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Abstract 

Magnesium (Mg) is a major element in both the silicate Earth and hydrosphere. It is 

important in understanding the chemical evolution of the oceans and the lithospheres, as well 

as changes in global climate inferred from the co-variation between seawater Mg/Ca and 

climate throughout geologic time. In general, Mg is transferred from continents to the oceans 

via river and is removed mainly by the carbonate deposition and the hydrothermal alteration of 

the oceanic crust on the spreading centers. Even now, there is little consensus on the Mg cycle 

in the ocean regarding sink fluxes because Mg concentrations were the only factor. In the 2000s, 

the development of Mg isotope measurement techniques has broadened the understanding of 

Mg behavior. Mg isotopes are noticeable tracers for the fluid-rock interactions because each 

Mg reservoir has a different δ26Mg value and because they do not fractionate by magmatic 

processes. Importantly, Mg behaviors between the carbonation and the hydrothermal sink are 

isotopically differentiated. 

This dissertation focuses on Mg isotopes at the two main fluid-rock interactions at the 

oceanic lithosphere (the hydrothermal circulation at spreading centers and the subduction 

related alteration). Conventional isotopes (Sr, Nd, and S) are also supportive of Mg isotopic 

geochemistry. High-temperature vent fluids from the western Pacific and the Oman ophiolite 

are investigated as the example of the fluid and the rock, respectively. The high-temperature 

vent fluids are characterized by extremely depleted Mg concentrations (~0 Mm) compared to 

the seawater (53 mM of Mg, Holland et al., 1986), which enables us to investigate Mg behavior 

by hydrothermal circulation and constrain the global Mg fluxes in the oceans. On the other 

hand, the Oman ophiolite is the ancient oceanic lithosphere, presently exposed on land. It has 

been considered that the Oman ophiolite has experienced variable tectonic events from 

spreading and subduction to obduction, which records not only the hydrothermal alteration at 

the spreading stage but also the subduction related modification. Additionally, the Oman 

ophiolite enable us to infer the scale of the modification since it is easily accessible and an 
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exposed, large ophiolitic body with the full sequence. 

Seawater (–0.83 ± 0.09‰, Ling et al., 2011) is isotopically heavy relative to the riverine 

input (–1.09 ± 0.05‰, Tipper et al., 2006), requiring isotopically fractionated Mg sinks in 

the oceans. In this dissertation, δ26Mg values of high-temperature vent fluids in seafloor 

hydrothermal systems are measured for the first time. Due to the isotopically fractionated Mg 

fixation into secondary minerals during hydrothermal circulation, some vent fluids (return flux) 

with significantly low Mg concentration (~0 mM) show 26Mg depletion (down to –1.18‰) 

compared to seawater Mg. By contrast, addition of Mg to the permeable sub-seafloor during 

venting is the probable reason for others having seawater δ26Mg value. This confirms that the 

high-temperature hydrothermal sinks have a less significant effect on the oceanic Mg isotopic 

composition, since almost all the Mg in seawater entering high-temperature hydrothermal 

circulation is precipitated (high-temperature Mg sink). Based on the simple steady state 

equations and low-temperature hydrothermal sinks of Mg (–0.25‰ to 0.00‰ of δ26Mg), 7-26% 

of the riverine Mg input is presumed to be removed through the high-temperature sink. This is 

lower than the thermal estimation proposed by Mottl and Wheat (1994), which was 10-40%. 

Thus, other Mg sinks such as the low-temperature hydrothermal sink and/or the dolomite sink 

need to be considered to explain seawater δ26Mg value.  

In terms of the Mg behavior in the rock, δ26Mg values are determined for sediments, crusts, 

and mantle peridotites in the northern Fizh massif, Oman ophiolite. The reconstruction of the 

δ26Mg value of the Cretaceous seawater was attempted by measuring the δ26Mg of the micrite 

limestone. δ26Mg values of micrite limestone (–0.52‰ and –0.23‰) are even heavier than 

those of modern seawater and are considered out of the isotopic equilibrium during its 

formation. Therefore, they could not be used for direct reconstruction of seawater δ26Mg in the 

Cretaceous time. In the crustal section, δ26Mg values ranging from –0.58‰ to –0.04‰ do not 

correlate with stratigraphic depth. Instead, the formation of clay minerals by hydrothermal 

circulations leads to a decrease in δ26Mg values from the global mantle δ26Mg value of –0.25 
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± 0.04 ‰ (Teng et al., 2010). This decrease indicates the intense hydrothermal alteration at 

high-temperatures. This high-temperature Mg sink is isotopically limited within 2 km of 

stratigraphic depth. The mantle section has slightly heterogeneous δ26Mg values, ranging from 

–0.39 ‰ to –0.07‰. The slightly heavier δ26Mg values than the global mantle can be attributed 

to the seafloor weathering. On the contrary, the peridotites in the proximity of slab/mantle 

interface and in the highly refractory zone have slightly lighter δ26Mg values than other samples. 

The subduction related fluid-rock interaction - mainly from subducted sediments - is 

considered to have left light δ26Mg values in local scale. 

In order to constrain the mantle modification suggested by Mg isotopes and the scale of 

resultant mantle heterogeneity, Sr, Nd, and S isotopes are measured for the mantle peridotites 

from basal thrust to mantle/crust boundary. The peridotite samples with less radiogenic 

87Sr/86Sr ratios than the Cretaceous seawater (87Sr/86Sr < 0.7074) can be found at the uppermost 

mantle of each massif and the εNd–87Sr/86Sr suggests they are the product of deep-seated water 

circulation into the mantle. On the contrary, the peridotites with higher 87Sr/86Sr ratios than the 

Cretaceous seawater (87Sr/86Sr > 0.7074) suggest the sediment Sr with highly radiogenic 

isotopic compositions was carried into the mantle section during subduction. The S isotopic 

variations in sulfides strongly support the involvement of a slab component. Since sulfide S in 

sediments can be the only source for the negative δ34S values, such negative δ34S values in the 

northern Fizh mantle section indicate that the mantle peridotite in the northern Oman ophiolite 

has been pervasively modified by sediment-derived fluids. These subduction-related isotopic 

signals are strong at the lower mantle section but the uppermost mantle section has δ34S values 

close to that of the primary mantle, implying the source for the modification originating from 

the basal mantle, the slab/mantle boundary. The main processes in the mantle wedge can be 

summarized by slab dehydration, transporting of hydrous fluid/melt, and enriched geochemical 

signals from the subducted slab to the mantle wedge. The different Sr, S and Mg isotopic 

distributions in the northern Fizh mantle may come from the elemental characteristics.  
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Chapter I 

 

General introduction 
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Magnesium (Mg) plays an important role in addressing the long-term global carbon cycle 

which is supported by the covariation between seawater Mg/Ca and climate (Stanley and 

Hardie, 1998; Ries et al., 2006). Continuous changes throughout geologic time in the marine 

mineralogy are also regarded as a result of variation in seawater Mg chemistry (Hardie, 1996; 

Higgins and Schrag, 2015; Wilkinson and Algeo, 1989). Conversely, the modern oceans have 

a constant Mg concentration (53 mM, Holland et al., 1986) and isotopic composition (–0.83 ± 

0.09‰, Ling et al., 2011) with a residence time of ~10 million years (Berner and Berner, 2012). 

Continental runoff is the major source of Mg into the oceans; the largest Mg flux is delivered 

by rivers (5.5 Tmol/yr, Berner and Berner, 2012). There is little agreement on the oceanic Mg 

cycle, however, because the magnitude and mechanisms regarding the removal of Mg in the 

ocean are poorly constrained. Only the Mg processes that occur at surface environments (low 

temperature) were considered; carbonate formation, ion exchange in clay minerals, glauconite 

formation, Mg-Fe exchange, and burial of interstitial water. These processes account for only 

50% of the total riverine Mg input. This mass imbalance had been called the “Mg problem” 

(Drever, 1974) for decades.  

The existence of the hydrothermal system on the seafloor had been expected at spreading 

centers due to the discrepancy between observed and theoretical values of heat flow. This heat 

flow anomaly had drawn the idea of the heat transport to the seafloor by hydrothermal 

circulation (Lister, 1972; Williams et al., 1974; Anderson and Hobart, 1976). After the first hot 

water (~60 ℃) was discovered from the Galapagos Spreading Center (Lonsdale, 1977), in 1979, 

the team at the Scripps Institution of Oceanography found black smokers with hot vent fluids 

at East Pacific Rise (EPR) 21°N (Spiess et al., 1980). Since the concentration of Mg in high-

temperature hydrothermal vent fluids decreases to near zero, it has now been recognized that 

seafloor hydrothermal systems are responsible for a considerable amount of Mg removal.  

Earlier experimental studies where basalts reacted with seawater demonstrated that the 

hydrothermal Mg sink at variable conditions at temperatures of 25 to 500℃, pressures of 1 to 
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1,000 bars, water/rock ratios of 11 to 125, and a duration time of 11 to 602 days (Bischoff and 

Dickson, 1975; Mottl and Holland, 1978; Mottl and Seyfried, 1980; Seyfried and Bischoff, 

1977, 1979 and 1981; Seyfried and Mottl, 1982). At the initial stage, dissolved Mg in seawater 

precipitates into the form brucite (Mg (OH)2, the secondary mineral precursor), which produces 

H+ by hydrolysis, turning the seawater into acid (Bischoff and Dickson, 1975) (Fig. I-1 and Fig. 

I-2). As the reaction progresses, the dissolution and the formation of brucite equilibrate and pH 

is constant. In the rock-dominated condition (W/R ≤ 50), the mass of dissolved Mg is small 

relative to that of rock. Therefore, Mg is completely removed from the seawater. Then, the 

dissolution of brucite becomes dominant and the pH increases (Seyfried and Bischoff, 1977). 

On the other hand, in the water-dominated condition (W/R > 50) where Mg is continuously 

supplied, Mg still exists in the fluid. Therefore, the liquid phase remains acidic (Seyfried and 

Mottl, 1982; Mottle and Seyfried, 1980). These experiments succeeded in producing fluids 

similar to actual hydrothermal fluids collected from seafloor hydrothermal vent sites. The most 

noticeable feature of these experiments is the rapid removal of magnesium (Mg) from seawater 

at >300 ℃. The brucite changes to smectite ((Na,Ca)0.25Mg3(Si,Al)4O10(OH)2∙nH2O), chlorite 

(Mg5Al2Si3O10(OH)8), amphibole (Mg7Si8O22(OH)2), and talc (Mg3Si4O10(OH)2).  

Several estimates support the hydrothermal Mg sink, which forms Mg-containing 

secondary minerals, comprising more than half of the riverine Mg flux (Milliman, 1974; 

Elderfield and Schultz, 1996; Tipper et al., 2006b; Beinlich et al., 2014). Even now, there is 

little consensus on the Mg cycle in the ocean because Mg concentrations in the fluids were the 

only factor. The reconstruction of the ancient seawater Mg/Ca ratios has been usually 

conducted from the amount of dolomite deposition. Unfortunately, the major Mg sinks - the 

dolomite sink and the hydrothermal sink result in the same Mg/Ca behavior. Both mechanisms 

supply Ca to the seawater during Mg sinks, decreasing Mg/Ca ratios. Therefore, the causal 

relationship for the reconstructed ancient seawater Mg/Ca ratio has not been clear, which makes 

it difficult to distinguish between the dolomite sink and the hydrothermal sink (Fig. I-3).  
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Mg has three stable isotopes (24Mg, 25Mg, and 26Mg). Isotope ratios are reported using the 

delta notation: 

δ26Mg = [(26Mg/ 24Mg) sample / (
26Mg/ 24Mg) STD – 1] × 1000 

where STD refers to the DSM-3 Mg standard. Early Mg isotope studies focused on mass 

independent anomalies because excess 26Mg was discovered from calcium-, aluminum-rich 

inclusion (CAI) of Allende chondrite (Lee et al., 1976) and partly because there had been a 

technical limitation. 26Mg produced by 26Al radioactive decay suggests the presence of 26Al in 

the early solar system. Therefore, 26Al-26Mg geochronology has been used to study the 

evolution of the early solar system (Young and Galy, 2004). In the 2000s, the development of 

Mg isotope measurement techniques broadened the understanding of Mg behavior. Relatively 

large mass differences between Mg isotopes facilitate isotopic fractionation by low-

temperature processes. For example, the high-temperature geological processes - including 

planetary accretion processes, partial melting and magmatic differentiation - do not 

significantly change Mg isotopic compositions, leading to homogeneity (Teng et al., 2010). 

Since, the coordination number of Mg in major mafic rock-forking minerals (olivine, 

orthopyroxene, clinopyroxene, hornblende, and biotite) is the same of 6, the partial melting and 

the magmatic differentiation produce limited inter-mineral Mg isotopic fractionation (Hu et al. 

2016; Lai et al., 2015; Wang et al., 2016). Therefore, the fresh oceanic crust, such as the mid-

oceanic ridge basalt (MORB) and oceanic island basalt (OIB), has δ26Mg values similar to that 

of the mantle (–0.25 ± 0.04‰, Teng et al., 2010). On the contrary, Mg isotopic studies of the 

low-temperature geological processes such as secondary mineral formations (Galy et al., 2002; 

Tipper et al., 2006a) and weathering (de Villiers et al., 2005; Tipper et al., 2006a, 2006b; Pogge 

von Strandmann et al., 2008) showed large Mg isotopic variations.  

δ26Mg is a suitable proxy for determining mass-balance considerations of the oceanic 

input and output fluxes of Mg. In general, the net flux of δ26Mg from terrestrial weathering has 
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been negative (–1.09 ± 0.05 ‰, Tipper et al., 2006b) relative to seawater; this isotopic offset 

is inherited from lower δ26Mg outputs in the ocean, caused by either a Mg isotope fractionation 

of low-temperature Mg-bearing carbonates/clays or high-temperature hydrothermal alteration 

of primary silicate minerals. Previous studies showed the variable δ26Mg values of the ocean 

floor environment. In deep sea sediments, the precipitation of Mg-bearing minerals leads to the 

decrease in Mg concentrations of pore-fluids with depth; but δ26Mg values tend to change 

depending on different minerals (Higgins and Schrag, 2010): silicate minerals are enriched in 

the heavy Mg isotopes, while dolomite formation, regarded as one of the major Mg sinks in the 

oceans, prefers the light Mg isotopes (Fig. I-4). Now, the dolomite sink and the hydrothermal 

sink are isotopically differentiated.  

The fluid-rock interaction is an essential mechanism in the evolution of the oceanic 

lithosphere. It involves magmatic accretion of the new crust and elemental distributions 

between seawater and the oceanic lithosphere (hydrothermal alteration). Oceanic lithospheres 

are recycled into the subduction zone, and subducting hydrous materials react with overlying 

mantle, producing geochemical heterogeneities (subduction related alteration) (Fig. I-5).  

For studies of fluid-rock interactions, the oceanic crust can be acquired by dredging and 

drilling. Until today, these samples are largely pillow basalts and sheeted dyke diabase. Hole 

504B is the deepest scientific drill hole in the oceans, down to depth of 1,837 m. However, the 

bottom of the hole just lies within the lower portion of the sheeted dike complex (Alt et al., 

1996). Although the samples have been dredged along fracture zones, the stratigraphic position 

of these samples is uncertain. Even samples recovered by drilling are not always consistent 

with the stratigraphic order from the normal mid-ocean ridge crust (Alt and Shanks, 1998; Arai 

and Matsukage, 1996; Arai et al., 1997). 

Ophiolites are the ancient analogue of the oceanic lithosphere and are presently exposed 

on land (Fig. I-6). They can offer the chance to access the continuous section from crust to 

mantle and provide constraints of the oceanic lithosphere evolution, including structural, 



6 

 

magmatic and metamorphic processes (Dilek and Flower, 2003; Dilek and Furnes, 2011; 

Nicolas et al., 1989). The study of the Oman ophiolite has been actively conducted over the 

last few decades (Coleman, 1981; Lippard et al., 1986; Boudier and Juteau, 2000; Styles et al., 

2006). The tectonic setting responsible for the Oman ophiolite formation is still debatable. 

Early studies reported that the Oman ophiolite consists of the classic ophiolite sequence (the 

pillow lavas, sheeted dyke complex, gabbros, and serpentinized peridotites) (Lippard et al., 

1986). Consequently, the Oman ophiolite has been considered as an analogue of the mid-ocean 

ridge formed at seafloor spreading. However, many igneous rocks crosscutting the original 

sequence in northern Oman ophiolite proposed that the Oman ophiolite experienced at least 

two different phases of magmatism. The early magmatism (referred to as V1 of Ernewein et 

al., 1988, Geotimes of Alabaster et al., 1982, and Phase 1 of Goodenough et al., 2014) occurred 

at a spreading center, mainly considered as a mid-ocean ridge. Petrological and geochemical 

observations show that the later magmatism with the hydrous magma (referred to as V2 of 

Ernewein et al., 1988, Lasail of Alabaster et al., 1982, and Phase 2 of Goodenough et al., 2014) 

was related to the initial stage of the arc magmatism above a subduction zone. This later 

magmatism is commonly observed in the northern to central Oman ophiolite but rare in the 

southern part of the Oman ophiolite. Rioux et al. (2016) estimated the age of the V1 magmatism 

at ca. 96.12 to 95.50 Ma, and the V2 magmatism at ca. 96.16 to 94.82 Ma. The chronological 

studies demonstrated the initial ridge magmatism and subsequent thrusting/subduction 

associated arc magmatism (Warren et al., 2005; Rioux et al., 2012; 2016). 

Studies relating to the fluid-rock interactions of the Oman ophiolite have mainly focused 

on the crustal section, mantle/crust boundary and basal mantle section as they preserve 

hydrothermal alteration-related distinct changes in chemical composition and petrology. 

Previous studies suggested that the hydrothermal circulation at mid-ocean ridge have reached 

at least to the mantle/crust boundary (Akizawa et al., 2014; Bosch et al., 2004; Dygert et al., 

2017; Kawahata et al., 2001; Python et al., 2007), and subduction-related metasomatism is 
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preserved in the basal mantle section (Khedr et al., 2014; Prigent et al., 2018; Takazawa et al., 

2003; Yoshikawa et al., 2015). On the contrary, the inner mantle section itself has received little 

attention so far. The lack of pervasive data from isotopic perspectives hindered our 

understanding of the fluid-mantle interactions and the scale of the modification in the mantle. 

In this dissertation, I focus on two main fluid-rock interactions during oceanic lithospheric 

evolution; the hydrothermal circulation at spreading centers and the subduction related 

alteration (Fig. I-7). Chapter II and III deal with the Mg behavior. The objective of Chapter II 

is to constrain high-temperature hydrothermal Mg sink and global oceanic Mg budget. This 

was achieved by measuring Mg isotopic composition of vent fluids from western Pacific. In 

Chapter III, Mg isotopic compositions from sediment, crust and mantle in the Oman ophiolite 

are measured to investigate the reconstruction of the Cretaceous seawater Mg isotopic 

composition, the hydrothermal Mg sink at the spreading center and the Mg transfer by the 

subduction. In chapter IV, I focus on the mantle modification suggested by Mg isotopes. 

Discussions are based on the measurements of strontium (Sr), neodymium (Nd), and sulfur (S) 

isotopes where these conventional isotopes enable us to trace processes fluid-rock interactions. 

Finally, Chapter V summarizes the conclusion of this dissertation.  
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Fig. I-1. Idealized illustration of the pH change with time during reaction of seawater with 

basalt at rock-rock dominated and seawater-dominated system. Modified after Seyfried and 

Mottl, 1982. 
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Fig. I-2. a) Concentration of Mg2+ and b) pH in solution with time in hydrothermal experiments 

reacting seawater with basalt. Conditions are at 70 ℃, 1atm, and 150 ℃, 200 ℃ and 300 ℃ at 

500 bars. Data are from Bischoff and Dickson (1975), Seyfried and Bischoff (1979 and 1981) 

and Seyfried and Mottl (1982). 
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Fig. I-3. Illustration of the main seafloor Mg sinks at the seafloor environment. Both the 

dolomite sink and the hydrothermal sink remove Mg and supply Ca to the seawater, lowering 

Mg/Ca ratios in seawater. 
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Fig. I-4. Illustration of the main seafloor Mg sinks at the seafloor environment. Dolomite sink 

and hydrothermal sink remove Mg in the seawater but they are isotopically differentiated. 

Dolomite sink prefers light Mg isotopes while heavy Mg isotopes are preferentially removed 

by hydrothermal circulation. △26Mg fractionation factor of dolomite and related water is from 

Li et al., 2015.
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Chapter II 

 

Magnesium isotopic composition of submarine 

vent fluids from arc and back-arc hydrothermal 

systems in the western Pacific 
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II-1. Introduction 

The isotope fractionation effects have been used to identify differences in element source 

and reactions. Seawater has a uniform Mg isotopic composition (–0.83 ± 0.09‰, Ling et al., 

2011) which is distinct from the major Mg input into oceans (Riverine input of –1.09 ± 0.05‰, 

Tipper et al., 2016). The relative importance of the hydrothermal sink to the net oceanic Mg 

sink can be resolved as a function of the difference of the δ26Mg of the hydrothermal and 

dolomite sinks. The Mg isotopic fractionation during hydrothermal ultramafic rock alteration 

suggests that sub-seafloor hydrothermal carbonation may contribute significantly to the Mg 

isotopic composition of seawater (Beinlich et al., 2014). A recent study demonstrated that 

formation of secondary minerals, saponite and calcite results in variable δ26Mg values of the 

altered oceanic crust ranging from –2.76 to +0.21‰ (Huang et al., 2018). This indicates that 

significant Mg isotopic fractionation occurs during low-temperature alteration of the oceanic 

crust. Although high-temperature basalt alteration represents a sink in the global Mg mass-

balance (10-40% loss of the riverine Mg input, thermal estimation by Mottl and Wheat, 1994), 

effects of host rock type, phase separation, and overlying sediment on Mg isotope fractionation 

and variations in the δ26Mg values of the hydrothermal fluids are still under debate.  

Much of the early research on the oceanic Mg sink was related to the missing Mg flux, 

and little attention was given to the behavior of Mg isotopes during high-temperature seafloor 

hydrothermal processes. This is because high-temperature hydrothermal systems completely 

remove Mg from the fluid, suggesting that Mg isotopic fractionation could be negligible 

(Higgins and Schrag, 2015). On the contrary, Beinlich et al. (2014) insisted that the vent fluid 

would have elevated Mg isotopic compositions than seawater, based on the 24Mg enriched 

carbonation during hydrothermal circulation.    

In order to investigate the Mg isotopic behavior during high-temperature hydrothermal 

circulation and quantify its contribution to the global Mg cycle, we present δ26Mg data for 

eleven submarine vent sites from five arc and back-arc hydrothermal systems in the western 
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Pacific. These are classified under three categories: sediment-starved sites (Vienna Woods and 

PACMANUS in the Manus Basin, Suiyo Seamount in the Izu-Bonin Arc, Alice Springs and 

Forecast Vent in the Mariana Trough), phase-separated sites (White Lady, Kaiyo, and LHOS in 

the North Fiji Basin) and sediment-hosted sites (JADE, Minami-Ensei, and CLAM in the 

Okinawa Trough). Our research can provide constraints on the seawater Mg chemistry in 

modern hydrothermal systems, mainly at back-arc tectonic spreading centers in different types 

of hydrothermal settings. 

 

II-2. Geological setting and samples 

Research cruises were conducted in the 1990s that collected high-temperature 

hydrothermal vent fluid samples from arc and back-arc settings in the western Pacific (Fig. II-

1). Using these samples, previous studies have published a wide range of geochemical studies 

on hydrothermal systems such as boron and lithium isotopes (e.g., Chiba et al., 1993; Gamo et 

al., 1991, 1997a, 1997b; Grimaud et al., 1991; Sakai et al., 1990a, 1990b; Ishibashi et al., 1994a, 

1994b; Yamaoka et al., 2015; Araoka et al., 2016). The geological setting and the chemical 

characteristics of the hydrothermal vent fluids are summarized in Table II-1.  

 

II-2. 1. Manus Basin (Vienna Woods, PACMANUS)  

The Manus Basin is located between the inactive Manus Trench and the active New 

Britain Trench (Taylor et al., 1994). It is known for its young age (ca. 3.5Ma old) and rapid 

spreading rate (up to 13.7 cm/yr, Tregoning, 2002). The spreading axis consists of three NE-

SW trending segments (Taylor et al., 1994; Martinez and Taylor, 1996). The Vienna Woods site 

on the Manus Spreading Center was discovered in 1990 where vigorous hydrothermal activity 

has been reported (Tufar, 1990). The host rock is basaltic and the chemical properties of the 

fluids are analogous to those of the mid-oceanic ridge system (Lisitsyn et al., 1993; Gamo et 



18 

 

al., 1997a). PACMANUS, discovered in 1991, is situated in the eastern part of the Manus Basin. 

The hydrothermal system is influenced by magmatic input and subsurface mixing with 

seawater (Bach et al., 2003; Paulick et al., 2004; Paulick and Bach, 2006). The observed 

maximum temperature of the hydrothermal fluids in Vienna Woods and PACMANUS were 

302 ℃ and 268 ℃, respectively (Gamo et al., 1996, 1997a). PACMANUS fluids are solutions 

with highly concentrated mobile elements, such as Li, B and K, compared to those of Vienna 

Woods, implying the influence of dacitic host rocks (Gamo et al., 1996; Reeves et al., 2011). 

 

II-2. 2. Izu-Bonin Arc (Suiyo Seamount)  

The Izu-Bonin Arc is present in the eastern margin of the Philippine Sea Plate. It has 

resulted from the subduction of the Pacific Plate beneath the Philippine Sea Plate. The arc is 

1200 km long, stretching from Izu Peninsula, Honshu Island to the northern end of the Mariana 

Arc (Yuasa, 1985). The Suiyo Seamount is a submarine volcano on the Izu-Bonin Arc front. 

The temperature of the hydrothermal fluids reported previously showed a maximum of 311℃ 

(Ishibashi et al., 1994c). The host rock is dacite with the low K alkaline rock series, which 

caused the difference in chemical characteristics from typical MORs (Nagaoka et al., 1992). 

Therefore, the vent fluids are higher in B, Ca and Sr than those of the East Pacific Rise. 

Additionally, CO2 gas and He isotope ratio enrichment in the vent fluids are presumed to be 

affected by the subducting slab (Ishibashi et al., 1994c; Tsunogai et al., 1994).  

 

II-2. 3. Mariana Trough (Alice Springs, Forecast Vent)  

The Mariana Trough is a back-arc basin in the western Pacific and is actively spreading 

(Hussong and Uyeda, 1982). It shows different spreading rates depending on the location, from 

1.5 cm/yr in the wide central basin to 4.5 cm/yr in the southern part of the trough (Kato et al., 

2003). The Alice Springs site nestles on the flank of an axial basaltic-andesitic volcano in the 
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middle of the basin and the Forecast Vent site at the summit of the seamount in the southern tip 

of the Mariana Trough (Gamo et al., 1994). Fluid samples from both sites were enriched in 

CO2 gas, indicating that these areas were influenced by subducting materials (Gamo et al., 

1997b; Ishibashi et al., 2015). The temperatures of the sampled hydrothermal fluids were 202-

280 ℃ due to mixing with ambient seawater (Gamo et al., 1994;1997b).  

 

II-2. 4. North Fiji Basin 

The North Fiji Basin is an active back-arc basin in the southwestern Pacific. The formation 

of the basin began about 10 Ma ago (Auzende et al., 1988) and complex tectonic events led to 

its present location. The New Herbrides Arc lies on the west, the Hunter Ridge and Fracture 

Zone to the south, the Fiji Platform to the east and the Vitiaz Paleosubduction Zone to the north. 

The spreading ridge is 800 km long, divided into four segments and generally shows N-MORB-

like composition with the local influence of OIB (Tanahashi et al., 1994; Eissen et al., 1991, 

1994; Nohara et al., 1994). The White Lady site was discovered at the northern end of the 

north-central segment near a triple junction (Grimaud et al., 1991). The Kaiyo and the LHOS 

sites are 150 m southwestward from the White Lady site. The vent fluids from the North Fiji 

Basin have lower concentrations of Cl, Fe and Mg than the normal vent fluids, implying that 

this hydrothermal system experienced phase separation (Grimaud et al., 1991; Ishibashi et al., 

1994a). The sampled hydrothermal fluids showed temperatures ranging from 285 to 291 ℃ 

(Grimaud et al., 1991; Ishibashi et al., 1994a, 1994b).  

 

II-2. 5. Okinawa Trough  

The Okinawa Trough is a back-arc basin behind the Ryukyu Arc-Trench system in the 

East China Sea near the Okinawa Island. The ridges consist of basaltic to rhyolitic volcanic 

rocks (Kimura et al., 1986). Thick sediments covering top of the study area were composed of 

terrigenous clays and marine biogenic carbonates (Halbach et al., 1993). In the middle the 
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Okinawa Trough, the JADE site was discovered on the eastern wall of the Izena Cauldron and 

the CLAM site was at the foot of the Iheya Ridge (Halbach et al., 1989; Ishibashi et al., 1995). 

The Minami-Ensei site is located at a rifting center in the northern Okinawa Trough (Chiba et 

al., 1993). Since the overlying sediments consisted of organic materials, vent fluids from the 

Okinawa Trough hydrothermal system were distinctively high in CH4, H2S and NH4 (Chiba et 

al., 1993; Gamo et al., 1991; Sakai et al., 1990a, 1990b). The maximum temperature of the 

sampled hydrothermal fluid was 320℃ (Sakai et al., 1990a, 1990b). 
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Fig. II-1. The map of sampling sites of submarine vent fluid in arc and back-arc hydrothermal 

systems, the western Pacific. Circles (○), triangles (△) and squares (□) indicate sediment-

starved, phase-separated and sediment-hosted sites, respectively. Characteristics of each site 

are listed in Table II-1. 
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II-3. Analytical method 

After being collected in the 1990s, the vent fluids used in this study have been stored 

carefully at the laboratory. Before conducting the isotopic analysis, I remeasured the fluid 

chemistry to assess whether their initial conditions have been preserved. The original 

concentrations of major elements in the fluids were found to be consistent with previous data 

(Yamaoka et al., 2015; Araoka et al., 2016).  

The Mg isotopic composition of the samples was determined by following a procedure 

reported by Yoshimura et al. (2018). We used an offline method for the purification of Mg using 

an ion chromatograph (IC) coupled to an automated fraction collector prior to the stable isotope 

measurements. Samples were introduced into the IC on a Metrohm 930 Compact IC Flex 

(Metrohm AG, Herisau) instrument coupled to an Agilent 1260 Infinity Ⅱ Bio-Inert analytical-

scale FC system (Agilent Technologies, Santa Clara). Subsequently, they were loaded into 0.8 

Mm ultrapure HNO3 acid (TAMAPURE AA-100, Tama Chemical, Kawasaki) and passed 

through a Metrohm Metrosep C6-260/4.0 column (packed with silica gel functionalized with 

carboxyl groups) at a flow rate of 0.9mLmin-1. The detection was performed by an electrical 

conductivity detector and a diode array detector. The temperature of the column made with 

polyetheretherketone was maintained at 35 ℃. The IAPSO (International Association for the 

Physical Sciences of Oceans) standard seawater reference was used to confirm the accuracy of 

this procedure. The purified samples were pooled in 7mL Teflon vials, then dried out. The dried 

residue was dissolved in 0.3 M ultrapure HNO3 for isotope analysis. Additionally, I conducted 

the separation procedure in a class-1000 clean bench, to avoid contamination. The accuracy of 

the purification method for different matrix/Mg relative to seawater was also verified by 

Araoka and Yoshimura (2019). Several reference materials with wide range of Mg 

compositions (0.02-26.9%) were evaluated to demonstrate if Mg are successfully separated 

from the interference matrices, including high concentration of Na derived from sodium 

tetraborate flux. Mg, as well as Li and Sr, isotopic compositions of silicate and carbonate 
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reference materials are in excellent agreement with previously reported data obtained by means 

of acid sample decomposition and multistep chromatographic separation with cation exchange 

resins, indicating almost lossless recovery of Mg and no isotopic fractionation during this 

purification process. 

Mg isotope ratios were measured by MC-ICP-MS (Neptune Plus, Thermo Fisher 

Scientific, Waltham) at the Geological Survey of Japan, National Institution of Advanced 

Industrial Science and Technology. Instrumental mass fractionation was calibrated by a 

standard-sample bracketing method. The repeatability was better than ±  0.12‰ (2 SD) for 

δ26Mg, as estimated from the long-term measurements of mono-element standard solutions: –

2.60 ± 0.07‰ (2 SD, n=9) for Mg standard Cambridge 1. The isotopic composition of Mg 

from seawater was δ26MgDSM-3 = –0.83 ± 0.10‰ (2 SD), and the results agreed with the data 

published by Foster et al. (2010). 

 

II-4. Results 

Mg isotopic compositions of vent fluids are presented in Table II-2 along with the major 

element concentrations and Sr isotope ratios from previous data (Araoka et al., 2016; Chiba, 

1997; Gamo et al., 1991, 1997b; Grimaud et al., 1991; Ishibashi 1994a). All samples in this 

study have lower Mg concentrations (0.4 - 46.3 mM) compared to seawater (53.1 mM). The 

δ26Mg ranges from –1.18‰ to –0.80‰ (Fig. II-2). There was no significant and systematic 

variability of Mg isotopic compositions at the different sampling sites. Based on the Mg 

isotopic ratios, the results can be divided into two groups: indistinguishable from seawater 

value (–0.83‰) and lighter isotopic compositions. Fluids with low Mg concentrations (< 3.7 

mM) tend to be enriched in light isotopes while all fluids with Mg concentrations > 8.5 mM 

fall within the 2 SD of seawater δ26Mg value. 
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Table II-2. Magnesium and Strontium isotopic compositions of vent fluids from the study areas. 

 

a Data are from Chiba (1993), Gamo et al. (1991, 1996, 1997b), Grimaud et al. (1991), Ishibashi et al. 

(1994a, 1994c), Sakai et al. (1990a, 1990b); b Araoka et al. (2016).
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Fig. II-2. δ26Mg-Mg concentration diagram showing hydrothermal fluid compositions used in 

this study. The samples can be roughly divided into two groups: first, with enough Mg 

concentrations having δ26Mg value close to seawater and the second, having little or no Mg 

content with lower δ26Mg values. 
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II-5. Discussion 

II-5. 1. Mg isotopic behavior during high-temperature seawater-rock interactions 

In hydrothermal circulation systems along the MOR, Mg behavior in fluids is influenced 

by its hydrothermal path, especially by the formation of Mg-bearing secondary minerals (Alt, 

1995; Seyfried and Bischoff, 1977 and 1979; Seyfried and Mottl, 1982). The Mg is removed 

from seawater to form smectite and a mixed layer of smectite/chlorite at low-temperatures (< 

200 ℃); greenschist facies minerals such as chlorite and actinolite form at higher temperatures 

(> 200 ℃) in the recharge zone (Alt, 1995; German and Von Damn, 2003). Experimental 

studies suggest that the isotopically heavy Mg is preferentially incorporated into the octahedral 

sheets in clay minerals such as chlorite. Thus, newly formed clay minerals are enriched in 

heavy Mg isotopes, reducing the δ26Mg value and the Mg concentration of hydrothermal fluids 

(Wimpenny et al., 2014; Ryu et al., 2016). Much of the studies assumed that the Mg 

concentrations of endmember fluids would be zero (Araoka et al., 2016; Bowers et al., 1988; 

Butterfield et al., 1990; Campbell et al., 1988; Gamo et al., 1991; Grimaud et al., 1991; 

Ishibashi et al., 1994a and 1994c; Reeves et al, 2011, Yamaoka et al., 2015). However, none of 

the vent fluids presented here showed zero Mg concentrations, suggesting the incomplete 

removal of Mg from fluids or addition of Mg from external sources.  

Generally, the host rock composition is related to its geological characteristics, which 

affects seawater-rock interactions. The host rock in the sampling sites was mainly basalt but 

dacite was present at PACMANUS (back-arc) and the Suiyo Seamount (arc). The dacite host 

rocks have less Mg than basaltic rocks because of the incorporation of the subducting slab 

(0.67-2.37 MgO wt.% for the PACMANUS, Paulick et al., 2006; 0.59-2.41 MgO wt.% for the 

Suiyo Seamount, Marumo et al., 2008). Our results show that Mg isotopic compositions of vent 

fluids from dacite-hosted and basalt-hosted hydrothermal systems are not significantly 

different. Given the low concentration of Mg in fluids during high-temperature seawater-rock 

interactions, the behavior of Mg isotopes may not depend significantly on the host rock type. 
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87Sr/86Sr values of the vent fluids are good proxies to estimate the mixing with ambient 

seawater. I compared the 87Sr/86Sr values of the vent fluids with the δ26Mg values and Mg/Sr 

ratios; the endmember fluids usually reflect host rock 87Sr/86Sr ratio which is much lower than 

that of seawater (Fig. II-3). In Fig. II-3. (a), fluids from sediment-starved sites and phase-

separated sites were plotted on the mixing line of endmember at Mg/Sr = 0 and seawater. From 

this, substantial entrainments of water are suggested to fluids (> 8.5 mM), which is consistent 

with their homogeneous δ26Mg values in Fig. II-3. (b). Fluids (< 3.7 mM) might be considered 

as endmember fluids since they are plotted to near Mg/Sr = 0. For fluids with light Mg 

concentrations (< 3.7 mM), some have fractionated δ26Mg values and others have seawater 

δ26Mg values. Since the latter is a little more radiogenic 87Sr/86Sr values of endmember than 

that of the former, this figure points out that other process might have been involved to the 

latter.  

Considering the error sizes, only half of the fluids with low Mg concentrations (<3.7 mM) 

display lighter δ26Mg values (D631-2 and D631-6 from Suiyo Seamount, D514-2 and D514-5 

from Alice Springs, and D423-3 from JADE) than that of seawater. 87Sr/86Sr ratios of these 

fluids have 0.7037-0.7041 values (Table II-2) which are similar to average oceanic rock value 

of 0.70389 (Kelemen et al., 2003) and the venting temperatures (Table II-1, 311 ℃ for Suiyo 

Seamount and 280 ℃ for Alice Springs) were high enough for Sr to be dissolved from host 

rocks by water-rock interaction. Thus, it is likely that lighter δ26Mg with extremely low Mg 

concentration reflects the result of high-temperature water-rock interaction with little or no 

seawater interference, and these samples are comparable to endmember fluids. Other samples 

with low Mg concentrations (< 2.5 mM, 307-2 and 308-2 from Vienna Woods) have δ26Mg of 

seawater. Possible explanations for the inconsistency are 1) incomplete removal of Mg with no 

isotopic fractionation, 2) Mg leaching from host rock, 3) Mg input from seawater. Unlike other 

isotopes controlled by isotopic equilibrium reaction such as B and Li, removal of Mg is 

kinetically controlled during high-temperature water-rock interactions. The variable δ26Mg 



29 

 

values from altered oceanic crusts and the lighter δ26Mg with extremely low Mg concentration 

from this study support that fractionation of Mg is inevitable with regardless of completion of 

Mg removal. It is probable that the fluids with low Mg concentration with δ26Mg of seawater 

are affected by 2) and/or 3). Dissolution of Mg from host rock increases Mg concentration of 

a fluids. Light Mg is preferentially leached from silicate minerals (Wimpenny et al., 2010). 

Mg-bearing primary minerals contain higher δ26Mg values (δ26Mgclinopyroxene: –0.23 ± 0.04‰, 

δ26Mgorthopyroxene: –0.22 ± 0.05‰ and δ26Mgolivine: –0.24 ± 0.03‰, Hu et al., 2016), similar 

to that of the host rocks (δ26MgMORB: –0.25 ±  0.06‰, δ26MgOIB: –0.26 ±  0.08‰ and 

δ26Mgperidotites: –0.26 ± 0.08‰, Teng et al., 2010). Hence, if the silicate mineral dissolution is 

involved, the fluid always has a light δ26Mg values relative to reacting host rocks and increased 

Mg concentrations (Wimpenny et al., 2010). The assumption that endmember fluids gain small 

amount of Mg derived from host rocks agrees well with the Li concentration and Li isotopic 

composition of 307-2 (Araoka et al., 2016), suggesting minimal effect of entrainment seawater. 

However, it is not clear that leaching of Mg from host rock actually occurred and that modified 

seawater was involved.  

Helium (He) has been used as a proxy for subseafloor hydrothermal reactions. Since He 

is inert, the mantles beneath the global mid-oceanic ridge (MOR) system have a narrow range 

of 3He/4He, roughly eight times higher than the atmospheric value (R/RA ≈ 8, Kurz et al., 

1982). To confirm the endmember fluid and constrain Mg isotope fractionation from He 

isotopes, I compared Mg concentration and isotopic composition with He isotopic values from 

the vent fluid samples. Fig. II-4 shows He isotopes are unequivocal tracer for the geological 

settings where sediment starved, phase-separated, and sediment covered sites are different He 

isotopic ratios. however, the relation between Mg concentration and isotopic composition is 

not likely. This is because the main processes during high-temperature hydrothermal 

circulations are quite different. Mg is removed from the fluids to secondary minerals while 3He 

enrichment comes from the mantle volatile. Therefore, the He isotopic ratio could be an 
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effective proxy for a magmatic contribution to hydrothermal fluids, but not suitable for Mg 

circulation.  

For the North Fiji basin, Cl concentrations of the vent fluids are mainly controlled by 

phase separation. The Cl concentration is plotted against the Mg concentration and δ26Mg 

values in Fig. II-5, which suggests mixing with ambient seawater (Fig. II-5. (a)). Interestingly, 

all samples from the North Fiji basin have indistinguishable δ26Mg values from seawater 

despite having different Cl concentrations (Fig. II-5. (b)). The high-temperature fluids with 

extremely low Mg concentration, comparable to the endmember fluid, is presumed to have lost 

its δ26Mg values during venting. Conversely, vent fluids from the sediment-hosted sites showed 

different characteristics from other sites; the 87Sr/86Sr ratios are within a narrow range while 

δ26Mg values cover a relatively wider range (Fig. II-3. (b)). The seafloor sediments have 

abundant pore fluids with higher 87Sr/86Sr ratios sourced from host rocks (> 0.7085, Noguchi et 

al., 2011). The 87Sr/86Sr data for the sediment-hosted vent fluids depend largely on changes in 

the contribution of Sr from sedimentary sources. This suggests that the sedimentary 

components significantly contribute to the total Sr. With respect to Mg, clay mineral formation 

in the sediments tends to decrease the Mg concentration and δ26Mg in the sedimentary pore 

fluids during early diagenesis (Higgins and Schrag, 2010). The decrease in vent fluid Mg 

concentration from the Minami-Ensei site is not accompanied by a negative shift in Mg isotopic 

composition (–1.03 to –0.87‰ and 0.4 to 27.2 mmol/kg). The changes in the contribution of 

Mg from each source, such as binary mixing basal hydrothermal input versus sediment 

contribution may lead to the drift. The magnitude of secondary mineral precipitation may play 

a role in driving the dissolved Mg to cause higher δ26Mg variations. However, it is challenging 

to distinguish each source that affects the Mg chemistry.  

In short, Fig. II-3 and 5 show that the processes that alter Mg concentrations in 

hydrothermal systems contribute to minimize the range of δ26Mg around the seawater δ26Mg 

value. Processes, such as water-rock interaction, phase-separation and mixing with seawater 
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are applied to explain the variations in Mg concentration, 87Sr/86Sr, and chlorinity. The absence 

of Mg isotopic fractionation suggests that effects of such processes are limited or offset in the 

case of Mg. The thing is that hydrothermal fluids are mixed with seawater, then they cannot 

hold endmember Mg isotopic compositions. Even if extremely small amount of seawater is 

added to endmember fluids, δ26Mg of fluids are modified to seawater value due to relatively 

significant Mg enrichment in seawater while other endmember values could be partly preserved, 

make possible to estimate. This explains the lack of Mg isotopic fractionation shown in most 

fluid samples except for fluids with extremely low Mg concentrations. 
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Fig. II-3. Plots of (a) 87Sr/86Sr ratios versus Mg/Sr ratios and (b) δ26Mg versus 87Sr/86Sr ratios 

for vent fluids. Except for samples from sediment-hosted sites (□), the linear trends shown in 

(a) and (b) suggest the entrainment of seawater.
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Fig. II-4. Plots of (a) Mg concentration and (b) δ26Mg versus R/RA (R = 3He/4He in vent fluid 

and RA = 3He/4He in atmosphere). R/RA data are from Tsunogai et al., 1994; Ishibashi et al., 

1994b and 1995.
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Fig. II-5. Plots of (a) Mg concentration and (b) δ26Mg versus Cl concentration from phase-

separated sites.
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II-5. 2. Estimating the fractionation factor 

Temperature is presumed to be the dominant contributor for isotope fractionation in the 

fluids (Seyfried and Bischoff, 1979). At high-temperatures, Mg in the fluids is regarded to be 

completely removed. Thus, the δ26Mg value of the total high-temperature sink must be equal 

to that of seawater (Tipper et al., 2006; Higgins and Schrag, 2015). The altered abyssal 

peridotites from the Mid Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge have 

δ26Mg values ranging from –0.25 to +0.03‰. This is interpreted to be a result of seafloor 

weathering of peridotites and formation of clay (Teng, 2017 and references therein). Although 

the Mg isotopic data for ophiolites is sparse, a subtle difference in δ26Mg between the Tibetan 

ophiolite (–0.28 ~ -0.14‰) and the mantle (–0.25 ± 0.04‰, Teng, 2017) potentially reflects the 

Mg isotope fractionation during seafloor hydrothermal alteration (Su et al., 2015). The curves 

presented in Fig. II-6 are calculated using the Rayleigh fractionation equation which describes 

the one-sided transfer of Mg from the fluid to the mineral phase during fluid evolution. The 

samples used in this study recorded temperatures around 300℃ during the sampling, so that 

our results are expected to be distributed near the high-temperature curve (α = 1.0000, Higgins 

and Schrag, 2015). The measured data approaches α=1.000083 which is significantly smaller 

than that estimated by Galy et al. (2006). However, in extreme cases, clay sinks could produce 

–0.35‰ Mg isotope variability in high-temperature hydrothermal systems. Compared to the 

seawater entering hydrothermal circulations, the vent fluids show lower Mg concentrations 

(near zero concentrations). This indicates that seafloor hydrothermal systems are closed 

systems and the fluids have a finite amount of Mg, if there is no addition of seawater during 

circulation. Therefore, complete Mg removal from the fluid results in total Mg isotope 

fractionation in the fluid at α = 1.0000. Unfortunately, the kinetics of the temperature related 

fractionation for Mg-bearing minerals is not constrained well. Particularly, theoretical 

calculations and experimental/field data have focused on carbonate minerals (dolomite); 

whereas minerals related to hydrothermal systems have not been studied and there is no 
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comparable data. Currently, the direct measurement of δ26Mg values in rocks from high-

temperature hydrothermal vent sites have not been conducted. However, Huang et al. (2015) 

reported that δ26Mg values of altered oceanic crust, involved with high-temperature 

hydrothermal circulation, do not change with depth. Moreover, the altered samples have 

identical δ26Mg values to unaltered rocks, reflecting limited Mg isotope fractionation at the 

bulk-rock scale. As the Mg content in the fluid is relatively lower than in the host rocks, Mg 

precipitation by seawater-rock interactions cannot affect the δ26Mg values of host rocks (Li et 

al., 2014; Huang et al., 2015). Conversely, Huang et al. (2018) reported minerals with average 

δ26Mg values of 0.00±0.09‰ for ODP Hole 801C. Therefore, it is challenging to trace Mg 

isotope behavior in high-temperature hydrothermal systems during fluid evolution. Thus, 

further studies are needed, both natural and experimental, on the Mg isotopic composition of 

the host rock, altered phase and fluid. 
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Fig. II-6. δ26Mg-Mg concentration diagram with fractionation curves. The fractionation factors 

at low- T and high-T (Higgins and Schrag, 2015) are shown. 
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II-5. 3. Estimating the oceanic Mg budget  

Most of Mg flux to the ocean is through continental runoff. The δ26Mg values of river 

water (–1.09 ± 0.05‰, Tipper et al., 2006) is lower than that of seawater (–0.83 ± 0.09‰, 

Ling et al., 2011). It implies that Mg isotopes undergo fractionation in the oceans and/or that 

the modern oceanic Mg budget is not at steady state (Tipper et al., 2006). Hydrothermal systems 

along the MOR and its flanks are widely regarded as the places where considerable Mg removal 

occurs. Based on thermal calculations, Mottl and Wheat (1994) suggested that up to 40% of 

the riverine Mg flux could be removed through high-temperature seafloor hydrothermal 

circulation along the MOR axis. The rest is presumed to be removed by low-temperature 

hydrothermal circulation off the axis. Another factor governing the seawater Mg sink is the 

dolomite precipitation that leads to heavier Mg isotopic composition in the oceans. We estimate 

the δ26Mg value of high-temperature hydrothermal sinks (formation of secondary minerals) 

according to the following equation: 

[𝑀𝑔]𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 ∙ 𝛿26𝑀𝑔𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟

= [𝑀𝑔]ℎ𝑦𝑑𝑟𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑖𝑛𝑘 ∙ 𝛿26𝑀𝑔ℎ𝑦𝑑𝑟𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑖𝑛𝑘  +  [𝑀𝑔]𝑣𝑒𝑛𝑡 𝑓𝑙𝑢𝑖𝑑

∙ 𝛿26𝑀𝑔𝑣𝑒𝑛𝑡 𝑓𝑙𝑢𝑖𝑑  

given that the δ26Mgvent fluid = –1.18‰ and [Mg]vent fluid = 0.8 mM from the sample D630-2, the 

lowest Mg concentration and isotopic composition in this study, δ26Mg value of net 

hydrothermal sink from the high-temperature condition is calculated to be ~ –0.825‰. Here, 

there is no big difference from that of seawater, supporting the previous estimation that total 

hydrothermal sink through secondary mineral formation should have a δ26Mg value of seawater 

(Tipper et al., 2006; Higgins and Schrag, 2015). This result suggests that the high-temperature 

hydrothermal sink does not significantly affect the oceanic Mg isotopic composition. To 

explain the modern seawater δ26Mg value, further study on the dolomite and/or low-

temperature hydrothermal sink is required.  
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Tipper et al. (2006) estimated the relative importance of the dolomite and hydrothermal 

sink in a simplified oceanic system. Their study assumed the modern ocean to be at steady state 

regarding the Mg budget and isotopic composition. Moreover, the Mg sink was confined to 

dolomite formation and hydrothermal circulation, using straightforward mass balance 

equations: Jriv = Jdol + Jhyd and δrivJriv = δdolJdol + δhydJhyd ; Ji is the flux of i; δi is the δ26Mg 

value of i; subscripts riv, dol, and hyd represent riverine input, dolomite sink and hydrothermal 

sink, respectively. However, they did not discriminate between high and low-temperature 

hydrothermal systems, even though the high-temperature systems generally differ from low-

temperature systems in terms of heat and chemical fluxes (Mottl and Wheat, 1994). 

Consequently, high-temperature hydrothermal systems completely remove Mg from fluids, 

resulting in a fractionation factor of α = 1.0000; however, this may not be the case in low-

temperature hydrothermal systems where the degree of Mg removal from the fluids varies 

considerably. Hydrothermally altered rocks enriched in isotopically heavy Mg relative to 

unaltered rocks also indicates that the return flux to the seawater would be enriched in light Mg 

(Wimpenny et al., 2012). Thus, we adopted the mass balance equations from Tipper et al. (2006) 

and Huang et al. (2018), splitting each hydrothermal term to detail the oceanic cycling of Mg. 

At steady state,  

𝑑𝑁𝑀𝑔

𝑑𝑡
= 𝐽𝑟𝑖𝑣 − 𝐽𝑑𝑜𝑙 − 𝐽ℎ𝑖𝑔ℎ 𝑇 −  𝐽𝑙𝑜𝑤 𝑇 

𝑁𝑀𝑔

𝑑𝛿𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟

𝑑𝑡

= (𝛿𝑟𝑖𝑣−𝛿𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟)𝐽𝑟𝑖𝑣 −  (𝛿𝑑𝑜𝑙 − 𝛿𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟)𝐽𝑑𝑜𝑙 −  (𝛿ℎ𝑖𝑔ℎ 𝑇

− 𝛿𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟)𝐽ℎ𝑖𝑔ℎ 𝑇 − (𝛿𝑙𝑜𝑤 𝑇 − 𝛿𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟)𝐽𝑙𝑜𝑤 𝑇 

where Ji is the flux of i; δi is the δ26Mg value of i; subscripts riv, dol, high T and low T represent 

riverine input, dolomite sink, high-temperature and low-temperature hydrothermal sink, 

respectively. Present global riverine input is 5.5 Tmol/yr with a δ26Mg value of –1.09‰ (Tipper 
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et al., 2006). The dolomite sink is 1.7 Tmol/yr (Holland, 2005) but natural dolomite shows Mg 

isotope variations (△26Mgdolomite-fluid fractionation factor ranges from –2.7‰ to +0.1‰, Higgins 

and Schrag, 2010; Fantl and Higgins, 2014; Geske et al., 2015). Based on the experimentally 

derived △26Mg fractionation factor of dolomite and related water (Li et al., 2015), we assumed 

the △ 26Mg fractionation of –2.0‰. For high-temperature hydrothermal fluxes, we set a 

△26Mg fractionation of 0.0‰ confirmed in this study. There are uncertainties in Mg isotopic 

composition in the low-temperature hydrothermal sink. Huang et al. (2015) concluded that 

limited Mg isotope fractionation occurs during the alteration of oceanic crust in the EPR at a 

bulk scale. However, Huang et al. (2018) reported an average δ26Mg value of 0.00 ± 0.09‰ 

for ODP Hole 801C. Wimpenny et al. (2012) reported elevated δ26Mg values, up to 0.02‰ at 

ODP Leg 209. On the contrary, Beinlich et al. (2014) suggested that hydrothermal carbonation 

is attributed to the isotopically light Mg sink (–0.96 ± 0.31‰). To balance this uncertainty, I 

adopted these values (–0.96, –0.25, and 0.00‰) and approximated the relative importance of 

each sink. The total hydrothermal sink is calculated to be 3.8 Tmol/yr and is about 69% of the 

annual riverine input which is smaller than previous estimations (98%, Milliman, 1974; 80-

87%, Elderfield and Schultz, 1996 and Tipper et al., 2006; 86-93%, Beinlich et al., 2014). When 

we assumed the δ26Mglow T value of 0.00‰, the relative importance of the high and low 

hydrothermal sinks was 26% and 43%, respectively. δ26Mglow T value of –0.25‰ would be 7% 

for the high-temperature flux and 62% for the low-temperature flux. This range (7-26%) 

matches the 10-40% loss of the riverine Mg input by high-temperature systems along the ridge 

axis (Mottl and Wheat, 1994). As δ26Mglow T value approaches seawater δ26Mg value of –0.83‰, 

the low-temperature system is indistinguishable from the high-temperature system as a Mg sink. 

The δ26Mglow T value of –0.96‰ (Beinlich et al., 2014) would be beyond the scope of the 

discussion, resulting in a negative flux in the low-temperature sink. To meet Beinlich’s data, it 

is inevitable to adjust dolomite flux to < 0.71 Tmol/yr (less than 13% of riverine input), which 

differs from the modern value of 1.7 Tmol/yr (Holland, 2005). Focusing on the Mg isotopic 
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control by hydrothermal carbonation, Beinlich et al. (2014) mentioned that the return flux to 

the seawater should have a δ26Mg value greater than –0.83‰, which is contrary to our result. 

This contradiction might arise from disregarding the ensuing talc production by hydrothermal 

carbonation, which is enriched in heavy Mg isotopes. The approach adopted by Beinlich et al. 

(2014), stating that hydrothermal carbonation leads to Mg isotopic fractionation forming 24Mg-

enriched carbonate and 26Mg-enriched talc is acceptable. However, we are skeptical as to 

whether the hydrothermal carbonation represents the hydrothermal sink. 

 

II-6. Summary and conclusion 

I measured the Mg isotopic composition of the vent fluids from 11 sites in arc and back-

arc hydrothermal systems in the western Pacific for the first time.  

The vent fluids showed lighter δ26Mg values (–1.18 to –0.80‰) and low Mg 

concentrations compared to seawater, indicating isotopic fractionation during high-temperature 

hydrothermal circulation. Only fluids with extremely low Mg concentrations show Mg isotope 

fractionation and they can represent hydrothermal endmember fluid. For the samples with 

δ26Mg value of seawater (–0.83‰), correlation between δ26Mg and proxies for seawater mixing 

(87Sr/86Sr and Cl concentrations) support that Mg from seawater and/or sediments was 

introduced into the endmember vent fluids.  

At high-temperatures, Mg in the hydrothermal fluids is dominantly controlled by removal 

mechanisms such as mineral formations, so that host rock compositions have little influence 

on the δ26Mg values of the vent fluids. Measured δ26Mg values approach a fractionation factor 

of α = 1.00008, indicating almost complete Mg removal from the seawater.  

The δ26Mg value of high-temperature hydrothermal sinks has been calculated to be ~ –

0.825‰, suggesting that the high-temperature hydrothermal sink and the accompanying return 

flux do not greatly affect seawater δ26Mg values. In a steady state, 7-26% of riverine Mg input 

into the oceans may be removed by the high-temperature hydrothermal sink. This is smaller 
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than the thermal estimation of 10-40% by Mottl and Wheat (1994). Thus, other Mg sink 

mechanisms, including low-temperature hydrothermal sinks and/or dolomite sinks need to be 

considered in terms of relative importance and isotopic fractionation to explain modern 

seawater δ26Mg values. 
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Chapter III 

 

Magnesium isotopic composition of sediment, 

crust, and mantle in the Oman ophiolite 
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第III章については、5年以内に雑誌などで刊行予定のため、非公開  
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Chapter IV 

 

Pervasive mantle modification by subduction 

inferred from Strontium, Neodymium, and 

Sulfur isotopes



４６ 

 

 

第IＶ章については、5年以内に雑誌などで刊行予定のため、非公開  

 

 



47 

 

Chapter V 

 

Summary and conclusion



48 

 

In this dissertation, I aim to investigate two main fluid-rock interactions at oceanic 

lithosphere (the hydrothermal circulation at spreading centers and the subduction related 

alteration) using isotope geochemistry. Mg isotope geochemistry is the main method and other 

conventional isotopes (Sr, Nd and S) are also applied to support Mg isotope geochemistry. The 

active submarine vent fluids from the western Pacific and the Oman ophiolite were selected as 

the fluid and the rock, respectively.  

Seawater has heavier Mg isotopic composition (–0.83 ± 0.09‰, Ling et al., 2011) than 

the riverine Mg input into oceans (–1.09 ±  0.05‰, Tipper et al., 2016b), which requires 

fractionated Mg sink (Fig. IV-1). In Chapter II, to constrain Mg isotopic behavior during high-

temperature hydrothermal circulation and to quantify its contribution on the global oceanic Mg 

cycle, I apply Mg isotope geochemistry to submarine vent fluids from arc and back-arc 

hydrothermal systems in the western Pacific. Some vent fluids with extremely depleted Mg 

contents (~0 mM) have fractionated δ26Mg values lighter than that of seawater. This result 

demonstrates that the high-temperature hydrothermal circulations have little effect on the 

oceanic Mg isotopic composition, since almost all the Mg in seawater entering high-

temperature hydrothermal circulation is precipitated (high-temperature Mg sink). 7-26% of the 

riverine Mg input is estimated to be removed via high-temperature hydrothermal sink. This is 

smaller than the thermal estimation of 10-40% (Mottl and Wheat, 1994).    

In Chapter III, I apply Mg isotope geochemistry to the Oman ophiolite. The sediment 

samples were expected to reconstruct the Cretaceous seawater δ26Mg but instead the sediment 

samples were out of equilibrium with seawater during their formation. Therefore, the 

Cretaceous seawater δ26Mg could not be reconstructed. δ26Mg results from the crustal section 

demonstrate that the high-temperature Mg sink in Chapter II is isotopically limited within 2 

km of stratigraphic depth. In the mantle section, slightly heavy δ26Mg values resulted from 

seafloor weathering whereas the subduction related fluid-rock interaction left depleted δ26Mg 

values in local scale.  
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In Chapter IV, I focus on the mantle modification suggested by Mg isotopes in Chapter III 

and discuss how these modifications are preserved with respect to the Sr, Nd, and S isotope 

compositions and their spatial distributions. The peridotite samples with less radiogenic 

87Sr/86Sr ratios than Cretaceous seawater (87Sr/86Sr < 0.7074) are mostly focused at the 

mantle/crust boundary at each massif and the εNd–87Sr/86Sr suggests they are the product of 

deep-seated water circulation into the mantle. The peridotites with higher 87Sr/86Sr ratios than 

the Cretaceous seawater (87Sr/86Sr > 0.7074) suggests the sediment Sr with highly radiogenic 

isotopic compositions was carried into the mantle section during subduction. The enriched 

sulfide S contents and negative sulfide δ34S values to -20.0‰ provide convincing evidence for 

the sediment sulfide S input and these subduction-related signals are strong at the lower mantle 

section. Moreover, the spatial distribution of combined Sr, Nd, and S isotopic variation in the 

northern Fizh massif demonstrate the pervasive mantle modification.  

The main processes in the mantle wedge can be summarized by slab dehydration, 

transporting of hydrous fluid/melt, and enriched geochemical signals from the subducted slab 

to the mantle wedge. Slab-derived aqueous fluids are thought to be an effective agent for 

transporting elements from the slab to the mantle wedge, and the fluids can infiltrate the mantle 

wedge. The different Sr, S and Mg isotopic distributions in the northern Fizh mantle might 

come from the elemental characteristics. Sr is a strongly incompatible and highly moderate 

fluid-mobile element. Therefore, Sr is easily transported from the slab to the fluid by slab 

dehydration, and move upward, carrying slab-derived signals through the mantle. In addition, 

Sr can substitute Ca in the rock-forming minerals without isotopic fractionation. Slab-derived 

signals might be found in the entire peridotite section. On the contrary, S is a volatile element 

and sensitive to the oxidation state (fO2). S is carried by fluids and behaves as an incompatible 

element during melting. The negative to positive changes in δ34S in the northern Fizh mantle 

might reflect significant S isotopic fractionation by melt oxidation. The lack of a 34S-rich slab 

signature in the uppermost mantle and boninite may be attributed to the equilibration of 
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metasomatized fluid with mantle material during a long pathway from the slab (Alt et al., 1993). 

Unlike Sr and S, Mg is a compatible element, and therefore, the slab-derived signals with Mg 

could not go further and just remain on a local scale where intense melting occurred by 

metasomatized fluids.
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