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1. Introduction 

In the Industry 4.0 [1] and Society 5.0 [2] concepts, data is still the core component for the highly expected 

technologies, such as cyber-physical systems, the internet of things, artificial intelligence, and big data 

analytics. Deep learning (DL) [3] has been widely used as a versatile and high-performance tool to extract 

useful knowledge and information from data for problem-solving in various domains. By participating in 

the IMDJ [4] workshops aiming at better data utilization, we found that people criticize DL’s poor 

interpretability. However, some data is difficult to extract features or label targets with human work, such 

as Fourier speckle patterns captured from the laser machining process [5]. DL is still required for those 

complicated problems. It motivated us to give a framework that facilitates the knowledge discovery process 

by using explanatory visualization on deep models with high accuracy and generalization. Here, knowledge 

is defined as useful information for problem-solving. For the sake of serving this framework, two model 

interpretation methods for deep models and a multi-task self-supervised approach for anomaly detection 

were proposed as follows. Also, a case study on the mentioned laser machining data was conducted. 

 

2. Model Interpretation for Deep Models 

Model interpretation (MI) is to explain the prediction processes of machine learning models for humans. 

Due to the “black-box” trait of deep models, it is essential to help people understand what deep models 



have learned or consider their reliability and improvement by using MI. We can typically group MI 

approaches into two categories, model-agnostic and model-specific [6]. Model-agnostic methods test the 

relevancy between input and output in a forward style without the model’s architecture information, while 

model-specific methods must use the model architecture to propagate the relevancy from output to input 

backward. To enhance the interpretability of deep models, we proposed two MI methods, nonlinearized 

relevance propagation (NRP) [7] and key input subset sampling (KISS) [8].  

    NRP is altered from the previous method the layer-wise relevance propagation (LRP) [9]. LRP is a 

Taylor decomposition-based approach in which the output is resolved into relevance scores, and then the 

scores are backward propagated to the inputs layer-by-layer conservatively. In LRP, 𝛼𝛽-rules are used to 

control the ratio of positive and negative relevance in the decomposition for neural network layers. However, 

with the development of deep learning methods, many newly designed special layers require new 

decomposition rules in the use of LRP. For the pooling-weight layers, NRP introduced nonlinear functions 

into the relevance decomposition. The reasons why we considered nonlinear functions were: 1) those rules 

which do not satisfy the Taylor assumption could produce relevance errors in the propagation process, 2) 

the errors could accumulate layer-by-layer to the neurons at shallower layers, and 3) an appropriate 

nonlinear function could amend the relevance distribution to a more meaningful value space. Also, we 

provided a conservational 𝛼𝛽-rule for Hadamard product layers. Then, we applied NRP to interpret a 

question answering model, Attentive Pooling Network (APN) [10]. In the evaluation, we employed the 

token deleting test to compare our method with LRP. We found that applying certain nonlinear functions 

helped the explanation capture more important inputs than the linear setting.  

    KISS is based on the energy-based model (EBM) theory [11]. It can be a model-agnostic forward 

approach or a hybrid method by collaborating with backward information. Based on the EBM theory, we 

assume that each input element does positive or negative work for the prediction and estimate the work 

with the negative energy and the free energy. Considering the free energy also make the method overlooks 

all the relations between the input and each candidate answer. The EBM-based importance score (EBIS) is 

defined as the expectation of the work for each input element. In estimating EBIS, we use the importance 

sampling technique for the input subset sampling and employ gradient information as the sampling weights. 

In the evaluation, KISS outperformed other contrastive models on the image classification models. Also, 

we conducted a questionnaire survey to investigate the effect of MI’s helping knowledge discovery on 

images by using the visualizational interpretation results by KISS on six images. According to the 31 

responses, we found that the interpretation helped people notice blind spots, reasons of the intuition, or 

defects of the models. Therefore, we can expect MI approaches to facilitate the reflection upon the deep 

models and novelty discovery. 

 

3. Case Study: Deep Learning on Laser Machining 

In the case study [12], since the utilization of Fourier speckle patterns acquired from the laser machining 



process is still less studied in physics and data science, we firstly apply principal component analysis (PCA) 

on the dataset for the exploratory analysis. Then, to evaluate the performance of feature extraction on the 

speckle pattern data, we designed two tasks, Power Setting Classification (PSC) and Shot Number 

Regression (SNR). We utilized the cross-entropy loss [3] as the objective for the PSC, while applied smooth 

𝐿1 loss [13] as the one for SNR. The multi-task object is the sum of the two losses. We adopted AlexNet 

[14] and ResNet [15] for different models with the single-task or multi-task objective for the deep feature 

extraction. In the evaluation, we also used support vector machine (SVM) and simple fully connected neural 

networks as the baselines. According to the results, we found that using AlexNet for the feature extraction 

in MTL was better than the other comparative models for both tasks. However, the supervised DL 

approaches of feature extraction could weaken generalization for downstream tasks, since it is hard to label 

the anomalies from the sequential laser machining data by the recognized information. 

 

4. Sequential Anomaly Detection with Pessimistic Contrastive Learning 

To solve the difficulty in labeling anomalies from high-dimensional sequential data, I proposed pessimistic 

contrastive learning (PCL). In PCL, we pessimistically assume that there are anomalous data points in the 

sequences. The anomalies will then be recognized by driving the data points to contrast with each other 

within windows of context. The contrastive approach in PCL was inspired by the simple framework for 

contrastive learning of visual representations (SimCLR) [16], which maximizes the similarity of the two 

augmented data pairs’ projections from the identical sample with the NT-Xent loss. In the sequential data 

modeling, I use these three assumptions: 1) the event that an anomaly occurs on a data point is independent 

of the other anomaly occurrences in the sequence, 2) the event that two of the data points have relation is 

independent of the other relationships in the sequence, and 3) a data point loses the relationship with the 

others if any anomaly occurs on it. Also, I designed the context-attempered relative entropy loss (CARE) 

to learn the anomaly-considered relations, the sequential NT-Xent loss (SeNT-Xent) to reconcile the 

augmented data in sequence, and the self-supervised sequential anomaly detection network (S3ADNet) to 

predict the probability of anomaly occurring by using the multi-conceptual context (MCC) layer to capture 

the contextual information. In the experiments, I compared PCL to two commonly used anomaly detection 

methods on one-dimensional synthetic data and then applied PCL to find illegible handwritten digits from 

the MNIST dataset. The experiments proved that PCL could give meaningful results.  

 

5. Limitations and Future Works 

Nevertheless, there are still problems and limitations in the proposed methods, such as the parameter 

selection in NRP and KISS, the non-convolutional network for the Fourier data, and the hyperparameter 

optimization in PCL. Besides solving those problems in the future, we need to do more systemic work to 

facilitate humans' collaboration with deep learning for knowledge discovery. 
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