論文の内容の要旨

論文題目

Development of Tin-Based Transparent Conductive Oxides with High Carrier Mobility

(高キャリア移動度スズ系透明導電性酸化物の開発)

氏名: 福本 通孝

Transparent conductive oxides (TCOs), exhibiting excellent transparency and conductivity simultaneously, are of increasing importance for optoelectronic applications such as electrodes in solar cells and flat panel displays. Generally, conductivity increases as carrier Hall mobility $(\mu_{\rm H})$ and carrier density (n_e) increase, whereas too high n_e results in the loss of transparency due to plasma absorption. Thus, a key to practical TCOs is to achieve high Hall mobility in degenerately-doped regime ($n_e \sim 10^{20}$) cm⁻³), which can increase electrical conductivity without sacrificing optical transparency. A main strategy to attain high μ_H is to design carrier conduction pathway consisting of spatially-extended sorbital of cation, such as Sn^{4+} , In^{3+} , and Zn^{2+} for electron-transporting (n-type) TCO and Sn^{2+} , Pb^{2+} , and Bi³⁺ for hole-transporting (p-type) TCO. Sn-based TCOs are a unique class of materials exhibiting both high electron mobility and high hole mobility, depending on the valence of Sn.

In my Ph. D study, I aimed to develop Sn-based TCOs with high- μ _H. I first investigated the electron transport properties of doped $SnO₂$. Although doped $SnO₂$ is practically important TCO, the highest μ_H value reported for SnO₂ films is significantly lower than those in bulk single crystals. Therefore, it is highly desirable to determine the upper limit of experimentally accessible μ_H in SnO₂ films and to develop guiding principles to achieve such high μ_H . From this point of view, I investigated electron transport properties of Ta-doped $SnO₂$ (TTO) epitaxial films, focusing on the growth orientation and n_e dependence of μ_H . As a result, I found that (001)-oriented growth is essentially favorable for achieving high- μ _H because of the suppressed propagation of {101} CSPs. The (001)oriented TTO films exhibited maximum μ _H of 130 cm²V⁻¹s⁻¹ at $n_e \sim 1 \times 10^{20}$ cm⁻³, which almost reached the intrinsic limit of μ_H determined by phonon and ionized impurity scatterings. Subsequently, the transport properties for (001)-oriented W-doped SnO₂ epitaxial films were investigated. Although the WTO films have been known to be a high- μ _H TCO, the detailed carrier generation mechanism remains to be known. As a result, the n_e values for the WTO films lay on the ideal n_e assuming 1e⁻/W⁵⁺, indicating that each W⁵⁺ ion generated one carrier electron. Moreover, the μ_H values for the obtained WTO films (~ 136 cm²V⁻¹s⁻¹) were as high as that of the TTO films, agreeing well with the intrinsic limit of μ _H on the assumption of W⁵⁺. These results suggested that W⁵⁺ ions in SnO₂ act as singly charged donors without impairing high- μ_H of SnO₂.

Then I explored another dopant for $SnO₂$, P, which has recently been suggested as a promising dopant for $SnO₂$ by the first principles calculation [1]. As a result, the doping efficiency approached to 100% as the phosphorus amount decreased. This behavior is consistent with the prediction by theoretical calculation. The epitaxial P-doped $SnO₂$ (PTO) films on TiO₂ exhibited relatively high μ_H (40 cm²V⁻¹s⁻¹). Use of a seed-layer might be effective to improve the mobility of PTO films on glass towards practical applications of PTO.

Next, I tried to fabricate $SnO₂$ films in a practical manner toward an application to solar cells. I proposed the fabrication of textured transparent conductive $SnO₂$ films by processing substrates with a bottom-up technique. I used self-assembled nanospheres of $SnO₂$ as nanostructured templates. This template approach is potentially more productive and scalable than alternative methods because the template can be fabricated in the same sputtering chamber used to deposit TCO layers.

I also attempted to fabricate novel p-type Sn-based TCOs based on $\text{Sn}_5\text{O}_2(\text{PO}_4)_2$. A recent theoretical calculation predicted that $Sn₅O₂(PO₄)₂$ can be a host material for p-type TCO with high $\mu_{\rm H}$ [2]. I successfully fabricated phase-pure Sn₅O₂(PO₄)₂ thin films with 001-orientation by using Y_2O_3 buffered glass. The obtained $Sn_5O_2(PO_4)_2$ film showed a high transparency in the visible and near-infrared spectral regions with a large bandgap of 3.87 eV. In addition, the film was an intrinsic semiconductor without intentional doping, which is suitable for studying the fundamental physics of the material.

In conclusion, I investigated the optoelectronic properties of Sn-based TCO thin films with n-type and possible p-type conductivity toward high- μ_H . In the study of impurity-doped SnO₂ films, the results revealed that (001)-orientation is essentially favorable to high- μ_H due to the suppression of $\{101\}$ CSPs propagation. Then I explored other promising dopants for SnO₂, W and P. The WTO epitaxial films showed high- μ comparable to that of TTO films approaching the intrinsic limit. The PTO films showed high doping efficiency with high- μ_{H} , indicating the P ions behave as good dopant in $SnO₂$. In addition, from the viewpoint of the application of $SnO₂$, I proposed the fabrication of textured transparent conductive SnO² films by processing substrates with a bottom-up technique. In the study of $\text{Sn}_5\text{O}_2(\text{PO}_4)_2$, which is predicted to be a p-type TCO with high μ_{H} , 001-oriented thin films were successfully fabricated on glass substrates buffered by (111) -textured Y₂O₃. The obtained

Sn5O2(PO4)² film showed high transparency in the visible light region and a wide bandgap of 3.87 eV which agreed well with theoretical calculation. The $Sn₅O₂(PO₄)₂$ film showed highly insulating behavior, and intentional doping was needed for future investigation of fundamental electrical properties of $Sn₅O₂(PO₄)₂$. These results opened up a novel avenue of search for high- μ _H Sn-based TCOs.

References

- [1] M. Behtash, P. H. Joo, S. Nazir, and K. Yang, J. Appl. Phys. **117**, 0 (2015).
- [2] Q. Xu, Y. Li, L. Zhang, W. Zheng, D. J. Singh, and Y. Ma, Chem. Mater. **29**, 2459 (2017).