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Abstract 
 

 In analogy with genetic traits, cultural traits diffuse from one population to 

another through interaction and learning process of individuals. To deduce how newly 

invented traits spread from their original populations and to analyze how observed 

geographic pattern of cultural traits has evolved, network is a convenient mathematical 

model. This thesis, composed of three substantial chapters enumerated Chapter 2, 3, and 

4, aims to shed light to the cultural evolution among multiple populations with the aid of 

a network whose nodes represent populations and edges represent transmission of cultural 

traits. As an application of this model, I specifically treat the spatial pattern of dialects, or 

lexical variants. 

 In Chapter 2, I discuss a peculiar spatial distribution of dialects; some dialect 

words are shared among geographically distant groups of people without close interaction. 

Such a pattern may indicate the current or past presence of a cultural center exerting a 

strong influence on peripheries. For example, concentric distributions of dialect variants 

in Japan may be explicable by repeated inventions of new variants at Kyoto, the ancient 

capital, with subsequent outward diffusion. In Chapter 2, I develop a model of linguistic 

diffusion within a population network to quantify the distribution of variants created at 

the central population. Equilibrium distributions of word ages are obtained for idealized 

networks and for a realistic network of Japanese prefectures. My model successfully 

replicates the observed pattern, supporting the notion that a center-periphery social 

structure underlies the emergence of concentric patterns. Unlike what has previously been 

claimed, my model indicates that a novelty bias in linguistic transmission is not always 

necessary to account for the concentric pattern, whereas some bias in the direction of 

transmission between populations is needed to be consistent with the observed absence 

of old words near the central population. My analysis on the realistic network also 

suggests that the process of linguistic transmission is not much affected by between-

prefecture differences in population size. 

 In Chapter 3, I further generalize the model used in Chapter 2 and consider the 

dynamics of cultural macroevolution, which concerns a long-term evolutionary process 

involving transmission of non-genetic or cultural traits between populations as well as 

birth and death of populations. To understand the spatial dynamics of macroevolution, I 

present a network model of cultural transmission in which any population may innovate 

a novel trait. Borrowing the method of ancestral backward process from population 

genetics, my model explores the genealogy of a cultural variant sampled in the present 
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generation. Mathematical analysis of the model enables us to predict the distribution of 

cultural age in each population of the network, investigate the frequencies of cultural 

variants originating from given populations, discuss the time it takes for a cultural variant 

to diffuse between a given pair of populations, and calculate the frequency of each variant 

in each population under a finite-variant assumption. I also perform numerical analysis 

on random networks of populations to investigate the effect of network topology and 

innovation rate on the age and origin of cultural variants in each population. The results 

suggest that a cultural variant tends to be maintained at a higher frequency if its original 

population is characterized by more innovations, more influence on other populations, 

and/or less influence from other populations. My finding also includes that a cultural 

variant invented in a given population tends to spread more rapidly if the population is 

more influential to and/or more influenced by other populations. 

 In Chapter 4, I investigate the spatial distribution of lexical variants of Japanese 

language based on both empirical data and the mathematical model presented in Chapter 

3, focusing mainly on the relationship between linguistic distance (LD) and geographic 

distance (GD). For empirical data, I calculate the edit (Levenshtein) distance among 

lexical variants recorded at 2400 localities surveyed in the Linguistic Atlas of Japan (LAJ) 

project, showing that linguistic distance between localities is strongly correlated with 

geographic distance. Since a pair of words derived from the same source usually bears a 

marked similarity, simulating when and where lexical variants were invented is an 

essential way to examine the linguistic distance between localities. For this purpose, I 

develop a network of the surveyed localities of LAJ, based on their geographic positions 

and population sizes, and apply the model of Chapter 3 to quantify the origin and expected 

age of variants. I show that variants are likely to be originated from localities with large 

population sizes, whereas variants originating from an arbitrary population occupy every 

population with a relatively similar probability, unless cultural transmission occurs 

exclusively between proximate populations. In addition, simulating the linguistic distance 

for locality pairs on the network, I show that linguistic distance correlates strongly with 

the logarithm of geographic distance (Séguy’s curve) if variants transmit mostly between 

closely positioned localities. Conversely, if variants can also transmit between remote 

localities, linguistic distance correlates more strongly with geographic distance itself, 

resulting in a linear relationship between LD and GD. Moreover, my simulation reveals 

that accumulation of linguistic distance is not spatially isotropic when lexical variants can 

only transmit between proximate localities. Within the framework of approximate 

Bayesian computation with Markov Chain Monte Carlo (MCMC) sampling, we infer 

parameter values of our model based on empirical data in LAJ.  
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Chapter 1. General introduction 
 

Humans are characterized by their wide variety of cultures [1,2]. Cultures or cultural traits 

are a broad concept defined as traits inherited from individual to individual via non-

genetic transmission, such as archaeological traits, skills, information, and languages. 

Cultural traits are invented through individual learning and transmitted through social 

learning, and their dynamics have been studied as an analogy to evolution of genetic traits. 

 Cultural evolution is explained by two processes according to its scale: cultural 

microevolution and cultural macroevolution. While the former treats the frequency 

change of cultural traits within a single population, the latter considers the transmission 

of cultural traits among multiple populations along with divergence, convergence, birth, 

and death of populations [3]. As for cultural macroevolution, a growing body of literature 

examines the spatial dynamics of cultural transmission both empirically and theoretically. 

For example, phylogenic methods have been used to infer the historical relationship of 

cultural traits of multiple populations [4]. Transmission of hinoeuma superstition among 

Japanese prefectures was examined along with the fertility decline rate of each group [5]. 

Reaction-diffusion systems were applied to model the spatial range-expansion of modern 

humans coupled with diffusion of modern skills [6] and farming [7]. In addition, 

transmission of social information has been studied through a network model called voter 

model [8]. 

 Here, in this thesis, I will explore the transmission of cultural traits among 

multiple populations, which plays a pivotal role in the dynamics of cultural 

macroevolution. For this purpose, we develop a network model whose nodes represent 

populations and whose edges represent the existence of inter-population transmission of 

cultural traits. Unlike voter model, which often treats the dynamics of extant traits and 

calculates the fixation time and probability of one trait, I will consider a case where novel 

cultural variants are continuously invented and old ones are replaced on the network. 

Emphasis will be placed on the age and origin of cultural variants, or in other words, I 

will establish a theory to infer when and where the traits were invented. 

 Beyond theoretical analysis of the mathematical model, I will apply the network 

model to the spatial distribution of dialects, which is a typical example of cultural traits 

in humans. Spatial patterns and diffusion of languages have been examined in linguistic 

geography, and classical research recorded the distribution of linguistic items on linguistic 

atlases [9, 10], based on interviews with local volunteers as informants. Starting from 

Seguy’s [11] work which was based on the linguistic atlas of France [12], quantitative 
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research into linguistic atlas correlated the linguistic distance with geographic distance, 

often finding a sublinear increase of linguistic distance as a function of geographic 

distance [11, 13]. In addition, spatial evolution of linguistic traits has been theoretically 

explored by means of mathematical models, such as voter model [14,15] and surface 

tension model [16]. 

 The purpose of this thesis is two-fold; First, I will establish a mathematical model 

of cultural evolution which assumes the transmission rate and innovation rate of each 

population and infer the spatial and temporal dynamics of cultural variants. Second, 

having obtained the mathematical formulae to estimate age and origin of cultural variants, 

I will apply it to the diffusion of linguistic traits and discuss whether the previously 

observed phenomena in linguistic geography can be explained by our model. 

 This thesis consists of three main chapters. In Chapter 2, I will treat a 

phenomenon that some dialect words in Japanese mainland are arranged in a concentric 

ring-like pattern around Kyoto, where novel words occupy the center and ancient words 

occupy the periphery [17]. The theory, posited by Kunio Yanagita [18], is explained by 

consecutive innovation of new words in Kyoto and subsequent diffusion to its periphery. 

In Chapter 2, to provide a mathematical support for this theory, I will introduce a network 

model and explore how words created in a central population like Kyoto will diffuse into 

its periphery. In this chapter, I will introduce a notion of word age and examine its spatial 

pattern, based on both theoretical and realistic networks of populations. Using a variety 

of networks, I will analyze how network topology, such as direction of transmission and 

existence of barriers hindering transmission, exerts influence on the diffusion of dialect 

words. 

 In Chapter 3, I will further generalize the model used in Chapter 2, which is 

specialized for the case of center-periphery structure, and develop a network model in 

which any population has the chance to invent a new cultural variant. Considering the 

backward ancestral process and cultural genealogy [19], I will derive mathematical 

formulae which give the origins of variants in each population, as well as the expected 

time it takes for a cultural variant to transmit between two populations. Besides analytical 

approach, I will perform a numerical analysis using a random network to infer the effect 

of topological structure and innovation rate on the age and origin of cultural variants. In 

addition, I will establish a model of a finite number of variants and quantify the frequency, 

age, and origin of each variant for every node (population) of the network. 

 In Chapter 4, I will elucidate the spatial distribution of Japanese lexical variation 

relying on both empirical data and my network model. I will apply the mathematical 

formulae derived in Chapter 3 to the network whose nodes represent the survey locations 
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of LAJ (Linguistic Atlas of Japan) project [9] and simulate the linguistic diffusion of 

Japanese language. Moreover, I will calculate empirical linguistic distance for every 

locality pair based on the lexical data archived in LAJDB (Linguistic Atlas of Japan 

Database) [20] and obtain the empirical pattern of Japanese lexical variants. I will thereby 

analyze the relationship between geographical and linguistic distances based on both 

empirical data and simulation. Finally, comparing the observed and simulated linguistic 

distances, I will infer parameter values of the model within the framework of approximate 

Bayesian computation (ABC). 
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Chapter 2.  

Quantifying the spatial pattern of dialect words 

spreading from a central population 

 

 

1. Introduction 

A dialect is a variant of a language that is spoken by a distinct group of people, where 

regional dialects may differ from each other in terms of phonology, lexicon, morphology 

and syntax [1-3]. On the level of linguistic variation within a language family, similarities 

between languages have been used to reconstruct the phylogenetic relationship among 

human populations [4-6] based on the premise that populations linguistically more similar 

to each other are likely to have diverged more recently from an ancestral population (i.e., 

cultural macroevolution; [7]). Similarly, on the level of dialect variation, much 

quantitative research has shown that the linguistic distance of each locality is to some 

extent explained by the geographic distance, although its correlation coefficient varies 

depending on how geographic distance is measured [8,9]. These studies give impression 

that the similarity of language reflects the phylogeny of human groups, but it is also often 

the case that the same dialect variant of a word is documented in phylogenetically distant 

local groups [10, 12], which is likely due to diffusion of words between groups. 

 On the basis of extensive documentation of Japanese dialects, Yanagita described 

peculiar geographic distributions of words within the country [10]. In particular, he 

pointed out that the same dialect variants of the word for snail (kagyu) were seen in both 

ends of the east-west stretch of the land, while they were absent in the middle. Similar 

patterns of dialect words were found in the nation-wide project of Linguistic Atlas of 

Japan (LAJ) [1], in which words meaning face epitomize this distribution (available at 

https://mmsrv.ninjal.ac.jp/laj_map/data/laj_map/LAJ_106.pdf). To account for these 

patterns, Yanagita posited that dialect forms in Japanese may exhibit a concentric 

distribution centred at Kyoto, the old capital in the middle Japan. According to this theory, 

new words were repeatedly invented in Kyoto and diffused gradually outward to 

periphery, leaving concentric traces. Underlying assumptions are that new words were 

preferentially adopted by people, perhaps owing to Kyoto's prestige as the capital, and 

that the diffusion was slow relative to creation of words, which is plausible given the 

absence of modern technologies such as television or the Internet. 
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 Concentric distribution of word variants is not unique to Japanese language but 

occurs in other places where populations are socially or geographically structured into 

centres and peripheries (hereafter the centre-periphery structure). For example, research 

based on linguistic atlases of Breton and French languages [3, 11] has revealed that 

several word forms are distributed in a concentric pattern in Lower-Brittany, highlighting 

a profound impact of economically and culturally important towns on the spread of word 

variants [12]. Despite the ubiquity of similar concentric patterns, most previous studies 

have merely proposed verbal explanations of the phenomenon without presenting any 

quantitative analysis. In particular, there is a dearth of mathematical rationale to unveil 

the underlying factors of the concentric patterns in dialects. 

 This chapter aims to provide a quantitative support to the theory concerning the 

evolution of concentric distribution of dialects [10]. For this purpose, we will develop a 

mathematical model and examine whether and how observed and hypothesized 

concentric patterns are replicated from simplistic assumptions of the model. 

 For a mathematical treatment of geographical patterning of dialect variants in 

the presence of the centre-periphery structure, we need a model considering linguistic 

influences among multiple groups of people. One commonly used framework is the 

gravity model [13], in which the mutual influence of two centres (towns, cities, etc.) is 

assumed to be proportional to the product of their populations and inversely proportional 

to the squared distance between them. This model predicts that linguistic features first 

diffuse from city to city, skipping the rural area in between. Kretzschmar [14] used 

cellular automaton (CA) as a computational model to investigate temporal changes in 

linguistic features across areas. Fagyal et al. [15] conducted an agent-based simulation to 

investigate the language change in a heterogeneous social network, in which highly 

connected and isolated agents constitute a centre-periphery structure. Burridge [16,17] 

has recently developed spatially explicit models of linguistic change, borrowing methods 

from statistical physics. Incorporating demographic data, he demonstrated the spread of 

words from a city, or densely populated area, to the peripheries. These models provide 

explanations for interesting linguistic phenomena, including temporal dynamics of dialect 

boundaries; however, they are silent about the possibility of concentric dialect distribution. 

This is because these models are designed to deal with a fixed number of pre-existent 

dialect variants and thus do not allow for repeated inventions of new words in a central 

population as presupposed by Yanagita [10]. 

 A theoretical study that is more relevant to the current context is by Lizana et al. 

[18], who focused on the proposed concentric distribution of swear words in Japanese 

dialects, such as aho and baka, meaning a stupid person [19]. They ran a computer 
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simulation on a two-dimensional lattice that represents the real geography of Japanese 

Archipelago, assuming that new words are repeatedly invented in Kyoto and then 

transmitted to neighbouring regions. A critical assumption was that there is a novelty bias 

in the transmission of words, so that a newer variant will invade and replace an older 

variant occupying a lattice site, but not vice versa. The simulation successfully 

reproduced two empirical features of the swear-word distribution: (1) the same variants 

are found both to the east and west of Kyoto; and (2) the geographic band within which 

a variant is found is broader when it is further from Kyoto. The same research also 

reported that the absence of the novelty bias results in the disappearance of the concentric 

pattern. 

 While Lizana et al.'s work [18], which is mostly numerical, has demonstrated 

that a concentric distribution of words can indeed be formed under a set of reasonable 

assumptions, a fuller mathematical analysis would shed more light on the processes of 

linguistic diffusion underlying the observed patterns of linguistic variation. To achieve 

the latter, this paper develops a mathematical model, assuming a network of populations 

with a central population from which every word derives, as a simplest representation of 

the centre-periphery structure. Our model differs from the previous study in three ways. 

First, we deliberately omit the novelty bias in the transmission of words. Although Lizana 

et al. suggested that the appearance of concentric pattern was conditional on the presence 

of the preference for novel words, we show that this assumption is not always necessary 

for the formation of a concentric distribution. Second, while only one variant occupies 

each lattice site in Lizana et al.’s model, multiple variants can coexist in a single 

population in our model. The frequency of individuals having a given variant is 

represented by a real number ranging from zero to one in each population. This 

assumption seems more realistic because speakers in a single population may use 

different words, or multiple dialects may be seen in the same group of people. In fact, a 

questionnaire research has reported that some respondent answered multiple aho-baka 

expressions prevalent within the same area [19]. Finally, and as a corollary to the second 

point, we do not define the distance from the central population for each variant. This is 

because in our formulation each variant may be used in different frequencies in multiple 

populations, which is unlike Lizana et al.'s model. Instead, we track changes in the 

distribution of word ages in each population. As every word is consecutively invented in 

the central population, different word age corresponds to a different variant, so we can 

indirectly deduce the distribution of words by quantifying the spatial pattern of word ages. 

 In what follows, we will first develop general formulae to calculate the 

distribution, mean, and standard deviation of word age in each population within a 
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network of populations, under the assumption that populations are large (Section 2). In 

Section 3, we apply them to simplistic, schematic networks in order to grasp the general 

characteristics of the word-age pattern. In particular, we will treat the following idealized 

networks: 

 

(1) One-dimensional lattice with unidirectional diffusion 

(2) One-dimensional lattice with bidirectional diffusion 

(3) Two-dimensional lattice 

(4) One-dimensional lattice with a barrier 

(5) Two-dimensional lattice with a barrier 

 

Section 4 examines the distribution on a more realistic network, based on the network of 

Japanese prefectures. 

 

2. Theory 

Description of the model 

We consider transmission of a linguistic trait within and between 𝑛 + 1  populations, 

𝑃0, 𝑃1, … , 𝑃𝑛, each of which consists of a sufficiently large number of individuals, where 

the assumption of large population sizes is for the sake of mathematical simplicity. 

Innovations of words occur only in population 𝑃0, which we call the central population. 

In every timestep, one novel word is invented and immediately spreads within 𝑃0. We 

treat a polychotomous linguistic trait, such as multiple words meaning the same object, 

or different pronunciations and intonations for the same word. Thus, an individual can 

have only one variant at given time. This is analogous to the one-locus model in 

population biology. Members of populations other than 𝑃0 , which we call peripheral 

populations, may obtain a variant by learning socially from an individual in the same or 

other populations. After social learning, all individuals' variants are updated 

simultaneously at the beginning of the next timestep. We define 𝑡 = 0 as the time when 

the central population emerges, and transmission starts. 

 Every single linguistic variant in 𝑃𝑘  (0 ≤ 𝑘 ≤ 𝑛) derives from 𝑃0, given it was 

created when 𝑡 ≥ 0, so we can distinguish the variants by their ages. Let 𝑓𝑘(𝜌, 𝑡) denote 

the frequency of the variant aged 𝜌 (≥ 0) in population 𝑃𝑘 at timestep 𝑡, where the 

age of a variant is measured by the number of timesteps elapsed since the variant was 

created and does not indicate any concrete time unit such as year, decade or generation. 

We have 
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          ∑ 𝑓𝑘(𝜌, 𝑡)

∞

𝜌=0

= 1     (0 ≤ 𝑘 ≤ 𝑛).     (1) 

 

Here, 0 ≤ 𝜌 ≤ 𝑡 corresponds to the variants which were invented in 𝑃0, whereas 𝜌 >

𝑡 represents the ones that had already existed when the central population emerged at 

𝑡 = 0. 

 As for the central population 𝑃0, the frequencies of word ages are written as 

 

        𝑓0(𝜌, 𝑡) = {
1     (if 𝜌 = 0)

0     (if 𝜌 > 0)
,     (2) 

 

which means that all individuals in the central population always have the latest variant. 

In peripheral populations, each individual chooses a role model from whom to learn a 

linguistic variant. In the choice of role model, a learner first chooses a population to which 

a potential role model belongs, where the probability with which a learner in 𝑃𝑖 chooses 

𝑃𝑗 is denoted by 𝑎𝑖𝑗 (≥ 0) (1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑛), and then chooses a role model from 

all individuals in the chosen population with equal probability. Since the population is 

sufficiently large for stochastic effect to be negligible, we can deterministically obtain the 

following recursive formula as regard to frequencies in the peripheral populations: 

 

     𝑓𝑘(𝜌, 𝑡) =∑𝑎𝑘𝑗𝑓𝑗(𝜌 − 1, 𝑡 − 1)

𝑛

𝑗=0

     (1 ≤ 𝑘 ≤ 𝑛).     (3) 

 

Note that 𝑓𝑘(𝜌, 𝑡) and 𝑓𝑗(𝜌 − 1, 𝑡 − 1) represent the frequencies of the same variant in 

different populations at different timesteps. We will refer to 𝑎𝑖𝑗 as the transmission rate 

from 𝑃𝑗 to 𝑃𝑖, which may depend on the geographical proximity, population sizes, or 

social prestige of the populations. In particular, 𝑎𝑖𝑖  represents the transmission rate 

within one population, indicating to what extent the word stays the same between 

timesteps. The transmission rate to 𝑃0 is not defined because the central population does 

not learn from other populations by assumption. Note that the transmission rates are the 

same for all variants regardless of their ages 𝜌  or frequencies. In other words, 

transmission of words is assumed to be unbiased, and novelty bias or frequency bias (e.g., 

conformity to the local majority) is absent in this model. 

The transmission rates characterize the topological structure of the network. Our 
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model considers arbitrary networks in which words created in 𝑃0 can be reached to all 

𝑃𝑘(1 ≤ 𝑘 ≤ 𝑛). 

 The definition of transmission rate gives 

         ∑𝑎𝑘𝑗

𝑛

𝑗=0

= 1.     (4) 

 

Distribution of word age 

Defining 𝒇(𝜌, 𝑡) = (𝑓1(𝜌, 𝑡) …𝑓𝑛(𝜌, 𝑡))
𝑇
 and 𝑨 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

) , we have the 

distribution of age frequency in the 𝑛 peripheral populations: 

 

        𝒇(𝜌, 𝑡) =

{
 
 

 
 

𝟎                   (𝜌 = 0)

𝑨𝜌−1 (

𝑎10
⋮
𝑎𝑛0

)      (1 ≤ 𝜌 ≤ 𝑡)

𝑨𝑡𝒇(𝜌 − 𝑡, 0)     (𝑡 < 𝜌)

    (5) 

 

 

where 𝒇(𝜌, 0)  is the initial distribution of word ages, defined for any 𝜌 > 0 , in 𝑛 

peripheral populations. Let 𝒓(𝑡) = (𝑟1(𝑡)⋯𝑟𝑛(𝑡))
𝑇
  represent the vector whose 𝑘 th 

element corresponds to the mean word ages in 𝑃𝑘. We have 

     𝒓(𝑡) = ∑𝜌𝒇(𝜌, 𝑡)

∞

𝜌=0

= 𝑨𝑡 (𝒓(0) − (𝑬 − 𝑨)−1 (
1
⋮
1
)) + (𝑬 − 𝑨)−1 (

1
⋮
1
).   (6) 

 

For the equilibrium state, we have 

 

     𝒓(∞) = (𝑬 − 𝑨)−1 (
1
⋮
1
),   (7) 

 

where 𝑬 represents n-dimensional identity matrix. For the derivation of (5), (6), and (7), 

see Appendix A. 

 A measure of linguistic diversity within population is the standard deviation (SD) 
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of word age. Let 𝜎𝑘(𝑡) denote the standard deviation of word age in population 𝑃𝑘 at 

timestep 𝑡. We can also calculate the equilibrium standard deviation of word age within 

population, 𝝈(∞) = (𝜎1(∞)⋯𝜎𝑛(∞))
𝑇
 (see Appendix A). In addition, we introduce 

another diversity measure 𝐻𝑘(𝑡) as follows: 

 

       𝐻𝑘(𝑡) = 1 −∑𝑓𝑘(𝜌, 𝑡)
2

∞

𝜌=0

.   (8) 

 

Here, 𝐻𝑘(𝑡)  is the heterozygosity of the words in 𝑃𝑘 , or the probability that two 

randomly sampled variants are not identical, which is analogous to the genetic 

heterozygosity at a single locus. Whereas 𝜎𝑘(𝑡)  is used to deduce how words are 

quantitatively diverse in a population, 𝐻𝑘(𝑡) only considers the identity of variants. In 

computing the infinite series in (8), we take summation over ρ from zero to a sufficiently 

large integer called the "cut-off value". We choose this value so that 𝑓𝑘(𝜌, 𝑡) is negligibly 

small for every ρ that is larger than the cut-off. 

 

Analytically tractable cases 

To provide a further mathematical analysis, we focus on the case when the transmission 

rate from one population to another is either 𝑎 or 0; that is, 𝑎𝑖𝑗 = 𝑎 > 0 (const.) for 

some combinations of transmitting and receiving populations and 𝑎𝑖𝑗 = 0  for others. 

Note that this is assumed throughout the rest of this paper unless otherwise stipulated. 

Suppose further that populations 𝑃0, 𝑃1, … , and 𝑃𝑛  are aligned in this order to form a 

one-dimensional chain, so that the central population is situated on an edge (Figure 1a). 

We consider the following two cases. 

 First, when transmission is unidirectional from 𝑃𝑗 to 𝑃𝑗+1(0 ≤ 𝑗 ≤ 𝑛 − 1) so 

that words diffuse toward populations farther from the central population, the 

transmission matrix is given by 

 

𝑨 = (

1 − 𝑎
𝑎 1 − 𝑎

⋱ ⋱
𝑎 1 − 𝑎

),    (9) 

 

where zero elements are omitted for the sake of notational simplicity. Based on the matrix, 

we obtain 
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𝑟𝑘(∞) =
𝑘

𝑎
,    (10a) 

and 

𝜎𝑘(∞) = √
𝑘

𝑎
(
1

𝑎
− 1).    (10b) 

 

Detailed derivation of (10a) and (10b) is given in Appendix B. These expressions show 

that words are on average older and more diverse in populations that are located further 

from the central population (Figure 1b, c). 

Secondly, we consider the case of bidirectional diffusion. Words are transmitted 

bidirectionally between adjacent populations with the exception of 𝑃0 , to which 

transmission from other populations does not occur. Transmission matrix is written as 

 

𝑨 = (

1 − 2𝑎 𝑎
𝑎 ⋱ ⋱

⋱ 1 − 2𝑎 𝑎
𝑎 1 − 𝑎

).    (11) 

 

The mean and standard deviation of word ages at equilibrium are calculated as follows: 

 

𝑟𝑘(∞) =
𝑘

2𝑎
(2𝑛 − 𝑘 + 1),    (12a) 

and 

𝜎𝑘(∞)

= √
𝑘

6𝑎2
(2𝑛 − 𝑘 + 1)(2𝑛2 − 2𝑛𝑘 + 𝑘2 + 2𝑛 − 𝑘 + 1) −

𝑘

2𝑎
(2𝑛 − 𝑘 + 1).    (12b) 

 

Again, see Appendix B for more detailed derivation. As in the unidirectional model, 

𝑟𝑘(∞) and 𝜎𝑘(∞) increase with 𝑘 (Figure 1b). In addition, they also increase with 𝑛, 

which means that word age depends not only on the distance from the central population, 

but on the length of the population chain. In the bidirectional model, old variants can 

diffuse from remote populations to ones that are nearer to the central population, so it is 

natural that words become on average older when the chain of populations is longer. 

 Figure 1d depicts the equilibrium distribution of word age within the same 
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population. In both unidirectional and bidirectional transmission, there is a peak of word 

age in every population. While old variants are extremely rare in the case of unidirectional 

transmission, they are maintained at a relatively high frequency with bidirectional 

transmission. This is because with bidirectional transmission old variants come in not 

only from more central, but also from more peripheral neighbours, and hence are 

maintained in peripheries for a long time. Also, heterozygosity of variants increases with 

𝑘  for both unidirectional and bidirectional transmission (Figure 1e) and is larger in 

bidirectional transmission. It is therefore suggested that the amount of polymorphism is 

larger under the condition of bidirectional transmission, which is because old words are 

maintained in the populations. 

 

3. Numerical analysis on schematic networks 

For less simplified cases, we can numerically obtain the mean and standard deviation of 

word age at equilibrium. In this section, we describe two such examples. 

 

Two-dimensional diffusion 

We now allow bidirectional diffusion for both horizontal and vertical directions in the 

𝑚 × 𝑙  rectangle of populations. Unlike in the previous one-dimensional model, the 

central population is not necessarily situated at a corner or edge of the rectangle. 

 Figure 2b, c shows 3D plots of the mean, 𝑟𝑘(∞), and standard deviation, 𝑣𝑘(∞), 

of word age at equilibrium over the 𝑚 × 𝑙 rectangle of populations. As anticipated, the 

mean and standard deviation are smallest at the central population and increase with 

increasing distance from the centre in all cases. Beyond this overall similarity, however, 

the precise pattern of increase depends on the position of the central population and the 

shape of the rectangle. First, consider the case when 𝑚 = 𝑙 holds, so that populations 

form a square, and 𝑃0 is at the centre of the square, ((𝑚 + 1)/2, (𝑚 + 1)/2), assuming 

𝑚 and 𝑙 as an odd number. In this case, the changes in the mean and standard deviation 

of word age are symmetric in all four directions (see the top row of Figure 2b, c). Second, 

in contrast, when 𝑃0 is placed closer to one of the four sides of the square, the mean and 

standard deviation of word age increases less rapidly toward that side than toward the 

opposite side (see the middle row in Figure 2b, c), as a result of which the mean and 

standard deviation of word age exhibit asymmetric contour lines. Third, when either the 

horizontal or vertical side of the rectangle is longer than the other (𝑚 ≠ 𝑙), the changes 

in the mean and standard deviation of word age are faster along the longer side than along 

the shorter side (see the bottom row in Figure 2b, c). 
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Effect of a natural or cultural barrier 

We have so far assumed a constant rate of transmission among populations, but the degree 

of their interdependence is changeable depending on geographical factors. Here we 

consider the presence of a barrier which inhibits human interactions and linguistic 

transmission for some geographical or cultural reason (e.g., mountains, deserted area, 

culturally conservative population, prohibition of movement, etc.). 

 First, as the baseline model, we adopt the one-dimensional bidirectional 

diffusion of words as discussed earlier. Two consecutive populations 𝑃ℎ and 𝑃ℎ+1 are 

separated by a barrier (e.g., river, mountain, etc.), and we denote the transmission rate 

between the two populations by 𝑏 . Assuming 0 < 𝑏 < 𝑎 , cultural transmission is 

weaker between these populations than in other pairs of neighbouring populations. 

As suggested by Figure 3a, 𝑟𝑘(∞) becomes larger in the presence of a barrier 

in populations for which ℎ < 𝑘  holds, which means that the mean word age at 

equilibrium becomes older in populations beyond the barrier (from the perspective of the 

central population). Interestingly, 𝑟𝑘(∞) is not affected in the near side of the barrier 

(i.e., 𝑘 ≤ ℎ) (Figure 3a), even though variants diffuse in both directions and thus the 

barrier is expected to have an impact on all populations. As for the diversity estimators, 

the standard deviation of word age becomes larger in both sides of the barrier (Figure 3b). 

Conversely, heterozygosity 𝐻𝑘(∞)  increases where ℎ < 𝑘  and decreases where 𝑘 ≤

ℎ (Figure 3c). 

 The results are interpreted as follows. Since a barrier inhibits the transmission of 

novel variants created in 𝑃0  to remote populations, it is straightforward that 𝑟𝑘(∞) 

becomes larger in populations farther than 𝑃ℎ . Where 𝑘 ≤ ℎ , the matter is more 

complicated. In fact, the existence of barrier affects the word age of the near populations 

in two ways. On the one hand, a barrier makes words in remote populations even older, 

which results in the influx of old variants into the near populations. On the other hand, as 

transmission from remote populations is partially insulated, the near populations receive 

relatively larger number of old variants. It seems that these opposite effects are cancelled 

out, and the mean word age stays unchanged in 𝑃𝑘(𝑘 ≤ ℎ) . This interpretation is 

consistent with the finding that in the presence of barrier, extremely old variants are 

maintained at low frequencies in 𝑃𝑘(𝑘 ≤ ℎ) (Figure 3c), so 𝜎𝑘(∞) increases between 

the central population and the barrier (Figure 3b). However, as the number of new words 

increases significantly, the heterozygosity drops in the near populations (Figure 3d). In 

conclusion, the presence of a barrier exerts the opposite influences on the two diversity 

estimators in populations between the central population and the barrier. 

 Secondly, we consider the barrier based on the two-dimensional diffusion model. 
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One of the two-dimensionally arranged populations is an isolated barrier (𝑃ℎ) , the 

transmission to/from which occurs at the rate 𝑏(< 𝑎) . Figure 4 indicates that 𝑟𝑘(∞) 

becomes smaller between 𝑃0 and 𝑃ℎ, and larger on the other side of the barrier. Unlike 

the one-dimensional model, 𝑃ℎ marks a peak of 𝑟𝑘(∞) and 𝜎𝑘(∞) for small values of 

𝑏. As populations are aligned in a two-dimensional shape, words can be transmitted via 

multiple pathways, and as a consequence diffusion can detour the barrier. For this reason, 

the existence of barrier has less impact on remote populations than in the one-dimensional 

case. 

 

4. Numerical analysis on realistic networks 

We have so far analysed populations arranged in a chain or lattice. In this section, we 

consider an extended model that incorporates a more realistic network of populations 

reflecting the geography and demography of Japanese prefectures to examine the case of 

concentric dialect distributions centred at Kyoto. 

 

Adaptation of the model to the network of prefectures 

To reflect the geographical features of Japanese Archipelago, we regard 46 Japanese 

prefectures except Okinawa as 𝑃0, … , 𝑃45 of our model. We exclude Okinawa because 

this prefecture is geographically and was historically isolated from other parts of Japan. 

On the network of 46 prefectures, we regard Kyoto prefecture as the centre, 𝑃0, from 

which every linguistic variant derives. 

 One typical method for modelling the linguistic diffusion on a network of cities 

is to utilize the gravity model, in which the extent of interaction between two cities is 

assumed to be proportional to the product of their population sizes and the inversed square 

of the distance in between [13]. However, since this assumption would always give 𝑎𝑖𝑖 =

1 in our model, we instead follow Burridge [17] to incorporate a modified gravity model, 

or the interaction density, 𝜑𝑖𝑗 , which is defined as the time people in 𝑃𝑖  spend 

interacting with speakers in 𝑃𝑗. Here, we adapt his equation (2.3) to our model: 

 

     𝜑𝑖𝑗 =
𝜋𝑖𝜋𝑗

1 + 𝑑𝑖𝑗
2 𝛾2⁄

,   (13) 

 

where 𝑑𝑖𝑗 is the distance between 𝑃𝑖 and 𝑃𝑗, and 𝜋𝑖 denotes the population size of 𝑃𝑖. 

Constant 𝛾  represents the half-decay distance, that is, the distance at which the 

interaction density is halved relative to that within the same node, where words tend to 

spread farther when 𝛾  is larger. As with Newton’s law of gravity, (13) has a long 
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algebraic tail. Geolinguistics has been adopting a variety of measures for geographical 

distance, such as Euclidean distance [9], great-circle distance (shortest distance on a 

sphere surface) [8], travel distance [8, 9], and railway distance [20]. Here, we use the 

great-circle distance between prefectural government offices (buildings), summarized in 

[21]. We use the population data of each prefecture surveyed in 2018 [22]. Although the 

population size was different during the time of dialect diffusion, as we shall discuss later 

(see (15)), our model depends on the ratio of population sizes, so the modern population 

size seems to be a good proxy assuming that all the populations grew at a uniform rate. 

 In this framework, however, we simultaneously observe the effects of both the 

population sizes of the prefectures and the topological structure of the network. To discuss 

these two effects separately, we additionally examine a population-independent model, 

in which case the interaction density, given by 

 

     𝜑𝑖𝑗 =
1

1 + 𝑑𝑖𝑗
2 𝛾2⁄

,   (14) 

 

is uniquely dependent on the distances of prefectures, irrespective of their population 

sizes. 

 Since 𝑎𝑖𝑗 represents the probability that a person in 𝑃𝑖 learns a word from a 

role model in 𝑃𝑗, it is natural that 𝑎𝑖𝑗 be given as the interaction density between 𝑃𝑖 

and 𝑃𝑗 divided by the total amount of interaction (s)he experiences. Therefore, we have 

 

     𝑎𝑖𝑗 =
𝜑𝑖𝑗

∑ 𝜑𝑖𝑙
45
𝑙=0

.   (15) 

 

In the case of population-dependent interaction given by (13), transmission rate 𝑎𝑖𝑗 is 

proportional to the population size of 𝑃𝑗 (the transmitting prefecture), while it decreases 

as the population size of 𝑃𝑖 (the receiving prefecture) increases. Based on the model, we 

calculate numerically the mean word age in each prefecture at equilibrium. 

 

Word age at equilibrium 

Using equation (13), we examine the case in which the interaction density and the 

transmission rate are proportional to the product of the population sizes of the prefectures. 

Figure 5 suggests that words become on average older with the distance from Kyoto, but 

prefectures to the west of Kyoto tend to contain newer words compared to the eastern 

prefectures located at the same distance from Kyoto. The distribution, therefore, is not 
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symmetric, and words diffuse westward more rapidly than eastward. In this example, in 

which 𝛾 is set to 10 km, there are two separated regions in the east side having similar 

word ages of between 550 and 600, namely, around Tokyo and the northern Tohoku area. 

Qualitatively similar results were obtained for 𝛾 = 20 and 50 km (data not shown). 

 On the other hand, considering the population-independent transmission rate 

represented by (14), words become older almost symmetrically in both sides of Kyoto 

(Figure 6). We also find a decelerating rate of change in mean word age with distance 

from the centre, indicating that the same word occupies more extensive areas as it goes 

farther away from the centre. These two features are in concordance with the case of one-

dimensional bidirectional diffusion (Figure 1b). 

 Comparison of figures 5 and 6 leads to the conclusion that the asymmetric 

distribution of mean word age in Figure 5 is attributable to the heterogeneity in population 

size. Since transmission rate 𝑎𝑖𝑗  is proportional to the population of 𝑃𝑗  (i.e., the 

prefecture to which the role model belongs) in (13), the population-dependent model 

assumes that people in a highly populated community are likely to learn a word within 

their own community, delaying the entry of newer words, and as a consequence play a 

role as a conservative "barrier." Since the Tokyo area harbours an especially large 

population, the relatively slow diffusion of words into East Japan as predicted in Figure 

5 may well be interpreted as resulting from hindered diffusion of novel variants from 

Kyoto into this region.  

 

5. Discussion 

To understand the emergence of geographic patterns in linguistic variants and the 

underlying process of diffusion in the presence of a centre-periphery social structure, we 

have developed a model of linguistic diffusion between populations distributed over space. 

Using the model, we have quantified the expected frequency distribution of variants, 

mean and standard deviation of word ages, and amount of linguistic variation in each 

population. Implications from our main analysis are summarized as follows. First, the 

mean word age of a given population is expected to increase with its distance from the 

central population. This indicates that the emergence of a concentric word distribution 

such as documented in Japan [10, 18] and France [3, 11] can at least partially be explicable 

by the presence of a centre-periphery structure. Secondly, difference in the mean word 

ages between two adjacent populations tends to be highest near the central population and 

decreases with the distance from it. This finding is in accord with the observed geographic 

distribution of swear words in Japanese [18], which further supports the hypothesis that 

the centre-periphery structure underlies the concentric distribution of word variants. 
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Thirdly, even in a population with a relatively low mean word age, old variants are 

expected to be maintained at a considerable frequency (Figure 1d right). While this result 

implies the strong persistence of old words, we have been unable to find empirical support 

for this prediction. The only exception to the second and third rules is found in one-

dimensional unidirectional diffusion, which approximates the case when populations are 

hierarchically organized in a way that populations closer to the centre bear higher social 

status. In this case, word age increases lineally in proportion to the distance from the 

central population (Figure 1b) and old variants are almost eliminated at equilibrium 

(Figure 1d). Therefore, the fact that our third prediction does not receive empirical support 

may mean that the linguistic diffusion at the time when the concentric distribution was 

created was only partially bidirectional being biased in favour of the direction from the 

centre to the periphery. 

 Lizana et al.’s remark [18] on the distribution of swear words is two-fold: swear 

words are arranged in a concentric shape (i.e., concentric distribution of words), and the 

spatial interval between adjacent words increases with the distance from Kyoto (i.e., 

extended interval of words). In our analysis, the former is seen most clearly in two-

dimensional diffusion with the central population situated at the centre of a lattice. The 

average word age increases with the distance from the central population, reflecting the 

fact that newly invented words are prevalent near Kyoto and older words are gradually 

pushed outward. Strictly speaking, however, the result contradicts the alleged observation 

in the way that our model produces a mixture of several variants in the periphery, instead 

of an array of gradually older variants which distinctively dominate each area. The latter 

feature of the observed distribution is manifested as the decreasing rate of difference in 

the mean word ages between neighbouring populations. Intuitively, our model predicts 

that moving outward from the central population, one will initially encounter a drastic 

linguistic change within a short distance, but the change will be decelerated as moving 

farther away from the centre. It should be noted, however, that since our model permits 

the coexistence of multiple variants in the same population, discrete "boundaries" or 

"intervals" of words cannot be defined. In this regard, therefore, it is difficult to compare 

Lizana et al.'s and our results quantitatively. 

 The outcome of our extended model that assumes population-dependent cultural 

diffusion is qualitatively different from the outcome of the main model in that the former 

predicts a geographically asymmetric word distribution. In particular, our analysis on a 

network of populations incorporating geographic and demographic characteristics of the 

present-day Japan does not replicate the observed pattern, where the same dialect variants 

are used in the east and west ends of the country [6, 15]. Since those models that 
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successfully replicate the observed pattern (i.e., ours and Lizana et al.'s [18]) assume 

population-independent cultural diffusion, it is suggested that the historical word 

diffusion in Japan may have occurred in a population-independent manner. 

 We do not explicitly incorporate the novelty-biased transmission as assumed in 

Lizana et al.’s simulation work [18], because it violates the independence of transmission 

of each word and makes it impossible to track the dynamics with a simple matrix notation. 

Although analytical approach is impossible, we numerically calculate the word age while 

integrating novelty bias in Appendix D, which shows words become on average newer 

with novelty bias and that mean word age increases almost linearly with the distance from 

central population when the bias is strong. Thus, in terms of novelty bias, our result is not 

in line with Lizana et al.’s work, which claims concentric distribution is not reproduced 

without novelty bias and that the interval between two words become larger with the 

distance from Kyoto. Note that although Lizana et al. [18] claims the feature of extended 

interval of swear word variants in remote areas, we could not find other clear examples 

of this characteristics [1]. It may be that the increase in spatial interval between adjacent 

words is usually so subtle that can hardly be detected empirically.  

 Our prediction from the two-dimensional diffusion model that old words persist 

in populations around the centre is at odds with the empirical observation that dialect 

words documented in the east and west peripheries of Japan, which were supposedly 

created in the centre in the past, are no longer found in Kyoto [1]. The observation is more 

similar to the outcome of our one-dimensional unidirectional diffusion model. This may 

indicate that the linguistic diffusion from Kyoto was not strictly bidirectional as our 

bidirectional model assumes and was at least partially unidirectional. As mentioned above, 

people's preference for novelty or prestige may have an effect similar to unidirectional 

diffusion. 

 The analysis of rectangular-shaped population implies that words tend to be older 

in the longer side of the land. Since the Japanese Archipelago is long and narrow from 

southwest to northeast, the shape of word distribution may be elliptic rather than circular. 

From Kyoto, the distance to seashore is much shorter in the south and north than east and 

west directions. Thus, our model predicts that word variants may be older in the west and 

east of Kyoto and relatively new in northern and southern part. Testing this prediction 

would be interesting if relevant data are available. 

 Our two measures of linguistic diversity, 𝜎𝑘 and 𝐻𝑘, partially contradict with 

each other, in particular in the analysis of barrier. When transmission is insulated in one-

dimensional bidirectional diffusion, the standard deviation of word age, 𝜎𝑘 increases in 

populations located between the central population and the barrier, while the 
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heterozygosity, 𝐻𝑘, decreases in the same populations. Therefore, the effect of barrier on 

these populations seems equivocal (i.e., linguistic diversity is indicated to either increase 

or decrease, depending on how it is measured). Which of the two measures is more 

appropriate depends on the nature of the linguistic trait of interest. If the relevant trait is 

a quantitative trait that is subject to only gradual and unidirectional changes of the trait 

value (e.g., different accents of the same word), the standard deviation of age would 

represent the polymorphism, because the time of creation directly corresponds to the 

amount of difference. On the other hand, if the trait of interest is a qualitative trait subject 

to discrete changes (e.g., synonyms with different etymology), the time of creation does 

not provide information of the variants, and thus the heterozygosity is the better measure 

of the polymorphism. 

 We discuss possible applications of the present study. Although we have focused 

on the transmission of dialects as a test case, our model may be applicable to other socially 

transmitted behaviours or culture originating from a culturally influential population. The 

transmission of human cultures is extensively studied in the discipline of cultural 

evolution [7, 23, 24], and spatial patterns of cultural traits have been treated using 

phylogenetic approaches [25-30]. As well as the transmission of dialects, some population 

plays a greater role in the transmission of culture in general. For example, observed 

geographic patterns in the prevalence of the "hinoeuma" superstition within the Japanese 

Archipelago is better explained by considering the presence of a cultural centre, or a 

single prefecture of prominent cultural influence [31]. Another theoretical study 

investigated the spread of information in conjunction with the appearance of cultural 

centre [32]. Our model can be extended beyond the linguistic traits and can treat the 

spatial pattern of other culturally transmit traits which spread from a single population. 

For example, archaeological records suggest that stone weapons and burial goods were 

transmitted from the Eurasian Continent to Japanese mainland via Korean peninsula and 

Kita-Kyushu areas and eventually diffused to the eastern part of Japan [33]. In this case, 

these areas can be seen as the cultural centre, from which these archaeological traits derive. 

It is intriguing to investigate whether our model is consistent with empirical 

archaeological data. 

 We discuss limitations of our model and present suggestions for future work. 

Firstly, we have assumed for mathematical convenience that new words or dialect variants 

are invented exclusively in the central population and transmitted to other populations 

without any modification. While the reality is less simple than that, changes in the model 

outcome caused by relaxing the assumption would be rather predictable. For example, if 

the central population is not always filled with the latest variant, or if the periphery can 
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also influence the centre, word age will presumably increase because relatively smaller 

number of novel variants will diffuse toward periphery. 

Secondly, our assumption is that only the central population creates new word 

variants. This is one of the simplest representations of the centre-periphery structure that 

we consider as a common feature underlying the observed cases of concentric word 

distribution. While we show that a concentric distribution is indeed predicted under this 

assumption, whether this holds true when the peripheral populations sometimes invent or 

modify words is yet to be investigated. It would be more realistic to integrate multiple 

centres which create new words at different rates depending on their respective prestige 

and population size. Such an investigation, however, would require a completely new 

mathematical framework, which is able to keep track of multiple variants created in the 

same timestep in different populations, and thus is beyond the scope of the present study. 

Thirdly, while our analysis on a realistic network reflecting the distance and 

population size of Japanese prefectures enables a close comparison of expected and 

observed word distributions, it is still difficult to perform any rigorous quantitative test. 

Such a test would require estimates of the ages of word forms, which are not available in 

any linguistic atlases. Nonetheless, our model proves to be useful in inferring the mode 

of cultural diffusion during the formation of a concentric distribution. 

Finally, even though we have considered the word ages in each population, age 

does not necessarily correspond to the degree of qualitative difference between linguistic 

variants. To analyse the difference explicitly, we need to model how rapidly words change 

over generations in the central population. If the latest variant is almost the same as the 

previous one, spatial variation of mean word age will merely correspond to a slight 

difference of words among peripheral populations. This is particularly crucial in applying 

the model to different type of variants beyond lexicons, as different linguistic features are 

reported to evolve at various rates [34, 35]. To clarify this, future work could incorporate 

the linguistic features and mutation into our model, and a possible mathematical 

framework is the 0,1-vector model [36]. As the number of mutation events through the 

diffusion process can be considered proportional to the word age, our model may be 

extended to calculate the spatial pattern of the amount of accumulating mutation. In this 

way, it may be possible to quantify the distribution of linguistic features and calculate the 

similarity or difference of culture among populations. 
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Appendix A: Distribution of cultural age 

We elaborate a more detailed derivation of frequency distribution, mean value, and the 

standard deviation of word age. 

 From (2) and (3), when 𝜌 ≥ 2, we have 

 

     𝑓𝑘(𝜌, 𝑡) =∑𝑎𝑘𝑗𝑓𝑗(𝜌 − 1, 𝑡 − 1)

𝑛

𝑗=1

     (1 ≤ 𝑘 ≤ 𝑛, 𝜌 ≥ 2).     (A1) 

 

Defining 𝒇(𝜌, 𝑡) = (𝑓1(𝜌, 𝑡) …𝑓𝑛(𝜌, 𝑡))
𝑇
, 𝑨 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

), we have 

 

              𝒇(𝜌, 𝑡) = 𝑨𝒇(𝜌 − 1, 𝑡 − 1)      (𝜌 ≥ 2).       (A2) 

 

By using (A2), we calculate the age frequency for peripheral populations. Since words 

with age zero cannot exist in any population other than the central population, we have 

 

          𝒇(0, 𝑡) = 𝟎,     (A3) 

 

where 𝟎  is the n-dimensional zero vector. For variants which are created after the 

emergence of central population at 𝑡 = 0, we have 

 

        𝒇(𝜌, 𝑡) = 𝑨𝜌−1𝒇(1, 𝑡 − 𝜌 + 1) = 𝑨𝜌−1 (

𝑎10
⋮
𝑎𝑛0

)      (1 ≤ 𝜌 ≤ 𝑡).     (A4) 

 

As for the variants which date back before the emergence of central population, we have 

 

               𝒇(𝜌, 𝑡) = 𝑨𝑡𝒇(𝜌 − 𝑡, 0)     (𝜌 > 𝑡),   (A5) 

 

where 𝒇(𝜌, 0) represents the initial word-age distribution in the peripheral populations. 

Here, (A3), (A4), and (A5) represent the age distribution of words. Using these equations, 
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𝒓(𝑡) = ∑𝜌𝒇(𝜌, 𝑡)

∞

𝜌=0

=∑𝜌𝑨𝜌−1 (

𝑎10
⋮
𝑎𝑛0

)

𝑡

𝜌=1

+ ∑ 𝜌𝑨𝑡𝒇(𝜌 − 𝑡, 0)

∞

𝜌=𝑡+1

=∑𝜌𝑨𝜌−1 (

𝑎10
⋮
𝑎𝑛0

)

𝑡

𝜌=1

+ 𝑨𝑡𝒓(0) + 𝑡𝑨𝑡 (
1
⋮
1
).     (A6) 

 

Defining the n-dimensional square matrix S by 

 

       𝑺 = ∑𝜌𝑨𝜌−1
𝑡

𝜌=1

,     (A7) 

 

we have 

 

       𝑺𝑨 = ∑𝜌𝑨𝜌
𝑡

𝜌=1

= ∑(𝜌 − 1)𝑨𝜌−1
𝑡+1

𝜌=2

.     (A8) 

 

Subtracting (A8) from (A7), 

 

       𝑺(𝑬 − 𝑨) = 𝑬 +∑𝑨𝜌−1
𝑡

𝜌=2

− 𝑡𝑨𝑡 = 𝑬 + 𝑨(𝑬 − 𝑨𝑡−1)(𝑬 − 𝑨)−1 − 𝑡𝑨𝑡

= (𝑬 − 𝑨𝑡)(𝑬 − 𝑨)−1 − 𝑡𝑨𝑡.     (A9) 

 

Hence, we have 

 

         𝑺 = ∑𝜌𝑨𝜌−1
𝑡

𝜌=1

= [(𝑬 − 𝑨𝑡)(𝑬 − 𝑨)−1 − 𝑡𝑨𝑡](𝑬 − 𝑨)−1.     (A10) 

 

Considering (4), 
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     (𝑬 − 𝑨)(
1
⋮
1
) = (

1 − (𝑎11 +⋯+ 𝑎1𝑛)
⋮

1 − (𝑎𝑛1 +⋯+ 𝑎𝑛𝑛)
) = (

𝑎10
⋮
𝑎𝑛0

),   (A11) 

 

which gives 

 

       (𝑬 − 𝑨)−1 (

𝑎10
⋮
𝑎𝑛0

) = (
1
⋮
1
).   (A12) 

 

Substituting (A10) for (A6) and using (A12), the mean word age is given by 

 

𝒓(𝑡) = [(𝑬 − 𝑨𝑡)(𝑬 − 𝑨)−1 − 𝑡𝑨𝑡] (
1
⋮
1
) + 𝑨𝑡𝒓(0) + 𝑡𝑨𝑡 (

1
⋮
1
)

= 𝑨𝑡 [𝒓(0) − (𝑬 − 𝑨)−1 (
1
⋮
1
)] + (𝑬 − 𝑨)−1 (

1
⋮
1
).   (A13) 

 

Now we consider the equilibrium state. (A3), (A4), and (A5) give 

 

        𝒇(𝜌,∞) = {

𝟎    if 𝜌 = 0

𝑨𝜌−1 (

𝑎10
⋮
𝑎1𝑛

)     otherwise
,     (A14) 

 

which in turn gives 

 

     𝒓(∞) = ∑𝜌𝒇(𝜌,∞)

∞

𝜌=0

= (𝑬 − 𝑨)−1 (
1
⋮
1
),   (A15) 

 

     𝒒(∞) = ∑𝜌2𝒇(𝜌,∞)

∞

𝜌=0

= (𝑬 − 𝑨)−1(𝑬 − 𝑨)−1(𝑬 + 𝑨)(
1
⋮
1
),   (A16) 

 

where 𝒒(𝑡) = (𝑞1(𝑡)⋯𝑞𝑛(𝑡))
𝑇
  denotes the second-order moment, from which the 
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variance of word age, 𝒗(𝑡) = (𝑣1(𝑡)⋯𝑣𝑛(𝑡))
𝑇

, is obtained. Standard deviation of word 

age 𝝈(𝑡) = (𝜎1(𝑡)⋯𝜎𝑛(𝑡))
𝑇
is readily obtained by taking the square root of the variance. 

Note that every absolute value of eigenvalue of 𝑨  is strictly smaller than 1 (see 

Appendix C), so that the infinite series in (A15) and (A16) converge. 

 

Appendix B: Derivation of the formulae in one-dimensional diffusion 

We derive the formulae to compute the mean and standard deviation of cultural age in 

one-dimensional unidirectional diffusion (i.e., (9) for unidirectional, (11) for bidirectional 

diffusion). 

 As for the unidirectional diffusion model, (9) gives 

 

      (𝑬 − 𝑨)−1 =
1

𝑎
(
1
⋮ ⋱
1 … 1

).   (B1) 

 

Thus, (S15) and (S16) give 

 

        𝑟𝑘(∞) =
𝑘

𝑎
,     (B2) 

 

        𝑞𝑘(∞) =
𝑘2

𝑎2
+
𝑘

𝑎2
−
𝑘

𝑎
.     (B3) 

 

We can calculate the standard deviation by 

 

        𝜎𝑘(∞) = √𝑞𝑘(∞) − 𝑟𝑘(∞)2 = √
𝑘

𝑎
(
1

𝑎
− 1).     (B4) 

 

In the case of bidirectional diffusion, (11) gives 
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      (𝑬 − 𝑨)−1 =
1

𝑎

(

 
 

1 1 1 ⋯ 1
1 2 2 ⋯ 2
1 2 3 ⋯ 3
⋮ ⋮ ⋮ ⋱ ⋮
1 2 3 ⋯ 𝑛)

 
 
.   (B5) 

 

Thus, using (A15) and (A16), we have 

 

        𝑟𝑘(∞) =
𝑘

2𝑎
(2𝑛 − 𝑘 + 1),     (B6) 

 

        𝑞𝑘(∞) =
𝑘

12𝑎2
{(𝑘2 − 1)(𝑘 − 4𝑛 − 2) + 4𝑛(𝑛 + 1)(2𝑛 + 1)}

−
𝑘

2𝑎
(2𝑛 − 𝑘 + 1).     (B7) 

 

Hence, we have 

 

        𝜎𝑘(∞) = √𝑞𝑘(∞) − 𝑟𝑘(∞)2

= √
𝑘

6𝑎2
(2𝑛 − 𝑘 + 1)(2𝑛2 − 2𝑛𝑘 + 𝑘2 + 2𝑛 − 𝑘 + 1) −

𝑘

2𝑎
(2𝑛 − 𝑘 + 1).     (B8) 

 

Appendix C: On the eigenvalues of A 

Here we prove the absolute value of every eigenvalue of transmission matrix 𝑨 is strictly 

smaller than 1. 

 Let 𝜆  be any eigenvalue of 𝑨 , and an eigenvector corresponding to 𝜆  is 

denoted by 𝒑 = (𝑝1 … 𝑝𝑛)𝑇 ≠ 𝟎 . We define 𝑝𝑘  as the element of 𝒑 , such that 

|𝑝𝑘| = max
𝑗
|𝑝𝑗|. As 𝜆𝒑 = 𝑨𝒑, we have 

 

𝜆𝑝𝑘 =∑𝑎𝑘𝑗𝑝𝑗

𝑛

𝑗=1

.    (C1) 

 

Therefore, 
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|𝜆||𝑝𝑘| ≤∑𝑎𝑘𝑗|𝑝𝑗|

𝑛

𝑗=1

≤∑𝑎𝑘𝑗|𝑝𝑘|

𝑛

𝑗=1

= (1 − 𝑎𝑘0)|𝑝𝑘| ≤ |𝑝𝑘|.    (C2) 

 

As |𝑝𝑘| > 0,we have |𝜆| ≤ 1. 

 Now we will disprove the case |𝜆| = 1. Assuming |𝜆| = 1, (C2) gives 

 

𝑎𝑘0 = 0, and 𝑎𝑘𝑗(|𝑝𝑘| − |𝑝𝑗|) = 0 for any 𝑗 (1 ≤ 𝑗 ≤ 𝑛).    (C3) 

 

There exists an array of integers 𝐶0, … , 𝐶𝑙, such that 

 

𝐶0 = 0, 𝐶𝑙 = 𝑘, and 𝑎𝐶𝑖𝐶𝑖−1 > 0.    (C4) 

 

Substituting 𝑐𝑙−1  into 𝑗  in the second expression of (C3), we have |𝑝𝑐𝑙−1| = |𝑝𝑐𝑙| =

max
𝑗
|𝑝𝑗|. This in turn gives 𝑎𝑐𝑙−10 = 0 and |𝑝𝑐𝑙−2| = max

𝑗
|𝑝𝑗| with the same discussion 

as (C2). Similarly, we can conclude 

 

𝑎𝑐𝑙0 = 𝑎𝑐𝑙−10 = ⋯ = 𝑎𝑐10 = 0    (C5) 

 

by mathematical induction. However, 𝑎𝑐10 = 0 contradicts the expressions (C4) for 𝑖 =

1. Therefore, |𝜆| < 1. 

 

Appendix D: Effect of novelty bias 

To examine the effect of novelty bias on the distribution of word age, we extend the 

assumption concerning the learning process of individuals in peripheral populations. In 

choosing a role model, a learner in 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑛)  first chooses 𝑃𝑗(0 ≤ 𝑗 ≤ 𝑛)  with 

probability 𝑎𝑖𝑗, which stays the same as the main part of this chapter. After choosing a 

population to which their potential role model belongs, the learner acquires a word with 

a probability proportional to the word’s attractiveness. Here, attractiveness of word aged 

𝜌 is given by 

 

          𝑢(𝜌) = {
(1 − 𝑠)𝜌     (𝜌 < 𝜌𝑚𝑎𝑥)

0                  (𝜌 ≥ 𝜌𝑚𝑎𝑥)
,     (D1) 

 

where 0 < 𝑠 < 1  signifies the strength of novelty bias and 𝜌𝑚𝑎𝑥  denotes the cutoff 
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value of word age assigned for the sake of numerical analysis. Note that word age 𝜌 in 

(D1) is measured at the previous timestep. Given an individual at time 𝑡 learns a word 

from 𝑃𝑗, the probability that (s)he acquires a word aged 𝜌 is given by 

 

        
𝑢(𝜌 − 1)𝑓𝑗(𝜌 − 1, 𝑡 − 1)

∑ 𝑢(𝜌′ − 1)𝑓𝑗(𝜌′ − 1, 𝑡 − 1)
𝜌𝑚𝑎𝑥
𝜌′=1

.     (D2) 

 

It should be noted that one has to learn a word aged 𝜌 − 1 at the previous timestep, to 

acquire a word with age 𝜌 . Thus, the recursive formulae as regard to 𝑓𝑘(𝜌, 𝑡)  (cf., 

equation (3)) is given by 

 

        𝑓𝑘(𝜌, 𝑡) =∑𝑎𝑘𝑗
𝑢(𝜌 − 1)𝑓𝑗(𝜌 − 1, 𝑡 − 1)

∑ 𝑢(𝜌′ − 1)𝑓𝑗(𝜌′ − 1, 𝑡 − 1)
𝜌𝑚𝑎𝑥
𝜌′=1

𝑚

𝑗=0

.     (D3) 

 

In this case, we cannot analytically obtain the equilibrium distribution of word age, so we 

numerically obtained the equilibrium distribution by consecutively computing (D3) for 

sufficiently long timesteps. 

 We use one-dimensional bidirectional diffusion (see equations (11) and (12)) as 

the baseline of the analysis and integrate novelty bias. Figure 7 depicts the case of 𝑛 =

9, 𝑎 = 0.1, 𝜌𝑚𝑎𝑥 = 5000  for four different values of 𝑠 , strength of novelty bias. The 

figure shows that the frequency distribution of word age displays a steeper peak with 

stronger preference for novel words (see Figure 7a, b), and words become on average 

newer (Figure 7c). To test the linear relationship between computed mean word age 

𝑟𝑘(∞) and distance from central population 𝑘, we calculate the correlation coefficient 

of 𝑟𝑘(∞)  and 𝑘  for the four values of 𝑠  depicted in Figure 7c. The correlation 

coefficient is 0.975 for 𝑠 = 0.0001, 0.984 for 𝑠 = 0.001, 0.990 for 𝑠 = 0.01, and 0.993 

for 𝑠 = 0.1 . It is therefore suggested that mean word age increases more and more 

linearly with the distance from central population, as novelty bias becomes stronger. 

  



34 

 

Figure legends 

 

Figure 1 

(a) A schematic representation of cultural diffusion in a one-dimensional chain of 

populations (𝑛 = 4) . The arrows indicate the presence and direction of word 

transmission from one population to an adjacent population in the case of (above) 

unidirectional and (below) bidirectional transmission. Note that recursive arrows (loops) 

are omitted in this panel. (b) The mean word age at equilibrium in a chain of populations. 

The horizontal and vertical axes represent the distance from central population and the 

mean word age in each population, respectively. The blue and orange lines represent the 

unidirectional and bidirectional transmission models, respectively. Parameter values: 

𝑎 = 0.1,  𝑛 = 9 (total number of populations: 10). (c) The standard deviation of word 

age at equilibrium in a chain of populations. The horizontal and vertical axes represent 

the distance from central population and the standard deviation of word age in each 

population, respectively, for (left) unidirectional and (right) bidirectional transmission. 

Parameter values: 𝑎 = 0.1,  𝑛 = 9  (total number of populations: 10). (d) Frequency 

distribution of word age ρ at equilibrium in each population. The blue, orange, and green 

lines represent the populations 𝑃1, 𝑃5, and 𝑃9, respectively, for (left) unidirectional and 

(right) bidirectional transmission. Parameter values: 𝑎 = 0.1,  𝑛 = 9 (total number of 

populations: 10). (e) Heterozygosity of words in each population with unidirectional (left) 

and bidirectional transmission (right). Parameter values: 𝑎 = 0.1, 𝑛 = 9  (Total number 

of populations: 10), and cut-off value ρ = 1000 and 10000  for unidirectional and 

bidirectional transmission, respectively. 

 

Figure 2 

(a) A schematic representation of the two-dimensional diffusion model. Bidirectional 

cultural diffusion occurs between horizontally or vertically neighbouring populations. In 

this example, population at (4, 3) plays the role as the central population (denoted by 𝑃0). 

Parameter values: 𝑚 = 5 , 𝑙 = 4 . (b) Mean word age at equilibrium in the two-

dimensional diffusion model. (Top) 𝑚 = 𝑙 = 15 and 𝑃0 is located at (8, 8). (Middle) 

𝑚 = 𝑙 = 15  and 𝑃0  is assigned to a population not at the center of the square, 

specifically, (5, 8). (Bottom) 𝑚 = 15  and 𝑙 = 5  and 𝑃0  is at (8, 3). (c) Standard 

deviation of word age at equilibrium in the two-dimensional diffusion model. The shape 

of the rectangle and the location of the central population are the same as in (b). 

 

Figure 3 
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Bidirectional transmission in a chain of population with a barrier. The barrier divides 

populations 𝑃5  and 𝑃6  (ℎ = 5 ). Parameter values: 𝑛 = 9 ,  𝑎 = 0.1 . (a) The mean 

word age at equilibrium when (blue) 𝑏 = 0.1 (i.e., no barrier), (orange) 𝑏 = 0.05, and 

(gray) 𝑏 = 0.01 . The three curves are overlapped when 𝑘 ≤ 5 . (b) The standard 

deviation in word age at equilibrium when (blue) 𝑏 = 0.1  (i.e., no barrier), (orange) 

𝑏 =  0.05, and (gray) 𝑏 = 0.01. (c) The heterozygosity of variants in each population 

with cut-off value ρ = 10000 when (blue) 𝑏 = 0.1 (i.e., no barrier) and (orange) 𝑏 =

0.01 . For the sake of presentation, the vertical axis shows log10(1 − 𝐻𝑘(∞)) , which 

decreases as the heterozygosity increases. (d) Equilibrium frequency distribution of word 

ages in (left) 𝑃5 and (right) 𝑃6 when (blue) 𝑏 = 0.1 (i.e., no barrier) and (orange) 𝑏 =

0.01. 

 

Figure 4 

Effect of a barrier in the two-dimensional diffusion model. Populations form a 15 × 15 

square, with the central population being at (8, 8) and a barrier at (11, 8). (a) The mean 

word age and (b) the standard deviation in word age. Parameter value: 𝑏 = 0.001. 

 

Figure 5 

Population-dependent diffusion on a network of Japanese prefectures. (Above) Regions 

of Japan. Kyoto is coloured red, and Okinawa is not shown on this map. (Bottom-left) 

Rank order of the population size in each prefecture, the least and most populated 

prefectures being 1 and 46, respectively. (Bottom-right) Mean word age at equilibrium in 

each population on the basis of equation (13). Parameter value: 𝛾 = 10 km. 

 

Figure 6 

Population-independent diffusion on a network of Japanese prefectures, calculated by 

(14). (a) (Left) Equilibrium mean word age in each prefecture. (Right) Equilibrium mean 

word age as a function of distance from Kyoto. (b) (Left) Equilibrium standard deviation 

of word age in each prefecture. (Right) Equilibrium standard deviation of word age as a 

function of distance from Kyoto. Parameter value: 𝛾 = 10 km. 

 

Figure 7 

Effect of novelty bias on the word age in one-dimensional bidirectional diffusion with 

parameter values 𝑛 = 9, 𝑎 = 0.1, 𝑎𝑛𝑑 𝜌𝑚𝑎𝑥 = 5000 . (a) distribution of word age in 

𝑃1, 𝑃5, 𝑎𝑛𝑑 𝑃9 when 𝑠 = 0.1. (b) distribution of word age in 𝑃1, 𝑃5, 𝑎𝑛𝑑 𝑃9 when 𝑠 =

0.01 (c) mean word age in all the peripheral populations for four values of 𝑠 plotted 
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against the distance from central population. 
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Chapter 3.  

Application of a Markovian ancestral model to the 

temporal and spatial dynamics of cultural 

evolution on a population network. 

 

 

1. Introduction 

Cultural evolution, as an analogy to biological evolution, is a process in which 

compositions in populations of non-genetic traits or “cultures” are modified over time by 

such factors as innovation and differential transmission between individuals [1,2]. Two 

different levels of the process can be distinguished: cultural microevolution and cultural 

macroevolution [3]. While the former concept covers the dynamics of cultural traits 

within a single population, the latter deals with the transmission of cultural traits among 

multiple populations along with the divergence, convergence, birth, and death of 

populations. 

 Both empirical and theoretical studies on cultural macroevolution frequently 

place emphasis on the spatial pattern of cultural traits, and a variety of techniques has 

been conceived for analysis. For example, cultural macroevolution has been studied with 

phylogenetic techniques [4-9]. In a different vein, spatially explicit diffusion-reaction 

models were developed to capture the spread of farming [10] and skill-dependent demic 

expansion [11]. These models use partial differential equations, assuming that human 

populations are arranged on a one-dimensional number line, to explore the spatial and 

temporal dynamics of cultural traits. However, real human populations are not arranged 

in a homogeneous space. Furthermore, certain pairs of human populations may be socially 

more connected to each other than other pairs, so that they would be considered close to 

each other in a conceptual space relevant to cultural transmission. To treat the spatial 

dynamics of cultural trait, therefore, it is more appropriate to use a network model which 

represents the positions and degree of interdependence of human populations. 

 As for research into the network models, a huge body of literature in physics has 

considered the voter model, in which individuals represented by vertices of a graph 

receive social information from their neighbors [12]. In conjunction with its reversed 

process [13], voter models have been examined to deduce the effect of network topology 
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on the spatial evolution and fixation of cultural traits. As an application, the model has 

been adopted to investigate the evolution and transmission of languages on a network 

[14,15]. 

 In chapter 2, we conceived a spatially explicit model of linguistic diffusion using 

a network of multiple populations, showing that a simple model of cultural transmission 

can reproduce the observed concentric pattern of Japanese dialects [16]. The model 

considers transmission of words within and between populations under the assumption 

that there exists a “central population,” a highly prestigious group of people which exerts 

a huge cultural impact on others. To gain analytical tractability, the model in chapter 2 

makes two assumptions at the cost of generality. First, the model assumes that only one 

population (central population) on the network can create new cultural variants, which 

limits the application of the model to the case when all cultural variants are originated 

from the same place. Second, the model enables the calculation of the average word age 

(i.e., time elapsed since the invention) in each population of the network but precludes 

the analysis on the relative prevalence of words with different origins (i.e., places of the 

invention) in each population. However, to fully understand the spatial distribution of 

cultural traits beyond linguistic variants, more comprehensive analysis, treating when and 

where the present culture was made, is required. In the present research, we further extend 

the network model in the previous chapter to obtain more general formulae of cultural 

age and origin. 

 To establish a generalized model, we incorporate an ancestral process, which has 

been extensively explored in theoretical studies of population genetics for half a century 

[17, 18]. Classical ancestral process in population genetics starts with sampling multiple 

genes on a single locus from the current population and traces back the genealogy of the 

sampled genes in the past to obtain inference about the topological structure and branch 

length of the genealogical tree. Widely known as coalescent theory, this class of model 

has been exploited to estimate the amount of genetic polymorphism and to statistically 

detect natural selection on a given DNA sequence [19]. More recent studies introduced 

the framework of ancestral process to treat the dynamics of cultural transmission. First, 

Aguilar and Ghirlanda [20] simulated the genealogy of a cultural trait, introducing the 

concept of time to the most recent unique ancestor (MRUA), which makes a stark contrast 

with the idea of the most recent common ancestor (MRCA) in population genetics. In 

addition, Kobayashi et al. [21] developed a finite-population model of cultural genealogy 

to obtain the age-frequency spectrum within the samples. Their research also proved the 

duality of the ancestral backward process and the time-forward process, which observes 

the change of the frequency of a trait generation by generation. 
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 Ancestral process of either genetic or cultural trait has been represented by a 

Markov chain model, where the state variable is the number of ancestors in the genealogy 

starting from multiple samples. However, in this study, we will introduce a novel 

mathematical framework, which is markedly different from the previous models in the 

following points. First, as we are interested in the spatial dynamics of cultural 

macroevolution, we will consider a network of multiple interdependent populations, 

instead of a single population. Secondly, ancestral models in previous research have 

usually assumed a finite population size, whereas we will assume an infinite number of 

individuals, neglecting any stochastic effect or drift. Thirdly, and most significantly, the 

ancestral process in our model starts from a single sample. The process, therefore, 

experiences no coalescence or branching events, and always finishes with an invention 

event of the sampled culture. Also, the state variable of the Markovian process is the 

population to which the ancestor belongs in each past generation, instead of the number 

of ancestors the genealogical tree contains. 

By assigning the transmission rates between every pair of two populations and 

the social learning rate in each population, our model will calculate three values about 

cultural diffusion on a network. First, we calculate the mean cultural age in each node 

(i.e., population). Secondly, we consider the origin of cultural variants; focusing on one 

population X, we calculate the proportion of cultural variants in X that were created in 

each population of the network. Finally, we calculate the conditional mean cultural age. 

Focusing again on two arbitrary populations X and Y, we calculate the mean age of 

cultural variants in X, given that the variant was invented in Y. Therefore, the conditional 

mean cultural age is a proxy of the time it takes for a variant to be transmitted from Y to 

X. These quantities are fundamental in cultural diffusion on a network, as they provide 

inference about both temporal and spatial pattern of transmission. In addition, we will 

introduce an additional model with finite cultural variants to examine the frequency, age, 

and origin of specific cultural variants. 

The rest of this chapter is structured as follows. In “Model” section, we first 

describe the infinite-variant model emphasizing the ancestral process of one sampled 

cultural variant and derive formulae to calculate the mean cultural age, the frequencies of 

cultural variants with different origins, and the conditional mean cultural age. Based on 

the general formulae, the effect of network topology and innovation rate on these 

quantities are numerically examined in “Numerical analysis on a random graph” section, 

and further mathematical analysis is carried out for special cases in “Analytically tractable 

cases” section. In “Inferring network structure” section, we discuss ways to detect the 

presence of inter-population transmission and deduce the transmission rate (i.e., network 
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topology). Finally, in “Finite-variant model” section, we extend the model to treat a finite 

number of distinct cultural variants, deriving the frequency, age, and origin of each variant 

type. 

 

2. Model 

 

2-1 Cultural transmission on a population network 

Consider a network of 𝑛 culturally interdependent populations 𝑃1, … , 𝑃𝑛, each of which 

is composed of an infinite number of individuals. Every individual in the populations 

bears one cultural variant. At the beginning of a generation, every newborn individual 

acquires a cultural variant either socially or individually (Figure 1). A newborn in 

𝑃𝑘 (1 ≤ 𝑘 ≤ 𝑛) invents a completely new cultural variant (i.e. individual learning) with 

probability 𝑏𝑘 ; otherwise, the newborn engages in social learning. When learning 

socially, learners simply copy one cultural parent chosen from the immediately preceding 

generation; specifically, they choose a population, with a probability proportional to the 

transmission rate as described below, from which an individual is drawn at random to be 

the cultural parent. Note that the cultural transmission in our model is unbiased, meaning 

that a learner adopts a randomly selected individual's cultural variant without exerting 

any preference that depends on, for example, the prevalence of variants or prestigiousness 

of individuals. The probability that a learner in 𝑃𝑖 learns from an individual in 𝑃𝑗 is 

denoted by 𝑎𝑖𝑗, which represents the transmission rate from 𝑃𝑗 to 𝑃𝑖. We have 

 

          𝑏𝑘 +∑𝑎𝑘𝑗

𝑛

𝑗=1

= 1,          (1) 

 

for every 𝑘. We only consider the equilibrium state, where cultural variants have been 

transmitted for a sufficiently long time. Symbols used in this chapter are summarized in 

Table 1. 

 

2-2 Cultural genealogy of a single sample 

We take a single sample of cultural variant from one of the present populations in the 

network and track back its genealogy (backward ancestral process). As cultural 

transmission always occurs from one individual to another, the cultural genealogy 

contains one ancestor at every generation. The genealogy disappears when it eventually 

reaches the creator of the sampled cultural variant (Fig. 2). 
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 The backward process constitutes a Markov chain whose state variable is the 

identity of the population to which the cultural ancestor at a given generation belongs. 

Let 𝑆𝑘 (1 ≤ 𝑘 ≤ 𝑛) denote the state where the ancestor is in population 𝑃𝑘, and 𝑆0 be 

the state where no ancestor exists. The backward process is Markovian with total number 

of 𝑛 + 1 states, {𝑆0, … , 𝑆𝑛} being the state space. The probability transition matrix 𝜫 

is given by, 

 

𝜫 = (

1 0 ⋯ 0
𝑏1 𝑎11 ⋯ 𝑎1𝑛
⋮ ⋮ ⋱ ⋮
𝑏𝑛 𝑎𝑛1 ⋯ 𝑎𝑛𝑛

) = (
1 𝟎
𝒃 𝑨

),          (2) 

 

where 

 

𝑨 = (

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

)        (3) 

 

is the matrix whose elements are the transmission rates among populations, 𝒃 =

(𝑏1…𝑏𝑛)
𝑇, and 𝟎 is the 𝑛-dimensional row vector whose elements are all zero. Note 

that 𝑆0 is the unique absorbing state of the process, and the backward process inevitably 

ends up with the invention event. Here, we assume that for every 𝑖 there exists at least 

one array 𝑢1, … , 𝑢𝐿, such that 𝑎𝑖𝑢1𝑎𝑢1𝑢2⋯𝑎𝑢𝐿−1𝑢𝐿𝑏𝑢𝐿 > 0 holds, so that the backward 

process has at least one pathway to the absorbing state. Figure 2 illustrates the ancestral 

process starting from a sample taken from 𝑃1. In this case, the genealogy ends in 𝑃2 

three generations ago, meaning that the sampled cultural variant was invented in 𝑃2 three 

generations ago. 

 

2-3 Calculation of cultural age 

We consider the distribution of cultural age in each population. Let 𝑓𝑘(𝜌) denote the 

sum of the frequencies of cultural variants with age 𝜌 in 𝑃𝑘, which is equivalent to the 

probability with which a variant randomly sampled from 𝑃𝑘  has experienced the 

invention event 𝜌  generations ago. Therefore, the distribution of cultural age is 

equivalent to the probability distribution of absorption time of the backward process. 

Apparently, we have 
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     ∑ 𝑓𝑘(𝜌)

∞

𝜌=0

= 1,     (4) 

 

for every 𝑘. Let 𝒆𝒌 denote the 𝑛-dimensional row unit vector whose 𝑘-th element is 

one and the others are zero. In the backward process starting from one sample in 𝑃𝑘, the 

probability that its ancestor 𝜌 generations ago is in 𝑃𝑗 is given by the j-th element of 

𝒆𝒌𝑨
𝜌. Hence, we have 

 

          𝑓𝑘(𝜌) = 𝒆𝒌𝑨
𝜌𝒃.          (5) 

 

Denoting the vector (𝑓1(𝜌),⋯ , 𝑓𝑛(𝜌))
𝑇
 by 𝒇(𝜌), we have 

 

          𝒇(𝜌) = 𝑨𝜌𝒃.          (6) 

 

Equation (6) is the most general formula which gives the distribution of cultural age given 

the network structure (transmission rates) and invention rates of the populations. The 

average cultural ages in every population 𝒓 = (𝑟1, ⋯ , 𝑟𝑛)
𝑇 is given by 

 

   𝒓 = ∑𝜌 𝒇(𝜌)

∞

𝜌=0

=∑𝜌 𝑨𝜌𝒃

∞

𝜌=0

= 𝑨(𝑬 − 𝑨)−1(𝑬 − 𝑨)−1𝒃 = (𝑬 − 𝑨)−1 (
1 − 𝑏1
⋮

1 − 𝑏𝑛

).  (7) 

 

Similarly, the second order moment of cultural age distribution in every population 𝒒 =

(𝑞1,⋯ , 𝑞𝑛)
𝑇 is given by 

 

𝒒 = ∑𝜌2 𝒇(𝜌)

∞

𝜌=0

=∑𝜌2 𝑨𝜌𝒃

∞

𝜌=0

= 𝑨(𝑬 − 𝑨)−𝟏(𝑬 − 𝑨)−𝟏(𝑬 − 𝑨)−𝟏(𝑬 + 𝑨)𝒃 

= (𝑬 − 𝑨)−𝟏(𝑬 − 𝑨)−𝟏(𝑬 + 𝑨)(
1 − 𝑏1
⋮

1 − 𝑏𝑛

).  (8) 

 

Variance of cultural age in every population 𝒗 = (𝑣1, ⋯ , 𝑣𝑛)
𝑇 can be calculated by  
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     (

𝑣1
⋮
𝑣𝑛
) = (

𝑞1
⋮
𝑞𝑛
) − (

(𝑟1)
2

⋮
(𝑟𝑛)

2
).     (9) 

 

Note that for derivation of (7) and (8), we have used the formula 

 

     (𝑬 − 𝑨)−1𝒃 = (
1
⋮
1
),     (10) 

 

which is shown by 

 

     (𝑬 − 𝑨)(
1
⋮
1
) =

(

 
 
 
 
1 −∑𝑎1𝑗

𝑛

𝑗=1

⋮

1 −∑𝑎𝑛𝑗

𝑛

𝑗=1 )

 
 
 
 

= (
𝑏1
⋮
𝑏𝑛

) = 𝒃.     (11) 

 

Here, we consider a specific case, where every population has the same 

individual learning rate (i.e., 𝑏𝑘 = 𝑏 for every 𝑛). In this case, frequency of cultural age 

follows the geometric distribution: 

 

          𝑓𝑘(𝜌) = (1 − 𝑏)𝜌𝑏.     (12) 

 

This is proved as follows. As 𝑏𝑘 = 𝑏 for every 𝑘, summation of the 𝑛 elements in any 

row of 𝑨 is 1 − 𝑏 (see (1)). Therefore, the 𝑛 elements in any row of 𝑨𝜌 sum up to 

(1 − 𝑏)𝜌. As 𝒃 = (𝑏,⋯ , 𝑏)𝑇 clearly holds, equation (6) readily gives (12). This result 

gives an intriguing feature that cultural age distribution only depends on the individual 

learning rate, irrespective of the topological structure of the network or the intensity of 

intra- or inter-population transmission. Equation (12) gives 

 

          𝑟𝑘 =
1 − 𝑏

𝑏
.     (13) 

 

2-4 Origin of cultural variants 
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Let us call the population where a cultural variant was originally invented the origin of 

the cultural variant. The goal of this subsection is to apportion the frequencies of cultural 

variants currently existing in each population according to their origins. Let 𝑥𝑖𝑗 be the 

sum of the frequencies of cultural variants in 𝑃𝑖 whose origin is 𝑃𝑗. Clearly, we have 

 

     ∑𝑥𝑖𝑗

𝑛

𝑗=1

= 1,     (14) 

 

for every 𝑖. Recalling that the ancestor 𝜌 generations ago of one sample taken from 𝑃𝑘 

is in 𝑃𝑗 with a probability equal to the j-th element of 𝒆𝒌𝑨
𝜌, we have 

 

(𝑥𝑘1, ⋯ , 𝑥𝑘𝑛) = ∑𝒆𝒌𝑨
𝜌𝑑𝑖𝑎𝑔(𝑏1, … , 𝑏𝑛)

∞

𝜌=0

= 𝒆𝒌(𝑬 − 𝑨)
−𝟏𝑩     (15) 

 

for every 𝑘, where 𝑩 = 𝑑𝑖𝑎𝑔(𝑏1, … , 𝑏𝑛) is the diagonal matrix with invention rates of 

all the populations. Hence, 

 

     𝑿 = (

𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑛

) = (𝑬 − 𝑨)−1𝑩.     (16) 

 

Equation (16) indicates that we can calculate the spectrum of cultural origins for every 

single population. 

 If cultural transmission is symmetric (i.e., 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for every 𝑖 and 𝑗), (16) 

indicates 𝑥𝑖𝑗 = 𝑥𝑗𝑖  because both matrices (𝑬 − 𝑨)−𝟏  and 𝑩  are symmetric. In this 

case, if one arbitrary population contains cultural variants originated from another 

arbitrary population at a certain frequency, the latter contains the same frequency of 

cultural variants invented in the former. 

 

2-5 Origin-dependence of age (Calculation of “conditional mean cultural age”) 

We have so far calculated the distribution of cultural ages and origins separately. In this 

section, we will further subdivide the age frequency spectrum 𝒇(𝜌) (see (6)) according 

to the origins. First, let 𝑓𝑖𝑗(𝜌) be the frequency of cultural variants in 𝑃𝑖 which were 

invented𝜌  generations ago in 𝑃𝑗 . Therefore, 𝑓𝑖𝑗(𝜌)  is the frequency spectrum of 
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variants, currently present in 𝑃𝑖, subdivided according to when and where it was created. 

We have 

 

     ∑∑𝑓𝑖𝑗(𝜌)

𝑛

𝑗=1

∞

𝜌=0

= 1,     (17) 

     ∑𝑓𝑖𝑗(𝜌)

𝑛

𝑗=1

= 𝑓𝑖(𝜌),     (18) 

     ∑ 𝑓𝑖𝑗(𝜌)

∞

𝜌=0

= 𝑥𝑖𝑗.     (19) 

 

As 𝒆𝒌𝑨
𝜌  specifies the probability that the ancestor 𝜌  generations ago of a cultural 

sample taken by 𝑃𝑘 belongs to a given population, we have 

 

     (𝑓𝑘1(𝜌) ⋯ 𝑓𝑘𝑛(𝜌)) = 𝒆𝒌𝑨
𝜌𝑩,     (20) 

 

which readily gives 

 

     𝑭(𝜌) = (
𝑓11(𝜌) ⋯ 𝑓1𝑛(𝜌)
⋮ ⋱ ⋮

𝑓𝑛1(𝜌) ⋯ 𝑓𝑛𝑛(𝜌)
) = 𝑨𝜌𝑩.     (21) 

 

We can recover the frequency of ages and origins: taking the summation of 𝑓𝑖𝑗(𝜌) in 

(21) with regard to 𝑗 and 𝜌, we obtain (6) and (16), respectively. 

 Now, we consider the age frequency of cultural variants which were invented in 

𝑃𝑗 and which are currently in 𝑃𝑖. Considering the probabilistic description of 𝑓𝑖𝑗(𝜌) and 

𝑥𝑖𝑗, we have 

 

     𝑃(𝑎𝑔𝑒 𝜌|𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑗  ∩  𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑖)

=
𝑃(𝑎𝑔𝑒 𝜌 ∩ 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑗  | 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑖)

𝑃(𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑗|𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑖)
=
𝑓𝑖𝑗(𝜌)

𝑥𝑖𝑗
.     (22) 

 

Let 𝑟𝑖𝑗 denote the conditional mean cultural age, or the average age of cultural variants 

in 𝑃𝑖, given they were made in 𝑃𝑗. Equation (22) gives 
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     𝑟𝑖𝑗 = ∑
𝜌𝑓𝑖𝑗(𝜌)

𝑥𝑖𝑗

∞

𝜌=0

=
𝑟′𝑖𝑗

𝑥𝑖𝑗
,     (23) 

 

where 

 

     𝑟′𝑖𝑗 =∑𝜌𝑓𝑖𝑗(𝜌)

∞

𝜌=0

.     (24) 

 

Using (21), 𝑟′𝑖𝑗 is calculated by 

 

𝑹′ = (
𝑟′11 ⋯ 𝑟′1𝑛
⋮ ⋱ ⋮

𝑟′𝑛1 ⋯ 𝑟′𝑛𝑛

) = ∑𝜌𝑭(𝜌)

∞

𝜌=0

=∑𝜌𝑨𝜌𝑩

∞

𝜌=0

= (𝑬 − 𝑨)−1(𝑬 − 𝑨)−1𝑨𝑩.    (25) 

 

By substituting (16) and (25) for (23), we obtain the conditional mean cultural age. This 

can be used to approximate the expected time it takes for a variant to transmit from 𝑃𝑗 to 

𝑃𝑖, although 𝑟𝑖𝑗 is different from the expected time because a cultural variant currently 

present in 𝑃𝑖 may have stayed there for a considerably long time or may have already 

visited 𝑃𝑖 multiple times. We use 𝑟𝑖𝑗 as a proxy to relative transmission time between 

two populations. Similar to the case of 𝑥𝑖𝑗 , we have 𝑟𝑖𝑗 = 𝑟𝑗𝑖  if 𝑎𝑖𝑗 = 𝑎𝑗𝑖  holds for 

every 𝑖 and 𝑗. 

 

 

3. Numerical analysis on a random graph 

We have so far obtained the formulae to find, for any given population, the mean cultural 

age, frequencies of cultural variants with different origins, and conditional mean cultural 

age for each original population. To examine how the topological structure of the network 

and innovation rates of populations affect these values, we perform a numerical analysis 

on a random graph. 

 

3-1 Generating a random directed graph 

We generate a random directed graph of populations with the following algorithm. First, 

we have 𝑛 isolated populations 𝑃1, ⋯ , 𝑃𝑛. Second, for every ordered pair of different 
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populations (𝑃𝑖, 𝑃𝑗)  (𝑖 ≠ 𝑗), we assign a directed edge starting at 𝑃𝑖 and ending at 𝑃𝑗 

with probability 𝑝. Third, we assign 𝑎𝑖𝑗 = 𝑎 = 𝑐𝑜𝑛𝑠𝑡. > 0 (𝑖 ≠ 𝑗) if there is an edge 

directing from 𝑃𝑖 to 𝑃𝑗, and 𝑎𝑖𝑗 = 0 otherwise. Fourth, we assign innovation rate 𝑏𝑘 

to every population. Fifth, we assign the value of transmission rates within the same 

population (𝑎𝑖𝑖) following equation (1). 

 In this way, we obtain a random network of 𝑛 populations whose transmission 

rates from one population to another is 𝑎 with probability 𝑝 and 0 otherwise. Note that 

we do not assign self-loops, even though 𝑎𝑖𝑖 always takes a positive value. We provide 

an example of random network in Figure 3. The in-degree of a population 𝑃𝑖  or 

𝑖𝑛𝑑𝑒𝑔(𝑃𝑖) is the number of edges directed to 𝑃𝑖, representing the number of populations 

which learns from 𝑃𝑖. Conversely, the out-degree of a population 𝑃𝑖 or 𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑖) is 

the number of edges originating from it, or the number of populations from which cultural 

variants transmit to 𝑃𝑖. In other words, the out-degree and in-degree of 𝑃𝑖 measure how 

many other populations culturally influence and are influenced by 𝑃𝑖, respectively. Note 

that the edges of the graph are directed in the same direction as the movement of the 

sampled cultural variant through the backward ancestral process. Instead of directly 

assigning 𝑛 and 𝑝 in generating a random network, we specify 𝑛 and 𝑀 = (𝑛 − 1)𝑝, 

the latter of which equals to both the expected in-degree and out-degree per vertex, 

representing the density of the network. The analysis was performed using the R package 

igraph. 

 

3-2 Effect of network topology on the age and origin of cultural variants 

We generate a random graph using parameter values 𝑎 = 0.01 and 𝑏𝑘 = 𝑏 = 0.01 for 

every 𝑘. We consider networks that are either small (𝑛 = 200) or large (𝑛 = 1000) and 

either sparse (𝑀 = 5 ) or dense (𝑀 = 50 ). Since innovation rate is constant in every 

population, (13) gives 𝑟𝑘 = (1 − 𝑏) 𝑏⁄ = 99 for all 𝑘. Using equations (16), (23), and 

(25), we calculate 𝑥𝑖𝑗 and 𝑟𝑖𝑗, and examine their correlation with topological variables 

of the network. 

 We first consider 𝑥𝑖𝑖 and 𝑟𝑖𝑖, the variables assigned to each population. Using 

the dataset of all the populations (200 or 1000) of the network, we calculate the correlation 

coefficients between those variables (𝑥𝑖𝑖 or 𝑟𝑖𝑖) and the topological variables (in-degree 

or out-degree of 𝑃𝑖) (Table 2a). The result shows that both 𝑥𝑖𝑖 and 𝑟𝑖𝑖 are negatively 

correlated with the out-degree of 𝑃𝑖, although the latter does not hold with the parameter 

set 𝑛 = 200, 𝑀 = 50. This result is quite straightforward because higher out-degree of 

population 𝑃𝑖 by assumption implies (see (1)) lower transmission rate within 𝑃𝑖, which 

results in lower frequency and younger age of the variants created by 𝑃𝑖, reducing 𝑥𝑖𝑖and 
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𝑟𝑖𝑖. On the other hand, 𝑥𝑖𝑖 is found to have only a weak correlation, if any, with the in-

degree of 𝑃𝑖. In addition, 𝑟𝑖𝑖 has a strong positive correlation with the in-degree of 𝑃𝑖 

in the case of dense network (𝑀 = 50). 

 We also examine the variables assigned to each pair of populations, 𝑥𝑖𝑗 and 𝑟𝑖𝑗. 

Although we have 𝑛(𝑛 − 1)  ordered pairs of populations in the network, not every 

population is reachable from every other population through the ancestral process (i.e., 

the graph is not strongly connected). As 𝑟𝑖𝑗 is defined only if cultural variants made by 

𝑃𝑖 can reach 𝑃𝑗, we only treat the ordered pairs (𝑃𝑖 , 𝑃𝑗) which satisfy this condition. 

Table 2b shows the correlation coefficient between the topological variables of the 

ordered pairs (𝑃𝑖, 𝑃𝑗) with both 𝑥𝑖𝑗 and 𝑟𝑖𝑗.  

First, 𝑥𝑖𝑗 is negatively correlated with the distance 𝑑𝑖𝑗 (length of the shortest 

path from 𝑃𝑖 to 𝑃𝑗) and out-degree of 𝑃𝑗. As for the distance 𝑑𝑖𝑗, it is quite intuitive 

that the frequency in 𝑃𝑖 of cultural variants made by 𝑃𝑗 decreases with the distance of 

the two populations. Interestingly, the correlation is stronger with 𝑙𝑜𝑔(𝑑𝑖𝑗) than with 

the distance itself with the exception of the case 𝑛 = 200,𝑀 = 50, suggesting that the 

frequency of cultural variants decreases in an exponential manner with the distance from 

the population that created the variants. The fact that 𝑥𝑖𝑗 is negatively correlated with 

the out-degree of 𝑃𝑗  is explained by the negative correlation between 𝑥𝑗𝑗   and 

𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑗) (see Table 2a). More specifically, it is intuitive that the frequency in any 

population of cultural variants originating from 𝑃𝑗 decreases if 𝑃𝑗 contains only a low 

frequency of variants invented by the population itself. Note that the negative correlation 

between 𝑥𝑖𝑗 and 𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑗) becomes stronger when the network is dense (𝑀 = 50). 

Conversely, Table 2b indicates that 𝑥𝑖𝑗 is positively correlated with the in-degree of 𝑃𝑗, 

which is as expected because the cultural variants deriving from 𝑃𝑗  will plausibly 

increase in 𝑃𝑖  if more populations learn from 𝑃𝑗 . Again, this positive correlation 

becomes stronger in a dense network (𝑀 = 50). 

Second, 𝑟𝑖𝑗  is positively correlated with the distance 𝑑𝑖𝑗 , indicating that the 

cultural variants that are currently in 𝑃𝑖  and was invented by 𝑃𝑗  become on average 

newer when the two populations are located closer. This is totally straightforward because 

shorter distance means fewer times of inter-population transmission, which is rare 

particularly when 𝑎 is low. On the other hand, 𝑟𝑖𝑗 is negatively correlated with the out-

degree of 𝑃𝑖 especially in the case of 𝑀 = 5. The variable is also negatively correlated 

with both in-degree and out-degree of 𝑃𝑗, although the correlation coefficient does not 

take large values in any parameter set. These results are interpreted in a quite similar way 

to the case of 𝑥𝑖𝑗, which we have just mentioned: if more populations learn from 𝑃𝑗, 

cultural variants invented in the population will more rapidly reach 𝑃𝑖 . Also, cultural 
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variants created by 𝑃𝑗  tend to become on average newer in 𝑃𝑗  when the population 

receives cultural transmission from other populations (see Table 2a), so it is natural that 

𝑟𝑖𝑗 have a negative correlation with the out-degree of 𝑃𝑗. 

 

3-3 Effect of innovation rate on the age and origin of cultural variants 

We generate a random graph using the parameters 𝑛 = 200 or 1000, 𝑀 = 5 or 50, 

and 𝑎 = 0.01 . This time, we assign the innovation rates 𝑏𝑘  following the uniform 

distribution with its minimum and maximum values being 0 and 0.02, respectively. The 

values are assigned independently to each population, so the innovation rates are not equal. 

Again, we calculate the values 𝑟𝑘, 𝑥𝑖𝑗, and 𝑟𝑖𝑗 and explore the correlation between these 

values and innovation rate. 

 Table 3a summarizes the correlation coefficients of 𝑟𝑖 , 𝑥𝑖𝑖 , and 𝑟𝑖𝑖  with the 

innovation rate of 𝑃𝑖. It is shown that both mean cultural ages 𝑟𝑖 and 𝑟𝑖𝑖 are negatively 

correlated with 𝑏𝑖 , although the correlation is extremely weak in the latter case, 

confirming that culture becomes on average newer when individuals innovate more 

frequently. On the other hand, 𝑥𝑖𝑖  is positively correlated with 𝑏𝑖 , which is also in 

concordance with an intuitive explanation that the frequency of cultural variants created 

in the same population increases when the population invents more variants. This 

correlation is larger when the network is dense (𝑀 = 50). 

 Focusing on two populations 𝑃𝑖 and 𝑃𝑗, we discuss how the innovation rates of 

these two populations exert influence on the values 𝑥𝑖𝑗  and 𝑟𝑖𝑗 . In calculating the 

correlation coefficients, we only treat the ordered pairs (𝑃𝑖, 𝑃𝑗) , such that cultural 

variants invented in 𝑃𝑗 can reach 𝑃𝑖. Table 3b shows that 𝑥𝑖𝑗 is positively correlated 

with 𝑏𝑗, which is in particular strong in the case of dense network (𝑀 = 50). 

 

 

4. Analytically tractable cases 

In Model section, we derived general formulae to calculate the cultural age, origin, and 

origin-dependent age in the population network. Although these formulae give numerical 

solutions for arbitrary networks, further mathematical analysis is only possible for a more 

restricted class of networks. Here, we present such special cases. 

 

4-1 Recursive formulae for 𝑟𝑘, 𝑥𝑖𝑗 , 𝑎𝑛𝑑 𝑟𝑖𝑗 

Before moving on to special cases, we present the recursive formulae of 𝑟𝑘, 𝑥𝑖𝑗, and 𝑟′𝑖𝑗 

with regard to 𝑘 and 𝑖 as follows: 
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      𝑟𝑘 =∑𝑎𝑘𝑗(𝑟𝑗 + 1)

𝑛

𝑗=1

,     (26) 

 

      𝑥𝑖𝑗 =∑𝑎𝑖𝑙𝑥𝑙𝑗

𝑛

𝑙=1

+ 𝛿𝑖𝑗𝑏𝑖,     (27) 

 

      𝑟′𝑖𝑗 =∑𝑎𝑖𝑙(𝑟′𝑙𝑗 + 𝑥𝑙𝑗)

𝑛

𝑙=1

.     (28) 

 

Note that 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise. While the proof of expression 

(27) is easily done by considering the relationship between the frequencies in the previous 

generation and those in the current generation, the other expressions (26) and (28) are 

relatively difficult to prove, and their derivation is provided in Appendix A. General 

formulae (7), (16) and (25) can be alternatively obtained by (26), (27) and (28), 

respectively (Appendix B), which may facilitate the understanding of mathematical 

property of our model. 

 

4-2 One-dimensional unidirectional transmission in the presence of a central population. 

We consider the case where populations 𝑃1, … , 𝑃𝑛 are linearly arranged in this order. We 

assume that 𝑃1  is a “central population”, which is a highly innovative population, 

exerting a huge cultural influence on others. More specifically, we assume 𝑏1 = 1 so 

that 𝑃1  is always filled with the cultural variants which are created in the current 

generation. For other populations, which we call “peripheral populations”, we assign 

𝑏𝑘 = 𝑏 (const. ) for 𝑘 ≠ 1. Transmission rates 𝑎𝑖𝑗 (𝑖 ≥ 2) is given by 1 − 𝑎 − 𝑏 and 

𝑎  when 𝑖 = 𝑗  and 𝑖 = 𝑗 + 1 , respectively, and zero otherwise, which means that 

cultural transmission occurs only from a certain population to the neighboring population 

that is further from the central population. This is an extension of the unidirectional 

diffusion which we modeled in Chapter 2. 

 Under this specific condition, we derive the mean cultural age in each population. 

From (26), we have the following system of recursive formulae: 

 

     {
𝑟1 = 0

𝑟𝑘 = (1 − 𝑎 − 𝑏)(𝑟𝑘 + 1) + 𝑎(𝑟𝑘−1 + 1)   (𝑘 ≥ 2)
,     (29) 
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which is reduced to 

 

𝑟𝑘 = {

1

𝑎
(𝑘 − 1)   (𝑏 = 0)

1 − 𝑏

𝑏
{1 − (

𝑎

𝑎 + 𝑏
)
𝑘−1

}   (𝑏 > 0)

.   (30) 

 

Equation (30) suggests that the distribution of mean cultural ages changes substantially 

depending on whether peripheral populations create new cultural variants or not. When 

𝑃1 is the only population that innovates new variants, cultural age on average increases 

in proportion to the distance from the central population, which is obviously the same 

result as equation (10a) of Chapter 2. On the other hand, when peripheral populations also 

innovate, the mean cultural age becomes larger with the distance from the central 

population and converges to (1 − 𝑏) 𝑏⁄ . 

 As for the cultural origins, we concentrate our analysis on the frequency of 

cultural variants that derive from the central population, which is represented by 𝑥𝑖1. 

Equation (27) gives 

 

     {
𝑥11 = 1

𝑥𝑖1 = (1 − 𝑎 − 𝑏)𝑥𝑖1 + 𝑎𝑥𝑖−1,1
,   (31) 

 

which is reduced to 

 

     𝑥𝑖1 = (
𝑎

𝑎 + 𝑏
)
𝑖−1

.   (32) 

 

Equation (32) shows that cultural variants deriving from 𝑃1  decreases in frequency 

exponentially with the distance between the current and original populations. The 

frequency increases with transmission rate (𝑎) and decreases with the innovation rate in 

the peripheral populations (𝑏). When peripheral populations do not innovate (𝑏 = 0), 

all the cultural variants derive from the central population. 

 Finally, we consider the mean age of cultural variants that derive from the central 

population, 𝑟𝑖1, which works as a proxy to the time it takes for a variant to transmit from 

𝑃1 to 𝑃𝑗. Equation (28) gives 
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     {
𝑟′11 = 0

𝑟′𝑖1 = (1 − 𝑎 − 𝑏)(𝑟′𝑖1 + 𝑥𝑖1) + 𝑎(𝑟′𝑖−1,1 + 𝑥𝑖−1,1)
.   (33) 

 

Using (32), (33) is reduced to 

 

     𝑟′𝑖1 =
1

𝑎 + 𝑏
(
𝑎

𝑎 + 𝑏
)
𝑖−1

(𝑖 − 1).     (34) 

 

Equations (32) and (34) give 

 

     𝑟𝑖1 =
𝑟′𝑖1
𝑥𝑖1

=
1

𝑎 + 𝑏
(𝑖 − 1).   (35) 

 

Equation (35) shows an interesting characteristic of cultural transmission: variants 

invented in the central population become on average older in proportion to the distance 

between the current and central populations. Moving away from 𝑃1 by one population, 

cultural variants created in 𝑃1  become older on average by 1 (𝑎 + 𝑏)⁄  . Intuitively 

speaking, cultural variants spreading from a strong center diffuse at this constant velocity 

even under the influence of innovation in peripheral populations. 

 

4-3 Transmission on a complete graph 

In this subsection, we consider the case when cultural transmission occurs equally 

between any pair of two populations, meaning that 𝑎𝑖𝑗 = 𝑎 (including the case of 𝑖 =

𝑗 ) and 𝑏𝑖 = 𝑏 = 1 − 𝑎𝑛 , where 0 < 𝑎 < 1 𝑛⁄  . In this case, social learners in a given 

population learn a variant from any population with the same probability. The 

transmission matrix is written as 

 

𝑨 = (
𝑎 ⋯ 𝑎
⋮ ⋱ ⋮
𝑎 ⋯ 𝑎

).     (36) 

 

We also have 

 

          𝑩 = (
1 − 𝑎𝑛

⋱
1 − 𝑎𝑛

).     (37) 
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Note that zero elements are omitted for the sake of notational simplicity. Now we consider 

the origins of cultural variants using (16). Letting 𝛼𝑖𝑗 be the element of (𝑬 − 𝑨) at i-th 

row and j-th column, we have 

 

     𝛼𝑖𝑗 = {
−𝑎   (𝑖𝑓    𝑖 ≠ 𝑗)

1 − 𝑎   (𝑖𝑓    𝑖 = 𝑗)
.     (38) 

 

Letting 𝛽𝑖𝑗 be the element of (𝑬 − 𝑨)−1 at i-th row and j-th column yields 

 

          𝛽𝑖𝑗 = {

𝑎

1 − 𝑎𝑛
     (𝑖𝑓    𝑖 ≠ 𝑗)

1 − (𝑛 − 1)𝑎

1 − 𝑎𝑛
     (𝑖𝑓    𝑖 = 𝑗)

.     (39) 

 

Equation (39) is proved in Appendix C. Using (16) and (37), we have 

 

          𝑥𝑖𝑗 = {
𝑎     (𝑖𝑓    𝑖 ≠ 𝑗)

1 − (𝑛 − 1)𝑎 = 𝑎 + 𝑏     (𝑖𝑓    𝑖 = 𝑗)
.     (40) 

 

Note that 𝑥𝑖𝑗  is always larger when 𝑖 = 𝑗  than when 𝑖 ≠ 𝑗 , showing that each 

population contains a larger number of cultural variants created by itself, in comparison 

with the variants deriving from any other population. This difference is obviously 

attributable to the effect of individual learning. We also have 

 

          𝑥𝑖𝑗 →
1

𝑛
   (as  𝑏 → 0).     (41) 

 

Now we explore 𝑟𝑖𝑗 . Letting 𝛾𝑖𝑗  denote the element at i-th row and j-th column of 

(𝑬 − 𝑨)−1(𝑬 − 𝑨)−1, we have 

 

          𝑟𝑖𝑗
′ = 𝑎(1 − 𝑎𝑛)∑𝛾𝑖𝑙

𝑛

𝑙=1

.     (42) 

 

Using (39), 
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          ∑𝛽𝑖𝑙

𝑛

𝑙=1

=
1

1 − 𝑎𝑛
          (43) 

 

is a constant value regardless of 𝑖, so we have 

 

          ∑𝛾𝑖𝑙

𝑛

𝑙=1

= (∑𝛽𝑖𝑙

𝑛

𝑙=1

)

2

=
1

(1 − 𝑎𝑛)2
.     (44) 

 

Equation (42) gives 

 

          𝑟𝑖𝑗
′ =

𝑎

1 − 𝑎𝑛
=
𝑎

𝑏
.     (45) 

 

Therefore, 

 

          𝑟𝑖𝑗 =
𝑟𝑖𝑗
′

𝑥𝑖𝑗
= {

1

𝑏
     (𝑖 ≠ 𝑗)

𝑎

𝑏(𝑎 + 𝑏)
     (𝑖 = 𝑗)

.     (46) 

 

Equation (46) indicates that cultural variants made in the same population is on average 

newer than the ones that were created in a different population and then transmitted to the 

current population. 

 The most remarkable characteristic of the complete graph is its high 

symmetricity: the mean cultural age is uniform among all populations, and the 

frequencies and the conditional mean ages of cultural variants other than those currently 

belong to the original population are constant irrespective of the identities of the current 

and original populations. 

 

 

5. Inferring network structure 

In Model section, we obtained the frequencies of cultural variants with different origins 

in each population of a given network (see equation (16)). Conversely, we introduce a 

method to calculate the transmission rates among populations for given frequencies of 
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variants with different origins. In other words, we infer, from a dataset of the frequencies 

of originating populations, the underlying topological structure of the population network. 

 Starting from the equation (16), we have 

 

     𝑿−1 = 𝑩−1(𝑬 − 𝑨) = (
1 𝑏1⁄

⋱
1 𝑏𝑛⁄

)(𝑬 − (

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

)).   (47) 

 

Let 𝑦𝑖𝑗 denote the element at i-th row and j-th column of 𝑿−1. Comparing each element 

in both hands of (47), we have 

 

     𝑦𝑖𝑗 =
𝛿𝑖𝑗 − 𝑎𝑖𝑗

𝑏𝑖
,   (48) 

 

which is readily reduced to 

 

     𝑎𝑖𝑗 = 𝛿𝑖𝑗 − 𝑏𝑖𝑦𝑖𝑗 .   (49) 

 

Note that 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise. Here, as 𝑥𝑖𝑗 is given for every 

i and j, 𝑦𝑖𝑗 is numerically calculated. Hence, if we know the rate of individual learning 

in 𝑃𝑖 (i.e., 𝑏𝑖), we can calculate the rates of cultural transmission to 𝑃𝑖. Furthermore, 

even when the rates of individual learning are unavailable, we can calculate the relative 

rate of cultural transmission as follows: 

 

     
𝑎𝑖𝑗

𝑎𝑖𝑘
=
𝑦𝑖𝑗

𝑦𝑖𝑘
 (𝑖 ≠ 𝑗, 𝑘).   (50) 

 

The left-hand side of (50) represents the influence that 𝑃𝑖 receives from 𝑃𝑗 relative to 

that from 𝑃𝑘. 

 

6. Finite-variant model 

We have so far considered the total frequency of cultural variants having the same age or 

origin, not the frequency of each variant. While this does not hamper analysis of cultural 

traits whose variants can be identified from the time and place of invention, the 

distribution of variants is not well represented if the same variant can convergently evolve 

in multiple populations. As a solution to this problem, we employ a model which allows 
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for creation of different variants within a generation and recurrent creation of a variant in 

different generations to calculate the frequency, age, and origin of each cultural variant. 

 

6-1 Model description 

Again, we consider the network of 𝑛 populations 𝑃1, … , 𝑃𝑛. In this model, there exist 

𝑚 types of cultural variant 𝐶1, … , 𝐶𝑚, and each individual bears only one of them. Here, 

an individual in 𝑃𝑘 acquires the variant 𝐶𝑙 by individual learning with probability 𝑐𝑘𝑙. 

This parameter, representing the innovation rate of the specific variant in each population, 

satisfies 

 

     ∑𝑐𝑘𝑙

𝑚

𝑙=1

= 𝑏𝑘   (51) 

and 

     ∑𝑎𝑖𝑗

𝑛

𝑗=1

+∑𝑐𝑖𝑙

𝑚

𝑙=1

= 1   (52) 

 

for every 𝑖. Note that transmission rate 𝑎𝑖𝑗 is assumed to be common to all variants and 

that a variant does not mutate into another during the process of cultural transmission. 

 As in the infinite-variant model, we can consider a Markovian ancestral process, 

starting from one sampled variant in any population, where the ancestral tree contains 

only one ancestor in each generation and ends with an invention event. 

 

6-2 Frequency, age, and origin of each variant 

First, we calculate the frequency of each variant in each population. Let 𝜑𝑘(𝑙, 𝜌) denote 

the frequency of 𝐶𝑙 with age 𝜌 in 𝑃𝑘, which is equivalent to the probability that the 

variant sampled in 𝑃𝑘 is 𝐶𝑙 and is created 𝜌 generations ago, or formally, 

 

     𝜑𝑘(𝑙, 𝜌) = 𝑃(𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝐶𝑙 ∩ 𝑎𝑔𝑒 𝜌|𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑘).   (53) 

 

The probability is calculated by two steps. First, the probability that the ancestor 𝜌 

generations ago of the sampled variant belongs to 𝑃𝑗  is given by the j-th element of 

𝒆𝒌𝑨
𝜌. Second, given the ancestor is in 𝑃𝑗, the probability that the ancestral variant was 

invented as type 𝐶𝑙 in this generation is given by 𝑐𝑗𝑙. Since this holds for all 𝑗, we have 
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     𝜑𝑘(𝑙, 𝜌) = 𝒆𝒌𝑨
𝜌𝒄𝒍,   (54) 

 

where 𝒄𝒍 = (𝑐1𝑙⋯𝑐𝑛𝑙)
𝑇  represents the invention rate of the variant 𝐶𝑙  in each 

population. In matrix form, (54) is written as 

 

     (
𝜑1(1, 𝜌) ⋯ 𝜑1(𝑚, 𝜌)

⋮ ⋮
𝜑𝑛(1, 𝜌) ⋯ 𝜑𝑛(𝑚, 𝜌)

) = 𝑨𝜌𝑪,   (55) 

 

where 

 

𝑪 = (

𝑐11 ⋯ 𝑐1𝑚
⋮ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑚

)   (56) 

 

is a matrix each of whose element represents the invention rate of a given cultural variant 

in a given population. Therefore, the frequency of 𝐶𝑙  in population 𝑃𝑘 , denoted by 

𝜑𝑘(𝑙), is given by 

 

     (
𝜑1(1) ⋯ 𝜑1(𝑚)

⋮ ⋮
𝜑𝑛(1) ⋯ 𝜑𝑛(𝑚)

) = ∑(
𝜑1(1, 𝜌) ⋯ 𝜑1(𝑚, 𝜌)

⋮ ⋮
𝜑𝑛(1, 𝜌) ⋯ 𝜑𝑛(𝑚, 𝜌)

)

∞

𝜌=0

= (𝑬 − 𝑨)−1𝑪.   (57) 

 

In addition to the frequency of each variant, equations (55) and (57) give the age 

distribution of each variant and population. Among the variants 𝐶𝑙 that is present in 𝑃𝑘, 

the proportion of variants aged 𝜌 is calculated by 𝜑𝑘(𝑙, 𝜌)/𝜑𝑘(𝑙). Thus, mean age of 

𝐶𝑙 in population 𝑃𝑘 is given by 

 

      𝑟𝑘(𝑙) = ∑𝜌
𝜑𝑘(𝑙, 𝜌)

𝜑𝑘(𝑙)

∞

𝜌=0

=
1

𝜑𝑘(𝑙)
∑𝜌𝜑𝑘(𝑙, 𝜌)

∞

𝜌=0

.     (58) 

 

Using (55), the summation in the third side of equation (58) is calculated by 

 



65 

 

     ∑ 𝜌(
𝜑1(1, 𝜌) ⋯ 𝜑1(𝑚, 𝜌)

⋮ ⋮
𝜑𝑛(1, 𝜌) ⋯ 𝜑𝑛(𝑚, 𝜌)

)

∞

𝜌=0

= ∑𝜌𝑨𝜌𝑪

∞

𝜌=0

= (𝑬 − 𝑨)−1(𝑬 − 𝑨)−1𝑨𝑪   (59) 

 

Now we consider the origin of each variant. Letting 

 

   𝜑𝑖𝑗(𝑙) = 𝑃(𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑗 ∩ 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝐶𝑙|𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑖)   (60) 

 

be the proportion of variants derived from 𝑃𝑗 among the variants 𝐶𝑙 in 𝑃𝑖, backward 

ancestral process gives 

 

(𝜑𝑖1(𝑙),⋯ , 𝜑𝑖𝑛(𝑙)) = ∑𝒆𝒊𝑨
𝜌𝑑𝑖𝑎𝑔(𝑐1𝑙, … , 𝑐𝑛𝑙)

∞

𝜌=0

= 𝒆𝒊(𝑬 − 𝑨)
−𝟏𝑑𝑖𝑎𝑔(𝑐1𝑙 , … , 𝑐𝑛𝑙). (61) 

 

Hence, we have 

 

(
𝜑11(𝑙) ⋯ 𝜑1𝑛(𝑙)
⋮ ⋱ ⋮

𝜑𝑛1(𝑙) ⋯ 𝜑𝑛𝑛(𝑙)
) = (𝑬 − 𝑨)−𝟏𝑑𝑖𝑎𝑔(𝑐1𝑙, … , 𝑐𝑛𝑙).     (62) 

 

Note that this equation is quite similar to equation (16), which is indeed recouped by 

taking the summation of (60) as regard to 𝑙 . Let 𝑥𝑖𝑗(𝑙)  denote the proportion of the 

variants which were created in 𝑃𝑗 among the variant type 𝐶𝑙 in 𝑃𝑖. We have 

 

     𝑥𝑖𝑗(𝑙) = 𝑃(𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑃𝑗|𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑃𝑖 ∩ 𝑖𝑛𝑣𝑒𝑛𝑡𝑒𝑑 𝑎𝑠 𝐶𝑙) =
𝜑𝑖𝑗(𝑙)

𝜑𝑖(𝑙)
,   (63) 

 

which can be calculated by (55) and (62). 

 

7. Discussion 

In this chapter, assuming a network of multiple populations, we have established a 

mathematical model of cultural evolution and derived the formulae to deduce the age and 

origin of cultural variants in each population. Using these formulae, we have numerically 

investigated the effect of the network topology and innovation rates on the spatial 

distribution of cultural variants with different ages. We have also obtained simple 
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mathematical expressions describing spatial distribution of cultural variants for special 

network topologies. Conversely, the model can also estimate the transmission rates, given 

the proportion of cultural variants derived from each node of the network. In addition, the 

analysis of finite-variant model enabled us to know the distribution and frequency of 

respective distinct variant type, as well as mean age and expected origins for each variant. 

 Implications from the numerical analysis on a random network can be 

summarized as follows. Consider cultural variants deriving from a single population 𝑃𝑗. 

First, the frequency of cultural variants invented by 𝑃𝑗 tends to be high in 𝑃𝑖 if (1) two 

populations are closely located, (2) 𝑃𝑗  influences many populations, (3) 𝑃𝑗  is 

influenced by few populations, and/or (4) 𝑃𝑗 invents new variants frequently. Second, 

cultural variants that are in 𝑃𝑖 and were invented in 𝑃𝑗 tend to be on average older if (1) 

two populations are located far away, and/or (2) 𝑃𝑖 is influenced by few populations. 

Although the mean age is also negatively correlated with the number of populations which 

influence and are influenced by 𝑃𝑗, the correlation stays quite weak. We also found that 

some of the effects of both network topology and innovation rate on the origin and mean 

age of cultural variants depend upon the network density. 

 As for the mathematical property of the model, we analyze a backward ancestral 

process and trace when and where a variant was invented. Our ancestral model is starkly 

different from that of previous studies, either the classic coalescent models of population 

biology [17,18] or recent studies of cultural genealogy [20,21]. While the models of 

previous research take a sample of multiple gene or trait copies and track their 

genealogical tree, the ancestral process in our model starts with a single sample, and 

therefore the backward process experiences no coalescence and is destined to finish with 

the invention by the creator. Unlike Kobayashi et al. [21] model of cultural genealogy, 

individuals in our model learn from one role model in the immediate generation and 

cannot receive influence from more than one individual. Therefore, the number of 

ancestors of the sample does not increase as we trace back the genealogy to the past. 

 Our model has many mathematical properties in common with the voter model. 

Usually, the voter model regards each vertex as an individual, possessing one piece of 

social information or trait (i.e., idea, opinion, language), who accepts information from 

one of its neighbors (one-vertex-one-variant model). On the other hand, our model 

regards the vertices as populations composed of numerous individuals who may 

potentially have different cultural variants (one-vertex-many-variants model). Although 

these two classes of models differ in terms of the number of variants occupying each 

vertex, our model can easily be adapted into the one-vertex-one-variant version. In this 

case, each population has only one variant and transmission rates 𝑎𝑖𝑗  and 𝑏𝑖 
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respectively represent the probability that the population 𝑃𝑖 learns the variant of 𝑃𝑗 and 

invents a new variant. Quantities we calculated such as 𝑟𝑘 , 𝑥𝑖𝑗 , 𝑟𝑖𝑗 , etc. are now 

interpreted in a probabilistic way (see Table 4). 

 We discuss the application of our model to the spatial evolution of real cultural 

traits. As we examined in chapter 2, one of the most promising fields of application is 

linguistics and dialectology, where recent theoretical research has been introducing 

network models of word diffusion [15]. As our model includes parameters of transmission 

and innovation rates in each population, we can assign these parameters from geographic 

and demographic dataset of real populations. Assuming a formula which gives 

transmission rates and innovation rates as a function of population sizes, geographical 

proximity, and the social status of the populations, we obtain the network topology and 

subsequently distribution of cultural ages and origins expected by this model. Comparison 

between empirical and expected distribution of cultural variants may enable us to know 

what factors affect the transmission and innovation rates. 

 It is also interesting to compare our analysis with phylogenic approach, which 

quantifies the cultural distance of each pair of the populations. It is intriguing to examine 

the correlation between phylogenic distance between two populations with the values 𝑥𝑖𝑗 

and 𝑟𝑖𝑗 obtained from our model. Phylogenic approach gives the taxonomical proximity 

among cultural variants in several populations and we can deduce the expected origin and 

time duration of the diffusion. Comparing the result of our model with that obtained 

through phylogenic methods, we would further deepen the understanding of how cultural 

traits are transmitted among populations. 

 Finally, we discuss the limitation of the model and suggestion for future research. 

First of all, our model does not include the learning bias [2], whereby learners acquire 

cultural variants selectively according to such factors as innate preference, frequency, 

novelty, or the social status of the role model. Previous theoretical studies proved that 

learning bias during the cultural transmission exerts substantial influence on the evolution 

of cultural traits [22,23]. Under the framework of the current study, it is impossible to 

introduce bias in learning process, as it would violate the independence of each cultural 

variant during the ancestral process, and the model would no longer be considered as a 

Markovian process. This class of research would require a different model, which 

probably compromises the simple matrix notation and the analytical tractability to a 

certain extent. 

 Even though we have explored a finite-variant model, in which the frequency of 

each variant is explicitly calculated, the model lacks the mutual mutation among the 

variants. In our model, once cultural variants are invented, they will never change into 
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other variants through the repeated series of social learning over generations. This 

drawback would probably be overcome by integrating a mutation-rate matrix among the 

variants, each element of which represents the mutation rate through social learning from 

one variant to another. In this way, the finite-variant model would be applied to the 

diffusion of cumulative cultural traits which have been alleged to characterize the cultures 

of modern humans. Among the 𝑚 variants 𝐶1…𝐶𝑚, we would assume that 𝐶1 is the 

most primitive and 𝐶𝑚 is the most sophisticated variant (i.e., skills), and mutation among 

these variants would represent the improvement or degradation of the cumulative culture. 

Again, one possible problem of this research is that we cannot examine the effect of 

learning bias toward high-level culture or skills, which are assumed in much theoretical 

research into cumulative culture [24-26]. Also, our model assumes that each cultural 

variant is selectively neutral, indicating that the variants do not affect the survivorship or 

reproductive success of their bearers, which might be unrealistic in the context of 

cumulative skills of modern humans. 

 

References 

[1] Cavalli-Sforza, L. L., and Feldman, M. W. 1981. Cultural Transmission and Evolution: 

A Quantitative Approach. Princeton University Press, Princeton. 

[2] Boyd, R., and Richerson, P. J. 1985. Culture and the Evolutionary Process. University 

of Chicago Press, Chicago. 

[3] Mesoudi, A. 2011. Cultural Evolution: How Darwinian Theory Can Explain Human 

Culture & Synthesize the Social Sciences. University of Chicago Press, Chicago. 

[4] Mace, R., Holden, C. J., and Shennan, S. 2005. The Evolution of Cultural Diversity: 

A Phylogenetic Approach. University College London Press. 

[5] Nunn, C. L., Mulder, M. B., and Langley, S. 2006. Comparative methods for studying 

cultural trait evolution: A simulation study. Cross-Cultural Research 40, 2, 177-209. 

[6] Currie, T. E., Greenhill, S. J., Gray, R. D., Hasegawa, T., and Mace, R. 2010. Rise 

and fall of political complexity in island South-East Asia and the Pacific. Nature 467, 

801-804. 

[7] Towner, M. C., Grote, M. N., Venti, J., and Mulder, M. B. 2012. Cultural 

macroevolution on neighbor graphs. Vertical and horizontal transmissions among western 

north American Indian societies. Human Nature 23, 283-305. 

[8] Brown, S., Savage, P. E., Ko, A. M. S., Stoneking, M., Ko, Y. C., Loo, J. H., and 

Trejaut, A., J. 2014. Correlations in the population structure of music, genes and language. 

Proceedings of the Royal Society B 281, 20132072. 

[9] Savage, P. E. and Brown, S. 2014. Mapping music: Cluster analysis of song-type 



69 

 

frequencies within and between cultures. Ethnomusicology 133-155. 

[10] Aoki, K., and Shida, M. 1996. Travelling wave solutions for the spread of farmers 

into a region occupied by hunter-gatherers. Theoretical Population Biology 50, 1-17. 

[11] Wakano, J. Y., Gilpin, W., Kadowaki., S., Feldman, M. W., and Aoki, K. 2018. 

Ecological range-expansion scenarios for the replacement or assimilation of Neanderthals 

by modern humans. Theoretical Population Biology 119, 3-14. 

[12] Sood, V., Antal, T., and Redner, S. 2008. Voter models on heterogeneous networks. 

Physical Review E 77, 041121. 

[13] Castellano, C. 2005. Effect of network topology on the ordering dynamics of voter 

models. AIP Conference Proceedings 779. 114. 

[14] Hadzibeganovic, T., Stauffer, D., Schulze, C. 2008. Boundary effects in a three-state 

modified voter model for languages. Physica A 387. 3242-3252. 

[15] Fagyal, Z., Swarup, S., Escobar, A., M., Gasser, L., Lakkaraju, K. 2010. Centers and 

peripheries: Network roles in language change. Lingua 120. 2061-2079. 

[16] Yanagita, K. 1927. Kagyuko (1)-(4). Jinruigaku Zasshi 42, 125-135 (162-172, 223-

233, 273-284). 

[17] Kingman, J. F. C. 1982. The coalescent. Stochastic Processes and their Applications 

13, 3, 235-248. 

[18] Tajima, F. 1983. Evolutionary relationships of DNA sequences in finite populations. 

Genetics 105, 437-460. 

[19] Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by 

DNA polymorphism. Genetics 123, 3, 585-595. 

[20] Aguilar, E., and Ghirlanda, S., 2015. Modeling the genealogy of a cultural trait. 

Theoretical Population Biology 101, 1-8. 

[21] Kobayashi, Y., Wakano, J. Y., and Ohtsuki, H. 2018. Genealogies and ages of cultural 

traits: An application of the theory of duality to the research on cultural evolution. 

Theoretical Population Biology 123, 18-27. 

[22] Aoki, K., Lehmann, L., Feldman, M., W. 2011. Rates of cultural change and patterns 

of cultural accumulation in stochastic models of social transmission. Theoretical 

Population Biology 79, 192-202. 

[23] Fogarty, L., Wakano, J., Y., Feldman, M., W., and Aoki, K. 2017. The driving forces 

of cultural complexity. Neanderthals, modern humans, and question of population size. 

Human Nature 28, 39-52. 

[24] Henrich, J. 2004. Demography and cultural evolution: how adaptive cultural 

processes can produce maladaptive losses – the Tasmanian case. Am. Antiquity 69. 197-

214. 



70 

 

[25] Kobayashi, Y. and Aoki, K. 2012. Innovativeness, population size, and cumulative 

cultural evolution. Theoretical Population Biology 82, 38-47. 

[26] Ohtsuki, H., Wakano, J., W., and Kobayashi, Y. 2016. Inclusive fitness analysis of 

cumulative cultural evolution in an island-structured population. Theoretical Population 

Biology 115, 13-23. 

  



71 

 

Appendix A: Derivation of the recursive formulae  

Here we prove the expressions (26) and (28), which are the recursive formulae for 

𝑟𝑘 and 𝑟′𝑖𝑗. 

 

𝑟𝑘 = ∑𝜌𝑓𝑘(𝜌)

∞

𝜌=0

= ∑𝜌∑𝑎𝑘𝑗𝑓𝑗(𝜌 − 1)

𝑛

𝑗=1

∞

𝜌=1

=∑𝑎𝑘𝑗∑𝜌𝑓𝑗(𝜌 − 1)

∞

𝜌=1

𝑛

𝑗=1

=∑𝑎𝑘𝑗 (∑(𝜌 − 1)𝑓𝑗(𝜌 − 1)

∞

𝜌=1

+∑𝑓𝑗(𝜌 − 1)

∞

𝜌=1

)

𝑛

𝑗=1

=∑𝑎𝑘𝑗(𝑟𝑗 + 1)

𝑛

𝑗=1

.   (𝐴1) 

 

𝑟′𝑖𝑗 =∑𝜌𝑓𝑖𝑗(𝜌)

∞

𝜌=0

=∑𝜌∑𝑎𝑖𝑙𝑓𝑙𝑗(𝜌 − 1)

𝑛

𝑙=1

∞

𝜌=1

=∑𝑎𝑖𝑙∑𝜌𝑓𝑙𝑗(𝜌 − 1)

∞

𝜌=1

𝑛

𝑙=1

=∑𝑎𝑖𝑙 (∑(𝜌 − 1)𝑓𝑙𝑗(𝜌 − 1)

∞

𝜌=1

+∑𝑓𝑙𝑗(𝜌 − 1)

∞

𝜌=1

)

𝑛

𝑙=1

=∑𝑎𝑖𝑙(𝑟′𝑙𝑗 + 𝑥𝑙𝑗)

𝑛

𝑙=1

.   (𝐴2) 

 

Appendix B: Another derivation of 𝒓, 𝑿, and 𝑹′ 

In the main part of this chapter, we have calculated 𝒓, 𝑿, and 𝑹′ by using the infinite 

series of matrices (see expressions (7), (16), and (25)). However, we can derive the same 

expressions using the recursive formulae (26), (27) and (28), which have been proven in 

Appendix A. Here, we present the different way to derive (7), (16), and (25), which may 

help better understanding of the mathematical property of the model. 

(26) gives 

 

     𝑟𝑘 =∑𝑎𝑘𝑗𝑟𝑗

𝑛

𝑗=1

+∑𝑎𝑘𝑗

𝑛

𝑗=1

=∑𝑎𝑘𝑗𝑟𝑗

𝑛

𝑗=1

+ 1 − 𝑏𝑘,   (𝐵1) 
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which readily gives 

 

   𝒓 = 𝑨𝒓 + (
1 − 𝑏1
⋮

1 − 𝑏𝑛

).   (𝐵2) 

 

Therefore, 

 

     𝒓 = (𝑬 − 𝑨)−1 (
1 − 𝑏1
⋮

1 − 𝑏𝑛

).   (𝐵3) 

 

As for the origin of cultural variants, (27) gives 

 

     𝑿 = 𝑨𝑿 − 𝑩.     (𝐵4) 

 

Therefore, we have 

 

     𝑿 = (𝑬 − 𝑨)−1𝑩.   (𝐵5) 

 

Similarly, (28) gives 

 

     𝑹′ = 𝑨𝑹′ + 𝑨𝑿.     (𝐵6) 

 

Combining (B5) and (B6), we have 

 

     𝑹′ = (𝑬 − 𝑨)−1𝑨𝑿 = (𝑬 − 𝑨)−1(𝑬 − 𝑨)−1𝑨𝑩.   (𝐵7) 

 

Appendix C: Proof of equation (39) 

We provide a proof for the equation (39), showing the product of two matrices with 

elements (38) and (39) is equivalent to the identity matrix. When 𝑖 ≠ 𝑗, (38) and (39) 

give 

 

 ∑𝛼𝑖𝑙𝛽𝑙𝑗

𝑛

𝑙=1

= (𝑛 − 2)(−𝑎)
𝑎

1 − 𝑎𝑛
+ (1 − 𝑎)

𝑎

1 − 𝑎𝑛
+ (−𝑎)

1 − (𝑛 − 1)𝑎

1 − 𝑎𝑛
= 0.    (𝐶1) 
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When 𝑖 = 𝑗, we have 

 

          ∑𝛼𝑖𝑙𝛽𝑙𝑗

𝑛

𝑙=1

= (𝑛 − 1)(−𝑎)
𝑎

1 − 𝑎𝑛
+ (1 − 𝑎)

1 − (𝑛 − 1)𝑎

1 − 𝑎𝑛
= 1.     (𝐶2) 
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Table 1. Symbols used in this article. 

 

Symbols Meanings 

𝑛 Number of populations (i.e., size of network). 

𝑃𝑘 k-th population. 

𝑎𝑖𝑗 Probability that an individual in 𝑃𝑖  learns a cultural variant from an 

individual in 𝑃𝑗 in each generation. 

𝑏𝑘 Probability that an individual in 𝑃𝑘 invents a new cultural variant in each 

generation. 

𝑨 Square matrix of order 𝑛 whose i-th row and j-th column corresponds to 

𝑎𝑖𝑗. 

𝒃 n-dimensional vector whose k-th element is given by 𝑏𝑘. 

𝑩 Diagonal matrix of order 𝑛 whose k-th diagonal element is 𝑏𝑘. 

𝑬 Identity matrix of order 𝑛. 

𝒆𝑘 k-dimensional row unit vector, whose k-th element is 1 and the other 

elements are 0. 

𝑓𝑘(𝜌) Frequency of cultural variants with age 𝜌 in 𝑃𝑘. 

𝑟𝑘 Mean age of cultural variants in 𝑃𝑘. 

𝒓 n-dimensional vector whose k-th element corresponds to 𝑟𝑘. 

𝑞𝑘 Second-order moment of the cultural age in 𝑃𝑘. 

𝑣𝑘 Variance of the cultural age in 𝑃𝑘. 

𝑥𝑖𝑗 Proportion of cultural variants invented in 𝑃𝑗  to the entire variants 

present in 𝑃𝑖. 

𝑿 Square matrix of order 𝑛 whose i-th row and j-th column corresponds to 

𝑥𝑖𝑗. 

𝑓𝑖𝑗(𝜌) Proportion of cultural variants invented 𝜌 generations ago in 𝑃𝑗 to the 

entire variants present in 𝑃𝑖. 

𝑭(𝜌) Square matrix of order 𝑛 whose i-th row and j-th column corresponds to 

𝑎𝑖𝑗. 

𝑟𝑖𝑗 Mean age of cultural variants in 𝑃𝑖 which are invented in 𝑃𝑗. 

𝑚 Number of cultural variants (finite-variant model). 

𝐶𝑙 l-th cultural variant (finite-variant model). 

𝑐𝑘𝑙 Probability that an individual in 𝑃𝑘 invents 𝐶𝑙. 

𝑪 Matrix with n rows and m columns, with the element in the k-th row and 

l-th column being 𝑐𝑘𝑙. 
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𝜑𝑘(𝑙, 𝜌) Proportion of 𝐶𝑙  invented 𝜌  generations ago to the entire variants 

present in 𝑃𝑘. 

𝜑𝑘(𝑙) Frequency of 𝐶𝑙 in 𝑃𝑘. 

𝑟𝑘(𝑙) Mean age of 𝐶𝑙 in 𝑃𝑘. 

𝜑𝑖𝑗(𝑙) Proportion of 𝐶𝑙 invented in 𝑃𝑗 to the entire variants present in 𝑃𝑖. 

𝑥𝑖𝑗(𝑙) Proportion of 𝐶𝑙 invented in 𝑃𝑗 to all the 𝐶𝑙 variants in 𝑃𝑖. 

 

 

Table 2. Correlation coefficient between topological variables and origin and conditional 

mean cultural age. 

(a) 

  𝑖𝑛𝑑𝑒𝑔(𝑃𝑖) 𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑖) 

n = 200 

M = 5 

𝑥𝑖𝑖 0.060 -0.770 

𝑟𝑖𝑖 0.112 -0.771 

n = 200 

M = 50 

𝑥𝑖𝑖 0.059 -0.961 

𝑟𝑖𝑖 0.981 0.030 

n = 1000 

M = 5 

𝑥𝑖𝑖 0.011 -0.847 

𝑟𝑖𝑖 0.027 -0.847 

n = 1000 

M = 50 

𝑥𝑖𝑖 0.010 -0.979 

𝑟𝑖𝑖 0.898 -0.359 

 

(b) 

  𝑑𝑖𝑗 𝑙𝑜𝑔(𝑑𝑖𝑗) 𝑖𝑛𝑑𝑒𝑔(𝑃𝑖) 𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑖) 𝑖𝑛𝑑𝑒𝑔(𝑃𝑗) 𝑜𝑢𝑡𝑑𝑒𝑔(𝑃𝑗) 

n = 200 

M = 5 

𝑥𝑖𝑗 -0.540 -0.646 -0.002 0.048 0.230 -0.271 

𝑟𝑖𝑗 0.878 0.882 0.018 -0.320 -0.134 -0.201 

n = 200 

M = 50 

𝑥𝑖𝑗 -0.242 -0.242 -0.001 0.018 0.651 -0.607 

𝑟𝑖𝑗 0.973 0.973 -0.010 -0.082 -0.016 -0.077 

n = 1000 

M = 5 

𝑥𝑖𝑗 -0.404 -0.541 0.000 0.026 0.124 -0.118 

𝑟𝑖𝑗 0.890 0.887 0.013 -0.342 -0.130 -0.191 

n = 1000 

M = 50 

𝑥𝑖𝑗 -0.347 -0.399 0.000 0.013 0.618 -0.614 

𝑟𝑖𝑗 0.720 0.860 -0.002 -0.051 -0.011 -0.042 

 

 

Table 3. Correlation coefficient between innovation rates and origin and conditional mean 

cultural age. 
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(a) 

  𝑟𝑖 𝑥𝑖𝑖 𝑟𝑖𝑖 

n = 200, M = 5 𝑏𝑖 -0.160 0.482 -0.119 

n = 200, M = 50 𝑏𝑖 -0.988 0.966 -0.058 

n = 1000, M = 5 𝑏𝑖 -0.705 0.484 -0.088 

n = 1000, M = 50 𝑏𝑖 -0.981 0.958 -0.001 

 

(b) 

  𝑏𝑖 𝑏𝑗 

n = 200 

M = 5 

𝑥𝑖𝑗 -0.034 0.278 

𝑟𝑖𝑗 -0.003 -0.117 

n = 200 

M = 50 

𝑥𝑖𝑗 -0.015 0.934 

𝑟𝑖𝑗 0.003 0.004 

n = 1000 

M = 5 

𝑥𝑖𝑗 -0.020 0.142 

𝑟𝑖𝑗 -0.011 -0.028 

n = 1000 

M = 50 

𝑥𝑖𝑗 -0.010 0.924 

𝑟𝑖𝑗 -0.002 -0.003 

 

 

Table 4. Symbols used in the one-vertex-one-variant model. 

 

Symbols Meanings 

𝑎𝑖𝑗 Probability that 𝑃𝑖  adopts the cultural variant occupying 𝑃𝑗  in each 

generation. 

𝑏𝑘 Probability that a new cultural variant is invented and occupies 𝑃𝑘  in 

each generation. 

𝑓𝑘(𝜌) Probability that a cultural variant occupying 𝑃𝑘  was invented 𝜌 

generations ago. 

𝑟𝑘 Expected age of cultural variants occupying 𝑃𝑘. 

𝑥𝑖𝑗 Probability that the cultural variant occupying 𝑃𝑖 was invented in 𝑃𝑗. 

𝑓𝑖𝑗(𝜌) Probability that the cultural variant occupying 𝑃𝑖 was invented in 𝑃𝑗 , 𝜌 

generations ago. 

𝑟𝑖𝑗 Expected age of the cultural variant occupying 𝑃𝑖 given that the variant 

was invented in 𝑃𝑗. 

𝑐𝑘𝑙 Probability that 𝑃𝑘 invents 𝐶𝑙. (finite-variant model) 
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𝜑𝑘(𝑙, 𝜌) Probability that the cultural variant occupying 𝑃𝑘  is 𝐶𝑙  and that was 

invented 𝜌 generations ago. 

𝜑𝑘(𝑙) Probability that 𝐶𝑙 occupies 𝑃𝑘. 

𝑟𝑘(𝑙) Expected age of the cultural variant occupying 𝑃𝑘 given that the variant 

is 𝐶𝑙. 

𝜑𝑖𝑗(𝑙) Probability that the cultural variant occupying 𝑃𝑖  is 𝐶𝑙  and that was 

invented in 𝑃𝑗. 

𝑥𝑖𝑗(𝑙) Probability that the cultural variant occupying 𝑃𝑖  was invented in 𝑃𝑗 , 

given that the variant is 𝐶𝑙. 
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Figure legend. 

 

Figure 1 

Example of cultural transmission among populations. (blue ellipses) populations. (circles) 

cultural variants. Different colors correspond to different variants. (arrows) cultural 

transmission. This example illustrates a simple case of 𝑛 = 2 through three consecutive 

generations with parameters 𝑎11 = 𝑎22 = 0.6, 𝑎12 = 𝑎21 = 0.2, 𝑏1 = 𝑏2 = 0.2 . Blue, 

red, yellow, and green circles indicate new cultural variants invented after generation 𝑡. 

Although the figure displays only five variants in each population, our model assumes 

infinite number of variants. 

 

Figure 2 

Example of backward ancestral process. (blue ellipses) populations. (red circles) sampled 

variant and its ancestors. (green arrows) cultural transmission. This example illustrates 

the case of 𝑛 = 3. 

 

Figure 3 

Example of a random network with 𝑛 = 5 . (blue circles) populations. (red arrows) 

cultural transmission. Each population is labeled with two integers within the round 

brackets, the first and second integers of which represent the in-degree and out-degree, 

respectively. Note that the direction of an arrow corresponds to the direction in the 

ancestral process. For example, the arrow directed from 𝑃2  to 𝑃3  signifies that 𝑃2 

learns from 𝑃3, that 𝑃3 influences 𝑃2, or that a cultural variant in 𝑃2 may have been in 

𝑃3 in the previous generation. 
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Figure 1 
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Figure 2 
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Figure 3 

 

  



82 

 

Chapter 4.  

Analyzing the spatial evolution of Japanese lexical 

variation through network model 

 

1. Introduction 

We observe an extremely wide diversity in the languages all over the world. In addition 

to the variation on the scale of languages, each language contains dialect words which 

differ from one another in terms of phonology, syntax, morphology, and lexicon. A large 

body of classical linguistic literature records the geographic distribution pattern of 

linguistic variation on linguistic atlases based on nation-wide surveys, displaying the 

variants of linguistic features on a map [1-3]. 

Two processes underlie the spatial evolution of linguistic traits: migration and 

spatial interaction. As for the former, when a large population diverges and its subgroup 

inhabits in a new area, the newly arisen population accumulates the mutation of linguistic 

features and its language becomes more and more distant from the original population. 

Indeed, linguistic distance between varieties of Ryukyuan language was shown to 

correlate with time since divergence of populations [4]. As for the spatial interaction, on 

the other hand, individuals adjust their language use to adapt their speech patterns to their 

speech partners in their respective speech community [5]. Since human interaction occurs 

most frequently among individuals with geographical proximity, linguistic traits spread 

gradually from one place to its neighbors, resulting in a spatially continuous spectrum of 

language distribution. Trudgill’s gravity model [6], which is analogous to Newton’s law 

of gravity, quantifies linguistic interaction between localities, assuming that the influence 

of one city on another is given by the product of the population sizes of two cities divided 

by the squared distance between them. The model predicts a characteristic phenomenon 

called urban jumping, in which a newly invented linguistic variant first spreads from a 

large city to another, reaching the smaller towns and villages with a certain time lag, even 

if they are geographically more proximate to the place of invention (see also [7]). 

On the spatial pattern of linguistic variation, much research performed more 

quantitative analysis on empirical data and found a positive correlation between 

geographic distance (GD) and linguistic distance (LD), demonstrating that linguistic traits 

between two localities become more and more different with the geographic distance in-

between. For example, the dissimilarity between Japanese lexical variants was shown to 
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correlate with geographical distance [4, 8], especially when the latter was calculated by 

travel time between localities instead of naïve linear distance [8]. In addition, based on 

phonological variation in vowels among English dialects, [9] performed a cluster analysis 

and showed geographically proximate locations tend to belong to the same cluster. Other 

research discovered that linguistic variation increases with geographical distance, 

consistently in six different countries and areas (reviewed in [10]). Starting from well-

known Séguy's curve [11], most research above reported sublinear growth of linguistic 

distance as a function of geographic distance [8, 10]. However, variation of syntactic and 

morphological features of British English was reported to be only slightly explained by 

the geographical distance [12]. Nevertheless, it is safe to say that the correlation of 

geographical and lexical distances is a ubiquitous phenomenon observed in a number of 

languages and countries.  

 Although the empirical studies mentioned above have discovered the 

relationship between geography and language in a statistical and quantitative way, they 

do not quantitatively explain the temporal evolution of language distribution. Since 

corpora on which research in linguistic geography relies, such as linguistic atlases, are 

merely a snapshot taken at one moment and do not explain how the spatial pattern has 

evolved. Considering the tremendous costs that nation-wide linguistic research incurs, it 

is almost impossible to record the linguistic variants extensively in both temporal and 

spatial manner. 

 To investigate the spatial and temporal dynamics of linguistic variation, 

mathematical models have often been used. For example, Burridge [7, 13] established 

models of language diffusion based on the geographic contact pattern between 

populations, showing the temporal evolution of isoglosses on a real map. The models are 

a breakthrough in the sense that they mathematically demonstrate the urban jumping 

theory assuming the influence between localities as a function of population sizes and 

geographic distance. From a different perspective, transmission of linguistic traits is often 

simulated on a network of individuals [14, 15] or populations (Chapter 2), and its 

relationship with the topological variables is numerically investigated. 

 One crucial limitation of mathematical models is that they are not always tested 

by means of empirical data, which makes it difficult to establish the correspondence with 

reality. Although mathematical models may give insight into the spatial and temporal 

dynamics of language variation, it often remains to be theoretical. To fully understand the 

dynamics of dialect distribution, therefore, it is necessary to combine an empirical study 

and mathematical model, compensating for the limitations of each of them. 

In this chapter, we will study the evolution of the geographic distribution of 
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Japanese lexical variation based on both empirical data and a mathematical model and 

discuss how the observed spatial pattern is explained by the model. In particular, the main 

purpose of this paper is to capture the underlying factors which form séguy’s curve [11], 

that is, the sublinear growth of linguistic distance with geographic distance [10]. For 

empirical data, we utilize Linguistic Atlas of Japan (LAJ) [1] and its electronic version 

called Linguistic Atlas of Japan Database (LAJDB) [16], from which Jeszenvsky et al. 

[8] correlated linguistic distance and geographic distance calculated by multiple metrics. 

To take historical relationship of linguistic variants into consideration, they calculated 

linguistic distance based on the variant categories which class similar lexical variants 

together for every survey item. Their method enables us to reflect historical relation of 

lexical variants but may fail to eliminate subjective bias in judging the distance among 

them. Indeed, the category does not necessarily correspond to the cognate groups of 

lexicons, and the way to group lexicons is inconsistent among questions [1]. In our 

research, we will calculate the linguistic distance among localities by edit (Levenshtein) 

distance [17], which has been extensively used in calculating linguistic distance in 

dialectology [4]. 

 After discussing the relationship between geographic and linguistic distances 

obtained from empirical data, we will perform a numerical analysis and computer 

simulation of language diffusion based on a learning model on the network of the 2400 

survey localities in LAJ project. Lexical variants originating from a common ancestral 

word tend to have a smaller Levenshtein distance than pairs of non-cognate words, so 

analyzing the origin of lexical variants is an effective method which sheds light to the 

relationship between geographic and linguistic distances. For this purpose, we will apply 

the network model of Chapter 3, which estimates origin and expected age of cultural traits. 

Application of this model to the network of LAJ localities helps us to infer when and 

where lexical variants were invented as well as the velocity at which a lexical variant 

diffuses. In this model, which treats the dynamics of cultural traits [18] within the 

framework of backward ancestral process [19], each node (locality) of the network may 

either invent a new lexical variant or learn an extant variant from any locality. 

In addition to discussing variants’ origin and speed of diffusion, we will simulate 

linguistic distance on the network of the survey localities of LAJ project. To represent the 

dialect form at each locality, we will assign one string to each node of the network and 

simulate the spatial and temporal evolution of the strings over generations. We will 

discuss again the relationship between linguistic distance (LD) and geographic distance 

(GD) among localities and infer what parameter influences the spatial distribution of 

linguistic traits. 



85 

 

 The structure of this chapter is as follows. We will first analyze the empirical 

lexical data on the basis of LAJDB in “Analysis of empirical lexical data” section, 

calculating the linguistic distance among localities. In “Mathematical model and 

simulation” section, we will apply the model of Chapter 3 and perform numerical analysis 

and simulation to quantify the origin and origin-dependent age of lexical variants, as well 

as linguistic distance of every locality. Finally, in “Estimation of parameter values” 

section, we will perform approximate Bayesian computation (ABC) to infer parameter 

values of the mathematical model based on the empirical data. 

 

 

2. Analysis of empirical lexical data 

 

2-1 Material 

We analyze the lexical data recorded in Linguistic Atlas of Japan (LAJ) [1]. LAJ, a 

linguistic atlas published in 6 volumes during the period of 1966 to 1974, is an extensive 

project of language investigation in which 285 linguistic items were surveyed at 2400 

localities throughout the Japanese Archipelago, including Okinawa and small islands (see 

Figure 1). Most of the surveyed items are lexical variation including nouns, verbs, and 

adjectives, such as name of animals, plants, and body parts, which are frequently used in 

daily life. The survey was conducted in the form of interview, and one respondent was 

interviewed at each of the 2400 localities. Respondents were mostly elderly men (2392 

males, 8 females). 

In the current study, we analyze the lexical data of 103 LAJ-items available on Linguistic 

Atlas of Japan Database (LAJDB) [16], an electronic database which archives the lexical 

data of LAJ. 

 

2-2 Calculation of linguistic distances among localities 

Based on the recorded lexical variants, we calculate the linguistic distances among 2400 

localities. Jeszenvsky et al.’s [8] study, which was also based on LAJDB, calculated the 

distance between variants, relying on the category of variants displayed on LAJ maps [1] 

to consider the historical relationships of variants. For example, words meaning face are 

classified into three categories kao, cura, and omote, each of which includes several 

variants (see https://mmsrv.ninjal.ac.jp/laj_map/data/laj_map/LAJ_106.pdf). Jeszenvsky 

et al. [8] assigned a linguistic distance of 1 to variant pairs which belong to different 

categories, while linguistic distance between different variants belonging to the same 

category was considered 0.2. However, the category does not necessarily correspond to 
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the cognate groups of lexicons, and the way of grouping seems inconsistent among items. 

To eliminate subjective bias in calculating the distance between variants, we instead use 

normalized Levenshtein distance [17], which is often employed in studies of dialectology 

[4]. Normalized Levenshtein distance, defined for any pair of two strings, is the minimum 

number of one-letter substitutions, deletions, and additions which are necessary to change 

one string into the other, divided by the length of the longer string. 

 Letting 𝐿1…𝐿2400  denote the 2400 surveyed localities of LAJ, linguistic 

distance between two localities 𝐿𝑖  and 𝐿𝑗  are the mean value of normalized 

Levenshtein distance calculated for the 103 items. We will thereby obtain a 2400-

dimensional distance matrix. 

 

2-3 Clustering analysis  

Having obtained the 2400 × 2400  linguistic distance matrix, we performed 

multidimensional scaling (MDS) and plotted the 2400 localities on a two-dimensional 

plain (Figure 2a), which enables us to visualize the linguistic similarity among localities. 

The Japanese Archipelago is conventionally divided into nine regions. The figure shows 

that dialects within the same region are clustered together, and that positions indicated by 

the MDS are largely in concordance with the real geography of Japan (Figure 2b), 

suggesting that geographically distant localities are linguistically distant as well. 

An outstanding exception to this finding is Hokkaido, which is geographically 

positioned next to the Tohoku region but linguistically closer to the Chubu and Kanto 

regions according to the MDS analysis. The result is quite straightforward because a mass 

immigration occurred from Japanese mainland to Hokkaido near the end of 19th century. 

Indeed, principal component analysis based on genetic polymorphism of Japanese 

populations has revealed that Hokkaido is genetically close to prefectures in the Kanto 

region [20]. 

 

2-3 Relationship between linguistic and geographic distance 

The histogram of linguistic distance between every locality pair is shown in Figure 3a, 

with mean linguistic distance being 0.442 ± 0.106 (𝑆𝐷) . The histogram shows the 

highest peak in the range of 0.40-0.45 and smaller peak in 0.70-0.75, whereas locality 

pairs with linguistic distance less than 0.2 are quite rare. In Figure 3b, the linguistic 

distances (LD) between all the pairs of localities are plotted against geographical 

distances (GD), or more precisely, great circle distances, the shortest distance on the 

sphere surface of the Earth. As Figure 3b shows, linguistic distance increases with the 

geographic distance, and their correlation coefficients, shown in Table 1, indicates a 
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strong correlation between geographic and linguistic distances. Figure 3b suggests a 

sublinear growth of linguistic distance as a function of geographic distance, which is in 

line with previous studies that drew a logarithmic curve to regress the relation between 

geographic and linguistic distance [8,10]. However, the results indicate that correlation 

coefficient stays almost the same whether we logarithmically transform geographic 

distance or not (𝑟 = 0.689 with GD, and 𝑟 = 0.678 with log(GD)), which contradicts 

[8]. To visualize the linguistic distance from a fixed locality which we call reference site, 

we select the most populated locality in Tokyo and Kyoto prefectures and plot the 

linguistic and geographic distances from these two localities (Figure 4). The figure shows 

that growth of linguistic distance from Tokyo is visibly asymmetric depending on whether 

going eastward (plotted blue) or westward (plotted red) from the reference site (Figure 

4a). In the eastward direction, linguistic distance from Tokyo is maximal around 600 km 

of geographic distance (Tohoku region), but localities to the west of Tokyo shows a lower 

value of linguistic distance at 600 km. 

 Considering each region separately, correlation between geographic and 

linguistic distances is strong in Kyushu and Okinawa and weak in Hokkaido and Shikoku 

areas (Table 1). As for Kyushu, Okinawa, and Hokkaido, this feature is quite in line with 

Jeszenvsky et al.’s [8] work, which is also based on LAJDB. Modest correlation in 

Hokkaido is plausibly explained by recent migration [21]; lexical features vary due to the 

origin of immigrants’ ancestors, which decreases the variance of linguistic distance 

explained by geographic distance. In contrast, weak correlation in Shikoku entirely 

contradicts Jeszenvsky et al.’s [8] result, in which Shikoku scored the largest correlation 

coefficient between linguistic distance and great circle distance (𝑟 = 0.7391 between 

LD and GD, and 𝑟 = 0.7824 between LD and log(GD)).Since both studies are founded 

on LAJDB, this discrepancy is due to either the size of dataset (this study: 103 items, 

[8]: 37  items) or measure of linguistic distance (this study: normalized Levenshtein 

distance, [8]: variant category in LAJ map). As for the former, we calculated normalized 

Levenshtein distance from the same set of 37 LAJ-items analyzed in Jeszenvsky et al.’s 

[8] work but still observed a low correlation with geographic distance in the Shikoku area 

(𝑟 = 0.326 with GD and 𝑟 = 0.412 with log(GD)). Thus, the difference of two studies 

is attributable to the different measures of linguistic distance, even though it is unknown 

why such a stark discrepancy was observed exclusively in the Shikoku region. 

 

 

3. Mathematical model and simulation 

In the previous section, we analyzed the empirical data of Japanese lexical variation, 
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placing emphasis on the relationship between geographic and linguistic distances. In this 

section, on the other hand, we will introduce a mathematical model and simulate how 

lexical variants diffuse among localities. Since a pair of cognate variants originating from 

a common ancestor bears a higher similarity than a pair of variants invented independently, 

it is of great importance to quantify where and when lexical variants were invented in the 

network. To explore factors underlying the formation of Séguy’s curve, we will first 

consider the origin and diffusion time of lexical variants, and subsequently simulate the 

diffusion of lexical variants represented by strings. 

 

3-1 Description of network model 

We apply the network model of Chapter 3 to the network of 2400 LAJ localities denoted 

𝐿1, … 𝐿2400, each of which is occupied by one lexical variant. Lexical variants represent 

different word forms referring to the same object or meaning, such as different words for 

a single surveyed item of the LAJ project. This is analogous to alleles on a single locus 

in population genetics. While the model of Chapter 3 originally assumed an infinite 

number of cultural variants occupying each vertex of the network, the model can also be 

interpreted as a one-vertex-one-variant model (see Discussion of Chapter 3). In each 

generation of the model, every locality updates its lexical variant either by learning an 

extant variant from one locality, including itself, or by innovating a novel variant. The 

probability with which 𝐿𝑖 learns a variant from 𝐿𝑗 is denoted by 𝑎𝑖𝑗, which we call 

transmission rate from 𝐿𝑗  to 𝐿𝑖 , and the probability that 𝐿𝑖  invents a new lexical 

variant, which we refer to as innovation rate, is denoted by 𝑏𝑖. By definition, we have 

𝑎𝑖1 +⋯𝑎𝑖𝑛 + 𝑏𝑖 = 1 for every i. 

We assume the transmission rates 𝑎𝑖𝑗, which specifies the topological structure 

of the network, depend on geographical distance and population size. Namely, we follow 

Burridge’s [13] theory of interaction density, which assumes a Gaussian function of 

geographic distance weighted by population size; an individual dwelling at 𝐿𝑖 interacts 

with individuals at 𝐿𝑗 with frequency given by 

 

       𝜑𝑖𝑗 =
𝑃𝑗

2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑑𝑖𝑗
2

2𝜎2
),      (1) 

 

where 𝑃𝑗 denotes the population size of 𝐿𝑗, and 𝑑𝑖𝑗 denotes the geographic distance 

between the localities. Parameter 𝜎 , the interaction range, is associated with the 

dependence of interaction density on geographic distance; when 𝜎 is small, individuals 

tend to interact only with people living nearby while higher value of 𝜎 permits a long-
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distanced interaction. As it is plausible that speakers are linguistically influenced by 

localities with frequent interaction, transmission rate from 𝐿𝑗 to 𝐿𝑖 is proportional to 

the ratio of 𝜑𝑖𝑗 to the whole interaction that 𝐿𝑖 experiences. Formally, we have 

 

          𝑎𝑖𝑗 =
𝜑𝑖𝑗

∑ 𝜑𝑖𝑙
2400
𝑙=1

(1 − 𝑏𝑖),       (2) 

 

from which we obtain a 2400 × 2400 transmission matrix 𝑨 = (𝑎𝑖𝑗), consisting of the 

transmission rates between every locality pair. 

 To estimate relative population sizes of LAJ localities, we use the mesh data of 

a demographic survey carried out in 1995 (see https://www.e-stat.go.jp/), which is the 

earliest data set of this kind. Although the population sizes in 1995 were certainly different 

from those at the time of word diffusion, what is relevant to (1) and (2) is relative, rather 

than absolute, population size. We assume that modern population size provides a 

sufficiently good approximation, which is true if the population at each locality has grown 

at a similar rate. Mesh data record the number of residents living in every 1𝑘𝑚 × 1𝑘𝑚 

square of the land, and we regard 𝑃𝑖  as the mean value of population sizes of 

25 (= 5 × 5) squares centered at 𝐿𝑖 (Figure 5). 

 We assume innovation rate 𝑏𝑖 = 𝑏 is constant for every locality, and to make 

the generation in our model comparable with realistic generation as the length of human 

lifecycle, we use the per-year innovation rate of lexicons from previous studies. Based on 

a phylogenic method, Pagel and Meade [22] estimated the replacement rate of 

fundamental vocabulary on Swadesh list [23] was on average 0.00020 per year in the 

Indo-European family, which is converted to 0.005 per generation, provided one 

generation is approximately 25 years. Although replacement rate varies from word to 

word [22] depending on the frequency of word use [24], we basically use 𝑏𝑖 = 𝑏 =

 0.005 unless otherwise stipulated to consider the average scenario of language change. 

 

3-2 Origin and age of lexical variants 

The dynamics will reach an equilibrium state. Letting 𝑥𝑖𝑗  denote the equilibrium 

probability that the lexical variant used in 𝐿𝑖 was invented in 𝐿𝑗, Chapter 3 showed 

 

        𝑿 = (𝑥𝑖𝑗) = (𝑬 − 𝑨)
−1𝑑𝑖𝑎𝑔(𝑏1…𝑏2400),     (3) 

 

where 𝑬 represents 2400-dimensional identity matrix. Following (3), we calculate the 

value 𝑥𝑖𝑗  for every ordered pair of 𝑖  and 𝑗 , and the probability that the variant 
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originates from the most populated locality of Tokyo and Kyoto prefectures is plotted 

against geographic distance in Figure 6. 𝐿𝑗 being fixed to either one of the two reference 

sites, the figure shows that 𝑥𝑖𝑗  drops with geographic distance but stays relatively 

constant when 𝜎 is large and distanced transmission is possible. Intriguingly, when we 

fix 𝐿𝑗 to a locality in Tokyo, 𝑥𝑖𝑗 drops more rapidly in the west than in the east (Figure 

6a, b), which is most prominently observed with small values of 𝜎. Conversely, when we 

fix 𝐿𝑗 to a locality in Kyoto, 𝑥𝑖𝑗 drops more rapidly in the east than in the west (Figure 

6e, f). Hence, diffusion of lexical variants is not isotropic, and localities in Kyoto and 

Tokyo are not frequently occupied by a lexical variant originating from each other. This 

is interpreted as follows; since Tokyo and Kyoto-Osaka areas are densely populated 

(Figure 5), nearby localities often learn lexical variants from these localities. Thus, if a 

lexical variant invented in Tokyo diffuses westward, they are likely to be overridden by a 

variant originating from Kyoto and Osaka areas, and the opposite is also true if a lexical 

variant invented in Kyoto diffuses eastward. On the other hand, when 𝜎 is large, the 

figure suggests 𝑥𝑖𝑗 is largely uniform in Japanese mainland but still sharply decreases in 

Amami and Okinawa islands (plotted black), indicating that any locality on the mainland 

contains variants invented in Tokyo and Kyoto with a similar probability but lexical 

variants in Amami and Okinawa islands are less likely to derive from Tokyo and Kyoto. 

 We visualize the effect of population size on the value of 𝑥𝑖𝑗 in Figure 7. In 

addition to the locality with largest population size of Tokyo and Kyoto (Figure 7a, c), we 

choose less populated localities (Figure 7b, d) as reference sites. For Tokyo, we select a 

locality with population size 250.4 situated at 56.4 km away from the most populated 

locality (Figure 7b), and for Kyoto, we select a locality with population size 198.8 situated 

18.4 km away from the most populated locality (Figure 7d). Figure7 clearly shows that 

variants are likely to derive from densely populated localities in comparison with 

localities with a smaller population size. 

We correlate 𝑥𝑖𝑗 with the distance between two localities and their population 

sizes (Table 2). The result shows that 𝑥𝑖𝑗 tends to be large when 𝐿𝑖 and 𝐿𝑗 are located 

close to each other, and that 𝑥𝑖𝑗 positively correlates with the population size of 𝐿𝑗. In 

other words, a lexical variant is likely to derive from a locality which is located nearby 

or/and which is of a large population size. In contrast, we find almost no correlation 

between 𝑥𝑖𝑗 and population size of 𝐿𝑖 (|𝑟| < 10−6 for every parameter set). Table 2 

also shows that the logarithm of 𝑥𝑖𝑗 is negatively correlated with geographic distance 

indicating that the frequency of variants invented at a fixed locality decreases 

exponentially with geographic distance. Strength of correlation depends on the parameter 

values, and correlation between log(𝑥𝑖𝑗) and geographic distance tends to be stronger with 
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larger value of 𝑏 , meaning that origin of linguistic variants is heavily influenced by 

geographic distance when localities invent new variants frequently. In contrast, 

correlation between 𝑥𝑖𝑗 and population size of 𝐿𝑗 is strong if 𝜎 is large, or in other 

words, if variants can transmit between distant localities. 

The variable 𝑠𝑗 calculated by 

 

       𝑠𝑗 = ∑ 𝑥𝑖𝑗

2400

𝑖=1

     (4) 

 

indicates the expected number of localities whose lexical variant originates from 𝐿𝑗. We 

plot the value of 𝑠𝑗 against population size 𝑃𝑗 (Figure 8). As the figure depicts, 𝑠𝑗 and 

𝑃𝑗 have a strong linear relationship (𝑟 = 0.956 when 𝜎 = 150, 𝑏 = 0.005). 

 Besides origin of linguistic variants, we discuss the time it takes for a variant to 

transmit between two localities. Let 𝑟𝑖𝑗 represent the expected age (elapsed time since 

invention event) of the variant occupying 𝐿𝑖 , given it was invented in 𝐿𝑗 . At the 

equilibrium state, Chapter 3 showed 

 

𝑹 = (𝑟𝑖𝑗) = (𝑬 − 𝑨)
−1(𝑬 − 𝑨)−1𝑨𝑑𝑖𝑎𝑔(𝑏1…𝑏2400) ⊘ 𝑿, (5) 

 

where ⊘  notates Hadamard (element-wise) division of matrices. Hence, (3) and (5) 

enable us to compute the value of 𝑟𝑖𝑗 for every ordered pair of i and j. This value is an 

estimator of diffusion time from 𝐿𝑗 to 𝐿𝑖, but strictly speaking, the value represents the 

expected age of the variant in 𝐿𝑖 given that it was invented in 𝐿𝑗, so it may deviate from 

the diffusion time because the variants may have stayed in 𝐿𝑖  for many generations. 

Figure 9 and 10 shows the expected age of lexical variant given that the variant was 

invented at a fixed reference site. Expected age of variants originating at a fixed locality 

increases gradually toward its periphery and shows a concentric pattern (Figure 10). 

However, as with the value of 𝑥𝑖𝑗, growth of 𝑟𝑖𝑗 is asymmetric especially when 𝜎 is 

small; variants invented in Tokyo diffuse more rapidly eastward than westward (Figure 

9a), and those invented in Kyoto diffuse rapidly to the west (Figure 9e). Unlike 𝑥𝑖𝑗 , 

expected age of variants hardly depends on the population size of the reference site. 

 Again, we correlate the expected age 𝑟𝑖𝑗 with variables of each locality (Table 

3a) and found an extremely strong correlation between 𝑟𝑖𝑗 and geographic distance. In 

contrast, population sizes of 𝐿𝑖  (locality where the variant currently exists) and 𝐿𝑗 

(locality where the variant was invented) are almost irrelevant to the expected age. We 
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perform a simple linear regression assuming the model: 

 

     𝑟𝑖𝑗 = 𝛽0 + 𝛽1𝑑𝑖𝑗,   (6) 

 

where coefficients 𝛽0 𝑎𝑛𝑑 𝛽1  are estimated in Table 3b. Based on the estimated 

coefficient, the value 1/𝛽1 , distance with which expected age increases by one 

generation, is shown to be larger if innovation rate is smaller or if variants can transmit 

between distant localities. The value is used as an estimator of the distance which lexical 

variants advance in one generation. Thus, variants advance rapidly when transmission 

occurs between remote localities and when new variants are invented frequently. 

 

3-3 Simulation of linguistic distance 

Besides origin and expected ages of variants, we will simulate the linguistic distance for 

each locality pair. In this simulation, a linguistic variant is represented by a string of Latin 

alphabets, which is invented and transmitted as described in subsection 3-1. In the initial 

generation, each locality is occupied by an independently generated random string, whose 

length follows the uniform integer distribution of 1-12. When an invention occurs in a 

locality, the old string is replaced by another random string. If a locality learns an extant 

variant from any locality, the string experiences a one-letter substitution, deletion, or 

addition with probability 𝜇 for each (i.e., total rate of mutation: 3𝜇). However, deletions 

and additions which push the string length out of the range of 1 to 12 do not occur. 

We simulate the diffusion of variants and record normalized Levenshtein 

distance of strings for every pair of localities 100 times at the interval of 5 𝑏⁄  generations 

to let the system approach equilibrium. This simulation is practically equivalent to 

computing Levenshtein distance of words for 100 different meanings, such as 100 

surveyed items of LAJ, assuming that they all diffuse independently. Simulated linguistic 

distance, defined to be the mean value of normalized Levenshtein distances calculated 

100 times, is then plotted on a map from a reference site situated in Tokyo (Figure 11). 

The figure shows that linguistic distance increases concentrically from the reference site, 

especially when lexical variants cannot transmit between remote localities (i.e., small 

value of 𝜎). However, the simulation does not replicate the empirically observed fact that 

Hokkaido is more linguistically similar to Tokyo than the Tohoku region (see Figure2). 

Figure 12 depicts a scatter plot of linguistic distance (LD) for every locality pair 

against geographic distance (GD). When 𝜎 is small, linguistic distance increases with 

geographic distance in a decelerating manner (Figure 12a), which is observed in the 

analysis of LAJ data (see Figure 3b). On other hand, when 𝜎 is large, LD stays largely 
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constant independent of GD, and LD for majority of locality pairs are within the range of 

0.6 to 0.8 (Figure 12b). Linguistic distance from the most populated locality in Tokyo and 

Kyoto is plotted in Figure 13, with three values of 𝜎. When 𝜎 = 50𝑘𝑚, accumulation 

of linguistic distance is not isotopic in eastward and westward directions; the locality in 

Tokyo tends to be linguistically closer to eastern localities than western localities, and the 

locality in Kyoto tends to be linguistically closer to western localities (i.e., Chugoku, 

Shikoku, and Kyushu regions) than eastern ones. This finding is in line with the 

distribution of 𝑥𝑖𝑗  in Figure 6. Variants invented in Tokyo is not as likely to occupy 

western localities as eastern localities (Figure 6a), so it is suggested that variants at 

western localities are not likely to be cognate with the variant of Tokyo and thereby score 

a large value of Levenshtein distance. 

Unsurprisingly, linguistic distance (LD) is positively correlated with geographic 

distance (GD) in every parameter set, but the correlation coefficient varies depending on 

the value of parameters (Figure 14). Namely, assuming 𝜇 = 10−4, correlation coefficient 

is maximum at 𝜎 = 50. It is also suggested by the result that LD correlates with log(GD) 

more strongly than with GD when 𝜎 is small, and vice versa when 𝜎 is large. 

 

4. Estimation of the parameter values of the model 

We have so far discussed the spatial distribution of linguistic variants empirically and 

simulated the temporal and spatial evolution of variants using a network model. To 

integrate empirical and simulated research, we will estimate the parameter values of our 

mathematical model (see subsection 3-3), based on the empirical linguistic distance 

matrix obtained in section 2. 

 

4-1 ABC-rejection algorithm with MCMC sampling 

We estimate the parameter values of the model under the framework of approximate 

Bayesian computation (ABC) with Markov Chain Monte Carlo (MCMC) sampling [25]. 

Our model has three parameter values (i.e., 𝜎, 𝜇, and 𝑏), but we use a new parameter 

𝑚 = 3𝜇, total rate of mutation, instead of 𝜇 itself. We use a uniform distribution of the 

range 10 to 500 (km) as the prior distribution of 𝜎 and exponential distribution of the 

range 10−5  to 0.1  as the prior distributions of 𝑏 and 𝑚 . Based on the prior 

distributions and MCMC sampling, we sequentially generate parameter sets and conduct 

simulation. 

 For each parameter set, we simulate the transmission of lexical variants (strings) 

as described in 3-1, but to reduce the time complexity, simulation is conducted via 

ancestral process, whereby we trace the ancestors of 2400 variants in the present. For each 
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parameter set, we calculate Levenshtein distances among variants 100 times and assign 

linguistic distance of locality pairs as the mean value of 100 simulations, so the simulation 

is equivalent to investigating the lexical variation with regard to 100 meanings. As it is 

costly to compute linguistic distance for all 2400 × 2399 2⁄ ≈ 2.88 × 106  locality 

pairs, we randomly sample 105 locality pairs and compute their linguistic distances. Let 

�̂�𝑖 denote the simulated linguistic distance of i-th sampled locality pair and 𝐷𝑖 be its 

observed linguistic distance calculated from the empirical data of Linguistic Atlas of 

Japan Database (LAJDB) in section 2. Here, we calculate the mean square error (MSE): 

 

𝑀𝑆𝐸 =
1

105
∑(𝐷𝑖 − �̂�𝑖)

2
105

𝑖=1

. 

 

Accepting parameter sets which satisfy 𝑀𝑆𝐸 < 0.01 , we estimate the posterior 

distribution of parameter values. 

 

4-2 Result 

We performed MCMC sampling using five independent chains, each of which 

sequentially samples 5000 parameter sets. Hence, linguistic distance was simulated based 

on 25000 parameter sets, and 16156 parameter sets were accepted according to the error 

level of 𝑀𝑆𝐸 < 0.01. Within the accepted parameter sets, 𝜎, interaction range, shows 

little correlation with innovation and mutation rates (𝑟 = 0.00045 between 𝜎 and 𝑏,

𝑟 = −0.11 between 𝜎 and 𝑚). Thus, we independently drew the posterior distribution 

of 𝜎 in Figure 15a, which displays two peaks around 70 km and 140 km, respectively. 

The distribution shows a median value of 116 km and 95% confidence interval was 59 to 

178 km. 

On the other hand, innovation and mutation rates which satisfied 𝑀𝑆𝐸 < 0.01 

were closely related, and Figure 15b represents the scatter plot of 𝑏 and 𝑚 which were 

accepted by ABC-rejection algorithm. The figure shows that the lower innovation rate is, 

the higher mutation rate must be in order that the simulated linguistic distance is 

consistent with empirical data. 

 

5. Discussion 

In this chapter, we explored the relationship between geographic and linguistic distances 

by means of both empirical and theoretical methods. First, analysis of lexical data in 

LAJDB led to conclusion that linguistic distance was strongly correlated with geographic 
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distance, and geographically close localities formed clusters through multidimensional 

scaling based on empirical linguistic distance (Figure 2). On the other hand, we applied 

the mathematical model which we developed in Chapter 3 to a network of the LAJ 

localities and numerically obtained the probability of lexical variant deriving from each 

population and origin-dependent age of lexical variants at each locality. Subsequently, we 

simulated the diffusion of lexical variants (strings) and analyzed the linguistic distance 

between every locality pair and correlated it with geographic distance (GD). Finally, we 

estimated the parameter values of the model by ABC (approximate Bayesian 

computation) algorithm. 

 As for the empirical study of LAJDB, large part of our results is in line with the 

previous research [8]. Novelty that the current study offers is rather the metrics of 

linguistic distance (i.e., normalized Levenshtein distance) which is different from 

Jeszenszky et al.’s work [8] based on the variant categories of LAJ map. One discrepancy 

between our and Jeszenszky et al.’s [8] research is the correlation between LD and GD in 

Shikoku region; our research indicated only a modest correlation (Table 1) whereas [8] 

reported the highest correlation coefficient in this region. Also, our study into LAJ data 

did not show a higher correlation of LD with logarithm of GD compared to that with GD 

itself (Table.1), which was reported in multiple studies [8, 10]. Nevertheless, sublinear 

increase of LD as a function of GD was observed (Figure 3b), which is reminiscent of 

Séguy’s curve [11]. 

 Concerning the numerical analysis of origins and expected age of variants, our 

model suggested that expected age of variants increases concentrically from the place of 

invention. It was suggested that expected age increases quite linearly and the speed at 

which variants advance was estimated through regression (Table 3b). This result is 

inconsistent with Chapter 2 and another previous study which simulated the dynamics of 

Japanese dialects spreading from Kyoto [26], because these models predicted that 

expected age of words increases rapidly near the origin but more slowly after the words 

have diffused far away. The difference is probably due to the center-and-periphery 

structure which the Chapter 2 and the previous study [26] assumed: in their study, new 

words arise only at one location of network (Chapter 2) or 2D-lattice [26] and diffuse 

without interference of words invented at different places. In contrast, although localities 

are weighted by their population size, they all have the same probability to invent new 

words in our model. It may be suggested that the diffusion speed may be uniform when 

all the populations create new words with the same probability, whereas the diffusion may 

become slow in periphery when the network has a center-and-periphery structure. 

 Simulating the transmission of strings have revealed what factors exert influence 
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on the correlation between GD and LD; the correlation is large when the interaction range 

is moderate. This is interpreted as follows; when localities only interact with the nearby 

localities (small value of 𝜎), each locality tends to contain variants originating from a 

nearby locality, so LD steeply skyrockets even for small GD and stays constant for 

sufficiently large GD. Conversely, when localities interact with remote localities 

independently of GD (large value of 𝜎 ), they often accept variants originating from 

remote populations and LD does not depend much on GD. In either case, variance of GD 

does not explain much of the variance of LD, decreasing the value of correlation 

coefficient. The result also shows that LD correlates more strongly with logarithm of GD 

than GD itself when 𝜎  is small, suggesting the appearance of Séguy’s curve [11] is 

conditional on variants transmitting only between proximate localities. 

 Regarding the emergence of Séguy’s curve, we posit that the sublinear growth 

of linguistic distance is associated with the exponential decay of the value 𝑥𝑖𝑗 from a 

fixed origin or reference cite. When 𝜎  is small, 𝑙𝑜𝑔(𝑥𝑖𝑗)  shows a strong negative 

correlation with geographic distance (see Table 2), and the value of 𝑥𝑖𝑗 drops sharply 

near the reference site but stays relatively constant in the periphery (Figure 6a, e). Since 

variants which derive from a common ancestral word usually have a small Levenshtein 

distance, exponential decrease of 𝑥𝑖𝑗  may in turn result in the sublinear increase of 

linguistic distance. However, note that 𝑥𝑖𝑗  denotes the probability that variant at 𝐿𝑖 

originates from 𝐿𝑗 and is different from the probability with which two localities have 

variants deriving from a common ancestral variant created by a single invention event. 

 We found that spatial patterns of 𝑥𝑖𝑗, 𝑟𝑖𝑗, and simulated linguistic distance from 

a reference site are not symmetric to every direction when interaction range is small 

(Figure 6, 9, 13). As for the origin, lexical variants invented in Tokyo and Kyoto are likely 

to spread eastward and westward, respectively (Figure 6a, e), approaching both edges of 

the archipelago. In addition, simulated linguistic distance from Tokyo and Kyoto grows 

more rapidly in the west and east, respectively (Figure 13a, e). However, we cannot 

observe this feature in the scatter plot of linguistic and geographic distances calculated 

from the empirical data (Figure 4), and small values of 𝜎(< 50 𝑘𝑚)  were mostly 

rejected by ABC-MCMC method (Figure 15). Although it is intriguing that small 

interaction range breaks the isotropy of linguistic distance, this finding remains 

theoretical and cannot be observed in the empirical data of Japanese lexical variation. 

 We discuss limitations of our research. First, we used Levenshtein distance as a 

metric to measure the distance among lexical variants, because unlike Jeszenszky et al.’s 

[8] linguistic distance based on variant category, Levenshtein distance can eliminate 

subjective bias, and because it can be computed in our simulation. Nevertheless, it is still 
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questionable if this criterion is appropriate since some research shows that Levenshtein 

distance does not necessarily assess historical or phylogenic relationship of languages 

[27]. 

As for limitations of mathematical model, a network of 2400 LAJ localities 

might not represent the real geography of Japan because there are many more populations 

which may potentially invent or transmit lexical variants. Ideally, we should conduct 

numerical analysis and simulation on a network of lattice sites which divide Japanese 

Island into fine meshes and subsequently extract data of lattice sites corresponding to the 

LAJ localities (see [28] for this class of research). The problem is that calculation of (3) 

and (5) takes 𝑂(𝑛3) time where 𝑛 denotes the number of vertices in the network, so 

increasing the number of nodes will make numerical analysis infeasible. Although the 

network of LAJ localities may overleap the effect of populations which were not surveyed 

by the project, it does not seriously affect the result of our model because survey localities 

in LAJ project were selected at somewhat regular interval, if not perfectly equally spaced. 

Another limitation of our model is that lexical variants are assumed to diffuse only by 

interaction and learning of speakers, and the effect of migration is completely omitted. 

Indeed, the model fails to replicate the observed spatial pattern of variants in Hokkaido 

(Figure 2a), which was plausibly formed by the recent migration event [21]. In addition, 

formulae (3) and (5) assume the equilibrium state, by which lexical variants have 

transmitted for a sufficiently long time. As for simulation, we calculated Levenshtein 

distance several times at a regular interval, so that the system approaches the equilibrium 

state. However, it is still questionable whether the dynamics of empirical linguistic 

variants is at the equilibrium state, and a mathematical model which predicts the dynamics 

of a non-equilibrium state may better fit the empirical data. 

We discuss suggestions for future research. Since Chapter 3 proposes 

mathematical formulae about origin and expected age for arbitrary network, numerical 

analysis and simulation of language diffusion in this chapter can be applied to any 

linguistic atlases which record lexical variants at multiple places. Japan is characterized 

as an island country and interaction between other nations has been relatively rare. It 

seems interesting to conduct this research using a linguistic atlas of Indo-European 

languages [2,3] to elucidate the effect of interaction between populations belonging to 

different language areas. For mathematical model, a model unifying invention, 

transmission, and migration is a possible extension of our study. In this way, we may 

understand the effect of migration on the spatial pattern of linguistic traits and infer the 

parameter values concerning these effects in combination with empirical data. 
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Table legends 

 

Table 1 

Correlation coefficient (𝑟) of linguistic distance (LD) with geographic distance (GD) 

and its logarithm (log(GD)) calculated separately in each region of Japan. 

 

Table 2 

Correlation coefficient (𝑟) of 𝑥𝑖𝑗 and its logarithm with geographic distance (GD) and 

population sizes.  

 

Table 3 

(a) Correlation coefficient (𝑟) of expected age 𝑟𝑖𝑗 with geographic distance (GD) and 

population sizes of two populations. (b) Values of intercept and coefficient of model (6) 

estimated by linear regression. We performed correlation and regression analysis based 

on all the ordered pairs of i and j which satisfy 𝑥𝑖𝑗 > 0. 
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Table 1 

 

Region Number of localities 𝑟 between GD and 

LD 

𝑟 between 

log(GD) and LD 

All the localities 2400 0.689 0.678 

Hokkaido 83 0.348 0.350 

Tohoku 431 0.623 0.687 

Kanto 270 0.645 0.598 

Chubu 475 0.499 0.565 

Kinki 274 0.487 0.494 

Chugoku 270 0.518 0.588 

Shikoku 156 0.334 0.426 

Kyushu 381 0.831 0.797 

Okinawa 60 0.820 0.875 

 

 

Table 2 

 

Parameter values Correlation Coefficient 

𝜎 (𝑘𝑚) b 𝑙𝑜𝑔(𝑥𝑖𝑗) and GD 𝑥𝑖𝑗 and 𝑃𝑖 𝑥𝑖𝑗 and 𝑃𝑗 

50 0.005 -0.659 6.03e-8 0.584 

100 0.005 -0.470 7.20e-8 0.630 

150 0.005 -0.331 9.24e-8 0.747 

200 0.005 -0.273 1.18e-7 0.918 

150 0.05 -0.548 6.97e-8 0.512 

150 0.01 -0.379 8.59e-8 0.686 

150 0.001 -0.267 1.10e-7 0.897 

 

 

Table 3 

 

(a) 

Parameter values Correlation Coefficient 

𝜎 (𝑘𝑚) b 𝑟𝑖𝑗 and GD 𝑟𝑖𝑗 and 𝑃𝑖 𝑟𝑖𝑗 and 𝑃𝑗 

50 0.005 0.938 -0.001 -0.001 
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100 0.005 0.815 0.014 0.014 

150 0.005 0.734 0.013 0.013 

200 0.005 0.656 0.022 0.022 

150 0.05 0.935 -0.004 -0.004 

150 0.01 0.796 0.013 0.013 

150 0.001 0.616 0.010 0.010 

 

(b) 

Parameter values Coefficients  

𝜎 (𝑘𝑚) b (intercept) GD 𝑅2 1/𝛽1 (km) 

50 0.005 92.1 3.01e-1 0.880 3.32 

100 0.005 139.9 1.22e-1 0.664 8.22 

150 0.005 164.7 6.95e-2 0.545 14.4 

200 0.005 182.7 3.06e-2 0.430 32.7 

150 0.05 11.9 2.06e-2 0.874 48.5 

150 0.01 75.7 4.86e-2 0.634 20.6 

150 0.001 934.9 1.28e-1 0.379 8.80 
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Figure legends. 

 

Figure 1 

2400 localities surveyed in the LAJ project. Each red point corresponds to one locality. 

Map data were extracted from the GADM database (www.gadm.org), version 2.8, 

November 2015 (same for Figures 2b, 5, 7, 10, and 11). 

 

Figure 2 

(a)Result of MDS based on the linguistic distance matrix. Each plot is colored according 

to the regions of Japan. (b)2400 localities colored according to the regions. (blue: 

Hokkaido, black: Tohoku, green: Kanto, yellow: Chubu, light blue: Kinki, purple: 

Chugoku, orange: Shikoku, pink: Kyushu, and red: Hokkaido.) 

 

Figure 3 

(a)Histogram of linguistic distance calculated for every pair of two localities. (b)Scatter 

diagram of geographic distance (horizontal axis) and linguistic distance (vertical axis), 

where the density of grayscale represents the number of locality pairs appearing in each 

rectangle. 

 

Figure 4 

Scatter diagram of geographic distance (GD) and linguistic distances from a fixed locality 

called reference site. (a)Reference site is the most populated locality in Tokyo. 

(b)Reference site is the most populated locality in Kyoto. (Blue) Localities situated to the 

east of reference site. (Red) Localities situated to the west of reference site. (Black) 

Localities in Amami and Okinawa. (Yellow) Localities in Hokkaido. 

 

Figure 5 

Population sizes (number of people within 1km square) of 2400 LAJ localities displayed 

by 𝑙𝑜𝑔10(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒). 

 

Figure 6 

Scatter plot of geographic distance and value of 𝑥𝑖𝑗, where 𝐿𝑗 is fixed to one reference 

site for each panel. (a)-(d)Reference site is the most populated locality in Tokyo. (e)-

(h)Reference site is the most populated locality in Kyoto. (a)(e)𝜎 = 50𝑘𝑚 . (b)(f)𝜎 =

100𝑘𝑚. (c)(g)𝜎 = 150𝑘𝑚. (d)(h)𝜎 = 200𝑘𝑚. (Blue) Localities situated to the east of 

reference site. (Red) Localities situated to the west of reference site. (Black) Localities in 
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Amami and Okinawa. 

 

Figure 7 

Probability that each locality has a variant originating from a fixed reference site, or 

formally, value of 𝑥𝑖𝑗 is plotted on the map where 𝐿𝑖 corresponds to each point of the 

map and 𝐿𝑗 is fixed in each map. Black cross pointed by a red triangle indicates the 

reference site 𝐿𝑗. (a) reference cite is in Tokyo with population size of 18649 per 1𝑘𝑚2. 

(b) reference cite is in Tokyo with population size of 50. (c) reference cite in Kyoto with 

population size of 10608. (d) reference cite in Kyoto with population size of 40. Parameter 

values: 𝜎 = 150𝑘𝑚, 𝑏 = 0.005. 

 

Figure 8 

(Horizontal axis) Population size of 𝐿𝑗  (number of people in one square kilometer). 

(Vertical axis) Expected number of localities which have a lexical variant originating from 

𝐿𝑗 (𝑠𝑗). (Red line) Result of linear regression. 𝑦 = −0.173 + 0.00160𝑥 (𝑅2 = 0.913). 

 

Figure 9 

Scatter plot of geographic distance and value of 𝑟𝑖𝑗, where 𝐿𝑗 is fixed to one reference 

site for each panel. (a)-(d)Reference site is the most populated locality in Tokyo. (e)-

(h)Reference site is the most populated locality in Kyoto. (a)(e)𝜎 = 50𝑘𝑚 . (b)(f)𝜎 =

100𝑘𝑚. (c)(g)𝜎 = 150𝑘𝑚. (d)(h)𝜎 = 200𝑘𝑚. (Blue) Localities situated to the east of 

reference site. (Red) Localities situated to the west of reference site. (Black) Localities in 

Amami and Okinawa. 

 

Figure 10 

Expected age of the lexical variant at each locality given it originates from a fixed 

reference site, or formally, value of 𝑟𝑖𝑗 is plotted on the map where 𝐿𝑖 corresponds to 

each point of the map and 𝐿𝑗 is fixed in each map. (a) reference cite is in Tokyo with 

population size of 18649 per 1𝑘𝑚2. (b) reference cite in Kyoto with population size of 

10608. Parameter values: 𝜎 = 150𝑘𝑚, 𝑏 = 0.005. 

 

Figure 11 

Simulated linguistic distance from the most populated locality in Tokyo (red plot). (a) 

𝜎 = 50𝑘𝑚 (b)𝜎 = 150𝑘𝑚. Other parameters: 𝑏 = 0.005, 𝜇 = 0.0001. 

 

Figure 12 
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Diagram of linguistic distance (LD) against geographic distance (GD) for every pair of 

two localities. Grayscale represents the number of locality pairs in each rectangle. (a) 

𝜎 = 50𝑘𝑚 (b)𝜎 = 150𝑘𝑚. Other parameters: 𝑏 = 0.005, 𝜇 = 0.0001. 

 

Figure 13 

Scatter plot of geographic distance and simulated linguistic distance, where we display 

both distances from a fixed to one reference site for each panel. (a)-(d)Reference site is 

the most populated locality in Tokyo. (e)-(h)Reference site is the most populated locality 

in Kyoto. (a)(e)𝜎 = 50𝑘𝑚 . (b)(f)𝜎 = 100𝑘𝑚 . (c)(g)𝜎 = 150𝑘𝑚 . (d)(h)𝜎 = 200𝑘𝑚 . 

(Blue) Localities situated to the east of reference site. (Red) Localities situated to the west 

of reference site. (Black) Localities in Amami and Okinawa. Other parameters: 𝑏 =

0.005, 𝜇 = 0.0001. 

 

Figure 14 

Correlation coefficient between geographic distance and linguistic distance. Horizontal 

axes represent the value of 𝜎. (blue) correlation coefficient between geographic distance 

(GD) and linguistic distance (LD). (orange) correlation coefficient between logarithm of 

geographic distance (log(GD)) and linguistic distance (LD). Parameter values: 𝑏 =

0.005, 𝜇 = 0.0001. 

 

Figure 15 

(a)Posterior distribution of 𝜎  inferred from approximate Bayesian computation. 

(b)Scatter plot of parameter sets 𝑏 and 𝑚, which satisfied 𝑀𝑆𝐸 < 0.01. 
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Chapter 5. General discussion 
 

Three main chapters of the thesis consistently treated the spatial dynamics of cultural 

evolution between populations and diffusion of linguistic traits with the aid of network 

model. In chapter 2, I presented the minimum model, which assumed an exclusive 

innovation of dialect words by a central population, to provide mathematical support for 

the alleged concentric distribution of Japanese dialects [1,2]. Subsequently, to gain the 

general model of cultural evolution between populations, Chapter 3 extended the minimal 

model and introduced the notion of origin and average diffusion time (conditional mean 

age), incorporating the Markovian ancestral process of cultural genealogy [3]. I also 

performed a numerical analysis on a random network, to explore the effect of network 

topology and innovation rates on these variables. In Chapter 4, the focus was again placed 

on Japanese dialects, and the model in Chapter 3 was applied to the network of 2400 

survey localities of Linguistic Atlas of Japan (LAJ) [4] to examine the relationship 

between geographic distance and linguistic distance (i.e., Séguy’s curve [5]). Notably, 

unlike the two preceding chapters, I incorporated the empirical data of LAJDB [6] and 

compared between empirical and theoretical distribution of Japanese lexical variation. 

 Throughout the three chapters, I have analyzed the effect of central population 

(Chapter 2), natural or cultural barrier (Chapter 2), in-degree and out-degree of each node 

(Chapter 3), innovation rate (Chapter 3), population size (Chapter 2, 4), and geographic 

distance (Chapter 4) on the spatial distribution of cultural or lexical variants. The 

generalized model in Chapter 3 can be applied to any network which may have a complex 

topological structure, which enabled me to obtain insight into a wide variety of network 

structures. Although a huge body of literature in complex system has elucidated the 

diffusion of social traits on a network of individuals (i.e., voter model [7]), the novelty of 

my research consists in the notion of cultural age, origin, and diffusion time, as well as 

the mathematical formulae given in a simple matrix notation. Unlike previous research 

into voter model and its application to linguistics [8,9], which often treated a finite 

number of extant traits and calculated the fixation probability and time, my network 

model includes innovation (individual learning), and the number of variants is 

theoretically infinite. 

 As for application to dialect distribution, I introduced the notion of word age and 

replicated the observed concentric distribution of Japanese dialects. This method is 

different from Lizana et al’s [10] work, which examined the concentric patten by directly 

measuring the distance from Kyoto. In addition, I found that transmission limited to short 
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distance is a key factor which produces a sublinear relationship of linguistic and 

geographic distances. Since cognate words originating from the same ancestor are more 

similar than non-cognate pair of variants, my model, which estimates when and where 

variants were created, was helpful in deducing the accumulation of linguistic distance 

over space. My finding also includes the fact that diffusion of lexical variants is not 

isotropic, and the growth of linguistic distance may differ according to direction. 

Although network models have often been applied to linguistics [8,9], there was to my 

knowledge no previous study which examined the age and origin of lexical variants. 

 I discuss possible extensions and suggestions for future studies. Although this 

thesis sought the application field in linguistics and dialectology, the model I conceived 

in Chapter 3 is applicable to any trait which diffuses from population to population via 

social learning. Since cultural trait is a general concept [11,12], ranging from ancient 

potteries and stone tools to modern technology and industries, possible application field 

is quite abundant. For example, previous research into cultural evolution treated the 

spatial dynamics or distribution of music [13], superstition [14], and farming [15]. 

Besides mathematical modelling, incorporating empirical data is also possible given a 

dataset of multiple populations, such as linguistic atlas for dialectology, is available for 

the cultural trait of interest. 

 I consider limitations of this model. First, the model does not contain learning 

bias [11], which has been treated by much theoretical research of cultural evolution 

[16,17] and previous mathematical models of linguistic geography [10,18]. Second, 

stochastic noise is absent in this model. Models in Chapters 2 and 3 assumed infinite 

number of individuals and therefore infinite number of variants in each vertex of the 

network, so the model was completely deterministic. On the other hand, in Chapter 4, we 

adapted the generalized model of Chapter 3 into the one-vertex-one-variant model, so 

origin, diffusion time, and linguistic distance between localities were interpreted in a 

probabilistic way. Both of these assumptions seem extreme, and it is intriguing to develop 

a network model, whose vertices contain multiple but finite number of cultural variants 

and consider the effect of stochastic noise on frequency, age, and origin of the variants. 

Third, my model assumes variants diffuse only by social learning, and the effect of 

migration is completely neglected. Since cultural macroevolution is driven not only by 

social learning between populations but also by demic diffusion, divergence, and death 

of populations [19], a more synthetic model which unifies the effect of social learning 

and immigration may better represent the dynamics of cultural evolution. 
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