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1. Introduction

When an atom or a molecule is irradiated with an ultrashort laser pulse, photoionization can proceed. Upon the
photoionization, a correlated pair of an ion and a photoelectron is produced. If the ion has one or more than one electrons
and/or the ion is composed of more than one nuclei, coherent motions of the constituent particles are created within the ion,
and the coherent motions carry the information on the photoelectron because the ion and the photoelectron are correlated.
It has been known that that the coherent motion of an ion created upon photoionization of an atom by the irradiation

of an ultrashort pulse can be characterized by a reduced matrix dion of the created ion [1]. However, it has not been
explored yet how the correlation between a photoelectron and an ion is encoded in the reduced matrix of the ion. In order
to understand how the correlation between a photoelectron and an ion produces the coherence in the ion, I investigate
theoretically photoionization of H2 by an ultrashort XUV laser pulse, and describe the coherent vibrational motion of H+2
by its reduced density matrix dvib.
First, I introduce a concept of entanglement, which can be defined unambiguously for a bipartite system, to discuss

quantitatively how the extent of the correlation is influenced by the parameters of the XUV laser pulse such as its
wavelength, pulse duration, and field intensity.
Next, in order to evaluate the effect of the correlation on the coherent vibrational motion of H+2 , I calculate the phase of

the reduced density matrix dvib. When we discuss the phase of the reduced density matrix of the ion, we need to know not
only the initial phase transferred from the phase of the laser pulse and the dynamical phase originating from the field-free
evolution of the ion but also the phase of the photoelectron wave function originating from the interaction between the ion
and the photoelectron. However, to the best of our knowledge, the phase of the photoelectron wave function has not been
explicitly considered before in the determination of the reduced density matrix. In the thesis, I determine the phase of dvib

by evaluating the phase of the photoelectron wave function.
On the other hand, when a photon is emitted from an atom or from a molecule placed in a cavity, the photon and the atom

or molecule are correlated with each other. In recent years, the molecule–photon coupling in a cavity has been attracting
attention for its potential applications in quantum information as well as for its capability of controlling chemical reactions
[2, 3]. It has been known that a correlation between a photon and a molecule can be investigated for a model system in
which a molecule is trapped in a plasmonic nanocavity [2]. I investigate in the thesis the correlated dynamics of a molecule



and a photon in a cavity and develop a numerical algorithm to simulate a photon emission from the cavity.

2. Entanglement between H+2 and e−

After the photoionization of H2, the total system, H+2 + e−, is described by the wave packet,

|Φ〉 =
∑
E

∫
3ke0Eke |jEq1s〉 |kke〉 , (1)

where |jE〉 and |q1s〉 are the vibrational and electronic eigenfunctions of H+2 (1sfg), respectively, E is the vibrational
quantum number, |kke〉 is the photoelectron energy eigenfunction, ke is the photoelectron momentum, and 0Eke is the
transition amplitude from the ground state of H2 to the final state |jEq1s〉 |kke〉. In order to quantify the correlation between
H+2 and e− using the entanglement between these two particles, I calculate the reduced density matrix of either H+2 or e−,
and we adopt that of H+2 ,

dvib =
∑
EE′

∫
3ke0Eke0

∗
E′ke
|jE〉 〈jE′ | , (2)

which represents the vibrational coherence of H+2 . As a quantifier of the extent of entanglement, I choose the purity of the
reduced density matrix because it is directly related to the coherence of the subsystem, i.e., H+2 in this case. The purity % is
defined as the trace of d2

vib as

% = Tr[d2
vib] =

∑
EE′

����∫ 3ke0Eke0
∗
E′ke

����2 . (3)

The purity becomes 1, i.e., % = 1, when H+2 and e− are not entangled while it decreases as the extent of entanglement
between H+2 and e− increases.
I adopt the one-dimensional model, in which the electrons and the protons move along the direction of the electric field

of the linearly polarized light, and solve the time-dependent Schrödinger equation using the grid method. In Fig. 1, the
purities calculated using seven different sets of laser parameters are plotted. As shown in this figure, the purity decreases
as the pulse duration increases and does not vary sensitively to the wavelength and the peak intensity. Because the spectral
bandwidth decreases as the pulse duration increases, it becomes possible to determine the vibrational state of H+2 only by
measuring the energy of the photoelectron l: . In other words, as the pulse duration increases, the photoelectron carries
more information on the vibrational state of H+2 , and the extent of the entanglement between the photoelectron and H+2
becomes larger.
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FIG. 1. The purity as a function of the pulse duration for
the seven different sets of laser parameters. The intensity
is set to 1015 Wcm−2 except (1) and (2), for which the
intensity is set to 1013 Wcm−2.
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FIG. 2. The intrinsic phase of the reduced density matrix between Eth
state and (E + 1)th state, ΔE,E+1, and the corresponding intrinsic time
delay, gE,E+1.

3. Time delay in the vibrational motion of H+2



When H+2 created by the photoionization is irradiated with a probe pulse so that H+2 dissociates into H + H+, the kinetic
energy release (KER) of H+, is known to oscillate as a function of the pump–probe time delay g [4]. This oscillation can
be characterized not only by the dynamical phase, −lEE′g ≡ −(lE − lE′)g, but also by a phase intrinsic to the ionization
process. This intrinsic phase is related to the phase of the reduced density matrix as

ΔEE′ = arg[(dvib(g))EE′] − (−lEE′g) = arg
[∫

3ke0Eke0
∗
E′ke

]
− (−lEE′g). (4)

From the variation of the KER in g, which is called the delay–KER spectrogram, the intrinsic delay, gEE′ , defined using the
intrinsic phase as gEE′ = ΔEE′/lEE′ , can be extracted.
I calculate the transition amplitude of the ionization process using the first-order perturbation theory and derive ΔEE′ and

gEE′ . In order to describe the phase created by the ionization process precisely, I express the photoelectron wave function
using the two-center Coulomb wave function. As an ionization laser pulse, I adopt an attosecond pulse train, by which an
experimental delay–KER spectrogram of H+2 was recorded recently [4].
In Fig. 2, the intrinsic phase and the intrinsic time delay between Eth and (E + 1)th vibrational levels of H+2 are plotted.

The intrinsic phases are found to be of the order of 10−3c radian, and consequently, the corresponding time delay is in the
range between −43 as −27 as. The complex phase of the photoelectron wave function, which is determined by the phase
shift originating from the Coulombic potential created by H+2 , depends only weakly on E. Because only the photoelectron
wave function kke is the complex-valued function appearing in the calculation of the amplitude of the transition 0Eke from
the ground state of H2, |Ψ0〉, to the final state, |jEq1skke〉, the phase of 0Eke also weakly depends on E. Consequently, the
phase differences, arg[0Eke] − arg[0E+1,ke], becomes of the order of tens of attoseconds. In order to extract the intrinsic
delay gE,E+1 from the delay–KER spectrogram, the pump–probe time delay g should be measured with precision of the
order of gE,E+1, which is as small as 27 as. Considering the uncertainty of the pump–probe time delay in Ref. [4] was about
80 as, the required uncertainty of 27 as can be within range of future experiments.

4. Correlated molecule–photon dynamics
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FIG. 3. The population of the electronic excited state |e〉 calcu-
lated by the numerical integration of the master equation (ME,
solid line) and by the MCWP method (MCWP(average), dashed
line). A trajectory (dots) shows abrupt damping at random times,
which corresponds to the detection of the photon emitted from
the cavity.

In order to study the coupled molecule–photon dynamics in
a cavity, I choose a model system composed of a molecule hav-
ing two vibronic modes and a cavity having only one mode. I
assume that the potential energy curves of two electronic states,
|g〉 and |e〉, are modeled by harmonic oscillators, and the cavity
is pumped by the continuous wave laser whose frequency is
resonant with the cavity mode. The coupling between the elec-
tronic excitation and the cavity excitation is described through
the vacuumRabi frequencyΩ0. I assume the spontaneous emis-
sion from the molecule into the vacuum is negligible compared
with the decay of the cavity photon.
I numerically integrate the master equation,

¤d = −i[�, d] − W/2
(
0†0d + d0†0

)
+ 0d0†, (5)

where d is the density matrix of the molecule–photon system,
� is the Hamiltonian of the coupled molecule–photon system,
and 0 is the annihilation operator of the cavity photon whose
decay rate is W.
In order to efficiently simulate the vibrational motion of the molecule in the cavity, I also solve the master equation by

using the Monte Carlo wave packet (MCWP) method [5], with which we can express the system by the state vector instead
of the density matrix, so that we can reduce the computational cost significantly. In the MCWP method, the state vector
of the system, |Ψ〉, is propagated under the non-Hermitian Hamiltonian, �NH = � − iW/20†0, and then, the decrease in
the norm, 3?, during the time propagation from C to C + 3C, is calculated. Finally, in order to mimic the randomness of
the photon detection in the experiment, a random number n is chosen at each time step, and the annihilation operator 0 is



applied to the state vector if n < 3? is satisfied at C, which means the photon is detected at C. We call each state vector |Ψ〉 the
trajectory and, by averaging over a large number # of trajectories, we can obtain the density matrix d = 1/# ∑#

9 |Ψ 9〉 〈Ψ 9 |
equivalent to that obtained by the numerical integration of the master equation.
In Fig. 3, the population of the electronic excited state |e〉 with Ω0 = W/10 obtained by the numerical integration of the

master equation (solid line) shows the damped Rabi oscillation, which is well reproduced by using the MCWP method by
averaging over 4000 trajectories (dashed line). A trajectory of the MCWP method, |Ψ〉 (dots), shows the Rabi oscillation
and discontinuities at random times, at which the condition n < 3? is satisfied, i.e., the photon is detected. As the trajectory
shown in Fig. 3 indicates, photon detection occurs frequently because W is large compared with Ω0.
Because the cavity excited state evolves much faster than the molecular ground and excited states when Ω0 < W, we have

eliminated the cavity mode and developed an effective operator method [6], which describes the system within a compact
Hilbert space and give insights into the dynamics. We have confirmed that the effective operator method reproduces the
exact results obtained with the original master equation. By combining the effective operator method with the MCWP
method, we have clarified that the photon emission explicitly depends on the nuclear position and the coherence between
the vibronic states.
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