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Abstract 

Shoot regeneration involves reprogramming of somatic cells and de novo organization of shoot 

apical meristems (SAMs). In the best-studied model system of shoot regeneration using Arabidopsis, 

regeneration occurs mediated by auxin-responsive pluripotent callus formation from pericycle or 

pericycle-like tissues according to the lateral root development pathway. In contrast, shoot 

regeneration can be induced directly from fully differentiated epidermal cells of stem explants of 

Torenia fournieri (Torenia) without intervening callus formation in culture with cytokinin, yet its 

molecular mechanisms remain unaddressed. Here I characterized this direct shoot regeneration by 

cytological observation and transcriptome analyses. The results showed that the gene expression 

profile rapidly changes upon culture to acquire a mixed signature of multiple organs/tissues, possibly 

associated with epidermal reprogramming. Comparison of transcriptomes between three different 

callus-inducing cultures (callus induction by auxin, callus induction by wounding, and protoplast 

culture) of Arabidopsis and the Torenia stem culture identified genes upregulated in all the four 

culture systems as candidates of common factors of cell reprogramming. These initial changes 

proceeded independently of cytokinin, followed by cytokinin-dependent, transcriptional activations 

of nucleolar development and cell cycle. Later, SAM regulatory genes became highly expressed, 

leading to SAM organization in the foci of proliferating cells in the epidermal layer. My findings 

revealed three distinct phases with different transcriptomic and regulatory features during direct 

shoot regeneration from the epidermis in Torenia, which provides a basis for further investigation of 

shoot regeneration in this unique culture system. 
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Chapter 1. Introduction 

Plant development is often featured by its high plasticity in contrast to the limited plasticity of 

animal development. The plastic nature of plant development can be typically seen in regeneration 

phenomena such as organ regeneration and somatic embryogenesis, through which many plants are 

able to recreate most parts of or even entire plant body (Birnbaum and Alvarado, 2008; Ikeuchi et al., 

2016). The regeneration processes generally involve some kinds of cell reprogramming and de novo 

organization of meristems that contain stem cells. For a representative example, shoot regeneration 

from mature tissues relies on reprogramming from the original, differentiated state and the 

subsequent generation of the shoot apical meristem (SAM) of an adventitious bud. 

Since Skoog and Miller (1957) discovered that callus, shoots, and roots can be artificially induced 

and manipulated by application of the phytohormones auxin and cytokinin in tissue culture, tissue 

culture has become one of main tools to study plant organogenesis including shoot regeneration. For 

the efficient induction of shoot regeneration, two-step culture systems, consisting of callus induction 

by auxin-rich culture in the first step and adventitious shoot induction by cytokinin-rich culture in the 

second step, have been developed in many plants and widely used (e.g., Nishi et al., 1968; 

Christianson and Warnick, 1983; Koornneef et al., 1987; Coleman and Ernst, 1990). 

A similar two-step culture system was also established in the model plant Arabidopsis thaliana 

(Arabidopsis) (Valvekens et al., 1988; Akama et al., 1992), which has facilitated molecular 

biological analysis of shoot regeneration. In this culture system, if skipping the first step for callus 

induction, explants can form no or few adventitious buds, which implies that explant cells undergo 

reprogramming to acquire competence for shoot regeneration in the first step culture.  

With the two-step culture system of Arabidopsis, transcriptome analysis was performed for gene 

expression profiling of callus formation and adventitious SAM formation (Che et al., 2002, 2006, 

2007; Liu et al., 2010; Sugimoto et al., 2010; Xu et al., 2012), and spatial and temporal expression 
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patterns and the function of genes encoding major SAM regulatory transcription factors and 

phytohormone signaling factors were investigated in the process leading to SAM formation (Gordon 

et al., 2007; Cheng et al., 2013; Zhang et al., 2017). Through forward genetics and functional 

screening of cDNA library using the two-step shoot induction culture of Arabidopsis, several factors 

involved in shoot regeneration process were identified (Yasutani et al., 1994; Ozawa et al., 1998; 

Banno et al., 2001; Tamaki et al., 2009). Recently, studies of the two-step shoot regeneration have 

been expanded, incorporating various new lines of research such as functional analysis of epigenetic 

regulation (He et al., 2012; Lee and Seo, 2018; Ishihara et al., 2019) and genome wide association 

analysis of natural variations (Lardon et al., 2020), which has accumulated increasing pieces of 

information. 

Molecular studies using the two-step induction culture have also revealed the mechanism how the 

expression of key regulators of SAM is induced during adventitious SAM formation. The expression 

of SHOOT MERISTEMLESS (STM), a homeodomain transcriptional factor involved in meristem 

maintenance throughout the SAM (Long et al., 1996), is induced by two NAC transcription factors, 

CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 (Daimon et al., 2003). Another homeodomain 

transcriptional factor, WUSCHEL (WUS), which is expressed in the center of the SAM, also plays an 

essential role in meristem maintenance (Schoof et al., 2000). The expression of WUS is upregulated 

in the downstream of cytokinin as a direct target of type-B ARRs (Meng et al., 2017; Zhang et al., 

2017). This upregulation of WUS is considered to be a critical event of adventitious SAM formation 

because a loss of function mutation of WUS severely disrupts shoot regeneration (Gordon et al., 

2007). 

One of the most important outcomes of research concerning the two-step culture of Arabidopsis 

over the last decade is the understanding that callus formed in the first step is not a fully 

undifferentiated cell mass but a disorganized root meristem-like tissue originating from pericycle or 

pericycle-like tissues via the pathway of lateral root formation (Che et al., 2007; Atta et al., 2009; 
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Sugimoto et al., 2010; Kareem et al., 2015; Shang et al., 2016). Mutants incapable of lateral root 

formation, aberrant lateral root formation 4 (alf4) and solitary root (slr) are also found to be 

defective in callus formation (Sugimoto et al., 2010; Shang et al., 2016). Furthermore, it was also 

shown that transcription factors regulating lateral root formation, such as LATERAL ORGAN 

BOUNDARIES DOMAINs (LBDs) and PLETHORAs (PLTs), participate not only in callus 

formation but also in acquisition of shoot regeneration competence (Fan et al., 2012; Kareem et al., 

2015; Kim et al., 2018; Liu et al., 2018). These findings suggest that the root development pathway 

offers a mechanism of cell reprogramming during auxin-induced callus formation. It is noted here 

that this reprogramming starts not from fully differentiated cells but from pericycle (or pericycle-like 

tissue) cells that are generally considered to remain partially meristematic (De Smet et al., 2006; Atta 

et al., 2009). 

Arabidopsis plants can occasionally form regenerative callus at wounded sites without hormone 

application. The molecular basis of this wound-induced callus formation has been also studied well 

for cell reprogramming, resulting in the identification of several key regulatory factors including the 

AP2/ERF transcription factor WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1) (Iwase et 

al., 2011, 2015, 2017). Another good material for studying cell reprogramming is mesophyll 

protoplasts, which are reactivated from the quiescent state to enter the cell cycle and form 

regenerative callus in culture (Zelcer and Galun, 1976). Transcriptome analysis of these processes 

revealed dynamic transcriptional changes possibly associated with cell reprogramming during 

wound-induced callus formation and protoplast culture (Chupeau et al., 2013; Ikeuchi et al., 2017). 

In other plants, there are more diverse paths of shoot regeneration. In not a few cases, a 

preparatory callus formation step is dispensable for shoot regeneration (Hicks, 1980). Moreover, the 

origin of regenerated shoots is not restricted to pericycle or pericycle-like cells in some cases. For 

example, adventitious buds directly arise from epidermal and subepidermal cells when thin cell 

layers prepared from internodes of Nicotiana tabacum are cultured in the presence of auxin and 
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cytokinin (Creemers-Molenaar et al., 1994). Shoot regeneration from the epidermis without callus 

induction step was also described in Begonia rex (Chlyah and Van, 1975) and Nautilocalyx lynchei 

(Van, 1973). 

In 1973, Chlyah reported a notable system for the induction of this type of shoot regeneration with 

tissue culture of Torenia fournieri (Torenia). In this culture, adventitious bud SAMs formed directly 

on the surface of stem segments without intervening callus growth phase (Chlyah, 1973, 1974a, 

1974b). Importantly, histological analysis demonstrated that these adventitious bud SAMs originated 

exclusively from epidermal cells (Chlyah, 1974a). The contribution of the epidermal and inner 

tissues to shoot regeneration was further investigated using stem segments split into the epidermal 

layer and the remaining inner tissue block. When the epidermal and inner tissue explants were 

cultured separately, either of them did not form adventitious buds. However, when these explants 

were cultured in contact with each other, only the epidermal explants formed adventitious buds 

(Chlyah, 1974c). These results indicated an essential supportive role of inner tissues in shoot 

regeneration from the epidermis. 

From 1970s to 1990s, several physiological studies were carried out with the Torenia culture 

system. In the experiments to examine the effects of phytohormones, it was shown that cytokinins, 

such as N6- benzyladenine (BA), zeatin, and N-phenyl-N′-(4-pyridyl)urea, drastically promote shoot 

regeneration while auxins, such as indole-3-acetic acid and a-naphthaleneacetic acid, are only 

weakly promotive (Kamada and Harada, 1979; Tanimoto and Harada, 1982, 1984). The effects of 

abiotic stresses were also examined, and wound stress was found to be another promoting factor of 

shoot regeneration because additional wounding to stem segments elevated the number of 

adventitious buds (Takeuchi et al., 1985). The early histological studies and these following 

physiological studies established the basis of the Torenia stem culture system. However, this culture 

system has never been used for molecular biological studies of shoot regeneration. 
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The Torenia stem culture system has three distinct features of shoot regeneration in contrast to the 

Arabidopsis two-step culture system: First, the entire process of shoot regeneration is triggered 

simply by one-step culture; second, drastic reprogramming should occur during transformation of 

fully differentiated epidermal cells into meristem cells; and third, the initial process of de novo 

organization of SAMs takes place in a two-dimensional field of the epidermis. Because of these 

features, the Torenia stem culture can serve as a unique and advantageous experimental system for 

studying cell reprogramming and SAM organization during shoot regeneration. In the present study, 

I performed cytological and transcriptomic characterization of shoot regeneration with the Torenia 

culture system to uncover hidden aspects of shoot regeneration with this unique system. I also 

compared the transcriptome data of Torenia with those reported for Arabidopsis to gain information 

of core reprogramming mechanisms common to various types of regeneration-related events. The 

results obtained depict global and temporal changes in the gene expression profile that are likely to 

associate with each elementary process of shoot regeneration�in the Torenia stem culture, which 

provides a basis for further investigation of the relevant molecular mechanisms. Comparison of 

transcriptome data between three different callus-inducing cultures of Arabidopsis and the Torenia 

stem culture identified candidates of factors universally involved in the molecular network of cell 

reprogramming. 

�  
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Chapter 2. Results 

This chapter is not open to public because it contains contents that will be published in a journal. 
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Chapter 3. Discussion 

This chapter is not open to public because it contains contents that will be published in a journal. 
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Chapter 4. Materials and Methods 

Plant Material and Growth Conditions 

All experiments were carried out using a genetically homogeneous inbred line of Torenia fournieri 

Lind. that had been developed through 11 generations of self-pollination. Surface-sterilized and 

stratified seeds were sown on basal medium, which was half-strength Murashige and Skoog (MS) 

medium containing 2% (w/v) of sucrose, buffered with 0.05% (w/v) of 2-morpholinoethanesulfonic 

acid at pH 5.7, and solidified with 0.25% (w/v) of gellan gum, and plants were aseptically grown at 

22°C under continuous light (60–100 µmol�s-1�m-2). 

Tissue Culture 

Stems were excised from the internodes between the cotyledons and the first pair of true leaves of 

4-week-old plants. Each internode stem of a quadrangular prism shape with wider and narrower 

lateral faces was sliced longitudinally along the midline of the narrower side into two sections and 

then cut into 1.5-mm-long segments. The stem segments were placed on the basal medium described 

above or the basal medium supplemented with 1 mg/L of BA such that the sliced surface was in 

contact with the medium. Subsequent culture was conducted at 22°C under continuous light (50–70 

µmol�s-1�m-2) or in the dark. 

Flow cytometric Analysis of Nuclear DNA Content 

To isolate nuclei, samples were chopped in CyStain UV Precise P Nuclei Extraction Buffer 

(sysmex) in petri dishes placed on ice and filtered through 20-µm CellTrics filter (sysmex) after 1-

minute incubation on ice. Isolated nuclei were stained with CyStain UV Precise P Staining Buffer 

(sysmex) and then the DNA content of each nucleus was quantified with SyFlow SL (Partec). 
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Microscopic Analysis 

For RNAselect and DAPI staining, stripped epidermis of stem explants was fixed in methanol at -

20°C for at least 10 minutes. The fixed samples were washed in phosphate buffered saline at pH 7.2 

(PBS) and then stained in PBS solution containing 25% (v/v) CyStain UV Precise P Staining Buffer 

(sysmex), 1 µM CYTO RNAselect Green Fluorescent Cell Stain (Invitrogen), and 0.1% (w/v) 

TritonX-100 for 30 minutes at room temperature while being protected from light. The stained 

samples were washed in PBS before observation. 

For detection of nascent cell walls, epidermis of stem explants was stained with aniline blue 

according to the protocol described in Schenk and Schikora (2015) with minor modifications. 

Stripped epidermis was fixed in a 1:3 mixture of acetic acid and ethanol for at least 24 hours at room 

temperature. After washing in 150 mM K2HPO4 for 30 minutes, the samples were stained in 1% 

(w/v) aniline blue solution containing 150 mM K2HPO4 for 2.5 hours at room temperature while 

being protected from light. The stained samples were washed in 150 mM K2HPO4 before 

observation. All nascent cell walls detected on the epidermal layer were counted. 

The epidermis samples stained with DAPI, RNAselect, or aniline blue were observed under the 

Olympus BX50F4 microscope. 

Serial observation of the surface of cultured explants was performed with a metallurgical 

microscope (WRAYMER, BM-3400TL). 

Transcriptome Analysis 

All transcriptome analyses were carried out in three biological replicates. Collected samples were 

immediately frozen with liquid nitrogen and stored at -80°C until use. Total RNA was isolated from 

the frozen samples with Direct-zol RNA MiniPrep Kit (Zymo research). 



� 30 

For RNA-seq analysis of a set of samples consisting of stem explants cultured for 0, 2, 4, 6, and 8 

days, libraries were prepared total RNA with mRNA-seq Kit with KAPA mRNA Capture Beads 

(KAPA), NEBNext Multiplex Oligos for Illumina Index Primers Set 1-4 (NEB), and Agincourt 

AMPure XP (Beckman Coulter) according to the manufacturers’ protocols. The libraries were 

sequenced with Nextseq500 (Illmina). Raw reads containing adapter sequences were trimmed using 

bcl2fastq (Illumina), and nucleotides with low-quality (QV < 25) were masked by N with using the 

original script. Reads shorter than 50 bp were discarded, and the remaining reads were mapped to the 

Torenia cDNA database (http://dandelion.liveholonics.com/torenia/), which had been constructed 

from mRNAs of leaves and roots of young seedlings and floral organs of flowering plants, using 

Bowtie with the following parameters: “--all --best –strata” (Langmead et al., 2009). Reads were 

counted by transcript models. 

For RNA-seq analysis of a set of samples consisting of various parts of 4-week-old plants (shoot 

apices, the first and second pairs of true leaves, the first internode stems, and whole roots) and stem 

explants at the early stage of culture (explants cultured for 0, 3, 6, 12, 24, and 48 hours), libraries 

were prepared with mRNA HyperPrep Kit (KAPA) and Multiplex Oligos for Illumina Index Primers 

Set 1-4 (NEB) according to the manufacturers’ protocols. The libraries were sequenced with 

Novaseq6000 (Illmina). Reads were mapped to the Torenia cDNA database 

(http://dandelion.liveholonics.com/torenia/) using Bowtie2 (Langmead and Salzberg, 2012) and 

expression level of each transcript was quantified with Salmon (Patro et al., 2017).  

Differential expression analysis was performed with edgeR (Robinson et al., 2009; McCarthy et 

al., 2012) and limma (Ritchie et al., 2015) packages of R. K-means clustering analysis was 

performed on Multiple Experiment Viewer platform (Saeed et al., 2003). Assignment of Gene 

Ontology (GO) annotation to transcript sequences of Torenia was conducted with Blast2GO (Conesa 

and Götz, 2008) based on the results of homology search against the Arabidopsis subset and 

Viridiplantae subset of the NCBI non-redundant database and also on the protein domains identified 
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by InterPro domain search also performed with Blast2GO. GO enrichment analysis was also carried 

out on Blast2GO by Fisher's exact test with cutoff at FDR < 0.05. 

For comparison of transcriptome data between Arabidopsis and Torenia, RNA-seq data and 

microarray data of Arabidopsis were obtained from the public resource. The Arabidopsis RNA-seq 

data were processed as described above. The microarray data was normalized by a variant of 

MAS5.0 with robust radius-minimax estimators (Kohl and Deigner, 2010). Then differentially 

expressed genes were identified with the rank products method with a cut off at FDR < 0.05 unsing 

the Rank Prod R package (Del Carratore et al., 2017). 

Identification of Torenia Orthologs to Arabidpsis Genes 

Orthologs of Torenia to the SAM regulator genes of Arabidopsis were identified by homology 

search against the amino-acid sequence database deduced from the Torenia cDNA database 

(http://dandelion.liveholonics.com/torenia/) with the full-length amino-acid sequences of 

Arabidopsis SAM regulators as queries followed by phylogenetic tree construction. In other cases, 

Torenia orthologs to a set of Arabidopsis genes of interest were identified using OrthoFinder (Emms 

and Kelly, 2015, 2019). 

RT-qPCR Analysis 

Total RNA was isolated with Direct-zol RNA MiniPrep Kit (Zymo research). From each RNA 

preparation, potentially remaining genomic DNA was eliminated and the first-strand cDNA was 

synthesized using PrimeScript RT reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa). 

Then qPCR was performed with gene-specific primers (Table 4) using TB Green Premix Ex Taq II 

(Tli RNaseH Plus) (TaKaRa) on Step One Real Time PCR System (Applied Biosystems). The data 

were normalized with ∆∆Ct method using the ubiquitin gene TfUBQ10, a Torenia homolog of 

Arabidopsis UBQ10, as an internal control. 
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The sequences of genes used in this study are available at the Torenia cDNA database 

(http://dandelion.liveholonics.com/torenia/) under the following accession numbers: TfSTM1 

(TfB072761), TfSTM2 (TfB084476, TfB084487), TfSTM3 (TfB080768), TfCUC1/2a (TfB082036), 

TfCUC1/2b (TfB082143), TfWUS1 (TfB099710), TfWUS2 (TfB094340), and TfUBQ10 

(TfB084374). 
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