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Abstract

Deep Learning for Planetary Exploration:

Improving image analysis capabilities under limited data resources

by

Hiya Roy

Doctor of Philosophy in Electrical Engineering and Information Systems

The University of Tokyo, Japan

Today, more than 25 space probes are actively exploring di↵erent planets and celestial bodies
across the universe. Several others have either finished their mission or are planned to
begin their journey. These spacecraft and planetary rovers carry several instruments and
cameras onboard, which can capture a huge amount of planetary data. However, the inter-
planetary communication capacity through Deep Space Network is limited by the law of
physics. Therefore, it is not always possible to send the entire planetary data, back to Earth
for further analysis. This can create problems such as a missed scientific opportunity during
planetary exploration. On the other hand, even if the acquired data is sent back to Earth,
it is sometimes corrupted or have missing pixels because of data unavailability caused due
to the technical limitation of the onboard instrument operation timing and satellite orbiter
control.

There is a need for systems that can overcome these problems (i) by analyzing data onboard
and returning much smaller sized meta-data to Earth, to improve the productivity of the
mission, (ii) by predicting the “no-data” region of corrupted images to e�ciently analyze
the returned data to Earth, even if it is partially corrupted. This dissertation proposes
machine learning algorithms to improve the planetary image analysis capabilities for future
explorations under limited data constraints. These include (i) image-text retrieval algorithm
which can enhance the onboard autonomy of future space missions by detecting objects seen
in the image and sending only much smaller-sized metadata to Earth or can improve the
e�ciency of image search from a huge database by retrieving images of interest-based on
textual queries, (ii) inpainting algorithms that can predict the missing regions on Mars or
Lunar orbital images acquired by MRO or SELENE/Kaguya mission to enhance the data
available for downstream tasks such as classification of interesting morphological features.
Overall, this dissertation presents how machine learning can improve the image analysis
capabilities in future space missions by overcoming the data constraints posed by various
factors.
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Chapter 1

Introduction

Humans have always looked at the night sky and marveled at the vastness of space.

For over 60 years, they have ventured into space by sending more than 250 robotic

spacecraft—and 24 humans, to discover information about the solar system and the

distant stars [2]. Today there are more than 25 space probes that are actively ex-

ploring different planets and planetary bodies across the solar system [98]. Many

more planetary exploration missions to even distant planets and planetary bodies are

scheduled to be launched in the near future. Some of them are ESA’s JUICE Explorer

to Jupiter (2022) [3], JAXA’s Martian Moons eXploration (MMX) mission to the two

moons of Mars (Phobos and Deimos) (2024) [4], NASA’s Dragonfly Mission to Sat-

urn’s icy moon (Titan) (2026) [5], etc. All these spacecraft (orbiting or roving) will be

carrying a suite of sophisticated cameras, spectrometers, and other instruments, that

can capture a plethora of data. However, due to the limited bandwidth and inter-

planetary communication through the deep space network 1, it will be increasingly

difficult to return all the captured data to Earth. Similarly, a future rover can easily

collect gigabytes to terabytes of data (e.g., high-resolution images, hyperspectral im-

ages, ground-penetrating radar observations) over a single operation cycle. However,

it may not be able to downlink all the raw data due to the limitation in communi-

cation bandwidth. For example, the downlink capacity from the Curiosity rover to

1The Deep Space Network [77] enables deep space communication using three giant radio an-
tennas in located in Goldstone (California), Madrid, and Canberra.

1



Earth is typically ⇠ 500Mbit (⇠= 60MB) while data-intensive instruments, such as

hyperspectral imagers and ground-penetrating radars, can easily produce hundreds

of megabytes to gigabytes of data. Such situations may result in “missing science

opportunities” meaning that science opportunities might be passed up by necessity

or missed entirely simply because the data cannot be fully downlinked to Earth [138].

Therefore, in future, it will be impossible to return all the acquired data to Earth due

to the limited communication bandwidth through Deep Space Network.

On the other hand, the data that has been returned by the mission might have

some “no-data” region (regions that could not be captured by the onboard cam-

era/sensors) for several reasons such as limitation in operation time of the instrument

and satellite orbiter control, poor illumination because of lack of Sunlight in the Polar

region, etc. Machine learning methods can provide solutions to enhance the planetary

image analysis capabilities for future explorations under such limited data constraints.

This dissertation proposes an image-text retrieval algorithm that can enhance the on-

board autonomy of future space missions by detecting objects seen in the image or

automatically retrieve images based on texts. This dissertation also presents inpaint-

ing algorithms that can predict the missing regions on Mars or Lunar orbital images

acquired by Mars Reconnaissance Orbiter (MRO) or SELENE/Kaguya mission to

enhance the data available for downstream tasks such as classification of interest-

ing morphological features. More specifically, two image inpainting algorithms based

on adversarial learning on planetary images are proposed, where the first approach

uses only spatial domain information, whereas the second approach takes advantage

of the frequency domain information along with the spatial domain information to

selectively reconstruct the high-frequency components of the missing/no-data region.

The research works presented in this dissertation are interdisciplinary in nature re-

quiring the background knowledge about machine learning and planetary exploration

missions. The rest of this chapter provides the necessary background knowledge re-

garding machine learning (deep learning) techniques employed in this dissertation

along with the necessary understanding of planetary science. The following sections

explain the challenges associated with designing and implementing ML algorithms
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for planetary datasets, the motivation of this research, and finally, an outline of the

research topics covered in different chapters of this dissertation.

1.1 Background: Machine Learning

Professor Tom Mitchell from Carnegie Mellon University defined machine learning as

“the study of computer algorithms that allow computer programs to automatically

improve through experience” or in his other words: “a computer program is said

to learn from experience E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves with experience

E” [123].

1.1.1 Types of Machine Learning Algorithms

Machine learning (ML) algorithms can be supervised, unsupervised, or semi-supervised

depending on the availability of labeled datasets, as shown in Figure 1-1.

Supervised learning: In supervised learning, the algorithm learns a mapping

between the input-output pairs of a labeled dataset. Examples of supervised learning

algorithms are naïve bayes [125], decision tree [143], support vector machines [40],

variants of neural networks such as convolutional neural networks [101, 97, 161, 165,

67, 73] etc.

Unsupervised learning: In unsupervised learning, the algorithm do not require

labeled data, rather they learn to find structure in the data by clustering the data

points. Examples of unsupervised learning algorithms are principal component anal-

ysis (PCA) [174, 84], k-means clustering [62], variants of neural networks such as

autoencoders [119], restricted Boltzmann machines [71], and generative adversarial

networks [59].

Semi-Supervised Learning: Semi-supervised learning is a class of supervised

learning algorithm that makes use of a small amount of labeled data with a large

amount of unlabeled data for training. An example of a semi-supervised learning

algorithm is Ladder networks [146].
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(a) Supervised learning (b) Unsupervised learning (c) Semi-supervised learning

Figure 1-1: Various machine learning algorithms. Image source: Google.

Weakly-Supervised Learning is also a class of supervised learning algorithm,

where the supervision to label training data is provided using noisy, limited, or impre-

cise sources. For example, sentiment analysis based product reviews sold at different

commercial websites such as Amazon, Rakuten etc. to provide feedback to the sellers

can be done using weakly-supervised learning.

Machine Learning Problems: Amongst ML algorithms, supervised ML algorithms

are the most popular and successful ones [19]. There are two major types of supervised

ML problems are classification and regression.

Classification: In a supervised classification problem, the goal is to predict a

class label from a pre-defined list of classes. In planetary science context, one exam-

ple of a supervised classification problem is to classify different morphological features

such as craters, dark dunes, bright dunes, slope streak, impact ejecta, etc. in the input

orbital/planetary surface image [154, 172]. In this dissertation, a multi-class classi-

fication problem is solved (chapter 3), where the ML model is trained to distinguish

images of various classes.

Regression: In a regression problem, the goal is to predict outputs that are

real numbers and not class labels. In planetary science context, one example of

a regression task is learning to predict the missing pixels in corrupted images as

proposed in (Chapter 3, 4). In the appendix, aesthetic scores are predicted to decide

the aesthetics quality of the image, by treating it as a regression problem.

It is to be noted that this dissertation employs only supervised ML algorithms.
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1.1.2 Deep Learning

In recent years, deep learning (DL) has become the driving force for most of the ongo-

ing work in the field of ML because of their outstanding performance in various fields

ranging from vision-language-acoustics [19]. Some of the most popular DL algorithms

are convolutional neural network (CNN) [101, 97, 161, 165, 67, 73], generative adver-

sarial network (GAN) [59], auto-encoders [119], recurrent neural network (RNN)-long

short-term memory network (LSTM) [72], deep belief network (DBN) [70] and many

more. The solutions presented in this dissertation are also based on deep learning

algorithms (particularly CNN and GAN) in the domain of computer vision. A brief

technical overview of CNN and GAN is provided in the following subsection.

Convolutional neural network (CNN) is the biologically-inspired variant of feed-

forward multilayer perceptron, which mainly consists of three kinds of layers: convo-

lution layer, pooling layer, and fully-connected layer (similar to regular neural net-

works). These layers are stacked together to form a full CNN architecture. Un-

like traditional machine learning techniques that require handcrafted feature design,

CNNs have the ability to automatically learn hierarchical features from the input

data. Because of this, deep neural networks can discover complex structures in high-

dimensional data (such as images) ignoring irrelevant information and focusing on

subtle but important information [100]. To emulate the behavior of the animal visual

cortex, several neurally-inspired models [75, 103] have been proposed in the literature,

where the output from each neuron is controlled by an “activation” function and is

given by

y = h(WTx+ b), (1.1)

where h(.) is a non-linear activation function, x is the input tensor having outputs

from the previous layer neurons (or network input if it is the first hidden layer), W is

a tensor having weight vectors, where w
k
ij represents the k

th weight connecting layer

i to layer j, and b is a tensor of biases.

An activation layer or a non-linear layer is applied immediately after each convo-

lution layer to introduce the non-linearity of the system which significantly improves
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the performance of a CNN for a particular task. Rectified linear unit (ReLU) [128] is

one of the most notable non-saturated activation functions and is used in the proposed

CNN architectures. The ReLU activation function is defined as

R(z) = max(0; z). (1.2)

ReLU layer helps the network to train faster compared to sigmoid or tanh activation

functions. It also helps to alleviate the vanishing gradient problem.

During training, the weight W and bias b parameters are continuously updated

by backpropagating the gradient through the network such that the loss function is

minimized using an optimization algorithm.

Loss function: Choosing an appropriate loss function for a specific task is of great

importance. Softmax loss is the most commonly used loss function for predicting a

single class from K mutually exclusive classes. The softmax function is the gradient-

log-normalizer of the categorical probability distribution and is widely used in various

probabilistic multiclass classification methods. The input to the softmax function is

the output of the neural network which is normalized to a probability distribution

over predicted output classes. In other words, the softmax function takes an input

vector z of K real numbers, normalizes it into a probability distribution consisting of

K probabilities proportional to the exponentials of the input numbers. The softmax

function is defined as

softmax(zi) =
e
zi

PK
j=1 e

zj
. (1.3)

where i = 1, ..., K. Summation of the probability values of all classes is equal to 1.

Optimization: The goal of optimization is to find a local optimum on the man-

ifold of the parameter W that minimizes the loss function. The standard training

of the CNN model is done using the backpropagation algorithm which uses gradient

descent to update its parameters. Stochastic Gradient Descent (SGD) is the most

popular algorithm to optimize neural networks which perform a parameter update
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for each training example (xi; yi) as

⇥ = ⇥� ⌘r⇥J(⇥; xi; yi). (1.4)

In SGD, the convergence speed is controlled by the learning rate ⌘ and each param-

eter update in SGD is computed with respect to a mini-batch which could help to

reduce the variance in the parameter update and can lead to more stable convergence.

Other popular optimizers include Nesterov accelerated gradient [131], Adagrad [56],

Adadelta [187], RMSprop [6], Adaptive Moment Estimation (Adam) [93].

Generative adversarial network (GAN) [59] is a type of neural network, where

the goal is to learn the data distribution and be able to generate something that

looks like the original data distribution. In a typical GAN architecture, a min-max

optimization is solved for two networks, generator G and discriminator D, that learn

to improve their performance by competing with each other i.e. G tries to trick D into

classifying the generated fake data as real data by improving the generated output.

Here the Generator G takes a noise vector z from p(z) [where z is a sample from

the probability distribution p(z)] and tries to generate an image x that resembles

an image from the original data distribution. Generated image x is then fed into

the discriminator D(x) to classify as real or fake. The discriminator solves a binary

classification problem by minimizing the binary cross-entropy loss during training.

The objective function can be expressed as follows

argmin
G

max
D

Ladv(G,D) = Ex⇠pdata(x) [logD(x)] + Ez⇠p(z)[log(1�D(G(z))], (1.5)

where the discriminator tries to maximize the objective function and the generator

tries to minimize the objective function. Therefore, by alternating between gradient

ascent and descent, the network can be trained.

Recently GANs have become one of the most successful and promising framework

in modeling complex data distributions and performed extremely well for various tasks

e.g. image-to-image translation (CycleGAN [196], Pix2Pix [79]), generating very high-
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resolution images (1024 ⇥ 1024) (Progressive GAN [87]), recovering photo-realistic

textures from heavily downsampled images (SRGAN [104]), image inpainting (Con-

text Encoder [140]), synthesizing photorealistic images (GauGAN [139]) etc 2.

This dissertation presents new solutions using deep learning methods to solve

challenges in planetary science and standard dataset consisting of grayscale and RGB

color images.

1.1.3 Related Works of DL Algorithms in Planetary Science

Applications

Recently there have several works on developing DL algorithms for solving different

tasks using the planetary dataset of Mars, Moon, and Europa clipper. Rothrock et

al. [154] developed a DL-based terrain classification algorithm called Soil Property

and Object Classification (SPOC), based on DeepLab FCNN [35] implementation

for rover missions. This algorithm can classify different terrain types (e.g., sand,

bedrock) on both Mars orbital images (acquired by High Resolution Imaging Science

Experiment (HiRISE) [120] camera on the Mars Reconnaissance Orbiter (MRO)) and

surface images (images acquired by the navigation camera of Mars Science Labora-

tory (MSL) Curiosity rover [7]). Wagstaff et al. [172] proposed another classification

algorithm based on AlexNet convolutional neural network [97] for Mars orbital [120]

and surface [7] images. They also deploy these classifiers to the publicly accessible web

interface called PDS Imaging Atlas [8], to enable the first content-based image search

for NASA’s Mars images. Delatte et al. [48] proposed a U-Net [152] based segmenta-

tion CNN model that can automatically detect craters in THEMIS thermal infrared

Mars images [9]. Qiu et al. [142] developed SCOTI, a deep learning-based algorithm

that takes an input image and generates captions explaining the geological content

of the terrain image. This work is built upon the work of Xu et al. [181] having an

encoder-decoder network where the encoder uses a VGG-19 [161] convolutional neural

network for extract image features and the decoder uses a long short-term memory

2Various other cool applications of GANs (with creative namings) can be found at:
urlhttps://github.com/hindupuravinash/the-gan-zoo
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(LSTM) [72] network that produces a caption by generating the words sequentially

based on the context. Ono et al. [137] conceptualized the idea of a content-based

image search algorithm by introducing deep neural networks for PDS [8] and onboard

datasets to make planetary images easily searchable from a large database. Kerner et

al. [92] showed that it is possible to detect changes on the surface of planetary bodies

by using a deep learning approach. They proposed a binary patch-level change de-

tection algorithm based on transfer learning and nonlinear dimensionality reduction

using convolutional autoencoders on various Mars images and Lunar Reconnaissance

Orbiter Camera’s (LROC) Narrow-Angle Camera (NAC) images [10]. All the datasets

used in this work is made available to the public very recently [11]. Kerner et al. [91]

also proposed a novelty detection algorithm for multispectral images obtained from

MSL rover Mastcam camera with application to planetary exploration. They showed

that autoencoders [119] trained with structural similarity (SSIM) [173] loss can de-

tect morphological novelties that are not detected by PCA [84], GANs [59], and mean

squared error (MSE) autoencoders. Wagstaff et al. [171] designed algorithms for de-

veloping onboard intelligence for the upcoming Europa Clipper mission, to support

three scientific objectives: detection of thermal anomalies, compositional anomalies,

and plumes; on the Europa dataset [12]. These research works show the gradual in-

clination of the research community to adopt deep learning algorithms for planetary

science applications.

1.2 Challenges for Machine Learning in Space Ap-

plications

The main roadblock to a planetary exploration rollout is that the best computers

are on Earth, but the best data is on those planets or planetary bodies. Since it is

not possible to send all the acquired data to Earth because of limited communica-

tion bandwidth, therefore, one promising alternative is to perform onboard analy-

sis/computation. However, the processor devices that is being used on-board Mars
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Figure 1-2: An artist’s concept of the Mars Helicopter Scout (MHS), which will
use modern system-on-a-chip (SoC) for onboard autonomy and will piggyback a ride
onboard the Mars 2020 Rover to fly in the Martian for the first time. [138]. Image
credit: NASA/JPL-Caltech.

Reconnaissance Orbiter [13], Mars rover Curiosity [7] as well as the most recent Mars

2020 rover Perseverance [14], is a RAD 750 developed by BAE Systems which is ex-

tremely reliable, resilient, and can function in solar flare-ravaged deep space. This

chip is derived from the PowerPC 750 processor that dates back to the 1990s and is

not suitable to perform huge computation required for deep learning models.

Recently, NASA and Air Force are developing a new generation of radiation-

hardened (RAD-hard) multicore processor named High-Performance Spaceflight Com-

puting (HPSC) which is qualified for space. HPSC would enable a vast suite of new

mission concepts [54]. In the meantime, the Mars Helicopter Scout (Figure 1-2, the

first vehicle to fly on Mars, uses Qualcomm’s Snapdragon system-on-a-chip (SoC) for

visual navigation [21]. The computation power of such modern commercial off-the-

shelf (COTS) SoCs for mobile devices far surpasses the existing spacecraft computers

such as the RAD750. For example, the Snapdragon 855 SoC has the ability to run

deep neural networks in real-time with the support of its graphics processing unit

(GPU), its digital signal processor (DSP), and its AI processor (AIP). Therefore,

although there exist challenges, with the invention of HPSC and Snapdragon, it is

possible to think about performing onboard computation on space computers that

will be much faster ⇠2.2 GHz [14].

Compared to the standard datasets such as MNIST [103], Fashion-MNIST [176],
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CIFAR-10 [96], ImageNet [50], MS-COCO [108] etc. that are used to benchmark

various machine learning algorithms, datasets available for solving problems related

to planetary science are smaller in size and harder to label. Often the planetary

dataset is not publicly available or even if it is publicly available, sometimes domain

knowledge is required to understand the nomenclature or the typicalities related to

that dataset. Also, planetary datasets are usually not labeled. Therefore, if they

require labeling for a particular kind of task, it has to be done by planetary scientists

or by people who have domain knowledge. Moreover, these datasets cannot be crowd-

sourced to the public for labeling because of affiliation constraints or lack of expertise

of the common public.

1.3 Motivation of This Research

The motivation of this research is to propose ML solutions to overcome the problem of

limited data resources which occurs because of two reasons (i) limited bandwidth and

inter-planetary communication through deep space network and (ii) technical limi-

tation of the onboard instrument operation timing and satellite orbiter control that

causes partial corruption in returned data to Earth from various planetary exploration

missions.

1. Motivation to solve the first problem: In the future, planetary exploration

missions are going to be in distant planetary bodies such as Jupiter’s moon-

Europa, or Saturn’s icy moon-Titan, which will have even more limited band-

width/communication opportunities than those at Moon or Mars. Developing

onboard intelligence can play a crucial role in enabling these missions to infer

interesting scientific insights by themselves (i.e. without returning the entire

acquired data to Earth) [171]. Onboard intelligence using ML algorithms can

be developed in several ways: (i) by detecting objects in the observed image

and sending only smaller-sized meta-data, instead of the entire high-resolution

image, (ii) by prioritizing the most novel or salient observations in addition to

the targeted observations and sending only the prioritized data to Earth for sci-
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entists to investigate etc. This way, not only the problem of limited bandwidth

can be handled but also the chances of missed scientific opportunities can be

reduced.

2. Motivation to solve the second problem: Image inpainting can be a helpful

first step for planetary scientists for further analysis such as to automatically

classifying or recognizing interesting morphological features in the planetary

surface (improve classification performance), to make more accurate location

adjustments while making the mosaic of the planetary surface where the region

is not illuminated by Sunlight such as the Polar region; or to improve the landing

site candidate selection efficiency, etc.

3. Other motivations: Automated ML algorithms can help planetary scientists

to analyze complex datasets in a faster and efficient way. This can be done by

automating time-consuming tasks for humans such as finding images of interest,

based on textual queries (image retrieval).

1.4 Thesis Outline

Chapter 1 describes the background knowledge related to machine learning and deep

learning about certain methods employed in this dissertation; challenges associated

with applying ML in planetary science, and finally the motivation of the research

works presented in this dissertation.

Chapter 2 presents a supervised machine learning approach to enhance onboard

analysis capabilities by detecting objects seen in the image and sending this smaller

sized meta-data back to Earth. This will not only help to overcome the problem of

limited bandwidth but also will help to retrieve images from a large database based on

query text. This study required curation of new planetary datasets along with labeling

of each image (annotating objects and corresponding captions for the entire image)

for developing a new machine learning method for planetary image retrieval based on

textual query. The novel contribution is the specially designed “MarsDetect” object

12



detection dataset for Mars surface images, which enabled the proposed text-image

retrieval algorithm to achieve superior performance compared to previous baseline

methods.

Chapter 3 proposes an adversarial training based image inpainting technique to re-

store unphotographed/no-data region on planetary images (that are already returned

data from planetary exploration missions to Earth) to facilitate improved scientific

discoveries by enhancing the data availability for various downstream tasks. The

novel contribution made in this work is the proposed idea of clustering the plane-

tary images into several modes of histogram distributions, which helps to prevent the

mode-collapse problem in generative models and encourage the network to reliably

generate samples from each cluster. The proposed image inpainting algorithm pre-

dicts the “no-data” region of a corrupted image and helps the network to learn better

features to improve the classification accuracy of interesting landmarks on planetary

images. By using diverse planetary datasets of Moon and Mars, it is shown that this

approach is applicable to various planetary images.

Chapter 4 extends this ideology of image inpainting by incorporating a frequency

domain component that enables the network to use both frequency and spatial infor-

mation to predict the missing region of an image. Furthermore, it is shown that the

proposed frequency-based image inpainting algorithm also works well for standard

datasets that look fundamentally very different from planetary images. This shows

the generalization ability of the proposed algorithm. To the best of our knowledge,

this is a novel work because it is the first attempt to solve the image inpainting

problem by using frequency-domain information that is applicable to both planetary

images and standard images.

The final chapter summarizes the work presented in Chapters 2–4, presents some

ideas for future research directions, and provides some philosophy that if practiced,

could bolster long-term interdisciplinary research of ML and planetary science.

Overall, this thesis leverages the recent progress of computer-based processing

in the field of machine learning (particularly deep learning technology) and shows

that computers can make decisions/conclusions on the subjects where human deci-
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sions used to be necessary. However, the main roadblock to applying ML algorithms

for space applications is that the best quality/maximum quantity of data is with

the spacecraft orbiting or roving the planets and planetary bodies; whereas the best

computers are on the Earth. Therefore, either the best computers have to be sent

to different planets or the entire data has to be brought back to Earth for further

analysis. Whereas the first problem seems to be solvable by developing the latest

radiation-hardened computers for spacecrafts (this is still under research or experi-

mentation phase)), the second problem is limited by the laws of Physics. Therefore,

this research attempts to solve these problems by proposing various deep-learning al-

gorithms. Putting together, the philosophy in this thesis is that although there exist

several limitations, it is possible to overcome them by leveraging the benefits of ML

technology for better planetary exploration in the future.
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Chapter 2

Retrieving Interesting Planetary

Images based on Captions

This chapter deals with solving the problem of limited inter-planetary communica-

tion opportunities through deep space network. As the number of acquired images

continues to grow exponentially with each ongoing mission, it becomes increasingly

difficult to return all the data to Earth because of limited bandwidth between Earth

and other planets and planetary bodies. This chapter proposes an image-text match-

ing algorithm to enhance the onboard analysis capabilities of the orbiting or roving

spacecraft by detecting objects in the observed image and sending only much smaller-

sized metadata to Earth that describes the image. The proposed image-text matching

algorithm is also helpful to retrieve images of interest (images with desired geologic

and/or non-geologic features), from a large database based on query text. For ex-

perimental purposes, the Mars surface images captured by the navigation camera of

NASA’s Mars science laboratory (MSL) Curiosity rover is used. Experimental results

demonstrate that the proposed method can accurately detect objects on the Mars

surface images. To develop a machine learning algorithm for planetary image re-

trieval based on text/captions, a labeled Mars image dataset (MarsDetect) is curated

by drawing bounding boxes around objects/regions of interest corresponding to the

captions of the images.
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2.1 Introduction

Over the last few decades, planetary missions have acquired a huge amount of image

datasets. For example, over 25 million images have been acquired by NASA’s Mars

rovers Spirit (MER-A), Opportunity (MER-B), and Curiosity (MSL). [142]. As the

number of acquired images continues to grow with each ongoing mission, it becomes

increasingly difficult to return all the data to Earth for further analysis because of

the limited bandwidth constraints through a deep space network. Let us consider the

current situation in Mars: the downlink capacity from the curiosity rover to Earth is

typically ⇠ 500Mbit (⇠= 60MB) while sophisticated data-intensive instruments such

as hyperspectral imagers, can easily produce hundreds of megabytes to gigabytes

of data. Therefore, it is already difficult to return this huge amount of data to

Earth [138]. With the rapid development of more sophisticated instruments, a future

rover will easily collect gigabytes to terabytes of data (e.g., high-resolution images,

hyperspectral images) over a single operation cycle. Moreover, in near future, many

more planetary missions are planned even to distant planetary bodies such as Jupiter’s

moon-Europa, or Saturn’s icy moon-Titan, where the communication opportunities

will have even more limited than those at Moon or Mars. Therefore, it can be safely

argued that there is an urgent need for developing onboard intelligence to solve this

problem of limited communication bandwidth through deep space network (DSN). In

this context, the goal is to develop onboard intelligent systems that can reduce the

missed scientific opportunity.

Recently DL algorithms have shown tremendous success in several vision-based

tasks such as image classification [67, 73, 161, 165], object recognition [147, 149],

etc. Therefore, in this work, DL algorithms are employed for solving this image-text

matching task, which stands for searching an image from a database by generating

an image description and matching it with the textual query by semantically aligning

their latent representation. The recently developed object detection algorithm [148]

has been leveraged to detect objects of interest in the planetary images and return

the encoded representation of image regions at the object level to Earth instead of
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actual images and to effectively tackle the problem of limited bandwidth. There are

a few works in the literature that employs DL algorithms for planetary image analy-

sis tasks. Rothrock et al. [154] developed a deep learning-based terrain classification

algorithm called soil property and object classification (SPOC), based on DeepLab

FCNN [35] implementation for rover missions. This algorithm can classify different

terrain types (e.g., sand, bedrock) on both Mars orbital [120] and surface [7] images.

Wagstaff et al. [172] proposed another classification algorithm based on AlexNet con-

volutional neural network [97] for Mars orbital [120] and surface [7] images that can

classify objects. Qiu et al. [142] proposed SCOTI, a deep learning algorithm for gen-

erating captions (based on the work of Xu et al. [181]) that takes an input image and

generates captions explaining the captured image. In this work, the motivation is

similar to that of Qiu et al. [142], where they generate captions by extracting general

image features such as edge, shapes, or geometry of objects. This chapter attempts

to solve this problem by detecting multiple objects at once with their actual object

labels and then associating them with the caption, thus finding the image-text sim-

ilarity score. A lot of research works have been done to solve image-text matching

which plays an important role in bridging two domains - vision and language. A sem-

inal work in this direction was done by Karpathy et al. [86] who proposed detecting

objects in an image based on R-CNN [58], encoding these image regions correspond-

ing to objects and then computing the aggregated similarity scores for all possible

region-word pairs to find the image-text similarity. Drawing inspiration from [86]

this chapter proposes an image-text matching algorithm for planetary images which

is done in two stages: (i) detecting objects in the image, (ii) matching words in the

textual query with the corresponding representation of the objects detected in the

image. The main contributions in this chapter can be summarized as follows:

1. An object detection based text-image matching algorithm is introduced to de-

tect objects of interest in planetary images. The object detection algorithm

can generate smaller-sized metadata representations (such as the object bound-

ing box locations, labels along with confidence values) onboard which can be

returned to Earth instead of the entire image. This can solve the problem of
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limited bandwidth through the deep space network and enhance the onboard

image analysis capabilities of the orbiting/roving spacecraft.

2. The developed algorithm is also useful for other ground applications such as im-

age retrieval. Experimental results show that the proposed image-text matching

algorithm can efficiently retrieve images of interest (images with desired geo-

logic and/or non-geologic features), from a large database based on query text.

The novel contribution is the specially designed “MarsDetect” object detection

dataset for Mars images, which enabled the proposed text-image retrieval algo-

rithm to achieve superior performance compared to previous baseline methods.

2.2 Related Works

2.2.1 Object Detection

Object detection is a widely studied topic and a lot of revolutionary works have been

done on this topic. Apart from several hand-engineered features such as SIFT [112],

HOG [43] used for object detection, several noteworthy deep CNN-based object de-

tectors have been proposed in the literature, some of which are described in this sub-

section. Girshick et al. [58] proposed R-CNN that adopted a region proposal-based

strategy [169] and use a deep CNN to classify the scale-normalized object propos-

als. Faster R-CNN [149] utilizes a Region Proposal Network (RPN) that shares the

convolutional features of the entire image with the detection network in an efficient

manner compared to R-CNN and Fast R-CNN. The necessity of such region proposal

was eliminated in SSD [110] and YOLO [147] object detectors. While the SSD net-

work exploits the pyramidal feature hierarchy of CNN and uses the varying size of

convolutional layers, YOLO utilizes two fully connected layers. YOLO treats object

detection as a regression problem and uses a single neural network to predict bounding

box locations along with their confidence and corresponding class probability scores,

directly from the image. YOLO is known for its ability to work extremely fast in

real-time.
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Figure 2-1: Labeling interface along with captions and labels.

2.2.2 Image to Text Matching

There have been a lot of studies related to image-text matching that maps images

and sentences to a common embedding space. Some previous methods [86, 133] take

advantage of the bottom-up attention [31, 88] by drawing inspiration from the human

visual system. Karpathy et al. [86] attempts to solve this problem by combining CNN

features (over image regions), and bidirectional RNN (over sentences) and tries to

align image and text modalities. Niu et al. [133] presented a Hierarchical Multimodal

LSTM (HM-LSTM) model that maps image regions and noun phrases into a shared

embedding space. Other image-text matching algorithms [74, 129] use conventional

attention-based models [181]. Huang et al. [74] introduced a multimodal context-

modulated attention scheme to selectively attend to a pair of instances appearing

in both image and sentence. Nam et al. [129] proposed another attention based

network that allows visual and textual attention mechanisms to estimate the similarity

between images and sentences. Song et al. [163] used a multi-head self-attention and

residual learning-based approach that combines global and local context to find the

visual-semantic embedding for text-image retrieval.
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2.3 Experimental Data: Bounding Box Annotation

In this work, Mars images acquired by the Mars Science Laboratory (MSL) Curiosity

rover are used. Since a supervised learning algorithm requires a labeled dataset and

the proposed algorithm is also based on supervised learning, it is necessary to label

the dataset. The Mars dataset used in this chapter is available at NASA-PDS [15].

Amongst all the available Mars images, only 640 images are annotated (with captions)

by JPL planetary scientists. Here, for experimental purposes, only 640 number of an-

notated images are used. The noun phrases from these captions are extracted and

20 different geological features present in the Mars images are identified as followed:

regolith, bedrock, sedimentary bedrock, bedrock outcrop, fractured bedrock outcrop,

layered bedrock outcrop, boulder outcrop, butte, float rocks, slope, mound, moun-

tain, sand dunes, sand ripples, clasts, rover, rover tracks, alteration halos, veins, and

layered strata. These identified objects in the images are then annotated by drawing

bounding boxes and thus a labeled image dataset named “MarsDetect” is curated.

This MarsDetect dataset contains the bounding box locations with object labels and

the corresponding captions. A graphical image annotation tool “labelimg” [16] based

on Python and Qt is used for drawing bounding boxes in different images based on

the objects present in the image. The annotations are saved in YOLO format to use

for the object recognition task. Figure 2-1 shows some examples of annotated images

(with bounding boxes and captions) on the graphical interface. It is to be noted that

the captions for each image are given by JPL planetary scientists, however, the object

label list for each image is created by us, by matching them with the corresponding

image captions.

2.4 Workflow

The detailed workflow of the data collection and model retraining pipeline is shown

in Figure 2-2. At first, the terrain images are collected and annotated. The object-

wise bounding box annotation is done by us and the caption annotation is given by
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Figure 2-2: The workflow of the data collection and model retraining pipeline.

the JPL planetary scientists. After annotating the dataset in step (a), the proposed

model is trained in such a way that it learns the latent semantic alignment between

salient objects (e.g. float rocks, sand dunes, mountain, etc.) and the corresponding

words in the caption. After the model is trained, it can be implemented onboard the

rover or orbiting spacecraft to perform onboard image analysis and can (d) generate

meta-data such as the bounding box co-ordinates of different objects with confidence

scores, for newly acquired images. The generated meta-data for all images can be (e)

returned to Earth for scientists to analyze the priority of downloading a particular

image, based on the observation content. Finally (f) the image and caption database

can be updated to retrain/fine-tune the model to make it applicable to the acquired

images from the latest missions.

2.5 Proposed Method

In this work, the goal is to infer the similarity between an image and its caption by

mapping words and object label image features into a common embedding space. This

is performed in two stages, (i) first salient objects (or objects of interest) are detected

in the planetary images, and then an encoded representation of image regions at object

level is generated which is much small than the actual image size, and (ii) bring this

object-level representation to an embedding space that is similar to the word feature

space and compute the aggregated similarity scores for all possible combinations of
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region-word pairs to infer the image-text similarity.

Let us consider a database of images and corresponding captions given as (xi, yi).

The goal is to find the closest matching image corresponding to an input text query

which is represented as yquery. For this purpose, a score function si = fsim(yi, yquery) is

developed, which finds the similarity score between the query text and all the captions

in the database. The task is to find the corresponding image xk, such that

K = argmin
j

fsim(yi, yquery). (2.1)

Let us assume a constraint such that the true caption for the images are not available

in the database and must be inferred from the images in the database. Thus this

problem is formalized as a training task with the training image having the true

caption information, {xtrain
i , y

train
i }i=1!N and the test set is the database of images

(where the text-to-image retrieval task has to be performed) only has the images,

given as
�
x
test
j

 
j=1!M

. Therefore, this task consists of the two following subtasks:

(i) Salient object detection for images in the search database, (ii) finding text-image

similarity.

2.5.1 Salient object detection

In this first step, the objective is to detect the salient objects in the search database

images
�
x
test
j

 
j=1!M

. Therefore, the proposed network has to be trained using the

object bounding box annotations in the training images given as {xtrain
i , y

train
i }i=1!N .

To obtain the object categories, the annotated captions given by scientists for each

image are used. From each caption, the unique set of noun-phrases are extracted.

After that, some rare adjectives are manually removed. Thus 20 different geological

features/classes are obtained. Next, the “MarsDetect” dataset is curated by exten-

sively annotating the images based on the aforementioned 20 geological features.

For each image, multiple object annotations {a0, a1, ...aNi} (where Ni is the number

of annotated objects in the image) are created, using which the object detector is

trained. The proposed object detection module for the Mars dataset is described in
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Table 2.1: Object detection network architecture for Mars images.

Type Filters Size Output

Convolutional 32 3⇥ 3 256⇥ 256

Convolutional 64 3⇥ 3/2 128⇥ 128

1⇥
Convolutional 32 1⇥ 1

Convolutional 64 3⇥ 3

Residual 128⇥ 128

Convolutional 128 3⇥ 3/2 64⇥ 64

2⇥
Convolutional 64 1⇥ 1

Convolutional 128 3⇥ 3

Residual 64⇥ 64

Convolutional 256 3⇥ 3/2 32⇥ 32

8⇥
Convolutional 128 1⇥ 1

Convolutional 256 3⇥ 3

Residual 32⇥ 3

Convolutional 512 3⇥ 3/2 16⇥ 16

8⇥
Convolutional 256 1⇥ 1

Convolutional 512 3⇥ 3

Residual 16⇥ 16

Convolutional 1024 3⇥ 3/2 8⇥ 8

4⇥
Convolutional 512 1⇥ 1

Convolutional 1024 3⇥ 3

Residual 8⇥ 8

Avgpool Global
Connected 1000
Softmax

the following subsection.

Object Detection Module: Here, the YOLO-v3 [148] object detection module

is employed, which is an improved version of the YOLO-v1 [147] and is one of the

most popular object detection algorithms. In this case, the YOLO-v3 network pre-

trained on MSCOCO [108] dataset is used. YOLO-v3 [148] predicts bounding boxes

at 3 different scales where feature extraction is done from each of these scales similar

to feature pyramid networks [107] concept. This provides an output of 3-d tensor

encoding the bounding box locations, objectness score, and the corresponding class

probability scores. The objectness score for each bounding box is calculated using
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Figure 2-3: Inference results from the proposed object detection module. The object
detection system can successfully detect various salient geologic features (such as float
rocks, mountains, clasts, etc.) and non-geologic features (rover, rover tracks, etc.)

logistic regression. To extract image features, the Darknet-53 network is used as

the backbone. This Darknet-53 architecture contains 53 convolutional layers (3 ⇥ 3

and 1⇥ 1 successive convolutional layers) along with residual shortcut connections in

between layers as described in Table 2.1.

2.5.2 Text-image similarity

After the object detector obj(x) is trained, the annotations obtained for each image

are as followed: fobj(xj) =
�
ba0, ba1, ...daMj

 
where Mj is the number of predicted
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Table 2.2: Comparison of the text-image retrieval results in terms of Recall@K (R@K)
on Mars dataset.

Method
Image retrieval

R@1 R@5 R@10
PVSE [163] 0.78% 5.47% 11.72%

Ours 15% 40% 53%

annotations. For the words in the captions, word2vec (w2v) model [122] is used

which is primarily trained on a large corpus of text to produce word embeddings

in vector space. Thus, both captions (words) and object label image features are

brought into a common embedding space. Finally the similarity score is computed

by using the following formula

sj =
1

Mj

MjX

k=1

d(avg-w2v(yquery), w2v( bak)). (2.2)

where w2v takes a textual query yquery and predicted object annotations bak as

input and calculate their vector representation and sj computes the aggregated sim-

ilarity score for all possible combinations of image region-word pairs.

2.6 Experimental Results

To evaluate the performance of the object detection module on the Mars dataset,

several experiments are performed. The qualitative results obtained from the test

dataset are shown in Figure 2-3. It can be seen that the object detection system

can successfully detect salient features such as float rocks, mountain, rover tracks,

clasts, etc. in the test images. The experimental results are reported using the metric

Recall@k (R@k) at k = 1; 5; 10 in Table 2.2, where R@k measures the number of

correct/relevant items amongst the top-k results. The proposed method is compared

with the previous text-image retrieval method PVSE [163]. It can be seen that this

method shows better performance compared to the previous attention-based PVSE
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Query text: bedrock outcrop with veins

Query text: rover on sand dunes

Query text: sedimentary bedrock in front of mountain

Query text: view of a slope

Query text: presence of clasts

Figure 2-4: Text-to-image retrieval results on Mars dataset. For each query text the
top five retrieved images, along with their similarity scores are shown.
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method. I believe that the object labeling of the MarsDetect dataset has enabled

the proposed method to retrieve images more efficiently compared to PVSE. The

qualitative results of text-to-image retrieval are provided in Figure 2-4, where the top

five retrieved images from the database along with the similarity scores for each query

text have been shown. It can be seen that the proposed method can retrieve images

with good confidence values.

2.7 Conclusions

This chapter presented a text-image matching algorithm based on a sub-task of object-

detection. The major contribution made in this chapter is the labeled object detection

dataset which is called “MarsDetect” that improves performance of text-image match-

ing via an intermediate stage of object detection. A YOLO-v3 based object detection

algorithm was employed to detect objects of interest in the planetary images. There-

fore, in this way, a much smaller-sized encoded representation of image regions at the

object level can be generated and sent back to Earth instead of the actual images

which can effectively solve the limited bandwidth problem through deep space. Exper-

imental results showed that the proposed algorithm can successfully detect objects

in the planetary image. Moreover, the proposed text-image retrieval system could

successfully retrieve images of interest with superior performance (as evidenced by

higher R@K value) compared to the state-of-the-art approaches. This work demon-

strated that it is possible to retrieve images of interest from a huge database of

planetary image servers using a textual query which will automate the tedious task

of searching each image one by one and save a lot of time for scientists to make faster

decisions. This research was initially aimed to solve the limited bandwidth problem

by developing onboard image analysis capabilities for better space exploration in the

future. Nonetheless, the developed algorithm is also useful for other applications on

the ground such as image retrieval.
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Chapter 3

Toward Better Planetary Surface

Exploration by Orbital Imagery

Inpainting

Planetary surface images are collected by sophisticated imaging devices onboard the

orbiting spacecraft. Although these images enable scientists to discover and visual-

ize the unknown, they often suffer from the “no-data” region because the data could

not be acquired by the onboard instrument due to the limitation in operation time

of the instrument and satellite orbiter control. This greatly reduces the usability

of the captured data for scientific purposes. To alleviate this problem, this chapter

proposes a machine learning-based “no-data” region prediction algorithm. Specifi-

cally, a deep convolutional neural network (CNN) based image inpainting algorithm

is employed to predict such unphotographed pixels in a context-aware fashion using

adversarial learning on planetary images. The benefit of using the proposed method

is to augment features in the unphotographed regions leading to better downstream

tasks such as interesting landmark classification. The Moon and Mars orbital images

captured by the JAXA’s Kaguya mission and NASA’s Mars Reconnaissance Orbiter

(MRO) are used for experimental purposes and the results demonstrate that the pro-

posed method can fill in the unphotographed regions on the Moon and Mars images

with good visual and perceptual quality as measured by improved PSNR and SSIM
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scores. Additionally, the proposed image inpainting algorithm helps in improved fea-

ture learning for CNN-based landmark classification as evidenced by an improved

F1-score of 0.88 compared to 0.83 on the original Mars dataset.

3.1 Introduction

In the quest of exploring and understanding planetary bodies, several missions to

Moon, Mars, and other planets in the solar system have been carried out over the

years. Advancement in imaging devices has enabled humans to visualize the planetary

terrains and inspired them to discover how planets have evolved. Such high-resolution

orbital images are crucial in providing us unprecedented views of interesting planetary

surface features or characterizing potential candidates for future landing sites [1]. For

example, onboard cameras of Kaguya mission’s Selene spacecraft [166], and Mars Re-

connaissance Orbiter (MRO) [1] have provided scientists with Lunar and Mars orbital

imagery. However, to obtain these high-resolution images, the swath width of the on-

board cameras of the orbiting satellite is kept lower which in turn creates discontinuity

or black lines on the Lunar or Mars surface image. Although Moon and Mars are

the most extensively studied celestial bodies, there still exist small portions that are

yet not covered by the onboard instruments. Moreover, there are other planets (e.g.

Mercury, Pluto, etc.) or celestial bodies where “no-data” regions exist because a large

percentage of the surface of these celestial bodies are not yet captured. Therefore, till

the time the global mapping of the entire planetary surface is completed, the problem

of “no-data” problem will exist. Examples of such unphotographed/missing regions

on Moon, Mars, Mercury, and Earth remote sensing images are shown in Figure 3-1.

Such unphotographed pixels limit the application and usability of data, in classify-

ing or recognizing interesting morphological features in the planetary surface. There-

fore, restoring them is of great significance for many practical applications such as

improving classification accuracy, enhancing data availability, to make a more accu-

rate location adjustments while making the mosaic of the planetary surface where the

region is not illuminated by Sunlight such as the Polar region, to improve the land-
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(a) (b) (c) (d)

Figure 3-1: Example of unphotographed/missing pixel regions on (a) Lunar orbital
imagery acquired by Kaguya mission’s SELENE spacecraft [166], (b) Mars orbital
imagery acquired by MRO [1], (c) Mercury orbital imagery acquired by MESSENGER
spacecraft [26], and (d) Earth remote sensing images [194].

ing site candidate selection efficiency, etc. Although one might think that filling the

unphotographed region with artificial pixel values might be harmful from the view-

point of precise observation, nevertheless here it is shown that such unphotographed

pixel prediction can effectively improve the performance of terrain classification due

to improved feature learning.

With the increasing amount of image data available from the ongoing planetary

imaging investigations [1, 26, 120, 166], there is an urgent need for automated vision-

based algorithms that achieve good feature learning of interesting landmarks. How-

ever, because of the unphotographed regions, the interesting features sometimes ap-

pear incomplete. In this chapter, the aim is to predict such a region to enable the

network to learn the complete feature of the interesting landmark which in turn leads

to better classification performance.

Previous research works have shown that it is possible to reconstruct missing data

on remote sensing imagery on Earth [34, 36, 37, 68, 69, 81, 121, 145, 158, 182, 184,

189, 190, 192, 193, 194]. While these previous methods perform well for Earth remote

sensing data, they are not suitable for planetary images such as Moon or Mars. This

is because planetary surface images differ from Earth remote sensing data in terms of

the histogram, contrast, presence of different geological features, etc. Moreover, the
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vast difference in temperature, presence of the atmosphere, water, vegetation, etc.

on Earth makes geological features (valleys, channels, etc.) on earth remote sensing

images look much different from that of other planetary bodies. Furthermore, in the

case of the planetary image dataset, there exists a gradation (different modes) of

histogram distribution in the input images, which cannot be solved efficiently using

existing missing data reconstruction techniques on remote sensing imagery. Therefore,

mode-specific expert neural networks are proposed that can handle such peculiarity

of histogram distribution on any planetary surface images. Although in this chapter,

the effectiveness of the proposed algorithm is shown only on Lunar and Mars surface

images, this algorithm can be applied to any planetary images that suffer from such

“no-data” regions.

Recently, deep learning [100] has garnered tremendous success because of its abil-

ity to express non-linear functions. Benefiting from this trend, CNNs have demon-

strated outstanding performance in solving several high-level vision-based tasks such

as image classification [67, 73, 161, 165], object recognition [147, 149], etc. as well as

low-level tasks such as image denoising [191], super-resolution [53], etc. Therefore, in

this work, a CNN is employed for restoring planetary orbital imagery contaminated

with unphotographed pixels. Here, this problem is treated as an image inpainting

problem where the main challenge is to synthesize the unphotographed pixels in such

a way that it looks visually realistic when compared to the original ones. Another

challenge associated with planetary image restoration is that the input images have

several modes of histogram distribution which inhibits the generative model to faith-

fully reproduce samples representing each histogram mode. This problem is tackled

by clustering images with similar intensity distribution and then training regression

models having expertise in restoring unphotographed pixels in the images with that

particular intensity distribution. The intuition is that mode-specific encoders will

provide better inpainting results when compared with only one encoder trained on an

average intensity distribution [153]. The proposed method builds upon the recently

work on image inpainting called Context Encoder (CE) [140] which is a Generative

Adversarial Networks (GAN) [59] based network where the network first learns to

31



predict and fill in the unphotographed region. Then it uses the learned feature repre-

sentation as guidance to classify the morphological features on the planetary surface.

The main contributions in this chapter can be summarized as follows:

1. An adversarial learning-based image inpainting framework is introduced for

planetary images (Moon, and Mars) that learns a non-linear end-to-end map-

ping from corrupted to clean images.

2. To enable better inpainting various modes of histogram distribution in the input

images are extracted by unsupervised clustering. Here, mode-specific GAN

models (which are expert models) are trained for inpainting images belonging

to that cluster of the histogram mode. The novel contribution made in this

work is the proposed idea of clustering the planetary images into several modes

of histogram distributions, which helps to prevent the mode-collapse problem in

GAN models and encourage the network to reliably generate samples from each

cluster. This technique has not been applied by previous inpainting algorithms.

3. The simulated and real experimental results show that the proposed approach

can restore images with a significant improvement in terms of visual quality and

evaluation metrics, thereby outperforming previous inpainting methods.

4. Furthermore, it is shown that the proposed inpainting method helps in aug-

menting features of interesting but masked/incomplete landmarks which in turn

leads to better generalization. The experimental results also validate this con-

cept by boosting the classification accuracy of the morphological features on

Mars images.

The rest of this chapter is organized as follows. Section 3.2 describes the related works

on image inpainting techniques on standard datasets and remote-sensing datasets.

Section 3.3 provides the details of the planetary datasets that are used for the experi-

mental purpose. Section 3.4 explains the proposed method including the clustering of

the training and testing images based on histogram distribution, the training and im-

plementation details of the inpainting module, and classification module. Section 3.5
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Figure 3-2: Overview of the proposed image inpainting algorithm. First, the masks
from the real corrupted images are extracted and are superimposed on clean images
and a pair of clean and simulated/artificially corrupted images is created. Next, the
image inpainting module 4.3.2 is trained using these image pairs. Then, the trained
inpainting model is fine-tuned on the real corrupted images. Finally, all the clean and
inpainted version of the corrupted images are stored to solve a classification problem.

provides the experimental results of the missing data reconstruction in both simulated

and real-data experiments and its contribution to boosting classification performance.

Finally, the conclusions are presented in Section 3.6.

3.2 Related Works

In computer vision, the task of filling in the missing pixels of an image is known as

image inpainting. This section briefly reviews the previous image inpainting works on

standard real-life datasets [38, 50, 52, 111] by broadly categorizing them into three

sub-fields, (i) traditional inpainting techniques, (ii) CNN-based inpainting, and (iii)

GAN-based inpainting. This section also reviews previous works on remote sensing

imagery inpainting on Earth and Moon.

3.2.1 Traditional Inpainting Techniques

Traditionally, a variety of image inpainting approaches have been proposed in the

literature. One approach in this family is known as diffusion-based image comple-

tion [24, 27, 28, 105] where a diffusive process is modeled using Partial Differential
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Equations (PDE) to propagate colors into the missing regions. Chan et al. [32] pro-

posed a novel adaptive total variation (ATV) model by combining the diffusion mech-

anism of the TV model based on PDE and an edge detection operation to improve

inpainting performance by eliminating the staircase effect. These methods work well

for inpainting small missing regions, but fail to reconstruct the structural component

or texture for larger missing regions.

Another approach is known as patch-based image completion, which can han-

dle complicated image completion tasks such as large hole filling in natural images.

Efros and Freeman [57] first proposed a patch-based algorithm for texture synthe-

sis, which is based on iteratively searching for similar patches in the existing image

and paste/stitch the most similar block onto the image. However, patch-based meth-

ods are computationally very expensive because of the need for computing similarity

scores for every target-source pair. Therefore, for more accurate and faster image in-

painting, an optimal patch search algorithm (fragment-based image completion) was

proposed by Drori et al. [55]. Another optimization method to synthesize visual data

(images or video) based on bi-directional similarity measure was proposed by Simakov

et al. [159]. Later these techniques were expedited by Barnes et al. [25] who proposed

PatchMatch, a fast randomized patch search algorithm that could handle the high

computational and memory cost. For image completion, several exemplar-based im-

age completion methods have also been proposed. Criminisi et al. [41] proposed a

patch-based greedy sampling algorithm, which enables faster image inpainting. Meur

et al. [99] introduced a hierarchical super-resolution algorithm for image inpainting.

He et al. [64] approached the image completion problem by computing the statistics

of patch offsets. However, the above methods rely only on existing image patches

and use low-level image features. Therefore they are not effective in filling complex

structures by performing semantically aware patch selections.

3.2.2 CNN-based Inpainting

With the recent success of CNN models [102] in tackling harder problems such as

classification, object detection, and segmentation, that need a high-level semantic
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understanding of an image, CNNs became a popular choice to solve image inpaint-

ing problems as well. Xie et al. [177] proposed Stacked Sparse Denoising Auto-

encoders (SSDA), a combined approach of sparse coding and deep networks pre-

trained with denoising auto-encoder to solve the blind image inpainting task, which

is a more challenging inpainting task. This is because, in the case of blind image in-

painting, the algorithm does not know the location of the missing pixels and it learns

to find the location of the missing pixels and then restore them. Kohler et al. [95]

showed a mask specific deep neural network-based blind inpainting technique for filling

in small missing regions in an image. Chaudhury et al. [33] attempted to solve the

blind image inpainting task using a lightweight fully convolutional network (FCN)

demonstrating a comparable performance with the sparse coding based k singular

value decomposition (K-SVD) [117] technique. However, initially, CNN-based image

inpainting approaches were limited to very small sized masks.

3.2.3 GAN-based Inpainting

More recently, GAN-based inpainting methods have been proposed which have achieved

promising results in solving image inpainting problems. Pathak et al. [140] proposed

Context Encoders, a channel-wise fully connected convolutional neural network-based

approach, that could inpaint large holes or missing regions existing in an image by

predicting missing pixels based on the context of the surrounding areas of that region.

Their network was trained using both standard `2 loss and adversarial loss [59]. Later,

Iizuka et al. [76] extended the work of [140] and demonstrated that by leveraging the

benefits of dilated convolution layers, a variant of standard convolutional layers, their

encoder-decoder based method could restore missing pixels that are consistent both

locally and globally. Similar to [140], this approach also used an adversarial training

approach for image completion, but unlike [140], this method could handle arbitrary

image size and mask because of the proposed global and local context discriminator

networks. Recently, Yu et al. [185] presented a unified feedforward generative net-

work with a novel contextual attention layer, trained with reconstruction losses and

two Wasserstein GAN [20, 61] and showed that the unified framework could inpaint
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images with multiple holes of variable sizes situated at arbitrary locations. Later, to

handle free-form/irregular masks, Liu et al. [109] proposed a partial convolution layer

with an automatic mask-update rule, where the mask is updated in such a way that

the missing pixels are predicted based on the real pixel values of the original image

where the partial convolution can operate. Song et al. [164] introduced a segmenta-

tion guidance and prediction network that first predicts the segmentation labels of

the corrupted image, then fills in the segmentation mask to use it as a guidance to

complete the image. Xiong et al. [178] showed that by predicting and completing

the contour of the foreground image, it can be used as a guidance to inpaint the

missing region of a corrupted image. In a similar spirit, Nazeri et al. [130] proposed

an edge generator that hallucinates the edges of the missing regions which is used

as a guidance to the image completion network. Yu et al. [186] proposed a gated

convolution-based approach to handle free-form image completion.

3.2.4 Remote Sensing Imagery Inpainting

Image inpainting on Earth remote sensing images has been widely studied, where such

missing pixels occur in the form of dead pixels or thick cloud cover because of the at-

mospheric environment or the working conditions of the satellite sensor [158, 194]. Re-

mote Sensing (RS) image inpainting using spatial information include interpolation-

based methods [190, 192, 184], variation-based methods [36, 69], PDE-based meth-

ods [121], and exemplar-based methods [41]. Although spatial-based methods can

reconstruct small missing areas, they fail to guarantee precise reconstruction for

large missing regions. To overcome these limitations several other techniques such

as spectral-based methods (utilizing information from different spectral bands) [145,

182], and temporal-based methods (using data taken at the same location in differ-

ent periods) [189, 34] have been proposed. Later more generalized algorithms (hy-

brid methods) were developed by integrating spatial, spectral, and temporal informa-

tion [194]. To this end, Ji et al. [81] proposed a non-local low-rank tensor completion

algorithm to reconstruct the missing information. Cheng et al. [37] introduced a

double-weighted low-rank tensor (DWLRT) model and He et al. [68] proposed a TV-
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Figure 3-3: Details of Moon and Mars dataset: (a, d) Histogram distribution of several
modes of input images, (b, e) Knee point analysis for determining the optimal number
of clusters, (c, f) Examples of clean and corrupted images for each cluster. The first
and second row demonstrates the details of Moon and Mars images respectively.

regularized tensor ring completion (TVTR) model to reconstruct missing data in RS

images. Recently, Zhang et al. [193] proposed a progressive Spatio-temporal patch

group learning approach for cloud and cloud shadow removal for RS data. On the

other hand, to restore missing pixels on the Lunar surface image, Roy et al. [156] pro-

posed a U-Net based approach that minimizes a standard `2 loss to restore the missing

region on Lunar surface images collected by the Multiband Imager (MI) instrument

on-board the Kaguya satellite.

3.3 Experimental Data

In this work, Lunar and Mars orbital images are used to show the effectiveness of the

proposed algorithm.

3.3.1 Lunar Orbital Imagery by SELENE

Here the averaged lower resolution mosaic data of the lunar surface is used which

was captured by Multiband Imager onboard the JAXA lunar explorer satellite SE-
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Table 3.1: Detailed number of train and test images of Moon and Mars dataset.

Moon dataset Mars dataset

Cluster
0

Cluster
1

Cluster
2

Total Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Total

Clean
Train 3385 2052 2562 8000 10162 8620 2997 7786 12557 42122

Test 847 513 641 2000 2541 2155 750 1947 3140 10533

Real

Corrupted

- - - - 5000 3133 3598 2060 2755 4108 15654

LENE (Kaguya) [166]. This image covered the lunar surface with longitude (+180 to

-180 degree) and latitude (+85 to -85 degree). This entire Lunar image consists of

46080⇥21760 pixels with an image size of 600MB. The Moon dataset is created by

converting the longitude and latitude of the crater locations in terms of pixel values,

where each degree is considered to be 128 pixels and cropped the crater images with

and without the black lines. This dataset contains only clean and real-corrupted

crater images as shown in Figure 3-3(c). Here, each image is of size 256⇥256 pixels.

Several pairs of clean and artificially corrupted crater image are generated by ran-

domly superimposing the black lines (extracted from the real corrupted images) on

the clean crater images. A detailed number of such clean and artificially corrupted

crater image pairs used for train and test purposes for the Moon dataset is summa-

rized in the first row of Table 3.1. The second row of Table 3.1 describes the total

number of real corrupted images in the dataset. Since the real corrupted Moon im-

ages are not used for inference purposes, they are not divided into clusters and are

kept blank in the corresponding columns of Table 3.1.

3.3.2 Mars Orbital Imagery by MRO

For Mars images, the grayscale-version of the Mars orbital images are used, which

were collected by the HiRISE camera onboard the MRO having a spatial resolution

of approximately 30 cm/pixel [120]. This dataset [172] is created and labeled by

processing map-projected HiRISE images to find eight visually salient and interesting

“landmarks” such as craters, dark and bright sand dunes, slope streaks, impact ejecta,

swiss cheese, spider, etc. on the planetary surface as shown in Figure 3-4. It consists
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of a total of 73,031 landmarks amongst which 10,433 landmarks are detected and

extracted from 180 HiRISE browse images. 1 The remaining 62,598 landmarks are the

augmented version (90 degrees, 180 degrees, 270 degrees clockwise rotation, horizontal

flip, vertical flip, and random brightness adjusted) of 10,433 original landmarks. Each

image is of size 227⇥227 pixels and for this experimental purpose, they are resized

to size 256⇥256. A detailed number of clean and artificially corrupted image pairs

used for train and test purposes for the Mars dataset is summarized in the first row

of Table 3.1. The second row of Table 3.1 describes the number of real corrupted

images for each cluster and the total number of real corrupted images in the dataset.

It is to be noted that the black region on the Lunar surface image as shown in Fig-

ure 3-3(c) is a practical example of a “no-data” region which could not be captured by

the onboard camera of the SELENE Kaguya satellite because of the limitation in op-

eration time of the instrument and satellite orbiter control. However, the black regions

on Mars HiRISE images as shown in Figure 3-3(f) are map projections. Nevertheless,

for demonstration purposes, they are considered as an example of the “no-data” region

and the proposed algorithm show how to predict such a “no-data” region for better

surface image analysis.

3.4 Proposed Method

In this chapter, the goal is to restore a predict the “no-data” region of a corrupted

image so that it helps in better feature learning to improve the classification accuracy

of interesting landmarks on planetary images. This problem is solved by the following

four-stage approach:

1. The Moon and Mars dataset have images from several modes in the histogram

distributions. Therefore the images are divided into different clusters to prevent

the mode-collapse problem in generative models and encourage the network to

reliably generate samples from each clusters.

1The dataset is available at https://zenodo.org/record/2538136#.XYjEuZMzagR.
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Figure 3-4: Example of different classes of Mars dataset with the corresponding num-
ber of images for each class.

2. Both the Moon and Mars dataset consist of some real corrupted images (with

unphotographed pixels) and a majority of clean images. From these real cor-

rupted images, the masks/unphotographed pixel regions are extracted and are

artificially superimpose on the clean image samples, thus yielding artificially

corrupted and corresponding clean image pairs for each clusters. GAN-based

inpainting is performed on such paired data.

3. However, there still existed some distribution shift between training and testing

images (in terms of gray value, contrast, histogram, etc.). Therefore a fine-

tuning stage is designed that uses partial ROIs of the real corrupted images to

fine-tune the models for matching the testing distribution.

4. Finally, a classification task is performed on original images and is compared

to the dataset where clean and inpainted versions of the corrupted images are

combined to yield better F1-score due to improved landmark feature learning.

It is to be noted that the first stage (separating images into clusters) and second
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Figure 3-5: Network architecture.

stage (image inpainting task) are performed for both Moon and Mars image datasets.

However, the third stage (inference on real-corrupted images), and fourth stage (clas-

sification) are performed only on the Mars dataset. This is because the Moon dataset

consists of images only from one class (crater) 2, whereas the Mars dataset con-

sists of eight different classes as shown in Figure 3-4. Therefore it is more useful to

demonstrate the results of the third and fourth stages using the Mars dataset. In

the following subsections, at first the preprocessing step for the data and details of

extracting masks tailored for this task are introduced. Then the detailed implemen-

tation of the image inpainting module and the fine-tuning process on real-corrupted

images are explained. Finally, the image classification module is described. The

overall framework of the proposed method is shown in Figure 3-2.

3.4.1 Unsupervised Separation of Histogram Clusters

During experiments, it was found that the Moon and Mars dataset have planetary

images from several modes in the histogram distributions and they can be separated

into clusters as shown in Figure 3-3(a, d). To encourage the generative model to

faithfully reproduce samples from each such clusters, the images with different his-

2The lunar surface has many geological features other than craters. However, in this chapter,
only one kind of geological feature for the Moon dataset has been used for the sake of easy visual
comparison and a lack of dataset availability of different kinds of geological features.
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togram distribution are separated into different clusters. Another intuition behind

such clustering is that a regression model trained with images of particular intensity

distribution such as p1(x) or p2(x) will give better performance compared to a single

model with an average intensity distribution p(x) [153]. Here, first the number of

black pixels in every image is calculated. Images that have number of black pixels

less than 5 are considered as clean image and images that have number of black pixels

more than 50 are considered as corrupted images. Then a k-means clustering [62] is

performed to cluster these images with missing pixels into different groups based on

their histogram distribution as shown in the following equation

hk(x) =
n(x[i, j] = k)

number of pixels
, (3.1)

where k varies from 1 to 255 for the features and h0(x) is the number of black pixels.

To find the optimal number of clusters k, a Knee point analysis [195] is carried out.

As shown in Figure 3-3(b, e), for Moon images, the optimal number of image clusters

comes out to be 3, whereas for Mars images the optimal number of image clusters

comes out to be 5. Examples of clean and real corrupted images corresponding to each

clusters are shown in Figure 3-3(c, f). Subsequently, from the cluster centers in the

grayscale histogram space, a class label is assigned to each clean image, according to

the cluster center having the closest Euclidean distance. Next, for each of the clusters,

a mask (missing pixels from the corrupted images) is extracted and is randomly

superimposed on clean images to create pairs of clean and artificially corrupted images

for training and testing different regression models.

3.4.2 Image Inpainting Module

Given a real corrupted image, the goal is to fill in the missing region so that the

network can predict/augment the incomplete/masked features of the interesting land-

marks with seamless boundary transitions. Intuitively, the missing region can be filled

in multiple plausible ways. However, here the aim is to restore the missing pixels in

such a way that it is the most coherent to its surrounding context. For solving the
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inpainting task of Moon and Mars images having different intensity distribution, ad-

versarial learning based GAN models are trained, which has shown promising results

in generative modeling of images [144] in recent years. The network architecture

of the proposed inpainting module is shown in Figure 3-5. The generator network

takes an image with missing pixels and its corresponding binary mask indicating the

missing regions as input pairs and outputs the inpainted image.

3.4.2.1 Network Architecture

Generator: The generator architecture is adapted from Johnson et al. [83] which

has shown impressive results for neural style transfer and image-to-image transla-

tion [196]. This generator network contains three convolution layers (where Conv2

and Conv3 layers are stride-2 convolution layers responsible for down-sampling twice),

eight residual blocks [67], and three convolution layers (where Conv4 and Conv5 lay-

ers are transpose convolution layers responsible for up-sampling twice back to the

original image size). Here instance normalization [170] and ReLU activation function

are used across all layers of the generator network. A more detailed description of

the generator network and output size of each layer is given in Table 3.2.

Table 3.2: Generator network.

Layer name Stride Activation Layer output size

Input - - 1⇥ 2⇥ 256⇥ 256

Encoder network

Conv 7⇥ 7 1 ReLU 1⇥ 64⇥ 256⇥ 256

Conv 4⇥ 4 2 ReLU 1⇥ 128⇥ 128⇥ 128

Conv 4⇥ 4 2 ReLU 1⇥ 256⇥ 64⇥ 64

Residual block (⇥8)

Residual blocks 1⇥ 256⇥ 64⇥ 64

Decoder network

Conv 4⇥ 4 2 ReLU 1⇥ 128⇥ 128⇥ 128

Conv 4⇥ 4 2 ReLU 1⇥ 64⇥ 256⇥ 256

Conv 7⇥ 7 1 tanh 1⇥ 1⇥ 256⇥ 256

43



Table 3.3: Discriminator network.

Layer name Stride Activation Layer output size

Conv 4⇥ 4 2 LeakyReLU 1⇥ 64⇥ 128⇥ 128

Conv 4⇥ 4 2 LeakyReLU 1⇥ 128⇥ 64⇥ 64

Conv 4⇥ 4 2 LeakyReLU 1⇥ 256⇥ 32⇥ 32

Conv 4⇥ 4 1 LeakyReLU 1⇥ 512⇥ 31⇥ 31

Conv 4⇥ 4 1 Sigmoid 1⇥ 1⇥ 30⇥ 30

Discriminator: The discriminator network is a Markovian discriminator similar

to 70⇥70 PatchGAN, adapted from [79, 196]. The main motivation behind using

a PatchGAN discriminator is that it works on a particular patch-size of an image

instead of a full image. Therefore, it has fewer parameters compared to a discriminator

working on a full image. Moreover, it can be applied to any arbitrarily-sized images in

a fully convolutional fashion [79, 196]. The details of the discriminator network and

output size of each layer is given in Table 3.3. It should be noted that the sigmoid

function applied after the last convolution layer produces a 1-dimensional output

score that predicts whether the 70⇥70 overlapping image patches are real or fake.

For the discriminator network, spectral normalization [124] is used as the weight

normalization method because it can stabilize the discriminator network training.

Moreover, here all the ReLUs are leaky ReLUs [116] with slope of 0.2.

3.4.2.2 Training

The proposed inpainting network is trained in two scenarios: (i) using images from

different clusters separately, and (ii) using all images together (not dividing them into

clusters). The detailed number of clean and artificially corrupted image pairs for each

cluster is given in the first row of Table 3.1. While training, for each real corrupted

image xc, a binary image mask m (which takes the value 0 on the regions to be filled-in

and 1 elsewhere) is extracted. Now for each clean image x, the extracted masks m are

randomly superimposed to obtain artificially corrupted input image z = x�m, where

� denotes element-wise product operation. The generator of the inpainting network

G takes this concatenated input image z and image mask m as input, and produces
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an predicted image x0 = G(z,m) as output. Then by adding the masked region of

x0 to input image, completed image is obtained as x̃ = [x �m] + [x0 � (1�m)].

For clustered training, masks are extracted from corrupted images from the same

cluster, whereas no such restriction is imposed for “all” case. The training procedure

is described in Algorithm 3.

3.4.2.3 Loss Functions

To train the inpainting module to restore the input corrupted image realistically, two

loss functions are used: a reconstruction loss and an adversarial loss [59]. Although

reconstruction loss helps in capturing the structural details, using only `1 or `2 loss

often leads to blurry or overly-smooth reconstructions [79]. Therefore using adver-

sarial loss along with reconstruction loss is important, because adversarial loss tries

to make the prediction look realistic, by fooling the discriminator.

Reconstruction Loss: Previous inpainting approaches [140] have shown that

GAN objective function along with a traditional `2 loss helps in better reconstruc-

tion and stabilized GAN training. Here for the reconstruction loss, `1 loss is used

that minimizes the distance between the clean/ground-truth image x and the com-

pleted/inpainted image x̃.

L`1(x) = [kx� x̃k1]. (3.2)

Here, x̃ = [x�m] + [x0 � (1�m)] and x0 = G(z,m).

Adversarial Loss: For the adversarial loss, the min-max optimization strategy is

followed, where the generator G is trained to produce inpainted samples from the arti-

ficially corrupted images such that the inpainted samples appear as “real” as possible

and the adversarially trained discriminator critic D tries to distinguish between the

ground truth clean samples and the generator predictions/inpainted samples. The
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Algorithm 1 Training of the proposed inpainting framework.
1: while Generator G has not converged do

2: Sample batch images x from clean training data;
3: Extract masks m from corrupted training data;
4: Artificially construct corrupted inputs z x�m;
5: Generate inpainted images by modifying masked region, x̃ z+G(z,m)�

(1�m);
6: Update G with `1 loss and adversarial critic loss;
7: Update discriminator critic D with x, x̃;
8: end while

objective function can be expressed as follows

G
⇤
, D

⇤ = argmin
G

max
D

Ladv(G,D) =Ex,x̃[logD(x, x̃)]+

Ex̃[log(1�D(x̃,x0)], (3.3)

Thus, the overall loss function becomes

Ltotal = �1L`1 + �2Ladv, (3.4)

where �1 = 1 and �2 = 0.1. The weighted sum of these two loss functions compliments

each other in the following way. 1) The GAN loss helps to improve the realism of the

inpainted images, by fooling the discriminator. 2) The `1 reconstruction loss serves

as a regularization term for training GANs, helps in stabilizing GAN training, and

encourages the generator to generate images from the modes that are close to the

ground truth in an `1 sense.

3.4.2.4 Implementation Details

The proposed model is implemented in PyTorch.3 The network is trained by op-

timizing the encoder-decoder and discriminator using the Adam optimizer [93] with

�1 = 0.5 and �2 = 0.999. In the experiments, a batch size of 14 and training iterations

of 100 are used. While training, the image is resized to 256⇥256 and linearly scale

3The code is available at https://github.com/hiyaroy12/mars-image-inpainting.
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Figure 3-6: Processing of real corrupted images to fine-tune the inpainting network
(a) during training and (b) during inference. The fine-tuning is performed only on
the real corrupted Mars images for demonstration purpose.

the pixel values from range [0, 256] to [�1, 1]. The Generator G is trained with a

learning rate of 10�4 until convergence, whereas the Discriminator D is trained with

a learning rate of 10�5, one-tenth of that of the generator’s. Both the generator and

discriminator networks are trained together on a TITAN Xp (12 GB) GPU.

3.4.2.5 Fine-tuning The Network

It was found that the clean images and real corrupted images were visually different

based on their grayscale value, contrast, and histogram distribution. This results in
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Algorithm 2 Fine-tuning the inpainting framework for real corrupted images.
1: while Generator G has not converged do

2: Sample batch images x from originally corrupted images;
3: Detect mask m and its direction d in x;
4: Crop other half of x and consider it as clean image;
5: Resize cropped clean image x̂ to full resolution;
6: Artificially construct corrupted inputs z x̂�m;
7: Get predictions x̃ z+G(z,m)� (1�m);
8: Update discriminator critic D with x̂, x̃;
9: Update G with `1 loss and adversarial critic loss;

10: end while

poor transfer from training on artificially masked images to true corrupted images.

Therefore, it is required to fine-tune the network on images having histogram dis-

tribution that matches the intended test images. For this purpose, the pre-trained

inpainting model (explained in Section 3.4.2) is fine-tuned on limited regions of the

real corrupted images, to get the inpainted images, as described in Algorithm 2.

To fine-tune the inpainting model, during training, it was heuristically identified

that each corrupted image has four mask directions: North, South, East, and West.

Here, the first step is to detect the mask direction in the real corrupted image using

standard image processing tools (like connected components and center of mass de-

tection). From observation, it is found that if an image has a mask of direction d,

the image region in the opposite half is usually clean and can be used for creating

an artificial training set as before. Thus, the opposite image region is cropped and

synthetically corrupted that part after resizing it to full resolution of 256 ⇥ 256. A

detailed description to artificially create pairs of clean and corrupted images for a

sample image (with mask direction in the East) during the training stage is shown

in Figure 3-6(a). After tailoring the real corrupted data for this task, the pre-trained

image inpainting model is fine-tuned keeping the same optimization conditions as

mentioned in Section 3.4.2.4.

During inference, a real corrupted image from the test set is taken and the mask

direction d is heuristically identified similar to training. Next, the clean side (half)

of the image is cropped and is resized to full resolution of 256 ⇥ 256 and then it is
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considered as a clean image. Similarly, the corrupted side (half) of the image (which

needs to be inpainted) is cropped and is resized to full resolution of 256 ⇥ 256 and

then it is considered as the corrupted image. While inference, this step is different

from training. This is because in training the clean side is needed to be artificially

corrupted by extracting a mask from the corrupted side to get a clean-artificially

corrupted image pair. Whereas, during inference, the originally corrupted side of

the image needs to be inpainted. After the inpainted half is obtained, both the

inpainted side and the clean side are resized back to their previous resolution which

is 256 ⇥ 128. After that, both the sides are added to get the inpainted image of

full resolution (256 ⇥ 256) corresponding to the real corrupted image. A detailed

description of a sample image (with mask direction in the East) during inference

stage is shown in Figure 3-6(b). Here, after cropping the image into half, the standard

practice of resizing the image into the full resolution (256 ⇥ 256) is followed, before

feeding it into the network and then it is resized back to its original size. Therefore,

I believe resizing the image will not cause distortion and will not affect prediction

quality. It is to be noted that although the black regions on the Mars images are

generated because of map projection, these images are considered as example of “no-

data” region images or real corrupted images, to demonstrate how to predict such “no-

data” region in case of any planetary images, if they are corrupted by unphotographed

pixels.

3.4.3 Image Classification Module

After performing the image inpainting to augment the incomplete features on the

real corrupted images, these inpainted images along with the clean images are used

for the classification task. These additional experiments are performed to check if

image inpainting on real corrupted images helps in better feature learning, which in

turn leads to improved classification performance. Since the Mars dataset is highly

imbalanced, a natural approach is taken which resamples the given dataset by “over-

sampling” the minority classes [80] and “undersampling” the majority classes [63].

Such resampling of data helps in achieving a balanced distribution during training.
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Table 3.4: Quantitative evaluation results of simulated/artificially corrupted Moon
dataset for different clusters and all images together (when not divided into clusters)
using Generative Inpainting (GI) [186], and the proposed method. The best results
for each row is shown in bold. �Lower is better. +Higher is better.

Moon dataset

Method Cluster 0 Cluster 1 Cluster 2 Mean of

Clusters

All

P
S
N

R
+

GI [186] 39.59 41.29 41.13 40.67 40.13

Ours 42.32 43.69 40.98 42.33 40.23

S
S
IM

+ GI [186] 0.968 0.981 0.977 0.975 0.971

Ours 0.989 0.989 0.984 0.987 0.982

` 1
(%

)� GI [186] 0.4 1.0 0.3 0.5 0.6

Ours 0.1 0.3 0.1 0.2 0.3

For the experiments, two variants of ResNet [67] model ResNet-50 and ResNet-101 are

trained for 50 epochs with mini-batch size 80, and a weight decay of 1⇥10�4 . Both

the models are trained using ADAM [93] optimizer with �1 = 0.5 and �2 = 0.999. The

initial learning rate is set to 0.002, resize the input images to 224⇥224, and ensure

that all images over the training dataset are normalized. The ResNet classifier [67]

is used for classification because it is the state-of-the-art deep CNN model that can

deal with the vanishing gradient problem because of the proposed “identity shortcut

connections” implemented as “residual blocks”. Moreover, it was the best performing

approach for this dataset.

3.5 Experimental Results

This section discusses the quantitative and qualitative results obtained from the in-

painting module. Several experiments are performed to seek answers to the following

two questions: 1) Can image inpainting be used for filling in the unphotographed

pixels in planetary images?, 2) Does explicit clustering of the training and testing im-

ages based on their histogram distribution help in improving inpainting performance?

3) How does fine-tuning on clean portions of the real corrupted images help in im-
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Table 3.5: Quantitative evaluation results of simulated/artificially corrupted Mars
dataset for different clusters and all images together (when not divided into clusters)
using Generative Inpainting (GI) [186], and the proposed method. The best results
for each row is shown in bold. �Lower is better. +Higher is better.

Mars dataset

Method Cluster
0

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Mean of

Clusters

All

P
S
N

R
+ GI [186] 30.46 31.08 31.71 32.84 31.93 31.60 31.04

Ours 33.02 33.46 34.01 33.72 33.32 33.51 33.42

S
S
I
M

+ GI [186] 0.904 0.909 0.907 0.922 0.913 0.911 0.906

Ours 0.928 0.931 0.933 0.926 0.928 0.930 0.928

` 1
(
%

)
� GI [186] 1.0 1.6 2.7 0.6 1.0 1.4 1.4

Ours 0.7 1.1 1.7 0.5 0.8 0.9 0.9

proving inpainting quality? and 4) Can the proposed inpainting method contribute

to better feature learning for interesting landmark classification thereby improving

classification performance?

Quantitative Results: The quantitative performance of the proposed method is

reported in terms of the following metrics 1) peak-signal-to-noise ratio (PSNR); 2)

structural similarity index (SSIM) [173] and 3) mean absolute error (MAE). PSNR is

measured in terms of MSE and is still the most common quality measure for recon-

structed images. PSNR of a reconstructed image is given by

PSNR = 20 log10

✓
MAXIp
MSE

◆
, (3.5)

where MAXI the maximum value of the pixel in the original image. A higher PSNR

normally indicates higher quality reconstruction. SSIM index [173] provides a quanti-

tative assessment of the perceptual quality of the reconstructed image. These metrics

are calculated on the test set of the artificially corrupted images and compare them to

their corresponding clean ground truth images. The quantitative evaluation results

for both Moon and Mars images using Generative Inpainting [186] and the proposed

method are reported in Table 3.4 and 3.5 where the metric values for images from
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Figure 3-7: Visual examples of semantic feature completion of simulated/artificially
corrupted images on Moon dataset using different methods: PatchMatch [25], Gen-
erative Inpainting (GI) [186], and the proposed method. Since these are artificially
corrupt the clean images, therefore the clean images are considered as ground truth
data in this case.

each of the clusters, the corresponding mean metric values for each clusters, and the

metric values when the inpainting module was trained using all images together (i.e.

not dividing the images into clusters) are provided. The proposed method outper-

forms the previous method [186] in terms of all the metric values for both the datasets.

Moreover, the improvement in metric values (particularly PSNR (log-scale) values for

inpainted images) over the baseline (e.g. 2.1 dB improvement for ’mean of clusters’
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PSNR/SSIM/`1(%) 28.98/0.913/3.2 29.79/0.907/3.1 34.64/0.969/1.0

PSNR/SSIM/`1(%) 26.15/0.879/1.8 25.31/0.852/1.9 38.84/0.986/0.2

PSNR/SSIM/`1(%) 26.30/0.963/1.9 27.90/0.966/1.5 38.42/0.996/0.3

Figure 3-8: Visual examples of semantic feature completion of simulated/artificially
corrupted images on Mars dataset using different methods: PatchMatch [25], Gen-
erative Inpainting (GI) [186], and the proposed method. Since these are artificially
corrupt the clean images, therefore the clean images are considered as ground truth
data in this case.
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Figure 3-9: Visual examples of semantic feature completion of the real corrupted
images using the proposed method. Since these are real corrupted data, they do not
have corresponding ground truth images available.

and ’all images’ in case of Moon images as shown in Table 3.4) demonstrates the

validity of the proposed idea of leveraging the benefits of clustering the training and

testing images based on their histogram distribution.

Qualitative Results: Figure 3-7 and 3-8 show the qualitative performance of the

53



Real
Corrupted PM [25] (GI) [186] Ours Real

Corrupted PM [25] (GI) [186] Ours

C
lu

st
er

0
C

lu
st

er
1

C
lu

st
er

2
C

lu
st

er
3

C
lu

st
er

4

Figure 3-10: Visual examples of semantic feature completion of real corrupted im-
ages on Mars dataset using different methods: PatchMatch [25], Generative Inpaint-
ing (GI) [186], and the proposed method. Since these are real corrupted data, they
do not have corresponding ground truth images available.
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Figure 3-11: Visual examples of semantic feature completion of real corrupted im-
ages on Mars dataset using different methods: PatchMatch [25], Generative Inpaint-
ing (GI) [186], inpainting results when all images are trained together (when not
divided into clusters), and inpainting results (when divided into clusters). Since
these are real corrupted data, they do not have corresponding ground truth images
available.

proposed inpainting model when tested on artificially corrupted images. Here it can

be seen that for both Moon and Mars dataset, previous inpainting methods, Patch-

Match (PM) [25], and Generative Inpainting (GI) [186] generate significant artifact,

however the proposed method can predict the missing region that looks similar to
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the ground truth data. On the contrary, Figure 3-9 demonstrates the qualitative in-

painting results obtainted from the proposed inpainting model, when tested on real

corrupted test set of Mars images. For example, as seen in Figure 3-9 the crater or

dark dune that are originally masked (first column) can be successfully augmented in

shape (second column) by using the proposed inpainting algorithm. This proves the

generalization ability of this inpainting model to complete different landmarks on the

planetary images. Figure 3-10 compares the qualitative inpainting results achieved

by the proposed model on real corrupted test set of Mars images when compared

with the previous inpainting methods PM [25], and GI [186]. It is clear that the

proposed method produces more photo-realistic results with seamless boundary tran-

sitions. Figure 3-11 shows the visual comparison of the inpainted image quality when

the inpainting module was trained using all images together (i.e. not dividing the

images into clusters) vs. images divided into clusters. It can be seen the previous

methods generate artifacts in the boundary causing the inpainted images to look un-

realistic. On the contrary, the proposed fine-tuned inpainting model can reconstruct

an image with significantly fewer artifacts and a seamless boundary that looks more

realistic to human eyes. Here, it should be noted that, in Figure 3-9, 3-10, and 3-11

inpainting results on real corrupted Mars images are shown, which do not have their

corresponding ground truth images available. Hence the reconstruction quality of the

real corrupted images can only be shown qualitatively, not quantitatively.

3.5.1 Ablation Study For Inpainting Results

Here, the effect of different loss components used to train the proposed model is

analyzed. It is also investigated if fine-tuning the inpainting model contributes to

the better reconstruction of the real corrupted image. Table 3.6 and 3.7 report the

quantitative results achieved by the proposed inpainting model using different loss

components i.e. by using only `1 loss, and by using `1 with adversarial loss, on the

artificially corrupted Moon and Mars dataset. It can be seen that the adversarial loss

component has a great contribution in improving the inpainting quality in terms of

the metric values.
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Figure 3-12: Effect of different loss components and fine-tuning for each cluster. Here
the first column shows the real corrupted images, second, third, and fourth column
depict `1 loss without fine-tuning, (`1+adversarial loss) without and with fine-tuning
respectively.

Figure 3-12 shows the qualitative inpainting results for real corrupted Mars images

using only `1 loss (without any fine-tuning), and `1 with adversarial loss (with and

without fine-tuning). Clearly, if the proposed model is trained using only `1 loss, the

reconstruction contains a significant amount of artifacts, as seen in the second and

sixth column of Figure 3-12. Whereas, if the adversarial loss component is added,

it improves the inpainting performance to a certain extent, as seen in the third and

seventh column. Therefore, it can be concluded that for planetary image inpainting,

adversarial loss is an essential ingredient. Next, the performance of the proposed

model is compared with and without fine-tuning. From the fourth and eight column

of Figure 3-12, it can be seen that fine-tuning greatly improves the performance of

the proposed image inpainting model. Moreover, fine-tuning helps in completing the

edges of the morphological structures or restoring the texture of the image. Therefore

it is a crucial guidance to an image inpainting model for restoring artifacts that exist

near the boundaries rather than in the center region of an input image.
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Table 3.6: Quantitative comparison of different components of the proposed method
on Moon dataset.

Moon dataset

Method Cluster 0 Cluster 1 Cluster 2 Mean of

Clusters

All

P
S
N

R
+

`1 loss 37.07 35.54 33.96 35.52 37.34

`1+adv loss 42.32 43.69 40.98 42.33 40.23

S
S
IM

+ `1 loss 0.979 0.96 0.97 0.969 0.979

`1+adv loss 0.99 0.99 0.98 0.99 0.98

` 1
(%

)� `1 loss 1.0 2.7 12.9 5.5 1.1

`1+adv loss 0.1 0.3 0.1 0.2 0.3

3.5.2 Classification Results

Here, the image classification results on the Mars dataset, after applying the proposed

image inpainting technique is provided. Figure 3-13 provides the comparison of mean

precision, recall, and F1-score on the original and inpainted images based on the same

ResNet-50 and ResNet-101 classifier and the same data distribution. It should be

noted that the Mars dataset is highly imbalanced (with majority class ‘Other’ having

61054 no of images, while minority class ‘Impact Ejecta’ having 231 number of images)

as shown in Figure 3-4. Therefore, the classification performance of the proposed

model is shown in terms of precision, recall, and F1-score (harmonic mean of precision

and recall) metrics, which are more appropriate to handle class imbalance. As can be

seen in Figure 3-13, for both ResNet-50 and ResNet-101 models, the inpainted image

classification provides high mean F1-score of 0.88 outperforming the mean F1-score of

0.83 and 0.85 for original image classification. Also, there is a consistent improvement

for inpainted images in the mean precision, and recall score by a large margin when

compared to the original dataset. This reflects the fact that the proposed model

learns better features for classification tasks when trained on the inpainted images in

comparison with original images (having partially masked interesting landmarks).

The area under the curve (AUC) for receiver operating characteristics (ROC) for

original and inpainted images for ResNet-50 and ResNet-101 models are shown in
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Table 3.7: Quantitative comparison of different components of the proposed method
on Mars dataset.

Mars dataset

Method Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Mean of

Clusters

All

P
S
N

R
+ `1 loss 32.62 33.16 31.72 32.87 32.87 32.64 32.48

`1+adv loss 33.02 33.46 34.01 33.72 33.32 33.51 33.42

S
S
I
M

+ `1 loss 0.923 0.926 0.909 0.924 0.925 0.921 0.930

`1+adv loss 0.928 0.931 0.933 0.926 0.928 0.930 0.928

` 1
(
%

)
� `1 loss 1.0 1.5 3.7 1.0 1.1 1.7 1.1

`1+adv loss 0.7 1.1 1.7 0.5 0.8 0.9 0.9

Figure 3-14. Since the AUROC metric is also appropriate to handle class imbalance,

the AUC of all the classes and for each case is reported. It can be seen that for

minority classes such as “Impact Ejecta”, ResNet-50 performs better for inpainted

images than original images as indicated by the higher area under ROC (AUROC)

curve value.

Additionally, the classification accuracy of the proposed method is provided in

Table 3.8 and compare the results with previous classification results [172] on the same

Mars dataset. Since the network architecture is different in both cases, it cannot be

considered as a one-to-one comparison. However, the classification accuracy is shown

here as a reference for the reader for classification tasks on the same dataset.

It should be noted that classification accuracy is not an appropriate metric to

measure the performance of the model, in case of such an imbalanced classification

performed on a highly-skewed dataset. Because in such case, high accuracy can be

achieved by a non-expert model by predicting only the majority class. Therefore, with

the improved mean precision, recall, F1-score and AUROC metric values achieved

on the inpainted images (Figure 3-13, and 3-14) for both ResNet-50 and ResNet-

101 models, the effectiveness of the proposed inpainting algorithm for better feature

learning for classification is proved.
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Table 3.8: Classification results using the proposed inpainted images.

Original images Inpainted images

[172] ResNet-50 ResNet-101

90.6% 94.00% 94.16%

0.78 0.79

0.88
0.92

0.83 0.850.85 0.82

0.92 0.94
0.88 0.88

0.4

0.5

0.6

0.7

0.8

0.9

1

ResNet-50 ResNet-101 ResNet-50 ResNet-101 ResNet-50 ResNet-101
Mean Precision Mean Recall Mean F1-Score

Original Inpainted

Figure 3-13: Precision/Recall/F1 score for ResNet-50 and ResNet-101 in HiRISE
inpainted dataset (ADAM).

3.6 Conclusions

This chapter presents an adversarial training based image inpainting technique for

planetary images to facilitate improved scientific discoveries. The new contribution

in this work is the idea of performing unsupervised clustering to divide the images

into different modes of histogram distribution and then predict the unphotographed

pixels by training a GAN-based model on input images belonging to different clusters.

This proposed idea of clustering helps to prevent the mode-collapse problem in GAN

models and encourage the network to reliably generate samples from each cluster.

It is found that the proposed inpainting algorithm helps the network to learn better

features by augmenting the incomplete landmarks leading to better generalization.

This analysis reveals that by performing such image inpainting as a first step, the

classification performance can be boosted with an improved F1 score. I believe that

this work will benefit the planetary science community to analyze and explore the

planetary images in a more efficient way. The proposed method can also be a helpful
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Figure 3-14: ROC curves corresponding to ResNet-50 and ResNet-101 for original
and inpainted HiRISE dataset. For most classes, AUROC for inpainted images is
better than original images.

first step for planetary scientists to make more accurate location adjustments while

making the mosaic of the planetary surface where the region is not illuminated by

Sunlight such as the Polar region.
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Chapter 4

Image Inpainting using Frequency

Domain Priors

This chapter presents a novel image inpainting technique using frequency domain

information. Prior works on image inpainting predict the missing pixels by training

neural networks using only the spatial domain information. However, these methods

still struggle to reconstruct high-frequency details for real complex scenes, leading to

a discrepancy in color, boundary artifacts, distorted patterns, and blurry textures.

To alleviate these problems, in this chapter, it is investigated if it is possible to

obtain better performance by training the networks using frequency domain infor-

mation (Discrete Fourier Transform) along with the spatial domain information. To

this end, a frequency-based deconvolution module is proposed that enables the net-

work to learn the global context while selectively reconstructing the high-frequency

components. The proposed method is evaluated on the Mars dataset and it is shown

that the proposed method using both frequency and spatial domain information out-

performs current state-of-the-art image inpainting techniques both qualitatively and

quantitatively.

Additional experiments are performed on the standard datasets namely CelebA,

Paris Streetview, and DTD texture dataset as well to check the validity of the pro-

posed algorithm. Here also, the proposed method could outperform state-of-the-art

image inpainting techniques proving it’s generalization ability.
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4.1 Introduction

In computer vision, the task of filling in missing pixels of an image is known as image

inpainting. It can be applied for improving data availability for satellite imagery.

The main challenge in this task is to synthesize the missing pixels in such a way that

they look visually realistic and coherent to human eyes. Traditional image inpaint-

ing algorithms [27, 24, 28, 105, 57, 55, 41, 159, 25, 44, 64] that use diffusion-based

itechniques [27, 24, 28, 105] focus on propagating the local image appearance into the

missing regions. Although these methods can fill in small holes but produce smoothed

results as the hole grows bigger. On the other hand, patch-based traditional inpaint-

ing algorithms [57, 55, 41, 159, 25, 44, 64] iteratively search for the best-fitting patch

in the image to fill in the missing region. These methods can fill in bigger holes, but

they are not effective either in inpainting missing regions that have complex struc-

tures or in generating unique patterns or novel objects that are not available in the

image in the form of a patch.

Recent research works on image inpainting [140, 76, 185, 164, 130, 186] leverage

the advancements in generative models such as GANs [59] and show that it is possible

to learn and predict missing pixels in coherence with the existing neighboring pix-

els by training a convolutional encoder-decoder network. In this paradigm, generally

speaking, the model is trained in a two-stage manner - i) in the first stage, the missing

regions are coarsely filled in with initial structures by minimizing traditional recon-

struction loss; ii) in the second stage, the initially reconstructed regions are refined

using an adversarial loss. Although these methods are good in generating visually

plausible novel contents such as human faces, structures, natural scenes in the missing

region, they still struggle to reconstruct high-frequency details for real complex scenes,

leading to a discrepancy in color, boundary artifacts, distorted patterns, and blurry

textures. Additionally, the reconstruction quality of previous methods deteriorates as

the size of the missing region increases. The above problems can be attributed to the

following reason. Existing methods use only spatial domain information during the

learning process similar to diffusion like techniques to obtain information from the
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mask boundary. Thus as the mask size increases, the interior reconstruction details

are lost and only a low-frequency component of the original patch is estimated by

these methods.

To alleviate the above problem, a frequency-based image inpainting techique is

proposed. It is shown that image inpainting can be converted to the problem of de-

convolution in the frequency domain which can predict local structure in the missing

regions using global context from the image. Qualitative analysis shows that the pro-

posed frequency domain image inpainting approach helps in improving the texture

details of missing regions. Previous methods make use of only spatial domain infor-

mation. Therefore, the reconstruction of the information close to the mask boundary

is good compared to the interior region since the local context is available only in the

boundary regions. In contrast, a frequency-based approach would take information

from the global context in the image because of Discrete Fourier Transforms (DFT)

that considers all pixels for computing the frequency components. As a result, it

captures more detailed structural and textural content of the missing regions in the

learned representation. Due to these reasons, a two-stage network is proposed which

consists of i) deconvolution stage and ii) refinement stage. In the first stage, the

DFT image from the original grayscale/RGB image is computed. Each frequency

component in the DFT image captures the global context thus forming a better

representation of the global structure. A CNN is employed to learn the mapping

between masked DFT and original DFT, which is a deconvolution operation obtained

by minimizing the `2 loss. While DFT based deconvolution can reconstruct the global

structural outline, it is observed that there exists a mismatch in the color space of

the first stage output. Therefore, in the second stage, the output of the first stage

is fine-tuned using adversarial methods to match the pixel distribution of the true

image. Figure 4-1 shows an example of the reconstructed output using the proposed

method where Figure 4-1b) shows the DFT map of the first stage reconstruction

obtained from the deconvolution network). This additional frequency domain infor-

mation is later used by the refinement network to obtain the final output as shown in

Figure 4-1c). The main contributions in this chapter can be summarized as follows:
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c)	
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Figure 4-1: a) Artificially corrupted input Mars images with unphotographed/missing
pixels, b) DFT of first stage reconstruction by the proposed deconvolution network,
c) Image inpainting results (after the second stage) of the proposed approach, and d)
Ground Truth (GT) image. The last two columns show the prediction of the missing
region obtained from the proposed method and original pixel values for the same
region in the GT image.

1. A novel frequency domain-based image inpainting framework is introduced that

learns the high-frequency component of the masked region by using the global

context of the image. It is found that the network learns to preserve image

information in a better way when it is trained in the frequency domain. There-

fore, adding the frequency domain and spatial domain information certainly

improves the inpainting performance compared to the conventional spatial do-

main image inpainting algorithms. To enable better inpainting, the network

is trained using both frequency-domain and spatial domain information which

leads to a better consistency of inpainted results in terms of the local and global

context.

2. The proposed method is validated on Mars dataset and it is shown that the

proposed method achieves better inpainting results in terms of visual quality

and evaluation metrics outperforming the state-of-the-art results. Additional

experiments are performed on other benchmark datasets including CelebA faces,

Paris Streetview, and DTD texture datasets. Experimental results demonstrate

that the proposed algorithm can outperform state-of-the-art inpainting results

both qualitatively and quantitatively for standard datasets as well.

3. To the best of our knowledge, this is the first work that explores the benefits
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of using frequency domain information for image inpainting on both planetary

images and standard datasets which proves the generalization ability of the

proposed method.

4.2 Related Work

4.2.1 Image Inpainting on Remote Sensing and Planetary

Dataset

While image completion on Earth remote sensing images has been studied widely,

image inpainting on planetary images (Moon or Mars images) is still a new area to

explore. This subsection reviews the existing works on image inpainting both on

Earth remote sensing (RS) images and planetary images.

Missing pixels on Earth RS images occur in the form of dead pixels or thick cloud

cover because of the atmospheric environment or the working conditions of the satel-

lite sensor [158, 194]. There have been a lot of work in this direction using spatial

information and based on interpolation techniques [190, 192, 184], variation-based

algorithms [36, 69], PDE techniques [121], and exemplar methods [41]. Since spatial-

based methods are not effective in precise reconstruction for large missing regions,

several other techniques such as spectral-based methods (utilizing information from

different spectral bands) [145, 182], and temporal-based methods (using data taken

at the same location in different periods) [189, 34] have been proposed. Later more

generalized algorithms known as hybrid methods [194, 81, 37, 68, 193] were developed

by integrating spatial, spectral, and temporal information.

On the other hand, missing pixels on planetary images occur because of several

reasons: (i) onboard instrument could not acquire the image data at that region due

to the limitation in operation time of the instrument and satellite orbiter control,

(ii) onboard cameras failed to photograph the region on the planetary surface (e.g.

Polar region) because the region was not illuminated by the Sunlight. To restore such
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missing pixels, Roy et al. [156] first proposed a U-Net based approach that minimizes

a standard `2 loss to restore the missing region on Lunar surface images collected by

the Multiband Imager (MI) instrument on-board the Kaguya satellite. Furthermore,

Roy et al. [155] showed that it is possible to predict such unphotographed pixels

on planetary images (Moon and Mars) in a context-aware fashion using adversarial

learning algorithms. They use only spatial domain information to solve this task.

4.2.2 Image Inpainting on Standard Dataset

Image inpainting on standard datasets is a well-studied topic. Early image inpaint-

ing techniques explored diffusion-based image completion methods [27, 24, 28, 105],

where a diffusive process is modeled using Partial Differential Equations (PDE) to

propagate colors into the missing regions and patch-based techniques [57, 55, 41, 159,

25, 44, 64, 135] where similar patches are iteratively searched in an existing image to

stitch it onto the most similar block of the image. However, these methods are not

effective in the case of filling in complex structures or larger missing regions.

Recently CNN models [102] have shown tremendous success in solving high-level

tasks such as classification, object detection, and segmentation as well as low-level

tasks such as image inpainting problem. Several methods based on Stacked Sparse

Denoising Auto-encoders (SSDA) [177], fully convolutional network (FCN) [33] were

proposed to solve image inpainting tasks. However, these inpainting approaches were

limited to small-sized masks as well. More recently, adversarial learning-based in-

painting algorithms have shown promising results in solving image inpainting prob-

lems because of their ability to learn and synthesize novel and visually plausible con-

tents for different images such as objects [140], scene completion [76], faces [183] etc.

A seminal work by Pathak et al. [140] showed that their proposed Context Encoder

network can predict missing pixels of an image based on the context of the surround-

ing areas of that region. They used both standard `2 loss and adversarial loss [59] to

train their network. Later, Iizuka et al. [76] demonstrated that their encoder-decoder

model could reconstruct pixels in the missing region that are consistent both locally

and globally, by leveraging the benefits of dilated convolution layers, a variant of
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standard convolutional layers.

Recently, Yu et al. [185] introduced the concept of attention for solving an image

inpainting task by proposing a novel contextual attention layer and trained the unified

feedforward generative network with reconstruction loss and two Wasserstein GAN

losses [20, 61]. They showed that their method can inpaint images with multiple

missing regions having different sizes and located arbitrarily in the image.

Nazeri et al. [130] introduced an edge generator that at first predicts the edges

of the missing regions and then use the predicted edges as guidance to complete

the image. Yu et al. [186] proposed a gated convolution-based approach to handle

free-form image completion.

4.2.3 Frequency Domain Learning

Recently enabling the network to learn information in the frequency domain has

gained popularity because the frequency domain information contains rich represen-

tations that allow the network to perform the image understanding tasks in a better

way in comparison to the conventional way of using only spatial domain information.

Gueguen et al. [60] proposed image classification using features from the frequency

domain. Xu et al. [179] showed that it is possible to perform object detection and

instance segmentation by learning information in the frequency domain with a slight

modification to the existing CNN models that use RGB input. This chapter pro-

poses to using frequency-domain information along with spatial domain information

to achieve better image inpainting performance.

4.3 Proposed Method

Given a corrupted input image, the aim is to predict the missing region similar to

its surrounding context. This chapter proposes a frequency-based non-blind image

inpainting framework that consists of two stages: i) frequency domain deconvolution

network and ii) refinement network. The overall framework of the proposed method

is shown in Figure 4-2. In the first stage, the DFT of the masked image (both
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magnitude and phase information) and the original input image is computed and

then a CNN for deconvolution is trained so that it learns the mapping between the

two signals by minimizing the `2 loss. Here the problem of inpainting in the spatial

domain is formalized as deconvolution in the frequency domain. Here the feed-forward

denoising convolutional neural networks (DnCNNs) [191] is employed, which is a

manifestation of deconvolution and uses residual learning to predict the denoised

image. The motivation behind this DFT-based deconvolution operation is to learn

a better representation of the global structure that can serve as guidance to the

second network. In the second stage, the spatial domain information (of the masked

image and the mask) is used to train a generative adversarial network (GAN) based

model [59] by minimizing an adversarial loss along with `2 loss. The motivation to

incorporate this stage is to fine-tune the output of the first stage by refining the

structural details and matching the pixel distribution of the true image in a local

scale. The various components of the proposed model are explained in the following

subsections.

4.3.1 Frequency-domain Deconvolution Network

4.3.1.1 Problem Formulation

Let us consider Iin as the corrupted/incomplete input image, Igt as the ground truth

image, and I1pred as the predicted output image after first stage. At first, DFT of Iin

and Igt are calculated as Ifin = DFT(Iin) and Ifgt = DFT(Igt). Let us consider a mask

function in spatial domain as M, with its frequency domain counterpart as Mf .

A masked image is represented as Iin(x, y) = Igt(x, y) �M(x, y) where � denotes

element-wise multiplication. The contribution in this chapter is to analyze this rela-

tion between the frequency domain signals of Iin, Igt, and M. For example, let us

consider a mask of size (2W, 2H), the power spectral density for the DFT of mask

signal can be given as

|Mf (p, q)|2/ sin(⇡p)

sin(⇡pN )

sin(⇡q)

sin(⇡qN )
, (4.1)
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Figure 4-2: Overview of the proposed frequency domain-based image inpainting
framework. The deconvolution network is trained in the frequency domain with `2

loss to learn the mapping between DFT of masked image and the original image. The
refinement network is trained in the spatial domain with adversarial loss.

where k = 0, 1, ...(N � 1) represents the discrete frequency, with N being the number

of samples. The frequency domain representation of the mask signal is shown in

Figure 4-3, which depicts a decaying pulse from the origin. By the convolution-

multiplication property of DFT, it can be shown that the multiplication of mask

with the image in spatial domain is equivalent to convolution of mask with image in

frequency domain (Figure 4-3). Mathematically, this is represented as

Ifin(p, q) = Ifgt(p, q)~Mf (p, q) (4.2)

where ~ denotes the convolution operation and the masked frequency signal is the

output of the convolution of the mask and clean image DFT signal. Therefore, a

deconvolution operation is performed to predict the missing region of the incomplete
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Figure 4-3: Visualization of masked signal in frequency domain (using DFT). Here,
the convolution-multiplication property of DFT is used to transform signals from
spatial to frequency domain and vice-versa.

Table 4.1: First stage network architecture (Deconvolution network).

Layer

name

Layer

No.

Stride,

Padding

Activation
Layer output

size (Mars)

Layer output size

(Standard dataset)

Input - - - 1⇥ 4⇥ 256⇥ 256 1⇥ 12⇥ 64⇥ 64

Conv 3⇥ 3 1 1, 1 ReLU

Conv 3⇥ 3
2-16

(15 layers)
1, 1

(Batch Norm

+ ReLU)

Conv 3⇥ 3 17 - - 1⇥ 2⇥ 256⇥ 256 1⇥ 6⇥ 64⇥ 64

image. Let F(Iin;⇥) be the Deconvolutional neural network that converts Iin to I1pred,

such that I1pred = F(Iin;⇥). After calculating Ifin and Ifgt, the network is trained to

learn the mapping between them, to predict the first stage output. Let us denote

frequency domain representation as I1fpred where I1fpred = F(Ifin;⇥). Next, an inverse

DFT of the first stage output is performed and the predicted output image is obtained

as I1pred = IDFT(I1fpred).
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4.3.1.2 Network Architecture

To perform the deconvolution operation in the frequency domain, a CNN model

having 17 layers similar to [191] is adopted. This deconvolution network contains

three types of layers as shown in Figure 4-2. The first layer is a Conv layer with

ReLU non-linearity where 64 filters of (3x3x3) size are used. Next layers (2nd-16th)

are a combination of Conv layer, a batch normalization layer [78] and a ReLU layer,

where 64 filters of (3×3×64) size are used. The last layer is a Conv layer, where 3

filters of (3x3x64) size are used to reconstruct the output. Details of the first stage

deconvolution network used for both Mars and standard datasets is given in Table 4.1.

4.3.1.3 Training

To train the proposed deconvolution network, `2 loss is used which minimizes the

distance between the DFT of ground-truth image Ifgt and the DFT of inpainted image

I1fpred, which is given by

Ls1 =
��Ifgt � I1fpred

��2
2

(4.3)

After training the first stage deconvolution network, the inverse DFT of I1fpred is

computed and it is used as a guidance to train the refinement stage as shown in

Figure 4-2. The reason to choose the frequency domain in the first network is that it

contains rich information [179, 180] for high-frequency preservation.

4.3.2 Refinement Network

The refinement network is a GAN based model [59] that has shown promising results

in generative modeling of images [144] in recent years. The refinement network has a

generator and a discriminator network, where the generator network takes the output

of the first stage (frequency domain deconvolution module), the original masked im-

age, and the corresponding binary mask (spatial domain information) as input pairs,

and outputs the generated image. The discriminator network takes this generator
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output and minimizes the Jensen–Shannon divergence between the input and output

data distribution to match the color distribution and structural details of the output

image to the true image.

4.3.2.1 Network Architecture

Generator: The generator architecture is adopted from Johnson et al. [83] that has

exhibited good performance for image-to-image translation task [196]. The generator

network is an encoder-decoder architecture having three convolution layers for down-

sampling, eight residual blocks [67], and three convolution layers for up-sampling.

Here, Conv-2 and Conv-3 layers are stride-2 convolution layers that are responsible

for down-sampling twice, and Conv-4 and Conv-5 layers are transpose convolution

layers that are responsible for up-sampling twice back to the original image size. In-

stance normalization [170] and ReLU activation function are used across all layers of

the generator network.

Discriminator: The discriminator network is adpoted from [79, 196] which is a

Markovian discriminator similar to 70⇥70 PatchGAN. The advantage of using a

PatchGAN discriminator is that it has fewer parameters compared to a standard

discriminator because it works only on a particular image patch instead of an entire

image. Furthermore, it can be applied to any arbitrarily-sized images in a fully con-

volutional fashion [79, 196]. The sigmoid function is applied after the last convolution

layer which produces a 1-dimensional output score and predicts whether the 70⇥70

overlapping image patches are real or fake. To stabilize the discriminator network

training, spectral normalization [124] is used as the weight normalization method.

Moreover, leaky ReLUs [116] with slope of 0.2 is used. The details of the proposed

second stage refinement network (generator and discriminator network) and output

size of each layer for both the Mars dataset and standard datasets are given in Ta-

ble 4.2.
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Table 4.2: Second stage network architecture

Generator network

Layer name Stride Activation
Layer output

size (Mars)

Layer output size

(Standard dataset)

Input - - 1⇥ 3⇥ 256⇥ 256 1⇥ 9⇥ 64⇥ 64

Encoder network

Conv 7⇥ 7 1 ReLU 1⇥ 64⇥ 256⇥ 256 1⇥ 64⇥ 64⇥ 64

Conv 4⇥ 4 2 ReLU 1⇥ 128⇥ 128⇥ 128 1⇥ 128⇥ 32⇥ 32

Conv 4⇥ 4 2 ReLU 1⇥ 256⇥ 64⇥ 64 1⇥ 256⇥ 16⇥ 16

Residual block (⇥8)
Residual blocks 1⇥ 256⇥ 64⇥ 64 1⇥ 256⇥ 16⇥ 16

Decoder network

Conv 4⇥ 4 2 ReLU 1⇥ 128⇥ 128⇥ 128 1⇥ 128⇥ 32⇥ 32

Conv 4⇥ 4 2 ReLU 1⇥ 64⇥ 256⇥ 256 1⇥ 64⇥ 64⇥ 64

Conv 7⇥ 7 1 tanh 1⇥ 1⇥ 256⇥ 256 1⇥ 3⇥ 64⇥ 64

Discriminator network

Layer name Stride Activation
Layer output

size (Mars)

Layer output

size (Standard)

Input - - 1⇥ 1⇥ 256⇥ 256 1⇥ 3⇥ 64⇥ 64

Conv 4⇥ 4 2 LeakyReLU 1⇥ 64⇥ 128⇥ 128 1⇥ 64⇥ 32⇥ 32

Conv 4⇥ 4 2 LeakyReLU 1⇥ 128⇥ 64⇥ 64 1⇥ 128⇥ 16⇥ 16

Conv 4⇥ 4 2 LeakyReLU 1⇥ 256⇥ 32⇥ 32 1⇥ 256⇥ 8⇥ 8

Conv 4⇥ 4 1 LeakyReLU 1⇥ 512⇥ 31⇥ 31 1⇥ 512⇥ 7⇥ 7

Conv 4⇥ 4 1 Sigmoid 1⇥ 1⇥ 30⇥ 30 1⇥ 1⇥ 6⇥ 6
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Algorithm 3 Training the refinement network.
1: while Generator G has not converged do

2: Sample batch images Iin from training data;
3: Generate random masks M;
4: Construct combined input (Iin, M, and I1pred);
5: Get masked region prediction I2pred = G(Iin,M, I1pred);
6: Generate inpainted image by modifying the masked region Ipred  Iin +

I2pred � (1�M);
7: Update G with `1 loss and adversarial critic loss;
8: Update discriminator critic D with Iin, Ipred;
9: end while

4.3.2.2 Training

After obtaining the first stage output, it is fed to the refinement network along

with the spatial domain information (of the masked image and the mask). While

training, the generator of the inpainting network G takes a combination of input

image Iin, image mask M, and the first stage output image I1pred and generates

I2pred = G(Iin,M, I1pred) as output. Then by adding I2pred to the input image, com-

pleted image is obtained as Ipred = Iin+[I2pred� (1�M)]. The training procedure of

the refinement stage is described in Algorithm 3. The proposed refinement module is

trained by using two loss functions: a reconstruction loss and an adversarial loss [59].

Here for the reconstruction loss, `1 loss [140] is used, that minimizes the distance

between the clean/ground-truth image Igt and the completed/inpainted image Ipred,

which is given by

L`1(x) = kIgt � Ipredk1, (4.4)

where Ipred  Iin + G(Iin,M, I1pred) � (1�M). For the adversarial loss, the min-

max optimization strategy is followed, where the generator G is trained to produce

inpainted samples from the artificially corrupted images such that the inpainted sam-

ples appear as “real” as possible and the adversarially trained discriminator critic

D tries to distinguish between the ground truth clean samples and the generator
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Table 4.3: Quantitative results on Mars dataset for different inpainting models: Gen-
erative Inpainting (GI) [186], the proposed method in spatial domain [155], and the
proposed method (using frequency domain). The best results for each row is shown
in bold. �Lower is better. +Higher is better.

GI [186]
Ours

(spatial domain)

Ours

(frequency domain)

PSNR
+

31.04 33.42 33.80

SSIM
+

0.906 0.928 0.932

`1(%)
�

1.4 0.9 0.9

predictions/inpainted samples. The objective function can be expressed as follows

G
⇤
, D

⇤ = argmin
G

max
D

Ladv(G,D) = Ex⇠Pr [logD(x)] + Ex̃⇠Pg [log(1�D(x̃)],

where Pr is the real/ground truth data distribution and Pg is the model/generated

data distribution defined by x̃ = G(Iin,M, I1pred). Thus, the overall loss function for

the refinement stage becomes

Ltotal = �1L`1 + �2Ladv, (4.5)

where �1 = 1,�2 = 0.1. The weighted sum of these two loss functions compliments

each other in the following way: i) The GAN loss helps to improve the realism of the

inpainted images, by fooling the discriminator. ii) The `1 reconstruction loss serves

as a regularization term for training GANs [185], helps in stabilizing GAN training,

and encourages the generator to generate images from the modes that are close to

the ground truth in an `1 sense.

4.3.2.3 Implementation Details

The proposed model is implemented in PyTorch. 1 The Mars dataset have images of

size 227⇥227 pixels and for experimental purpose, they are resized to size 256⇥256.
1Our code is available at https://github.com/hiyaroy12/DFT_inpainting.
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Artificially

Corrupted
PM [25] GI [186]

Inpainted

(Ours)

Inpainted

(Frequency)

GT

(Clean)

PSNR/SSIM/`1(%) 26.13/0.924/1.8 24.55/0.883/1.8 33.63/0.982/0.5 35.54/0.987/0.36

PSNR/SSIM/`1(%) 28.98/0.913/3.2 29.79/0.907/3.1 34.64/0.969/1.0 34.51/0.968/0.82

PSNR/SSIM/`1(%) 26.15/0.879/1.8 25.31/0.852/1.9 38.84/0.986/0.2 39.85/0.993/0.14

PSNR/SSIM/`1(%) 26.30/0.963/1.9 27.90/0.966/1.5 38.42/0.996/0.3 39.27/0.997/0.19

Figure 4-4: Visual examples of semantic feature completion of simulated/artificially
corrupted images on Mars dataset using different methods: PatchMatch [25], Genera-
tive Inpainting (GI) [186], the proposed method using only spatial domain information
and the proposed method using both frequency and spatial domain information. The
DFT maps corresponding to different methods are shown here.
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Input PM [25] CE [140] CA [185] GI [186] Ours GT

PSNR/SSIM/`1(%) 21.60/0.87/3.60 30.86/0.98/0.92 29.91/0.98/1.18 27.73/0.97/1.42 31.21/0.99/0.84

PSNR/SSIM/`1(%) 25.50/0.90/1.56 27.62/0.94/0.99 27.53/0.94/1.06 25.75/0.91/1.30 28.64/0.95/0.95

PSNR/SSIM/`1(%) 17.56/0.75/7.07 30.55/0.98/1.11 29.06/0.97/1.45 26.96/0.96/1.71 30.06/0.97/1.14

Figure 4-5: Visual comparison of semantic feature completion results for different
methods on CelebA dataset along with the DFT maps corresponding to different
methods, the first stage output, and GT image.

During additional experiments on the standard dataset, the images are resized to

64⇥64 and linearly scale the pixel values from range [0, 256] to [�1, 1]. For the first

stage, the weights are initialized by using He initialization [66] and use SGD optimizer

with weight decay of 0.0001, the momentum of 0.9, and mini-batch size of 128. To

train the first stage network the learning rate is decayed exponentially from 10�1 to

10�4 for 50 epochs. For the second stage, both the Generator G and Discriminator

D are trained together using the following settings: i) G and D learning rate of 10�4,

and 10�5 respectively, ii) optimized using Adam optimizer [93] with �1 = 0.5 and

�2 = 0.999. In the experiments, a batch size of 14 and the training iterations of 100

are used. Both stages are implemented on a TITAN Xp (12 GB) GPU.
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Input PM [25] CE [140] CA [185] GI [186] Ours GT

PSNR/SSIM/`1(%) 17.32/0.74/10.24 24.94/0.94/1.97 25.49/0.95/1.94 24.74/0.95/2.28 28.98/0.98/1.26

PSNR/SSIM/`1(%) 18.15/0.55/6.88 30.01/0.95/1.09 29.29/0.95/1.17 25.62/0.90/1.83 30.11/0.96/1.08

PSNR/SSIM/`1(%) 22.01/0.86/5.37 27.22/0.95/1.46 27.92/0.96/1.29 24.89/0.93/2.01 29.48/0.97/1.12

Figure 4-6: Visual comparison of semantic feature completion results for different
methods on Paris Streetview dataset along with the DFT maps corresponding to
different methods, the first stage output, and GT image.

4.4 Experiments

This section evaluates the inpainting performance of the proposed method on the

grayscale-version of the Mars orbital images collected by the HiRISE camera on-

board the MRO having a spatial resolution of approximately 30 cm/pixel [120]. The

Mars dataset consists of a total of 73,031 landmarks amongst which 10,433 landmarks

are detected and extracted from 180 HiRISE browse images 2. Amongst these 52655

images are clean and 15,654 images are corrupted (have missing regions at the extrem-

ities of the images). These regions, extracted as masks, are artificially superimposed

on clean images to create pairs of clean and corrupted images. For training purposes,

42124 pairs of clean and artificially corrupted images are used and 10531 images are
2This dataset is available at https://zenodo.org/record/2538136#.XYjEuZMzagR.
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Input GI [186] Ours GT
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PSNR/SSIM/`1(%) 31.92/0.993/0.46 33.12/0.99/0.37
2
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PSNR/SSIM/`1(%) 24.99/0.96/1.46 27.46/0.98/1.21

3
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k

PSNR/SSIM/`1(%) 24.52/0.97/1.62 27.09/0.99/1.29

4
0
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m
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k

PSNR/SSIM/`1(%) 20.31/0.89/2.66 25.86/0.97/1.59

5
0
-
6
0
%

m
a
s
k

PSNR/SSIM/`1(%) 21.17/0.92/3.04 22.36/0.94/2.74

Figure 4-7: Visual comparison of semantic feature completion results for irregular
masks on CelebA dataset.

used for testing purposes.

Additional experiments performed on three standard datasets: CelebFaces Attributes

Dataset (CelebA) [111], Paris StreetView (PSV) [52], and Describable Texture Dataset

(DTD) [38] as well. The CelebA face dataset contains 162770 training images and

19867 test images. The ParisStreetView dataset has 14900 images in the training set

and 100 images in the test set. DTD texture dataset has 5076 number of training im-

ages and 564 number of test images. For experiments on these datasets, both regular

and irregular masks are used. Regular masks refer to square masks having a fixed size

consisting of 25% of total image pixels and are randomly located in the image. For
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Input GI [186] Ours GT
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PSNR/SSIM/`1(%) 28.99/0.96/1.56 32.23/0.99/1.02
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PSNR/SSIM/`1(%) 26.93/0.95/2.38 28.69/0.97/1.82
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PSNR/SSIM/`1(%) 23.50/0.89/3.94 26.86/0.95/2.58
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PSNR/SSIM/`1(%) 22.45/0.90/5.04 25.54/0.94/3.43
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PSNR/SSIM/`1(%) 19.30/0.76/8.30 22.04/0.85/5.98

Figure 4-8: Visual comparison of semantic feature completion results for irregular
masks on Paris StreetView dataset.

irregular masks, during training, the masks from the work of Liu et al. [109] are used,

where the irregular mask dataset contains the augmented versions of each mask (0,

90, 180, 270 degrees rotated, horizontally reflected) and are divided based on the

percentage of mask size on the image in increments of 10% e.g. 0-10%, 10-20%, etc.

4.4.1 Qualitative Evaluation

Figure 4-4 shows the inpainting results on Mars images using different inpainting al-

gorithms: PatchMatch (PM) [25], Generative Inpainting (GI) [186], proposed method
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Table 4.4: Quantitative results on CelebA [111] for different inpainting models: Patch-
Match (PM) [25], Context Encoder (CE) [140], Contextual Attention (CA) [185],
Generative Inpainting (GI) [186], and the proposed method. The best results for
each row is shown in bold. �Lower is better. +Higher is better.

CelebA dataset

Mask PM [25] CE [140] CA [185] GI [186] Ours

P
S
N

R
+

10-20% 15.78 32.49 29.81 30.65 32.69
20-30% 15.09 29.62 27.06 27.22 29.78
30-40% 14.42 27.31 24.77 24.83 27.49
40-50% 13.63 25.10 23.03 22.86 25.27
Regular 14.96 28.17 27.86 26.06 28.13

S
S
I
M

+

10-20% 0.632 0.991 0.986 0.987 0.992
20-30% 0.579 0.983 0.971 0.971 0.984
30-40% 0.513 0.972 0.953 0.952 0.973
40-50% 0.421 0.954 0.930 0.927 0.956
Regular 0.571 0.970 0.968 0.953 0.971

` 1
(
%

)
�

10-20% 13.14 0.84 1.37 1.21 0.82
20-30% 14.58 1.41 2.24 2.07 1.39
30-40% 16.07 2.13 3.28 3.09 2.09
40-50% 17.89 3.13 4.40 4.22 3.08
Regular 13.67 1.55 1.76 2.12 1.55

in spatial domain [155], and proposed method (using frequency and spatial domain

information). The magnitude spectrum of the DFT map for each case is provided

in the row below for each result. It can be seen that the inpainting performance

improves if the frequency information is used along with spatial information (second

last column of Figure 4-4).

Figures 4-5 and 4-6 compare the inpainting results of the proposed method with

previous image inpainting methods: PatchMatch (PM) [25], Context Encoder (CE) [140],

Contextual Attention (CA) [185], and Generative Inpainting (GI) [186], for regular

masks on CelebA and Paris StreetView datasets. The magnitude spectrum of the

DFT map obtained from different methods [25, 140, 185, 186], the proposed method

(first stage reconstruction), and the ground truth image are shown in the row below
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Table 4.5: Quantitative results on Paris Streetview [52] for different inpainting
models: PatchMatch (PM) [25], Context Encoder (CE) [140], Contextual Atten-
tion (CA) [185], Generative Inpainting (GI) [186], and the proposed method. The
best results for each row is shown in bold. �Lower is better. +Higher is better.

Paris Streetview dataset

Mask PM [25] CE [140] CA [185] GI [186] Ours

P
S
N

R
+

10-20% 22.03 31.59 30.68 30.42 32.34
20-30% 20.42 28.69 27.40 27.09 29.25
30-40% 19.36 27.02 25.42 24.95 27.33
40-50% 18.52 25.09 23.99 23.23 25.13
Regular 19.23 27.32 28.29 25.12 28.42

S
S
I
M

+

10-20% 0.766 0.978 0.972 0.969 0.981
20-30% 0.692 0.958 0.945 0.936 0.963
30-40% 0.613 0.938 0.912 0.896 0.942
40-50% 0.515 0.904 0.873 0.850 0.910
Regular 0.659 0.923 0.934 0.880 0.936

` 1
(
%

)
�

10-20% 6.15 1.09 1.40 1.44 0.97
20-30% 7.78 1.93 2.45 2.52 1.78
30-40% 9.39 2.70 3.43 3.66 2.57
40-50% 10.8 3.75 4.40 4.79 3.58
Regular 9.04 1.97 1.93 2.76 1.77

for each result. It can be seen that previous methods (PM) copy incorrect patches in

the missing regions, whereas others (CE, CA, GI) sometimes fail to achieve plausible

results and generate distinct artifacts. However, the proposed method can restore

the missing regions with sharp structural details, minimal blurriness, and hardly any

“checkerboard” artifacts. Moreover, the inpainting results using the proposed method

look the most similar to the ground truth images. The conjecture is that in the

presence of frequency domain information, the network efficiently learns the high-

frequency details, which enables it to preserve the structural details in the restored

image. This can be confirmed from the DFT maps where it can be seen that the

deconvolution network learns to predict the missing region in such a way that the

DFT map of the first stage reconstruction looks similar to that of the ground truth

image. Later the refinement network uses this frequency domain information to pro-
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Table 4.6: Quantitative results on DTD texture dataset [38] for different inpainting
models: PatchMatch (PM) [25], Context Encoder (CE) [140], Contextual Atten-
tion (CA) [185], Generative Inpainting (GI) [186], and the proposed method. The
best results for each row is shown in bold. �Lower is better. +Higher is better.

DTD texture dataset

Mask PM [25] CE [140] CA [185] GI [186] Ours

P
S
N

R
+

10-20% 22.43 29.28 28.43 29.29 29.89
20-30% 21.11 27.02 25.73 26.34 27.38
30-40% 20.12 25.33 23.76 24.41 25.65
40-50% 19.26 23.89 22.35 22.75 23.95
Regular 14.75 27.33 27.26 25.73 27.49

S
S
I
M

+

10-20% 0.704 0.933 0.922 0.935 0.942
20-30% 0.634 0.890 0.861 0.872 0.901
30-40% 0.563 0.841 0.793 0.804 0.854
40-50% 0.475 0.773 0.717 0.714 0.785
Regular 0.149 0.876 0.869 0.833 0.879

` 1
(
%

)
�

10-20% 7.87 1.87 1.92 1.81 1.67
20-30% 8.85 2.85 3.02 2.93 2.62
30-40% 9.76 3.82 4.20 4.11 3.58
40-50% 10.70 4.94 5.40 5.43 4.74
Regular 17.60 2.12 2.40 2.74 2.05

duce better inpainting results.

The qualitative performance of the proposed method in comparison with Generative

Inpainting (GI) [186] algorithm on CelebA and Paris StreetView dataset for irregular

masks is shown in Figure 4-7, and Figure 4-8 for different percentage (10-50%) of

mask size. The proposed method can generate photo-realistic images having similar

texture and structures as the original clean images even when a large region (50-60%)

of the image is missing.

4.4.2 Quantitative Evaluation

The quantitative performance of the proposed method is reported in terms of the

following metrics i) peak-signal-to-noise ratio (PSNR); ii) structural similarity in-

dex (SSIM) [173] and iii) mean absolute error (MAE). Table 4.3 provides the quanti-

tative results on Mars dataset and compares the inpainting performance of previously
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c)	Ours a) b)

c) d)

d)	GTb)	ℓ. + adv	lossa)	ℓ.onlyInput	image

a) b)

c) d)

PSNR/SSIM/	ℓ. %

PSNR/SSIM/	ℓ. % 27.50/0.94/2.80 26.26/0.92/2.20 28.02/0.95/1.74

24.05/0.93/4.78 23.48/0.92/2.63 25.21/0.94/2.17

Figure 4-9: Visual results on Paris StreetView dataset (first row) and DTD (second
row) showing the effect of different components in the proposed model on the input
incomplete images (first column), a) results using standard `1 loss, b) results using
`1 + adversarial loss, c) results of the proposed model trained using `1 + adversarial
loss (with DFT component), and d) GT image.

proposed inpainting algorithms, GI [186], the proposed method using only spatial do-

main information [155] with the proposed method using both frequency and spatial

domain information, in terms of the aforementioned metrics. The proposed method

outperforms all the cases proving the usefulness of using the frequency domain infor-

mation.

Tables 4.4, 4.5, and 4.6 demonstrate the comparison in metric values on the

CelebA, Paris StreetView, and DTD dataset for the state-of-the-art inpainting meth-

ods and the proposed method. The frequency based approach outperforms previous

methods in terms of these metrics on both regular and irregular masks. This proves

the effectiveness of using frequency domain information. Note that, the metrics for

Context Encoder [140] are obtained by using the `1 and adversarial loss in the pro-

posed network settings.

It is to be noted that, the proposed inpainting algorithm using frequency domain

and spatial domain information (explained in this chapter) (approach-2), is an exten-

sion of the inpainting algorithm using only spatial domain information proposed in

the previous chapter (approach-1). Although the approach-2 performs better (both

qualitatively and quantitatively) than approach-1; it consumes comparatively higher
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computational resources (in terms of training time) compared to the approach-1. This

is because approach-1 is trained using only one stage, whereas approach-2 is trained

in two stages. Therefore, computational resources vs. performance trade-off should

be considered regarding the usage of the proposed inpainting algorithms.

4.4.3 Ablation Study

An ablation study is performed on standard datasets to investigate the role of the

frequency deconvolution network and to analyze the effect of different loss compo-

nents used to train the proposed model. Figure 4-9 shows the inpainting results using

only `1 loss, `1 with adversarial loss and the proposed method of incorporating fre-

quency domain information (DFT component). It can be seen in Figure 4-9a) that

using only `1 loss in the spatial domain often cause blurry reconstructions. However,

inpainting performance improves to a certain extent if the adversarial loss component

is added. Nevertheless, in Figure 4-9b) the structural and blurry artifacts still exist

on the reconstructions. Figure 4-9c) demonstrates the inpainting results of the pro-

posed method of training the model using both frequency and spatial components.

It can be seen that using this method the model can perform significantly better

by restoring fine structural details. Therefore, it can be concluded that training the

model along with frequency-domain information certainly helps the network to learn

high-frequency components and restore the missing region with better reconstruction

quality.

4.5 Conclusions

A frequency-based image inpainting algorithm is presented in this chapter that en-

ables the network to use both frequency and spatial information to predict the missing

region of an image. To the best of our knowledge, this is the first attempt to solve

the image inpainting problem by using frequency-domain information which was not

explored in previous inpainting works. The proposed model first learned the global

context using frequency domain information and selectively reconstructed the high-
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frequency components. Then it used the spatial domain information as a guidance

to match the pixel distribution of the true image and fine-tuned the details and

structures obtained in the first stage, leading to better inpainting results. Experi-

mental results showed that the proposed method could achieve results better than

state-of-the-art performances on different kinds of challenging datasets (planetary and

standard dataset) by generating sharper details and perceptually realistic inpainting

results. This proved the generalization ability of the proposed algorithm. Based on

the empirical results, I believe that methods using both frequency and spatial infor-

mation should gain dominance because of their superior performance. In the future,

this work can be extended to using other kinds of frequency domain transformations

e.g. DCT, and solve other kinds of image restoration tasks e.g. image denoising.
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Chapter 5

Conclusions

5.1 Discussion

Instruments and sensors onboard spacecraft and rover capture a plethora of data that

can enable scientists to discover the yet unknown. Nevertheless, because of the limited

bandwidth and inter-planetary communication through deep space, it is impossible

to return all of the images to Earth for further analysis. Moreover, sometimes the

received data on Earth is partially corrupted with unphotographed/missing pixels.

Machine learning methods can provide solutions to these problems in the following

ways: by analyzing data onboard (i.e. by detecting objects seen in the image); by

automating time-consuming tasks for human such as finding images of interest, based

on textual queries (image retrieval); or by predicting missing regions on the orbital

images (image inpainting) to enhance the usability of the acquired data. The studies

explained in the previous chapters demonstrate how ML can improve image analysis

capabilities in future space missions by overcoming the data constraints from both

in-situ and orbital planetary exploration missions.

For in-situ missions such as the MSL Curiosity rover, this dissertation demon-

strated solutions to enhance onboard analysis capabilities by detecting objects seen

in the image and sending this smaller sized meta-data back to Earth. This will not

only help to overcome the problem of limited bandwidth but also will help to retrieve

images from a large database based on query text. This study required curation of
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a new planetary dataset, along with labeling of each image (annotating objects and

corresponding captions for the entire image) for developing a new machine learn-

ing method for planetary image retrieval using captions. This research was initially

aimed to solve the limited bandwidth problem by developing onboard image analysis

capabilities for better space exploration in the future. Nonetheless, the developed

algorithm is also useful for other applications on the ground such as image retrieval.

For orbital missions such as the MRO or SELENE/Kaguya, this dissertation pre-

sented solutions related to image inpainting to predict the missing regions of the

partially corrupted images (received on Earth) and enhance the data usability for

further analysis such as automatically classifying or recognizing interesting morpho-

logical features in the planetary surface or improving the landing site candidate se-

lection efficiency, etc. Two approaches related to solving the image inpainting task

are proposed, where the first approach uses only spatial domain information, whereas

the second approach takes advantage of the frequency domain information along with

the spatial domain information to selectively reconstruct the high-frequency compo-

nents of the missing region. The first image inpainting approach (as explained in

Chapter 3) takes less time to train compared to the second inpainting approach (ex-

plained in Chapter 4) because the former is trained in one stage, whereas the latter

is trained in two stages. However, the second approach performs better than the

first one both qualitatively and quantitatively. Therefore, computational resources

vs performance trade-off should be considered regarding the usage of the proposed

inpainting algorithms. Experimental results showed that image inpainting can be a

helpful first step for planetary scientists for further analysis such as to improve classi-

fication performance or to make more accurate location adjustments while making the

mosaic of the planetary surface where the region is not illuminated by Sunlight such

as the Polar region. Overall, the solutions presented in this thesis demonstrate that,

although there exist several data-constrained situations while exploring the planets

and planetary bodies, it is possible to overcome them both on the planet-side (on-

board applications) and Earth-side (ground applications) by leveraging the benefits

of ML technology for better planetary exploration in the future.
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5.2 Directions for Future Work

While ML can be a promising tool to solve several challenges faced by planetary

scientists, there are a few challenges related to the availability of planetary datasets

in public. Although this intersection of ML and planetary science is still in the nascent

stage, there is a great potential in ML algorithms that can advance planetary science

in near future. Both the planetary science and ML community can benefit from each

other, where the ML community can gain new insights by developing new algorithms

on planetary datasets that might not be revealed using only standard datasets; and the

planetary science community can benefit themselves with automated algorithms that

can improve future space mission. The next subsections present some ideas for future

work as well as some efforts worth-considering to foster the long-term collaboration

of these two fascinating fields of ML and planetary science.

5.2.1 Compression

To deal with the bandwidth-constrained situation to transmit images, one prominent

future direction would be to compress the images. Currently, images captured by

the rover are compressed onboard (in JPEG format) before they are downlinked to

Earth. While compression is important in this regard, JPEG compression results

in noticeable artifacts such as inconsistency in brightness or color [90]. Recently

the outstanding performance of deep neural networks has attracted the computer

vision community to use deep neural networks for solving lossy image compression

tasks as well. Such deep learning-based image compression frameworks [167, 168,

22, 23, 17, 18, 150, 106]. Deep learning-based image compression is considered to be

more generic, can be implemented quickly, and are efficient in terms of performance

compared to standard JPEG codec. Therefore, in the future, I would like to develop

deep learning compression algorithms for the planetary dataset.

89



5.2.2 Interpretability in Machine Learning

A great deal of conservative mindset works within the planetary science community

when it comes to adopting the machine learning/deep learning solutions that are

designed to benefit future space exploration. This is a valid concern because proper

interpretations as to why the results obtained using deep learning algorithms is good

or why certain decisions or predictions were made, will help the scientists to trust and

adopt the system more logically. In recent years, interpretability in machine learning

is booming and is being actively pursued by the research community. Within the

planetary science domain also, it is important to bring interpretability in the machine

learning/deep learning solutions so that scientists are more willing to adopt it for

future space missions.

5.2.3 Making Planetary Datasets Publicly Available for Re-

search Purposes

The Machine learning community usually evaluate the performance of any model on

the benchmark datasets such as MNIST [103], Fashion-MNIST [176], CIFAR-10 [96],

ImageNet [50], MS-COCO [108], and other standard datasets [38, 52, 111], depending

on the task. Therefore, it is much easier to compare the performance of the proposed

algorithm directly with the previously proposed methods on standard datasets. How-

ever, in the case of developing ML solutions for space application, often the planetary

dataset is not publicly available or even if it is publicly available, sometimes domain

knowledge is required to understand the nomenclature or the typicalities related to

that dataset. For example, there are some publicly available datasets for Mars and

Moon craters [141, 151], which are designed for Geographic Information System (GIS)

analysis. However, to use them for ML tasks, domain expertise, as well as a lot of pre-

processing, is required. Recently some studies have published the planetary datasets

used by the authors along with the labeling [172]. However, this is not a common

practice. Therefore, it is important to make planetary datasets publicly available

to encourage the ML community, to develop better and new solutions for scientific
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analysis and mission operations, promote research works in this direction, and enable

reproducibility of the published work. The NASA Planetary Data System a.k.a. PDS

Imaging Node - NASA [8] is a promising image archive curating images from past

and present planetary missions to look up for planetary datasets. Only time will

reveal the true potential and benefits of these research directions for future planetary

explorations.
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Appendix A

Image Aesthetics Analysis

Analyzing the aesthetic quality of images is a highly challenging task because of

its subjectiveness. With the exponential rise of digital images in social media, it is

of great demand to assess the aesthetics of images for several multimedia applica-

tions such as increasing social popularity, etc. Previous approaches to address this

problem have used hand-designed features or automated features extracted by deep

convolutional neural network architectures. In this chapter, the aesthetics of images

is predicted by using the inferential information depending on the visual content

found in an image. To the best of our knowledge, this is the first attempt to ad-

dress such a problem by using the tags predicted. Experimental results show that the

proposed method outperforms the traditional machine learning methods and demon-

strate competitive performance compared to the state-of-the-art methods of image

aesthetics prediction.

A.1 Introduction

In recent years, image aesthetics analysis has drawn a significant attention of the

computer vision community because of its potential applications in the visual ex-

perience domain, such as image enhancement, image cropping, image retrieval, and

photo management [46, 89, 115, 51, 157, 134]. Evaluating the aesthetics of images

using a computational algorithm is a very difficult task for computers because differ-
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Avg. score: 8.571 Avg. score: 6.882 Avg. score: 5.980 Avg. score: 4.463

Figure A-1: Photos with ratings given by viewers collected from
www.dpchallenge.com

ent people perceive beauty in different ways and rate aesthetics of images differently

as seen in Figure A-1. Therefore, to deal with the subjectivity of the human’s aes-

thetic evaluation, several machine learning approaches have been proposed over the

years [46, 89, 51, 118, 115, 45, 85, 114, 47, 132, 29, 160, 175, 82, 30, 157, 134].

Most of the early research works have focused on designing intuition-based features

ranging from low-level features such as color, hue, saturation, etc. [46] to high-level

describable image attributes such as compositional, content-based or illumination

based attributes [51] for image aesthetics prediction. However, it is very difficult to

choose appropriate features to map the human perception of images to their aes-

thetic score. To tackle this problem researchers have also adopted generic features

such as SIFT and Fisher Vector [118] for predicting the aesthetics of images. How-

ever, over the past few years, deep convolutional neural network (CNN) based mod-

els have shown outstanding performance on various challenging visual recognition

tasks [97, 39, 188, 161, 165, 67] and they have the capability of learning features au-

tomatically from image examples in a hierarchical way. Therefore, in the most recent

studies researchers have exploited the automated feature learning power of deep con-

volutional neural network (CNN) for the image aesthetics prediction task, to avoid

the requirement of domain-related knowledge to choose appropriate features.

In this work, a new approach is introduced to predict image aesthetics using tags

generated by the computer vision API of the Microsoft Azure Cognitive Services.

The generated tags are mostly object-names, but there are some context-related tags

such as indoor, outdoor, etc. The AVA dataset [126] contains approximately 2,50,000
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images, where each image is associated with an aesthetic score on a scale ranging

from 1 - 10. Three types of aesthetic prediction models are used to understand the

mapping between human-understandable semantic features to the aesthetic score of

every image. It is shown that the proposed idea of using tags for aesthetics prediction

can produce comparative results close to the state-of-the-art methods and that is the

main finding of this chapter.

The rest of the chapter is organized as follows. Section A.2 discusses the related

work on this topic. Section A.3 provides the details of the used dataset and the

proposed prediction models. Section A.4 presents the experimental results of image

aesthetics prediction and the conclusion of this chapter is provided in Section A.5.

A.2 Related Works

This section talks about the related works where the problem of image aesthetics

analysis has been formulated as a classification or a regression problem. The hand-

designed features and generic features proposed over the years to solve this problem

are reviewed. The recent studies showing that convolutional neural networks can be

successfully applied for image aesthetics prediction achieving state-of-the-art results

are also discussed.

The approaches that formulate aesthetic quality assessment as a classification

problem distinguish aesthetically pleasing and displeasing images. The hand-designed

features that were proposed in the literature for appropriate representation of image

aesthetic characteristics are as follows: Datta et al. [46] designed 56 visual features for

each image based on intuition. Apart from considering visual cues like colorfulness,

brightness, saturation, hue, etc. they also considered features related to wavelet-based

texture, size and aspect ratio, shape convexity, low depth of field, etc, and trained

a statistical model to automatically classify images of having good or bad aesthetic

quality. Ke et al. [89] used high-level semantic features to describe the spatial dis-

tribution of the high-frequency edges, color distribution, hue count, blur, etc. for

the classification task. Dhar et al. [51] proposed a different type of human-perceived
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high-level image attributes related to image configuration, the content of the image,

and the natural lighting conditions of the image, to predict image aesthetics and in-

terestingness of the image. Nishiyama et al. [132] proposed an approach based on

color harmony and bags of color patterns to deal with the complex color distribution

of an image. They combined the color harmony feature along with blur, edges, and

saliency features of the photos to improve their aesthetic classification performance.

An alternative approach of using generic image descriptors such as GIST, Bag-of-

Visual-Words descriptor, Fisher vector was proposed by Marchesotti et al. [118] which

being able to implicitly encode the aesthetic characteristics of an image from SIFT

information [113], could outperform traditional hand-designed features. Despite the

success of the prior works using handcrafted features and generic features, in recent

years several deep convolutional neural networks have been proposed for image aes-

thetics prediction. Lu et al. [114] proposed a double-column CNN to improve aesthetic

categorization using style attributes and semantic attributes. Two heterogeneous in-

puts, i.e., global and local views of an image, were fed to both the columns of the

double-column deep CNN, to capture both global and local characteristics of images.

On the other hand, the approaches that formulate aesthetic quality assessment

as a regression problem focuses on finding the aesthetic scores using several data-

driven machine learning techniques. Datta et al. [46] predicted the numerical aes-

thetics ratings by using Linear Regression (LR) on polynomial terms of the features.

Bhattacharya et al. [29] used an interactive application, based on user-guided object

segmentation and inpainting for extracting aesthetic features subsequently used for

training a Support Vector Regression (SVR) model. Wu et al. [30] designed a new

regression algorithm called support vector distribution regression (SVDR) and two

separate learning strategies (RSL and LR) to tackle the difficulties in learning a visual

quality distribution prediction model. Leveraging the success of CNN architectures,

Kao et al. [19] proposed a regression model based on CNN and showed impressive

results. Later, Jin et al. [82] came up with a CNN-based histogram prediction model

that not only predicts the aesthetic score but also can obtain an aesthetically pleasing

crop of an input image using the same regression model. Most recently, Murray et
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Figure A-2: Proposed architecture

al. [127] showed that using only one deep CNN model (trained only for the distribution

prediction task), three different kinds of tasks namely aesthetic quality classification,

aesthetic score regression, and aesthetic score distribution prediction, can be solved.

However, none of the previous works focused on what is inside the photos. This

work proposes a novel approach to predicting image aesthetic scores using machine-

generated tags based on the content of the image. This research is the first trial

that uses object detection in aesthetics analysis tasks. Surprisingly, only machine-

generated tags can achieve comparable prediction performance to the state-of-the-art

results.

A.3 Proposed Method

In this section, the details of the proposed idea for mapping raw RGB images to

aesthetics tags are explained. First, the AVA dataset [126] and how the labels are

extracted from the data are described. The details of the different models used for

the determination of the aesthetic scores are also described.

Let us denote each image by Xi and the corresponding score by si. The score is

usually in the range of 0 to 10. Let us assume that the tags obtained from all the

images in the dataset belong to a set T . A generator of tag from images gtag : RM⇥N

7! T . The predicted score for each image Xi is given by yi. The indicator function

1(x) produces 1 if x is true else 0.
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A.3.1 Dataset

The large-scale image database for Aesthetic Visual Analysis known as AVA dataset [126]

containing more than 2,55,000 images and covering a wide variety of subjects on

1,447 challenges is used in this task. These images along with a rich variety of

meta-data are collected from an online community of photography amateurs such

as www.dpchallenge.com. A total of 255,494 images are used for the experimental

purposes. For each image Xi, a distribution of user votes ranging from score 1 to

10 is provided. The weighted average for these score distributions with votes as the

weights is computed to obtain a single real values score depicting the aesthetic rating

of the image.

A.3.2 Prediction Model

In this chapter, the main focus is to illustrate the dependence of human-understandable

semantic features to the aesthetics of each image. More specifically, the aim is to find

the relationship between machine-generated tags and the aesthetic score of the im-

age. The Microsoft Azure Cognitive Services framework is used to generate tags of

each image. These tags are used for building regressor models for the aesthetic score.

Here, mainly illustrate three kinds of models are illustrated: (i) naive bayes model

using only tag information, (ii) CNN based score regression, and (iii) combination

of CNN and sparse tag information vector for score prediction. The details of the

architectures are shown in Figure A-2.

A.3.2.1 Naive Bayes using Only Tags

In this approach, only the machine-generated tags are considered to find their effect

on the aesthetic scores. Here, the naive Bayes regressor is employed, where for each

tag, the average aesthetic scores of all the images having that tag is computed. The

mathematical formulation of the same is given as follows

p(yi|t1, t2, ..., tni) = p(y)
niY

j=1

p(tj|yi), (A.1)
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Let us assume an uninformative uniform prior to the aesthetic score distribution, and

two-sided exponential distribution,

p(tj|yi) =
�

2
exp (��|yi � µj|),

where µj =
PN

i=1 si1(tj2gtag(Xi)PN
i=1 1(tj2gtag(Xi)

is the mean score for each tag across all images and

� is the inverse mean of the distribution. With the above assumption of two-sided

exponential distribution, the mode of the aesthetic score distribution is obtained as

follows

y
⇤ =

1

ni

niX

i=1

µj. (A.2)

This gives a closed-form solution to the aesthetic score prediction model from tag

information and there is no iterative learning procedure involved in this method.

While being very simple and straight-forward modeling, in the experimental section, it

is shown that, it does a very good job of modeling the relationship between high-level

human-understandable tag information and aesthetic score, comparable to certain

early methods in aesthetics prediction.

A.3.2.2 Convolutional Neural Network

It has been shown that residual networks [65] can produce state-of-the-art results

in image classification tasks and the intermediate feature representations from the

learned parameters of Residual Network (ResNet) can extract meaningful semantic

knowledge about the content of the images. Thus these features have been used

for various kinds of end-to-end image-based tasks such as segmentation and depth

estimation from a single image and other high-level computer vision tasks. These

semantically meaningful features are leveraged to extract aesthetic scores from im-

ages. Although image aesthetics analysis is a highly subjective matter, I believe that

humans are aesthetically inclined to certain features in images whereas some other

features decrease the attractiveness of an image. Given this, the aesthetic score pre-

diction problem reduces to correlating features that improve or decrease the aesthetic
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score of an image. To achieve the above mapping between semantically meaningful

features and aesthetic score a multi-layer perceptron with a single output depicting

the real-valued score is deployed. Similar to recent works in deep models a large

number of image data available from the AVA dataset [126] is leveraged to learn gen-

eralizable features for the above mapping. This is obtained by simply minimizing

the mean square error between the feed-forward prediction of the network and the

ground-truth score while back-propagating the error gradients through the network

and weight update using ADAM optimization method [94]. This method is similar

to prior works but here ResNet [65] features are used, which are more expressive

and can lead to a better understanding of raw RGB to real-valued aesthetic scores.

Although only high-level fully connected features are used, I believe there is room

for improvement concatenating low-level, mid-level, and high-level ResNet features

similar to prior work; where low-level features of the image such as dots, lines, edges,

gradients, pixel intensities, or colors; mid-level features such as color histograms, tex-

ture or shape descriptors; and high-level features such as features related to shapes

and objects of the image are considered. For experimental purposes, each image in

the AVA dataset [126] is resized to 224⇥ 224⇥ 3 so that it matches the Imagenet [49]

dimensions and this stage is referred to as the pre-processing stage. Then, the ResNet-

50 architecture pre-trained on Imagenet dataset [49] is used to extract the high-level

features obtained from fully connected layers.

A.3.3 Visualizing Dependence of Tags on Aesthetic Score

A.3.3.1 CNN using Tag Spare Vectors

In this approach, both the features (i) extracted by CNN and (ii) a sparse feature

vector obtained from the tag generator using Microsoft Azure Cognitive Services

are concatenated. Although prior work has shown that a combination of low-level,

mid-level, and high-level features results in the good performance of aesthetic score

prediction, neither of these features were human-understandable. In this method, the

latent feature vectors from deep models are combined with object tag features to in-
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Figure A-3: Relationship of tag index with average cumulative aesthetic scores.

spect how human-understandable features such as object tags influence the aesthetics

of an image. This is important because it gives a hint of interpretability as to why a

certain image is aesthetically more appealing to the subjective human brain.

To achieve this the ResNet-features are fused in two ways: (i) early fusion, where

the sparse feature vectors obtained from the one-hot representation of tags in a par-

ticular image is directly fused with real-valued ResNet features of size 2,048, (ii)

late fusion, where first an intermediate real-valued representation from the one-hot

representation is found and then it is fused with the ResNet features.

Figure A-3 shows the relationship between the tag index with the average cumula-

tive score, where it can be seen that in the middle region, the gradient is low and the

randomness is greater. Therefore these tags affect the average cumulative score very

little. However, on both sides, the gradient is quite high and the randomness is much

lower, which means that the tags in those two regions affect the average aesthetic

score in a great fashion.
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Table A.1: Mean Square Error for different methods

MSE
GIST linear-SVR 0.5222
GIST rbf-SVR 0.5307

BoVW SIFT linear-SVR 0.5401
BoVW SIFT rbf-SVR 0.5513
Kao et al. 2015 [85] 0.4510
Jin et al. 2016 [82] 0.337

Murray et al. 2017 [127] 0.279
(i) Naive Bayes using only tags 0.512
(ii) CNN based score regression 0.3569
(iii) Combination of CNN and
sparse tag information vector

0.3562

A.4 Experimental Results

In this section, the experimental results are reported as obtained from the proposed

three architectures as explained above. Table A.1 shows the mean square errors for

each of the methods. The top four rows in Table 1 report the results obtained by

combining the generic image descriptors, GIST [136], SIFT [113] and Bag-of-Visual-

Words (BoVW) [42], along with the linear and non-linear Support Vector Regression

(SVR) [162]. Note that these results are reported directly from the paper. Details of

these methods can be found in [118, 85]. The last three rows show the result achieved

by the proposed architectures. Overall it shows that the proposed method of aesthetic

score prediction using CNN and using the combination architecture performs almost

comparable with the previous methods reported in the literature. Figure A-4 shows

the qualitative results and the correlation between the ground truth scores (GT) and

the aesthetic scores predicted (pred) by the proposed model (iii). It can be seen

that the model can predict aesthetic scores close to the ground-truth scores. Some

failure cases (i.e. the images for which the proposed method failed to predict the

aesthetic scores correctly) are shown in Figure A-5. The ground truth scores (GT)

and predicted scores (pred) are mentioned for each of the images.
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GT: 6.530, Pred: 6.713 GT: 6.370, Pred: 6.090 GT: 5.383, Pred: 5.247 GT: 6.530, Pred: 6.713

GT: 5.522, Pred: 5.714 GT: 6.191, Pred: 6.069 GT: 5.207, Pred: 5.393 GT: 5.841, Pred: 6.032

Figure A-4: The ground truth scores (GT) and predicted scores (Pred) for some
images in the test set. The GT scores are shown in blue. The predicted scores are
shown in green.

GT: 7.596, Pred: 5.963 GT: 6.459, Pred: 5.470 GT: 7.857, Pred: 5.577 GT: 7.321, Pred: 5.963

Figure A-5: Failure cases of the proposed aesthetic prediction model.

A.5 Conclusions

This chapter presented a novel idea of using tags for image aesthetics prediction.

This problem is formulated as a regression problem with three kinds of models: (i)

naive bayes model using only tag information, (ii) CNN based aesthetic score re-

gression, and (iii) a combinational architecture of CNN and sparse tag information

vector for aesthetic score prediction. Experimental results on the AVA dataset, which

is the benchmark dataset with the rich aesthetic rating, showed that the proposed

idea performed comparably with the state-of-the-art results. Although it could not

outperform the previously reported results on the same dataset, it is worth mention-
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ing that, this is the very first attempt of using inferential information to predict the

aesthetic score. Moreover, it is shown that even a simple tag-based naive regressor

could produce quite good results for aesthetic score prediction. I believe that using

a combination of low-level deep features combined with inferential information like

tags can be used to produce state-of-the-art systems that can be used to increase the

number of views/likes on Social Networking Sites.
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