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Abstract

In the Industry 4.0 and Society 5.0 concepts, data is still the core component for
the highly expected technologies, such as cyber-physical systems, the internet of
things, artificial intelligence, and big data analytics. Deep learning (DL) has been
widely used as a versatile and high-performance tool to extract useful knowledge and
information from data for problem-solving in various domains. By participating in
the IMDJ workshops aiming at better data utilization, we found that people criticize
DL’s poor interpretability. However, some data is difficult to extract features or
label targets by manual work, such as Fourier speckle patterns captured from the
laser machining process. Thus, DL is still a potential solution for those complicated
problems. Motivated by these requirements, the following methods were proposed to
serve a DL-based knowledge discovery framework.

To enhance the interpretability of deep models, we proposed two model interpre-
tation methods, nonlinearized relevance propagation (NRP) and key input subset
sampling (KISS), to explain deep models by visualizing the relation between input and
output. NRP is altered from layer-wise relevance propagation (LRP) by introducing
nonlinear functions into the relevance decomposition and performed better than LRP
in the experiment on a question answering model. KISS overlooks all the relations
between the input and each candidate answer based on the energy-based model theory
with only forward information or the combination of forward and backward information
from the model. In the experiment on the image classification models, KISS outper-
formed other contrastive models. In the case study, we evaluated the performance
of different deep models in supervised single-task and multi-task learning (MTL)
on the laser machining data and found that the AlexNet-in-MTL model performed
better than the other models. However, it is still challenging to apply supervised
DL approaches to sequential data where anomalies are hard to be separated. Thus,
I proposed pessimistic contrastive learning (PCL) to drive data points to compare
with each other in a sequence to predict the anomalies. In the experiments, PCL
was compared to two commonly used anomaly detection methods on one-dimensional
synthetic data and then was applied to find illegible handwritten digits from the
MNIST dataset. The evidence showed that PCL could give meaningful results for
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anomaly detection.
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Chapter 1

Introduction

Data becomes more and more important in knowledge and information exchange. Deep

learning, which is a powerful and versatile technology to extract useful information

from data for various tasks, is applied to the support of knowledge discovery in this

work.

Chapter Two describes two proposed methods of model interpretation for deep

models.

Chapter Three describes the case study on laser machining data.

Chapter Four describes a new deep learning method for anomaly detection on

sequential data.

Chapter Five gives the conclusions and future works.

1.1 Background

First of all, let me introduce the importance of data for the industry and our life and

present related deep learning methods for data utilization in brief.

1.1.1 Data for Us

Since the Digital Revolution began, data has been playing a significant role as a

purveyor of information. For better continuous developing and problem-solving in
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industry and society, the Fourth Industrial Revolution (or Industry 4.0) [1] and Society

5.0 were proposed [2]. Industry 4.0 focuses on intelligent technology for the automation

of industrial practices, while Society 5.0 aims at using new technologies to improve

the environment of our life.

One of the core technologies in these blueprints is the cyber-physical system (CPS).

In CPS, physical mechanisms are controlled and monitored by computers via networks

and algorithms. By analyzing the information collected from physical processes,

a virtual version of the physical world can be modeled and designed. Associated

technologies of CPS include internet of things (IoT), cloud computing, artificial

intelligence (AI), and big data analytics. Data is used for information extraction,

information transfer, model learning, signal analysis, and the like in these technologies.

Without data utilization, it would be hard to do innovations for the industry and our

society.

1.1.2 Knowledge from Data and Deep Learning

Knowledge discovery in database (KDD) is the process of extracting useful information

from data to solve problems [3]. Machine learning (ML) is one of the thriving

technologies for knowledge discovery and data mining. Recently, Deep learning (DL),

a study branch of ML, attracts worldwide attention due to its outperformance on many

computational tasks in different domains [4–9]. One reason for the high performance

is that DL is good at extracting representative features from data for tasks’ objectives.

Nevertheless, DL methods use multiple neural network layers, which can approximate

any functions theoretically [10], to learn information for prediction from the input

data. Thus, it is difficult for humans to understand the inference process of those

“black-box” models. Besides, it is a fact that most of the outperformed deep models

are based on supervised learning that needs massive human-labeled training data for

high accuracy. Furthermore, the large number of parameters in deep models usually

leads to an overfitting problem.

Fortunately, many researchers are working hard on those issues in DL. Model

interpretation (MI) is to explain the prediction processes of machine learning models for
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humans, in which some methods have been proposed for deep model explanation [11, 12].

Beyond supervised learning, unsupervised or self-supervised approaches aim to reduce

manual work for data labeling [13, 14]. To conquer the overfitting problem, applying

Dropout, data augmentation, or multi-task learning (MTL) with parameter sharing

could improve DL models’ generalization [15–17].

Thanks to the mentioned endeavors, DL can be not only a kind of fitting tool but

also a potential application for knowledge extraction. Section 1.3 will give a framework

on how to make data manifest knowledge by using DL.

1.2 Motivations

Due to the complications in actual practices, people need to do decision-making on

the data utilization for better knowledge discovery. Innovators Marketplace on Data

Jackets (IMDJ) [18] is a game-style platform to support decision-making. This work

is also strongly motivated by IMDJ.

In IMDJ, participants create new requirements and solutions by combining Data

Jackets (DJs) and Tool Jackets (TJs). In this process, they also negotiate the “prices”

of solutions to discuss the value of data. Here, DJs or TJs keep the summaries of

different datasets or techniques in data utilization, which the data holders or domain

experts provide. Besides, the relationships between the jackets are revealed by a

visualization tool (e.g., KeyGraph [19]) to facilitate the discussion on cross-disciplinary

databases or analytical methods. Those data or tools generated from the solutions

can be used for the next IMDJ toward the spiral of innovation.

By participating in IMDJ workshops, I know that people are not satisfied with

non-deep analytical techniques, but either the interpretability of neural networks.

Non-deep methods usually require much human work into feature engineering to

improve performance. On the other hand, deep models can automatically extract

representative features from data and produce even better results. However, the

black-box and overfitting traits could confuse users on whether they should trust the

deep models. Therefore, MI becomes one of our research topics described in Chapter 2.
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Sometimes, it may happen that even the domain experts do not comprehend their

datasets well. There was an IMDJ workshop held for data scientists and physicists

to solve problems on laser machining. The physicists collect photograph data in

the machining process, which records the speckle patterns captured on the Fourier

plane [20]. They expect to maximize the value of data in applying the data to

various downstream tasks. However, in the face of such micro-scale data generated by

complex procedures, it is hard to perform feature engineering or label anomalies. As a

consequence, DL approaches with high generalization are required. For this sake, we

analyzed a set of the laser machining data and evaluated the performance of different

deep models on it as reported in Chapter 3, and then developed a non-supervised

DL-based anomaly detection method as presented in Chapter 4.

1.3 Deep Learning for Knowledge Discovery

According to the background and motivations mentioned above, it is worth using deep

learning to support discover and apply knowledge hidden behind data. Here, I give a

DL-based knowledge discovery framework that was inspired by IMDJ’s visualization

and the spiral of innovation:

1. We employ deep learning algorithms on the target data and select the models

with high accuracy and generalization.

2. We apply MI approaches on the selected deep models and visualize the explana-

tory result for human users.

3. It is expected that the users obtain new knowledge via combining the explanation

and their prior knowledge.

4. The new knowledge could help us improve the algorithms for better models.

In this thesis, knowledge is defined as useful information for problem-solving,

including two aspects: 1) representative features extracted by deep models from data,

and 2) the novelty discovered by humans combining their prior knowledge and the
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meaningful information from data. MI could help people understand what deep models

have learned or consider their reliability and improvement. Also, the discovery could

help better problem-solving.

This thesis focuses on two proposed MI methods for DL and a multi-task self-

supervised approach for anomaly detection (AD). The MI methods include model-

agnostic (Section 2.2), model-specific (Section 2.3.2), and our original hybrid styles

(Section 2.3.4). As AD could help people find novelty or change points in data, it is

a significant study subject for knowledge discovery [21]. I designed novel objective

functions (Section 4.2.1), a contextual information-based neural network model (Sec-

tion 4.2.2), and brand-new algorithms (Section 4.3) for the training process of AD

tasks.

1.4 Other Deep Learning Applications on Knowl-

edge Discovery

There have been some DL approaches proposed for knowledge discovery in different

domains. Rather et al. used the word2vec model to extract knowledge from biomedical

textual data for novelty discovery on biomedicine [22]. Huang et al. trained deep belief

networks in multi-task learning to monitor and control power grids on power system

security assessment [23]. Xu et al. applied deep learning to automatically extract

entities from encyclopedia articles into the knowledge base [24]. In these applications,

people were leveraging DL’s powerful feature extraction ability and combining with

human knowledge to discover novelty, yet hardly considering the interpretability of

deep models.
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Chapter 2

Model Interpretation for Deep

Models

Dissimilar to explainable machine learning models such as LASSO [25] and decision

trees [26], it is hard to explain the prediction process in deep models due to the

complicated internal nonlinearity. Especially for the applications related to life and

property, e.g., healthcare and autonomous vehicles, it is vital to require explanations

for the models [27, 28].

Given a data sample 𝑥 = [𝑥1, . . . , 𝑥𝑛] ∈ 𝒳 as input, where each element 𝑥𝑖 ∈

R𝑑 is an 𝑑-dimensional element of the input, and a trained deep model 𝑓 : 𝒳 ↦→

R𝑐, a practical way of interpreting the model 𝑓 is to visualize importance scores

𝑠 = [𝑠1, . . . , 𝑠𝑛] for each element 𝑥𝑖 with respect to the output 𝑓(𝑥). With the

visualization, people could seize meaningful information extracted from data by the

models intuitively.

In this chapter, two proposed MI methods, nonlinearized relevance propagation

(NRP) and key input subset sampling (KISS), will be introduced in the following.

2.1 Taxonomy

We can typically group MI approaches into two categories, model-agnostic and model-

specific [29]. We can use this taxonomy to categorize MI methods for deep models as

7



well.

2.1.1 Model-agnostic

Model-agnostic methods test the relevancy between input and output in a forward

style without model architecture information. We can continue to group them into

three subgroups as follows:

• Explainable model-based methods: explainable models are trained to lo-

cally fit the prediction of the target model, such as LIME [30], KernelSHAP [31],

and Soft decision trees [32].

• Difference-based methods: the difference related to the output by removing

input elements are measured as the importance scores, such as Occlusion [33],

DeepVis [34], and SIScollection [35].

• Neural-network-based methods are by training extra simple neural networks

to model the problem, e.g., L2X [36].

2.1.2 Model-specific

Model-specific methods must use the model architecture to propagate the relevancy

from output to input backward. Also, they can be categorized into three subcategories

as follows:

• Gradient-based methods: gradients of output with respect to each input

element are computed as the importance scores by the chain rule, e.g., saliency

maps [37, 38].

• Parameter-based methods: importance weights from the output are propa-

gated to the corresponding input layer-by-layer, such as LRP [39] and DeepLIFT [40].

• Inverse-based methods: inverse architectures to the original models are

designed to reverse the operations, e.g., Deconvolution [33].
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NRP is a model-specific method, and KISS can be a model-agnostic method or a

hybrid method combining forward and backward information.

2.2 Nonlinearized Relevance Propagation

This method is a model-specific approach to solve the problems in the prior work

layer-wise relevance propagation (LRP) [39] by introducing nonlinear functions in the

propagation rules.

2.2.1 Prior Work: Layer-wise Relevance Propagation

LRP is a Taylor decomposition-based approach in which the output is resolved into

relevance scores, and then the scores are backward propagated to the inputs layer-by-

layer conservatively. More concretely, between a layer 𝑙 and the successive one 𝑙 + 1 in

a forward neural network, LRP keeps the consistency of relevance over layers by

∑︁
𝑗

𝑅
(𝑙)
𝑗←𝑘 = 𝑅

(𝑙+1)
𝑘 (2.1)

and

𝑅
(𝑙)
𝑗 =

∑︁
𝑘

𝑅
(𝑙+1)
𝑗←𝑘 , (2.2)

where 𝑗 and 𝑘 are the indices for neurons of the two layers, 𝑅𝑗←𝑘 denotes the propagated

relevance score from neuron 𝑘 to neuron 𝑗 if they have a connection. Because of∑︀
𝑗 𝑅

(𝑙)
𝑗 = ∑︀

𝑗

∑︀
𝑘 𝑅

(𝑙+1)
𝑗←𝑘 = ∑︀

𝑘

∑︀
𝑗 𝑅

(𝑙)
𝑗←𝑘 = ∑︀

𝑘 𝑅
(𝑙+1)
𝑘 , the relevance propagation in LRP

meets the conservation property as this:

𝑑∑︁
𝑖=1

𝑅
(0)
𝑖 = · · · =

∑︁
𝑗

𝑅
(𝑙)
𝑗 =

∑︁
𝑘

𝑅
(𝑙+1)
𝑘 = · · · = 𝑓(𝑥). (2.3)

9



Given a typical neural network layer as

𝑐𝑗𝑘 = 𝑎𝑗𝑤𝑗𝑘

𝑐𝑘 =
∑︁

𝑗

𝑐𝑗𝑘 + 𝑏𝑘

𝑎𝑘 = 𝜎 (𝑐𝑘) ,

(2.4)

where 𝑎𝑗 indicates the value of neuron 𝑗 at layer 𝑙, 𝑐𝑘 denotes a linear connection from

all neurons at layer 𝑙 to neuron 𝑘 at layer 𝑙 + 1 with weights 𝑤𝑗𝑘 and a bias 𝑏𝑘, and 𝜎

is a nonlinear activation function.

In LRP, the decomposition rule for layer 𝑙 + 1 to layer 𝑙 is given by

𝑅𝑗←𝑘 =
[︃
𝛼

(︃
𝑐+

𝑗𝑘∑︀
𝑗 𝑐+

𝑗𝑘 + 𝑏+
𝑘

)︃
+ 𝛽

(︃
𝑐−𝑗𝑘∑︀

𝑗 𝑐−𝑗𝑘 + 𝑏−𝑘

)︃]︃
𝑅𝑘. (2.5)

, where (·)+ and (·)− denote the positive and negative parts respectively, and the

parameters 𝛼 and 𝛽 satisfy 𝛼 + 𝛽 = 1 and 𝛼 > 0 for the conservation. A practical

choice of the parameters is 𝛼 = 1, 𝛽 = 0 or 𝛼 = 2, 𝛽 = −1. This rule is also called the

𝛼𝛽-rule.

Nevertheless, with the development of deep learning methods, many special layers

rather than the typical ones have been designed. Since those special layers can not

be characterized as Equation 2.4 [41], some rules were proposed to adapt the LRP

framework as follows.

LRP for Gates

Gates are applied to regulate the forward information transfer in recurrent neural

networks (RNNs), such as LSTM [42] and GRU [43]. A gate weight 𝑤𝑔
𝑗 is often

calculated by Equation 2.4 with the sigmoid activation, and the layer is formulated by

𝑎𝑘 = 𝑤𝑔
𝑗 · 𝑎𝑗.

Arras et al.employed LRP to explain LSTM-based text sentiment classification [44].

Since gates can be considered as the probability of the information passing by them,
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the relevance is fully transferred for the conservation as

𝑅𝑗←𝑘 = 𝑅𝑘. (2.6)

LRP for Pooling

The pooling, such as max-pooling and avg-pooling, is applied in lots of deep models.

Avg-pooling takes the middle point of specific neurons to aggregate the features, while

max-pooling gives the maximum value in a region of neurons for the approximate

invariant.

A possible rule for avg-pooling is similar to the one for element-wise above as

𝑅𝑗←𝑘 = 𝑎𝑗∑︀
𝑗 𝑎′𝑗

𝑅𝑘. (2.7)

Besides, the propagation rule for max-pooling applied by Ding et al. [45] was

𝑅𝑗←𝑘 =

⎧⎪⎪⎨⎪⎪⎩
𝑅𝑘 if 𝑗 = max

𝑗
{𝑎𝑗}

0 otherwise
(2.8)

Notwithstanding, Equation 2.7 and 2.8 are not adaptive with 𝛼𝛽-parameters.

Especially, in Equation 2.8, only the maximum neuron at layer 𝑙 fully captures the

relevance from the neuron at layer 𝑙 + 1. However, there is much information from the

other neurons at layer 𝑙 for the comparison in the max function. Using Equation 2.8

could lose lots of contrastive information for those neurons in the monopoly of relevance.

LRP for Hadamard product

Hadamard product, a.k.a. element-wise multiplication, is involved in LSTM, GRU,

and cosine similarity units. A Hadamard product layer is given by 𝑎
(𝑙+1)
𝑘 = 𝑎𝑗

(𝑙) · 𝑎′𝑗
(𝑙).

Ding et al.applied LRP to analyze a GRU-based sequence-to-sequence model for

neural machine translation [45], where the relevance propagation rule for a Hadamard

11



product layer was

𝑅𝑗←𝑘 = 𝑎𝑗

𝑎𝑗 + 𝑎′𝑗
𝑅𝑘. (2.9)

However, this rule breaks the conservation property when 𝑎𝑗 and 𝑎′𝑗 have different

signs. Also, it is not applied with the 𝛼𝛽-parameters.

2.2.2 Proposed 𝛼𝛽-rules

To supplement LRP, we proposed 𝛼𝛽 rules for pooling-weight layers [46]. There were

three reasons why we considered nonlinear functions as follows:

1. Rules for special layers. As mentioned in Section 2.2.1, there are various

layers designed for deep models. The relevance decomposition rules for those

layers are created in different applications. Those rules which do not satisfy the

Taylor assumption could produce relevance errors in the propagation process.

One example is the attention pooling network (APN) [47]. This model uses a

soft alignment [48] and max-pooling to compute pooling weights, in which there

could be an information loss problem by using Equation 2.8 and 2.5.

2. Error accumulation. If the neurons at a deeper layer receive wrong relevance

produced by the improper rules, the errors could accumulate layer-by-layer to

the neurons at shallower layers. This problem could be prominent in very deep

models (e.g., RNN-based networks).

3. Adjustment effect. An appropriate nonlinear function could amend the

relevance distribution to a more meaningful value space. We expected that

this property could help inputs receive constructive information from the model

outputs.

Improved 𝛼𝛽-rule for Pooling-weighted Layers

To solve the problem mentioned above, we introduced nonlinear functions ℎ for

pooling-weighted layers as follows.
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Definition 1 (𝛼𝛽-rule for pooling-weighted layers). For neurons at a pooling-weighted

layer decomposing relevance 𝑅𝑘 into 𝑅𝑗←𝑘 to neurons in the last layer,

𝑅𝑗←𝑘 =
⎡⎣𝛼

⎛⎝ ℎ
(︁
𝑐+

𝑗𝑘

)︁
∑︀

𝑗 ℎ
(︁
𝑐+

𝑗𝑘

)︁
⎞⎠+ 𝛽

⎛⎝ ℎ
(︁
𝑐−𝑗𝑘

)︁
∑︀

𝑗 ℎ
(︁
𝑐−𝑗𝑘

)︁
⎞⎠⎤⎦𝑅𝑘, (2.10)

where 𝛼 + 𝛽 = 1 and 𝛼 > 0.

We let the nonlinearization ℎ keep the monotonicity of the (·)+ and (·)− parts,

e.g., hyperbolic tangent tanh 𝑥. We can also choose positive semidefinite axial symmetry

functions, such as ℎ(𝑥) = 𝑥2. Furthermore, we can compose monotonic functions and

the absolute value function as the nonlinearizer, e.g., ℎ(𝑥) =
√︁
|𝑥| or ℎ(𝑥) = log(|𝑥|+1).

Besides, we construct value masks to avoid unexpected relevance to the zero-neurons,

i.e., ℎ(0) = 0, when employing nonlinear functions shifting over the origin, such as

ℎ(𝑥) = exp(|𝑥|), ℎ(𝑥) = sigmoid(|𝑥|) and hyperbolic cosine cosh(𝑥).

𝛼𝛽-rule for Hadamard Product

We found that the decomposition rule given by Equation 2.9 did not conserve the

relevance scores if the signs of the two elements were different. Therefore, we provided

a conservational version as follows.

Definition 2 (𝛼𝛽-rule for Hadamard product). For neurons at a Hadamard product

layer decomposing relevance 𝑅𝑘 into 𝑅𝑗←𝑘 to neurons in the last layer,

𝑅𝑗←𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑗

𝑎𝑗 + 𝑎′𝑗
𝑅𝑘 if 𝑎𝑗 > 0, 𝑎′𝑗 > 0 or 𝑎𝑗 < 0, 𝑎′𝑗 < 0

𝛼𝑅𝑘 for 𝑎𝑘 ← 𝑎𝑗 if 𝑎𝑗 > 0, 𝑎′𝑗 < 0

𝛽𝑅𝑘 for 𝑎𝑘 ← 𝑎𝑗 if 𝑎𝑗 < 0, 𝑎′𝑗 > 0

0 if 𝑎𝑖 = 0 or 𝑎𝑗 = 0

. (2.11)

2.2.3 Application to Attentive Pooling Network

In Section 2.2.4, we will report the experiment result of applying NRP to the attentive

pooling network (APN) [47]. APN is a bidirected LSTM-based model with the
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max-pooling-based attention mechanism and cosine similarity for question answering.

The architecture of APN is shown on the left of Figure 2-1. Also, the right of

Figure 2-1 shows how we employed NRP to APN.

Bidirected LSTM

Q A

QT･softmax AT･softmax

q a

G = tanh(QUAT)

Column-wise
max pooling

Row-wise 
max pooling

pq
pa

Element-wise 
multiplication

sim(q, a) = pqTpq/ ||pq|| ||pq||

1

Attentive Pooling Network NRP for Attentive Pooling Network

h(x)

Figure 2-1: Architecture of APN and NRP application to APN. In the left figure, 𝑞
is an input question, and 𝑎 is an input answer. They are encoded into 𝑄 and 𝐴 by
the bidirected LSTM and weighted by column-wise or row-wise max-pooling of the
attention 𝐺 to produce projections 𝑝𝑞 and 𝑝𝑎 respectively. Then, the output is the
cosine similarity of 𝑝𝑞 and 𝑝𝑎. The better answers should have the higher similarities.
In the right one, green connections denote where to apply Equation 2.10, while orange
links are the places to use 2.11. For the relevance propagation of gates in LSTM, we
still utilized the rule given by Equation 2.6

.

2.2.4 Experiments

This section reports the details of experiments and the results by comparing our

method to saliency maps [37] and the original linear LRP.
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Dataset and Preprocessing

In our experiments, we used nfL61 as the target dataset. The dataset contains 87,361

questions in 21 categories. Each question has a selected best answer along with one or

more than one other answer. However, the best answer may have a duplicate in the

other answer list for the same questions, and accordingly, we removed them in the

preprocessing. We split each content into tokens by using spaCy2 and cleaned up the

URLs in the sentences.

Model Setup

Rather than using the whole dataset to train one model, we picked up three categories,

Computer & Internet, Health and Society & Culture, as three subsets to train three

different models. We divided them into training sets, development sets, and test sets

by 8:1:1 in the original question orders.

We implemented APN in PyTorch [49] and trained three models for each subset

with Adam optimizers [50]. We used 100-dimensional Glove embeddings [51] for the

word representation and fine-tuned them during the training. Also, we set the patience

to 9 epochs for the early stopping. Table B.1 shows the other hyper-parameters and

the result states of selected models. Furthermore, the accuracy in the model evaluation

was calculated by

𝐴𝐶𝐶 = | {𝑞|sim(𝑞, 𝑎best) > max𝑎other [sim(𝑞, 𝑎other)]} |
|𝑞|

. (2.12)

Results

We employed the token deleting test [41] to compare our method with SA and LRP in

the linear setting. Deleting a token indicates setting the token’s embedding to a zero

vector. The algorithm of the test on a question-answer pair is shown in Algorithm 1.

Besides, we chose the ground true best answers with token lengths greater than 9 for

the experiments.
1https://ciir.cs.umass.edu/downloads/nfL6/
2https://spacy.io
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Algorithm 1: Token deleting test
Input: a question 𝑞, an answer 𝑎 = [𝑥𝑖] , 1 ≤ 𝑖 ≤ 𝐿, the maximum number of

token deleted 𝐾, a trained APN model 𝑓 , ordered relevance 𝑟 = [𝑟𝑗].
1 sort the tokens [𝑥𝑖] into

[︁
𝑥′𝑗
]︁

by the order of 𝑟

2 for 𝑗 ← 1 to 𝐾 do
3 𝑥𝑖 ← 0 where 𝑥𝑖 = 𝑥′𝑗
4 record the model output 𝑓(𝑞, 𝑎)

For the comparison of performance, we operated two experiments on the devel-

opment sets and test sets. Experiment 1 observed the accuracy reduction on true

positive (TP) samples while deleting tokens in answers by the descending order of

the relevancies. Experiment 2 observed the accuracy increment on false positive (FP)

samples while deleting tokens in answers by the ascending order of the relevancies.

Table 2.1 and Table 2.2 show the results at deleting one token and five tokens by

different methods and parameters for each data subset.

According to the results, we found that applying certain nonlinear functions to LRP

helped the explainer capture more important inputs than SA and the linear setting.

The performance for Society & Culture was especially remarkable in Experiment 1,

and all the tests with 𝛼 = 2 were far better than SA. However, not all nonlinearizers

had good results. Figure 2-2 shows the coefficients’ distributions to decompose

relevance scores by applying Equation 2.10 upon the best answers. Since the neurons’

values were near zero in the APN models, the linear setting, hyperbolic tangent, and

ℎ(𝑥) = log(|𝑥|+1) obtained similar results. The range of the values by square function

was wider than the linear setting so that the relevance propagation could be too

scattered. The rest of the functions produced more narrow but smooth distributions,

which could help allocate the relevance information meaningfully according to Table 2.1

and Table 2.2.

However, for other special layers than the pooling-weight layer, appropriate se-

lections of nonlinear functions are still unknown. A possible approach is to choose a

small data subset and launch the tests to select the functions with high performance.
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Table 2.1: Results of Experiment 1. Lower is better in a column.

Dataset Computer&Internet Health Society&Culture
𝐴𝐶𝐶@#(tokens deleted) 1 5 1 5 1 5

SA 0.83275 0.50523 0.90131 0.61732 0.89944 0.80074
ℎ(𝑥) = 𝑥 𝛼 = 1 0.83275 0.54495 0.89829 0.58912 0.89758 0.69088
ℎ(𝑥) = tanh(𝑥) 𝛼 = 1 0.83345 0.54495 0.89829 0.58912 0.89758 0.69088
ℎ(𝑥) = 𝑥2 𝛼 = 1 0.84948 0.58885 0.90836 0.63545 0.89758 0.67225
ℎ(𝑥) = log(|𝑥|+ 1) 𝛼 = 1 0.83345 0.54425 0.89829 0.59013 0.89758 0.68901
ℎ(𝑥) =

√︁
|𝑥| 𝛼 = 1 0.83136 0.53659 0.89728 0.55690 0.86778 0.61266

ℎ(𝑥) = exp(|𝑥|) 𝛼 = 1 0.82927 0.49617 0.89527 0.56999 0.81192 0.34451
ℎ(𝑥) = cosh(𝑥) 𝛼 = 1 0.82927 0.49617 0.89527 0.56999 0.81006 0.34451
ℎ(𝑥) = sigmoid(|𝑥|) 𝛼 = 1 0.82927 0.49617 0.89527 0.56999 0.81192 0.34451

ℎ(𝑥) = 𝑥 𝛼 = 2 0.95679 0.87944 0.89527 0.67372 0.88827 0.69646
ℎ(𝑥) = tanh(𝑥) 𝛼 = 2 0.95679 0.87944 0.89527 0.67372 0.88827 0.69832
ℎ(𝑥) = 𝑥2 𝛼 = 2 0.95889 0.86969 0.89728 0.65962 0.87896 0.69460
ℎ(𝑥) = log(|𝑥|+ 1) 𝛼 = 2 0.95679 0.87805 0.89527 0.67372 0.88827 0.69832
ℎ(𝑥) =

√︁
|𝑥| 𝛼 = 2 0.95331 0.86760 0.88419 0.67170 0.88082 0.67412

ℎ(𝑥) = exp(|𝑥|) 𝛼 = 2 0.93798 0.84808 0.87513 0.65559 0.88268 0.67784
ℎ(𝑥) = cosh(𝑥) 𝛼 = 2 0.93868 0.84739 0.87613 0.65257 0.88082 0.67039
ℎ(𝑥) = sigmoid(|𝑥|) 𝛼 = 2 0.93798 0.84739 0.87513 0.65458 0.88082 0.67225
# (TP with #tokens ≥ 10) 1435 993 537
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Table 2.2: Results of Experiment 2. Higher is better in a column.

Dataset Computer&Internet Health Society&Culture
𝐴𝐶𝐶@#(tokens deleted) 1 5 1 5 1 5

SA 0.01287 0.06436 0.00436 0.02964 0.01174 0.03772
ℎ(𝑥) = 𝑥 𝛼 = 1 0.00396 0.04257 0.00349 0.01569 0.00168 0.03437
ℎ(𝑥) = tanh(𝑥) 𝛼 = 1 0.00396 0.04158 0.00349 0.01569 0.00168 0.03437
ℎ(𝑥) = 𝑥2 𝛼 = 1 0.00594 0.05743 0.00436 0.02528 0.00754 0.04023
ℎ(𝑥) = log(|𝑥|+ 1) 𝛼 = 1 0.00396 0.04257 0.00349 0.01569 0.00168 0.03437
ℎ(𝑥) =

√︁
|𝑥| 𝛼 = 1 0.00198 0.03465 0.00436 0.01569 0.00168 0.04107

ℎ(𝑥) = exp(|𝑥|) 𝛼 = 1 0.00099 0.03861 0.00349 0.01831 0.00419 0.04778
ℎ(𝑥) = cosh(𝑥) 𝛼 = 1 0.00099 0.03762 0.00349 0.01918 0.00419 0.04862
ℎ(𝑥) = sigmoid(|𝑥|) 𝛼 = 1 0.00099 0.03861 0.00349 0.01831 0.00419 0.04778
ℎ(𝑥) = 𝑥 𝛼 = 2 0.05347 0.05545 0.09939 0.10462 0.06035 0.08550
ℎ(𝑥) = tanh(𝑥) 𝛼 = 2 0.05347 0.05644 0.09939 0.10462 0.06035 0.08550
ℎ(𝑥) = 𝑥2 𝛼 = 2 0.03663 0.03861 0.07498 0.09416 0.05616 0.09137
ℎ(𝑥) = log(|𝑥|+ 1) 𝛼 = 2 0.05347 0.05644 0.09852 0.10462 0.06035 0.08550
ℎ(𝑥) =

√︁
|𝑥| 𝛼 = 2 0.05743 0.05842 0.10201 0.09154 0.06119 0.09053

ℎ(𝑥) = exp(|𝑥|) 𝛼 = 2 0.05446 0.07030 0.07149 0.08195 0.04946 0.07712
ℎ(𝑥) = cosh(𝑥) 𝛼 = 2 0.05545 0.07129 0.07149 0.08282 0.04946 0.07460
ℎ(𝑥) = sigmoid(|𝑥|) 𝛼 = 2 0.05446 0.07129 0.07149 0.08282 0.04946 0.07628
# (FP with #tokens ≥ 10) 1010 1147 1193
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Figure 2-2: Value distributions of the coefficients to divide the relevance scores from
pooling-weighted layers by different functions. The number of bins in each histogram
is 400.
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2.2.5 Example of Visualization

By using the visualization of MI, we can understand the model prediction intu-

itively. Figure 2-3 shows an example of the visualization on an FP sample in

Computer & Internet. We found that introducing nonlinear functions made the

relevance scores of inputs sharper and more distinct from others, helping people

capture keywords more easily and quickly. In the example, the visualization re-

sults by NRP (i.e., LRP_SQRTABS_AS_PL and LRP_EXPABS_AS_PL) repre-

sented the keyword “upgrade” with more positive importance than the linear setting

(LRP_LINEAR_A2).

Figure 2-3: Examples of the visualization. Red or blue tokens denote positive or
negative elements for the predictive result. The deeper color is, the higher relevance
is.
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2.3 Key Input Subset Sampling

Using model-specific approaches may need to design specific rules for the network

architectures. For the sake of adapting ambiguous models, model-agnostic methods

are the option. KISS can be a model-agnostic forward approach or a hybrid method

by collaborating with backward information [52].

We assume that more essential elements for the model output have higher absolute

values of explanatory scores in MI, that is to say, there could be a subset 𝑆 ⊆ [𝑛] =

{1, . . . , 𝑛} within which the input elements 𝑥𝑆 contribute to the predictive output more

significantly than the others. We call those input elements with indices in 𝑆 key input

elements (KIEs) in this work. Because it costs 𝑂(2𝑛) operations to select candidate

input subset, we can utilize sampling to reduce the computational complexity and

estimate the explanatory scores.

2.3.1 Theoretical Basis: Energy-based Model

KISS is based on the energy-based model (EBM) theory, which gives a physical

explanation to model training [53]. Given data 𝑋 and the answers 𝒴 ∋ 𝑌 , the

objective is that the energy surface of the model needs to be pushed down to the

correct answer 𝑌 and pulled up from the other answers as

𝑌 * = arg min
𝑌 ∈𝒴

𝐸(𝑌, 𝑋), (2.13)

where 𝐸 is the energy function.

Many loss functions can be adapted in the EBM framework, such as mean squared

errors (MSE) for regression, negative log-likelihood (NLL) loss for classification, and

margin losses. Since most deep models are trained with these losses, a trained deep

model is considered to have already or almost satisfied the EBM objective.

Though the EBM theory can be used in various tasks, we present our method with

a classification setting in the following sections.
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2.3.2 Work Assumption and Importance Score

Given a classification model 𝑓 and an input 𝑥, the predictive probability 𝑝(𝑐|𝑥) of the

target class 𝑐 ∈ 𝐶 by the trained model is given by the softmax function:

𝑝(𝑐|𝑥) = exp (−𝐸(𝑐, 𝑥))
𝑍

= exp (𝐸 ′(𝑐, 𝑥))
𝑍

(2.14)

𝑍 =
∑︁
𝑦∈𝐶

exp (𝐸 ′(𝑦, 𝑥)) , (2.15)

where the negative energy output 𝐸 ′ = −𝐸 can be obtained from the model’s inference.

Besides, from the NLL loss function − log 𝑝(𝑐|𝑥) = −𝐸 ′(𝑐, 𝑥) + log 𝑍, we can obtain

the Helmholtz free energy as

ℱ (𝑥) = − log 𝑍, (2.16)

which helps us measure the useful work obtainable from a closed system [54].

In KISS, we assume that the system’s energy reached 𝐸(𝑐, 𝑥) after an input element

𝑥𝑖 did work toward the prediction of 𝑐. To give an importance score to 𝑥𝑖 with respect

to 𝑐, we can hinder 𝑥𝑖 from delivering its information into the prediction to achieve

the energy 𝐸(𝑐, 𝑥∖𝑖), where 𝑥∖𝑖 = 𝑥 ∖ {𝑥𝑖} (e.g., set 𝑥𝑖 to 0). If the contribution of 𝑥𝑖

is independent of the others, we can calculate the difference between 𝐸(𝑐, 𝑥∖𝑖) and

𝐸(𝑐, 𝑥) as the contribution. We define the difference as work by referring to physics,

given by

𝑤𝑖(𝑐, 𝑥) = −Δ𝐸 = Δ𝐸 ′ = 𝐸 ′(𝑐, 𝑥)− 𝐸 ′(𝑐, 𝑥∖𝑖). (2.17)

Examples of the work assumption are shown in Figure 2-4. Due to 𝑤𝑖(𝑐1, 𝑥) =

−Δ𝐸 = 0, i.e., the energy with 𝑥∖𝑖 equals the one with 𝑥, 𝑥𝑖 has no contribution to the

prediction of the class 𝑐1. Likewise, 𝑥𝑖 had done positive work for 𝑐2 by 𝑤𝑖(𝑐2, 𝑥) > 0,

while 𝑥𝑖 has performed negative work toward 𝑐1 by 𝑤𝑖(𝑐3, 𝑥) = 0. Since the system’s

temperature is a constant (𝑇 = 1) by the softmax function, we obtain the inequality

Δℱ ≤ −𝒲 by the maximum work principle, where 𝒲 is the work done on the
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surroundings by the system. We also assume that the system does no work on the

surroundings, i.e., 𝒲 = 0. If computed work 𝑤𝑖 make Δℱ𝑖 = ℱ(𝑥)−ℱ(𝑥∖𝑖) > 0, we

reject the contribution in a possibly incorrect assumption by setting 𝑤𝑖 to 0.

𝐸

𝐸 (·, 𝑥)

𝐸
(︁
·, 𝑥∖𝑖

)︁

𝑐1 𝑐2 𝑐3

Figure 2-4: Energy surface of a model changed by an input element. We assume that
the red curve is the prior step and the blue one is the later step.

On the above assumption, we define the importance score based on the EBM

theory as follows.

Definition 3 (EBM-based importance score (EBIS)). For an EBM objective satisfying

model, the importance 𝑠𝑖 is the expectation of the work done by the input element

𝑥𝑖 ∈ 𝑥 to the class 𝑐’s prediction as

𝑠𝑖 = E [𝑤𝑖(𝑐, 𝑥)] . (2.18)

2.3.3 Input Subset Sampling

However, due to the complex connections within a deep model, removing one element

from a high-dimensional input may lose some correlation with the other elements. Thus,

we generalized the contribution from one input element to one for a non-empty input

subset 𝑆. Then, we can estimate the work of 𝑥𝑖 by dividing the subset contribution

by the size of 𝑆:

𝑤𝑆(𝑐, 𝑥) = 𝐸 ′(𝑐, 𝑥)− 𝐸 ′(𝑐, 𝑥∖𝑆) (2.19)

�̂�𝑖(𝑐, 𝑥) = 𝑤𝑆(𝑐, 𝑥)
|𝑆|

, (2.20)
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where |𝑆| is the size of 𝑆, and 𝑥∖𝑆 = 𝑥∖𝑥𝑆 indicates the input 𝑥 masking the elements

in 𝑆. Equation 2.19 is on the assumption that the work of 𝑆 is independent of the

others. Meanwhile, the rejection condition turns to Δℱ𝑆 = ℱ(𝑥)−ℱ(𝑥∖𝑆) > 0.

To compute the subset contribution, we have another assumption that the proba-

bility of occurrence of 𝑥𝑖 is under a distribution 𝑝(𝑥𝑖|𝑥∖𝑖), and the work done by 𝑥𝑆

to 𝑐 is the expectation of the contributions given by an unknown function 𝑔:

𝑤𝑆(𝑐, 𝑥) = E𝑖∈𝑆,𝑥𝑖∼𝑝(𝑥𝑖|𝑥∖𝑖) [𝑔(𝑐, 𝑥𝑖)] . (2.21)

Because it is hard to model 𝑝(𝑥𝑖|𝑥∖𝑖) and function 𝑔, we use the importance sampling

technique to estimate the EBIS.

For a high-dimensional input such as embeddings of words or pixels of an image,

globally drawing subsets may have a high chance of obtaining combinations with less

interdependence. Therefore, we sample elements in a sliding window style and expect

to capture subsets with a higher correlation. Let 𝑊𝑖𝑗 be the 𝑗-th window from which

𝑚 i.i.d. subsets 𝑆 ∋ 𝑖 are sampled. By the importance sampling technique, we can

estimate the EBIS of 𝑥𝑖 to 𝑐 by

𝑠𝑖 = 1
𝑇𝑖

∑︁
𝑊𝑖𝑗

𝑠𝑖𝑗 (2.22)

= 1
𝑇𝑖

∑︁
𝑊𝑖𝑗

E [𝑤𝑖(𝑐, 𝑥)] (2.23)

= 1
𝑇𝑖

∑︁
𝑊𝑖𝑗

1
𝑚

∑︁
𝑥𝑖∼𝑞𝑗

𝑝(𝑥𝑖|𝑥∖𝑖)𝑔(𝑐, 𝑥𝑖)
𝑞𝑗(𝑥𝑖)

(2.24)

= 1
𝑇𝑖

∑︁
𝑊𝑖𝑗

1
𝑚𝑞𝑗 (𝑥𝑖)

∑︁
𝑆∋𝑖

𝑤𝑆 (𝑐, 𝑥)
|𝑆|

(2.25)

≈ 1
𝑇𝑖 × |𝑆|

∑︁
𝑆∋𝑖

⎛⎝∑︁
𝑊𝑖𝑗

𝑜−1
𝑖𝑗

⎞⎠[︁𝐸 ′(𝑐, 𝑥)− 𝐸 ′(𝑐, 𝑥∖𝑆)
]︁

, (2.26)

where 𝑇𝑖 is the frequency of 𝑥𝑖 as the sampling population, 𝑞𝑗 denotes the sampling

distribution from 𝑊𝑖𝑗, and 𝑜𝑖𝑗 counts the frequency of occurrence of 𝑥𝑖 from 𝑊𝑖𝑗.

Equation 2.23 is obtained by Equation 2.18, and Equation 2.24 is by Equation 2.21 and

importance sampling. Then, Equation 2.25 is derived from Equation 2.20. Finally, the
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EBIS is approximated by the law of large numbers with Equation 2.19 in Equation 2.26.

Counters 𝑜𝑖𝑗 are used instead of 𝑞𝑗 to avoid complicated computation of probability,

while 𝑇𝑖 scales the estimations as the numbers of windows including 𝑥𝑖 may be different

from the one of others.

2.3.4 Weight for Sampling and Anisotropic Saliency

In the subset sampling mentioned above, we can naively draw elements from a uniform

distribution without replacement. However, there may be a high possibility of getting

non-KIEs, leading to underestimation of the importance scores.

By referring to model-specific approaches, we can leverage the gradient information

as a sort of weight for the weighted sampling without replacement [55]. For the sake

of using gradients, we designed anisotropic saliency (AS) for the sampling weight as

follows.

Definition 4 (Anisotropic saliency (AS)). Given an input 𝑥 ∈ 𝒳 , candidate classes

𝐶 and a model 𝑓 : 𝒳 ↦→ R|𝐶|, the saliency 𝑎𝑖 ∈ R of the input element 𝑥𝑖 ∈ 𝑥 is the

max norm of gradients over the classes:

𝑎𝑖 = max
𝐶

⃒⃒⃒⃒
⃒𝜕𝑓(𝑥)

𝜕𝑥𝑖

⃒⃒⃒⃒
⃒+ 𝜖, (2.27)

where 𝜖 is a small positive value to avoid zero-weights.

The term anisotropic suggests that the weights of elements have different natures

due to the gradients derived from different classes. We believe that AS helps us select

KIEs with a higher chance by capturing the cross-class backward importance for each

input element. For example, given an image of the digit 4 written similarly to a “9”,

it is expected that the model interpreter to select not only the positive pixels for the

class “4” but also negative ones against the class “9”.
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2.3.5 Algorithm

In this section, we summarize the proposed method in Algorithm 2. The computation

for 𝐸 ′ at Line 23 is the principal cost by present deep learning architectures. Let 𝑂 (|𝑓 |)

be the complexity of the model’s forward computation, which can be accelerated

using parallel computing and GPUs. Then, the complexity of Algorithm 2 with

uniform sampling at Line 12 is 𝑂 (𝑚|W| (|𝑆| log |𝑆|+ |𝑓 |)) or with AS at Line 12 is

𝑂
(︁
𝑚|W|

(︁
|𝑆|

(︁
1 + log 𝑙2

|𝑆|

)︁
+ |𝑓 |

)︁)︁
[56].

2.3.6 Results

In the experiments, we used an altered pixel flipping test (Algorithm 3), which evaluates

by the gross accuracy rather than the average normalized predictive output [39],

because a change by an input element could not only affect the correct answer but

also be even more significant to the other ones. We considered that the gross accuracy

could handle all the influences over the candidate answers.

We trained a simple CNN model for MNIST3 and a ResNetV2 [57] model for

CIFAR104 on the whole train set with 50,000 samples for each dataset. The whole test

set with 10,000 instances are used to perform the pixel flipping test in the evaluation.

Table B.2 shows the architecture of the CNN model for MNIST, which was implemented

in PyTorch. For the sake of comparison, we employed saliency, Deconvolution (Deconv),

GradientShap, Guided Backpropagation (GBP) [58], DeepLIFT, Input ⊙ Gradient

(IXG) [59], Integrated Gradients (IG) [60], and Occlusion-1 [33] as the contrastive

methods. Besides, the relevance scores were obtained by masking RGB-channel pixels

simultaneous as one input element as 𝑥𝑖 =
[︁
𝑥𝑅

𝑖 , 𝑥𝐺
𝑖 , 𝑥𝐵

𝑖

]︁
in our methods and Occlusion-

1, while the ones were the sums of the scores from the three channels in the other

methods. Also, AS in ours was given by 𝑎𝑖 = max
(︁
𝑎𝑅

𝑖 , 𝑎𝐺
𝑖 , 𝑎𝐵

𝑖

)︁
. The evaluation results

are shown in Figure 2-5, and the areas under the gross accuracy curves (AUCs) by

flipping important pixels are shown in Table 2.3.

We observed that our methods outperformed the contrastive approaches on both
3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/ kriz/cifar.html
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Algorithm 2: Key input subset sampling
Input: input 𝑥[𝑛] ∈ 𝒳 with 𝑛 elements, candidate classes 𝐶 predicated by the

trained model 𝑓 : 𝒳 ↦→ R|𝐶|, negative energy function 𝐸 ′ : 𝐶,𝒳 ↦→ R
of 𝑓 , size of window 𝑙 × 𝑙, number of elements in a non-empty subset
|𝑆| , number of i.i.d. samples 𝑚.

Output: EBIS’s for 𝑥 with respect to 𝐶.
1 create windows W over 𝑥 by the window size 𝑙 × 𝑙 and the stride size 1
2 𝑎[𝑛] ← 1 for uniform sampling or 𝑎[𝑛] ← AS of 𝑥 by Equation 2.27 for

weighted sampling
3 Q← ∅
4 [𝑜𝑖𝑗]← 0, a counter matrix where 𝑗 is the order of the window having 𝑖-th

input element, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ |W|
5 𝑇 [𝑛] ← frequencies of elements occurring in W
6 𝑏[𝑛] ← 0
7 S← ∅
8 𝑠[𝑛×|𝐶|] ← 0
9 foreach window 𝑊 ∈W do

10 for 𝑘 ← 1 to 𝑚 do
11 𝑎𝑊 ← sampling weights of the elements in 𝑊
12 𝑆 ← subset of indices of the elements sampled from 𝑊 without

replacement with the weight 𝑎𝑊

13 ENQUEUE(Q, 𝑆)

14 while Q ̸= ∅ do
15 𝑆 ← DEQUEUE(Q)
16 foreach index 𝑖 ∈ 𝑆 do
17 𝑜𝑖𝑗 ← 𝑜𝑖𝑗 + 1, where 𝑆 ⊂ 𝑊𝑖𝑗

18 S← S⋃︀𝑆

19 forall 𝑜𝑖𝑗 do
20 𝑏𝑖 ← 1

𝑇𝑖

∑︀
𝑊𝑖𝑗

𝑜−1
𝑖𝑗

21 foreach subset 𝑆 ∈ S do
22 𝑥∖𝑆 ← a vector comprehension [𝑖 ∈ 𝑆 ? 0 : copy(𝑥𝑖) for 𝑖← 1 to 𝑛]
23 𝑤𝑆 ←

[︁
ℱ(𝑥)−ℱ(𝑥∖𝑆) > 0 ? 0 :

(︁
𝐸 ′(𝑐, 𝑥)− 𝐸 ′(𝑐, 𝑥∖𝑆)

)︁
for 𝑐← 1 to |𝐶|]

with Equation 2.15 and 2.16
24 foreach index 𝑖 ∈ 𝑆 do
25 𝑠𝑖 ← 𝑠𝑖 + 𝑏𝑖𝑤𝑆

26 return 𝑠/|𝑆|
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Algorithm 3: Pixel flipping test
Input: images 𝑋 ∋ 𝑥, 𝑥 = [𝑥𝑖], the maximum number of token deleted 𝐾, a

trained model 𝑓 , relevance 𝑟 = [𝑟𝑗] in descending order.
1 foreach 𝑥 ∈ 𝑋 do
2 sort the pixels [𝑥𝑖] into

[︁
𝑥′𝑗
]︁

by the order of 𝑟

3 for 𝑗 ← 1 to 𝐾 do
4 𝑥𝑖 ← −𝑥𝑖 where 𝑥𝑖 = 𝑥′𝑗
5 record the model output 𝑓(𝑥)

6 obtain the gross accuracy reduction curves for each pixel flipping
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Figure 2-5: Pixel flipping tests on MNIST (𝑚 = 20) and CIFAR10 (𝑚 = 10).
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tasks. As the handwritten digit images in MNIST are in simple grayscale, the methods

only masking one input element each time, such as KISS with |𝑆| = 1 or Occlusion-1,

had better performance. However, KISS by |𝑆| = 4 with AS could overestimate for

these simple data. For the CIFAR10 task, it is encouraging that ours’ gross accuracy

curves were far more convex than the others. We considered two possible reasons for

that: 1) the other methods only focused on the target classes, but KISS overlooked all

candidate classes by considering the free energy, and 2) the relevance scores computed

by the model-specific methods contained different signs and values along the RGB

channels, while KISS treated the RGB channels as one element to avoid counteracting

contributions by using the forward style.

Moreover, the AUCs of saliency, Deconvolution, and Guided Backpropagation

obtained the same results on the ResNetV2 model because of the pre-activation

architecture and the residual units without biases. The results of DeepLIFT and Input

⊙ Gradient showed a similar phenomenon. Besides, we found that AS helped improve

the performance of sampling from the AUC results.

Table 2.3: AUCs by flipping pixels. The smaller is the better since it implies that the
order by relevance is more meaningful than the others.

Method CNN+MNIST@100 ResNetV2+CIFAR10@128

saliency 48.9028 61.7073
Deconv 52.1258 61.7073

GradientShap 32.7096 45.0386
GBP 37.9767 61.7073

DeepLIFT 33.5445 47.7111
IXG 28.5271 47.7111
IG 32.1853 44.047

Occlusion-1 19.973 60.1107
AS (|𝑆| = 1, 𝑙 = 3) 18.9298 21.4046
AS (|𝑆| = 2, 𝑙 = 3) 20.332 21.14
AS (|𝑆| = 4, 𝑙 = 4) 29.7233 21.0196
uni.(|𝑆| = 1, 𝑙 = 3) 19.6733 22.1864
uni.(|𝑆| = 2, 𝑙 = 3) 20.0143 21.8488
uni.(|𝑆| = 4, 𝑙 = 4) 21.1498 22.0663

Despite remarkable results in the evaluation, the selection for the best parameters
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is still an open problem. A possible approach is as like as the one for NRP. We can

launch the tests on a small data subset for the selection by the higher performance. In

the preliminary experiments, we had tried a set of parameters for pixel flipping tests

on a subset with 1000 instances, where |𝑆| ∈ {1, 2, 3, 4, 8}, 𝑙 ∈ {2, 3, 4, 8} and |𝑆| ≤ 𝑙.

Then the combinations were chosen for the experiments since they had relatively low

AUCs. Another limitation of KISS is that the computational complexity is higher

than the one of a model-specific method, usually 𝑂(|𝑓 |). Although the inference can

be accelerated with GPUs and parallel computing, more studies on the sampling

approach still need to be done to reduce complexity, such as pruning by weight.

2.3.7 Examples of Visualization

The following two figures are two examples of visualization on the importance scores

by KISS. The red or blue pixels denote the corresponding elements’ positive or

negative contributions with respect to the labels. Additionally, The brightness of each

contribution is directly proportional to the normalized EBIS over the classes.

Figure 2-6: Visualization on MNIST with a CNN model (|𝑆| = 1, 𝑙 = 3, 𝑚 = 20
with AS). The leftmost images are the input images, while the titles on top of the
importance plots are the corresponding labels along with the negative energies 𝐸 ′. The
classes with the largest 𝐸 ′ over the same rows have the highest predictive probabilities.

In the visualization on the MNIST model (Figure 2-6), KISS could present the

following three types of explanations:
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• Support. All the correct predictions show strong red pixels on the strokes

and even the black backgrounds as features that could be highly related to the

corresponding classes. However, some strokes can feature in incorrect classes,

which denotes these pixels could be similar to those labels, e.g., the written 4 to

the class “9” in the bottom row.

• Protest. Strong blue pixels were attached to possibly incorrect strokes as

protests for the corresponding classes, such as the handwritten 7 to the class “0”

in the first row.

• Shortage. Sometimes, there are some blue points given by KISS on the back-

grounds as supplements which could be the missing features for the regarding

labels, e.g., the written 7 to the class “8” in the first row.

Figure 2-7: Visualization on ImageNet with the MobileNetV2 model (|𝑆| = 10, 𝑙 = 5,
𝑚 = 5 with AS). Both input images were labeled as Siberian husky. The model
predicted the upper image as a Siberian husky yet the lower one as an Eskimo dog.

The visualization on the ImageNet dataset was generated by using KISS on a

pretrained MobileNetV2 [61] model (Figure 2-7). It is known that Eskimo dogs have

white hair and live in snowfields usually; most of the related images in the training

set could satisfy this impression. For the upper image, the importance scores showed

that the black fur could be against Eskimo dog. Furthermore, for the lower input
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getting incorrect prediction by the model, KISS pointed out that the white snow on

the ground could cause the failure.

2.4 Survey and Discussion

We conducted a questionnaire survey to investigate the effect of MI’s helping knowledge

discovery on images. We used the visualization results by KISS on six samples from

MNIST with simple CNN and ImageNet with MobileNetV2.

In Questionnaire (A) (Figure A-1 and A-2), we designed the questions to obtain

respondents’ opinions on the images without any information by deep learning. In

Questionnaire (B) ( Figure A-3 and A-4), we introduced the visualization results by

KISS and asked respondents whether they agree with the interpretations and discover

novelty.

We received 31 responses replied in English, Japanese, or Chinese. Since the

questions were non-factoid, we summarized the answer patterns in Table B.3, and

human explanation patterns in Table B.4 and B.5.

According to the answer patterns, we found that people tend to hold on to their

first judgments, as most of the respondents did not change their answers despite

different predictions given by the models. In the following, we discuss our discovery

from the respondents’ explanations with representative responses for each question.

In Question (1), the main difference in opinion was on the upper part’s shape.

Most of the respondents answering “4” mentioned the sharp corner on the left, which

was also annotated with positive pixels by KISS. A reply said, “I agree with the

computer because it says that the character is like both ‘4’ and ‘9’ but more similar

to ‘4’ considering the left end of the character.” On the other hand, a dissenter found

negative annotations on ‘9’ and claimed, “Not really. It looks like the computer

considers the angel as a more important factor than the others. However, more factors

make it more like a 9 to me.” In both the two comments, the respondents perceived

the left angel annotated by KISS.

In Question (2), almost all of the respondents answered “9”. However, the reasons
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for their final judgments were various since there were ten human explanation patterns

for the disagreement. A respondent answered “4” and noticed the model’s judgment

on the upper hole, “No. But I understand the computer’s choice because of the

straight line here in ‘9’. I think machine learning is good at noticing negative evidence.”

Another respondent also indicated the hole but answered “9“, “Disagree. The red

circle is not closed, this feature can often be observed in the handwritten 9” Obviously,

they both mentioned the right upper part of the digit where KISS gave different

contribution scores to “4” and “9”.

People may have different minds for the handwritten way in Question (3) based

on their cultural backgrounds. Most of the respondents who answered “7” treated

the middle line as the dash to avoid confusion with other Latin characters. Some

respondents who answered “2” noted the last returned stroke. A respondent agreed

with the model’s explanation on the strong supports in the middle and found the

novelty, “Yes. In this case, it is interesting to find the cross-point of the two lines came

to be the evidence. This differs from human’s cognition of ‘7’.” Another respondent

thought it is a “7” by intuition at first, “The first sight will give me the only answer

– 7, and even I want to consider another option, I cannot come up with any.” After

observing the interpretation, he/she changed the answer, “I realised it can also be a 2.

And I think the horizontal line really indicates it is the last stroke of the 2.” Here, the

interpretation helped them discover novelty in the writing way of the strokes.

In Question (4), some respondents who answered “bottlecap” considered the object

to be convex or judged by the text on it. Nevertheless, some others thought it

to be concave by the shadow or focused on the rim’s shape. One agreed with the

interpretation on “bottlecap” and wrote, “It judged on the red part and the rim as the

same as I did.” However, another altered his/her mind from “bottlecap” to “tray” and

questioned the model’s explanation on the rim, “No. I have changed my opinion. Not

like a bottlecap because there is no screw thread and jag on the rim. I disagree with the

blue parts for ‘tray’ and don’t know what’s the meaning.” The different annotations

on the rims of “bottlecap” and “tray” led to individuals’ divergent explanations.

The object in the image of Question (5) should be an opened traffic light lying
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down on the ground. It was a complex context for the CNN-based model without prior

knowledge. In the responses, people mainly focused on the characteristic three colors

of the object. A respondent thought the model had no idea of the meaning of the

colors, “Traffic lights. The red part helps me to find the details of the picture. But I

don’t agree with the computer’s answer. I think maybe the computer didn’t recognise

the color. Green yellow and red, it should be traffic lights.” Another respondent

pointed out the disadvantage of the CNN model, “Disagree. Though it looks like face

powders, the computer could recognize this is a traffic light if it has learned an opened

traffic light – the computer lacks prior knowledge.” They both found the defects of

the model based on the visualization.

In Question (6), almost all of the respondents answered “beer bottle” based on

the text or the brand. A respondent considered the model illiterate because there

was no annotation on the text, “I don’t agree. The result tells us the computer can

only recognise the shape. It can’t recognise the words, no matter English or Chinese.”

Another respondent was focusing on the surface curve and indicated the negative

annotations on “beer bottle”, “Yes. The color explains my reason for the choice!

The curve of the surface is not an exact surface of a beer bottle.” Here, the model’s

explanation help people reflect on the model or their consideration.

According to the above discussion, we observed that the interpretation by KISS

helped people notice blind spots, reasons of the intuition, or defects of the models since

the respondents reviewed their knowledge and used pointers or words to explain their

discovery based on the interpretation results. Therefore, we can expect MI approaches

to facilitate the understanding of deep models’ prediction, the consideration of deep

models’ reliability and improvement, and novelty discovery. Moreover, it is interesting

that more than half of the respondents replied and persisted the answers different from

the labels in Question (3) and (4). Also, the likenesses of controversial answers given

by the models were very close in Question (2), (3), and (6). This evidence suggests

that we should adopt deep models more flexibly and carefully, such as allowing the

models to warn human users of near predictive results for reviews.
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2.5 Related Work

As the development of studies on model interpretation in deep learning, various

methods for explaining deep models have been proposed.

2.5.1 Model-agnostic methods

LIME trains explainable models (i.e., LASSO and decision trees) to predict local

spaces by sampling data around an input [30]. KernelSHAP combines LIME and

game-based approximation to estimate the importance [31]. In soft decision trees,

the prediction is re-fit by using the trees in which the criteria of splits are logistic

regressions with temperature [32]. DeepVis is an element subset sampling method

similar to KISS, but it approximates 𝑝(𝑥𝑖|𝑥∖𝑖) with Gaussian distribution and computes

the average weights of evidence (WoE) for each sample as contribution scores [34].

L2X is an information-based method that maximizes the mutual information between

an input subset and the output by training a neural network [36]. In SIScollection,

minimal subsets whose outputs are greater than a preset threshold are selected as the

explanation [35].

2.5.2 Model-specific methods

Saliency maps, such as sensitivity analysis [37], Guided Backpropagation (GBP)

[58], Input ⊙ Gradient (IXG) [59], Integrated Gradients (IG) [60], GradCAM [62],

utilize the information of gradients of the output to each input element by chain rule.

However, some of them could result in misleading the explanation [38]. DeepLIFT is a

relevance decomposition method similar to LRP by using baseline inputs to estimate

positive and negative contributions [40]. GradientSHAP estimates the importance by

combining game-based approximation and gradients [31].
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2.5.3 Other Taxonomy

The above categories of MI methods are by whether the approach is dependent on a

specific model. A superclass of MI is Explainable AI (XAI) [12, 63–66].

By scope, XAI methods can be classified into local and global approaches. Local

methods generate an explanation for an individual instant, while global methods

help understand the whole mechanism of a model [67, 68]. Another taxonomy of

XAI in DL is according to the space-time relation of a method. Pre-model methods

are used before the model inferences to analyze properties of samples, e.g., principal

component analysis (PCA) [69, 70] and t-distributed stochastic neighbor embedding

(t-SNE) [71]. Some network architectures can extract interrelation in a given input,

such as the attention mechanism [72, 73], treated as in-model methods. Naturally,

the interpretation occurs after the model training and prediction is of post-model.

Therefore, NRP and KISS are also local post-model interpretation methods.
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Chapter 3

Case Study: Deep Learning on

Laser Machining

Laser machining, or laser processing, uses an optical process to remove material via

the melting or ablation phenomenon between the material and a laser beam [74]. Due

to the advantages of laser machining, such as precision, flexibility, automation, and

versatility [75], it has been widely used for high-precision processing recently. It is

believed that laser machining is a crucial CPS application in Industry 4.0 and Society

5.0 [76, 77].

The case study is on a project in the MEXT Q-Leap program [78]. This project

aims at monitoring processing status during laser machining. For the monitoring,

Tani et al. [20] proposed a low-cost, high-speed data acquisition method in which

Fourier speckle patterns of scatterings from the surface of processed material are

captured as the image data. They also tried using a ResNet model to predict types of

material and volume of ablation. However, This sort of data utilization is still less

studied in physics and data science, and it is expected to be applied in more physical

tasks. Through the negotiation in an IMDJ workshop, we obtained an opportunity to

analyze the dataset and verify DL’s performance on it [79].

This chapter will describe the laser machining dataset with exploratory analysis,

evaluate the performance of feature extraction with different deep models in single-task

learning (STL) or multi-task learning (MTL), and finally introduce applications of
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proposed methods on the dataset.

3.1 Analysis on Laser Machining Data

To employ machining learning methods, we needed to preprocess the dataset and

do some preliminary analysis to understand it. This section will report on applying

principal component analysis (PCA) to the dataset.

3.1.1 Details of The Dataset

The dataset adopted in this work was acquired from laser machining experiments

on Silicon materials in 10 different laser power settings. In each power setting, 105

independent experiments were operated, and 250 sequential stages were captured by

the camera every 200ms in each experiment. Thus, the dataset included a total of

262,500 images. Each image records Fourier transformed scatterings within 400× 4080

pixels in grayscale, and all the images have already been labeled with corresponding

powers and shot numbers. For the sake of experimental reproduction, we split the

dataset into three subsets by the experiment IDs shown in Table B.6.

Since the raw images’ size is too large for our device, we resized them into 224×224

with bilinear interpolation. Existing CNN models mostly use this size. In the

preprocessing, each pixel value was normalized by min-max scaling and z-scores with

the mean 0.109251 and the standard deviation 0.033309, which were the empirical

values over the training set.

3.1.2 Exploratory Analysis

To understand the laser machine data, we decided to apply principal component

analysis (PCA) [69, 70] on the training set. Due to the large scale of the dataset with the

number of samples 𝑁 = 175, 000 and the size of each image 𝑀 = 224× 224 = 50, 176,

we employed singular value decomposition (SVD) alternatively [80] to calculate the

sorted singular values 𝜎[𝑀 ](𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑀) and obtained ordered eigenvalues
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𝜆[𝑀 ](𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑀) by the following equation:

𝜆𝑖 = 𝜎2
𝑖

𝑁 − 1 . (3.1)

Then, for the evaluation of components explaining variance, we computed the cumula-

tive explained variance ratios (CEVRs) given by

𝑅𝑖 =
∑︀𝑖

𝑗=1 𝜆𝑗∑︀𝑀
𝑘=1 𝜆𝑘

, (3.2)

and plotted the results as shown in Figure 3-1.
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Figure 3-1: CEVRs 𝑅𝑖 on the laser machining data. The blue line shows for all
components in the training set, while the red one is a zoom-in for 1 ≤ 𝑖 ≤ 300.

According to the CEVRs, we could adopt less than 300 components to obtain

variance greater than 99% on the training data. This result helped us alleviate the

curse of dimensionality in using some machine learning methods on the data.
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3.2 Feature Extraction in Multitask Deep Learn-

ing

Feature extraction is a critical step for the utilization of deep learning in downstream

applications. To evaluate the performance of feature extraction on the speckle pattern

data, we designed two tasks as follows:

1. Power Setting Classification (PSC): Given a speckle pattern image, predict one

of the ten power settings as the corresponding power that generated the pattern.

2. Shot Number Regression (SNR): Given a speckle pattern image, predict the log

of its numerical order in a single experiment.

Since it is a strong constraint that the integral shot numbers are discrete in a specified

range [1, 250], the log instead of the discrete integer was for a soft regression in SNR.

Then, we adopted AlexNet [81] and ResNet [82] for different models with the

single-task or multi-task objective as follows.

3.2.1 Image Feature Extraction with CNN

As shown in Figure 3-2, we dropped all the fully-connected neural network (FNN)

layers at the ends of the two original base models. Then, we connected the last

convolutional layers to the concatenated pooling layer. We expect that avg-pooling

could transfer the global extracted information of input, while max-pooling could

select those significant features.

Generally, ResNet performs better than AlexNet on most image datasets. However,

it showed different results on the laser machining data in the later experiments.

3.2.2 Objective Functions

This section is on the loss functions for the two single tasks respectively and a composed

objective function for the multi-task.
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Figure 3-2: Architecture of deep models. The numbers are the sizes of their nearest
sides (the default is 1).

For the PSC Task

Since PSC is a typical classification task, we directly utilized the cross-entropy loss [4]

defined as

ℒ𝑃 𝑆𝐶 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑦𝑖,𝑘 log 𝑝𝑖,𝑘 (3.3)

𝑦𝑖,𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑐𝑖 = 𝑘

0 otherwise
, (3.4)

where for the 𝑖-th input sample, 𝑐𝑖 is one of the 𝐾 power setting labels, and 𝑝𝑖,𝑘 is the

predictive probability.
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For the SNR Task

For the regression task, we applied smooth 𝐿1 loss [83] as the objective function

formulated by

ℒ𝑆𝑁𝑅 = 1
𝑁

𝑁∑︁
𝑖=1

smooth𝐿1 (𝑧𝑖 − 𝑧′𝑖) (3.5)

smooth𝐿1(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0.5𝑥2 if |𝑥| ≤ 1

|𝑥| − 0.5 otherwise
, (3.6)

where for the 𝑖-th input sample, 𝑧𝑖 is the log of labeled shot number and 𝑧′𝑖 is the

predicted logarithm. There are two reasons for using smooth 𝐿1 loss instead of normal

𝐿1 loss or squared error: 1) it could prevent too large gradients being propagated to

the upper layers when the absolute loss is greater than 1, and 2) it could do softer

learning with smaller gradients when the difference is in the range (0, 1].

For the Multi-task

As sequences of ablation volumes are variant by different laser machining power

settings, we believe that the shot numbers are also relative to the power settings.

Therefore, we can compose the objectives for PSC and SNR as a multi-task objective.

By sharing the neural network layers of feature extraction to the two different

single-task FNNs, we trained the whole model with this global loss function:

ℒ = ℒ𝑃 𝑆𝐶 + ℒ𝑆𝑁𝑅 (3.7)

3.3 Experiment

In the experiment, we employed accuracy (𝐴𝐶𝐶), precision (𝑃𝑅), recall (𝑅𝐶), and

the 𝐹 1 score to the evaluation for PSC, while used the mean absolute error (𝑀𝐴𝐸)

and the 𝑅2 score for SNR. Then, we trained the mention deep models and baselines

to evaluate the performance of feature extraction on the laser machine data.
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3.3.1 Metrics

Given 𝑁 samples and 𝐾 classes, the metrics for PSC are given by

𝐴𝐶𝐶 = 1
𝑁

𝑁∑︁
𝑖=1

1(𝑐𝑖 = 𝑐′𝑖) (3.8)

𝑃𝑅 = 1
𝐾

𝐾∑︁
𝑘=1

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘

= 1
𝐾

𝐾∑︁
𝑘=1

∑︀𝑁
𝑖=1 1(𝑐𝑖 = 𝑘 ∧ 𝑐′𝑖 = 𝑘)∑︀𝑁

𝑖=1 1(𝑐′𝑖 = 𝑘)
(3.9)

𝑅𝐶 = 1
𝐾

𝐾∑︁
𝑘=1

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

= 1
𝐾

𝐾∑︁
𝑘=1

∑︀𝑁
𝑖=1 1(𝑐𝑖 = 𝑘 ∧ 𝑐′𝑖 = 𝑘)∑︀𝑁

𝑖=1 1(𝑐𝑖 = 𝑘)
(3.10)

𝐹 1 = 1
𝐾

𝐾∑︁
𝑘=1

2× 𝑃𝑅𝑘 ×𝑅𝐶𝑘

𝑃𝑅𝑘 + 𝑅𝐶𝑘

, (3.11)

where 1(·) denotes the indicator function, 𝑐′𝑖 is the predictive power setting of 𝑖-th

sample, and 𝑇𝑃𝑘, 𝐹𝑃𝑘, and 𝐹𝑁𝑘 are the numbers of true positives, false positives and

false negatives for class 𝑘 respectively; the metrics for SNR are formulated by

𝑀𝐴𝐸 = 1
𝑁

𝑁∑︁
𝑖=1
|𝑧𝑖 − 𝑧′𝑖| , (3.12)

𝑅2 = 1−
∑︀𝑁

𝑖=1 (𝑧𝑖 − 𝑧′𝑖)
2∑︀𝑁

𝑖=1

(︁
𝑧𝑖 − 1

𝑁

∑︀𝑁
𝑖=1 𝑧𝑖

)︁2 . (3.13)

Except that 𝑀𝐴𝐸 is the lower the better, the others are the higher the better.

Since the numbers of samples in each power settings were the same on the datasets,

𝐴𝐶𝐶 = 𝑅𝐶 was obtained.

3.3.2 Model Setups

In the experiment, the PyTorch implementations of AlexNet and ResNet were used as

the base models. Behind the deep features layer, a BatchNorm and a 0.25-Dropout

were introduced for better stability and generalization. The negative slope of the

leaky ReLU was set to 0.3. The loss functions were optimized by SGD with the weight
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decay 1.0× 10−4 and a triangular cyclic scheduler [84]. For each cyclic period of 16.5

epochs, the scheduler adjusted the learning rate in the range [5.0× 10−4, 3.0× 10−2]

and the momentum within [0.8, 0.9]. For every epoch, the batch size was 256, and

the training images were reshuffled. Every deep model was trained for 100 epochs

and the parameters were selected by better ACC or/and MAE and lower loss on the

validation set.

As baselines, support vector machine (SVM) [85] and simple FNN were used in the

comparison. The linear kernel was applied to the SVM models in this experiment since

it was better than the radial basis function (RBF) on the laser machining dataset.

According to the result in Section 3.1.2, the image inputs to SVM models were

transformed to 260-dimensional data by using truncated SVD [86] due to 𝑅260 > 0.99.

Moreover, the simple FNN models’ architectures were the same as the ones in Figure 3-

2, where input images were flattened into 50,176-dimensional vectors.

3.3.3 Results

With the metrics and the model settings mentioned above, we trained the models in

STL or MTL and obtained the results as shown in Table 3.1 and 3.2. According to the

results, we found that using AlexNet for the feature extraction in MTL was better than

the other comparative models for both tasks. Although ResNet has residual blocks and

a deeper architecture, its performance was worse than AlexNet in these experiment

settings. A possible reason is that the Fourier transform could be considered as a kind

of feature extraction whose “parameters” can not be optimized in the training. As a

result, the deeper models could be harder to tune the succeeding layers’ parameters,

and then the overfitting could occur.

To discuss the advantage of MTL, we also made the confusion matrices of the

predictive results by the AlexNet-based models, as shown in Figure 3-3. We found that

the values were more concentrated on the diagonal in MTL than in STL. MTL helped

reduce errors for most classes, especially for the samples captured in the 1.8mW power

setting. Though the MTL model performed a little worse than the STL model for

the 3.0mW and 3.5mW settings, their errors were still located at the neighborhoods
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Table 3.1: Results of different models for PSC.

Model Validation Test

𝐴𝐶𝐶 𝑃 𝑅 𝐹 1 𝐴𝐶𝐶 𝑃 𝑅 𝐹 1

SVM with SVD 0.44333 0.49753 0.43899 0.52022 0.53973 0.49488
simple FNN in STL 0.71637 0.70822 0.71340 0.73178 0.77212 0.72773
simple FNN in MTL 0.71803 0.72773 0.70776 0.75502 0.78540 0.74073

AlexNet in STL 0.87184 0.88112 0.87064 0.88446 0.89578 0.88406
AlexNet in MTL 0.90069 0.90809 0.90032 0.9061 0.91547 0.90524
ResNet in STL 0.87912 0.89091 0.87580 0.89204 0.90394 0.89191
ResNet in MTL 0.85171 0.87135 0.85183 0.88202 0.89715 0.87770

Table 3.2: Results of different models for SNR.

Model Validation Test

𝑀𝐴𝐸 𝑅2 𝑀𝐴𝐸 𝑅2

SVM in SVD 0.83891 –0.39754 0.83301 –0.37363
simple FNN in STL 0.40982 0.70053 0.41074 0.70823
simple FNN in MTL 0.42202 0.68666 0.41330 0.69938

AlexNet in STL 0.35468 0.73977 0.37303 0.71816
AlexNet in MTL 0.28893 0.84342 0.29558 0.82798
ResNet in STL 0.35415 0.76356 0.37520 0.76356
ResNet in MTL 0.32888 0.79420 0.34177 0.78346
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(2.5mW and 4.0mW, respectively).

Also, we plotted 𝐴𝐶𝐶s and 𝑀𝐴𝐸s over each shot number as shown in Figure 3-4

and 3-5, where the 𝑝-values were given by the one-way ANOVA tests. There are obvious

turning points near the 25th shots since the ablation volume is too little to carry

enough information of scatterings at the beginning of laser machining. However, these

plots show that MTL facilitated the predictions also for the beginning of the processing.

The reason could be that MTL optimized the model by referring information from the

PSC objective and the SNR objective simultaneously, while STL had no more other

referable information.

3.4 Discussion

Until now, I presented an evaluation of deep models for the feature extraction of laser

machining data, which was motivated by attending the IMDJ workshop and the task

of laser processing monitoring. We found that the AlexNet-in-MTL model performed

better than the ResNet or STL based model through the experiment. Also, due to the

lower computational cost, AlexNet-based models could be more suitable for real-time

applications. However, this feature extraction approach was supervised as it depended

on the label information (power settings and shot numbers). In the laser machining

data, it is considered that some images record anomalies of processing (i.e., outliers or

change points), and it is hard to label the anomalies by the recognized information.

Thus, the representative features extracted from limited label information could lead

to weak generalization for downstream tasks. To solve this problem, unsupervised [87]

or self-supervised approaches [88] are the candidates. Additionally, since the target

material of the dataset we obtained was only Silicon, we still need more data on other

materials for the evaluation.

Also, we attempted applying MI on the AlexNet-based model for the explanation

as shown in Figure A-5. We observed that the supports and protests appeared on some

speckles or the surrounding area, which is expected to be certain hints for physical

experts to elucidate the principles behind laser processing. However, it is still difficult
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Figure 3-3: Confusion matrices of the power setting predictions by AlexNet models
in (a) STL and (b) MTL. The power settings on X-axis denote the labels and the
ones on Y-axis are the predictive results. The values located at the diagonal are the
numbers of corresponding correct predictions, while the others are the numbers of
corresponding errors.
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Figure 3-4: 𝐴𝐶𝐶 of PSC over each shot number in (a) STL and (b) MTL(𝑝 < 0.001).
The black lines denote the 𝐴𝐶𝐶 over the validation and test sets.
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Figure 3-5: 𝑀𝐴𝐸 of SNR over each shot number in (a) STL and (b) MTL (𝑝 < 0.001).
The black lines denote the 𝑀𝐴𝐸 over the validation and test sets.
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to explain the changes among a processing sequence due to KISS is designed for single

instances. It is also a motivation behind the method for sequential data described in

the next chapter.

3.5 Related Work

The application of DL on laser machining is still a new study field. Mill et al. input the

images of the laser-machined surfaces to a CNN model to predict material types, laser

fluences, and the numbers of pulses simultaneously with a supervised approach [89].

Francis and Bian used stacked thermal images as input and a CNN model to predict

the distortion in laser-based additive manufacturing [90]. In the previous work, Tani et

al. took three continuous speckle pattern photos as one input into a residual neural

network (ResNet) to predict ablation depths and the types of materials [20]. In another

similar work, McDonnell et al. fed spatial images that mirrored Nickle material shaped

by three sequential pulses to a deep model for the depth map prediction [91].

Our work focused on investigating the performance of feature extraction with

different models in STL and MTL with the information of power settings and the shot

orders.
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Chapter 4

Sequential Anomaly Detection

with Pessimistic Contrastive

Learning

Sequential data is a common and important kind of data form in various real-world

applications, in which there usually are anomalies, such as outliers and change points.

Sometimes, it is hard to label anomalies or extract features from the massive high-

dimensional sequential data if there is a lack of prior knowledge, such as the laser

machining data described in Chapter 3.

As far as is known, deep learning excels in extracting useful information from

high-dimensional data. The anomalies, intended to mark out from raw data, need

to be labeled for supervised learning. Obviously, it is a chicken-and-egg problem.

Therefore, we consider non-supervised approaches in which it is no need for labels.

This chapter will present pessimistic contrastive learning (PCL), a self-supervised

deep learning method for anomaly detection on sequential data. In PCL, we pes-

simistically assume that there are anomalous data points in the sequences. Then, the

anomalies will be recognized by driving the data points to contrast with each other

within windows of context.
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4.1 Prior Work: SimCLR

The contrastive approach in PCL was inspired by the simple framework for contrastive

learning of visual representations (SimCLR) [92], a self-supervised method to extract

representative features from images for downstream tasks.

In SimCLR, two different data augmentation functions 𝜆 and 𝜆′ are sampled from

the identical family of augmentations Λ at the beginning. Then, from the same input

𝑥, the operators 𝜆 and 𝜆′ generate two correlated instances �̃�𝑖 and �̃�𝑗, which are

encoded by a neural network 𝑓 into two representations ℎ𝑖 and ℎ𝑗. Next, ℎ𝑖 and ℎ𝑗

are embedded by another network 𝑔 into two projections 𝑧𝑖 and 𝑧𝑗. The similarity of

𝑧𝑖 and 𝑧𝑗 is then maximized in the training by minimizing the NT-Xent loss given by

ℓ(𝑖, 𝑗) = − log exp (sim (𝑧𝑖, 𝑧𝑗) /𝑇 )∑︀2𝑁
𝑘=1 exp (sim (𝑧𝑖, 𝑧𝑘) /𝑇 ) [𝑘 ̸= 𝑖]

(4.1)

sim(𝑢, 𝑣) = 𝑢⊤𝑣

‖𝑢‖‖𝑣‖
, (4.2)

where 𝑇 denotes temperature and 𝑁 is the minibatch size. In Equation 4.1, the

lower temperature leads the stronger similarity and vice versa since the term in the

logarithm is derived from the Boltzmann distribution as

𝑝𝑖 = exp (−𝐸𝑖/𝑘𝑇 )∑︀
𝑗 exp (−𝐸𝑗/𝑘𝑇 ) , (4.3)

where 𝑘 is a constant and a term like exp (−𝐸/𝑘𝑇 ) is called the Boltzmann factor [54].

If we design the data augmentation appropriately enough, using SimCLR can make

neural networks capture the invariant information within two different views of the

input for feature extraction without labels.

4.2 Assumptions and Proposed Model

This section will propose a new network model and loss functions to train the model

based on the following assumptions.
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Given a sequence [𝑧1, 𝑧2, · · · , 𝑧𝑖, · · · , 𝑧𝑗 · · · , 𝑧𝐿−1, 𝑧𝐿] (1 ≤ 𝑖 < 𝑗 ≤ 𝐿), I model

it by using the following pessimistic policy which includes three assumptions for the

non-supervised anomaly detection task.

Assumption 1. The event that an anomaly occurs on the point 𝑧𝑖 is independent of

the other anomaly occurrences in the sequence.

Assumption 2. The event that points 𝑧𝑖 and 𝑧𝑗 have a relation 𝑟𝑖𝑗 ̸= 0 is independent

of the other pairs’ relationships in the sequence.

Assumption 3. If an anomaly occurs on 𝑧𝑖 or 𝑧𝑗, the two points lose the relationship,

i.e., 𝑟𝑖𝑗 = 0.

4.2.1 Objective Functions: CARE and SeNT-Xent

Based on the above assumptions, two objective functions will be derived with simple

probability and information theories as follows.

Let 𝑝𝑖 and 𝑝𝑗 be the probabilities of anomalies 𝑧𝑖 and 𝑧𝑗 occurring, and then

Assumption 1 implies

𝑝𝑖𝑗 = 𝑝𝑖 + 𝑝𝑗 − 𝑝𝑖𝑝𝑗 (4.4)

𝑝𝑖𝑗 = 1− 𝑝𝑖𝑗, (4.5)

where 𝑝𝑖𝑗 is the joint probability. According to Assumption 2, the probability of the

relationship between 𝑧𝑖 and 𝑧𝑗 is formulated by

𝑞𝑖𝑗 = 𝜎 (𝑟𝑖𝑗) = exp (𝑟𝑖𝑗)
1 + exp (𝑟𝑖𝑗)

(4.6)

𝑟𝑖𝑗 = sim (𝑧𝑖, 𝑧𝑗)
𝜏 (𝑖, 𝑗) , (4.7)

where 𝜏 (·, ·) > 0 is the attemperation function that can be constant, linear, or
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nonlinear . Moreover, the opposite probability of 𝑞𝑖𝑗 is

𝑞𝑖𝑗 = 1− 𝑞𝑖𝑗 = 1
1 + exp (𝑟𝑖𝑗)

= exp (0)
exp (0) + exp (𝑟𝑖𝑗)

. (4.8)

Equations 4.3 and 4.8 prove that the formulation of 𝑞𝑖𝑗 also satisfies Assumption 3

i.e., there is no relation between 𝑧𝑖 and 𝑧𝑗 (i.e., 𝑟𝑖𝑗 = 0) at the opposite event that

some anomaly occurred.

To combine the three assumptions above, the loss function to handle the possible

anomaly occurrences is defined by

ℓ𝐶𝐴𝑅𝐸(𝑘) = 1
𝐿− 1

𝐿−1∑︁
𝑖=1

1
min(𝑠, 𝐿− 𝑖)

min(𝑖+𝑠,𝐿)∑︁
𝑗=𝑖+1

𝐷𝛼

(︁
𝑝

(𝑘)
𝑖𝑗 ‖𝑞

(𝑘)
𝑖𝑗

)︁
(4.9)

𝐷𝛼 (𝑝‖𝑞) = 𝐻(𝑝, 𝑞)− 𝛼𝐻(𝑝) (4.10)

= −𝑝 log 𝑞 − 𝑝 log 𝑞 + 𝛼 (𝑝 log 𝑝 + 𝑝 log 𝑝) , (4.11)

where 𝑘 is the index of the sample in the minibatch and 𝑠 is the lookahead size to

simulate the sliding windows as shown in Figure 4-1. 𝐷𝛼(·‖·) is the relative entropy

altered from Kullback-Leibler divergence by adding an anomaly sampling penalty 𝛼

along with the entropy of the joint distribution of anomaly occurrence, where the term

𝛼𝐻(𝑝) works as a regularization by the principle of maximum entropy. Minimizing

the term 𝐷𝛼

(︁
𝑝

(𝑘)
𝑖𝑗 ‖𝑞

(𝑘)
𝑖𝑗

)︁
makes the distribution of Assumption 3 close to the one of

Assumption 1. For convenience, we name this loss function CARE (context-attempered

relative entropy loss).
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Figure 4-1: Sliding window fashion in CARE. The links denote the relating operation
in the training.
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For the sequential contrastive learning, Equation 4.1 is extended to SeNT-Xent

(sequential NT-Xent) as

ℓ𝑆𝑁𝑇 𝑋(𝑎, 𝑏) = − 1
𝐿

𝐿∑︁
𝑖=1

log
exp

(︁
sim

(︁
𝑧

(𝑎)
𝑖 , 𝑧

(𝑏)
𝑗

)︁
/𝑇
)︁

∑︀2𝑁
𝑘=1 exp

(︁
sim

(︁
𝑧

(𝑎)
𝑖 , 𝑧

(𝑘)
𝑗

)︁
/𝑇
)︁

[𝑘 ̸= 𝑎]
. (4.12)

Therefore, the global loss function for the training is given by

ℒ = 1
2𝑁

(ℒ𝑆𝑁𝑇 𝑋 + ℒ𝐶𝐴𝑅𝐸) (4.13)

ℒ𝑆𝑁𝑇 𝑋 =
𝑁∑︁

𝑘=1
[ℓ𝑆𝑁𝑇 𝑋(2𝑘 − 1, 2𝑘) + ℓ𝑆𝑁𝑇 𝑋(2𝑘, 2𝑘 − 1)] (4.14)

ℒ𝐶𝐴𝑅𝐸 =
𝑁∑︁

𝑘=1
[ℓ𝐶𝐴𝑅𝐸(2𝑘 − 1) + ℓ𝐶𝐴𝑅𝐸(2𝑘)] , (4.15)

which is a multi-task loss as well. Figure 4-2 sketches the learning framework by

minimizing the global loss ℒ, where we can set two different or identical embedding

heads for the two tasks.
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Figure 4-2: Learning framework of PCL. The consistency of each projection pair
derived from the same data point is maximized with the loss function ℒ𝑆𝑁𝑇 𝑋 , while
the interrelations among the data points are learned with ℒ𝐶𝐴𝑅𝐸.
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4.2.2 Network Model: S3ADNet

The three assumptions have been encapsulated into the CARE loss so far, but the

probability of anomaly occurrence has not been modeled. Thus, I devised a neural

network model called S3ADNet (self-supervised sequential anomaly detection network),

as shown in Figure 4-3 to obtain the probabilities at each data points in a sequence.

46

base

base

base head

head

head

×

×

𝒑 = 𝜎

parameter sharing

contextual
pooling

copy &
transpose

𝒙

𝑊!"#$%&$

𝑑'

1
𝑑'
)

tanh𝐻

𝑍

scaling

𝑑(

𝑑!

parameter sharing

multi-conceptual
pooling

𝑑!

multi-conceptual context (MCC)

𝑍)

𝐺

Figure 4-3: Architecture of S3ADNet. The input sequence 𝑥 ∈ R𝑑×𝐿 encoded into a
sequential representation 𝐻 ∈ R𝐿×𝑑𝑟 , embedded into a sequential projection 𝑍 ∈ R𝐿×𝑑𝑝 .
Next, the MCC layer acts as the self-attention mechanism to compute the correlations
𝐺 ∈ R𝐿×𝑑𝑐×𝐿 among the data points in the sequence. After that, the correlations
𝐺 are aggregated into a point-to-point negative energy vector. Finally, the sigmoid
function activate the scaled vector into the probabilities 𝑝 ∈ (0, 1)𝐿.

In S3ADNet, the weight of multi-conceptual context (MCC) 𝑊𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ R𝑑𝑝×𝑑𝑐×𝑑𝑝

is designed to relate the data points with each other, where 𝑑𝑐 is the number of

computational concepts. The products in 𝐺 = tanh (𝑍𝑊𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 𝑍⊤ are calculated

with the tensor dot operator. It is expected that the MCC weight learns different

relationships among the concepts by initializing each matrix of context with random

values in a uniform distribution. Besides, since applying the sigmoid function to large

values produce results tending to 0 or 1 where the gradients are too small to learn, the

negative energy vector is scaled by 1/
√︁

𝑑𝑝. The anomaly detector consists of MCC,
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multi-conceptual pooling, contextual pooling, and the scaled sigmoid activation.

4.3 Algorithms

The algorithm to train the proposed model with the loss functions mentioned above is

described as Algorithm 4, 5 and 6.

Algorithm 4: PCL’s main learning algorithm for each epoch
Input: training data 𝑋, sequence size 𝐿, max number of epochs to warm up

𝑀 , current epoch 𝑚, batch size 𝑁 , temperature 𝑇 , lookahead size 𝑠,
penalty 𝛼, attemperation 𝜏 , data augmentation family Λ, base encoder
𝑓 , head for agreement 𝑔, head for anomaly detection 𝑔′, anomaly
detector 𝜑

1 foreach minibatch
[︂[︁

𝑥
(𝑘)
𝑖

]︁𝐿
𝑖=1

]︂𝑁

𝑘=1
sampled from 𝑋 do

2 for 𝑘 ← 1 to 𝑁 do
3 for 𝑖← 1 to 𝐿 do
4 draw two augmentation operators 𝜆 ∼ Λ, 𝜆′ ∼ Λ
5

(︁
𝑧

(2𝑘−1)
𝑖 , 𝑧′(2𝑘−1)

𝑖

)︁
← TowHeadProject(𝑥

(𝑘)
𝑖 , 𝜆, 𝑓, 𝑔, 𝑔′)

6
(︁
𝑧

(2𝑘)
𝑖 , 𝑧′(2𝑘)

𝑖

)︁
← TowHeadProject(𝑥

(𝑘)
𝑖 , 𝜆′, 𝑓, 𝑔, 𝑔′)

7 if 𝑚 > 𝑀 then
8 ℓ𝐶𝐴𝑅𝐸(2𝑘 − 1)← CARELoss(

[︁
𝑧′(2𝑘−1)

𝑖

]︁𝐿
𝑖=1

, 𝑠, 𝛼, 𝜏, 𝜑)

9 ℓ𝐶𝐴𝑅𝐸(2𝑘)← CARELoss(
[︁
𝑧′(2𝑘)

𝑖

]︁𝐿
𝑖=1

, 𝑠, 𝛼, 𝜏, 𝜑)

10 for 𝑎← 1 to 2𝑁 , 𝑏← 1 to 2𝑁 do
11 for 𝑖← 1 to 𝐿 do
12 𝑐

(𝑎,𝑏)
𝑖 ← sim

(︁
𝑧

(𝑎)
𝑖 , 𝑧

(𝑏)
𝑖

)︁
with Equation 4.2

13 define ℓ𝑆𝑁𝑇 𝑋(𝑎, 𝑏) = − 1
𝐿

∑︀𝐿
𝑖=1 log

exp
(︁

𝑐
(𝑎,𝑏)
𝑖 /𝑇

)︁
∑︀2𝑁

𝑘=1 exp
(︁

𝑐
(𝑎,𝑏)
𝑖 /𝑇

)︁
[𝑘 ̸=𝑎]

14 ℒ𝑆𝑁𝑇 𝑋 ←
∑︀𝑁

𝑘=1 [ℓ𝑆𝑁𝑇 𝑋(2𝑘 − 1, 2𝑘) + ℓ𝑆𝑁𝑇 𝑋(2𝑘, 2𝑘 − 1)]
15 ℒ ← ℒ𝑆𝑁𝑇 𝑋

16 if 𝑚 > 𝑀 then
17 ℒ𝐶𝐴𝑅𝐸 ←

∑︀𝑁
𝑘=1 [ℓ𝐶𝐴𝑅𝐸(2𝑘 − 1) + ℓ𝐶𝐴𝑅𝐸(2𝑘)]

18 ℒ ← ℒ+ ℒ𝐶𝐴𝑅𝐸

19 ℒ ← ℒ/2𝑁
20 update networks 𝑓 , 𝑔, 𝑔′, and 𝜑 to minimize ℒ
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Algorithm 5: 2-head projection

1 Function TowHeadProject(𝑥, 𝜆, 𝑓, 𝑔, 𝑔′)
Input: data point 𝑥, data augmentation 𝜆, base encoder 𝑓 , head for

agreement 𝑔, head for anomaly detection 𝑔′

2 �̃�← 𝜆 (𝑥)

3 ℎ← 𝑓 (�̃�)

4 𝑧 ← 𝑔 (ℎ)

5 𝑧′ ← 𝑔′ (ℎ)

6 return (𝑧, 𝑧′)

Algorithm 6: Context-attempered relative entropy loss
1 Function CARELoss([𝑧𝑖]𝐿𝑖=1 , 𝑠, 𝛼, 𝜏, 𝜑)

Input: projections [𝑧𝑖]𝐿𝑖=1, lookahead size 𝑠, penalty 𝛼, attemperation 𝜏 ,
anomaly detector 𝜑

2 [𝑝𝑖]𝐿𝑖=1 ← 𝜑
(︁
[𝑧𝑖]𝐿𝑖=1

)︁
3 for 𝑖← 1 to 𝐿− 1 do
4 for 𝑗 ← 𝑖 + 1 to min(𝑖 + 𝑠, 𝐿) do
5 𝑝𝑖𝑗 ← 𝑝𝑖 + 𝑝𝑗 − 𝑝𝑖𝑝𝑗

6 𝑝𝑖𝑗 ← 1− 𝑝𝑖𝑗

7 𝑟𝑖𝑗 ← sim (𝑧𝑖, 𝑧𝑗) /𝜏 (𝑖, 𝑗) with Equation 4.2
8 𝑞𝑖𝑗 ← 𝜎 (𝑟𝑖𝑗) with Equation 4.6
9 𝑞𝑖𝑗 ← 1− 𝑞𝑖𝑗

10 𝑑𝑖𝑗 ← 𝐷𝛼 (𝑝𝑖𝑗‖𝑞𝑖𝑗) with Equation 4.11

11 return 1
𝐿−1

∑︀𝐿−1
𝑖=1

1
min(𝑠,𝐿−𝑖)

∑︀min(𝑖+𝑠,𝐿)
𝑗=𝑖+1 𝑑𝑖𝑗

In the main algorithm, since the parameters of networks are initialized with random

values, warming up the training only with ℒ𝑆𝑁𝑇 𝑋 makes the encoder learn roughly

meaningful representation at the beginning 𝑀 epochs. After adding ℒ𝐶𝐴𝑅𝐸, the

anomaly detector starts to be tuned with the coarse representations, and then the

probabilities of anomaly occurrence guide the learning of sequential relationships by

Equation 4.9.
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4.4 Experiments of Outlier and Changepoint De-

tection on Synthetic Data

Several experiments were performed to verify the PCL assumptions, including outlier

detection and changepoint detection on simple one-dimensional synthetic data. The

results were compared with SmartSifter [93] and ChangeFinder [94].

4.4.1 Settings for S3ADNet

In the data preprocessing, min-max scaling and z-score normalization were applied to

each synthetic dataset. The samples for training were generated by using a sliding

window with the size 𝐿 = 32 and the stride size of 1 on the preprocessed data, and

the order of the windows was reshuffled at each epoch for random minibatches with

the size 𝑁 = 32.

In the data augmentation, a Gaussian noise 𝑥′ ∼ 𝒩 (0, 0.1) was added to the data

points as �̃� = 𝑥 + 𝑥′. The network models were implemented in PyTorch and had

identical architecture, as shown in Table B.7. All the multi-conceptual pooling and

contextual pooling in the models were the average pooling. The number of concepts

was set to 4.

In the contrastive learning, I set the temperature 𝑇 = 0.1 for Equation 4.12, the

attemperation function 𝜏(𝑖, 𝑗) = ln(𝑗 − 𝑖 + 1), and the lookahead size 𝑠 = 16 for

Equation 4.9. The loss was optimized by stochastic gradient descent (SGD) [95] with

the learning rate of 0.1 and Nesterov momentum [96] with the factor of 0.9. Gradient

clipping by the range [−0.25, 0.25] was also employed to avoid too large gradients.

Moreover, the maximum epochs for warming-up were 5, and the maximum epochs of

the entire training were 50.

4.4.2 Outlier Detection

Outlier detection is a common task to find data points far from the others [97–99]. The

function 𝑦 = 0.02 + 0.4 sin(5𝑥) + 0.05 cos(50𝑥)
1+exp(𝑥) + 𝑥′ ∼ 𝒩 (0, 0.05) to generate 2,000 data
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points in the domain [−50, 50) was to simulate the problem. Then, 40 of them were

uniformly sampled to assign outliers drawn from 𝒰(−3, 3). An example of synthetic

data is shown in Figure A-6, which was used to train S3ADNet and the initializing of

SmartSifter-SDEM. Then, another dataset was generated by using the same approach

for the evaluation.

In the prediction of S3ADNet, data points were taken by a sliding window with the

size 𝐿 and the stride size 1 to give to the model sequentially. If a data point has more

than one probability of anomaly, the maximum one was chosen as the predictive result.

Generally, the samples with predictive probability greater than 0.5 are considered

anomalies. Figure 4-4 shows the results by SmartSifter-SDEM and S3ADNet.
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SmartSifter-SDEM (r = 0.5, α = 1.0)
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S3ADNet (stride = 1 & max)

Figure 4-4: Results of outlier detection on synthetic data. The two blue plots are the
same evaluation dataset, and the red ones are the outputs from different methods.
The parameter 𝑟 is for the discounting, and 𝛼 is for the stability in SmartSifter-SDEM.
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We found that most of the outliers were detected by S3ADNet with high probabili-

ties from the results. Since the anomaly scores given by SmartSifter were positive real

numbers and had such a large variance, it was hard to determine a proper threshold

to detect the outliers.

4.4.3 Changepoint Detection

Changepoint detection is to discover abrupt variations in sequential data [100, 101].

Four one-dimensional data segments for each dataset in the experiment were generated

to imitate simple situations of change points arising. In the training set for S3ADNet,

the data points in the four segments were drawn from 𝒩 (0.7, 0.05), 𝒩 (1.5, 0.05),

𝒩 (0.6, 0.05), and 𝒩 (1.3, 0.05) sequentially, and there were 300 points in each segment

as shown in Figure A-7 . In the evaluation set, the instances in the segments were

sampled from 𝒩 (0, 0.05), 𝒩 (2, 0.05), 𝒩 (0.2, 0.05), and 𝒩 (1.0, 0.05) sequentially, and

the numbers of data points in them were 350, 100, 300, 150 respectively. Figure 4-5

exhibits the evaluation results by ChangeFinder and S3ADNet.

We observed that ChangeFinder detected incorrect changepoints at the beginning

points, and it scarcely discovered the second change point near 450. However, S3ADNet

found all the three change points in different stride settings. Furthermore, the

sensitivity of S3ADNet’s detection changes as adjusting the sliding stride. The smaller

stride we set, the higher sensitivity the method has.

Moreover, a combined detection task for evaluation was and operated, as shown

in Figure 4-6. It was difficult to distinguish the outliers and change points very well

from the results by SmartSifter and ChangeFinder. However, there could be some

perturbations around the change points in the outputs by S3ADNet.
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Figure 4-5: Results of changepoint detection on synthetic data. The blue plots are
the same evaluation dataset, and the red ones are the outputs from different methods.
The parameter 𝑟 is for the discounting, 𝑑 is the degree of the autoregression model,
and 𝑡 is the length for moving average in ChangeFinder.
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Figure 4-6: Results of changepoint-and-outlier detection on synthetic data. The blue
plots are the same evaluation dataset, and the red ones are the outputs from different
methods.
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4.5 Experiment of Detecting Illegible Handwrit-

ten Digits on MNIST

In this experiment, I attempted applying PCL to discover unreadable handwritten

digits in the test set of MNIST.

4.5.1 Setups and Result

To build datasets for the task, I grouped the images into ten sequences in the original

training and test sets of MNIST by the labels, i.e., the handwritten strokes were

labeled to the same digit in each sequence. In the data preprocessing, min-max

scaling and z-score normalization were applied as well. The minibatch generation was

similar to the one in Section 4.4.1, yet the window size and minibatch size were set

as 𝐿 = 16, 𝑁 = 256. Besides, the orders of images in each sequence were reshuffle at

each epoch on the training set.

For the sake of data augmentation, the handwritten images were rotated, translated,

scaled, and shared in random ranges, as shown in B.8. Table B.9 represents the

architectures of network models for the experiments. Both the multi-conceptual

pooling and contextual pooling in the model were the average pooling. The number

of concepts was set to 8.

In the training, the temperature was set as 𝑇 = 0.1, the attemperation a constant

𝜏(𝑖, 𝑗) = 1, and the lookahead size 𝑠 = 16. SGD was also used to optimize the loss

with the learning rate of 0.1 and the momentum of 0.9. Additionally, the number of

warm-up epochs was five, and the maximum number of epochs was 250.

With the criterion of the maximum predictive probability greater than 0.5 in

sliding windows over the image sequences of the original orders, the result of anomalies

found by the trained S3ADNet model from the test set is shown in Figure 4-7. We can

find that most of them are not easy to recognize for us, and the model successfully

extracted features from the images to make the prediction. To understand the model’s

prediction, we can visualize the MCC layer with heatmaps as described in the following
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section.

4.5.2 Example of Visualization of Multi-conceptual Context

Take the 3604th image (having the highest probability 0.87 for the label “7”) in

Figure 4-7 for the example. Figure 4-8a shows the input sequence of the prediction.

We can see that the patterns of the 16 handwritten 7 images in the sequence are

various, yet most of them are easy to identify as “7”.

As described in Section 4.2.2, the MCC layer in S3ADNet is designed to capture

the correlations of data points in a sequence as an attention mechanism. Therefore, we

can utilize the information of it as in-model interpretation mentioned in Section 2.5.3.

Figure 4-8b demonstrates the heatmaps of context in different computational concepts

extracted from the example. We can learn how the data points (on X-axis) rate the

others’ anomalousness (on Y-axis) from the visualization. For instance, every matrix

in Figure 4-8b shows that the twelfth handwritten 7 has a high anomalousness rated

by the others.

4.6 Discussion

The above experiments showed that the three assumptions could instruct the deep

model in learning representative features and detecting anomalies. However, it is

different from the online learning algorithms (e.g., SmartSifter and ChangeFinder)

that S3ADNet needs a certain number of samples to optimize the parameters offline.

As well as the prior method SimCLR, PCL has problems in the convergence of

loss, significantly affected by our choice of hyperparameters and optimizers. The

introduced hyperparameters (i.e., window size, lookahead size, sampling penalty, and

attemperation function) may also increase the optimization’s difficulty in practices.

For example, we attempted employing PCL on the laser machining data as shown in

Figure A-9, but the results were highly variant by different hyperparameter settings.

Thus, it could be a good idea to collaborate with some AutoML [102] technologies

to facilitate the hyperparameter optimization in PCL. Furthermore, all the weight
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id: 6651 L: 0 p: 0.72 id: 7410 L: 0 p: 0.72 id: 552 L: 0 p: 0.63 id: 6597 L: 0 p: 0.60 id: 3073 L: 1 p: 0.80 id: 2182 L: 1 p: 0.73 id: 4212 L: 1 p: 0.66

id: 2266 L: 1 p: 0.62 id: 956 L: 1 p: 0.58 id: 3132 L: 1 p: 0.58 id: 4013 L: 1 p: 0.56 id: 3906 L: 1 p: 0.55 id: 9832 L: 2 p: 0.50 id: 200 L: 3 p: 0.54

id: 4382 L: 4 p: 0.67 id: 8527 L: 4 p: 0.61 id: 1989 L: 4 p: 0.61 id: 5159 L: 4 p: 0.59 id: 3534 L: 4 p: 0.59 id: 1453 L: 4 p: 0.58 id: 1465 L: 4 p: 0.53

id: 9792 L: 4 p: 0.52 id: 3726 L: 4 p: 0.51 id: 4017 L: 4 p: 0.50 id: 2040 L: 5 p: 0.52 id: 9679 L: 6 p: 0.57 id: 9698 L: 6 p: 0.55 id: 3604 L: 7 p: 0.87

id: 1477 L: 7 p: 0.70 id: 3352 L: 7 p: 0.59 id: 1156 L: 7 p: 0.52 id: 1543 L: 7 p: 0.51 id: 2823 L: 7 p: 0.51 id: 8105 L: 8 p: 0.89 id: 580 L: 8 p: 0.88

id: 4839 L: 8 p: 0.85 id: 4092 L: 8 p: 0.84 id: 4731 L: 8 p: 0.81 id: 1530 L: 8 p: 0.79 id: 1687 L: 8 p: 0.79 id: 6755 L: 8 p: 0.75 id: 1033 L: 8 p: 0.75

id: 4497 L: 8 p: 0.72 id: 4086 L: 8 p: 0.71 id: 7735 L: 8 p: 0.70 id: 495 L: 8 p: 0.69 id: 5236 L: 8 p: 0.66 id: 6625 L: 8 p: 0.64 id: 2960 L: 8 p: 0.63

id: 693 L: 8 p: 0.62 id: 1101 L: 8 p: 0.56 id: 5940 L: 8 p: 0.56 id: 761 L: 8 p: 0.55 id: 4743 L: 8 p: 0.54 id: 4978 L: 8 p: 0.54 id: 2758 L: 8 p: 0.53

id: 5298 L: 8 p: 0.52 id: 277 L: 8 p: 0.51 id: 3369 L: 9 p: 0.60 id: 7736 L: 9 p: 0.58 id: 6632 L: 9 p: 0.57 id: 1045 L: 9 p: 0.56 id: 1709 L: 9 p: 0.56

id: 1217 L: 9 p: 0.54 id: 2548 L: 9 p: 0.54 id: 3869 L: 9 p: 0.54 id: 1192 L: 9 p: 0.52 id: 3005 L: 9 p: 0.50

Figure 4-7: Illegible handwritten digits found by S3𝐴𝐷𝑁𝑒𝑡. On top of each image,
“id” is the image’s index in the test set, “L” is the label, and “p” is the predictive
probability of anomaly.
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(b) Visualization of MCC

Figure 4-8: Example of sequential MNIST data with the prediction of anomaly
the visualization of MCC on it. (a) On top of each image, the first number is the
index in the sequence, and the bracketed one is the predictive probability. (b) Axes
denote the data points with corresponding indices in the sequence. Lighter is higher
anomalousness in the heatmaps.

matrices in the MCC layer were trained simultaneously at each iteration in the

experiments. We could introduce Dropout to randomly pick up a subset of matrices

to train against overfitting [15].

In the experiment of detecting illegible handwritten digits, the prediction was only

performed on the test set of the original order. It could be improved by random orders

with iterations for the variety of the sample contrasting.

Besides, whether those learned representations have good generalization has not

been verified in this study. Since the anomalies are hard to recognize from the raw

data for humans, we have to confirm the model’s validity via practical applications.

Therefore, it requires more evaluations on PCL used for downstream tasks in the

future.

4.7 Related Work

Many notable works have been proposed to leverage deep learning to improve anomaly

detection performance [103, 104].

Most of the methods for unsupervised or semi-supervised sequential anomaly

detection employ RNN with generative adversarial networks (GANs), such as Ano-

GAN [105, 106], MAD-GAN [107], and LVEAD [108]; or RNN with variational

autoencoders (VAEs), such as RDA [109] and DAE-RNN [110]. Generally, GAN-based
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methods require at least one labeled anomaly for the sampling, while VAE-based

methods use normal data to train in-distribution models to expose out-distribution

data. However, PCL is a non-GAN and non-VAE based method to solve the problem

that anomalies can not be easily separated from the data with human work. Also,

rather than RNN, the variable attemperation and the MCC layer in PCL are used to

learn the sequences’ temporal relations.
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Chapter 5

Conclusions and Future Works

Data is of the essence for the innovations of the industry and our society. For the sake

of effective data utilization, many deep learning methods have been proposed. To solve

the interpretability problem of deep models, we introduced new nonlinearized rules

to layer-wise relevance propagation as NRP and proposed an energy-based method,

KISS, with which encouraging results were obtained in the experiments. The survey

we conducted showed that model interpretation could help us reflect upon the deep

models and discover novelty. For exploring the application of DL on laser machining

data, we executed experiments on the evaluation of deep models and found that the

AlexNet-based model in multi-task learning was the better usage on the dataset. The

laser machining data is also one kind of sequential data where anomalies are difficult to

be labeled due to a lack of prior knowledge. Motivated by that, I designed pessimistic

contrastive learning by making the data points in sequences compare with each other

to recognize the anomalies with the CARE loss and the S3ADNet model.

Nevertheless, there are problems and limitations in the proposed methods. Besides

the parameter selection problem in NRP and KISS, our MI approach are for local

interpretation. If we want to explain the deep models globally, it could be promising

that using clustering on the explanatory results grouped by the predictive classes.

Since convolutional networks are high-performance for computer vision tasks, we

applied CNN to the laser machining data in the evaluation. However, the Fourier

speckle patterns are not ordinary objects for the human visual system but complexly
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interrelated values. Maybe we can employ some transform-based neural networks

(e.g., Fourier neural operator [111] or multi-level wavelet CNN [112]) to the tasks. To

improve PCL’s training, we could use the mentioned AutoML approach and combine

available label information into the multi-task framework for a more constrained

objective. Also, we can apply other MI methods to PCL to enhance its interpretability.

Finally, since this thesis focused on developing technologies for the first and second

steps of the DL-based knowledge discovery framework, we need to do more work on

making guidance and systems to help people better use the visualization results for

knowledge discovery in the future.
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Appendix A

Figures
Questionnaire (A) 

ID:  

*The questionnaire has (A) and (B) parts. This is the (A) part and has 2 pages.  

The (B) part will be sent to you after you finish the (A) part. 

 

In your answers for the following questions, you can use marks (such as        and      ) to help your 

explanation. Also, you can print out the questions and submit your handwritten answers. 

 

(1) What number (0-9) does the picture on the right look like?  

Please explain the reason for your answer.  

Your answer:  

 

 

 

 

(2) What number (0-9) does the picture on the right look like?  

Please explain the reason for your answer. 

Your answer:  

 

 

 

 

(3) What number (0-9) does the picture on the right look like?  

Please explain the reason for your answer. 

Your answer:  

 

 

  

Figure A-1: Page 1 of Questionnaire (A).
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(4) What does the picture on the right look like?  

Please delete the candidates that are not the answer and explain the reason for the answer. 

Your answer: bottlecap / tray / other:          

 

 

 

 

 

(5) What does the picture on the right look like?  

Please delete the candidates that are not the answer and explain the reason for the answer. 

Your answer: face powder / traffic light / other:          

 

 

 

 

 

 

 

(6) What does the picture on the right look like?  

Please delete the candidates that are not the answer and explain the reason for the answer. 

Your answer: beer bottle / shield / other:          

 

Figure A-2: Page 2 of Questionnaire (A).
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Questionnaire (B) 

ID:  

*The questionnaire has (A) and (B) parts. This is the (B) part and has 2 pages. 

 

To the pictures you have seen in the (A) part, a computer gave its answers as well. It tried explaining the 

answers with groups of annotated pictures. In each annotation group, the leftmost is the original picture 

and the rest is the candidate answers with titles. In each title, the bracketed value is the likeness considered 

by the computer for the corresponding candidate (larger is more similar). The annotations colored red/blue 

mean the supported/unsupported regions for the candidate answers. 

 

In your answers for the following questions, you can use marks (such as        and      ) to help your 

explanation. Also, you can print out the questions and submit your handwritten answers. 

 

(1) The computer says picture (1) looks more like the number 4. Do you agree with it? Please write your 

new answer if it is changed and explain the reason for your agreement or disagreement. 

 
Your answer:  

 

 

(2) The computer says picture (2) looks more like the number 4. Do you agree with it? Please write your 

new answer if it is changed and explain the reason for your agreement or disagreement. 

 

Your answer:  

 

 

(3) The computer says picture (3) looks more like the number 7. Do you agree with it? Please write your 

new answer if it is changed and explain the reason for your agreement or disagreement. 

 
Your answer:  

 

Figure A-3: Page 1 of Questionnaire (B).
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(4) The computer says picture (4) looks more like a bottlecap. Do you agree with it? Please write your new 

answer if it is changed and explain the reason for your agreement or disagreement. 

 
Your answer:  

 

 

(5) The computer says picture (5) looks more like face powders. Do you agree with it? Please write your 

new answer if it is changed and explain the reason for your agreement or disagreement. 

 
Your answer:  

 

 

(6) The computer says picture (6) looks more like a shield. Do you agree with it? Please write your new 

answer if it is changed and explain the reason for your agreement or disagreement. 

 
Your answer:  

 

Figure A-4: Page 2 of Questionnaire (B).
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Figure A-5: Example of KISS on the AlexNet-based model on laser machining data
(|𝑆| = 5, 𝑙 = 5 with uniform sampling).

0 250 500 750 1000 1250 1500 1750 2000
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Figure A-6: Example of synthetic data with outliers.
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Figure A-7: Example of synthetic data with change points.

x̃ x̃′

Figure A-8: Example of augmented data on sequential MNIST. The left samples and
the right ones were transformed from the same minibatch. Each row is a sequence of
some digit label.
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Appendix B

Tables

Table B.1: Hyper-parameters and evaluation results of the selected APN models.

Parameters or States Computer&Internet Health Society&Culture
Margin 2

Dropout probability 0.5
Mini-batch size 16
Weight decay 1.0× 10−5

Hidden size of LSTM 100 120 100
Epoch 6th 6th 15th

Acc. on dev. (#samples) 0.6015 (1222) 0.4626 (1070) 0.3445 (865)
Acc. on test (#samples) 0.5724 (1223) 0.4654 (1070) 0.2763 (865)

Table B.2: Sequential architecture of the MNIST model in the experiment. The top
module is for input data, and the bottom one outputs negative energies.

Module Input Output Kernel Stride Activation, etc.

Conv2d 1 32 3×3 1×1 ReLU
Conv2d 32 64 3×3 1×1 ReLU
MaxPool 2×2 2×2 Dropout(0.25), Flatten
Linear 9216 128 ReLU, Dropout(0.5)
Linear 128 10
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Table B.3: Answer patterns from 31 respondents. The hesitative answers are repre-
sented in the ·/· form.

Question Label Top-1 prediction Answer in (A) Answer in (B) Count

(1) 4 4
4 4 22
9 9 8
9 4 1

(2) 9 4

9 9 28
4/9 4 1
9/4 9 1
9 4/9 1

(3) 2 7

7 7 17
2 2 12
2 7 1
7 2 1

(4) tray bottlecap

bottlecap bottlecap 15
tray tray 11

ice cream lid ice cream lid 1
bottlecap/tray bottlecap/tray 1

tray bottlecap 1
bottlecap tray 1

frisbee bottlecap 1

(5) traffic light face powder

traffic light traffic light 25
traffic light face powder 2

pearl traffic light 1
face powder face powder 1

jewel face powder 1
music arcade traffic light 1

(6) beer bottle shield
beer bottle beer bottle 28
beer can beer can 2

shield shield 1
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Table B.4: Explanation patterns in Questionnaire (A) from 31 respondents. A
respondent could reply with more than one reason in the explanation.

Question Reason Count

(1)

Sharp corners 14
N/A 5
No right protrusion 3
Positional relationship 3
By habit 2
By intuition 2
Enclosure’s size 1
Like a fix from 4 1

(2)

Left round corner 8
N/A 6
By habit 4
By intuition 3
Stroke order 3
One stroke 3
Positional relationship 2
Seen writing way 2
Upper right Hole 1

(3)

By intuition 8
Middle dash 5
N/A 4
Seen writing way 3
By habit 3
Stroke order 2
First stroke 2
Lower left loop 2
Last stroke 1

Question Reason Count

(4)

Smooth rim 7
By intuition 5
The text 5
Concave shape 5
N/A 4
Circle shape 2
Convex shape 2
The logo 1

(5)

Three colors 17
By intuition 5
LEDs 5
N/A 3
Inner structure 2
The size 1

(6)

The text 14
The brand 8
N/A 4
The logo 3
By intuition 1
Surface’s curve 1
Cylindrical shape 1
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Table B.5: Explanation patterns in Questionnaire (B) from 31 respondents, where
NAND denotes “neither agree nor disagree”. A respondent could reply with more than
one reason in the explanation.

Question Agreement Reason Count

(1)

Y
N/A 14

Left sharp corner 9

N

No right protrusion 4

Bended vertical line 2

N/A 1

Positional relationship 1

(2)

N

Left round corner 6

No right protrusion 6

By intuition 4

Upper right hole 3

One stroke 3

By habit 2

N/A 2

Last stroke 1

Never seen 1

Positional relationship 1

Y N/A 1

NAND Not sure 1

(3)

Y

N/A 11

Middle dash 5

By habit 1

N

Lower left loop 5

Last stroke 3

Writing way 2
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By intuition 2

The tilt 1

Horizontal lines 1

(4)

Y

N/A 11

Convex shape 2

The text 2

Concave shape 2

Not sure 1

N

Smooth rim 8

Concave shape 2

N/A 1

The structure 1

NAND N/A 1

(5)

N

Three colors 10

Inner structure 7

The material 7

N/A 4

LEDs 3

Y

N/A 2

Black rims 1

Seen before 1

(6)
N

The text 15

The brand 4

Cylindrical shape 4

N/A 3

By intuition 2

The material 1
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Y Surface’s curve 1

Table B.6: Splits of the laser machining dataset.

Subset name Range of experiment IDs Number of samples

Training 1–70 175,000
Validation 71–85 37,500

Test 86–105 50,000

Table B.7: Architecture of the S3ADNet model on synthetic data. The Identity
modules output the same values as the input without parameters, i.e., the two heads
used the output of the base encoder as the projections.

Module Module Input Output Activation

Base encoder
Linear 1 16 Tanh
Linear 16 16 Tanh
Linear 16 8

Embedding head Identity 8 8
Detection head Identity 8 8

Table B.8: Data augmentation on sequential MNIST. PyTorch’s RandomAffine module
was used as the image transformer.

Operator Random range

rotate [−30∘, 30∘]
translate [−3, 3]

scale [0.8, 1.2]
shear [−20∘, 20∘]
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Table B.9: Architecture of the S3ADNet model on sequential MNIST.

Network Module Input Output Kernel Stride Activation, etc.

Base

Conv2d 1 32 5×5 2×2 LeakyReLU(0.1)
Conv2d 32 64 3×3 1×1 LeakyReLU(0.1)

MaxPool2d 2×2 2×2 Dropout(0.25), Flatten
Linear 1600 128 LeakyReLU(0.1)

BatchNorm 128 128 Dropout(0.5)
Embedding Linear 128 128
Detection Linear 128 128
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Appendix C

Publications

C.1 Journal Articles (Peer Reviewed)

• Quexuan Zhang, Zexuan Wang, Bin Wang, Yukio Ohsawa, and Teruaki Hayashi.

Feature extraction of laser machining data by using deep multi-task learning.

Information 11, no. 8: 378, 2020.

C.2 Conference Articles (Peer Reviewed)

• ○Quexuan Zhang and Yukio Ohsawa. Kiss: an ebm-based approach for explain-

ing deep models. In Knowledge-Based and Intelligent Information & Engineering

Systems: Proceedings of the 24th International Conference KES2020, Procedia

Computer Science, volume 176, pages 271–280. Elsevier, 2020. Verona, Italy

(virtual).

• ○Quexuan Zhang and Yukio Ohsawa. Nonlinearized relevance propagation. In

Pacific Rim International Conference on Artificial Intelligence, pages 904–914.

Springer, 2018. Nanjing, China.
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