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Abstract

Quantum mechanics forbids us to describe a particle, once it correlates with another, as an
individual physical object whose complete set of properties can be solely determined. Such
correlations play one of the most important roles in understanding quantum phenomena
such as non-adiabatic transitions in molecular dissociation, quantum teleportation, and
Bose–Einstein condensate.

This dissertation theoretically explores several phenomena to reveal the role of quan-
tum correlations in molecular systems. Specifically, it studies the photoionization of H2

and unambiguously evaluates the correlation between the photoelectron and H+
2 in terms

of entanglement between the two particles. The correlation among the vibrational states
of H+

2 is evaluated in terms of coherence and the relation with entanglement is studied.
The ultrafast vibrational motion of H+

2 and its dependence on the photoelectron is anal-
ysed and the origin of this correlation is ascribed to the non-locality of the wave function.
Moreover, the experimental scheme to extract the correlation effect from the vibrational
motion of H+

2 using the sequence of ultrashort laser pulses is proposed. The correlation
between a molecule and photons in a plasmonic nanocavity is also studied. This system
has been attracting attention due to its potential use in quantum information and in the
control of chemical reactions, and the analytical and numerical methods for describing
the molecular dynamics in such a system are formulated.
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Chapter 1

General introduction

In the first chapter, the background of the discussions in Chapter 2-4 is given. Fundamen-
tal formalism of bipartite entanglement is given in the first section based on Ref. [1], a
short review on observation of coherent motion is given in the second section, and finally
the molecule–cavity system is introduced and the theoretical method to describe such a
system is explained.
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1.1. ENTANGLEMENT AND COHERENCE

1.1 Entanglement and coherence

1.1.1 Bipartite system

When a pair of particles is measured, the outcome of the measurement can be correlated,
e.g., when a ball collides with the other at rest and consequently their momenta are
measured, the measurement results p1 and p2 should correlate with each other so that
they satisfy the conservation rule. If the initial momentum is prepared as Pj with a
certain probability cj so that p1,j 6= p1,k and p2,j 6= p2,k for j 6= k are satisfied, the
measurement of p1 gives a concrete prediction for the measurement of p2. In this case, the
measurement of a ball does not affect the other because each ball has its own momentum
regardless of whether it is measured or not.

Such ”classical correlation” exists also in quantum mechanics. If we have a generator
of a pair of particles, which prepares them, for simplicity, in the same state |ψj〉 but the
probability distribution cj is completely random, i.e., cj is same for all j, the two-particle
system can be expressed by a density matrix

ρ =
1

d

d∑
j=1

|ψjψj〉 〈ψjψj| =
1

d

d∑
j=1

|ψj〉1 ⊗ |ψj〉2 〈ψj|1 ⊗ 〈ψj|2

=
1

d

d∑
j=1

|ψj〉1 〈ψj|1 ⊗ |ψj〉2 〈ψj|2 , (1.1)

where {|ψj〉 , j ∈ [1, d]} is a complete orthonormal basis set and the ket (bra) on the left
of ⊗ corresponds to the first subsystem while the one on the right to the second. If a
projective measurement on the first subsystem yields k, the total system becomes

Π1,kρΠ1,k

Tr[ρΠ1,k]
=

1

1/d
|ψk〉1 〈ψk|1

{
1

d

d∑
j=1

|ψj〉1 〈ψj|1 ⊗ |ψj〉2 〈ψj|2

}
|ψk〉1 〈ψk|1

= |ψk〉1 〈ψk|1 ⊗ |ψk〉2 〈ψk|2 , (1.2)

where Π1,k = |ψk〉1 〈ψk|1, and therefore, the measurement on the second subsystem will
also give k.

The difference between quantum and classical mechanics becomes clear when we per-
form the measurement using a new orthogonal basis, e.g., defined as

|χm〉 =
d∑
j=1

〈ψj|χm〉 |ψj〉 . (1.3)

If the projection of the first subsystem on the new basis results in m, the total system
becomes

Π
′
1,mρΠ

′
1,m

Tr[ρΠ
′
1,m]

= |χm〉1 〈χm|1 ⊗

{
d∑
j=1

| 〈ψj|χm〉 |2 |ψj〉2 〈ψj|2

}
, (1.4)

2



1.1. ENTANGLEMENT AND COHERENCE

the second subsystem is still in a mixed state unlike Eq. (1.2). On the other hand, when
the total system is a pure state ρ = |Ψ〉 〈Ψ|, where the state vector is

|Ψ〉 =
1√
d

d∑
j=1

|ψj〉1 ⊗ |ψj〉2 , (1.5)

and if the projection of the first subsystem on the |ψ〉 basis gives k, the total system
becomes

Π1,kρΠ1,k

Tr[ρΠ1,k]
= |ψk〉1 〈ψk|1 ⊗ |ψk〉2 〈ψk|2 , (1.6)

while if the projection on the |χ〉 basis gives m, the total system becomes

Π
′
1,mρΠ

′
1,m

Tr[ρΠ
′
1,m]

= |χm〉1 〈χm|1 ⊗
d∑
j=1

〈χm|ψj〉 |ψj〉2
d∑

j′=1

〈ψj′ |χm〉 〈ψj′ |2

≡ |χm〉1 〈χm|1 ⊗ |χ̃m〉2 〈χ̃m|2 . (1.7)

The significance here is the fact that |χ̃m〉 also constitutes a new orthonormal set

〈χ̃n|χ̃m〉 =
d∑

j,j′=1

〈ψj′ |χn〉 〈ψj′|ψj〉 〈χm|ψj〉

=
d∑
j=1

〈χm|ψj〉 〈ψj|χn〉 = δnm. (1.8)

Therefore, only by projecting the first subsystem on |χm〉 basis, the result of the projection
of the second subsystem on the |χ̃m〉 basis can be predicted. This is distinct from the
classical correlation given by Eq. (1.4), where the projection on the new basis set is no
more able to give a prediction for the measurement of the second subsystem.

1.1.2 Bipartite entanglement

As shown above, the one-to-one correspondence between two measurement results is not
a unique nature of quantum mechanics but if such a correspondence exists regardless
of the measurement basis, we can ascribe it to quantum correlation. Such quantum
correlation between two or more subsystems is the manifestation of a quantum nature
called entanglement. In order to unambiguously define entanglement in a bipartite system,
we consider the reduced density matrices defined as

ρ1 = Tr2[ρ], ρ2 = Tr1[ρ], (1.9)

where the partial trace is taken as

Tr1[ρ] =
d∑
j=1

〈ψj|1 ρ |ψj〉1 . (1.10)

3



1.1. ENTANGLEMENT AND COHERENCE

When the total system can be described by a product state

|Φ〉 = |φ〉1 ⊗ |χ〉2 , (1.11)

the measurement on one subsystem has no effect on the other because each subsystem is
completely described by its state vector and therefore, such a state should be regarded
as non-entangled state and is called separable. The reduced density matrices for the
separable state Eq. (1.11) can be written as

ρ1 = |φ〉1 〈φ|1 , ρ2 = |χ〉2 〈χ|2 , (1.12)

and the density matrix of the total system can be decomposed into a product of the
reduced density matrices as

ρ = ρ1 ⊗ ρ2. (1.13)

If we have a statistical mixture of separable states

ρ =
∑
j

pjρ1,j ⊗ ρ2,j, (1.14)

the correlation between measurement results on two subsystems can be ascribed to the
probabilities pj like we have already seen for Eq. (1.1), and therefore, Eq. (1.14) is also
regarded as separable.

On the other hand, the total system which cannot be written as a product state Eq.
(1.11) or its statistical mixture Eq. (1.14) is called entangled. A general entangled state
can be written as

|Ψ〉 =
∑
jk

cjk |ψj〉1 ⊗ |χk〉2 , (1.15)

where cjk 6= cjck, otherwise it reduces to a product state. As we have seen for Eq. (1.5),
the entangled state should have correlation between two subsystems in any basis set and
therefore, it is unclear how to evaluate the amount of entanglement only from a specific
basis set as in Eq. (1.15). Therefore, we should define a certain basis set, with which
we can unambiguously evaluate the amount of entanglement. In the case of the pure
bipartite system, such basis set can be defined by the Schmidt decomposition

|Ψ〉 =
s∑
j=1

√
λj |φ̃j〉1 ⊗ |χ̃j〉2 , (1.16)

which contains only one summation index in contrast to Eq. (1.15). The Schmidt bases
are the eigenstates of the reduced density matrices

ρ1 =
s∑
j=1

λj |φ̃j〉1 〈φ̃j|1 , ρ2 =
s∑
j=1

λj |χ̃j〉2 〈χ̃j|2 (1.17)

where their eigenvalues λj (1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0) are called the Schmidt coefficients
and the number of terms in the summation, s, is called the Schmidt rank. Because

4



1.1. ENTANGLEMENT AND COHERENCE

Tr[ρ] = 1 for any normalized state ρ,
∑s

j λj = 1 always holds. If we have only one term
in the Schmidt decomposition, i.e., λ1 = 1, λj = 0 (j ≥ 2), the total system is separable.
If λ = 1 − δ (δ � 1) and

∑s
j=2 λj = δ, the total system is entangled but the amount

entanglement is small because the measurement on one subsystem carries small amount
of information about the other subsystem on average. Specifically, the measurement on
the first subsystem most likely gives |φ̃1〉1 but we obtain small amount of information
from this result because we can expect the measurement on the second subsystem gives
|χ̃1〉2 even before the measurement. If the measurement on the first subsystem gives

other results like |φ̃2〉1, the measurement on the second subsystem will give |χ̃2〉2, which
is valuable information because, without the measurement on the first subsystem, we can
hardly predict when the second subsystem results in |χ̃2〉2. However, such events seldom
occurs since λ2 � 1. Therefore, the amount of correlation between two measurement
results on average, i.e., entanglement, is small. From these examples, we can expect the
entanglement increases as the number of λj non-negligibly contributing to the Schmidt
decomposition increases. Actually, the maximally entangled state is written as

|Ψ〉 =
1√
N

N∑
j=1

|φ̃j〉1 ⊗ |χ̃j〉2 , (1.18)

where N = min[d1, d2] is the smaller one of the dimensions of the Hilbert spaces H1,2

for the first and the second subsystems, d1 = dim[H1] and d2 = dim[H2], respectively.
Namely, the maximally entangled state contains the pairs of Schmidt bases |φ̃j〉1 ⊗ |χ̃j〉2
with the equal weight.

The purity of the reduced density matrix defined as

P = Tr2[ρ2
1] = Tr1[ρ2

2] =
s∑
j=1

λ2
j , (1.19)

is an unambiguous quantifier of entanglement. For the separable state P = 1 while for the
maximally entangled state P =

∑N
j 1/N2 = 1/N . As entanglement of the total system

increases, the subsystems become mixed more, i.e., P decreases.

1.1.3 Entanglement in atoms and molecules

In recent years, the interparticle correlation in atoms and molecules has been related to
entanglement [1]. For example, the electron–proton correlation in a hydrogen atom in
the ground state [2] as well as in one-photon [3] and strong-field ionization were char-
acterized by using the entanglement between two particles. For molecular systems, the
electron–nuclear correlation as well as the electron–electron correlation characterized by
the entanglement can give a new insight into the molecular physics. For example, the
electron–nuclear correlation in the stationary state has been well described using the
Born–Oppenheimer (BO) approximation

Ψ(r, R) = ψ(r;R)χ(R), (1.20)

where ψ(r;R) is the electronic wave function depending parametrically on the internuclear
distance R and χ(R) is the nuclear wave function. Although Eq. (1.20) is written as a

5



1.1. ENTANGLEMENT AND COHERENCE

product of two wave functions, it isn’t separable because ψ(r;R) is already an entangled
state of the electronic and the nuclear coordinates. A separable state can be given by the
crude BO approximation, i.e.,

ΨC(r, R) = ψ(r;R0)χ̃(R), (1.21)

where the internuclear distance specifying the electronic wave function is fixed at R0. The
entanglement expressed by the BO approximation corresponds to the amount of difference
between Ψ and ΨC . In the vicinity of the avoided crossing, the electronic states cannot
be described by a single wave function any more and the BO approximation becomes
invalid. This break down of the approximation is often explained that the BO wave
function underestimates the electron–nuclear correlation. Izmaylov et al. [4] showed,
however, that the amount of entanglement and the validity of the BO approximation
are not strictly correlated so that the BO approximation can be valid even when the
entanglement is large while it can be invalid for an almost separable state.

In the case of photoionization of H2, the final state described as

|Ψ〉 =
∑
vk

avk |χv〉 ⊗ |φk〉 , (1.22)

where |χv〉 and |φk〉 are the vibrational eigenstate of H+
2 and the energy eigenstate of the

photoelectron, respectively, can be regarded as the bipartite entangled state. The reduced
density matrix defined by Eq. (1.9) for H+

2 is obtained as

ρvib = Tre[|Ψ〉 〈Ψ|] =
∑
vv′

∑
k

avka
∗
vk |χv〉 〈χv′ | . (1.23)

Figure 1.1: The entangled state generated by the photoionization of H2. The Hilbert
space for the total wave function |Ψ〉 is composed of the tensor product of Hilbert spaces
for the subsystems as depicted in the right figure.
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1.2. ULTRAFAST COHERENT MOTION

1.2 Ultrafast coherent motion

1.2.1 Coherent motion of ions

By attosecond time-resolved spectroscopy, we are able to characterize the coherent internal
motion in an atomic or molecular ion created by photoionization [5, 6] as well as in a
neutral atom or molecule [7–10]. Because the photoelectron and the ion are generally
entangled, the ion should be described by the reduced density matrix ρion by tracing out
the photoelectron from the total density matrix as introduced in Eq. (1.9). The reduced
density matrix has been determined by the measurements of transient absorption [5,11,12]
and by the streaking of photoelectrons [13, 14]. For example, if the ionization occurs at
t = 0 by the irradiation of the pump laser pulse, the reduced density matrix of a two-level
ion is written as

ρion(t) = |ρgg|2 |g〉 〈g|+ |ρee|2 |e〉 〈e|+ ρgee
−iωget |g〉 〈e|+ ρege

−iωegt |e〉 〈g| , (1.24)

where the first two terms are the population of the ground and the excited states, respec-
tively, and the remaining two terms are the coherence between the two states. When the
ion is further irradiated with a probe laser pulse and the absorption spectra is recorded as
a function of the pump–probe time delay, the oscillation of the absorption intensity at the
frequency ωge can be seen as long as the coherence terms |ρge| and |ρeg| are large enough.
We call such time dependent dynamics ascribed to the oscillation of the coherence terms
the coherent motion.

Considering the complex phase of the coherence in Eq. (1.24), the coherent motion
can be shifted in time as

ρgee
−iωget = |ρge|e−iωge(t−τge), (1.25)

τge =
arg[ρge]

ωge

. (1.26)

The origin of such time shift, which we call the time delay, has been ascribed to the
property of the laser pulse. For example, Goulielmakis et al. [5] ionized Kr by a few-cycle
intense near-IR (NIR) laser pulse and recorded the transient absorption spectra of Kr+

using an attosecond XUV pulse, from which they derived experimentally the phase of
the reduced density-matrix elements of Kr+, arg[(ρion)ij], for the ith and jth levels and
they ascribed the phase to the waveform of the NIR laser pulse. Here, we can consider
a question, ”can we completely explain the time delay in the coherent motion if we can
precisely characterize the waveform of the laser pulse?”, and the answer will be given in
Chapter 3 by investigating the photoionization of H2.

In characterizing the coherent vibrational motion of H+
2 described by the reduced

density matrix ρvib, we irradiate H+
2 with a probe pulse so that it dissociates through the

2pσu potential energy surface and we measure the kinetic energy of H+, called the kinetic
energy release (KER). In thus obtained spectrogram called the delay–KER spectrogram,
the signal intensity of H+ oscillates as a function of the pump–probe time delay τ reflecting
the time dependent factor of the coherence, e−i(ωv−ωv′ )τ , where v and v′ are the vibrational
quantum numbers. An example of the delay–KER spectrogram is shown in Fig. 1.3. As
shown in Chapter 3, the delay–KER spectrogram can be shifted in time due to the phase
of (ρvib)vv′ , which originates from the photoelectron–ion correlation.
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1.2. ULTRAFAST COHERENT MOTION
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Figure 1.2: Potential energy curves relevant for the pump–probe scheme for H2.

Figure 1.3: Simulated delay–KER spectrogram of H+ produced through (i) the ionization
of H2 by an attosecond pulse train (APT) (ii) and the dissociation of H+

2 by 3rd and 5th
order harmonics of the APT. The mathematical expression for the spectrogram will be
given by Eq. (3.16) in Chapter 3.
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1.2. ULTRAFAST COHERENT MOTION

1.2.2 Wigner delay

On the other hand, the coherent motion of the photoelectron has been investigated in
terms of the Wigner delay [15–18]. For simplicity, consider a separable state |Ψ〉 com-
posed of an ionic state and the superposition of eigenstates of the momentum ke of the
photoelectron as

|Ψ〉 = |χion〉 ⊗
∫
dkeake |ψke〉 , (1.27)

where ake is the transition amplitude from the initial neutral state to the final state
|Ψ〉. The Wigner delay [15, 16] is defined as the derivative of the phase of the transition
amplitude ake with respect to the energy of the photoelectron

τW (ke) =
d arg[ake ]

dωke
, ωke =

k2
e

2
, (1.28)

and can be interpreted as the group delay of the photoelectron wave packet escaping
from the short-range potential created around the ion core [17]. Because the Wigner
delay originates from the interaction between the photoelectron and the ion, it depends
on the ionic state |χion〉 of atoms and molecules. Indeed, by attosecond (as) streaking
spectroscopy, it was revealed that the photoemission associated with the ionization of
He [He+(n = 1) + e−] is delayed by 12.6 as from the photoemission associated with the
simultaneous excitation of the He+ ion [He+(n = 2)+e−] and that the photoemission delay
can be ascribed to the difference in the Coulombic interaction in He+(n = 1) and that in
He+(n = 2) [19]. For the dissociative ionization of H2, by measuring the momentum of
the proton combined with the measurement of the photoemission time delay, the Wigner
delay was shown to vary depending on the internuclear distance of H+

2 [20].
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1.3. MOLECULE IN A CAVITY

1.3 Molecule in a cavity

Recent experimental developments enable us to make nanoscale cavities [21–25] by plac-
ing a nanoparticle on metal surface, which confines the electromagnetic field in the gap
between the nanoparticle and the metal surface. Moreover, by employing a host–guest
chemistry, only a few or even a single molecule can be placed in the gap so that we can
couple the cavity photon with a molecule [21]. When the molecule in an excited state
is placed in the cavity, whose cavity mode is resonant to the decay of the excited state,
the spontaneous emission can be enhanced, and therefore, the molecular dynamics in the
excited state can be modified by the cavity. In order to simulate such a dissipative open
quantum system, the master equation should be solved but its computational demand
can be mitigated by employing a stochastic equation.

Nanoparticle

Film
Figure 1.4: The schematic of the nanocavity realized in the gap between the nanoparticle
and the metal surface. The arrow represents the transition dipole moment of the dye
molecule. The dye molecule is placed in a cylindrical molecule (gray) whose height deter-
mines the gap between the nanoparticle and the film, i.e., the size of the nanocavity. In
Ref. [21], the height was about 0.9 nm. The surface plasmon–polariton (SPP) is induced
by shining the laser light to the nanoparticle, SPP is localized in the gap, and then the
confined electromagnetic field interacts with the dye molecule.

1.3.1 Purcell effect

A quantum emitter placed in an optical cavity resonant to the transition frequency ex-
periences the enhancement of spontaneous emission called the Purcell enhancement due
to the increase of the density of states of the electromagnetic field. The Purcell factor P
is the ratio of the spontaneous emission rate in the cavity to that in the vacuum and it
is proportional to the cavity quality factor Q (a measure of photon storage time in the
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1.3. MOLECULE IN A CAVITY

cavity) and the inverse of the mode volume V as [26]

P ≡ γsp,cav

γsp,vac

=
3λ3

4π2

Q

V
, (1.29)

where λ is the wavelength of the cavity mode. Because Q is related to the cavity decay
rate γc as Q = ωc/γc one can make it large by either reducing the loss of photons (i.e.,
making γc small and Q large) or reducing the cavity volume. In Ref. [21], even though
the Q is as small as 15.9, it has been shown that the cavity volume achieves less than
40 nm3 and the Purcell factor for a dye molecule is as high as 106.

1.3.2 Monte Carlo wave packet method

The open system interacting with the environment can be described by the master equa-
tion, e.g., an emitter having only one decay path can be described by

ρ̇ = −i[H, ρ]− 1

2

(
L†Lρ+ ρL†L

)
+ LρL†, L =

√
γa, (1.30)

where a is the annihilation operator,
√
γ is the decay rate of the excited state, and L is

called the Lindblad operator. The system is described by a density matrix ρ, the second
and the third terms of the right hand side represent the relaxation process. In solving
the master equation for the N dimensional system, the size of the memory for ρ scales as
N2 and consequently the computational cost increases more rapidly than the wave packet
simulation.

The Monte Carlo wave packet method [27] is a useful method to reduce the com-
putational cost in solving the master equation, in which the wave packet instead of the
density matrix is used. First, the wave packet |ψ〉 is propagated under the non-Hermitian
Hamiltonian HNH = H − iL†L/2 as

|ψ̃(t+ dt)〉 = e−iHNHdt |ψ(t)〉 ' (1− idtH − dt

2
L†L) |ψ(t)〉 , (1.31)

and then, the decrease of the norm is calculated as

dp = 1− 〈ψ̃(t+ dt)|ψ̃(t+ dt)〉 = dt 〈ψ(t)|L†L|ψ(t)〉 . (1.32)

Since 〈ψ(t)|L†L|ψ(t)〉 is the population of the decaying state, dp is the decay probability
between t and t+ dt. In order to mimic the randomness of the quantum jump, a random
number ε (0 ≤ ε ≤ 1) is compared with dp at each time step and finally, the time evolution
from t to t+ dt is completed by the following step

|ψ(t+ dt)〉 =


1√

1−dp |ψ̃(t+ dt)〉 , ε > dp
L√
dp/dt
|ψ(t)〉 , ε ≤ dp

. (1.33)

The time evolution of the wave packet |ψ〉 depends on the time series of the random
number ε(t) and the wave packet obtained with the jth run of the calculation is called
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1.3. MOLECULE IN A CAVITY

the quantum trajectory denoted as |ψj〉. The wave packet calculation is repeated many
times until the convergence is achieved for the averaged density matrix defined as

ρ =
∑
j

|ψj〉 〈ψj| . (1.34)

We can show that thus-obtained density matrix is equivalent to the solution of the
master equation (1.30). Consider the time evolution from t to t+dt for a given trajectory
|ψ(t)〉. Because the probability of the relation ε > dp holds is 1− dp while that for ε ≤ dp
is dp, the average of the density matrix at t+ dt can be obtained from the density matrix
σ(t) = |ψ(t)〉 〈ψ(t)| as

σ̄(t+ dt) = (1− dp) 1

1− dp
|ψ̃(t+ dt)〉 〈ψ̃(t+ dt)|+ dp

1

dp/dt
L |ψ(t)〉 〈ψ(t)|L†

' σ(t)− idt[H, σ(t)]− dt

2
(L†Lσ(t) + σ(t)L†L) + dtLσ(t)L†. (1.35)

By averaging over different random issues for the trajectory |ψ(t)〉, σ(t) becomes identical
to ρ(t) defined by Eq. (1.34) and consequently, the average of σ̄(t+ dt) becomes identical
to ρ(t+ dt). Therefore, the averaged density matrix Eq. (1.34) obeys the following

dρ

dt
= −i[H, ρ]− 1

2

(
L†Lρ+ ρL†L

)
+ LρL†, (1.36)

which is identical to the master equation (1.30).
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1.4. THIS THESIS

1.4 This thesis

1.4.1 Entanglement and coherence

In Chapter 2, I present a work on the photoionization of a hydrogen molecule discussing
entanglement between the ion and the photoelectron and the coherence in the ion, based
on Ref. [28]. I theoretically investigate photoionization of an H2 molecule, induced by the
irradiation of an ultrashort extreme ultraviolet (XUV) laser pulse. I consider a system
composed of a photoelectron ejected from H2 and the resultant H+

2 as a bipartite system.
In order to clarify how the interparticle correlations among two electrons and two protons
in H2 are reflected to the bipartite system, I examine the entanglement between the
photoelectron and the vibrational states of H+

2 as well as the coherence in the vibrational
states of H+

2 by simulating the photoionization process of one-dimensional H2. In the
simulation, I solve a time-dependent Schrödinger equation using a symmetry-adapted
grid method. On the basis of the simulations with ten different sets of three parameters
characterizing an ultrashort XUV laser pulse, i.e., the pulse duration, the wavelength,
and the peak intensity, we show that the extent of the entanglement depends sensitively
on the coherence in the vibrational states of H+

2 .

1.4.2 Time delay in the coherent motion of H+
2

In Chapter 3, I present a work on how the time delay in the coherent motion of H+
2 created

by photoionization of H2 is ascribed to the correlation between H+
2 and the photoelectron,

based on Ref. [29]. The photoionization of H2 by an attosecond pulse train is formulated
using reduced density matrices, whose complex phase is related to the time delay in the
coherent vibrational motion of H+

2 . The relation between the time delay in the vibrational
motion and the Wigner delay of the photoelectron is also discussed. I show that, even
when the ionization laser pulse is Fourier limited, the reduced density matrix of H+

2

contains an intrinsic phase ascribed to the phase of the photoelectron wave function and
that the intrinsic phase can be extracted by pump–probe measurements as long as the
pump–probe time delay is measured with precision of the order of tens of attoseconds.

1.4.3 Molecule in a plasmonic nanocavity

In Chapter 4, I present an unpublished work on the simulation of molecular dynamics
coupled to photons in a nanocavity. I derive the effective operators describing the slow
dynamics of the molecule in the plasmonic nanocavity and give an analytical expression
for the rate of photon emission by eliminating a fast-evolving state. We solve the master
equation by the Monte Carlo wave packet (MCWP) method to examine the validity of
the effective operators and reveal the relation between the rate of photon emission from
the cavity and the vibrational motion of the molecule.
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Chapter 2

Entanglement and coherence created
by photoionization of H2

Entanglement and coherence are the quantities characteristic to quantum mechanics and
the former represents the correlation among some particles while the latter among the
internal states within a single particle. Recent studies have adopted entanglement to quan-
tify the amount of correlation and given better understandings of fundamental physics,
for instance, steady state wave functions, validity of the adiabatic approximation, and
dynamics of an atom under intense laser field.

On the other hand, coherence is related with a fundamental quantum phenomena, the
superposition principle, which allows two or more states to exist at the same time, and
the coherence quantifies how clearly we can see the superposition. Because the ionization
results in an ejection of a photoelectron leaving an ion behind, two particles are spatially
separated but still correlated. Such a distant correlation is the most striking difference
between quantum and classical mechanics and so the ionization is well suited for studying
quantum correlation. For the ionization of a hydrogen molecule I will show how the
entanglement between two particles and the coherence in the molecular ion are related
and how they can be controlled by changing the properties of the laser pulse.
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2.1. ENTANGLEMENT AND COHERENCE

2.1 Entanglement and coherence

2.1.1 Entanglement and coherence in atoms and molecules

Properties of atomic and molecular systems composed of particles such as electrons and
nuclei are characterized by the correlations among the constituent particles. For example,
the configuration interaction in quantum chemical calculations [30] and the correlation
energy functional in the density functional theory [31] originate from the electron–electron
correlation, and the nonadiabatic transitions among potential energy surfaces of molecules
[32,33] originate from the electron–nuclear correlation.

In recent years, the interparticle correlation in atoms and molecules has been related
to entanglement [1], which was originally introduced by Schrödinger [34]. Especially, the
entanglement in a bipartite system, which has been investigated intensively in quantum
information science during the past three decades [35–39], is now being introduced into
atomic and molecular science to explore the interparticle correlation.

Using entanglement, we can quantify the correlation between two degrees of freedom in
a bipartite system. Indeed, the correlation between an electron and a proton in the ground
state of a hydrogen atom was investigated in terms of entanglement [2] by the density
matrix formalism developed in quantum information theory [40]. For a hydrogen atom,
the entanglement in one-photon ionization [3] and that in strong-field ionization [41] were
investigated. Entanglement was also used for characterizing the correlation in molecular
systems. It was shown that the electron–electron correlation in an H2 molecule, quantified
using entanglement as a function of internuclear distance, exhibits a different behavior
from the correlation energy, which is supposed to represent the extent of the electron–
electron correlation [42, 43]. The correlation between the electronic and the vibrational
degrees of freedom in molecules is also evaluated by using entanglement [4, 44, 45] The
intramolecular vibrational energy redistribution in H2O originating from the correlation
between the vibrational modes was also discussed in terms of entanglement [46].

Coherence is another kind of quantum correlation used in describing correlation in
atomic and molecular systems, which describes the amount of superposition. The recent
development of subfemtosecond laser pulses has enabled us to create a highly coherent
superposition of electronic states of rare gas atom ions [5]. For example, a method of
controlling the coherence in two-level atomic ions created by ionization of Ne and Xe with
an intense IR pulse was proposed theoretically [47] and such control of the coherence was
demonstrated by transient absorption spectroscopy of Kr, which is ionized by an intense
few-cycle near-IR pulse and probed by an XUV pulse whose duration is 150 as [5]. More
recently, it was revealed theoretically that the extent of coherence in a two-level atomic
ion can be enhanced when the bandwidth of the XUV pulse inducing photoionization
becomes comparable with the energy separation between the two levels or when the XUV
pulse is composed of two colors whose frequency difference is the same as the energy
separation between the two levels of the atomic ion [48].

Considering that both of the two properties, i.e., entanglement and coherence, repre-
sent the correlation among the constituent particles of the system, it would be meaningful
to clarify the difference between these two properties. The best system with which we
could learn how entanglement and coherence are related to each other is a bipartite sys-
tem because entanglement is a property of the total system while coherence is a property
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2.1. ENTANGLEMENT AND COHERENCE

of each of the subsystems. In a recent theoretical study on the excitation of Cs2 by a
sequence of chirped laser pulses, it was shown that the time evolution of the entanglement
between the electronic part and the vibrational part of the vibronic wave packet can be
characterized by the coherence in the electronic part [49,50].

In this chapter, we investigate theoretically the photoionization of H2 creating a bipar-
tite system composed of an entangled pair of a photoelectron and an H+

2 ion together with
a coherent superposition of the vibrational states of H+

2 . We solve the time-dependent
Schrödinger equation (TDSE) numerically for photoionization of H2, and evaluate the
degree of entanglement between a photoelectron and H+

2 as well as the coherence in the
vibrational states of H+

2 , and examine how the entanglement and the coherence describe
the interparticle correlations in the system differently. We also show how the entangle-
ment and the coherence vary depending on the laser parameters such as the wavelength,
the peak intensity, and the pulse duration of the ionization laser pulse. Finally, we pro-
pose an experimental pump–probe scheme by which we can extract the entanglement and
the coherence in photoionization of a molecular system. Throughout this chapter, atomic
units (a.u.) are used unless otherwise indicated.

2.1.2 Entanglement between H+
2 and e−

We consider a system composed of a photoelectron and H+
2 prepared in the electronic

ground state, which are produced from one-dimensional H2 in the electronic and vibra-
tional ground state upon photoionization. We assume that two protons and two electrons
move along the one-dimensional axis in response to a laser pulse whose polarization is
along this axis. Then, as long as we assume that the electron spin state is singlet, a wave
function of the composite system of H+

2 + e− is written as

|Ψ〉 =
∑
hlk

chlk |ζh〉 ⊗
1

2
A{|ηl, α〉1 ⊗ |φk, β〉2 − |ηl, β〉1 ⊗ |φk, α〉2} , (2.1)

where |ζh〉 is the basis for the nuclear vibration, |ηl〉 is the basis for the bound electron in
H+

2 , |φk〉 is the basis for the photoelectron interacting with the H+
2 ionic core, α and β are

the spin functions, and A is the antisymmetrizer of the spatial and the spin coordinates.
The antisymmetrizer is defined using the identity operator I12 and the exchange operator
E12 as A = I12 − E12, which exchanges the spatial and the spin coordinates of two
electrons.

In general, when two distinguishable particles are described by a product state, |ϕ〉1⊗
|χ〉2, two particles are regarded as non-entangled, while they are regarded as entangled
when no product state can be assigned to them. When the system is composed of indis-
tinguishable particles, the same entanglement criteria used for distinguishable particles
cannot be applied. Various entanglement criteria for the system of indistinguishable par-
ticles have been proposed [51–54], but these criteria have been developed for the system
composed of one kind of indistinguishable particle, e.g. the system composed of electrons
exclusively. In contrast, the system we treat is composed of two kinds of indistinguishable
particles, i.e. two electrons and two protons. When the indistinguishable particles are
spatially separated so that they can be measured separately, the indistinguishable par-
ticles can be treated as distinguishable particles [55] and the measure of entanglement,
which has been developed in the investigation of distinguishable particles, can be applied.
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2.1. ENTANGLEMENT AND COHERENCE

The existence of the bijection between the indistinguishable-particle picture and the
distinguishable-particle picture for both of bipartite fermions and bipartite bosons was
proved in Refs. [55, 56]. We apply this bijection to the system of H+

2 + e− because the
photoelectron is spatially separated from the other electron contained in H+

2 . A gen-
eralized bijection between two pictures for multipartite systems including the effect of
measurement setups was given in Ref. [57].

Because of the spatial separation of two electrons, we can introduce a localized wave
packet, |φk〉, representing an ejected photoelectron whose distance from the rest of the
system, H+

2 , is sufficiently large so that they fulfill the orthogonality, 〈ηl|φk〉 = 0. Then,
we define two projection operators

P1 =
∑
l

|ηl〉1 1 〈ηl|, Q2 =
∑
k

|φk〉2 2 〈φk|, (2.2)

and by using a map defined as

√
2P1 ⊗Q2, (2.3)

we can map |Ψ〉 onto the distinguishable-particle picture [56] as

|Φ〉 ≡
√

2P1 ⊗Q2 |Ψ〉

=
∑
hlk

chlk |ζh〉 ⊗
1√
2
{|ηl, α〉1 ⊗ |φk, β〉2 − |ηl, β〉1 ⊗ |φk, α〉2} . (2.4)

Then, we perform the basis transformation from the set of {|ζh〉 , |ηl〉} to the vibrational
eigenstate of H+

2 , {|χv〉}, as

|Φ〉 =
∑
vk

avk
1

2
{|χv, α〉1 ⊗ |φk, β〉2 − |χv, β〉1 ⊗ |φk, α〉2} , (2.5)

where v is the vibrational quantum number. We note that |χv〉 includes spatial part of
the remaining electron. Now we can treat |Φ〉 as a bipartite system composed of two
distinguishable particles, a photoelectron and H+

2 .
Because we use the dipole approximation for the light–matter interaction, the spin

state does not change during and after the light–matter interaction, and consequently,
the spin entanglement is invariant. Therefore, in order to evaluate the laser parameter
dependence of the entanglement, we only need the density matrix for the spatial part,
which we can obtain by taking the trace over the spin coordinates, σ1 and σ2, as

ρ ≡ Trσ1,σ2 [|Ψ〉 〈Ψ|] =
∑
vv′,kk′

avka
∗
v′k′ {|χv〉 〈χv′ | ⊗ |φk〉 〈φk′ |} . (2.6)

Without loss of generality, we can neglect the spin part and concentrate on the spatial
part of the state,

|ΦS〉 =
∑
vk

avk |χv〉 ⊗ |φk〉 , (2.7)
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2.1. ENTANGLEMENT AND COHERENCE

because |ΦS〉 〈ΦS| gives the same density matrix as Eq. (2.6). Therefore, we will use the
spatial part |ΦS〉, instead of |Φ〉 given by Eq. (2.5), in the following discussion.

The entanglement of the bipartite system can be evaluated by the reduced density
matrix of either one of two subsystems. The reduced density matrix of the vibrational
state of H+

2 is obtained by taking the trace over the photoelectron coordinate as

ρvib = Tre[ρ] =
vmax∑
v,v′=0

kmax∑
k=1

avka
∗
v′k |χv〉 〈χv′ | , (2.8)

and that for the spatial part of the photoelectron is obtained as

ρe = Trvib[ρ] =
kmax∑
k,k′=1

vmax∑
v=0

avka
∗
vk′ |φk〉 〈φk′| . (2.9)

As a quantitative measure of the extent of entanglement [1,58,59], quantifiers such as
purity [60], von Neumann entropy [61], and measurement-induced disturbance [62] have
been proposed. Among these quantifiers, we choose purity of the reduced density matrix
because it is directly related to the coherence of the subsystem as shown below. The
purity P of ρvib is defined as the trace of ρ2

vib,

P ≡ Tr(ρ2
vib) =

vmax∑
v,v′=0

∣∣∣∣∣
kmax∑
k=1

avka
∗
v′k

∣∣∣∣∣
2

. (2.10)

When H+
2 and e− are non-entangled, P = 1 while it decreases as the extent of entan-

glement between H+
2 and e− increases, and the minimum of the purity Pmin is equal to

Pmin = 1/N , where N = min[vmax + 1, kmax]. We take N as N = vmax + 1 because the
number of the vibrational states is much smaller than the number of the basis functions
needed for expanding the spatial part of the photoelectron. The purity can also be calcu-
lated by the reduced density matrix of the spatial part of the photoelectron in the same
manner as in Eq. (2.10) as

P = Tr(ρ2
e). (2.11)

Off-diagonal elements of the reduced density matrix are called the coherence while
the diagonal elements are called the population. Equation (2.10) can be decomposed into
two, that is, the first term defined as the sum of the squared modulus of the populations
and the second term defined as the sum of the squared modulus of the coherences, as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 6=v′
|(ρvib)vv′|2 ≡ P1 + P2. (2.12)

2.1.3 Coherence in the vibrational state

In order to evaluate the correlation between two vibrational states, we introduce the
degree of coherence [5, 48] defined as

(ρ̃vib)vv′ ≡
|(ρvib)vv′|√

(ρvib)vv(ρvib)v′v′
or 0, (2.13)
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which satisfies 0 ≤ (ρ̃vib)vv′ ≤ 1. In Eq. (2.13), we define (ρ̃vib)vv′ = 0 when (ρvib)vv = 0
or (ρvib)v′v′ = 0 because avk = 0, ∀k should hold if (ρvib)vv =

∑kmax

k=1 |avk|
2 = 0 is satisfied,

and consequently, (ρvib)vv′ =
∑kmax

k=1 avka
∗
v′k = 0 is also satisfied.

From Eqs. (2.12) and (2.13), the purity can be related to the degree of coherence as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 6=v′

(ρ̃vib)2
vv′(ρvib)vv(ρvib)v′v′ . (2.14)

When the population is equally distributed, i.e., (ρvib)vv = 1/vmax for all v, the purity
takes the minimum value of Pmin = 1/vmax and the degree of coherence is zero. If the
degree of coherence takes its maximum value, i.e., (ρ̃vib)vv′ = 1 for all v and v′, the purity
becomes unity as

P =
vmax∑
v=0

|(ρvib)vv|2 +
vmax∑
v 6=v′

(ρvib)vv(ρvib)v′v′

=

∣∣∣∣∣
vmax∑
v=0

(ρvib)vv

∣∣∣∣∣
2

= 1, (2.15)

meaning that the total system is nonentangled.
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2.2 Numerical procedure

2.2.1 One-dimensional model

After separating out the motion of the center of mass, the Hamiltonian of H2 interacting
with a light field within the dipole approximation is expressed as

H = T0 + V = Te + TN + VeN + Vee + VNN + Vint, (2.16)

where Vint is

Vint = µE(t), (2.17)

Te is the kinetic energy operator of two electrons, TN is the kinetic energy operator of two
nuclei, VeN is the Coulomb attraction between two electrons and two protons, VNN is the
Coulomb repulsion between two protons, µ is the electric dipole, and E(t) is the linearly
polarized electric field of light whose polarization direction is along the one-dimensional
axis.

The explicit form of the operators is expressed as

Te + TN = − 1

2µe

(
∂2

∂x2
+

∂2

∂y2

)
− 1

M

∂2

∂R2
, (2.18a)

VeN = − 1√
(x− R

2
)2 + α(R)

− 1√
(x+ R

2
)2 + α(R)

− 1√
(y − R

2
)2 + α(R)

− 1√
(y + R

2
)2 + α(R)

, (2.18b)

Vee =
1√

(x− y)2 + β
, (2.18c)

VNN =
1

R
, (2.18d)

where x and y are the coordinates of the two electrons whose origin is located at the
center of mass of the nuclei, R is the internuclear distance, M = 1.836 × 103 a.u. is the
mass of a proton, and µe = 2M/(2M + 1) is the reduced mass of an electron. The dipole
operator µ is defined as µ = x+ y. The soft-core potential [63] is applied for VeN and Vee,
in which the Coulomb singularities are eliminated by the softening parameters, α(R) and
β. The parameter α(R) is determined so that the 1sσg potential energy curve of H+

2 [64]
is reproduced. On the other hand, β is determined so that the equilibrium internuclear
distance of H2 in the electronic ground state, Rref.

eq = 1.401 a.u. [64], is reproduced. We
solve the TDSE numerically with a grid method called the symmetry-adapted grid method
that we have developed to efficiently calculate single-ionization processes in atoms and
molecules as we explain in the next subsection.

In the present model, ΨS is a function of (x, y, R), φk is a function of x, and χv is
a function of (y,R). Because we can adopt any type of complete orthonormal basis to
describe a photoelectron in the calculation of ρvib as long as the basis has a vanishing
overlap with the basis set describing the other electron bound to the H+

2 core, we adopt
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the grid basis as a complete orthonormal basis with which we describe the subsystem of
a photoelectron, and rewrite Eq. (2.7) as

|ΦS〉 =
vmax∑
v=0

de∑
k=1

ãvk |χv〉 ⊗ |xk〉 , (2.19)

where de is the number of grid points along the x axis. The grid basis {|xk〉} satisfies

〈y,R| 〈xk|ΦS〉 = ΦS(xk, y, R)∆1/2
x , (2.20)

where ∆
1/2
x is the grid spacing along the x axis. The reduced density matrix is expressed

as

ρvib = Tre (|ΦS〉 〈ΦS|) =
vmax∑
v,v′=0

de∑
k=1

ãvkã
∗
v′k |χv〉 〈χv′ | . (2.21)

2.2.2 Symmetry adapted grid method

First, we propagate the electronic and vibrational ground state of H2, |ΦH2
0 〉, in the light

field as

|Φ(t)〉 = U(t) |ΦH2
0 〉 , (2.22)

where U(t) is the propagator corresponding to the time-dependent Hamiltonian, Eq.
(2.16), and project out the initial state as

|Φ′(t)〉 =
(
1− |ΦH2

0 〉 〈ΦH2
0 |
)
|Φ(t)〉 . (2.23)

We obtain the wave packet corresponding to the single ionization by extracting the part
of |Φ′(t)〉 in the domain S1 or S2 in Fig. 2.1 at certain time T , which is denoted as
|ΦS1,S2(T )〉. The domains S1 and S2 in which one of the electrons is emitted are defined
by |x| > 30 a.u. and |y| < 30 a.u., while the domain B in which both electrons are bound
is defined by |x| < 30 a.u. and |y| < 30 a.u. In order to analyze |ΦS1,S2(t)〉, we wait until T
when the singly ionized wave packet can be described well by the product of the eigenstate
of H+

2 and |xk〉.
It should be noted that the wave packet |ΦS1,S2(T )〉 is composed of (i) a photoelec-

tron and a bound state of H+
2 (1sσg) and (ii) a photoelectron with the dissociating H+

2

through the continuum state of H+
2 (1sσg) above the dissociation threshold or through the

continuum state in an electronically excited state of H+
2 like 2pσu. Considering that the

scalar product of |χv〉 and the dissociating states of H+
2 included in |ΦS1,S2(T )〉 vanish, the

projection of |ΦS1,S2(T )〉 on |χv〉 ⊗ |xk〉 yields ãvk, that is,

ãvk = 〈χv| 〈xk|ΦS1,S2(T )〉 . (2.24)
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2.2. NUMERICAL PROCEDURE

By using the property of the grid basis expressed in Eq. (2.20), we can simplify Eq.
(2.24) as

ãvk = 〈χv|ΦS1,S2(xk, T )〉∆1/2
x

=
∑
l,m

〈χv|yl, Rm〉 〈yl, Rm|ΦS1,S2(xk, T )〉∆1/2
x

=
∑
l,m

χ∗v(yl, Rm)ΦS1,S2(xk, yl, Rm, T )∆y∆R∆1/2
x , (2.25)

where |yl〉 and |Rm〉 are the grid bases for the respective coordinates. From Eqs. (2.21)
and (2.25), we can obtain the reduced density matrix from which the purity and the
degree of coherence are calculated.

We integrate the time-dependent Schrödinger equation numerically by adopting the
grid method. We perform the time propagation using the split-operator method expressed
as

U(t) = exp

[
−i

∆t

2
V

(
t+

∆t

2

)]
exp (−i∆tT0) exp

[
−i

∆t

2
V

(
t+

∆t

2

)]
, (2.26)

where V (t) is the potential including the laser–matter interaction and T0 is the kinetic
energy operator [Eq. (2.16)]. For the numerical differentiation, we employ the fast Fourier
transform (FFT).

Because we neglect the double ionization, the grid space can be reduced significantly.
By following the scheme introduced by Rapp and Bauer [65], we developed a symmetry
adapted grid (SAG) method by which we propagate the wave packet described in the
two-dimensional grid space [Fig. 2.1(b)] by making full use of the symmetry property
of the electronic wave function. In Fig. 2.1(a), the domain B represents H2 in which
both electrons are bound, the domain S represents the single ionization, and the domain
D represents the double ionization. Because the spatial wave function of the electronic
ground singlet state is symmetric under the exchange of the two electron coordinates, the
two domains, S1 and S

′
1, are equivalent; so are the two domains, S2 and S

′
2. In the SAG

method, we can reduce the computational cost significantly. Indeed, the wave packet
propagation only in the domains B, S1, and S2 [Fig. 2.1(b)] is sufficient for describing the
wave packet corresponding to the single ionization.

In order to avoid the spurious reflection at the edge of the grid space, a complex
absorbing potential (CAP) [66] is applied to the red peripheral region in Fig. 2.1. Because
the wave packet being propagated from the domain S into D should be absorbed in the
SAG method, the CAP is applied to the red-colored upper and lower boundary regions
in Fig. 2.1(b).

Because the wave packet going into the domain S
′
1 from B should not be absorbed,

the CAP cannot be applied in the blue-colored upper and lower regions in Fig. 2.1(b).
However, if there is no CAP there, a spurious reflection could occur. We can solve
this problem by utilizing the symmetry of the wave function and the symmetry of the
Hamiltonian under the exchange of two electronic coordinates.

By denoting the wave function after the operation of the first term of the propagator
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Figure 2.1: (a) The grid space in the conventional grid method. In domain B both elec-
trons are bound. The domain S represents single ionization and the domain D represents
double ionization. (b) The grid space in the SAG method. The red peripheral region
represents the CAP. In the peripheral region (in blue color) above and below the domain
B, the reflection is avoided without using the CAP.
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2.2. NUMERICAL PROCEDURE

in Eq. (2.26) as

|Φ′〉 ≡ exp

{
−i

∆t

2
V

(
t+

∆t

2

)}
, (2.27)

the operation of the second term in the propagator on the wave function reads

exp(−i∆tT0) |Φ′〉 = exp

{
−i∆t

1

M

∂2

∂R2

}
exp

{
−i∆t

1

2µe

∂2

∂x2

}
× exp

{
−i∆t

1

2µe

∂2

∂y2

}
|Φ′〉 . (2.28)

In the SAG method, the differentiation along y is rewritten by utilizing the symmetry
of the wave function and the kinetic energy operator as

exp

{
−i∆t

1

2µe

∂2

∂y2

}
|Φ′〉

−→ PxyQB

[
exp

{
−i∆t

1

2µe

∂2

∂x2

}
|Φ′〉

]
+QS

[
exp

{
−i∆t

1

2µe

∂2

∂y2

}
|Φ′〉

]
, (2.29)

where Pxy exchanges x and y, and QB and QS extract the wave packets in the domains B
and S, respectively. The second term represents the differentiation along y in the domain
S.

We note here that we can apply the SAG method to the triplet state by modifying
Eq. (2.29) as

exp

{
−i∆t

1

2µe

∂2

∂y2

}
|Φ′〉

−→ PxyQB

[
− exp

{
−i∆t

1

2µe

∂2

∂x2

}
|Φ′〉

]
+QS

[
exp

{
−i∆t

1

2µe

∂2

∂y2

}
|Φ′〉

]
, (2.30)

by taking into account the fact that the spatial wave function of a triplet state is anti-
symmetric.

In order to examine the accuracy of the SAG method, we performed test calculations
with the nuclei fixed at the equilibrium distance of H2. The electronic ground state of H2

is obtained by imaginary-time propagation. We stop the wave-packet propagation 7.257
fs after the interaction with the laser pulse (40 nm, 20 cycles, and 1.0 × 1015 W cm−2).
The spatial distributions of the wave packet along the x direction, ρx, and y direction, ρy,
defined as

ρx =

∫
dy |Φ(x, y)|2 , ρy =

∫
dx |Φ(x, y)|2 , (2.31)

are shown in Fig. 2.2. In this test calculation, the grid space for the conventional grid
method is defined as |x|, |y| ≤ 500 a.u., and for the SAG method as |x| ≤ 500 a.u., |y| ≤
30 a.u.; i.e., the grid space is reduced by about 500/30 ' 17 times. For the longer time
propagation, the grid space needs to be enlarged. When the size of the two-dimensional
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Figure 2.2: Spatial distributions of the wave packet along (a) the x direction and (b) the
y direction obtained by the SAG method (red dashed curve) and those obtained by the
conventional grid method (black solid curve) at the propagation time of 7.257 fs after the
interaction with the laser pulse. The enlarged view of (a) is shown in (c). In (a),(c), the
boundaries between domain B and domains S1 and S2 are indicated by the vertical dashed
lines at x = ±30 a.u.
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2.2. NUMERICAL PROCEDURE

grid space is as L×L, the required memory size is proportional to L in the SAG method
while it is proportional to L2 in the conventional method.

In Figs. 2.2 and 2.3, the black curves show the results with the conventional grid
method, while the red ones show the results with the SAG method. In Fig. 2.2(a) the
relative error is smaller than 2% in the domains S1 and S2, where the red and the black
curves overlap each other almost completely. In Fig. 2.3(a), the photoelectron spectra
obtained by the Fourier transform of the wave packet in the domains S1 and S2 are
normalized by their own maxima, where the red and the black curves overlap each other
almost completely. There are two peaks at 0.66 and at 0.13 a.u. By comparing the photon
energy, 1.139 a.u., with the energy gap between the initial state and 1sσg of H+

2 , 0.482
a.u., and with the energy gap between the initial state and 2pσu of H+

2 , 1.006 a.u., the
higher energy peak corresponds to the direct ionization to 1sσg while the lower energy
peak corresponds to the ionization to 2pσu, which is called a shakeup process. In Fig.
2.3(b), the difference between the two spectra calculated by subtracting the amplitude
obtained by the conventional method from that obtained by the SAG method is plotted.
As shown in this figure, the absolute values of the difference are smaller than 0.00132 even
in the photoelectron kinetic energy regions of 0.05− 0.30 a.u. and 0.57− 0.80 a.u.
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Figure 2.3: (a) Photoelectron energy distributions obtained by the SAG method (red
dashed curve) and those obtained by the conventional grid method (black solid curve).
(b) Magnified difference defined as “the red curve” and “the black curve” in (a).

As mentioned in the paragraph before Eq. (2.24), the wave packet |ΦS1,S2(T )〉 has
the contribution from the electronically excited states of H+

2 like 2pσu. However, we
eliminate the contribution from such electronic states by projecting |ΦS1,S2(T )〉 on the
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electronic ground state of H+
2 , by which we can calculate the reduced density matrix of

the vibrational states in the electronic ground state.

2.2.3 Time propagation

0 10 20 30 40
0

0.5

1.0

1.5

2.0

R (a.u.)

α
(R
)
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.u
.)

Figure 2.4: The softening parameter α(R) in Eq. (2.18b) as a function of the internuclear
distance.

We obtain first the initial state by the imaginary-time propagation [67]. As the grid
spacing, we adopt ∆x = ∆y = 0.50 a.u. and ∆R = 0.08a.u. The grid size is |x| ≤ 500 a.u.,
|y| ≤ 30 a.u., and 0.08 a.u. ≤ R ≤ 40.96 a.u. The softening parameter for the electron-
nuclear attraction α(R) is shown in Fig. 2.4 and that for the electron-electron repulsion is
β = 0.35. In the time propagation by the split-operator method, we adopt FFT [68–70].
The time step for the imaginary-time propagation, ∆τ , is ∆τ = 0.05 a.u. for H+

2 and
that for H2 is ∆τ = 0.10 a.u. In order to resolve the small energy difference among the
vibrationally highly excited states of H+

2 , we adopt the smaller time step for H+
2 .

We calculate the energy and the equilibrium internuclear distance of H2 in the elec-
tronic ground state to be E1D

0 = −1.036 a.u. and R1D
eq = 1.397a.u., respectively, which are

in good agreement with the reference values of Eref.
0 = −1.165 a.u. and Rref.

eq = 1.401 a.u.,
obtained by solving the time-independent Schrödinger equation with the exact potential
energy curve [64].

The functional form of the complex absorbing potential (CAP) is

V ξ
CAP =

{
−iηξ(|ξ| − ξCAP)2, |ξ| ≥ ξCAP

0, elsewhere
, (2.32)

where ξ = x, y, and R. We adopt ηx = ηy = 0.05, xCAP = 450 a.u., yCAP = 25 a.u., ηR =
0.01, and RCAP = 32.96 a.u. We consider that a hydrogen molecule in the ground state is
exposed to a Fourier-limited laser pulse having a cosine-squared envelope,

E(t) =

{
E0 cos2

(
π

Tpulse
t
)

cos(ωt), |t| ≤ Tpulse/2

0, otherwise
, (2.33)
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where Tpulse defined as

Tpulse = N
2π

ω
(2.34)

is referred to as the pulse duration and N is the number of optical cycles. The light-field
intensity is in the range of I = 5× 1012 − 1016 W cm−2 and the central wavelength of the
light field is in the range of λ = 20 − 90nm. The time step is ∆t = 0.1 a.u. After the
light field vanishes, the field-free propagation proceeds until certain time T . The reduced
density matrix is calculated and renormalized so that Tr(ρvib) = 1 is satisfied.
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2.3. RESULTS AND DISCUSSION

2.3 Results and discussion

2.3.1 Entanglement and coherence: Pulse duration dependence
and wavelength dependence

Table 2.1: The ten sets of the laser parameters.

Wavelength (nm) Number of cycles Tpulse (fs) Intensity (W cm−2) Keldysh parameter
1 5× 1012 39
2 90 20 6.0 1013 28
3 1015 2.8
4 3 0.9 1013 28
5 1013 63
6 40 20 2.7 1015

7 3 0.4 1015 6.3
8 40 2.7 1015

9 20 1015 12
10 20 1.3 1016 3.9

The purity and the degree of coherence are calculated using the ten different sets of
laser parameters listed in Table 2.1. The laser parameters are chosen so that the Keldysh
parameter γ ≡

√
IP/2UP satisfies γ > 2, which means that the contribution from the

tunnel ionization can be neglected. Here, IP = 0.4387 a.u. is the ionization potential of
the H2 ground state and UP = E2

0/4ω
2 is the ponderomotive energy. The definition of

Tpulse is given by Eq. (2.34).
As shown in Fig. 2.5, the purity increases as the pulse duration decreases, or equiva-

lently, as the spectral bandwidth increases, reflecting the fact that it becomes difficult to
specify which one of the vibrational states is prepared only by projecting the photoelectron
on its energy eigenstate.

In Fig. 2.6, we show the degree of coherence between the vibrational ground state and
the vth vibrational state, (ρ̃vib)v,0, as a function of the vibrational quantum number v. It
can be seen that the degree of coherence decreases as the vibrational quantum number
increases. It can also be seen in Fig. 2.6 that the degree of coherence decreases as the
pulse duration increases for the same v.

When the bandwidth of the laser pulse is smaller than the energy gap between the
ground and the vth state, it becomes less probable for the pair of vibrational states to be
populated coherently. Therefore, the degree of coherence decreases when the bandwidth
decreases by increasing the pulse duration or when the energy gap between the vth level
and the ground vibrational state increases by increasing the vibrational quantum number.
When the bandwidth becomes extremely small so that the respective vibrational states
are exclusively assigned to the specific kinetic energies of the photoelectron, that is, when
avka

∗
v′k ∝ δvv′ is satisfied, (ρvib)vv′ ∝ δvv′ holds from Eq. (2.8), representing that the

degree of coherence is zero.
In Fig. 2.5, in the case of λ = 40 nm and N = 20 cycles (set 6: open circle) and in

the case of λ = 20 nm and N = 40 cycles (set 8: open triangle), the purities are 0.795
and 0.825, respectively. As shown in Fig. 2.6, because the degrees of coherence of these
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two cases are almost the same, reflecting the fact that their pulse durations are the same,
the small difference in their purities can be ascribed to the difference in the populations.
The dependence of the degree of coherence on the pulse duration is consistent with the
previous study on the ionization of Xe [48], in which the degree of coherence between two
levels of Xe+ was shown to decrease as the pulse duration increases.
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Figure 2.5: The purity as a function of the pulse duration for the ten different sets of
laser parameters. In the linear regime, the purity is insensitive to the light-field intensity;
e.g., in the case of (λ = 20 nm, N = 20 cycles), the purity at 1015 W cm−2 (set 9: filled
triangle) and the purity at 1016 W cm−2 (set 10: open triangle) take the same values of
0.954. Similarly, in the case of (λ = 40 nm, N = 20 cycles), the purity at 1013 W cm−2

(set 5: filled circle, P = 0.796) and the purity at 1015 W cm−2 (set 6: open circle, P =
0.795) are very close to each other.

2.3.2 Entanglement and coherence: Intensity dependence

a. Linear regime

We investigate the light-field intensity dependence of the purity and the degree of coher-
ence in the cases of set 1 and set 2 with λ = 90 nm and N = 20 cycles. As shown in Fig.
2.6, the degree of coherence at the light-field intensity of 1013 W cm−2 (set 2: open square)
exhibits almost the same dependence on the vibrational quantum number as the degree
of coherence at the light-field intensity of 5× 1012 W cm−2 (set 1: filled square), reflecting
the fact that their pulse durations are the same. Because their purities are almost the
same as shown in Fig. 2.5, the populations in sets 1 and 2 are expected to be almost the
same, which means that the light-field intensities are in the linear regime; that is, the loss
of the population in the ground state of H2 as well as the populations in the vibrationally
excited states of H+

2 increase linearly in this intensity range by a process corresponding
to a one-photon absorption. Indeed, we have confirmed that the loss of the population in
the ground state of H2 defined as 1− 〈ΦH2

0 |Φ(T )〉 is 0.033 and 0.016 at 1013 W cm−2 and
5× 1012 W cm−2, respectively.
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Figure 2.6: The degree of coherence (ρ̃vib)v,0 as a function of the vibrational quantum
number and the pulse duration for ten different laser parameters. In the linear regime, the
degree of coherence is insensitive to the light-field intensity, e.g., in the case of (λ = 20 nm,
N = 20 cycles), the degree of coherence at 1015 W cm−2 (set 9: filled triangle) is in good
agreement with the degree of coherence at 1016 W cm−2 (set 10: open triangle). Similarly,
in the case of (λ = 40 nm, N = 20 cycles), the degree of coherence at 1013 W cm−2 (set
5: filled circle) is in good agreement with the degree of coherence at 1015 W cm−2 (set 6:
open circle).

We can also see in Figs. 2.5 and 2.6 that, when the light-field intensity is in the linear
regime, the purity and the degree of coherence obtained using two different sets of the
wavelength and the number of cycles, i.e., (i) set 9 and set 10 (λ = 20 nm, N = 20
cycles) and (ii) set 5 and set 6 (λ = 40 nm, N = 20 cycles), do not vary sensitively on
the light-field intensity.

b. Nonlinear regime

As shown in Fig. 2.6, in the case of λ = 90 nm and N = 20 cycles, the degree of coherence
at 1015 W cm−2 (set 3:open dashed square) deviates largely from the other two cases at
5 × 1012 W cm−2 (set 1) and 1013 W cm−2 (set 2). At 1015 W cm−2, the (ρ̃vib)v,0 values
for v = 1 and 2 are almost the same as the corresponding values for the weaker two
cases, but, as the vibrational quantum number increases further, for v ≥ 3, the (ρ̃vib)v,0
value at 1015 W cm−2 becomes larger than the corresponding values at 5×1012 W cm−2 and
1013 W cm−2, and the deviation becomes maximum when the vibrational quantum number
is v ∼ 11. This deviation can be ascribed to the second- or higher-order interaction with
the light field as described below.

The loss of the ground state of H2 at 1015 W cm−2 (set 3) is 0.94, which is much larger
than the loss of the ground state at 5 × 1012 W cm−2 (set 1) and that at 1013 W cm−2

(set 2), showing that the light-field intensity of 1015 W cm−2 is no longer in the linear
regime. The Keldysh parameter, γ = 2.8 (see Table 2.1), for set 3 indicates that the
photoionization proceeds through the multiphoton process.
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Because the transition moment between the ground state of H2 and the final state
composed of the photoelectron and the vibrational state of H+

2 (1sσg) decreases as the
photoelectron energy increases, the ionization probability at 90 nm is larger than the
ionization probabilities at the other shorter wavelengths as long as the number of cycles
and the intensity are the same. Therefore, at a 90-nm laser pulse, the second or higher-
order interaction can no longer be neglected at the intensity reaching 1015 W cm−2.

At 1015 W cm−2, the second-order interaction with the light field, corresponding to
the two-photon process, results in a broader energy distribution of photoelectrons than
that of photoelectrons produced from a one-photon process. Therefore, it is expected
that the second-order interaction increases the coherence among the vibrational states of
H+

2 . On the other hand, the third-order interaction with the light field, corresponding to
a three-photon process, increases the coherence not only by creating the photoelectron
with a broader energy distribution but also by inducing one-photon ionization followed
by Raman-type vibrational excitations.

For instance, if the ionization results in the formation of |χv〉 |φk〉, a Raman-type tran-
sition from |χv〉 |φk〉 to |χ′v〉 |φk〉 can occur. Consequently, it becomes more probable that
the vth and the v′th states are assigned to the same kinetic energy of the photoelectron;
therefore, avka

∗
v′k holds in the wider range of k than in the case of the weaker intensities,

resulting in the higher coherence.

2.3.3 Purity, coherence, and population

As shown in Fig. 2.5, when λ = 90 nm and N = 20 cycles, the purity at 1015 W cm−2

(set 3,P = 0.626) is larger by 0.115-0.116 than the purities at 5 × 1012 W cm−2 (set
1, P = 0.511) and 1013 W cm−2 (set 2, P = 0.510). At 1015 W cm−2, because of the
transitions among the vibrational states induced by the light field, not only the coherence
but also the population can be different from the weaker cases. In order to evaluate the
contribution from the population and that from the coherence to the purity, we use the
sum of the squared modulus of the population P1 and the sum of the squared modulus of
the coherence P2 defined in Eq. (2.12).

As shown in Fig. 2.7, the P2 value at 1015 W cm−2 (set 3) is larger than the P2

values at 5 × 1012 W cm−2 (set 1) and 1013 W cm−2 (set 2), which is consistent with the
above explanation about the increase in the degree of coherence. On the other hand,
the contribution from the P1 value at 1015 W cm−2 is smaller than the P1 values at 5 ×
1012 W cm−2 and 1013 W cm−2. The smaller value of P1 means that the population is more
equally distributed associated with the Raman-type transitions among the vibrational
states. Because the amount of decrease in P1 is much smaller than the amount of increase
in P2, the purity defined as the sum of P1 and P2 becomes larger at 1015 W cm−2 than
those at 5× 1012 W cm−2 and 1013 W cm−2.

As shown in Fig. 2.7, the contribution from P2 is much larger than that from P1

in all the ten cases of the laser parameters. Because the pulse durations considered
here are all short enough, the bandwidths of the laser are wider than the energy gaps
among the vibrational states of H+

2 , which results in the large coherence. When the pulse
duration becomes longer so that the bandwidth becomes comparable with or smaller than
the energy gaps among the vibrational states, the contribution from P1 to the purity

32



2.3. RESULTS AND DISCUSSION

 

これは試用版のウォーターマークです。購入して完全版を取得しましょう！

VIPを購入すれば、以下のメリットがあります。

1. 全ての試用版ウォーターマークを無くすことができます。

2. 出力したドキュメントには試用版ウォーターマークがありません。

今すぐ削除

Figure 2.7: The two contributions to the purity, the population P1 and the coherence
P2, for the ten different laser parameters. The number inside the bar indicates the laser
parameters, e.g., the set of “40, 3, and 1015” represents the pulse characterized by the
parameters of 40 nm, 3 cycles, and 1015 W cm−2.
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becomes larger. In an extreme case of the infinitely long pulse duration, corresponding to
a continuous wave (cw) laser, the coherence P2 between vibrational states vanishes, and
consequently, the purity is represented by the population P1 exclusively.

2.3.4 Experimental scheme for determining the reduced density
matrix

The reduced density matrix of the vibrational states can be determined by the pump–
probe experiment as proposed in Ref. [71]. First, H2 is ionized by the pump pulse and the
resultant vibrational state of H+

2 is described using ρvib as in Eq. (2.8). After a certain
time delay τ , the probe VUV pulse excites H+

2 to the 2pσu state and the photofragment,
H+, is produced via the dissociation. We set the origin of time, t = 0, at the peak position
of the temporal shape of the pump pulse and set the peak position of the probe pulse at
t = τ .

By assuming that the electric field of the probe pulse Eprobe satisfies Eprobe(t− τ) 6= 0
during t ∈ [t0, tf ], the free propagation until the system is excited by the probe pulse is
expressed by

Ufree(τ) = exp

[
−iH0

(
τ − Tpulse + tf − t0

2

)]
, (2.35)

where H0 is the field-free Hamiltonian for H+
2 and Tpulse is the duration of the pump pulse

defined in Eq. (2.34). The interaction with the probe pulse is expressed in the first order
perturbation theory as

Uprobe(t) =

[
e−iH0(t−t0) − i

∫ t

t0

dt1e
−iH0(t−t1)Vint(t1)e−iH0(t1−t0)

]
, (2.36)

with

Vint(t1) = µEprobe(t1 − τ), (2.37)

where the probe pulse Eprobe(t1 − τ) starts interacting with H+
2 at t1 = t0 and ends

interacting at t1 = tf .
The observation of |χu(ωu)〉, which is the dissociating eigenstate of 2pσu having

the kinetic energy release (KER), ωu, is expressed using the projection operator Πu ≡
|χu(ωu)〉 〈χu(ωu)| as

ΠuUprobeUfreeρvibU
†
freeU

†
probeΠu

= |χu〉
vmax∑
v,v′=0

(ρvib)vv′e
−i(ωv−ωv′ )(τ−

Tpulse+tf−t0
2

)

× 〈χu|Uprobe |χv〉 〈χv
′|U †probe |χu〉 〈χ

u| ,

= |χu〉
vmax∑
v,v′=0

(ρvib)vv′e
−i(ωv−ωv′ )(τ−

Tpulse+tf−t0
2

)

× pv(ωu)p∗v′(ωu) 〈χu| , (2.38)
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where ωv is the eigenenergy of the vth vibrational state and pv(ω
u) is the transition

amplitude from χv to χu defined as

pv(ω
u) = −iMv(ω

u)e−iωuteiωvt0

∫ t

t0

dt1Eprobe(t1 − τ)ei(ωu−ωv)t1 , (2.39)

using the transition moment,

Mv(ω
u) ≡ 〈χu|µ |χv〉 . (2.40)

The probability of finding |χu〉 by the detector is a function of the time delay τ and
the KER, ωu, expressed as

I(τ ;ωu) ≡
vmax∑
v,v′=0

(ρvib)vv′e
−iωvv′ (τ−

Tpulse+tf−t0
2

)pv(ω
u)p∗v′(ω

u), (2.41)

where we defined ωvv′ ≡ ωv−ωv′ . This probability corresponds to the delay–KER spectro-
gram defined in Ref. [71]. Because the pulse duration of the probe pulse is short enough
so that Eprobe(t1 − τ) = 0 is satisfied when t1 < t0 or t1 > tf , the time integral in Eq.
(2.39) becomes the Fourier transform of the probe pulse represented as

pv(ω
u) = −iMv(ω

u)e−iωuteiωvt0ei(ωu−ωv)τ

∫ t−τ

t0−τ
dt′Eprobe(t

′)ei(ωu−ωv)t′

= −iMv(ω
u)e−iωu(t−τ)e−iωv(τ−t0)

∫ ∞
−∞

dt′Eprobe(t
′)ei(ωu−ωv)t′

= −iMv(ω
u)e−iωu(t−τ)e−iωv

tf−t0
2 Ẽ(ωu − ωv), (2.42)

where Ẽ(Ω) is the Fourier amplitude of the probe pulse.
By representing pv(ω

u) and p∗v′(ω
u) in Eq. (2.41) by Eq. (2.42), the delay–KER

spectrogram is given as

I(τ ;ωu) ≡
vmax∑
v,v′=0

(ρvib)vv′e
−iωvv′ (τ−

Tpulse
2

)

×Mv(ω
u)M∗

v′(ω
u)Ẽ(ωu − ωv)Ẽ∗(ωu − ωv′), (2.43)

By performing the Fourier transform with respect to τ , we obtain the frequency–KER
spectrogram as

Ĩ(Ω;ωu) =
vmax∑
v=0

(ρvib)vv

∣∣∣Mv(ω
u)Ẽ(ωu − ωv)

∣∣∣2 δ(Ω)

+
vmax∑
v,v′=0

{
Ĩvv′(Ω;ωu) + Ĩvv′(−Ω;ωu)

}
, (2.44)

where Ĩvv′(Ω;ωu) is defined as

Ĩvv′(Ω;ωu) = (ρvib)vv′e
iωvv′Tpulse/2Mv(ω

u)M∗
v′(ω

u)

× Ẽ(ωu − ωv)Ẽ∗(ωu − ωv′)δ(Ω− ωv + ωv′). (2.45)
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The left-hand side of Eq. (2.45) above, Ĩvv′(Ω;ωu), gives the nonzero complex amplitude
only when Ω = ωvv′ , ω

u ' ωp + ωv, and ω ' ωp + ωv′ are satisfied, where ωp represents
the frequency component of the probe pulse. Because Ẽ(ωu − ωv) and Ẽ∗(ωu − ωv′) in
Eq. (2.45), varying as a function of ωu, have the same width, the peak in Ĩvv′(Ω;ωu) at
the beat frequency of ωvv′ is spread along the ωu axis with the width of the product of
Ẽ(ωu−ωv)Ẽ∗(ωu−ωv′). Therefore, in order to obtain the reduced density matrix element,
(ρvib)vv′ , from the frequency–KER spectrogram, the bandwidth of the probe pulse should
be larger than ωvv′ . In other words, the pulse duration of the probe pulse should be shorter
than the beat period defined as 2π/ωvv′ in the time domain. This means that, in order to
obtain the entire matrix element of the reduced density matrix, the pulse duration of the
probe laser pulse needs to be shorter than the shortest beat period of 2π/ω0,vmax = 1.5 fs.

In the frequency–KER spectrogram, there are peaks at the zero frequency Ω = 0
and at the beat frequencies Ω = ωvv′ as can be seen from Eq. (2.44). As long as the
Fourier amplitude of the probe pulse Ẽ(ω) is known, the diagonal elements, (ρvib)vv′ ,
and the off-diagonal elements, (ρvib)vv′ , of the reduced density matrix are determined
using the transition amplitude Mv(ω

u), which can be evaluated numerically from the first
and second terms in Eq. (2.44), respectively. The purity and the degree of coherence
can be calculated from Eqs. (2.10) and (2.13), respectively, using the reduced density
matrix. We note that, even if the Fourier transform of the probe pulse is not known in
advance, the matrix elements of the reduced density matrix can be determined from the
frequency–KER spectrogram using the iterative method proposed in Refs. [71,72].

As described above, we can extract the purity and the degree of coherence experimen-
tally in the following steps. First, we ionize H2 by the irradiation of an ultrashort XUV
pulse, dissociate the resultant H+

2 by the irradiation of a subsequent probe VUV pulse,
and record the KER distribution of the photofragment, H+. Then, by performing the
Fourier transform of the delay–KER spectrum, we obtain a frequency–KER spectrogram
and extract the matrix elements of the reduced density matrix of ρvib from Eq. (2.44).
Finally, we calculate the purity and the degree of coherence from Eqs. (2.10) and (2.13),
respectively.
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2.4 Conclusion

We have investigated theoretically the photoionization process of H2 induced by the ir-
radiation of an ultrashort XUV laser pulse by regarding H+

2 and a photoelectron as a
bipartite system, and have analyzed the relation between the purity, which quantifies the
entanglement between H+

2 and the photoelectron, and the coherence in the vibrational
states of H+

2 .
We perform one-dimensional propagation of the wave packet represented by the grid

basis to describe the ionization of H+
2 and demonstrate how the purity and the coherence

depend on the laser parameters in the range of I (peak field intensity) = 5 × 1012 −
1016 W cm−2, λ (the central wavelength) = 20 − 90 nm, and Tpulse (the pulse duration)
= 0.4− 6.0 fs.

(i) As the pulse duration increases the degree of coherence decreases, reflecting the
fact that it becomes less probable for the two states to be coherently populated. The
degree of coherence also decreases as the energy gap between the two vibrational states
increases by the same reason.

(ii) As long as the laser intensity is weak enough so that the loss of the population in the
ground state of H2 depends linearly on the laser intensity, the purity and the coherence
are insensitive to the peak intensity of the laser pulse. On the other hand, when the
laser intensity becomes so strong that the Raman-type transitions among the vibrational
states of H+

2 cannot be neglected, the purity and the degree of coherence vary depending
on the laser intensity. In the case of λ = 90 nm and N = 20 cycles, both the degree of
coherence and the purity increase when the laser intensity is raised to I = 1015 W cm−2

from 5× 1012 W cm−2 and 1013 W cm−2.
(iii) When the pulse duration is short enough so that the bandwidth of the pulse is

comparable to or larger than the energy gaps between the vibrational states of H+
2 , the

coherence makes the dominant contribution to the purity while the population makes the
minor contribution. Because the extent of the entanglement increases when the purity
decreases, the extent of the entanglement between the vibrational states of H+

2 and the
photoelectron increases as the coherence among the vibrational states decreases as long
as the pulse duration is short enough so that the bandwidth is comparable to or larger
than the energy gaps between the vibrational states.

(iv) The procedure for deriving the purity and the degree of coherence from experi-
mental data is proposed. Once the experimental delay–KER spectrogram is recorded by
pump–probe measurements, the frequency–KER spectrogram is obtained by the Fourier
transform, from which the reduced density matrix is obtained. Then, the purity and
the degree of coherence are calculated from the matrix elements of the reduced density
matrix.
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Chapter 3

Time delay in the coherent
vibrational motion of H+

2 created by
photoionization of H2

Ionization creates a high amount of quantum correlation between internal states, called
coherence, in a photoelectron as well as in an ion. It has been known that the coherence
in the photoelectron created through the photoionization can be affected by the presence
of the ion, partly because of the Coulomb interaction between them. On the other hand,
even though the coherence in the ion can also be precisely characterized using ultrashort
laser pulses, less attention has been payed to how the photoelectron affects the coherence
in the ion.

For the photoionization of a hydrogen molecule, Nabekawa et al. [71] has experi-
mentally observed a clue of the effect of photoelectron on the vibrational motion of the
hydrogen molecular ion but its interpretation has remained difficult. I will show that
the correlation between the photoelectron and the molecular ion was not appropriately
treated in Ref. [71], and revealed that the photoelectron affects the coherence in the vibra-
tional motion of the molecule not through the direct Coulomb interaction between them
but due to the nonlocal nature of the wave function of the total system composed of the
photoelectron and the ion.
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3.1 Coherent motion of ions and photoelectrons

3.1.1 Characterization of coherent motion of ions

By attosecond time-resolved spectroscopy, we are able to characterize the coherent internal
motion in an atomic or molecular ion created by photoionization [5,6] as well as in a neutral
atom or molecule [7–10]. It has been known that the coherent internal motion created
in the ion is described by the reduced density matrix ρion, which can be derived by the
measurements of transient absorption [5, 11, 12] and by the streaking of photoelectrons
[13,14]. Goulielmakis et al. [5] ionized Kr by a few-cycle intense near-IR (NIR) laser pulse
and recorded the transient absorption spectra of Kr+ using an attosecond XUV pulse, from
which they derived experimentally the phase of the reduced density-matrix elements of
Kr+, arg[(ρion)ij], for the ith and jth levels. They showed that the amplitude of the
reduced density matrix |(ρion)ij| was in good agreement with the theoretical calculation.

When we treat the reduced density matrix ρion, we also need to take into account
the phase originating from the photoelectron. This is because the phase of the reduced
density matrix is composed not only of the phase of the NIR pulse and the dynamical
phase ωijτ , defined as a product of ωij (the beat frequency between the ith and the jth
levels) and τ (the pump–probe time delay), but also of the complex phase originating from
the photoelectron represented as a complex momentum eigenfunction [73]. However, to
the best of our knowledge, the phase of the photoelectron wave function has not been
explicitly considered in the determination of the reduced density matrix in the previous
studies [5, 11–14,74,75].

3.1.2 Coherent motion of photoelectrons and the Wigner delay

On the other hand, the phase of the photoelectron has been intensively investigated in
terms of the Wigner delay [15–18], which is defined as the derivative of the phase of the
transition amplitude with respect to the energy of the photoelectron and can be inter-
preted as the group delay of the photoelectron wave packet escaping from the short-range
potential created around the ion core [17]. The Wigner delay has been experimentally
evaluated by the methods of attosecond streaking [17,19,76] and the reconstruction of at-
tosecond beating by interference of two-photon transitions (RABBITT) [18, 77–79]. The
photoemission delay [19], which can be determined experimentally, is composed of the
Wigner delay, the delay induced by the long-range part of the Coulombic potential, and
the delay originating from the interaction with the probe laser field.

Because the Wigner delay originates from the interaction between the photoelectron
and the ion, it depends on the ionic state of atoms and molecules. Indeed, by attosecond
(as) streaking spectroscopy, it was revealed by Ossiander et al. [19] that the photoemission
associated with the ionization of He [He+(n = 1) + e−] is delayed by 12.6 as from the
photoemission associated with the shake-up ionization of He [He+(n = 2) + e−] and that
the photoemission delay can be ascribed to the difference in the Coulombic interaction in
He+(n = 1) and that in He+(n = 2). By cold target recoil ion momentum spectroscopy
combined with the RABBIT measurements, Cattaneo et al. [20] revealed that the Wigner
delay varies depending on the internuclear distance of H+

2 in the course of the dissociative
ionization of H2.
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In the following, by describing the light–matter interaction using the first-order per-
turbation theory with the dipole approximation, we show that the phase of the reduced
density matrix appears as an additional time delay intrinsic to each vibrational state of
H+

2 and that, if the photoelectron and H+
2 are detected in coincidence by the pump–probe

method, we can interpret clearly the origin of the phase of the reduced density matrix.
Although it has been known that the phase of the reduced density matrix appears as a
time delay in the pump–probe signals [5], the effect of the phase of the photoelectron wave
function still needs to be explored. Our theoretical study demonstrates that the phase
of the reduced density matrix H+

2 can be obtained experimentally by the pump–probe
measurements of H2 if the pump–probe time delay is measured with sufficiently high pre-
cision of the order of tens of attoseconds. Atomic units (a.u.) are adopted throughout
this chapter otherwise indicated.
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3.2 Coherent nuclear motion created by ionization

We consider a pump–probe scheme to investigate the vibrational states of H+
2 created by

the one-photon ionization of H2. By the irradiation of a pump XUV pulse, H2 in the
vibrational and electronic ground state is ionized so that H+

2 in the electronic ground
state (1sσg) and a photoelectron are produced. We adopt the Born–Oppenheimer ap-
proximation and neglect the molecular rotation. We assume that the laser polarization
direction is parallel to the internuclear axis and adopt the dipole approximation for the
light–matter interaction.

3.2.1 Two-center Coulomb wave function

Because the spin state does not change during and after the light–matter interaction
within the dipole approximation, we can neglect the spin part as shown in Eq. (2.7) and
concentrate on the spatial part of the total system of H+

2 + e− represented as

|ΦS〉 =

∫
dke

∑
v

avke |χvφ1s〉 ⊗ |ψke〉 , (3.1)

where |χvφ1s〉 = |χv〉⊗ |φ1s〉, |χv〉 is a vibrational eigenfunction of H+
2 , v is the vibrational

quantum number, |φ1s〉 is the electronic eigenfunction of the 1sσg state, |ψke〉 is a two-
center Coulomb wave function with the incoming boundary condition adopted in Ref. [80],
and ke is the wave vector of the photoelectron.

We define the z axis as the molecular axis on which two protons are located and set
the origin of the z coordinate at the center of two protons. When the two charges Za and
Zb are separated by a distance R, the two-center Coulomb wave function [80] is given as

ψke(r;R) = (2π)−3/24π
∞∑
l=0

l∑
m=−l

ile−iδlm

×Υ∗lm(ce, θe, ϕe)Υlm(ce, θ, ϕ)Tlm(ce, ξ;R), (3.2)

Υlm(ce, θ, ϕ) = Slm(ce, cos θ)
exp (imϕ)√

2π
, (3.3)

where r = (r, θ, ϕ), ke = (ke, θe, ϕe), ce = keR/2, and l is the quasiorbital angular
momentum quantum number. Because the laser polarization is linear and parallel to the
internuclear axis, only odd l’s in Eq. (3.2) have finite contributions to the transition
amplitude and m = 0 is conserved throughout the ionization process under the dipole
approximation. We assume Za = Zb = 0.5 a.u. because the total charge of H+

2 is 1 a.u.
We can derive the angular part Slm(ce, η) and the radial part Tlm(ce, ξ) by solving the
Schrödinger equation in the prolate spheroidal coordinate system, ξ = (|r −R/2|+ |r +
R/2|)/R ∈ [1,∞), η = (|r−R/2|−|r+R/2|)/R ∈ [−1, 1], and ϕ ∈ [0, 2π]. We determine
the phase shift δlm = δlm(ke, R) of the radial function Tlm from the asymptotic behavior of
Tlm at ξ →∞. In addition, we have confirmed that the intrinsic phase, which we introduce
in Eq. (3.9), converges when l = 1, 3, and 5 are included, which can be rationalized by
the low kinetic energy (< 1 a.u.) of photoelectrons considered in the present study. The
detail of the numerical procedure for calculating the two-center Coulomb wave function
is given in Appendix A.
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3.2.2 Pump process

In the first-order perturbation theory, the transition amplitude from the ground state of
H2, |χH2

0 φg〉, to the final state |χvφ1sψke〉 at a certain time t after the electric field of the
pump pulse vanishes reads

avke = −iMvkee
−i(ωv+ωke )tẼ1(ωv + ωke − ωg), (3.4)

where Ẽ1 is the Fourier transform of the pump pulse, ωv, ωke , and ωg are the eigenenergies
of |χvφ1s〉, |ψke〉, and |χH2

0 φg〉, respectively, and we define the transition moment as

Mvke ≡
∫
dRχv(R)χH2

0 (R)µke(R) (3.5)

by using the dipole moment given by

µke(R) ≡
∫∫

dr1dr2φ1s(r1;R)ψ∗ke
(r2;R)(z1 + z2)φg(r1, r2;R), (3.6)

where z1 and z2 represent the z coordinates of the electron bound to H+
2 and the photo-

electron, respectively. The reduced density matrix of H+
2 is obtained as

(ρvib)vv′ = Tre[|ΦS〉 〈ΦS|] =

∫
dkeavkea

∗
v′ke

= e−iωvv′ t(ρ̃vib)vv′ (3.7)

with ωvv′ = ωv − ωv′ . Because the factor e−iωvv′ t represents the field-free propagation,
non-trivial information of the ionization process is expressed by (ρ̃vib)vv′ defined as

(ρ̃vib)vv′ =

∫
dkee

i(δvke−δv′ke )|Mvke ||M∗
v′ke
|

× Ẽ1(ωv + ωke − ωg)Ẽ∗1(ωv′ + ωke − ωg), (3.8)

where δvke ≡ arg [Mvke ]. We define the phase of (ρ̃vib)vv′ ,

∆vv′ ≡ arg[(ρ̃vib)vv′ ], (3.9)

as the intrinsic phase between vth and v′th vibrational states. In the time domain, the
phase is equivalent to an additional time delay [5] in the coherent motion of H+

2 because

(ρvib)vv′ = e−iωvv′ (t−τvv′ )|(ρ̃vib)vv′|, (3.10)

where τvv′ represents the intrinsic time delay defined as

τvv′ ≡ ∆vv′/ωvv′ . (3.11)

Because we assume the pump pulse is Fourier limited, Ẽ1 is a real-valued function.
Therefore, the origin of the intrinsic phase resides in the phase of the transition moment,
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δvke ≡ arg [Mvke ]. It should be noted that, if we adopt the Franck–Condon approximation,
the phase of µke does not depend on R, and consequently δvke can be calculated as

δvke = arg

[
µke(Re)

∫
dRχv(R)χH2

0 (R)

]
= arg [µke(Re)] for all v, (3.12)

where Re is the equilibrium distance of H2, because χv and χH2
0 are real-valued functions

and the integral with respect to R does not contribute to the phase. Equation (3.12)
shows that, if we adopt the Franck–Condon approximation, δvke does not depend on v
and that the intrinsic phase ∆vv′ vanishes.

The photoelectron experiences a different Coulombic potential depending on the in-
ternuclear distance of H+

2 . The R-dependent phase shift of the photoelectron wave func-
tion arg[ψke ] is integrated over R with χv(R) as shown in Eq. (3.5), resulting in the
v-dependent phase δvke by which the intrinsic phase is given as defined in Eqs. (3.8) and
(3.9). Although the intrinsic phase originates from the phase of the photoelectron wave
function, it is correlated with the coherent motion of H+

2 . Therefore, in an experiment,
the intrinsic phase can be retrieved only by the measurement of the vibrational motion
of H+

2 by a pump–probe method as shown below.

3.2.3 Probe process

After a certain time delay τ , the probe VUV pulse excites H+
2 to the 2pσu state and the

kinetic energy ωu of the photofragment H+, produced via the dissociation, is measured.
When the field-free Hamiltonian for H+

2 is denoted as Hion, the dissociating state satisfies
the Schrödinger equation, Hion |χuφ2p〉 = ωu |χuφ2p〉 and the probability of finding |χu〉 at
a certain time delay τ corresponds to the spectrogram of the kinetic energy release (KER)
as a function of the time delay, called the delay–KER spectrogram in Ref. [71]. We have
already derived the delay–KER spectrogram in Eq. (2.43) but we will give a slightly
different derivation because we now consider a Gaussian for the envelope of the pump
and the probe pulses, whose amplitude never vanishes in contrast to the cosine-squared
pulse considered in Eq. (2.43). The propagator corresponding to the probe process is
given by

Uprobe = e−iHion(Tf−t) − i

∫ Tf

t

dt1e
−iHion(Tf−t1)z1E2(t1 − τ)e−iHion(t1−t), (3.13)

where E2(t) is the electric field of the probe pulse and z1 is the z coordinate of the electron
bound to H+

2 . The amplitude of E2(t) is assumed to be finite only for t1 ∈ [t, Tf ] and
negligibly small otherwise. The observation of |χu(ωu)〉 is expressed using the projection
operator Πu = |χu〉 〈χu| as

ΠuUprobeρvibU
†
probeΠu

= |χu〉
vmax∑
v,v′=0

(ρvib)vv′pv(ω
u)p∗v′(ω

u) 〈χu| , (3.14)
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with

pv(ω
u) = 〈χu|Uprobe |χv〉

= −i 〈χu| z1 |χv〉
∫ Tf

t

dt1E2(t1 − τ)e−iωu(Tf−t1)e−iωv(t1−t)

= −iMv(ω
u)e−iωu(Tf−τ)e−iωv(τ−t)

∫ Tf−τ

t−τ
dt′E2(t′)ei(ωu−ωv)t′

= −iMv(ω
u)e−iωu(Tf−τ)e−iωv(τ−t)

∫ ∞
∞

dt′E2(t′)ei(ωu−ωv)t′

= −iMv(ω
u)e−iωu(Tf−τ)e−iωv(τ−t)Ẽ2(ωu − ωv), (3.15)

where Mv(ω
u) = 〈χuφ2p|z1|χvφ1s〉 is the transition moment for the transition induced by

the probe process and Ẽ2(Ω) is the Fourier transform of E2(t). From Eqs. (3.14) and
(3.15), the delay–KER spectrogram can be obtained as

I(τ ;ωu) =
vmax∑
vv′=0

(ρvib)vv′pv(ω
u)p∗v′(ω

u)

=
vmax∑
vv′=0

e−iωvv′ t(ρ̃vib)vv′Mv(ω
u)M∗

v′(ω
u)e−iωvv′ (τ−t)Ẽ2(ωu − ωv)Ẽ∗2(ωu − ωv′)

=
vmax∑
vv′=0

e−iωvv′τ (ρ̃vib)vv′Mv(ω
u)M∗

v′(ω
u)Ẽ2(ωu − ωv)Ẽ∗2(ωu − ωv′)

=
vmax∑
vv′=0

e−i(ωvv′τ−∆vv′ )|(ρ̃vib)vv′ |Mv(ω
u)M∗

v′(ω
u)Ẽ2(ωu − ωv)Ẽ∗2(ωu − ωv′)

=
vmax∑
vv′=0

e−iωvv′ (τ−τvv′ )|(ρ̃vib)vv′|Mv(ω
u)M∗

v′(ω
u)Ẽ2(ωu − ωv)Ẽ∗2(ωu − ωv′). (3.16)

As long as Mv(ω
u) and Ẽ2(Ω) are known, τvv′ can be extracted from the delay–KER

spectrogram. In order to determine τvv′ , it is necessary to determine the time delay τ as
precisely as possible so that the uncertainty in τvv′ becomes as small as the magnitude of
τvv′ .

3.2.4 Coincidence detection of e−

By combining the pump–probe measurements with the coincidence detection of e−, we
can make the physical meaning of the intrinsic phase clearer. When the photoelectron
momentum is determined to be ke, the intrinsic phase is given from Eq. (3.8) as

∆vv′ = ∆vv′(ke) = δvke
− δv′ke

, (3.17)

which shows explicitly that the intrinsic phase varies as a function of ke. From Eq. (3.17),
the intrinsic phase can be understood as the relative phase between two photoelectrons
having the same momentum but being exposed to different ionic potentials. It should be
noted that the intrinsic time delay can only be interpreted as the time delay appearing
in the vibrational motion of H+

2 while the intrinsic phase can be interpreted as the phase
originating from the photoelectron.
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3.3 Results and discussion

3.3.1 Phase and time delay

First, we adopt an attosecond pulse train (APT) expressed as the sum of the Gaussian
intensity distribution of the respective harmonics in the frequency domain. We assume
that the three harmonics (11th, 13th, 15th) in the APT contribute to the ionization, that
is, the Fourier transform of the pump pulse is given as

Ẽ1(Ω) =
∑

n=11,13,15

Ẽ
(n)
1 =

∑
n=11,13,15

ane
−bn(Ω−cn)2 , (3.18)

where n represents the harmonic order. We choose the parameters so that they mimic
the experimental conditions reported in Ref. [71]. The relative intensity of the harmonic
components was set to be a11 = a13 = 2a15. The widths bn (n = 11, 13, and 15) were
all set to 4.508 fs2, which is equivalent to a full width at half maximum (FWHM) of
0.516 eV. and the frequencies were set to c11 = 17.3 eV, c13 = 20.5 eV, and c15 = 23.7 eV,
corresponding to 72, 60, and 52 nm, respectively. We also calculated the phase and
the time delay by using the respective harmonic components Ẽ

(n)
1 (n = 11, 13, and 15).

Because of the narrow bandwidths of the harmonic components in the APT, |(ρ̃vib)v,v′ | is
so small for |v−v′| > 1 that ∆vv′ could not be extracted from the delay–KER spectrogram
with an acceptable uncertainty, and therefore we concentrate on the analysis of ∆v,v+1.
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Figure 3.1: The intrinsic phase of the reduced density matrix between the vth state and
the (v + 1)th state, ∆v,v+1.

As shown in Fig. 3.1, the intrinsic phase between the vth state and the (v + 1)th
state decreases as v increases, which can be explained in terms of the variation of the
vibrational wave functions, χv(R) and χv+1(R), of H+

2 . Because the vibrational wave
function of neutral H2, χH2

0 (R), almost vanishes for R < 0.9 a.u. or 2.2 a.u. < R, only
the integrand in the range of 0.9 a.u. ≤ R ≤ 2.2 a.u. contributes in Eq. (3.5). As long as
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Figure 3.2: The intrinsic time delay between the vth state and the (v+ 1)th state, τv,v+1.

v takes a sufficiently large value so that the shapes of the vibrational wave functions of
H+

2 of the adjacent levels, χv(R) and χv+1(R), become close to each other in the range of
0.9 a.u. ≤ R ≤ 2.2 a.u., the relative phase between Mv,ke and M(v+1),ke , i.e., δv,ke−δ(v+1),ke ,
becomes smaller as v increases, which results in the decrease in ∆v,v+1 as v increases.

In the intrinsic time delay for the APT in Fig. 3.2, the contribution from H15 is smaller
than the contributions from the other two components, H11 and H13, not only because its
peak amplitude is half of the other two, i.e., a11 = a13 = 2a15, but because the amplitude
of the transition moment |Mvke | decreases as ke increases. For example, when the angle
is θe = 0.2π rad and the ke’s are chosen such as k2

e/2 = cn − (ωv − ωH2
0 ) (n = 11, 13, 15),

the transition moment becomes |Mv=0,ke | = 0.772, 0.406, and 0.266 a.u. for H11, H13, and
H15, respectively.

As shown in Fig. 3.2, τv,v+1 for the APT steeply increases at around v = 8. Because
the central wavelength of H11 is almost resonant at v = 8, only a small fraction of H11
has a sufficiently high photon energy to populate the vibrational states in the range of
v ≥ 9. Therefore, τv,v+1 (v ≥ 9) for the APT is dominantly composed of H13.

As shown in Fig. 3.2, the intrinsic time delay τv,v+1 is in the range between −43
and −27 as. In Refs. [71], in which pump–probe measurements were performed using a
pair of attosecond pulse trains, the uncertainty of the pump–probe time delay was about
80 as. We consider that the required uncertainty of 27 as is within the range of future
experiments.

3.3.2 Phase and time delay: Coincidence detection of e−

When the APT or one of its harmonic components is used as the pump pulse and the
delay–KER spectrogram is obtained in coincidence with the photoelectron momentum
measurement, only a few of (ρ̃vib)v,v+1 can be extracted from the delay–KER spectrogram

46



3.3. RESULTS AND DISCUSSION

because of the narrow bandwidth of the pump pulse. For example, when H13 is used as
the pump pulse and the photoelectron energy is determined to be ωke = k2

e/2 = 4.082 eV,
|(ρ̃vib)v,v+1| almost vanishes except when v = 2, 3, 4, and 5. In order that (ρ̃vib)v,v+1 for
all v are obtained, the bandwidth of the pump pulse should be larger than the largest
energy gap, ω0,18 = 2.648 eV, between v = 0 and v = 18. Therefore, we calculate the
intrinsic phases of the reduced density matrices as well as the intrinsic time delays using
an XUV pump pulse whose central frequency and bandwidth (FWHM) are c13 and ω0,18,
respectively, as described below.
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Figure 3.3: The intrinsic phase of the reduced density matrix between the vth and the
(v + 1)th state, ∆v,v+1 for the ultrashort XUV pulse whose central frequency and band-
width (FWHM) are c13 and ω0,18, respectively. The intrinsic phase obtainable by the
pump–probe (filled circle) is compared with that obtainable by the pump–probe with the
coincidence detection of e−. Three detection angles are examined; θ1 = 0.1π rad (red
circle), θ2 = 0.2π rad (triangle), and θ3 = 0.3π rad (blue square). The kinetic energy is
ωmax = 4.354 eV for all three cases.

In Fig. 3.3, the intrinsic phase defined by Eq. (3.9) is compared with that defined by
Eq. (3.17) in which the photoelectron energy and its ejection angle are determined by
the coincidence detection of e−. When the ion is detected with no coincidence detection
of e−, the intrinsic phase is given by the integral in Eq. (3.8) while it is given by the
integrand at a specific vector ke when e− is detected in coincidence. Because of the
volume element in Eq. (3.8), dke = dkek

2
edθe sin θe, the integrand takes the largest value

when ωke = ωmax = k
2

e/2 = 4.354 eV and θe = θ2 = 0.2π rad. Indeed, as shown in Fig. 3.3,
∆v,v+1 obtained at (θ2, ωmax) (red circle) is close to the one obtained when only the ion
is detected (solid circle). When θe = θ1 = 0.1π rad (blue square) and θe = θ3 = 0.3π rad
(triangle), the magnitude of the integrands is about 70% of that at θe = θ2. The intrinsic
time delays for the three different θe values are plotted as shown in Fig. 3.4.

As shown in Fig. 3.3, ∆v,v+1 obtained for θ1 is larger than the “ion only” case while
that obtained for θ3 is smaller than the “ion only” case. We confirmed that, in the range
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Figure 3.4: The intrinsic time delay derived from Fig. 3.3. Three detection angles are
examined; θ1 = 0.1π rad (red circle), θ2 = 0.2π rad (triangle), and θ3 = 0.3π rad (blue
square). The kinetic energy is ωmax = 4.354 eV for all three cases.

of 0 rad < θe < π/2 rad, ∆v,v+1 decreases monotonically as θe increases. Therefore, in the
integration over the photoelectron ejection angle, the amount of the increase in the range
of θe < θ2 and that of the decrease in the range of θ2 < θe cancel each other out, and
∆v,v+1 obtained after integration, represented by the “ion only” case, becomes very close
to ∆v,v+1 obtained for θe = θ2.

In Fig. 3.5(a), we show the phase of the transition moment, δvke = arg[Mvke ], as a
function of ωke = k2

e/2 at θe = θ2 for two cases of v = 2 and 3, because we confirmed
that |(ρvib)2,3| takes the maximum value among the |(ρvib)v,v+1| values. We find that
δvke(v = 0, 1, ..., 18) increases rapidly as the kinetic energy of the photoelectron increases
in the low kinetic energy region and tends to converge to about 0.4π in a similar manner
as δ2,ke and δ3,ke shown in Fig. 3.5(a). However, the magnitude of the intrinsic phase
between the vth and the (v+1)th states, δv,ke−δv+1,ke , is smaller than 10−2π rad as shown
in Fig. 3.3. For example, at θe = θ2, as the photoelectron kinetic energy increases from
1.088 to 2.993 eV, δ2,ke and δ3,ke increase by about 0.5π as shown in Fig. 3.5 (a) while
the intrinsic phase, ∆2,3 = δ2,ke − δ3,ke , decreases only by 0.000640π.

3.3.3 Effect of the chirp of the pump pulse

If a chirped pulse is used for the pump pulse, the intrinsic phase is given as ∆vv′ =
δvke
− δv′ke

+ δE
vke
− δE

v′ke
, where δE

vke
= arg[Ẽ1(ωv + ωke − ωg)]. In the case of a linearly

chirped pulse, the chirp rate, χ, is defined as E1(t) = f(t) cos(ωt + χt2), where f(t) is
the Gaussian envelope. For χ = 42 fs−2 chosen as a typical experimental value [81], the
relative phase between v = 2 and v + 1 = 3 ascribed to the phase of the pump pulse,
δE

2,ke
− δE

3,ke
, is 0.00145π, which is comparable to the intrinsic phase shown in Fig. 3.3.
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Figure 3.5: The phase of the transition amplitude for v = 2 and 3 for the detection angle
θe = θ2 (upper panel) and their difference, ∆2,3 = δ2,ke − δ3,ke (lower panel).

Therefore, it is crucial to use the Fourier-limited pulse or characterize the chirp rate of
the pump pulse precisely.

3.3.4 Relation to Wigner delay

The effect of the different ionic potentials on the photoelectron dynamics was discussed in
the investigation of the time delay in the photoionization of He [19] and H2 [20]. With the
attosecond streaking of photoelectrons or the RABBITT measurement of photoelectrons,
the Wigner delay can be extracted as an intrinsic property of the ionization process after
the effect of the probe field is properly subtracted. The Wigner delay τW

vke
is defined using

the phase of the transition moment δvke as

τW
vke

=
dδvke

dωke

∣∣∣∣
ωke

, (3.19)

where ωke = k2
e/2. While the difference in the Wigner delay between the vth state and

the v′th state gives the difference in the phase derivative, the intrinsic phase defined in
Eq. (3.17) gives the difference in the phase itself. In contrast to the Wigner delay, which
is obtained by the measurement of the momentum of a photoelectron, the intrinsic time
delay can be obtained by the measurement of the KER of the fragment ion. This means
that the phase of the photoelectron can also be retrieved by the measurement of the
remaining ion because of the non-locality of the total wave function of H+

2 + e−.
In the present study, we assume that two protons are located on the z axis and

that the laser polarization direction is parallel to the z axis, that is, we neglect the
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rotational motion of H+
2 . In order to discuss the effect of the molecular rotation, we need to

consider all the alignment angles of the molecular axis with respect to the laser polarization
direction. Consequently, the transition moment µke depends on the alignment angle and
the reduced density matrix depends not only on the vibrational quantum numbers but
also on the rotational quantum numbers.
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3.4 Conclusion

We have investigated theoretically the intrinsic phase of the reduced density matrix of
the vibrational state of H+

2 created through the ionization ∆vv′ and clarified the effect
originating from the phase of the photoelectron wave function. We have proposed the
pump–probe method by using the APT to obtain the reduced density matrix, whose
phase appears as the time delay τvv′ of the vibrational motion of H+

2 in the delay–KER
spectrogram. The intrinsic time delay τvv′ is evaluated to be of the order of tens of
attoseconds. Therefore, the phase of the photoelectron, which has not been considered
before in the determination of the reduced density matrix, should be taken into account
when the pump–probe time delay is determined with precision of the order of tens of
attosseconds.

We have also proposed the pump–probe method by using an ultrashort XUV pulse
with the coincidence detection of e−. The intrinsic phase obtained by the coincidence
detection gives the relative phase of the photoelectrons having the same momentum, but
experiencing different ionic potentials.
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Chapter 4

Molecule in a plasmonic nanocavity

Recent development in nanometer scale fabrication of metal enables us to make a nanocav-
ity. If we place a molecule in the nanocavity and irradiate the nanocavity with light, the
molecule starts to oscillate but in a different way from that without the cavity. This is be-
cause the electromagnetic field is confined in a very small volume so that the spontaneous
emission rate is strongly modified, which is called Purcell enhancement.

The molecular dynamics for the nanocavity with low-loss rate has been investigated
in the literature but less attention has been paid to that with high-loss rate, which can
be the case in the experiment. In this chapter, I will present an analytical formula to
describe the molecular dynamics in the high-loss cavity and show that the spontaneous
emission rate depends not only on the population of the excited state but also on the
coherence between ground and excited states.
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4.1 Molecule–photon coupling in a nanocavity

4.1.1 Plasmonic nanocavity

A quantum emitter placed in an optical cavity resonant to the transition frequency ex-
periences the enhancement of spontaneous emission called the Purcell enhancement due
to the increase of the density of states of the electromagnetic field. Because the Purcell
factor P , the ratio of the spontaneous emission rate in the cavity to that in the vacuum,
is proportional to the cavity quality factor Q (a measure of photon storage time in the
cavity) and the inverse of the mode volume V , one can make it large by either reducing
the loss of photons or the cavity volume. For example, when a dye molecule is placed in
an micrometer-scale optical cavity whose Q is as high as 105, the Purcell factor as high
as 38 is realized [82].

On the other hand, recent experimental developments enable us to make nanoscale cav-
ities [21–25] by placing a nanoparticle on metal surface, which is called the nanoparticle-
on-mirror (NPoM) system. Because the surface plasmon-polariton mode is localized in
the gap between the nanoparticle and the metal surface, the NPoM system realizes the
plasmonic nanocavity, which can confine the electromagnetic field in the volume smaller
than the diffraction limit. In Ref. [21], even though the Q is as small as 15.9, it has been
shown that the cavity volume achieves less than 40 nm3 and the Purcell factor for a dye
molecule is as high as 106. Considering the relation γc = ωc/Q, where ωc is the mode
frequency and γc is the cavity decay rate, the small Q of NPoM is a preferable property for
making a high-repetition single-photon emitter [25], which can emit single photons before
the decoherence proceeds in the quantum emitter. Such confinement of the electromag-
netic field also leads to fast energy transfer between the molecule and the cavity mode
and if its oscillation frequency Ω0 (called the vacuum Rabi frequency) is larger than the
cavity decay rate γc, the molecule and photon forms a polariton. In this so-called strong
coupling regime, the potential energy surface (PES) of the molecule is strongly modified
leading to the possibility of control of chemical reactions [83–85].

The rate of photon emission also depends on the nuclear motion because the resonant
frequency of the electronic transition depends on the nuclear position and therefore the
Purcell enhancement only occurs in the vicinity of a certain nuclear position where the
cavity mode is resonant with the electronic transition. In a recent theoretical study [86],
it has been shown that, after the cavity mode is pumped by a short laser pulse, the
rate of photon emission from the cavity reflects the nuclear motion on the PES so that
the nuclear motion can be monitored only by measuring the emitted photon instead of
irradiating the molecule with a probe pulse.

Especially in the weak coupling regime, where Ω0 < γc, the cavity mode is dumped
rapidly so that we can eliminate the fast evolution and describe the molecular dynamics
only by considering the Hilbert space for the slower evolution, which reduces the size of
the problem as well as gives insight into the evolution of the molecule. Ref. [87] derived
effective operators describing such slow dynamics in the absence of internal degrees of
freedom, e.g., nuclear vibration, which is relevant in our case. In this chapter, we derive
the effective operators describing the slow dynamics of the molecule in the plasmonic
nanocavity and give an analytical expression for the rate of photon emission by eliminating
a fast-evolving state. We solve the master equation by the Monte Carlo wave packet
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(MCWP) method [27,88], which can reduce the computational cost compared with solving
the master equation for the full density matrix. In the MCWP method, we first describe
the evolution of a wave packet in the absence of decay by adding a non-Hermitian term
to the Hamiltonian and then introduce quantum jumps at random times to account for
the decay process. For example, in a recent theoretical study, the MCWP method has
been successfully applied to simulate the photon emission signal from a fluorophore [89].
Atomic units (a.u.) are used unless otherwise indicated.

4.1.2 Master equation for a cavity–molecule system

We consider a single-mode nanocavity containing a molecule with two electronic states,
i.e., the ground X and the first excited A states. The Hamiltonian describing the system
pumped by the laser field E0(t) cosωLt reads [86]

H = T + ωXA + ωv
R2

2
− λv

√
2ωvσ

+σ−R

+ ωca
†a+

Ω0

2

(
a†σ− + aσ+

)
+ µcE0(t) cosωLt

(
a† + a

)
, (4.1)

where σ+ (σ−) is the creation (annihilation) operator for the electronic state whose exci-
tation frequency is ωXA, R is the mass-weighted nuclear position for the vibrational mode
with the frequency ωv and the electron–phonon coupling λv, and T is the nuclear kinetic
energy operator. The cavity mode is described by the photon annihilation (creation)
operator a (a†) and pumped by the laser field through the coupling constant µc. The
cavity mode frequency is chosen as resonant with the electronic excitation, i.e., ωc = ωXA.
The cavity–molecule coupling is described by the vacuum Rabi frequency Ω0 within the
rotating wave approximation. Here, Ω0 is assumed to be independent on R because the
nuclear motion on the electronic ground state is localized around R = 0 in the present
study. In order to concentrate on analysing the molecular dynamics induced by the cavity,
we neglect the laser–molecule coupling.

By expressing the nuclear degree of freedom using the position basis, |R〉, the Hamil-
tonian in a frame rotating at the laser frequency ωL is given as

H − T =

∫
dR [VX |X0, R〉 〈X0, R|+ (VA − ωL) |A0, R〉 〈A0, R|

+(VX + ωc − ωL) |X1, R〉 〈X1, R|

+
µcE0(t)

2
(|X1, R〉 〈X0, R|+ |X0, R〉 〈X1, R|)

+
Ω0

2
(|X1, R〉 〈A0, R|+ |A0, R〉 〈X1, R|)

]
, (4.2)

where the rotating wave approximation is employed. The PESs for the electronic ground
and the excited states are given by

VX = ωv
R2

2
, VA =

ω2
v

2

(
R− λv

√
2ωv

ω2
v

)2

− λ2
v

ωv

. (4.3)
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The basis sets explicitly depend on the internuclear distance such as |X0, R〉, and we call
them ”the continuous bases”. The nuclear degree of freedom can also be expressed by the
vibrational eigenfunctions {|χX

v 〉 , |χA
v 〉} so that the Hamiltonian is given by

H =
∑
v

ωX
v |X0, v〉 〈X0, v|+

∑
v

(ωA
v − ωL) |A0, v〉 〈A0, v|

+
∑
v

(ωX
v + ωc − ωL) |X1, v〉 〈X1, v|

+
µcE0(t)

2

∑
v

(|X1, v〉 〈X0, v|+ |X0, v〉 〈X1, v|)

+
Ω0

2

∑
v,v′

Svv′(|X1, v〉 〈A0, v′|+ |A0, v′〉 〈X1, v|), (4.4)

where Svv′ = 〈χX
v |χA

v′〉 are the Frank–Condon factors and |X0, v〉 is the shorthand for
|X0〉 |χX

v 〉, which we call ”the discrete bases”.
The dissipation is characterized by the cavity decay rate γc, which is chosen large so

that the spontaneous emission from the molecule can be neglected. Then, the master
equation of Lindblad form is given in the Schrödinger picture as

ρ̇S = −i[H, ρS]− 1

2

(
L†LρS + ρSL†L

)
+ LρSL†, L =

√
γca. (4.5)

The Lindbladian L is given in the continuous basis as

L =
√
γc

∫
dR |X0, R〉 〈X1, R| , (4.6)

while in the discrete basis as

L =
√
γc

∑
v

|X0, v〉 〈X1, v| . (4.7)

The parameters characterizing the molecule and the cavity are chosen the same as Ref.
[86], i.e., ωXA = ωc = 3.5 eV, ωv = 0.182 eV, λv = 0.192 eV, while the coupling strength
and the decay rate is chosen to describe the weak-coupling regime, i.e., Ω0 < γc.

Because of the fast cavity decay, the number of photon in the cavity is only one at
most so that we can describe the coupled molecule–cavity system by three states, i.e.,
|X0〉 , |A0〉, and |X1〉, where X and A denote the electronic ground and the excited states,
respectively, 0 and 1 the number of photon. Because we consider only one vibrational
mode on each electronic state, the time-evolution of the system can be fully described by
the nuclear motion on the three PESs shown in Fig. 4.1.

4.1.3 Effective master equation

As long as the cavity decay is faster than the vacuum Rabi oscillation, we can eliminate
the fast-evolving state, |X1〉, as a good approximation and describe the system only using
the comparably slow-evolving states, |X0〉 and |A0〉. In order to derive the effective
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Figure 4.1: The potential energy surfaces (PESs) for the electronic ground state |X0〉
(black dashed), the excited state |A0〉 (red solid), and the electronic ground state with a
single excitation of the cavity mode |X1〉 (black solid). The PESs are characterized by
the parameters ωXA, ωc, ωv, and λv given in the text.

master equation describing the slow dynamics, we employ the effective operator method
developed in Ref. [87], which is based on the second order perturbation theory.

First, the total system is divided into two subspaces, the fast-evolving states denoted
as the excited states and the slow-evolving states denoted as ground states. In the present
case, the excited state and the ground states are composed of |X1〉 and of {|X0〉 , |A0〉},
respectively, by which the projection operators, Pe = |X1〉 〈X1| and Pg = |X0〉 〈X0| +
|A0〉 〈A0| are defined. By treating the laser–cavity (µcE(t)) and the molecule–cavity (Ω0)
couplings up to the second order, we can derive an effective master equation for the ground
state density operator, ρSg = Pgρ

SPg. Details of the derivation are given in Appendices
B.1 and B.2.

The effective master equation is given as

ρ̇Sg = −i
{
HNH

eff ρSg − ρSg (HNH
eff )†

}
+ LSeffρ

S
g (LSeff)†, (4.8)

where the effective non-Hermitian Hamiltonian and the effective Lindbladian are given in
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the continuous basis as

HNH
eff = T +

∫
dR

[(
VX −

(µcE0)2

4

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2

)
|X0, R〉 〈X0, R|

+

(
VA − ωL −

Ω2
0

4

1− e−i(VX+ωc−VA−iγc/2)(t−t0)

VX + ωc − VA − iγc/2

)
|A0, R〉 〈A0, R|

−Ω0µcE0

4

{
1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|A0, R〉 〈X0, R|

+
1− e−i(VX+ωc−VA−iγc/2)(t−t0)

VX + ωc − VA − iγc/2
|X0, R〉 〈A0, R|

}]
(4.9)

LSeff = −i
√
γce

i(ωc−ωL)t

∫
dR

[
µcE0

2

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|X0, R〉 〈X0, R|

+
Ω0

2

1− e−i(VX+ωc−VA−iγc/2)(t−t0)

VX + ωc − VA − iγc/2
|X0, R〉 〈A0, R|

]
, (4.10)

where the initial state is given at t0. In the continuous basis, it is clear that the decay
rate is R dependent. The R-dependent denominator in Eq. (4.10), VX + ωc − VA − iγc/2,
means that the decay rate becomes large when the internuclear distance R is close to the
minimum point of the detuning VX+ωc−VA, which corresponds to the position-dependent
Purcell enhancement of decay rate discussed in [86].

It has been known from the study of the adiabatic elimination [90] that, as a good
approximation, we can neglect the kinetic energy operator in deriving the effective master
equation for the slow-evolving states. Here, we have employed the same procedure: First,
the kinetic energy operator is neglected and only the RHS of Eq. (4.2) is considered in
deriving the effective master equation, and then, the kinetic energy operator is added as
Eq. (4.8).

In the discrete basis, the effective master equation is given with the following effective
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operators

HNH
eff =

(∑
v

ωX
v −

(µcE0)2

4

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2

)
|X0, v〉 〈X0, v|

+
∑
u′v′

{
(ωA

u′ − ωL)δu′v′

− Ω2
0

4

∑
v

Svu′Svv′
1− e−i(ωX

v +ωc−ωA
v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2

}
|A0, u′〉 〈A0, v′|

− Ω0µcE0

4

∑
vv′

Svv′

{
1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|A0, v′〉 〈X0, v|

+
1− e−i(ωX

v +ωc−ωA
v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2
|X0, v〉 〈A0, v′|

}
, (4.11)

LSeff = −i
√
γce

i(ωc−ωL)t

[∑
v

µcE0

2

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|X0, v〉 〈X0, v|

+
∑
vv′

Ω0

2
Svv′

1− e−i(ωX
v +ωc−ωA

v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2
|X0, v〉 〈A0, v′|

]
. (4.12)

4.1.4 Monte Carlo wave packet method

In solving the master equation Eq. (4.5), we apply the Monte Carlo wave packet (MCWP)
method [27], with which we can express the system by the state vector instead of the
density matrix, so that we can reduce the computational cost significantly. In the MCWP
method, the state vector of the system,

|Ψ(t)〉 = |ψX0(t)〉+ |ψA0(t)〉+ |ψX1(t)〉

=

∫
dR{CX0,R(t) |X0, R〉+ CA0,R(t) |A0, R〉+ CX1,R(t) |X1, R〉} (4.13)

=
∑
v

{CX0,v(t) |X0, v〉+ CA0,v(t) |A0, v〉+ CX1,v(t) |X1, v〉}, (4.14)
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is propagated under the non-Hermitian Hamiltonian,

HNH = H − iL†L/2

= T +

∫
dR [VX |X0, R〉 〈X0, R|+ (VA − ωL) |A0, R〉 〈A0, R|

+(VX + ωc − ωL) |X1, R〉 〈X1, R|

+
µcE0(t)

2
(|X1, R〉 〈X0, R|+ |X0, R〉 〈X1, R|)

+
Ω0

2
(|X1, R〉 〈A0, R|+ |A0, R〉 〈X1, R|)

+γc |X1, R〉 〈X1, R|] (4.15)

=
∑
v

ωX
v |X0, v〉 〈X0, v|+

∑
v

(ωA
v − ωL) |A0, v〉 〈A0, v|

+
∑
v

(ωX
v + ωc − ωL) |X1, v〉 〈X1, v|

+
µcE0(t)

2

∑
v

(|X1, v〉 〈X0, v|+ |X0, v〉 〈X1, v|)

+
Ω0

2

∑
v,v′

Svv′(|X1, v〉 〈A0, v′|+ |A0, v′〉 〈X1, v|)

+ γc

∑
v

|X1, v〉 〈X1, v| (4.16)

and then, the decrease of the norm, dp ≡ 1 − 〈Ψ(t+ dt)|Ψ(t+ dt)〉, during the time
propagation from t to t+ dt, is calculated. Finally, in order to mimic the randomness of
the photon detection (or quantum jump in general) in the experiment, a random number
ε is chosen at each time step. If ε < dp is satisfied at t, the Lindbladian L is applied to the
state vector, L |Ψ(t)〉, which means the photon is detected (quantum jump occurs) at t,
and if not, |Ψ(t+ dt)〉 is normalized. In the MCWP method, the quantum jump becomes
more probable to occur as dp increases, we call dp the jump probability. We call each
state vector |Ψ〉 the trajectory and, by averaging over a large number N of trajectories,
we can obtain the density matrix ρ = 1/N

∑N
j |Ψj〉 〈Ψj| equivalent to that obtained by

the numerical integration of Eq. (4.5).
As shown in Fig. 4.2, the results obtained by the numerical integration of Eq. (4.5)

is well reproduced by the MCWP method after averaging over 4000 trajectories, and
so we call the MCWP method applied to Eq. (4.5) ”the exact” method, while we call
that applied to Eq. (4.8) ”the effective” method. In order to analyse how precisely the
effective master equation describes the slow-evolving dynamics, we compare ”no-jump
dynamics”, that is, the time-propagation under the non-Hermitian Hamiltonians, HNH

and HNH
eff , while we neglect the quantum jump by fixing the random number ε at 1 so that

the condition ε < dp never holds.
Because dt is chosen so that the decrease of the norm dp can be described within the
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Figure 4.2: The population of the electronic excited state |A0〉 calculated by the nu-
merical integration of the master equation (ME, solid line) and by the MCWP method
(MCWP(average), dashed line). A trajectory (dots) shows abrupt damping at random
times, which corresponds to the detection of the photon emitted from the cavity. The
parameters for the cavity, the pump laser, and the Rabi frequency is the same as those
specified in 4.2.1

first-order term, i.e.,

dp = 1−
∣∣(1− idtHNH

)
|Ψ(t)〉

∣∣2 = idt 〈Ψ(t)| (HNH − (HNH)†) |Ψ(t)〉
= dt 〈Ψ(t)|L†L |Ψ(t)〉 , (4.17)

which is simplified for the exact method as,

dp = dtγc

∫
dR| 〈X1, R|Ψ(t)〉 |2 = dtγc

∫
dR|CX1,R(t)|2 (continuous basis) (4.18)

= dtγc

∑
v

| 〈X1, v|Ψ(t)〉 |2 = dtγc

∑
v

|CX1,v(t)|2 (discrete basis). (4.19)

The explicit form of dp for the effective method is given in the continuous basis as

dp = idt 〈Ψ(t)| (HNH
eff − (HNH

eff )†) |Ψ(t)〉

= dt

∫
dR

[
(µcE0)2

4

γc

|ωc − ωL − iγc/2|2
|CX0,R|2

+
Ω2

0

4

γc

|VX + ωc − VA − iγc/2|2
|CA0,R|2

+
Ω0µcE0

4

{
R− iI

|(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)|2
C∗A0,RCX0,R + c.c.

}]
,

(4.20)
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where R and I are defined as

R = γc

{
(ωc − ωL)(VX + ωc − VA) + (γc/2)2 + (VX − VA + ωL)2/2

}
(4.21)

I =
{

(ωc − ωL)(VX + ωc − VA)− (γc/2)2
}

(VX − VA + ωL), (4.22)

while in the discrete basis, dp is given as

dp/dt =

(
(µcE0)2

4

∑
v

γc

|ωc − ωL − iγc/2|2

)
|CX0,v|2

+
Ω2

0

4

∑
v

{∑
v′

|Svv′|2
γc

|ωX
v + ωc − ωA

v′ − iγc/2|2
|CA0,v′ |2

+
∑
v′ 6=u′

Svu′Svv′
RAA
v′u′ − iIAA

v′u′

|(ωX
v + ωc − ωA

v′ − iγc/2)(ωX
v + ωc − ωA

u′ + iγc/2)|2
C∗A0,u′CA0,v′

}

+
Ω0µcE0

4

∑
vv′

Svv′

{
RAX
vv′ − iIAX

vv′

|(ωc − ωL − iγc/2)(ωX
v + ωc − ωA

v′ + iγc/2)|2
C∗A0,v′CX0,v

+c.c.} , (4.23)

with

RAA
v′u′ = γc

{
(ωX

v + ωc − ωA
v′)(ω

X
v + ωc − ωA

u′) + (γc/2)2 + (ωA
v′ − ωA

u′)
2/2
}
, (4.24)

IAA
v′u′ =

{
(ωX

v + ωc − ωA
v′)(ω

X
v + ωc − ωA

u′)− (γc/2)2
}

(ωA
v′ − ωA

u′), (4.25)

RAX
vv′ = γc

{
(ωc − ωL)(ωX

v + ωc − ωA
v′) + (γc/2)2 + (ωX

v − ωA
v′ + ωL)2/2

}
, (4.26)

IAX
vv′ =

{
(ωc − ωL)(ωX

v + ωc − ωA
v′)− (γc/2)2

}
(ωX

v − ωA
v′ + ωL). (4.27)

Details of the derivation are given in Appendix B.3.
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4.2 Results and discussion

4.2.1 Validity of the effective operator method
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Figure 4.3: The population in |A0〉 obtained by the exact method is compared with that
obtained by the effective method. For the exact method, Eq. (4.5) is solved with HNH

in the continuous basis Eq. (4.2) (black solid) and in the discrete basis Eq. (4.4) (red
dashed), while for the effective mehod, Eq. (4.8) is solved withHNH

eff in the continuous basis
Eq. (4.9) (gray dashed) and in the discrete basis Eq. (4.11) (blue dashed). The vibrational
period and the plasmon lifetime are 2π/ωv = 23 fs and 2π/γc = 8 fs, respectively.

First, we examine the validity of the effective operator method. In the following, we
compare the no-jump dynamics with ”the exact” method and with ”the effective” method,
which we defined in 4.1.4, by showing the population of the electronic excited state |A0〉
and the normalized expectation value of R. The latter is defined as

〈R〉 =
〈ψA0|R |ψA0〉
〈ψA0|ψA0〉

. (4.28)

Some parameters are chosen the same as Ref. [86] as we explained in the paragraph
after Eq. (4.5), while the parameters characterizing the coupling are chosen as γc =
0.5 eV, Ω0 = 0.05 eV, µcE0 = Ω0, ωc − ωL = Ω0/2, t0 = 0. Because the decay rate γc is
larger than the cavity–molecule coupling and the laser–cavity coupling, i.e., γc > Ω0, µcE0,
the population in |X1〉 is kept low and consequently, the effective master equation is
expected to work.

As shown in Fig. 4.3, the population in |A0〉 increases until around 1000 fs and it
reaches the steady state around 1800 fs. The discrete basis is composed of v = 0 − 7
eigenstates for both electronic states X and A. For the exact method, the population
obtained using the discrete basis (red dashed) overlaps with that obtained using the
continuous basis (black solid). For the effective method, the population obtained using
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Figure 4.4: The normalized expectation value 〈R〉 defined by Eq. (4.28). For the exact
method, Eq. (4.5) is solved with HNH in the continuous basis Eq. (4.2) (black solid)
and in the discrete basis Eq. (4.4) (red dashed), while for the effective mehod, Eq. (4.8)
is solved with HNH

eff in the continuous basis Eq. (4.9) (gray dashed) and in the discrete
basis Eq. (4.11) (blue dashed). The vibrational period and the plasmon lifetime are
2π/ωv = 23 fs and 2π/γc = 8 fs, respectively. The inset shows the expansion between
t = 1200 fs and 1800 fs where the deviation of the result obtained by the effective method
using the continuous basis becomes clear.
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the discrete basis (blue dashed) almost overlaps with that for the exact method, while
that obtained using the continuous basis deviates from the others.

In Fig. 4.4, the normalized expectation value 〈R〉 oscillates with the vibrational period
of 2π/ωv = 23 fs and the oscillation amplitude becomes smaller as the population in |A0〉
converges to the stationary value. As can be seen from the inset of Fig. 4.4, 〈R〉 obtained
by the effective method using the continuous basis also deviates from the others.

The deviation observed in Fig. 4.3 and 4.4 can be ascribed to the invalidity of applying
the effective operator method by neglecting the kinetic energy operator as we have done
in Eq. (4.9). Despite this neglect of the kinetic energy operator, the effective method with
the continuous basis still catches the important feature of the dynamics, and therefore
we can get a physical interpretation using the effective operators in the continuous basis,
Eqs. (4.9) and (4.10), because they are directly related with the nuclear motion as we
will show in the following.

4.2.2 Position dependent decay rate
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Figure 4.5: The normalized expectation value of R (black) and the jump probability dp
(blue) between 556 fs and 749 fs. The vibrational period and the plasmon lifetime are
2π/ωv = 23 fs and 2π/γc = 8 fs, respectively. The calculation is done by the effective
method using the discrete basis.

Although the effective method using the continuous basis does not reproduce the
results of exact method, it is still useful for interpretation as shown below. Because the
cavity mode is resonant with the electronic transition at R = 0, i.e. ωc = ωe− , one can
expect that the norm of |Ψ(t)〉 decreases the most when the internuclear distance is close
to R = 0, where the two PESs, VX +ωc and VA, cross with each other. This intuition can
be partially validated from Eq. (4.20): The diagonal terms of Eq. (4.20) are proportional
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Figure 4.6: The expectation value of R (black) and the jump probability (blue) between
1402 fs and 1596 fs. The vibrational period and the plasmon lifetime are 2π/ωv = 23 fs
and 2π/γc = 8 fs, respectively. The calculation is done by the effective method using the
discrete basis.

to γc such as

(µcE0)2

4

γc

|ωc − ωL − iγc/2|2
|CX0,R|2, (4.29)

Ω2
0

4

γc

|VX + ωc − VA − iγc/2|2
|CA0,R|2, (4.30)

which cause the decrease of the diagonal terms of the density matrix, i.e., (ρg)X0,X0 =
|CX0,R|2 and (ρg)A0,A0 = |CA0,R|2. The denominator of Eq. (4.29) is R-independent so
that dp increases when the population (ρg)X0,X0 becomes large. On the other hand, as R
becomes close to R = 0, the denominator of Eq. (4.30) decreases and so (ρg)A0,A0 decays
more. Consequently, the jump probability dp is expected to be large as R becomes closer
to R = 0. This seems to explain Fig. 4.5, where dp increases as R decreases.

In Fig. 4.6, however, dp oscillates in the opposite manner. This is explained from
the off-diagonal terms of Eq. (4.20) and that of the density matrix such as (ρg)X0A0 =
C∗A0,RCX0,R, i.e., the coherence of the molecule. The numerator of the off-diagonal terms
of dp and the coherence (ρg)X0,A0 are complex in contrast to the diagonal terms, which is
always positive real, they do not always cause the decrease of dp but can contribute to
the increase of it. Therefore, the jump probability dp does not merely depend on R and
the population but also on the coherence.

When the pulsed laser is applied to pump the cavity mode, Eq. (4.29) and the off-
diagonal terms of HNH

eff vanishes after the laser field vanishes, which one can confirm by
setting E0 = 0. Therefore, the jump probability dp only depends on R in the absence of
the laser field. This corresponds to the ”polaritonic clock” proposed by Silva et al. [86], in
which the photon emission probability from the cavity completely reflects the internuclear
distance.
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4.3 Conclusion

We have derived the effective master equation describing the dynamics of the molecule
placed in the plasmonic nanocavity in the weak coupling regime. We have modified the
effective operator formulation given in Ref. [87] so that it becomes applicable to the system
including internal degrees of freedom besides the electronic ones.

Although we have derived the effective master equation exactly within the second
order perturbation, which we denote as the discrete basis, we have also tested a widely
adopted approximation in which the kinetic energy operator for the vibration is neglected
in eliminating the fast-evolving state and then it is added to the effective non-Hermitian
Hamiltonian, which we denote as the continuous basis. While the effective master equation
with the continuous basis has deviated from the numerical integration of the master
equation, it still has caught the qualitative behaviour of the exact results. Because the
continuous basis is directly connected with the nuclear motion, we have also utilized it to
give straightforward physical interpretation.

By applying the MCWP method, the probability of photon emission has been given
as the jump probability, which explicitly depends on the nuclear position. This agrees
with the ”polaritonic clock” situation in Ref. [86], i.e., the jump probability is enhanced
when the vibrational wave packet is in the vicinity of the nuclear position where the
electronic transition is resonant with the cavity mode. In addition, we have shown that,
during the laser field pumping the cavity mode, the jump probability depends also on
the coherence between the electronic ground and the excited state so that the photon
emission probability reflects not only the nuclear motion but also the vibronic coherence.
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Chapter 5

Summary and outlook

(i) Understanding interparticle correlation has been the important issue in multipartite
problems. In atomic and molecular physics, the correlation has been evaluated in
terms of the energy difference between correlated and uncorrelated systems but in
recent years entanglement is employed as an alternative tool for quantifying the
correlation.

In Chapter 2, I have investigated the photoionization process of H2 induced by the
irradiation of an ultrashort XUV laser pulse and analyzed the entanglement between
H+

2 and the photoelectron and the coherence in the vibrational states of H+
2 . By

quantifying the entanglement by the purity of the reduced density matrix of H+
2 , I

have demonstrated how the purity depends on the amount of the coherence in H+
2 ,

which is controlled by changing the pulse duration. I have also shown that, when the
laser intensity becomes large enough to induce the Raman-type transitions among
the vibrational states of H+

2 , the purity and the coherence start depending on the
intensity.

The entanglement between the photoelectron and the ion should also depend on
the initial neutral state. For molecules, because the initial state can be seen as an
entangled proton–electron system, it is a non-trivial question whether and how the
initial state entanglement is reflected in the entanglement between the photoelectron
and the molecular ion. In order to evaluate the entanglement in the initial and the
final state using the same basis set, we should use the grid basis and therefore, the
grid method developed in Chapter 2 is appropriate also for this direction of the
study.

(ii) Furthermore, the coherent motion of the ion created by an ultrashort laser pulse has
been investigated and the time delay in the motion has been related to the property
of the laser pulse. However, the effect of the correlation between the ion and the
photoelectron on the coherent motion has attracted less attention.

In Chapter 3, I have investigated the intrinsic phase ∆vv′ of the reduced density
matrix of the vibrational state of H+

2 created through the ionization and clarified
the effect originating from the phase of the photoelectron wave function. Because
the intrinsic phase appears as the time delay τvv′ of the vibrational motion of H+

2 , the
effect of the correlation can be extracted from the delay–KER spectrogram obtained
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by the pump–probe experiment. The intrinsic time delay τvv′ is evaluated to be of
the order of tens of attoseconds. Therefore, the phase of the photoelectron, which
has not been considered before in the determination of the reduced density matrix,
should be taken into account when the pump–probe time delay is determined with
precision of the order of tens of attosseconds.

The intrinsic time delay can also be investigated in other systems. Specifically, be-
cause the phase of the photoelectron wave function can be significantly different for
different electronic states of the ion, the coherent superposition of several electronic
states is expected to give the large intrinsic time delay. For this purpose, atomic
systems such Kr [5] and Xe [12] can be used since their coherent motion has been
already investigated using the attosecond transient absorption. For molecular sys-
tems such as H2, the intrinsic time delay can also depend on the molecular rotation
as well as the vibration. When the rotation is taken into account, the intrinsic phase
of the rhovibrational state of the molecule, ∆vj,v′j′ with j the rotational quantum
number, should be determined by the pump–probe experiment.

(iii) By placing the molecule in a cavity, we can further include the quantum correlation
with photons which is not taken into account in the preceding chapters on the
photoionization of H2. Such a molecule–cavity system has been attracting attention
because of its application to the quantum information and to the control of the
chemical reaction.

In Chapter 4, I have derived the effective master equation describing the dynamics
of the molecule placed in the plasmonic nanocavity in the weak coupling regime. By
applying the MCWP method, the probability of photon emission has been given as
the jump probability, which explicitly depends on the nuclear position. In addition,
the jump probability is shown to depend also on the coherence between the electronic
ground and the excited state and so the photon emission probability reflects not only
the nuclear motion but also the vibronic coherence.

Because the photon emitted from the cavity can be continuously monitored, we can
consider the effect of the measurement on the molecule, namely, the back-action of
the measurement [91]. Due to the randomness of the quantum jump, the dynamics
conditioned by the measurement results cannot be simulated by the master equation
but stochastic method should be employed [92, 93], which means the continuous
measurement of the molecule–cavity system can be simulated in the similar manner
as the MCWP formulation employed in Chapter 4.
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Appendix A

Calculation of the transition moment

The calculation of the transition dipole moment µke defined by Eq. (3.6) is detailed. The
numerical procedure to obtain the two-center Coulomb wave function defined by Eq. (3.2)
is given based on Refs. [80, 94].
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A.1. COULOMB WAVE FUNCTION

A.1 Coulomb wave function

The continuous eigenfunction of a single charged particle for the Coulomb potential is
known as the Coulomb wave function given in terms of confluent hypergeometric functions
[73]. The Schrödinger equation in the spherical coordinate r = (r, θ, ϕ) for an electron
having the momentum ke = (ke, θe, ϕe) in a Coulomb potential of a charge Z is given in
atomic units as (

−1

2
∆r −

Z

r
− k2

e

2

)
ψke = 0. (A.1)

By using the parabolic coordinate, the analytical solution of Eq. (A.1) is given by

ψ
(±)
ke

= eπ/2keΓ

(
1∓ i

ke

)
eiker

1F1

(
± i

ke

, 1,±(ker − ker)

)
, (A.2)

where ψ
(+)
ke

and ψ
(−)
ke

are called the outgoing and incoming wave, respectively, because
their asymptotic forms

ψ
(±)
ke
−→ eiker∓ik−1

e ln(ker∓ker) + f(θ)
e±i{ker+k−1

e ln(2ker)}

r
, (A.3)

include the outgoing and the incoming spherical waves, respectively, in the second term,
where f(θ) is the scattering amplitude. They are related by

ψ
(−)
ke

= (ψ
(+)
−ke

)∗. (A.4)

Since the Coulomb potential is the central force field, the eigenfunction can be ex-
panded in terms of partial waves as

ψke =
∞∑
l=0

AlRkel(r)Pl

(
ker

ker

)
, (A.5)

where Rkel is the radial wave function and Pl is the Legendre function. By using the
relation between the Legendre function and the spherical harmonics Ylm,

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(θe, ϕe)Ylm(θ, ϕ), (A.6)

where γ is the angle between r and ke satisfying cos γ = cos θ cos θe+sin θ sin θe cos(ϕ−ϕe),
the Coulomb wave function can be further expanded as

ψke = 4π
∞∑
l=0

l∑
m=−l

Al
2l + 1

Y ∗lm(θe, ϕe)Ylm(θ, ϕ)Rkel(r). (A.7)

The radial wave function is a solution of the following equation[
d

dr

(
r2 d

dr

)
+ 2Zr + k2

er
2 − l(l + 1)

]
Rkel = 0. (A.8)
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A.1. COULOMB WAVE FUNCTION

The solution can be given analytically as

Rkel =
1

ker

eπ/2ke |Γ(l + 1− i/ke)|(2ker)
l+1eiker

2(2l + 1)!
1F 1

(
l + 1− i

ke

, 2l + 2,−2iker

)
, (A.9)

and its asymptotic form is given as

Rkel −→
1

ker
sin

(
ker −

lπ

2
+ σl +

1

ke

ln(2ker)

)
, (A.10)

where σl called the phase shift is defined as

σl = arg Γ

(
l + 1− i

ke

)
. (A.11)

The expansion coefficient Al is determined by comparing Eq. (A.7) with Eq. (A.2) so
that it satisfies the outgoing or the incoming boundary condition and we obtain

Al = (2l + 1)ile±iσl . (A.12)

Finally, by imposing the normalization condition∫
drψ∗k′e(r)ψke(r) = δ(k′e − ke), (A.13)

the partial wave expansion (A.7) is obtained as

ψ
(±)
ke

= (2π)−3/24π
∞∑
l=0

l∑
m=−l

ile±iσlY ∗lm(θe, ϕe)Ylm(θ, ϕ)Rkel(r). (A.14)
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A.2. TWO-CENTER COULOMB WAVE FUNCTION

A.2 Two-center Coulomb wave function

Because the final state of the ionization is known to satisfy the incoming wave boundary
condition [73, 95, 96], we will focus on the incoming wave in the following. In the two-
center Coulomb potential, where two charges Za and Zb are separated by a distance R,
the continuous eigenfunction is given in a similar form as the one-center Coulomb wave
function. The two-center Coulomb wave function is defined as the eigenfunction of the
Schrödinger equation,(

−1

2
∆r −

Za
|r −R/2|

− Zb
|r + R/2|

− k2
e

2

)
ψke = 0. (A.15)

The eigenfunction satisfying the incoming boundary condition can be expanded as

ψke(r;R) = (2π)−3/24π
∞∑
l=0

l∑
m=−l

ile−iδlm

×Υ∗lm(ce, θe, ϕe)Υlm(ce, θ, ϕ)Tlm(ce, ξ;R), (A.16)

Υlm(ce, θ, ϕ) = Slm(ce, cos θ)
exp (imϕ)√

2π
, (A.17)

in the prolate spheroidal coordinate system, ξ = (|r − R/2| + |r + R/2|)/R ∈ [1,∞),
η = (|r −R/2| − |r + R/2|)/R ∈ [−1, 1], and ϕ ∈ [0, 2π]. The angles θ, θe, ϕ and ϕe are
defined with respect to the molecular axis and so the prolate spheroical coordinate and
the spherical coordinate are related as

ξ =

[
1

2

{
1 +

4r2

R2
+

√
1 +

16r4

R4
+

8r2

R2
(1− 2 cos2 θ)

}]1/2

, (A.18)

η =
2r cos θ

Rξ
. (A.19)

The quasiradial and the quasiangular functions, Tlm(ce, ξ) and Slm(ce, η) respectively,
satisfy the following equations,[

d

dξ
(ξ2 − 1)

d

dξ
+ aξ − m2

ξ2 − 1
+ c2

e(ξ2 − 1)− λlm
]
Tlm = 0, (A.20)[

d

dη
(1− η2)

d

dη
+ bη − m2

1− η2
+ c2

e(1− η2) + λlm

]
Slm = 0, (A.21)

where a = R(Zb + Za), b = R(Zb − Za), ce = keR/2, and λlm is the eigenvalue of Eq.
(A.21). The eigenvalue λlm can be obtained as the root of a equation y(λ) = 0, where the
left hand side is expanded as an infinite chain fraction [94],

y(λ) = κ0 −
ρ0δ1

κ1 −
ρ1δ2

κ2 − · · ·

, (A.22)
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A.2. TWO-CENTER COULOMB WAVE FUNCTION

with

ρs = (s+ 2m+ 1)
b− 2ice(s+m+ 1)

2(s+m) + 3
(A.23)

κs = −λ+ (s+m)(s+m+ 1) (A.24)

δs = s
b+ 2ice(s+m)

2(s+m)− 1
. (A.25)

We have confirmed the convergence of Eq. (A.22) by including s = 0− 50.
In order to solve the Schrödinger equations (A.20) and (A.21) by numerical integration,

we apply the following transformation

Xlm(ξ) = (ξ − 1)Tlm(ce, ξ), (A.26)

Ylm(η) = (1− η2)Slm(ce, η), (A.27)

with which we can rewrite Eqs. (A.20) and (A.21) as[
(ξ2 − 1)

d2

dξ2
− 2ξ

d

dξ
+

2

ξ − 1
+ aξ − m2

ξ2 − 1
+ c2

e(ξ2 − 1)− λlm
]
Xlm = 0, (A.28)[

(1− η2)
d2

dη2
+ 2η

d

dη
+

2(1 + η2)

1− η2
+ bη − m2

1− η2
+ c2

e(1− η2) + λlm

]
Ylm = 0, (A.29)

with the boundary conditions

X(1) = 0, (A.30)

Y (−1) = Y (1) = 0. (A.31)

In numerically integrating Eqs. (A.28) and (A.29), the boundary values Eqs. (A.30) and
(A.31) cannot be used because some terms in Eqs. (A.28) and (A.29) are singular at
ξ = 1 and η = ±1, respectively. For Ylm, we instead solve the boundary value problem
with the following condition

Ylm(−1 + δη) = (−1)lYlm(1− δη) = εY , (A.32)

where we utilized the fact that Ylm is the even (odd) function for even (odd) l. The
parameters δη and εY can be arbitrarily chosen and we set to δη = cos(10−3) and εY =
10−3. Finally, we normalize Ylm by ∫ 1

−1

dηY 2
lm(η) = 1. (A.33)

On the other hand, in order to obtain Xlm, we solve (A.28) with the initial values
εX = Xlm(1 + δξ) and dεX/dξ at ξ = 1 + δξ calculated from the following expansion,

Xlm = (ξ2 − 1)m/2
smax∑
s=0

gs(ξ − 1)s+1 (valid in 1 ≤ ξ < 2), (A.34)
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A.2. TWO-CENTER COULOMB WAVE FUNCTION

where gs is obtained from the four-term recurrent relation

α1gs+1 + α2gs + α3gs−1 + α4gs−2 = 0, (A.35)

g−2 = g−1 = 0, g0 = 1,

α1 = 2(s+ 1)(s+m+ 1),

α2 = s(s+ 2m+ 1)− λ+ a+m(m+ 1),

α3 = 2c2
e + a,

α4 = c2
e.

The choice of dξ is explained in Sec. A.3. In the asymptotic region ξ −→∞, Xlm behaves
as

Xlm(ξ) −→ 1

ce

sin

(
ceξ +

a

2ce

ln(2ceξ)−
lπ

2
+ δlm

)
. (A.36)

The phase shift δlm is determined by comparing Xlm obtained by numerical integration
of Eq. (A.28) with the analytical expression (A.36).
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A.3. TRANSITION MOMENT

A.3 Transition moment

In calculating the transition moment µke (defined by Eq. (3.6))

µke(R) =

∫∫
dr1dr2φ1s(r1;R)ψ∗ke

(r2;R)(z1 + z2)φg(r1, r2;R), (A.37)

we numerically integrate using the grid space in the spherical coordinate r = (r, θ, ϕ) and
so we need to convert the spheroidal coordinate appeared in Eq. (A.16) to the spherical
coordinate by using the relation Eq. (A.18). The grid space for the radial coordinate is
taken as r = [0.1, 40] a.u. with dr = 0.1 a.u.. The grid space for the angle is taken as
θ = [0, π] rad with dθ = π/40 rad and then, θ = 0 rad and π rad are replaced by 0.001 rad
and π − 0.001 rad, respectively, since θ = 0 orπ does not contribute to the transition
moment due to the factor sin θ1 sin θ2 of the volume element in the integral Eq. (A.37).

Because ξ depends not only on r but also on θ and R, we use Eq. (A.18) to define the
grid space for ξ at each θ and R so that it corresponds to the grid space for r and then
solve Eq. (A.28) by Runge–Kutta method. The initial value is defined by Eq. (A.34) and
its derivative at ξ = 1 + δξ. As explained above, 1 + δξ corresponds to r = 0.1 a.u. but
depends on θ and R. On the other hand, the grid space for η can be taken the same as
the grid space for cos θ because the argument of Slm in Eq. (A.17) is written in terms of
cos θ instead of η.

The ground state of H2, φg, is obtained by the full configuration interaction (CI)
method with the aug-cc-pVQZ basis set and can be expressed explicitly in terms of molec-
ular orbitals Ψi as

φg(r1, r2) = N

{
Ψ0(r1)Ψ0(r2) +

1√
2

∑
i 6=j

CijΨi(r1)Ψj(r2) +
∑
i

CiiΨi(r1)Ψi(r2)

}
,

(A.38)

where N is the normalization constant and Cij = Cji. Although the two-center Coulomb
wave function ψke includes the infinite sum, only a few terms satisfying the following
conditions contributes to the integral Eq. (A.37).

(a) Only m = 0 is allowed
Because the 1sσg state of H+

2 , φ1s(r1) ∝ R(r1)Θ(θ1)eim
′ϕ1 , is homogeneous around

the molecular axis, m′ = 0. Therefore, the integration about the azimuthal angle in Eq.
(A.37) can be written as

Iϕ =

∫
dϕ2e

−imϕ2

∫
dϕ1φg(r1, r2), (A.39)

where e−imϕ2 is the azimuthal function of the photoelectron wave function ψ∗ke
. By denot-

ing the azimuthal function of the orbitals Ψi(r1) as eimiϕ1 , the ϕ1-integral is composed of
the following terms ∫

dϕ1e
imiϕ1 , (A.40)
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A.3. TRANSITION MOMENT

which is nonzero only when mi = 0. Because φg is symmetric about the center of mass,
i.e., φg(r1, r2) = φg(−r1,−r2), the orbitals for the second electron Ψj(r2) multiplied with
Ψi(r1) with mi = 0 should also be homogeneous about the azimuthal angle, i.e., mj = 0.
Therefore, the integral Eq. (A.39) reduces as

Iϕ = 2π

∫
dϕ2e

−imϕ2 , (A.41)

which is nonzero only when m = 0, verifying the statement below Eq. (3.2), and we
obtain Iϕ = (2π)2.

(b) Only odd l’s are allowed
Because of the symmetry condition φg(r1, r2) = φg(−r1,−r2), two orbitals ΨiΨj in

the CI expansion Eq. (A.38) should have the same symmetry, g or u. We rewrite Eq.
(A.38) by denoting the symmetry explicitly as

φg(r1, r2) =
∑
ij

A
(g)
ij Ψ

(g)
i (r1)Ψ

(g)
j (r2) +

∑
ij

A
(u)
ij Ψ

(u)
i (r1)Ψ

(u)
j (r2), (A.42)

where the coefficients in Eq. (A.38) are incorporated into A
(g,u)
ij . We insert Eq. (A.42)

into Eq. (A.37) and we divide the integral into two contributions as

I1 =

∫∫
dr1dr2φ1s(r1)ψ∗ke

(r2)z1

×

{∑
ij

A
(g)
ij Ψ

(g)
i (r1)Ψ

(g)
j (r2) +

∑
ij

A
(u)
ij Ψ

(u)
i (r1)Ψ

(u)
j (r2)

}
, (A.43)

I2 =

∫∫
dr1dr2φ1s(r1)ψ∗ke

(r2)z2

×

{∑
ij

A
(g)
ij Ψ

(g)
i (r1)Ψ

(g)
j (r2) +

∑
ij

A
(u)
ij Ψ

(u)
i (r1)Ψ

(u)
j (r2)

}
. (A.44)

For I1, because φ1s is even and z1 is odd function, only the ungerade orbital, Ψ
(u)
i , can

contribute, and because its pair, Ψ
(u)
j , is odd function, ψ∗ke

should be odd, i.e., the quasian-
gular quantum number l should be odd. Similarly, for I2, because φ1s is even function,
only the gerade orbital, Ψ

(g)
i can contribute, and because its pair, Ψ

(g)
j is even and z2 is

odd function, ψ∗ke
should be odd function.
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Appendix B

Derivation of the effective operators

The effective non-Hermitian Hamiltonian and the effective Lindbladian given in 4.1.3
are derived by modifying the effective operator method of Ref. [87] and then, the jump
probability given in 4.1.4 are derived.
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B.1. GENERAL FORMULATION

B.1 General formulation

First, the total system is divided into the fast-evolving and the slow-evolving states,
which are denoted as the excited states and the ground states, respectively. The excited
states decay to the ground states and the ground states do not decay. In this appendix, we
include the coupling between different slow-evolving states, which is neglected in the main
text, so that we can apply the present formulation to the more general case where the
laser directly excites the molecule. After the general formulation is obtained, the effective
master equation in the main text Eq. (4.8) is obtained as a special case by neglecting the
laser–molecule coupling. The Hamiltonian in the Schrödinger picture is given as

HS = H0 + VS(t) = Hg +He + V S
gg(t) + V S

+ (t) + V S
− (t), (B.1)

where V S
gg(t) = PgVS(t)Pg, V

S
+ (t) = PeVS(t)Pg, and V S

− (t) = PgVS(t)Pe, with Pe and Pg

the projection operators for the excited states and the ground states, respectively. Here,
we also include the interaction between different ground states, V S

gg. The master equation
in the interaction picture is written as

ρ̇ = −i[V (t), ρ]− 1

2

∑
k

(L†kLkρ+ ρL†kLk) +
∑
k

LkρL
†
k, (B.2)

where Lk is the Lindbladian for the kth dissipation path and the interaction Hamiltonian
V (t) is given as

V (t) = eiH0tVS(t)e−iH0t. (B.3)

In the following, we consider only one excited state |e〉 interacting with sevral ground
states |gl〉 (l = 1, 2, . . . ), and one dissipation path described by a Lindbladian L =√
γc |g1〉 〈e|. We assume the couplings between the excited state and the ground states

are weak so that we can treat them as perturbations. By introducing

O = exp

(
i

(
− i

2
L†L

)
t

)
= exp

(γc

2
tPe

)
, (B.4)

the master equation for ρ̃ = OρO is given by

˙̃ρ = −i(Ṽ ρ̃− ρ̃Ṽ c) + L̃ρ̃L̃†, (B.5)

where Ṽ = OV O−1, Ṽ c = O−1V O, L̃ = OLO−1, and L̃† = O−1L†O are introduced and
a relation OL†LO−1 = exp(γct/2)L†L exp(−γct/2) = L†L is utilized. First, we implicitly
solve the master equation as

ρ̃(t) = ρ̃(t0)− i

∫ t

dt′
(
Ṽ (t′)ρ̃(t′)− ρ̃(t′)Ṽ c(t′)

)
+

∫ t

dt′L̃(t′)ρ̃(t′)L̃†(t′), (B.6)

where the initial state is given at t0. Inserting this into Eq. (B.5), the master equation is
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rewritten as

˙̃ρ = −iṼ (t)ρ̃(t0)− Ṽ (t)

∫ t

dt′
(
Ṽ (t′)ρ̃(t′)− ρ̃(t′)Ṽ c(t′)

)
− iṼ (t)

∫ t

dt′L̃(t′)ρ̃(t′)L̃†(t′)

+ H.c.

+ L̃(t)ρ̃(t0)L̃†(t)− iL̃(t)

∫ t

dt′
(
Ṽ (t′)ρ̃(t′)− ρ̃(t′)Ṽ c(t′)

)
L̃†(t)

+ L̃(t)

∫ t

dt′L̃(t′)ρ̃(t′)L̃†(t′)L̃†(t). (B.7)

In order to describe a master equation for the ground state subspace, we introduce a
ground state density matrix ρ̃g = Pgρ̃Pg. By using the fact that L̃ = PgL̃Pe, L̃

† = PeL̃
†Pg,

and Ṽ = PeṼ+Pg + PgṼ−Pe + PgṼggPg, and assuming the initial state is in the ground
state manifold, i.e., ρ̃(t0) = Pgρ̃(t0)Pg, the master equation for ρ̃g is given as

˙̃ρg = −iṼgg(t)ρ̃g(t0)− Ṽ−(t)

∫ t

dt′
(
Ṽ+(t′)ρ̃g(t′)− ρ̃e(t

′)Ṽ c
+(t′)

)
−
∫ t

dt′
{
Ṽgg(t)

(
Ṽgg(t′)ρ̃g(t′) + Ṽ−(t′)ρ̃eg(t′)

)}
+

∫ t

dt′
{(
Ṽgg(t)ρ̃g(t′) + Ṽ−(t)ρ̃eg(t′)

)
Ṽ c

gg(t′)
}

− iṼgg(t)

∫ t

dt′L̃(t′)ρ̃e(t
′)L̃†(t′) + H.c.

− iL̃(t)

∫ t

dt′
(
Ṽ+(t′)ρ̃ge(t

′)− ρ̃eg(t′)Ṽ c
−(t′)

)
L̃†(t). (B.8)

where ρ̃e(t
′) = Peρ̃(t′)Pe, ρ̃eg(t′) = Peρ̃(t′)Pg, and ρ̃ge(t

′) = Pgρ̃(t′)Pe. By using Eq. (B.6),
ρ̃eg and ρ̃ge in Eq. (B.8) can be further expanded as,

ρ̃ge(t
′) = i

∫ t′

dt′′ρ̃g(t′′)Ṽ c
−(t′′), (B.9)

ρ̃eg(t′) = −i

∫ t′

dt′′Ṽ+(t′′)ρ̃g(t′′), (B.10)

where the terms higher than the first order in Ṽ are omitted. Although we can also
expand ρ̃e in the same manner as

ρ̃e(t
′) = −i

∫ t′

dt′′
(
Ṽ+(t′′)ρ̃ge(t

′′)− ρ̃eg(t′′)Ṽ c
−(t′′)

)
, (B.11)

considering the fact that ρ̃ge and ρ̃eg are as small as the first order in Ṽ , ρ̃e is as small as
the second order in Ṽ and so we neglect ρ̃e in Eq. (B.8).

By inserting Eqs. (B.9) and (B.10) into Eq. (B.8), the master equation of the second
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order in Ṽ is given as

˙̃ρg = −iṼgg(t)ρ̃g(t0)− Ṽ−(t)

∫ t

dt′Ṽ+(t′)ρ̃g(t′)

− Ṽgg(t)

∫ t

dt′
(
Ṽgg(t′)ρ̃g(t′)− ρ̃g(t′)Ṽ c

gg(t′)
)

+ H.c.

+ L̃(t)

∫ t

dt′
∫ t′

dt′′
(
Ṽ+(t′)ρ̃g(t′′)Ṽ c

−(t′′) + H.c.
)
L̃†(t). (B.12)

In order to obtain a linear equation, we replace ρ̃g in the integral by ρ̃g(t)

˙̃ρg = −iṼgg(t)ρ̃g(t0)− Ṽ−(t)

∫ t

dt′Ṽ+(t′)ρ̃g(t)

− Ṽgg(t)

∫ t

dt′
(
Ṽgg(t′)ρ̃g(t)− ρ̃g(t)Ṽ c

gg(t′)
)

+ H.c.

+ L̃(t)

∫ t

dt′
∫ t′

dt′′
(
Ṽ+(t′)ρ̃g(t)Ṽ c

−(t′′) + H.c.
)
L̃†(t). (B.13)

This replacement of ρ̃g(t′) by ρ̃g(t) can be validated when ρ̃g(t′) changes slowly compared
to Ṽ (t′). From Eq. (B.5), when the interaction V is small, the no-jump dynamics is slow,
i.e., ρ̃g changes slowly. On the other hand, from Eq. (B.12), PeṼ (t′)Pg = eγct/2PeV (t′)Pg

rapidly increases when γc is large. Thus, it is necessary to keep V small and γ large in
order for Eq. (B.13) to be valid.

By using the relation PgO = OPg = Pg, some terms in Eq. (B.13) can be replaced as
ρ̃g = ρg, Ṽgg = Vgg, Ṽ− = V−O

−1, Ṽ+ = OV+, L̃ = LO−1, L̃† = O−1L†, and, therefore, Eq.
(B.13) can be simplified as

ρ̇g = −ieiHgtV S
gg(t)e−iHgtρg(t0)

− eiHgtV S
− (t)e−iHetO−1(t)Iρg(t)

− eiHgtV S
gg(t)e−iHgtIgρg(t) + H.c.

+ LO−1(t)Iρg(t)I†O−1(t)L†

= I0 + I1 + I2 + (I0 + I1 + I2)† + I3. (B.14)

where I and Ig are defined as

I =

∫ t

dt′O(t′)eiHet′V S
+ (t′)e−iHgt′ , (B.15)

Ig =

∫ t

dt′eiHgt′V S
gg(t′)e−iHgt′ . (B.16)
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B.2 Time-independent interaction

After calculating the integrals I and Ig, we can solve the master equation Eq. (B.14).
Here, we consider the time-independent interaction, V S

± and V S
gg. In addition, we denote

an internal degree of freedom for each electronic state by a quantum number v, i.e.,
{|gl, v〉 , |e, v〉}. Then, the operators appeared in Eq. (B.14) are given explicitly as

Hg =
∑
lv

Egl,v |gl, v〉 〈gl, v| , He =
∑
v

Ee,v |e, v〉 〈e, v| ,

V S
gg =

∑
l 6=l′,vv′

V (lv,l′v′)
gg =

∑
l 6=l′,vv′

glv,l′v′ |gl, v〉 〈gl′ , v′| ,

V S
+ =

∑
lvv′

V
(v,lv′)

+ =
∑
lvv′

fv,lv′ |e, v〉 〈gl, v′| ,

V S
− =

∑
lvv′

V
(lv′,v)
− =

∑
lvv′

fv,lv′ |gl, v′〉 〈e, v| ,

L =
∑
v

Lv =
√
γc
∑
v

|g1, v〉 〈e, v| . (B.17)

The integrals Eqs. (B.15) and (B.16) can be calculated as

I = −i
∑
lvv′

O(t)ei(Ee,v−Egl,v
′ )t −O(t0)ei(Ee,v−Egl,v

′ )t0

Ee,v − Egl,v′ − iγc/2
V

(v,lv′)
+ ,

Ig = −i
∑

l 6=l′,vv′

e
i(Egl,v

−Egl′ ,v
′ )t − ei(Egl,v

−Egl′ ,v
′ )t0

Egl,v − Egl′ ,v
′

V (lv,l′v′)
gg . (B.18)

and I0, I1, I2 are given as

I0 = −i
∑

l 6=l′,vv′
e

i(Egl,v
−Egl′ ,v

′ )t
V (lv,l′v′)

gg ρg(t0), (B.19)

I1 = i
∑
lvv′
l′u′

V
(l′u′,v)
− e

i(Egl′ ,u
′−Egl,v

′ )t1− e−i(Ee,v−Egl,v
′−iγc/2)(t−t0)

Ee,v − Egl,v′ − iγc/2
V

(v,lv′)
+ ρg(t), (B.20)

I2 = i
∑

l 6=l′,vv′
l′ 6=m′,u′

V (lv,l′v′)
gg e

i(Egl,v
−Egm′ ,u

′ )t1− e
−i(Egl′ ,v

′−Egm′ ,u
′ )(t−t0)

Egl′ ,v
′ − Egm′ ,u

′
V (l′v′,m′u′)

gg ρg(t),

I3 = LeffρgL
†
eff , (B.21)

where the effective Lindbladian is defined as

Leff = LO−1(t)I

= −i
∑
lvv′

Lve
i(Ee,v−Egl,v

′ )t1− e
−i(Ee,v−Egl,v

′−iγc/2)(t−t0)

Ee,v − Egl,v′ − iγc/2
V

(v,lv′)
+ . (B.22)
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To transform into the Schrödinger picture, ρ̇Sg = e−iHgtρ̇ge
iHgt − i[Hg, ρ

S
g ], above inte-

grals are rewritten as

IS0 = e−iHgtI0e
iHgt = −iV S

ggρ
S
g (t0), (B.23)

IS1 = i
∑
lvv′
l′u′

V
(l′u′,v)
−

1− e−i(Ee,v−Egl,v
′−iγc/2)(t−t0)

Ee,v − Egl,v′ − iγc/2
V

(v,lv′)
+ ρSg (t), (B.24)

IS2 = i
∑

l 6=l′,vv′
l′ 6=m′,u′

V (lv,l′v′)
gg

1− e−i(Egl′ ,v
′−Egm′ ,u

′ )(t−t0)

Egl′ ,v
′ − Egm′ ,u

′
V (l′v′,m′u′)

gg , (B.25)

IS3 = LSeffρ
S
g (LSeff)†, (B.26)

where

LSeff = −i
∑
lvv′

Lve
i(Ee,v−Eg1,v)t1− e

−i(Ee,v−Egl,v
′−iγc/2)(t−t0)

Ee,v − Egl,v′ − iγc/2
V

(v,lv′)
+ , (B.27)

and the master equation is given in the Schrödinger picture as

ρ̇Sg = −i[Hg, ρ
S
g ] + IS0 + IS1 + IS2 + (IS0 + IS1 + IS2 )† + IS3 . (B.28)

In the case of a plasmonic nanocavity containing a molecule, we consider two electronic
states for the molecule denoted as X and A. The external laser can excite the cavity mode
or the electronic state so that we only consider the three states, {|X0〉 , |A0〉 , |X1〉},
where 0 and 1 represents the photon number of the cavity mode. Here, we consider only
the discrete basis, where the internal degree of freedom represents the vibration, we can
derive the master equation for the continuous basis in the same manner. By denoting
the vibrational eigenfunctions as |χX

v 〉 and |χA
v 〉, the Hamiltonian and the Lindbladian are

given as

H =
∑
v

ωX
v |X0, v〉 〈X0, v|+

∑
v

(ωA
v − ωL) |A0, v〉 〈A0, v|

+
∑
v

(ωX
v + ωc − ωL) |X1, v〉 〈X1, v|

+
µcE0(t)

2

∑
v

(|X1, v〉 〈X0, v|+ |X0, v〉 〈X1, v|)

+
µegE0(t)

2

∑
vv′

Svv′(|A0, v′〉 〈X0, v|+ |X0, v〉 〈A0, v′|)

+
Ω0

2

∑
v,v′

Svv′(|X1, v〉 〈A0, v′|+ |A0, v′〉 〈X1, v|), (B.29)

L =
√
γc

∑
v

|X0, v〉 〈X1, v| , (B.30)

where Svv′ = 〈χX
v |χA

v′〉, |X0, v〉 = |X0〉 |χX
v 〉, and E0(t) = E0 is a constant in time.
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We insert |g1, v〉 = |X0, v〉 , |g2, v〉 = |A0, v〉 , |e, v〉 = |X1, v〉 , Eg1,v = ωX
v , Eg2,v =

ωA
v − ωL, Ee,v = ωX

v + ωc − ωL, g1v,2v′ = µegSvv′E0/2, fv,1v′ = δvv′µcE0/2, and fv,2v′ =
Ω0Svv′/2 into Eq. (B.17), and obtain the integrals defined from Eq. (B.23) to Eq. (B.25)
as

IS0 = −i
µegE0

2

∑
vv′

Svv′ (|X0, v〉 〈A0, v′|+ |A0, v′〉 〈X0, v|) ρSg (t0), (B.31)

IS1 = i

[
(µcE0)2

4

∑
v

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|X0, v〉 〈X0, v|

+
Ω2

0

4

∑
vv′u′

Svu′Svv′
1− e−i(ωX

v +ωc−ωA
v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2
|A0, u′〉 〈A0, v′|

+
Ω0µcE0

4

∑
vv′

Svv′

{
1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|A0, v′〉 〈X0, v|

+
1− e−i(ωX

v +ωc−ωA
v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2
|X0, v〉 〈A0, v′|

}]
ρSg (t), (B.32)

IS2 = i
µegE0

2

∑
vv′u′

{
Svv′Su′v′

1− e−i(ωA
v′−ω

X
u′−ωL)(t−t0)

ωA
v′ − ωX

u′ − ωL
|X0, v〉 〈X0, u′|

−Su′vSu′v′
1− ei(ωA

v′−ω
X
u′−ωL)(t−t0)

ωA
v′ − ωX

u′ − ωL
|A0, v〉 〈A0, v′|

}
ρSg (t) (B.33)

and the effective Lindbladian is obtained as

LSeff = −i
√
γce

i(ωc−ωL)t

[∑
v

µcE0

2

1− e−i(ωc−ωL−iγc/2)(t−t0)

ωc − ωL − iγc/2
|X0, v〉 〈X0, v|

+
∑
vv′

Ω0

2
Svv′

1− e−i(ωX
v +ωc−ωA

v′−iγc/2)(t−t0)

ωX
v + ωc − ωA

v′ − iγc/2
|X0, v〉 〈A0, v′|

]
. (B.34)

The master equation in the main text Eq. (4.8) is obtained by neglecting IS0 and IS2 .
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B.3 Derivation of the jump probability dp

Here, we give the derivation of Eqs. (4.20) and (4.23). In the continuous basis, dp can be
expanded using Eq. (4.9) as

dp = idt 〈Ψ(t)| (HNH
eff − (HNH

eff )†) |Ψ(t)〉

= idt 〈Ψ(t)|
∫
dR

[
−(µcE0)2

4

(
iγc − (ωc − ωL + iγc/2)e−i(ωc−ωL−iγc/2)(t−t0)

|ωc − ωL − iγc/2|2

+(ωc − ωL − iγc/2)ei(ωc−ωL+iγc/2)(t−t0)
)
|X0, R〉 〈X0, R|

−Ω2
0

4

(
iγc − (VX + ωc − VA + iγc/2)e−i(VX+ωc−VA−iγc/2)(t−t0)

|VX + ωc − VA − iγc/2|2

+(VX + ωc − VA − iγc/2)ei(VX+ωc−VA+iγc/2)(t−t0)
)
|A0, R〉 〈A0, R|

−Ω0µcE0

4

{(
VX − VA + ωL + iγc

(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)

−(VX + ωc − VA + iγc/2)e−i(ωc−ωL−iγc/2)(t−t0)

+(ωc − ωL − iγc/2)ei(VX+ωc−VA+iγc/2)(t−t0)
)
|A0, R〉 〈X0, R|

+

(
−(VX − VA + ωL) + iγc

(ωc − ωL + iγc/2)(VX + ωc − VA − iγc/2)

(VX + ωc − VA − iγc/2)ei(ωc−ωL+iγc/2)(t−t0)

−(ωc − ωL + iγc/2)e−i(VX+ωc−VA−iγc/2)(t−t0)
)
|X0, R〉 〈A0, R|

}]
|Ψ(t)〉 .

(B.35)
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All the exponential terms contain e−γc(t−t0)/2 and so they become negligibly small when
t− t0 � 1/γc. By omitting those terms, Eq. (B.35) becomes

dp = idt 〈Ψ(t)|
∫
dR

[
−(µcE0)2

4

iγc

|ωc − ωL − iγc/2|2
|X0, R〉 〈X0, R|

−Ω2
0

4

iγc

|VX + ωc − VA − iγc/2|2
|A0, R〉 〈A0, R|

−Ω0µcE0

4

{
VX − VA + ωL + iγc

(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)
|A0, R〉 〈X0, R|

+
−(VX − VA + ωL) + iγc

(ωc − ωL + iγc/2)(VX + ωc − VA − iγc/2)
|X0, R〉 〈A0, R|

}]
|Ψ(t)〉

= dt 〈Ψ(t)|
∫
dR

[
(µcE0)2

4

γc

|ωc − ωL − iγc/2|2
|X0, R〉 〈X0, R|

Ω2
0

4

γc

|VX + ωc − VA − iγc/2|2
|A0, R〉 〈A0, R|

Ω0µcE0

4

{
−i(VX − VA + ωL) + γc

(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)
|A0, R〉 〈X0, R|

+
i(VX − VA + ωL) + γc

(ωc − ωL + iγc/2)(VX + ωc − VA − iγc/2)
|X0, R〉 〈A0, R|

}]
|Ψ(t)〉 .

(B.36)

Finally, we insert Eq. (4.13) to obtain

dp = dt

∫
dR

[
(µcE0)2

4

γc

|ωc − ωL − iγc/2|2
|CX0,R|2

+
Ω2

0

4

γc

|VX + ωc − VA − iγc/2|2
|CA0,R|2

+
Ω0µcE0

4

{
−i(VX − VA + ωL) + γc

(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)
C∗A0,RCX0,R + c.c.

}]
= dt

∫
dR

[
(µcE0)2

4

γc

|ωc − ωL − iγc/2|2
|CX0,R|2

+
Ω2

0

4

γc

|VX + ωc − VA − iγc/2|2
|CA0,R|2

+
Ω0µcE0

4

{
R− iI

|(ωc − ωL − iγc/2)(VX + ωc − VA + iγc/2)|2
C∗A0,RCX0,R + c.c.

}]
,

(B.37)

where R and I are defined as

R = γc

{
(ωc − ωL)(VX + ωc − VA) + (γc/2)2 + (VX − VA + ωL)2/2

}
(B.38)

I =
{

(ωc − ωL)(VX + ωc − VA)− (γc/2)2
}

(VX − VA + ωL). (B.39)
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In the discrete basis, dp is obtained in the same manner as

dp/dt =

(
(µcE0)2

4

∑
v

γc

|ωc − ωL − iγc/2|2

)
|CX0,v|2

+
Ω2

0

4

∑
v

{∑
v′

|Svv′|2
γc

|ωX
v + ωc − ωA

v′ − iγc/2|2
|CA0,v′ |2

+
∑
v′ 6=u′

Svu′Svv′
γc − i(ωA

v′ − ωA
u′)

(ωX
v + ωc − ωA

v′ − iγc/2)(ωX
v + ωc − ωA

u′ + iγc/2)
C∗A0,u′CA0,v′

}

+
Ω0µcE0

4

∑
vv′

Svv′

{
γc − i(ωX

v − ωA
v′ + ωL)

(ωc − ωL − iγc/2)(ωX
v + ωc − ωA

v′ + iγc/2)
C∗A0,v′CX0,v

+c.c.}

=

(
(µcE0)2

4

∑
v

γc

|ωc − ωL − iγc/2|2

)
|CX0,v|2

+
Ω2

0

4

∑
v

{∑
v′

|Svv′|2
γc

|ωX
v + ωc − ωA

v′ − iγc/2|2
|CA0,v′ |2

+
∑
v′ 6=u′

Svu′Svv′
RAA
v′u′ − iIAA

v′u′

|(ωX
v + ωc − ωA

v′ − iγc/2)(ωX
v + ωc − ωA

u′ + iγc/2)|2
C∗A0,u′CA0,v′

}

+
Ω0µcE0

4

∑
vv′

Svv′

{
RAX
vv′ − iIAX

vv′

|(ωc − ωL − iγc/2)(ωX
v + ωc − ωA

v′ + iγc/2)|2
C∗A0,v′CX0,v

+c.c.} , (B.40)

with

RAA
v′u′ = γc

{
(ωX

v + ωc − ωA
v′)(ω

X
v + ωc − ωA

u′) + (γc/2)2 + (ωA
v′ − ωA

u′)
2/2
}
, (B.41)

IAA
v′u′ =

{
(ωX

v + ωc − ωA
v′)(ω

X
v + ωc − ωA

u′)− (γc/2)2
}

(ωA
v′ − ωA

u′), (B.42)

RAX
vv′ = γc

{
(ωc − ωL)(ωX

v + ωc − ωA
v′) + (γc/2)2 + (ωX

v − ωA
v′ + ωL)2/2

}
, (B.43)

IAX
vv′ =

{
(ωc − ωL)(ωX

v + ωc − ωA
v′)− (γc/2)2

}
(ωX

v − ωA
v′ + ωL). (B.44)
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Quantum correlations in two-fermion systems. Physical Review A, 64(2):022303, jul
2001.

[52] G. C Ghirardi and L. Marinatto. Entanglement and properties. Fortschritte der
Physik, 51(45):379–387, may 2003.

[53] Gian Carlo Ghirardi and Luca Marinatto. General criterion for the entanglement of
two indistinguishable particles. Physical Review A, 70(1):012109, jul 2004.

[54] Paolo Zanardi. Virtual Quantum Subsystems. Physical Review Letters, 87(7):077901,
jul 2001.

[55] F Herbut and M Vujičić. Irrelevance of the Pauli principle in distant correla-
tions between identical fermions. Journal of Physics A: Mathematical and General,
20(16):5555–5563, nov 1987.

[56] Fedor Herbut. How to distinguish identical particles. American Journal of Physics,
69(2):207–217, feb 2001.

[57] Toshihiko Sasaki, Tsubasa Ichikawa, and Izumi Tsutsui. Entanglement of indistin-
guishable particles. Physical Review A, 83(1):012113, jan 2011.

[58] V. Vedral and M. B. Plenio. Entanglement measures and purification procedures.
Physical Review A, 57(3):1619–1633, mar 1998.

[59] Guifré Vidal. Entanglement monotones. Journal of Modern Optics, 47-2(3):355–376,
2000.

[60] Gregg. Jaeger. Quantum Information. Springer, New York, NY, 2007.

[61] Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin Schu-
macher. Concentrating partial entanglement by local operations. Physical Review
A, 53(4):2046–2052, apr 1996.

[62] Shunlong Luo. Using measurement-induced disturbance to characterize correlations
as classical or quantum. Physical Review A, 77(2):022301, feb 2008.

[63] Manfred Lein, Thomas Kreibich, E. K. U. Gross, and Volker Engel. Strong-field
ionization dynamics of a model H2 molecule. Physical Review A, 65(3):033403, feb
2002.

[64] T E Sharp. Potential-energy curves for molecular hydrogen and its ions. Atomic
Data and Nuclear Data Tables, 2:119–169, 1970.

[65] J. Rapp and D. Bauer. Effects of inner electrons on atomic strong-field-ionization
dynamics. Physical Review A, 89(3):033401, mar 2014.

91



BIBLIOGRAPHY

[66] R. Kosloff and H. Tal-Ezer. A direct relaxation method for calculating eigenfunctions
and eigenvalues of the Schrödinger equation on a grid. Chemical Physics Letters,
127(3):223–230, jun 1986.

[67] R. Kosloff and D. Kosloff. Absorbing boundaries for wave propagation problems.
Journal of Computational Physics, 63(2):363–376, apr 1986.

[68] J. A. Fleck, J. R. Morris, and M. D. Feit. Time-dependent propagation of high energy
laser beams through the atmosphere. Applied Physics, 10(2):129–160, jun 1976.

[69] M.D. Feit, J.A. Fleck, and A. Steiger. Solution of the Schrödinger equation by a
spectral method. Journal of Computational Physics, 47(3):412–433, sep 1982.

[70] D Kosloff and R Kosloff. A Fourier method solution for the time dependent
Schrödinger equation as a tool in molecular dynamics. Journal of Computational
Physics, 52(1):35–53, oct 1983.

[71] Yasuo Nabekawa, Yusuke Furukawa, Tomoya Okino, A Amani Eilanlou, Eiji J Taka-
hashi, Kaoru Yamanouchi, and Katsumi Midorikawa. Settling time of a vibrational
wavepacket in ionization. Nature communications, 6:8197, sep 2015.

[72] Yasuo Nabekawa, Yusuke Furukawa, Tomoya Okino, A Amani. Eilanlou, Eiji J. Taka-
hashi, Kaoru Yamanouchi, and Katsumi Midorikawa. Frequency-resolved optical gat-
ing technique for retrieving the amplitude of a vibrational wavepacket. Scientific
Reports, 5(1):11366, sep 2015.

[73] L. D. Landau and E. M. Lifshitz. Quantum Mechanics : Non-Relativistic Theory.
Elsevier Science, 1977.

[74] Stefan Pabst, Loren Greenman, Phay J. Ho, David A. Mazziotti, and Robin Santra.
Decoherence in Attosecond Photoionization. Physical Review Letters, 106(5):053003,
feb 2011.

[75] Caroline Arnold, Oriol Vendrell, and Robin Santra. Electronic decoherence follow-
ing photoionization: Full quantum-dynamical treatment of the influence of nuclear
motion. Physical Review A, 95(3):033425, mar 2017.

[76] M Schultze, M Fiess, N Karpowicz, J Gagnon, M Korbman, M Hofstetter, S Neppl,
A L Cavalieri, Y Komninos, Th Mercouris, C A Nicolaides, R Pazourek, S Nagele,
J Feist, J Burgdörfer, A M Azzeer, R Ernstorfer, R Kienberger, U Kleineberg,
E Goulielmakis, F Krausz, and V S Yakovlev. Delay in photoemission. Science (New
York, N.Y.), 328(5986):1658–62, jun 2010.

[77] K. Klünder, J. M. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot,
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[83] Christian Schäfer, Michael Ruggenthaler, and Angel Rubio. Ab initio nonrelativistic
quantum electrodynamics: Bridging quantum chemistry and quantum optics from
weak to strong coupling. Physical Review A, 98(4):043801, oct 2018.

[84] David M. Coles, Niccolo Somaschi, Paolo Michetti, Caspar Clark, Pavlos G.
Lagoudakis, Pavlos G. Savvidis, and David G. Lidzey. Polariton-mediated energy
transfer between organic dyes in a strongly coupled optical microcavity. Nature Ma-
terials, 13(7):712–719, jul 2014.

[85] Oriol Vendrell. Collective Jahn-Teller Interactions through Light-Matter Coupling
in a Cavity. Physical Review Letters, 121(25):253001, dec 2018.

[86] R. E. F. Silva, Javier del Pino, Francisco J. Garćıa-Vidal, and Johannes Feist. Polari-
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