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Abstract

In large and complex projects, it is crucial to acknowledge uncertainties and make

decisions that perform well in a wide range of future scenarios. This is because the point

estimate of the future is often inaccurate, and even if we know the future uncertainty

accurately, making plans only based on the most likely future may results in a bad

outcome due to the flaw of averages. It is also worth considering that those uncertainties

are often deep, i.e., non-probabilistic, making it challenging to apply conventional

probabilistic analyses.

Multi-stage, or sequential, decision making is often effective under a deeply uncertain

environment. This dissertation proposes a multi-stage-robust-decision-making Markov

decision process (MSRDM-MDP), an extension of a Markov decision process, that can

model sequential decision making under deep uncertainty. We show that the maximax

and maximin optimal policies can be obtained by solving the maximax and maximin

optimal Bellman equations using a reinforcement learning algorithm.

This dissertation also proposes a horizon-of-uncertainty (HoU) analysis that helps

decision-makers understand the trade-off between each policy option’s performance

and robustness.

Based on these proposed concepts, this dissertation proposes a computer-aided

decision-support framework called multi-stage robust decision making (MSRDM) that

helps decision-makers make better decisions even under non-probabilistic uncertainties

by enabling them to frame the problem as a multi-stage decision-making problem and

analyze the trade-off between the performance and the robustness of each policy option.
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Finally, the proposed framework is demonstrated in two case studies: technology

roadmapping of the space formation flying system and technology roadmapping of the

marine propulsion system.
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Chapter 1

Introduction

1.1 Motivation

Designing and operating a complex system often involve large uncertainties. Take space

exploration as an example. The uncertainties in space exploration can be categorized

into at least three types: political, technical, and “pure” uncertainties.

Political uncertainty includes that of space policies of governments. Table 1.1

shows the U.S. human space flight program and its primary destination have changed

each time a new administration takes office since President George W. Bush. This is

considerable uncertainty for other governments and space agencies, whose space policies

are often affected by the U.S. space policy. Another example of political uncertainty is

the international legal frameworks on space debris and space resource utilization [1–8].

Table 1.1 NASA Human spaceflight programs and their primary destinations under
different administrations.

Administration Human spaceflight program Primary destination

George W. Bush The Constellation program [9, 10] Moon
Barack Obama Journey to Mars1[11] Asteroid [12–17], Mars [11]
Donald Trump The Artemis program [18] Moon
1 Journey to Mars was technically not the name of NASA’s human space program, but the name

of the overall NASA’s space exploration strategy.



2 Introduction

Figure 1.1 Development cost performance and average launch delay for major NASA
projects from fiscal year 2010 through fiscal year 2020 [19].

Primary sources of technical uncertainty include development cost, development

time, and realized performance. The U.S. Government Accountability Office (GAO)

[19] reported that major projects of the National Aeronautics and Space Administration

(NASA) experienced cost growth of 31 percent over the project baselines and an average

launch delay of 12 months, as shown in Figure 1.1. The Space Shuttle program famously

experienced uncertainty. It was initially designed to fly routinely and make access to

space more inexpensive. However, although the original plan was to fly the shuttle

up to 60 times a year, the flight frequency was about eight flights per year [20]. The

average cost per launch from 1991 to 2010 was $1.5 billion per launch in 2010 dollars

[21], more than 27 times costlier than the original estimate of the cost per launch:

$54.3 million1 [22].

“Pure” uncertainty is due to a lack of knowledge about the environment of space.

For example, direct evidence of surface-exposed water ice on the Moon has recently

been reported [23], and some private companies aim to extract and sell it [24]. However,

uncertainty in the lunar ice’s characteristics (e.g., how abundant the water ice is,

what the mining rate will be with each mining technology) makes the lunar water
1Converted from $10.4 million in 1972 dollars with the conversion rate: $1 in 1972 = $5.22 in 2010.
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Figure 1.2 Distribution of water-ice-bearing pixels (green and cyan dots) overlain on
the Diviner annual maximum temperature for the (A) northern- and (B) southern
polar regions [23].

mining business, which requires an enormous amount of up-front investment, even

more difficult.

Uncertainty also exists and has been studied in the context of climate change and

CO2 emission reduction technologies [25–28], petroleum exploration and production

[29–33], and water resource management [34–38].

This research aims to support robust and adaptive decision making under uncer-

tainty (in particular, deep uncertainty, described in Section 1.2.1) by proposing a

decision-support framework for multi-stage decision making under uncertainty aided

by reinforcement learning.
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1.2 Background

1.2.1 Types of uncertainty

Before discussing how to make decisions under uncertainty, we need to understand

uncertainty because different uncertainties have different properties and should be

handled accordingly.

Aleatory uncertainty, epistemic uncertainty, and Talebian uncertainty

One of the categorizations of uncertainty is based on its source, categorizing uncer-

tainties into three types: aleatory uncertainty, epistemic uncertainty, and Talebian

uncertainty [39].

Aleatory uncertainty, also known as irreducible uncertainty or intrinsic uncertainty,

is uncertainty due to inherent variability in a physical phenomenon. Let us consider

a box with balls in it. If we know that half of the balls are red and the other half

are white, then the color of a ball we pick randomly from the box will be red with

50 % probability or white with 50 % probability, as shown in Figure 1.3a. It is aleatory

uncertainty because this uncertainty of the color is intrinsic in the box’s physical state.

As the alias “irreducible uncertainty” suggests, we cannot reduce the uncertainty.

Epistemic uncertainty, also known as reducible uncertainty or knowledge uncertainty,

is uncertainty due to a lack of knowledge about the event. Suppose we know that the

balls in the box are all red with 50 % probability, or all white with 50 % probability,

as shown in Figure 1.3b, then the color of a ball we pick randomly from the box

will be red with 50 % probability, or white with 50 % probability. It is epistemic

uncertainty because it is not intrinsic in the physical state but the lack of knowledge

about the balls’ color. Although the color of the randomly-picked ball has the same

probability distribution as the case of aleatory uncertainty, it is different in that we

can reduce the uncertainty by observing the color of the balls in the box. Note that

whether uncertainty is categorized as aleatory uncertainty or epistemic uncertainty is

not always obvious. We could say, for example, that the uncertainty in the color of a
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randomly-picked ball from the box with the same number of red balls and white balls

(Figure 1.3a) is not aleatory but epistemic because the uncertainty derives from the

fact that we do not know the location and the color of each ball in the box. If the box

is transparent, we may be able to pick a red ball without uncertainty deliberately.

Talebian uncertainty, also known as ignorance, model uncertainty, or unknown

unknowns, is an uncertainty that is not considered or cannot be anticipated because

the prior model of the event is wrong. Suppose we think that the balls in the box are

all red or white, but the randomly-picked ball turns out to be black. The uncertainty

derives from the lack of knowledge about the event, and it, by definition, is impossible

to anticipate before it occurs. The name “Talebian” comes from Nassim Taleb, who

proposed the concept of Black Swan, uncertainty with a major effect that comes as a

surprise [40].

Risk and true uncertainty

Another categorization is based on whether its probability distribution is known, and it

categorized uncertainties into two types: risk and true uncertainty [41, 42], visualized

in Figure 1.4.

Risk, or probabilistic uncertainty, is uncertainty whose probability distribution

is known. The examples in Figures 1.3a and 1.3b are both probabilistic uncertainty

because we know the probability distribution of the color of a randomly-picked ball,

that is, 50 % red and 50 % white. Once the probability distributions of all uncertainties

are known, we can apply probabilistic calculations to obtain the probability distribution

of outcomes and make decisions based on the analysis results.

However, the probability distributions of uncertain parameters are not always

available to the decision-makers or even experts. This uncertainty is called true

uncertainty, Knightian uncertainty, ambiguity, or non-probabilistic uncertainty. If there

is a box and we have no information on what is contained in it, what a randomly-picked

object will be is true uncertainty because we know so little that we do not even know

the probability distribution of what the object will be.
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?
(a) Aleatory uncertainty

?or = ?
50% 50%

(b) Epistemic uncertainty

?!
(c) Talebian uncertainty

Figure 1.3 Three types of uncertainty categorized based on its source.

(a) Risk

?
(b) True uncertainty

Figure 1.4 Two types of uncertainty categorized based on whether its probability dis-
tribution is known: risk, whose probability distribution is known, and true uncertainty,
whose probability distribution is unknown.
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There is a more generalized concept called deep uncertainty [43, 44], which R. J.

Lempert et al. defined in [43] as:

Deep uncertainty exists when analysts do not know, or the parties to

a decision cannot agree on, (1) the appropriate models to describe the

interactions among a system’s variables, (2) the probability distributions

to represent uncertainty about key variables and parameters in the models,

and/or (3) how to value the desirability of alternative outcomes.

When facing deep uncertainty, applying probabilistic analysis is difficult or, if possible,

not valuable. The following list shows examples of deep uncertainty, categorized into

discoveries, inventions & innovations, and surprised. The categorization and some of

the examples (marked with *) are from Ben-Haim, Y. [45].

• Discoveries

– Discovery of the American continent (to people in Europe)*

– Nuclear fission*

– Discovery of life on Mars*

– Discovery of water on the Moon

• Inventions & Innovations

– Printing press (material invention)*

– Ecological responsibility (conceptual innovation)*

– French revolution (social innovation)*

– Reusable rockets

– Space traffic management

• Surprises

– Competitor’s innovation*
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– Natural catastrophe*

– The Kessler syndrome2

1.2.2 Why should we consider uncertainty in decision mak-

ing?

As discussed in Section 1.2.1, there are various types of uncertainties that may affect

the outcome of interest of a decision-maker. It is often essential for a decision-maker

to recognize uncertainty in the problem and reflect it in the decision for two reasons:

prediction difficulty and the flaw of averages [47, 48].

Prediction difficulty is the difficulty in estimating the true value of an uncertain

parameter. In a complex system, especially under deep uncertainty, estimating not

the range but the value of an uncertain parameter (this is called “point estimate”) is

difficult because of the limitation in observability and understanding of the dynamics

behind it. An extreme example is McKinsey & Co.’s prediction in 1980 of the number

of mobile phone users in the U.S. in 2000. Their estimate was 900,000 [49], which

turned out to be less than 1 % of the actual value: 109 million [50, 51].

Suppose we have an estimate of the probability distribution of uncertain parameters.

In that case, we should explicitly consider the various realizations of the uncertain

parameters in the decision-making process. Using a single representative value such

as the expected value as the point estimate may yield an unwanted outcome, even

if the knowledge of the distribution is accurate. This is called the flaw of averages.

According to Sam Savage [48], the proposer of the concept, it states that “(p)lans based

on average assumptions are wrong on average.” He gave an example of a “statistician

who drowned while fording a river that was, on average, only three feet deep.” See

Figure 1.5 for the illustration by Jeff Danziger. To show this property, let us assume a

problem with a decision variable x ∈ R, an uncertain parameter w ∼ N (0, 1), and an
2The total amount of space debris will increase by itself once it surpasses a certain threshold

because a collision leads to more debris, leading to more collisions, in a chain reaction. This is called
the Kessler syndrome [46].
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objective function f(x, w) = (x− ew)2 to minimize. If the decision-maker knows the

probability distribution of w but optimizes x only for the expected value of w, then

the optimal decision x∗
1 will be as follows:

x∗
1 = argmin

x
f(x,E[w])

= argmin
x

f(x, 0)

= argmin
x

(x− 1)2

= 1

(1.1)

where E[·] denotes the expected value. However, if the decision-maker optimizes x for

the distribution of w by minimizing the expected value of f(x, w), the optimal decision

x∗
2 will be as follows:

x∗
2 = argmin

x
E [f(x, w)]

= argmin
x

E
[
(x− ew)2

]
= argmin

x

(
x2 − 2E [ew] x + E

[
e2w

])
= argmin

x

(
x2 − 2e 1

2 x + e2
)

= argmin
x

[(
x− e 1

2
)2

+ e(e− 1)
]

= e 1
2 ≈ 1.649

(1.2)

Note that ew and e2w are both log-normally distributed (ew ∼ Lognormal(0, 1), e2w ∼

Lognormal(0, 22)), and the mean of a log-normal distribution Lognormal(µ, σ2) is

exp
(
µ + σ2

2

)
. The difference between x∗

1 and x∗
2 comes from the fact that the asym-

metricity in ew with respect to the mean of the uncertain parameter w = 0 is not

considered in solving x∗
1. More specifically, because the deviation of ew when w > 0 is

larger than that of ew when w < 0, the decision-maker should pay more attention to

the uncertainty of w > 0 by increasing x from x∗
1. This corresponds to the uncertainty

that has a small probability but has a major effect.
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Figure 1.5 A “statistician who drowned while fording a river that was, on average, only
three feet deep.” An illustration in [48] by cartoonist Jeff Danziger.

As discussed in [52] as the “architecture robustness principle,” a decision-maker

should take into account three properties in selecting a complex system architecture:

optimality, robustness (capability of dealing with environment changes without trans-

forming itself), and adaptability (capability of transforming itself and adapting to

environment changes)3. As [52] states that the optimal architecture is often the one

with least robustness, it is necessary to consider the trade-off between the performance

(optimality) and the robustness of design options.

1.2.3 Multi-stage decision making

When making decisions under uncertainty, it is often a good strategy to consider the

time axis and make the decision adaptive, i.e., let the decision change flexibly based

on new information available to the decision-maker during the operation. Adaptive

strategies include the wait-and-see strategies, information-gathering actions, and a

strategy to prepare for a highly-rewarding scenario with low probability.
3Robustness and adaptability in [52] are different but both referred as “robustness” in this

dissertation.
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The wait-and-see strategy is a strategy to wait until the uncertainty of interest is

reduced enough for the decision-maker to make a major decision. Such uncertainties

include standardizations in industries and the development of infrastructure or core

technology needed for a new product. For example, a car company can wait and see if a

sustainable supply of Lithium-ion batteries is established or if the hydrogen fuel supply

infrastructure is established before they decide to invest in electric cars powered by

Lithium-ion batteries or ones powered by hydrogen fuel cells. If we adopt this strategy,

we need to know the parameters to monitor and the conditions under which we should

stop waiting and act.

The information-gathering action is an action that is taken only to collect infor-

mation. It is of no value if we ignore the time axis because it does not generate

any value at the time of the action. A similar concept called “active sensing” can

be found in the control theory or behavioral science [53], which controls the system

to gather information on the system’s state and environment. It is important to

understand what uncertain parameter has high sensitivity and is worth investigating

because information-gathering often requires cost, both in money and time. It can be

distinguished from the wait-and-see strategy in that it is active information gathering

while the other is passive.

A strategy to prepare for a highly-rewarding scenario with low probability can be

found in many start-ups and R&D projects. Even if the probability of a scenario under

which the decision-maker can receive a large amount of reward is low, they can invest

in projects necessary to enjoy the benefit under the rare scenario. Once the uncertainty

is reduced and whether the scenario is realized becomes clear, they can increase the

investment in the projects if the scenario is realized or terminate the projects otherwise.

Multi-stage, flexible decision-making has been investigated in real estate devel-

opment [54].Vertical phasing is an example of multi-stage, flexible strategy. Vertical

phasing is described in [55] as “constructing first a shorter building and then adding

significant expansion later by increasing the building’s height.” The Health Care Service

Corporation (HCSC) headquarters building in downtown Chicago was constructed
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(a) Initial phase (b) Vertical completion phase

Figure 1.6 The Health Care Service Corporation building in the initial and vertical
completion phases [57, 58, 55]. Source: Goettsch Partners, 2008.

in two phases. In phase 1, it was constructed in 1997 as a 33-story building that

provides 1,430,000 square feet of space, and the foundations and structure were planned,

designed, and constructed to support the fully expanded building. In phase 2, 24

additional stories were built on top of the existing building to provide additional 920,000

square feet of space [56]. HCSC planned for vertical phasing of their headquarters

because they “did not want to commit to what it might need in the 2010’s and beyond

[55].”

A staged, flexible strategy is also considered in the communication satellite constel-

lations deployment [59]. They proposed a flexible constellation deployment strategy

where the constellation is progressively deployed and reconfigured according to the

unfolded demand and showed the benefits of the staged approach when facing large

demand uncertainty.
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All adaptive strategies shown above can be valuable in decision making under

uncertainty. Decision-makers need to make decisions in multiple stages in the time

axis and should not stick to a single, fixed plan made at the beginning.

1.3 Thesis contributions

This research:

1. proposes the multi-stage-robust-decision-making Markov decision process

(MSRDM-MDP), an extension of the Markov decision process (MDP) that

can model multi-stage decision making under deep uncertainty and can be solved

using the reinforcement learning.

2. proposes the multi-stage robust decision making (MSRDM), a quantitative

human-in-the-loop decision-support framework using the MSRDM-MDP and the

reinforcement learning for decision making under deep uncertainty.

3. validates the effectiveness of the MSRDM by applying it to two case studies:

technology roadmapping in the space formation flight system and technology

roadmapping in the marine propulsion system.

Table 1.2 compares our proposed framework with existing decision-support frame-

works under uncertainty. Note that the proposed framework handles aleatory uncer-

tainty and epistemic uncertainty, but not Talebian uncertainty (unknown unknowns)

because the framework requires the decision-maker to be aware of the uncertainty.

1.4 Thesis structure

The remainder of this dissertation is structured as follows: Chapter 2 reviews the

literature in decision making under probabilistic uncertainty, decision making under

deep uncertainty, uncertainty management in practice, creativity support systems,

and technology roadmapping methods. Chapter 3 presents the definition of the
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Table 1.2 Comparison with exiting literature.

Handles deep
uncertainty

Provides
robustness–
performance

trade-off

Models
multi-stage

decision
making

Robust decision making [43, 60] X
Engineering options analysis [54] X

Info-gap decision theory [61] X
Markov decision processes X

Risk-aware Markov decision processes [62] X X
Multi-stage robust decision making (ours) X X X

MSRDM-MDP, its Bellman equation, and a reinforcement learning algorithm to solve

the optimal policy. Chapter 4 presents the MSRDM framework and describes each

step in the process with a toy problem, SimpleMining. Chapter 5 and Chapter 6

present the results of applying the proposed framework to two case studies: technology

roadmapping of the space formation flight system and the marine propulsion system

to show the proposed framework’s effectiveness. Finally, Chapter 7 summarizes the

proposed framework and the results of the two case studies and discusses the potential

of future research.



Chapter 2

Literature Review

2.1 Decision-making under probabilistic uncertainty

2.1.1 Risk measures

Let us define a problem with a decision variable x ∈ X , an uncertain parameter w ∈ W ,

and an objective function f(x, w) : X ×W → R to maximize. Let us consider a random

variable W ∈ W and a decision x, then the outcome of the objective function is also a

random variable: Y = f(x, W ). A risk measure ρ is a mapping from a random variable

to a scalar. In the case of this problem, the risk measure ρ(Y ) represents the value of

a decision x under a random variable W .

A common risk measure is the expected value of the objective function

The expected value ≡ E [Y ] (2.1)

where E[·] is the expectation operator. It is risk-neutral in that it is not affected by

the degree of uncertainty.

Another risk measure is the value at risk, or α-quantile, defined as:

VaRα(Y ) ≡ inf {y ∈ R | Pr(Y < y) > α} (2.2)
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It is the minimum value that the probability of Y less than the value is greater than α.

Generally, the probability of the objective function being less than the value at risk is

α1, i.e., Pr(Y < VaRα(Y )) = α.

The expected shortfall, or the conditional value at risk [63], is the objective function’s

expected value in the worst cases. Let α the quantile, then the conditional value at

risk is calculated as:

CVaRα(Y ) ≡ 1
1− α

∫ VaRα(Y )

−∞
yp(y)dy (2.3)

where p(y) is the probability density function of Y .

Let L be a set of lotteries and consider lotteries L, M, N ∈ L. A lottery is a possibly

random alternative. The random variable Y under a fixed decision x is an example of

a lottery. When the decision-maker is indifferent between L and M , we write L ∼M ,

and we write L ≽M when the decision-maker prefers L over M or is indifferent. The

utility function U : L → R assigns a value to lotteries based on the decision-maker’s

preference so that if the decision-maker prefers a lottery to another, then its utility

is higher than the other. Formally, ∀L, M ∈ L : L ≽ M =⇒ U(L) ≥ U(M). The

expected utility is the expected value of the utility:

The expected utility ≡ E[U(Y )] (2.4)

It is proven that under the following four axioms, a decision-maker will act to maximize

the expected value of a function, known as the von Neumann-Morgenstern utility

function. The four axioms are:

Completeness ∀L, M ∈ L : L ≽M ∨M ≽ L

Transitivity ∀L, M, N ∈ L : if L ≽M and M ≽ N, then L ≽ N

Continuity if L ≽M ≽ N, then ∃p ∈ [0, 1] s.t. pL + (1− p)N ∼M

1This is not always the case if Y is a discrete random variable.
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Figure 2.1 An example of a Markov decision process

Independence ∀L, M, N ∈ L, p ∈ [0, 1] : if L ≽M, then pL + (1− p)N ≽ pM + (1−

p)N

The expected value is consistent with the axioms. Yamai and Yoshiba [64] showed that

the expected shortfall is also consistent, and the value-at-risk is consistent only under

some conditions.

The above risk measures require the probability density function of Y to be known.

However, if it is not the case, i.e., the uncertainty is “deep,” the maxi-minimality is

available, if technically not a risk measure. The maxi-minimality is to select the decision

with the best worst-case scenario by solving the following optimization problem:

max
x∈X

min
w∈W

f(x, w) (2.5)

This formulation is studied as “robust optimization,” and the decision-maker’s attitude

towards risk can be represented by the uncertainty set W [65, 66].

2.1.2 Markov decision processes

A Markov decision process (MDP) [67] is a model of an environment where an agent

stochastically transits from a state to another based on its action while receiving a
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reward. If a probabilistic model of the environment is provided as an MDP, the optimal

policy to maximize the expected cumulative reward can be solved.

An MDPM can be formally defined as a tuple of five elements [68]:

M≡ ⟨S,A, ps0 , T, R⟩ (2.6)

where S is a set of all states, A is a set of all actions, ps0 : S → [0, 1] is the initial

state probability function, T : S × A × S → [0, 1] is the transition function, and

R : S × A → R is the reward function. Here we consider a discrete state set and a

discrete action set. Therefore, by definition, the reward function R is upper-bounded,

and there exists Rmax that satisfies:

∀(s, a) ∈ S ×A : |R(s, a)| ≤ Rmax (2.7)

The decision variable in an MDP is called policy. A policy can be formulated in various

ways, one of which is a deterministic Markov policy π : S → A, which deterministically

(i.e., not stochastically) selects an action only based on the state at the current time

step. We denote an MDP under policy π as:

M(π) ≡ ⟨S,A, ps0 , T, R, π⟩ (2.8)

and the set of all the deterministic Markov policies as Π. Then the time evolution of

an MDPM(π) can be obtained by the following steps:

Step 1. Let t← 0 and initialize the initial state with the initial state probability function

as st ∼ ps0 .

Step 2. Select action based on the current state as at ← π(st).

Step 3. Take action at, receive reward R(st, at), and transit to the next state st+1 accord-

ing to the probability distribution T (st, at, st+1).

Step 4. Let t← t + 1 and go to Step 2.
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The expected reward and the expected discounted cumulative reward are usually

used as the objective function. Let us denote the reward the agent receives at time

step t as a random variable Rt, then the expected reward is:

The expected reward ≡ E
[

lim
T →∞

1
T

T −1∑
t=0

Rt

∣∣∣∣∣ M(π)
]

(2.9)

and the expected discounted cumulative reward is:

The expected discounted cumulative reward ≡ E [C0 | M(π)] (2.10)

where Ct is the discounted cumulative reward:

Ct ≡ lim
K→∞

K∑
k=0

γkRt+k (2.11)

where γ ∈ [0, 1) is called the discount rate and controls the virtual time horizon

considered in the cumulative reward.

Let us consider a deterministic Markov policy π. For a given state s, value function

V π : S → R can be defined as follows:

∀s ∈ S : V π(s) ≡ Eπ [C0 | S0 = s] (2.12)

where Eπ represents the expected value operator conditioned by the Markov chain

defined by policy π, and S0 is the initial state. If the resulted Markov chain has ergodic

property (i.e., it is irreducible2 and aperiodic3), the value function satisfies the following
2A Markov chain is irreducible if and only if ∀s, s′ ∈ S : ∃t ∈ N s.t. Pr(St = s′|S0 = s) > 0, i.e.,

any state is eventually reached from any other state.
3A Markov chain is aperiodic if and only if ∀s ∈ S : gcd T (s) = 1 where T (s) ≡

{t ≥ 1 | Pr(St = s | S0 = s) > 0}. For example, a Markov chain where a door has two states “open”
and “closed” is not aperiodic because it is impossible to start from state “closed” and return to it
with an odd number of transitions.
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equation, known as the Bellman equation:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′) (2.13)

It is proven that there exists a deterministic Markov policy π that maximizes

V π(s) in any state s and is called the optimal policy. Formally, we can define the

optimal value function V ∗(s) = max
π∈Π

(V π(s)), then there exists a policy π∗ that satisfies

∀s ∈ S : V π∗(s) = V ∗(s). The optimal value function satisfies the following recursive

equation called optimal Bellman equation:

V ∗(s) = max
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)
 (2.14)

Once the optimal Bellman equation is solved, the optimal policy can be defined as:

π∗(s) = argmax
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)
 (2.15)

One way to solve the optimal Bellman equation is Q-learning [69, 70], shown

in Algorithm 1. In Q-learning, the agent learns the optimal action-value function

Q∗ : S ×A → R:

∀(s, a) ∈ S ×A : Q∗(s, a) ≡ max
π∈Π

Qπ(s, a) (2.16)

where Qπ is the action-value function:

Qπ(s, a) ≡ Eπ [C0 | S0 = s, A0 = a] (2.17)

Once the optimal action-value function is obtained, the optimal policy can also be

obtained as:

π∗(s) = argmax
a∈A

Q∗(s, a) (2.18)
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Algorithm 1 Q-learning [69, 70]
Require: An environment with known S and A, a policy model πt(a, s, q), a discount

rate γ, a learning rate αt, a termination condition, the number of episodes n
Ensure: Estimation of the optimal action-value function Q̂ : S ×A → R

1: Initialize Q̂(s, a) for all (s, a) ∈ S × A, arbitrarily except that ∀s ∈ Sf , a ∈
A : Q̂(s, a) = 0 where Sf is the set of all the terminal states.

2: for episode = 1, n do
3: Initialize the time step t = 0.
4: Observe the initial state s0 from the environment.
5: repeat
6: Select action at according to πt(a, st, Q̂) and take action at in the environ-

ment.
7: Observe reward rt and the next state st+1 from the environment.
8: Calculate the TD error: δt ← rt + γ maxa′∈A Q̂(st+1, a′)− Q̂(st, at)
9: Update Q̂: Q̂(st, at)← Q̂(st, at) + αtδt

10: Update the time step t← t + 1
11: until the termination condition is reached
12: end for

A policy model πt(a, s, q), one of the inputs to the Q-learning algorithm, defines

which action the agent takes during the learning process based on the estimated optimal

action-value function q at the time of the action. One of the common policy models is

ε-greedy policy πε : A× S × RS×A×[0,1] → [0, 1]. It is a stochastic Markov policy that

selects a random action with probability ε, and the optimal action (at least under the

assumption of Q̂) with probability 1− ε. Formally,

πε(a, s, Q̂, ε) =


1− ε + ε

|A| (if a = argmaxa′ Q̂(s, a′))

ε
|A| (otherwise)

(2.19)

However, pure Q-learning is not applicable if the state space is continuous. Further-

more, even if the state space is discrete, it becomes computationally intractable if |S|

is large. DeepMind [71] developed the Deep Q-Network (DQN) that approximates the

optimal action-value function with a neural network with parameters θ. Two neural

networks with the same architecture, the policy network Qθ and the target network

Qθ− , are prepared. The agent acts in the environment according to a policy model (e.g.,
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the ε-greedy policy), and store each experience et = (st, at, rt, st+1) in the experience

replay memory D. During the learning, the target network is updated to minimize the

following loss at each step i:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γ max

a′∈A
Qθ−

i
(s′, a′)−Qθi

(s, a)
)2
]

(2.20)

The expectation is calculated using samples drawn uniformly at random from the

experience replay memory in the actual implementation. The target network parameters

θ− are updated with the policy network parameters θ every fixed number of steps. See

Algorithm 2 for details. Wang et al. [72] developed the dueling network, where Qθ is

Algorithm 2 Deep Q-Network [71]
Require: An environment with known S and A, a policy model π(a, s, q), a discount

rate γ, a network parameters optimizer, the replay memory capacity N , the target
network update frequency C, a termination condition

Ensure: The approximated optimal action-value function Qθ−

1: Initialize the replay memory D with capacity N
2: Initialize the policy network parameters Qθ with random weights θ
3: Initialize the policy network parameters Qθ− with the same weights θ− = θ
4: for episode = 1, n do
5: Observe the initial state s0 from the environment
6: repeat
7: Select action at according to πt(st, at, Qθ−) and take action at in the envi-

ronment
8: Observe reward rt and the next state st+1 from the environment
9: Store experience et = (st, at, rt, st+1) in D

10: Sample random batch of experiences (sj, aj, rj, sj+1) from D

11: Calculate yj =

rj (if sj+1 is a terminal state)
rj + γ maxa Qθ−(sj+1, a) (otherwise)

12: Perform an optimization step on (yj −Qθ(sj, bj, aj, wj))2

13: Every C steps update target network θ− = θ
14: until the termination condition is reached
15: end for
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(b) A dueling Q-network

Figure 2.2 A single stream Q-network and the dueling Q-network.

decomposed into the value function V (s) and the advantage function A(s, a):

Qθ(s, a) = Vθ(s) +
Aθ(s, a)− 1

|A|
∑

a′∈A
Aθ(s, a′)

 (2.21)

The neural network architectures for the pure Deep Q-Network, and the dueling network

are shown in Figure 2.2.
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2.2 Decision-making under deep uncertainty

2.2.1 Robust decision making

Decision-makers often seek to predict the future and make a decision that performs the

best in the predicted future. This approach is called “agree-on-assumptions.” However,

when making decisions in a fast-changing, complex world full of deep uncertainty, this

approach is counter-productive and sometimes dangerous [44]. Robust decision making

(RDM) [60] uses computer models not to predict the future but to simulate candidate

policies in a wide range of plausible futures. Then the decision-maker can analyze the

simulation results to observe the robustness and vulnerability of the policies. This

approach is called “agree-on-decisions.” RDM is “a set of concepts, processes, and

enabling tools that use computation, not to make better predictions, but to yield better

decisions under conditions of deep uncertainty [60],” and has four key elements [44]:

• Consider ensembles of a large number of scenarios.

• Seek robust, rather than optimal strategies.

• Employ adaptive strategies to achieve robustness.

• Use the computer to facilitate human deliberation over explorations, options, and

trade-offs, not as a device for recommending a particular ordering of strategies.

As shown in Figure 2.3, an RDM analysis consists of the following steps.

Step 1. Decision structuring. The decision-makers define the key factors in the problem

to analyze. This process often uses the “XLRM framework,” where the decision-

maker identify external factors (X), policy levers (L), relationship in the system

(R), and performance metrics (M).

Step 2. Case generation. The decision-makers use simulation models to evaluate proposed

strategies in a wide range of plausible futures.
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as “What are the key characteristics that differentiate those 
futures in which a plan succeeds from those in which it 
fails?” and “What steps can be taken so a plan may succeed 
over a wider range of futures?”

Analytics to Facilitate a New Conversation 
Among Decisionmakers
Decades of experience and research make clear that  
analytics—the discovery and communication of meaningful 
patterns in quantitative information—is most effective when 
closely linked to users’ needs. RDM’s analytics are specifi-
cally designed to improve conversations among decisionmak-
ers under conditions of deep uncertainty. Deep uncertainty 
occurs when the parties to a decision do not know—or agree 
on—the best model for relating actions to consequences or 
the likelihood of future events.

RDM follows a “deliberation with analysis” process of deci-
sion support, as recommended by the U.S. National Research 
Council. The process begins with many participants to a 
decision working together to define their objectives and other 
parameters. Participants next engage with experts to generate 
and interpret decision-relevant information and then revisit 
choices and objectives based on this information. RDM adds 
to this general approach the concepts of running the analysis 
backward—that is, beginning with a proposed decision—and 
testing plans against many different plausible futures. 

The RDM process, shown in Figure 1, begins with a 
decision structuring exercise in which decisionmakers define 
the goals, uncertainties, and choices under consideration 
(step 1). Analysts then use computer models to generate a 
large database of runs (step 2) in which each case represents 
the performance of a proposed policy in one plausible future. 
Computer visualization and statistical analysis of this data-
base help decisionmakers identify clusters of scenarios that 
illuminate the policies’ vulnerabilities (step 3). These scenar-
ios can then help decisionmakers identify potential new ways 
to address those vulnerabilities (back to step 1) or evaluate 
through trade-off analysis whether these choices are worth 
adopting (step 4). The process continues until decisionmakers 
settle on a robust strategy.

RDM fosters a new conversation among decisionmakers 
by combining the best features of two traditional approaches 
to uncertainty management: scenarios and probabilistic risk 
analysis. Scenarios describe potential future conditions. By 
presenting a set of plausible and contrasting futures worthy of 
consideration, scenarios can help break down the cognitive and 
organizational barriers that often limit decisionmakers’ ability 
to consider a sufficiently wide range of potential futures and 
alternative decision options. But with traditional approaches, 
the choice of a small number of scenarios to summarize many 
futures can appear arbitrary or biased.

In contrast, probabilistic risk analysis—a predict-then-
act approach—uses quantitative predictions of risk (often 
defined as the predicted probability multiplied by the 
predicted consequence of an event) to systematically inform 
decisions about the allocation of effort to reduce risk. While 
often useful when uncertainties are well understood, the 
approach faces the perils of prediction when uncertainties  
are deep.

RDM draws from both scenarios and probabilistic risk 
analysis by running the latter backward to ask which policies 
reduce risk over which range of assumptions, inquiring, for 
example, “What assumptions would we need to believe were 
true for us to reject option A and instead choose option B?” 
Doing so identifies high- and low-risk scenarios that, as in the 
example cases below, can prove useful in contentious policy 
debates. These scenarios can also inform creative thinking on 
robust plans and help decisionmakers assess trade-offs among 
these plans, as shown in Figure 1.

RDM uses computer models in a way that is funda-
mentally different from the approach used in predict-then-
act analyses. The latter regard models as representations of 
reality that are sufficiently accurate to recommend the best 
response to an uncertain future. In contrast, RDM regards 
models as mapping assumptions to consequences. Often, 
RDM can significantly enhance the value of decisionmakers’  
existing models (designed for predict-then-act analysis) by 
running them numerous times to identify vulnerabilities 
and to find plans that are robust over many combinations  
of assumptions. 

By embracing many plausible futures within a quantita-
tive analysis, RDM can help reduce overconfidence and the 
deleterious impacts of surprise, can systematically include 
imprecise information in the analysis, and can help decision-
makers and stakeholders with differing expectations about 
the future reach a well-grounded consensus on action, even 
when uncertainties are deep.

Figure 1. Iterative, Participatory Steps of an RDM Analysis

1. Decision structuring

4. Trade-off analysis 2. Case generation
New options 

Robust
strategy

Scenarios that illuminate
vulnerabilities

Deliberation
Analysis
Deliberation
with analysis

3. Scenario discovery

– 2 –

Figure 2.3 Iterative, participatory steps of an RDM analysis [60].

Relationships in System
(R)

External 
Factors (X)

Policy Levers (L)

Performance 
Metrics (M)

Figure 2.4 XLRM framework

Step 3. Scenario discovery. The decision-makers use visualization and data analysis

methods to analyze the vulnerability of each policy. Scenario discovery is one of

the commonly used analysis methods and identifies the key factors that affect on

the performance metrics. The decision-makers may find new policy options from

the results by, for example, synthesizing two policies with different advantages.

Step 4. Trade-off analysis. The decision-makers discuss which policy to adopt based on

the scenario discovery and the trade-off analysis. If no policy satisfies the criteria,

they can start over the process with new policy options or a renewed model.

Figure 2.5 is an example output of an RDM analysis [60]. In 2007, the U.S. Congress

began to debate whether to reauthorize the Terrorism Risk Insurance Act (TRIA),

passes in 2002 in the aftermath of the terrorist attacks in 2001. However, it was difficult
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little ability to predict the behavior of future Congresses, the 
analysts assumed that future Congresses would compensate 
anywhere between 0 and 100 percent of uninsured losses. 
They then ran the computer model over thousands of dif-
ferent combinations of 17 parameters to explore the conse-
quences of these various assumptions.

Figure 4 summarizes the results. Statistical analysis of 
the database of thousands of model runs indicated that of the 
17 uncertain parameters considered, two most strongly dif-
ferentiated the cases in which TRIA saved taxpayers money 
from those in which it did not. These parameters, shown on 
the axes of Figure 4, were the likelihood of a large terror-
ist attack and the amount that Congress compensates the 
uninsured. The analysis also identified the relevant threshold 
for a large attack as one with more than $40 billion in losses, 
about twice that suffered on 9/11. The horizontal axis in  
Figure 4 shows the likelihood of a terrorist attack that gener-
ates losses larger than the $40 billion threshold relative to 
what RMS predicted. The vertical axis shows the percentage 
of uninsured losses that Congress chooses to compensate 
after an attack.

The dark-shaded region in Figure 4 represents a scenario 
in which the taxpayer cost is lower when TRIA is reautho-
rized than when it is allowed to lapse. Taxpayer costs are 
higher in the lightly shaded region. Decisionmakers can 
clearly see that TRIA provides a net benefit to taxpayers over 
a very wide range of plausible assumptions—in particular, 
over a wide range of estimates of the hard-to-predict behavior 
of a future Congress.

Impact. The RDM analysis made significant contribu-
tions to the congressional debate. Importantly, the analysis 
arrived at the opposite conclusion from that of the Con-
gressional Budget Office and the U.S. Department of the 
Treasury. Using predict-then-act analysis, these two agencies 
had no way to represent uncertainty about the behavior of 
future Congresses. Thus, they assumed that Congress would 
do nothing—that is, offer no compensation to the unin-
sured after a large terrorist attack—and estimated that TRIA 
would prove costly to taxpayers (as shown by the white dot 
in Figure 4). Many regarded this assumption as unrealistic. 
As Figure 4 makes clear, had these agencies assumed com-
pensation at almost any other level, they would have come to 
a different answer. Congress decided to reauthorize TRIA. 

This RDM analysis and its framing proved very effective as a 
way of presenting uncertain information in this contentious 
political debate.

RDM: A New Approach to the Challenge of 
Planning for a Deeply Uncertain Future
Decisionmakers often require quantitative analysis to 
inform good choices, but with today’s conditions of fast-
paced, transformative, and often surprising change, tradi-
tional predict-then-act approaches to policy analysis can 
lead them astray. RDM provides a systematic approach to 
informing good decisions under conditions of deep uncer-
tainty when predictions are unreliable. The approach runs 
traditional analysis backward, using computer models and 
data to explore outcomes over many plausible futures and to 
help decisionmakers identify conditions under which their 
plans will perform well or poorly. This information helps 
decisionmakers identify and choose more-robust plans. In 
many applications—including water management, energy 
resources, flood risk management, and national defense—
RDM facilitates a new relationship between decisionmak-
ers and their analytics, helping them shift from the often 
unanswerable question of “What will the future bring?”  
to the more effective and impactful query of “What steps 
can we take today to most assuredly shape the future to  
our liking?”

Figure 4. Expected Annual Taxpayer Cost With and
Without TRIA  
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Figure 2.5 Expected annual taxpayer cost with and without TRIA [60].

to see whether the legislation would save taxpayers’ money due to large uncertainty

in various factors, including the likelihood of large terrorist attacks. RAND applied

the RDM analysis by building a computer model and running simulations in various

future scenarios. Among the 17 uncertain parameters, they found two key factors

to determine whether the legislation would save taxpayers’ money: the likelihood of

a large terrorist attack and the amount that Congress compensates the uninsured.

As shown as a white point in Figure 2.5, under the previous point assumption, the

legislation was considered to be ineffective. However, the analysis showed that the

legislation could be effective in a large area of scenarios, especially if the amount that

Congress compensates the uninsured is large enough. This result made a significant

contribution to the congressional debate.

2.2.2 Info-gap decision theory

The info-gap decision theory [61] is a design framework under deep uncertainty that

aims to optimize the “robustness” of the decision rather than its performance. A

problem is modeled with a vector of design variables x ∈ X , a vector of uncertain
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parameters w ∈ W, and the objective function f : X ×W → R to maximize. The

decision-maker defines the info-gap model of uncertainty U(h) : R → 2W . The info-

gap model of uncertainty U(h) ⊆ W defines a set of uncertain parameters that are

considered to be possible based on the horizon of uncertainty h — a measure of to

what extent uncertainty is considered. The uncertainty model U(h) generally has

two properties: contraction and nesting. When h = 0, U(0) generally contains only

one instance of uncertain parameters, the nominal value of the uncertain parameters

denoted as w̃. This property is called contraction. If the horizon of uncertainty

becomes greater, then the model contains more instances. Formally, if h1 ≤ h2, then

U(h1) ⊆ U(h2). This property is called nesting.

The decision-maker then determines the critical value rc ∈ R, the value that the

objective function is required to exceed, such as the system performance requirement.

The info-gap robustness α̂(x, rc) is the robustness measure in the info-gap decision

theory. It is defined for a given design vector x and the critical value rc as the maximum

horizon of uncertainty h that the objective function f(x, w) is better (greater in case of

a maximization problem) than the critical value rc for any uncertain parameter vector

w in the info-gap model U(h). Formally,

α̂(x, rc) = max
{

h

∣∣∣∣∣
[

min
w∈U(h)

f(x, w)
]
≥ rc

}
(2.22)

A large value of α̂(x, rc) indicates that under the design vector x, the critical value

condition f(x, w) ≥ rc is satisfied even under uncertain parameter vectors considered

to be far from the nominal value. Once the robustness is defined, then the design

vector with the largest robustness can be defined as:

x∗
ro(rc) = argmax

x∈X
α̂(x, rc) (2.23)

Note that it is dependent on the critical value rc.

In addition to the info-gap robustness, there is another measure called the info-gap

opportuneness. The decision-maker determines the windfall value rw ∈ R, the value that
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the objective function could exceed, but only in limited cases. A windfall event could

be an extra success of a space mission or a lottery win. The info-gap opportuneness is

defined as the maximum horizon of uncertainty h that the objective function f(x, w)

is better than the windfall value for at least one uncertain parameter vector w in the

info-gap model U(h). Formally,

β̂(x, rw) = max
{

h

∣∣∣∣∣
[

max
w∈U(h)

f(x, w)
]
≥ rw

}
(2.24)

A large value of β̂(x, rw) indicates that under the design vector x, the windfall value

condition f(x, w) ≥ rw is not satisfied until uncertain parameter vectors far from the

nominal value are considered. Once the opportuneness is defined, then the design

vector with the smallest opportuneness can be defined as:

x∗
op(rw) = argmin

x∈X
β̂(x, rw) (2.25)

Note that it is dependent on the windfall value rw.

2.3 Creativity support systems

Although being out of the scope of this research, creativity is essential for effective

decision making. For example, it requires creative thinking to find a vague need, to

embody it in concrete system requirements (i.e., a problem), and to propose candidates

of designs (i.e., solutions) to be analyzed. In this sense, a creativity support system and

a decision support system like the one this research proposes complement each other

in the decision-making process. Figure 2.6 shows a typical decision-making process

[73]. Creativity support systems can aid the initial steps: identifying the problem and

generating alternatives, while the scope of this research is the next steps: evaluating

and choosing alternatives. It has been reported that a creativity support system helps

improve the process of, and outcome from, decision making [74, 75].
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Identifying the problem

Generating alternatives

Evaluating alternatives

Implementing the decision

Evaluating decision effectiveness

Choosing alternatives

Research scope

Covered by creativity 
support systems

Figure 2.6 Typical decision-making process [73]. Creativity support systems can aid
the first two steps: identifying the problem and generating alternatives. The scope of
this research is the next two steps: evaluating alternatives and choosing alternatives.

As reviewed in [76], a creative process has stages, including problem finding,

information finding, idea finding, and solution finding4, and multiple creativity support

systems have been proposed to support one or some of the stages. A notable example of

a creativity support system is a creativity-enhancing decision-making support system

(CDMSS) [74], shown in Figure 2.7. They conducted an experiment where participants

were asked to make decisions on an airline’s operation with a creativity enhancement

tool called Axon Idea Processor, and the decision process and the outcome were

compared with that of participants without it. They concluded that the CDMSS

helped improve the process of, and outcome from, decision-making.

4Solution finding is different from idea finding in that complete solutions are produced by refining
selected ideas and working out the details [76, 77].
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Figure 2.7 Creativity-enhancing decision-making support system (CDMSS) [74].



Chapter 3

Formulation of MSRDM-MDP

3.1 Definition of MSRDM-MDP

An MSRDM-MDP is an extension of an MDP in that it handles non-probabilistic

uncertainties. In addition to the state set S and the action set A, two sets are

introduced: the scenario set W and the belief set B. A scenario w ∈ W is a realization

of the uncertain parameters. If there are dw uncertain parameters w1, . . . , wdw where

wi ∈ Wi, the scenario set is, or is a subset of, W1 × · · · × Wdw . The belief set B is

defined as the set of all the subsets of W . Formally, B ≡ 2W . A belief b ∈ B is a subset

of W and represents the set of scenarios that the agent considers possible.

An MSRDM-MDPMMSRDM can be defined as a tuple of six elements:

MMSRDM ≡ ⟨S,W ,A, R, T, γ, ⟩ (3.1)

where S is a set of all states, W is a set of all scenarios, A is a set of all actions,

R : S×A×W → R is the reward function, T : S×B×A×W → S×B is the transition

function. R(s, a, w) defines the reward the agent receives when it takes action a in

state s under scenario w, and (s′, b′) = T (s, b, a, w) defines the next state and belief

after the agent transit from state s and belief b by taking action a under scenario w.
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3.2 Bellman equation

3.2.1 Assumptions

Let us consider a transition from state st and belief bt to state st+1 and belief bt+1

by action at under scenario w, receiving reward rt, i.e., (st+1, bt+1) = T (st, bt, at, w)

and rt = R(st, at, w). The transition function should be defined so that it satisfies the

following properties:

w ∈ bt+1 (3.2a)

bt+1 ⊆ bt (3.2b)

∀w′ ∈ bt+1 : Ts(st, bt, at, w′) = st+1 ∧R(st, at, w′) = rt (3.2c)

where Ts : S × B ×A×W → S is the state transition function, formally defined as:

Ts(s, b, a, w) ≡ s′ where (s′, b′) = T (s, b, a, w) (3.3)

Equation (3.2a) constrains the new belief to contain the true scenario, assuming the

agent does not have false beliefs, Equation (3.2b) forbids a belief to expand, assuming

an unexpected scenario outside the agent’s belief does not happen, and Equation (3.2c)

ensures that the state transition and reward are justified in all the scenarios in the

new belief.

Another assumption is that the time horizon is finite. We denote the time horizon

as T .

3.2.2 Policy and objective function

Once an MSRDM-MDP is defined, the next step is to find how the agent should act

to receive as much reward as possible. To avoid loss of generality, we consider the set

of all deterministic history-dependent policies. A history ht consists of all the states,
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beliefs, actions, and reward values from the start to time t and is formally defined as:

ht ≡ (s0, b0, a0, r0, . . . , st−1, bt−1, at−1, rt−1, st, bt) ∈ Ht (3.4)

and a deterministic history-dependent policy at time t is defined as a function πh
t :

Ht → A.

Given an initial state s0, an initial belief b0, and a deterministic history-dependent

policies πh = (πh
0 , . . . , πh

T −1), the discounted cumulative reward in scenario w can be

calculated as:

V πh(s0, b0, w) ≡
T −1∑
t=0

γtR(st, πh
t (ht), w) (3.5)

The maximax optimal policy πh∗
+ and the maximin optimal policy πh∗

− are the ones

that maximizes the best-case and the worst-case respectively, formalized as:

∀s0, b0 : πh∗
+ = argmax

πh∈ΠHD
max
w∈b0

V πh(s0, b0, w) (3.6)

∀s0, b0 : πh∗
− = argmax

πh∈ΠHD
min
w∈b0

V πh(s0, b0, w) (3.7)

where ΠHD is the set of all deterministic history-dependent policies.

3.2.3 Derivation of Bellman equation

Although scenario w is time-constant in MSRDM-MDP, let us virtually consider time-

variant scenario wt. This is equivalent to a two-player Markov gameMG where the

board is represented by (st, bt), player one (the agent) and player two (the world) select

moves at ∈ A and wt ∈ bt respectively in order, and the agent receives the reward

R(st, at, wt).
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It can be proved that the maximax/maximin optimal policy for player 1 in game

MG is also the maximax/maximin optimal policy in the original MSRDM-MDP.

minw∈b0 V πh(s0, b0, w)

= minw∈b0

[
R
(
s0, πh

0 (h0), w
)

+ γR
(
s1, πh

1 (h1), w
)

+ · · ·

· · ·+ γT −1R
(
sT −1, πh

T −1(hT −1), w
) ]

≥ minw0∈b0

[
R
(
s0, πh

0 (h0), w
)

+ γ minw1∈b1

[
R
(
s1, πh

1 (h1), w1
)

+ · · ·

· · ·+ γT −1 minwT −1∈bT −1

[
R
(
sT −1, πh

T −1(hT −1), w
)]
· · ·

]]

= R
(
s0, πh

0 (h0), w∗
0

)
+ γR

(
s1, πh

1 (h1), w∗
1

)
+ · · ·

· · ·+ γT −1R
(
sT −1, πh

T −1(hT −1), w∗
T −1

)
= R

(
s0, πh

0 (h0), w∗
T −1

)
+ γR

(
s1, πh

1 (h1), w∗
T −1

)
+ · · ·

· · ·+ γT −1R
(
sT −1, πh

T −1(hT −1), w∗
T −1

)
= V πh(s0, b0, w∗

T −1) (3.8)

consider sce-

nario w to be

time-variant

The reward is justified in

all the scenarios in the new

belief (Equation (3.2c)).

For a maximax/maximin MDP, it is proven that there exists a deterministic

stationary policy π : S × B → A that maximizes the maximum/minimum discounted

cumulative reward. Therefore, the maximum/maximin optimal Bellman equations are

respectively defined as:

V ∗
+(s, b) = max

a∈A
max
w∈b

[
R(s, a, w) + γV ∗

+(T (s, b, a, w))
]

(3.9)

V ∗
−(s, b) = max

a∈A
min
w∈b

[
R(s, a, w) + γV ∗

−(T (s, b, a, w))
]

(3.10)

Once the optimal Bellman equations are solved, the optimal policies for the best-case

and the worst-case can be obtained by:

π∗
+(s, b) = argmax

a∈A
max
w∈b

[
R(s, a, w) + γV ∗

+(T (s, b, a, w))
]

(3.11)

π∗
−(s, b) = argmax

a∈A
min
w∈b

[
R(s, a, w) + γV ∗

−(T (s, b, a, w))
]

(3.12)
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3.3 Solving the Bellman equations

Equations (3.11) and (3.12) can be approximated:

V ∗
+(s, b) = max

a∈A
max

w∈W (b)

[
R(s, a, wi) + γV ∗

+(T (s, b, a, w))
]

(3.13)

V ∗
−(s, b) = max

a∈A
min

w∈W (b)

[
R(s, a, wi) + γV ∗

−(T (s, b, a, w))
]

(3.14)

where W (b) is a set of scenarios sampled from belief b. Note that W (b) does not need

to be randomly sampled but should be sampled to maximize or minimize the operand

R(s, a, wi) + γV ∗
±(T (s, b, a, w)).

A reinforcement learning algorithm can solve Equations (3.13) and (3.14). Algo-

rithm 3 is the Deep Q-Network algorithm modified to solve maximin MSRDM-MDPs.

Once the optimal state-belief-action-scenario function Q∗
±(s, b, a, w) is solved, the

optimal policies can be obtained by:

π∗
+(s, b) = argmax

a∈A
max

w∈W (b)
Q∗

+(s, b, a, w) (3.15)

π∗
−(s, b) = argmax

a∈A
min

w∈W (b)
Q∗

−(s, b, a, w) (3.16)

The neural network architecture can be a pure Q-network shown in Figure 3.1 or a

dueling network shown in Figure 3.2.
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Algorithm 3 Deep Q-Network modified for maximin MSRDM-MDPs
Require: An environment with known S, W , A, and B, a discount rate γ, a network

parameters optimizer, the replay memory capacity N , the target network update
frequency C, a termination condition

Ensure: The approximated optimal action-scenario-value function Qθ−

1: Initialize replay memory D with capacity N
2: Initialize policy network Qθ with random weights θ
3: Initialize target network Qθ− with the same weights θ− = θ
4: for episode = 1, n do
5: Initialize state s0 and belief b0
6: for t = 1, T do
7: With probability ε select a random action at otherwise select at =

argmaxa minw∈W (b) Qθ(st, bt, a, w)
8: Execute action at and observe reward Rt, new state st+1, and new belief

bt+1
9: Store transition (st, bt, at, w, Rt, st+1, bt+1) in D

10: Sample random batch of transitions (sj, bj, aj, wj, Rj, sj+1, bj+1) from D

11: Set yj =

rj if sj+1 is terminal
rj + γ maxa minw∈W (b) Qθ−(sj+1, bj+1, a, w) otherwise

12: Perform a gradient descent step on (yj −Qθ(sj, bj, aj, wj))2

13: Every C steps update target network θ− = θ
14: end for
15: end for
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Figure 3.1 A Q-network for an MSRDM-MDP.
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Figure 3.2 A dueling network for an MSRDM-MDP.





Chapter 4

Multi-Stage Robust Decision

Making

4.1 MSRDM overview

Figure 4.1 shows an overview of the decision-making process using MSRDM, consisting

of 5 steps:

1. Decision structuring

In decision structuring, we formalize the problem in an MSRDM-MDP and

express uncertainties as non-probabilistic uncertainty model U(h). To formulate

the problem in an MSRDM-MDP, we need to identify:

• Uncertain parameters (defined as “scenario” in the MSRDM-MDP). Ex-

amples include a technology’s development costs and time, discrete policy

direction scenarios, and the demand for a commodity.

• Actions that the decision-maker can take (defined as “actions” in the

MSRDM-MDP). Examples include to start developing a technology, to

investigate an uncertain parameter’s value, to deploy a technology, and to

sell a product‘. Note that the definition of actions may limit the applicability
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of reinforcement learning algorithms. For example, the deep Q-network

(DQN) algorithm cannot be applied to problems with continuous actions.

• Variables that represent the state of the decision-maker at each time, are

known to the decision-maker, and may change in time (defined as “state”

in the MSRDM-MDP). Examples include a technology’s time under de-

velopment, whether a technology is completed or not, and a technology

readiness level (TRL). Note that the change in state should be determined

by the state itself, the action taken, and the true values of the uncertain

parameters.

• How the “state” and the decision-maker’s knowledge on the uncertain

parameters (“belief”) will change by each action under each realization

of the uncertain parameters (defined as the “transition function” in the

MSRDM-MDP).

• The performance measures (defined as the “reward function” in the MSRDM-

MDP). Examples include technology development cost, realized technology

performance, and the cumulative profit. Note that in the MSRDM-MDP,

the “reward” should be a scalar value. Therefore, even when there are

multiple performance measures, they should be represented by a scalar, for

example, a weighted sum of each performance measure.

To construct the non-probabilistic uncertainty model, we need to identify:

• The nominal value of each uncertain parameter.

• The lower and upper bound of each uncertain parameter in the most extreme

cases. Note that uncertainty is often assymetric. For example, a technology’s

development cost has a larger risk of exceeding the nominal (forecasted)

value than that of being lower than the nominal value. It is also worth

noting that uncertainty range estimated by experts often underestimate

the uncertainty. Therefore, the lower and upper bounds should be defined

conservatively not to exclude the unknown true value.
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2. Policy generation

In policy generation, we generate a set of policies by reinforcement learning and

experts. Here, a “policy” is defined as a mapping from state–belief pair to an

action. For example, a policy can be defined as “sell the product if the product

is already developed and the worst-case demand is larger than some threshold,

but not sell the product otherwise.”

3. Horizon of uncertainty (HoU) analysis

In HoU analysis, we calculate each policy’s performance at different HoU values

and show the robustness of the policy with the HoU plot. This step is conducted

by a computer.

4. Policy/HoU selection

We select a policy and HoU based on the HoU plot. The selected policy is

simulated in the uncertainty set defined by the selected HoU.

5. Scenario analysis

We simulate the selected policy under various realizations of the uncertain

parameter vector in the defined uncertainty set and analyze the relationship

between each uncertain parameter and the performance. We can apply various

sensitivity analysis methods including feature scoring with machine learning

regression algorithms (e.g., the extremely randomized tree), regional sensitivity

analysis, and scenario discovery.

The following sections describe each step using the SimpleMining problem as an

example.

4.2 Definition of the toy problem SimpleMining

Imagine two mines (mine 1 and mine 2) from which valuable resources can be extracted,

and the agent can mine from only one of them. After mining from mine i, the agent

receives a reward wi whose value is uncertain. The uncertainty comes from each mine’s



42 Multi-Stage Robust Decision Making

characteristics and the cost of preparing the necessary tools and mining operation.

However, the agent can prospect a mine with a known prospecting cost to know the

corresponding reward’s exact value. The four actions that the agent can take are shown

in Figure 4.2. The key questions the decision-makers have to answer are:

• Should they pay the prospecting cost to know the mining reward, or should they

mine from one of the mines without prospecting?

• Which mine should they prospect or mine from?

• If they prospect a mine and know the reward, from which mine should they

mine?

4.3 Decision structuring

4.3.1 Identifying relevant parameters using the XLRM frame-

work

First, we need to identify external factors, policy levers, and performance metrics.

External factors are exogenous parameters that affect the performance, and the decision-

makers do not have complete control over them. Since the uncertainty in the problem

is assumed to come from the uncertainty in the external factors, it is recommended

that potential sources of uncertainty are defined as external factors. Note that the

decision-makers may have some control over them. For example, future demand for

a product is usually uncertain, but the company can control it to some extent by

changing the effort and cost put into marketing.

In the SimpleMining problem, the external factors, policy levers, and performance

metrics are defined as shown in Table 4.1. The external factors are the reward that

the agent receives when mining from each mine. The policy levers are what action the

agent takes in each situation. The agent can mine from one of the mines as well as

prospect one. The performance metric is defined as the cumulative reward, which is
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Figure 4.2 Four actions in the SimpleMining problem
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Table 4.1 List of external factors, policy levers, and performance metrics in the
SimpleMining problem.

External factors (X) Reward from mine 1
Reward from mine 2

Policy levers (L) Mine or prospect?
Which mine to mine from or prospect?

Performance metrics (M) Cumulative reward

identical to the mining reward in this problem because the agent can take a mining

action only once. The relationship in the system (R) is later defined in Section 4.3.3.

4.3.2 Defining the non-probabilistic uncertainty model

To represent non-probabilistic uncertainty, we adopted the info-gap model of uncertainty

[61]. With the horizon of uncertainty h, which defines the degree of uncertainty

considered in the decision making, the set of scenarios considered in the decision

making is defined by a non-probabilistic uncertainty model. A non-probabilistic

uncertainty model U(h) maps the horizon of uncertainty and the nominal scenario to a

set of scenarios and is formally defined as:

U(h) : R+ ×W → 2W (4.1)

where h is the horizon of uncertainty.

The region that the uncertainty model defines can take several types of shapes.

Van der Burg et al. adopted the ellipsoid-bound info-gap model [78] defined as:

U(h) =
{
w
∣∣∣ [w − w̃]TV [w − w̃] ≤ h2

}
(4.2)

where V is a positive definite real symmetric matrix that defines the ellipsoid’s orien-

tation and length along each axis. Intuitively, [w − w̃]TV [w − w̃] is the “normalized”

distance from the nominal scenario w̃ to the given scenario w. The model defines
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Figure 4.3 The elliptic uncertainty model U(h) for SimpleMining.

Table 4.2 Parameter values for the uncertainty model of SimpleMining.

Uncertain parameter nominal value w̃i max deviation ∆wi

w1, reward from mine 1 20 20
w2, reward from mine 1 18 16

the uncertainty region as scenarios whose distance from the nominal is less than the

threshold defined by the horizon of uncertainty h.

In the SimpleMining problem, the non-probabilistic uncertainty model for the

uncertain parameters w1, w2 was defined as an elliptic uncertainty model shown in

Figure 4.3. Formally,

U(h) ≡
{

(w1, w2)
∣∣∣∣∣
(

w1 − w̃1

∆w1

)2
+
(

w2 − w̃2

∆w2

)2
≤ h2

}
, 0 ≤ h ≤ 1 (4.3)

where w̃i and ∆wi are the nominal value and the max deviation of the uncertain

parameter wi, respectively. Their values are shown in Table 4.2.
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4.3.3 Defining the problem as an MSRDM-MDP

To define the problem as an MSRDM-MDP, the state set S, the scenario set W, the

action set A, the reward function R, the transition function T , and the discount factor

γ are defined.

An MSRDM-MDP of SimpleMining can be formally defined as below:

• State set S = {NT, T} where NT is the non-terminal state and T is the terminal

one.

• Scenario set W ⊆ R2 where wi ∈ R is the reward of mining from mine i.

• Action set A = {M1, M2, P1, P2} where Mi is to mine from mine i, and Pi is to

prospect mine i.

• Reward function R(s, a, w) =



0 (if s = T)

wi (if s = NT ∧ a = Mi)

−ci (if s = NT ∧ a = Pi)

• Next state s′ =


T (if s = T ∨ a ∈ {M1, M2})

NT (if s = NT ∧ a ∈ {P1, P2})

• Next belief b′ = {(w′
1, w′

2) ∈ b | w′
i = wi} where i =


1 (if a = M1, P1)

2 (if a = M2, P2)
.

The definition of s′ indicates that the agent transit to the terminal state after taking

mining action and remains there ever after. The definition of b′ indicates that when the

agent mines from or prospect mine i, the value of wi becomes known, and the belief is

updated by discarding the scenarios in which wi is not the same as the true value, as

shown in Figure 4.4. One may find it incorrect that the lower and upper bounds of

w2 are changed by observing an independent random variable w1. This paradox can

be explained as an approximation to represent the value of prospecting actions. See

Appendix A for the detailed discussion.
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Figure 4.4 Update of belief bt to bt+1 after taking action P1.

4.4 Policy generation

Once the MSRDM-MDP and the non-probabilistic uncertainty model are defined, the

next step is to generate candidates of policies from which the decision-maker will select.

4.4.1 Policy generation by reinforcement learning

The maximax optimal policy π∗
+ and the maximin optimal policy π∗

− can be obtained

using reinforcement learning, as described in Section 3.3.

4.4.2 Policy generation by experts

In addition to the maximax and maximin optimal policies generated by reinforcement

learning, experts can also prepare explicitly expressed policies.

In the SimpleMining problem, the following three policies were defined:

Mine 1 The agent mines from mine 1.

Mine 2 The agent mines from mine 2.

Prospect The agent prospect mine 1. If the lower bound of w2 in the new belief is

larger than the true value of w1, then the agent mines from mine 2, otherwise

the agent mines from mine 1.
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4.5 HoU analysis and policy/HoU selection

One of the analyses in the MSRDM framework is the horizon-of-uncertainty (HoU)

analysis. For a horizon of uncertainty h, initial state s0, initial belief b0, and policy π,

the maximum cumulative reward and the minimum cumulative reward in the set of

scenarios U(h) can be calculated:

f+
HoU(h; s0, b0, π) = max

w∈U(h)
V π(s0, b0, w) (4.4a)

f−
HoU(h; s0, b0, π) = min

w∈U(h)
V π(s0, b0, w) (4.4b)

V π(s0, b0, w) is the cumulative reward the agent receives if it starts from state s0 and

belief b0, and acts according to policy π under scenario w.

In the HoU plot, f+
HoU(h; s0, b0, π) and f−

HoU(h; s0, b0, π) is plotted for each policy π.

Figure 4.5 shows the HoU plot for the SimpleMining problem. With the HoU plot,

the decision-maker can visually understand which policy performs well even in the

worst scenario and which policy performs well in the best scenario and consider the

trade-off between performance and robustness.

Before moving to the next step of scenario analysis, the decision-maker can eliminate

policies from the candidate policies if necessary. Also, the decision-maker needs to

select the horizon of uncertainty to consider in the scenario analysis.

4.6 Scenario analysis

In the scenario analysis, scenarios are sampled from the uncertainty set U(h), and

policies are simulated under each scenario. Let us denote the sampled scenarios as

{w(j)}nw
j=1 where nw is the number of scenarios.

There are several scenario analysis methods: the feature scoring, the scenario

discovery, and the regional sensitivity analysis. In the feature scoring, the relationships

between the performance metrics and the uncertain parameters in the scenario vector

under each policy are regressed using a machine learning method such as extremely
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Figure 4.5 The HoU plot of the SimpleMining problem.
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randomized trees [79]. In the scenario discovery, the decision-maker defines cases of

interest (CoI). For example, one can define the CoI as cases where some performance

target is achieved. Then boxes in W that contains the CoI can be obtained using the

Patient Rule Induction Method (PRIM) [80].



Chapter 5

Case Study I: Technology

Roadmapping of Space Formation

Flying System

5.1 Background

The space formation flying (or formation flight) system comprises multiple spacecraft

whose relative position and attitude are controlled to realize a function that a single

spacecraft cannot have, such as space-based interferometry with long baselines.

TanDEM-X [81] of DLR, launched in 2010, is a space-borne radar interferometer

based on two TerraSAR-X radar satellites whose primary objective is generate a

consistent global digital elevation model (DEM). The PRISMA [82], launched in 2010,

was an experimental two-satellite mission to test formation-flying and rendezvous

techniques. It demonstrated autonomous formation flying, and the control error in

position was in the order of 0.1 to 1 m. The GRACE [83, 84] is a joint mission between

NASA and DLR with two satellites launched in 2002, investigating Earth’s gravity field.

The two satellites fly at the altitude of 300 km to 500 km with a relative along-track

separation of (220± 50) km.
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(a) TanDEM-X (Credit: DLR [85]) (b) PRISMA [82]

(c) The GRACE [83]

Figure 5.1 Images of formation flying missions.
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Table 5.1 Required functions for each mission concept. The checkmark (X) represents
whether the function is required for each mission: X-ray interferometry (X), infrared
interferometry (IR), and gravitational wave telescope (G). Each function is categorized
into three core technology groups (CORE1, CORE2, and CORE3) according to their required
technology level.

Function X IR G Technology group

Autonomous control of relative position X X X CORE1
Autonomous FDIR X X X CORE1

Precise (mm) relative position control X X CORE2
Linear formation flying with three spacecraft X CORE2

Long-range (100s m) formation flying X CORE2
Triangular formation flying with three spacecraft X CORE3
Precise optical system control (sub-µm to nm) X CORE3

Long-range (100 km) formation flying X CORE3

However, relative position control of spacecraft with accuracy in the order of

millimeters and relative position control of optical systems with accuracy in the order

of sub-micrometers to nanometers need to be achieved to carry out missions such as

X-ray interferometry ([86, 87]), infrared interferometry ([88, 89]), or gravitational wave

telescope ([90, 91]) [92]. Therefore, we focused on three scientific mission concepts

that benefit from formation flying technology: X-ray interferometry (X), infrared

interferometry (IR), and gravitational wave telescope (G), and applied the proposed

decision-support framework to its technology roadmapping problem. While some

technologies are required for all the missions, others are required only for some missions.

The functions required for each mission are listed in Table 5.1.

5.2 Decision structuring

5.2.1 Identifying relevant parameters using the XLRM frame-

work

The external factors, policy levers, and performance metrics of the FormationFlying

problem were defined as shown in Table 5.2.
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Table 5.2 List of external factors, policy levers, and performance metrics in the
FormationFlying problem.

External factors (X)
Development cost of each technology
Development time of each technology
Time limit for mission completion

Policy levers (L) Which technology to develop

Performance metrics (M) Cumulative reward

We identified as the external factors, i.e., the uncertainties, the development time

and cost of the technologies, and the time limit. Potential sources of uncertainty in the

technology development include limited estimation capability, unexpected effort due to

technical issues during the development process, and schedule slip due to the annual

budget limit. The technical uncertainty is often positively skewed (right-tailed), and its

probability distribution is often modeled using the log-normal distribution [93], whose

probability density function is shown in Figure 5.2, because the risk of higher cost or

more extended schedule than initially planned is usually larger than the risk of lower

cost or shorter schedule. We considered the time limit to be uncertain because the

formation flying missions may be discontinued if running too long without completing

the expected missions.

The policy options in the FormationFlying problem are defined by the staging of

the development from the low-level to the high-level formation flying system. As shown

in Table 5.1, more advanced technologies will be required as the scientific mission

objective moves from the X-ray interferometry to the infrared interferometry and to the

gravitational wave observation. The decision-makers can thus develop the formation

flying system that has all the capabilities needed for the three missions at once, or

they can develop the formation flying system for the X-ray interferometry first, then

upgrade the system for the infrared interferometry, and finally upgrade the system for

the gravitational wave observation. We did not define an information-obtaining action

like the prospecting actions in the SimpleMining problem.
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Figure 5.2 The probability density functions of the log-normal distributions with
different µ and σ. If x > 0 is log-normally distributed, ln x is normally distributed
with the mean µ and the standard deviation σ.

5.2.2 Defining the technologies and missions

In the FormationFlying problem, nine technologies were identified: CORE1, CORE2,

CORE3, CORE1to2, CORE1to3, CORE2to3, X, IR, and G. CORE1 is the formation flying

technology required for the formation flying system designed to perform X-ray inter-

ferometry mission, which has two functions: autonomous control of relative position,

and autonomous fault detection, isolation, and recovery (FDIR). CORE2 is the forma-

tion flying technology required for the formation flying system designed to perform

infrared interferometry mission, which has, in addition to the functions of CORE1, three

functions: precise (in order of millimeters) relative position control, linear formation

flying with three spacecraft, and long-range (in order of hundreds of meters) formation

flying. CORE3 is the formation flying technology required for the formation flying

system designed to perform gravitational wave observation, which has, in addition to

the functions of CORE1 and CORE2, triangular formation with three spacecraft, precise

optical system control (in order of sub-micrometer to nanometers), and long-range (in

order of hundred kilometers) formation flying. COREitoj ((i, j) ∈ {(1, 2), (1, 3), (2, 3)})
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is the technological upgrade of the formation flying system from COREi to COREj, as

visualized in Figure 5.3. X, IR, and G are the technology required to build the scientific

instrument for the corresponding scientific missions.

Let n the number of technologies, and m the number of missions. Note that

the technology names (CORE1, CORE2, …) and their indices (1, 2, …) are used in-

terchangeably, and so are the mission names (X, IR, X) and their indices (1, 2, 3).

We identified three missions and defined the mission feasibility function ffeas,j(τ) :

2{1,...,n} → {True, False}(j = 1, . . . , m) representing whether the mission Mj can be

conducted with the set of technologies τ as:

ffeas,1(τ) = ({CORE1, X} ⊆ τ) ∨ ({CORE2, X} ⊆ τ) ∨ ({CORE3, X} ⊆ τ) (5.1a)

ffeas,2(τ) = ({CORE2, IR} ⊆ τ) ∨ ({CORE1, CORE1to2, IR} ⊆ τ)

∨ ({CORE3, IR} ⊆ τ) ∨ ({CORE1, CORE1to3, IR} ⊆ τ) (5.1b)

ffeas,3(τ) = ({CORE3, G} ⊆ τ) ∨ ({CORE1, CORE1to2, CORE2to3, G} ⊆ τ)

∨ ({CORE1, CORE1to3, G} ⊆ τ) ∨ ({CORE2, CORE2to3, G} ⊆ τ) (5.1c)

The definition of ffeas,1(τ) indicates that mission 1 (X) can be conducted if CORE1 and

X are developed, CORE2 and X are developed, or CORE3 and X are developed.

5.2.3 Defining the non-probabilistic uncertainty model

The FormationFlying has 19 uncertain parameters: the time limit tlim, by which

all the missions should be completed, and the development cost ci and develop-

ment time Ti of each of the nine technologies. Here we denote a scenario as w =

(tlim, c1, . . . , cn, T1, . . . , Tn) ≡ (w1, . . . , wdw), where dw = 2n+1 = 19 is the number of un-

certain parameters (i.e., the dimension of w). The uncertainty model U(h) (0 ≤ h ≤ 1)

was defined as an ellipsoid, except that it is asymmetric with respect to the nominal

value. See Figure 5.5 for the visual image. The asymmetry captures the asymmetric

uncertainty in technological development: the development cost tends to be higher

than the original estimate rather than be lower, and so does the development time.
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Figure 5.3 Definition of the formation flying core technologies. There are three levels
of formation flying core technologies: CORE1, CORE2, and CORE3. Three upgrade
technologies were defined in addition to the three core technologies.
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Figure 5.4 The distance function di(wi). The asymmetry of the function captures the
uncertainty’s skewness by considering a small deviation in the lower direction and a
large deviation in the upper direction to be equally likely.

Formally, the uncertainty model was defined as:

U(h) ≡

(w1, . . . , wdw)

∣∣∣∣∣∣
dw∑
i=1

(di(wi))2 ≤ h2

 , 0 ≤ h ≤ 1 (5.2)

where di(wi) is the distance function that represents the “distance” of the value wi

from the nominal value w̃i:

di(wi) =


w̃i − wi

w̃i − wLB
i

(if wi ≤ w̃i)

wi − w̃i

wUB
i − w̃i

(otherwise)
(5.3)

where wLB
i is the lower bound and wUB

i is the upper bound of uncertain parameter wi.

See Figure 5.4 for the plot of the function. The asymmetry of the function captures

the uncertainty’s skewness by considering a small deviation in the lower direction and

a large deviation in the upper direction to be equally likely.
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Figure 5.5 An example of an asymmetric uncertainty region U(1) when the dimension
of w is two. The region can be divided into four subregions by the two lines w1 = w̃1
and w2 = w̃2, all of which are quartes of ellipses that share the same center point, the
same orientation but have different principal axes, shown in the dashed curves.

The lower bound, the nominal value, and the upper bound of each uncertain

parameter are defined in Table 5.3.

5.2.4 Defining the problem as an MSRDM-MDP

We defined an MSRDM-MDP of the FormationFlying problem as follows.

We defined a state as a vector s = (t, u1, . . . , un, v1, . . . , vn) where t is the current

time, ui is technology i’s time under development, and vi is a Boolean flag indicating

whether the development of technology i is completed.

We defined a scenario as a vector w = (tlim, c1, . . . , cn, T1, . . . , Tn) where tlim is the

time limit, ci is the development cost of technology i, and Ti is the development time

of technology i.

We defined the action set as A = {WAIT, D1, . . . , Dn} where WAIT is to do nothing

in the current time step, and Di is to start to develop technology i. Note that some
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Table 5.3 Definitions of the uncertain parameters in the FormationFlying problem.

(a) The nominal value, the lower bound, and the upper bound of the development cost of
each technology ci. The percentage represents the deviation rate from the nominal value.

Technology Nominal Lower bound Upper bound

CORE1 5.0 4.0 (−20 %) 10.0 (+100 %)
CORE2 7.0 5.6 (−20 %) 14.0 (+100 %)
CORE3 11.0 8.8 (−20 %) 22.0 (+100 %)

CORE1to2 3.0 2.7 (−10 %) 4.5 (+50 %)
CORE1to3 7.0 6.3 (−10 %) 10.5 (+50 %)
CORE2to3 5.0 4.5 (−10 %) 7.5 (+50 %)

X 3.0 2.4 (−20 %) 6.0 (+100 %)
IR 3.0 2.4 (−20 %) 6.0 (+100 %)
G 3.0 2.4 (−20 %) 6.0 (+100 %)

(b) The nominal value, the lower bound, and the upper bound of the development time of
each technology Ti. The percentage represents the deviation rate from the nominal value.

Technology Nominal Lower bound Upper bound

CORE1 5.0 4.0 (−20 %) 10.0 (+100 %)
CORE2 7.0 5.6 (−20 %) 14.0 (+100 %)
CORE3 11.0 8.8 (−20 %) 22.0 (+100 %)

CORE1to2 3.0 2.7 (−10 %) 4.5 (+50 %)
CORE1to3 7.0 6.3 (−10 %) 10.5 (+50 %)
CORE2to3 5.0 4.5 (−10 %) 7.5 (+50 %)

X 3.0 2.4 (−20 %) 6.0 (+100 %)
IR 3.0 2.4 (−20 %) 6.0 (+100 %)
G 3.0 2.4 (−20 %) 6.0 (+100 %)

(c) The nominal value, the lower bound, and the upper bound of time limit tlim.

Nominal Lower bound Upper bound

20 10 30
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actions may be invalid in some states. For state s, the set of valid actions A(s) was

defined according to the following rules:

• WAIT is a valid action in all states.

• Di is a valid action in state s if the prerequisite technologies for technology i are

already completed and the development of technology i has not been started.

The prerequisite technologies are defined only for the upgrade of formation flying

technologies, namely CORE1to2, CORE2to3, and CORE1to3. These technologies cannot

be developed unless the technologies from which each upgrade is made are completed.

For instance, the agent cannot start developing CORE2to3 unless a) CORE2 is completed,

or b) both CORE1 and CORE1to2 are completed. We defined the development readiness

function fpreq,i(τ) : 2{1,...,n} → {True, False} (i = 1, . . . , n) that represents whether

the prerequisite technologies for technology i are completed given a set of completed

technologies τ . The set of valid actions A(s) can be written as:

A(s) ≡ {WAIT} ∪ {Di | i = 1, . . . , n; fpreq,i(τ(v))} (5.4)

where τ(v) ≡ {i | vi = True} is the set of completed technologies.

We defined the reward function as

R(s, a, w) = −
n∑

i=1

ci

Ti

[a = Di ∨ (0 < ui ∧ ¬vi)] +
m∑

j=1
pj [¬ffeas,j(τ(v)) ∧ ffeas,j(τ(v′))]

(5.5)

where pj is the reward for mission j defined in Table 5.4. Note that [·] in Equation (5.5)

is the Iverson bracket1. The reward at each time step is the reward for the missions

that become feasible at the time step minus the development cost of the technologies

under development at the time step.
1The Iverson bracket [·] is a function that returns 1 if the statement within the brackets is true

and 0 otherwise. Formally, [P ] =
{

1 (if P is true)
0 (otherwise)
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Table 5.4 Reward for each mission

Index j Mission Reward (pj)

1 X-ray interferometry (X) 40
2 Infrared interferometry (IR) 40
3 Gravitational wave telescope (G) 40

We defined the transition function in two steps: the state transition and the belief

transition. The state transition defines the next state s′ = (t′, u′
1, . . . , u′

n, v′
1, . . . , v′

n) as

t′ = t + 1 (5.6a)

u′
i =


max{ui + 1, Ti} (if a = Di ∨ ui > 0)

ui (otherwise)
(5.6b)

v′
i =


1 (if u′

i ≥ Ti)

0 (otherwise)
(5.6c)

If the time step reaches the time limit defined by the scenario, i.e., t′ ≥ tlim, the next

state s′ is set to a terminal state, and the episode is terminated. If a technology

development is completed, the agent will know the technology’s development cost and

time. This is modeled by the belief transition that defines the next belief b′ as:

b′ = {(t′
lim, c′

1, . . . , c′
n, T ′

1, . . . , T ′
n) ∈ b | ∀i : (¬vi ∧ v′

i)→ c′
i = ci ∧ T ′

i = Ti} (5.7)

The state is initialized as t = 0, ui = 0, vi = 0 (i = 1, . . . , n). The belief is initialized

with the horizon of uncertainty h as b0 = U(h).

5.3 Policy generation

5.3.1 Policy generation by experts

We defined four expert policies:
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Aggressive The agent starts to develop CORE3, X, IR, and G.

Staged (X, IR, G) The agent starts to develop CORE1 and X. When CORE1 is com-

pleted, it starts to develop CORE1to2 and IR. When CORE1to2 is completed, it

starts to develop CORE2to3 and G.

Staged (X/IR, G) The agent starts to develop CORE2, X, and IR. When CORE2 is

completed, it starts to develop CORE2to3 and G.

Staged (X, IR/G) The agent starts to develop CORE1 and X. When CORE1 is com-

pleted, it starts to develop CORE1to3, IR, and G.

Note that in the MSRDM-MDP environment, the agent cannot take more than one

action at one time step. Therefore, under the aggressive policy, the agent starts to

develop CORE3 at t = 0, X at t = 1, IR at t = 2, and G at t = 3. We visualized these

policies in the technology roadmap format in Figure 5.6, showing the development

timeline of each technology and the timeline of when each mission becomes feasible if

all the uncertain parameters have their nominal values.

5.3.2 Policy generation by reinforcement learning

We did not apply reinforcement learning to the policy generation in the FormationFlying

problem because all the possible staged development policies that enable all three

missions are covered by the four expert policies defined in Section 5.3.1.

5.4 HoU analysis and policy/HoU selection

5.4.1 HoU analysis settings

The parameters used in the HoU analysis are shown in Table 5.5. 25 values of the

horizon of uncertainty h were sampled with even spaces in [0, 1] (h = 0, 1
24 , . . . , 23

24 , 1).

Under each horizon of uncertainty h, we sampled 1,000 scenarios from U(h), 19 of

which were the Pareto vertices of the ellipsoid-like region U(h) and the others were
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Figure 5.6 Technology roadmap for each expert policy. The nominal value is used for
the development time of each technology.

Table 5.5 Parameters used in the HoU analysis of FormationFlying problem.

Parameter Value

Discount rate γ 1

Scenarios sampling method Uniform Pareto scenarios sampling
and vertices sampling

The number of Pareto scenarios samples 981
The number of Pareto vertices samples 19 (= dw)

The samples of h 25 evenly spaced samples in [0, 1]
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uniformly sampled from the Pareto-front (uniform Pareto scenarios sampling). In total,

25,000 scenarios were prepared.

Pareto vertices
{
w(i)

v (h)
}
are scenarios that are located at vertices of the ellipsoid-

like region U(h) and on the Pareto front, as illustrated in Figure 5.7. Formally, a

Pareto vertex w(i)
v (h) in calculating the minimum reward is:

w(i)
v (h) ≡ (w̃1, . . . , w̃i−1, w∗

i (h), w̃i+1, . . . , w̃dw) (5.8)

where

w∗
i (h) ≡


w̃i − (w̃i − wLB

i )h (if wi’s direction of goodness is positive.)

w̃i + (wUB
i − w̃i)h (otherwise)

(5.9)

The direction of goodness defines whether the uncertain parameter is preferred to

be larger or smaller. In the FormationFlying problem, tlim’s direction of goodness

is positive, whereas the other uncertain parameters (c1, . . . , cn, T1, . . . , Tn) have the

direction of goodness in the negative direction.

The Pareto scenarios are scenarios uniformly sampled from the Pareto front. Because

the direction of goodness of each uncertain parameter is known, we can define the

Pareto front in case of the cumulative reward minimization (maximization) as a set

of all the scenarios where any of the uncertain parameters cannot be worse (better)

without making any other parameter better (worse). In the FormationFlying problem,

the Pareto front is the portion of the surface of a dw-dimensional ellipsoid in the

closed orthant containing all the Pareto vertices. The Pareto scenarios were uniformly

sampled from the surface using a method developed by Marsaglia [94].

In addition to the four expert policies, we added a policy under which the agent

always takes WAIT action. We simulated the five policies under the 25,000 scenarios, both

for the maximum and minimum cumulative reward, resulting in 250,000 simulations in

total.
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Figure 5.7 Examples of the uniform Pareto scenarios sampling and the vertices sampling.
Here we assume scenario w has two uncertain parameters (w1 and w2), both of which
have the direction of goodness in the negative direction (i.e., the lower, the better).
When we sample scenarios to calculate the minimum cumulative reward in U(h),
the Pareto vertices to be sampled will be w(1)

v (h) = (w̃1 + (wUB
1 − w̃1)h, w̃2) and

w(2)
v (h) = (w̃1, w̃2 +(wUB

2 − w̃2)h), and the Pareto scenarios
{
w

(k)
P (h)

}
will be uniformly

sampled from the Pareto front shown in orange.



5.4 HoU analysis and policy/HoU selection 67

5.4.2 HoU analysis results and discussion

The HoU plot is shown in Figure 5.8. Findings from the HoU plot are:

F.1 Under the nominal scenario (h = 0), Aggressive performs better than any other

policy, Staged (X, IR, G) (three-staged) performs the worst, and the other

two (Staged (X/IR, G) and Staged (X, IR/G)) perform approximately the

same.

F.2 Aggressive performs the best in the best scenario, regardless of h.

F.3 The range of the cumulative reward under each policy gradually increases as h

increases in 0 ≤ h ≤ 0.6.

F.4 The difference between the four expert policies’ worst-case performance becomes

smaller as h increases in 0 ≤ h ≤ 0.6.

F.5 The worst cumulative reward under each policy drastically decreases (let us call

it a “drop”) as h increases and reaches h = 0.6 to h = 0.8.

F.6 The magnitude of the “drop” is different under each expert policy. It is the

largest under Aggressive and the smallest under Staged (X, IR, G) and

under Staged (X/IR, G).

F.1 is not surprising because the uncertain parameters were defined so that the

development of CORE3 is the fastest and the most inexpensive among the staged

development strategies, as the project can optimize its resources and development

process for the development of a single highly-integrated formation flying system

capable of any of the three scientific observations. F.2 suggests that Aggressive’s

superiority is unchanged by the horizon of uncertainty if the decision-maker focuses

on the best-case scenario. The gradual increase in the performance range mentioned

in F.3 is due to the uncertainty in each technology’s development cost. The gradual

increase is, in fact, linear in the horizon of uncertainty. This is because when all the

missions are feasible at the final time step, and the eventually completed technologies
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Figure 5.8 The HoU plot of the expert policies. The entire plot (up) and the zoomed
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τ are fixed, the cumulative reward is a linear combination of the deviation in the

development cost of the completed technologies plus some constant. Therefore, the

minimization of the cumulative reward in w ∈ U(h) is a minimization problem with a

linear objective function and a quadratic constraint, and the optimal value changes

linearly in h. Because the relative deviations in the development cost of technology

upgrades (e.g., CORE1to2) are smaller than that of base technologies (e.g., CORE1),

the increase in the performance range is smaller under staged policies, as observed

in F.4. However, when h becomes so large that the worst (i.e., minimum) value of

tlim in U(h) is smaller than the time when all the missions become feasible, the agent

can no longer receive the mission reward, and the worst-case cumulative reward drops

drastically, as observed in F.5. The reason for F.6 is that under Aggressive, none of

the missions will become feasible when h ≥ 0.7, whereas under Staged (X, IR, G)

or Staged (X/IR, G), both mission X and IR become feasible after the “drop,” and

under Staged (X, IR/G), only mission X becomes feasible after the “drop.”

5.4.3 Policy/HoU selection

Based on the HoU analysis results, the decision-maker selects policies and a horizon

of uncertainty to consider in later analyses. In the FormationFlying problem, we

selected the four expert policies as candidate policies and h = 1 as the horizon of

uncertainty.

5.5 Scenario analysis

5.5.1 Scenario analysis settings

The parameters used in the scenario analysis are shown in Table 5.6. 10,000 scenarios

were sampled quasi-uniformly from U(1). Under each scenario, the four candidate

policies were simulated, resulting in 40,000 simulations in total. The performance

measures for each simulation were: the cumulative reward, whether the three missions
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Table 5.6 Parameters used in the scenario analysis of the FormationFlying problem.

Parameter Value

Discount rate γ 1
Scenarios sampling method Uniform scenarios sampling
The number of scenarios 10,000

become feasible before the time limit, and when the three missions become feasible if

they do.

The scenarios were quasi-uniformly sampled from U(1) as follows. Let nw be the

number of scenarios to sample. First, sample uniformly-distributed nw random points

inside a dw-dimensional unit ball by the following steps:

Step 1. Sample an nw × dw matrix A whose elements are independently and identically

distributed as aij ∼ N (0, 1).

Step 2. Sample an nw × dw matrix B whose elements are independently and identically

distributed as bij ∼ U(0, 1).

Step 3. Construct an nw×dw matrix X with xij ≡
aij

∥a(i)∥
b

1
dw
ij where a(i) ≡

[
ai1 . . . aidw

]
.

The row vectors of X are uniformly distributed inside a dw-dimensional unit ball.

For each point x(i), xij is allocated to the j-th uncertain parameter as its “budget of

uncertainty.” If xij = 0, the uncertain parameter will be set to its nominal value as

wj = w̃j. Otherwise, there are two wj’s that satisfy dj(wj) = |xij|. Let us denote the

two solutions as w
(1)
j and w

(2)
j , and assume without the loss of generality that w

(1)
j is

better than w
(2)
j . For example, w

(1)
j < w

(2)
j if wj is a cost. The uncertain parameter

will then be set to the better value if xij > 0 or the worse value if xij < 0.

The sampling of the scenarios is quasi-uniform in that it is not uniform with respect

to the space U(h), but rather with respect to the value of each uncertain parameter’s

distance function.
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5.5.2 Scenario analysis results and discussion

Figures 5.9 and 5.10 shows the distribution of when each mission becomes feasible

under each expert policy, under the 10,000 sampled scenarios. It can be seen that the

distributions of the completion time are right-tailed. It should also be noted that the

difference in the completion time for mission G is smaller than the difference in the

completion time for mission X or IR. If the decision-maker has a motivation to conduct

any of the missions sooner, staged development policies may be preferred. On the

other hand, if the time limit’s uncertainty is small, the aggressive development policy

is the best choice.

We analyzed each uncertain parameter’s sensitivity against each performance mea-

sure by calculating the feature score in the regression using the extremely randomized

trees [79]. The scores under each policy are shown in Figure 5.11. Under Aggressive,

Staged (X/IR, G), and Staged (X, IR/G), the development costs of the devel-

oped technologies have high sensitivity against the cumulative reward, whereas, under

Staged (X, IR, G), the time limit has the highest sensitivity. This indicates that

Staged (X, IR, G) is more vulnerable to the uncertainty in the time limit than the

other policies.

We conducted the scenario discovery to the simulation results by defining the cases

of interest as the simulation cases where all the missions became feasible by the time

limit. The Pareto front in the density–coverage space obtained with the PRIM under

each policy is shown in Figure 5.12. The box with the maximum density and the one

with the maximum coverage are close to each other under every policy, indicating the

cases of interest and the other cases are separated in the scenario space. Also, the

number of restricted dimensions were 1 at maximum.

Figure 5.13 shows the distribution of the cases of interest and the other cases in

the restricted dimension of the box with the largest density. The development cost

of CORE3 was the restricted dimension under Aggressive, where the time limit was

under the other three policies. This is because CORE3 is the only technology whose
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Figure 5.9 Distribution of the time when each mission becomes feasible under each
expert policy, under scenarios in U(1). Note that the distribution of the completion
time of mission X is identical under Staged (X, IR, G) and Staged (X, IR/G) and
thus cannot be distinguished in both plots.
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Figure 5.11 Feature scoring of each uncertain parameter under each policy.
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Figure 5.11 Feature scoring of each uncertain parameter under each policy (cont.).
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(b) Policy: Staged (X, IR, G)
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(c) Policy: Staged (X/IR, G)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Coverage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

0

1

T
h

e
n
u

m
b

er
of

re
st

ri
ct

ed
d

im
en

si
on

s

(d) Policy: Staged (X, IR/G)

Figure 5.12 Density–coverage Pareto front of each policy. The cases of interest were
defined as the ones where all of the three missions are conductible at the final time
step.
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development cost has an upper deviation larger than the lower deviation of the time

limit, i.e., T UB
CORE3 − T̃CORE3 > t̃lim − tLB

lim.

Figure 5.14 shows the regional sensitivity to observe each uncertain parameter’s

sensitivity against whether all the missions became feasible by the time limit. It can

be seen that the development cost of each technology has no sensitivity. The uncertain

parameters that have high sensitivity according to the plot are: CORE3’s development

time and the time limit under Aggressive, CORE1’s development time and the time

limit under Staged (X, IR, G), CORE2’s development time and the time limit under

Staged (X/IR, G), and CORE1’s development time, CORE1to3’s development time,

and the time limit under Staged (X, IR/G).

5.6 Discussion

Table 5.7 summarizes each policy’s advantages and disadvantages based on the findings

from the HoU analysis and the scenario analysis. The final decision is up to the

decision-maker’s attitude toward risk.

If the decision-maker is interested more in the best-case scenario than in the worst-

case, Aggressive may be the choice because there is a possibility that the low total

development costs compared to the other policies.

If the decision-maker considers the uncertainty in the time limit to be large and

wants missions to be feasible as soon as possible, but allows mission G not to be

conducted by the time limit, Staged (X, IR, G) may be the choice because one

can conduct each mission as soon as the level of the core formation flying technology

reaches the required level.

If the decision-maker considers the uncertainty in the time limit to be large and

wants to conduct all the missions, Staged (X/IR, G) may be the choice because

only mission G has a possibility of not becoming feasible by the time limit, and the

possibility is lower than under Staged (X, IR, G).
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Figure 5.13 The distribution of the cases of interest (orange) and the other cases (blue)
in the restricted dimension.



5.6 Discussion 79

cCORE1 cCORE2 cCORE3 cCORE1to2

cCORE1to3 cCORE2to3 cX cIR

cG TCORE1 TCORE2 TCORE3

TCORE1to2 TCORE1to3 TCORE2to3 TX

TIR TG tlim

(a) Policy: Aggressive

Figure 5.14 The regional sensitivity analysis of the cases of interest under each policy.
The green curve is the cumulative plot of the cases of interest projected onto the
uncertain parameter, and the orange curve is that of the other cases.
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(b) Policy: Staged (X, IR, G)

Figure 5.14 The regional sensitivity analysis of the cases of interest under each policy.
The green curve is the cumulative plot of the cases of interest projected onto the
uncertain parameter, and the orange curve is that of the other cases (cont.).
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Figure 5.14 The regional sensitivity analysis of the cases of interest under each policy.
The green curve is the cumulative plot of the cases of interest projected onto the
uncertain parameter, and the orange curve is that of the other cases (cont.).
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(d) Policy: Staged (X, IR/G)

Figure 5.14 The regional sensitivity analysis of the cases of interest under each policy.
The green curve is the cumulative plot of the cases of interest projected onto the
uncertain parameter, and the orange curve is that of the other cases (cont.).
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Finally, if the decision-maker cares whether all the missions become feasible by the

time limit and does not value cases where only some of the missions become feasible,

Staged (X, IR/G) may be the choice because all the missions become feasible in the

largest range of h.

5.7 Expert feedback

We shared the results with an expert working in a formation flying mission project

and obtained the following feedback:

Benefits from the results

• The framework helps quantitatively recognize the problem with its uncertainty.

• While the results do not contradict with the intuition, unlike the intuition, it is

good to see the results visually and quantitatively.

Opportunities for enhancement

• It will be interesting to see the results under a different definition of the uncertainty

model with different lower and upper bound of each uncertain parameter.

• Creating the uncertainty model is difficult because the uncertainty is too large

even for an expert to estimate each parameter’s uncertainty.

It can be safely said that the results from the MSRDM framework can benefit an

actual decision-making problem, though there still exist some possible enhancements

to be made, especially in the creation of the uncertainty model.
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Table 5.7 Advantages and disadvantages of each policy.

Policy Advantages Disadvantages

Aggressive • The cumulative reward is the
highest in the nominal and
best-case scenarios.

• There is a risk of no mission be-
ing conducted due to the long
development time of CORE3.

Staged (X, IR, G) • The effect of the time limit un-
certainty is limited to mission
G.

• The completion time of mis-
sion X and IR are among the
shortest.

• The time limit has the largest
sensitivity due to slow develop-
ment.

• The likelihood of mission G not
being conducted is larger than
the other policies.

• The cumulative reward is the
lowest in the nominal and the
best-case scenarios.

Staged (X/IR, G) • The effect of the time limit un-
certainty is limited to mission
G.

• The completion time of mis-
sion IR is the shortest.

• Mission G may not be con-
ducted due to the early time
limit.

Staged (X, IR/G) • All the missions are conducted
in the largest range of h.

• There is a risk that only mis-
sion X is conducted due to
the long development time of
CORE1 and the early time limit.



Chapter 6

Case Study II: Technology

Roadmapping of Marine

Propulsion System

6.1 Background

Third IMO GHG Study 2014 [95] reported that international shipping, carrying as

much as 90 % of the world trade by volume, emitted approximately 2.2 % of the total

emission volume in 2012. It also forecasted that CO2 emissions from international

shipping could increase by 50 % to 250 % by 2050. To address GHG emissions from

international shipping, the International Maritime Organization (IMO) published

“Initial IMO Strategy on Reduction of GHG Emissions from Ships [96]” in 2018, where

it shared its three levels of ambition. The level-one ambition is for “carbon intensity of

the ship to decline through implementation of further phases of the energy efficiency

design index (EEDI) for new ships.” The level-two ambition is “to reduce CO2 emissions

per transport work, as an average across international shipping, by at least 40 % by

2030, pursuing efforts towards 70 % by 2050, compared to 2008.” The level-three

ambition is “to peak GHG emissions from international shipping as soon as possible
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and to reduce the total annual GHG emissions by at least 50 % by 2050 compared to

2008.”

The report by The Japan Ship Technology Research Association and The Ministry

of Land, Infrastructure, Transport and Tourism of Japan [97] considers two possibilities

of future pathways to reduce the maritime CO2 emission: “a fuel shift from LNG to

carbon-recycled methane” and “the expansion of hydrogen and/or ammonia fuels.”

The former pathway assumes that LNG ships and infrastructure to supply the fuel

will be commonplace while infrastructure to supply hydrogen or ammonia will not

be as available. The latter assumes that supply chain of hydrogen and ammonia will

be ubiquitous. ICEs with ammonia [98, 99] and hydrogen [100, 101] are both studied

for maritime use, and hydrogen and ammonia are regarded as alternative fuels in the

medium and long term by IMO along with biofuels [102].

6.2 Decision structuring

6.2.1 Identifying relevant parameters using the XLRM frame-

work

The external factors, policy levers, and performance metrics of the MarinePropulsion

problem were defined as shown in Table 6.1.

We identified the external factors, i.e., the uncertainties, the development time and

cost of each technology, the fuel scenario, and the time of the fuel scenario reveal. The

uncertainty in the technology development derives from limited estimation capability,

unexpected effort due to technical issues during the development process, and schedule

slip. A strategy is also affected by how widely the infrastructure required for each

propulsion configuration is spread globally. Therefore, we defined the fuel scenario

(which of the two pathways will be realized) and when the fuel scenario becomes known

to the decision-maker as external factors.
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Table 6.1 List of external factors, policy levers, and performance metrics in the
MarinePropulsion problem.

External factors (X)

Development cost of each technology
Development time of each technology

Fuel scenario
Time of the fuel scenario reveal

Policy levers (L) Which configuration to develop

Performance metrics (M) Achievement of the two IMO CO2 reduction goals

The policy lever in the MarinePropulsion problem is the selection of propulsion

configuration to develop. Table 6.2a lists the candidate marine propulsion configurations

for reducing CO2 emission. One of the options is the CO2 collection. Although it is not

a propulsion system, it can collect the CO2 contained in propulsion system’s emission

and convert it into methane, which can be reused as fuel. The other four options are

internal combustion engines (ICE). The first ICE option is an ICE with mixed fuel of

ammonia and heavy oil.

6.2.2 Defining the technologies and configurations

Table 6.2a shows the five candidate configurations that reduce the CO2 emission from

the marine propulsion: A&HO, A, H&M, H, and CC. A&HO is the ICE with mixed fuel of

ammonia and heavy oil, A is the ICE with mono fuel of ammonia, H&M is the ICE with

mixed fuel of hydrogen and methane, H is the ICE with mono fuel of hydrogen, and CC

is the CO2 collection. For each configuration to be built, some technologies need to be

developed. As shown in Table 6.2b, five technologies were identified: A&HO, AtoMONO,

H&M, HtoMONO, and CC. A&HO is the technology required for the ICE with mixed fuel

of ammonia and heavy oil (configuration A&HO), H&M is the technology required for

the ICE with mixed fuel of hydrogen and methane (configuration H&M), and CC is the

technology required for the CO2 collection (configuration CC). Technologies AtoMONO

and HtoMONO are upgrades from mixed-fuel combustion (A&HO and H&M, respectively)

to mono-fuel combustion.
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Table 6.2 Technologies and configurations in the MarinePropulsion problem.

(a) Configurations

Name Description Required technologies

A&HO ICE with mixed fuel of ammonia and heavy oil A&HO
A ICE with mono fuel of ammonia A&HO, AtoMONO

H&M ICE with mixed fuel of hydrogen and methane H&M
H ICE with mono fuel of hydrogen H&M, AtoMONO
CC CO2 collection CC

(b) Technologies

Name Description

A&HO ICE with mixed fuel of ammonia and heavy oil
AtoMONO Upgrade from A&HO to ICE with mono fuel of ammonia

H&M ICE with mixed fuel of hydrogen and methane
HtoMONO Upgrade from H&M to ICE with mono fuel of hydrogen

CC CO2 collection

Let n the number of technologies and m the number of configurations. Note that the

technology names (A&HO, AtoMONO, …) and their indices (1, 2, …) are used interchange-

ably, and so are the configuration names (A&HO, A, …) and their indices (1, 2, …). We

defined the configuration feasibility function ffeas,j(τ) : 2{1,...,n} → {True, False} (j =

1, . . . , m) representing whether the configuration j can be built with the set of tech-

nologies τ as:

ffeas,A&HO(τ) = A&HO ∈ τ (6.1a)

ffeas,A(τ) = {A&HO, AtoMONO} ⊆ τ (6.1b)

ffeas,H&M(τ) = H&M ∈ τ (6.1c)

ffeas,H(τ) = {H&M, HtoMONO} ⊆ τ (6.1d)

ffeas,CC(τ) = CC ∈ τ (6.1e)

For example, the definition of ffeas,A(τ) indicates that configuration A can be built if

A&HO and AtoMONO are developed.
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6.2.3 Defining the non-probabilistic uncertainty model

The MarinePropulsion problem has 17 uncertain parameters: the fuel scenario φ ∈

{CRM, HA}, the time of the fuel scenario reveal trev ∈ R, the development cost ci ∈ R

and development time Ti ∈ R of each of the five technologies, and the CO2 emission

reduction performance ηj of each of the five configurations. Here we denote scenario w

as

w = (φ, trev, c1, . . . , cn, T1, . . . , Tn, η1, . . . , ηm) ≡ (w1, . . . , wdw) (6.2)

where dw = 2 + 2n + m = 17 is the number of uncertain parameters (i.e., the dimension

of w). The uncertainty model U(h) (0 ≤ h ≤ 1) was defined as an ellipsoid. Formally,

the uncertainty model was defined as:

U(h) ≡

(w1, . . . , wdw)

∣∣∣∣∣∣
dw∑
i=1

(di(wi))2 ≤ h2

 , 0 ≤ h ≤ 1 (6.3)

where di(wi) is the distance function that represents the “distance” of the value wi

from the nominal value w̃i:

d1(φ) =


dCRM (if φ = CRM)

dHA (if φ = HA)
(6.4a)

2 ≤ i ≤ dw : di(wi) = wi − w̃i

∆wi

(6.4b)

dCRM and dHA are predefined constants in [0, 1], representing how likely each discrete

scenario is. Note that dCRM = 0 or dHA = 0 because otherwise neither fuel scenario would

be considered possible in the nominal scenario, i.e., U(0) = ∅. ∆wi is the maximum

deviation of wi from the nominal value. The parameter values are shown in Table 6.3.

6.2.4 Defining the problem as an MSRDM-MDP

We defined an MSRDM-MDP of the MarinePropulsion problem as follows.
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Table 6.3 Definitions of the uncertain parameters in the FormationFlying problem.

(a) The distance of each fuel scenario.

Parameter Value

dCRM 0
dHA 0

(b) The nominal value, the maximum deviation, the lower bound, and the upper bound of
the time of the fuel scenario reveal trev.

Nominal t̃rev Maximum deviation ∆trev Lower bound Upper bound

2027.5 2.5 2025 2030

(c) The nominal value, the lower bound, and the upper bound of the development cost of
each technology ci. The percentage represents the deviation rate from the nominal value.

Technology Nominal Lower bound Upper bound

A&HO 18.0 7.0 (−61 %) 29.0 (+61 %)
AtoMONO 18.0 7.0 (−61 %) 29.0 (+61 %)

H&M 26.0 10.0 (−62 %) 42.0 (+62 %)
HtoMONO 27.0 11.0 (−59 %) 43.0 (+59 %)

CC 14.0 3.0 (−79 %) 25.0 (+79 %)

(d) The nominal value, the lower bound, and the upper bound of the development time of
each technology Ti. The percentage represents the deviation rate from the nominal value.

Technology Nominal Lower bound Upper bound

A&HO 5.5 3.0 (−45 %) 8.0 (+45 %)
AtoMONO 3.5 2.0 (−43 %) 5.0 (+43 %)

H&M 5.5 3.0 (−45 %) 8.0 (+45 %)
HtoMONO 3.5 2.0 (−43 %) 5.0 (+43 %)

CC 9.0 4.0 (−56 %) 14.0 (+56 %)

(e) The nominal value, the lower bound, and the upper bound of each configuration’s CO2
emission reduction ηj . The percentage represents the deviation rate from the nominal value.

Configuration Nominal Lower bound Upper bound

A&HO 0.55 0.4 (−27 %) 7.0 (+27 %)
A 0.94 0.9 (−4 %) 0.98 (+4 %)

H&M 0.45 0.3 (−33 %) 0.6 (+33 %)
H 0.95 0.9 (−5 %) 1.0 (+5 %)
CC 0.625 0.3 (−52 %) 0.95 (+52 %)
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We defined a state as a vector s = (t, u1, . . . , un, v1, . . . , vn) where t is the current

time, ui is technology i’s time under development, and vi is a Boolean flag indicating

whether the development of technology i is completed.

As shown in Equation (6.2), we defined a scenario as a vector w = (φ, trev, c1, . . . , cn,

T1, . . . , Tn, η1, . . . , ηm) where φ is the fuel scenario, trev is the time of the fuel scenario

reveal, ci is the development cost of technology i, Ti is the development time of

technology i, and ηj is the CO2 emission reduction performance of configuration j.

We defined the action set as A = {WAIT, D1, . . . , Dn} where WAIT is to do nothing

in the current time step and Di is to start to develop technology i. Note that some

actions may be invalid in some states. For state s, the set of valid actions A(s) was

defined according to the following rules:

• WAIT is a valid action in all states.

• Di is a valid action in state s if the prerequisite technologies for technology i are

already completed, and the development of technology i has not been started.

The prerequisite technologies are defined only for the upgrade of an ICE, namely

AtoMONO and HtoMONO. These technologies cannot be developed unless the technologies

from which each upgrade is made are completed. For instance, the agent cannot start

developing AtoMONO unless A&HO is completed. We defined the development readiness

function fpreq,i(τ) : 2{1,...,n} → {True, False} (j = 1, . . . , n) that represents whether

the prerequisite technologies for technology i are completed given a set of completed

technologies τ . The set of valid actions A(s) can be written as:

A(s) ≡ {WAIT} ∪ {Di | i = 1, . . . , n; fpreq,i(τ(v))} (6.5)

where τ(v) ≡ {i | vi = True} is the set of completed technologies.
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6.3 Policy generation

6.3.1 Policy generation by reinforcement learning

Converting state, belief, and scenario into a vector

A tuple of a state, a belief, and a scenario (s, b, w) needs to be converted into a vector

x to be fed to neural networks. State s = (t, u1, . . . , un, v1, . . . , vn) is converted into

vector xs(s) =
[
xt(t)⊤ xu(u)⊤ xv(v)⊤

]⊤
where each vector is defined as:

xt(t) =
[
0 . . . 0 1 0 . . . 0

]⊤
(6.6a)

xu(u) =
[
u1 . . . un

]⊤
(6.6b)

xv(v) =
[
v1 . . . vn

]⊤
(6.6c)

xt(t) is a vector whose elements are all zero except for the t-th element, which is one.

Belief b is a subset of W , and its vectorization is not straightforward. Let us state

that a belief b is an ellipsoid belief if and only if b can be expressed using vectors

{xi}dw
i=1 as:

b =

(w1, . . . , wdw)

∣∣∣∣∣∣
dw∑
i

(βi(xi, wi))2 ≤ 1

 (6.7)

where βi : Rdx,i×Wi → R is the budget-of-uncertainty function representing the budget

of uncertainty that wi takes given the parameters vector xi ∈ Rdx,i . dx,i is the dimension

of vector xi:

∀i ∈ {1, . . . , dw} : dx,i = 2 (6.8)
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One can confirm that the uncertainty model U(h) is an ellipsoid belief by defining

βi and xi as

β1(x1, w1) ≡


x11 (if w1 = CRM)

x12 (if w1 = HA)
(6.9a)

2 ≤ i ≤ dw : βi(xi, wi) ≡
2wi − xi1 − xi2

xi2 − xi1
(6.9b)

x1 ≡
[
dCRM

h

dHA

h

]⊤
(6.10a)

2 ≤ i ≤ dw : xi ≡
[
w̃i − h∆wi w̃i + h∆wi

]⊤
(6.10b)

where xij denotes the j-th element of vector xi. Let us assume we update an ellipsoid

belief b expressed with {xi}dw
i=1 by “fixing” wk, and obtain b′. Formally

b′ = {w = (w1, . . . , wdw) | w ∈ b, wk = w̄k} (6.11)

Then the obtained belief b′ is also an ellipsoid belief expressed with the budget-of-

uncertainty function defined in Equation (6.9) and the parameters vector {x′
i}dw

i=1

x′
1 =



[
0 ∞

]⊤
(if k = 1 ∧ w̄k = CRM)[

∞ 0
]⊤

(if k = 1 ∧ w̄k = HA)
x1

β̄
(otherwise)

(6.12a)

2 ≤ i ≤ dw : x′
i =


[
w̄k w̄k

]⊤
(if k = i)[

xi1 + xi2

2 − β̄
xi2 − xi1

2
xi1 + xi2

2 + β̄
xi2 − xi1

2

]⊤
(otherwise)

(6.12b)
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where

β̄ ≡ 1− |βk(xk, w̄k)| (6.12c)

is the scaling factor of the belief ellipsoid. Finally, belief b is converted into a vector:

xb(b) =
[
x⊤

1 . . . x⊤
dw

]⊤
(6.13)

Note that elements in x1 are clipped into [0, 1].

Scenario w = (φ, trev, c1, . . . , cn, T1, . . . , Tn, η1, . . . , ηm) is converted into vector

xw(w) =
[
x⊤
φ (φ) x⊤

trev(trev) x⊤
c (c) x⊤

T(T ) x⊤
η (η)

]⊤
where each vector is defined

as:

xφ(φ) =


[
1 0

]⊤
(if φ = CRM)[

0 1
]⊤

(otherwise)
(6.14a)

xtrev(trev) =
[
trev

]
(6.14b)

xc(c) =
[
c1 . . . cn

]⊤
(6.14c)

xT(T ) =
[
T1 . . . Tn

]⊤
(6.14d)

xη(η) =
[
η1 . . . ηm

]⊤
(6.14e)

Finally, the vector that is fed to the neural network is

x(s, b, w) =
[
x⊤

s (s) x⊤
b (b) x⊤

w(w)
]⊤

(6.15)

Learning the optimal policy with the deep reinforcement learning

We applied the deep Q-network algorithm to solve the maximin optimal Bellman

equation. Table 6.4 lists hyperparameters, their search spaces, and their adopted

values.
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Figure 6.1 The scheduling of ε (blue). The orange and green lines show the initial and
final value of ε, respectively. The horizontal axis shows the number of episodes.

The neural network architecture has two options: the vanilla Q-network (Figure 3.1)

and the dueling network (Figure 3.2). If the separate input is True, only the connections

within the state, belief, and scenario are connected in the initial nSL fully connected

layers to capture their features first before combining them.

If scenario sampling in every step is True, the scenario is sampled from belief bt at

every time step, otherwise only at the beginning of each episode. The Pareto scenario

sampling probability defines the probability of sampling from the Pareto scenarios, and

the vertex probability defines the probability of sampling from vertex scenarios if select

scenario from vertices is True.

We normalized the reward by r̂t ≡
rt

R̄
. The policy model used in training is the

ε-greedy with the scheduling of ε. In the nep-th episode, the value of ε is set to:

ε = εf + (εi − εf) exp
(
−nep

nε

)
(6.16)

The histories of the worst cumulative reward under the obtained policy in the

scenarios sampled from U(0) and U(1) are shown in Figures 6.2 and 6.3.
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Table 6.4 Hyperparameters used in training.

Hyperparameter Adopted value Search space

Neural network parameters
Neural network architecture Dueling DQN {DQN,Dueling DQN}
Separate input False {True, False}
The number of separate layers nSL — [1, 3]
The number of hidden layers 4 [2, 4]
Activation function ReLU —
Hidden layer size 157 [128, 256]

Scenario sampling parameters
Scenario sampling in every step False {True, False}
The number of scenario samples 26 [20, 200]
Pareto scenario sampling probability 0.56 [0.5, 0.9]
Select scenario from vertices True {True, False}
Vertex probability 0.83 [0.1, 0.9]

Training parameters
Discount factor γ 0.99 {0.99, 1}
Reward scaling factor R̄ 91.4 [50, 200]
Initial value of ε: εi 1.0 —
Final value of ε: εf 0.05 —
Decay factor of ε in episodes : nε 4031.7 [2500, 5000]
Batch size 396 [32, 128]
Replay memory size 1332 [1000, 10000]
Target network update frequency 74 [20, 200]
Loss function Huber loss [103] —
Huber loss L1–L2 threshold 1 —
Optimizer Adam [104] —
Learning rate 7.61× 10−3 [10−4, 10−2]
Adam parameter (β1, β2) (0.9, 0.999) —
Adam parameter ϵ 10−8 —

Test parameters
The number of scenarios in the test 27 —
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Figure 6.2 History of the cumulative reward in the test episode (h = 0). The horizontal
axis shows the number of episodes.
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Figure 6.3 History of the cumulative reward in the test episode (h = 1). The horizontal
axis shows the number of episodes.
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Table 6.5 Parameters used in the HoU analysis of the MarinePropulsion problem.

Parameter Value

Discount rate γ 1

Scenarios sampling method Uniform Pareto scenarios sampling
and vertices sampling

The number of Pareto scenarios samples 983
The number of Pareto vertices samples 17 (= dw)

The samples of h 25 evenly spaced samples in [0, 1]

6.3.2 Policy generation by experts

We defined five expert policies:

Ammonia Mixed The agent starts to develop A&HO.

Ammonia Mono The agent starts to develop A&HO. When A&HO is completed, it

starts to develop AtoMONO.

Hydrogen Mixed The agent starts to develop H&M.

Hydrogen Mono The agent starts to develop H&M. When H&M is completed, it starts

to develop HtoMONO.

CO2 Collection The agent starts to develop CC.

6.4 HoU analysis and policy/HoU selection

6.4.1 HoU analysis settings

The parameters used in the HoU analysis are shown in Table 6.5. 25 values of the

horizon of uncertainty h were sampled with even spaces in [0, 1] (h = 0, 1
24 , . . . , 23

24 , 1).

Under each horizon of uncertainty h, we sampled 1,000 scenarios from U(h), 17 of

which were the Pareto vertices of the ellipsoid-like region U(h), and the others were

uniformly sampled from the Pareto-front (uniform Pareto scenarios sampling). In total,

25,000 scenarios were prepared.
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The sampling of the Pareto vertices and the Pareto scenarios was conducted almost

the same as in the other case study. See Section 5.4.1 for the details. The difference

from the other case study is that the direction of goodness of the fuel scenario φ is not

apparent. Therefore, one of the two fuel scenarios is randomly sampled as the worst or

best value.

In addition to the five expert policies, we added a policy under which the agent

always takes WAIT action. We simulated the six explicitly-defined policies under the

25,000 scenarios, both for the maximum and minimum cumulative reward, and the

maximin RL policy for the minimum cumulative reward, resulting in 325,000 simulations

in total.

6.4.2 HoU analysis results and discussion

The HoU plots with different performance measures are shown in Figures 6.4a to 6.4d.

Findings from the HoU analysis are:

F.1 CO2 Collection scores a higher cumulative reward than the other policies in

the best-case scenarios in h ≥ 0.25.

F.2 Ammonia Mono scores a higher cumulative reward than the other expert

policies in the nominal and the worst-case scenarios.

F.3 The maximin RL policy scores the highest cumulative reward in the worst-case

scenarios in any h ∈ [0, 1].

F.4 Only Ammonia Mono, Hydrogen Mono, and the maximin RL policy achieve

both IMO targets in the nominal scenario (h = 0).

F.5 Ammonia Mixed, Hydrogen Mixed, Hydrogen Mono, and CO2 Collec-

tion show “drop” in the worst-case cumulative reward.

F.6 The range of the cumulative reward under each policy gradually increases as h

increases except for the “drops.”
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F.7 Only Ammonia Mono and the maximin RL policy achieve both IMO targets

in any h ∈ [0, 1].

The reason for F.1 is that the CO2 collection technology has low development cost

both at the lower and the upper bounds and has a possibility of achieving both IMO

targets since the upper bound of CO2 reduction performance of the CO2 collection

technology (0.95) well exceeds the IMO targets. However, as F.2 suggests, in the

nominal and the worst scenarios, Ammonia Mono performs the other expert policies.

This is because in the nominal scenario, only Ammonia Mono and Hydrogen Mono

achieve both IMO targets, and the development of configuration H costs more than

that of configuration A. As observed in F.3, the reinforcement learning found a policy

that outperforms the predefined expert policies. At any value of h, the agent following

the maximin RL policy started developing technology CC, then technology A&HO, and

technology AtoMONO after A&HO was completed. The maximin RL policy outperforms

Ammonia Mono because it receives the majority bonus regardless of the fuel scenario.

Also, it outperforms CO2 Collection because it can achieve both IMO targets even if

the CO2 reduction performance ηCC is not sufficient, and receives the majority bonus

regardless of the fuel scenario. F.4 is not surprising because the nominal CO2 reduction

performance of configurations CC, A&HO, and H&M are all below the IMO 2050 target

of 70 %, while that of configurations A and H are both above the target. F.5 shows

that under the expert policies other than Ammonia Mono, either of the IMO targets

becomes not guaranteed as h increases. In particular, under Hydrogen Mono, both

IMO targets are achieved only when h < 0.6. The gradual increase in the performance

range mentioned in F.6 is due to the uncertainty in each technology’s development

cost. As discussed in Section 5.4.2, the gradual increase is linear in the horizon of

uncertainty. The reason for F.7 is that configuration A is the only configuration that

can achieve both IMO targets. Although the CO2 reduction performance of H (ηH)

exceeds both IMO targets even at the lower bound, not both targets are achieved for

reasons discussed later in the scenario analysis.



6.4 HoU analysis and policy/HoU selection 101

0.0 0.2 0.4 0.6 0.8 1.0

Horizon of uncertainty

−200

−150

−100

−50

0

C
u

m
u

la
ti

ve
re

w
ar

d
HoU Plot

Ammonia Mixed

Ammonia Mono

Hydrogen Mixed

Hydrogen Mono

CO2 Collection

Do nothing

Maximin RL

(a) Cumulative reward

0.0 0.2 0.4 0.6 0.8 1.0

Horizon of uncertainty

0

10

20

30

40

50

60

70

T
ot

al
d

ev
el

op
m

en
t

co
st

HoU Plot

Ammonia Mixed

Ammonia Mono

Hydrogen Mixed

Hydrogen Mono

CO2 Collection

Do nothing

Maximin RL

(b) Total technology development cost

Figure 6.4 The HoU plot of the expert policies and the maximin RL policy. Only the
worst-case performance measure is plotted for the maximin RL policy.
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Figure 6.4 The HoU plot of the expert policies and the maximin RL policy. Only the
worst-case performance measure is plotted for the maximin RL policy (cont.).
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Table 6.6 Parameters used in the scenario analysis of the MarinePropulsion problem.

Parameter Value

Discount rate γ 1
Scenarios sampling method Uniform scenarios sampling
The number of scenarios 10,000

6.5 Scenario analysis

6.5.1 Scenario analysis settings

The parameters used in the scenario analysis are shown in Table 6.6. 10,000 scenarios

were sampled quasi-uniformly from U(1). Under each scenario, the six candidate

policies were simulated, resulting in 60,000 simulations in total. The performance

measures for each simulation were: the cumulative reward and whether both IMO

targets were achieved.

The scenarios were sampled from U(1) as follows. Let nw the number of scenarios

to sample. First, sample uniformly distributed nw random points {x(i)}nw
i=1 inside a

dw-dimensional unit ball by the steps described in Section 5.5.1. For each point x(i),

xij is allocated to the j-th uncertain parameter as its “budget of uncertainty.” For

j = 1, i.e., the dimension corresponds to the fuel scenario, w1 is randomly sampled

from set {φ ∈ {CRM, HA} | dφ ≤ |xi1|}. For j ̸= 1, wj is sampled in the same way as the

other case study. If xij = 0, then the uncertain parameter will be set to its nominal

value. Otherwise, there are two wj’s that satisfy dj(wj) = |xij|. Let us denote the two

solutions as w
(1)
j and w

(2)
j , and assume without the loss of generality that w

(1)
j is better

than w
(2)
j . For example, w

(1)
j < w

(2)
j if wj is a cost. Then the uncertain parameter will

be set to the better value if xij > 0, or to the worse value if xij < 0.

6.5.2 Scenario analysis results and discussion

We analyzed each uncertain parameter’s sensitivity against each performance measure

by calculating the feature score in the regression using the extremely randomized trees
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[79]. The scores under each policy are shown in Figure 6.5. It can be observed that

under Ammonia Mixed, Ammonia Mono, Hydrogen Mixed, and the maximin

RL policy, every score against the target achievement is zero. This is because whether

both IMO targets are achieved is the same across all the scenarios. It can also be seen

that under such policies, the fuel scenario φ has the dominant sensitivity against the

cumulative reward, except for the maximin RL policy. The reason for the dominant

sensitivity is that the majority bonus is designed to be larger than the deviation in

the development cost. Therefore, the results may be different with a different reward

function design. The maximin RL policy is not affected as much by the fuel scenario

because the agent develops both configurations A and CC, and receives the majority

bonus regardless of the fuel scenario.

We applied the scenario discovery to see when both IMO targets are achieved and

when not under Hydrogen Mono and CO2 Collection. We defined the cases of

interest (CoI) as the simulation cases where both IMO targets were achieved. The

Pareto front in the density–coverage space obtained with the PRIM under each policy

is shown in Figure 6.6. Under Hydrogen Mono, the box with the maximum density

and the one with the maximum coverage are close to each other, indicating the cases

of interest and the other cases are separated in the scenario space.

Figure 6.7 shows the distribution of the cases of interest and the other cases in the

restricted dimension of the box with the largest density. Under Hydrogen Mono,

configuration H&M’s CO2 reduction performance is the restricted dimension, indicating

that the risk under Hydrogen Mono is that the mixed hydrogen ICE’s CO2 reduction

performance may miss the IMO 2030 target. Under CO2 Collection, there are two

restricted dimensions: TCC and ηCC. The box shows that if the development time of

technology CC is shorter than some threshold and configuration CC’s CO2 reduction

performance is better than some threshold, then CO2 Collection can achieve both

IMO targets.

Figure 6.8 shows the regional sensitivity to observe each uncertain parameter’s

sensitivity against whether both IMO targets were achieved. One can observe that
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Figure 6.5 Feature scoring of each uncertain parameter under each policy.
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Figure 6.5 Feature scoring of each uncertain parameter under each policy (cont.).
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Figure 6.6 Density–coverage Pareto front of each policy. The cases of interest were
defined as the ones where all of the three missions are conductible at the final time
step.
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under Hydrogen Mono, in addition to ηH&M, whose high sensitivity was also mentioned

in the feature scoring analysis, TH&M and THtoMONO also have sensitivity. This is because

if the development time of technology H&M and that of HtoMONO are short enough for

configuration H to be available before 2030, the IMO 2030 target will be achieved

because the CO2 reduction performance of configuration H is 0.9 in the worst case. The

uncertain parameters that have high sensitivity under CO2 Collection are, as also

shown in the feature scoring analysis, TCC and ηCC.

6.6 Discussion

Table 6.7 summarizes each policy’s advantages and disadvantages based on the findings

from the HoU analysis and the scenario analysis. The final decision is up to the

decision-maker’s attitude toward each performance measure and risk.

If the decision-maker is interested in achieving both IMO targets inexpensively,

even if the chance of target achievement is compromised, CO2 Collection may be

the choice because its best-case cumulative reward is better than that of other policies

in h ≥ 0.25.

If the decision-maker is interested in achieving both IMO targets even at h = 1, but

allows the risk of missing the majority bonus when φ = CRM, then Ammonia Mono

may be the choice.

Suppose the decision-maker is interested in achieving both IMO targets even at

h = 1 and does not risk missing the majority bonus. In that case, the maximin RL

policy may be the choice because the decision-maker can achieve both IMO targets

and receive the majority bonus in any scenario w ∈ U(1).

Under the current assumption of uncertainty, the other policies may not be the

choice. The policies involving the hydrogen ICE performed worse than that of the

ammonia ICE largely because the uncertainty in the CO2 reduction performance of

configuration H&M is so large that it can not achieve the IMO 2030 target.
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Table 6.7 Advantages and disadvantages of each policy.

Policy Advantages Disadvantages

Ammonia Mixed • The IMO 2030 target is
achieved in all cases.

• The IMO 2050 target is not
achieved in all cases except for
the best scenario at h = 1.

• There is a risk of φ = CRM.

Ammonia Mono • Both IMO targets are achieved
in all cases.

• There is a risk of φ = CRM.

Hydrogen Mixed • The IMO 2030 target is
achieved under small h.

• The IMO 2050 target is not
achieved in all cases.

• The IMO 2030 target is not
achieved under large h due to
its poor performance.

• There is a risk of φ = CRM.

Hydrogen Mono • Both IMO targets are achieved
under small h.

• The IMO 2030 target is not
achieved under large h due to
the poor performance of Hydro-
gen Mixed.

• There is a risk of φ = CRM.

CO2 Collection • Both IMO targets may be
achieved under large h.

• Neither IMO targets may be
achieved under large h due to
its poor performance.

• There is a risk of φ = HA.

CO2 Collection
& Ammonia
Mono (Maximin
RL policy)

• Both IMO targets are achieved
in all cases.

• The decision-maker can pre-
pare for both fuel scenarios.

• One of the developed configu-
rations is retrospectively unnec-
essary.
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6.7 Expert feedback

We shared the results with experts working in the maritime industry and obtained the

following feedback:

Benefits from the framework

• The HoU plot is useful to consider the problem from various stakeholders’

perspectives, such as start-up companies that are willing to take risks to gain a

large reward and policymakers that want to minimize the risk of not achieving

the targets.

• The conclusion that hydrogen-based strategies have large uncertainty does not

contradict their mental model.

• It helps focus the decision-makers’ attention to dominant strategies, namely

CO2 Collection and Ammonia Mono in the MarinePropulsion problem.

It is usually difficult to eliminate strategy options based only on a qualitative

discussion.

Opportunities for enhancement

• The actual decision-making is not only about the discrete options, but rather

about the balance between the discrete options, such as the fraction of investment

in each technology development. This is not modeled in the current model.

• The actual decision-makers, especially ones in private companies, consider how

their competitors will act in the decision-making process. This is not modeled in

the current framework.

It can be safely said that the results from the MSRDM framework can benefit an

actual decision-making problem, though there still exist some possible enhancements

to be made, especially in the expressiveness of the model.
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Figure 6.7 Pair plots in the restricted dimension in the scenario discovery of each policy.



6.7 Expert feedback 111

trev TA&HO TAtoMONO TH&M

THtoMONO TCC cA&HO cAtoMONO

cH&M cHtoMONO cCC ηA&HO

ηA ηH&M ηH ηCC

HA CRM

(a) Policy: Hydrogen Mono

Figure 6.8 The regional sensitivity analysis of the cases of interest under each policy.
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Figure 6.8 The regional sensitivity analysis of the cases of interest under each policy
(cont.).



Chapter 7

Conclusions

In this dissertation, we proposed three concepts:

• a multi-stage-robust-decision-making Markov decision process (MSRDM-MDP)

• the horizon-of-uncertainty (HoU) analysis

• the multi-stage robust decision making (MSRDM) framework

Chapter 3 presented the definition of an MSRDM-MDP and proved that the

maximax and maximin policies can be obtained by solving the maximax and maximin

Bellman equations, respectively, using a reinforcement learning algorithm such as the

deep Q-network (DQN).

Chapter 4 presented the MSRDM framework and the HoU analysis as an analysis

method used in the framework. The detailed process was described using a toy

problem, SimpleMining, and showed that the framework was able to help understand

the trade-off between the robustness and the performance of each policy option.

We then applied the proposed framework to the two case studies. Chapter 5

demonstrated the framework in the technology roadmapping of the space formation

flying system, and analyzed policy options with different development staging strategies.

Chapter 6 demonstrated the technology roadmapping of the marine propulsion system,

and analyzed strategies to reduce maritime CO2 emission. In both case studies,
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the analyses’ results made the advantages and disadvantages of each policy option

clear. It was also confirmed by feedback from experts that the proposed framework is

capable of benefiting an actual decision-making problem, despite some opportunities

for enhancement.

As validated by the case studies, the proposed MSRDM framework has three

functions: to model deep uncertainty, to provide robustness–performance trade-off,

and to model multi-stage decision making. Existing decision-making frameworks have

some functions, but none has all the functions to the best of our knowledge, as shown

in Table 1.2.

However, note that our framework still has limitations that may be addressed in

the future. Notable limitations include:

• Our framework cannot support cases where the uncertainty is so large that even

the uncertainty model cannot be constructed.

• Our framework cannot provide stochastic guarantees about the outcome because

the uncertainty is treated as non-probabilistic.

• The maximax and maximin Bellman equations assume a single performance

measure—the discounted cumulative reward—and cannot consider multiple per-

formance measures and trade-off among them.

• Our framework cannot model game theoretic environments where multiple agents

act to maximize their performance measures.

Some functions were not verified in this dissertation, but are likely to be handled

with existing methods and algorithms. Such functions include:

• To calculate the best/worst scenario more efficiently using optimization algorithms

in the reinforcement learning process or the HoU analysis.

• To solve the maximax and maximin Bellman equations for MSRDM-MDPs with

continuous or hybrid actions.
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• To model an environment with not only non-probabilistic uncertainty but also

probabilistic uncertainty.
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Appendix A

Discussion on the Uncertainty

Model U(h)

A.1 Background

Consider an elliptic uncertainty model of uncertain parameters (w1, w2) ∈ R2 and the

update of belief bt to bt+1 by observing w1, shown in Figure 4.4. Observing w1 will

result in change in the lower and upper bounds of w2. Formally,

inf {w2 | ∃w1 ∈ R : (w1, w2) ∈ bt+1} ≥ inf {w2 | ∃w1 ∈ R : (w1, w2) ∈ bt} (A.1a)

sup {w2 | ∃w1 ∈ R : (w1, w2) ∈ bt+1} ≤ sup {w2 | ∃w1 ∈ R : (w1, w2) ∈ bt} (A.1b)

In terms of probability, observing a random variable does not affect the knowledge

on another independent random variable. Therefore it seems reasonable to consider a

rectangular uncertainty model:

U(h) ≡
[
wLB

1 , wUB
1

]
×
[
wLB

2 , wUB
2

]
(A.2)
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However, one can confirm that the value of the prospecting action is zero under the

rectangular uncertainty model because the optimal action is Mi∗ where

i∗ ≡ argmax
i∈{1,2}

wLB
i (A.3)

In this appendix, we will analyze the value of prospecting actions assuming some

probability distribution of uncertain parameters, and show that assuming ellipsoid

uncertainty models can approximate the prospecting action value in cases where the

agents maximizes the α-percentile of the reward.

Note that the following discussion only considers two-stage problems where the

agent first prospects some value and chooses one option based on the observation.

Applying the same discussion to multi-stage problems can be difficult because the

optimal policy to maximize α-percentile risk measure needs to depend on not only the

current state but also the history [62].

A.2 Problem assumptions

We consider a single-stage problem with a discrete decision variable i ∈ {1, . . . , n}. We

assume that the reward that the agent receives after selecting i, denoted as Wi ∈ R, is

a random variable with the probability density function fi(Wi), and variables {Wi}n
i=1

are mutually independent. We denote the cumulative distribution function of Wi as

Fi(Wi).

Let R be the random variable representing the reward. We assume that the agent’s

risk measure is α-percentile Rα:

Rα = sup {r ∈ R | Pr(R < r) < α} (A.4)
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Without additional information, the optimal decision i∗ that maximizes Rα is the

one that has the maximum α-percentile:

i∗ = argmax
i∈{1,...,n}

F −1
i (α) (A.5a)

R∗
α = max

i∈{1,...,n}
F −1

i (α) (A.5b)

A.3 Value of a prospecting action

We now consider a prospecting action. Without loss of generality, we assume that the

agent knows the value of W1. After W1 is becomes known, what will be the optimal

decision i∗ that maximizes the α-percentile?

Let w̄1 the value of W1 that becomes known. It is clearly the optimal policy to

select i = 1 if w̄1 is larger than some threshold ρ and i ̸= 1 otherwise. Because the

choice of i ̸= 1 in case w̄1 ≤ ρ may depend on w̄1, let us define q̂(w̄1) : R→ {2, 3, . . . , n}

representing the decision the agent selects if w̄ ≤ ρ. Then the reward is

R =


W1 (if W1 > ρ)

Wq̂(W1) (otherwise)
(A.6)

Let us calculate the cumulative distribution function of R. When r ≤ ρ, the probability

density function of R is calculated as:

Pr(r ≤ R ≤ r + dr)
dr

= 1
dr

∑
i∈{2,3,...,n}

Pr(W1 ≤ ρ) Pr(q̂(W1) = i | W1 ≤ ρ) Pr(r ≤ Wi ≤ r + dr)

=
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)fi(r)

(A.7)

where

Qi(ρ) ≡ Pr(q̂(W1) = i | W1 ≤ ρ) ∈ [0, 1] (A.8)
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Note that ∀ρ : ∑n
i=2 Qi(ρ) = 1. Its derivative, denoted as qi(ρ), can be calculated as:

qi(ρ) ≡ lim
∆ρ→0

Qi(ρ + ∆ρ)−Qi(ρ)
∆ρ

= lim
∆ρ→0

Pr(q̂(W1) = i | W1 ≤ ρ + ∆ρ)− Pr(q̂(W1) = i | W1 ≤ ρ)
∆ρ

= lim
∆ρ→0

1
∆ρ

(
Pr(q̂(W1) = i | W1 ≤ ρ) Pr(W1 ≤ ρ | W1 ≤ ρ + ∆ρ)

+ Pr(q̂(W1) = i | ρ ≤ W1 ≤ ρ + ∆ρ) Pr(ρ ≤ W1 ≤ ρ + ∆ρ | W1 ≤ ρ + ∆ρ)

−Pr(q̂(W1) = i | W1 ≤ ρ)
)

= lim
∆ρ→0

1
∆ρ

(
Pr(q̂(W1) = i | W1 ≤ ρ) F1(ρ)

F1(ρ + ∆ρ)

+ Pr(q̂(W1) = i | ρ ≤ W1 ≤ ρ + ∆ρ)F1(ρ + ∆ρ)− F1(ρ)
F1(ρ + ∆ρ)

−Pr(q̂(W1) = i | W1 ≤ ρ)
)

= f1(ρ)
F1(ρ) ([q̂(ρ) = i]−Qi(ρ))

(A.9)

Note that [·] is the Iverson bracket.

Then the cumulative distribution function is its integral:

Pr(R ≤ r) =
∫ r

−∞
Pr(r′ ≤ R ≤ r′ + dr′)

=
∫ r

−∞

∑
i∈{2,3,...,n}

F1(ρ)Qi(ρ)fi(r′)dr′

=
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)Fi(r)

(A.10)
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When ρ < r,

Pr(r ≤ R ≤ r + dr)

= Pr(r ≤ W1 ≤ r + dr)

+
∑

i∈{2,3,...,n}
Pr(W1 ≤ ρ) Pr(q̂(W1) = i | W1 ≤ ρ) Pr(r ≤ Wi ≤ r + dr)

= f1(r)dr +
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)fi(r)dr

(A.11)

Then the cumulative distribution function is its integral:

Pr(R ≤ r) =
∫ r

−∞
Pr(r′ ≤ R ≤ r′ + dr′)

=
∫ ρ

−∞

∑
i∈{2,3,...,n}

F1(ρ)Qi(ρ)fi(r′)dr′

+
∫ r

ρ

f1(r′) +
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)fi(r′)

 dr′

= F1(r)− F1(ρ) +
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)Fi(r)

(A.12)

Equations (A.10) and (A.12) give the cumulative distribution function of R:

FR(r | ρ, {Qi}n
i=2) =



∑
i∈{2,3,...,n}

F1(ρ)Qi(ρ)Fi(r) (if r ≤ ρ)

F1(r)− F1(ρ) +
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)Fi(r) (otherwise)

(A.13)

Note that it is continuous at r = ρ. The limit at r = ρ can be calculated as:

αρ(ρ) ≡ lim
r→ρ

FR(r | ρ, {Qi}n
i=2) =

∑
i∈{2,3,...,n}

F1(ρ)Qi(ρ)Fi(ρ) (A.14)

αρ(ρ) is monotonically increasing:

dαρ

dρ
=

∑
i∈{2,3,...,n}

(f1(ρ)[q̂(ρ) = i]Fi(ρ) + F1(ρ)Qi(ρ)fi(ρ)) ≥ 0 (A.15)
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Because lim
ρ→−∞

αρ(ρ) = 0 and lim
ρ→+∞

αρ(ρ) = 1, ∃ρ̂ ∈ R s.t. αρ(ρ̂) = α.

The decision variables that determine R’s cumulative distribution function and

α-percentile are ρ and {Qi}n
i=2. Consider optimizing ρ under fixed {Qi}n

i=2 to maximize

R’s α-percentile Rα.

When ρ ≥ ρ̂, αρ(ρ) ≥ αρ(ρ̂) = α. Therefore, Rα ≤ ρ, and the following equation

holds: ∑
i∈{2,3,...,n}

F1(ρ)Qi(ρ)Fi(Rα) = α (A.16)

The derivatives of both sides of Equation (A.16) with respect to ρ are:

∑
i∈{2,3,...,n}

(
f1(ρ)Qi(ρ)Fi(Rα) + F1(ρ)qi(ρ)Fi(Rα) + F1(ρ)Qi(ρ)fi(Rα)dRα

dρ

)
= 0

(A.17)

Equation (A.9) can be substituted into Equation (A.17), which can be rearranged to

dRα

dρ
= −

f1(ρ)∑i∈{2,3,...,n}[q̂(ρ) = i]Fi(Rα)
F1(ρ)∑i∈{2,3,...,n} Qi(ρ)fi(Rα)

≤ 0
(A.18)

Therefore, Rα decreases as ρ increases from ρ = ρ̂.

When ρ ≤ ρ̂, αρ(ρ) ≤ αρ(ρ̂) = α. Therefore, Rα ≥ ρ, and the following equation

holds:

F1(Rα)− F1(ρ) +
∑

i∈{2,3,...,n}
F1(ρ)Qi(ρ)Fi(Rα) = α (A.19)

The derivatives of both sides of Equation (A.19) with respect to ρ are:

f1(Rα)dRα

dρ
− f1(ρ)

+
∑

i∈{2,3,...,n}

(
f1(ρ)Qi(ρ)Fi(Rα) + F1(ρ)qi(ρ)Fi(Rα) + F1(ρ)Qi(ρ)fi(Rα)dRα

dρ

)
= 0

(A.20)
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Equation (A.9) can be substituted into Equation (A.20), which can be rearranged to

dRα

dρ
=

f1(ρ)
(
1−∑i∈{2,3,...,n}[q̂(ρ) = i]Fi(Rα)

)
f1(Rα) +∑

i∈{2,3,...,n} F1(ρ)Qi(ρ)fi(Rα)

≥ 0
(A.21)

Therefore, Rα decreases as ρ decreases from ρ = ρ̂, and ρ̂ is the optimal threshold to

maximize the α-percentile Rα under fixed {Qi}n
i=2. Let R̂α be the α-percentile under

ρ = ρ̂. Then the following equation holds:

R̂α = ρ̂ (A.22a)∑
i∈{2,3,...,n}

F1(ρ̂)Qi(ρ̂)Fi(ρ̂) = α (A.22b)

To find the optimal {Qi}n
i=2 that give the maximum ρ̂ = R̂α, we define functions

Φi(ρ) ≡ F1(ρ)Fi(ρ) (i ∈ {2, 3, . . . , n}). Because Φi is continuous, lim
ρ→−∞

Φi(ρ) = 0, and

lim
ρ→+∞

Φi(ρ) = 1, ∃ρ̂i ∈ R s.t. Φi(ρ̂i) = α. Also, we can calculate the index that gives

the maximum ρ̂i:

i∗ ≡ argmax
i∈{2,3,...,n}

ρ̂i (A.23a)

ρ̂∗ ≡ max
i∈{2,3,...,n}

ρ̂i (A.23b)
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We will show that i∗ is indeed the optimal decision. Assume some value ρ̂ ∈ R that

satisfies ρ̂ > ρ̂∗, then Equation (A.22b)’s LHS is larger than α:

∑
i∈{2,3,...,n}

F1(ρ̂)Qi(ρ̂)Fi(ρ̂)

=
∑

i∈{2,3,...,n}
Φi(ρ̂)Qi(ρ̂)

>
∑

i∈{2,3,...,n}
Φi(ρ̂i)Qi(ρ̂) (∵ ρ̂ > ρ̂∗ ≥ ρ̂i)

= α
∑

i∈{2,3,...,n}
Qi(ρ̂)

= α

(A.24)

Note that i∗ is independent from {Qi}n
i=2, indicating that after W1 becomes known, the

optimal decision is to select i∗ that is defined in Equation (A.23a), which is independent

from W1.

A.4 Analogy to the ellipsoid uncertainty model

(ρ̂i, . . . , ρ̂i) ∈ Rn is the solution to the following equations:

F1(W1)Fi(Wi) = α (A.25a)

W1 = W2 = · · · = Wn (A.25b)

Equation (A.25a) defines a (n−1)-dimensional hyperplane in Rn, and Equation (A.25b)

defines a one-dimensional line in Rn. Because the optimal reward ρ̂∗ is the maximum

value of ρ̂i, it is the intersection of the line defined by Equation (A.25b) and the surface

of a region surrounded by the hyperplanes of Equation (A.25a):

Wprospect,1 ≡

(W1, . . . , Wn)

∣∣∣∣∣∣
∧

i∈{2,3,...,n}
F1(W1)Fi(Wi) ≥ α

 (A.26)
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Figure A.1 The region where F1(W1)F2(W2) ≥ α and F1(W1)F3(W3) ≥ α. The three
random parameters follow normal distributions: W1 ∼ N (0, 22), W2 ∼ N (1, 42), and
W3 ∼ N (3, 12). α was set as α = 0.05. The color indicates the value of W1. The
intersection point of a line W1 = W2 = W3 and the region’s surface is (ρ̂∗, ρ̂∗, ρ̂∗).

Figure A.1 shows an example ofWprospect,1 in case n = 3. It can be seen that the region

is asymmetric in that Wprospect,1 ̸=Wprospect,2 ̸=Wprospect,1 in general, indicating that

it is impossible to create an uncertainty region that accurately models the values of all

prospecting actions. Therefore, an ellipsoid uncertainty region can be regarded as a

symmetric region that can approximately model the values of all prospecting actions.
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