
博士論文

Study on Application Systems using Smart Glasses

Aimed at Field Service Assistance

（フィールドサービス支援を目指したスマート

グラス応用システムに関する研究）

李 庭豪

令和 2年度 博士論文

Study on Application Systems using Smart Glasses

Aimed at Field Service Assistance

（フィールドサービス支援を目指したスマート

グラス応用システムに関する研究）

指導教員 鈴木 宏正 教授

東京大学大学院 工学系研究科 精密工学専攻

37-177237

LI, TING-HAO

李 庭豪

i

Abstract

Augmented reality (AR) has been a promising tool in engineering fields. AR

systems can show digital contents to the worker’s view of a real scene and give

understandable information and instructions. Thus, it is a promising way for field

service applications such as assembling, maintenance, and construction and for

training novice workers. Especially, smart glasses are a key device for such AR

applications and usually have embedded sensors such as an RGB camera and a

depth camera to collect data from environments. One of the prospects of smart

glasses technology is to let the worker carry and use only smart glasses for such

field service applications and training. To realize it, using AR glasses equipped

with eye tracking sensors is a possible way and promising to construct a more

complete system for field service assistance. With AR technology, the worker can

directly receive computer-generated information during the operation.

Simultaneously, worker’s attention can be recorded by eye tracking sensors for

performance assessment and skill training. Although the development of such AR

glasses with eye tracking is still in its infancy. we can establish related systems in

advance by using existing smart glasses. In this research, we study two types of

smart glasses to develop two prototype systems with the aim of field service

assistance: (1) eye tracking glasses for user’s cognitive research and analyses and

(2) AR glasses for assembly assistance.

For eye tracking glasses, which record the user’s gaze fixation in a scene video,

most related applications are in 2D space, and there should be more applications

in 3D space to give more understandable gaze analysis results. In this study, we

propose a method to demonstrate user’s gaze in 3D space using a pair of eye

tracking glasses. After a user performs an eye tracking recording in a certain

environment, we generate a 3D mesh model of the scene from the frame images

in the scene video by applying the image registration method. The intersection of

a triangle in the model and user’s line of sight, which is determined by linking

the camera center of the frame image and the recorded gaze point, is the target

3D gaze fixation. Moreover, based on this methodology, we propose another

method to compare multiple users’ 3D gaze visualization more efficiently and

effectively. Similarly, by applying the image registration method, we register the

ii

frame images of all the users’ recording into the same 3D model generated from

one of the users’ recording, that is, reconstructing only one model of the scene to

visualize all users’ 3D gaze. In our experiment for three users observing the same

scene, the processing time decreases by 50%. In addition, an eye tracking

recording in a room-scale environment is conducted to demonstrate the

advantages of 3D gaze visualization in complex and large-scale environments,

which can be hardly demonstrated well by typical 2D visualization methods. With

the developed methods, we can use only eye tracking glasses to generate user’s

3D gaze visualization and compare users’ gaze difference to train novice workers

more efficiently and effectively.

For AR glasses, the development of AR technology has enhanced the experience

of assembly operations by showing virtual parts of assembly at installation

locations to a worker. Good assembly instructions can improve the effectiveness

of assembling operations and training; meanwhile, it is important to detect

whether misassembling occurs during such operations. In the study of AR glasses,

we construct an AR assembly assistance system using only a head-mounted

display of Microsoft HoloLens. Because the HoloLens is originally designed for

room-scale applications, we use point clouds generated by a depth camera in the

HoloLens and propose two methods to apply the HoloLens to desktop

applications. One method is coordinate calibration to display virtual objects at

installation locations by aligning reference virtual object, which is at the origin

of the virtual world, to the associated reference real object’s position. The other

evaluates in real time whether misassembling has occurred by evaluating

misalignment between real and virtual objects. For efficiency, we compare the

depth images of the real and virtual objects instead of the calculation in 3D space.

With the preliminary tests, the position error can be within ±1 cm and

misalignment evaluation can be performed at 30 fps. Thus, with the presented

methods, a standalone AR assembly assistance system can be realized to support

assembling operations and training.

In summary, with the usage of existing smart glasses and developed methods, we

develop two prototype systems for the assistance of field serves applications. The

proposed 3D gaze visualization method and the AR assembly assistance system

iii

are possible to assist the worker who needs to move in room-scale environments.

In the future, as the mature development of AR glasses with eye tracking, we can

apply the proposed systems into such smart glasses and construct a standalone

system. The system will be able to assist the worker in assembling operations

through AR. Meanwhile, the worker’s visual attention can be recorded during the

operations, and then visualized in 3D space. The 3D gaze visualization is further

used to assess the worker’s skill and to compare between experienced and novice

workers for training and analytic studies. This will construct a more complete

system for field service assistance.

iv

v

Outline

Abstract ... i

Outline .. v

List of Figures ..vii

List of Tables .. xiii

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation and Objective ... 6

1.3 Thesis Structure ... 11

Chapter 2 HMD-Based AR Assembly Assistance System with Efficient

Evaluation of Misalignment between Real and Virtual Objects 13

2.1 Introduction ... 13

2.2 Literature Review .. 17

2.3 Design of HMD-Based AR Assembly Assistance System 20

2.3.1 System Structure .. 20

2.3.2 Mixed Reality Head-Mounted Display – Microsoft HoloLens . 21

2.3.3 Adaption of Microsoft HoloLens to the target application 26

2.4 Coordinate calibration between real and virtual world 35

2.5 Evaluation of misalignment between real and virtual objects 46

2.5.1 Design of misalignment evaluation ... 46

2.5.2 Analysis of different evaluation methods 47

2.5.3 Performance test of different evaluation methods 52

2.6 Demonstrations of HMD-based AR assembly assistance system 63

2.6.1 System Implementation ... 63

2.6.2 Experiment 1: Assemble primitive wooden blocks 70

2.6.3 Experiment 2: Assemble a wooden robot 72

2.6.4 Experiment 3: Arrange decorations in a room-scale environment

 ... 74

2.7 Summary ... 79

Chapter 3 Three-Dimensional Visualization of User’s Attention on Objects

using Only Eye Tracking Glasses .. 81

3.1 Introduction ... 81

vi

3.2 Literature Review .. 85

3.3 Tobii Eye Tracking Glasses... 88

3.4 Three-Dimensional Visualization of User’s Gaze Data 91

3.4.1 3D Reconstruction of a Scene from Eye Tracking Glasses 93

3.4.2 Computation of Corresponding Gaze Data for Each Frame 99

3.4.3 Determination of 3D Gaze Fixation .. 101

3.4.4 Gaze Visualization via the Heatmap .. 104

3.5 Multiple Users’ 3D Gaze Visualization Based on the Same Model ... 106

3.6 Experiments of Three-Dimensional Gaze Visualization System 112

3.6.1 System Verification .. 112

3.6.2 Gaze Difference between Multiple Users 116

3.6.3 3D Gaze Visualization in a Room-Scale Environment............ 118

3.7 Summary ... 122

Chapter 4 Conclusion and Future Work .. 123

4.1 Summarization of the work ... 123

4.2 Future Perspective ... 126

Reference .. 131

Acknowledgements.. 139

List of Publications.. 140

vii

List of Figures

Fig. 1-1 AR-based field service knowledge software platform provided by

Fieldbit [3]. Computer-generated information is fused into the real

scene to show the current status of the equipment. 1

Fig. 1-2 AR training platform: (a) A tablet to inspect machinery and digital

indications and (b) visual aid with virtual objects [2]. 2

Fig. 1-3 Observe virtual assembly through AR glasses in a construction field [8]

 ... 3

Fig. 1-4 Measuring impacts of safety knowledge on construction workers using

eye tracking technology: (a) original picture, (b) attentional distribution

for the group of less experienced workers (< 5 years), and (c) attentional

distribution for the group of more experienced workers (> 10 years)

[11]. ... 4

Fig. 1-5 Record the worker’s visual attention by eye tracking glasses when the

worker is working in the field [9]. .. 4

Fig. 1-6 A schematic plot of the workflow of our target AR-based field service

assistance system .. 6

Fig. 1-7 Preliminary development of an AR-based field service assistance system

using AR glasses and eye tracking glasses. .. 8

Fig. 1-8 An AR assembly assistance system using AR glasses, an RGB-D camera,

and AR markers [14] ... 9

Fig. 1-9 Structure of the research work .. 12

Fig. 2-1 3D CAD model of finished assembly (left) and display of the next

component as a virtual part to the user (center and right) [23]........... 17

Fig. 2-2 AR assembly assistance system of Mura’s study [21]: (a) assembly

workstation, (b) observe virtual parts through an HMD, and (c) visual

messages for detecting assembly errors. ... 18

Fig. 2-3 A schematic plot of the relationship between physical parts and CAD

models of an assembly .. 20

Fig. 2-4 Process of the AR-based assembly assistance system 21

Fig. 2-5 Microsoft HoloLens (1st gen) .. 22

Fig. 2-6 Observe a virtual object through HoloLens: (a) the CAD model of a bear

statue and (b) mixed reality photos. .. 23

Fig. 2-7 Meshes of real-world surfaces generated by the HoloLens: (a) real scenes,

viii

(b) display of the scanned meshes in the real scene, and (c) extracted

real-world meshes ... 25

Fig. 2-8 Sensor streams available in Research Mode: (a) and (b) are the depth

image and the IR-reflectivity image from near-depth sensing. (c) and

(d) are the depth image and the IR-reflectivity image from far-depth

sensing. (e), (f), (g), and (h) are the images of four environment sensing

cameras. ... 26

Fig. 2-9 Part of coordinate systems that the HoloLens system uses 27

Fig. 2-10 Process of point cloud generation: (a) the view of scanning, (b) local

point cloud from the depth image, and (c) real-world point cloud

generation. ... 28

Fig. 2-11 Comparison of HoloLens-generated digital models with different

objects. From top to bottom: scanned objects, mesh models, and point

clouds. ... 31

Fig. 2-12 Point cloud data of smaller objects whose height are lower than 8 cm

 ... 32

Fig. 2-13 Shifting of the generated point cloud in the real world: (a) a cube with

an edge of 10 cm and (b) a bear statue ... 33

Fig. 2-14 Scanning results of objects of different materials and colors 34

Fig. 2-15 Schematic plot of coordinate calibration .. 35

Fig. 2-16 Process of coordinate calibration .. 36

Fig. 2-17 Manipulate a virtual object through user’s hands 37

Fig. 2-18 Schematic plot of rough alignment process .. 37

Fig. 2-19 Process of precise alignment ... 38

Fig. 2-20 The illustration of the bounding box to extract the points that may

belong to the reference real object. ... 39

Fig. 2-21 Paired correspondences searching based on the closest point 40

Fig. 2-22 Schematic plot of the point-to-plane ICP .. 41

Fig. 2-23 Schematic plot of the point-to-point ICP .. 41

Fig. 2-24 Adjust the point cloud for coordinate calibration................................ 42

Fig. 2-25 The CAD model of the reference object ... 43

Fig. 2-26 Extract the scanned points near the virtual object: (a) scanned scene, (b)

scanned scene with the virtual object after rough alignment, and (c)

scanned points inside the bounding box of the virtual object............. 44

ix

Fig. 2-27 Registration results of the point-to-plane ICP 45

Fig. 2-28 Process of obtaining GPU-rendered depth images of the scanned point

cloud and the CAD model. ... 47

Fig. 2-29 Schematic plot of comparing the depth maps: (a) compare the same

region in the depth maps and (b) rearrange pixels into a sequence in the

raster scanning order ... 48

Fig. 2-30 Schematic plot of the cosine similarity result 50

Fig. 2-31 Experimental setup for the performance tests of the indicators (a) fixed

real object and the associated movable virtual object and (b) design of

shifting the virtual object to different positions 52

Fig. 2-32 Objects with different shapes and sizes to test the indicator performance

 ... 53

Fig. 2-33 Evaluation results using the 𝐷𝑎𝑣𝑒 indicator 54

Fig. 2-34 Evaluation results using the 𝐷𝑠𝑡𝑑 indicator 55

Fig. 2-35 Influence of the size of real objects to 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑: compare (a)

the bear statue and (b) the triangular block cases 56

Fig. 2-36 Evaluation results using the 𝐷𝑐𝑠 indicator .. 57

Fig. 2-37 Evaluation results using the 𝐷𝑐𝑐𝑠 indicator....................................... 58

Fig. 2-38 Schematic plot of the computation of 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠 59

Fig. 2-39 Shift or scaling problem of HoloLens-scanned point cloud 60

Fig. 2-40 Influence of surroundings on asymmetric indicator values 61

Fig. 2-41 Different variation of depth differences as the object is at different

positions .. 61

Fig. 2-42 Introduction to Unity interface for application development. 63

Fig. 2-43 Relationship between the designed system and the practical user

experience in AR: (a) designed view in Unity, (b) a schematic plot of

user experience in AR, and (c) user’s view of a real scene at different

positions. ... 64

Fig. 2-44 Relationship between designed interface and system process 67

Fig. 2-45 Schematic plot of the relationship between Σ𝑀𝐶 and Σ𝑉𝐶 in Unity68

Fig. 2-46 Color bar for showing misalignment evaluation results: (1) color the

CAD model according to the calculated 𝐷𝑐𝑐𝑠 value if the percentage

of depth differences that ∆𝑑𝑖 > 10 cm is less than 15% and (2) color

the CAD model with white if the percentage of depth differences that

x

∆𝑑𝑖 > 10 cm is more than 15% ... 69

Fig. 2-47 Experimental setup of a block assembly: (a) real objects and (b)

designed alignment of parts in the CAD model.................................. 70

Fig. 2-48 The process of assembling blocks: put blocks to the designated positions

 ... 71

Fig. 2-49 Experimental setup of a wooden robot assembly: (a) real objects and (b)

designed alignment and pose in the CAD model................................ 72

Fig. 2-50 The process of assembling a wooden robot with the designated pose 73

Fig. 2-51 Detection of an assembly error that may be overlooked easily: (a)

misalignment is detected, and (b) no misalignment is detected after

adjustment ... 74

Fig. 2-52 Differences between (a) designed pose in the CAD model and (b)

physical assembly without careful assembling 74

Fig. 2-53 A reference real object and decorations for arrangement. The sequence

of installation: (1) wooden robot, (2) frog statue, and (3) bear statue.

 ... 75

Fig. 2-54 Target room environment for decoration arrangement 75

Fig. 2-55 Design decoration arrangement: (a) A schematic plot of placing the

CAD models of the decorations for arrangement design, (b) The

position of the CAD models in the virtual world, and (c) Results of

designed arrangement seen through the HoloLens 76

Fig. 2-56 The process of decoration arrangement with the designated pose 77

Fig. 2-57 Mixed reality photos of the results of decoration arrangement 78

Fig. 3-1 3D gaze visualization of a car example with the use of AR markers and

a portable surface scanner [57]: (a) experiment of eye tracking

recording with AR markers set in the car, (b) the use of a portable

surface scanner for scene reconstruction, and (c) results of 3D gaze

visualization. ... 85

Fig. 3-2 3D gaze visualization with the use of an RGB-D camera for 3D

reconstruction [59]: (a) Hardware for 3D reconstruction, (b)

experiment of eye tracking recording, (c) reconstructed 3D model of

the scene, and (d) results of 3D gaze visualization 86

Fig. 3-3 3D gaze visualization result with the use of an extra RGB camera for 3D

reconstruction [58] .. 87

xi

Fig. 3-4 Tobii eye tracking glasses.. 88

Fig. 3-5 Calibration process by looking at a calibration card 89

Fig. 3-6 Schematic diagram that shows 3D gaze fixation in the environmental

model ... 91

Fig. 3-7 Process of 3D gaze visualization ... 92

Fig. 3-8 Process of 3D reconstruction of the scene .. 93

Fig. 3-9 Process of the structure from motion method with reduced frame images

in the case of 𝑛𝑠 = 3 .. 95

Fig. 3-10 Estimation of the newly registered image’s camera pose 96

Fig. 3-11 Process of 3D surface reconstruction based on the output of SfM: (a)

target scene, (b) outputted sparse point cloud from SfM, (c) dense point

cloud, (d) rough mesh reconstruction, (e) refined mesh model, and (f)

final mesh model with texture .. 98

Fig. 3-12 Synchronization of the timestamp of the frame and gaze data 101

Fig. 3-13 Relationship between 2D gaze data and corresponding 3D gaze fixation

 ... 101

Fig. 3-14 Heatmap result with 𝜆 = 0.5 and different number of iterations 105

Fig. 3-15 A schematic plot of multiple users’ 3D gaze visualization 106

Fig. 3-16 Flowcharts of visualizing each user’s gaze data on the model

reconstructed from user’s own recording: (a) text explanation and (b) a

visualized plot ... 107

Fig. 3-17 Flowcharts of visualizing each user’s gaze data on the model

reconstructed from user’s own recording: (a) text explanation and (b) a

visualized plot ... 108

Fig. 3-18 Process of finding camera centers under the coordinate system of the

base model 𝑀𝐴 ... 109

Fig. 3-19 Schematic plot of determining camera centers under the coordinate

system of the base model 𝑀𝐴 .. 110

Fig. 3-20 System verification performed by observing six fixed spots: (a) target

spots and the (b) evaluated result .. 113

Fig. 3-21 Case of fixed spots: error of 3D gaze fixations from the shifting of 2D

gaze ... 113

Fig. 3-22 System verification performed by observing the edge of the sink: (a)

target edges, (b) evaluated result, and (c) different view of the evaluated

xii

result .. 115

Fig. 3-23 Case of edges: error of 3D gaze fixations from the shifting of 2D gaze

 ... 115

Fig. 3-24 Visualization of 3D gaze fixation for three users: (a) experimental

environment, (b)(c)(d) three users' 3D gaze visualization on the 3D

models reconstructed from their own recorded scene video, (e)(f)

display of User B's and C's 3D gaze fixation on 𝑀𝐴 117

Fig. 3-25 3D gaze visualization in a room-scale model: (a) model of the room

with 3D gaze fixations and a (b) panorama of the room 119

Fig. 3-26 2D gaze visualization on the panorama of the room 120

Fig. 3-27 Comparison of gaze estimation between (a) the frame image from the

scene video, (b) proposed 3D gaze visualization, and (c) the panorama.

(d) is the heatmap form of 2D gaze in the panorama. 121

xiii

List of Tables

Table 2-1 HoloLens specifications .. 22

Table 2-2 The function of the buttons in the designed user interface 66

Table 3-1 Specification of the hardware for data processing 112

Table 3-2 Information of the scene videos .. 116

Table 3-3 Processing time of each stage (minute) .. 116

Table 3-4 Fixation count 𝑃𝑖 of the three spots .. 118

xiv

1

Chapter 1
Introduction

1.1 Background

Augmented reality (AR) technology has been a promising way for the future of

workers of various tasks. An AR system can superimpose computer-generated

information onto the user’s view of a real-world scene. With the development of

AR technologies, AR applications have been commonly used in our life, such as

entertainment, education, design, and so on. Such AR systems also play an

important role in field service applications, such as equipment installation,

maintenance, construction, assembly, etc. [1][2] because they allow the workers

to access task information easily as they are in the working field. With augmented

information shown to a technician through a head-mounted display (HMD) or a

tablet, the technician can receive information and indication immediately when

they service complex equipment [3] as shown in Fig. 1-1. This increases the

effectiveness and efficiency of field service work. For manual tasks, it has been

shown that the usage of AR systems improves task performance and decreases

error rate [4][5].

Fig. 1-1 AR-based field service knowledge software platform provided by Fieldbit [3].

Computer-generated information is fused into the real scene to show the current status

of the equipment.

2

In addition to the assistance to expert workers, using AR technology is a possible

way to train novice workers to acquire new assembly and maintenance skills

[2][6][7], as shown in Fig. 1-2. Since assembly and maintenance tasks can be

quite complicated, it is challenging to train novice workers efficiently and

effectively. Compared with trainings such as one-on-one training with an

experienced workers and self-learning from videos or text documents, using AR-

based training systems may support the trainings to a large amount of novice

technicians at the same time with the assistance of visualized operating

indications from the system.

Fig. 1-2 AR training platform: (a) A tablet to inspect machinery and digital indications

and (b) visual aid with virtual objects [2].

AR glasses and tablets (or smart phones) are two main types of devices for AR

applications. For tablets and smart phones, which are usually equipped with an

RGB scene camera, as shown in Fig. 1-2, computer-generated information is

added into the recorded video of the real-world scene. Besides equipped with an

RGB camera, it is a tendency to add a depth sensor together to expand augmented

reality capabilities of the device. For example, Apple iPad Pro 2020 (tablet) and

Samsung Galaxy Note 10+ (smart phone) have a depth camera to measure the

distance of surrounding objects and to expand AR experiences, such as 3D

scanning and interaction with real-world objects. However, although tablets and

smartphones have been widely used in our daily life, they may not be appropriate

AR devices for manual tasks because the user has to hold the devices and can

hardly perform the tasks.

3

On the other hand, for AR glasses, it is an eyeglasses-type of AR devices, which

are equipped with see-through lens to display digital information in front of user’s

eyes. Because AR glasses make the user’s hands free, such smart glasses can be

a key device for AR-based field service applications. For example, in Fig. 1-3, a

company called Trimble developed an AR assembly assistance system for

construction fields. Through AR glasses, workers can see virtual pipelines

displayed at the installing locations. This kind of AR-based assembly instruction

gives the worker a complete image about the target assembly. Moreover,

advanced smart glasses are equipped with various sensors such as a depth camera

and microphones to provide functionality of constructing digital data of the real

world and voice commands to operate the AR system, respectively.

Fig. 1-3 Observe virtual assembly through AR glasses in a construction field [8]

Furthermore, besides the assistance during operations, reviewing and evaluating

worker’s performance in the operations is important to improve worker’s ability.

Hence, skill assessment and training are necessary parts to assist in field service

applications. Eye tracking can be a quantitative tool to provide suitable metrics

[9][10] for skill assessment and training. By using eye tracking devices, we can

measure worker’s visual focus of attention, which is highly correlated with where

the worker is focusing attention. For example, Hasanzadeh et al. [11] used eye

trackers for safety training in construction fields. Workers were required to

observe images of construction fields and to find potential hazard situations.

Meanwhile, the workers’ visual attention on the images was recorded, analyzed,

and then displayed in the form of heatmaps. Fig. 1-4(b) shows that less

experienced workers are more stimulus driven and focus on imminent hazards.

On the other hand, Fig. 1-4(c) shows that more experienced workers are more

4

goal driven and have a balance in focusing and dividing their attention across the

scene. In comparison with more experienced workers’ results, it can improve

novice workers’ hazard-detection skills. Thus, eye tracking is a promising tool to

train and evaluate worker’s skills.

Fig. 1-4 Measuring impacts of safety knowledge on construction workers using eye

tracking technology: (a) original picture, (b) attentional distribution for the group of

less experienced workers (< 5 years), and (c) attentional distribution for the group of

more experienced workers (> 10 years) [11].

Fig. 1-5 Record the worker’s visual attention by eye tracking glasses when the worker

is working in the field [9].

To capture workers’ natural behavior when they perform the task in the field,

using eye tracking glasses, which is a mobile eye tracking device, is better than

5

using the fixed type of the eye tracking device. Because this wearable device can

let the worker walk around environments, the worker who wears the eye tracking

glasses can keep working as usual, and the worker’s working condition can be

recorded and analyzed for skill assessment and training. Fig. 1-5 shows the usage

of eye tracking glasses to track a worker’s attention in a construction field.

In summary, with the portability and various functions, smart glasses can be a key

device for assisting the worker engaged in filed services in the future. Different

technologies in smart glasses bring different aspect of assistance. The AR system

can provide information to the worker during the operation and help the worker

complete the task more effectively and efficiently. Moreover, eye tracking

technology can record the worker’s performance, and the eye tracking data can

be utilized to improve worker’s skills such as hazard-detection skills.

6

1.2 Motivation and Objective

In the working field, smart glasses can make the worker’s hands free and usually

have embedded sensors to collect data from the environment to provide various

functionality. With those features, one of the prospects of smart glasses is to let

the worker carry and use only smart glasses for such field service applications

and training. Moreover, since smart glasses are wearable devices and can let the

worker move around the working field, which should be a room-scale or larger

environment, it will be beneficial to develop assistant systems for working in such

environments. Therefore, in this work, we mainly focus on indoor field service

applications and the development of AR-based field service assistance systems

for indoor environments.

Fig. 1-6 shows the designed workflow of our target AR-based field service

assistance system. The system is implemented in smart glasses and provides two

main functions. One is to assist the worker during operations through information

overlay of AR technology. Computer-generated information is displayed to the

worker’s view of the real scene to directly give operating information, such as

instructions and status of the operation. The other is to record worker’s visual

focus of attention during the operations through eye tracking technology. We can

then visualize and analyze the worker’s gaze data for skill assessment and training.

Fig. 1-6 A schematic plot of the workflow of our target AR-based field service

assistance system

7

To realize a such system for room-scale environments, in the aspect of technology,

we need three kinds of technologies at least: (1) information overlay, (2) 3D scene

reconstruction, and (3) eye tracking. To assist the worker during operations, we

need information overlay which is related to AR technology to provide indication,

and we also need the 3D structure of the environment to detect real objects in the

environment for the AR applications such the evaluation of misassembling in

assembling operations. Moreover, to train the worker, we need eye tracking

technology to track worker’s visual attention, and we also need a 3D model of the

environment to visualize worker’s 3D gaze fixations which is beneficial to show

the room geometry for indoor field service applications.

In the aspect of hardware, using AR glasses equipped with eye tracking sensors

is a possible way to construct an AR-based field service assistance system. It

contains AR and eye tracking technologies. With the integration of eye tracking

technology, such smart glasses can not only enable better user experience in AR,

such as better overlay accuracy of virtual objects and hands-free interaction with

virtual objects, but also monitor worker’s performance for skill assessment and

training [12][13]. However, the development of such AR glasses with eye

tracking sensors is still in its infancy in 2020. Nevertheless, we can use existing

smart glasses to develop related systems for AR-based field service applications

and training.

In this study, we use and investigate two types of smart glasses to develop two

prototype systems with the aim of field service assistance: (1) AR glasses (AR

HMD) and (2) eye tracking glasses as shown in Fig. 1-7. For AR glasses, we focus

on AR assembly assistance during assembling operations which contains

technologies of information overlay and 3D scene reconstruction. For eye

tracking glasses, we mainly focus on the issue of 3D gaze visualization which

contains technologies of eye tracking and 3D scene reconstruction. The two

systems that cover the three technologies serve as the subsystems of the AR-based

field service assistance system. Although 3D scene reconstruction is the common

part of the two systems, by considering to the sensors embedded in the two pairs

of smart glasses, we may have to use two kinds of 3D scene reconstruction

methods for the two prototype systems.

8

Fig. 1-7 Preliminary development of an AR-based field service assistance system

using AR glasses and eye tracking glasses.

1. AR glasses (AR HMD)

AR glasses are equipped with see-through lens to display computer-generated

data to the user. In the field of assembly assistance, AR glasses are potential to

assist the worker in assembling operations through showing virtual parts of an

assembly at installing locations to the worker’s view of a real scene. Besides

giving instructions, it is important to prevent the worker from making assembling

errors. Therefore, such assembly assistance system needs to track the condition

of the assembling operation in real time. Using AR markers and external devices

such as an RGB or RGB-D camera is common to display the virtual parts at target

positions and to evaluate misassembling, respectively [14]. However, it means

that the effective working area is limited to the sensing zone of the external

camera which is fixed to somewhere in the workplace. To overcome this

limitation, we use AR glasses of Microsoft HoloLens, which has embedded RGB

and depth cameras, to develop an AR assembly assistance system. Simultaneously,

misassembly should be evaluated and visualized by the AR glasses in real time to

avoid assembling errors. The embedded depth camera can give the information

of 3D scene reconstruction for misassembly evaluation.

9

Fig. 1-8 An AR assembly assistance system using AR glasses, an RGB-D camera, and

AR markers [14]

2. Eye tracking glasses

Eye tracking glasses are a mobile eye tracking device with an embedded RGB

camera. When the worker who wears the eye tracking glasses works and moves

around the workplace, worker’s gaze fixations will be tracked and marked in a

recorded scene video. To do statistical analysis, the analyzed eye tracking result

such as heatmap is usually displayed in a panorama or multiple images of the

scene, including multiple views of the environment. To better demonstrate the

eye tracking result of the 3D environment, displaying user’s gaze fixation in a 3D

model of the scene is a way which can show the multiple views and the geometry

of the environment in one model. From each worker’s eye tracking recording, we

can reconstruct the 3D model of the scene from the scene video, which records

both the user’s visual attention and the views of the environment, by image-based

3D reconstruction. Furthermore, to compare the eye tracking results between

different workers, who perform the same work in the same environment, for the

evaluation of their performances, it is appropriate to share the same 3D model of

the scene to visualize their gaze fixations. This will give the same criterion for

the assessment of their gaze results. In this study, we use eye tracking glasses of

Tobii Pro Glasses 2.

To sum up, in this work, we focus on the issues of AR and eye tracking

technologies of smart glasses for AR-based field service assistance systems in

indoor environments, respectively. Because smart glasses allow the worker to

10

move around the workplace, we need appropriate systems for such situation. By

using provided functionality and sensors in the smart glasses, we aim to develop

the two prototype systems through AR glasses and eye tracking glasses:

AR glasses (Chapter 2)

• Develop an AR assembly assistance system with the evaluation and

visualization of misassembly in real time.

Eye tracking glasses (Chapter 3)

• Visualize and compare multiple users’ 3D gaze visualization more efficiently

and effectively by sharing the same 3D model of the scene.

11

1.3 Thesis Structure

Fig. 1-9 shows the thesis structure, which contains four chapters. Chapter 1

introduces the background, the objectives, and the structure of the work. With the

aim of AR-based field service assistance by using smart glasses, we divide the

research work into two parts as introduced in Sec. 1.2: (1) the AR assembly

assistance system and investigate their own issues and (2) the 3D visualization of

eye tracking results in Chapters 2 and 3, respectively.

Chapter 2 concentrates on the AR technology, and we use AR glasses as the target

smart glasses. With the embedded sensors and functionality provided by the AR

glasses, we develop an AR assembly assistance system and focus on the issues of

coordinate calibration and misassembly detection in real time, which are import

for the correct displayed location of virtual objects and the avoidance of

assembling errors, respectively. We then design and conduct experiments to

verify the system performance.

In Chapter 3, we focus on the eye tracking technology and use eye tracking

glasses as our test device. We first develop a method of constructing single user’s

3D gaze visualization from an eye tracking recording. To further compare with

other users’ 3D gaze results, we propose a more effective and efficient way to

reduce the generation time of multiple users’ 3D gaze visualization. Eventually,

we verify the proposed 3D gaze visualization system and conduct a room-scale

experiment to demonstrate the advantages of 3D gaze visualization.

Eventually, Chapter 4 is the conclusion of the research work. We sum up the

contribution of our research work, discuss the potential problems in each topic,

and describe the possible ways of improving the systems and the future work.

12

Fig. 1-9 Structure of the research work

13

Chapter 2
HMD-Based AR Assembly Assistance System with

Efficient Evaluation of Misalignment between Real

and Virtual Objects

2.1 Introduction

In this chapter, we first study the main assistance part of the AR-based field

service assistance system during operations, and we focus on AR assembly

assistance to assist the worker in assembling operations using AR glasses.

Augmented reality (AR) technology [15][16] has broad application in the world.

It has been used in various fields, such as gaming [17] and medical training [18],

and education [19]. The core concept of AR is to put an overlay of 3D virtual

objects into real scenes as the virtual objects really exist in the physical world. In

comparison with virtual reality (VR) technology, which constructs a complete

virtual world by a computer, AR applications put great emphasis on the

connection between the real and virtual worlds. Therefore, it needs the

understanding of real environments to some extent.

In engineering fields, assembly instruction is a potential application of AR [20].

Through a head-mounted display (HMD) or a tablet, an AR system can give

visualized instructions, in the form of texts, symbols, and assembly animations,

in front of an operator to make the operator easily understand and follow the

instructions. For instance, the AR system can display a computer-aided design

(CAD) model of a component from an assembly at its installation location to lead

the operator to complete an assembly operation step by step. For complex

assemblies, it is beneficial to provide the operator concise and effective

instructions for efficient assembly operation and training instead of relying on

that operator to read a manual during the assembly operation. In addition, using

an HMD is more convenient than using a tablet or a smartphone because the HMD

lets the user’s hands free.

An AR-based assembly assistance system must be able to show CAD models

14

(virtual objects) at their installation positions in the real world for reliably giving

instructions. That is, the system should determine precise transformation

relationships between coordinate systems, such as the coordinate systems of the

real world, of the virtual world in which the CAD models are defined, and of the

user’s position. This is commonly realized using AR markers [21] to evaluate

transformation matrices between various coordinate systems. In these

arrangements, in addition to the HMD, several external devices, such as AR

markers and an RGB-D camera, are typically prepared and set up before the

operation. This limits the working environment and increases the time taken to

set up the instruments. In addition to assembly instruction, it is important to

evaluate in real time whether there is an occurrence of misassembly during the

operation [22]. Prevention of assembly errors can avoid unexpected increases in

assembly time or serious damage to the assembly product. Thus, it is critical to

evaluate whether the real object is placed in the target position to confirm a

reliable transition to the next assembly stage.

In this study, we aim to use an AR HMD, Microsoft HoloLens, as the main device

establishing a basic AR-based assembly assistance system that can display CAD

models to the system’s user for assembly instruction and can simultaneously

evaluate any possible occurrence of misassembly. Microsoft HoloLens contains

eight environment sensing cameras and a depth camera to position itself in the

real world and to construct meshes of the physical environment, respectively.

With these features, we propose two methods to provide functions for the system:

coordinate calibration and efficient evaluation of misalignment between the real

and virtual objects.

First, coordinate calibration is to determine a transformation relationship between

the real and virtual worlds to make the virtual objects displayed in the desired

working area. We realize coordinate calibration by rough alignment and precise

alignment to transform a reference virtual object, which is at the origin of the

virtual world, to the position of the corresponding reference real object, which

defines the working area. These two alignments are realized by user’s hand

manipulation and the point-to-plane iterative closest point (ICP) method to

gradually determine the transformation. To apply the point-to-plane ICP, instead

15

of using the HoloLens-generated meshes of the real object, we use the original

point cloud data to represent the digital content of the real object. Because the

resolution of HoloLens-generated triangles varies from a few centimeters to

dozens of centimeters, which is so large to give a great influence on the result of

precise alignment particularly in the case of desktop applications. We first aim at

such desktop applications, while the standard applications of the HoloLens are of

room scale for objects such as furniture larger than a cube with an edge of 30 cm.

One of the contributions of the research is to adapt the HoloLens to the desktop

applications by using the point cloud to achieve precise alignment in a desktop

area.

Second, to evaluate misassembling by misalignment of parts in 3D efficiently, we

compare depth maps of the real and virtual object to achieve misalignment

evaluation between the real and virtual object in real time that is computed by the

poor computation resource of the HoloLens. We also study different methods to

determine an effective way for misalignment evaluation. With preliminary

experiments, we use the centered cosine similarity method as an indicator to

evaluate whether there is any occurrence of misalignment between the real and

virtual object with the accuracy of approximately ±1 cm.

In summary, our research objectives in this study contain

• Use only HoloLens to develop an AR assembly assistance system

• The system can perform desktop applications (overcome target applications

of the HoloLens for room-scale environments)

• Develop methods to evaluate misalignment between real and virtual objects

➢ at real time rate on the HoloLens

➢ within the accuracy of ±1 cm in the case of desktop applications.

We aim at developing an AR assembly assistance system with these features.

With the two proposed methods, preliminary demonstrations show that we can

use only an AR HMD, Microsoft HoloLens, to construct an essential AR-based

assembly assistance system with evaluation of misalignment between real and

virtual objects in real time. Moreover, the system can be applied on a desktop area

and overcomes the limit of the HoloLens, which is originally used for room-scale

16

environments.

In this chapter, in Section 2.2, we first review the related work on AR-based

assembly assistance systems and applications of Microsoft HoloLens. Section 2.3

introduces the design of our system and detailed information of HoloLens.

Methods of coordinate calibration and misalignment evaluation are described in

Sections 2.4 and 2.5. Implementation and demonstrations of the proposed system

are showed in Section 2.6, and Section 2.7 is the summary of this study.

17

2.2 Literature Review

Several studies have focused on AR-based systems by using various methods to

assist assembly operations. To show CAD models of parts at correct locations in

a real scene to the operator, first of all, it is necessary to confirm that the system

can determine an accurate transformation matrix between the real and virtual

worlds. Using AR markers is a common way to find the transformation

relationship. In Fig. 2-1, Sääski et al. [23] set AR markers around the assembly

to track the pose of the HMD relative to the markers. Once the relative pose of

the HMD is known, the CAD model can be displayed on or near to the markers.

Fig. 2-1 3D CAD model of finished assembly (left) and display of the next component

as a virtual part to the user (center and right) [23]

Moreover, in addition to essential functions for assembly instruction, it will be

helpful if the system can monitor assembling operation. Adding external devices

such as RGB or RGB-D cameras into the system is common to monitor assembly

operation and to evaluate whether there is misassembly. In Fig. 2-2, Mura et al.

[21] used an RGB camera to track positions of real objects and to evaluate

whether there is an occurrence of the assembly error. This verification provided

better training to the operators and offered the potential to prevent serious damage

to products. On the other hand, Alves et al. [22] used an RGB-D camera to detect

the assembly errors. Radkowski et al. [14] used an RGB-D camera to track a real

object inside the sensing zone of the camera and made a CAD model that could

follow the real object. However, using multiple devices may limit the portability

and working area of the system. Real parts of an assembly can only be tracked

18

when they are inside the sensing zone of the camera, which is fixed somewhere

in the working area.

Fig. 2-2 AR assembly assistance system of Mura’s study [21]: (a) assembly

workstation, (b) observe virtual parts through an HMD, and (c) visual messages for

detecting assembly errors.

Adding sensors, such as RGB or RGB-D cameras, onto the HMD is a possible

way to make the system portable and overcome the limited range of the working

area. Microsoft HoloLens is one of commonly used commercial HMDs, which

has an embedded depth camera to scan the real world. Evans et al. [24] used the

HoloLens to construct a system that performed assembly operations in a room-

scale environment. However, although HoloLens can scan the real world by using

the embedded depth camera and generate meshes of a scene, the meshes are not

detailed enough to track most physical parts smaller than furniture and support

an assembly application. Instead, AR markers were placed in the environment

and used to precisely define the position of a real object.

19

Because the original usage of HoloLens is for applications in room-scale

environments, using HoloLens-generated rough meshes is beneficial to be used

to detect large obstacles and planes, such as floors and walls, in the environment.

However, with the open of research mode, a system configuration to access raw

data of embedded cameras in HoloLens, we are able to obtain raw depth images

from the HoloLens [25], and further turn them into 3D point clouds to detect real

objects.

In summary, although AR technology can make assembly operations more

effective and efficient, using external devices limit the working area’s scalability

and the user’s movement in the environment, and it may take time to perform

initial device setup. These issues motivated us to develop a system that uses only

an HMD, Microsoft HoloLens, to achieve the functions of assembly instruction

and verification. This single device can make the system more flexible to various

scales of environments and products.

20

2.3 Design of HMD-Based AR Assembly Assistance System

2.3.1 System Structure

Our target system allows a user to assemble parts in their installation locations in

an assembly. In Fig. 2-3, the installation locations are specified in a CAD model

that is supplied for the assembly and defined in the coordinate system of the

virtual world. After transforming the CAD model of the assembly to an

appropriate position in a working area of the real world by a transformation

𝐓𝑅𝑊←𝑉𝑊, the user can place the real parts to the positions of the matched CAD

models to complete the assembly as indicated. In addition, during the assembling

operation, the system tells the user how closely a real part is aligned to its

corresponding CAD model while the user was trying to place the real part in the

assembly.

Fig. 2-3 A schematic plot of the relationship between physical parts and CAD models

of an assembly

Fig. 2-4 shows the proposed system’s process. First, the user needs to perform

coordinate calibration and determine the transformation relationship 𝐓𝑅𝑊←𝑉𝑊

between the virtual and the real worlds to display the CAD model in the working

area. Next, the system starts to show the CAD model at its installation location to

let the user understand which real object should be chosen and where it should be

placed at each assembly stage. During the assembly operation, the system

evaluates whether misalignment between the real object and the CAD model has

occurred and visualizes the evaluation results to the user. The process continues

21

until the assembly operation ends. Coordinate calibration and evaluation of

misalignment are the cores of the system and are described in Sections 3.4 and

3.5, respectively.

Fig. 2-4 Process of the AR-based assembly assistance system

2.3.2 Mixed Reality Head-Mounted Display – Microsoft HoloLens

In this study, we use Microsoft HoloLens, which is a pair of mixed reality glasses

manufactured by Microsoft. In this study, HoloLens serves as an HMD and is

used for the entire computation. Moreover, we use the first generation of

HoloLens in the whole study, which is referred to as HoloLens (1st gen) in general.

Fig. 2-5 shows the appearance and embedded sensors of HoloLens, and more

detailed device specifications [26] related to this study are shown in Table 2-1.

22

Fig. 2-5 Microsoft HoloLens (1st gen)

Table 2-1 HoloLens specifications

Weight 579g

Display 2.3-megapixel see-through holographic lenses

Automatic pupillary distance calibration

Sensors 1 IMU (Accelerometer, gyroscope, and magnetometer)

4 grayscale environment sensing cameras

1 depth camera with a 120°×120° angle of view

1 2.4-megapixel photographic video camera

CPU Intel 32-bit architecture (1GHz)

GPU Microsoft Holographic Processing Unit (HPU 1.0)

Memory 2GB RAM

Storage 64GB

OS Windows 10

Development tools

(used in this study)

Unity & Visual Studio 2017 &

C# programming language

The sensors in HoloLens collect the information of the physical world, and the

HoloLens system analyzes and applies the information for various applications.

For example, the system uses the four environment sensing cameras to determine

where a user is in the real world, the RGB camera to record the user’s view, and

the depth camera using a time-of-flight technique to scan surfaces of real objects.

The depth camera uses active infrared (IR) illumination to determine depth trough

time-of-flight technique [27]. Thus, for the system of AR glasses, we use the

23

embedded depth camera as the 3D scene reconstruction method. With the

captured information of the real world, the user can see virtual objects through

the holographic lenses as if they exist in the real world. In addition, with the

Windows 10 OS and the computation-related hardware, HoloLens can act as a

standalone computer and handle multiple tasks concurrently. This feature lets the

user develop various applications with complicated mathematical computations.

When HoloLens starts executing a developed application, it defines a real-world

coordinate system for the application, and the origin of the coordinate system in

the real world is at the initial location of the HoloLens where the application starts

up. This real-world coordinate system defines the user’s position and virtual

object positions in the real world to demonstrate the correct placement of the

virtual objects to the user. More details are described in Sec. 2.6.1. Fig. 2-6 shows

photos of mixed reality experience. The system shows the CAD model of a bear

statue somewhere in the real world according to the real-world coordinate system.

The system can display correct views of the virtual bear according to the user’s

location. Thus, for the user, the virtual object looks fixed in the real world.

Fig. 2-6 Observe a virtual object through HoloLens: (a) the CAD model of a bear

statue and (b) mixed reality photos.

24

There are some built-in functions in HoloLens, such as gesture input and mixed

reality capture. Mixed reality capture lets users capture the mixed reality

experience as a photo or video. It combines the output of the right eye’s

holographic lenses with the RGB camera. We also use this function to capture

user’s AR experience.

In addition, Microsoft develops and provides the Mixed Reality Toolkit (MRTK)

[28] to help HoloLens developers develop various applications fast. For example,

the “Two Hand Manipulatable” function allows the user to control the position

and orientation of a virtual object by user’s hands. The “Spatial Mapping”

function in MRTK allows the developer to obtain meshes of real-world surfaces

in the environment around the HoloLens, which are automatically generated by

HoloLens. As shown in Fig. 2-7, the HoloLens scans a room including an air

conditioner and windows with curtains and generates the mesh of the scene, a set

of triangles. The HoloLens-generated meshes are useful to describe planes, such

as walls and floors, and large-scale objects or environments larger than a cube

with an edge of 30 cm.

25

Fig. 2-7 Meshes of real-world surfaces generated by the HoloLens: (a) real scenes, (b)

display of the scanned meshes in the real scene, and (c) extracted real-world meshes

The HoloLens generates real-world meshes from depth images given by the depth

camera. The highest resolution of the generated mesh that the HoloLens can

process in real time is approximately 1000 triangles per cubic meter [29]. The

edge length of the generated triangle can vary from approximately 3 cm to dozens

of centimeters. To obtain better digital information of objects, it is a possible way

to obtain raw data of the depth camera, that is, the depth images. By enabling

“Research Mode” in the HoloLens, a software setting for system configuration,

we are able to access the low-level sensor stream data from the sensors in the

HoloLens. In Fig. 2-8, eight sensor streams are available for users:

• Environment sensing cameras [from Fig. 2-8(e) to Fig. 2-8(h)] – grayscale

images used for head tracking.

• Depth image streams – operate in two depth ranges, near and far:

✓ Near-depth sensing is used for hand tracking. The image frame rate is 15

fps, and the effective depth sensing range is approximately from 0.15 m

to 0.95 m. [Fig. 2-8(a)]

✓ Far-depth sensing is used for Spatial Mapping to generate real-world

meshes. The image frame rate is 1 fps, and the effective depth sensing

range is approximately from 0.8 m to 3 m. [Fig. 2-8(c)]

• IR-reflectivity streams – show the IR reflectivity of real objects and are used

to compute depth. Fig. 2-8(b) and Fig. 2-8(d) show the IR-reflectivity streams

in the two depth ranges corresponding to the near-depth and far-depth sensing.

26

Fig. 2-8 Sensor streams available in Research Mode: (a) and (b) are the depth image

and the IR-reflectivity image from near-depth sensing. (c) and (d) are the depth image

and the IR-reflectivity image from far-depth sensing. (e), (f), (g), and (h) are the images

of four environment sensing cameras.

Two IR illuminators in the HoloLens, operating in different frequencies, result in

the two streams of the depth images at the near and far distances, as shown in Fig.

2-8(a) and Fig. 2-8(c), respectively. It is obvious that the user’s hand in Fig. 2-8(a),

a real object close to the user, is captured in the near-depth sensing stream, while

the far-depth sensing stream can not capture it. Conversely, the near-depth sensing

stream can not capture the room scene in the far distance, while the far-depth

sensing can. This further shows how the HoloLens works, and allows developers

to select appropriate sensor streams according to their needs.

2.3.3 Adaption of Microsoft HoloLens to the target application

The standard use of HoloLens is for room-scale environments because it is

developed for mixing the real and virtual scenes, not objects. Moreover,

HoloLens-generated meshes of the environment are sufficient for room-scale

applications. However, objects smaller than a cube with an edge of 30 cm can not

be presented well in the HoloLens-generated meshes. The error of the object’s

edge length is dozens of millimeters, which is too large to help us perform

coordinate calibration and evaluate misalignment with the accuracy within ±1 cm.

Hence, it is necessary to find other ways to acquire more precise digital

information of real objects.

27

A. Point cloud of real objects from HoloLens

With the preliminary investigations on the HoloLens, the mesh automatically

generated by the HoloLens is not a proper choice for our assembling application.

Thus, we turn to acquire original point cloud data from the depth camera, which

is more precise. The approach is to convert the depth image from the depth

camera into point cloud in the coordinate system of the real world. Fig. 2-9 shows

three important coordinate systems that the system defines and uses: (1) the

coordinate system of the depth camera 𝛴𝐶, (2) the coordinate system of the user

𝛴𝑈, and (3) the coordinate system of the real world 𝛴𝑅𝑊.

Fig. 2-9 Part of coordinate systems that the HoloLens system uses

𝛴𝐶 and 𝛴𝑈 are frames of reference attached to the HoloLens and move with the

HoloLens. The origins of 𝛴𝐶 and 𝛴𝑈 in 𝛴𝑅𝑊 describe the positions of the

depth camera and the user in the real world, respectively. Moreover, 𝛴𝑅𝑊 is a

stationary frame of reference with respect to the real world, and its position and

orientation are the initial position and orientation of 𝛴𝑈 when the application

starts up. The HoloLens defines these frames of reference, and we can access the

transformation matrices between them from the HoloLens to obtain the point

cloud in 𝛴𝑅𝑊. In Fig. 2-10, we use a cube with an edge of 10 cm to illustrate

point cloud generation.

28

Fig. 2-10 Process of point cloud generation: (a) the view of scanning, (b) local point

cloud from the depth image, and (c) real-world point cloud generation.

Notice that the depth value d stored in the pixel of the depth image is the distance

between the depth camera center and the position of a real-scene point along the

line of perspective projection; that is

𝑑 = √𝑥𝑐
2 + 𝑦𝑐

2 + 𝑧𝑐
2,

where (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is the coordinate of the point in 𝛴𝐶. Fig. 2-10(c) shows the

process of point cloud generation, including four steps described below:

1. Transform points from 𝛴𝐼 to 𝛴𝐶: First, after obtaining the depth image from

the depth camera through Research Mode, we transform the image pixels

from the image coordinate system 𝛴𝐼 to coordinate system 𝛴𝐶. We define

29

𝐌𝐶←𝐼 as the transformation that converts the representation of a point in

coordinate system 𝛴𝐼 into its representation in coordinate system 𝛴𝐶 .

Moreover, 𝐌𝐶←𝐼 is a 2D-to-3D transformation with correction of lens

distortion. The result after the transformation is a 3D plane, called the camera

unit plane, in 𝛴𝐶, which is parallel to the 𝑋𝐶𝑌𝐶 plane and at 𝑧𝑐 = 1. This

transformation can be written as

 𝐩𝐶 = 𝐌𝐶←𝐼𝐩𝐼, (1)

where 𝐩𝐼 and 𝐩𝐶 are a 2D pixel point in 𝛴𝐼 and a 3D point in 𝛴𝐶 ,

respectively.

2. Obtain local point cloud in 𝛴𝐶: Next, we use the depth value information to

generate local point cloud. In Eq. (1), each pixel point of the depth image is

transformed to 3D point 𝐩𝐶 , which also describes the direction of

perspective projection, and the depth value of each pixel means the

magnitude of the projection. Thus, we can transform point 𝐩𝐶 on the camera

unit plane to position 𝐩𝐶
′ using the corresponding depth value d:

 𝐩𝐶
′ =

𝑑𝐩𝐶

‖𝐩𝐶‖
 (2)

where ‖𝐩𝐶‖ is the Euclidean norm of 𝐩𝐶.

3. Transform the local point cloud from 𝛴𝐶 to 𝛴𝑈 : We then convert the

representation of point 𝐩𝐶
′ in 𝛴𝐶 into its representation in user’s coordinate

system 𝛴𝑈 using transformation 𝐌𝑈←𝐶:

 𝐩𝑈 = 𝐌𝑈←𝐶𝐩𝐶
′ (3)

where 𝐩𝑈 is the representation of the point in 𝛴𝑈.

4. Transform the point cloud from 𝛴𝑈 to 𝛴𝑅𝑊 : Finally, we convert the

representation of point 𝐩𝑈 in 𝛴𝑈 into its representation in the coordinate

30

system of the real world, 𝛴𝑅𝑊 using transformation 𝐌𝑅𝑊←𝑈:

 𝐩𝑅𝑊 = 𝐌𝑅𝑊←𝑈𝐩𝑈 (4)

where 𝐩𝑅𝑊 is the representation of the point in 𝛴𝑅𝑊, and keeps stationary

in the real world.

With a series of transformation, from Eq. (1) to Eq. (4), we are able to transform

the pixel point 𝐩𝐼 in the depth image into the 3D point 𝐩𝑅𝑊, which is stationary

in the real world, and these equations can be combined into an equation:

 𝐩𝑅𝑊 = 𝐌𝑅𝑊←𝑈 ∙ 𝐌𝑈←𝐶 ∙
𝑑(𝐌𝐶←𝐼𝐩𝐼)

‖𝐌𝐶←𝐼𝐩𝐼‖
 (5)

𝐌𝑈←𝐶 and 𝐌𝑅𝑊←𝑈 are homogeneous transformations that describe both

rotation and translation in 3D Euclidean space and can be accessed from the

HoloLens because the HoloLens system keeps tracking transformation

relationship between different coordinate systems at run time. On the other hand,

𝐌𝐶←𝐼 including the information of camera intrinsic parameters and lens

distortion is encapsulated as a method in the HoloLens system instead of a matrix

form. To obtain the transformation result, we can invoke a low-level API called

“MapImagePointToCameraUnitPlane()” [30]. The API call takes the image pixel

coordinate 𝐩𝐼 as arguments and then returns the (𝑥𝑐 , 𝑦𝑐) components of 𝐩𝐶 .

More related APIs and codes for accessing point cloud can be found in

HoloLensForCV [31], which is provided by Microsoft and contains some samples

to develop applications for computer vision and robotics using the HoloLens.

B. Performance Test of the point cloud scanned by the HoloLens

After obtaining the point cloud, we conducted some scanning tests to measure the

performance and the limitation of the generated point cloud and to determine

appropriate objects that can be detected well during the assembling operation.

First, we compare the HoloLens-generated mesh models and the point louds of

objects, as shown in Fig. 2-11.

31

Fig. 2-11 Comparison of HoloLens-generated digital models with different objects.

From top to bottom: scanned objects, mesh models, and point clouds.

In the case of a cuboid, although we can roughly identify its shape as a cuboid,

its edges are not reconstructed well because of cm-level resolution of triangles.

On the other hand, we can observe clear edges of the cuboid in its point cloud

result which has precision in mm-level. Moreover, for the case of a bear statue

that has more complex shape, we can hardly consider its mesh model as the same

as the bear statue, but we can identify the clearer outline of the bear statue in the

point cloud result.

The case of a square prism that is much smaller than the other two cases has a

similar result. We cannot even identify its shape from its mesh model. Instead, it

looks like a pyramid. Because the top surface of the square prism is smaller than

the average size of the reconstructed triangle, the top surface is described as a

point, and the whole shape becomes a pyramid-like shape.

Therefore, HoloLens-generated mesh models are better to be used to represent

large object such as furniture that are larger than a cube with an edge of 30 cm.

32

On the other hand, with the point cloud information, we can use it to represent

smaller objects. It shows that we can use point cloud data for the assembly

composed of smaller real objects that are not presented well using HoloLens-

generated models.

Next, we focus on the resolution of the point cloud along the depth direction, axis

𝑍𝐶 . The user wearing the HoloLens looked down at some objects as the top

images in Fig. 2-12. A Preliminary test of scanning a flat table surface shows that

the precision of 𝑧𝐶 of the point cloud is approximately within ±4 mm. Thus, for

a flat portable charger of height 10 mm that is put on a table, we can roughly

identify its shape, but to have better scanning results, higher objects are preferred.

Fig. 2-12 Point cloud data of smaller objects whose height are lower than 8 cm

The case of a doll statue of height 8 cm shows that the depth camera can give

only its outline. More detailed variation of the surfaces can not be preserved

because the variations are lower than the precision of 𝑧𝐶. Moreover, for the case

of a primitive cube with an edge of 5 cm, because of its primitive shape, its point

cloud result can represent the object well. With these preliminary scanning results,

using objects that have smooth surfaces and are larger than a cube with an edge

of 2 cm are better target objects that can be represented well by the point cloud.

33

We next discuss the accuracy of the point cloud. We measure the position

difference between the real object and the point cloud. In Fig. 2-13, by observing

the point clouds in the coordinate system of the real world through the HoloLens,

it is obvious that there is a shifting between the scanned surfaces of the real

objects and the point clouds by a few centimeters. A few factors may cause this

problem: (1) the bad scaling parameter to transform the measured flight time of

IR light into the practical depth distance (a scaling problem), (2) user’s position

in the real world is not well evaluated (a shifting problem), and (3) multipath

interference [32][33][34] of IR light, which is one of common problems of time-

of-flight depth cameras.

Multipath interference also influences the quality of the generated point cloud. It

causes the distortion of the point cloud. In Fig. 2-13, we can find there is distortion

in the right upper corner of the point cloud, which is not a right angle. To solve

these problems, it is a way to calibrate the depth camera and then adjust the point

cloud data [35][36][37]. However, there will a large number of factors to be

considered, and the effect depends on different situations. Thus, instead, we

handle this shifting problem by different methods in different stages of assembly

operations. The detailed will be introduced in the following sections.

Fig. 2-13 Shifting of the generated point cloud in the real world: (a) a cube with an

edge of 10 cm and (b) a bear statue

Finally, objects that are dark colors or transparent may not be scanned because

they may absorb IR light, and no IR light will be reflected back to the depth

34

camera. Thus, these objects can not be used in our application. We have to check

real objects whether they can be scanned or not. In Fig. 2-14, we scan a wooden

cube that is placed on different surfaces. The wooden cube is set as a reference to

see scanning results of the surfaces. We can see that part of a wooden table around

the cube is scanned. However, for a black plastic board, we can see that there is

no point around the cube, and the return depth values from the depth camera is

zero that means IR light is not reflect black. Although objects of dark color may

not be scanned, not all objects of dark colors can not be scanned. For example,

black clothes can be scanned in our test.

Fig. 2-14 Scanning results of objects of different materials and colors

35

2.4 Coordinate calibration between real and virtual world

Before starting assembly work, we need to perform coordinate calibration and

adjustment between the real and virtual world. We need to define a working area,

a table surface, to make the AR system display CAD models of the assembly and

perform assembling operation on the table. For this purpose, we use a reference

real object and its corresponding CAD model as a reference virtual object for

coordinate calibration. In Fig. 2-15, a reference real object is placed on a table to

define the working area which is around the reference real object. The CAD

models of the assembly define the positions of parts in the assembly and their 3D

models, and these CAD models are defined in the coordinate system of the virtual

world in advance. In addition, we set a reference virtual object, the CAD model

of the reference real object, at the origin of the virtual world. By transforming the

reference virtual object to the position of the reference real object, the CAD

models of the assembly will be transformed to the region of the working area

together. Thus, the problem becomes how to determine the transformation

relationship 𝐓𝑅𝑊←𝑉𝑊, which denotes a matrix that transforms the origin of the

virtual world to the designated position in the real world, the position of the

reference real object.

Fig. 2-15 Schematic plot of coordinate calibration

To determine the matrix 𝐓𝑅𝑊←𝑉𝑊, we align the reference virtual object to the

position of the reference real object with the corresponding orientation and then

compute 𝐓𝑅𝑊←𝑉𝑊. In Fig. 2-16, we design the alignment process involving two

36

steps: rough alignment and precise alignment.

For rough alignment, we utilize a function called “Two Hand Manipulatable” in

the Mixed Reality Toolkit and let the user move the reference virtual object to the

reference real object roughly. The function uses the depth images in the near-

depth sensing stream from the depth camera to track the user’s hand manipulation

as a controller to manipulate the target virtual object, as shown in Fig. 2-8(a). The

translation control is based on the motion of two hands or one hand in the user’s

coordinate system 𝛴𝑈 with 𝑋𝑈, 𝑌𝑈, and 𝑍𝑈 axes. The hand movement in 𝑍𝑈

direction is identified by the depth information of tracked hands. The rotation

control of the object is based on the relative motion of two hands. For instance,

in Fig. 2-17, when the left hand moves backward, and the right hand moves

forward, the virtual object will rotate counterclockwise about the 𝑌𝑈 axis. An

illustration of rough alignment process is shown in Fig. 2-18.

Through hand manipulation, although the user can adjust the reference virtual

object to the position of the reference real object, the user can only achieve the

accuracy level of centimeter. The reason is that the HoloLens can not detect the

hand movement in millimeter. Thus, we need to further apply another alignment

to control the alignment error in millimeter level.

Fig. 2-16 Process of coordinate calibration

37

Fig. 2-17 Manipulate a virtual object through user’s hands

Fig. 2-18 Schematic plot of rough alignment process

After rough alignment, we perform precise alignment to make the reference

virtual object overlap the real object in millimeter level. We use the point-to-plane

iterative closest point (ICP) algorithm [38][39] to minimize the difference in

positions of the two reference objects. To apply the point-to-plane ICP, we need

their point cloud data. For the reference virtual object (i.e., a CAD model), we

can acquire its point cloud data with the corresponding normal vector information

for each point. For the digital content of the reference real object, we access the

raw point cloud data from the depth camera as introduced in Section 2.3.2.

38

The process of precise alignment is shown in Fig. 2-19. First, before doing the

point-to-plane ICP, a preprocessing is performed to extract and keep the scanned

points of the real object inside the axis-aligned bounding box of the virtual object

whose edges are aligned to the axes of the real-world coordinate system. This

preprocessing removes most of the scanned points belonging to the surroundings

that we are not interested and simultaneously decreases the number of points for

finding pair-correspondences in the subsequent point-to-plane ICP. To keep the

scanned points of the reference real object as many as possible, the size of the

bounding box also plays an important role.

In Fig. 2-20, originally, the axis-aligned bounding box of the virtual object is

defined by the smallest cuboid that fully encloses the virtual object. However, if

the position of the virtual object after rough alignment is not close to the real

object sufficiently, some scanned points of the reference real object will be

removed in this stage. It will influence the final alignment result if there is a great

loss of the scanned points of the reference real object. Therefore, to avoid this

loss to some degree, we can simply expand the bounding box by increasing its

size along each side. The remaining scanned points, which are inside the

bounding box, mostly belong to the surfaces of the reference real object, and some

of them are the points of the surroundings near the reference real object. With our

preliminary tests, expanding the side of the bounding box by 2 cm is an

appropriate choice to handle the rough alignment result with the accuracy of

centimeters.

Fig. 2-19 Process of precise alignment

39

Fig. 2-20 The illustration of the bounding box to extract the points that may belong to

the reference real object.

Next, the point-to-plane ICP method is performed to achieve precise registration.

Vertices of the virtual object (CAD model) will be registered to the HoloLens-

scanned points of the real object. In each iteration of the point-to-plane ICP, it

consists of three steps: (1) find correspondences, (2) compute a transformation

matrix 𝐌𝑟←𝑣 that minimizes an error function, and (3) transform the virtual

object using evaluated 𝐌𝑟←𝑣.

Find correspondences

A virtual object is defined as a triangular mesh with vertices {𝐪𝑖} . And {𝐩𝑖}

denotes the point cloud scanned by HoloLens. For each vertex 𝐪𝑖 of the virtual

object, its correspondence is the closest scanned point 𝐩𝑖 associated with the

minimum Euclidean distance, min‖𝐩𝑖 − 𝐪𝑖‖ . This is implemented by the k-d

tree structure [40] to search for the closest scanned point fast. In addition, a

threshold 𝛿 is set to further pick out reliable paired correspondences. Because

the HoloLens-scanned points include only the partial information of the real

object, it is preferred to take only potential corresponding points in the virtual

object for the registration. Thus, if min‖𝐩𝑖 − 𝐪𝑖‖ ≤ 𝛿 , this paired

correspondence (𝐩𝑖 , 𝐪𝑖) will be selected into a group for the evaluation of the

point-to-plane ICP; otherwise, (𝐩𝑖 , 𝐪𝑖) will be excluded. Fig. 2-21 shows an

illustration of finding effective correspondences.

40

Fig. 2-21 Paired correspondences searching based on the closest point

Compute the transformation matrix 𝐌𝑟←𝑣 & Transform the virtual object

Based on all the paired correspondences, we next try to determine the

transformation matrix 𝐌𝑟←𝑣 such that

 𝐌𝑟←𝑣 = argmin
𝐌

∑‖(𝐌𝐪𝑖 − 𝐩𝑖) ∙ 𝐧𝐪𝑖
‖

2
𝑁

𝑖=1

 (6)

where N is the number of the paired correspondences found in the last step, and

𝐧𝐪𝑖
 is the vertex normal vector associated with 𝐪𝑖 . 𝐌𝑟←𝑣 and M are 3D

transformations represented by 4 4 matrices using homogeneous coordinates,

including rotation and translation:

 𝐌 = [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

]

where {𝑟𝑖𝑗} and {𝑡𝑖} are the parameters of rotation and translation, respectively.

Moreover, 𝐩𝑖, 𝐪𝑖, and 𝐧𝐪𝑖
 are also expressed in homogeneous coordinates. Eq.

(6) suggests that the evaluated 𝐌𝑟←𝑣 will make the dot product between vector

𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ and 𝐧𝐪𝑖
 become close to zero. Geometrically, in Fig. 2-22, after the

transformation of 𝐌𝑟←𝑣, 𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ becomes 𝐩𝑖𝐪𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ′ that is approximately orthogonal

to 𝐧𝐪𝑖
; that is, the scanned point 𝐩𝑖 will be on the surface of the virtual object.

Computation of 𝐌𝑟←𝑣 is implemented according to Low’s work [39] by

41

linearizing Eq. (6) into a least-square optimization problem and then solving it by

the singular value decomposition (SVD) method. After transforming the virtual

object using the evaluated 𝐌𝑟←𝑣, we perform the next iteration, repeating the

above steps, until the upper limit of iterations or 𝐌𝑟←𝑣 converges.

Fig. 2-22 Schematic plot of the point-to-plane ICP

Although there is another ICP-related method called point-to-point ICP [41],

which is also commonly used to minimize the difference between two point

clouds, as shown in Fig. 2-23, and to reconstruct 2D or 3D surfaces from different

views of scanning. Although each iteration of the point-to-plane ICP algorithm

generally takes more time than the point-to-point ICP, Rusinkiewicz et al. [42]

observed that the point-to-plane ICP has significantly better convergence rates.

In our tests using Point Cloud Library (PCL) on a PC [43] to compare the two

methods, the point-to-plane version generally takes less processing time. Thus,

considering to the poorer computing ability of the HoloLens, we use the point-to-

plane ICP method to perform precise alignment.

Fig. 2-23 Schematic plot of the point-to-point ICP

42

Performance test of precise alignment

To evaluate the performance of precise alignment, a wooden cube with an edge

of 10 cm is used as the reference real object for the preliminary test. Before the

performance evaluation, we first have to calibrate and adjust the HoloLens-

scanned point cloud to make it attach to the surfaces of the real object. As

described in Section 2.3.3, because of inappropriate calibration of the depth

camera and interference from the environment, there seems a shifting between

the real object and the scanned point cloud. This shifting may be caused by the

inappropriate scaling parameter of the depth camera or the shifting of self-

position in the real world. To mitigate this problem for precise alignment, we use

the primitive cube and require the user to scan the cube from the specific view as

shown in Fig. 2-24. The top and front planes of the cube are scanned, and the next

is to adjust the scanned point cloud to make it attached to the surfaces of the cube.

Fig. 2-24 Adjust the point cloud for coordinate calibration

43

Moreover, we find that by scanning the cube at a close distance, approximately

shorter than 30 cm, it results in approximately constant shift amounts of 1 cm

vertically (top surface) and of 1.6 cm horizontally along axis 𝑍𝑈 (front surface).

Otherwise, larger distances of scanning generally lead to larger shifting amounts

by a few centimeters. This may derive from multipath interference that larger

distances cause larger errors. By scanning the cube from the specific view and at

the close distance, the shift amount for the adjustment of the point cloud may be

repeatedly used in future tasks.

After adjusting the point cloud of the reference real object and rough alignment,

we can perform precise alignment. In Fig. 2-25, a corresponding CAD model of

the cube is constructed with 386 vertices, 768 faces, and normal vectors for all

vertices. Fig. 2-26(a) shows the point cloud of the real scene, a cube on a table,

and Fig. 2-26(b) shows the position of the virtual object after rough alignment,

which is not well aligned to the scanned points of the real object. After rough

alignment, we can start to perform precise alignment. First, point extraction was

performed to remove redundant scanned points outside the bounding box of the

virtual object. Here, we increased the extent of the bounding box by 2 cm to keep

potential points belonging to the real object. As a result, in Fig. 2-26(c), the

number of the scanned points decreased from 65,536 to 5,252 points.

Fig. 2-25 The CAD model of the reference object

44

Fig. 2-26 Extract the scanned points near the virtual object: (a) scanned scene, (b)

scanned scene with the virtual object after rough alignment, and (c) scanned points

inside the bounding box of the virtual object.

Afterward, most points belonging to the top and front surfaces of the real object

were kept. Those preserved 5,252 scanned points were used to perform point-to-

plane ICP with the virtual object. Fig. 2-27 shows the experimental results with

different iterations. In our preliminary development, it took 1.5 sec for 10

iterations of the point-to-plane ICP on the HoloLens. Basically, after 5th iteration,

the transformation of the virtual object converged and was not obvious in this

case. It can be seen that the virtual object (mesh of the cube) eventually attached

well to the scanned points of the real cube (red points). We can see that the

position and orientation of the virtual object also became much closer to the real

one in the mixed reality photos (user’s view).

Thus, starting from rough alignment to precise alignment, a series of

transformations forms the transformation matrix 𝐓𝑅𝑊←𝑉𝑊 that transforms the

virtual object from the original position, somewhere predefined in the real-world

coordinate system, to the position of the corresponding real object, which can be

defined by the user arbitrarily.

45

Fig. 2-27 Registration results of the point-to-plane ICP

46

2.5 Evaluation of misalignment between real and virtual

objects

2.5.1 Design of misalignment evaluation

After coordinate calibration, the system can start to display the virtual objects

(CAD models) of the assembly in the preferred working area. During the

assembling operation, a user holds the corresponding real object and tries to move

it to the position of the virtual object. In order to assist the user to place the real

object to the right position, the system evaluates whether there is misalignment

between the real and virtual objects to check whether the assembling operation is

correct. Because we can acquire the point cloud data of real objects from the

HoloLens and have the corresponding CAD models, misalignment evaluation

between the real and virtual objects can be realized by comparing the distance or

similarity between the scanned point cloud of the real object and the CAD model,

the virtual object as assembling indication.

The most general approach for evaluating the misalignment between two objects

in the 3D space is to compute distance between them. This computation requires

computation of finding corresponding points between the CAD model and the

point cloud of the real object and calculating their distances as well. In our

application, this misalignment evaluation must be done at real time rate in order

to indicate the misalignment immediately following the object handling motion

of the user. In this aspect, this approach is too expensive for the HoloLens with

small computation resources. It is crucial to take more efficient approach for

misalignment evaluation. Instead, we compare the depth images of the real and

virtual objects to evaluate misalignment, i.e., performing evaluation in 2D space.

Fig. 2-28 shows the process of obtaining depth images for the case of a cube on

a table. We set two virtual depth cameras that has the same position and

orientation as the physical one in the HoloLens. We can then access the depth

maps of the scanned point cloud and of the CAD model that are rendered by the

GPU in the HoloLens from the view of the virtual cameras. Related

implementation is introduced in Sec. 2.6.1. Because the two depth maps are

generated from the same viewpoint, if now the real object and the virtual object

47

are matched, we can expect that the two depth maps will be similar.

Fig. 2-28 Process of obtaining GPU-rendered depth images of the scanned point cloud

and the CAD model.

Notice that we access the GPU-generated depth map of the scanned point cloud

and use it to represent the depth map of the real object instead of directly using

the depth image from the physical depth camera. Because the depth map of the

CAD model is generated by the GPU, using the GPU-generated depth map of the

scanned point cloud can make the two depth maps in the same pixel coordinate

system for the convenience of the subsequent misalignment evaluation. Moreover,

the original depth image from the physical depth camera has the effect of lens

distortion, but the depth map of the CAD model does not have. Thus, we first

transform the original depth image to the point cloud, which is generated with the

correction of lens distortion as introduced in Section 2.3.2, and then access the

GPU-generated depth map of the point cloud.

2.5.2 Analysis of different evaluation methods

After obtaining the depth maps of the scanned point cloud and the CAD model in

the same coordinate system, we can proceed to compare these two depth maps to

evaluate the misalignment of the real and virtual objects. We define several

functions of indicators for such misalignment error. From the depth maps of the

CAD model, we know which pixels belong to the CAD model. If the real and

virtual objects are matched, it can be expected that the depth values in the same

48

pixel region will be similar, and we can compare those pixels in the two depth

maps for misalignment alignment, as shown in Fig. 2-29(a).

Fig. 2-29 Schematic plot of comparing the depth maps: (a) compare the same region

in the depth maps and (b) rearrange pixels into a sequence in the raster scanning order

For comparison, we rearrange the depth values in the target pixel region into a

sequence in bottom-to-top and left-to-right order, as shown in Fig. 2-29(b).

Therefore, we obtain the sequences of the depth values of {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛 and

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 for the depth maps of the scanned point cloud and of the CAD model,

respectively where n is the number of pixels that belong to the CAD model in the

depth map of the CAD model. The problem of misalignment evaluation is then

converted into measuring the similarity between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛 and {𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 .

To compare the sequences, we study some methods to determine an effective one

as an indicator to evaluate whether there is misalignment between the real and

virtual object:

The average and standard deviation of the depth differences

We first simply compute the arithmetic mean and standard deviation of the depth

differences, 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑, as two potential indicators:

 𝐷𝑎𝑣𝑒 =
∑ ∆𝑑𝑖

𝑛
𝑖=1

𝑛
,

and

49

𝐷𝑠𝑡𝑑 = √
1

𝑛 − 1
∑ (∆𝑑𝑖 − 𝐷𝑎𝑣𝑒)

2
𝑛

𝑖=1

where ∆𝑑𝑖 = |𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷|. These indicators evaluate misalignment based on

the distance, the difference of the depth values, between the scanned point cloud

and the CAD model. When the real and virtual objects are matched, it can be

expected that the objects are close, so 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 will be both small;

otherwise, it demonstrates that misalignment occurs.

Cosine similarity and centered cosine similarity

Next, we study the cosine similarity and centered cosine similarity methods as

another potential indicators. These methods measure the similarity between two

non-zero vectors according to the cosine of the angle between them, which is the

same as the dot product of the two vectors normalized to have length of 1.

Suppose {𝑝𝑖}𝑖=1
𝑛 and {𝑞𝑖}𝑖=1

𝑛 are sequences of real numbers and define two

different data. Let p and q be ordered n-element vectors containing the above data:

𝐩 = (𝑝1, 𝑝2, … , 𝑝𝑛) and 𝐪 = (𝑞1, 𝑞2, … , 𝑞𝑛)

in ℝ𝑛. The cosine similarity between p and q is defined by

 𝐶𝑆(𝐩, 𝐪) =
𝐩 ∙ 𝐪

‖𝐩‖‖𝐪‖
=

∑ 𝑝𝑖𝑞𝑖
𝑛
𝑖=1

√∑ 𝑝𝑖
2𝑛

𝑖=1 √∑ 𝑞𝑖
2𝑛

𝑖=1

 (7)

A small angle between two vectors, which gives a high result of the cosine

similarity, indicates high similarity between the vectors while a large angle, low

cosine similarity, means low similarity. In addition, the output range of the cosine

similarity is [-1, 1] for any included angle between two vectors in the interval [0°,

180°]. Two vectors that have the same direction have the included angle of 0°,

and its cosine similarity is 1. Two vectors that are orthogonal have the angle of

90° and the cosine similarity of 0, and two vectors in the opposite directions have

the angle of 180° and the cosine similarity of -1. Fig. 2-30 shows the illustration

of the cosine similarity result, which measures the cosine of the angle instead of

the distance between the two vectors.

50

Fig. 2-30 Schematic plot of the cosine similarity result

Moreover, the centered cosine similarity is defined by

 𝐶𝐶𝑆(𝐩, 𝐪) =
∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

 (8)

where �̅� and �̅� are the arithmetic mean of {𝑝𝑖}𝑖=1
𝑛 and {𝑞𝑖}𝑖=1

𝑛 , respectively.

The output range is the same as the output of the cosine similarity, [-1, 1], for any

included angle between two vectors in the interval [0°, 180°]. Eq. (8) shows that

the centered cosine similarity is the cosine similarity between centered versions

of 𝐩 and 𝐪.

In particular, the cosine similarity is invariant to the scaling of data. On the other

hand, the centered cosine similarity is invariant to the shift and scaling of data.

About these features, we first prove the shift and scale invariance of the centered

cosine similarity. For any constants 𝑎 , 𝑏 , 𝑐 , and 𝑑 with 𝑎 , 𝑐 > 0 , we may

scale and shift the data {𝑝𝑖}𝑖=1
𝑛 and {𝑞𝑖}𝑖=1

𝑛 , and then generate new data {𝑝𝑖
′}𝑖=1

𝑛

and {𝑞𝑖
′}𝑖=1

𝑛 where 𝑝𝑖
′ = 𝑎𝑝𝑖 + 𝑏 and 𝑞𝑖

′ = 𝑐𝑞𝑖 + 𝑑 . Let 𝐩′ = (𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′)

and 𝐪′ = (𝑞1
′ , 𝑞2

′ , … , 𝑞𝑛
′) be n-dimensional vectors from {𝑝𝑖

′}𝑖=1
𝑛 and {𝑞𝑖

′}𝑖=1
𝑛 ,

respectively. The centered cosine similarity between 𝐩′ and 𝐪′ is then given by

 𝐶𝐶𝑆(𝐩′, 𝐪′) =
∑ (𝑝𝑖

′ − �̅�′)(𝑞𝑖
′ − �̅�′)𝑛

𝑖=1

√∑ (𝑝𝑖
′ − �̅�′)2𝑛

𝑖=1 √∑ (𝑞𝑖
′ − �̅�′)2𝑛

𝑖=1

where �̅�′ and �̅�′ are the arithmetic mean of {𝑝𝑖
′}𝑖=1

𝑛 and {𝑞𝑖
′}𝑖=1

𝑛 , respectively.

51

Particularly,

�̅�′ = 𝑎�̅� + 𝑏,

and

�̅�′ = 𝑐�̅� + 𝑑.

Consequently,

𝐶𝐶𝑆(𝐩′, 𝐪′) =
∑ (𝑎𝑝𝑖 + 𝑏 − 𝑎�̅� − 𝑏)(𝑐𝑞𝑖 + 𝑑 − 𝑐�̅� − 𝑑)𝑛

𝑖=1

√∑ (𝑎𝑝𝑖 + 𝑏 − 𝑎�̅� − 𝑏)2𝑛
𝑖=1 √∑ (𝑐𝑞𝑖 + 𝑑 − 𝑐�̅� − 𝑑)2𝑛

𝑖=1

=
𝑎𝑐 ∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

𝑎√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 × 𝑐√∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

=
∑ (𝑝𝑖 − �̅�)(𝑞𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑞𝑖 − �̅�)2𝑛

𝑖=1

= 𝐶𝐶𝑆(𝐩, 𝐪).

This implies that the result of the centered cosine similarity is invariant to the

shift and scaling of data. The scale invariance of the cosine similarity can be

proved similarly by substituting the shifts 𝑏 and 𝑑 into zero.

Moreover, the cosine similarity and the centered cosine similarity measure

whether the two sequences have the same variation trend; that is, if larger 𝑝𝑖

(smaller 𝑝𝑖) corresponds to larger 𝑞𝑖 (smaller 𝑞𝑖), the results will be high (low).

Thus, it is a possible way to use the cosine similarity and the centered cosine

similarity as indicators to measure the similarity between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛 and

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 , i.e.,

𝐷𝐶𝑆 = 𝐶𝑆(𝐝𝑆𝐶𝐴𝑁, 𝐝𝐶𝐴𝐷) and 𝐷𝐶𝐶𝑆 = 𝐶𝐶𝑆(𝐝𝑆𝐶𝐴𝑁, 𝐝𝐶𝐴𝐷)

where 𝐝𝑆𝐶𝐴𝑁 = (𝑑1
𝑆𝐶𝐴𝑁 , 𝑑2

𝑆𝐶𝐴𝑁, … , 𝑑𝑛
𝑆𝐶𝐴𝑁) and 𝐝𝐶𝐴𝐷 = (𝑑1

𝐶𝐴𝐷, 𝑑2
𝐶𝐴𝐷, … , 𝑑𝑛

𝐶𝐴𝐷) ,

respectively. 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠 measure whether the depth maps of the scanned

point cloud and the CAD model have the similar variation trend of the depth

values instead of measuring the difference of the depth values as 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑.

52

2.5.3 Performance test of different evaluation methods

As introduced in Section 2.3.2, because of the errors of the HoloLens-scanned

point cloud, we need a robust indicator to evaluate the misalignment effectively.

With the above-mentioned evaluation methods, the next step is to design

experiments to characterize the performance of the different evaluation methods

and to determine an effective one as the indicator for misalignment evaluation.

The experimental setup is shown in Fig. 2-31(a). We put a real object and the

corresponding virtual object on a table surface that is parallel to 𝑋𝑅𝑊𝑍𝑅𝑊 plane

and evaluate misalignment between the real and virtual objects using the four

indicators, 𝐷𝑎𝑣𝑒, 𝐷𝑠𝑡𝑑, 𝐷𝑐𝑠, and 𝐷𝑐𝑐𝑠.

Fig. 2-31 Experimental setup for the performance tests of the indicators (a) fixed real

object and the associated movable virtual object and (b) design of shifting the virtual

object to different positions

To do evaluation under different misalignment conditions, we shift the virtual

object to different positions on the table (XZ plane). In Fig. 2-31(b), by setting the

origin of the XZ coordinate system at the center of the real object, the virtual

object moves relative to the real object along the X and Z axes. For example, at

(0, 0), it means the real and virtual objects are matched, and at (2, 2), it implies

the virtual object moves 2 cm to the right and 2 cm forward relative to the real

object. With this experimental design, we investigate four objects with different

shapes and sizes, as shown in Fig. 2-32: (1) a cube with an edge of 10 cm, (2) a

53

bear statue, (3) a cube that is the same as (1) but rotates by 45°, and (4) a triangular

block that is the half size of a cube with an edge of 5 cm.

Fig. 2-32 Objects with different shapes and sizes to test the indicator performance

Fig. 2-33 and Fig. 2-34 show experimental results using the 𝐷𝑎𝑣𝑒 , 𝐷𝑠𝑡𝑑

indicators, respectively. It can be seen that when the positions of the real and

virtual objects are closer, both the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 indicators give smaller values.

It shows that the difference of the depth values between {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛 and

{𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 are smaller, and the two sequences are more similar. However, for the

case of the triangular block, the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 values do not change apparently

with the change of the virtual object’s position in comparison with the cases of

the other three objects. For example, in Fig. 2-33(b) and Fig. 2-34(b), if we move

the virtual bear statue from position (−2, 0) to (0, 0), the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 values

decrease by 1.89 cm and 4.665 cm, respectively. On the other hand, in Fig. 2-33(d)

and Fig. 2-34(d), with the same shifts of the virtual triangular block, the 𝐷𝑎𝑣𝑒

and 𝐷𝑠𝑡𝑑 values decrease by only 0.012 cm and 0.748 cm, respectively.

54

Fig. 2-33 Evaluation results using the 𝐷𝑎𝑣𝑒 indicator

55

Fig. 2-34 Evaluation results using the 𝐷𝑠𝑡𝑑 indicator

56

For the triangular block, the similar 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 results in different shift

positions are caused by its smaller size. In Fig. 2-35, when the virtual bear statue

and the virtual triangular block both shifts left 2 cm to (-2, 0), their left parts do

not overlap with their corresponding real objects. Thus, when we compare the

depth maps of the scanned point cloud and the CAD model, 𝑑𝑖
𝑆𝐶𝐴𝑁 related to

that left part without overlapping will be the scanned points of the surrounding,

i.e., the table surface. Because the bear statue is much higher than the triangular

block, in the region without overlapping, the depth difference ∆𝑑𝑖 =

|𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷|, the distance between the virtual bear statue and the table surface

along the projection line, is larger than the depth difference of the triangular block

case. The depth difference maps, maps of ∆𝑑𝑖, in Fig. 2-35 show that the largest

∆𝑑𝑖 of the bear statue can be larger than 10 cm while most ∆𝑑𝑖 of the triangular

block are averagely 4 cm. Thus, the small ∆𝑑𝑖 between the CAD model and the

table surface cause that 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 do not change apparently in different

shift positions.

Fig. 2-35 Influence of the size of real objects to 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑: compare (a) the bear

statue and (b) the triangular block cases

Next, Fig. 2-36 and Fig. 2-37 show the results of 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠, respectively. It

can be seen that when the positions of the real and virtual objects are closer, both

the 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠 indicators give larger values. It implies that the {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛

and {𝑑𝑖
𝐶𝐴𝐷}𝑖=1

𝑛 sequences are more similar.

57

Fig. 2-36 Evaluation results using the 𝐷𝑐𝑠 indicator

58

Fig. 2-37 Evaluation results using the 𝐷𝑐𝑐𝑠 indicator

59

In Fig. 2-36, for all the four objects, the 𝐷𝑐𝑠 values in different positions vary

slightly. For instance, by shifting the virtual bear statue from (−2, 0) to (0, 0), the

𝐷𝑐𝑠 value increases by only 1% as shown in Fig. 2-36(b). On the other hand, in

Fig. 2-37(b), the 𝐷𝑐𝑐𝑠 value increases by 85%.

Using the 𝐷𝑐𝑠 is not a proper indicator for us to compare the depth maps.

According to Eq. (7), we can view the cosine similarity between 𝑑𝑖
𝑆𝐶𝐴𝑁 and

𝑑𝑖
𝐶𝐴𝐷 as a sum of products {𝑠𝑖}𝑖=1

𝑛 such that

𝑠𝑖 =

(𝑑𝑖
𝑆𝐶𝐴𝑁)(𝑑𝑖

𝐶𝐴𝐷)

‖𝐝𝑆𝐶𝐴𝑁‖‖𝐝𝐶𝐴𝐷‖
.

Similarly, the centered cosine similarity is a sum of products {𝑠𝑖
′}𝑖=1

𝑛 such that

𝑠𝑖
′ =

(𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑆𝐶𝐴𝑁̅̅ ̅̅ ̅̅ ̅̅)(𝑑𝑖

𝐶𝐴𝐷 − 𝑑𝐶𝐴𝐷̅̅ ̅̅ ̅̅)

‖𝐝𝑆𝐶𝐴𝑁‖‖𝐝𝐶𝐴𝐷‖
.

Fig. 2-38 Schematic plot of the computation of 𝐷𝑐𝑠 and 𝐷𝑐𝑐𝑠

In Fig. 2-38(a), because the output of the depth value is always positive, all 𝑠𝑖

are positive, and the 𝐷𝑐𝑠 result keeps high even in different shift positions. On

the other hand, for the computation of 𝐷𝑐𝑐𝑠 in Fig. 2-38(b), after centering the

sequences by their corresponding average depths, some 𝑠𝑖
′ are negative if

𝑑𝑖
𝑆𝐶𝐴𝑁 and 𝑑𝑖

𝐶𝐴𝐷 are not both greater or less than their corresponding averages,

𝑑𝑆𝐶𝐴𝑁̅̅ ̅̅ ̅̅ ̅̅ and 𝑑𝐶𝐴𝐷̅̅ ̅̅ ̅̅ . This results in the lower 𝐷𝑐𝑐𝑠 result than the 𝐷𝑐𝑠 when there

60

is larger misalignment.

Based on the experiments, it can be seen that 𝐷𝑐𝑐𝑠 is more sensitive to the

misalignment between the real and virtual objects and is a better method for

misalignment evaluation. In particular, for the case of the small triangular block,

𝐷𝑐𝑐𝑠 changes more obviously in comparison with the other three indicators. In

Sec. 2.3.3, we mention the shift or scaling of the scanned point cloud, as shown

in Fig. 2-39. Because 𝐷𝑐𝑐𝑠 is invariant to the shift and scaling, the constant shift

and scaling errors of the scanned point cloud will not influence the 𝐷𝑐𝑐𝑠 result

while the errors influence the 𝐷𝑎𝑣𝑒 and 𝐷𝑠𝑡𝑑 performance. Moreover, the

output range of 𝐷𝑐𝑐𝑠 is fixed in [−1, 1]. By setting a threshold of 0.72, when the

𝐷𝑐𝑐𝑠 result is larger than 0.72, the position error, which is the misalignment

between the real and virtual object, is within ±1 cm. This can be a preliminary

indicator to judge whether the misalignment occurs. Therefore, with the

comparison between different evaluation methods, we will use the centered

cosine similarity 𝐷𝑐𝑐𝑠 as the indicator to evaluate the misalignment between the

real and virtual objects.

Fig. 2-39 Shift or scaling problem of HoloLens-scanned point cloud

However, no matter which indicator we use, there is a problem that the indicator

values are asymmetric. For example, in Fig. 2-37(a), indicator values at positions

(−1, 0) and (0, 1) are 0.3903 and 0.7017, respectively. Indicator values changes

at different rates as the object shifts along X and Z directions. This asymmetric

problem derives from different variations of {𝑑𝑖
𝑆𝐶𝐴𝑁}𝑖=1

𝑛 along the two

directions. It also means that the variations of depth differences {∆𝑑𝑖}𝑖=1
𝑛 =

61

{‖𝑑𝑖
𝑆𝐶𝐴𝑁 − 𝑑𝑖

𝐶𝐴𝐷‖}𝑖=1
𝑛 are different. This derives from the influence of

surroundings, the table surface, as the object moves in different directions.

In Fig. 2-40, let us see the front surface of the object. At position (−1, 0), it can

be seen that when comparing depth difference in the non-overlapping area, ∆𝑑𝑖

is the distance difference between the table surface and the CAD model along the

projection line starting from the depth camera center, i.e., the distance between

points a and b ‖𝑏𝑎⃑⃑⃑⃑ ‖, and points c and d ‖𝑑𝑐⃑⃑⃑⃑ ‖. As comparing with the higher

point, the depth difference becomes larger. The variation of ∆𝑑𝑖 at position (−1,

0) is schematically plotted in Fig. 2-41.

Fig. 2-40 Influence of surroundings on asymmetric indicator values

Fig. 2-41 Different variation of depth differences as the object is at different positions

62

On the other hand, at position (0, 1), by comparing the depth differences along

the same projection lines, ∆𝑑𝑖 is the distance between the point cloud of the real

object and the CAD model; that is, ‖𝑏′𝑎′⃑⃑⃑⃑ ⃑⃑ ⃑‖ and ‖𝑑′𝑐′⃑⃑⃑⃑⃑⃑ ⃑‖. We see that ‖𝑏′𝑎′⃑⃑⃑⃑ ⃑⃑ ⃑‖ is

approximately equal to ‖𝑑′𝑐′⃑⃑⃑⃑⃑⃑ ⃑‖ in comparison to the difference between ‖𝑏𝑎⃑⃑⃑⃑ ‖

and ‖𝑑𝑐⃑⃑⃑⃑ ‖. The depth difference does not change so much as comparing with the

higher point as shown in Fig. 2-41. Since the variations of depth differences in

the two cases are different, it leads to the difference of calculated indicator values.

For the case of position (−1, 0), the existence of surrounding objects influences

the variation of calculated depth difference and further influence the output

indicator value. To make the indicator value symmetric, it is a possible way to

perform object tracking to remove the pixels of surroundings from the depth map

of the real object.

63

2.6 Demonstrations of HMD-based AR assembly

assistance system

2.6.1 System Implementation

For the implementation of the AR assembly assistance system, we use the Unity

software (version 2017.4) [44] to develop user interfaces and necessary functions.

Unity is commonly used as the software for game development, and it can also

support the development of AR applications for the HoloLens.

Fig. 2-42 Introduction to Unity interface for application development.

Fig. 2-42 shows the development interface in Unity. It consists of four regions:

project window, hierarchy tab, scene view, and inspector tab. In the project

window, we can manage files for application development, including CAD

models of an assembly, script files telling how the system and the virtual objects

behave, and Mixed Reality Toolkit developed by Microsoft. Hierarchy tab shows

the list of all active objects in the scene view. The scene view visualizes how the

system will look like. We can see the CAD models and design a graphical user

interface for the system. Finally, in the inspector tab, we can control the position

and orientation of the CAD models and apply developed script files to the CAD

models to control how the CAD models behave. For example, we apply a script

called “TwoHandManipulatable.cs” (from Mixed Reality Toolkit) to the reference

64

virtual object and make the virtual object can be manipulated by user’s hands.

This script takes the movement of the user’s hands as input to control the position

and the orientation of the virtual object. This realizes the rough alignment of

coordinate calibration in Sec. 2.4. In addition, script files in Unity are developed

using C# programming language. Next, Fig. 2-43 introduces the relationship

between the designed view and the practical view of the system.

Fig. 2-43 Relationship between the designed system and the practical user experience

in AR: (a) designed view in Unity, (b) a schematic plot of user experience in AR, and

(c) user’s view of a real scene at different positions.

65

For the system development in Unity, in Fig. 2-43(a), it mainly contains three

types of objects: cameras, CAD models, and a user interface for the control of the

assembling process. Those objects are defined in the coordinate system of Unity,

Σ𝑈𝑛𝑖𝑡𝑦, which corresponds to the coordinate system of the real world, Σ𝑅𝑊, as

shown in Fig. 2-43(b).

Set the main camera

For camera objects, especially, a camera object called Main Camera in Unity

handles head tracking and stereoscopic rendering of the HoloLens. That is to say,

the coordinate system of the main camera Σ𝑀𝐶 corresponds to the coordinate

system of the user Σ𝑈. Moreover, because Σ𝑀𝐶 (Σ𝑈) moves with the movement

of the user’s head, the starting position of the user can be set by setting the position

of the main camera. By setting the main camera position to (𝑋: 0, 𝑌: 0, 𝑍: 0) in

Σ𝑈𝑛𝑖𝑡𝑦, the starting position of the user (user’s position at 𝑝0 in Fig. 2-43(b)) will

be the same as the origin of Σ𝑅𝑊. It can be said that when the developed AR

system initially starts up, the user’s initial position in the real world determines

where the origin of Σ𝑅𝑊 is.

Define the virtual world

Next, we define a local coordinate system called as the virtual world Σ𝑉𝑊, which

includes the reference virtual object and the CAD models of the assembly. The

origin of Σ𝑉𝑊 is defined at the reference virtual object. In addition, the CAD

models of the assembly are defined in Σ𝑉𝑊. Thus, when the reference virtual

object moves, the CAD models of the assembly also moves the same way.

Moreover, by setting the position of the reference virtual object at (0, 0, 1) in

Σ𝑈𝑛𝑖𝑡𝑦, which corresponds to (0, 0, 1) in Σ𝑅𝑊, it will render the reference object

1 meter in front of the user’s starting position.

Fig. 2-43(c) shows the user’s view through the HoloLens at 𝑝0 and 𝑝1 , as

marked in Fig. 2-43(b). With the above position setting of the main camera and

of the reference object, when the user wears the HoloLens and starts up the

developed AR system at 𝑝0, the user can see the virtual objects 1 meter forward.

Then, the user moves to 𝑝1 and can see that the virtual objects are fixed at the

66

same position.

Design a user interface

Furthermore, we design a basic user interface to help the user control the system.

It contains a few buttons to let the user trigger different functions which are

realized in script files. Table 2-2 lists and introduces the essential buttons to

control the assembling process. The position of the buttons in the user interface

is listed according to the execution sequence from top to bottom. More detailed

relationship between the designed function buttons in the user interface and the

system process is shown in Fig. 2-44

Table 2-2 The function of the buttons in the designed user interface

Button name Function

Start Sensing Enable the depth camera. The depth camera will start

scanning the physical environment.

Scanning Record and visualize the point cloud scanned by the

depth camera.

Start ICP Take the reference virtual object and the scanned

point cloud as input and perform the point-to-plane

ICP algorithm.

Start Assembling Show the CAD model of the first part in the assembly

and evaluate misalignment

Next Object (Obj.) Show the CAD model of the next part and evaluate

misalignment

Finish Check Finish the assembling process and the misalignment

evaluation.

67

Fig. 2-44 Relationship between designed interface and system process

Set virtual depth cameras

In Sec. 2.5, to compare the depth maps of the virtual object and of the scanned

point cloud for misalignment evaluation, two virtual cameras are set to render the

two depth maps, respectively. For the implementation, in Unity, we first set two

camera objects at the same position as the physical depth camera.

Since the physical depth camera is fixed in the HoloLens and moves with the

user’s head, the position of the depth camera relative to the user is fixed. The

relative orientation is also fixed. Thus, we can set the virtual cameras in Σ𝑀𝐶,

which corresponds to Σ𝑈 with fixed position and orientation values. Fig. 2-45

shows the coordinate system of the virtual camera Σ𝑉𝐶 related to Σ𝑀𝐶. With our

preliminary evaluation, the origin of Σ𝑉𝐶, the center of the virtual camera, is at

(0 m, 0.0438 m, 0.0663 m) in Σ𝑀𝐶. Moreover, Σ𝑉𝐶 is oriented by 33.5° along

68

the X axis clockwise according to the left-hand rule. To determine the values of

the position and the orientation, we refer to the transformation matrix 𝐌𝑈←𝐶

between the coordinate systems of the user Σ𝑈 and of the physical depth camera

Σ𝐶, which is recorded in the HoloLens as introduced in Sec. 2.3.3. Through the

transformation matrix between Σ𝑈 and Σ𝐶 , we can evaluate the origin of Σ𝐶 in

Σ𝑈 , which corresponds to the origin of Σ𝑉𝐶 in Σ𝑀𝐶 . The orientation can be

evaluated by determining the direction of the axes of Σ𝐶 (Σ𝑉𝐶) in Σ𝑈 (Σ𝑀𝐶).

Fig. 2-45 Schematic plot of the relationship between Σ𝑀𝐶 and Σ𝑉𝐶 in Unity

According to Eq. (3), a point v described in Σ𝑈 and Σ𝐶 is represented by 31

vector 𝐯𝑈 and 𝐯𝐶, respectively. The 44 homogeneous transformation 𝐌𝑈←𝐶

can be divided into a 33 rotation matrix 𝐑𝑈←𝐶 and a 31 translation matrix

𝐓𝑈←𝐶 . Thus, the equation of the transformation between Σ𝑈 and Σ𝐶 can be

written as:

 [
𝐯𝑈

1
] = 𝐌𝑈←𝐶 [

𝐯𝐶

1
]

or

 𝐯𝑈 = 𝐑𝑈←𝐶𝐯𝐶 + 𝐓𝑈←𝐶 (9)

By substituting 𝐯𝐶 = (0, 0, 0)𝑇 into Eq. (9), we obtain 𝐯𝑈 = 𝐓𝑈←𝐶 , so the

position of the virtual depth camera in Σ𝑈 (Σ𝑀𝐶) is set as 𝐓𝑈←𝐶. With the same

way, we can substitute 𝐯𝐶 = (1, 0, 0)𝑇 , 𝐯𝐶 = (0, 1, 0)𝑇 , and 𝐯𝐶 = (0, 0, 1)𝑇

into Eq. (9) to obtain vectors of the coordinate axes of Σ𝐶 in Σ𝑈. They can then

be used to determine the orientation angle of the depth camera.

69

After determining the position and the orientation of the virtual camera, the next

is to tell the GPU in the HoloLens to generate the depth map from the view of the

virtual camera. In default, the camera object in Unity renders the view as an

RGBA image. To generate the depth map, we need to write and apply a script file

to make the virtual camera render the depth map by setting the camera mode to

“DepthTextureMode.Depth” [45].

Visualize the evaluation result of misalignment

With such designs, we next preliminarily investigate the performance of the

developed system through the following three demonstrations. These

demonstrations aim to verify basic functionality of the system. Considering the

quality of point clouds generated by the depth camera in HoloLens, we choose

physical 3D objects whose one of the dimensions is at least larger than 3 cm so

that point cloud data can keep more details of the objects. Meanwhile, we also

choose objects that are not dark, not transparent, and not shiny to avoid poor

scanned point clouds. Moreover, to clearly visualize the evaluation result of

misalignment between the real and virtual object, we color the virtual object

according to the calculated 𝐷𝑐𝑐𝑠, and the color change is shown by a color bar in

Fig. 2-46. When the real and virtual objects are matched, the 𝐷𝑐𝑐𝑠 will be close

to one, and the virtual object will be colored by blue; otherwise, it will be colored

by red. Moreover, we also design a mechanism of exception that the virtual object

will be colored by white if the percentage of depth differences {∆𝑑𝑖}𝑖=1
𝑛 that

∆𝑑𝑖 > 10 cm is more than 15%. When there is an occlusion problem, this can be

used to notify the user to change to other views for misalignment. Or when the

user places an object whose volume is much different to the target object, this can

be a way to warn the user, and the system will be no need to compute the 𝐷𝑐𝑐𝑠

value.

Fig. 2-46 Color bar for showing misalignment evaluation results: (1) color the CAD

model according to the calculated 𝐷𝑐𝑐𝑠 value if the percentage of depth differences

70

that ∆𝑑𝑖 > 10 cm is less than 15% and (2) color the CAD model with white if the

percentage of depth differences that ∆𝑑𝑖 > 10 cm is more than 15%

2.6.2 Experiment 1: Assemble primitive wooden blocks

To preliminarily evaluate system performance, we first conduct an experiment

that aligns wooden blocks on a table to verify basic functions. In Fig. 2-47(a), a

wooden cube with an edge of 10 cm is used as a reference object, and the

corresponding reference virtual object can be found at the origin of the virtual

world in the CAD model, as shown in Fig. 2-47(b). Moreover, five primitive

wooden blocks of different shapes-a cylinder, a square prism, a triangular block,

a smaller cube, and a pyramid-are used for assembly operation and should be

installed in the order that is designed and numbered in Fig. 2-47(b). The process

of the assembling operation is shown in Fig. 2-48. At step 0, coordinate

calibration is performed to define the working area first. Then, from step 1 to 5,

the system displays the virtual object in the designated order, and the user puts

the corresponding real object to that position. Finally, step 6 shows the

completeness of the operation.

Fig. 2-47 Experimental setup of a block assembly: (a) real objects and (b) designed

alignment of parts in the CAD model

71

Fig. 2-48 The process of assembling blocks: put blocks to the designated positions

During the assembling process, from step 1 to 5, the system evaluates

misalignment between the real and virtual objects by the centered cosine

similarity method at approximately 30 fps. The user can move the real object to

the position of the virtual object and simultaneously check whether the color of

the virtual object is close to blue, which indicates well aligned, or not. However,

even the real and virtual objects are matched with the error smaller than 1 cm, the

evaluated 𝐷𝑐𝑐𝑠 value (or the color of the virtual object) sometimes varies

dramatically between 0.5 and 0.9. The reason may derive from the update of the

point cloud scanned from different views and the change of depth values of the

pixels that belongs to the outline of the object in the depth map of the scanned

point cloud.

72

2.6.3 Experiment 2: Assemble a wooden robot

Next, we conduct an experiment of assembling a wooden robot with a certain

pose. In Fig. 2-49(b), the robot is designed to do a handstand and stretch its legs

back and forth. The robot contains five parts: a body, two hands, and two legs.

There are also four screws to fix the hands and legs to the body, and each screw

is put into the part in advance.

Fig. 2-49 Experimental setup of a wooden robot assembly: (a) real objects and (b)

designed alignment and pose in the CAD model

Fig. 2-50 shows the assembling process. Identically, step 0 is coordinate

calibration using the wooden cube with an edge of 10 cm. Step 1 to 5 shows the

assembling of each part. From step 2 to 5, parts of the hands and legs are screwed

to the body, and we put the assembly to the position of the virtual object to check

if there is an assembly error. Step 6 shows the completeness of the assembly.

73

Fig. 2-50 The process of assembling a wooden robot with the designated pose

When assembling the leg parts, in steps 4 and 5, the user follows the evaluation

results and the orientation of the virtual leg to adjust the physical leg part to the

designed orientation, as shown in Fig. 2-51. Fig. 2-52(a) shows that there is a gap

of 2mm between the leg part and the body, and in the design, the included angle

of the leg part and the body line should be a right angle. However, due to the

existing of the gap, if the user does not adjust the leg part and tighten the screw,

the top of the leg part will move downward by 6 mm, as shown in Fig. 2-52(b).

The assembly result will not be as designed. This shows that the misalignment

evaluation can play a role in warning the assembly error, and in this case, the

developed evaluated method can detect the displacement of 6 mm.

74

Fig. 2-51 Detection of an assembly error that may be overlooked easily: (a)

misalignment is detected, and (b) no misalignment is detected after adjustment

Fig. 2-52 Differences between (a) designed pose in the CAD model and (b) physical

assembly without careful assembling

2.6.4 Experiment 3: Arrange decorations in a room-scale

environment

Finally, we make the user arrange decorations in a room-scale environment. This

is a preliminary experiment to evaluate whether the system can assist the user in

doing assembling in room-scale environments. The user who wears HoloLens can

keep moving and is required to place decorations at designated positions. In Fig.

2-53, we prepare three statues of a wooden robot, a frog, and a bear and would

like to place them at different locations in an 8 m2 room. The cube with an edge

of 10 cm is used as the reference object to determine the origin of the virtual

world. The reference object and the three statues are numbered to show the

sequence of installation.

75

Fig. 2-53 A reference real object and decorations for arrangement. The sequence of

installation: (1) wooden robot, (2) frog statue, and (3) bear statue.

Fig. 2-54 shows the target room with the decorations in the designated positions.

A schematic plot of the room and the decorations are also plotted to explain the

detailed process. Notice that the wooden robot is hidden by another object.

Fig. 2-54 Target room environment for decoration arrangement

To construct arrangement information for the user, first, we have to design and

record the arrangement of the statues in the room in advance. A designer wears

the HoloLens and moves the CAD models of the decorations to desired positions

by hand manipulation. Fig. 2-55(a) shows the process of the arrangement design.

76

Through the HoloLens, the designer can see the decorations and the reference

virtual object. First, at step 0, the reference virtual object is moved to the position

of the corresponding reference real object by rough alignment and precise

alignment in sequence to define the origin of the virtual world in the real world.

Next, the CAD models of the three decorations are moved to different positions

in the room. Their positions in the virtual world are shown in Fig. 2-55 and

recorded as information for the user to place the decorations.

Fig. 2-55 Design decoration arrangement: (a) A schematic plot of placing the CAD

models of the decorations for arrangement design, (b) The position of the CAD models

in the virtual world, and (c) Results of designed arrangement seen through the HoloLens

Decoration arrangement

After the construction of arrangement information, the user can wear the

HoloLens and follow indications to place the decorations step by step. Fig. 2-56

shows the process of decoration arrangement. Initially, the user performs

coordinate calibration by aligning the reference object. Then, the system shows

the CAD model of the decoration one by one at the designed locations. The scene

that the user sees through the HoloLens will be the same as shown in Fig. 2-55(c),

which the results of designed arrangement by the designer. The user places the

corresponding physical statues to their position in sequence, and the system

77

evaluates misalignment during arrangement process. Fig. 2-57 shows the mixed

reality photos of the arrangement results.

Fig. 2-56 The process of decoration arrangement with the designated pose

Through the experiment, the user follows the indication and place the statues to

their locations within the accuracy of ±1 cm. Misalignment evaluation helps the

user place the statues to their position faster. Without misalignment evaluation, to

check whether the statues are placed well at designated positions or not, the user

has to observe the statues from different views back and forth. Moreover, the three

decorations and the reference object are inside a cubic space that has a dimension

of 1.3 m × 0.8 m × 0.6 m. It indicates that the system is possible to support the

user to assist an assembly that has such volume in an 8 m2 room and can detect

misalignment with the accuracy of ±1 cm. In addition, in this room environment,

it is hard to take a mixed reality photo that shows all the virtual objects for

arrangement because of the limitation of the space and insufficient field of view

78

of the RGB camera in the HoloLens. Although the user can still place the

decorations according to the information as shown in Fig. 2-55(b), the user has to

measure the distance between the decoration and the reference object to verify

the installation location. Nevertheless, the AR glasses system can directly show

the installation locations in the real scene of the user’s view. Thus, the user focuses

on placing the decoration to the virtual object’s position without considering the

distance between the decoration and the reference object.

Fig. 2-57 Mixed reality photos of the results of decoration arrangement

79

2.7 Summary

Using AR technology is a potential way to ensure better experience during the

process of assembling a product. Besides assembly instruction from an AR-based

system, it is important to determine whether assembly errors occur. In this study,

we propose two methods to construct an essential AR-based assembly assistance

system using only an HMD, in this case, Microsoft HoloLens: (1) coordinate

calibration and (2) efficient evaluation of misalignment between real and virtual

objects.

For coordinate calibration, with the function of positioning the user in the real

and world and point cloud data from the HoloLens, we can achieve coordinate

calibration without using AR markers to show CAD models of parts at designated

locations. This is achieved by aligning the reference virtual object to the reference

real object. We design the alignment process with two steps: rough alignment

(user’s hand manipulation) and precise alignment (point-to-plane ICP) performed

in sequence. Rough alignment can be performed fast, but the alignment accuracy

is in centimeter level. On the other hand, precise alignment can achieve accuracy

in millimeter level, but the initial position of the reference virtual object needs to

be close to the reference real object. The reference real object should be inside

the bounding box of the reference virtual object. Otherwise, the precise alignment

result will converge to a local minimum. Thus, by integrating rough and precise

alignment, we can achieve coordinate calibration in millimeter level.

Moreover, for evaluation of any misalignment between virtual and real objects,

with our preliminary implementation, the system compares depth maps of the real

and virtual objects to evaluate misalignment at approximately 30 fps, which will

not influence user’s experience apparently. Thus, the user can rapidly understand

the installing condition. If an assembly error occurs, the system can instantly warn

the user by coloring the CAD model. Based on experimental results of different

evaluation methods, we use the centered cosine similarity method as an indicator

to compare the depth maps and perform evaluation, which is a more robust

method to the errors of point cloud data of the physical depth camera.

To sum up, with the proposed methods, we can make good use of functions and

80

raw sensor data provided by the HoloLens to construct an essential HMD-based

AR assembly assistance system without using any AR marker and external

devices to define the transformation relationship between the real and virtual

worlds and to detect the assembly errors, respectively. Meanwhile, the system can

be used for desktop applications, which overcomes the original limit of HoloLens

that is used for only room-scale environments and objects larger than a cube with

an edge of 30 cm. Moreover, in the demonstration of decoration arrangement, the

user can follow AR instruction to place decorations with the accuracy of ±1 cm

in an 8 m2 room. This indicates that the developed AR system is possible to

support AR assembly assistance in room-scale environments.

Thus, the reach objectives in this study are achieved

✓ A basic AR assembly assistance system is developed using only the HoloLens

✓ The developed system can perform desktop applications by using the

HoloLens-scanned point cloud to obtain 3D data of real objects.

✓ Present a method to evaluate misalignment between real and virtual objects

➢ at real time rate (30fps) on HoloLens

➢ within the accuracy of ±1 cm in the case of desktop applications

Future work will continue to improve system reliability and performance and add

functions to better instruct the assembly operation. With these features, this

compact system has high portability and is expected to be used in wide-ranging

situations.

81

Chapter 3
Three-Dimensional Visualization of User’s Attention

on Objects using Only Eye Tracking Glasses

3.1 Introduction

In this chapter, we focus on the training part of the AR-based field service

assistance system after operations, and we study users’ 3D gaze visualization to

observe user’s focus of attention using eye tracking glasses.

Eye tracking technology [46] is used and has an influence on various fields. For

example, aesthetic evaluation of products is an important application. Product

designers may require some subjects to observe products with different designs

and simultaneously detect subjects’ eye movement to analyze their visual

attention through eye tracking devices. This helps designers determine which

designs are more acceptable and attractive to their target customers. In the

radiology field, many studies adopted the eye tracking technology to explore how

radiologists perform a diagnosis [47][48][49]. By understanding how radiologists

read medical images, it is possible to prevent diagnosis errors and train novice

radiologists more effectively. In addition, eye tracking technology has been

applied to diversified fields, such as web page design, sports [50][51], and

psychology research [52][53].

One’s visual attention is usually referred to as the visualization of one’s thought.

Through analyzing the visual attention by the eye tracking technology, we may

be able to understand one’s thought to help us make a decision, such as the

examples of aesthetic evaluation of products and web page design. Moreover, we

can catch the point and learn from one’s experiences more effectively and

efficiently, such as the case of novice radiologists. These demonstrate the

importance of eye tracking technology. However, most applications are used in a

restricted 2D space such as a fixed screen for the fixed type of eye tracking

devices. The other type of the eye tracking devices is a pair of eye tracking glasses,

which contains an RGB camera and eye trackers to record user’s view and gaze

information, respectively. The eye tracking glasses are mobile eye trackers and

82

allow users to walk around, but the recorded data are scene videos with gaze

fixations, which are still in 2D.

There would be more precious applications in 3D in a variety of fields. Recently,

with the development of the virtual reality (VR) technology, a user who wears a

VR head-mounted display can use gaze fixation on virtual objects for interaction

such as object selection and operation [54]. In addition, it is possible to use the

eye tracking technology in other fields such as construction. Specifically, it is

important for workers to inspect construction fields. To train new construction

field inspectors, it is possible to use eye tracking glasses to record the gaze

information of experts and novices and analyze their gaze distinction in a

practical construction field. In this case, it is better to visualize 3D gaze fixation

in a 3D model of the environment instead of showing the gaze data on a video, a

series of 2D images, or a panorama [55]. For a room-scale or larger environment,

3D gaze visualization can directly show the user’s gaze in one model and show

the spatial relationship of the scene, while showing the gaze by 2D may need a

video of a few minutes or a few images to include the whole scene.

Using eye tracking glasses, we can obtain 2D gaze fixation on a recorded scene

video and understand a user's saccade pathways. To display the corresponding

gaze data on the 3D model of the scene for a full view of the gaze fixation, it is

necessary to obtain the transformation relationship between the coordinate system

of the 3D model of the scene and the 2D gaze data from the eye tracking glasses,

that is, to transform the 2D gaze data into the 3D model of the scene. The use of

AR (augmented reality) markers, which are attached to the environment, is a

common approach to obtain the transformation matrix between the coordinate

system of the 2D gaze data and that of the 3D model of the scene [56][57].

However, extra time is required to setup the experimental environment, which

may disturb the subject’s attention during the experiment. To avoid using the

markers, some researchers rely on the image registration technique to evaluate

the transformation matrix, and the 3D model of the scene is reconstructed through

a scene video from an RGB camera [58], through depth maps from an RGB-D

camera [59][60], or through a Light Detection and Ranging (LiDAR) scanner [61].

However, to acquire the 3D model of the scene, those methods require to scan the

83

environment by additional devices. This may present a challenge when the subject

is moving in a large-scale test environment. For example, the subject may be

asked to walk around and observe the inner side of the building. Thus, it will be

tedious and time-consuming to scan the entire building by other devices before

or after the eye tracking experiment.

Because there is an RGB camera embedded in eye tracking glasses, and it records

the scene that the user paid attention to, using only the embedded RGB camera is

a possible way to reconstruct the 3D model of the scene for 3D gaze visualization.

This implies that when the subject wears the eye tracking glasses and observes

some environment, he/she is also recording the information for 3D reconstruction

of the scene through the embedded camera. Therefore, we do not need to use extra

devices to generate the scene model. In this study, we propose a methodology that

uses only a pair of eye tracking glasses to achieve the visualization of 3D gaze

fixation on the 3D model of the scene. We use the image-based 3D scene

reconstruction method to reconstruct the 3D model of the scene and to obtain the

camera position and orientation corresponding to the frame images of the scene

video. We use the reconstructed camera position and orientation to determine

user’s line of sight and to find the 3D gaze fixation, which is the intersection of

the line of sight and the scene model. With this methodology, a user’s eye tracking

recording can give a 3D model of the scene with his/her gaze information.

Moreover, we have to consider an issue of comparing 3D gaze fixations between

multiple users. Each user is allowed to view the scene freely and there is

difference in their ways of viewing the scene. If we use the method of single

user’s 3D gaze visualization, we have to reconstruct multiple 3D models from

different users’ recordings, which is time-consuming. However, those models

demonstrate the same scene. Thus, in this study, we present a methodology to

reconstruct only one 3D model of scene and determine different users’ gaze data

on that model through image registration. To sum up, the main objectives of this

study include the following:

1. Use only eye tracking glasses for data collection.

2. Visualize multiple users’ 3D gaze fixation more efficiently and effectively.

84

The preliminary results show that we can use only eye tracking glasses to

reconstruct 3D model of the scene with reliable user’s 3D gaze information. A

room-scale experiment also shows that, for complex and large experiments, 3D

gaze visualization gives a clearer picture of the eye tracking result and more

reliable results than using a panorama. Moreover, for the comparison between

multiple users’ gaze data, due to using only a model of the scene, it shows users’

gaze data in the same coordinate system and make the gaze differences between

users more obvious.

In this chapter, in Section 3.2, we first review the related work on visualization

of 3D gaze fixation and techniques used in this study. Section 3.3 introduces the

eye tracking glasses that we use. The detailed methodology is described in

Sections 3.4 and 3.5. Experiments and the effectiveness of the proposed system

are discussed in Section 3.6, and Section 3.7 is the summary of this study.

85

3.2 Literature Review

To demonstrate user’s gaze information in 3D space, displaying 3D gaze fixation

on a 3D mesh model of the scene is an intuitive way, and various studies used

different methods to address it. Because eye tracking glasses record user’s gaze

information on a scene video (i.e., in 2D space), to find the 3D position of the

gaze fixation in the model of the scene, the key point is to determine a

transformation relationship between the coordinate system of the 2D gaze data

from the eye tracking glasses and that of the 3D model of the scene. In Fig. 3-1,

Takahashi et al. [57] set AR markers in a test environment to calculate the

transformation matrices and used a portable surface scanner to reconstruct the 3D

model of the scene. By detecting the AR markers recorded in the scene video and

finding the corresponding positions of the AR markers in the 3D model of the

scene, the 3D model of the scene can be mapped into each frame image and

overlap with the real scene with a corresponding pose. Thus, the 2D gaze fixation

on the frame image could be displayed in the image of the 3D model of the scene.

Using an inverse transform from the coordinate system of the frame image to the

3D model of the scene, the 3D gaze fixation on the 3D model can be determined.

Fig. 3-1 3D gaze visualization of a car example with the use of AR markers and a

portable surface scanner [57]: (a) experiment of eye tracking recording with AR markers

set in the car, (b) the use of a portable surface scanner for scene reconstruction, and (c)

86

results of 3D gaze visualization.

Using a portable surface scanner needs to set markers in the environment as

feature points for the scene reconstruction, which may be tedious work. Instead,

using other devices such as an RGB camera and an RGB-D camera is another

choice. By extracting feature points from the images of the scene, there is no need

to set physical markers in the environment. In Fig. 3-2, Paletta et al. [59] used an

RGB-D camera to reconstruct a 3D model of the scene for 3D gaze visualization.

Using the RGB-D camera to scan the scene from different views, point clouds of

the parts of the scene could be generated. These point clouds could then be

combined into the complete point cloud of the scene by estimating the position

and orientation of each camera view. After the eye tracking recording, SIFT

(scale-invariant feature transform) descriptors [62], as the feature descriptors of

an image, for each frame image in the scene video recorded by the eye tracking

glasses are calculated to determine the transformation relationship between the

2D gaze data and the 3D model of the scene using the perspective n-Point

algorithm [63].

Fig. 3-2 3D gaze visualization with the use of an RGB-D camera for 3D reconstruction

[59]: (a) Hardware for 3D reconstruction, (b) experiment of eye tracking recording, (c)

reconstructed 3D model of the scene, and (d) results of 3D gaze visualization

87

Moreover, with the image-based 3D reconstruction method, the 3D model of the

scene can also be constructed by using only an RGB camera. For 3D gaze

visualization of this approach, Jensen et al. [58] took advantage of the SIFT

descriptor matching methodology to estimate the transformation matrix of the

coordinate system of the 3D model that is reconstructed from the frame images

of an extra RGB camera.

Fig. 3-3 3D gaze visualization result with the use of an extra RGB camera for 3D

reconstruction [58]

Although the two studies of using the RGB-D and RGB cameras developed a

markerless approach to demonstrate 3D gaze fixation on the 3D model of the

scene, the experimental scenes they discussed were only shelves of goods, which

can be viewed as a 2D case. Because the scenes were not complicated and

sufficiently large, the advantages of demonstrating 3D gaze fixation were not

adequately expressed. Furthermore, to demonstrate 3D gaze fixation, those

researchers used eye tracking glasses and other devices (e.g., a surface scanner

and an RGB-D camera) to record the scene video with the gaze information and

reconstruct the 3D model of the scene, respectively. The proposed system only

requires a pair of eye tracking glasses to both record the gaze data and to perform

image-based 3D reconstruction [64][65], and no markers are placed in the

environment. Additional details on the image-based 3D reconstruction will be

introduced in Section 2.4.1.

88

3.3 Tobii Eye Tracking Glasses

In this study, we use Tobii eye tracking glasses (Tobii Pro Glasses 2) [66], which

are produced by a company named Tobii Pro, to track user's eyes and to record

scene videos. Fig. 3-4 shows its appearance. It is made up of two components: a

wearable eye tracker (glasses) and a recording unit. The glasses have some

embedded sensors, including an RGB scene camera, eye trackers, and an inertial

measurement unit (IMU) to acquire various information for the subsequent

analysis of user’s attention. The camera records scene videos at 25 frames per

second (fps), and the eye trackers record gaze data at 50 Hz. The recording unit,

which is connected to the glasses via an HDMI cable, holds the battery and stores

the recorded data, i.e., gaze data and scene videos, on an SD memory card.

Compared with a standard eye tracking device that is fixed at a certain location,

a user is able to wear the eye tracking glasses and walk around to observe

surroundings. Meanwhile, simultaneously recorded gaze data and the scene video

can be stored on the SD memory card for post-processing and data analysis or be

transferred to a computer running Tobii Pro-provided controller software to

observe eye tracking results and to perform the analysis in real time. With the

provided software, we can see that the gaze data are integrated into the scene

video to show where the user was looking.

Fig. 3-4 Tobii eye tracking glasses

89

Furthermore, Tobii eye tracking glasses are commonly used as a device to help

researchers gather users’ gaze data and then analyze users’ visual attention

[58][67]. This is a reliable tool to obtain accurate gaze data. To achieve accurate

eye tracking, calibration and adjustment of gaze data is necessary. Before an eye

tracking recording starts, the user has to take a calibration procedure by looking

at a calibration card as shown in Fig. 3-5. During the procedure, the eye trackers

measure features of the user’s eyes and use them together with an internal

anatomical 3D eye model to compute the gaze data. Meanwhile, during the

calibration, the user is required to look at a specific target, which is also inside

the viewing range of the scene camera. During this period, pixel coordinates of

the user’s gaze data on the scene video are evaluated. When the calibration

procedure is finished, the user can start the eye tracking recording.

Fig. 3-5 Calibration process by looking at a calibration card

According to the eye tracker data quality report released by Tobii Pro [68], when

the user who wear the Tobii eye tracking glasses observes the target at varying

distances from 0.5 m to 3.0 m, the accuracy of the detected gaze angle is from

0.56° to 0.73° under optimal gaze angles (≤15°) and lighting condition of 300

lux. Thus, Tobii eye tracking glasses have good eye tracking ability for room-

scale environments.

90

Moreover, Tobii Pro also provides Tobii Pro Lab, a commercial eye tracking

software, to let the user further analyze and visualize 2D gaze data from Tobii eye

tracking glasses. It can collect and analyze gaze data statistically and then

generate heatmaps and saccades on images to visualize where the user was paying

more attention and user’s eye movement from one point of interest to another,

respectively. In Section 3.6.3, we also use the Tobii Pro Lab software and then

produce the 2D gaze results as a standard to compare with our 3D gaze

visualization results and to analyze their differences.

91

3.4 Three-Dimensional Visualization of User’s Gaze Data

In this section, we describe the ways that we developed to demonstrate gaze data

in 3D using the data only from the eye tracking glasses. An application scenario

is as follows. First, for data collection, a user wearing eye tracking walks around

and pays attention to the surroundings. During that time, user’s gaze data and the

scene video are recorded and stored on the SD memory card. Then, the recorded

data and video are input into our developed system to visualize user’s gaze

fixations in 3D space.

Fig. 3-6 shows the schematic diagram of the system. To achieve 3D gaze

visualization, we mark the user’s gaze in a 3D model of the scene generated by

image-based 3D reconstruction. To determine gaze fixations in the model of the

scene, we use user’s line of sight that passes through user’s eyes and gaze point.

The intersection of the 3D model of the scene and the line of sight apparently

gives the 3D gaze fixation.

Fig. 3-6 Schematic diagram that shows 3D gaze fixation in the environmental model

Fig. 3-7 shows the proposed system’s process to display the 3D gaze fixation in

the 3D model of the scene. For example, a kitchen sink and its surroundings are

observed by a user who wears the eye tracking glasses. The system is composed

92

of two parts: (1) 3D reconstruction of the environment and (2) determination of

the user’s line of sight and its intersection with the model of the scene.

It firstly starts from 3D reconstruction of the scene from frame images taken from

the scene video using the structure from motion (SfM) method. Thus, the

reconstructed 3D model then serves as a foundation to display 3D gaze fixations.

Meanwhile, the position of each frame image’s camera center is estimated during

the 3D reconstruction stage. Next, the system determines the user’s line of sight

using recorded gaze data together with the position of the frame image’s camera

center. Thus, we are able to determine the user’s gaze fixation in the 3D model of

the scene through determining the intersection. Eventually, after applying such

operation to all recorded gaze data, we can obtain basic 3D visualization of user’s

gaze data, which looks discrete and difficult to analyze user’s attention. Therefore,

further data processing for statistical analysis is needed. The following

subsections elaborate on the process of 3D gaze visualization in detail.

Fig. 3-7 Process of 3D gaze visualization

93

3.4.1 3D Reconstruction of a Scene from Eye Tracking Glasses

The first stage is 3D reconstruction of the scene, producing a 3D mesh model of

the scene to visualize 3D gaze data. Although there is no 3D scanner or RGB-D

camera in eye tracking glasses, we can still reconstruct the 3D mesh model of the

scene by the image-based 3D reconstruction method. When the user walks around

in the environment, the scene camera records the target scene. Hence, we can

directly make use of the frame images from the scene video for 3D reconstruction.

Fig. 3-8 shows the process of image-based 3D reconstruction of the scene, which

shows the same part of 3D reconstruction as shown in Fig. 3-7. For example, the

kitchen sink and its surroundings are reconstructed from the scene video recorded

by the eye tracking glasses. In this stage, the input is the n frame images extracted

from the scene video, and the main output is the positions and orientations of the

camera centers associated with the frame images and a 3D mesh model of the

scene. To achieve the goal, this study uses the COLMAP [69][70][71][72] and

the OpenMVS [73] software in sequence to perform the reconstruction.

Fig. 3-8 Process of 3D reconstruction of the scene

94

By using the COLMAP software, the stage starts from using the SfM method

[74][70], to reconstruct a sparse point cloud model of the scene and a set of

camera pose 𝒞 = {𝒄𝑖} (i.e., camera orientation and position) of the inputted

scene video’s frame images ℐ = {𝐼𝑖} . It is achieved by using the COLMAP

software. According to the tests in the original paper [70], error of accumulation

of camera positions is mitigated by applying bundle adjustment, and the

reprojection error is averagely 0.7 pixel in their tests.

However, if we directly input all the frame images in the scene video to the system,

it will be time-consuming. For example, a 1-minute video, recorded at 25 fps (the

scene camera’s recording frequency), contains 1,500 frame images, and the whole

3D reconstruction process takes dozens of hours for calculation in our tests. A

recommended number of images is up to several hundreds, which takes a few

hours for calculation.

To reduce the computation time, we select just some frame images from the scene

video for 3D reconstruction. In this application, the user has to pay attention to

the environment and usually does not move the body and the head fast. Thus, in

the scene video, each frame image and its neighboring frame images, captured in

the same short period of time, have almost the same scene overlap. This

contributes little to improve the quality of 3D scene reconstruction.

For realization, because the set of frame images taken from the video is in

chronological order, it is one way to simply select frame images by downsampling

the video. By starting from the first frame image 𝐼0, we choose a frame image

every 𝑛𝑠 frame images and put them into a set of frame images ℐ̃ =

{𝐼𝑛𝑠𝑖|𝑖 = 0,1,2… } especially used for the reconstruction. Through the SfM

method, after feature extraction, matching, image registration, triangulation and

bundle adjustment in sequence, a sparse point cloud of the scene is reconstructed

from ℐ̃, as shown in the upper part of Fig. 3-9. Meanwhile, camera poses of ℐ̃

are also determined. Those extracted information are stored in a database file. The

database are the tables of each image’s information in ℐ̃ , including camera

intrinsic parameters (focal length, principal point, etc.), camera extrinsic

parameters (orientation and location), keypoints, SIFT descriptors, and a matched

95

image and their associated feature correspondences.

Fig. 3-9 Process of the structure from motion method with reduced frame images in

the case of 𝑛𝑠 = 3

For the remaining unselected frame images ℐ̃′ = ℐ − ℐ̃, they are still needed to

determine the user’s line of sight. Thus, we then determine the camera pose of

each image in ℐ̃′ under the coordinate system of the point cloud model 𝑀 that

is just reconstructed from ℐ̃ , i.e., registering new images to the reconstructed

model. For each image in ℐ̃′, we first extract feature points and search for an

overlapping image in the database (from ℐ̃) that sees the same scene part. Then,

through two-view geometry [74], the camera poses of the images in ℐ̃′ can be

estimated using feature correspondences to triangulated 3D points (2D-3D

correspondences) in already registered images, belonging to the database

generated from ℐ̃. This is illustrated in Fig. 3-10. Basically, given an image 𝐼′

in ℐ̃′ and its corresponding paired image 𝐼 in ℐ̃ determined in the matching

process, an essential matrix relating the pair of views can be used to determine

the camera coordinate system �̃�′ with respect to �̃� , the camera coordinate

system relating to 𝐼 . In addition, �̃� and �̃�′ are one pair of point

correspondences between 𝐼 and 𝐼′, and they are the projection of a 3D point 𝓧

96

in different views. The essential matrix can be estimated linearly using 8 or more

point correspondences and then decomposed to give relative camera orientation

𝑹�̃��̃�′ and the direction of camera translation 𝑻�̃��̃�′ . The magnitude of the

translation ‖𝑻�̃��̃�′‖ can be determined using the projection �̃�′ in the image 𝐼′

of the single known 3D point 𝓧, i.e., a point that has already been reconstructed

from the images in ℐ̃ and saved in the database. The transformation relationship

between �̃� and �̃�′ can be written in the homogeneous coordinates as:

[

�̃�′

�̃�′

�̃�′

1

] = [
𝑹�̃�𝐶′ 𝑻�̃�𝐶′

0 1
] [

�̃�
�̃�
�̃�
1

] (10)

where 𝑹�̃�𝐶′ is a 3×3 rotation matrix, and 𝑻�̃��̃�′ is a 3×1 translation vector.

Equation (10) shows the rigid body transformation that relates points

[�̃� �̃� �̃�]𝑇 in the camera coordinate system �̃� to points [�̃�′ �̃�′ �̃�′]𝑇 in

the camera coordinate system �̃�′.

Fig. 3-10 Estimation of the newly registered image’s camera pose

Furthermore, because 𝐼 is one of the images used for 3D reconstruction, the

corresponding camera coordinate system �̃� relative to the coordinate system of

the reconstructed model 𝑀 , i.e., the world coordinate system, has been

97

determined and saved in the database. Similarly, the transformation relationship

can be written as:

[

�̃�
�̃�
�̃�
1

] = [
𝑹𝑀�̃� 𝑻𝑀𝐶

0 1
] [

𝑋
𝑌
𝑍
1

] (11)

where 𝑹𝑀𝐶 and 𝑻𝑀𝐶 are a 3×3 rotation matrix and a 3×1 translation vector,

respectively. They relate points [𝑋 𝑌 𝑍]𝑇 in 𝑀 to points [�̃� �̃� �̃�]𝑇 in �̃� By

integrating Eq. (10) and (11), we can then determine the camera coordinate

system �̃�′ of the newly registered image 𝐼′ relative to 𝑀 as follows:

[

�̃�′

�̃�′

�̃�′

1

] = [
𝑹�̃��̃�′ 𝑻�̃��̃�′

0 1
] [

𝑹𝑀𝐶 𝑻𝑀𝐶

0 1
] [

𝑋
𝑌
𝑍
1

] = [
𝑹𝑀𝐶′ 𝑻𝑀𝐶′

0 1
] [

𝑋
𝑌
𝑍
1

] (12)

where 𝑹𝑀𝐶′ and 𝑻𝑀𝐶′ are the rotation matrix and the translation vector from

𝑀 to �̃�′ and describe the camera pose of �̃�′ in 𝑀. Therefore, by substituting

[0 0 0 1]𝑇 into [�̃�′ �̃�′ �̃�′ 1]𝑇 in Eq. (12), it gives −𝑹𝑀𝐶′
−1 𝑻𝑀𝐶′ as

the camera center of the image 𝐼′ that is the position of the origin of �̃�′ in 𝑀.

After registering all the images in ℐ̃′ to 𝑀, we then have the sparse point cloud

model 𝑀 of the scene as well as the camera pose information of all the frame

images ℐ from the input scene video.

The next stage is to produce a mesh model of the scene from the reconstructed

sparse point cloud. Using the mesh model of the scene is beneficial to determining

the position of the 3D gaze fixation in the model and visualizing the 3D gaze

fixation. In terms of visual effect, colorizing triangular meshes to mark the

location of the user’s attention is more obvious than colorizing points. This

process is held by using the OpenMVS software. The input is the sparse point

cloud of the scene and the camera pose information of the frame images ℐ̃, i.e.,

the output of SfM from the previous stage, as shown in Fig. 3-11(b).

98

Fig. 3-11 Process of 3D surface reconstruction based on the output of SfM: (a) target

scene, (b) outputted sparse point cloud from SfM, (c) dense point cloud, (d) rough

mesh reconstruction, (e) refined mesh model, and (f) final mesh model with texture

The process for reconstructing the mesh model in OpenMVS contains dense point

cloud reconstruction, mesh reconstruction, mesh refinement, and mesh texturing

performed in this sequence. First, dense point cloud reconstruction is applied to

obtain a complete and accurate point cloud as possible, generating a dense point

cloud model of the scene, as shown in Fig. 3-11(c). Since the reconstruction by

using the SfM method, a set of 3D points corresponding to the features extracted

from the images, is usually sparse, it is a necessity to obtain a dense representation

of the target scene before the meshing process. This problem can be handled by

the multi-view stereo method [75]. The multi-view stereo algorithm is a common

solution in photogrammetry applications for the dense reconstruction of a static

99

scene from images alone. In our application, it can take camera location, camera

orientation, and other information from SfM to make a dense 3D point cloud

model of the scene. OpenMVS estimates a depth map for each view (image) based

on the PatchMatch algorithm [76]. By considering the depth map as a 2D array

of 3D points, multiple depth maps can be merged and become a highly detailed

3D point cloud of the scene.

Next, mesh reconstruction [77] is applied to the dense point cloud to generate 3D

triangular mesh surfaces, as shown in Fig. 3-11(d). In Fig. 3-11(e), the

reconstructed mesh model is further refined with a variational multi-view stereo

vision approach [78][79] including photo-consistency measurement between the

images and surface regularization for the reprojection error minimization and the

improvement of smoothness while preserving the details of the 3D surface,

respectively. Eventually, mesh texturing [80] is implemented to add color

information to the reconstructed model from the images, as shown in Fig. 3-11(f).

Thus, with the processes, we can acquire a colored 3D surface reconstruction of

the scene from the recorded scene video and use the mesh model to show user’s

gaze data. Moreover, during the reconstruction, the camera pose of each frame

image is generated and can be used to determine the user’s line of sight and the

3D gaze fixation on the reconstructed model.

3.4.2 Computation of Corresponding Gaze Data for Each Frame

Next, to determine the user’s line of sight for each frame image 𝐼𝑖, we need the

gaze position in the frame image, which gives information about the user’s line

of sight. However, the scene video and the original gaze data 𝐺 =

{𝒈0, 𝒈1, … , 𝒈𝑗 , … } are recorded by the scene camera and the eye trackers,

respectively, at different sampling frequencies, where 𝒈𝑗 = [𝜇𝒈𝑗
 𝜈𝒈𝑗

]𝑇 is the

pixel coordinates of 2D gaze position on the image. Therefore, a prerequisite is

to synchronize the video and the gaze data, and then compute the corresponding

gaze data 𝒈𝐼𝑖 = [𝜇𝐼𝑖 𝜈𝐼𝑖]
𝑇 for each frame image 𝐼𝑖 . This can be achieved by

comparing the timestamps of the gaze data and of the frame image and

performing linear interpolation to estimate 𝒈𝐼𝑖 .

100

As shown in Fig. 3-12, the timestamp 𝑡𝑖 of each frame image is indicated by the

presentation timestamp, which determines when the frame should be presented in

the video, and extracted by the FFmpeg software [81]. The timestamp of the first

frame image 𝑡0 in the video is zero. However, the timestamp of the gaze data �̂�𝑗

is recorded based on the system time, which indicates the amount of time that has

passed since the system of the eye tracking glasses was booted. Thus, the

timestamp of the gaze data does not start from zero, i.e., �̂�0 ≠ 0. To synchronize

the gaze data with the video frames, the first step is to translate the timestamp of

the frame image 𝑡𝑖 into the system-based timestamp �̂�𝑖 using synchronization

information 𝑡𝑠𝑦𝑛𝑐 , which is also recorded by the eye tracking glasses and

indicates the offset between the timestamp of the gaze data and of the frame image,

as shown in Eq. (13):

 �̂�𝑖 = 𝑡𝑖 + 𝑡𝑠𝑦𝑛𝑐 (13)

After the translation of the timestamp of the video frame, a linear interpolation

method is used to determine the corresponding pixel coordinate of the gaze data

𝒈𝐼𝑖 in each frame 𝐼𝑖. Each recorded timestamp of the gaze data �̂�𝑗 corresponds

to one gaze data 𝒈𝑗 . Therefore, the gaze data 𝒈𝐼𝑖 for each frame 𝐼𝑖 can be

estimated by determining two neighboring timestamps of the gaze data, �̂�𝑗 and

�̂�𝑗+1 , that are closest to �̂�𝑖 and including it followed by performing the

interpolation using Eq. (14).

𝒈𝐼𝑖 = [

𝜇𝐼𝑖
𝜈𝐼𝑖

] = [
𝜇𝒈𝑗

𝜈𝒈𝑗
] +

�̂�𝑖 − �̂�𝑗
�̂�𝑗+1 − �̂�𝑗

× [
𝜇𝒈𝑗+1

− 𝜇𝒈𝑗

𝜈𝒈𝑗+1
− 𝜈𝒈𝑗

] (14)

101

Fig. 3-12 Synchronization of the timestamp of the frame and gaze data

3.4.3 Determination of 3D Gaze Fixation

After the 3D reconstruction of the scene, the next step is to determine 3D gaze

fixation on the reconstructed model 𝑀. Fig. 3-13 shows the relationship between

recorded 2D gaze data 𝒈𝐼𝑖 in the pixel coordinate and its corresponding 3D gaze

fixation 𝚾𝐼𝑖 on the 3D scene.

Fig. 3-13 Relationship between 2D gaze data and corresponding 3D gaze fixation

102

Under the pinhole projection model, gaze data 𝒈𝐼𝑖 is the projected pixel position

of its corresponding scene point 𝚾𝐼𝑖 , and the camera center 𝒄𝑖 (origin of 𝐶𝑖),

𝒈𝐼𝑖 in the camera image plane, and 𝚾𝐼𝑖 are on the same line, which is referred

to as user’s line of sight in three-dimensional space. Hence, 3D gaze fixation on

the reconstructed model can be recovered by backward projection from 𝒈𝐼𝑖 to

𝚾𝐼𝑖 . However, the reconstructed 𝚾𝐼𝑖 can only be recovered up to a one-parameter

ambiguity corresponding to its distance from the camera center.

To solve the ambiguity of the distance, under the assumption that the camera

center 𝒄𝑖, the gaze point on the camera image plane, and 𝚾𝐼𝑖 are all on the user’s

line of sight, 3D gaze fixation on the reconstructed model can be determined by

the intersection of the user’s line of sight and the reconstructed model without

considering the distance ambiguity. Therefore, for each view, the determination

of its corresponding 3D gaze fixation on the model is composed of two steps: (1)

the determination of user’s line of sight and (2) the determination of the

intersection of the user’s line of sight and the model that is the target position of

3D gaze fixation.

First, for each frame image (view), user’s line of sight can be obtained by

correlating the camera center 𝒄𝑖 and the corresponding gaze point in the

coordinate system of the model. The 3D position of 𝒄𝑖 in the coordinate system

of the reconstructed model 𝑀 has been obtained simultaneously during the

reconstruction of the 3D scene by the structure from motion algorithm (Section

3.4.1). The 3D position of the gaze point can be reconstructed from 2D gaze data

𝒈𝐼𝑖 by using the familiar 3D to 2D transformation from the coordinate system of

the model to the pixel coordinate in the image. Using homogeneous coordinates,

a 3D gaze point [𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇 in the coordinate system of the model that is related

to the pixel position of gaze data 𝒈𝐼𝑖 = [𝜇𝐼𝑖 𝜈𝐼𝑖]
𝑇 may be defined up to scale by

using Eq. (15):

𝑠 [

𝜇𝐼𝑖
𝜈𝐼𝑖

1
] = 𝑲[𝑹𝑖 𝑻𝑖] [

𝑋𝑖

𝑌𝑖

𝑍𝑖

1

] = 𝑲(𝑹𝑖 [

𝑋𝑖

𝑌𝑖

𝑍𝑖

] + 𝑻𝑖) (15)

103

where 𝑠 is a scale factor, 𝑹𝑖 is a 3 × 3 rotation matrix that represents camera

orientation, and 𝑻𝑖 is a vector with 3 elements that represents camera translation.

Both 𝑹𝑖 and 𝑻𝑖 have been determined during the 3D reconstruction process

and describe the camera pose. 𝑲 is known as the camera intrinsic matrix and has

the form of:

𝑲 = [

𝑓𝑥 𝛾 𝑝𝑥

0 𝑓𝑦 𝑝𝑦

0 0 1

] (16)

where 𝑓𝑥 and 𝑓𝑦 are the focal length, which is expressed in units of the pixel

dimension, 𝛾 is the skew parameter, and [𝑝𝑥 𝑝𝑦]
𝑇 is the pixel position of the

principal point. The principal point is the intersection of the optical axis (principal

axis), which is a line through the camera center orthogonal to the camera image

plane, with the frame image plane. It is an indication of the camera center in the

image. Moreover, pixels are usually assumed to be square and, in that case, 𝑓𝑥 =

𝑓𝑦 = 𝑓 and 𝛾 = 0. Thus, we can rewrite 𝑲 as:

𝑲 = [

𝑓 0 𝑝𝑥

0 𝑓 𝑝𝑦

0 0 1

] (17)

In Eq. (15), all the parameters are known except the undetermined 3D

homogeneous gaze point. Hence, from Eq. (15), the 3D gaze point can be

obtained by the following matrix equation:

[

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = (𝑲𝑹𝑖)
−1 (𝑠 [

𝜇𝐼𝑖
𝜈𝐼𝑖

1
] − 𝑲𝑻𝑖) (18)

Given recorded gazed data 𝒈𝐼𝑖 , Eq. (18) gives a 3D gaze point using the

projection transformation matrix. Moreover, scale factor 𝑠 determines only how

far away the 3D gaze point is from the camera center, i.e., 𝑠 is independent of

the direction of the 3D gaze point relative to the camera. Thus, we can simply set

𝑠 = 1. User’s line of sight can then be determined by a line that passes through

both the camera center and the determined 3D gaze point.

104

The final stage is the determination of 3D gaze fixation in the scene model

through the intersection of the user’s line of sight and the model. Because the

surface of the reconstructed mesh model is represented by a set of triangles that

are formed from the dense point cloud, the goal can be considered to find out

which triangle(s) the user’s line of sight passes through. Triangles that are

intersected by the user’s line of sight are considered as potential 3D gaze fixation,

and the triangle that is closest to the camera center is then considered as the target

3D gaze fixation. To efficiently search for the intersected triangles in a model

with a large number of 3D triangles, we use the computational geometry

algorithms library (CGAL) software. It can construct an axis-aligned bounding

box (AABB) tree data structure to store the set of 3D triangles hierarchically and

use the AABB tree data structure to speed up intersection queries [82]. Through

this way, we input the reconstructed 3D mech model 𝑀 into the AABB tree data

structure to find the triangles intersected by user’s line of sight, which is a ray

starting from the position of the camera center. From all the intersected triangles,

we choose a triangle 𝜏𝑖 that is closest to the camera center corresponding to the 2D

gaze data 𝒈𝐼𝑖 in the frame image 𝐼𝑖 as the 3D gaze visualization on the model 𝑀.

3.4.4 Gaze Visualization via the Heatmap

We compute 𝜏𝑖 for all the gaze fixations {𝒈
𝐼𝑖
}. As the triangle is intersected by

more than one intersection line, we count the number of intersections 𝑃𝑖 of 𝜏𝑖.

𝑃𝑖 indicates how many times the user’s lines of sight intersect a triangle. After finding

all intersected triangles, they are marked by different colors depending on the

number of intersections 𝑃𝑖. For instance, in Fig. 3-14(a), if 𝑃𝑖 is large, its color

is red and vice versa. However, by showing only intersected triangles, the result

looks discrete and difficult to analyze by the user. Thus, it is better to visualize

the information of 3D gaze fixation on the mesh model as a heatmap; a diffusion

filter is used to smooth the data, as shown in Eq. (19). It distributes the gaze

fixation count and highlights where the user was looking. The diffusion filter has

an effect that is equivalent to the Gaussian filter, which has its basis in the human

visual perception system [83][84][85]. Equation (19) updates the fixation count

𝑃𝑖 of a certain triangle 𝜏𝑖 in 𝑀 based on the fixation count of the neighboring

105

triangles 𝑁𝑖, as shown in Eq. (20):

 𝑃𝑖
′ = 𝑃𝑖 + 𝜆∆𝑃𝑖 (19)

where 𝜆 is the diffusion rate that is similar to the thermal diffusivity in the heat

equation and controls the transfer rate of the fixation count, and

∆𝑃𝑖 =

1

|𝑁𝑖|
(∑ 𝑃𝑗

𝑗𝜖𝑁𝑖

) − 𝑃𝑖 (20)

where 𝑁𝑖 is a set of neighboring triangles to 𝜏𝑖 and |𝑁𝑖| is its number. By

applying Eqs. (19) and (20) to all triangles, one iteration was formed. By

performing more iterations, the gaze distribution result becomes smoother and

identifies the region to which the user was paying attention with a red color. Fig.

3-14 shows the heatmap gaze distribution results for different number of

iterations.

Fig. 3-14 Heatmap result with 𝜆 = 0.5 and different number of iterations

106

3.5 Multiple Users’ 3D Gaze Visualization Based on the

Same Model

Using the approaches described in Section 3.4, the system can generate a user's

3D gaze fixations and show them on the 3D model that was reconstructed from

the user’s recording. According to this idea, for multiple users who observe the

same environment, the system will reconstruct a 3D model of the scene for each

user from their own recording video, and then demonstrate users’ 3D gaze

fixation on their own 3D model of the scene. However, it means that the system

will reconstruct multiple 3D models that represent the same environment, and this

will be quite time-consuming to generate multiple users’ 3D gaze visualization.

An appropriate way is to reconstruct only one 3D model of the scene and then

register each user’s gaze data into the model for 3D gaze visualization.

Multiple users who observe the same scene mean a group of users who are

restricted to observe the same environment, but each user is able to observe the

scene in his/her own way. Users can observe the scene from different views, paths,

and speeds. Fig. 3-15 shows a schematic plot of multiple users’ 3D gaze

visualization for three users A, B, and C. The three users observe the same scene,

and we focus on the realization of their 3D gaze results by sharing the same 3D

model of the scene. For the workers’ training, our proposed method can more

efficiently compare the difference of 3D gaze data between workers who work in

the same environment.

Fig. 3-15 A schematic plot of multiple users’ 3D gaze visualization

107

Fig. 3-16 shows the original method introduced in Sec. 3.4 to generate three users’

3D gaze results. Each 3D gaze visualization is reconstructed from each user’s eye

tracking recording. However, because the users observe the same scene, the

reconstructed 3D models represent the same environment. Thus, it is not

necessary to generate multiple scene models, and only one scene model is

possible to display all users’ 3D gaze fixation. An illustration of this idea is shown

in Fig. 3-17. Reconstructing only a 3D model of the scene 𝑀𝐴 from User A’s

scene video, model 𝑀𝐴 can be shared to visualize other users’ 3D gaze fixation.

Without reconstructing multiple 3D models (𝑀𝐵 and 𝑀𝐶), it is expected that a

large amount of time can be saved.

(a)

(b)

Fig. 3-16 Flowcharts of visualizing each user’s gaze data on the model reconstructed

from user’s own recording: (a) text explanation and (b) a visualized plot

108

(a)

(b)

Fig. 3-17 Flowcharts of visualizing each user’s gaze data on the model reconstructed

from user’s own recording: (a) text explanation and (b) a visualized plot

Take Fig. 3-17 for example. To realize the idea, the main challenge is to calculate

the pose of camera centers of User B’s and User C’s video frames under the

coordinate system of the model 𝑀𝐴. Once this is accomplished, the same process

of calculating intersection lines and determining the intersected triangles on 𝑀𝐴

is repeated. User B’s and User C’s 3D gaze fixation can then be shown on 𝑀𝐴.

Fig. 3-18 and Fig. 3-19 indicate the general procedure and the schematic plot of

the calculation, respectively. Now, take only two users, User A and User B, for

explanation, and assume they wear the same pair of eye tracking glasses and

observe the same environment. User A's image set {𝐼𝑖
𝐴} is chosen as the base.

109

After using the SfM method, densifying, and meshing, we obtain the base mesh

model 𝑀𝐴 for sharing and the pose of camera centers {𝒄𝑖
𝐴} corresponding to

User A’s video frames under the coordinate system of 𝑀𝐴, 𝛴𝐴.

Fig. 3-18 Process of finding camera centers under the coordinate system of the base

model 𝑀𝐴

Next, for each User B's video frame 𝐼𝑗
𝐵, to estimate its pose of the camera center

𝒄𝑗
𝐵 in 𝛴𝐴, as shown in Fig. 3-19, the system estimate a transformation matrix

𝑻𝑖∗𝑗
𝐵/𝐴

 that maps 𝒄𝑖∗
𝐴 of some appropriate 𝐼𝑖∗

𝐴 to 𝒄𝑗
𝐵 based on the two-view

geometry [74], as explained below. 𝒄𝑗
𝐵 in 𝛴𝐴 could be derived by multiplying

the transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 and the known 𝒄𝑖∗
𝐴 , as shown in Eq. 6. 𝐼𝑖∗

𝐴 is

chosen from {𝐼𝑖
𝐴}, which has the largest overlap (similarity) with 𝐼𝑗

𝐵.

 𝒄𝑗
𝐵 = 𝑻𝑖∗𝑗

𝐵/𝐴
× 𝒄𝑖∗

𝐴 (6)

110

Fig. 3-19 Schematic plot of determining camera centers under the coordinate system

of the base model 𝑀𝐴

With respect to the two-view geometry, given the correspondence between two

overlapping images of the same object acquired from different locations, the

relative pose of the camera center (i.e., relative camera orientation and translation)

could be derived. Here, the relative pose of camera centers acts as the

transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 that indicates the pose of User B's camera center

relative to the pose of User A's camera center 𝒄𝑖∗
𝐴 . Fig. 3-18 shows that to

determine the 𝑻𝑖∗𝑗
𝐵/𝐴

, feature extraction of two image sets, {𝐼𝑖
𝐴} and {𝐼𝑗

𝐵}, and

feature matching between them are first conducted to find some User A's image

𝐼𝑖∗
𝐴 that corresponds to User B's image 𝐼𝑗

𝐵. Because two users observe the same

scene, for each User B's image, it is expected to find at least one User A's image

that possesses a zone that is highly overlapped with the scene in User B's image.

Once the corresponding image is found using the two-view geometry, the

transformation matrix 𝑻𝑖∗𝑗
𝐵/𝐴

 can be evaluated. Thus, the pose of User B's camera

center 𝒄𝑗
𝐵 in 𝛴𝐴 can be determined by multiplying the known pose of User A's

camera center 𝒄𝑖∗
𝐴 and the transformation matrix 𝑻𝑖∗∗𝑗

𝐵/𝐴
 represented by

homogeneous coordinates. This process is the same idea as registering new

images {𝐼𝑗
𝐵} into the existed model 𝑀𝐴, and we use the COLMAP software to

address this image registration.

111

Then, using the above-mentioned method in Section 3.4.3, we can determine User

B's 3D gaze fixation on the base model 𝑀𝐴. The connection of the pose of User

B's camera center 𝒄𝑗
𝐵 and the 3D gaze point derived from Eq. 3 in 𝛴𝐴 generates

User B's line of sight in 𝛴𝐴 to determine the intersection with 𝑀𝐴. Thus, we are

able to produce User B's 3D gaze fixations in 𝑀𝐴. Furthermore, by applying the

same concept to additional users who observe the same environment, the feature

descriptors of their image sets can be matched to the feature descriptors of the

image set of the base model 𝑀𝐴 to determine the corresponding pose of the

camera centers and to eventually visualized all users' 3D gaze fixation on the

same model 𝑀𝐴 . In addition, because all users' gaze data are shown on an

identical model, only one 3D model of the scene is needed to be reconstructed

instead of reconstructing multiple models from all users’ recordings.

112

3.6 Experiments of Three-Dimensional Gaze Visualization

System

We conducted some experiments to verify the proposed methodology and to

discuss the functionality of our system. In this study, the specification of the PC

used to generate 3D gaze visualization is show in Table 3-1. To speed up the

process of 3D reconstruction, the COLMAP and OpenMVS software use the GPU

to extract SIFT features of images and to refine the mesh model, respectively.

Moreover, in our experiments, the number of frames for 3D scene reconstruction

is restricted to approximately 200 because of the GPU computation in OpenMVS

can handle approximately 200 images at most, which is related to the memory

size of the GPU.

Table 3-1 Specification of the hardware for data processing

Processor Intel® Core™ i7-7700 CPU @ 3.60GHz

RAM 64.0 GB

GPU NVIDIA Geforce GTX 1080 Ti

(Memory size: 11.0 GB)

3.6.1 System Verification

Two experiments were conducted to verify whether the evaluated positions of 3D

gaze fixation are displayed on the target spots that a user paid attention to. The

first experiment required the user to pay more attention to six fixed spots in the

environment, as shown in Fig. 3-20(a). During the observation, the user moves

from left to right and then from right to left, with the change of the target spot

that the user paid attention to. The video is 53.6 sec long and contains 1,340 frame

images. We took 224 frames (𝑛𝑠 = 6) for 3D scene reconstruction. In Fig. 3-20(b),

it can be seen that most 3D gaze fixations are displayed on the specified six places.

The average distance between target and measured positions is 6 mm, and the

standard deviation is averagely 8 mm.

113

Fig. 3-20 System verification performed by observing six fixed spots: (a) target spots

and the (b) evaluated result

Fig. 3-21 Case of fixed spots: error of 3D gaze fixations from the shifting of 2D gaze

114

For the first target observation point as shown in Fig. 3-21, in the 3D gaze results,

we see that there are two clusters A and B near the target point. 3D gaze fixations

in Cluster A are the 3D gaze results corresponding to the correct 2D gaze fixations

shown in the scene video. However, 3D gaze fixations in Cluster B are shifted

approximately 5 cm away from the target point even when the user was definitely

looking at the target point. This shifting results in the 3D model derive from the

shifting results recorded in 2D gaze results that may be caused by the user’s gaze

angle larger than 15°. The high performance of Tobii eye tracking glasses is based

on the gaze angle smaller than 15°. Gaze angle larger than 15° may cause larger

errors in 2D gaze results that lead to larger errors in 3D. To avoid this problem,

the user should move his/her head and body more frequently instead of large

rotational movement of eyeballs.

The other experiment of system verification, shown in Fig. 3-22, required the user

to observe along the edge of the sink back and forth. The video is 39.3 sec long

and contains 982 frame images. 246 frames (𝑛𝑠 = 4) were taken into the 3D

reconstruction process. The experimental result shows that 92% of evaluated 3D

gaze fixation were located along the designated edges. Preliminarily, these two

experiments show that most 3D gaze results using the proposed system are

reliable.

However, Fig. 3-22(c) shows that as we observed the result of the edge case from

another view, some estimated gaze positions were not on the edge of the sink but

at its bottom. This derived from poor 3D reconstruction for that edge and gaze

angle larger than 15°. The area marked with a dotted line is part of the sink edge

where the corresponding meshes were poorly, or were not, reconstructed (the

edge width shrinks by approximately 50%) because of its plain texture and

insufficient images from multiple views for 3D reconstruction. This suggests that

during the procedure of finding an intersected triangle, starting from the camera

center, through user's line of sight, we were not able to find an intersection in the

dotted area because there were no triangles; eventually, an intersection at the

bottom of the sink was determined as we continued to move along the line of

sight. Moreover, in Fig. 3-23, the other error source is the user’s gaze angle larger

than 15° as described in the case of observing fixed spots.

115

Fig. 3-22 System verification performed by observing the edge of the sink: (a) target

edges, (b) evaluated result, and (c) different view of the evaluated result

Fig. 3-23 Case of edges: error of 3D gaze fixations from the shifting of 2D gaze

116

3.6.2 Gaze Difference between Multiple Users

To compare the gaze difference between multiple users, three users A, B, and C

wore the same pair of Tobii eye tracking glasses and were asked to observe the

same environment, i.e., the sink and surroundings, one by one. Fig. 3-24(a) shows

the scene of the experimental environment. The users were restricted to observe

the sink from the front and left side for the preliminary test. After the users

finished the observation, the recorded video and the gaze data from the eye

tracking glasses were input into the system for 3D reconstruction and to display

3D gaze fixation on the reconstructed model using 10 iterations of the application

of the diffusion filter, as shown in Fig. 3-24(b), (c), and (d). Table 3-2 shows the

information of each user’s eye tracking recording, and the number of frames to

generate the scene models 𝑀𝐴, 𝑀𝐵, and 𝑀𝐶 from each user’s recording. The

processing time for each recording is shown in the upper part of Table 3-3. Thus,

using this way for the three users observing the same scene, the system took

totally 6 hours to demonstrate their 3D gaze results.

Table 3-2 Information of the scene videos

Video source

Video length [s] Total frames 𝑛𝑠
No. of frames for

3D reconstruction

User A 55.09 1379 6 230

User B 40.70 1019 5 204

User C 48.41 1212 6 202

Table 3-3 Processing time of each stage (minute)

 3D scene reconstruction

Video

Source

(Model)

Sparse point

cloud generation

(COLMAP)

Mesh model

generation

(OpenMVS)

Image

registrationa

3D gaze

determination
Total

 Users’ gaze on their respective model

User A (𝑀𝐴) 2.85 118.47 5.95 8.18 135.45

User B (𝑀𝐵) 2.4 94.40 4.88 7.1 108.78

User C (𝑀𝐶) 2.65 94.33 5.68 8.52 111.18

 Users’ gaze on the same model, 𝑀𝐴

User B (𝑀𝐴) - - 9.27 7.90 17.17

User C (𝑀𝐴) - - 9.83 8.4 18.23
aRegister the images that are not used for 3D reconstruction into the model to obtain

corresponding camera poses and to determine 3D gaze fixation

117

Fig. 3-24 Visualization of 3D gaze fixation for three users: (a) experimental

environment, (b)(c)(d) three users' 3D gaze visualization on the 3D models

reconstructed from their own recorded scene video, (e)(f) display of User B's and C's

3D gaze fixation on 𝑀𝐴

Next, to compare the gaze distribution, we used User A's reconstructed model

𝑀𝐴 as the base model to visualize the other two users' gaze data on 𝑀𝐴, as shown

in Fig. 3-24(e) and (f). The processing time is shown in the lower part of Table

3-3. Using this method, the system first generated 𝑀𝐴 with 135.45 minutes and

then registered User B’s and C’s gaze data to 𝑀𝐴 with 35.4 minutes. Thus, it took

2.8 hours to generate all the results, which saved 50% of the processing time.

118

Table 3-4 Fixation count 𝑃𝑖 of the three spots

 Spot

Gaze data 1 2 3

User B [Fig. 3-24(c)] 0.072 1.149 0

User B (𝑀𝐴) [Fig. 3-24(e)] 0.476 1.447 0

User C [Fig. 3-24(d)] 0 0 1.955

User C (𝑀𝐴) [Fig. 3-24(f)] 0 0.003 2.074

Table 3-4 shows the quantitative performance of the registration. We chose three

spots marked in Fig. 3-24(a) and, for the same user, compared the fixation count

𝑃𝑖 between the 3D model reconstructed from their own scene video and 𝑀𝐴 .

Spots 1, 2, and 3 were the places where Users A, B, and C paid more attention,

respectively. Table 1 indicates that, for the same user, there was a similar

distribution of the fixation count 𝑃𝑖 on the different reconstructed 3D models.

By displaying User B's and C's gaze data on 𝑀𝐴 , we could determine the

difference between the same gaze information on the different models. This

occurred owing to the different quality of the models. Different recorded videos

generated models with different qualities. Although the videos from different

users recorded the same environment, the frame images were taken from different

views of the environment. In addition, the existence of textureless objects (e.g.,

the wall and the table) resulted in the deformation of objects and creation of

uneven surfaces owing to few detected feature points on the textureless objects.

These issues changed the position of intersected points on the models.

Nevertheless, the parts to which a user paid more attention were still marked as

the key parts on the model 𝑀𝐴.

3.6.3 3D Gaze Visualization in a Room-Scale Environment

Fig. 3-25 shows a room-scale observation. A user walked around in a room and

paid attention to decorations near three inside walls of the room. The video is

126.8 sec long and contains 3,170 frame images. 212 frames were taken for 3D

scene reconstruction. Fig. 3-25(b) shows a panorama of the room, and the dotted

lines indicate the junction of two walls. A 3D model of three inside walls in the

119

room was reconstructed with 3D gaze fixation, and 10 iterations of the diffusion

filter with 𝜆 = 0.8 were applied. To mitigate the accumulation of error, which is

common in image-based 3D reconstruction, the COLMAP software applies

bundle adjustment to minimize reprojection errors. In this room-scale experiment,

the reprojection error is averagely 1 pixel. Fig. 3-25(a) demonstrates the potential

of this system to be applied to larger and more complex environments.

Fig. 3-25 3D gaze visualization in a room-scale model: (a) model of the room with 3D

gaze fixations and a (b) panorama of the room

However, in a room-scale environment, it is also possible to perform gaze

analysis with 2D images. Fig. 3-26 shows the heatmap results for the panorama

of the room, which was generated by Tobii Pro Lab (i.e., a commercial eye

tracking software for analyzing and visualizing 2D gaze data from Tobii eye

tracking glasses). The panoramic image was acquired by an extra RGB camera

and input into the Tobii Pro Lab software. By comparing each frame image in the

scene video and recorded gaze data, the software evaluated the corresponding

gaze fixations and visualized them on the panorama using the heatmap. Although

120

it appears that 2D gaze visualization is an adequate solution, it is still not reliable

even in this case. Fig. 3-27(a) is a frame image with gaze fixation acquired from

the scene video, and its corresponding gaze fixation in the panorama, determined

by the Tobii pro lab, is shown in Fig. 3-27(c). Fig. 3-27(d) shows the heatmap

result in the panorama. According to the frame image of the scene video in Fig.

3-27(a), a user was looking at the inside of a brown bin without a cover, but after

the analysis of the Tobii pro lab software, the same gaze fixation is displayed on

the outside of the bin. This error is inevitable because the inside image of the bin

does not exist in the panorama. This shows that if we want to obtain such gaze

fixation results on 2D images, we need to have multiple images with various

views of the environment. However, as the scale of the environment becomes

larger, the number of required images will exponentially increase, which will

make the analytic work more difficult. Fig. 3-27(c) shows the result of 3D gaze

visualization that demonstrates that the user paid attention to the inside rather

than the outside.

Fig. 3-26 2D gaze visualization on the panorama of the room

121

Fig. 3-27 Comparison of gaze estimation between (a) the frame image from the scene

video, (b) proposed 3D gaze visualization, and (c) the panorama. (d) is the heatmap

form of 2D gaze in the panorama.

The room-scale experiment shows an advantage of 3D gaze visualization over 2D

gaze information is its spatial extensibility. Using the 3D reconstruction from the

scene video, a larger model (e.g., a room or even a building) can be generated to

easily display and analyze gaze fixations. However, it is difficult to achieve the

same effects with 2D images.

122

3.7 Summary

In this study, we propose a system that uses the eye tracking glasses to

demonstrate user's 3D gaze fixation on a 3D model of the scene. Though other

existing systems similar to it employ extra sensors, our system employs only the

eye tracking glasses without any other sensors. The eye tracking glasses record

all the necessary information for 3D gaze visualization: the scene video and user's

2D gaze data. Through image-based 3D reconstruction, the scene video can be

used to reconstruct the 3D environmental model by using the COLMAP and

OpenMVS software. To reduce the processing time, we take a part of frame

images for 3D scene reconstruction by downsampling the video. Next, by

estimating the pose of camera centers and gaze data, we can determine the 3D

gaze fixations on the reconstructed model of the scene by drawing the intersection

line, which is a user's line of sight. The preliminary results of the experiments

indicate that user's 3D gaze fixation on the reconstructed model can be displayed

at the targets with the accuracy of 6 mm and the standard deviation of 8 mm.

Moreover, to analyze gaze differences between multiple users, we use the image

registration method to find all users' 3D gaze fixations on the same model of the

scene. In the experiments of the three users’ 3D gaze visualization, 50% of the

processing time can be saved. By sharing the same model, we can more efficiently

visualize multiple users’ 3D gaze for worker’s assessment and training. In

addition, a room-scale experiment was conducted. It shows that the 3D gaze

visualization can demonstrate the structure of the environment and may give more

reliable results than 2D gaze visualization.

Since only a pair of eye tracking glasses is used and all the necessary data are

collected during eye tracking experiments, we can save time and human resources

without scanning the environment again by other devices. This methodology

exhibits a considerable potential for the applications related to the evaluation of

user's attention in large and complex environments such as for the instruction of

construction inspectors or for the aesthetic evaluation of interior decoration.

123

Chapter 4
Conclusion and Future Work

4.1 Summarization of the work

With the development of smart glasses, it can be equipped with various sensors

and high-performance microprocessors. This kind of wearable device has become

a promising tool for field service assistance. In this research, we focus on the AR-

based indoor field service assistance system which may be realized by using AR

glasses with eye tracking sensors. However, since the development of such smart

glasses is still in its infancy, we use AR glasses and eye tracking glasses, which

are available in the market, and develop two prototype systems for the assistance

of indoor field service applications that the worker needs to move in room-scale

environments. AR glasses are responsible for the assistance during assembling

operations, and eye tracking glasses can be used for worker’s skill assessment and

training. The main achievement in our work can be summarized as follows:

✓ For AR glasses, we develop an AR assembly assistance system with

misassembly detection in real time.

✓ For eye tracking glasses, we visualize multiple users’ 3D gaze fixations

effectively for gaze comparison.

The summarization and achievement of each study is as follows:

In the part of AR glasses (Chapter 2)

We propose an AR assembly assistance system with misassembling detection in

real time. By using the sensors and microprocessors in the AR glasses, a

standalone AR system has been developed for assembly assistance. We study the

issues of coordinate calibration and efficient misassembly evaluation to make

virtual parts displayed at desired installing locations and to evaluate assembly

errors in real time, respectively. The developed system is experimentally

validated and demonstrated in desktop applications and the room-scale

environment.

124

To realize such AR system, we integrate the existing functions in the AR glasses

and our proposed methods. For example, coordinate calibration is composed of

rough alignment (user’s hand manipulation) and precise alignment (the point-to-

plane ICP algorithm). The process of rough alignment can be fast, but the position

error may be a few centimeters. Moreover, precise alignment can achieve

millimeter-level accuracy, but the initial position and orientation of two point

clouds should be similar to prevent from local convergence; that is, initial

alignment is needed and should not be poor. Thus, we propose an idea of the

integration of the two alignment methods to achieve coordinate calibration of

millimeter-level accuracy and simultaneously make the whole process done

within a few seconds.

Furthermore, to evaluate assembly errors in real time, we make efforts to reduce

the computation time by comparing the HoloLens-generated depth maps (in 2D

space) instead of in 3D space. By comparing the relationship between the pixel

values of the depth maps, in our preliminary implementation, the evaluation of

misassembly is performed at 30 fps, which is sufficiently fast to warn the worker

once misassembly occurs. The evaluation result is visualized by coloring virtual

parts. Moreover, the system can detect the position error of assembly within ±1

cm, which can be expected to be used for room-scale environments.

In the part of eye tracking glasses (Chapter 3)

We propose a 3D gaze visualization method by converting the recorded gaze data

in the scene video (2D space) into 3D space. Without using external scanners to

perform another 3D scanning of the environments, the necessary image data for

3D reconstruction can be recorded by the eye tracking glasses when the worker

is working. The proposed system is experimentally validated and demonstrated

for a room-scale environment. User’s focus of attention can be marked in a 3D

model of the scene in the form of heatmaps, which are commonly used to display

the user’s visual attention.

To realize such 3D gaze visualization more effectively and efficiently, instead of

directly inputting all frame images in the recorded scene video into the existing

125

software for 3D scene reconstruction, we divide the fame images into two groups

in advance. One is used for 3D scene reconstruction, and the other is used to find

the camera centers to determine 3D gaze fixations. With the idea of

downsampling the number of frame images for 3D scene reconstruction, the

reconstruction time can effectively decrease from dozens of hours to a few hours.

Moreover, since the scene video and gaze data are collected by different devices

at different frequency, we estimate the corresponding gaze information for each

frame image by linearly interpolating the gaze data based on the time stamps of

the gaze data and of the frame images.

Furthermore, to compare multiple users’ 3D gaze results more effectively, we

further propose an approach to visualize all users’ gaze in the same model of the

scene. In our preliminary experiments of three users, by sharing the same 3D

model of the scene, the total generation time of the three users’ 3D gaze results

can decrease by 50%. In comparison to the typical 2D eye tracking applications

that workers are required to observe a static image of a working field, our system

allows the workers to move in the field and work as usual. It is expected to

compare practical working performance between experienced and novice

workers such as inspecting a construction field.

In summary, we use existing AR glasses and eye tracking glasses to develop the

systems for field service assistance. The AR assembly assistance system gives

assembly indications and evaluates misalignment when the worker is performing

an assembly operation. 3D gaze visualization is possible to compare multiple

workers’ practical performance at work. This is beneficial to train novice workers

and skill assessment. In the future, these two systems can be integrated in a single

AR glasses with eye tracking sensors and form an AR-based field service

assistance system. We can expect that using a pair of such smart glasses can assist

in field service applications and training.

126

4.2 Future Perspective

This work mainly includes the development of the AR assembly assistance

system and 3D visualization of users’ gaze fixations on objects. These systems

are experimentally validated and are possible to be used in indoor field service

assistance of room-scale environments. In the future, we will continue studying

and improving those research topics and make efforts to integrate the two systems

into the same pair of smart glasses. The following list our future work in three

parts:

◼ In the part of AR assembly assistance (AR glasses)

(a) Develop more robust indicator for evaluation of misalignment.

In Sec. 2.5, to evaluate misalignment between real and the virtual objects,

we focus on the comparison of the depth values between the depth maps

of the real and virtual objects. We use centered cosine similarity as our

indicator to evaluate the misalignment, and in our preliminary

experiments, the accuracy of the misalignment error can be within ±1 cm.

As validated, the centered cosine similarity method is invariant to the

shift and scaling of data set. However, a part of the real object may be

poorly scanned because of multipath interference in the time-of-flight

depth camera or scanning from a shallow angle. It will influence the

evaluation results of misalignment.

Hence, it is necessary to develop a more robust indicator to the poorly

scanned point cloud. In the future, we can try to integrate with other

methods, such as edge detection in the depth map, comparing silhouette

of objects, and object tracking. Each method can give an evaluation score.

By fusing various methods, we can then determine an evaluation

function as a new indicator for misassembly evaluation. Simultaneously,

we still have to take the processing time into account to confirm the

evaluation can be performed in real time.

Another issue of misalignment evaluation is occlusion problems with

127

hands and other objects. In our development, the occlusion problems are

not considered. When evaluating misalignment for each part of an

assembly, there should not exist any other objects between the HoloLens

and the target part of the assembly. This will increase the time of

assembling operations. To solve the occlusion problems of user’s hands

and of other parts of the assembly, it is possible to remove scanned hands

and parts from the depth maps by hand tracking and object tracking.

Then, we can take remaining pixels in the depth maps to evaluate

whether there is occurrence of misalignment.

In addition, the scanned point cloud of nearby objects such as table

surfaces also influences the misalignment evaluation and make the

indicator’s values asymmetric when the misalignment occurs in different

directions. To solve this problem, we may perform object detection in

depth maps and take only pixels that belongs to the target object to do

evaluation. This will mitigate the influence given by nearby objects’

point cloud.

(b) Improve the design of the graphical user interface (GUI) and AR

assembly instructions.

In our implementation of the AR assembly assistance system, we mainly

focus on the development of the functions, and the GUI is simply

designed with a few aligned buttons to execute the functions, such as

performing point-to-plane ICP for coordinate calibration and showing

the next virtual part for assembly. To assist workers in assembly

operations using AR technology more smoothly, clear, concise, effective

user interfaces can help the workers understand how to read and use the

AR assembly assistance system. Thus, we will make efforts to improve

our GUI design.

Moreover, we would like to design AR assembly instructions to help the

user find the virtual parts. For our room-scale demonstration in Sec. 2.6.4,

decorations are arranged in the different locations of an 8 m2 room. When

128

the system sequentially displays each decoration in the room, the user

can have no difficulty in finding the target virtual object. However, given

that the user is in a much larger environment, the user may not be able to

smoothly find where the target virtual object (i.e., the next installing

location) is. In that case, it will be beneficial if the system can give

instructions to help the user find the location. Since the AR glasses of

HoloLens can position the user’s position in the environment, we can

design an AR arrow to indicate the direction of the installing location

according to the position of the target virtual object relative to the user’s

position.

◼ In the part of 3D gaze visualization (eye tracking glasses)

(a) Reduce the time required for 3D scene reconstruction.

In Table 3-3 in Sec. 3.6.2, to generate User A’s 3D gaze visualization, we

perform a series of processing stages. In particular, the processing time

for 3D scene reconstruction accounts for approximately 87% of the

entire processing time. Thus, there is still room for improvement to

accelerate the process of gaze analysis. Further downsampling the

number of frame images in chronological order is one way to reduce the

number of images used for 3D reconstruction. However, if a user walks

around in an environment and frequently observes the same object at

different times, frame images that have the same view will still be

selected out. Those frame images can not provide new information of the

scene for 3D reconstruction. To avoid such redundancy, a possible way

is to remove the frame images that have the same or similar view from

the process of 3D reconstruction. Thus, the time for 3D reconstruction

will decrease.

(b) Improve the completeness of the 3D model of the scene for multiple

users’ 3D gaze visualization.

In our preliminary experiment in Sec. 3.6.2, multiple users’ (Users A, B,

129

and C) gaze fixations are visualized by the same 3D model of the scene

which is constructed from User A’s scene video. With this approach, if

now Users B and C observe some objects that are not observed by User

A, it can be expected that those objects will not be reconstructed in the

model of the scene, and the generated 3D gaze results will not be reliable.

To solve this problem, we can take all users’ scene videos into account

and reconstruct a 3D model of the scene that covers all users’ focus of

attention as the main model for 3D gaze visualization.

◼ Integration of AR assembly assistance and 3D gaze visualization systems

(a) Integrate the developed two systems into a pair of smart glasses.

In the future, we will deploy the two subsystems into a pair of AR glasses

with eye tracking sensors, develop an AR-based field service assistance

system, and verify the performance of the integrated system in AR-based

field service applications. Microsoft HoloLens 2 (the 2nd generation of

HoloLens) is possible commercial smart glasses for our purpose.

HoloLens 2 is a pair of AR glasses with eye tracking sensors while

HoloLens that we use does not have embedded eye tracking sensors.

After integrating the two systems, it is an issue to consider the interaction

between eye tracking and AR technologies. For example, with user’s

gaze information, it can be a controller to interact with virtual objects in

AR environments. However, when the user is gazing some virtual object,

it can be a challenge for application developers to identify whether the

user just looks at it or wants to manipulate it by gaze.

Conversely, under AR environments, the user can see not only physical

objects but also computer-generated virtual objects. It means that when

we want to analyze the user’s gaze data, we should also take the user’s

gaze fixations on virtual objects into account. Thus, for 3D gaze

visualization, the 3D model of the scene will contain real objects,

generated by image-based 3D reconstruction, and virtual objects, which

130

can be directly input into the model of the scene if we can evaluate their

positions in the model. Then a potential study for the AR glasses with

eye tracking sensors is that how the AR assistance system influences the

worker’s performance, and the user’s gaze information may be a method

for analysis.

131

Reference

[1] H. L. Chi, S. C. Kang, and X. Wang, “Research trends and opportunities of

augmented reality applications in architecture, engineering, and

construction,” Automation in Construction, vol. 33, pp. 116-122, August

2013.

[2] S. Webel, U. Bockholt, T. Engelke, N. Gavish, M. Olbrich, and C. Preusche,

“An augmented reality training platform for assembly and maintenance

skills,” Robotics and Autonomous Systems, vol. 61, no. 4, pp. 398-403, April

2013.

[3] Fieldbit, https://www.fieldbit.net/

[4] A. Tang, C. Owen, F. Biocca, and W. Mou, “Comparative effectiveness of

augmented reality in object assembly,” In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI’03, pp. 73-80,

New York, USA, 2003.

[5] O. Oda, C. Elvezio, M. Sukan, S. Feiner, and B. Tversky, “Virtual replicas

for remote assistance in virtual and augmented reality,” In Proceedings of

the 28th Annual ACM Symposium on User Interface Software & Technology,

UIST’15, pp. 405-415, November 2015.

[6] B. Schwald and B. de Laval, “An augmented reality system for training and

assistance to maintenance in the industrial context,” Journal of WSCG, vol.

11, no. 1-3, 2003.

[7] M. F. Alam, S. Katsikas, O. Beltramello, and S. Hadjiefthymiades,

“Augmented and virtual reality based monitoring and safety system: A

prototype IoT platform,” Journal of Network and Computer Applications,

vol. 89, pp. 109-119, 2017.

[8] Trimble Mixed Reality, https://mixedreality.trimble.com/

[9] S. Hasanzadeh, B. Esmaeili, and M. D. Dodd, “Measuring construction

workers’ real-time situation awareness using mobile eye-tracking,”

Construction Research Congress 2016, pp. 2894-2904, 2016.

[10] T. Tien, P. H. Pucher, M. H. Sodergren, K. Sriskandarajah, G.-Z. Yang, A.

Darzi, “Eye tracking for skills assessment and training: a systematic review,”

Journal of Surgical Research, vol. 191, no. 1, pp. 169-178, September 2014.

[11] S. Hasanzadeh, B. Esmaeili, and M. D. Dodd, “Measuring the impacts of

132

safety knowledge on construction workers’ attentional allocation and hazard

detection using remote eye-tracking technology,” Journal of Management in

Engineering, vol. 33, no. 5, pp. 04017024, 2017.

[12] Tobii AR, https://ar.tobii.com/

[13] H.-J. Joo and H.-Y. Jeong, “A study on eye-tracking-based Interface for

VR/AR education platform,” Multimedia Tools and Applications 79, pp.

16719-16730, 2020.

[14] R. Radkowski and S. Kanunganti, “Augmented Reality System Calibration

for Assembly Support with the Microsoft HoloLens,” In ASME 2018

International Manufacturing Science and Engineering Conference (MSEC

2018), College Station 2018.

[15] R. Azuma, “A survey of augmented reality,” Presence: Teleoperators and

Virtual Environments, vol. 6, no. 4, pp. 355-385, 1997.

[16] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre,

“Recent advances in augmented reality,” IEEE Computer Graphics and

Applications, vol. 21, no. 6, pp. 34-47, 2001.

[17] Z. Lv, A. Halawani, S. Feng, S. U. Réhman, and H. Li, “Touch-less

interactive augmented reality game on vision-based wearable device,”

Personal Ubiquitous Computing, vol. 19, no. 3-4, pp. 551-567, July 2015.

[18] E. Z. Barsom, M. Graafland, and M. P. Schijven, “Systematic review on the

effectiveness of augmented reality applications in medical training,”

Surgical Endoscopy, vol. 30, no. 10, pp. 4174-4183, 2016.

[19] F. M. Dinis, A. S. Guimarães, B. R. Carvalho, and J. P. P. Martins, “Virtual

and augmented reality game-based applications to civil engineering

education,” 2017 IEEE Global Engineering Education Conference

(EDUCON), pp. 1683-1688, Athens, Greece, April 2017.

[20] SIEMENS: Ease the delivery of complex assembly procedures for highly

configurable products, https://www.plm.automation.siemens.com/global/ja/

products/manufacturing-planning/augmented-reality-assisted-work-

instructions.html

[21] M. D. Mura, G. Dini, F. Failli, “An Integrated Environment Based on

Augmented Reality and Sensing Device for Manual Assembly Workstations,”

Procedia CIRP, vol. 41, pp. 340-345, 2016.

[22] J. Alves, B. Marques, M. Oliveira, T. Araújo, P. Dias, B. S. Santos,

133

Comparing Spatial and Mobile Augmented Reality for Guiding Assembling

Procedures with Task Validation,” In 2019 IEEE International Conference

on Autonomous Robot Systems and Competitions (ICARSC), pp. 1-6, Porto

2019.

[23] J. Sääski, T. Salonen, M. Hakkarainen, S. Siltanen, C. Woodward, and J.

Lempiäinen, “Integration of design and assembly using augmented reality,”

International Federation for Information Processing on Micro-Assembly

Technologies and Applications, vol. 260, pp. 395-404, 2008.

[24] G. Evans, J. Miller, M. I. Pena, A. MacAllister, E. H. Winer, “Evaluating the

Microsoft HoloLens through an Augmented Reality Assembly Application,”

In Proceedings of SPIE, 10197, pp. 101970V, 2017.

[25] P. Hübner, K. Clintworth, Q. Liu, M. Weinmann, S. Wursthorn, ”Evaluation

of HoloLens Tracking and Depth Sensing for Indoor Mapping Applications,”

Sensors. 2020; 20(4):1021.

[26] HoloLens device specifications,

https://www.beachtle.com/shop/medias/5a1430f79ce96955066d0b10.pdf?c

ontext=bWFzdGVyfHJvb3R8NjA0ODN8YXBwbGljYXRpb24vcGRmfGh

lNC9oM2UvOTQ3MDY4ODYyNDY3MC5wZGZ8MmUwZjQ0YWMyY

mUxMTk3MGE0MmJkNWQxNjI4NmU1MzFiN2Q2MDU4MDYxYjM0

MmJiYjkzNzQ5NmY0Njc0YjJhZA

[27] Depth camera used in the HoloLens, https://www.microsoft.com/en-

us/research/blog/microsoft-hololens-facilitates-computer-vision-research-

by-providing-access-to-raw-image-sensor-streams-with-research-mode/

[28] Mixed Reality Toolkit, https://github.com/microsoft/MixedRealityToolkit-

Unity

[29] Introduction to the HoloLens: Spatial Mapping, https://docs.microsoft.com

/en-us/archive/msdn-magazine/2017/january/hololens-introduction-to-the-

hololens-part-2-spatial-mapping#working-with-the-spatial-mesh

[30] API of MapImagePointToCameraUnitPlane() related to camera intrinsics

of the HoloLens depth camera,

https://github.com/microsoft/HoloLensForCV/blob/master/Shared/HoloLe

nsForCV/CameraIntrinsics.cpp

[31] HoloLensForCV repository, https://github.com/microsoft/HoloLensForCV

[32] S. Foix, G. Alenyà, and C. Torras, “Lock-in Time-of-Flight (ToF) Cameras:

134

A Survey, ” IEEE Sensors Journal, vol. 11, no. 9, pp. 1917-1926, 2011.

[33] A. Bhandari, M. Feigin, S. Izadi, C. Rhemann, M. Schmidt, and R. Raskar,

"Resolving multipath interference in Kinect: An inverse problem approach,"

SENSORS, 2014 IEEE, Valencia, pp. 614-617, 2014.

[34] J. Mure-Dubois and H. Hügli, “Real-time scattering compensation for time-

of-flight camera, ” In Proceedings of the ICVS Workshop on Camera

Calibration Methods for Computer Vision Systems (CCMVS2007), 2007.

[35] T. Huang, K. Qian, and Y. Li, “All Pixels Calibration for ToF Camera,” In

IOP Conference Series: Earth and Environmental Science, vol. 170, no. 2,

2018.

[36]D. Sjöholm, “Calibration using a general homogeneous depth camera model,”

Dissertation, 2017.

[37] Y. He, B. Liang, Y. Zou, J. He, and J. Yang, “Depth Errors Analysis and

Correction for Time-of-Flight (ToF) Cameras. Sensors,” Sensors, vol. 17,

2017.

[38] Y. Chen and G. Medioni, “Object Modeling by Registration of Multiple

Range Images,” In 1991 IEEE International Conference on Robotics and

Automation, Sacramento, 1991.

[39] K. L. Low, “Linear least-squares optimization for point-to-plane ICP surface

registration,” Technical report, University of North Carolina at Chapel Hill,

2004.

[40] k-d tree, https://en.wikipedia.org/wiki/K-d_tree

[41] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

vol. 14, no. 2, pp. 239-256, 1992.

[42] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithm,”

Proceedings of the International Conference on 3-D Digital Imaging and

Modeling (3DIM), pp. 145-152, 2001.

[43] Point Cloud Library, https://pointclouds.org/

[44] Unity, https://unity.com/

[45] Generate depth maps in Unity, https://docs.unity3d.com/Manual/SL-

CameraDepthTexture.html

[46] A. T. Duchowski, “Eye Tracking Methodology: Theory and Practice,”

Springer-Verlag, 2003.

135

[47] H. L. Kundel, C. F. Nodine, E. F. Conant, and S. P. Weinstein, “Holistic

component of image perception in mammogram interpretation: Gaze-

tracking study,” Radiology, vol. 242, pp. 396-402, 2007.

[48] H. Song, J. Lee, T. J. Kim, K. H. Lee, B. Kim, and J. Seo, “Gazedx:

Interactive visual analytics framework for comparative gaze analysis with

volumetric medical images,” IEEE Transactions on Visualization and

Computer Graphics, vol. 23, pp. 311-320, 2017.

[49] H. Song, J. Yun, B. Kim, and J. Seo, “Gazevis: Interactive 3d gaze

visualization for contiguous cross-sectional medical images,” IEEE

Transactions on Visualization and Computer Graphics, vol. 20, pp. 726-739,

2014.

[50] K. Chaika, M. Hayhoe, B. Sullivan, J. Pelz, N. Mennie, and J. Droll,

“Predictive eye movements in squash,” Journal of Vision, vol. 6, pp. 481-

481, 2006.

[51] D. T. Mann, A. M. Wiliams, P. Ward, and C. M. Janelle, “Perceptual-

cognitive expertise in sport: A meta-analysis,” Journal of Sport and Exercise

Psychology, vol. 29, pp. 457-478, 2007.

[52] M. L. Mele and S. Federici, “Gaze and eye-tracking solutions for

psychological research,” Cognitive Processing, vol. 13, pp. 261-265, 2012.

[53] M. Vidal, J. Turner, A. Bulling, and H. Gellersen, “Wearable eye tracking for

mental health monitoring,” Computer Communications, vol. 35, pp. 1306 –

1311, 2012.

[54] T. Piumsomboon, G. Lee, R. W. Lindeman, and M. Billinghurst, “Exploring

natural eye-gaze-based interaction for immersive virtual reality,” In 2017

IEEE Symposium on 3D User Interfaces (3DUI), pp. 36-39, 2017.

[55] J. B. Pelz, T. B. Kinsman, and K. M. Evans, “Analyzing complex gaze

behavior in the natural world,” In SPIE-IS&T Human Vision and Electronic

Imaging XVI, vol. 7865, pp. 1-11, 2011.

[56] T. Pfeifffer and P. Renner, “Eyesee3d: A low-cost approach for analyzing

mobile 3d eye tracking data using computer vision and augmented reality

technology,” In Proceedings of the Symposium on Eye Tracking Research

and Applications (ETRA), Safety Harbor, Florida, USA, 2014.

[57] R. Takahashi, H. Suzuki, J. Y. Chew, Y. Ohtake, Y. Nagai and K. Ohtomi, “A

system for three-dimensional gaze fixation analysis using eye tracking

136

glasses,” Journal of Computational Design and Engineering, Vol. 5, No. 4,

pp. 449-457, 2018.

[58] R. R. Jensen, J. D. Stets, S. Suurmets, J. Clement, and H. Aanæs, “Wearable

gaze trackers: Mapping visual attention in 3d,” In Scandinavian Conference

on Image Analysis: 20th Scandinavian Conference (SCIA 2017), pp. 66-76,

Springer volume 10269, 2017.

[59] L. Paletta, K. Santner, G. Fritz, A. Hofmann, G. Lodron, G. Thallinger, and

H. Mayer, “Facts - a computer vision system for 3d recovery and semantic

mapping of human factors,” In 9th International Conference on Computer

Vision Systems, ICVS 2013, pp. 62-72, Springer volume 7963, 2013.

[60] T. Booth, S. Sridharan, V. Bethamcherla, and R. Bailey, “Gaze3d:

Framework for gaze analysis on 3d reconstructed scenes,” Proceedings of

the ACM Symposium on Applied Perception, SAP 2014, 2014.

[61] J. Pieszala, G. Diaz, J. Pelz, J. Speir, and R. Bailey, “3d gaze point

localization and visualization using lidar-based 3d reconstructions,” In

Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking

Research & Applications, pp. 201-204, ACM, 2016.

[62] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[63] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n) solution

to the pnp problem,” International Journal of Computer Vision, vol. 81, pp.

155-166, 2009.

[64] J. L. Schönberger, “Robust Methods for Accurate and Efficient 3D Modeling

from Unstructured Imagery,” Ph.D. thesis ETH Zurich, 2018.

[65] J. L Schönberger, F. Radenović, O. Chum, and J.-M. Frahm, “From single

image query to detailed 3d reconstruction,” In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 5126-5134, 2015.

[66] Tobii Pro Glasses 2, https://www.tobiipro.com/product-listing/tobii-pro-

glasses-2/. Accessed March 2020.

[67] B. Lu, X. Duan and Y. Yuan, “Facial expression recognition based on

ensemble extreme learning machine with eye movements information,”

Proceedings of ELM-2015, Volume 2, pp. 295-306, Springer International

Publishing, 2016.

[68] Tobii Pro Glasses 2 Eye Tracker Data Quality Test,

137

https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-

tests/tobii-pro-glasses-2-accuracy-and-precision-test-report.pdf

[69] COLMAP, https://colmap.github.io/. Accessed March 2020.

[70] J. L Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” In

2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 4104-4113, Las Vegas, NV, USA, 2016.

[71] J. L Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view

selection for unstructured multi-view stereo,” In 14th European Conference

on Computer Vision (ECCV2016), vol. 9907, pp. 501-518, Amsterdam, The

Netherlands, 2016.

[72] J. L. Schönberger, T. Price, T. Sattler, J.-M. Frahm, and M. Pollefeys, “A

vote-and-verify strategy for fast spatial verification in image retrieval,” In

13th Asian Conference on Computer Vision (ACCV2016), vol. 10111, pp.

321-337, Taipei, Taiwan, 2016.

[73] OpenMVS, http://cdcseacave.github.io/openMVS. Accessed October 2020.

[74] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer

Vision,” Cambridge University Press, 2004.

[75] Y. Furukawa and C. Hernández, “Multi-View Stereo: A Tutorial,”

Foundations and Trends® in Computer Graphics and Vision, Vol. 9, No. 1-

2, pp. 1-148, 2015.

[76] C. Barnes, E. Shechtman, A. Finkelstein and D. B. Goldman, “PatchMatch:

A randomized correspondence algorithm for structural image editing,” ACM

Transactions on Graphics (Proc. SIGGRAPH), vol. 28, no. 3, 2009.

[77] M. Jancosek and T. Pajdla, “Exploiting visibility information in surface

reconstruction to preserve weakly supported surfaces,” International

Scholarly Research Notices, 2014.

[78] H.-H. Vu, P. Labatut, J.-P. Pons and R. Keriven, “High accuracy and

visibility-consistent dense multiview stereo,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 34, no. 5, pp. 889-901, May 2012.

[79] O. Faugeras and R. Keriven, “Variational principles, surface evolution, pde's,

level set methods and the stereo problem,” IEEE Transactions on Image

Processing, vol. 7, pp. 336-344, 1998.

[80] M. Waechter, N. Moehrle and M. Goesele, “Let there be color! large-scale

texturing of 3d reconstructions,” In Proceedings of 13th European

http://cdcseacave.github.io/openMVS

138

Conference on Computer Vision (ECCV2014), pp. 836-850, Zurich,

Switzerland, 2014.

[81] FFmpeg, https://www.ffmpeg.org/, Accessed March 2020.

[82] CGAL – 3D Fast Intersection and Distance Computation (AABB Tree),

https://doc.cgal.org/latest/AABB_tree/index.html#title3

[83] D. S. Wooding, “Fixation maps: Quantifying eye-movement traces,” In

Proceedings of the 2002 Symposium on Eye Tracking Research &

Applications ETRA '02, ACM, pp. 31-36, 2002.

[84] H. Song, J. Lee, T. J. Kim, K. H. Lee, B. Kim and J. Seo, “Gazedx:

Interactive visual analytics framework for comparative gaze analysis with

volumetric medical images,” IEEE Transactions on Visualization and

Computer Graphics, vol. 23, no. 1, pp. 311-320, 2017.

[85] H. Song, J. Yun, B. Kim and J. Seo, “Gazevis: Interactive 3d gaze

visualization for contiguous cross-sectional medical images,” IEEE

Transactions on Visualization and Computer Graphics, vol. 20, pp. 726-739,

2014.

139

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support and

assistance.

First of all, I would like to extend my deepest gratitude to my academic supervisor,

Professor Hiromasa Suzuki, for his supervision, support, patience, and

encouragement. He provided me the opportunity to enter The University of Tokyo

for my abroad study and has given me invaluable insights and suggestions. With

his support, I was able to attend domestic and international conferences, and

submit my research work to journals. Those experiences broadened my horizons.

I shall never forget his supervision during this period.

I would like to express my sincere gratitude to Professor Hajime Asama,

Professor Yusuke Tamura, Professor Seiichi Takamatsu, and Professor Yutaka

Ohtake for their review of the thesis manuscript and the valuable advices that they

provided. I definitely learned a lot from their comments and suggestions.

I would like to acknowledge Mr. Shinji Matsuda from Lattice Technology and

Assistant Professor Tatsuya Yatagawa for their useful technical advice in the

development of the AR-based assembly assistance system.

I also appreciate Secretary Rumi Tsujiguchi, Associate Professor Yukie Nagai,

International Multidisciplinary Engineering (IME) office, my lab colleagues: Ryo

Takahashi, Takeru Uchiyama, Shintaro Suzuki, and Yuki Doi, and my friend,

Chien-Yu Lan, for their general campus help. In addition, I could not have

completed this thesis without the support of my lab colleagues: Yu Wang, Jingda

Mai, Yifan Yang, and Xiangning Mao, and my friend, Po-Hsun Chen, who

provided stimulating discussions and happy distractions to rest my mind.

Finally, I would like to express thanks to my beloved parents and my older sister

for their love, encouragement, and understanding throughout my life.

140

List of Publications

Journal

• Ting-Hao Li, Hiromasa Suzuki, and Yutaka Ohtake, “Visualization of user’s

attention on objects in 3D environment using only eye tracking glasses,”

Journal of Computational Design and Engineering, volume 7, issue 2, pp.

228-237, April 2020, https://doi.org/10.1093/jcde/qwaa019

Conference paper with review

• Ting-Hao Li, Hiromasa Suzuki, Yutaka Ohtake, Tatsuya Yatagawa, and Shinji

Matsuda, “AR-based assembly assistance system with efficient evaluation of

misalignment between virtual and real objects,” International Conference on

Applied Human Factors and Ergonomics (AHFE 2020), Advances in

Usability, User Experience, Wearable and Assistive Technology, pp. 690-697,

https://doi.org/10.1007/978-3-030-51828-8_91 (2020)

Oral presentation

• Ting-Hao Li, Hiromasa Suzuki, and Yutaka Ohtake, “Evaluation system of

user’s attention on products in 3D environment using eye tracking glasses,”

2018 Asian Conference on Design and Digital Engineering (ACDDE 2018),

Okinawa Zanpamisaki Royal Hotel, Yomitanson, Okinawa, Japan, Nov. 1-3,

2018.

• 李 庭豪, 鈴木 宏正, 大竹 豊, 谷田川 達也, 松田 紳二, HMD を用

いた AR アプリケーションのための 3 次元位置合わせの実装，日本

機械学会 第 29 回設計工学・システム部門講演会講演論文集，2302

(2019)

• 李 庭豪, 鈴木 宏正, 大竹 豊, 谷田川 達也, 松田 紳二, Efficient

method to evaluate misalignment between virtual and real objects for AR-

based assembly assistance system、精密工学会春季講演論文集, (2020)

141

