the gravitational interactions between planetesi-
mals might affect the roles of resonant trapping, especially for smaller planets
because mean motion resonances are weaker for smaller planets. In our study,
we focused on the gas giant planets, but the formation of smaller planets, such
as the formation of cores of critical mass, is still actively discussed problem. It
is worth reconsidering the growth of rocky planets under the type I planetary
migration, which is considered in Tanaka & Ida (1999). Before we consider the
cases of the formation of such small planets, we should investigate the above
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interactions between planetesimals.

6.1.2 Future application to observations

In the next decades, the observations of transmission spectra of gas giant planets’
atmospheres will proceed rapidly with space missions such as James Webb Space
Telescope (Gardner et al. 2006) or Ariel (Tinetti et al. 2018). Those observations
make constraints on detailed atmospheric compositions, such as C/O ratio in
the atmosphere, possible. In this thesis, we focused on the bulk metallicity
of gas giant planets; however, it would be important to consider the detailed
composition of gas giant planets and the distribution of each element in gas giant
planets. To link the formation theory and such observations, we need to consider
the two physical mechanisms; the composition evolution of gas and planetesimals
in the circumstellar disk and the distribution of heavy elements in gas giant
planets. The C/O ratio of planetesimals changes with the radial distance from
the central star. The distribution of heavy elements should be investigated using
the internal structure model of gas giant planets. The interaction between the
envelope and atmosphere is important to estimate the atmospheric composition
of gas giant planets. Where the accreted materials are deposited in gas giant
planets depends on the timing of planetesimal accretion and the evolution of
internal structure of gas giant planets. Thus, we should combine the model of
planetesimal accretion with the model of internal structure of gas giant planets
and solve them at the same time.

The distribution of planetesimals in circumstellar disks directly affects the
composition of gas giant planets. We assumed that all solid materials are turned
into planetesimals and the radial drift of solid materials before turning into
planetesimals are neglected. If the total amount of planetesimals is smaller than
that of pebbles or embryos, other proposed mechanisms of heavy elements accre-
tion, such as the giant impacts of embryos or the accretion of enriched disk gas,
dominate the composition evolution of gas giant planets. We can constrain the
dominant mechanism by comparing the final results of each mechanism with ob-
servations, but it is also important to investigate the formation of planetesimals
because we can narrow the parameter regions concerning to the initial conditions
of solid materials. The evolution of the solid to gas ratio in a circumstellar disk
and the formation rate of planetesimals regulate the state of solid materials when
the gas giant planets start their formation. The important physical process is
the growth of solid materials from the size of pebble to that of planetesimal.
Studies in planetesimal formation would help linking the planetary composition
with the formation of gas giant planets.

The observed compositions of gas giant planets tell us the history of their
formation. It would be still difficult to observe the formation of planets directly
even in the next decades. Thus, the theories linking the current conditions of
planets with their formation processes are important. As in the previous 20
years, observations will keep improving our knowledge about exoplanets drasti-
cally and make statistical discussions of exoplanets distribution possible. The
theoretical models linking observations with planetary formation theories should
be improved with the progresses in observations. Studies about the above prob-
lems would make great progresses in this field of science.
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6.2 Conclusion and Summary

The formation of gas giant planets involves many physical processes such as
circumstellar disk evolution, core formation, gas accretion and planetary mi-
gration. Thanks to active progresses in respective theoretical studies, we can
construct unified planetary formation models from planetesimals to gas giant
planets. Along with the development of observation and characterisation of ex-
oplanets, we can constrain the theoretically proposed formation models and the
initial parameters shaping the formation fields of gas giant planets, which are
not observable in current exoplanetary systems. The bulk composition of gas
giant planets is used for retrieving the initial condition of gas giant planet for-
mation because the composition evolution of gas giant planets is strongly related
with the evolution paths of gas giant planets. Planetesimal accretion is one of
the main sources of heavy elements (or metals) of gas giant planets. Planetes-
imal accretion during the migration of proto-gas giant planets is, however, not
well understood because the role of mean motion resonances in this process is
unclear. Thus, in this thesis, we have investigated the effects of mean motion
resonances on planetesimal accretion onto a migrating proto-gas giant planet in
a circumstellar gaseous disk.

In chap. 3, we have considered the limiting case where the mean motion
resonances work most strongly with the aim to reveal the fundamental physics
of planetesimal accretion. Using direct orbital integration of planetesimals, we
have found that mean motion resonances play important roles in planetesimal
accretion. The main results of our numerical simulations are as follows:

• Planetesimal accretion is controlled by mean motion resonances with the
migrating planet and aerodynamic gas drag. There is a sweet spot in the
circumstellar disk where planetesimal accretion occurs efficiently.

• The total amount of planetesimals captured by the planet increases with
the amount of planetesimals shepherded into the sweet spot during the
planetary migration.

• The location of the sweet spot barely depends on the structure and evolu-
tion of the circumstellar disk.

• Resonant trapping leads to shifting the sweet spot inward and enhancing
the accretion of planetesimals due to the effect of accretion bands.

The results of chap. 3 sheds light on another process in planetesimal accretion.
Resonant trapping by gas giant planets enhances the eccentricities of trapped
planetesimals, which brings high-velocity collisions of planetesimals. Such strong
collisions can break the resonant trapping, which regulates the location of the
sweet spot and the accretion of planetesimals. In chap. 4, we have derived the
condition for breaking the resonant trapping analytically and found that the
high-velocity collisions of planetesimals are strong enough to break the resonant
trapping. Including the effect of planetesimal collisions in the orbital integration
code, we have investigated the effect of planetesimal collisions on planetesimal
accretion. The main results of numerical simulations are as follows:

• Collisions of planetesimals break the resonant trapping of the inner most
resonance earlier than the overstable libration.
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• The total amount of captured planetesimals is changed by a factor ∼ 2 at
most.

• The location of the sweet spot is not changed significantly by the collisions
of planetesimals.

Finally in chap. 5, we have discussed the effect of planetesimal accretion
on the composition evolution of gas giant planets and tried to constrain their
formation processes. Using the results obtained above, we have constructed
a simple model for estimating the amount of heavy elements brought by the
planetesimal accretion. Our model shows

• a Jupiter-mass planet can accrete several tens Earth-mass planetesimals if
the core forms in the outer disk at ≳ 10AU in MMSN,

• the amount of heavy elements in gas giant planets increases with the semi-
major axis of core formation location,

• the amount of heavy elements strongly depends on the planetesimal disk
mass,

• gas giant planets observed in the region interior to the sweet spot have
more heavy elements than those exterior to the sweet spot.

Comparing the estimated amount of heavy elements in gas giant planets by
Thorngren et al. (2016), we suggests

• close-in gas giant planets migrated over tens AU in their formation stages
and the migration distance was longer for heavier planets,

• the large scattering in the amount of heavy elements comes from the plan-
etesimal disk diversity,

• extremely enriched close-in gas giant planets which contain more than
∼ 100 M⊕ formed via gravitational instability.

Our model can explain the various characteristics of heavy elements distribution
in close-in gas giant planets. This results suggest that planetesimal accretion
is a main source of heavy elements in gas giant planets. If we can observe the
amounts of heavy elements in gas giant planets orbiting far from their central
star, we can constrain the source of heavy elements more strongly.

Our models used in this thesis contain many assumptions and simplifications,
on which we need further investigations. However, we showed that the various
features found in the distribution of heavy element contents in close-in gas giant
planets can be explained by the effect of planetesimal accretion. The findings
in this thesis are expected to make a great contribution in linking the current
composition of gas giant planets with their formation history. Along with the
future development of observation and characterisation of exoplanets, the for-
mation paths of gas giant planets will be constrained by the models including
the effects of planetesimal accretion in planetary migration phase.
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Appendix A

Benchmark test of our orbital integration
code

We summarise the result of benchmark test of our orbital integration code shown
in Shibata & Ikoma (2019). We integrate the equation of motion using the forth-
order-Hermite integration scheme (Makino & Aarseth 1992). For timestep ∆t,
we adopt the method of Aarseth (1985), namely

∆t = ηts

√
|a||a(2)|+ |ȧ|2

|ȧ||a(3)|+ |a(2)|2
, (A.1)

where a is the acceleration of the planetesimal (= r̈pl), a(k) is the kth derivative
of a, and ηts is an accuracy controlling parameter.

To determine the appropriate value of ηts, we perform a benchmark test,
where we consider a Jupiter-mass planet in a circular Keplerian orbit and in-
tegrate the motion of test particles that orbit a central star of solar mass. We
distribute the planetesimals inside the feeding zone and check energy errors dur-
ing numerical integration; the energy error is defined as

∆Eerr ≡
|Ejacobi −Ejacobi,0|

Ejacobi,0
, (A.2)

where Ejacobi,0 is the initial Jacobi energy of the particle. The energy error comes
from two components, the gravitational force of the central star and that of the
protoplanet. The relative distance from the central star is almost constant and
the energy error accumulates linearly with time. On the other hand, the relative
distance from the protoplanet changes largely and the energy error depends on
the distance of the closest encounter. We check the each component considering
the cases of with and without close encounters with the protoplanet. Figure A.1
shows the some of the results of numerical integration. The upper panels show
the change in the energy error during numerical integration. The lower panels
show the change in the relative distance between the particle and the planet. The
left column shows the results for the case where the particle experiences no close
encounter with the planet, whereas the right column shows the results for the
case where the particle does so. In the case with no close encounter, the energy
error accumulates linearly with time and it is expected that the energy error
would be suppressed smaller than ∼ 10−7 after the 105yrs integration. On a close
encounter with the planet, the energy error increases sharply and its magnitude
depends on the distance. It turns out that increase in energy error due to close
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Figure A.1: A benchmark test of our orbital integration code from Shibata &
Ikoma (2019). The upper two panels show the change in energy error defined by
A.2. The lower two panels show the change in the relative distance between the
particle and planet. The planet never experiences any close encounter with the
planet in the case shown by the left panels, whereas the planet does so several
times in the case shown by the right panels. The black and grey lines show the
results for ηts = 0.01 and 0.03, respectively.

encounters is suppressed to as small as ∼ 10−7 for ηts = 0.01, if rpl,p > 10−3AU.
In our numerical study, all particles getting inside the radius of the planet are
removed from the calculation. Thus, setting the accuracy-controlling parameter
as ηts = 0.01 and considering the expanding envelope which has a mean density
of 0.125g/cm3, the maximum energy error in the end of our simulation is as
small as ∼ 10−7.



Appendix B

Geometrical picture used in Adachi et al.
(1976)

To calculate the relative velocity u, we consider an orbital system of cylindrical
coordinates (R,ψ,ζ ), in which ζ -axis is perpendicular to the target planetesi-
mal’s orbit. The position of target planetesimal is given as

rtg,R =
a(1− e2)

1+ ecosψ
cosψ, (B.1)

rtg,ψ =
a(1− e2)

1+ ecosψ
sinψ, (B.2)

rtg,ζ = 0. (B.3)

The velocity of target planetesimal is given as

vtg,R = vK(a)
esinψ

(1− e2)1/2 , (B.4)

vtg,ψ = vK(a)
1+ ecosψ
(1− e2)1/2 , (B.5)

vtg,ζ = 0. (B.6)

The velocity of planetesimal swarm is given as

vimp,R = 0, (B.7)

vimp,ψ = vK(l)sinε, (B.8)

vimp,ζ =−vK(l)cosε, (B.9)

where l is the radial distance from the central star in the circumstellar disk. ε
is an angle defined by both orbital plains given by

sinε =
cos i
cosδ

, (B.10)

cosε = sin i
cos(ψ +ϖ)

cosδ
, (B.11)

cosδ =
l
r
=

l
a

1+ ecosψ
1− e2 , (B.12)
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where r is the distance of target planetesimal from the central star. From above
equations, we get u in (R,ψ,ζ ) coordinate

uR = vtg,R − vimp,R, (B.13)

uψ = vtg,ψ − vimp,ψ , (B.14)

uζ = vtg,ζ − vimp,ζ . (B.15)

(B.16)
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