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Western Japan experienced record-breaking heavy rain from June 28 to July 8, 2018. 

Approximately 600 road sections were closed due to flooding in Hiroshima and Okayama 

Prefecture. The government develops road-recovery plans to return human mobility to a 

specific level as soon as possible, however, restoring neighborhood roads was delayed for 

a week after this flooding. This means that their own plan might not be effective to achieve 

their own objective. There three limitations government has: 1) lack of prior knowledge, 

2) absence of evaluation indicators and 3) the difficulty of estimating human mobility.  



 

With the demand for increased efficiency, we suggested the road reconstruction 

plan for rapid human mobility recovery with Deep RL. In addition, we utilized origin-

destination pairs from mobile phone GPS data, and digital road map to estimate and 

evaluate human movement under recovery operation at each time step.  

The agent in our model is one operation crew. Input layers and reward consist of 

the information related to each damage road’s recovery, inter-road connectivity with the 

results of traffic allocation, the travel time. With single agent RL and multi agent RL, the 

agents could establish the optimal policy for at least 15 roads and up to 45 roads. Multi 

agent RL might consider a recovery plan for almost damage roads in Hiroshima Prefecture. 

The agent in our model could identify the recovery effect and the importance of each 

disrupted roads. It selected disrupted roads with high effect of human mobility recover 

preferentially after learning progress. Moreover, the operation crews in multi-agent 

systems could learn the concept of cooperation through information about road usage in 

O-D. In this study, approximately 1000 kinds of O-Ds’ route choice models could identify 

the change of traffic volume with the sequence reconstruction operation process, and the 

visualization data would allow the government officials to response further to abnormal 

traffic phenomena. 

 The final human mobility recovery rate with their optimal policy is 25% better on 

average than the lowest recovery rate when working randomly. Furthermore, the system in 

this paper could solve the optimization problem for the number of cases in 6.13 ∗ 1034 in 

less than three hours. With the comparison of previous studies, this model could examine 

the number of cases greater than 107times for the computation time similar to them.
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Chapter 1. INTRODUCTION  

1.1 BACKGROUND AND PURPOSE 

For the past few decades, there has been an increase in the number of days with 

heavy rain (100mm / day). The number of occurrence of events with extreme 

precipitation (50mm / hour) has also been increased [1]. As a result, there have been 

occurred large-scale damage by serious slope failure and downpours. Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT) has reported the annual economic losses 

and damage occurred by natural disaster since 1961. We could identify that the trend 

in damage amount caused by flood has been on a constant rise every year. Especially, 

the cost of flood damage in 2019 totaled 2.15 trillion yen, the biggest of all time. 

Figure 1. Annual total number of appearances with precipitation of 80mm [2] 
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Approximate 520 billion yen (24.4%) is related to the damage of public civil 

infrastructure, such as river and roads [3].  

With the increases of low-probability, high-impact multilocation hazards [5] like 

Western Japan flooding or Great East Japan Earthquake, it is growing more importance 

to set effective management plans. Disaster management plans would be designed 

before disaster to carry out post-disaster reconstruction operation rapidly [6]. There are 

numerous effect factors with the effectiveness of post-disaster reconstruction: 1) the 

available of resource [7], 2) economic and political actors [8], and 3) the influence and 

coordination of funding agencies [9]. In 1961, Japan government enacted the Disaster 

Countermeasure Basic Act, which define the institutional responsibility for disaster 

prevention and management. They often do the amendment based on limitations and 

deficiencies which they have learned since mid and large-scale disaster. Figure 3 

describes the detail of each administration’s responsibility. The municipal government 

Figure 2. The amount of damage to road facilities caused by flooding [4] 
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is the key player for local disaster management. If they do not fundamental function 

properly with the occurrence of disaster damage beyond their capability, the prefectural 

government takes the municipality’s duty. Accordingly, we could identify that the 

majority effect factor in Japan’s disaster management is political actors. Government’s 

countermeasure is very important because it determines reconstruction’s success and 

failure.  

The damage of social infrastructure includes housing, water, electricity, gas, and 

transport network. The reconstruction of road infrastructure would not be provided 

attention and fund with the comparison of the necessities of life’s damage [10]. Chang 

et al [11] mentioned that administrations have consider the rehabilitation of road 

network to be less than significant in recovery project performance. However, the road-

network is one important part of the urban infrastructure system under both pre-disaster 

Figure 3. The detail of administrations’ responsibility [5] 
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and post-disaster situation. There are two reasons. Firstly, fundamental function is to 

secure basic mobility services and manage emergence situation. Secondly, it is a critical 

factor influencing the spatial variation of many other social and economic activities 

[12]. 

Road-network tend to be disrupted by several external shock. External shocks are 

as follows: 1) Outside force in daily life such as human errors, rush hour or 

technological breakdowns and 2) unexpected situation such as adverse weather change 

or natural disaster. It is designed to withstand a certain amount of external disruption. 

However, transportation network would often fail to withstand the impacts of natural 

disaster. It eventually ends up losing prevention and response capabilities. As road 

networks fail to do fundamental function, there are challenges not only in rescue and 

emergency activities, but also in activities for the restoration of other infrastructure. 

Local government has made post-disaster management plan related to road 

network based on the past disaster situation. This plan includes the information of 

alternative routes, emergency routes and the priority order of reconstruction. However, 

it is hard to utilize management plan government made manually while implement [13]. 

This is because the afflicted area might be similar to the past disrupted area, but the 

damage patterns vary depending on the present disaster. In other words, management 

plans based on the past cases might not be appropriate for the current situation. 

Furthermore, there are some limitations which government need to overcome for 

effective measurements: the uncertainty of estimated damage, the missing road 

information, confusion of damage information transfer [14], and the occurrence of 

abnormal human mobility [15]. More specifically: 
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• Initial response is a critical for effective recovery operation, but immediate 

response phases are characterized by a variety of deficiencies. 

• Administration finds it challenging to anticipate and respond to the possible 

change with disaster situation. They choose locally optimal strategies in present 

situation or depend on their past experiences. 

• Skillful expert is required to estimate another complexion on human mobility 

caused by changed geo-physical condition and government’s countermeasures. 

• There is no quantitative method of evaluating the subsequent transition. In other 

words, they have no way of verifying interim result. 

• Even if they have numerical evaluation method, confusion of information 

makes the assessment each workgroup made quite vary. 

The purpose of this paper is to develop road reconstruction plan for rapid recovery 

of disrupted human mobility to original level. We utilize GPS data from smartphone 

and Digital road map to estimate the change of human mobility under reconstruction 

and evaluate the human mobility recovery rate with the comparison of original state. 

Furthermore, the method we select is Deep Reinforcement Learning. Reinforcement 

learning (RL) is one method of machine learning, which is known to show outstanding 

performance in a variety of fields in recent years. This method would be suitable for 

solving choice or control problems through agent imitating human intelligent. With no 

prior knowledge or basic knowledge, we could determine the model systems including 

changes and/or uncertainties by utilizing RL [16]. Furthermore, RL could overcome 

formidable given the scale, so it is possible to consider the exponential number of input 
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factors. Based on this advantage, we could make the agent in RL derive the optimal 

reconstruction plan using large amount of human mobility data. 

1.2 LITERATURE REVIEW 

1.2.1 Identifying Effective Road-Reconstruction Strategies in Disaster 

There have seen many changes with technologies and environment improvement: 

rapid urbanization, the population concentration, the degradation of resilience, and the 

negative knock-on effect between regions. The risk of unpredictable and serious 

disaster damage has been increased, so the necessity of disaster risk management is 

growing. Aydin et al [12] proposed a methodology to evaluate road recovery strategies 

for restoring connectivity after blockage due to an earthquake. Yamada Y et al [17] 

examined the restoration order with constraints on available human resources and 

materials. Chang S.E. [18] utilized the concept of accessibility to evaluate and enhance 

the performance of urban transportation systems in the aftermath of disaster. Balal et 

al [19] proposed five concepts for measuring urban highway network resilience and 

recommended that other research should define resilience measures to meet project 

requirements. Masafumi H [20] considered the prospect of possible indirect road 

network paths as a standard for evacuation with the consideration of available 

personnel staff, machinery, and road crew cooperation for road recovery. 

1.2.2 Irregular Human Mobility in Disaster Situation 

Recently, GPS and call detail records (CDR) of mobile phones are being used 

for human mobility analysis [21]. The application of these data has been extended 

father. Some studies have used this to analyze the human mobility [22] after disaster. 
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When sudden disaster occur, irregularity of people’s movement is increased. The 

analysis of mobile phone GPS/CDR data could improve the ability to understand the 

change of human mobility. Wako et al [15] found that people selected routes, 

transportation method, or their destination abnormally after Tohoku Earthquake in 

2011. Lu X et al [23] said that population movements during disasters may be 

significantly predictable. These findings help relief organizations to efficiently reach 

people in need. Song X et al [24] developed the model of finding population mobility 

patterns after severe natural disaster. They confirmed that it is critical for planning 

disaster management and long-term reconstruction to understand and predict human 

movement. Yabe et al [25] proposed a framework to estimate the evacuation hotspots 

after Kumamoto Earthquake using location data collected from smartphones. They said 

that official could find where victims are effectively with this framework. 

1.2.3 Application of Reinforcement Learning in Disaster 

Reinforcement learning (RL), one of the model-free algorithms, generate 

insights and identify optimal answer through the interaction with the ever-changing 

environment. The agent in RL could deal with uncertainty that could be difficult for 

decision makers to fully consider. The use of RL in disaster management has recently 

attracted much attention because it has potential to replace human decision making 

or supplement expert judgement and traditional response method. Nguyen et al [16] 

scheduled the effective distribution of volunteers to rescue victims by proposing a 

heuristic multi-agent RL. Saravi et al [26] proposed an algorithm for collecting 

information with RL. They noted that the information helped to improve resilience, 

prevent damage, and save lives in case of flooding. Su et al [27] proposed a path 
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selection algorithm based on Q-learning to provide disaster response as quickly as 

possible. Yang S et al [28] suggested the optimal policy for recovering the inter-firm 

transaction network in the supply chain with multi-agent RL. Companies had better 

secure alternative business partners first. They believe that it is possible for them to 

recovery efficiently by utilizing this model. 

1.3 THESIS ORGANIZATION 

The remainder of this paper is organized as follows. In Chapter 2, we explain 

disaster management system. Section 3, we explain the suggest decision-making 

system. Section 4 gives some information of the Western Japan Flooding, as a case 

study and describes the digital road map and mobile phone GPS data of Hiroshima 

Prefecture. In Section 5, we describe the result of single agent RL system and multi 

agent RL system and explain the additional analysis of agent’s learning result and the 

basic reward setting. Section 6, we summarize the conclusion, the limitation and future 

work. 
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Chapter 2. DISASTER MANAGEMENT SYSTEM 

The overall process in disaster management consists of four phases: pre-disaster 

planning, rescue operations, recovery and reconstruction [5]. For setting effective 

disaster management system, we need a clear understanding of the characteristic and 

the objective of each stage. 

2.1 OUTLINE OF DISASTER MANAGEMENT SYSTEM 

When natural disaster occurred, many infrastructures sustain great damage at 

the same time. The source of disaster damages could be divided into three main 

categories: 1) Damges to housing, 2) damages to lifeline infrastructure (e.g., electricity, 

water supply etc.,), and 3) damages to road-network [29]. These damages have a fatal 

impact on local economic activities and livelihoods. So, appropriate restoration 

strategies are necessary to straighten out disrupted infrastructure facilities. As Figure 4 

shown, the government generally proceeds with the reconstruction process as following 

a timeline from the emergency relief stage to the recovery state and then the 

reconstruction state [30] 

Figure 4. Processes up to Recovery and Reconstruction from the 3.11 Earthquake [30] 
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The restoration of infrastructure other than road-network focus on increasing the 

utility of afflicted population throughout the whole process. On the other hand, the 

purpose of road-network’s reconstruction depends on recovery operation’s stage. More 

specifically: 

• In the emergency relief stage, administrations want to use roads for saving 

victims and transporting emergency goods. The recovery operation is generally 

to eliminate debris and secure at least one lane of disrupted roads for the passage 

of specific vehicles. 

• From one week after disaster, government would allow general traffic to start 

use road-network. Roads with large traffic on normal days has higher priority 

than others for the increase of general users’ utility.  

• During reconstruction state, operation focus on restoring to its original form 

and recreation for better resilience than before. 

Unlike reconstruction phase, emergency relief stage and recovery stage are 

related to improving road usage. Understanding the change of mobility pattern under 

dynamic road situation enhances prevention and response capability during disaster 

events [31]. 

2.2 EMERGENCY RELIEF STAGE 

The role of transport-network in relief operation is to provide emergency 

support to the victims and the operation crew [29]. In detail, operation crew transport 

emergency goods and service from distribution centers to afflicted population as well 

as basic rescue operation (e.g., save lives and perform victims’ search). The vehicles 
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with special authorization (e.g., ambulances, police vehicles etc.,) are only permitted 

to pass through. Because delayed delivery makes the possibility to save lives or relieve 

disturbed situation decreased. In addition, it is not only difficult to ensure safe passage 

to other vehicles but the permission to pass the general vehicles could also increase 

confusion in dealing with emergency situation. 

Local officials (e.g., road managers, police, firefighters etc.,) usually have 

searched an emergency route that allows emergency vehicles to pass through. After 

disaster, road managers check the damage status of predetermined emergency routes 

and confirm the roads that be accessible. In addition, they identify isolated areas and 

required resources for restoration operation. The fundamental objective is to ensure that 

authorized personnel have access to isolated areas and other regions. Therefore, 

inaccessible detour route, expressway and truck road have higher priority for repair 

than others in this stage. This is because that the restoration of expressway ensures 

connectivity with other areas which did not be afflicted and makes it comfortable to get 

support from other regions and central governments. 

It is necessary to identify which blocked roads have the impact on restoring the 

accessibility of the entire transport network. Although there are many model and 

measures of evaluating accessibility of each blocked road, the increase in travel time 

and travel distance might be the most common measures [32]. Wisetjindawat W et al 

[29] estimate travel time of the shortest path to evaluate response ability based on three 

disaster scenarios. Chang and Nojima [33] evaluated the accessibility with post-disaster 

shortest paths between all node pairs. Sohn [34] modified this method with the 

consideration of populations and traffic densities. Toshihiro A et al [35] decided the 
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recover order by observing the change of betweenness centrality of road network. The 

recovery order based on the evaluation of individual roads does not consider the 

transition probability. So, it is determined with Greedy algorithm. This method is to 

make the locally optimal choice at each stage with a reasonable amount of 

computational effort [36]. The recovery order could not always be guaranteed to be 

optimal. 

2.3 RECOVERY OPERATION STAGE 

Recovery stage involves mid and long-term measures to stabilize the 

community and restore normalcy after the disaster’s immediate impact has passed [37]. 

Citizens gradually commence resuming normal activity and are allowed the use of road 

network. In other words, road users extend to ordinary people and road-network plays 

role of securing basic mobility services as well as managing contingency situation. 

In this stage, government focus on how to increase the utility of users for the 

entire road-network as soon as possible. It would be best to evenly improve the 

performance of each part, but there is the limitation of resource (e.g., material, men 

powers). Their task is to determine which road is better to recover first for the rapid 

recovery of human mobility service. Government administrations utilize scoring 

method based on ten items which is included in four classification: 1) Risk or damage, 

2) importance of road, 3) geological factors and 4) stability. Recovery operation is 

started from high-scored damage road. Furthermore, there are two additional measures 

for securing portability rapid: 1) Designation of alternative route and 2) early traffic 

opening with the utilization of present usable lanes. 
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As we mentioned in 2.2, previous researchers related to recovery operation also 

utilized these two methods: scoring method, traditional supervised learning. As the 

utility of road users become more important, some studies reproduce transport network 

and estimate human mobility under the change of road-network. Considering the 

probability of the change in the post-disaster situation is necessary to estimate human 

mobility under reconstruction. This means that a model with uncertainty and 

complexity needs a different methodology from the previous one. So, the optimization 

method is utilized to deal with solving optimization problem with increased complexity.  

Osawa S et al [38] introduced potential accessibility indicators with free travel 

time and evaluate disrupted roads. They set Kumamoto earthquake as the case study 

and utilize road network with 3,142 links and 2,106 nodes. Sugimoto H et al [39] 

focused on the cooperation of operation teams and solved a restoration process in 

national highway network with Genetic algorithm. Chen X.Z et al [31] estimate the 

accessibility of different travel model in flooding scenarios and tried to consider the 

difference of people’s travel behavior. David R et al [40] tried to minimize the total 

network travel time. Their model is designed on a realistic transport network with the 

consideration of two disaster scenarios. Sakamoto J et al [41] proposed an accessibility-

based model for the priority order of road reconstruction. They set 75 O-Ds which are 

important to secure the connectivity and estimate accessibility using O-Ds travel time. 

With predetermined parameters, they consider the level of disaster, recovery capacity 

and the interruption of road usage. Hori et al [42] utilize multi-agent simulation for 

recovery process of lifeline. There are some challenges such as lack of generality and 
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covered areas. Bhatia et al [43] proposed hybrid method combining topology and 

optimization for recovery damaged network on real world transportation system. 

2.4 CONCLUSION 

Previous studies related to post-disaster response would be conducted with 

specific model setting. They utilized historical or random post-disaster cases to specify 

the parameters or the standard required for the model. In addition, the algorithm of 

vehicle routing problem (VRP) is often applied to evaluate disaster response plan and 

find the optimal strategies. However, it is challenging to apply current method to the 

actual disaster management. The reason is as follows: 

• The parameters are estimated to fit the sample data and are fixed values. In other 

words, the solution in this model would not do anything in unexpected situation 

which is not included in sample datasets. 

• With the curse of dimensionality, road network is man-made or covers with 

small-size region and movement subject is limited (e.g., operation crews or 

fewer ordinary people). The bias might arise from predicting the utility of road 

users. 

We suggest how to combine mobile phone GPS data with Deep Q-Network 

(DQN) to effectively determine and develop the optimal recovery strategy with disaster 

scenarios. The expected improvements are as follows: 

• Deep Q-network does not have specific model which includes the transition 

probability distribution and the reward function. The agent in DQN determine 
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its own model with accumulated knowledge on the environmental changes and 

effects of several actions. 

• The agent could identify approximate function related to optimal policy 

repeated interaction with variable environment. This function could get 

approximate reward value with unpredictable situation. 

• The agent could find the trends in influencing factors with neural network 

although there is a great deal of considerations. So, we could deal with more 

than a thousand user information and the network analysis result of one 

prefectural area without the curse of dimensional. 

• The agent basically wants to choose the action which help the cumulative future 

reward maximized [44]. We could consider the optimal policy from a mid-to 

long-term perspective. 

• We utilize digital road map and origin-destination pairs from mobile phone GPS 

data to estimate human mobility in the condition that closely resemble real 

situation. 

• We evaluate current strategies periodically based on the change of traffic 

volume, the representative of huma mobility. In other words, we could confirm 

the effect of each reconstruction operation with the result of VRT. 

• By using geographic information system (GIS) application, estimated traffic 

volume could be visualized at each time step. Officials could see at a single 

glance human mobility’s change with reconstruction and consider additional 

measures. 



23 

 

Chapter 3. DECISION-MAKING SYSTEM 

The proposed decision-making system is to identify the optimal strategies for 

improving road users’ performance. DQN is one of the methods of Reinforcement 

learning, which refers to an algorithm that learns agents who make the best choice 

under a given condition through repetitive trial and error based on Deep artificial neural 

network. Section 3.1 describes DQN, one of RL methods, and we describe four 

components in decision-making system with DQN in Section 3.2. The framework of 

proposed model is presented in Section 3.3. 

3.1 DEEP Q-LEARNING ALGORITHM 

3.1.1 Outline of Reinforcement Learning 

The proposed optimal decision-making system utilize the estimation of traffic 

volume, the operation progress rate as input data of deep artificial neural networks.  

Reinforcement Learning (RL) is one method of three basic machine learning with 

Figure 5. three basic machine learning [47] 
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supervised learning and unsupervised leaning. The agent concerned with which action 

should be taken in specific environment for the maximization of cumulative reward 

[45]. Supervised leaning finds the unknown function that connects known inputs to 

unknown outputs and is specialized in regression and classification problems [46]. 

Unsupervised leaning is one machine learning method that specialized in clustering or 

finding patterns in a data set with no pre-existing labels [47]. Figure 5 shows main 

features of three types of machine learning. Unlike supervised and unsupervised 

learning, RL aims to make intelligent agents study the optimal decision by observing 

the environment and undergoing repeated trial and error [45]. 

RL started from psychology studies of animal behavior. The term 

“reinforcement” derives from the animal behavior’s experiment using the Skinner box.  

The animal which does not know the relationship between food and buttons learns this 

mechanism through repeated trial and error. Sutton R. S. et al [48] define reinforcement 

as the strengthening of a pattern of behavior as the result of receiving a stimulus. RL 

refers to the process of applying these psychology studies to mechanical leaning. 

Intelligent agents learn the policy by experiencing various process of obtaining reward 

with various action and state. They identify action value function which means policy 

that maximize the total sum of reward through several trials [45]. To solve some 

problem through RL, we need two types of processes: 1) Expressing problem 

mathematically and 2) making the agent learning optimal policy. This whole process is 

called RL algorithm. 

RL began with the dynamic program proposed by Richard Bellman in the 1950s 

to solve the optimal control problem. Richard Bellman suggested how to express the 
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problem of choice in real situation mathematically and solve it through policy 

evaluation. However, there are major disadvantage of the initial RL: 1) Complexity of 

calculation and 2) uncertainty of proposed model. These limitations make it difficult to 

apply RL to solve problem that are comparable to real situation. Model-free RL has 

been developed by applying Temporary Difference method (TD) proposed by Watkins 

and Dayan in 1992 and Policy Gradient technique proposed by Ronald J. Williams. 

Accordingly, it has begun to be applied to real problem through various methods. 

Artificial intelligence based on supervised learning system is made to replicate 

the decision of human experts, but we need reliable learning data for good learning 

result and there is the ceiling on the performance [49]. In the other hands, RL systems 

train them from their own experience, in principle allowing them to exceed human 

capabilities, and to operate in domains where human expertise is lacking [46]. Present 

studies, especially published by Google’s DeepMind team, have proposed various RL 

algorithm with deep neural network and shown the ability to solve complex problem 

above an expert level. This method is being put to use in various fields. 

RL algorithms are divided into two groups: 1) Model-based RL and 2) model-

free RL. Thomas M et al [50] defined that model-based RL is learning of a global policy 

or value function based on known or given samples. The agents relatively easy 

accomplish their own task by exploits previous learned model. This method has some 

disadvantages: 1) Uncertainty of known model and estimation’s result, 2) requirement 

of high volumes of prior data, and 3) complex data processing. Typical model-based 

RL include Monte-Carlos Tree Search (MCTS) applied to AlphaGo Zero [51]. On the 

other hand, model-free RL is a method of training action value function or policy 
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functions through repeated interaction with environment. Without known model of 

environment in advance, this method makes it easy to calculate and apply to a variety 

of environments because agents could identify the optimal policy function based on the 

accumulated samples through repeated trial and errors. However, the amount of 

learning data is more required than model-based RL, and it is difficult to deduce the 

relationship to how input data affects the result, which is the problem of black box. 

3.1.2 Learning Method of Deep Q-Learning Algorithms 

RL is modeled on Markov Decision Process (MDP). The components in RL 

could be expressed mathematically through MDP. MDP has proven to be applicable to 

problems with Markov Property, in which the current state is the complete determinant 

of the next state and the next state is independent of prior history [48]. Finite MDP 

could be expressed with state, action, reward. Agents in RL learn to select action having 

the maximum reward through interaction with environment. Specifically, the agents 

observe and analyze surrounding environment and do one action based on the present 

state identified from the observation. Whole series of this process is referred to as 

sequential decision making. 

The passage of time in RL represents the information acquired in time unit and 

this information is defined as a state, 𝓈𝓉, at time 𝓉. When a set of whole states that 

could be acquired in given environments is called 𝒮, the relationship between 𝒮 and 𝓈𝓉 

is 𝓈𝓉 ∈ 𝒮. In the same way, the action which the agent take at time t and the set of all 

action are represented as 𝒶𝓉 , 𝒜  respectively. The relationship between these two 

factors is 𝒶𝓉 ∈ 𝒜 . At each time step, agent choose one action, 𝒶𝓉 , in the set of 

actions, 𝒜, based on its own policy. Policies could be expressed in a particular function 
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form that assume input value and output value as 𝓈𝓉 , 𝒶𝓉  respectively. This value 

function is Policy function and represented as follows [48]: 

 𝒶𝓉 = 𝜋(𝓈𝓉) (1) 

 

Environment transmits 𝓈𝓉+1 and 𝓇𝓉+1 at time 𝓉 + 1, which is the change of 

information based on at. Figure 6 describe the conceptual diagram of the repetitive 

interaction between the environment and the agent. 

Figure 6. Diagram of the interaction between environment and agent 

Problem-solving with RL is to find policy that make agent decide the optimal 

action for a certain situation by utilizing mathematically represented components of 

MDP. The optimal policy would instruct the agent to select the action that maximize 

the sum of reward under any circumstances. There are various methods of optimizing 

policy in RL and in this study, we utilize Deep Q Learning as the method of optimizing 

policy. 

Deep Q-learning algorithm is techniques for determining optimal policy using 

action value function defined in the form of deep artificial neural networks. Almost all 

RL algorithms involve estimating value functions that is mainly divided into two types: 
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1) state value function and 2) action value function [48]. State value which is denoted 

𝒱𝜋(𝓈), is the expected return in the case that agent follows present policy 𝜋, in a 

state, 𝓈𝓉. If one system wants to consider the reward at each time differentially, the 

concept of the discount rate, 𝛾, is applied to calculate the cumulative reward.  The agent 

in the system would select action, at to maximize the expected discount return, denoted 

𝐺𝓉 [48]: 

 𝐺𝓉 = 𝓇𝓉+1 + 𝛾𝓇𝓉+2 + 𝛾2𝓇𝓉+3 + ⋯ = ∑ 𝛾𝓀𝓇𝓉+𝓀+1

∞

𝓀=0

 (2) 

 

𝓇𝓉+1 is reward obtained by action, 𝒶𝓉 at time 𝓉, and 𝛾 is a parameter, 0 ≤ 𝛾 ≤

1, called the discount rate. The discount rate, 𝛾, is the determinant of the present value 

of future rewards. It is used to prevent the total sum of all expected rewards from 

increasing indefinitely by setting the range of 1 or less, so finite learning process is 

guaranteed. In addition, we could make the agent consider the sense of time (e.g., 

myopic, future-oriented).   

Similarly, Sutton R.S. et al [48] define the value of taking action 𝒶𝓉 in state 𝓈𝓉 

under a policy 𝜋, denoted 𝒬𝜋(𝓈, 𝒶), as the expected return, 𝐺𝓉, starting from 𝓈𝓉, taking 

the action 𝒶𝓉, and thereafter following policy: 

 𝒬𝜋(𝓈, 𝒶) = 𝐸𝜋[𝐺𝓉|𝓈𝓉 = 𝓈, 𝒶𝓉 = 𝒶] (3) 
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In other words, the expected value at time 𝓉, denoted is expressed with the 

maximum value of value function, 𝒬𝜋(𝓈𝓉+1, 𝒶𝓉+1), and the present reward, 𝓇𝓉+1. The 

equation is as follows: 

 𝒬𝜋(𝓈𝓉 , 𝒶𝓉) = 𝓇𝓉+1 + 𝛾 𝑚𝑎𝑥 𝒬𝜋(𝓈𝓉+1, 𝒶𝓉+1) (4) 

 

Assuming that there exists the optimal policy, 𝜋∗, that returns the maximum 

value of the expected reward in whole states, action value function under optimal 

policies, 𝜋∗,would always return the highest value. In other words, the policy that make 

the value of action value function the largest is the optimal policy, 𝜋∗[48]. 

 𝒬𝜋
∗ (𝓈𝓉 , 𝒶𝓉) =  𝓇𝓉+1 +  𝛾𝑚𝑎𝑥𝒬𝜋

∗ (𝓈𝓉+1, 𝒶𝓉+1) (5) 

 

To make action value function, 𝒬𝜋(𝓈𝓉, 𝒶𝓉) , under any policy, 𝜋 ,close to the 

optimal policy, 𝜋∗, it is necessary to minimize the difference between action value 

function, 𝒬𝜋(𝓈𝓉 , 𝒶𝓉) , and the optimal action value function, 𝒬𝜋
∗ (𝓈𝓉 , 𝒶𝓉). However, we 

do not have the information about the optimal policy. So, we assumed the target Q-

function and utilize it as the substitute of the optimal action value function. This target 

function is updated periodically to allow for the latest optimal Q-function. Concurrently, 

action value function learns how to be optimal under updated target Q-function. The 

target Q-function is expressed as 𝒬̂ and the loss function ℒ is as follows [46]: 

 ℒ = 𝓇𝓉+1 +  𝛾𝑚𝑎𝑥𝒬̂𝜋(𝓈𝓉+1, 𝒶𝓉+1)  − 𝒬𝜋(𝓈𝓉 , 𝒶𝓉) (6) 
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Agent tries to find optimal policy by updating both of target Q-function and 

action value function (Q-function) through learning process. The target Q-function play 

the objective function of Q-function. The update frequency of target Q-function should 

be adjusted accordingly to ensure that Q-function exploit properly this function. If the 

cycle of target’s update is too short, the objective function would be changed before Q-

function have finished present learning, thus preventing proper learning.  

The agents could not determine the value of actions that have not been 

experienced if they always choose their action under the action value function. So, they 

have to pick action at random, accumulate various experience and explore the optimal 

policy. This process is called Exploitation and exploration. Exploitation chooses the 

greedy action to get the most reward. On the other hand, exploration allows the agent 

to improve its current knowledge about each action. The experience gained through 

exploration might be better one than what has gained so far, or it might be worse. If the 

experience gained through exploration might be better one than what has gained so far, 

it might be useful in updating Q-function in better direction. Otherwise, the attempt to 

explore would be serve as the waste. Therefore, we need to make the agent prefer 

exploration until enough experience has been accumulated, and then change their 

preference from exploration to exploitation. A simple method for performing the 

balancing between exploration and exploitation is the method called 𝜀-Greedy [52]. 

With 𝜀  -greedy, the agent selects at each time step a random action with a fixed 

probability, 0 ≤ 𝜀 ≤ 1, instead of selecting greedily one of the learned optimal action 

with respect to the Q-function [52]. Google’s DeepMind team introduced replay 

memory to address the problem of poor learning performance arising from the 
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correlation of samples of time-series data. Replay memory is a method of selecting 

randomly samples which would be utilized for updating action value function. Through 

this method, we could prevent the degradation of learning performance due to the 

strong correlation of adjacent time-series data. 

3.2 COMPONENT OF DECISION-MAKING SYSTEM 

RL solves the problem of sequential decision process which is needed to be 

seen in perspective. There are four primary components in RL: 1) the agent, 2) the 

action, 3) the reward, and 4) the environment. In sub-chapter, we illustrate the concept 

of each components and define each component with road reconstruction. 

3.2.1 Agent 

Agents are the representative of making decisions (e.g., individual, firm, 

machine or system) based on the feedback. They select action in specific state which 

presents virtual environment as a vector and gain different reward / punishment with 

various actions and states. Their fundamental role is to learn something from trial and 

errors and then make better decisions about the given situation. In other words, they 

utilize the knowledge through learning and adapt good action automatically although 

starting to execute with basic knowledge or without prior knowledge. 

The municipal government is the key decision maker of road reconstruction 

operation. They deploy reconstruction teams immediately in the wake of flooding to 

restore damaged areas to normal state. The problem related to the reconstruction work 

includes deciding when, where and how many operation teams need to be dispatched. 

Accordingly, we set the agent in this model as the road reconstruction crew. 
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3.2.2 Action 

The action means what agent do at each time step. This factor makes 

environment’s change, reward. In other words, agent could interact its environment 

through action. RL agents typically have either a discrete or a continuous action space 

[48]. With a discrete action space, the agent decides which distinct action to perform 

from a finite action set. With a continuous action space, action is expressed as a single 

real-valued vector [53]. 

The road recovery operation consists of three processes: 1) Inspection, 2) 

planning and 3) implementation. We limited agent’s operation to something performed 

during the implementation process. Disaster damage considered in this paper is mainly 

landslide by heavy rain. The agent is assumed to remove soil and rock from the 

landslides, replaces and compacts demolished road sections. This operation is known 

as “Excavation and Embankment”. Figure 7 shows overall operation process. 

Hiroshima Prefecture set the amount of work available per a day (8 hours) for 

one worker who operates the machine depending on the type of restoration work. Table 

1 describe the operation hour it takes to complete 100𝑚2. Based on these standard, we 

assumed that the daily workload of one worker would be 256𝓂2 . In summary, 

Figure 7. Excavation and embankment operation process 
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reconstruction crew (agent) selects specific damage road, so the shaping of actions is 

discrete action space. The size of action space is the number of damage roads that are 

the target of the operation. The meaning of action is that the agent selects one damage 

road at each time step which is one day. And then it had to work within daily workload 

that had already been established. 

Table 1. The operation hour of excavation and embankment [54] 

 

After disaster, disrupted roads would be closed, and road users are restricted 

from traveling. Government’s objective is to recover restricted human mobility to 

normal state as soon as possible. In the term of the civil engineering project, that means 

to secure the available lanes and increase the number of passable traffics. Accordingly, 

we could think that at least the entiral of the damaged road was needed to secure all 

available lanes. We determined the maximum amount of work on each disrupted road 

as the area of each road.  

Thrun and Schwartz [55] said that the agent who has large action spaces has the 

tendency to converge to a suboptimal policy. For example, if the number of actions is 

𝒩 and the number of trial steps is ℳ, the number of possible combinations is 𝒩ℳ. 

    (h /100𝑚2) 

Excavation Depth 
 

Type of Machine 
Under 40 cm 40 cm ~ 80 cm 80cm ~ 120cm 

Backhoe Shovel 2.0 3.3 4.7 

Large Breaker  

&  

Backhoe Shovel 
2.1 2.8 3.5 

Concrete Crusher 

& 

Backhoe Shovel 
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That is, it is difficult to identify the optimal policy in finite number of simulations as 

the number of actions increases. In the actual restoration process, operation crew does 

not do any more operation if the maximum amount of work is done. However, a set of 

actions in basic RL remain unchanged, so agent choose afflicted road that no longer 

requires recovery operations. In other words, it only hinders the converge to optimal 

policy to allow agent to choose meaningless action. 

T. Zahavy et al [56] propose the Action-Elimination Deep Q-Network (AE-

DQN) that combines a Deep RL algorithm with an Action Elimination Network (AEN) 

that eliminates sub-optimal actions. Through the elimination signal, agent could know 

which actions not to take, thus mitigate converging to sub-optimal policy. We adopt 

this method and let the agent does not select damage road which the maximum 

workload is completed. 

3.2.3 Reward 

Reward shaping attempts to model the conduct of the learning agent by adding 

additional localized rewards that encourage a behavior consistent with some prior 

knowledge [57]. On each transition, the environment judges the experience and send a 

corresponding reward value to agent. Through reward, agent could identify whether its 

action at each time step is good or bad for achieving its goal. It is important that the 

reward function make use of prior knowledge adequately. Because reward value make 

agent perform good selection and accelerate the process of converging to optimal 

policy. 

The reconstruction goal is to improve performance and recover human mobility 

to normal state as fast as possible. The government has not only this fundamental goal, 
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but also goals for the recovery period and construction cost. In this model, we have set 

the recovery period (the number of steps) and the amount of resource (the number of 

workers) in advance. The construction cost is limited to the travel time of the agent 

from pre-determined starting point to current operation place. We want that the agent 

learns the effect of restoration of each damage road on human mobility recovery and 

recovers first from the disrupted road with high effect value. In addition, it considers 

the moving cost and the relationship among target disrupted roads. There are three 

consideration for reward setting: 1) Accessibility, 2) the degree of human mobility 

recovery and 3) the connection between disrupted roads. The reason is as follows: 

• Accessibility means the cost of the agent’s operation. This factor allows the 

agent to have the tendency to move to other damage roads after finishing a 

certain amount of current operation. 

• The change in human mobility recovery rate represents the impact of agent’s 

action at each time step on human mobility recovery. The agent perceive action 

with high reward as good choice. By using the change in human mobility 

recover rate, the damage road with high impact would be chosen first. 

• Road-network has the intimate connection. We provide the agent with 

knowledge of the connectivity of damage roads that people pass through. This 

value is calculate based on the traffic volume which passed through workplace 

of the previous step and of the current step at the same time. 

The recovery operation involves multi-objective optimization (MOO). MOO is 

the process of simultaneously optimizing multiple objectives which can be 

complementary, conflicting as well as independent [58]. With reward shaping, Tim B 
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et al [59] suggested the combination of an extra reward (ℱ) and the basic reward (ℛ). 

This reward makes the agent drive the exploration behavior incorporating heuristic 

knowledge of the system designer [59]. The Q-learning update rule with extra reward 

system as follows [59]: 

 

𝒬̂(𝓈𝓉 , 𝒶𝓉) ← (1 − 𝛼𝓉)𝒬̂(𝓈𝓉−1, 𝒶𝓉−1)

+ 𝛼𝓉[ℛ(𝓈𝓉 , 𝒶𝓉 , 𝓈𝓉+1) + ℱ(𝓈𝓉 , 𝒶𝓉 , 𝓈𝓉+1)

+ 𝛾 max
𝒶𝓉+1

𝒬̂(𝓈𝓉−1, 𝒶𝓉−1)] 

(7) 

 

We define the fundamental reward (ℛ) utilizing the human mobility recovery 

rate. The extra reward (ℱ) includes the agent’s travel time and the connectivity value 

between the agent’s action at step 𝓉 − 1 and at step 𝓉. We would expect the agent to 

choose the action having better effect of human mobility recovery with the 

consideration of behavioral guidelines. 

3.2.4 Environment 

Environment is everything surrounding the agent. For example, the bicyclist 

(agent)’s environment includes the road, bicycle, driver’s body. The environment 

response to agent’s action and provide the latest situation. In addition, the environment 

provides special numerical values, rewards, to agents for their optimization problem 

which maximize the total sum of discount value. An environment is complete 

specification of agent’s task [48]. In other words, we should provide as much as 
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environmental information as possible to ensure that the agent finds the optimal policy 

effectively. 

The state refers to environmental information in a vector form, the input value 

for determining action value function. Therefore, the state should contain as much 

evidence as possible regarding the reward received according to the action of each time 

step. As we mention in 3.2.3, the reward consists of these three factors: 1) agent’s travel 

time, 2) the change in human mobility recovery rate, and 3) the ratio of traffic volume 

passing through both previous damage road and current damage road to the total of 

traffic volume. Accordingly, the state space basically includes the operation progress 

rate and human mobility recover rate of each damage section, travel time (hour), 

previous action, and the average of human recover rate.  

3.3 FRAMEWORK OF PROPOSED MODEL 

We describe the framework of our model and the process of estimating human 

mobility. As Figure 8 shown, there are four processes which present agent’s action and 

the accompanying changes in the environment.  

Figure 8. the framework of proposed model 
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Agent selects one damage road based on DQN at each time step. Road-network 

attribute and O-Ds’ traffic volume are updated with accordance of all target roads’ 

operation progress rate. Based on updated information, traffic flow on each link is 

estimated and human mobility recover rate is evaluated. At last, human mobility 

recovery rate is above target value, the whole simulation is over. Otherwise, agent do 

these processes again up to the maximum number of trials. 

3.3.1 Calculation of Operation Progress Rate 

The disrupted area and the degree of damage are different depending on the 

type of road and the surrounding environment (e.g., a riverside road or mountain area). 

In other words, the more disrupted or large-scale roads, the greater the workload 

required for restoration. Conversely, daily workload the agent perform at each time step 

is constant regardless of the damaged road sections’ size. One disrupted road with small 

area might be accomplished sooner than with large area. So, we adjust the rate of 

increase in work progress rate using the relationship between the total workload and 

the cumulative workload of each disrupted road.  

Productive efficiency might vary in each phases of construction project. 

Because balanced performance requires operation experience and repetitive practice, 

and it takes time to do this. S-curve would best represent a cumulative flow of material 

or money over a time period. The methodology could be utilized for estimating 

manpower utilization rate [60]. Accordingly, we would predict the progress rate with 

the agent’s action by applying sigmoid function. Sigmoid function is one of S-shape 

curve which represents the cumulative progress rate [48]. Road’s cumulative progress 

rate is calculated with Equation 8: 
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ℛ𝓂,𝓉 =
1

1 + ℯ−0.8𝓍𝓉
 

∵ 𝓍𝓉 = −7 + 13(
∑ 𝒲𝓀

𝓉
𝓀=0

𝒮𝓂
) 

(8) 

 

 ℛ𝓂,𝓉 is the cumulative progress rate of damage road (𝓂) at step 𝓉. ∑ 𝒲𝓀
𝓉
𝓀=0  

means the cumulative workload up to the step 𝓉. 𝒮𝓂 is the total workload of road. 

3.3.2 Human mobility Estimation Process 

Traffic assignment estimates loads, user volumes on each segment of a 

transportation network [61]. These would be 24-hour traffic volumes, peak hour transit 

volumes, or yearly volume of freight flow [62]. Among the estimated user volumes, we 

estimate peak hour transit volumes to identify the effect of the given transportation 

system at each time step on traffic generations. The required data is the network 

topology and O-D matrix. In this paper, mobile phone GPS data and digital road map 

are utilized to estimate traffic volume similar to the real situation.  

3.3.2.1 The change in Road Capacity with Reconstruction 

Immediately after the flood, the government blocks the disrupted roads to 

identify the extend of the damage and relieve emergency situations. Initial basic 

capacity and traffic volume vary depending on the extent of the damage, but we have 

no information related to damage in current situation. We assumed that all demolished 

roads totally lost its function and vehicle access is not allowed without restoration work. 

Road’s capacity is the maximum flow obtainable on a given roadway using all 

available lanes. Reconstruction in this paper is to recover human mobility to normal 
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state. In other words, recovering traffic volume to normal state means to increase the 

number of usable lanes from zero to the original value. Based on the agent’s workload 

in 3.2.1, we could think that the workload of the product of the length of road and the 

width of lane is needed to make one lane available. Therefore, it could be assumed that 

the degree of capacity recovery is same as the rate of operation progress of 

corresponding road. The assumptions of traffic capacity are as follows: 

• Assumption 1. The initial value of road’s capacity is zero.  

• Assumption 2. The degree of capacity recovery is the same as the rate of 

operation progress of the corresponding road. 

3.3.2.2 The change in Travel Generation with Reconstruction 

MLIT and municipal government provide the information on the road 

reconstruction process to ensure the convenience for road users as much as possible. 

Figure 9. Example of traffic generation at each step 
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These information include the operation process and available alternative routes. In 

unusual road network, trip generation is determined based on the notification by road 

reconstruction managers. Specifically, if the road network is seriously damaged and 

there exist no detour route, O-Ds are unable to move and isolated. In addition, we could 

expect the trip generations to be increasing as the recovery rate of damage road they 

pass through is increasing. Accordingly, we make one assumption (Figure 9) with the 

trip generation under reconstruction: 

• Assumption 3. The amount of each O-D’s movement is influenced by the 

possibility of indirect routes, the minimum value of the cumulative progress of 

damage road that O-D pass through on normal days. 

3.3.2.3 Traffic Allocation Assignment 

Traffic Assignment (TA) model simulates how travel demand and transport 

networks interact in transportation system [63]. We could calculate the travel cost and 

traffic flows on each link with O-Ds’ demand and route choice. There are two types of 

traffic allocation algorithms: 1) Static traffic assignment (STA) and 2) dynamic traffic 

assignment (DTA). The detail explanation is as follows: 

• In STA, the performance of each link is not affected at all by other thing (e.g., 

traffic flow, congestion) and is fixed at a constant value. Route choice of O-Ds 

is determined with unchangeable variable and is easier to be expected. 

• DTA models allow the changes of components (e.g., link costs, travel 

demands). It is possible to observe the change in traffic volume and trajectory 
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selection of O-Ds according to specific situation (e.g., evacuation, commute 

hours etc.,) 

We introduce DTA models to estimate vehicular flow with changed 

transportation network under reconstruction. Three processes have to be used for traffic 

allocation with road network. The preceding two steps refer to find out the assignment 

route. The shortest path tree is utilized to find the shortest path from source node to all 

other nodes. This tree notified all road links that traffic with specific source node could 

pass through. Lastly, travel demands may be allocated to several path between source 

node and target node with the consideration of the road performance. 

There are many factors representing road network performance (e.g., travel cost, 

capacity, accessibility etc.,). Among them, travel time is quite important thing to select 

trajectories. However, the road network during the reconstruction is in the unstable 

state, so O-Ds choose their own trajectories based on the capacity of all selectable paths. 

The assumption with the allocation of O-D’s flow is as follows: 

• Assumption 4. The amount of traffic allocated to one of trajectories that O-D 

could pass depends on the minimum capacity of the link that constitutes this 

route.  

The reason for this assumption is as follows. Disrupted road has decreased basic 

capacity. This attribute cause travel time to fluctuate easily even if traffic volume on 

this link is quite low. In other words, the use of disrupted road under restoration implies 

uncertainty in the surge of travel time, although it is difficult for road users to estimate 

the actual travel time. It is more likely to secure stable travel time by considering the 

saturation of use. 
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Meng Q et al [64] explained the basic notations, assumptions in DTA 

conditions. We would like to use their descriptions to explain the traffic allocation 

algorithm in this model. 𝒢 = (𝒩, 𝒜) refers to transportation network, where 𝒩, 𝒜 are 

sets of nodes and link, respectively. O-D pairs are described (𝓇, 𝓈) with origin node 

(𝓇)  and destination node (𝓈)  . ℛ  and 𝒮  mean the set of Origin, Destination 

respectively. Denoted by 𝒦𝓇𝓈 the set of paths connecting O-D (𝓇, 𝓈) , by 𝓆𝓇𝓈,𝑡 travel 

demand of O-D (𝓇, 𝓈) at each time step 𝓉. 

With Assumption 4, denoted by 𝒞𝓀𝓉
𝓇𝓈 the minimum capacity, by 𝒰𝓀𝓉

𝓇𝓈 road usage 

rate on path 𝓀 ∈ 𝒦𝓇𝓈 at each time step 𝓉. ℱ𝓀𝓉
𝓇𝓈 means the traffic flow on path 𝓀 ∈ 𝒦𝓇𝓈 

at each time step 𝓉 and is calculated with Equation 9: 

 

ℱ𝓀𝓉
𝓇𝓈 = 𝓆𝓇𝓈,𝑡 ∗

𝒞𝓀𝓉
𝓇𝓈

∑ 𝒞𝓀𝓉
𝓇𝓈

𝓀∈𝒦𝓇𝓈

 

∵ 𝒰𝓀𝓉
𝓇𝓈 =

𝒞𝓀𝓉
𝓇𝓈

∑ 𝒞𝓀𝓉
𝓇𝓈

𝓀∈𝒦𝓇𝓈

 

(9) 

 

The traffic flow of each link 𝒱𝒶𝓉 at each time step 𝓉 would calculate with the 

fundamental flow equations [64]: 

 

𝒱𝒶𝓉 = ∑ ∑ ∑ ℱ𝓀𝓉
𝓇𝓈𝛿𝒶𝓀

𝓇𝓈

𝓀∈𝒦𝓇𝓈𝓈∈𝒮𝓇∈ℛ

, 𝒶 ∈ 𝒜 

∑ ℱ𝓀𝓉
𝓇𝓈

𝓀∈𝒦𝓇𝓈

= 𝓆𝓇𝓈𝓉 , 𝓇 ∈ ℛ, 𝓈 ∈ 𝒮 

 

(10) 
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where 𝛿𝒶𝓀
𝓇𝓈 = 1 if path 𝓀 ∈ 𝒦𝓇𝓈 between O-D pair (𝓇, 𝓈) traverse link 𝒶 ∈ 𝒜, and 0 

otherwise. 

3.3.2.4 Evaluation of Human mobility recovery 

We define the human mobility recovery rate ℛ𝓉 at each time step 𝓉 as the total 

amount of loads with respect to the total average traffic volume on normal days. 

Equation 11 is as follows: 

 ℛ𝓉 =
∑ ℱ𝒶,𝓉 𝒶∈𝒜

∑ ℱ𝒶,𝓃 𝒶∈𝒜

 (11) 

 

where ℱ𝒶,𝓃 is the estimated traffic flow on link 𝒶 on normal days,  ℱ𝒶,𝓉 is the 

estimated traffic flow on link 𝒶 at each time step 𝓉 .  

We found all possible road links that O-Ds travel and predicted the traffic 

volume on each link based on Equation 9 and 10. We estimated the vehicular flow on 

normal road network, the pre-disaster condition, with 300 trials. This is because the 

network environment faced by O-D with the different departure timing changes, 

resulting in the difference in the amount of traffic on each link. We utilized the total 

average loads as the standard for evaluating human mobility recovery to mitigate the 

variability. Therefore, we identify the degree of human mobility recovery rate in each 

damage roads and in overall.  
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Chapter 4. STUDY AREA AND DATASET 

4.1 WESTERN JAPAN FLOODING 

In 2018, heavy rain for almost a week (from June 28 to July 8) resulted in 

widespread and destructive floods and landslides. Weathernews Co., Ltd. conducted a 

hearing survey of approximately twenty thousand local residents. Approximately 80% 

of all high-risk area might have been flooded or corrupted based on these result [65]. 

Figure 10 illustrate the flood damage situation reflecting their survey. Further, 

five hundred and eight-two road section in Hiroshima and Okayama Prefecture were 

disrupted by this flooding. It took from as low as four days to as high as 80days to 

allow transit of vehicles. Among many damage roads, six sections were expressways, 

56 sections were national roads, and the rest were designated city streets and prefectural 

roads [66]. Figure 12 shows the extend of the road damage in Western Japan. 

Figure 10.  The flooding damage situation in Western Japan Flooding [65] 
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Figure 11. the extent of the damage along national roads 2 and 31 

Transportation networks are the backbone of critical infrastructures because 

they provide accessibility to the other system and rescue operation after flooding and 

during restoration processes [12]. This flooding caused clogged road and resulted in 

the isolation of numerous regions. Further, it took more than a week for commonly 

used roads in the daily lives of citizens after the occurrence of flooding [66] to have 

their basic function re-established. Additionally, a year was required to remove all the 

expressway restrictions [66]. People and industrial parties had some problems with a 

shortage of daily necessities, due to mobility constraints and unstable procurement.  

4.2 DATA COLLECTION / PROCESSING 

We utilized three types of dataset to determine the optimal reconstruction 

strategies with the consideration of human mobility.  

Japan Nation Route31, 

Akigunsakacho,

Hiroshima Prefecture

Japan Nation Route2,

Hiroshima-City,

Hiroshima Prefecture
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4.2.1 Mobile phone GPS dataset 

GPS data of mobile phone from the Agoop Co., Ltd. is collected by the users 

who give the agreement of providing their location information. This data basically 

consists of four types of data: 1) user ID, 2) longitude, 3) latitude, and 4) timestamp. 

Their locational information is procured whenever the individuals’ position was 

changed. Table 2 show the detail of GPS data we utilized. The number of users who 

provide mobile GPS data is approximately 0.3% of the population in Hiroshima 

Prefecture (Hiroshima, Higashi-Hiroshima, Kure) and Okayama Prefecture (Kurashiki, 

Soja). The GPS log amounted to 102,821, and the period of observation is from June 1 

to June 30. 

Table 2. The detail of mobile phone GPS data from Agoop Co., Ltd. 

 

The transportation mode assumed in this model is the automobile, so 1km grid 

is defined as a stay point detection unit. We could identify the stay point and the timing 

of departure and arrival of each stay point. With time-periodic location data, travel 

demand, the representative of human mobility, is estimated by using the concept of 

Origin-destination matrix. Through trajectory analysis, we identify three thousand 

three hundred twenty O-Ds passed through the road section afflicted by the Western 

Japan Flooding. 

Observed Period 
Average daily number of IDs 

in the target area 

Average daily GPS logs 

in the target area 

2018/06/01 ~ 2018/06/30 

3,817 

(0.26% sample rate) 

102,821 

(ave. 27 logs/user) 
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4.2.2 Local geographic information 

Japan government provide local geographic information which is the 

combination of numeric information and geographical factors. These datasets include 

population, disaster damage, land-usage and so on. Furthermore, they make general 

road network’s information. Japan Digital Road Map Association has reproduced real 

road-network based on the 1:25,000 topographic maps and been updating this map 

every year [67]. 

To embody the change of human mobility with the road reconstruction, we 

acquire actual road network information and estimate the hourly traffic volume of 

target O-Ds. We utilize the number of commuting population and residents of each 1km 

grid which is provided from the Statistic Bureau and Digital road map. In addition, 

sediment disaster alert areas and inundation depth rank are also utilized to estimate the 

extend of disaster damage. 

4.2.3 Information of disrupted roads 

Citizens and industrial entities need the information related to real recovery 

operation situation to secure their basic mobility with reasonable and safe route. The 

Municipality and Ministry of Land, Infrastructure, Transport and Tourism (MLIT) 

provide daily situation information. Road recovery situation is presented: 1) the name 

of target road, 2) damaged stretch, and 3) state of restoration. The restoration process 

is divided into three stages: Road closed, one-way traffic and the completion of 

recovery operation. We could know how long it takes to reopen each disrupted road 

from this information. However, the short period does not mean that the disaster 

damage is small. This is because that the restoration work of specific road type (e.g.,  
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expressway, highway) would be carried out on 24hour system for rapid 

reopening. Current operation system makes it difficult to estimate the relationship 

between damage risk and recovery period.  

Table 3. The duration of reopening with the past damage level [68] 

 

It is important to consider the risk level because the amount of required 

workload and the period of reconstruction is determined by the degree of road damage. 

In other words, the worse the road damage, the more operation and longer recovery 

period are needed. We estimate the risk level of target damage roads by overlapping 

the road location map and the hazardous areas (e.g., sediment disaster alert areas, 

inundation depth rank), and determine the workload weight. Ohkubo K et al [68] 

conducted the analysis on 2,373 disaster cases in the “Record of rainfall disaster history” 

by Japan Highway Public Corporation from 1993 to 2004.  

Table 4. Reconstruction weight with the past damage level 

 

Damage Level Time of reconstruction Damage Level Time of reconstruction 

Minor 4hr Large 12hr 

Medium 6hr Extra large 24hr 

Inundation Depth 
Reconstruction 

Weight 
Sediment disaster area 

Reconstruction 

Weight 

No damage in the past 1 No damage in the past 1 

0.5m ~ 1m 1 
Alert areas 1.5 

1m ~ 2m 1.5 

2m ~ 5m 2 
Special alert area 3 

5m over 3 
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As Table 3 shown, they identify the relationship between the extends of damage 

which is categorized by the volume of collapsed soil and the duration of road’s 

reopening. We utilize their standards for setting the workload weight with estimated 

damage level. Table 4 shows the reconstruction weight. We recalculate the weighted 

workload of each disrupted road with the consideration of disaster damage risk. 
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Chapter 5. EXPERIMENT 

In this chapter, we carry out the experiments from single agent Deep RL to 

multi-agents Deep RL in the same framework described in Chapter 3. The goal is that 

agent find the optimal strategies for achieving human mobility recovery rate over 70%. 

5.1 SINGLE AGENT RL AND MULTI AGENT RL 

Deep Reinforcement learning basically is based on the interaction between the 

agent and environment. The agent selects the action and then receive the information 

about the effect of its behavior, corresponding state and a reward informing if it has 

achieved the objectives. The purpose is to identify action value function maximizing 

the expected total sum of discount reward. The agent in Deep RL utilize neural network 

to estimate this value function. With neural network, the representations of state are 

derived efficiently from high-dimensional input layers. 

The environment in single agent RL is assumed to be stationary and the agent’s 

behavior only causes the current state to change the next state. On the other hand, the 

environment of multi-agent Deep RL is dynamic. As we mentioned in Chapter 3, the 

information related to other agents is also included in environment. Unlike other things 

Figure 12. Framework of Deep Reinforcement Learning 



52 

 

in environment, the action of other agents at each time step is changed and causes 

significant variations in each agent’s environment. Therefore, the problem in multi 

agent Deep RL is extremely more complex and quite difficult to identify the optimal 

policy for the objective. 

People in real life usually face many challenges. For achieving their own goal, 

they build their own strategies through competition, cooperation, and communication 

with others. In multi agent system, the agents utilize these behavioral strategies for their 

own optimal policy. There are many previous studies on multi-agent RL system where 

this phenomenon occurs. Ardi T et al [69] described how competitive and collaborate 

behavior occurred using the agent’s reward setting. Tan M [70] suggested how make 

the agent cooperative with three methods: 1) sharing sensation, 2) sharing experiences 

and 3) sharing the parameters of learned policy function. Yang J et al [71] proposed a 

two-level hierarchical multi-agent RL and made them perform soccer skill with fully 

cooperativity. Niranjan B et al [72] focused on making agents learn collaboration with 

specialization and evaluated agents’ learning result with four methodology: parameter 

sharing, concurrent learning, counterfactural method, the utilization of communication 

protocol. Their result suggested that agents with communication could identify their 

own policy the best. Furthermore, there have been also many studies on multi-agent 

RL that is partially competitive and cooperative through communication signals or 

partial information sharing. 
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5.2 SINGLE-AGENT BASED DEEP Q-LEANING 

5.2.1 Outline of single-agent DQN 

5.2.1.1 Definition of Action space 

Under section 13 of the Road Act, road reconstruction projects shall be 

conducted by MLIT for designated road sections, and other parts shall be handled by 

the Prefecture government. The primary road section types managed by MLIT are 

expressway and highway. In contrast, prefectural administrations manage national and 

prefectural roads. In addition, MLIT performs recovery project in cooperation with 

each municipal authority, and the target roads are the disrupted road sections in the 

corresponding area. 

Based on disrupted roads provided by two management entities, we could 

estimate 95 road sections as the candidates of agent’s action. The number of damage 

roads that should be managed by MLIT or Hiroshima prefecture government is 

approximately 30 roads in case on Western Japan flooding. Furthermore, the number 

of disrupted roads in each municipal area in Hiroshima Prefecture is at least 15. In other 

words, one operation crew (the agent) should be able to identify the optimal policy with 

at least 15 actions. We choose 15 road sections for single agent RL. Figure 13 describes 

the details damage roads subjected single agent’s targets (actions).  
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Figure 13. Damage roads subjected agent’s action with traffic volume 

5.2.1.1 Reward setting 

The reward at each time step plays a vital role in finding the optimal strategies 

with the agent’s objective. When the agent achieves its own goal, it is necessary to give 

the agent a large reward as the signal of the goal compared to the basic reward. With 

the basic reward setting (Figure 14), we provide the agent the greatest reward, +100, 

when human mobility recovery rate is over 70%.  

There are two primary rules that the agent needs to learn. First, the agent should 

learn which road sections have a significant impact on human mobility recovery and 

Figure 14. Reward setting in single agent RL 
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tend to prioritize highly influential road. Second, we basically want the agent to move 

to another damage road after a certain amount of work is completed at the current place. 

In addition, the agent is recommended to go to other place with better accessibility or 

connectivity. We utilize the elements with the values of variables and constants for 

reward settings.  

We want the agent to learn which roads have the impact on human mobility 

recovery while choosing its own action, not giving prior knowledge. Accordingly, the 

change of human mobility recovery rate is utilized as the major reward factor and 

convert the percentage to integer form. Furthermore, we hope that when the agent 

chooses its behavior, it prioritizes the connectivity and recovery effects over moving 

cost. We set the score for the longest travel time group as the negative number of the 

largest value of the connectivity to ensure that the reward of the connectivity offset the 

reward related to travel time.  

5.2.1.2 Definition of State space 

The agent utilizes the current states, 𝑆𝑡, when choosing an action at Step 𝑡. It is 

strongly advised to include factors having a relationship with the agent’s objective 

directly or indirectly into the state space. The state space in this model is as follows: 

 𝑆𝑡 = {𝑊𝑡
𝑟1 , ⋯ , 𝑊𝑡

𝑟𝑛 , 𝑇𝑅𝑡
𝑟1 , ⋯ , 𝑇𝑅𝑡

𝑟𝑛 , 𝑀𝑡 , 𝑅𝑅𝑡, 𝑎𝑡−1, 𝐼𝑡} (12) 

 

The agent’s fundamental goal is to restore traffic volume to a certain level as 

fast as possible. There are three elements related to recovery goal. 𝑇𝑅𝑡
𝑟𝑛, 𝑅𝑅𝑡 and 𝑊𝑡

𝑟𝑛 

represent each damage road (𝑟𝑛) ’s recovery rate, human mobility recovery rate and 
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the cumulative progress rate of the kth action at Step 𝑡 respectively. 𝑅𝑅𝑡 notifies the 

road crew of how far human movement recover overall and implies the target value of 

the agent’s goal. 𝑇𝑅𝑡
𝑟𝑛  refers to the impact of 𝑊𝑡

𝑟𝑛  on recovery rate. That is, two 

elements are expected to change in a similar direction at each time step. We want the 

agent to identify which action has the great recovery effect with the aspects of changes 

in these two values. 

We add three additional factors to convey the considerations of sequent action 

choices. 𝑀𝑡 is the travel time between the starting point and the current workplace. We 

have calculated the shortest travel time between these two points in advance. 𝑎𝑡−1 and 

𝐼𝑡 represent the action at step 𝑡 − 1, the connection between the action at 𝑡 − 1 and at 

𝑡. These three elements describe the operation cost and the relationship among damage 

roads subjected to the agent’s action. 

5.2.2 Result 

5.2.2.1 The change of human mobility recovery rate and travel time with 

learning trend 

Figure 15 presents the final human mobility recovery rate of total episode. The 

title of each graph means the starting point of the agents. With these graphs, we could 

grasp the performance of the model and the agent’s learning ability. We could confirm 

that the mobility recovery rate when the agent of the model finds the optimal policy is 

approximately 25% better on average than the lowest mobility recovery rate when 

working randomly.  
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The agent with the optimal policy stably could reach its own target value in the 

latter part of the learning. In the case of our model, we could confirm whether the agent 

could find out the optimal policy or not with the final human mobility recovery rate. 

We could identify that the agent with any starting point succeeds in finding out the 

optimal policy. Because the final recovery rate of each epoch in later part would be 

equal to or greater than the simulation goal. 

Figure 15. the relationship of recovery rate and learning trend 

As we mention in 3.2.3, we want that the agent considers accessibility with the 

selection of actions. Figure 16 describes the change in total travel time with learning 

process. After learning, the total travel time is decreased. In other words, the agent 

might tend to work continuously in one damage road rather than moving frequently 

around the workplace. This is because the agent in RL choose behaviors that could 

achieve the high sum of rewards, and frequent transition makes the total rewards 

smaller. 
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Figure 16. the change in total travel time with learning 

5.2.2.2 The Visualization of the Change of Traffic volume with Reconstruction 

The road crew with good learning result is anticipated to prioritize road section 

restoration with high effect of human mobility recovery effect. In this sub-chapter, we 

want to check the priority order with the visualization of the change of traffic volume 

of each road-link. Figure 17 represents the change of traffic volume under 

reconstruction process. The agent first recovers the disrupted roads near the urban 

district. These road sections located near this district have larger traffic volume on 

normal days than other roads (Figure 13). Therefore, we could identify that the agent 

recognized which damage road has higher impact of human mobility recovery and 

established the strategy to restore the road with large traffic volume preferentially. 
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We could confirm O-Ds’ behavior according to the agent’s operation. Some 

road sections often have the traffic exceeding the maximum expected traffic. O-Ds 

seemed to use generally alternative routes rather than original routes that they usually 

pass on normal days. In fact, traffic volume on detour route increased more than five 

times, and travel time increased more than 1.8 time as usual after Western Japan 

Figure 17. the change of road usage with the sequence of reconstruction operation 
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flooding occurred. So, we could conclude that O-Ds in our model might be the 

representatives of real citizen. It is possible for administration to check the change of 

road usage with the sequence of reconstruction operation with the result of traffic 

volume’s visualization. 

5.2.3 The analysis of the agent’s learning framework 

The agents in RL found the optimal policy, automatically updating their own 

action value function based on sample data which is obtained through interaction with 

the environment. However, they only mention the answer to the optimization problem, 

but do not explain why this answer come out. Inexplicable RL causes the users to 

question the reliability of the model’s result and is the obstacle to the adoption of RL.  

5.2.3.1 Analysis of influencing factors of the agent’s learning 

We tried to identify the relationship between the input data and the recovery 

operation order which is the result of this model. The input layers in this model mainly 

consist of three factors: 1) The change of human mobility recovery rate with the change 

of each road’s progress rate, 2) travel time, and 3) the estimated traffic volume at each 

time step. For analysis of influencing factors, we extracted general priority order of 

each episode using the operation order and the selection frequency of each action. 

Furthermore, we defined the representative of these input factors. This is because each 

value that constitutes the input layer varies with the agent's action and environment at 

each time step. 

Human mobility recovery rate is determined by these two factors: 1) the traffic 

volume of disrupted road selected by the agent at each time step and 2) the change of 
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operational progress rate of current action. We define the recovery effect of each 

damaged road as representative indicator for human mobility recovery rate and estimate 

this effect value of each damage road using the change of human mobility recovery rate 

and the change of operational progress rate at each time step. Recovery effect of each 

disrupted road refers to how much the reconstruction of each road affects human 

mobility recovery. Recovery effect of road x is calculated with this equation: 

 𝑅𝐸(𝑥) = 𝐸 [
∆ ℎ𝑢𝑚𝑎𝑛 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒

∆ 𝑤𝑜𝑟𝑘 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑟𝑎𝑡𝑒
] (13) 

 

Traffic volume which is the other input factor is estimated under updated 

transport network with the agent’s action at each time step. The process of traffic 

allocation is a subset of network analysis, exploring the relationship between nodes and 

links. Accordingly, we could expect that the agent could identify the characteristics of 

each damage road and inter-connectivity using the estimated traffic volume. We utilize 

the centrality index for representing the feature of each damage road. In network 

analysis, indicators of centrality identify the importance of vertices within graph. We 

focus on two types of centrality: Betweenness centrality, Closeness centrality. The 

detail of two indicators is as follows: 

• Betweenness Centrality is the number of these shortest paths that pass through 

the vertex. High betweenness vertices have the potential to disconnect graphs 

if these vertices are removed 
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• Closeness Centrality is the sum of the length of the shortest paths between the 

nodes and all other nodes. The high closeness centrality, the more central the 

road is to the road network. 

Heat map is the data visualization technique that presents how specific 

phenomenon is clustered or varies using the intensity of color in two dimensions. We 

select this visualization technique to identify how the feature of the damage roads 

chosen by the agent change with the learning trend. 

 We could confirm that the agent has the tendency to select disrupted roads with 

central roles in transportation networks on the preferential basis. In addition, the agent 

could recognize which damage road have high effect on human mobility recovery 

through the learning process. In summary, the reward of the change of human mobility 

recovery rate makes the agent know the impact of each road on achieving its goal. With 

Figure 18. The relationship between road factors and operation order with learning trend 
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the use of network analysis’s result as input data, it is possible that the agent could 

identify the connectivity between roads and the importance of those roads within road 

network. In other words, the agent in our model might make the decision about 

reconstruction with the consideration of the characteristic of each damage roads 

considered in previous studies. 

5.2.3.2 Sensitivity Analysis 

The agent determined the action value function utilizing the accumulated 

information of the state, the action and immediate feedback, which is the result of the 

interaction with environment. In other words, the reward refers to the value of each 

action for specific situation information. The appropriate reward setting helps the agent 

derive the optimal policy for its objective, but if it goes wrong, the agent fails to 

determine its own policy. Therefore, it is necessary to find out how changes in reward 

setting affect the learning of the agent. In original reward setting (Figure 14), there are 

three components: 1) travel time from current workplace to specific starting point, 2) 

the change of human mobility recovery rate, and 3) the degree of inter-connectivity 

between current workplace at time step 𝓉 and the past workplace at time step 𝓉 − 1. 

More specially: 

• The reward of travel time has negative values from 0 to -3 and is divided 20 

minutes intervals. 

• The change of human mobility recovery rate and the degree of inter-

connectivity are represented as the percentage. To convert this value to integer 

value, we defied the integer conversion weights. 
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The integer conversion weights for human mobility recovery and connectivity 

which is expressed as the percentage are 100 and 20, respectively. Table 5 described 

the detail of sensitivity analysis. Each integer weight related to the above two factors 

fluctuates between -50% ~ 50%. For the reward of travel time with negative values, 

either double the reward of each group (20 minutes intervals) or subdivide groups of 

20 minutes intervals into groups of 10 minutes intervals.  

Table 5. The detail of sensitivity analysis 

 Travel time 

(min) 

Reward of 

travel time 

The weight of 

recovery rate 

The weight of 

road-connection 

Case 1 

1 ~ 20 -2 

100 20 20 ~ 40 -4 

40 ~ 60 -6 

Case 2 

1 ~ 10 -1 

100 20 

10 ~ 20 -2 

20 ~ 30 -3 

30 ~ 40 -4 

40 ~ 50 -5 

50 ~ 60 -6 

Case3 
1 ~ 20 -1 

50, 75, 100, 125, 150 20 
20 ~ 40 -2 

Case 4 40 ~ 60 -3 100 10, 15, 20, 25, 30 

 

To confirm the change in the learning results with the change in reward, we 

estimated the average human mobility recovery rate, success rate, and number of steps 

for achieving its goal using the result of 70th ~ 110th episode. This is because the agent 

selects the action at each time step based on action value functions during these 

episodes. Figure 19 present the result of sensitivity result. With the change of weight 

about human mobility recovery rate and the connectivity, the agent could determine 

optimal policy overall. The higher weight of two factors makes the agent reach the goal 
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faster than the original form. In other words, it is easier for the agent to identify 

behaviors that have a great influence on achieving its own goal. 

The agent fails to find out the optimal policy with the change of travel time 

reward. This is because the impact of reward related to road connectivity and mobility 

recovery rate decreases as the negative reward increases. This means that the agent 

receives negative reward for action which has a significant impact on mobility recovery, 

and derived policies that are far from achieving goals. Therefore, the agents select the 

disrupted roads located near the starting point to maximize the expected total sum of 

discount rewards. 

Figure 19. The result of sensitivity analysis of the change of reward setting 
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We suggest the reward setting that make the agent to learn and converge optimal 

policy. First, the agent could quickly converge on policies as rewards related to goal 

attainment are transformed to larger than existing ones. Even with the basic reward 

setting, the agent finds out optimal policy sufficiently. Second, penalties could be used 

to constrain the agent’s action choices, leading to the consideration of certain factors 

such as travel time. However, it more than -3 penalties are imposed, it prevents the 

agent from learning optimal policy. 

5.2.4 Comparative Analysis with Present Method 

Comparative analysis should be done to ensure that our model’s result works 

and be more effective than that previous method. We choose two present method, 

travelling salesman problem (TSP) algorithm and government’s method, and do 

comparative analysis with the result of these two methods. There are two assumptions 

for comparison: 

• If the agent in two present methods select one damage road, the recovery 

operation is keep going until operation progress rate will be 100%. 

• We define one selection equal to the number of steps required until the agent in 

our model finished work on the selected damage road. 

5.2.4.1 Comparison with Traveling Salesman Problem  

TSP is the classical example of a NP-hard combinatorial optimization problem 

[74]. Many scheduling problems could be reduced to simple concept that there is a 

salesman who must travel from city to city, visiting each city once and returning to the 

home city [75]. Various heuristics and approximation algorithm are used for solving 
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the optimization problem, the shortest travel time. Accordingly, we assumed that the 

agent in TSP algorithm only consider accessibility for their own operation order and 

estimate the agent’s operation trajectories with given starting point by using genetic 

algorithm. 

 

Figure 20. Agent’s trajectory in TSP (start point: D25) 

 Figure 21 presents the change in human mobility recover rate at each time step. 

The x-axis indicates the step and the y-axis is human mobility recovery rate. The range 

Figure 21. The comparison result between RL and TSP 
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of x-axis is the number of steps it takes the agent in this model to achieve the recovery 

rate of more than 70%. 

The difference in the result of two models, RL and TSP, varies depending on the 

given starting point. But the operation order in this model could generally recover 

human mobility faster than TSP algorithm. The agent in this model considers traffic 

volume with travel time. In other words, the agent selects other damage road with high 

effect of human mobility recovery even if travel time is a little longer. 

5.2.4.2 Comparison with Government’s Standard 

As we mentioned, officials utilize scoring method for setting the priority order 

with three classification and reconstruct the high-scoring road first. These three 

elements are sorted in order of importance as follows: 1) Hazard risk, 2) road 

importance and 3) stability. The group of hazard risk includes inspection score, degree 

of damage, and progress of displacement. These features affect the possibility of 

secondary damage and the long duration of reconstruction, so authorities evaluate is as 

the most important thing. 

 

Figure 22. The result of setting priority group 



69 

 

It is difficult for us to estimate hazard risk. So, we assumed that the hazard risk 

of all damage roads is the same and only consider road importance which include traffic 

volume, road classification for the priority order. Figure 22 shows the result of setting 

priority group. The number of cases in Greedy algorithm is 2,880. Among them, we 

select one case with the shortest travel time. The comparison result is as follows: 

 

Figure 23. The comparison result between RL and government standard 

Government think that intercity connection is more important than inner-city. So, 

high-level road which is connected to other city has the high priority. On the other hand, 

GPS data we used is based on human mobility generated from Hiroshima Prefecture. 

Actually, the reconstruction of neighborhood roads was delayed for a week after 

Western Japan flooding. We think that the difference between results in our model and 

government’s standard represent the above real situation. 

5.2.5 Modification of basic model with time-periodic objective 

As we mentioned in Chapter 2, the purpose of road-network’s reconstruction and 

road users depends on recovery operation’s stage. The current model in this paper 

would be judged to find out the optimal policy of the recovery operation. However, the 
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effective reconstruction plan needs to respond flexibly to each phase’s objective. 

Therefore, it is necessary to make the agent determine optimal strategies with the 

consideration of time-periodic goals. We define the initial and mid-to long-term 

objectives: 1) Initial objective is to secure at least one lane of the damage roads which 

O-Ds with no alternative route pass through, and 2) mid-to long-term goal is to make 

human mobility recovery rate be over 70%. 

5.2.5.1 Outline of modified single-agent DQN 

The agent's information and all disrupted road sections are the same as the model 

settings in Chapter 5.1. We determine the damaged roads which needed the initial 

recovery operation using the path analysis with two types of road-network: normal days 

and immediately after disaster. As Figure 24 shown, O-Ds which pass through the 

disrupted roads in the orange box do not have alternative routes. This means that these 

O-Ds are expected to be isolated in the event of disaster.  

 

Figure 24.  The disrupted roads in model with time-periodic goals 
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The agent in modified model should do reconstruction operation for achieving 

human mobility recovery rate above 70% after securing one lane of all disrupted roads 

requiring the contingency measurement. We modify the reward setting so that the agent 

could recognize the actions to be taken according to time-periodic objectives. Figure 

25 depicts the modified reward setting for agent’s action at each time step. The agent 

could learn behavior’s difference in particular state with reward and punishment 

system. 

In this model, the agent should recognize which roads required emergency 

recovery to achieve both goals that vary over the period of reconstruction. The agent 

would be penalized when choosing other damage roads, not the target places before the 

emergency relief process is over. This punishment allows the agent to identify the 

timing of selecting each damage road. In recovery operation process, the reward for the 

agent’s behavior follows the basic reward setting. This value could directly inform how 

much each damage road effects human mobility recover and make the agent recognize 

effective action to mid-to long-term objectives. 

Figure 25. The reward setting with time periodic goal 
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5.2.5.2 Learning Result 

We checked the final human mobility recovery rate of each episode and the 

number of required steps until the end of the emergency relief phase to evaluate the 

agent’s learning results. Figure 26 presents the final human mobility recovery rate of 

all episodes with pre-determined starting point. We could confirm that the agent 

reliably achieves mid-to long-term goals because they achieve stably the recovery rate 

over 70% after learning. 

Figure 26. The human mobility recovery rate with learning trend 
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The minimum number of steps required by the end of emergency response in 

this model is 38 steps. We think that the agent first selects damage roads in this group 

if the agent well recognizes which disrupted roads require initial response. In other 

words, the required number of steps for finishing the emergency operation stage would 

be close to the minimum number of steps.  

As Figure 27 shown, we could identify that the number of required steps for the 

initial objective gradually decreases and approaches the minimum level as the learning 

progresses. With the comparison between Figure 17 and Figure 28, O-Ds seem to 

recover their own mobility from the bottom part where the damage roads needed for 

contingency operation are located. After the emergency operation might be completed 

which is after 45 steps, the agent moved to the disrupted roads with heavy traffic on 

normal days. This is because the agent might be induced to recover from damage that 

requires initial work preferentially. We could conclude that the agent considers time-

Figure 27. The required number of steps for initial and mid-term goals 
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periodic objectives and determines the optimal policy for achieving both goals 

concurrently with modified reward setting.  

  

Figure 28. the change of traffic volume with time-periodic objectives 
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5.3 MULTI-AGENTS BASED DEEP Q-LEARNING 

After the flooding, several operation crews would be deployed and cooperate 

with others depending on government’s strategies. From the decision-maker’s 

perspective, we might designate the government as the centralized controller and make 

this controller map states of all operation crews to a collection of all crews’ actions 

[76]. With this framework, a strong partnership could be established between all 

operators involved in the reconstruction operation. However, this method might be 

impractical with the collaborating of many agents. This is because the central manager 

deals with all crews’ state and action. There are exponential increase of state space and 

action space. The centralized agent with huge action and state space has a hard time 

converging its own optimal policy. 

We suggested multi agent RL system using decentralized method. The agent in 

this method resides in the same environment with other agents and identify its own 

policy with its own observation. In addition, we could place the responsibility on each 

operation crew and make it learn the cooperation or the collaboration with others using 

communication protocol, partially information. Accordingly, we applied the method 

suggested by Jakob N.F et al [77] to make multi-agents find out their own optimal 

policy for shared objective. The agent in their system is partial cooperative and share 

important information using specific protocols. It is possible to treat others the part of 

environment with partial observed state. They could achieve the cooperation through 

their own network different from others [77]. 
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5.3.1 Outline of multi-agent Deep Q-learning 

5.3.1.1 Definition of Agent and Action space 

We defined three types of operation crew with 15 damaged roads which are 

included in each type crew’s action space. There are 45 disrupted roads that could be 

considered simultaneously with multi-agent RL system. Figure 29 describes the target 

damage roads subjected to each group’s action. In addition, we defined that the number 

of workers in each group is four, eight, and seventeen workers respectively based on 

the workload considering the risk level.  

5.3.1.2 The definition of cooperation and state space 

As we mentioned in 3.3.2.2, the recovered traffic volume of each O-D is 

determined by the minimum operational progress rate of the damage roads they pass 

on normal days. In other words, all relevant roads should be restored in a certain amount 

to recover the traffic of O-Ds passing through multiple damage roads. We divided O-

Figure 29. The damage road with multi agent system 
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Ds related each disrupted road into two classes: 1) O-Ds passing through only one 

damage road and 2) O-Ds passing through multiple damage roads. 

Table 6. Traffic on each disrupted road on normal days 

 The traffic volume of O-Ds over multiple disrupted roads accounts for 

approximately 52% of the total traffic considered in this model. These agents in this 

system need to select and recover disrupted roads with connectivity based on the usage 

of road-users at the same time step for their shared objective. For example, we assumed 

that some O-Ds passed through D21 and D36 concurrently. If one agent restores D21 

Group A Group B Group C 

Name A* B** Name A* B** Name A* B** 

D21 7,652 8,572 D58 1,697 538 D18 0 1,780 

D46 4,012 77 D59 5,316 1,542 D88 956 3,270 

D36 2,078 427 D67 74 388 D89 3,506 2,206 

D39 603 1,417 D50 380 622 D86 162 2,965 

D40 115 2,336 D69 323 1,000 D87 56 1,962 

D57 705 616 D51 1,230 260 D45 820 538 

D56 56 951 D22 634 0 D60 339 328 

D26 6,423 260 D30 76 514 D55 1,160 2,992 

D28 256 1,152 D54 3,350 515 D25 5,843 592 

D34 1,128 0 D31 465 0 D93 1,696 4,734 

D42 481 468 D44 679 0 D37 1,715 6,050 

D65 0 654 D41 54 2,736 D20 3,441 3,017 

D93 0 3,017 D47 0 780 D32 999 0 

D72 0 1,000 D71 0 1,000 D43 143 468 

D90 0 1,000 D95 0 2,944 D61 300 0 

A*: Traffic volume which pass through only this damage road 

B**: Traffic volume which pass through other disrupted roads other than the road 
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and another agent restores D36 at same time step, there are three types of traffic that 

could be recovered with the operation of both agents: 1) O-Ds passing only D21, 2) O-

Ds passing only D36, and 3) O-Ds passing both of D21 and D36. Accordingly, we 

could conclude that the concurrent restoration of roads with connectivity could help 

recover human mobility rapidly. We define cooperative behavior in this model to solve 

their own challenge. The meaning of cooperative behavior defined in this paper is as 

follows: 

• Definition 1. The cooperation means that two or more agents choose each 

target road that has connectivity at same time step. 

It is necessary to provide communication protocol to the agents for coordinating 

their action and achieving the shared objective. Communication protocol refers to 

numerical message related to other agents’ action. These protocols are provided as the 

input layers on the next time step. The agents each could discretize and identify the 

cooperation with another agent through learning process.  

We defined the information about the collaboration with specific another agent 

utilizing the traffic flow. Let denoted by 𝒯𝒸
ℯ  traffic volume concurrently passing 

through damage road 𝒸 and damage road ℯ. ℛ refers to the set of damage roads covered 

in multi-agent RL system. The effect of cooperation is calculated with Equation 15: 

 𝐶𝐸𝑡
𝒜𝑜 =

𝒯𝒸
ℯ

∑ 𝒯𝒹
ℊ

𝒹∈ℛ,ℊ∈ℛ

, 𝒸 ∈ ℛ, ℯ ∈ ℛ (15) 

where 𝐶𝐸𝑡
𝒜𝑜 means the effect of cooperation at step 𝓉 assuming that agent 𝒜 selects 

damage road 𝒸 and the agent 𝒜0 selects damage road ℯ.  
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As we described in 5.1.2.2, the basic state space consists of four factors: 1) the 

operation progress rate of each damage road (𝑊𝑡
𝑟𝑛) in action space, 2) human mobility 

recovery rate (𝑇𝑅𝑡
𝑟𝑛) of each damage section, 3) travel time (𝑀𝑡) and 4) the average of 

human recovery rate (𝑅𝑅𝑡 ). With these basic components, we add the effects of 

cooperation with other agents (𝐶𝐸𝑡
𝒜𝑜) and impact of selected damage road (𝛼𝑟𝑡

). Each 

agent could deal with other agents’ action as the one element of environment adding 

the cooperation protocol in the state space and identify its own policy with the 

consideration of collaboration and shared goal. 

With partially observation and corresponding reward, the agents each determine 

Q-function (action value function) having different parameters. This method makes the 

agents each select different kind of actions and do its own responsibility. In other words, 

the agent recognizes which damage road among its own operation places has the 

cooperative relationship or is efficient for common goal in their respective ways. 

5.3.1.3 Reward 

The common objective in multi agent RL system is to recover human mobility 

up to 75% within the pre-determined steps (35 steps). These agents with shared goal 

often receive the same global reward regardless of the effect of their own action on the 

shared goal. With the same global reward, some agents choose behaviors that help their 

 𝑆𝑡 = {𝑊𝑡
𝑟1 , ⋯ , 𝑊𝑡

𝑟𝑛 , 𝑇𝑅𝑡
𝑟1 , ⋯ , 𝑇𝑅𝑡

𝑟𝑛 , 𝑀𝑡, 𝑅𝑅𝑡, 𝐶𝐸𝑡
𝒜1 , ⋯ , 𝐶𝐸𝑡

𝒜𝑚 , 𝛼𝑟𝑡
} (14) 
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goals, while other agents get lazy selecting weak effect actions [78]. And then, lazy 

agents might interfere with achieving their goal.  

We utilized the change of human mobility recovery rate as the one factor of 

reward. Unlike the single agent model, the human mobility recovery rate of each time 

step derived through a multi-agent system is the result of the mixture of effects of 

multiple actions. So, it is difficult for each agent to identify the impact of recovery on 

individual damage roads. As a result of giving the reward of the change of human 

mobility recovery rate derived at each time step as a global reward, some agents have 

become lazy and an adverse effect on achieving shared goal. We utilize the traffic 

weight (𝛼𝑟𝑡
) indicating how much disrupted road (𝑟𝑡) they selected at time step 𝓉 has 

affected the overall human mobility recovery rate. This weight is the proportion of 

traffic volume of each damage road for the total traffic volume. 

It is also necessary to map communication protocols with other agents into the 

state space as well as provide appropriate reward to accurately interpret and act on 

cooperative behavior. As Figure 30 shown, we convert the sum of cooperation effect 

(𝑊𝑡) to integer reward. In other words, the extra positive reward is arising when the 

agent chooses the cooperative action. We could expect that the agent might have the 

tendency to select disrupted roads with much relationship of other roads for 

Figure 30. reward setting in multi-agent RL system 
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maximizing the sum of discount reward. And then, the traffic volume of O-Ds which 

passed through several damage roads could be recovered in a shorter time than single 

agent model. These policies help the agents achieve their common goals. 

5.3.2 Learning Result 

We graph the sum of reward each agent received at each episode to verify the 

learning result of each agent. We could identify that all agents obtained higher reward 

as the learning process progresses. With learning process, human mobility recovery 

rate would be over 75% stably and the required number of steps for achieving their goal 

has been decreased. Therefore, we could conclude that all agents could determine their 

own optimal policy.   

As Figure 31 shown, there are the differences among the agents’ reward at each 

epoch. The agents in this framework observes other agents’ state partially and makes 

their own optimal policy respectively. Furthermore, we induced all agents to learn the 

concept of cooperation. However, they focus more on achieving their own 

responsibility than on collaborating with other agents. Competition may also appear 

Figure 31. The change of reward and recovery rate with learning trend 
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among agents belonging to the same group. That is, some of the agents that share the 

same action space might try to select effective action first, resulting in differences in 

rewards that agents obtain. 

5.3.3 Verification 

We expected that the agent in this system could learn the cooperation through 

learning process. We estimate the probability of doing cooperative action. The detail is 

as follows: 

• At each time step, there are 11 opportunities (the number of other agents) for 

each agent to engage in cooperative action. 

• This probability is calculated using the total number of cooperative actions in 

each epoch divided by the total number of opportunities. 

Figure 32 presents the probability that each agent does the cooperation with 

learning trend. We could confirm that all agents recognize which roads have 

interrelationships with other roads and tend to restore these type roads for traffic 

recovery. Therefore, we could conclude that each agent could know the meaning of 

cooperative operation through partial observed information and corresponding reward. 

Figure 32. The probability of cooperation with learning trend 
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We provided each agent in multi-agents RL with the information of network 

analysis’s result and the reward of human mobility recovery rate. As we confirmed in 

5.2.3.1, the agent could recognize the meaning or importance of damage roads in the 

road network with the agent’s state and reward setting. It is necessary to make sure that 

the agent in multi-agent system could also learn about it.  

We make the heat map presenting the relationship between damage road’s 

characteristic and general operation order of each group. As Figure 33 shown, agents 

in each group tend to preferentially select roads with high traffic or high importance, 

although there are some differences depending on the characteristics of the roads that 

Figure 33. The relationship between road factors and operation order (Group C) 
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are subject to each group's behavior. In addition, we confirm the change of traffic 

volume with recovery operation in multi agent RL system (Figure 34). The agents 

seemed to be performing their own recovery operation in close proximity at each time 

step. This is because they could learn the connectivity among damage roads based on 

the usage of road-users. 

 

 

Figure 34. the chage of traffic volume in multi agents RL system 
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Chapter 6. CONCLUSION 

Disrupted road network with large-scale disaster often loses its own 

fundamental ability to assure basic mobility services and manage emergent situation. 

Post-disaster situation has the lack and confusion of information and the occurrence of 

abnormal traffic. Road network is fluid, changing with the context of each road link. 

The consideration of changed mobility is necessary to recover the utility of road users 

after disaster. 

This study suggested the efficient road reconstruction plan for speed human 

mobility recovery with the application of single agent Deep RL and multi agent Deep 

RL. We utilize digital road map and Origin Destination pairs from mobile phone GPS 

data to estimate the change of human movement and evaluate the degree of recovery 

according to successive recovery operation. 

We provided the reward and the state related to the recovery effect, inter-

connectivity with traffic allocation’s result and operational progress rate. We could 

confirm that the agent in these two frameworks identify the optimal policy with 15, 45 

damage roads respectively. The agent in this model might work preferentially on the 

effective damage road to its goal and learn the meaning of target roads under road 

network. Furthermore, we could induce the agent to cooperate with other agents using 

the interconnection based on O-Ds’ road usage. 

We could estimate some information related to the whole operational procedure: 

1) Sequence of operations, and 2) the traffic volume and the degree of human mobility 

recovery. We identified the human mobility change under the agent’s reconstruction. 
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The result of movement’s visualization would make the government check the 

congestion or the abnormal situation and do additional measurements. 

This study address road condition and recovery resource dynamically 

combining Deep RL and human mobility data on optimal recovery strategies for road 

network. The final human mobility recovery rate with their optimal policy is 25% better 

on average than the lowest recovery rate when working randomly. We performed 300 

simulations based on a single agent model. The number of times an agent has reached 

a recovery rate of more than 70% is 239 out of 300 simulations. We could say that the 

accuracy of this model is 0.79.  

Approximately 1,000 kinds of O-D pairs were used to estimate mobility. We 

estimated not just the shortest path but all passable routes to consider realistic human 

mobility. The number of cases in single agent RL is 6.81 ∗ 1043. Single agent model 

takes about 2hour 30 min to get its own optimal policy with 15 damaged roads. Multi 

agent model takes about 3 hours with 45 damage roads. The number of cases that need 

to be explored to solve the optimization problem in this paper is 107 times than the 

number of cases in previous studies, but computation time for getting the solution is 

similar to previous studies.  

We suggest future research topic to improve the proposed system. First, it is 

necessary to consider not only the location of O-Ds on weekdays, but also the change 

in location of evacuation or on weekends. Second, environmental information around 

each damage road is also one of important factor for setting priority order. We need to 

how these factors are utilized as the state of the agent. Third, we estimated the risk level 

of disrupted roads based on the past disaster record. We could not mention that the 
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aspect of disaster damage is always the same to the past. Accordingly, further review 

of damage prediction on disrupted roads and cooperation with some researchers 

regarding damage estimation is required to improve the more realistic model. Fourth, 

we would believe that the improved model could be devised to link the restoration 

process among roads, railways, and subways with the consideration of the changes in 

the mode of transportation of O-Ds. Lastly, we need to review the application for 

different RL models and compare the efficiency with other model’s result. In detail, we 

could consider these two versions: 1) the comparison of recovery results for large-scale 

single agent which has the same size of multi agent, and that for multi-agent, and 2) the 

efficiency analysis between the multi-agent sharing all information completely and our 

agents with partial observation.   
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