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Abstract 

South Pacific islands are extremely vulnerable to environmental changes such as sea-

level rise, storm surges, earthquakes, and volcanic eruptions. The changes increase the 

probability of forced migration in the future. Meanwhile, archaeological studies suggest 

that a comparable situation occurred in this region during the Middle and Late Holocene. 

Thus, there is an urgent need to understand the mechanisms, variability, and impacts of 

environmental changes. However, the limited availability of environmental observations 

of this region before the mid-twentieth century means that paleoenvironmental 

reconstructions from natural archives, such as bivalves and speleothems, offer valuable 

tools for reconstructing the past variability of environmental changes. However, few 

quantitative paleoenvironmental studies using geochemical or geophysical methods have 

been reported.  

Here, I reconstructed the paleoenvironment in the Kingdom of Tonga (Tonga) using 

geochemical and rock-magnetic analyses for bivalves and speleothems with developing 

novel proxies. Tonga is one of the South Pacific island countries and was a source area 

for the peopling of East Polynesia around 1,000 years ago; thus, it is suitable for studying 

paleoenvironmental reconstruction in the South Pacific and its related human migration.  

First, I examined live-caught and archaeological shells, Gafrarium tumidum, to 

establish a novel proxy for the ratio of the freshwater inlet to the lagoon water. As a result, 

I defined the lagoon-specific local marine reservoir ages (ΔRlagoon) of prehistoric bivalves 

as an influx of old 14C from terrestrial limestone. Then, I reconstructed Tongatapu 

Island’s sea-level history using radiocarbon measurements and glacio-hydro-isostatic 

adjustment (GIA) modeling. Our analyses reconstructing the lagoon’s evolution suggest 

that the average size of G. tumidum decreased synchronously with corresponding changes 



	

in the paleoenvironment. These changes also correspond to the increasing trend of 

ΔRlagoon from 105±49 to 156±85 years between ~2.6 and 1.2 ka. The decline in the 

shellfish assemblage within Fanga'uta Lagoon reported in previous studies was also 

synchronous with these changes, which were caused by a decrease in the exchange of 

water in and out of the lagoon. GIA modeling predicts mid-Holocene sea-level highstand 

(HHS) was less than 1 m above the present sea level in Tongatapu, suggesting that the 

previously reported observations of an HHS require additional contributions, perhaps 

from crustal uplift. Furthermore, recent Global Navigation Satellite System (GNSS) 

observations of vertical uplift rates at Tongatapu have a higher magnitude than the long-

term uplift rate obtained from Holocene sea-level data. 

Second, I applied a scanning SQUID microscopy (SSM) to conduct paleomagnetic 

measurements on a stalagmite collected from Anahulu Cave in Tonga. A stronger 

magnetic field was observed above the grayish surface layer compared to that of the white 

inner layer associated with the laminated structures of a speleothem at the submillimeter 

scale with the SSM. The magnetization of the speleothem sample calculated by an 

inversion of isothermal remanent magnetization (IRM) also suggests that the magnetic 

mineral content in the surface layer is higher than that in the inner layer. This feature was 

further investigated by low-temperature magnetometry and suggested that it contains 

magnetite, maghemite, and goethite. The first-order reversal curve (FORC) 

measurements and the decomposition of IRM curves show that this speleothem contains 

a mixture of magnetic minerals with different coercivities and domain states. The 

contribution from maghemite and goethite to the total magnetization of the grayish 

surface layer is much higher than for the white inner layer. The speleothem magnetically 

and visually retaining two distinct layers indicates that the depositional environment was 



	

shifted when the surface layer was deposited and was likely changed due to an oxidative 

environment such as volcanic eruption or/and human activities. 

Future investigation is required to reveal the detail of linking environmental changes 

(e.g., climate change and sea-level change) to human activities in the South Pacific, but I 

have helped initiate this by demonstrating the potential to reconstruct the 

paleoenvironment in the Kingdom of Tonga using geochemical analyses for G. tumidum 

and rock magnetic analyses for the speleothem. 
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1.1. Human migration as a result of environmental changes in the 

Pacific islands 

Throughout history, humans have been forced to migrate for various reasons, such as 

wars, disasters, and enslavements (Becker et al., 2020; Cashman & Giordano 2008; 

Schroeder et al., 2009). In the Pacific Islands, climate and sea-level changes have played 

a major role in human migration (e.g., Kayanne et al., 2011; Nunn & Carson, 2015). For 

example, in Palau, ca. 1300 A.D., a comparatively rapid cooling likely caused the island 

group's abandonment (e.g., Clark & Reepmeyer 2012).  

In modern times, most small Pacific Island countries are inherently vulnerable to 

environmental changes and highly exposed to natural hazards, and they will be 

increasingly vulnerable due to climate change (Chand 2020). Therefore, in terms of 

adaptation to environmental change in the present and future, it is important to understand 

the past environment's effect on human activities. 

The Kingdom of Tonga is rated the second-greatest disaster-risk nation in the Pacific 

(Garschagen et al., 2014). It was a source area for the migration to East Polynesia around 

1,000 years ago (Clark et al., 2015); thus, it is suitable for studying the paleoenvironment 

and its relation to human migration. 
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1.2. Case studies of environmental changes that island nations are facing 

1.2.1 Climate change 

Precipitation brought by the South Pacific Convergence Zone (SPCZ) significantly 

impacts South Pacific island countries such as Fiji and Tonga. For island countries 

vulnerable to climate change, accurate predictions of SPCZ changes are of great 

importance for the people's livelihoods and economic activities in the region. The Fifth 

Report of the Intergovernmental Panel on Climate Change (IPCC; Intergovernmental 

Panel on Climate Change, 2014) suggests that the SPCZ may move more northeastward 

and that precipitation in the South Pacific may decrease. However, current climate models 

are not very accurate in predicting the future of the tropical convergence zones, including 

the SPCZ (e.g., Brown et al., 2020), and paleoclimate collection records are essential to 

understand the mechanisms and modes of change. Previous SPCZ studies have collected 

paleoclimatic records, including oxygen isotope analyses of in situ corals from Fiji and 

Tonga (Linsley et al., 2006), which reconstruct past SPCZ fluctuations.  

However, previous studies of SPCZ's paleoclimatic reconstructions in the South 

Pacific using in situ corals have been limited to the past 2–300 years, which is less than 

1/10th of the El Niño Southern Oscillation (ENSO) and other mid- to low-latitude climate 

reconstructions. 
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1.2.2 Earthquake, tsunami, and volcanic eruption 

Earthquakes and volcanic eruptions have repeatedly occurred near the Tonga Trench. 

Recently, an earthquake of Mw=7.9 occurred in 2006, and a tsunami caused by the 

earthquake was observed (e.g., Tang et al., 2008). The following year, the Samoa-Tonga 

earthquake of Mw=8.1 (e.g., Lay et al., 2010) and the eruption of the Hunga Ha’apai-

Hunga Tonga volcano occurred in the territory of the Kingdom of Tonga (e.g., 

Bohnenstiehl et al., 2013). Thus, Tonga is a region of repeated seismic and volcanic 

activity due to the subduction of the Pacific Plate. The earliest records of earthquakes and 

volcanic eruptions in this region are from 1853 (Sawkins, 1856) and 1774 (Cook, 1777), 

respectively. However, the start of subduction in this region is reported to be about 52–

48 Ma (e.g., Meffre et al., 2012), suggesting that the present subduction zone was formed 

and maintained with some changes since then. In other words, although earthquakes and 

volcanic eruptions occurred before the 18th century, it is difficult to reconstruct the 

history of these old earthquakes and volcanic activities using historical records. Therefore, 

to understand the prehistoric earthquakes and volcanic eruptions, it is necessary to 

reconstruct the activity history using geological records. 
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1.3. Geological setting of Tonga 

The islands of Tonga are situated in the southwest Pacific, some 780 km east of Fiji, 

900 km southwest of Samoa, and 2200 km northwest of New Zealand (Figure 1-1). They 

consist of 171 islands and lie from 15° to 23° 5’ S and from 173° W to 177° W. The 

archipelago extends in an NNE-SSW direction and is commonly divided into four groups: 

the southern Tongatapu group, the Ha’apai group, the northern Vava’u group, and the 

northernmost Niues. 

Tonga is located on the crest of the Tonga ridge parallel to the Tonga trench. Here the 

Pacific tectonic plate subducts beneath the Indo-Australian plate. The Kingdom of Tonga, 

therefore, lies in a geologically tectonically active area, and large earthquakes occur 

repeatedly. The plate subduction triggers arc magmatism that feeds volcanism along the 

active Tofua arc, which lies west of the Tongan islands. The geometry of the subducted 

Pacific slab beneath Tonga is complicated. Tomographic images suggest the subducting 

plate enters the upper mantle by lying flat, bending, or detaching under the Tonga Trench 

(e.g., Fukao & Obayashi, 2013; Tibi & Wiens, 2005; van der Hilst, 1995). 

Tongatapu Island is an uplifted coral atoll. It is made up of Pliocene and Pleistocene 

limestone 150–250 m thick overlying lower Pliocene and older volcaniclastics (e.g., 

Cunningham & Anscombe, 1985; Taylor, 1978). Holocene deposits in Tongatapu include 

reef limestones and detrital sediments accumulated in the beach, tidal flat, and lagoonal 

environments (Figure 1–2).  
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1.4. Archaeological studies in Tonga 

Tonga is also an archaeologically important region that was a hub for human migration 

to East Polynesia (Clark et al., 2015). Goodwin et al. (2014) suggest that the diffusion of 

humans to the South Pacific Islands is thought to have been closely related to sea-level 

and climate changes. Tonga served as a hub for human dispersal to Eastern Polynesia, 

and it has been suggested that multi-decadal-scale changes may have influenced human 

migration routes in sea-level pressure and wind direction. 

Based on the RSL records and the coarse-resolution topographic maps (2 m contour), 

the mid-Holocene paleoshoreline around Fanga ‘Uta Lagoon, Tongatapu island was 

reconstructed (e.g., Dickinson, 2007; Spennemann, 1997, see Figure 1-3). The modern 

Fanga ‘Uta lagoon is a shallow and restricted body of water and is largely closed from 

tidal influence. The water in the lagoon is brackish with a mean residence time of ca. 20 

– 30 days (Damlamian 2008; Zann et al. 1984). In mid-Holocene time, extending at least 

until the first human occupation in Tongatapu, the lagoon was an open embayment. As 

sea level fell, the lagoon has become increasingly enclosed and shoaled, and salinity in 

the lagoon decreased, which would have had a large negative impact on the quality and 

quantity of benthic habitats (Burley et al., 2001; Clark et al., 2015; Spennemann 1987).  

For example, Spennemann (1987) argued that Anadara antiquata in shell midden 

radically declined due to a radical change of the lagoon environment, which was caused 

by sea level fall. A. antiquata favors sandy and sometimes muddy substrates in intertidal 

reef flats of the near-shore environment and prefers saline conditions (Spennemann, 

1989). Moreover, a small oyster, Dendrostrea folium, was the most abundant species in 

the Talasiu midden and had attached corals (e.g., Clark et al., 2015). However, there are 
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no corals nor D. folium in modern Talasiu. These species can be found at the lagoon 

mouth only today (Zann, 1984) 

However, the previous studies were based on the archaeological method, and no studies 

of quantitative paleoenvironmental studies using geochemical methods have been 

reported. 
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1.5. Radiocarbon dating and Marine Reservoir effect 

Radiocarbon (14C) is one of the most important dating tools used to reconstruct the 

timing of changes in Earth and human history over the past 50,000 years. The value of 

14C can be used in the traditional sense of assigning a calendar age to a historical event 

(Fukuyo et al., 2019).  

But it is also used as a tracer for processes, such as ocean circulation (Hirabayashi et 

al., 2019; Kubota et al., 2018). The marine surface mixed layer is depleted in radiocarbon 

relative to the atmosphere because of upwelling of radiocarbon-depleted deep water and 

slow mixing across the ocean-atmosphere interface. The difference between oceanic and 

atmospheric radiocarbon ages is defined as the Marine reservoir age (R) (Alves et al., 

2018; Hirabayashi et al., 2019; Stuiver & Polach, 1977) and the averaged marine reservoir 

age of the surface ocean is ca. 400 years. However, local marine reservoir age offsets 

(ΔR) are induced by local environmental conditions (e.g., Hirabayashi et al., 2017; 

Lindauer et al., 2017a). In this study, I used 14C values as change depending on the 

amount of freshwater input and marine incursion (See Chapter 2). 
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1.6. Speleothem magnetism 

Conventional methods aimed to unveil the evolution of the geomagnetic field extract 

paleomagnetic signals recorded in geologic materials such as volcanic rocks and 

sediments. However, obtaining an accurate chronology from these geologic archives is 

not trivial. Age uncertainties from radiometric dating of volcanic rocks typically present 

age errors with a few percent (e.g., several hundreds of years for ~50 ka rock) that make 

it challenging to depict a precise picture of events. The age models of sediments are often 

indirect, and the magnetization of sediments lag behind by as much as thousands of years 

due to magnetization acquisition mechanisms called lock-in depth (Roberts et al., 2013).  

Recently, speleothems have been used to overcome these problems because they 

capture the geomagnetic signals synchronously with the formation of carbonate layers, 

incorporating magnetic minerals. Samples can be dated radiometrically using the 

Uranium-series dating method. Compared to sediments, their structures are not impacted 

by later diagenesis, consolidation, or deformation after the deposition. Moreover, the time 

lag between their crystallization and lock-in of paleomagnetic signals is fairly small (e.g., 

Latham et al., 1979; Morinaga et al., 1989), and several speleothem magnetism studies 

report accurate ages of geomagnetic excursions using U/Th-dated speleothems (e.g., 

Lascu et al., 2016; Osete et al., 2012; Pozzi et al., 2019). 

Another advantage of using speleothems to reconstruct paleomagnetism is that they 

can record the paleoenvironment using environmental magnetism methods (Lascu & 

Feinberg, 2011). Magnetic minerals deposited on speleothems are sourced from 

floodwaters, which flow into caves and/or produce drip action filtering in overlying soils. 

The magnetic minerals in speleothems can therefore record regional and global 

environmental changes such as paleofloods, precipitation, and anthropogenic influences 
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as variations in rock magnetic properties (e.g., Feinberg et al., 2020; Font et al., 2014; 

Jaqueto et al., 2016). Despite the advantages mentioned above, the paleomagnetic signals 

of speleothems are too weak to reconstruct high-resolution paleomagnetic records using 

conventional magnetometers (Lascu et al., 2016). Thus, previous studies had to sacrifice 

the temporal resolution that speleothems could potentially offer. The problem can be 

overcome using a scanning superconducting quantum interference device microscope 

(scanning SQUID microscopy) to a speleothem.  

The SQUID microscope allows the scanning of samples of about 100 μm at room 

temperature. It can also detect dipole fields with moments that are weaker than 10 – 15 

Am2 making it more sensitive than the best superconducting moment magnetometers 

(Oda et al., 2016). However, only two preliminary paleomagnetism studies have been 

reported using SSM for speleothems (Feinberg et al., 2020; Myre et al., 2019). 
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1.7. Research objective and thesis structure 

As mentioned above, various paleoenvironmental changes have affected human 

activities, especially in the Pacific islands (e.g., Clark et al., 2015; Clark & Reepmeyer 

2012; Kayanne et al., 2011; Nunn & Carson, 2015). Therefore, one of the effective ways 

to reconstruct each paleoenvironmental change is combining multiple proxies. 

The main objective of this thesis to understand the paleoenvironment in the Kingdom 

of Tonga (Tonga) using bivalves and speleothems. To achieve this research objective, I 

examined new methods using geochemical and rock-magnetic analyses for bivalves and 

speleothems. In Chapter 2 (cf., Fukuyo et al., 2020), I developed a new proxy for 

freshwater proportions in a lagoon and reconstructed sea level change during Holocene 

and its influence on the lagoon environment using this novel proxy, GIA models, and 

LiDAR data. In Chapter 3, I applied a scanning SQUID microscopy to a speleothem and 

interpreted variations in rock magnetic properties recorded in the speleothem. Lastly, the 

key findings of this thesis will be summarized, and future avenues for this research will 

be suggested (Chapter 4). 
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Figure 1-1. Sampling sites in this study. (A) The location of the Kingdom of Tonga. (B) 

Sampling sites on Tongatapu Island. Havelu and Pangaimotu are sites with shells of 

known ages reported in Spennemann & John Head (1998). The inset square indicates the 

extent of Figure 2-4. (C) Archaeological sites in Talasiu and Lapaha. The dashed line 

denotes the border between Talasiu and Lapaha. From Fukuyo et al. (2020). 
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Figure 1-2 Tongatapu island, showing distribution of main Holocene depositional 

environments. Main land forms a surficial pavement characterised by Porities   

microatolls and Acropora fragments. The geological Information from Roy (1997) and 

van der Velde et al. (2006b). 
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Figure 1-3. Modern (A) and mid-Holocene (B) schematic configurations of the north 

coast of Tongatapu at Fanga ‘Uta lagoon (modified from Dickinson 2007). 
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Summary 

Reconstructing the history of Holocene relative sea levels around Tonga provides 

essential constraints on the recent geological evolution of this region and 

paleoenvironmental context for archaeological studies. However, few sea level records 

are currently available in the region, and no quantitative paleoenvironmental studies using 

geochemical or geophysical methods have been reported. Here, we reconstruct Tongatapu 

Island’s sea level history using radiocarbon measurements and glacio-hydro-isostatic 

adjustment (GIA) modeling. Our analyses reconstructing the lagoon’s evolution suggest 

the average size of Gafrarium tumidum decreased synchronously with corresponding 

changes in the paleoenvironment. These changes also correspond to the increasing trend 

of the lagoon-specific local marine reservoir ages (ΔRlagoon) from 105 ± 49 to 156 ± 85 

years between ~2.6 and 1.2 ka. The minimum values of sea surface salinity (SSS) decline 

within Fanga’uta Lagoon was also synchronous with these changes caused by a gradual 

decrease in the exchange of water in and out of the lagoon. Freshwater input inferred from 

the shell was somewhat lower ca. 2.6 cal kyr BP than the present, suggesting the lagoon 

was relatively open to the ocean at that time. Our GIA modeling predicts mid-Holocene 

sea-level highstand (HHS) was less than 1 m above the present sea level in Tongatapu, 

suggesting previously reported observations of an HHS require additional contributions, 

perhaps from crustal uplift. Furthermore, recent Global Navigation Satellite System 

(GNSS) observations of vertical uplift rates at Tongatapu have a higher magnitude than 

the long-term uplift rate obtained from Holocene sea level data. 
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2.1. Introduction 

2.1.1. Holocene sea level change and glacio-hydro isostasy 

Sea level data during glacial-interglacial periods at sites far from former or current ice 

sheet regions (far-field) have been studied extensively using various proxies because they 

represent the mean state of past global climate (see Yokoyama et al., 2019c). Temporal 

sea level changes since the Last Glacial Maximum (ca. 20 ka) thus provide information 

on ice sheet responses to global climatic changes (e.g., Kench et al., 2020; Lambeck et 

al., 2014; Yokoyama et al., 2018) and environmental changes (e.g., Braga et al., 2019; 

Humblet et al., 2019; Webster et al., 2018). Because the ice sheets in North America and 

northern Europe during the Last Glacial Maximum had entirely melted by ca. 7 ka, slow 

deformation induced by glacio-hydro-isostatic adjustment (GIA) of the Earth’s surface 

was the dominant effect compared to polar ice volume changes during the mid-to-late 

Holocene (Clark et al., 1978; Lambeck et al., 2003). This deformation process modified 

past shoreline elevations: namely, the heights of relative sea level (RSL) indicators 

(Yokoyama & Esat, 2015).  

The observed RSL is described as mathematically as follows (Lambeck et al., 2003): 

!!"#(", #) = !$%&'(", #) + !(&)(", #) + !*+,*(", #) – $%. 1 
where !!"#(", #) describes the RSL changes at site φ between time t and the modern,  
!(&)(", #) is the isostatic component of sea-level change which includes the effects of both 

ice and water loading, and !*+,*(", #) represents the tectonic component due to long term 

surface deformations other than GIA. Assuming the melt water from ice sheets s 

uniformly distributed over the oceans at time t, then  !$%&'(#)  is given as:  
!$%&'(", #) = −

((())*((#)+)(#) – $%. 2 
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where (( and ()  represent the densities of ice and water respectively and *((#) is the 

volume change of global, land-based ice. +)(#) is the surface area of the ocean at time t. 

A Holocene sea level history for Tonga has been also reconstructed from uranium-

series dating of corals (e.g., Bourrouilh & Hoang, 1976; Taylor, 1978) and pollen analysis 

of mangrove sediments (Ellison, 1989). The maximum sea level height during the mid-

Holocene (ca. 6 ka, Figure 2-1) was at least 1.9 – 2.5 m higher than the modern sea level 

because of hydro-isostacy, but this attribution remains speculative; few quantitative 

modeling studies have explored the effects of GIA in Tonga. 

 Moreover, archaeological investigations on Tongatapu Island also suggest that sea 

levels declined about 2,500 years ago and that the closure of the bay led to a decrease in 

seawater salinity and increase of siltation. This resulted in a decrease in marine taxa (e.g., 

Clark et al., 2015; Spennemann, 1987), but no quantitative paleoenvironmental studies 

using geochemical methods have been reported. 
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Figure 2-1. A mid-Holocene paleoshoreline notch at a beach near Anahulu cave (see 

Figure 3-1) on east coast of Tongatapu, the Kingdom of Tonga. 
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2.1.2. Quantification of rheological parameters and geophysical activities using GIA 

model 

At many far-field sites, the RSL indicator of the mid-to late-Holocene is located above 

present-day sea level due to GIA and is called the Holocene High Stand (HHS). The 

magnitude and timing of the HHS depend mainly on local geophysical properties and 

whether tectonics derived from seismic activities. Therefore, in order to infer lithospheric 

thickness and mantle viscosities, former studies used systematic RSL observations 

together with GIA modeling (Mitrovica & Milne, 2002; Nakada & Lambeck, 1987; 

Yokoyama et al., 2016). 

The Kingdom of Tonga is composed of carbonate islands located at far-field sites in 

the South Pacific (Figure 1-1). The sites are also situated near the Tonga Trench, where 

large plate subduction-induced earthquakes have been reported (Lay et al., 2010). Such 

massive earthquake-generated tsunamis have the potential to damage low-lying islands 

(e.g., Jackson et al., 2014; Yokoyama et al., 2019a). Thus, understanding the nature of 

tectonics in this region is crucial for coastal management efforts to mitigate tsunami 

hazards. The Fiji–Tonga region has complex tectonics as mentioned above. A GIA 

modeling approach can provide insight on the region’s tectonics, comparing both short-

term instrumental observations as well as long-term geological observations that can be 

useful to quantify geophysical activities near a plate boundary (e.g.,Yousefi et al., 2020). 
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2.1.3. The aim of this chapter 

In this study, the lagoon-specific marine reservoir effect (ΔRlagoon; see methods section 

for definition), determined from archaeological shells, serves as a proxy of water 

exchange between the lagoon and the Pacific Ocean. Numerical GIA modeling is 

performed to explore relative sea level changes in Tongatapu. The results are compared 

with present-day satellite-based GNSS (GPS) observations of vertical land motions on 

the island to better understand the long-term tectonics in the region. I aim to evaluate the 

previously published proposal that the modification of the coastal landscape had been 

initiated at ca. 2.6 ka using geochemical and geophysical approaches.  
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2.2. Materials and Methods 

2.2.1. Site Description and Sample Collection 

Tongatapu Island (21° 08’S, 175° 12’W) is the largest island of the Kingdom of Tonga 

and is located ~200 km southeast of Fiji and ~2,000 km northeast of New Zealand (Figure 

1-1). Tonga is in the subtropic zone, which is characterized by a warm, wet season from 

November to April and a cool, dry season from May to October. The rainfall is affected 

by the South Pacific Convergence Zone (SPCZ) in Tonga, and 60% of the annual rainfall 

comes during the wet season (Australian Bureau of Meteorology and Commonwealth 

Scientific and Industrial Research Organisation 2014). 

The island has a freshwater lens that is recharged solely by rainfall, reaches a thickness 

of about 12 m at the center of Tongatapu, and discharges at the edges of the island (van 

der Velde et al., 2006a). Because of the high permeability of the soil and underlying 

limestone in Tongatapu, surface water is scarce or nonexistent (White & Falkland, 2010), 

thus freshwater flow into Fanga ‘Uta lagoon is almost from the freshwater lens. Despite 

high permeability, the evapotranspiration is so high that at most 20% to 30% of the 

rainfall reaches the freshwater lens (Hunt, 1979; van der Velde et al., 2005; White et al., 

2009). 
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2.2.2. Sample collection and preparation 

Sixty fossil samples of Gafrarium tumidum; Röding, 1798 were obtained from three 

archaeological sites in Talasiu and Lapaha on the eastern shore of Fanga’uta Lagoon 

(Figure 1-1). The ages of each site were determined based on the radiocarbon ages of 

charcoals. TO-Mu-2 was 2.6 cal kyr BP, J17 was 1.2 cal kyr BP, and J13 was 0.4 cal kyr  

BP (TO-Mu-2 and J17 Petchey & Clark, 2011; J13 Clark et al., in prep). Fourteen living 

G. tumidum specimens were collected from Nukunukumotu and Talasiu, but no live 

samples were found in Pea. In the laboratory, each shell’s length and height were 

measured using a digital caliper to the nearest 0.01 mm (Figure 2-2). 

We performed in situ measurements of sea surface temperature (SST) and sea surface 

salinity (SSSin situ) in Nukunukumotu, Talasiu, and Pea (Figure 1-1). SST was measured 

monthly from December 2016 to November 2017 using a HOBO Water Temperature Pro 

v2 (± 0.2°C accuracy), and SSSin situ was measured in July and December 2016 and 

December 2017 using a portable salinometer (± 1 psu accuracy).  
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Figure 2-2 Shell measurements of G. tumidum, measured using digital calipers accurate 

to two decimal places. 
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2.2.3. Stable oxygen isotope analyses 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.2.4. Radiocarbon dating 

4 live and 30 fossils of G. tumidum specimens were used. I obtained approximately 10 

mg of shell samples for radiocarbon dating by cutting the outer layer of the shell. After 

the physical cleaning of the shells, surface contamination was removed by etching with 

1% HCl, and the shells were rinsed with Milli-Q water. The samples were then dissolved 

in 85% phosphoric acid in a vacuum tube. The CO2 produced by dissolution was then 

passed through an ethanol-liquid nitrogen trap (at approximately −100°C) to purify the 

gas. The CO2 was graphitized with 4–5 mg of Fe powder in a hydrogen atmosphere heated 

to ~630°C (see Yokoyama et al., 2007; 2010). The resulting graphite was then placed into 

aluminum cathodes and analyzed at Atmosphere Ocean Research Institute, University of 

Tokyo, using a single-stage accelerator mass spectrometer following analytical protocol 

(Yokoyama et al., 2019b). 

 
2.2.5. Calculation of lagoon-specific marine reservoir effect (ΔRlagoon) 

The marine reservoir age (R) is the difference between oceanic and atmospheric 

radiocarbon ages (Alves et al., 2019; Hirabayashi et al., 2019; Stuiver & Polach, 1977). 

Present-day global average values are approximately 400 years, but local marine reservoir 

age offsets (∆R) are induced by local environmental conditions (Hirabayashi et al., 2017; 

2019). ∆R values are used as a proxy for local environmental conditions, including sea 

level changes (e.g., Lindauer et al., 2017a).  

In this chapter, I define the equation ΔRlagoon as the difference between the 14C 

activity of the open ocean and the lagoon-specific value at the same time to estimate the 

change in the lagoon’s freshwater proportion.  
ΔRlagoon = C14  ageshell − C14  agemodeled global ocean  
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As mentioned above, freshwater into Fanga ‘Uta lagoon is flowed through a freshwater 

lens. Freshwater would contain lower 14C than seawater due to limestone solution in the 

freshwater lens. Therefore, 14C content of lagoon water will indicate the ratio between 

14C content of freshwater and that of seawater, and bivalves living in the lagoon will 

also indicate the ratio. 

A monospecific brackish bivalve (G. tumidum) throughout the time of interest were 

used in this study. G. tumidum is a suspension-feeding shellfish, and the 14C values of its 

shell should reflect the 14C values of dissolved inorganic carbon (DIC) from surface water 

(e.g., Lindauer et al., 2017b; Nishida et al., 2020; Petchey et al., 2013; Petchey & Clark 

2011). Thus, changes in radiocarbon in the ambient environments can be compared 

directly without any concerns related to vital effects. I recalculated ΔR using an online 

application (Reimer & Reimer, 2017) and the latest calibration data sets: ShCal20 (Hogg 

et al., 2020) and Marine20 (Heaton et al., 2020). 
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2.2.6. GIA modeling and shoreline reconstructions 

I modeled GIA using Australian National University’s CALSEA software (Lambeck 

et al. 2017) with nine iterations of the sea level equation (Lambeck et al., 2003), a three-

arc-minute global topography data set, and ice sheets using previous regional inversions 

(e.g., Lambeck et al., 2010; 2017). Global mean sea level values for the combined ice 

sheets were tuned to match the time-series data of (Lambeck et al., 2014; 2017). 

Calculations were performed for 560 distinct rheologies (Table 2-1) spanning the 

permissible parameter ranges for far-field ocean margin sites (Lambeck et al., 2014). The 

range of predicted RSLs obtained from the 560 rheological models is shown in the figure 

as gray shading. Furthermore, I set six preferred rheological parameters appropriate for 

small oceanic islands far from continental margins (Lambeck 2002; Mitrovica & Milne 

2002). Ice sheets (Woodroffe et al., 2012) for the Tongatapu are listed in Table 2-2 and 

are depicted with symbols on predicted sea level curves in Figure 2-3. 

I mapped shoreline around Fanga’uta Lagoon indicating where the area is key to 

separate between inside and outside the lagoon (Figure 2-4). This high-resolution map 

was produced based on aerial topographic and bathymetric lidar data acquired by the 

Tongan government as a component of the AusAID-funded (presently Australian Aid) 

Pacific Adaption Strategies Assistance Program over Tongatapu. Topographic lidar 

measurements were acquired during six flights between October 3 and October 24, 2011, 

and bathymetric lidar measurements were acquired during eight flights between 

September 5 and September 15, 2011. Lidar data were captured on the WGS84 horizontal 

datum and projected onto the Tonga Map Grid 2005. The vertical datum used in the 

survey was the Earth Gravitational Model 2008 geoid, and the contractor made a local 

adjustment of 0.77 m to adjust the vertical datum to mean sea level at the benchmark 
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TON1 vide the Nuku’alofa Sea Level Fine Resolution Acoustic Measuring Equipment 

tide gauge. The vertical accuracy of the topographic lidar data is ± 0.15 m (1 SD), and 

that of the bathymetric lidar data is ± 0.50 m (1 SD). GIA modeling results were analyzed 

alongside the topographic and bathymetric lidar to infer paleolandscape changes. 
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Figure 2-3. RSL changes predicted by the GIA model used all rheological parameters 

around Tongatapu Island. Modified from (Fukuyo et al., 2020). 
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Figure 2-4. High-resolution topographic map based on lidar data around Fanga’uta 

Lagoon in Tongatapu (Fukuyo et al., 2020). 
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Table 2-1. Rheological parameters used for 560 GIA model runs. 

 

 

 

 

 

 

 

Table 2-2. Representative rheological parameters for the Tongatapu used for GIA 

modeling. 

 

 

  

Lithospheric thickness (km) 60, 65, 70, 80, 90, 100, 110, 120 

Upper mantle viscosity 
(1020 Pa s) 0.7, 1, 2, 3, 4, 5, 6, 10, 20, 30 

Lower mantle viscosity 
(1021 Pa s) 3, 5, 7, 10, 30, 50, 100 

Lithospheric  
thickness (km) 

Upper mantle  
viscosity (1020 Pa s) 

Lower mantle 
viscosity (1021 Pa s) 

65 4 10 

65 0.7 10 

50 2 10 

100 2 10 

65 2 30 
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2.3. Results 

2.3.1. Modern seawater temperature and salinity measurements 

SSTs observed between December 2016 and November 2017 at Nukunukumotu, 

Talasiu, and Pea varied from 20.9 to 30.1°C, from 22.5 to 32.1°C, and from 20.3 to 31.9°C, 

respectively (Figure 2-5). A paired t-test among the three sites (Nukunukumotu-Pea, p = 

0.39; Talasiu-Pea, p = 0.55; Nukunukumotu-Talasiu, p = 0.13; with p < 0.05 indicating 

statistically significant differences) indicates there is no spatial variation in the lagoon’s 

SST. 

In contrast to SST, SSSin situ varied noticeably among the three sites. SSSsin situ observed 

between December 2016 and December 2017 at Nukunukumotu, Talasiu, and Pea ranged 

from 27.0 to 31.5, from 16.0 to 26.0, and from 11.0 to 13.5 psu, respectively (Table 2-3). 

Due to increased precipitation in December (during Tonga’s rainy season), SSSsin situ at 

all sites should be lower in December than in July. However, SSSs at Talasiu and Pea in 

austral summer were higher than in austral winter because of sudden rainfall during the 

July 2016 field survey.  
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Figure 2-5. Monthly averaged SSTs from December 2016 to November 2017 at (a) 

Nukunukumotu, (b) Talasiu, and (c) Pea (error bars are 1 SD). (d) Comparison among all 

sampling sites (Fukuyo et al., 2020). 
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Table 2-3. Sea surface salinities (SSSsin situ) in summer and winter at each site. 

 

 

 

 

 

 

2.3.2. δ18O composition of seawater 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 

  

Site name SSS in summer*  
(December 2016) 

SSS in winter 
(July 2016) 

Nukunukumotu 27.0 ± 1.0 31.5 ± 1.0 

Talasiu 26.0 ± 1.0 16.0 ± 1.0 

Pea 13.5 ± 1.0 11.0 ± 1.0 
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2.3.3. Shell size of G. tumidum 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.3.4. δ18O composition of shells 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.3.5. Radiocarbon measurements and ∆Rlagoon 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.3.6. GIA modeling 

I used CALSEA software to model RSL around Tongatapu Island during the past 6,000 

years. The results omit a 20 cm meltwater pulse since 1850 from Antarctica, Greenland, 

and mountain glaciers, which reflects recent sea level rise (Lambeck et al., 2017). Except 

for the extreme case of a high upper mantle viscosity (red curve, Figure 2-10), the models 

indicate the Holocene highstand (HHS) occurred around 2.5 ka and was driven by eustatic 

sea level rise. Modeled HHSs ranged from 0.2 to 0.4 m in elevation, but no model—

except for cases when extreme rheological parameters were employed—suggested a 

higher HHS elevation in Tongatapu. All sea level models show a monotonic decrease in 

RSL after the HHS at ca. 2.5 ka using this ice model (i.e., ANU model; Lambeck et al., 

2014) because the cessation of global ice volume decrease was marked at this time (Figure 

2-3 and 2-10). 
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Figure 2-10. RSL changes predicted by the GIA model around Tongatapu Island. The 

gray shading is the range of predicted RSLs obtained from 560 rheological models.  
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2.4. Discussion 

2.4.1. The Relationship between SSSin situ and δ18Osw in Fanga’ Uta lagoon 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。  



	

 61 

2.4.2. Relationship between δ18Oshell and SST and SSSin situ in Fanga’ Uta lagoon 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.4.3. Reconstruction of SSSs using fossil bivalves in Fanga’ Uta lagoon and its 

limitation 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.4.4. Suitability of G. tumidum 14C as a proxy for ΔRlagoon 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.4.5. Holocene changes in lagoon water properties inferred from the ΔRlagoon of G. 

tumidum 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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2.4.6. Paleotopographic reconstruction 

I reconstructed the topography map of Tongatapu by subtracting gridded RSL values 

from modern bathymetry and topography maps (Figure 2-4). The colors show the areas 

where different relative sea levels potentially make the opening of the lagoon mouth at 

the Fanga’uta Lagoon in Tongatapu. According to the shell ΔRlagoon and size changes 

described in the above section, sea level has been falling since 2.6 ka. Hence, a minimum 

1.0 m to 1.5 m higher relative sea level in Tongatapu should had occurred at 2.6 ka.  

 To examine whether GIA-induced relative sea level changes during this time could 

produce this magnitude, we have conducted GIA modeling using various Earth viscosity 

models (Figure 2-3). The results suggest RSL at ca. 2.5 ka was likely only approximately 

20–80 cm higher than today, lower than that required to make an opening of the lagoon 

mouth. Thus, an additional factor to produce at least ~50 to 100 cm of crustal vertical 

uplift/relative sea level fall is required.  
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2.4.7. Comparison of GIA modeling to sea level indicators and GNSS (GPS) observation 

The highest mid-Holocene HHS estimated from our GIA-preferred model results was 

~0.75 m around 5 ka for an Earth model consisting of a 65 km-thick elastic lithosphere 

with upper and lower mantle viscosities of 4×1020 and 1×1022 Pa s, respectively (Figure 

2-10). For comparison, earlier studies using fossil corals as sea level indicators have 

reported sea level increases of 1.9 to 2.2 m in Tongatapu around 6 ka (Figure 2-18; 

Bourrouilh & Hoang, 1976; Taylor, 1978; Woodroffe, 1983). Many previous studies 

suggest RSL changes in Tongatapu were driven primarily by hydro-isostasy (e.g., 

Dickinson et al., 1999; Spennemann, 1997); however, without conducting actual GIA 

modeling, I confirmed a GIA-induced HHS of 0.5 – 0.8 m. 

This suggests GIA may not be solely, nor even primarily, responsible for the observed 

vertical land motion at this location. Near a subduction zone, interseismic deformation 

can be observed or modeled. A comparable example may be seen in the site similarly 

close to the subduction zone in Japan. After the 1946 earthquake in the Nankai area, 

approximately 10 mm/year uplifts were observed as early stage interseismic deformation 

at a site located about 200 km from the Nankai subduction zone (Li et al., 2020; Wang & 

Tréhu, 2016). Tongatapu Island is also located approximately 200 km from the Tonga 

Trench. The most recent large earthquake (Mw 8.1) occurred along the Tonga Trench in 

2009 (Fritz et al., 2011). The GNSS records for Tongatapu during the past 10 years 

(http://www.sonel.org) show an average uplift velocity of 3.01 ± 0.41 mm/year. This can 

be attributed to the early stage of interseismic vertical deformation in Tongatapu. If this 

velocity is extrapolated for the past 6,000 years, then sea level indicators formed ca. 6 ka 

are expected to be located at about 18 m higher than the present-day sea level (Figure 2-

18). This number is much higher than the sea level indicator of the island using fossil 
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coral samples. Thus, it suggests the recent observed uplift velocity of Tongatapu Island 

with GNSS is a relatively short and recent phenomenon and not the one that has been 

continuing during the past 5,000 years. 

The results of our GIA modeling further suggest RSL decreased sharply after 2.25 ka. 

This timing is coeval with the age of change in the Tongatapu Island marine ecosystem 

recorded by Clark et al. (2015). 
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Figure 2-18. Comparison among RSLs obtained from our GIA model (lines as in Figure 

2-10), sea level indicators (evidence of Holocene highstand) obtained from fossil corals 

(blue points; Bourrouilh & Hoang, 1976; Taylor, 1978; Woodroffe, 1983, vertical lines; 

tidal ranges), and extrapolation from recent GNSS observations (green dashed line and 

point, note break in scale). I recalculated the calendar ages of corals using OxCal v4.3 

(Ramsey, 2009b) and the Marine13 calibration curve (Reimer et al., 2013). ΔR is 87 ± 74 
14C years (Petchey & Clark, 2011). From Fukuyo et al. (2020). 
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2.4.8. Comparison of previously reported sea level indicators with GIA predictions and 

∆Rlagoon 

I compared RSLs obtained from our GIA model, sea level indicators (Bourrouilh & 

Hoang, 1976; Taylor, 1978; Woodroffe, 1983), and sea level records estimated by 

combining RSLs and the lidar data set (Figure 2-19). According to archaeological studies 

(e.g., Clark et al., 2015), the near closure of the lagoon started ca. 2.5 ka. Moreover, based 

on our paleotopographic mapping, a sea level drop of ~50 to 100 cm is required to have 

closed the lagoon. Considering the tidal range at Tongatapu, the near closure of the lagoon 

ca. 2.5 ka can be explained by a sea level drop due to ocean syphoning (e.g., Johnston 

1993; Mitrovica & Milne 2002) consistent with the RSLs obtained in our GIA model. In 

addition, the sea level fell steadily after this period, which led to the lagoon’s monotonic 

closure. Thus, the freshwater input into the lagoon has increased steadily due to reduced 

exchange between the lagoon and the open sea, consistent with the continuous increase 

of ΔRlagoon values over the past 2,500 years (Clark et al., 2015). By contrast, fossil corals 

indicate ca. 6 ka the sea level was up to 1 m higher than the maximum sea levels ca 2.5 

ka as estimated by the GIA model, suggesting not only ocean syphoning but also crustal 

uplift contributed to the observed sea level change at Tongatapu. 
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Figure 2-19. Comparison of RSLs obtained from fossil corals (blue symbols, vertical 

lines: tidal ranges), our GIA model (lines as in Figure 2-10), and ΔRlagoon (t) values 

indicating a trend of decreasing salinity since ca. 2.5 ka. The green point indicates a sea 

level drop required to close the lagoon according to our topographic mapping. 

  

本図については、5 年以内に雑誌等で刊行予定の内容を含むため、非公開。 
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2.4.9. Shell sizes related to paleoenvironmental changes 

As discussed earlier, I employed only the monospecific bivalve G. tumidum to 

reconstruct the environmental change of the lagoon during the Holocene period. Thus, no 

interspecific variations are needed to be considered to infer causation of changes observed 

in this study.  

Further, it is suitable to discuss the change in shell size because the G. tumidum 

collected in this study should not be juvenile. They obtain the first sexual maturity about 

20 mm in shell height on the coasts of southeast India (Jagadis & Rajagopal, 2007) and 

southwestern New Caledonia (Baron 1992). The lengths of all shells used in this study 

were at least 20 mm (Tables 2-6 and 2-8, Figure 2-6). In addition, oxygen isotope analysis 

in this study suggests that some samples have 2–3 year cyclicities in their outer layers. 

Alternatively, human predation can influence shell size because larger individuals of a 

species are targeted preferentially (Mannino & Thomas, 2002). Currently, it is impossible 

to completely disentangle the effects of SSS and human predation on shell size, although 

Clark et al. (2015) did not record a decrease in shell size at the Talasiu site, where G. 

tumidum has been harvested intensively. 

As GIA model, paleotopographic reconstruction, and ΔRlagoon of G. tumidum showed 

the lagoon was increasingly enclosed at ~2.5 ka involving environmental changes, 

including an increase in freshwater inflow and grain refining of bottom sediment. In the 

archeological site of Talasiu at 2.6 ka, A. antiquata and corals, which prefers sandy 

substrates and saline conditions, were found, but they inhabit in only lagoon mouth, 

whereas G. tumidum, which prefer more muddy blackish condition is abundant in modern 

Talasiu (Zann, 1984). Moreover, the shell sizes of present-day G. tumidum seem to be 

controlled more by SSS than by SST (Table 2-13), as demonstrated by the absence of G. 
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tumidum in the innermost part of the lagoon (Pea), where the salinity is dramatically lower. 

This result is consistent with the incipient lower salinity limit of < 16 psu for G. 

pectinatum (Mcmahon, 2003). Hence, the alteration of salinity and sediments in the 

lagoon due to sea level change can affect the ecosystem in the lagoon, including the shift 

of marine taxa and the size change of organisms. 

 

  

 

Table 2-13. Shell sizes of living G. tumidum and physical seawater properties. 

 

  

Area Average shell 
height (mm) 

Average SSS Average SST (°C) 

Nukunukumotu 24.7 (n = 7) 29.3 25.7 
Talasiu 29.8 (n = 7) 21.0 27.1 

Pea - 12.3 26.5 
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2.5. Conclusion 

I have investigated relative sea level changes at Tongatapu using ΔRlagoon values and 

shell sizes of G. tumidum, paleotopographic mapping, and GIA modeling. Our main 

conclusions are summarized as follows. 

1) ΔRlagoon values of prehistoric bivalves show an increased influx of old 14C from 

terrestrial limestone to Fanga’uta Lagoon between ~2.6 cal kyr BP and present day. I 

tentatively attribute this to the near closure of the lagoon, consistent with the scenario 

Clark et al. (2015) presented. 

2) GIA modeling suggests the contribution of ocean syphoning to sea level changes at 

Tongatapu was smaller than previously estimated. 

3) Paleotopographic maps reconstructed from topographic data and GIA modeling 

indicate the near closure of the lagoon ca. 2.5 ka, consistent with our ΔRlagoon results and 

those of Clark et al. (2015). This suggests ∆R serves as a reliable geochemical proxy of 

small-scale environmental changes, which can be reconstructed when combined with 

high-resolution topographic data. 

4) SSS decrease and siltation increase due to the closure of the lagoon would have had 

significant negative impacts on the lagoon environment such as the decline in bivalve 

body size over the past 2,600 years. 

5) Recent GNSS observations of vertical land motion at Tongatapu are inconsistent 

with paleoshoreline data, suggesting the recent uplift trend is not characteristic of the past 

2,600–6,000 years. 
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Chapter 3. High spatial resolution magnetic mapping using 

ultra-high sensitivity scanning SQUID microscopy on a 

speleothem from the Kingdom of Tonga, southern Pacific 
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本章については、5 年以内に雑誌等で刊行予定のため、非公開。 
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Chapter 4. General conclusion and Future work 
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4.1. General conclusion 

本節については、5 年以内に雑誌等で刊行予定の内容を含むため、非公開。 
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4.2. Future perspectives 

4.2.1. Linking environmental changes to human activities in the South Pacific 

In the Pacific, a number of archaeological sites have a similar geological setting (e.g., 

Dickinson 2014; Kayanne et al., 2011; Petchey et al., 2018). The end of early settlement 

in the western Pacific island groups (e.g., Fiji, Papua New Guinea, Mariana, New 

Caledonia, and Vanuatu) clusters tightly around 2500 cal yr B.P. (e.g., Carson & 

Kurashina 2012; Denham et al. 2012; Irwin et al. 2011). The synchronicity of this event 

over this extremely wide region can suggest that it was externally driven. Previous studies 

suggest that the 0.7 m on average sea‐level fall occurred within the western Pacific Ocean 

from 3500 to 2000 cal yr B.P. (e.g., Nunn and Carson, 2015). Therefore, sea‐level change 

in that era seem to be the key drivers that could have uniformly and synchronously 

impacted the coastal environment and residents in these island groups in this region. 

However, few studies have been published on the relationship sea level fall and 

paleoenvironmental changes using geochemical methods in this region. 

I showed that ΔRlagoon could be a novel proxy for the ratio of inflow content of 14C in 

freshwater through terrestrial limestone and the relationship between RSL change in the 

Holocene and its driving paleoenvironmental changes (see in Chapter 2). The result in 

Chapter 2 can provide an example of the end of early settlement in the western Pacific 

island groups based on geochemical evidence. 

Moreover, Nunn (2000) suggests that temperature fall and sea-level fall — 

characterized as the “A.D. 1300 event” — brought environmental and cultural changes 

on Pacific islands between the Medieval Warm Period and Little Ice Age. The event has 

been reported in several Pacific islands (e.g., Fiji (Kumar et al., 2006); Easter island (Rull 

et al., 2015); and Palau (Clark & Reepmeyer, 2012), and the environmental and cultural 



	

 128 

effects driven by the event were complex. Thus, isolating each effect will require 

reconstructing past climate-environment-culture systems in the Pacific islands with 

geographically focused high-resolution data.  

G. tumidum used in this study is food-species and widely preserved in archaeological 

sites in the Pacific. Therefore, there is a possibility that the shell can provide in other 

regions to reconstruct local paleoenvironmental changes such as sea-level changes that 

can be directly linked both spatially and temporally to records of human activities.  

 

4.2.2. Estimations of vertical land motion over different time scales 

In Chapter 2, I suggested that GIA may not be solely, nor even primarily, responsible 

for the observed RSL in Tonga. Tonga is located on the crest of the Tonga ridge parallel 

to the Tonga trench, where the rates of subduction are fast (24 – 6 cm/year: Smith and 

Price, 2006) and the geometry of the subducted Pacific slab beneath Tonga is complicated 

(see in Chapter 1).  Especially, it is essential to understand the mantle structure of Earth 

with separation of the components with each different time-scale and this study 

investigated the combination between the GIA model, GNSS, and geomorphological 

evidence in Tonga. Thus, isolating the signal-associated GIA process and other tectonic 

the vertical signal associated with the regional and local tectonics.  

For example, Yousefi et al. (2020) determined late Holocene (past 4000 years) VLM 

rates using RSL observations from the west coast of North America by isolating the GIA 

signal and compared these to decadal rates estimated from GPS. The VLM rates in the 

late Holocene corrected for the GIA contribution to RSL change indicated that data all 

areas except for the northwestern Strait of Georgia and central-western Vancouver Island. 

Conversely, The GPS‐inferred VLM rates indicated uplifts at many sites compared to the 
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RSL‐estimated rate. The GPS‐inferred VLM rates were interpreted as being dominated 

by interseismic deformation, which occurred by postseismic viscoelastic relaxation after 

the earthquake and decays through time, associated with the locking of the Cascadia 

megathrust.  

As mentioned above, the RSL during the mid-Holocene in Tonga is reported as ca. 1.9 

to 2.2 m (see in Section 2.1.1), and the GIA contribution to RSL change is 0.5 – 0.8 m 

(see in 2.4.5); thus, the VLM rate over the past 6 ka corrected for the GIA contribution to 

RSL change can be inferred ca. 0.2 – 0.25 mm/year. Conversely, Tonga's GPS data show 

ca. 3 mm/year uplift, and it is much greater than the VLM rate. Moreover, in 2006 and 

2009, large earthquakes occurred in Tonga (8.0 and 7.6 Mw, respectively), and the GPS 

recorded experience sudden subsidence of more than 10 mm. Therefore, the GPS-inferred 

VLM in Tonga also reflects interseismic deformation the same as Cascadia, and it 

suggests that the fault is locked and strain accumulates toward the next megathrust 

earthquake.  In the future, I can estimate the current locking state of the Tonga trench by 

using a viscoelastic finite element model, which is developed by Li et al., (2018) to invert 

from the horizontal components of the GPS data. 
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4.2.3. The potential of speleothem as environmental proxies 

本節については、5 年以内に雑誌等で刊行予定のため、非公開。 
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Appendix 1: Trace element analyses 
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