
博士論文 
 

 

 

 

 

 

 

 

 

Study on Application Systems using Smart Glasses 

Aimed at Field Service Assistance 

（フィールドサービス支援を目指したスマート 

グラス応用システムに関する研究） 

 

 

 

 

 

 

 

 

 

 

 

 

李 庭豪 

 

 



 

 

  



令和 2年度 博士論文 

 

 

 

 

 

 

 

Study on Application Systems using Smart Glasses 

Aimed at Field Service Assistance 

（フィールドサービス支援を目指したスマート 

グラス応用システムに関する研究） 

 

 

 

 

 

 

指導教員  鈴木 宏正 教授 

 

東京大学大学院 工学系研究科 精密工学専攻 

 

 

37-177237 

 

LI, TING-HAO 

李 庭豪  



 



 

i 

 

Abstract 

Augmented reality (AR) has been a promising tool in engineering fields. AR 

systems can show digital contents to the worker’s view of a real scene and give 

understandable information and instructions. Thus, it is a promising way for field 

service applications such as assembling, maintenance, and construction and for 

training novice workers. Especially, smart glasses are a key device for such AR 

applications and usually have embedded sensors such as an RGB camera and a 

depth camera to collect data from environments. One of the prospects of smart 

glasses technology is to let the worker carry and use only smart glasses for such 

field service applications and training. To realize it, using AR glasses equipped 

with eye tracking sensors is a possible way and promising to construct a more 

complete system for field service assistance. With AR technology, the worker can 

directly receive computer-generated information during the operation. 

Simultaneously, worker’s attention can be recorded by eye tracking sensors for 

performance assessment and skill training. Although the development of such AR 

glasses with eye tracking is still in its infancy. we can establish related systems in 

advance by using existing smart glasses. In this research, we study two types of 

smart glasses to develop two prototype systems with the aim of field service 

assistance: (1) eye tracking glasses for user’s cognitive research and analyses and 

(2) AR glasses for assembly assistance.  

 

For eye tracking glasses, which record the user’s gaze fixation in a scene video, 

most related applications are in 2D space, and there should be more applications 

in 3D space to give more understandable gaze analysis results. In this study, we 

propose a method to demonstrate user’s gaze in 3D space using a pair of eye 

tracking glasses. After a user performs an eye tracking recording in a certain 

environment, we generate a 3D mesh model of the scene from the frame images 

in the scene video by applying the image registration method. The intersection of 

a triangle in the model and user’s line of sight, which is determined by linking 

the camera center of the frame image and the recorded gaze point, is the target 

3D gaze fixation. Moreover, based on this methodology, we propose another 

method to compare multiple users’ 3D gaze visualization more efficiently and 

effectively. Similarly, by applying the image registration method, we register the 
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frame images of all the users’ recording into the same 3D model generated from 

one of the users’ recording, that is, reconstructing only one model of the scene to 

visualize all users’ 3D gaze. In our experiment for three users observing the same 

scene, the processing time decreases by 50%. In addition, an eye tracking 

recording in a room-scale environment is conducted to demonstrate the 

advantages of 3D gaze visualization in complex and large-scale environments, 

which can be hardly demonstrated well by typical 2D visualization methods. With 

the developed methods, we can use only eye tracking glasses to generate user’s 

3D gaze visualization and compare users’ gaze difference to train novice workers 

more efficiently and effectively. 

 

For AR glasses, the development of AR technology has enhanced the experience 

of assembly operations by showing virtual parts of assembly at installation 

locations to a worker. Good assembly instructions can improve the effectiveness 

of assembling operations and training; meanwhile, it is important to detect 

whether misassembling occurs during such operations. In the study of AR glasses, 

we construct an AR assembly assistance system using only a head-mounted 

display of Microsoft HoloLens. Because the HoloLens is originally designed for 

room-scale applications, we use point clouds generated by a depth camera in the 

HoloLens and propose two methods to apply the HoloLens to desktop 

applications. One method is coordinate calibration to display virtual objects at 

installation locations by aligning reference virtual object, which is at the origin 

of the virtual world, to the associated reference real object’s position. The other 

evaluates in real time whether misassembling has occurred by evaluating 

misalignment between real and virtual objects. For efficiency, we compare the 

depth images of the real and virtual objects instead of the calculation in 3D space. 

With the preliminary tests, the position error can be within ±1 cm and 

misalignment evaluation can be performed at 30 fps. Thus, with the presented 

methods, a standalone AR assembly assistance system can be realized to support 

assembling operations and training. 

 

In summary, with the usage of existing smart glasses and developed methods, we 

develop two prototype systems for the assistance of field serves applications. The 

proposed 3D gaze visualization method and the AR assembly assistance system 
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are possible to assist the worker who needs to move in room-scale environments. 

In the future, as the mature development of AR glasses with eye tracking, we can 

apply the proposed systems into such smart glasses and construct a standalone 

system. The system will be able to assist the worker in assembling operations 

through AR. Meanwhile, the worker’s visual attention can be recorded during the 

operations, and then visualized in 3D space. The 3D gaze visualization is further 

used to assess the worker’s skill and to compare between experienced and novice 

workers for training and analytic studies. This will construct a more complete 

system for field service assistance. 
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Chapter 1  
Introduction 

1.1  Background 

Augmented reality (AR) technology has been a promising way for the future of 

workers of various tasks. An AR system can superimpose computer-generated 

information onto the user’s view of a real-world scene. With the development of 

AR technologies, AR applications have been commonly used in our life, such as 

entertainment, education, design, and so on. Such AR systems also play an 

important role in field service applications, such as equipment installation, 

maintenance, construction, assembly, etc. [1][2] because they allow the workers 

to access task information easily as they are in the working field. With augmented 

information shown to a technician through a head-mounted display (HMD) or a 

tablet, the technician can receive information and indication immediately when 

they service complex equipment [3] as shown in Fig. 1-1. This increases the 

effectiveness and efficiency of field service work. For manual tasks, it has been 

shown that the usage of AR systems improves task performance and decreases 

error rate [4][5]. 

 

 

Fig. 1-1 AR-based field service knowledge software platform provided by Fieldbit [3]. 

Computer-generated information is fused into the real scene to show the current status 

of the equipment. 
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In addition to the assistance to expert workers, using AR technology is a possible 

way to train novice workers to acquire new assembly and maintenance skills 

[2][6][7], as shown in Fig. 1-2. Since assembly and maintenance tasks can be 

quite complicated, it is challenging to train novice workers efficiently and 

effectively. Compared with trainings such as one-on-one training with an 

experienced workers and self-learning from videos or text documents, using AR-

based training systems may support the trainings to a large amount of novice 

technicians at the same time with the assistance of visualized operating 

indications from the system. 

 

 

Fig. 1-2 AR training platform: (a) A tablet to inspect machinery and digital indications 

and (b) visual aid with virtual objects [2]. 

 

AR glasses and tablets (or smart phones) are two main types of devices for AR 

applications. For tablets and smart phones, which are usually equipped with an 

RGB scene camera, as shown in Fig. 1-2, computer-generated information is 

added into the recorded video of the real-world scene. Besides equipped with an 

RGB camera, it is a tendency to add a depth sensor together to expand augmented 

reality capabilities of the device. For example, Apple iPad Pro 2020 (tablet) and 

Samsung Galaxy Note 10+ (smart phone) have a depth camera to measure the 

distance of surrounding objects and to expand AR experiences, such as 3D 

scanning and interaction with real-world objects. However, although tablets and 

smartphones have been widely used in our daily life, they may not be appropriate 

AR devices for manual tasks because the user has to hold the devices and can 

hardly perform the tasks. 
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On the other hand, for AR glasses, it is an eyeglasses-type of AR devices, which 

are equipped with see-through lens to display digital information in front of user’s 

eyes. Because AR glasses make the user’s hands free, such smart glasses can be 

a key device for AR-based field service applications. For example, in Fig. 1-3, a 

company called Trimble developed an AR assembly assistance system for 

construction fields. Through AR glasses, workers can see virtual pipelines 

displayed at the installing locations. This kind of AR-based assembly instruction 

gives the worker a complete image about the target assembly. Moreover, 

advanced smart glasses are equipped with various sensors such as a depth camera 

and microphones to provide functionality of constructing digital data of the real 

world and voice commands to operate the AR system, respectively. 

 

 

Fig. 1-3 Observe virtual assembly through AR glasses in a construction field [8] 

 

Furthermore, besides the assistance during operations, reviewing and evaluating 

worker’s performance in the operations is important to improve worker’s ability. 

Hence, skill assessment and training are necessary parts to assist in field service 

applications. Eye tracking can be a quantitative tool to provide suitable metrics 

[9][10] for skill assessment and training. By using eye tracking devices, we can 

measure worker’s visual focus of attention, which is highly correlated with where 

the worker is focusing attention. For example, Hasanzadeh et al. [11] used eye 

trackers for safety training in construction fields. Workers were required to 

observe images of construction fields and to find potential hazard situations. 

Meanwhile, the workers’ visual attention on the images was recorded, analyzed, 

and then displayed in the form of heatmaps. Fig. 1-4(b) shows that less 

experienced workers are more stimulus driven and focus on imminent hazards. 

On the other hand, Fig. 1-4(c) shows that more experienced workers are more 
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goal driven and have a balance in focusing and dividing their attention across the 

scene. In comparison with more experienced workers’ results, it can improve 

novice workers’ hazard-detection skills. Thus, eye tracking is a promising tool to 

train and evaluate worker’s skills. 

 

 

Fig. 1-4 Measuring impacts of safety knowledge on construction workers using eye 

tracking technology: (a) original picture, (b) attentional distribution for the group of 

less experienced workers (< 5 years), and (c) attentional distribution for the group of 

more experienced workers (> 10 years) [11]. 

 

 

Fig. 1-5 Record the worker’s visual attention by eye tracking glasses when the worker 

is working in the field [9]. 

 

To capture workers’ natural behavior when they perform the task in the field, 

using eye tracking glasses, which is a mobile eye tracking device, is better than 
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using the fixed type of the eye tracking device. Because this wearable device can 

let the worker walk around environments, the worker who wears the eye tracking 

glasses can keep working as usual, and the worker’s working condition can be 

recorded and analyzed for skill assessment and training. Fig. 1-5 shows the usage 

of eye tracking glasses to track a worker’s attention in a construction field. 

 

In summary, with the portability and various functions, smart glasses can be a key 

device for assisting the worker engaged in filed services in the future. Different 

technologies in smart glasses bring different aspect of assistance. The AR system 

can provide information to the worker during the operation and help the worker 

complete the task more effectively and efficiently. Moreover, eye tracking 

technology can record the worker’s performance, and the eye tracking data can 

be utilized to improve worker’s skills such as hazard-detection skills.  
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1.2 Motivation and Objective 

In the working field, smart glasses can make the worker’s hands free and usually 

have embedded sensors to collect data from the environment to provide various 

functionality. With those features, one of the prospects of smart glasses is to let 

the worker carry and use only smart glasses for such field service applications 

and training. Moreover, since smart glasses are wearable devices and can let the 

worker move around the working field, which should be a room-scale or larger 

environment, it will be beneficial to develop assistant systems for working in such 

environments. Therefore, in this work, we mainly focus on indoor field service 

applications and the development of AR-based field service assistance systems 

for indoor environments. 

 

Fig. 1-6 shows the designed workflow of our target AR-based field service 

assistance system. The system is implemented in smart glasses and provides two 

main functions. One is to assist the worker during operations through information 

overlay of AR technology. Computer-generated information is displayed to the 

worker’s view of the real scene to directly give operating information, such as 

instructions and status of the operation. The other is to record worker’s visual 

focus of attention during the operations through eye tracking technology. We can 

then visualize and analyze the worker’s gaze data for skill assessment and training. 

 

 

Fig. 1-6 A schematic plot of the workflow of our target AR-based field service 

assistance system 
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To realize a such system for room-scale environments, in the aspect of technology, 

we need three kinds of technologies at least: (1) information overlay, (2) 3D scene 

reconstruction, and (3) eye tracking. To assist the worker during operations, we 

need information overlay which is related to AR technology to provide indication, 

and we also need the 3D structure of the environment to detect real objects in the 

environment for the AR applications such the evaluation of misassembling in 

assembling operations. Moreover, to train the worker, we need eye tracking 

technology to track worker’s visual attention, and we also need a 3D model of the 

environment to visualize worker’s 3D gaze fixations which is beneficial to show 

the room geometry for indoor field service applications. 

 

In the aspect of hardware, using AR glasses equipped with eye tracking sensors 

is a possible way to construct an AR-based field service assistance system. It 

contains AR and eye tracking technologies. With the integration of eye tracking 

technology, such smart glasses can not only enable better user experience in AR, 

such as better overlay accuracy of virtual objects and hands-free interaction with 

virtual objects, but also monitor worker’s performance for skill assessment and 

training [12][13]. However, the development of such AR glasses with eye 

tracking sensors is still in its infancy in 2020. Nevertheless, we can use existing 

smart glasses to develop related systems for AR-based field service applications 

and training. 

 

In this study, we use and investigate two types of smart glasses to develop two 

prototype systems with the aim of field service assistance: (1) AR glasses (AR 

HMD) and (2) eye tracking glasses as shown in Fig. 1-7. For AR glasses, we focus 

on AR assembly assistance during assembling operations which contains 

technologies of information overlay and 3D scene reconstruction. For eye 

tracking glasses, we mainly focus on the issue of 3D gaze visualization which 

contains technologies of eye tracking and 3D scene reconstruction. The two 

systems that cover the three technologies serve as the subsystems of the AR-based 

field service assistance system. Although 3D scene reconstruction is the common 

part of the two systems, by considering to the sensors embedded in the two pairs 

of smart glasses, we may have to use two kinds of 3D scene reconstruction 

methods for the two prototype systems. 
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Fig. 1-7 Preliminary development of an AR-based field service assistance system 

using AR glasses and eye tracking glasses. 

 

1. AR glasses (AR HMD) 

AR glasses are equipped with see-through lens to display computer-generated 

data to the user. In the field of assembly assistance, AR glasses are potential to 

assist the worker in assembling operations through showing virtual parts of an 

assembly at installing locations to the worker’s view of a real scene. Besides 

giving instructions, it is important to prevent the worker from making assembling 

errors. Therefore, such assembly assistance system needs to track the condition 

of the assembling operation in real time. Using AR markers and external devices 

such as an RGB or RGB-D camera is common to display the virtual parts at target 

positions and to evaluate misassembling, respectively [14]. However, it means 

that the effective working area is limited to the sensing zone of the external 

camera which is fixed to somewhere in the workplace. To overcome this 

limitation, we use AR glasses of Microsoft HoloLens, which has embedded RGB 

and depth cameras, to develop an AR assembly assistance system. Simultaneously, 

misassembly should be evaluated and visualized by the AR glasses in real time to 

avoid assembling errors. The embedded depth camera can give the information 

of 3D scene reconstruction for misassembly evaluation. 
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Fig. 1-8 An AR assembly assistance system using AR glasses, an RGB-D camera, and 

AR markers [14] 

 

2. Eye tracking glasses 

Eye tracking glasses are a mobile eye tracking device with an embedded RGB 

camera. When the worker who wears the eye tracking glasses works and moves 

around the workplace, worker’s gaze fixations will be tracked and marked in a 

recorded scene video. To do statistical analysis, the analyzed eye tracking result 

such as heatmap is usually displayed in a panorama or multiple images of the 

scene, including multiple views of the environment. To better demonstrate the 

eye tracking result of the 3D environment, displaying user’s gaze fixation in a 3D 

model of the scene is a way which can show the multiple views and the geometry 

of the environment in one model. From each worker’s eye tracking recording, we 

can reconstruct the 3D model of the scene from the scene video, which records 

both the user’s visual attention and the views of the environment, by image-based 

3D reconstruction. Furthermore, to compare the eye tracking results between 

different workers, who perform the same work in the same environment, for the 

evaluation of their performances, it is appropriate to share the same 3D model of 

the scene to visualize their gaze fixations. This will give the same criterion for 

the assessment of their gaze results. In this study, we use eye tracking glasses of 

Tobii Pro Glasses 2. 

 

To sum up, in this work, we focus on the issues of AR and eye tracking 

technologies of smart glasses for AR-based field service assistance systems in 

indoor environments, respectively. Because smart glasses allow the worker to 
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move around the workplace, we need appropriate systems for such situation. By 

using provided functionality and sensors in the smart glasses, we aim to develop 

the two prototype systems through AR glasses and eye tracking glasses:  

 

 

AR glasses (Chapter 2) 

• Develop an AR assembly assistance system with the evaluation and 

visualization of misassembly in real time. 

 

Eye tracking glasses (Chapter 3) 

• Visualize and compare multiple users’ 3D gaze visualization more efficiently 

and effectively by sharing the same 3D model of the scene. 
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1.3 Thesis Structure 

Fig. 1-9 shows the thesis structure, which contains four chapters. Chapter 1 

introduces the background, the objectives, and the structure of the work. With the 

aim of AR-based field service assistance by using smart glasses, we divide the 

research work into two parts as introduced in Sec. 1.2: (1) the AR assembly 

assistance system and investigate their own issues and (2) the 3D visualization of 

eye tracking results in Chapters 2 and 3, respectively. 

 

Chapter 2 concentrates on the AR technology, and we use AR glasses as the target 

smart glasses. With the embedded sensors and functionality provided by the AR 

glasses, we develop an AR assembly assistance system and focus on the issues of 

coordinate calibration and misassembly detection in real time, which are import 

for the correct displayed location of virtual objects and the avoidance of 

assembling errors, respectively. We then design and conduct experiments to 

verify the system performance. 

 

In Chapter 3, we focus on the eye tracking technology and use eye tracking 

glasses as our test device. We first develop a method of constructing single user’s 

3D gaze visualization from an eye tracking recording. To further compare with 

other users’ 3D gaze results, we propose a more effective and efficient way to 

reduce the generation time of multiple users’ 3D gaze visualization. Eventually, 

we verify the proposed 3D gaze visualization system and conduct a room-scale 

experiment to demonstrate the advantages of 3D gaze visualization. 

 

 

Eventually, Chapter 4 is the conclusion of the research work. We sum up the 

contribution of our research work, discuss the potential problems in each topic, 

and describe the possible ways of improving the systems and the future work. 
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Fig. 1-9 Structure of the research work 
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Chapter 2  
HMD-Based AR Assembly Assistance System with 

Efficient Evaluation of Misalignment between Real 

and Virtual Objects 

2.1 Introduction 

In this chapter, we first study the main assistance part of the AR-based field 

service assistance system during operations, and we focus on AR assembly 

assistance to assist the worker in assembling operations using AR glasses. 

 

Augmented reality (AR) technology [15][16] has broad application in the world. 

It has been used in various fields, such as gaming [17] and medical training [18], 

and education [19]. The core concept of AR is to put an overlay of 3D virtual 

objects into real scenes as the virtual objects really exist in the physical world. In 

comparison with virtual reality (VR) technology, which constructs a complete 

virtual world by a computer, AR applications put great emphasis on the 

connection between the real and virtual worlds. Therefore, it needs the 

understanding of real environments to some extent. 

 

In engineering fields, assembly instruction is a potential application of AR [20]. 

Through a head-mounted display (HMD) or a tablet, an AR system can give 

visualized instructions, in the form of texts, symbols, and assembly animations, 

in front of an operator to make the operator easily understand and follow the 

instructions. For instance, the AR system can display a computer-aided design 

(CAD) model of a component from an assembly at its installation location to lead 

the operator to complete an assembly operation step by step. For complex 

assemblies, it is beneficial to provide the operator concise and effective 

instructions for efficient assembly operation and training instead of relying on 

that operator to read a manual during the assembly operation. In addition, using 

an HMD is more convenient than using a tablet or a smartphone because the HMD 

lets the user’s hands free. 

 

An AR-based assembly assistance system must be able to show CAD models 



 

14 

 

(virtual objects) at their installation positions in the real world for reliably giving 

instructions. That is, the system should determine precise transformation 

relationships between coordinate systems, such as the coordinate systems of the 

real world, of the virtual world in which the CAD models are defined, and of the 

user’s position. This is commonly realized using AR markers [21] to evaluate 

transformation matrices between various coordinate systems. In these 

arrangements, in addition to the HMD, several external devices, such as AR 

markers and an RGB-D camera, are typically prepared and set up before the 

operation. This limits the working environment and increases the time taken to 

set up the instruments. In addition to assembly instruction, it is important to 

evaluate in real time whether there is an occurrence of misassembly during the 

operation [22]. Prevention of assembly errors can avoid unexpected increases in 

assembly time or serious damage to the assembly product. Thus, it is critical to 

evaluate whether the real object is placed in the target position to confirm a 

reliable transition to the next assembly stage. 

 

In this study, we aim to use an AR HMD, Microsoft HoloLens, as the main device 

establishing a basic AR-based assembly assistance system that can display CAD 

models to the system’s user for assembly instruction and can simultaneously 

evaluate any possible occurrence of misassembly. Microsoft HoloLens contains 

eight environment sensing cameras and a depth camera to position itself in the 

real world and to construct meshes of the physical environment, respectively. 

With these features, we propose two methods to provide functions for the system: 

coordinate calibration and efficient evaluation of misalignment between the real 

and virtual objects. 

 

First, coordinate calibration is to determine a transformation relationship between 

the real and virtual worlds to make the virtual objects displayed in the desired 

working area. We realize coordinate calibration by rough alignment and precise 

alignment to transform a reference virtual object, which is at the origin of the 

virtual world, to the position of the corresponding reference real object, which 

defines the working area. These two alignments are realized by user’s hand 

manipulation and the point-to-plane iterative closest point (ICP) method to 

gradually determine the transformation. To apply the point-to-plane ICP, instead 
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of using the HoloLens-generated meshes of the real object, we use the original 

point cloud data to represent the digital content of the real object. Because the 

resolution of HoloLens-generated triangles varies from a few centimeters to 

dozens of centimeters, which is so large to give a great influence on the result of 

precise alignment particularly in the case of desktop applications. We first aim at 

such desktop applications, while the standard applications of the HoloLens are of 

room scale for objects such as furniture larger than a cube with an edge of 30 cm. 

One of the contributions of the research is to adapt the HoloLens to the desktop 

applications by using the point cloud to achieve precise alignment in a desktop 

area. 

 

Second, to evaluate misassembling by misalignment of parts in 3D efficiently, we 

compare depth maps of the real and virtual object to achieve misalignment 

evaluation between the real and virtual object in real time that is computed by the 

poor computation resource of the HoloLens. We also study different methods to 

determine an effective way for misalignment evaluation. With preliminary 

experiments, we use the centered cosine similarity method as an indicator to 

evaluate whether there is any occurrence of misalignment between the real and 

virtual object with the accuracy of approximately ±1 cm. 

 

In summary, our research objectives in this study contain 

• Use only HoloLens to develop an AR assembly assistance system 

• The system can perform desktop applications (overcome target applications 

of the HoloLens for room-scale environments) 

• Develop methods to evaluate misalignment between real and virtual objects 

➢ at real time rate on the HoloLens 

➢ within the accuracy of ±1 cm in the case of desktop applications. 

We aim at developing an AR assembly assistance system with these features. 

 

With the two proposed methods, preliminary demonstrations show that we can 

use only an AR HMD, Microsoft HoloLens, to construct an essential AR-based 

assembly assistance system with evaluation of misalignment between real and 

virtual objects in real time. Moreover, the system can be applied on a desktop area 

and overcomes the limit of the HoloLens, which is originally used for room-scale 
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environments. 

 

In this chapter, in Section 2.2, we first review the related work on AR-based 

assembly assistance systems and applications of Microsoft HoloLens. Section 2.3 

introduces the design of our system and detailed information of HoloLens. 

Methods of coordinate calibration and misalignment evaluation are described in 

Sections 2.4 and 2.5. Implementation and demonstrations of the proposed system 

are showed in Section 2.6, and Section 2.7 is the summary of this study. 
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2.2 Literature Review 

Several studies have focused on AR-based systems by using various methods to 

assist assembly operations. To show CAD models of parts at correct locations in 

a real scene to the operator, first of all, it is necessary to confirm that the system 

can determine an accurate transformation matrix between the real and virtual 

worlds. Using AR markers is a common way to find the transformation 

relationship. In Fig. 2-1, Sääski et al. [23] set AR markers around the assembly 

to track the pose of the HMD relative to the markers. Once the relative pose of 

the HMD is known, the CAD model can be displayed on or near to the markers. 

 

 

Fig. 2-1 3D CAD model of finished assembly (left) and display of the next component 

as a virtual part to the user (center and right) [23] 

 

Moreover, in addition to essential functions for assembly instruction, it will be 

helpful if the system can monitor assembling operation. Adding external devices 

such as RGB or RGB-D cameras into the system is common to monitor assembly 

operation and to evaluate whether there is misassembly. In Fig. 2-2, Mura et al. 

[21] used an RGB camera to track positions of real objects and to evaluate 

whether there is an occurrence of the assembly error. This verification provided 

better training to the operators and offered the potential to prevent serious damage 

to products. On the other hand, Alves et al. [22] used an RGB-D camera to detect 

the assembly errors. Radkowski et al. [14] used an RGB-D camera to track a real 

object inside the sensing zone of the camera and made a CAD model that could 

follow the real object. However, using multiple devices may limit the portability 

and working area of the system. Real parts of an assembly can only be tracked 
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when they are inside the sensing zone of the camera, which is fixed somewhere 

in the working area. 

 

 

Fig. 2-2 AR assembly assistance system of Mura’s study [21]: (a) assembly 

workstation, (b) observe virtual parts through an HMD, and (c) visual messages for 

detecting assembly errors. 

 

Adding sensors, such as RGB or RGB-D cameras, onto the HMD is a possible 

way to make the system portable and overcome the limited range of the working 

area. Microsoft HoloLens is one of commonly used commercial HMDs, which 

has an embedded depth camera to scan the real world. Evans et al. [24] used the 

HoloLens to construct a system that performed assembly operations in a room-

scale environment. However, although HoloLens can scan the real world by using 

the embedded depth camera and generate meshes of a scene, the meshes are not 

detailed enough to track most physical parts smaller than furniture and support 

an assembly application. Instead, AR markers were placed in the environment 

and used to precisely define the position of a real object.  
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Because the original usage of HoloLens is for applications in room-scale 

environments, using HoloLens-generated rough meshes is beneficial to be used 

to detect large obstacles and planes, such as floors and walls, in the environment. 

However, with the open of research mode, a system configuration to access raw 

data of embedded cameras in HoloLens, we are able to obtain raw depth images 

from the HoloLens [25], and further turn them into 3D point clouds to detect real 

objects. 

 

In summary, although AR technology can make assembly operations more 

effective and efficient, using external devices limit the working area’s scalability 

and the user’s movement in the environment, and it may take time to perform 

initial device setup. These issues motivated us to develop a system that uses only 

an HMD, Microsoft HoloLens, to achieve the functions of assembly instruction 

and verification. This single device can make the system more flexible to various 

scales of environments and products. 
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2.3 Design of HMD-Based AR Assembly Assistance System 

2.3.1 System Structure 

Our target system allows a user to assemble parts in their installation locations in 

an assembly. In Fig. 2-3, the installation locations are specified in a CAD model 

that is supplied for the assembly and defined in the coordinate system of the 

virtual world. After transforming the CAD model of the assembly to an 

appropriate position in a working area of the real world by a transformation 

𝐓𝑅𝑊←𝑉𝑊, the user can place the real parts to the positions of the matched CAD 

models to complete the assembly as indicated. In addition, during the assembling 

operation, the system tells the user how closely a real part is aligned to its 

corresponding CAD model while the user was trying to place the real part in the 

assembly. 

 

 

Fig. 2-3 A schematic plot of the relationship between physical parts and CAD models 

of an assembly 

 

Fig. 2-4 shows the proposed system’s process. First, the user needs to perform 

coordinate calibration and determine the transformation relationship 𝐓𝑅𝑊←𝑉𝑊 

between the virtual and the real worlds to display the CAD model in the working 

area. Next, the system starts to show the CAD model at its installation location to 

let the user understand which real object should be chosen and where it should be 

placed at each assembly stage. During the assembly operation, the system 

evaluates whether misalignment between the real object and the CAD model has 

occurred and visualizes the evaluation results to the user. The process continues 
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until the assembly operation ends. Coordinate calibration and evaluation of 

misalignment are the cores of the system and are described in Sections 3.4 and 

3.5, respectively. 

 

 

Fig. 2-4 Process of the AR-based assembly assistance system 

 

 

2.3.2 Mixed Reality Head-Mounted Display – Microsoft HoloLens 

In this study, we use Microsoft HoloLens, which is a pair of mixed reality glasses 

manufactured by Microsoft. In this study, HoloLens serves as an HMD and is 

used for the entire computation. Moreover, we use the first generation of 

HoloLens in the whole study, which is referred to as HoloLens (1st gen) in general. 

Fig. 2-5 shows the appearance and embedded sensors of HoloLens, and more 

detailed device specifications [26] related to this study are shown in Table 2-1.  
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Fig. 2-5 Microsoft HoloLens (1st gen) 

 

Table 2-1 HoloLens specifications 

Weight 579g 

Display 2.3-megapixel see-through holographic lenses 

Automatic pupillary distance calibration 

Sensors 1 IMU (Accelerometer, gyroscope, and magnetometer) 

4 grayscale environment sensing cameras 

1 depth camera with a 120°×120° angle of view 

1 2.4-megapixel photographic video camera 

CPU Intel 32-bit architecture (1GHz) 

GPU Microsoft Holographic Processing Unit (HPU 1.0) 

Memory 2GB RAM 

Storage 64GB 

OS Windows 10 

Development tools 

(used in this study) 

Unity & Visual Studio 2017 & 

C# programming language 

 

The sensors in HoloLens collect the information of the physical world, and the 

HoloLens system analyzes and applies the information for various applications. 

For example, the system uses the four environment sensing cameras to determine 

where a user is in the real world, the RGB camera to record the user’s view, and 

the depth camera using a time-of-flight technique to scan surfaces of real objects. 

The depth camera uses active infrared (IR) illumination to determine depth trough 

time-of-flight technique [27]. Thus, for the system of AR glasses, we use the 



 

23 

 

embedded depth camera as the 3D scene reconstruction method. With the 

captured information of the real world, the user can see virtual objects through 

the holographic lenses as if they exist in the real world. In addition, with the 

Windows 10 OS and the computation-related hardware, HoloLens can act as a 

standalone computer and handle multiple tasks concurrently. This feature lets the 

user develop various applications with complicated mathematical computations. 

 

When HoloLens starts executing a developed application, it defines a real-world 

coordinate system for the application, and the origin of the coordinate system in 

the real world is at the initial location of the HoloLens where the application starts 

up. This real-world coordinate system defines the user’s position and virtual 

object positions in the real world to demonstrate the correct placement of the 

virtual objects to the user. More details are described in Sec. 2.6.1. Fig. 2-6 shows 

photos of mixed reality experience. The system shows the CAD model of a bear 

statue somewhere in the real world according to the real-world coordinate system. 

The system can display correct views of the virtual bear according to the user’s 

location. Thus, for the user, the virtual object looks fixed in the real world. 

 

 

Fig. 2-6 Observe a virtual object through HoloLens: (a) the CAD model of a bear 

statue and (b) mixed reality photos. 
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There are some built-in functions in HoloLens, such as gesture input and mixed 

reality capture. Mixed reality capture lets users capture the mixed reality 

experience as a photo or video. It combines the output of the right eye’s 

holographic lenses with the RGB camera. We also use this function to capture 

user’s AR experience.  

 

In addition, Microsoft develops and provides the Mixed Reality Toolkit (MRTK) 

[28] to help HoloLens developers develop various applications fast. For example, 

the “Two Hand Manipulatable” function allows the user to control the position 

and orientation of a virtual object by user’s hands. The “Spatial Mapping” 

function in MRTK allows the developer to obtain meshes of real-world surfaces 

in the environment around the HoloLens, which are automatically generated by 

HoloLens. As shown in Fig. 2-7, the HoloLens scans a room including an air 

conditioner and windows with curtains and generates the mesh of the scene, a set 

of triangles. The HoloLens-generated meshes are useful to describe planes, such 

as walls and floors, and large-scale objects or environments larger than a cube 

with an edge of 30 cm. 
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Fig. 2-7 Meshes of real-world surfaces generated by the HoloLens: (a) real scenes, (b) 

display of the scanned meshes in the real scene, and (c) extracted real-world meshes 

 

The HoloLens generates real-world meshes from depth images given by the depth 

camera. The highest resolution of the generated mesh that the HoloLens can 

process in real time is approximately 1000 triangles per cubic meter [29]. The 

edge length of the generated triangle can vary from approximately 3 cm to dozens 

of centimeters. To obtain better digital information of objects, it is a possible way 

to obtain raw data of the depth camera, that is, the depth images. By enabling 

“Research Mode” in the HoloLens, a software setting for system configuration, 

we are able to access the low-level sensor stream data from the sensors in the 

HoloLens. In Fig. 2-8, eight sensor streams are available for users: 

 

• Environment sensing cameras [from Fig. 2-8(e) to Fig. 2-8(h)] – grayscale 

images used for head tracking. 

 

• Depth image streams – operate in two depth ranges, near and far: 

✓ Near-depth sensing is used for hand tracking. The image frame rate is 15 

fps, and the effective depth sensing range is approximately from 0.15 m 

to 0.95 m. [Fig. 2-8(a)] 

✓ Far-depth sensing is used for Spatial Mapping to generate real-world 

meshes. The image frame rate is 1 fps, and the effective depth sensing 

range is approximately from 0.8 m to 3 m. [Fig. 2-8(c)] 

 

• IR-reflectivity streams – show the IR reflectivity of real objects and are used 

to compute depth. Fig. 2-8(b) and Fig. 2-8(d) show the IR-reflectivity streams 

in the two depth ranges corresponding to the near-depth and far-depth sensing. 
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Fig. 2-8 Sensor streams available in Research Mode: (a) and (b) are the depth image 

and the IR-reflectivity image from near-depth sensing. (c) and (d) are the depth image 

and the IR-reflectivity image from far-depth sensing. (e), (f), (g), and (h) are the images 

of four environment sensing cameras. 

 

Two IR illuminators in the HoloLens, operating in different frequencies, result in 

the two streams of the depth images at the near and far distances, as shown in Fig. 

2-8(a) and Fig. 2-8(c), respectively. It is obvious that the user’s hand in Fig. 2-8(a), 

a real object close to the user, is captured in the near-depth sensing stream, while 

the far-depth sensing stream can not capture it. Conversely, the near-depth sensing 

stream can not capture the room scene in the far distance, while the far-depth 

sensing can. This further shows how the HoloLens works, and allows developers 

to select appropriate sensor streams according to their needs. 

 

2.3.3 Adaption of Microsoft HoloLens to the target application 

The standard use of HoloLens is for room-scale environments because it is 

developed for mixing the real and virtual scenes, not objects. Moreover, 

HoloLens-generated meshes of the environment are sufficient for room-scale 

applications. However, objects smaller than a cube with an edge of 30 cm can not 

be presented well in the HoloLens-generated meshes. The error of the object’s 

edge length is dozens of millimeters, which is too large to help us perform 

coordinate calibration and evaluate misalignment with the accuracy within ±1 cm. 

Hence, it is necessary to find other ways to acquire more precise digital 

information of real objects. 
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A. Point cloud of real objects from HoloLens 

With the preliminary investigations on the HoloLens, the mesh automatically 

generated by the HoloLens is not a proper choice for our assembling application. 

Thus, we turn to acquire original point cloud data from the depth camera, which 

is more precise. The approach is to convert the depth image from the depth 

camera into point cloud in the coordinate system of the real world. Fig. 2-9 shows 

three important coordinate systems that the system defines and uses: (1) the 

coordinate system of the depth camera 𝛴𝐶, (2) the coordinate system of the user 

𝛴𝑈, and (3) the coordinate system of the real world 𝛴𝑅𝑊. 

 

 

Fig. 2-9 Part of coordinate systems that the HoloLens system uses 

 

𝛴𝐶 and 𝛴𝑈 are frames of reference attached to the HoloLens and move with the 

HoloLens. The origins of 𝛴𝐶  and 𝛴𝑈  in 𝛴𝑅𝑊  describe the positions of the 

depth camera and the user in the real world, respectively. Moreover, 𝛴𝑅𝑊 is a 

stationary frame of reference with respect to the real world, and its position and 

orientation are the initial position and orientation of 𝛴𝑈 when the application 

starts up. The HoloLens defines these frames of reference, and we can access the 

transformation matrices between them from the HoloLens to obtain the point 

cloud in 𝛴𝑅𝑊. In Fig. 2-10, we use a cube with an edge of 10 cm to illustrate 

point cloud generation.  
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Fig. 2-10 Process of point cloud generation: (a) the view of scanning, (b) local point 

cloud from the depth image, and (c) real-world point cloud generation. 

 

Notice that the depth value d stored in the pixel of the depth image is the distance 

between the depth camera center and the position of a real-scene point along the 

line of perspective projection; that is 

 

𝑑 = √𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2, 

 

where (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is the coordinate of the point in 𝛴𝐶. Fig. 2-10(c) shows the 

process of point cloud generation, including four steps described below: 

 

1. Transform points from 𝛴𝐼 to 𝛴𝐶: First, after obtaining the depth image from 

the depth camera through Research Mode, we transform the image pixels 

from the image coordinate system 𝛴𝐼 to coordinate system 𝛴𝐶. We define 
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𝐌𝐶←𝐼  as the transformation that converts the representation of a point in 

coordinate system 𝛴𝐼  into its representation in coordinate system 𝛴𝐶 . 

Moreover, 𝐌𝐶←𝐼  is a 2D-to-3D transformation with correction of lens 

distortion. The result after the transformation is a 3D plane, called the camera 

unit plane, in 𝛴𝐶, which is parallel to the 𝑋𝐶𝑌𝐶 plane and at 𝑧𝑐 = 1. This 

transformation can be written as 

 

 𝐩𝐶 = 𝐌𝐶←𝐼𝐩𝐼, (1) 

  

where 𝐩𝐼  and 𝐩𝐶  are a 2D pixel point in 𝛴𝐼  and a 3D point in 𝛴𝐶 , 

respectively. 

 

2. Obtain local point cloud in 𝛴𝐶: Next, we use the depth value information to 

generate local point cloud. In Eq. (1), each pixel point of the depth image is 

transformed to 3D point 𝐩𝐶 , which also describes the direction of 

perspective projection, and the depth value of each pixel means the 

magnitude of the projection. Thus, we can transform point 𝐩𝐶 on the camera 

unit plane to position 𝐩𝐶
′  using the corresponding depth value d: 

 

 𝐩𝐶
′ =

𝑑𝐩𝐶

‖𝐩𝐶‖
 (2) 

 

where ‖𝐩𝐶‖ is the Euclidean norm of 𝐩𝐶. 

 

3. Transform the local point cloud from 𝛴𝐶  to 𝛴𝑈 : We then convert the 

representation of point 𝐩𝐶
′  in 𝛴𝐶 into its representation in user’s coordinate 

system 𝛴𝑈 using transformation 𝐌𝑈←𝐶: 

 

 𝐩𝑈 = 𝐌𝑈←𝐶𝐩𝐶
′  (3) 

 

where 𝐩𝑈 is the representation of the point in 𝛴𝑈. 

 

4. Transform the point cloud from 𝛴𝑈  to 𝛴𝑅𝑊 : Finally, we convert the 

representation of point 𝐩𝑈 in 𝛴𝑈 into its representation in the coordinate 
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system of the real world, 𝛴𝑅𝑊 using transformation 𝐌𝑅𝑊←𝑈: 

 

 𝐩𝑅𝑊 = 𝐌𝑅𝑊←𝑈𝐩𝑈 (4) 

 

where 𝐩𝑅𝑊 is the representation of the point in 𝛴𝑅𝑊, and keeps stationary 

in the real world. 

 

With a series of transformation, from Eq. (1) to Eq. (4), we are able to transform 

the pixel point 𝐩𝐼 in the depth image into the 3D point 𝐩𝑅𝑊, which is stationary 

in the real world, and these equations can be combined into an equation: 

 

 𝐩𝑅𝑊 = 𝐌𝑅𝑊←𝑈 ∙ 𝐌𝑈←𝐶 ∙
𝑑(𝐌𝐶←𝐼𝐩𝐼)

‖𝐌𝐶←𝐼𝐩𝐼‖
 (5) 

 

𝐌𝑈←𝐶  and 𝐌𝑅𝑊←𝑈  are homogeneous transformations that describe both 

rotation and translation in 3D Euclidean space and can be accessed from the 

HoloLens because the HoloLens system keeps tracking transformation 

relationship between different coordinate systems at run time. On the other hand, 

𝐌𝐶←𝐼  including the information of camera intrinsic parameters and lens 

distortion is encapsulated as a method in the HoloLens system instead of a matrix 

form. To obtain the transformation result, we can invoke a low-level API called 

“MapImagePointToCameraUnitPlane()” [30]. The API call takes the image pixel 

coordinate 𝐩𝐼  as arguments and then returns the (𝑥𝑐 , 𝑦𝑐)  components of 𝐩𝐶 . 

More related APIs and codes for accessing point cloud can be found in 

HoloLensForCV [31], which is provided by Microsoft and contains some samples 

to develop applications for computer vision and robotics using the HoloLens. 

 

B. Performance Test of the point cloud scanned by the HoloLens 

After obtaining the point cloud, we conducted some scanning tests to measure the 

performance and the limitation of the generated point cloud and to determine 

appropriate objects that can be detected well during the assembling operation. 

First, we compare the HoloLens-generated mesh models and the point louds of 

objects, as shown in Fig. 2-11.  
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Fig. 2-11 Comparison of HoloLens-generated digital models with different objects. 

From top to bottom: scanned objects, mesh models, and point clouds. 

 

In the case of a cuboid, although we can roughly identify its shape as a cuboid, 

its edges are not reconstructed well because of cm-level resolution of triangles. 

On the other hand, we can observe clear edges of the cuboid in its point cloud 

result which has precision in mm-level. Moreover, for the case of a bear statue 

that has more complex shape, we can hardly consider its mesh model as the same 

as the bear statue, but we can identify the clearer outline of the bear statue in the 

point cloud result. 

 

The case of a square prism that is much smaller than the other two cases has a 

similar result. We cannot even identify its shape from its mesh model. Instead, it 

looks like a pyramid. Because the top surface of the square prism is smaller than 

the average size of the reconstructed triangle, the top surface is described as a 

point, and the whole shape becomes a pyramid-like shape.  

 

Therefore, HoloLens-generated mesh models are better to be used to represent 

large object such as furniture that are larger than a cube with an edge of 30 cm. 
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On the other hand, with the point cloud information, we can use it to represent 

smaller objects. It shows that we can use point cloud data for the assembly 

composed of smaller real objects that are not presented well using HoloLens-

generated models. 

 

Next, we focus on the resolution of the point cloud along the depth direction, axis 

𝑍𝐶 . The user wearing the HoloLens looked down at some objects as the top 

images in Fig. 2-12. A Preliminary test of scanning a flat table surface shows that 

the precision of 𝑧𝐶 of the point cloud is approximately within ±4 mm. Thus, for 

a flat portable charger of height 10 mm that is put on a table, we can roughly 

identify its shape, but to have better scanning results, higher objects are preferred.  

 

 

Fig. 2-12 Point cloud data of smaller objects whose height are lower than 8 cm 

 

The case of a doll statue of height 8 cm shows that the depth camera can give 

only its outline. More detailed variation of the surfaces can not be preserved 

because the variations are lower than the precision of 𝑧𝐶. Moreover, for the case 

of a primitive cube with an edge of 5 cm, because of its primitive shape, its point 

cloud result can represent the object well. With these preliminary scanning results, 

using objects that have smooth surfaces and are larger than a cube with an edge 

of 2 cm are better target objects that can be represented well by the point cloud.  
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We next discuss the accuracy of the point cloud. We measure the position 

difference between the real object and the point cloud. In Fig. 2-13, by observing 

the point clouds in the coordinate system of the real world through the HoloLens, 

it is obvious that there is a shifting between the scanned surfaces of the real 

objects and the point clouds by a few centimeters. A few factors may cause this 

problem: (1) the bad scaling parameter to transform the measured flight time of 

IR light into the practical depth distance (a scaling problem), (2) user’s position 

in the real world is not well evaluated (a shifting problem), and (3) multipath 

interference [32][33][34] of IR light, which is one of common problems of time-

of-flight depth cameras. 

 

Multipath interference also influences the quality of the generated point cloud. It 

causes the distortion of the point cloud. In Fig. 2-13, we can find there is distortion 

in the right upper corner of the point cloud, which is not a right angle. To solve 

these problems, it is a way to calibrate the depth camera and then adjust the point 

cloud data [35][36][37]. However, there will a large number of factors to be 

considered, and the effect depends on different situations. Thus, instead, we 

handle this shifting problem by different methods in different stages of assembly 

operations. The detailed will be introduced in the following sections. 

 

 

Fig. 2-13 Shifting of the generated point cloud in the real world: (a) a cube with an 

edge of 10 cm and (b) a bear statue 

 

Finally, objects that are dark colors or transparent may not be scanned because 

they may absorb IR light, and no IR light will be reflected back to the depth 
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camera. Thus, these objects can not be used in our application. We have to check 

real objects whether they can be scanned or not. In Fig. 2-14, we scan a wooden 

cube that is placed on different surfaces. The wooden cube is set as a reference to 

see scanning results of the surfaces. We can see that part of a wooden table around 

the cube is scanned. However, for a black plastic board, we can see that there is 

no point around the cube, and the return depth values from the depth camera is 

zero that means IR light is not reflect black. Although objects of dark color may 

not be scanned, not all objects of dark colors can not be scanned. For example, 

black clothes can be scanned in our test.  

 

 

Fig. 2-14 Scanning results of objects of different materials and colors 
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2.4 Coordinate calibration between real and virtual world 

Before starting assembly work, we need to perform coordinate calibration and 

adjustment between the real and virtual world. We need to define a working area, 

a table surface, to make the AR system display CAD models of the assembly and 

perform assembling operation on the table. For this purpose, we use a reference 

real object and its corresponding CAD model as a reference virtual object for 

coordinate calibration. In Fig. 2-15, a reference real object is placed on a table to 

define the working area which is around the reference real object. The CAD 

models of the assembly define the positions of parts in the assembly and their 3D 

models, and these CAD models are defined in the coordinate system of the virtual 

world in advance. In addition, we set a reference virtual object, the CAD model 

of the reference real object, at the origin of the virtual world. By transforming the 

reference virtual object to the position of the reference real object, the CAD 

models of the assembly will be transformed to the region of the working area 

together. Thus, the problem becomes how to determine the transformation 

relationship 𝐓𝑅𝑊←𝑉𝑊, which denotes a matrix that transforms the origin of the 

virtual world to the designated position in the real world, the position of the 

reference real object. 

 

 

Fig. 2-15 Schematic plot of coordinate calibration 

 

To determine the matrix 𝐓𝑅𝑊←𝑉𝑊, we align the reference virtual object to the 

position of the reference real object with the corresponding orientation and then 

compute 𝐓𝑅𝑊←𝑉𝑊. In Fig. 2-16, we design the alignment process involving two 
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steps: rough alignment and precise alignment.  

 

For rough alignment, we utilize a function called “Two Hand Manipulatable” in 

the Mixed Reality Toolkit and let the user move the reference virtual object to the 

reference real object roughly. The function uses the depth images in the near-

depth sensing stream from the depth camera to track the user’s hand manipulation 

as a controller to manipulate the target virtual object, as shown in Fig. 2-8(a). The 

translation control is based on the motion of two hands or one hand in the user’s 

coordinate system 𝛴𝑈 with 𝑋𝑈, 𝑌𝑈, and 𝑍𝑈 axes. The hand movement in 𝑍𝑈 

direction is identified by the depth information of tracked hands. The rotation 

control of the object is based on the relative motion of two hands. For instance, 

in Fig. 2-17, when the left hand moves backward, and the right hand moves 

forward, the virtual object will rotate counterclockwise about the 𝑌𝑈 axis. An 

illustration of rough alignment process is shown in Fig. 2-18. 

 

Through hand manipulation, although the user can adjust the reference virtual 

object to the position of the reference real object, the user can only achieve the 

accuracy level of centimeter. The reason is that the HoloLens can not detect the 

hand movement in millimeter. Thus, we need to further apply another alignment 

to control the alignment error in millimeter level. 

 

 

Fig. 2-16 Process of coordinate calibration 
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Fig. 2-17 Manipulate a virtual object through user’s hands 

 

 

Fig. 2-18 Schematic plot of rough alignment process 

 

After rough alignment, we perform precise alignment to make the reference 

virtual object overlap the real object in millimeter level. We use the point-to-plane 

iterative closest point (ICP) algorithm [38][39] to minimize the difference in 

positions of the two reference objects. To apply the point-to-plane ICP, we need 

their point cloud data. For the reference virtual object (i.e., a CAD model), we 

can acquire its point cloud data with the corresponding normal vector information 

for each point. For the digital content of the reference real object, we access the 

raw point cloud data from the depth camera as introduced in Section 2.3.2.  
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The process of precise alignment is shown in Fig. 2-19. First, before doing the 

point-to-plane ICP, a preprocessing is performed to extract and keep the scanned 

points of the real object inside the axis-aligned bounding box of the virtual object 

whose edges are aligned to the axes of the real-world coordinate system. This 

preprocessing removes most of the scanned points belonging to the surroundings 

that we are not interested and simultaneously decreases the number of points for 

finding pair-correspondences in the subsequent point-to-plane ICP. To keep the 

scanned points of the reference real object as many as possible, the size of the 

bounding box also plays an important role. 

 

In Fig. 2-20, originally, the axis-aligned bounding box of the virtual object is 

defined by the smallest cuboid that fully encloses the virtual object. However, if 

the position of the virtual object after rough alignment is not close to the real 

object sufficiently, some scanned points of the reference real object will be 

removed in this stage. It will influence the final alignment result if there is a great 

loss of the scanned points of the reference real object. Therefore, to avoid this 

loss to some degree, we can simply expand the bounding box by increasing its 

size along each side. The remaining scanned points, which are inside the 

bounding box, mostly belong to the surfaces of the reference real object, and some 

of them are the points of the surroundings near the reference real object. With our 

preliminary tests, expanding the side of the bounding box by 2 cm is an 

appropriate choice to handle the rough alignment result with the accuracy of 

centimeters. 

 

 

Fig. 2-19 Process of precise alignment 
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Fig. 2-20 The illustration of the bounding box to extract the points that may belong to 

the reference real object. 

 

Next, the point-to-plane ICP method is performed to achieve precise registration. 

Vertices of the virtual object (CAD model) will be registered to the HoloLens-

scanned points of the real object. In each iteration of the point-to-plane ICP, it 

consists of three steps: (1) find correspondences, (2) compute a transformation 

matrix 𝐌𝑟←𝑣  that minimizes an error function, and (3) transform the virtual 

object using evaluated 𝐌𝑟←𝑣. 

 

Find correspondences 

A virtual object is defined as a triangular mesh with vertices {𝐪𝑖} . And {𝐩𝑖} 

denotes the point cloud scanned by HoloLens. For each vertex 𝐪𝑖 of the virtual 

object, its correspondence is the closest scanned point 𝐩𝑖  associated with the 

minimum Euclidean distance, min‖𝐩𝑖 − 𝐪𝑖‖ . This is implemented by the k-d 

tree structure [40] to search for the closest scanned point fast. In addition, a 

threshold 𝛿 is set to further pick out reliable paired correspondences. Because 

the HoloLens-scanned points include only the partial information of the real 

object, it is preferred to take only potential corresponding points in the virtual 

object for the registration. Thus, if min‖𝐩𝑖 − 𝐪𝑖‖ ≤ 𝛿 , this paired 

correspondence (𝐩𝑖 , 𝐪𝑖) will be selected into a group for the evaluation of the 

point-to-plane ICP; otherwise, (𝐩𝑖 , 𝐪𝑖)  will be excluded. Fig. 2-21 shows an 

illustration of finding effective correspondences. 
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Fig. 2-21 Paired correspondences searching based on the closest point 

 

Compute the transformation matrix 𝐌𝑟←𝑣 & Transform the virtual object 

Based on all the paired correspondences, we next try to determine the 

transformation matrix 𝐌𝑟←𝑣 such that 

 

 𝐌𝑟←𝑣 = argmin
𝐌

∑‖(𝐌𝐪𝑖 − 𝐩𝑖) ∙ 𝐧𝐪𝑖
‖

2
𝑁

𝑖=1

 (6) 

 

where N is the number of the paired correspondences found in the last step, and 

𝐧𝐪𝑖
  is the vertex normal vector associated with 𝐪𝑖 . 𝐌𝑟←𝑣  and M are 3D 

transformations represented by 4  4 matrices using homogeneous coordinates, 

including rotation and translation: 

 

 𝐌 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

]  

 

where {𝑟𝑖𝑗} and {𝑡𝑖} are the parameters of rotation and translation, respectively. 

Moreover, 𝐩𝑖, 𝐪𝑖, and 𝐧𝐪𝑖
 are also expressed in homogeneous coordinates. Eq. 

(6) suggests that the evaluated 𝐌𝑟←𝑣 will make the dot product between vector 

𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and 𝐧𝐪𝑖
  become close to zero. Geometrically, in Fig. 2-22, after the 

transformation of 𝐌𝑟←𝑣, 𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  becomes 𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ′ that is approximately orthogonal 

to 𝐧𝐪𝑖
; that is, the scanned point 𝐩𝑖 will be on the surface of the virtual object. 

Computation of 𝐌𝑟←𝑣  is implemented according to Low’s work [39] by 
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linearizing Eq. (6) into a least-square optimization problem and then solving it by 

the singular value decomposition (SVD) method. After transforming the virtual 

object using the evaluated 𝐌𝑟←𝑣, we perform the next iteration, repeating the 

above steps, until the upper limit of iterations or 𝐌𝑟←𝑣 converges. 

 

 

Fig. 2-22 Schematic plot of the point-to-plane ICP 

 

Although there is another ICP-related method called point-to-point ICP [41], 

which is also commonly used to minimize the difference between two point 

clouds, as shown in Fig. 2-23, and to reconstruct 2D or 3D surfaces from different 

views of scanning. Although each iteration of the point-to-plane ICP algorithm 

generally takes more time than the point-to-point ICP, Rusinkiewicz et al. [42] 

observed that the point-to-plane ICP has significantly better convergence rates. 

In our tests using Point Cloud Library (PCL) on a PC [43] to compare the two 

methods, the point-to-plane version generally takes less processing time. Thus, 

considering to the poorer computing ability of the HoloLens, we use the point-to-

plane ICP method to perform precise alignment. 

 

 

Fig. 2-23 Schematic plot of the point-to-point ICP 
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Performance test of precise alignment 

To evaluate the performance of precise alignment, a wooden cube with an edge 

of 10 cm is used as the reference real object for the preliminary test. Before the 

performance evaluation, we first have to calibrate and adjust the HoloLens-

scanned point cloud to make it attach to the surfaces of the real object. As 

described in Section 2.3.3, because of inappropriate calibration of the depth 

camera and interference from the environment, there seems a shifting between 

the real object and the scanned point cloud. This shifting may be caused by the 

inappropriate scaling parameter of the depth camera or the shifting of self-

position in the real world. To mitigate this problem for precise alignment, we use 

the primitive cube and require the user to scan the cube from the specific view as 

shown in Fig. 2-24. The top and front planes of the cube are scanned, and the next 

is to adjust the scanned point cloud to make it attached to the surfaces of the cube.  

 

 

Fig. 2-24 Adjust the point cloud for coordinate calibration 
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Moreover, we find that by scanning the cube at a close distance, approximately 

shorter than 30 cm, it results in approximately constant shift amounts of 1 cm 

vertically (top surface) and of 1.6 cm horizontally along axis 𝑍𝑈 (front surface). 

Otherwise, larger distances of scanning generally lead to larger shifting amounts 

by a few centimeters. This may derive from multipath interference that larger 

distances cause larger errors. By scanning the cube from the specific view and at 

the close distance, the shift amount for the adjustment of the point cloud may be 

repeatedly used in future tasks. 

 

After adjusting the point cloud of the reference real object and rough alignment, 

we can perform precise alignment. In Fig. 2-25, a corresponding CAD model of 

the cube is constructed with 386 vertices, 768 faces, and normal vectors for all 

vertices. Fig. 2-26(a) shows the point cloud of the real scene, a cube on a table, 

and Fig. 2-26(b) shows the position of the virtual object after rough alignment, 

which is not well aligned to the scanned points of the real object. After rough 

alignment, we can start to perform precise alignment. First, point extraction was 

performed to remove redundant scanned points outside the bounding box of the 

virtual object. Here, we increased the extent of the bounding box by 2 cm to keep 

potential points belonging to the real object. As a result, in Fig. 2-26(c), the 

number of the scanned points decreased from 65,536 to 5,252 points. 

 

 

Fig. 2-25 The CAD model of the reference object 
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Fig. 2-26 Extract the scanned points near the virtual object: (a) scanned scene, (b) 

scanned scene with the virtual object after rough alignment, and (c) scanned points 

inside the bounding box of the virtual object. 

 

Afterward, most points belonging to the top and front surfaces of the real object 

were kept. Those preserved 5,252 scanned points were used to perform point-to-

plane ICP with the virtual object. Fig. 2-27 shows the experimental results with 

different iterations. In our preliminary development, it took 1.5 sec for 10 

iterations of the point-to-plane ICP on the HoloLens. Basically, after 5th iteration, 

the transformation of the virtual object converged and was not obvious in this 

case. It can be seen that the virtual object (mesh of the cube) eventually attached 

well to the scanned points of the real cube (red points). We can see that the 

position and orientation of the virtual object also became much closer to the real 

one in the mixed reality photos (user’s view). 

 

Thus, starting from rough alignment to precise alignment, a series of 

transformations forms the transformation matrix 𝐓𝑅𝑊←𝑉𝑊  that transforms the 

virtual object from the original position, somewhere predefined in the real-world 

coordinate system, to the position of the corresponding real object, which can be 

defined by the user arbitrarily. 
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Fig. 2-27 Registration results of the point-to-plane ICP 
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2.5 Evaluation of misalignment between real and virtual 

objects 

2.5.1 Design of misalignment evaluation 

After coordinate calibration, the system can start to display the virtual objects 

(CAD models) of the assembly in the preferred working area. During the 

assembling operation, a user holds the corresponding real object and tries to move 

it to the position of the virtual object. In order to assist the user to place the real 

object to the right position, the system evaluates whether there is misalignment 

between the real and virtual objects to check whether the assembling operation is 

correct. Because we can acquire the point cloud data of real objects from the 

HoloLens and have the corresponding CAD models, misalignment evaluation 

between the real and virtual objects can be realized by comparing the distance or 

similarity between the scanned point cloud of the real object and the CAD model, 

the virtual object as assembling indication.  

 

The most general approach for evaluating the misalignment between two objects 

in the 3D space is to compute distance between them. This computation requires 

computation of finding corresponding points between the CAD model and the 

point cloud of the real object and calculating their distances as well. In our 

application, this misalignment evaluation must be done at real time rate in order 

to indicate the misalignment immediately following the object handling motion 

of the user. In this aspect, this approach is too expensive for the HoloLens with 

small computation resources. It is crucial to take more efficient approach for 

misalignment evaluation. Instead, we compare the depth images of the real and 

virtual objects to evaluate misalignment, i.e., performing evaluation in 2D space. 

 

Fig. 2-28 shows the process of obtaining depth images for the case of a cube on 

a table. We set two virtual depth cameras that has the same position and 

orientation as the physical one in the HoloLens. We can then access the depth 

maps of the scanned point cloud and of the CAD model that are rendered by the 

GPU in the HoloLens from the view of the virtual cameras. Related 

implementation is introduced in Sec. 2.6.1. Because the two depth maps are 

generated from the same viewpoint, if now the real object and the virtual object 
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are matched, we can expect that the two depth maps will be similar. 

 

 

Fig. 2-28 Process of obtaining GPU-rendered depth images of the scanned point cloud 

and the CAD model. 

 

Notice that we access the GPU-generated depth map of the scanned point cloud 

and use it to represent the depth map of the real object instead of directly using 

the depth image from the physical depth camera. Because the depth map of the 

CAD model is generated by the GPU, using the GPU-generated depth map of the 

scanned point cloud can make the two depth maps in the same pixel coordinate 

system for the convenience of the subsequent misalignment evaluation. Moreover, 

the original depth image from the physical depth camera has the effect of lens 

distortion, but the depth map of the CAD model does not have. Thus, we first 

transform the original depth image to the point cloud, which is generated with the 

correction of lens distortion as introduced in Section 2.3.2, and then access the 

GPU-generated depth map of the point cloud. 

 

 

2.5.2  Analysis of different evaluation methods 

After obtaining the depth maps of the scanned point cloud and the CAD model in 

the same coordinate system, we can proceed to compare these two depth maps to 

evaluate the misalignment of the real and virtual objects. We define several 

functions of indicators for such misalignment error. From the depth maps of the 

CAD model, we know which pixels belong to the CAD model. If the real and 

virtual objects are matched, it can be expected that the depth values in the same 
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pixel region will be similar, and we can compare those pixels in the two depth 

maps for misalignment alignment, as shown in Fig. 2-29(a). 

 

 

Fig. 2-29 Schematic plot of comparing the depth maps: (a) compare the same region 

in the depth maps and (b) rearrange pixels into a sequence in the raster scanning order 

 

For comparison, we rearrange the depth values in the target pixel region into a 

sequence in bottom-to-top and left-to-right order, as shown in Fig. 2-29(b). 

Therefore, we obtain the sequences of the depth values of {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛   and 

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛  for the depth maps of the scanned point cloud and of the CAD model, 

respectively where n is the number of pixels that belong to the CAD model in the 

depth map of the CAD model. The problem of misalignment evaluation is then 

converted into measuring the similarity between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛  and {𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 . 

 

To compare the sequences, we study some methods to determine an effective one 

as an indicator to evaluate whether there is misalignment between the real and 

virtual object: 

 

The average and standard deviation of the depth differences 

We first simply compute the arithmetic mean and standard deviation of the depth 

differences, 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑, as two potential indicators: 

 

 𝐷𝑎𝑣𝑒 =
∑ ∆𝑑𝑖

𝑛
𝑖=1

𝑛
,  

and 
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𝐷𝑠𝑡𝑑 = √
1

𝑛 − 1
∑ (∆𝑑𝑖 − 𝐷𝑎𝑣𝑒)

2
𝑛

𝑖=1
 

 

where ∆𝑑𝑖 = |𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷|. These indicators evaluate misalignment based on 

the distance, the difference of the depth values, between the scanned point cloud 

and the CAD model. When the real and virtual objects are matched, it can be 

expected that the objects are close, so 𝐷𝑎𝑣𝑒  and 𝐷𝑠𝑡𝑑  will be both small; 

otherwise, it demonstrates that misalignment occurs. 

 

Cosine similarity and centered cosine similarity 

Next, we study the cosine similarity and centered cosine similarity methods as 

another potential indicators. These methods measure the similarity between two 

non-zero vectors according to the cosine of the angle between them, which is the 

same as the dot product of the two vectors normalized to have length of 1. 

Suppose {𝑝𝑖}𝑖=1
𝑛   and {𝑞𝑖}𝑖=1

𝑛   are sequences of real numbers and define two 

different data. Let p and q be ordered n-element vectors containing the above data: 

 

𝐩 = (𝑝1, 𝑝2, … , 𝑝𝑛) and 𝐪 = (𝑞1, 𝑞2, … , 𝑞𝑛) 

 

in ℝ𝑛. The cosine similarity between p and q is defined by  

 

 𝐶𝑆(𝐩, 𝐪) =
𝐩 ∙ 𝐪

‖𝐩‖‖𝐪‖
=

∑ 𝑝𝑖𝑞𝑖
𝑛
𝑖=1

√∑ 𝑝𝑖
2𝑛

𝑖=1 √∑ 𝑞𝑖
2𝑛

𝑖=1

 (7) 

 

A small angle between two vectors, which gives a high result of the cosine 

similarity, indicates high similarity between the vectors while a large angle, low 

cosine similarity, means low similarity. In addition, the output range of the cosine 

similarity is [-1, 1] for any included angle between two vectors in the interval [0°, 

180°]. Two vectors that have the same direction have the included angle of 0°, 

and its cosine similarity is 1. Two vectors that are orthogonal have the angle of 

90° and the cosine similarity of 0, and two vectors in the opposite directions have 

the angle of 180° and the cosine similarity of -1. Fig. 2-30 shows the illustration 

of the cosine similarity result, which measures the cosine of the angle instead of 

the distance between the two vectors. 
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Fig. 2-30 Schematic plot of the cosine similarity result 

 

Moreover, the centered cosine similarity is defined by 

 

 𝐶𝐶𝑆(𝐩, 𝐪) =
∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

 (8) 

 

where �̅� and �̅� are the arithmetic mean of {𝑝𝑖}𝑖=1
𝑛  and {𝑞𝑖}𝑖=1

𝑛 , respectively. 

The output range is the same as the output of the cosine similarity, [-1, 1], for any 

included angle between two vectors in the interval [0°, 180°]. Eq. (8) shows that 

the centered cosine similarity is the cosine similarity between centered versions 

of 𝐩 and 𝐪.  

 

In particular, the cosine similarity is invariant to the scaling of data. On the other 

hand, the centered cosine similarity is invariant to the shift and scaling of data. 

About these features, we first prove the shift and scale invariance of the centered 

cosine similarity. For any constants 𝑎 , 𝑏 , 𝑐 , and 𝑑  with 𝑎 , 𝑐 > 0 , we may 

scale and shift the data {𝑝𝑖}𝑖=1
𝑛  and {𝑞𝑖}𝑖=1

𝑛 , and then generate new data {𝑝𝑖
′}𝑖=1

𝑛  

and {𝑞𝑖
′}𝑖=1

𝑛   where 𝑝𝑖
′ = 𝑎𝑝𝑖 + 𝑏  and 𝑞𝑖

′ = 𝑐𝑞𝑖 + 𝑑 . Let 𝐩′ = (𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ ) 

and 𝐪′ = (𝑞1
′ , 𝑞2

′ , … , 𝑞𝑛
′ )  be n-dimensional vectors from {𝑝𝑖

′}𝑖=1
𝑛   and {𝑞𝑖

′}𝑖=1
𝑛  , 

respectively. The centered cosine similarity between 𝐩′ and 𝐪′ is then given by 

 

 𝐶𝐶𝑆(𝐩′, 𝐪′) =
∑ (𝑝𝑖

′ − �̅�′)(𝑞𝑖
′ − �̅�′)𝑛

𝑖=1

√∑ (𝑝𝑖
′ − �̅�′)2𝑛

𝑖=1 √∑ (𝑞𝑖
′ − �̅�′)2𝑛

𝑖=1

  

 

where �̅�′ and �̅�′ are the arithmetic mean of {𝑝𝑖
′}𝑖=1

𝑛  and {𝑞𝑖
′}𝑖=1

𝑛 , respectively. 
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Particularly, 

 

�̅�′ = 𝑎�̅� + 𝑏, 

 

and 

 

�̅�′ = 𝑐�̅� + 𝑑. 

 

Consequently, 

 

𝐶𝐶𝑆(𝐩′, 𝐪′) =
∑ (𝑎𝑝𝑖 + 𝑏 − 𝑎�̅� − 𝑏)(𝑐𝑞𝑖 + 𝑑 − 𝑐�̅� − 𝑑)𝑛

𝑖=1

√∑ (𝑎𝑝𝑖 + 𝑏 − 𝑎�̅� − 𝑏)2𝑛
𝑖=1 √∑ (𝑐𝑞𝑖 + 𝑑 − 𝑐�̅� − 𝑑)2𝑛

𝑖=1

 

=
𝑎𝑐 ∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

𝑎√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 × 𝑐√∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

 

=
∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

= 𝐶𝐶𝑆(𝐩, 𝐪). 

 

This implies that the result of the centered cosine similarity is invariant to the 

shift and scaling of data. The scale invariance of the cosine similarity can be 

proved similarly by substituting the shifts 𝑏 and 𝑑 into zero.  

 

Moreover, the cosine similarity and the centered cosine similarity measure 

whether the two sequences have the same variation trend; that is, if larger 𝑝𝑖 

(smaller 𝑝𝑖) corresponds to larger 𝑞𝑖 (smaller 𝑞𝑖), the results will be high (low). 

Thus, it is a possible way to use the cosine similarity and the centered cosine 

similarity as indicators to measure the similarity between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛   and 

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 , i.e., 

 

𝐷𝐶𝑆 = 𝐶𝑆(𝐝𝑆𝐶𝐴𝑁, 𝐝𝐶𝐴𝐷) and 𝐷𝐶𝐶𝑆 = 𝐶𝐶𝑆(𝐝𝑆𝐶𝐴𝑁, 𝐝𝐶𝐴𝐷) 

 

where 𝐝𝑆𝐶𝐴𝑁 = (𝑑1
𝑆𝐶𝐴𝑁 , 𝑑2

𝑆𝐶𝐴𝑁, … , 𝑑𝑛
𝑆𝐶𝐴𝑁)  and 𝐝𝐶𝐴𝐷 = (𝑑1

𝐶𝐴𝐷, 𝑑2
𝐶𝐴𝐷, … , 𝑑𝑛

𝐶𝐴𝐷) , 

respectively. 𝐷𝑐𝑠  and 𝐷𝑐𝑐𝑠  measure whether the depth maps of the scanned 

point cloud and the CAD model have the similar variation trend of the depth 

values instead of measuring the difference of the depth values as 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑. 
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2.5.3 Performance test of different evaluation methods 

As introduced in Section 2.3.2, because of the errors of the HoloLens-scanned 

point cloud, we need a robust indicator to evaluate the misalignment effectively. 

With the above-mentioned evaluation methods, the next step is to design 

experiments to characterize the performance of the different evaluation methods 

and to determine an effective one as the indicator for misalignment evaluation. 

The experimental setup is shown in Fig. 2-31(a). We put a real object and the 

corresponding virtual object on a table surface that is parallel to 𝑋𝑅𝑊𝑍𝑅𝑊 plane 

and evaluate misalignment between the real and virtual objects using the four 

indicators, 𝐷𝑎𝑣𝑒, 𝐷𝑠𝑡𝑑, 𝐷𝑐𝑠, and 𝐷𝑐𝑐𝑠. 

 

 

Fig. 2-31 Experimental setup for the performance tests of the indicators (a) fixed real 

object and the associated movable virtual object and (b) design of shifting the virtual 

object to different positions 

 

To do evaluation under different misalignment conditions, we shift the virtual 

object to different positions on the table (XZ plane). In Fig. 2-31(b), by setting the 

origin of the XZ coordinate system at the center of the real object, the virtual 

object moves relative to the real object along the X and Z axes. For example, at 

(0, 0), it means the real and virtual objects are matched, and at (2, 2), it implies 

the virtual object moves 2 cm to the right and 2 cm forward relative to the real 

object. With this experimental design, we investigate four objects with different 

shapes and sizes, as shown in Fig. 2-32: (1) a cube with an edge of 10 cm, (2) a 
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bear statue, (3) a cube that is the same as (1) but rotates by 45°, and (4) a triangular 

block that is the half size of a cube with an edge of 5 cm.  

 

 

Fig. 2-32 Objects with different shapes and sizes to test the indicator performance 

 

Fig. 2-33 and Fig. 2-34 show experimental results using the 𝐷𝑎𝑣𝑒 , 𝐷𝑠𝑡𝑑 

indicators, respectively. It can be seen that when the positions of the real and 

virtual objects are closer, both the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 indicators give smaller values. 

It shows that the difference of the depth values between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛   and 

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛  are smaller, and the two sequences are more similar. However, for the 

case of the triangular block, the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 values do not change apparently 

with the change of the virtual object’s position in comparison with the cases of 

the other three objects. For example, in Fig. 2-33(b) and Fig. 2-34(b), if we move 

the virtual bear statue from position (−2, 0) to (0, 0), the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 values 

decrease by 1.89 cm and 4.665 cm, respectively. On the other hand, in Fig. 2-33(d) 

and Fig. 2-34(d), with the same shifts of the virtual triangular block, the 𝐷𝑎𝑣𝑒 

and 𝐷𝑠𝑡𝑑 values decrease by only 0.012 cm and 0.748 cm, respectively.  
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Fig. 2-33 Evaluation results using the 𝐷𝑎𝑣𝑒 indicator 
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Fig. 2-34 Evaluation results using the 𝐷𝑠𝑡𝑑 indicator 
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For the triangular block, the similar 𝐷𝑎𝑣𝑒  and 𝐷𝑠𝑡𝑑  results in different shift 

positions are caused by its smaller size. In Fig. 2-35, when the virtual bear statue 

and the virtual triangular block both shifts left 2 cm to (-2, 0), their left parts do 

not overlap with their corresponding real objects. Thus, when we compare the 

depth maps of the scanned point cloud and the CAD model, 𝑑𝑖
𝑆𝐶𝐴𝑁 related to 

that left part without overlapping will be the scanned points of the surrounding, 

i.e., the table surface. Because the bear statue is much higher than the triangular 

block, in the region without overlapping, the depth difference ∆𝑑𝑖 =

|𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷|, the distance between the virtual bear statue and the table surface 

along the projection line, is larger than the depth difference of the triangular block 

case. The depth difference maps, maps of ∆𝑑𝑖, in Fig. 2-35 show that the largest 

∆𝑑𝑖 of the bear statue can be larger than 10 cm while most ∆𝑑𝑖 of the triangular 

block are averagely 4 cm. Thus, the small ∆𝑑𝑖 between the CAD model and the 

table surface cause that 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 do not change apparently in different 

shift positions. 

 

 

Fig. 2-35 Influence of the size of real objects to 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑: compare (a) the bear 

statue and (b) the triangular block cases 

 

Next, Fig. 2-36 and Fig. 2-37 show the results of 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠, respectively. It 

can be seen that when the positions of the real and virtual objects are closer, both 

the 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠 indicators give larger values. It implies that the {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛  

and {𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛  sequences are more similar.  
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Fig. 2-36 Evaluation results using the 𝐷𝑐𝑠 indicator 
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Fig. 2-37 Evaluation results using the 𝐷𝑐𝑐𝑠 indicator 
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In Fig. 2-36, for all the four objects, the 𝐷𝑐𝑠 values in different positions vary 

slightly. For instance, by shifting the virtual bear statue from (−2, 0) to (0, 0), the 

𝐷𝑐𝑠 value increases by only 1% as shown in Fig. 2-36(b). On the other hand, in 

Fig. 2-37(b), the 𝐷𝑐𝑐𝑠 value increases by 85%. 

 

Using the 𝐷𝑐𝑠  is not a proper indicator for us to compare the depth maps. 

According to Eq. (7), we can view the cosine similarity between 𝑑𝑖
𝑆𝐶𝐴𝑁  and 

𝑑𝑖
𝐶𝐴𝐷 as a sum of products {𝑠𝑖}𝑖=1

𝑛  such that  

 

 
𝑠𝑖 =

(𝑑𝑖
𝑆𝐶𝐴𝑁)(𝑑𝑖

𝐶𝐴𝐷)

‖𝐝𝑆𝐶𝐴𝑁‖‖𝐝𝐶𝐴𝐷‖
. 

 

 

Similarly, the centered cosine similarity is a sum of products {𝑠𝑖
′}𝑖=1

𝑛  such that 

 

 
𝑠𝑖
′ =

(𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑆𝐶𝐴𝑁̅̅ ̅̅ ̅̅ ̅̅ )(𝑑𝑖

𝐶𝐴𝐷 − 𝑑𝐶𝐴𝐷̅̅ ̅̅ ̅̅ )

‖𝐝𝑆𝐶𝐴𝑁‖‖𝐝𝐶𝐴𝐷‖
. 

 

 

 

Fig. 2-38 Schematic plot of the computation of 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠 

 

In Fig. 2-38(a), because the output of the depth value is always positive, all 𝑠𝑖 

are positive, and the 𝐷𝑐𝑠 result keeps high even in different shift positions. On 

the other hand, for the computation of 𝐷𝑐𝑐𝑠 in Fig. 2-38(b), after centering the 

sequences by their corresponding average depths, some 𝑠𝑖
′  are negative if 

𝑑𝑖
𝑆𝐶𝐴𝑁 and 𝑑𝑖

𝐶𝐴𝐷 are not both greater or less than their corresponding averages, 

𝑑𝑆𝐶𝐴𝑁̅̅ ̅̅ ̅̅ ̅̅  and 𝑑𝐶𝐴𝐷̅̅ ̅̅ ̅̅ . This results in the lower 𝐷𝑐𝑐𝑠 result than the 𝐷𝑐𝑠 when there 
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is larger misalignment. 

 

Based on the experiments, it can be seen that 𝐷𝑐𝑐𝑠  is more sensitive to the 

misalignment between the real and virtual objects and is a better method for 

misalignment evaluation. In particular, for the case of the small triangular block, 

𝐷𝑐𝑐𝑠 changes more obviously in comparison with the other three indicators. In 

Sec. 2.3.3, we mention the shift or scaling of the scanned point cloud, as shown 

in Fig. 2-39. Because 𝐷𝑐𝑐𝑠 is invariant to the shift and scaling, the constant shift 

and scaling errors of the scanned point cloud will not influence the 𝐷𝑐𝑐𝑠 result 

while the errors influence the 𝐷𝑎𝑣𝑒  and 𝐷𝑠𝑡𝑑  performance. Moreover, the 

output range of 𝐷𝑐𝑐𝑠 is fixed in [−1, 1]. By setting a threshold of 0.72, when the 

𝐷𝑐𝑐𝑠  result is larger than 0.72, the position error, which is the misalignment 

between the real and virtual object, is within ±1 cm. This can be a preliminary 

indicator to judge whether the misalignment occurs. Therefore, with the 

comparison between different evaluation methods, we will use the centered 

cosine similarity 𝐷𝑐𝑐𝑠 as the indicator to evaluate the misalignment between the 

real and virtual objects. 

 

 

Fig. 2-39 Shift or scaling problem of HoloLens-scanned point cloud 

 

However, no matter which indicator we use, there is a problem that the indicator 

values are asymmetric. For example, in Fig. 2-37(a), indicator values at positions 

(−1, 0) and (0, 1) are 0.3903 and 0.7017, respectively. Indicator values changes 

at different rates as the object shifts along X and Z directions. This asymmetric 

problem derives from different variations of {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛   along the two 

directions. It also means that the variations of depth differences {∆𝑑𝑖}𝑖=1
𝑛 = 
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{‖𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷‖}𝑖=1
𝑛   are different. This derives from the influence of 

surroundings, the table surface, as the object moves in different directions. 

 

In Fig. 2-40, let us see the front surface of the object. At position (−1, 0), it can 

be seen that when comparing depth difference in the non-overlapping area, ∆𝑑𝑖 

is the distance difference between the table surface and the CAD model along the 

projection line starting from the depth camera center, i.e., the distance between 

points a and b ‖𝑏𝑎⃑⃑⃑⃑ ‖, and points c and d ‖𝑑𝑐⃑⃑⃑⃑ ‖. As comparing with the higher 

point, the depth difference becomes larger. The variation of ∆𝑑𝑖 at position (−1, 

0) is schematically plotted in Fig. 2-41. 

 

 

Fig. 2-40 Influence of surroundings on asymmetric indicator values 

 

 

Fig. 2-41 Different variation of depth differences as the object is at different positions 
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On the other hand, at position (0, 1), by comparing the depth differences along 

the same projection lines, ∆𝑑𝑖 is the distance between the point cloud of the real 

object and the CAD model; that is, ‖𝑏′𝑎′⃑⃑⃑⃑ ⃑⃑  ⃑‖ and ‖𝑑′𝑐′⃑⃑⃑⃑⃑⃑  ⃑‖. We see that ‖𝑏′𝑎′⃑⃑⃑⃑ ⃑⃑  ⃑‖ is 

approximately equal to ‖𝑑′𝑐′⃑⃑⃑⃑⃑⃑  ⃑‖ in comparison to the difference between ‖𝑏𝑎⃑⃑⃑⃑ ‖ 

and ‖𝑑𝑐⃑⃑⃑⃑ ‖. The depth difference does not change so much as comparing with the 

higher point as shown in Fig. 2-41. Since the variations of depth differences in 

the two cases are different, it leads to the difference of calculated indicator values. 

For the case of position (−1, 0), the existence of surrounding objects influences 

the variation of calculated depth difference and further influence the output 

indicator value. To make the indicator value symmetric, it is a possible way to 

perform object tracking to remove the pixels of surroundings from the depth map 

of the real object. 
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2.6 Demonstrations of HMD-based AR assembly 

assistance system  

2.6.1 System Implementation 

For the implementation of the AR assembly assistance system, we use the Unity 

software (version 2017.4) [44] to develop user interfaces and necessary functions. 

Unity is commonly used as the software for game development, and it can also 

support the development of AR applications for the HoloLens. 

 

 

Fig. 2-42 Introduction to Unity interface for application development. 

 

Fig. 2-42 shows the development interface in Unity. It consists of four regions: 

project window, hierarchy tab, scene view, and inspector tab. In the project 

window, we can manage files for application development, including CAD 

models of an assembly, script files telling how the system and the virtual objects 

behave, and Mixed Reality Toolkit developed by Microsoft. Hierarchy tab shows 

the list of all active objects in the scene view. The scene view visualizes how the 

system will look like. We can see the CAD models and design a graphical user 

interface for the system. Finally, in the inspector tab, we can control the position 

and orientation of the CAD models and apply developed script files to the CAD 

models to control how the CAD models behave. For example, we apply a script 

called “TwoHandManipulatable.cs” (from Mixed Reality Toolkit) to the reference 
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virtual object and make the virtual object can be manipulated by user’s hands. 

This script takes the movement of the user’s hands as input to control the position 

and the orientation of the virtual object. This realizes the rough alignment of 

coordinate calibration in Sec. 2.4. In addition, script files in Unity are developed 

using C# programming language. Next, Fig. 2-43 introduces the relationship 

between the designed view and the practical view of the system. 

 

 

 

Fig. 2-43 Relationship between the designed system and the practical user experience 

in AR: (a) designed view in Unity, (b) a schematic plot of user experience in AR, and 

(c) user’s view of a real scene at different positions. 
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For the system development in Unity, in Fig. 2-43(a), it mainly contains three 

types of objects: cameras, CAD models, and a user interface for the control of the 

assembling process. Those objects are defined in the coordinate system of Unity, 

Σ𝑈𝑛𝑖𝑡𝑦, which corresponds to the coordinate system of the real world, Σ𝑅𝑊, as 

shown in Fig. 2-43(b). 

 

Set the main camera 

For camera objects, especially, a camera object called Main Camera in Unity 

handles head tracking and stereoscopic rendering of the HoloLens. That is to say, 

the coordinate system of the main camera Σ𝑀𝐶 corresponds to the coordinate 

system of the user Σ𝑈. Moreover, because Σ𝑀𝐶 (Σ𝑈) moves with the movement 

of the user’s head, the starting position of the user can be set by setting the position 

of the main camera. By setting the main camera position to (𝑋: 0, 𝑌: 0, 𝑍: 0) in 

Σ𝑈𝑛𝑖𝑡𝑦, the starting position of the user (user’s position at 𝑝0 in Fig. 2-43(b)) will 

be the same as the origin of Σ𝑅𝑊. It can be said that when the developed AR 

system initially starts up, the user’s initial position in the real world determines 

where the origin of Σ𝑅𝑊 is. 

 

Define the virtual world 

Next, we define a local coordinate system called as the virtual world Σ𝑉𝑊, which 

includes the reference virtual object and the CAD models of the assembly. The 

origin of Σ𝑉𝑊 is defined at the reference virtual object. In addition, the CAD 

models of the assembly are defined in Σ𝑉𝑊. Thus, when the reference virtual 

object moves, the CAD models of the assembly also moves the same way. 

Moreover, by setting the position of the reference virtual object at (0, 0, 1) in 

Σ𝑈𝑛𝑖𝑡𝑦, which corresponds to (0, 0, 1) in Σ𝑅𝑊, it will render the reference object 

1 meter in front of the user’s starting position. 

 

Fig. 2-43(c) shows the user’s view through the HoloLens at 𝑝0  and 𝑝1 , as 

marked in Fig. 2-43(b). With the above position setting of the main camera and 

of the reference object, when the user wears the HoloLens and starts up the 

developed AR system at 𝑝0, the user can see the virtual objects 1 meter forward. 

Then, the user moves to 𝑝1 and can see that the virtual objects are fixed at the 
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same position. 

 

Design a user interface 

Furthermore, we design a basic user interface to help the user control the system. 

It contains a few buttons to let the user trigger different functions which are 

realized in script files. Table 2-2 lists and introduces the essential buttons to 

control the assembling process. The position of the buttons in the user interface 

is listed according to the execution sequence from top to bottom. More detailed 

relationship between the designed function buttons in the user interface and the 

system process is shown in Fig. 2-44 

 

Table 2-2 The function of the buttons in the designed user interface 

Button name Function 

Start Sensing Enable the depth camera. The depth camera will start 

scanning the physical environment. 

Scanning Record and visualize the point cloud scanned by the 

depth camera.  

Start ICP Take the reference virtual object and the scanned 

point cloud as input and perform the point-to-plane 

ICP algorithm.  

Start Assembling Show the CAD model of the first part in the assembly 

and evaluate misalignment 

Next Object (Obj.) Show the CAD model of the next part and evaluate 

misalignment 

Finish Check Finish the assembling process and the misalignment 

evaluation. 
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Fig. 2-44 Relationship between designed interface and system process 

 

Set virtual depth cameras 

In Sec. 2.5, to compare the depth maps of the virtual object and of the scanned 

point cloud for misalignment evaluation, two virtual cameras are set to render the 

two depth maps, respectively. For the implementation, in Unity, we first set two 

camera objects at the same position as the physical depth camera. 

 

Since the physical depth camera is fixed in the HoloLens and moves with the 

user’s head, the position of the depth camera relative to the user is fixed. The 

relative orientation is also fixed. Thus, we can set the virtual cameras in Σ𝑀𝐶, 

which corresponds to Σ𝑈 with fixed position and orientation values. Fig. 2-45 

shows the coordinate system of the virtual camera Σ𝑉𝐶 related to Σ𝑀𝐶. With our 

preliminary evaluation, the origin of Σ𝑉𝐶, the center of the virtual camera, is at 

(0 m, 0.0438 m, 0.0663 m) in Σ𝑀𝐶. Moreover, Σ𝑉𝐶 is oriented by 33.5° along 
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the X axis clockwise according to the left-hand rule. To determine the values of 

the position and the orientation, we refer to the transformation matrix 𝐌𝑈←𝐶 

between the coordinate systems of the user Σ𝑈 and of the physical depth camera 

Σ𝐶, which is recorded in the HoloLens as introduced in Sec. 2.3.3. Through the 

transformation matrix between Σ𝑈 and Σ𝐶 , we can evaluate the origin of Σ𝐶 in 

Σ𝑈 , which corresponds to the origin of Σ𝑉𝐶  in Σ𝑀𝐶 . The orientation can be 

evaluated by determining the direction of the axes of Σ𝐶 (Σ𝑉𝐶) in Σ𝑈 (Σ𝑀𝐶). 

 

 

Fig. 2-45 Schematic plot of the relationship between Σ𝑀𝐶  and Σ𝑉𝐶  in Unity 

 

According to Eq. (3), a point v described in Σ𝑈 and Σ𝐶 is represented by 31 

vector 𝐯𝑈 and 𝐯𝐶, respectively. The 44 homogeneous transformation 𝐌𝑈←𝐶 

can be divided into a 33 rotation matrix 𝐑𝑈←𝐶 and a 31 translation matrix 

𝐓𝑈←𝐶 . Thus, the equation of the transformation between Σ𝑈  and Σ𝐶  can be 

written as: 

 [
𝐯𝑈

1
] = 𝐌𝑈←𝐶 [

𝐯𝐶

1
]  

 

or 

 𝐯𝑈 = 𝐑𝑈←𝐶𝐯𝐶 + 𝐓𝑈←𝐶 (9) 

 

By substituting 𝐯𝐶 = (0, 0, 0)𝑇  into Eq. (9), we obtain 𝐯𝑈 = 𝐓𝑈←𝐶 , so the 

position of the virtual depth camera in Σ𝑈 (Σ𝑀𝐶) is set as 𝐓𝑈←𝐶. With the same 

way, we can substitute 𝐯𝐶 = (1, 0, 0)𝑇 , 𝐯𝐶 = (0, 1, 0)𝑇 , and 𝐯𝐶 = (0, 0, 1)𝑇 

into Eq. (9) to obtain vectors of the coordinate axes of Σ𝐶 in Σ𝑈. They can then 

be used to determine the orientation angle of the depth camera. 
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After determining the position and the orientation of the virtual camera, the next 

is to tell the GPU in the HoloLens to generate the depth map from the view of the 

virtual camera. In default, the camera object in Unity renders the view as an 

RGBA image. To generate the depth map, we need to write and apply a script file 

to make the virtual camera render the depth map by setting the camera mode to 

“DepthTextureMode.Depth” [45]. 

 

Visualize the evaluation result of misalignment 

With such designs, we next preliminarily investigate the performance of the 

developed system through the following three demonstrations. These 

demonstrations aim to verify basic functionality of the system. Considering the 

quality of point clouds generated by the depth camera in HoloLens, we choose 

physical 3D objects whose one of the dimensions is at least larger than 3 cm so 

that point cloud data can keep more details of the objects. Meanwhile, we also 

choose objects that are not dark, not transparent, and not shiny to avoid poor 

scanned point clouds. Moreover, to clearly visualize the evaluation result of 

misalignment between the real and virtual object, we color the virtual object 

according to the calculated 𝐷𝑐𝑐𝑠, and the color change is shown by a color bar in 

Fig. 2-46. When the real and virtual objects are matched, the 𝐷𝑐𝑐𝑠 will be close 

to one, and the virtual object will be colored by blue; otherwise, it will be colored 

by red. Moreover, we also design a mechanism of exception that the virtual object 

will be colored by white if the percentage of depth differences {∆𝑑𝑖}𝑖=1
𝑛   that 

∆𝑑𝑖 > 10 cm is more than 15%. When there is an occlusion problem, this can be 

used to notify the user to change to other views for misalignment. Or when the 

user places an object whose volume is much different to the target object, this can 

be a way to warn the user, and the system will be no need to compute the 𝐷𝑐𝑐𝑠 

value. 

 

Fig. 2-46 Color bar for showing misalignment evaluation results: (1) color the CAD 

model according to the calculated 𝐷𝑐𝑐𝑠 value if the percentage of depth differences 
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that ∆𝑑𝑖 > 10 cm is less than 15% and (2) color the CAD model with white if the 

percentage of depth differences that ∆𝑑𝑖 > 10 cm is more than 15% 

 

 

2.6.2 Experiment 1: Assemble primitive wooden blocks 

To preliminarily evaluate system performance, we first conduct an experiment 

that aligns wooden blocks on a table to verify basic functions. In Fig. 2-47(a), a 

wooden cube with an edge of 10 cm is used as a reference object, and the 

corresponding reference virtual object can be found at the origin of the virtual 

world in the CAD model, as shown in Fig. 2-47(b). Moreover, five primitive 

wooden blocks of different shapes-a cylinder, a square prism, a triangular block, 

a smaller cube, and a pyramid-are used for assembly operation and should be 

installed in the order that is designed and numbered in Fig. 2-47(b). The process 

of the assembling operation is shown in Fig. 2-48. At step 0, coordinate 

calibration is performed to define the working area first. Then, from step 1 to 5, 

the system displays the virtual object in the designated order, and the user puts 

the corresponding real object to that position. Finally, step 6 shows the 

completeness of the operation. 

 

Fig. 2-47 Experimental setup of a block assembly: (a) real objects and (b) designed 

alignment of parts in the CAD model 
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Fig. 2-48 The process of assembling blocks: put blocks to the designated positions 

 

During the assembling process, from step 1 to 5, the system evaluates 

misalignment between the real and virtual objects by the centered cosine 

similarity method at approximately 30 fps. The user can move the real object to 

the position of the virtual object and simultaneously check whether the color of 

the virtual object is close to blue, which indicates well aligned, or not. However, 

even the real and virtual objects are matched with the error smaller than 1 cm, the 

evaluated 𝐷𝑐𝑐𝑠  value (or the color of the virtual object) sometimes varies 

dramatically between 0.5 and 0.9. The reason may derive from the update of the 

point cloud scanned from different views and the change of depth values of the 

pixels that belongs to the outline of the object in the depth map of the scanned 

point cloud. 
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2.6.3 Experiment 2: Assemble a wooden robot  

Next, we conduct an experiment of assembling a wooden robot with a certain 

pose. In Fig. 2-49(b), the robot is designed to do a handstand and stretch its legs 

back and forth. The robot contains five parts: a body, two hands, and two legs. 

There are also four screws to fix the hands and legs to the body, and each screw 

is put into the part in advance. 

 

Fig. 2-49 Experimental setup of a wooden robot assembly: (a) real objects and (b) 

designed alignment and pose in the CAD model 

 

Fig. 2-50 shows the assembling process. Identically, step 0 is coordinate 

calibration using the wooden cube with an edge of 10 cm. Step 1 to 5 shows the 

assembling of each part. From step 2 to 5, parts of the hands and legs are screwed 

to the body, and we put the assembly to the position of the virtual object to check 

if there is an assembly error. Step 6 shows the completeness of the assembly. 
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Fig. 2-50 The process of assembling a wooden robot with the designated pose 

 

When assembling the leg parts, in steps 4 and 5, the user follows the evaluation 

results and the orientation of the virtual leg to adjust the physical leg part to the 

designed orientation, as shown in Fig. 2-51. Fig. 2-52(a) shows that there is a gap 

of 2mm between the leg part and the body, and in the design, the included angle 

of the leg part and the body line should be a right angle. However, due to the 

existing of the gap, if the user does not adjust the leg part and tighten the screw, 

the top of the leg part will move downward by 6 mm, as shown in Fig. 2-52(b). 

The assembly result will not be as designed. This shows that the misalignment 

evaluation can play a role in warning the assembly error, and in this case, the 

developed evaluated method can detect the displacement of 6 mm. 
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Fig. 2-51 Detection of an assembly error that may be overlooked easily: (a) 

misalignment is detected, and (b) no misalignment is detected after adjustment 

 

 

Fig. 2-52 Differences between (a) designed pose in the CAD model and (b) physical 

assembly without careful assembling 

 

 

2.6.4 Experiment 3: Arrange decorations in a room-scale 

environment 

Finally, we make the user arrange decorations in a room-scale environment. This 

is a preliminary experiment to evaluate whether the system can assist the user in 

doing assembling in room-scale environments. The user who wears HoloLens can 

keep moving and is required to place decorations at designated positions. In Fig. 

2-53, we prepare three statues of a wooden robot, a frog, and a bear and would 

like to place them at different locations in an 8 m2 room. The cube with an edge 

of 10 cm is used as the reference object to determine the origin of the virtual 

world. The reference object and the three statues are numbered to show the 

sequence of installation. 
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Fig. 2-53 A reference real object and decorations for arrangement. The sequence of 

installation: (1) wooden robot, (2) frog statue, and (3) bear statue. 

 

Fig. 2-54 shows the target room with the decorations in the designated positions. 

A schematic plot of the room and the decorations are also plotted to explain the 

detailed process. Notice that the wooden robot is hidden by another object. 

 

 

Fig. 2-54 Target room environment for decoration arrangement 

 

To construct arrangement information for the user, first, we have to design and 

record the arrangement of the statues in the room in advance. A designer wears 

the HoloLens and moves the CAD models of the decorations to desired positions 

by hand manipulation. Fig. 2-55(a) shows the process of the arrangement design. 
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Through the HoloLens, the designer can see the decorations and the reference 

virtual object. First, at step 0, the reference virtual object is moved to the position 

of the corresponding reference real object by rough alignment and precise 

alignment in sequence to define the origin of the virtual world in the real world. 

Next, the CAD models of the three decorations are moved to different positions 

in the room. Their positions in the virtual world are shown in Fig. 2-55 and 

recorded as information for the user to place the decorations.  

 

 

Fig. 2-55 Design decoration arrangement: (a) A schematic plot of placing the CAD 

models of the decorations for arrangement design, (b) The position of the CAD models 

in the virtual world, and (c) Results of designed arrangement seen through the HoloLens 

 

Decoration arrangement 

After the construction of arrangement information, the user can wear the 

HoloLens and follow indications to place the decorations step by step. Fig. 2-56 

shows the process of decoration arrangement. Initially, the user performs 

coordinate calibration by aligning the reference object. Then, the system shows 

the CAD model of the decoration one by one at the designed locations. The scene 

that the user sees through the HoloLens will be the same as shown in Fig. 2-55(c), 

which the results of designed arrangement by the designer. The user places the 

corresponding physical statues to their position in sequence, and the system 
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evaluates misalignment during arrangement process. Fig. 2-57 shows the mixed 

reality photos of the arrangement results. 

 

 

 

Fig. 2-56 The process of decoration arrangement with the designated pose 

 

Through the experiment, the user follows the indication and place the statues to 

their locations within the accuracy of ±1 cm. Misalignment evaluation helps the 

user place the statues to their position faster. Without misalignment evaluation, to 

check whether the statues are placed well at designated positions or not, the user 

has to observe the statues from different views back and forth. Moreover, the three 

decorations and the reference object are inside a cubic space that has a dimension 

of 1.3 m × 0.8 m × 0.6 m. It indicates that the system is possible to support the 

user to assist an assembly that has such volume in an 8 m2 room and can detect 

misalignment with the accuracy of ±1 cm. In addition, in this room environment, 

it is hard to take a mixed reality photo that shows all the virtual objects for 

arrangement because of the limitation of the space and insufficient field of view 
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of the RGB camera in the HoloLens. Although the user can still place the 

decorations according to the information as shown in Fig. 2-55(b), the user has to 

measure the distance between the decoration and the reference object to verify 

the installation location. Nevertheless, the AR glasses system can directly show 

the installation locations in the real scene of the user’s view. Thus, the user focuses 

on placing the decoration to the virtual object’s position without considering the 

distance between the decoration and the reference object. 

 

 

 

Fig. 2-57 Mixed reality photos of the results of decoration arrangement 
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2.7 Summary 

Using AR technology is a potential way to ensure better experience during the 

process of assembling a product. Besides assembly instruction from an AR-based 

system, it is important to determine whether assembly errors occur. In this study, 

we propose two methods to construct an essential AR-based assembly assistance 

system using only an HMD, in this case, Microsoft HoloLens: (1) coordinate 

calibration and (2) efficient evaluation of misalignment between real and virtual 

objects. 

 

For coordinate calibration, with the function of positioning the user in the real 

and world and point cloud data from the HoloLens, we can achieve coordinate 

calibration without using AR markers to show CAD models of parts at designated 

locations. This is achieved by aligning the reference virtual object to the reference 

real object. We design the alignment process with two steps: rough alignment 

(user’s hand manipulation) and precise alignment (point-to-plane ICP) performed 

in sequence. Rough alignment can be performed fast, but the alignment accuracy 

is in centimeter level. On the other hand, precise alignment can achieve accuracy 

in millimeter level, but the initial position of the reference virtual object needs to 

be close to the reference real object. The reference real object should be inside 

the bounding box of the reference virtual object. Otherwise, the precise alignment 

result will converge to a local minimum. Thus, by integrating rough and precise 

alignment, we can achieve coordinate calibration in millimeter level. 

 

Moreover, for evaluation of any misalignment between virtual and real objects, 

with our preliminary implementation, the system compares depth maps of the real 

and virtual objects to evaluate misalignment at approximately 30 fps, which will 

not influence user’s experience apparently. Thus, the user can rapidly understand 

the installing condition. If an assembly error occurs, the system can instantly warn 

the user by coloring the CAD model. Based on experimental results of different 

evaluation methods, we use the centered cosine similarity method as an indicator 

to compare the depth maps and perform evaluation, which is a more robust 

method to the errors of point cloud data of the physical depth camera. 

 

To sum up, with the proposed methods, we can make good use of functions and 
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raw sensor data provided by the HoloLens to construct an essential HMD-based 

AR assembly assistance system without using any AR marker and external 

devices to define the transformation relationship between the real and virtual 

worlds and to detect the assembly errors, respectively. Meanwhile, the system can 

be used for desktop applications, which overcomes the original limit of HoloLens 

that is used for only room-scale environments and objects larger than a cube with 

an edge of 30 cm. Moreover, in the demonstration of decoration arrangement, the 

user can follow AR instruction to place decorations with the accuracy of ±1 cm 

in an 8 m2 room. This indicates that the developed AR system is possible to 

support AR assembly assistance in room-scale environments. 

 

Thus, the reach objectives in this study are achieved 

✓ A basic AR assembly assistance system is developed using only the HoloLens 

✓ The developed system can perform desktop applications by using the 

HoloLens-scanned point cloud to obtain 3D data of real objects. 

✓ Present a method to evaluate misalignment between real and virtual objects  

➢ at real time rate (30fps) on HoloLens 

➢ within the accuracy of ±1 cm in the case of desktop applications 

 

Future work will continue to improve system reliability and performance and add 

functions to better instruct the assembly operation. With these features, this 

compact system has high portability and is expected to be used in wide-ranging 

situations. 
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Chapter 3  
Three-Dimensional Visualization of User’s Attention 

on Objects using Only Eye Tracking Glasses 

3.1  Introduction 

In this chapter, we focus on the training part of the AR-based field service 

assistance system after operations, and we study users’ 3D gaze visualization to 

observe user’s focus of attention using eye tracking glasses. 

 

Eye tracking technology [46] is used and has an influence on various fields. For 

example, aesthetic evaluation of products is an important application. Product 

designers may require some subjects to observe products with different designs 

and simultaneously detect subjects’ eye movement to analyze their visual 

attention through eye tracking devices. This helps designers determine which 

designs are more acceptable and attractive to their target customers. In the 

radiology field, many studies adopted the eye tracking technology to explore how 

radiologists perform a diagnosis [47][48][49]. By understanding how radiologists 

read medical images, it is possible to prevent diagnosis errors and train novice 

radiologists more effectively. In addition, eye tracking technology has been 

applied to diversified fields, such as web page design, sports [50][51], and 

psychology research [52][53].  

 

One’s visual attention is usually referred to as the visualization of one’s thought. 

Through analyzing the visual attention by the eye tracking technology, we may 

be able to understand one’s thought to help us make a decision, such as the 

examples of aesthetic evaluation of products and web page design. Moreover, we 

can catch the point and learn from one’s experiences more effectively and 

efficiently, such as the case of novice radiologists. These demonstrate the 

importance of eye tracking technology. However, most applications are used in a 

restricted 2D space such as a fixed screen for the fixed type of eye tracking 

devices. The other type of the eye tracking devices is a pair of eye tracking glasses, 

which contains an RGB camera and eye trackers to record user’s view and gaze 

information, respectively. The eye tracking glasses are mobile eye trackers and 
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allow users to walk around, but the recorded data are scene videos with gaze 

fixations, which are still in 2D.  

 

There would be more precious applications in 3D in a variety of fields. Recently, 

with the development of the virtual reality (VR) technology, a user who wears a 

VR head-mounted display can use gaze fixation on virtual objects for interaction 

such as object selection and operation [54]. In addition, it is possible to use the 

eye tracking technology in other fields such as construction. Specifically, it is 

important for workers to inspect construction fields. To train new construction 

field inspectors, it is possible to use eye tracking glasses to record the gaze 

information of experts and novices and analyze their gaze distinction in a 

practical construction field. In this case, it is better to visualize 3D gaze fixation 

in a 3D model of the environment instead of showing the gaze data on a video, a 

series of 2D images, or a panorama [55]. For a room-scale or larger environment, 

3D gaze visualization can directly show the user’s gaze in one model and show 

the spatial relationship of the scene, while showing the gaze by 2D may need a 

video of a few minutes or a few images to include the whole scene. 

 

Using eye tracking glasses, we can obtain 2D gaze fixation on a recorded scene 

video and understand a user's saccade pathways. To display the corresponding 

gaze data on the 3D model of the scene for a full view of the gaze fixation, it is 

necessary to obtain the transformation relationship between the coordinate system 

of the 3D model of the scene and the 2D gaze data from the eye tracking glasses, 

that is, to transform the 2D gaze data into the 3D model of the scene. The use of 

AR (augmented reality) markers, which are attached to the environment, is a 

common approach to obtain the transformation matrix between the coordinate 

system of the 2D gaze data and that of the 3D model of the scene [56][57]. 

However, extra time is required to setup the experimental environment, which 

may disturb the subject’s attention during the experiment. To avoid using the 

markers, some researchers rely on the image registration technique to evaluate 

the transformation matrix, and the 3D model of the scene is reconstructed through 

a scene video from an RGB camera [58], through depth maps from an RGB-D 

camera [59][60], or through a Light Detection and Ranging (LiDAR) scanner [61]. 

However, to acquire the 3D model of the scene, those methods require to scan the 
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environment by additional devices. This may present a challenge when the subject 

is moving in a large-scale test environment. For example, the subject may be 

asked to walk around and observe the inner side of the building. Thus, it will be 

tedious and time-consuming to scan the entire building by other devices before 

or after the eye tracking experiment. 

 

Because there is an RGB camera embedded in eye tracking glasses, and it records 

the scene that the user paid attention to, using only the embedded RGB camera is 

a possible way to reconstruct the 3D model of the scene for 3D gaze visualization. 

This implies that when the subject wears the eye tracking glasses and observes 

some environment, he/she is also recording the information for 3D reconstruction 

of the scene through the embedded camera. Therefore, we do not need to use extra 

devices to generate the scene model. In this study, we propose a methodology that 

uses only a pair of eye tracking glasses to achieve the visualization of 3D gaze 

fixation on the 3D model of the scene. We use the image-based 3D scene 

reconstruction method to reconstruct the 3D model of the scene and to obtain the 

camera position and orientation corresponding to the frame images of the scene 

video. We use the reconstructed camera position and orientation to determine 

user’s line of sight and to find the 3D gaze fixation, which is the intersection of 

the line of sight and the scene model. With this methodology, a user’s eye tracking 

recording can give a 3D model of the scene with his/her gaze information.  

 

Moreover, we have to consider an issue of comparing 3D gaze fixations between 

multiple users. Each user is allowed to view the scene freely and there is 

difference in their ways of viewing the scene. If we use the method of single 

user’s 3D gaze visualization, we have to reconstruct multiple 3D models from 

different users’ recordings, which is time-consuming. However, those models 

demonstrate the same scene. Thus, in this study, we present a methodology to 

reconstruct only one 3D model of scene and determine different users’ gaze data 

on that model through image registration. To sum up, the main objectives of this 

study include the following: 

 

1. Use only eye tracking glasses for data collection. 

2. Visualize multiple users’ 3D gaze fixation more efficiently and effectively. 
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The preliminary results show that we can use only eye tracking glasses to 

reconstruct 3D model of the scene with reliable user’s 3D gaze information. A 

room-scale experiment also shows that, for complex and large experiments, 3D 

gaze visualization gives a clearer picture of the eye tracking result and more 

reliable results than using a panorama. Moreover, for the comparison between 

multiple users’ gaze data, due to using only a model of the scene, it shows users’ 

gaze data in the same coordinate system and make the gaze differences between 

users more obvious. 

 

In this chapter, in Section 3.2, we first review the related work on visualization 

of 3D gaze fixation and techniques used in this study. Section 3.3 introduces the 

eye tracking glasses that we use. The detailed methodology is described in 

Sections 3.4 and 3.5. Experiments and the effectiveness of the proposed system 

are discussed in Section 3.6, and Section 3.7 is the summary of this study. 
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3.2  Literature Review 

To demonstrate user’s gaze information in 3D space, displaying 3D gaze fixation 

on a 3D mesh model of the scene is an intuitive way, and various studies used 

different methods to address it. Because eye tracking glasses record user’s gaze 

information on a scene video (i.e., in 2D space), to find the 3D position of the 

gaze fixation in the model of the scene, the key point is to determine a 

transformation relationship between the coordinate system of the 2D gaze data 

from the eye tracking glasses and that of the 3D model of the scene. In Fig. 3-1, 

Takahashi et al. [57] set AR markers in a test environment to calculate the 

transformation matrices and used a portable surface scanner to reconstruct the 3D 

model of the scene. By detecting the AR markers recorded in the scene video and 

finding the corresponding positions of the AR markers in the 3D model of the 

scene, the 3D model of the scene can be mapped into each frame image and 

overlap with the real scene with a corresponding pose. Thus, the 2D gaze fixation 

on the frame image could be displayed in the image of the 3D model of the scene. 

Using an inverse transform from the coordinate system of the frame image to the 

3D model of the scene, the 3D gaze fixation on the 3D model can be determined. 

 

 

Fig. 3-1 3D gaze visualization of a car example with the use of AR markers and a 

portable surface scanner [57]: (a) experiment of eye tracking recording with AR markers 

set in the car, (b) the use of a portable surface scanner for scene reconstruction, and (c) 
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results of 3D gaze visualization. 

 

Using a portable surface scanner needs to set markers in the environment as 

feature points for the scene reconstruction, which may be tedious work. Instead, 

using other devices such as an RGB camera and an RGB-D camera is another 

choice. By extracting feature points from the images of the scene, there is no need 

to set physical markers in the environment. In Fig. 3-2, Paletta et al. [59] used an 

RGB-D camera to reconstruct a 3D model of the scene for 3D gaze visualization. 

Using the RGB-D camera to scan the scene from different views, point clouds of 

the parts of the scene could be generated. These point clouds could then be 

combined into the complete point cloud of the scene by estimating the position 

and orientation of each camera view. After the eye tracking recording, SIFT 

(scale-invariant feature transform) descriptors [62], as the feature descriptors of 

an image, for each frame image in the scene video recorded by the eye tracking 

glasses are calculated to determine the transformation relationship between the 

2D gaze data and the 3D model of the scene using the perspective n-Point 

algorithm [63]. 

 

 

Fig. 3-2 3D gaze visualization with the use of an RGB-D camera for 3D reconstruction 

[59]: (a) Hardware for 3D reconstruction, (b) experiment of eye tracking recording, (c) 

reconstructed 3D model of the scene, and (d) results of 3D gaze visualization 
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Moreover, with the image-based 3D reconstruction method, the 3D model of the 

scene can also be constructed by using only an RGB camera. For 3D gaze 

visualization of this approach, Jensen et al. [58] took advantage of the SIFT 

descriptor matching methodology to estimate the transformation matrix of the 

coordinate system of the 3D model that is reconstructed from the frame images 

of an extra RGB camera. 

 

 

Fig. 3-3 3D gaze visualization result with the use of an extra RGB camera for 3D 

reconstruction [58] 

 

Although the two studies of using the RGB-D and RGB cameras developed a 

markerless approach to demonstrate 3D gaze fixation on the 3D model of the 

scene, the experimental scenes they discussed were only shelves of goods, which 

can be viewed as a 2D case. Because the scenes were not complicated and 

sufficiently large, the advantages of demonstrating 3D gaze fixation were not 

adequately expressed. Furthermore, to demonstrate 3D gaze fixation, those 

researchers used eye tracking glasses and other devices (e.g., a surface scanner 

and an RGB-D camera) to record the scene video with the gaze information and 

reconstruct the 3D model of the scene, respectively. The proposed system only 

requires a pair of eye tracking glasses to both record the gaze data and to perform 

image-based 3D reconstruction [64][65], and no markers are placed in the 

environment. Additional details on the image-based 3D reconstruction will be 

introduced in Section 2.4.1. 
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3.3  Tobii Eye Tracking Glasses 

In this study, we use Tobii eye tracking glasses (Tobii Pro Glasses 2) [66], which 

are produced by a company named Tobii Pro, to track user's eyes and to record 

scene videos. Fig. 3-4 shows its appearance. It is made up of two components: a 

wearable eye tracker (glasses) and a recording unit. The glasses have some 

embedded sensors, including an RGB scene camera, eye trackers, and an inertial 

measurement unit (IMU) to acquire various information for the subsequent 

analysis of user’s attention. The camera records scene videos at 25 frames per 

second (fps), and the eye trackers record gaze data at 50 Hz. The recording unit, 

which is connected to the glasses via an HDMI cable, holds the battery and stores 

the recorded data, i.e., gaze data and scene videos, on an SD memory card. 

Compared with a standard eye tracking device that is fixed at a certain location, 

a user is able to wear the eye tracking glasses and walk around to observe 

surroundings. Meanwhile, simultaneously recorded gaze data and the scene video 

can be stored on the SD memory card for post-processing and data analysis or be 

transferred to a computer running Tobii Pro-provided controller software to 

observe eye tracking results and to perform the analysis in real time. With the 

provided software, we can see that the gaze data are integrated into the scene 

video to show where the user was looking.  

 

 

Fig. 3-4 Tobii eye tracking glasses 
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Furthermore, Tobii eye tracking glasses are commonly used as a device to help 

researchers gather users’ gaze data and then analyze users’ visual attention 

[58][67]. This is a reliable tool to obtain accurate gaze data. To achieve accurate 

eye tracking, calibration and adjustment of gaze data is necessary. Before an eye 

tracking recording starts, the user has to take a calibration procedure by looking 

at a calibration card as shown in Fig. 3-5. During the procedure, the eye trackers 

measure features of the user’s eyes and use them together with an internal 

anatomical 3D eye model to compute the gaze data. Meanwhile, during the 

calibration, the user is required to look at a specific target, which is also inside 

the viewing range of the scene camera. During this period, pixel coordinates of 

the user’s gaze data on the scene video are evaluated. When the calibration 

procedure is finished, the user can start the eye tracking recording.  

 

 

Fig. 3-5 Calibration process by looking at a calibration card 

 

According to the eye tracker data quality report released by Tobii Pro [68], when 

the user who wear the Tobii eye tracking glasses observes the target at varying 

distances from 0.5 m to 3.0 m, the accuracy of the detected gaze angle is from 

0.56° to 0.73° under optimal gaze angles (≤15°) and lighting condition of 300 

lux. Thus, Tobii eye tracking glasses have good eye tracking ability for room-

scale environments. 
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Moreover, Tobii Pro also provides Tobii Pro Lab, a commercial eye tracking 

software, to let the user further analyze and visualize 2D gaze data from Tobii eye 

tracking glasses. It can collect and analyze gaze data statistically and then 

generate heatmaps and saccades on images to visualize where the user was paying 

more attention and user’s eye movement from one point of interest to another, 

respectively. In Section 3.6.3, we also use the Tobii Pro Lab software and then 

produce the 2D gaze results as a standard to compare with our 3D gaze 

visualization results and to analyze their differences. 
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3.4 Three-Dimensional Visualization of User’s Gaze Data 

In this section, we describe the ways that we developed to demonstrate gaze data 

in 3D using the data only from the eye tracking glasses. An application scenario 

is as follows. First, for data collection, a user wearing eye tracking walks around 

and pays attention to the surroundings. During that time, user’s gaze data and the 

scene video are recorded and stored on the SD memory card. Then, the recorded 

data and video are input into our developed system to visualize user’s gaze 

fixations in 3D space.  

 

Fig. 3-6 shows the schematic diagram of the system. To achieve 3D gaze 

visualization, we mark the user’s gaze in a 3D model of the scene generated by 

image-based 3D reconstruction. To determine gaze fixations in the model of the 

scene, we use user’s line of sight that passes through user’s eyes and gaze point. 

The intersection of the 3D model of the scene and the line of sight apparently 

gives the 3D gaze fixation. 

 

 

Fig. 3-6 Schematic diagram that shows 3D gaze fixation in the environmental model 

 

Fig. 3-7 shows the proposed system’s process to display the 3D gaze fixation in 

the 3D model of the scene. For example, a kitchen sink and its surroundings are 

observed by a user who wears the eye tracking glasses. The system is composed 
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of two parts: (1) 3D reconstruction of the environment and (2) determination of 

the user’s line of sight and its intersection with the model of the scene. 

It firstly starts from 3D reconstruction of the scene from frame images taken from 

the scene video using the structure from motion (SfM) method. Thus, the 

reconstructed 3D model then serves as a foundation to display 3D gaze fixations. 

Meanwhile, the position of each frame image’s camera center is estimated during 

the 3D reconstruction stage. Next, the system determines the user’s line of sight 

using recorded gaze data together with the position of the frame image’s camera 

center. Thus, we are able to determine the user’s gaze fixation in the 3D model of 

the scene through determining the intersection. Eventually, after applying such 

operation to all recorded gaze data, we can obtain basic 3D visualization of user’s 

gaze data, which looks discrete and difficult to analyze user’s attention. Therefore, 

further data processing for statistical analysis is needed. The following 

subsections elaborate on the process of 3D gaze visualization in detail. 

 

 

 

Fig. 3-7 Process of 3D gaze visualization 
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3.4.1 3D Reconstruction of a Scene from Eye Tracking Glasses 

The first stage is 3D reconstruction of the scene, producing a 3D mesh model of 

the scene to visualize 3D gaze data. Although there is no 3D scanner or RGB-D 

camera in eye tracking glasses, we can still reconstruct the 3D mesh model of the 

scene by the image-based 3D reconstruction method. When the user walks around 

in the environment, the scene camera records the target scene. Hence, we can 

directly make use of the frame images from the scene video for 3D reconstruction. 

Fig. 3-8 shows the process of image-based 3D reconstruction of the scene, which 

shows the same part of 3D reconstruction as shown in Fig. 3-7. For example, the 

kitchen sink and its surroundings are reconstructed from the scene video recorded 

by the eye tracking glasses. In this stage, the input is the n frame images extracted 

from the scene video, and the main output is the positions and orientations of the 

camera centers associated with the frame images and a 3D mesh model of the 

scene. To achieve the goal, this study uses the COLMAP [69][70][71][72] and 

the OpenMVS [73] software in sequence to perform the reconstruction. 

 

 

Fig. 3-8 Process of 3D reconstruction of the scene 
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By using the COLMAP software, the stage starts from using the SfM method 

[74][70], to reconstruct a sparse point cloud model of the scene and a set of 

camera pose 𝒞 = {𝒄𝑖}  (i.e., camera orientation and position) of the inputted 

scene video’s frame images ℐ = {𝐼𝑖} . It is achieved by using the COLMAP 

software. According to the tests in the original paper [70], error of accumulation 

of camera positions is mitigated by applying bundle adjustment, and the 

reprojection error is averagely 0.7 pixel in their tests. 

 

However, if we directly input all the frame images in the scene video to the system, 

it will be time-consuming. For example, a 1-minute video, recorded at 25 fps (the 

scene camera’s recording frequency), contains 1,500 frame images, and the whole 

3D reconstruction process takes dozens of hours for calculation in our tests. A 

recommended number of images is up to several hundreds, which takes a few 

hours for calculation. 

 

To reduce the computation time, we select just some frame images from the scene 

video for 3D reconstruction. In this application, the user has to pay attention to 

the environment and usually does not move the body and the head fast. Thus, in 

the scene video, each frame image and its neighboring frame images, captured in 

the same short period of time, have almost the same scene overlap. This 

contributes little to improve the quality of 3D scene reconstruction. 

 

For realization, because the set of frame images taken from the video is in 

chronological order, it is one way to simply select frame images by downsampling 

the video. By starting from the first frame image 𝐼0, we choose a frame image 

every 𝑛𝑠  frame images and put them into a set of frame images ℐ̃ =

{𝐼𝑛𝑠𝑖|𝑖 = 0,1,2… }  especially used for the reconstruction. Through the SfM 

method, after feature extraction, matching, image registration, triangulation and 

bundle adjustment in sequence, a sparse point cloud of the scene is reconstructed 

from ℐ̃, as shown in the upper part of Fig. 3-9. Meanwhile, camera poses of ℐ̃ 

are also determined. Those extracted information are stored in a database file. The 

database are the tables of each image’s information in ℐ̃ , including camera 

intrinsic parameters (focal length, principal point, etc.), camera extrinsic 

parameters (orientation and location), keypoints, SIFT descriptors, and a matched 
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image and their associated feature correspondences. 

 

 

Fig. 3-9 Process of the structure from motion method with reduced frame images in 

the case of 𝑛𝑠 = 3 

 

For the remaining unselected frame images ℐ̃′ = ℐ − ℐ̃, they are still needed to 

determine the user’s line of sight. Thus, we then determine the camera pose of 

each image in ℐ̃′ under the coordinate system of the point cloud model 𝑀 that 

is just reconstructed from ℐ̃ , i.e., registering new images to the reconstructed 

model. For each image in ℐ̃′, we first extract feature points and search for an 

overlapping image in the database (from ℐ̃) that sees the same scene part. Then, 

through two-view geometry [74], the camera poses of the images in ℐ̃′ can be 

estimated using feature correspondences to triangulated 3D points (2D-3D 

correspondences) in already registered images, belonging to the database 

generated from ℐ̃. This is illustrated in Fig. 3-10. Basically, given an image 𝐼′ 

in ℐ̃′  and its corresponding paired image 𝐼  in ℐ̃  determined in the matching 

process, an essential matrix relating the pair of views can be used to determine 

the camera coordinate system �̃�′  with respect to �̃� , the camera coordinate 

system relating to 𝐼 . In addition, �̃�  and �̃�′  are one pair of point 

correspondences between 𝐼 and 𝐼′, and they are the projection of a 3D point 𝓧 
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in different views. The essential matrix can be estimated linearly using 8 or more 

point correspondences and then decomposed to give relative camera orientation 

𝑹�̃��̃�′  and the direction of camera translation 𝑻�̃��̃�′ . The magnitude of the 

translation ‖𝑻�̃��̃�′‖ can be determined using the projection �̃�′ in the image 𝐼′ 

of the single known 3D point 𝓧, i.e., a point that has already been reconstructed 

from the images in ℐ̃ and saved in the database. The transformation relationship 

between �̃� and �̃�′ can be written in the homogeneous coordinates as:  

 

 

[

�̃�′

�̃�′

�̃�′

1

] = [
𝑹�̃�𝐶′ 𝑻�̃�𝐶′

0 1
] [

�̃�
�̃�
�̃�
1

] (10) 

 

where 𝑹�̃�𝐶′  is a 3×3 rotation matrix, and 𝑻�̃��̃�′  is a 3×1 translation vector. 

Equation (10) shows the rigid body transformation that relates points 

[�̃� �̃� �̃�]𝑇  in the camera coordinate system �̃�  to points [�̃�′ �̃�′ �̃�′]𝑇  in 

the camera coordinate system �̃�′.  

 

Fig. 3-10 Estimation of the newly registered image’s camera pose  

 

Furthermore, because 𝐼  is one of the images used for 3D reconstruction, the 

corresponding camera coordinate system �̃� relative to the coordinate system of 

the reconstructed model 𝑀 , i.e., the world coordinate system, has been 
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determined and saved in the database. Similarly, the transformation relationship 

can be written as: 

 

 

[

�̃�
�̃�
�̃�
1

] = [
𝑹𝑀�̃� 𝑻𝑀𝐶

0 1
] [

𝑋
𝑌
𝑍
1

] (11) 

 

where 𝑹𝑀𝐶  and 𝑻𝑀𝐶  are a 3×3 rotation matrix and a 3×1 translation vector, 

respectively. They relate points [𝑋 𝑌 𝑍]𝑇 in 𝑀  to points [�̃� �̃� �̃�]𝑇  in �̃�   By 

integrating Eq. (10) and (11), we can then determine the camera coordinate 

system �̃�′ of the newly registered image 𝐼′ relative to 𝑀 as follows: 

 

 

[

�̃�′

�̃�′

�̃�′

1

] = [
𝑹�̃��̃�′ 𝑻�̃��̃�′

0 1
] [

𝑹𝑀𝐶 𝑻𝑀𝐶

0 1
] [

𝑋
𝑌
𝑍
1

] = [
𝑹𝑀𝐶′ 𝑻𝑀𝐶′

0 1
] [

𝑋
𝑌
𝑍
1

] (12) 

 

where 𝑹𝑀𝐶′ and 𝑻𝑀𝐶′ are the rotation matrix and the translation vector from 

𝑀 to �̃�′ and describe the camera pose of �̃�′ in 𝑀. Therefore, by substituting 

[0 0 0 1]𝑇  into [�̃�′ �̃�′ �̃�′ 1]𝑇  in Eq. (12), it gives −𝑹𝑀𝐶′
−1 𝑻𝑀𝐶′  as 

the camera center of the image 𝐼′ that is the position of the origin of �̃�′ in 𝑀. 

After registering all the images in ℐ̃′ to 𝑀, we then have the sparse point cloud 

model 𝑀 of the scene as well as the camera pose information of all the frame 

images ℐ from the input scene video. 

 

The next stage is to produce a mesh model of the scene from the reconstructed 

sparse point cloud. Using the mesh model of the scene is beneficial to determining 

the position of the 3D gaze fixation in the model and visualizing the 3D gaze 

fixation. In terms of visual effect, colorizing triangular meshes to mark the 

location of the user’s attention is more obvious than colorizing points. This 

process is held by using the OpenMVS software. The input is the sparse point 

cloud of the scene and the camera pose information of the frame images ℐ̃, i.e., 

the output of SfM from the previous stage, as shown in Fig. 3-11(b). 
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Fig. 3-11 Process of 3D surface reconstruction based on the output of SfM: (a) target 

scene, (b) outputted sparse point cloud from SfM, (c) dense point cloud, (d) rough 

mesh reconstruction, (e) refined mesh model, and (f) final mesh model with texture 

 

The process for reconstructing the mesh model in OpenMVS contains dense point 

cloud reconstruction, mesh reconstruction, mesh refinement, and mesh texturing 

performed in this sequence. First, dense point cloud reconstruction is applied to 

obtain a complete and accurate point cloud as possible, generating a dense point 

cloud model of the scene, as shown in Fig. 3-11(c). Since the reconstruction by 

using the SfM method, a set of 3D points corresponding to the features extracted 

from the images, is usually sparse, it is a necessity to obtain a dense representation 

of the target scene before the meshing process. This problem can be handled by 

the multi-view stereo method [75]. The multi-view stereo algorithm is a common 

solution in photogrammetry applications for the dense reconstruction of a static 
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scene from images alone. In our application, it can take camera location, camera 

orientation, and other information from SfM to make a dense 3D point cloud 

model of the scene. OpenMVS estimates a depth map for each view (image) based 

on the PatchMatch algorithm [76]. By considering the depth map as a 2D array 

of 3D points, multiple depth maps can be merged and become a highly detailed 

3D point cloud of the scene. 

 

Next, mesh reconstruction [77] is applied to the dense point cloud to generate 3D 

triangular mesh surfaces, as shown in Fig. 3-11(d). In Fig. 3-11(e), the 

reconstructed mesh model is further refined with a variational multi-view stereo 

vision approach [78][79] including photo-consistency measurement between the 

images and surface regularization for the reprojection error minimization and the 

improvement of smoothness while preserving the details of the 3D surface, 

respectively. Eventually, mesh texturing [80] is implemented to add color 

information to the reconstructed model from the images, as shown in Fig. 3-11(f). 

Thus, with the processes, we can acquire a colored 3D surface reconstruction of 

the scene from the recorded scene video and use the mesh model to show user’s 

gaze data. Moreover, during the reconstruction, the camera pose of each frame 

image is generated and can be used to determine the user’s line of sight and the 

3D gaze fixation on the reconstructed model. 

 

 

3.4.2 Computation of Corresponding Gaze Data for Each Frame 

Next, to determine the user’s line of sight for each frame image 𝐼𝑖, we need the 

gaze position in the frame image, which gives information about the user’s line 

of sight. However, the scene video and the original gaze data 𝐺 =

{𝒈0, 𝒈1, … , 𝒈𝑗 , … }  are recorded by the scene camera and the eye trackers, 

respectively, at different sampling frequencies, where 𝒈𝑗 = [𝜇𝒈𝑗
 𝜈𝒈𝑗

]𝑇  is the 

pixel coordinates of 2D gaze position on the image. Therefore, a prerequisite is 

to synchronize the video and the gaze data, and then compute the corresponding 

gaze data 𝒈𝐼𝑖 = [𝜇𝐼𝑖  𝜈𝐼𝑖]
𝑇  for each frame image 𝐼𝑖 . This can be achieved by 

comparing the timestamps of the gaze data and of the frame image and 

performing linear interpolation to estimate 𝒈𝐼𝑖 . 
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As shown in Fig. 3-12, the timestamp 𝑡𝑖 of each frame image is indicated by the 

presentation timestamp, which determines when the frame should be presented in 

the video, and extracted by the FFmpeg software [81]. The timestamp of the first 

frame image 𝑡0 in the video is zero. However, the timestamp of the gaze data �̂�𝑗 

is recorded based on the system time, which indicates the amount of time that has 

passed since the system of the eye tracking glasses was booted. Thus, the 

timestamp of the gaze data does not start from zero, i.e., �̂�0 ≠ 0. To synchronize 

the gaze data with the video frames, the first step is to translate the timestamp of 

the frame image 𝑡𝑖 into the system-based timestamp �̂�𝑖 using synchronization 

information 𝑡𝑠𝑦𝑛𝑐 , which is also recorded by the eye tracking glasses and 

indicates the offset between the timestamp of the gaze data and of the frame image, 

as shown in Eq. (13): 

 

  �̂�𝑖 = 𝑡𝑖 + 𝑡𝑠𝑦𝑛𝑐  (13) 

 

After the translation of the timestamp of the video frame, a linear interpolation 

method is used to determine the corresponding pixel coordinate of the gaze data 

𝒈𝐼𝑖  in each frame 𝐼𝑖. Each recorded timestamp of the gaze data �̂�𝑗 corresponds 

to one gaze data 𝒈𝑗 . Therefore, the gaze data 𝒈𝐼𝑖   for each frame 𝐼𝑖  can be 

estimated by determining two neighboring timestamps of the gaze data, �̂�𝑗 and 

�̂�𝑗+1 , that are closest to �̂�𝑖  and including it followed by performing the 

interpolation using Eq. (14). 

 

 
𝒈𝐼𝑖 = [

𝜇𝐼𝑖
𝜈𝐼𝑖

] = [
𝜇𝒈𝑗

𝜈𝒈𝑗
] +

�̂�𝑖 − �̂�𝑗
�̂�𝑗+1 − �̂�𝑗

× [
𝜇𝒈𝑗+1

− 𝜇𝒈𝑗

𝜈𝒈𝑗+1
− 𝜈𝒈𝑗

] (14) 
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Fig. 3-12 Synchronization of the timestamp of the frame and gaze data 

 

 

3.4.3 Determination of 3D Gaze Fixation 

After the 3D reconstruction of the scene, the next step is to determine 3D gaze 

fixation on the reconstructed model 𝑀. Fig. 3-13 shows the relationship between 

recorded 2D gaze data 𝒈𝐼𝑖  in the pixel coordinate and its corresponding 3D gaze 

fixation 𝚾𝐼𝑖 on the 3D scene.  

 

 

Fig. 3-13 Relationship between 2D gaze data and corresponding 3D gaze fixation 
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Under the pinhole projection model, gaze data 𝒈𝐼𝑖  is the projected pixel position 

of its corresponding scene point 𝚾𝐼𝑖 , and the camera center 𝒄𝑖 (origin of 𝐶𝑖), 

𝒈𝐼𝑖  in the camera image plane, and 𝚾𝐼𝑖  are on the same line, which is referred 

to as user’s line of sight in three-dimensional space. Hence, 3D gaze fixation on 

the reconstructed model can be recovered by backward projection from 𝒈𝐼𝑖  to 

𝚾𝐼𝑖 . However, the reconstructed 𝚾𝐼𝑖 can only be recovered up to a one-parameter 

ambiguity corresponding to its distance from the camera center. 

 

To solve the ambiguity of the distance, under the assumption that the camera 

center 𝒄𝑖, the gaze point on the camera image plane, and 𝚾𝐼𝑖 are all on the user’s 

line of sight, 3D gaze fixation on the reconstructed model can be determined by 

the intersection of the user’s line of sight and the reconstructed model without 

considering the distance ambiguity. Therefore, for each view, the determination 

of its corresponding 3D gaze fixation on the model is composed of two steps: (1) 

the determination of user’s line of sight and (2) the determination of the 

intersection of the user’s line of sight and the model that is the target position of 

3D gaze fixation. 

 

First, for each frame image (view), user’s line of sight can be obtained by 

correlating the camera center 𝒄𝑖  and the corresponding gaze point in the 

coordinate system of the model. The 3D position of 𝒄𝑖 in the coordinate system 

of the reconstructed model 𝑀  has been obtained simultaneously during the 

reconstruction of the 3D scene by the structure from motion algorithm (Section 

3.4.1). The 3D position of the gaze point can be reconstructed from 2D gaze data 

𝒈𝐼𝑖  by using the familiar 3D to 2D transformation from the coordinate system of 

the model to the pixel coordinate in the image. Using homogeneous coordinates, 

a 3D gaze point [𝑋𝑖  𝑌𝑖  𝑍𝑖]
𝑇 in the coordinate system of the model that is related 

to the pixel position of gaze data 𝒈𝐼𝑖 = [𝜇𝐼𝑖  𝜈𝐼𝑖]
𝑇 may be defined up to scale by 

using Eq. (15): 

 

 

𝑠 [

𝜇𝐼𝑖
𝜈𝐼𝑖

1
] = 𝑲[𝑹𝑖 𝑻𝑖] [

𝑋𝑖

𝑌𝑖

𝑍𝑖

1

] = 𝑲(𝑹𝑖 [

𝑋𝑖

𝑌𝑖

𝑍𝑖

] + 𝑻𝑖) (15) 
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where 𝑠 is a scale factor, 𝑹𝑖 is a 3 × 3 rotation matrix that represents camera 

orientation, and 𝑻𝑖 is a vector with 3 elements that represents camera translation. 

Both 𝑹𝑖  and 𝑻𝑖  have been determined during the 3D reconstruction process 

and describe the camera pose. 𝑲 is known as the camera intrinsic matrix and has 

the form of: 

 

 
𝑲 = [

𝑓𝑥 𝛾 𝑝𝑥

0 𝑓𝑦 𝑝𝑦

0 0 1

] (16) 

 

where 𝑓𝑥 and 𝑓𝑦 are the focal length, which is expressed in units of the pixel 

dimension, 𝛾 is the skew parameter, and [𝑝𝑥 𝑝𝑦]
𝑇 is the pixel position of the 

principal point. The principal point is the intersection of the optical axis (principal 

axis), which is a line through the camera center orthogonal to the camera image 

plane, with the frame image plane. It is an indication of the camera center in the 

image. Moreover, pixels are usually assumed to be square and, in that case, 𝑓𝑥 =

𝑓𝑦 = 𝑓 and 𝛾 = 0. Thus, we can rewrite 𝑲 as: 

 

 
𝑲 = [

𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

] (17) 

 

In Eq. (15), all the parameters are known except the undetermined 3D 

homogeneous gaze point. Hence, from Eq. (15), the 3D gaze point can be 

obtained by the following matrix equation: 

 

 
[

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = (𝑲𝑹𝑖)
−1 (𝑠 [

𝜇𝐼𝑖
𝜈𝐼𝑖

1
] − 𝑲𝑻𝑖) (18) 

 

Given recorded gazed data 𝒈𝐼𝑖  , Eq. (18) gives a 3D gaze point using the 

projection transformation matrix. Moreover, scale factor 𝑠 determines only how 

far away the 3D gaze point is from the camera center, i.e., 𝑠 is independent of 

the direction of the 3D gaze point relative to the camera. Thus, we can simply set 

𝑠 = 1. User’s line of sight can then be determined by a line that passes through 

both the camera center and the determined 3D gaze point. 
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The final stage is the determination of 3D gaze fixation in the scene model 

through the intersection of the user’s line of sight and the model. Because the 

surface of the reconstructed mesh model is represented by a set of triangles that 

are formed from the dense point cloud, the goal can be considered to find out 

which triangle(s) the user’s line of sight passes through. Triangles that are 

intersected by the user’s line of sight are considered as potential 3D gaze fixation, 

and the triangle that is closest to the camera center is then considered as the target 

3D gaze fixation. To efficiently search for the intersected triangles in a model 

with a large number of 3D triangles, we use the computational geometry 

algorithms library (CGAL) software. It can construct an axis-aligned bounding 

box (AABB) tree data structure to store the set of 3D triangles hierarchically and 

use the AABB tree data structure to speed up intersection queries [82]. Through 

this way, we input the reconstructed 3D mech model 𝑀 into the AABB tree data 

structure to find the triangles intersected by user’s line of sight, which is a ray 

starting from the position of the camera center. From all the intersected triangles, 

we choose a triangle 𝜏𝑖 that is closest to the camera center corresponding to the 2D 

gaze data 𝒈𝐼𝑖  in the frame image 𝐼𝑖 as the 3D gaze visualization on the model 𝑀. 

 

 

3.4.4 Gaze Visualization via the Heatmap 

We compute 𝜏𝑖 for all the gaze fixations {𝒈
𝐼𝑖
}. As the triangle is intersected by 

more than one intersection line, we count the number of intersections 𝑃𝑖 of 𝜏𝑖. 

𝑃𝑖 indicates how many times the user’s lines of sight intersect a triangle. After finding 

all intersected triangles, they are marked by different colors depending on the 

number of intersections 𝑃𝑖. For instance, in Fig. 3-14(a), if 𝑃𝑖 is large, its color 

is red and vice versa. However, by showing only intersected triangles, the result 

looks discrete and difficult to analyze by the user. Thus, it is better to visualize 

the information of 3D gaze fixation on the mesh model as a heatmap; a diffusion 

filter is used to smooth the data, as shown in Eq. (19). It distributes the gaze 

fixation count and highlights where the user was looking. The diffusion filter has 

an effect that is equivalent to the Gaussian filter, which has its basis in the human 

visual perception system [83][84][85]. Equation (19) updates the fixation count 

𝑃𝑖 of a certain triangle 𝜏𝑖 in 𝑀 based on the fixation count of the neighboring 
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triangles 𝑁𝑖, as shown in Eq. (20): 

 

 𝑃𝑖
′ = 𝑃𝑖 + 𝜆∆𝑃𝑖 (19) 

 

where 𝜆 is the diffusion rate that is similar to the thermal diffusivity in the heat 

equation and controls the transfer rate of the fixation count, and  

 

 
∆𝑃𝑖 =

1

|𝑁𝑖|
(∑ 𝑃𝑗

𝑗𝜖𝑁𝑖

) − 𝑃𝑖 (20) 

 

where 𝑁𝑖  is a set of neighboring triangles to 𝜏𝑖  and |𝑁𝑖|  is its number. By 

applying Eqs. (19) and (20) to all triangles, one iteration was formed. By 

performing more iterations, the gaze distribution result becomes smoother and 

identifies the region to which the user was paying attention with a red color. Fig. 

3-14 shows the heatmap gaze distribution results for different number of 

iterations. 

 

 

Fig. 3-14 Heatmap result with 𝜆 = 0.5 and different number of iterations  
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3.5 Multiple Users’ 3D Gaze Visualization Based on the 

Same Model 

Using the approaches described in Section 3.4, the system can generate a user's 

3D gaze fixations and show them on the 3D model that was reconstructed from 

the user’s recording. According to this idea, for multiple users who observe the 

same environment, the system will reconstruct a 3D model of the scene for each 

user from their own recording video, and then demonstrate users’ 3D gaze 

fixation on their own 3D model of the scene. However, it means that the system 

will reconstruct multiple 3D models that represent the same environment, and this 

will be quite time-consuming to generate multiple users’ 3D gaze visualization. 

An appropriate way is to reconstruct only one 3D model of the scene and then 

register each user’s gaze data into the model for 3D gaze visualization.  

 

Multiple users who observe the same scene mean a group of users who are 

restricted to observe the same environment, but each user is able to observe the 

scene in his/her own way. Users can observe the scene from different views, paths, 

and speeds. Fig. 3-15 shows a schematic plot of multiple users’ 3D gaze 

visualization for three users A, B, and C. The three users observe the same scene, 

and we focus on the realization of their 3D gaze results by sharing the same 3D 

model of the scene. For the workers’ training, our proposed method can more 

efficiently compare the difference of 3D gaze data between workers who work in 

the same environment. 

 

 

Fig. 3-15 A schematic plot of multiple users’ 3D gaze visualization 
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Fig. 3-16 shows the original method introduced in Sec. 3.4 to generate three users’ 

3D gaze results. Each 3D gaze visualization is reconstructed from each user’s eye 

tracking recording. However, because the users observe the same scene, the 

reconstructed 3D models represent the same environment. Thus, it is not 

necessary to generate multiple scene models, and only one scene model is 

possible to display all users’ 3D gaze fixation. An illustration of this idea is shown 

in Fig. 3-17. Reconstructing only a 3D model of the scene 𝑀𝐴 from User A’s 

scene video, model 𝑀𝐴 can be shared to visualize other users’ 3D gaze fixation. 

Without reconstructing multiple 3D models (𝑀𝐵 and 𝑀𝐶), it is expected that a 

large amount of time can be saved. 

 

(a) 

 

(b) 

 

Fig. 3-16 Flowcharts of visualizing each user’s gaze data on the model reconstructed 

from user’s own recording: (a) text explanation and (b) a visualized plot 
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(a) 

 

(b) 

 

Fig. 3-17 Flowcharts of visualizing each user’s gaze data on the model reconstructed 

from user’s own recording: (a) text explanation and (b) a visualized plot 

 

Take Fig. 3-17 for example. To realize the idea, the main challenge is to calculate 

the pose of camera centers of User B’s and User C’s video frames under the 

coordinate system of the model 𝑀𝐴. Once this is accomplished, the same process 

of calculating intersection lines and determining the intersected triangles on 𝑀𝐴 

is repeated. User B’s and User C’s 3D gaze fixation can then be shown on 𝑀𝐴.  

 

Fig. 3-18 and Fig. 3-19 indicate the general procedure and the schematic plot of 

the calculation, respectively. Now, take only two users, User A and User B, for 

explanation, and assume they wear the same pair of eye tracking glasses and 

observe the same environment. User A's image set {𝐼𝑖
𝐴} is chosen as the base. 



 

109 

 

After using the SfM method, densifying, and meshing, we obtain the base mesh 

model 𝑀𝐴 for sharing and the pose of camera centers {𝒄𝑖
𝐴} corresponding to 

User A’s video frames under the coordinate system of 𝑀𝐴, 𝛴𝐴.  

 

 

Fig. 3-18 Process of finding camera centers under the coordinate system of the base 

model 𝑀𝐴 

 

Next, for each User B's video frame 𝐼𝑗
𝐵, to estimate its pose of the camera center 

𝒄𝑗
𝐵 in 𝛴𝐴, as shown in Fig. 3-19, the system estimate a transformation matrix 

𝑻𝑖∗𝑗
𝐵/𝐴

  that maps 𝒄𝑖∗
𝐴   of some appropriate 𝐼𝑖∗

𝐴  to 𝒄𝑗
𝐵  based on the two-view 

geometry [74], as explained below. 𝒄𝑗
𝐵 in 𝛴𝐴 could be derived by multiplying 

the transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 and the known 𝒄𝑖∗
𝐴 , as shown in Eq. 6. 𝐼𝑖∗

𝐴 is 

chosen from {𝐼𝑖
𝐴}, which has the largest overlap (similarity) with 𝐼𝑗

𝐵. 

 

 𝒄𝑗
𝐵 = 𝑻𝑖∗𝑗

𝐵/𝐴
× 𝒄𝑖∗

𝐴  (6) 
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Fig. 3-19 Schematic plot of determining camera centers under the coordinate system 

of the base model 𝑀𝐴 

 

With respect to the two-view geometry, given the correspondence between two 

overlapping images of the same object acquired from different locations, the 

relative pose of the camera center (i.e., relative camera orientation and translation) 

could be derived. Here, the relative pose of camera centers acts as the 

transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 that indicates the pose of User B's camera center 

relative to the pose of User A's camera center 𝒄𝑖∗
𝐴  . Fig. 3-18 shows that to 

determine the 𝑻𝑖∗𝑗
𝐵/𝐴

, feature extraction of two image sets, {𝐼𝑖
𝐴} and {𝐼𝑗

𝐵}, and 

feature matching between them are first conducted to find some User A's image 

𝐼𝑖∗
𝐴 that corresponds to User B's image 𝐼𝑗

𝐵. Because two users observe the same 

scene, for each User B's image, it is expected to find at least one User A's image 

that possesses a zone that is highly overlapped with the scene in User B's image. 

Once the corresponding image is found using the two-view geometry, the 

transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 can be evaluated. Thus, the pose of User B's camera 

center 𝒄𝑗
𝐵 in 𝛴𝐴 can be determined by multiplying the known pose of User A's 

camera center 𝒄𝑖∗
𝐴   and the transformation matrix 𝑻𝑖∗∗𝑗

𝐵/𝐴
  represented by 

homogeneous coordinates. This process is the same idea as registering new 

images {𝐼𝑗
𝐵} into the existed model 𝑀𝐴, and we use the COLMAP software to 

address this image registration. 
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Then, using the above-mentioned method in Section 3.4.3, we can determine User 

B's 3D gaze fixation on the base model 𝑀𝐴. The connection of the pose of User 

B's camera center 𝒄𝑗
𝐵 and the 3D gaze point derived from Eq. 3 in 𝛴𝐴 generates 

User B's line of sight in 𝛴𝐴 to determine the intersection with 𝑀𝐴. Thus, we are 

able to produce User B's 3D gaze fixations in 𝑀𝐴. Furthermore, by applying the 

same concept to additional users who observe the same environment, the feature 

descriptors of their image sets can be matched to the feature descriptors of the 

image set of the base model 𝑀𝐴  to determine the corresponding pose of the 

camera centers and to eventually visualized all users' 3D gaze fixation on the 

same model 𝑀𝐴 . In addition, because all users' gaze data are shown on an 

identical model, only one 3D model of the scene is needed to be reconstructed 

instead of reconstructing multiple models from all users’ recordings. 
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3.6 Experiments of Three-Dimensional Gaze Visualization 

System 

We conducted some experiments to verify the proposed methodology and to 

discuss the functionality of our system. In this study, the specification of the PC 

used to generate 3D gaze visualization is show in Table 3-1. To speed up the 

process of 3D reconstruction, the COLMAP and OpenMVS software use the GPU 

to extract SIFT features of images and to refine the mesh model, respectively. 

Moreover, in our experiments, the number of frames for 3D scene reconstruction 

is restricted to approximately 200 because of the GPU computation in OpenMVS 

can handle approximately 200 images at most, which is related to the memory 

size of the GPU. 

 

Table 3-1 Specification of the hardware for data processing 

Processor Intel® Core™ i7-7700 CPU @ 3.60GHz 

RAM 64.0 GB 

GPU NVIDIA Geforce GTX 1080 Ti 

(Memory size: 11.0 GB) 

 

 

3.6.1 System Verification 

Two experiments were conducted to verify whether the evaluated positions of 3D 

gaze fixation are displayed on the target spots that a user paid attention to. The 

first experiment required the user to pay more attention to six fixed spots in the 

environment, as shown in Fig. 3-20(a). During the observation, the user moves 

from left to right and then from right to left, with the change of the target spot 

that the user paid attention to. The video is 53.6 sec long and contains 1,340 frame 

images. We took 224 frames (𝑛𝑠 = 6) for 3D scene reconstruction. In Fig. 3-20(b), 

it can be seen that most 3D gaze fixations are displayed on the specified six places. 

The average distance between target and measured positions is 6 mm, and the 

standard deviation is averagely 8 mm.  
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Fig. 3-20 System verification performed by observing six fixed spots: (a) target spots 

and the (b) evaluated result 

 

 

Fig. 3-21 Case of fixed spots: error of 3D gaze fixations from the shifting of 2D gaze 
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For the first target observation point as shown in Fig. 3-21, in the 3D gaze results, 

we see that there are two clusters A and B near the target point. 3D gaze fixations 

in Cluster A are the 3D gaze results corresponding to the correct 2D gaze fixations 

shown in the scene video. However, 3D gaze fixations in Cluster B are shifted 

approximately 5 cm away from the target point even when the user was definitely 

looking at the target point. This shifting results in the 3D model derive from the 

shifting results recorded in 2D gaze results that may be caused by the user’s gaze 

angle larger than 15°. The high performance of Tobii eye tracking glasses is based 

on the gaze angle smaller than 15°. Gaze angle larger than 15° may cause larger 

errors in 2D gaze results that lead to larger errors in 3D. To avoid this problem, 

the user should move his/her head and body more frequently instead of large 

rotational movement of eyeballs. 

 

The other experiment of system verification, shown in Fig. 3-22, required the user 

to observe along the edge of the sink back and forth. The video is 39.3 sec long 

and contains 982 frame images. 246 frames (𝑛𝑠 = 4 ) were taken into the 3D 

reconstruction process. The experimental result shows that 92% of evaluated 3D 

gaze fixation were located along the designated edges. Preliminarily, these two 

experiments show that most 3D gaze results using the proposed system are 

reliable.  

 

However, Fig. 3-22(c) shows that as we observed the result of the edge case from 

another view, some estimated gaze positions were not on the edge of the sink but 

at its bottom. This derived from poor 3D reconstruction for that edge and gaze 

angle larger than 15°. The area marked with a dotted line is part of the sink edge 

where the corresponding meshes were poorly, or were not, reconstructed (the 

edge width shrinks by approximately 50%) because of its plain texture and 

insufficient images from multiple views for 3D reconstruction. This suggests that 

during the procedure of finding an intersected triangle, starting from the camera 

center, through user's line of sight, we were not able to find an intersection in the 

dotted area because there were no triangles; eventually, an intersection at the 

bottom of the sink was determined as we continued to move along the line of 

sight. Moreover, in Fig. 3-23, the other error source is the user’s gaze angle larger 

than 15° as described in the case of observing fixed spots. 
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Fig. 3-22 System verification performed by observing the edge of the sink: (a) target 

edges, (b) evaluated result, and (c) different view of the evaluated result 

 

 

Fig. 3-23 Case of edges: error of 3D gaze fixations from the shifting of 2D gaze 
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3.6.2 Gaze Difference between Multiple Users 

To compare the gaze difference between multiple users, three users A, B, and C 

wore the same pair of Tobii eye tracking glasses and were asked to observe the 

same environment, i.e., the sink and surroundings, one by one. Fig. 3-24(a) shows 

the scene of the experimental environment. The users were restricted to observe 

the sink from the front and left side for the preliminary test. After the users 

finished the observation, the recorded video and the gaze data from the eye 

tracking glasses were input into the system for 3D reconstruction and to display 

3D gaze fixation on the reconstructed model using 10 iterations of the application 

of the diffusion filter, as shown in Fig. 3-24(b), (c), and (d). Table 3-2 shows the 

information of each user’s eye tracking recording, and the number of frames to 

generate the scene models 𝑀𝐴, 𝑀𝐵, and 𝑀𝐶 from each user’s recording. The 

processing time for each recording is shown in the upper part of Table 3-3. Thus, 

using this way for the three users observing the same scene, the system took 

totally 6 hours to demonstrate their 3D gaze results. 

 

Table 3-2 Information of the scene videos 

Video source 
 

Video length [s] Total frames 𝑛𝑠 
No. of frames for 

3D reconstruction 

User A  55.09 1379 6 230 

User B  40.70 1019 5 204 

User C  48.41 1212 6 202 

 

Table 3-3 Processing time of each stage (minute) 

 3D scene reconstruction    

Video 

Source 

(Model) 

Sparse point 

cloud generation 

(COLMAP) 

Mesh model 

generation 

(OpenMVS) 

Image 

registrationa 

3D gaze 

determination 
Total 

 Users’ gaze on their respective model 

User A (𝑀𝐴) 2.85 118.47 5.95 8.18 135.45 

User B (𝑀𝐵) 2.4 94.40 4.88 7.1 108.78 

User C (𝑀𝐶) 2.65 94.33 5.68 8.52 111.18 

 Users’ gaze on the same model, 𝑀𝐴 

User B (𝑀𝐴) - - 9.27 7.90 17.17 

User C (𝑀𝐴) - - 9.83 8.4 18.23 
aRegister the images that are not used for 3D reconstruction into the model to obtain 

corresponding camera poses and to determine 3D gaze fixation 
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Fig. 3-24 Visualization of 3D gaze fixation for three users: (a) experimental 

environment, (b)(c)(d) three users' 3D gaze visualization on the 3D models 

reconstructed from their own recorded scene video, (e)(f) display of User B's and C's 

3D gaze fixation on 𝑀𝐴 

 

 

Next, to compare the gaze distribution, we used User A's reconstructed model 

𝑀𝐴 as the base model to visualize the other two users' gaze data on 𝑀𝐴, as shown 

in Fig. 3-24(e) and (f). The processing time is shown in the lower part of Table 

3-3. Using this method, the system first generated 𝑀𝐴 with 135.45 minutes and 

then registered User B’s and C’s gaze data to 𝑀𝐴 with 35.4 minutes. Thus, it took 

2.8 hours to generate all the results, which saved 50% of the processing time. 
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Table 3-4 Fixation count 𝑃𝑖 of the three spots 

  Spot 

Gaze data  1 2 3 

User B [Fig. 3-24(c)]  0.072 1.149 0 

User B (𝑀𝐴) [Fig. 3-24(e)]  0.476 1.447 0 

User C [Fig. 3-24(d)]  0 0 1.955 

User C (𝑀𝐴) [Fig. 3-24(f)]  0 0.003 2.074 

 

Table 3-4 shows the quantitative performance of the registration. We chose three 

spots marked in Fig. 3-24(a) and, for the same user, compared the fixation count 

𝑃𝑖 between the 3D model reconstructed from their own scene video and 𝑀𝐴 . 

Spots 1, 2, and 3 were the places where Users A, B, and C paid more attention, 

respectively. Table 1 indicates that, for the same user, there was a similar 

distribution of the fixation count 𝑃𝑖 on the different reconstructed 3D models. 

By displaying User B's and C's gaze data on 𝑀𝐴 , we could determine the 

difference between the same gaze information on the different models. This 

occurred owing to the different quality of the models. Different recorded videos 

generated models with different qualities. Although the videos from different 

users recorded the same environment, the frame images were taken from different 

views of the environment. In addition, the existence of textureless objects (e.g., 

the wall and the table) resulted in the deformation of objects and creation of 

uneven surfaces owing to few detected feature points on the textureless objects. 

These issues changed the position of intersected points on the models. 

Nevertheless, the parts to which a user paid more attention were still marked as 

the key parts on the model 𝑀𝐴. 

 

 

3.6.3 3D Gaze Visualization in a Room-Scale Environment 

Fig. 3-25 shows a room-scale observation. A user walked around in a room and 

paid attention to decorations near three inside walls of the room. The video is 

126.8 sec long and contains 3,170 frame images. 212 frames were taken for 3D 

scene reconstruction. Fig. 3-25(b) shows a panorama of the room, and the dotted 

lines indicate the junction of two walls. A 3D model of three inside walls in the 
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room was reconstructed with 3D gaze fixation, and 10 iterations of the diffusion 

filter with 𝜆 = 0.8 were applied. To mitigate the accumulation of error, which is 

common in image-based 3D reconstruction, the COLMAP software applies 

bundle adjustment to minimize reprojection errors. In this room-scale experiment, 

the reprojection error is averagely 1 pixel. Fig. 3-25(a) demonstrates the potential 

of this system to be applied to larger and more complex environments. 

 

 

Fig. 3-25 3D gaze visualization in a room-scale model: (a) model of the room with 3D 

gaze fixations and a (b) panorama of the room 

 

However, in a room-scale environment, it is also possible to perform gaze 

analysis with 2D images. Fig. 3-26 shows the heatmap results for the panorama 

of the room, which was generated by Tobii Pro Lab (i.e., a commercial eye 

tracking software for analyzing and visualizing 2D gaze data from Tobii eye 

tracking glasses). The panoramic image was acquired by an extra RGB camera 

and input into the Tobii Pro Lab software. By comparing each frame image in the 

scene video and recorded gaze data, the software evaluated the corresponding 

gaze fixations and visualized them on the panorama using the heatmap. Although 
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it appears that 2D gaze visualization is an adequate solution, it is still not reliable 

even in this case. Fig. 3-27(a) is a frame image with gaze fixation acquired from 

the scene video, and its corresponding gaze fixation in the panorama, determined 

by the Tobii pro lab, is shown in Fig. 3-27(c). Fig. 3-27(d) shows the heatmap 

result in the panorama. According to the frame image of the scene video in Fig. 

3-27(a), a user was looking at the inside of a brown bin without a cover, but after 

the analysis of the Tobii pro lab software, the same gaze fixation is displayed on 

the outside of the bin. This error is inevitable because the inside image of the bin 

does not exist in the panorama. This shows that if we want to obtain such gaze 

fixation results on 2D images, we need to have multiple images with various 

views of the environment. However, as the scale of the environment becomes 

larger, the number of required images will exponentially increase, which will 

make the analytic work more difficult. Fig. 3-27(c) shows the result of 3D gaze 

visualization that demonstrates that the user paid attention to the inside rather 

than the outside. 

 

 

Fig. 3-26 2D gaze visualization on the panorama of the room 
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Fig. 3-27 Comparison of gaze estimation between (a) the frame image from the scene 

video, (b) proposed 3D gaze visualization, and (c) the panorama. (d) is the heatmap 

form of 2D gaze in the panorama. 

 

The room-scale experiment shows an advantage of 3D gaze visualization over 2D 

gaze information is its spatial extensibility. Using the 3D reconstruction from the 

scene video, a larger model (e.g., a room or even a building) can be generated to 

easily display and analyze gaze fixations. However, it is difficult to achieve the 

same effects with 2D images. 
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3.7 Summary 

In this study, we propose a system that uses the eye tracking glasses to 

demonstrate user's 3D gaze fixation on a 3D model of the scene. Though other 

existing systems similar to it employ extra sensors, our system employs only the 

eye tracking glasses without any other sensors. The eye tracking glasses record 

all the necessary information for 3D gaze visualization: the scene video and user's 

2D gaze data. Through image-based 3D reconstruction, the scene video can be 

used to reconstruct the 3D environmental model by using the COLMAP and 

OpenMVS software. To reduce the processing time, we take a part of frame 

images for 3D scene reconstruction by downsampling the video. Next, by 

estimating the pose of camera centers and gaze data, we can determine the 3D 

gaze fixations on the reconstructed model of the scene by drawing the intersection 

line, which is a user's line of sight. The preliminary results of the experiments 

indicate that user's 3D gaze fixation on the reconstructed model can be displayed 

at the targets with the accuracy of 6 mm and the standard deviation of 8 mm. 

 

Moreover, to analyze gaze differences between multiple users, we use the image 

registration method to find all users' 3D gaze fixations on the same model of the 

scene. In the experiments of the three users’ 3D gaze visualization, 50% of the 

processing time can be saved. By sharing the same model, we can more efficiently 

visualize multiple users’ 3D gaze for worker’s assessment and training. In 

addition, a room-scale experiment was conducted. It shows that the 3D gaze 

visualization can demonstrate the structure of the environment and may give more 

reliable results than 2D gaze visualization. 

 

Since only a pair of eye tracking glasses is used and all the necessary data are 

collected during eye tracking experiments, we can save time and human resources 

without scanning the environment again by other devices. This methodology 

exhibits a considerable potential for the applications related to the evaluation of 

user's attention in large and complex environments such as for the instruction of 

construction inspectors or for the aesthetic evaluation of interior decoration. 
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Chapter 4  
Conclusion and Future Work 

4.1 Summarization of the work 

With the development of smart glasses, it can be equipped with various sensors 

and high-performance microprocessors. This kind of wearable device has become 

a promising tool for field service assistance. In this research, we focus on the AR-

based indoor field service assistance system which may be realized by using AR 

glasses with eye tracking sensors. However, since the development of such smart 

glasses is still in its infancy, we use AR glasses and eye tracking glasses, which 

are available in the market, and develop two prototype systems for the assistance 

of indoor field service applications that the worker needs to move in room-scale 

environments. AR glasses are responsible for the assistance during assembling 

operations, and eye tracking glasses can be used for worker’s skill assessment and 

training. The main achievement in our work can be summarized as follows: 

 

✓ For AR glasses, we develop an AR assembly assistance system with 

misassembly detection in real time. 

 

✓ For eye tracking glasses, we visualize multiple users’ 3D gaze fixations 

effectively for gaze comparison. 

 

 

The summarization and achievement of each study is as follows: 

 

In the part of AR glasses (Chapter 2) 

We propose an AR assembly assistance system with misassembling detection in 

real time. By using the sensors and microprocessors in the AR glasses, a 

standalone AR system has been developed for assembly assistance. We study the 

issues of coordinate calibration and efficient misassembly evaluation to make 

virtual parts displayed at desired installing locations and to evaluate assembly 

errors in real time, respectively. The developed system is experimentally 

validated and demonstrated in desktop applications and the room-scale 

environment.  
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To realize such AR system, we integrate the existing functions in the AR glasses 

and our proposed methods. For example, coordinate calibration is composed of 

rough alignment (user’s hand manipulation) and precise alignment (the point-to-

plane ICP algorithm). The process of rough alignment can be fast, but the position 

error may be a few centimeters. Moreover, precise alignment can achieve 

millimeter-level accuracy, but the initial position and orientation of two point 

clouds should be similar to prevent from local convergence; that is, initial 

alignment is needed and should not be poor. Thus, we propose an idea of the 

integration of the two alignment methods to achieve coordinate calibration of 

millimeter-level accuracy and simultaneously make the whole process done 

within a few seconds. 

 

Furthermore, to evaluate assembly errors in real time, we make efforts to reduce 

the computation time by comparing the HoloLens-generated depth maps (in 2D 

space) instead of in 3D space. By comparing the relationship between the pixel 

values of the depth maps, in our preliminary implementation, the evaluation of 

misassembly is performed at 30 fps, which is sufficiently fast to warn the worker 

once misassembly occurs. The evaluation result is visualized by coloring virtual 

parts. Moreover, the system can detect the position error of assembly within ±1 

cm, which can be expected to be used for room-scale environments.  

 

In the part of eye tracking glasses (Chapter 3) 

We propose a 3D gaze visualization method by converting the recorded gaze data 

in the scene video (2D space) into 3D space. Without using external scanners to 

perform another 3D scanning of the environments, the necessary image data for 

3D reconstruction can be recorded by the eye tracking glasses when the worker 

is working. The proposed system is experimentally validated and demonstrated 

for a room-scale environment. User’s focus of attention can be marked in a 3D 

model of the scene in the form of heatmaps, which are commonly used to display 

the user’s visual attention.  

 

To realize such 3D gaze visualization more effectively and efficiently, instead of 

directly inputting all frame images in the recorded scene video into the existing 
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software for 3D scene reconstruction, we divide the fame images into two groups 

in advance. One is used for 3D scene reconstruction, and the other is used to find 

the camera centers to determine 3D gaze fixations. With the idea of 

downsampling the number of frame images for 3D scene reconstruction, the 

reconstruction time can effectively decrease from dozens of hours to a few hours. 

Moreover, since the scene video and gaze data are collected by different devices 

at different frequency, we estimate the corresponding gaze information for each 

frame image by linearly interpolating the gaze data based on the time stamps of 

the gaze data and of the frame images. 

 

Furthermore, to compare multiple users’ 3D gaze results more effectively, we 

further propose an approach to visualize all users’ gaze in the same model of the 

scene. In our preliminary experiments of three users, by sharing the same 3D 

model of the scene, the total generation time of the three users’ 3D gaze results 

can decrease by 50%. In comparison to the typical 2D eye tracking applications 

that workers are required to observe a static image of a working field, our system 

allows the workers to move in the field and work as usual. It is expected to 

compare practical working performance between experienced and novice 

workers such as inspecting a construction field. 

 

In summary, we use existing AR glasses and eye tracking glasses to develop the 

systems for field service assistance. The AR assembly assistance system gives 

assembly indications and evaluates misalignment when the worker is performing 

an assembly operation. 3D gaze visualization is possible to compare multiple 

workers’ practical performance at work. This is beneficial to train novice workers 

and skill assessment. In the future, these two systems can be integrated in a single 

AR glasses with eye tracking sensors and form an AR-based field service 

assistance system. We can expect that using a pair of such smart glasses can assist 

in field service applications and training.  
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4.2 Future Perspective 

This work mainly includes the development of the AR assembly assistance 

system and 3D visualization of users’ gaze fixations on objects. These systems 

are experimentally validated and are possible to be used in indoor field service 

assistance of room-scale environments. In the future, we will continue studying 

and improving those research topics and make efforts to integrate the two systems 

into the same pair of smart glasses. The following list our future work in three 

parts: 

 

 

◼ In the part of AR assembly assistance (AR glasses) 

(a) Develop more robust indicator for evaluation of misalignment. 

 

In Sec. 2.5, to evaluate misalignment between real and the virtual objects, 

we focus on the comparison of the depth values between the depth maps 

of the real and virtual objects. We use centered cosine similarity as our 

indicator to evaluate the misalignment, and in our preliminary 

experiments, the accuracy of the misalignment error can be within ±1 cm. 

As validated, the centered cosine similarity method is invariant to the 

shift and scaling of data set. However, a part of the real object may be 

poorly scanned because of multipath interference in the time-of-flight 

depth camera or scanning from a shallow angle. It will influence the 

evaluation results of misalignment. 

 

Hence, it is necessary to develop a more robust indicator to the poorly 

scanned point cloud. In the future, we can try to integrate with other 

methods, such as edge detection in the depth map, comparing silhouette 

of objects, and object tracking. Each method can give an evaluation score. 

By fusing various methods, we can then determine an evaluation 

function as a new indicator for misassembly evaluation. Simultaneously, 

we still have to take the processing time into account to confirm the 

evaluation can be performed in real time. 

 

Another issue of misalignment evaluation is occlusion problems with 
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hands and other objects. In our development, the occlusion problems are 

not considered. When evaluating misalignment for each part of an 

assembly, there should not exist any other objects between the HoloLens 

and the target part of the assembly. This will increase the time of 

assembling operations. To solve the occlusion problems of user’s hands 

and of other parts of the assembly, it is possible to remove scanned hands 

and parts from the depth maps by hand tracking and object tracking. 

Then, we can take remaining pixels in the depth maps to evaluate 

whether there is occurrence of misalignment. 

 

In addition, the scanned point cloud of nearby objects such as table 

surfaces also influences the misalignment evaluation and make the 

indicator’s values asymmetric when the misalignment occurs in different 

directions. To solve this problem, we may perform object detection in 

depth maps and take only pixels that belongs to the target object to do 

evaluation. This will mitigate the influence given by nearby objects’ 

point cloud. 

 

(b) Improve the design of the graphical user interface (GUI) and AR 

assembly instructions. 

 

In our implementation of the AR assembly assistance system, we mainly 

focus on the development of the functions, and the GUI is simply 

designed with a few aligned buttons to execute the functions, such as 

performing point-to-plane ICP for coordinate calibration and showing 

the next virtual part for assembly. To assist workers in assembly 

operations using AR technology more smoothly, clear, concise, effective 

user interfaces can help the workers understand how to read and use the 

AR assembly assistance system. Thus, we will make efforts to improve 

our GUI design. 

 

Moreover, we would like to design AR assembly instructions to help the 

user find the virtual parts. For our room-scale demonstration in Sec. 2.6.4, 

decorations are arranged in the different locations of an 8 m2 room. When 
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the system sequentially displays each decoration in the room, the user 

can have no difficulty in finding the target virtual object. However, given 

that the user is in a much larger environment, the user may not be able to 

smoothly find where the target virtual object (i.e., the next installing 

location) is. In that case, it will be beneficial if the system can give 

instructions to help the user find the location. Since the AR glasses of 

HoloLens can position the user’s position in the environment, we can 

design an AR arrow to indicate the direction of the installing location 

according to the position of the target virtual object relative to the user’s 

position. 

 

 

◼ In the part of 3D gaze visualization (eye tracking glasses) 

(a) Reduce the time required for 3D scene reconstruction. 

 

In Table 3-3 in Sec. 3.6.2, to generate User A’s 3D gaze visualization, we 

perform a series of processing stages. In particular, the processing time 

for 3D scene reconstruction accounts for approximately 87% of the 

entire processing time. Thus, there is still room for improvement to 

accelerate the process of gaze analysis. Further downsampling the 

number of frame images in chronological order is one way to reduce the 

number of images used for 3D reconstruction. However, if a user walks 

around in an environment and frequently observes the same object at 

different times, frame images that have the same view will still be 

selected out. Those frame images can not provide new information of the 

scene for 3D reconstruction. To avoid such redundancy, a possible way 

is to remove the frame images that have the same or similar view from 

the process of 3D reconstruction. Thus, the time for 3D reconstruction 

will decrease. 

 

(b) Improve the completeness of the 3D model of the scene for multiple 

users’ 3D gaze visualization. 

 

In our preliminary experiment in Sec. 3.6.2, multiple users’ (Users A, B, 
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and C) gaze fixations are visualized by the same 3D model of the scene 

which is constructed from User A’s scene video. With this approach, if 

now Users B and C observe some objects that are not observed by User 

A, it can be expected that those objects will not be reconstructed in the 

model of the scene, and the generated 3D gaze results will not be reliable. 

To solve this problem, we can take all users’ scene videos into account 

and reconstruct a 3D model of the scene that covers all users’ focus of 

attention as the main model for 3D gaze visualization. 

 

 

◼ Integration of AR assembly assistance and 3D gaze visualization systems 

(a) Integrate the developed two systems into a pair of smart glasses. 

 

In the future, we will deploy the two subsystems into a pair of AR glasses 

with eye tracking sensors, develop an AR-based field service assistance 

system, and verify the performance of the integrated system in AR-based 

field service applications. Microsoft HoloLens 2 (the 2nd generation of 

HoloLens) is possible commercial smart glasses for our purpose. 

HoloLens 2 is a pair of AR glasses with eye tracking sensors while 

HoloLens that we use does not have embedded eye tracking sensors. 

 

After integrating the two systems, it is an issue to consider the interaction 

between eye tracking and AR technologies. For example, with user’s 

gaze information, it can be a controller to interact with virtual objects in 

AR environments. However, when the user is gazing some virtual object, 

it can be a challenge for application developers to identify whether the 

user just looks at it or wants to manipulate it by gaze. 

 

Conversely, under AR environments, the user can see not only physical 

objects but also computer-generated virtual objects. It means that when 

we want to analyze the user’s gaze data, we should also take the user’s 

gaze fixations on virtual objects into account. Thus, for 3D gaze 

visualization, the 3D model of the scene will contain real objects, 

generated by image-based 3D reconstruction, and virtual objects, which 
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can be directly input into the model of the scene if we can evaluate their 

positions in the model. Then a potential study for the AR glasses with 

eye tracking sensors is that how the AR assistance system influences the 

worker’s performance, and the user’s gaze information may be a method 

for analysis. 
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