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Abstract

Unavoidable disturbances that include external disturbances as well as the unmodeled dynamics down-

grade the performance of industrial control systems and thus, disturbance rejection has been an essen-

tial objective in control field. Compared to feedback scheme of disturbance rejection, a feedforward

method which directly counteracts the influence of disturbance but requires its dynamics acts faster and

disturbance can be well-rejected. However, since the dynamics of disturbance are normally unknown,

observer-based disturbance rejection methods, which utilize the estimation of disturbances, have been

well-established among which disturbance observer is an efficient tool.

Disturbance observer-based disturbance rejection system utilizes the estimated disturbance created

by the nominal plant inversion to compensate the influence of real disturbances. Simple structure yet

efficient disturbance rejection performance has made disturbance observer be applied to many engineering

applications. Despite its wide application, the design of a disturbance observer tends to be intuitive and

relies on designers’ experience to a large extent. Furthermore, for non-minimum phase systems which

consist of unstable zeros and/or time delay that leads to special characteristics, such as unstable inversion

or limitation on sensitivity function, disturbance observer design has become more difficult.

Frequency response data-based controller design, which is an alternative of model-based controller

design and considers all the information of frequency response data rather than identified parametric

model, has appeared as a promising way of designing larger bandwidth controllers. By formulating the

controller design specification into optimization constraints, parameters of the controller can be tuned by

optimization algorithms.

Inspired by the above analysis, frequency response data-based low pass filter design has been conducted

and further extended to identify the nominal plant model and design low pass filter simultaneously in

both continuous domain and discrete domain.

Disturbance observer design has been firstly formulated into a non-linear optimization problem in which

non-convex constraints, such as constraint for guaranteeing stability margins, has been represented by

mathematical equations. Then the transformation process from non-convex optimization problem to

convex optimization problem, more specifically, conic optimization problem, has been given in detail.

During this process, techniques such as Schur Complement as well as the linear approximation have

been extensively employed and since the transformation process is mathematical calculation-based and

transformed constraints are the sufficient condition of original non-convex constraints, the optimal point of

newly-obtained convex optimization problem undoubtedly satisfies the original non-convex optimization

also. Additionally, proposed methods set requirements on neither low pass filter nor on the plant model,

i.e., it is applicable to both low-order and high-order low pass filter designs for minimum phase as well

as non-minimum phase plants.

Extensive case study results have been provided to verify the feasibility of proposal for different design
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scenarios which are classified based on the relative order of nominal plant model and whether plant is

non-minimum phase as well as whether nominal plant model is to be simultaneously identified or not.

Optimized disturbance observers have satisfied all the predefined constraints. Also, identification of plant

model simultaneously with design of low pass filter has provided the largest bandwidth which verifies the

necessity of adjusting plant model together. Moreover, the comparison with existing methods has been

carried out and results have confirmed the superiority of proposal in terms of design effort along with

obtained bandwidth.

Finally, experimental applications to a non-minimum phase motion stage have successfully obtained

satisfactory disturbance rejection performance and validated the efficacy of proposed methods.
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Chapter 1

Introduction

1.1 Background of disturbance rejection control

Disturbances including external disturbances as well as plant uncertainties are unavoidable in many

engineering applications, such as spacecraft [1], process industry [2]. In the mechanical control community,

the system performance can be influenced by disturbances such as variations of load torque, the parameter

perturbations caused by the change of operating conditions as well as working environment [3] [4] [5] [6].

Existence of disturbance influences the performance and sometimes stability of control systems [7] [8],

thus disturbance rejection is of significant importance and one of the key objectives in control system

design. To ensure the performance of system under the influence of disturbances, e.g. robust stability

and robust performance, generally two types of methods are employed [9].

One way is to design disturbances-tolerant controllers, which means designed controllers should guar-

antee the required performance if some bounded disturbances appear, such as internal model control [10]

and robust control [11]. However, such controllers use feedback scheme to realize disturbance rejection

which does not directly react to the disturbance and may not be fast enough when strong disturbance

exists.

The other is to counteract disturbances by measuring or estimating the disturbance and further com-

pensating its influences [12]. If a perfect model of disturbance and its effect on the controlled plant are

known which are strict settings, feedforward method can reject the influences of disturbance. However,

in most of the time, disturbances are unknown and unmeasurable which makes feedforward controller

paradigm impractical and leads to the idea of estimating disturbance by observers, e.g. extended state ob-

server ( [13]), uncertainty and disturbance estimator ( [14]) and so on, among which disturbance observer

(DOB) proposed in [15] has become one of the most widely used tools and will be further introduced in

section 1.3.

1.2 Non-minimum phase system

1.2.1 Definition

Minimum phase (mp) systems, which do not contain any unstable zero or time delay, have the minimum

phase lag when the magnitude is given. In contrast, non-minimum phase (nmp) systems, which refer to

systems containing unstable zeros and/or time delays, can be found in industrial applications such as

hard disk drive (HDD, [16]) and high precision positioning stage [17] [18] and have special characteristics
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as introduced in the following section.

1.2.2 Characteristics

À Undershoot

Undershoot has appeared as a typical characteristic of non-minimum phase systems as shown in Fig. 1.1.

Furthermore, the number of zero-crossings is same as the number of real unstable zeros [19] [20].

Á Unstable inversion caused by unstable zero

If a plant has unstable zero(s), inversion of it is unstable since unstable zero becomes unstable pole which

is straightforward. In addition, since time delay can be transformed into Eq. (1.1) by first order Padé

approximation [21], the inversion of system containing time delays also presents to be unstable.

e−τs ≃ 1− τs

1 + τs
, (1.1)

in which τ is the time constant [s].

Unstable inversion leads to internal stability problem if the inversion is used in controller design, such

as disturbance observer which will be introduced in the following section.

Â Phase delay

Compared to its counterpart, i.e. minimum phase systems, non-minimum phase systems have an addi-

tional phase delay which can be explained by Eq. (1.2) (take one unstable zero case as an example).

Gnmp = Gmp ×
−s+ α

s+ α︸ ︷︷ ︸
allpass
function

, ∠Gnmp = ∠Gmp − 2∠(s+ a), (1.2)

in which α is the unstable zero of Gnmp; Gmp and Gnmp represent for random transfer functions of a

non-minimum phase plant and the corresponding minimum phase plant respectively.

In order to build a straightforward impression, Gmp and Gnmp has been selected as the following

example and Nyqusit plots are shown in Fig. 1.2.

Gnmp =
2

s(s+ 2)
× −s+ 6

s+ 6
, ∠Gnmp = ∠Gmp − 2∠(s+ 6). (1.3)

Phase delay caused by unstable zeros and/or time delay sets an upper limit for feedback bandwidth

(ωc > 2|α0| ( [22]) in which α0 is an unstable zero).

Ã Sensitivity function limitation

The Bode integral formula or waterbed effect ( [23]), which represents the limitation for sensitivity

function for minimum phase systems as well as non-minimum phase systems are shown in Eq. (1.4). For

minimum phase systems, area of |S(jω)| < 1 should be equal to the area of |S(jω)| > 1 (blue area equals

to pink area in Fig. 1.3) while in non-minimum phase systems, the existence of unstable zeros adds the

weight of |S(jω)| > 1 area which can be understood from the example in Fig. 1.4. The influence caused

by existence of unstable zeros limits the disturbance rejection performance.

minimum phase system case :

∫ ∞

0

log|S(jω)|dω = 0, (1.4)

non-minimum phase system case :

∫ ∞

0

log|S(jω)|dω = π
∑

αnmp. (1.5)

in which αnmp are unstable zeros.
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undershoot

Figure 1.1 Examples of step responses for a minimum phase system and a non-minimum phase system

Figure 1.2 Locally enlarged Nyquist plots of Gmp and Gnmp

disturbance
rejection

Figure 1.3 Explanation for Bode integral formula
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1.3 Review on disturbance observer

Despite the simple structure which will be introduced in detail in the following section, disturbance

observer (DOB) has been widely applied to engineering systems spanning from automation [24] [25], hard

disk drive [26], mechatronics [27], aircraft [28] to cutting-edge robots [29] [30] and so on. Furthermore,

several commercial motion control products based on DOB are available in the market [31] [32], such as

Panasonic’s MINAS-A5 series motor drivers [31].

1.3.1 Basic idea of disturbance observer control system

In Fig. 1.5 that showing the basic idea of DOB, Pr and Pn represent the real physical plant and nominal

plant model. Signals ua, up and y are the control input, plant input and system output, respectively.

Signal d is the lumped external disturbance and d̂ is the estimated disturbance which is the difference

between reproduced plant input (ûp) ,which is obtained by utilizing P−1
n , and input signal u.

Since P−1
n is not causal, low pass filter, which is generally called as Q filter, is employed to guarantee

the causality of the whole system in practical. The reason for choosing low pass filter is because the

to-be-rejected disturbance is usually of low or medium frequency, whereas the sensor noise is of medium

or high frequency.

The following analysis can be obtained from Fig. 1.5.

1. disturbance estimation

d̂ =
(PrP

−1
n − 1)Q

1−Q+ PrP
−1
n Q

u+
PrP

−1
n Q

1−Q+ PrP
−1
n Q

d. (1.6)

（a）When no external disturbance works on the system and nominal plant is exactly the real plant,

estimated disturbance is 0.

（b）When nominal plant is accurate but external disturbance exists, d̂ = Qd holds which means

disturbance estimation is precise within the bandwidth of Q filter.

2. transfer functions Guay (from ua to y) and Gdy (from d to y)

Guay =
PrPn

Q(Pr − Pn) + Pn
, Gdy =

PrPn(1−Q)

Q(Pr − Pn) + Pn
. (1.7)

（a）In the frequency range of Q ∼= 1 (low frequency), Guay = Pn and Gdy = Pn(1−Q) hold which

indicates that the system behaves as the nominal plant [3] [33].

（b）In the frequency range of Q ∼= 0 (high frequency), Guay = Pr and Gdy = Pr(1−Q) hold which

shows the system works as real plant.

3. sensitivity function S and complementary sensitivity function T

S =
Pn(1−Q)

Q(Pr − Pn) + Pn
, T =

PrQ

Q(Pr − Pn) + Pn
. (1.8)

（a）When nominal plant is accurate, S = 1−Q and T = Q hold.

（b）In the frequency range of Q ∼= 1 (low frequency), S ∼= 0 and T ∼= 1 hold whereas when Q ∼= 0,

S ∼= 1 and T ∼= 0.
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Based on the above analysis, Q filter is essential in designing disturbance observer and its bandwidth

should be as large as possible to guarantee the satisfactory disturbance rejection performance. However,

robustness [12] and noises [34] limit the bandwidth of a DOB. Furthermore, when a DOB is applied to

a non-minimum phase plant, internal stability problem and additional limitation on sensitivity function

caused by unstable zero(s) need to be considered [35] [36] [37].

1.3.2 Introduction of previous studies on disturbance observer design

DOB for linear systems or for non-linear systems can all be found but since this thesis focuses on

linear system, research works on DOB for non-linear system, such as [38]- [41], will not be introduced

in detail. Although DOB has been applied to various applications, the design of it highly depends on

designers’ experience and parameters of DOB are normally tuned intuitively. Trial-and-error method and

H∞ methods have been extensively employed in the design of DOB, see survey [9] [42] and book [43].

Based on the analysis of robustness, e.g. robust stability analysis as well as robust performance, the

design of DOB has been investigated [3] [44]- [47]. In [44], an almost necessary and sufficient stability

condition of DOB based control systems has been given. In [45]- [47], disturbance observers have been

designed by trial-and-error method while in [49]- [52], H∞ optimization methods have been employed.

Paper [50] investigated the design of DOB based on the closed loop system robustness analysis. In [51],

a new robust stability analysis tool, which depends on the real parametric uncertainty analysis methods,

is proposed for the control systems based on DOB. The DOB can also be designed from the perspective

of noise suppression [53] [54] in which authors have proposed a noise suppression DOB and time constant

of Q filter, which guarantees good noise suppression performance, is selected by trial-and-error.

Design of DOB in discrete domain has been investigated in [55]- [58]. Paper [55] discussed improve-

ment of robustness for DOB-based discrete control algorithm by shaping the true plant with a cascaded

frequency shaping filter. Paper [56] has provided guidelines in deciding parameters and [57] presents a

generalized framework for robust stability analysis of control systems based on the discrete-time DOB.

Applications of different discretization methods of continuous DOB has been discussed in [58].

Compared to its counterpart, due to the limitation (unstable inversion and waterbed effect) introduced

by unstable zeros, DOB design for non-minimum phase systems becomes more challenging. Existing

methods can be classified into two categories: One is to transform the non-minimum phase system

into minimum phase system so that various methods for minimum phase systems can be employed

[59]. In [60] [61] [62], authors have managed to show the bandwidth range according to the analysis

based on Bode/Poisson integral formula after the non-minimum phase plant has been approximated.

In [37], an approximate inverse system for non-minimum phase system has been obtained by least-square

approximation method. In [63] [64], the controlled plant is in parallel with a filter to make it become a

minimum phase one and then H∞ methods have been employed.

The other is to make Q filter contain the same unstable zero or the time delay as nominal plant does,

such as [65]- [70]. In [66] [67] [68], DOB-based model predictive control scheme were proposed in which

time delay or unstable zeros can be considered as part of Q filter and trial-and-error was used to tune

the parameters. In [69] [70], H∞ optimization problems have been formulated to tune Q parameters.

Bases on the above analysis, the DOB design is more of intuitive process rather than mathematical-

calculation based auto-tuning process, even in H∞ methods, the selection of weighting functions needs
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to be repeated. Therefore, a systematic and mathematical-calculation based auto-tuning method which

can realize satisfactory disturbance rejection process is investigated in this thesis.

Furthermore, for non-minimum phase plants, in order to eliminate the influence of unstable zeros

appeared in non-minimum phase plant, pole-zero analysis, such as coprime factorization [65] [69] [70],

is always employed which necessitates the usage of parametric model. Since parametric plant model

(transfer function or state space representation) is identified from experimental frequency response data,

model uncertainty introduced in the fitting process should be considered in designing a robust controller

which is prone to obtaining a conservative controller since worst case is considered. In this thesis, the

direct use of frequency response data for DOB design is explored which is inspired by research works in

the following section.

1.4 Review on frequency response data-based controller design

For classical model-based controller design, identifying the plant model and designing the controller

based on the obtained model with the consideration of modeling uncertainty is the ordinary process.

Thus the identification of the plant model is essential to model-based control theory.

However, industries which have large-scale production technologies and equipment, e.g. machinery,

electronics, and transportation, identifying the plant model has become more difficult. Furthermore,

for a system whose model is available but not adapted to control design because of too high order or a

model is unavailable or too difficult to obtain, model-based control design methods are not as efficient as

data-based controller design methodologies [71].

Under such circumstances, data-based controller design has been an attractive alternative way of de-

signing controller, including time domain data-based design and frequency response data-based design.

( [72], [73] and [74]). A parametric model is not required in data-based design framework, thus iden-

tification effort can be decreased. Since this thesis is about frequency domain data-based approach,

time domain data-based studies are briefly-introduced while frequency response data-based studies are

discussed in detail.

Time domain data-based design approaches employ time domain input and output data to design

controller so that model reference criterion can be satisfied. The Virtual Reference Tracking (VRFT,

[75]), Unfalsified Control (UC, [76]), Iterative Feedback Tuning (IFT, [77]), Model-Free Adaptive Control

(MFAC, [78]) and Iterative Learning Control (ILC, [79]), Correlation-based Tuning (CbT, [80]) all belong

to this category.

Compared to various time domain data-based design, a few methods employ frequency domain data

directly. Frequency domain data-based controller design methods have been used in classical loop-shaping

to compute simple controllers, e.g. Quantitative Feedback Theory (QFT, [81]). In [82], desired closed-

loop poles are computed by frequency response data (FRD) although authors have pointed out their

proposal is only applicable to systems with low damping. A set of proportional-integral-derivative (PID)

controllers which satisfy the desired performance can be obtained from proposal in [83].

The aforementioned research works are not automatic optimization process and other researchers have

turned frequency response data-based controller design problem into an optimization problem and solved

it by optimization software. By converting performance limitations and necessary trade-offs in controller

design into mathematical constraints either by graphical tools, e.g. Nyquist plot, or H∞ framework,
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and selecting an appropriate criterion as the optimization objective, e.g. integrator gain, parameters of

desired controller can be tuned.

In [84] [85], a robust fixed order linearly parameterized controller design method using linear pro-

gramming is proposed. Constraints in this paper, such as gain margin and phase margin, have all

been approximated to its linear form. In [86], given an loop-shaping objective and H∞ performance

criteria, FRD-based design methodology for linearly-parameterized controllers are proposed for single-

input-single-output (SISO) systems. Robust performance conditions are expressed as linear or convex

constraints around the desired open-loop on the Nyquist diagram. Specially, the design of PID controllers

for SISO systems were investigated in [87] [88] by interpreting the concept in [86] as a convex-concave

optimization problem. In [89], compared to [86], no linearization around a given desired open loop trans-

fer function is required and global minimum can be obtained and the application to a power converter

can be found in [90].

The extension to PID controllers design for multi-input-multi-output (MIMO) system has been done

in [91] (toolbox has been developed in [92]). Linearly parameterized controller design for MIMO systems

has been discussed in [93] and fully parameterized controller design by convex optimization has been

conducted in [94] [95].

Some techniques based on non-convex optimization have also been proposed. In [96], fixed order

controllers are defined using Q parameterization and designed by a non-convex optimization. In [97], a

nonlinear programming problem has been formulated based on the concept of bounded error to compute

fixed order controllers for SISO system only.

1.5 Thesis structure

This thesis is organized as shown in Fig. 1.5. On the whole, the thesis has been divided into three

parts: theoretical analysis (Chapter 3 and 4), numerical case study results (Chapter 5 and 6) as well as

experimental results (Chapter 7).

Firstly, mathematical preliminaries in Chapter 2 has laid the foundation for theoretical discussion.

The necessary mathematical preliminaries have been introduced starting from the definition of convex

optimization problem as well as conic optimization problem since this thesis has transformed the original

non-convex DOB design problem into a conic optimization problem. The required mathematical knowl-

edge in the transformation process, such as Schur Complement and Linear Matrix Inequality have also

been shown. Furthermore, in order to transform original nonlinear constraints which are represented by

the difference between two convex functions into convex form, the lower bound of a convex function is

always needed which is found by linear approximation.

In the second part or the theoretical part, the theoretical analysis of DOB design problem has been

elaborated. Based on the block diagram of DOB-based control system, the original non-convex problem

formulation process including the introduction of constraints, such as constraint for guaranteeing stability

margins, has been given for both continuous domain and discrete domain design. Subsequently, the

detailed mathematical transformation process from non-convex constraints to convex constraints has

been present. Importantly, not only the low pass filter design (Chapter 3) but also the design of low pass

filter along with identification of plant model (Chapter 4) has been investigated. The newly-obtained

convex optimization problem can be easily solved by off the shelf toolboxes.
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Extensive case study results, which are classified into design for a minimum phase system (Chapter

5) case and design for a non-minimum phase system (Chapter 6) case, have been shown to verify the

feasibility of proposed methods. For both cases, low pass filter design result as well as results of design

plant model and low pass filter together have been analyzed in continuous domain and discrete domain.

In addition, resultant Nyquist plots and magnitude plots of sensitivity function as well as complementary

sensitivity function, which are for ensuring the satisfaction of constraints, have all been exhibited. More-

over, the proposal has been compared with previous studies and its superiority has been proven in terms

of optimized bandwidth. Particularly, for the DOB design for a non-minimum phase plant which contains

unstable zero, special case study, such as low pass filter contains the same unstable zero as nominal plant

does, has been conducted.

The experimental verification has been presented in chapter 7. To start with, the structure of exper-

imental test bench, which is a non-minimum phase motion stage, and the system identification process

for obtaining frequency response data have been introduced. After setting up the machine, proposed

FRD-based DOBs and DOBs designed by methods in previous research have been implemented. Out-

put responses, which are position signals, have been recorded and compared with each other. Proposed

methods have achieved satisfactory disturbance rejection performance which demonstrates the efficacy of

proposal.

Finally, concluding remarks as well as the prospective research in future have been given in Chapter 8.



Chapter 1 Introduction 10

Chapter 2
Mathematical
preliminaries

Chapter 3
Convex optimization

problem formulation of
low pass filter design in

disturbance observer

Chapter 7
Experimental

verification with a
non-minimum phase

motion stage

Theoretical analysis

Chapter 8
Conclusion

Chapter 5
Case study results of

FRD-based DOB
design for a minimum

phase plant

Numerical case study

Chapter 4
Convex optimization

problem formulation of
plant model identification

and low pass filter design in
disturbance observer

Chapter 6
Case study results of

FRD-based DOB design
for a non-minimum

phase plant

Chapter 1
Introduction



11

Chapter 2

Mathematical preliminaries

2.1 Overview

This chapter is to introduce the necessary mathematical preliminaries used in following chapters in-

cluding the definition of convex optimization problem as well as conic optimization and introduction of

Schur complement along with linear approximation and some special mathematical techniques used in

the discussion afterwards. Finally, some frequently-used mathematical notations have been summarized.

2.2 Mathematical preliminaries

2.2.1 Definitions and theorems

A function f is convex means it satisfies Eq. (2.1) and a simple example would be a quadratic function.

f(β1x+ β2y) ≤ β1f(x) + β2f(y). (2.1)

for all x, y ∈ Rn̄ with β1 + β2 = 1, β1 ≥ 0, β2 ≥ 0.

A standard form of convex optimization problem can be shown as follows ( [98]).

minimize f0(x) (2.2)

subject to fk∗(x) ≤ 0, k∗ = 1, · · · , γ (2.3)

κT
k∗x = ξk∗ , k∗ = 1, · · · , λ (2.4)

in which f0, f1, · · · , fγ are convex; equality constraints are affine.

For example, the following problem is a convex optimization problem.

minimize f0(x) = x2
1 + x2

2 (2.5)

subject to x1 ≤ 0, (2.6)

x1 + x2 = 0 (2.7)

This thesis has succeeded in transforming the disturbance observer design problem into a convex opti-

mization problem, specifically, a conic optimization problem. A conic optimization problem is the subfield

of convex optimization and the explanation of it is shown as follows.

A conic optimization problem has one or more cone constraints. A cone constraint specifies that the

vector formed by a set of decision variables is constrained to lie within a closed convex pointed cone.

Many different cones exist, such as norm cones (Fig. 2.1), positive semi-definite cones.
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In order to approximate the original non-convex optimization problem into a conic optimization prob-

lem, following three techniques are utilized in the next chapter.

1) Schur Complement ( [99]) is introduced as follows:[
Y (x) M(x)

(M(x))T R(x)

]
> 0, (2.8)

where Y (x) = Y (x)T , R(x) = R(x)T and M(x) depends affinely on x, is equivalent to

Y (x) > 0, R(x)−M(x)Y (x)−1M(x)T > 0. (2.9)

Schur Complement can be used to obtain Matrix Inequality form, specially, Linear Matrix Inequality

(LMI) form ( [99]) which can be represented by the following equation:

F (x) = F0 +

m̄∑
i∗=1

xi∗Fi∗ > 0, (2.10)

in which x ∈ Rm̄ is the variable and symmetric matrices Fi∗ = FT
i∗ ∈ Rn̄×n̄, i∗ = 0, · · · , m̄ are given.

For example, if x > 0, y > 0, then xy > 1 can be changed into the following LMI form by using Schur

Complement.

x > 0, y > 0, xy > 1 ⇔
[
x 1
1 y

]
> 0. (2.11)

2) Linear approximation

For a convex function, linear approximation is extensively employed in finding the lower bound of it.

The basic concept is to estimate the value of a function, f(x), near a point x0 = [x0(1), x0(2), ..., x0(n̂)]
T ,

using the following formula.

f(x) ≈ f(x0) +∇f(x0)(x− x0), (2.12)

in which

∇f(x0) =

[
∂f(x0)

∂x0(1)
,
∂f(x0)

∂x0(2)
, · · · , ∂f(x0)

∂x0(n̂)

]
. (2.13)

Especially, for the difference between two convex functions f(x) and g(x),

f(x)− g(x)︸︷︷︸
original

≤ 0 ⇐ f(x)− (g(x0) +∇g(x0)(x− x0))︸ ︷︷ ︸
lower bound of g(x)

≤ 0 (2.14)

This technique is used in convex-concave optimization problem [100] [101] which is a procedure where

the optimization criterion and constraints are written as a difference between two convex functions:

minimize f0(x)− g0(x) (2.15)

subject to fi′(x)− gi′(x) ≤ 0, i′ = 1, · · · , m̂ (2.16)

Such optimization problem can be solved efficiently by the iterative procedure and finally converges to

a saddle point or a local minimum [101]. Even though there is no guarantee of convergence to a global

minimum, experience has shown that this method is often effective in producing good solutions [87].

3) Technique in finding lower bound for m−2
1 (m1 > 0)

For a concave function, linear approximation can only find the upper bound of it. In this thesis, the

lower bound of a specific case m−2
1 (m1 > 0) is needed and the following method is used. By using an
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known positive scalar m2 and building the following equation, the lower bound of m−2
1 can be found

successfully [102].

(m−2
1 −m−2

2 )(m−2
1 −m−2

2 ) ≥ 0(forever hold equation)

⇔ m−4
1 ≥ 2m−2

1 m−2
2 −m−4

2

multiply m−2
1 to both sides

⇐===============⇒ m−2
1 ≥ 2m−2

2 −m−4
2 m2

1.

(2.17)

If the LMI form of the lower bound is needed, by introducing a positive variable ϕ and making m−2
1 ≥

2m−2
2 −m−4

2 m2
1 ≥ ϕ > 0, the following LMI form can be obtained.[

2m2
2 − ϕ1m

4
2 m1

m1 1

]
> 0, ϕ > 0. (2.18)

2.2.2 Nomenclature

In this section, extensively-used notations have been listed while explanations for notations not men-

tioned here are present in the place where notations appear for the first time.

2.3 Summary

This chapter has introduced the mathematical knowledge that is used in following chapters. This

chapter is the basis of mathematical transformation from nonlinear optimization problem to convex

optimization problem which will be discussed thoroughly from next chapter.
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Table 2.1 Summary of notations

Notations meaning

DOB disturbance observer

FRD frequency response data

mp minimum phase

nmp non-minimum phase

j imaginary unit

ωk frequency ([rad/s]) (k: index)

L∗ open loop function

S∗ sensitivity function

T ∗ complementary sensitivity function

Wp weighting function for sensitivity function

Wm weighting function for complementary sensi-

tivity function

Pr real plant

Pn nominal plant

Q low pass filter in disturbance observer

gm gain margin

ϕm phase margin

(−σ,0) center point of stability circle

rm radius of stability circle

i iteration index in the optimization process

d disturbance

d̂ estimated disturbance

y position signal

up plant input

ua control input

r reference signal

e error signal

∗: In the thesis, different subscripts are used to represent L, S, T for

different systems.
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Figure 2.1 An example of norm cone
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Chapter 3

Convex optimization problem formulation of low
pas filter design in disturbance observer

3.1 Overview

This chapter is dedicated to the theoretical analysis of FRD-based low pass filter design in disturbance

observer including continuous domain (s domain) and discrete domain (z domain) design.

Firstly, the FRD-based low pass filter design when the nominal plant is given regardless of its type

(minimum phase or non-minimum phase) has been explored. More specifically, for either of the following

cases, parameters of Q filter can be tuned automatically and bandwidth-maximized DOB can be obtained.

1. Minimum phase nominal plant model is employed in the design.

2. Non-minimum phase nominal plant is used in the design.

In this case, to guarantee the internal stability, Q should also contain the same unstable zeros as

plant does [65] [69].

3. The minimum phase approximation of a non-minimum phase plant is used in the design.

The original non-convex optimization problem formulation of low pass filter design including the in-

troduction of constraints have been given and the detailed transformation process from non-convex con-

straints to convex constraints based on the mathematical preliminaries in Chapter 2 has been presented.

Subsequently, in this chapter, the low pass filter design in discrete domain has been present. Although

design in continuous domain is convenient and straightforward, the implementation of DOB is in dis-

crete domain and direct design in discrete domain is more of practical meaning. Furthermore, even the

constraints have been satisfied for the design result in continuous domain, the discrete DOB which is

discretized from continuous domain result may break the constraints. Therefore, the design of DOB in

discrete domain has been investigated.

Finally, procedures of proposed methods have been summarized.

3.2 Low pass filter design in continuous domain

3.2.1 Block diagram analysis

In the disturbance observer control system as shown in Fig. 3.1, Pr and Pn(s) denote real plant and

nominal plant (known), defined by FRD and transfer function (s domain), respectively. Q(s) represents
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yd
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−

d̂

+
+

Pr

Q(s)

FRD

ua

P−1
n (s)Q(s)

Figure 3.1 Block diagram of disturbance observer system in continuous domain for low pass filter design

the to-be-designed low pass filter. Signals d, d̂, ua, y are real external disturbance, estimated disturbance,

control input and output, respectively. The selection of Q(s) filter, which includes the form as well as

the relative order, depends on the nominal plant which can be classified as follows:

1. Nominal plant Pn(s) is minimum phase:

Q(s, a.b) =
amsm + · · ·+ a1s+ 1

bnsn + · · ·+ b1s+ 1
. (3.1)

2. Nominal plant Pn(s) is a minimum phase approximation of a non-minimum phase model and Q(s)

is minimum phase:

Q(s, a, b) =
amsm + · · ·+ a1s+ 1

bnsn + · · ·+ b1s+ 1
. (3.2)

3. Nominal plant Pn(s) is non-minimum phase and Q(s) is non-minimum phase:

Q(s, b) =
(s+ znmp(1)) · · · (s+ znmp(m))

bnsn + · · ·+ b1s+
m∏

k′=0

znmp(k′)

. (3.3)

in which a ≜ [a1, · · · , am]T and b ≜ [b1, · · · , bn]T are to-be-decided parameter vectors and the order n−m

should be no smaller than the relative order of the inversion (or approximated inversion) of Pn(s). When

Pn(s) is of non-minimum phase, znmp(1), · · · , znmp(m) are unstable zeros of nominal plant.

The loop gain L(jωk, a, b), sensitivity function S(jωk, a, b) and complementary function T (jωk, a, b) for

Fig. 3.1 can be obtained as follows:

L(jωk, a, b) = P−1
n (s)Q(s, a, b)(1−Q(s, a, b))−1Pr(jωk) =

N(jωk, a)

D(jωk, a, b)
, (3.4a)

S(jωk, a, b) =
1

1 + (1−Q(s, a, b))−1Q(s, a, b)P−1
n (s)Pr(jωk)

=
D(jωk, a, b)

D(jωk, a, b) +N(jωk, a)
, (3.4b)

T (jωk, a.b) =
(1−Q(s, a, b))−1Q(s, a, b)P−1

n (s)Pr(jωk)

1 + (1−Q(s, a, b))−1Q(s, a, b)P−1
n (s)Pr(jωk)

=
N(jωk, a)

D(jωk, a, b) +N(jωk, a)
. (3.4c)

in which D(s, a, b) is a linear function in terms of a, b.

In the following section, several constraints has been designed to obtain satisfactory disturbance rejec-

tion performance. Thereafter, the design of DOB has been formulated into an optimization problem in

which a as well as b are optimization parameters and the bandwidth of DOB is the optimization objective.
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Figure 3.2 Circle condition description for prospective Nyquist plot

3.2.2 Constraints formulation

À Constraint for guaranteeing stability margins

The circle condition ( [88]), which is shown in Fig. 3.2, should be met to guarantee the desired gain

margin gm and phase margin ϕm. Black dashed line denotes unit circle and gray line is a circle whose

center (−σ,0) and radius rm can be obtained by following equations when 0 < ϕm < π
2 ,

1
gm

< cosϕm, 0 <

rm < σ and (σ − 1)2 < r2 hold.

σ =
g2m − 1

2gm(gm cosϕm − 1)
, rm =

(gm − 1)2 + 2gm(1− cosϕm)

2gm(gm cosϕm − 1)
. (3.5)

The mathematical representation of this constraint is shown as follows:

|σ + L(jωk, a, b)| − rm ≥ 0, (3.6)

in which L(jωk, a, b) is the loop gain in Eq. (3.4a).

Á Constraints for sensitivity function and complementary sensitivity function

Weighting function Wp(s, ωp) and Wm(s, ωt), which are shown in Eq. (3.7), are selected for S(jωk, a, b)

and T (jωk, a, b) respectively to establish the constraints for sensitivity function and complementary sen-

sitivity function as shown in Fig. 3.3 and Fig. 3.4. ωp is selected as the optimization objective since the

blue part in Fig. 3.3 represents for disturbance rejection area. When the optimal point ωp(opt) is found,

a and b are obtained simultaneously.

Wp(jωk, ωp) =
ωp

jωk
, |Wp(jωk, ωt)S(jωk, a, b)| ≤ 1. (3.7)

Wm(jωk, ωt) =
jωk + ωt

Mtωt
, |Wm(jωk, ωt)T (jωk, a, b)| ≤ 1. (3.8)

Â Constraint for guaranteeing stability of low pass filter

If the Q filter is of second order, as long as b1 > 0 and b2 > 0 hold, Q must be stable.

If the Q filter is of high order, given that the initial Q filter is stable, when the Nyquist plot of Lq(s, bi)

(ith iteration), which is the open loop function defined as follows, never encircles (-1,0) as shown in
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Figure 3.3 Figure of constraint for sensitivity function

| 1
Wm

||T (jω)|Mt

0[dB]

ω[rad/s]ωt

Figure 3.4 Figure of constraint for complementary sensitivity function

Fig. 3.5, the stability of Q filter which simultaneously means the stability of closed loop function Hq, is

guaranteed during the optimization process.

Lq(s, bi) =
1

bn(i)sn + · · ·+ b1(i)s
=

1

Dq(s, bi)
, (3.9)

Hq(s, bi) =
Lq(s, bi)

1 + Lq(s, bi)
=

1

bn(i)sn + · · ·+ b1(i)s+ 1
. (3.10)

The mathematical interpretation is given as Eq. (3.11) which means the distance |Lq(jωk, bi) −
Lq(jωk, bi−1)| should be no larger than the distance between Lq(jωk, bi−1) and (−1, 0) at every frequency

point after every iteration.

|Lq(jωk, bi)− Lq(jωk,bi−1)| ≤ |Lq(jωk, bi−1) + 1|. (3.11)
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Figure 3.5 Explanation of constraint for guaranteeing the stability of high order low pass filter

In summary, the Q filter design is formulated into the following optimization problem.

Maximize
a,b,ωt

ωp (3.12a)

Subject to 0 < b1, · · · , bn, 0 < ωp < ωt, (3.12b)

|L(jωk, a, b) + σ| ≥ rm, (3.12c)

|Wp(jωk, ωp)S(jωk, a, b)| ≤ 1, (3.12d)

|Wm(jωk, ωt)T (jωk, a, b)| ≤ 1, (3.12e)

|Lq(jωk, bi)− Lq(jωk, bi−1)| ≤ |Lq(jωk, bi−1) + 1|. (3.12f)

Especially, if the Q filter is of second order, the optimization problem can be formulated as follows:

Maximize
a,b,ωt

ωp (3.13a)

Subject to 0 < b1, b2, 0 < ωp ≤ 1√
b2

≤ ωt, (3.13b)

|L(jωk, a, b) + σ| ≥ rm, (3.13c)

|Wp(jωk, ωp)S(jωk, a, b)| ≤ 1, (3.13d)

|Wm(jωk, ωt)T (jωk, a, b)| ≤ 1, (3.13e)

3.2.3 Convex constraints derivation

Constraint for guaranteeing stability margins

In this subsection, constraint Eq. (3.12c), which is for guaranteeing margins, is converted to a convex

constraint in the following way.

|L(jωk, ai, bi) + σ| − rm =

∣∣∣∣ N(jωk, ai)

D(jωk, ai, bi)
+ σ

∣∣∣∣− rm ≥ 0

⇔ |N(jωk, ai) +D(jωk, ai, bi)σ| ≜ F (jωk, ai, bi) ≥ rm |D(jωk, ai, bi)|︸ ︷︷ ︸
original

⇐ Ψ ≥ rm |D(jωk, ai, bi)|︸ ︷︷ ︸
newly-obtained

,
(3.14)
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where

Ψ = F (jωk, ai−1, bi−1) +∇F (jωk, ai−1, bi)(ai − ai−1) +∇F (jωk, ai, bi−1)(bi − bi−1),

∇F (jωk, ai−1, bi) =


∂(|N(jωk, ai−1) +D(jωk, ai−1, bi)σ|)

∂a1(i−1)

...
∂(|N(jωk) +D(jωk, ai−1, bi)σ|)

∂am(i−1)



T

,

∇F (jωk, ai, bi−1) =


∂(|N(jωk, ai) +D(jωk, ai, bi−1)σ|)

∂b1(i−1)

...
∂(|N(jωk, ai) +D(jωk, ai, bi−1)σ|)

∂bn(i−1)



T

.

(3.15)

with ai(bi) and ai−1(bi−1) denoting the current value and the previous value in the iterative optimization

process, respectively.

Constraint for sensitivity function

For the sensitivity function constraint Eq. (3.12d), the following method is used to obtain LMI form.

∣∣Wp(jωk, ωp(i))S(jωk, ai, bi)
∣∣ ≤ 1 ⇔

∣∣∣∣ωp(i)

jωk
D(jωk, ai, bi)

∣∣∣∣ ≤ |D(jωk, ai.bi) +N(jωk, ai)| . (3.16)

Squaring both sides of Eq. (3.16), the following matrix inequality form can be obtained by using Schur

Complement.∣∣∣∣ωp(i)

jωk

∣∣∣∣2 |D(jωk, ai, bi)|2 ≤ |D(jωk, ai, bi) +N(jωk, ai)|2

⇔


∣∣∣∣ ωk

ωp(i)

∣∣∣∣2 D(jωk, ai, bi)

(D(jωk, ai, bi))
∗ |D(jωk, ai, bi) +N(jωk, ai)|2

 :=

[
S11 S12

(S12)
∗ S22

]
≥ 0.

(3.17)

To obtain the sufficient condition of original constraint, the lower bound of S11 and S22 are required.

For S11 =
(ωk)

2

ω2
p(i)

, the lower bound of ω−2
p(i) is obtained by using the technique introduced in Chapter 2.

(ω−2
p(i) − ω−2

p(i−1))(ω
−2
p(i) − ω−2

p(i−1)) ≥ 0 ⇔ ω−4
p(i) ≥ 2ω−2

p(i−1)ω
−2
p(i) − ω−4

p(i−1)

⇔ ω−2
p(i) ≥ 2ω−2

p(i−1) − ω−4
p(i−1)ω

2
p(i) ≥ ϕs(i) > 0,

(3.18)

in which ϕs(i) is newly-introduced variable and constraints for it can be expressed in the following form:[
2ω2

p(i−1) − ϕs(i)ω
4
p(i−1) ωp(i)

ωp(i) 1

]
> 0, ϕs(i) > 0. (3.19)

with ωp(i) and ωp(i−1) representing the current value and the previous value in the iterative optimization

process, respectively.

After the lower bound of ω−2
p(i) has been found, a lower bound of S11 is expressed as follows:

S11 =
ω2
k

ω2
p(i)︸ ︷︷ ︸

original

≥ ω2
kϕs(i)︸ ︷︷ ︸

newly-obtained

. (3.20)
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As for S22, the linear approximation is employed.

S22 = |D(jωk, ai, bi) +N(jωk, ai)|2 ≜ (M(jωk, ai, bi))
2︸ ︷︷ ︸

original

≥ Φ

:= (M(jωk, ai−1, bi−1))
2 +∇(M(jωk, ai−1, bi))

2(ai − ai−1) +∇(M(jωk, ai, bi−1))
2(bi − bi−1)︸ ︷︷ ︸

newly-obtained

,
(3.21)

in which ∇M(jωk, ai−1, bi)
2 as well as ∇M(jωk, ai, bi−1)

2 are calculated similarly to Eq. (3.15).

In summary, the original nonlinear constraint Eq. (3.12d) is transformed into following LMIs by

combining Eq. (3.17), Eq. (3.19), Eq. (3.20) and Eq. (3.21).

ϕs(i) > 0,

[
ω2
kϕs(i) D(jωk, ai, bi)

(D(jωk, ai, bi))
∗ Φ

]
≥ 0,

[
2ω2

p(i−1) − ϕs(i)ω
4
p(i−1) ωp(i)

ωp(i) 1

]
> 0. (3.22)

Constraint for complementary sensitivity function

By following the similar process as used in dealing with Eq. (3.12d), the complementary sensitivity

function constraint Eq. (3.12e) is changed into the following form.

∣∣Wm(jωk, ωt(i))T (jωk, ai, bi)
∣∣ ≤ 1 ⇔

∣∣∣∣jωk + ωt(i)

Mtωt(i)

∣∣∣∣2 ≤
∣∣∣∣D(jωk, ai, bi) +N(jωk, ai)

N(jωk, ai)

∣∣∣∣2 ,
⇔

 ω2
t(i)

(N(jωk, ai)(jωk + ωt(i)))

Mt
(N(jωk, ai)(jωk + ωt(i)))

∗

Mt
|D(jωk, ai, bi) +N(jωk, ai)|2

 :=

[
T11 T12

(T12)
∗ T22

]
≥ 0. (3.23)

Since T22 = S22, its transformation is omitted due to the repetition. For T11, following two different

cases are considered.

If the numerator of L does not contain to-be-optimized parameters, e.g., the numerator of Q is 1 and

the numerator of L is Pr(jωk)P
−1
n , the ωt can also be selected as the optimization variable. In such case,

T11 needs to be transformed as shown in Eq. (3.24).

ω2
t(i)︸︷︷︸

original

≥ 2ωt(i−1)ωt(i) − ω2
t(i−1)︸ ︷︷ ︸

newly-obtained

, (3.24)

in which ωt(i) means the current value and ωt(i−1) means the previous value in the iterative optimization

process.

By combining Eq. (3.20), Eq. (3.23) and Eq. (3.24), the original non-convex constraint is changed into 2ωt(i−1)ωt(i) − ω2
t(i−1)

|N(jωk)|(jωk + ωt(i))

Mt
|N(jωk)|(jωk + ωt(i))

∗

Mt
Φ

 ≥ 0. (3.25)

If the numerator of L contains to-be-optimized parameters, ωt should be a pre-defined fixed number in

order to make the constraint into a convex form. ω2
t

(N(jωk, ai)(jωk + ωt(i)))

Mt
(N(jωk, ai)(jωk + ωt(i)))

∗

Mt
Φ

 ≥ 0. (3.26)
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Constraint for guaranteeing stability of high order low pass filter

For constraint Eq. (3.12f), the transformation process is given as follows.

|Lq(jωk, bi)− Lq(jωk, bi−1)| ≤ |Lq(jωk, bi−1) + 1|

⇔
∣∣∣∣ 1

Dq(jωk, bi)
− 1

Dq(jωk, bi−1)

∣∣∣∣ ≤ ∣∣∣∣ 1

Dq(jωk, bi−1)
+ 1

∣∣∣∣ . (3.27)

By defining ∆Dq to represent Dq(jωk, bi−1)−Dq(jωk, bi), one can derive

|∆Dq| ≤ |Dq(jωk, bi)||Dq(jωk, bi−1) + 1|. (3.28)

By squaring the above equation and using the Schur Complement, the following equation is obtained.[
|Dq(jωk, bi−1) + 1|2 ∆Dq

(∆Dq)
∗ |Dq(jωk, bi)|2

]
:=

[
Q11 Q12

(Q12)
∗ Q22

]
≥ 0. (3.29)

The convex form lower bound of Q22 is found by using linear approximation as shown in Eq. (3.30).

Q22 = |Dq(jωk, bi)|2︸ ︷︷ ︸
original

≥ Φq := (Dq(jωk, bi−1))
2 +∇(Dq(jωk, bi−1))

2(bi − bi−1)︸ ︷︷ ︸
newly-obtained

, (3.30)

in which ∇(D(jωk, ai−1))
2 can be obtained by the similar method of Eq. (3.15).

In conclusion, the convex form sufficient condition of Eq. (3.12f) is obtained as follows.[
|Dq(jωk, bi−1) + 1|2 ∆Dq

(∆Dq)
∗ Φq

]
≥ 0. (3.31)

Constraint for bandwidth in second order low pass filter case

The left side of Eq. (3.13b) (ωp ≤ 1√
b2
) is changed into the following form by using linear approximation

of
1√
b2
:

ωp(i) ≤
1√
b2(i)︸ ︷︷ ︸

original

⇐ ωp(i) ≤
1√

b2(i−1)

−
b

−3
2

2(i−1)

2
(b2(i) − b2(i−1))︸ ︷︷ ︸

newly-obtained

. (3.32)

The Schur complement is used to deal with the right side of Eq. (3.13b) (
1√
b2

≤ ωt):

1

b2(i)
≤ ω2

t(i)︸ ︷︷ ︸
original

⇐ 1

b2(i)
≤ 2ωt(i−1)ωt(i) − ω2

t(i−1)

⇔
[
2ωt(i−1)ωt(i) − ω2

t(i−1) 1

1 b2(i)

]
≥ 0︸ ︷︷ ︸

newly-obtained

.

(3.33)
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3.2.4 Problem reformulation

By summarizing Eq. (3.14), Eq. (3.22), Eq. (3.25) and Eq. (3.31), the original problem is reformulated

as follows.

Maximize
a,b,ωt,ϕs

ωp

Subject to 0 < a, 0 < b, (3.34a)

0 < wp(i) < wt(i), 0 < ϕs(i), (3.34b)

Ψ− rmD(jωk, ai, bi) ≥ 0, (3.34c)[
|Dq(bi−1) + 1|2 ∆Dq

(∆Dq)
∗ Φq

]
≥ 0, (3.34d)[

ω2
kϕs(i) D(jωk, ai, bi)

(D(jωk, ai, bi))
∗ Φ

]
≥ 0, (3.34e)[

2ω2
p(i−1) − ϕs(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
≥ 0, (3.34f) 2ωt(i−1)ωt(i) − ω2

t(i−1)

|N(jωk)|(jωk + ωt(i))

Mt
|N(jωk)|(jωk + ωt(i))

∗

Mt
Φ

 ≥ 0. (3.34g)

If Q is a second order filter, Eq. (3.34d) is not needed and can be replaced by Eq. (3.32) and Eq.(3.33).

If Q does not contain any variables in the numerator, the constraint Eq. (3.34g) is needed to be modified

to Eq. (3.26).

The new optimization problem is a convex optimization problem and can be solved by commercial

solvers.

Remark: Although complex mathematical transformation process has been employed in the transfor-

mation process, the comparison with Genetic Algorithm has shown that limited conservatism has been

introduced [109].

3.2.5 Procedures of designing low pass filter in continuous domain

Based on the previous analysis, procedures of designing low pass filter in continuous domain can be

summarized as follows.

1. Select the form and relative order of Q filter based on the nominal plant

（a）The relative order of Q filter should be no smaller than relative order of nominal plant.

（b）The form of Q filter depends on the type of nominal plant model.

For an ordinary minimum phase nominal plant, a minimum phase Q filter is used. Importantly,

if the nominal plant model is of non-minimum phase, Q filter should also contain the same

unstable zeros as plant model does. However, if the minimum phase approximation of non-

minimum phase plant is used, a minimum phase Q filter should be selected.

2. Define desired gain margin as well as phase margin and formulate the design problem as introduced

in previous section.

3. Solve the convex optimization in optimization software and confirm defined constraints have been

satisfied.
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Figure 3.6 Block diagram of disturbance observer system in discrete domain for low pass filter design

3.3 Low pass filter design in discrete domain

3.3.1 Block diagram analysis

In the discrete disturbance observer control system as shown in Fig. 3.6, Pr and Pn(z) denote real

plant and nominal plant , defined by FRD and transfer function in discrete domain, respectively. Q(z)

represents the to-be-designed low pass filter. Same as in s domain block diagram Fig. 3.1, signals d, d̂, ua, y

are real external disturbance, estimated disturbance, control input and output, respectively.

Q(z) is selected as the following fixed form in which ad ≜ [ad(1), · · · , ad(m∗)]
T and bd ≜

[bd(1), · · · , bd(n∗)]
T are parameter vectors to be decided and the order n∗ −m∗ should be no smaller than

the relative order of the inversion (or approximated inversion) of Pn.

Qd(z, ad, bd) =
ad(m∗)z

m∗
+ · · ·+ ad(1)

bd(n∗)zn
∗ + · · ·+ bd(1)z + 1

, (3.35)

in which ad(m∗) + · · ·+ ad(1) = bd(n∗) ++ · · ·+ bd(1) + 1.

Same as in s domain, the selection of Qd(z) depends on the nominal plant. But when the relative order

of discrete nominal plant is 0, the order of Qd(z) filter is decided by the designer. The loop gain Ld,

sensitivity function Sd and complementary function Td for Fig. 3.6 are obtained as follows.

Ld(jωk, ad, bd) = P−1
n (z)Q(z, ad, bd)(1−Q(z, ad, bd))

−1Pr(jωk) =
Nd(jωk, ad)

Dd(jωk, ad, bd)
, (3.36a)

Sd(jωk, ad, bd) =
1

1 + P−1
n (z)Q(z, ad, bd)(1−Q(z, ad, bd))−1Pr(jωk)

=
Dd(jωk, ad, bd)

Dd(jωk, ad, bd) +Nd(jωk, ad)
,

(3.36b)

Td(jωk, ad, bd) =
P−1
n (z)Q(z, ad, bd)(1−Q(z, ad, bd))

−1Pr(jωk)

1 + P−1
n (z)Q(z, ad, bd)(1−Q(z, ad, bd))−1Pr(jωk)

. (3.36c)

Constraints for designing low pass filter in discrete domain are introduced in the next section.

3.3.2 Constraints formulation

The constraints for guaranteeing stability margins as well as the constraints for sensitivity function and

complementary sensitivity function are the same as in continuous domain design. To avoid repetition,

only mathematical representations are shown in this section.

À Constraint for guaranteeing stability margins
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The same circle condition ( [88]), which is shown in Fig. 3.2, should be met to guarantee the desired gain

margin gm and phase margin ϕm. The mathematical representation is given as follows:

|σ + Ld(jωk, ad, bd)| − rm ≥ 0, (3.37)

in which

σ =
g2m − 1

2gm(gm cosϕm − 1)
, rm =

(gm − 1)2 + 2gm(1− cosϕm)

2gm(gm cosϕm − 1)
. (3.38)

Á Constraints for sensitivity function and complementary sensitivity function

Constraints for the sensitivity function S and the complementary sensitivity function T , which are graphi-

cally shown in Fig. 3.3 and Fig. 3.4, are determined as follows. ωp is selected as the optimization objective.

When the optimal point ωp(opt) is found, ad, bd are obtained simultaneously and Qd filter can be designed.

Wp(jωk, ωp) =
ωp

jωk
, |Wp(jωk, ωp)S(jωk, ad, bd)| ≤ 1, (3.39)

Wm(jωk, ωt) =
jωk + ωt

Mtωt
, |Wm(jωk, ωt)T (jωk, ad, bd)| ≤ 1. (3.40)

Â Constraint for guaranteeing stability of low pass filter

In s domain, coefficients of denominator of Q(s) should all be positive to make sure poles are in the left

side of imaginary axis. But in z domain, such constraints don’t exist even in the second order case which

adds the difficulty of formulating the constraint.

The author has followed the same idea as in dealing with the stability of high order Q filter in continuous

domain by intentionally designing open loop function Lqd(z, bd(i)) as follows. When the Nyquist plot of

Lqd(z, bd(i)) (ith iteration), which is the open loop function defined as follows, never encircles (-1,0) as

shown in Fig. 3.5, the stability of closed loop function Hqd(z, bd(i)) which represents for the stability of

Qd(z) filter, is guaranteed during the optimization process.

Lqd(z, bd(i)) =
bdc(i)

bdn(i)zn + · · ·+ bd1(i)z + 1− bdc(i)
=

bdc(i)

Dqd(z, bd(i))
, (3.41)

Hqd(z, bd(i)) =
Lq(z, bd(i))

1 + Lq(z, bd(i))
=

bdc(i)

bn(i)zn + · · ·+ b1(i)z + 1
, (3.42)

where bdc(i) is the DC gain of bdn(i)z
n + · · ·+ bd1(i)z + 1.

The mathematical interpretation is given as (3.43) which means the distance |Lqd(jωk, bd(i)) −
Lqd(jωk, bd(i−1))| should be no larger than the distance between Lqd(jωk, bd(i−1)) and (−1, 0) at every

frequency point after every iteration.

|Lqd(jωk, bd(i))− Lqd(jωk, bd(i−1))| ≤ |Lqd(jωk, bd(i−1)) + 1|. (3.43)

In summary, the design of filter Qd(z) is formulated into the following optimization problem:

Maximize
ad,bd,ωt

ωp (3.44a)

Subject to 0 < ωp < ωt, (3.44b)

|Ld(jωk, ad, bd) + σ| ≥ rm, (3.44c)

|Wp(jωk, ωp)S(jωk, ad, bd)| ≤ 1, (3.44d)

|Wm(jωk, ωt)T (jωk, ad, bd)| ≤ 1, (3.44e)

|Lqd(jωk, bd(i))− Lqd(jωk, bd(i−1))| ≤ |Lqd(jωk, bd(i−1)) + 1|. (3.44f)
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3.3.3 Convex constraints derivation

The process for transforming constraints are similar to the process in the design of continuous domain.

Therefore, only obtained convex constraints are shown in this section.

Constraint for guaranteeing stability margins

In this subsection, the transformed convex form of constraint Eq. (3.44c), which is for guaranteeing

margins, is shown as follows.∣∣Ld(jωk, ad(i), bd(i)) + σ
∣∣− rm =

∣∣∣∣ Nd(jωk, ad(i))

Dd(jωk, ad(i), bd(i))
+ σ

∣∣∣∣− rm ≥ 0

⇔
∣∣Nd(jωk, ad(i)) +Dd(jωk, ad(i), bd(i))σ

∣∣ ≜ Fd(jωk, ad(i), bd(i)) ≥ rm
∣∣Dd(jωk, ad(i), bd(i))

∣∣︸ ︷︷ ︸
original

⇐ Ψd ≥ rm
∣∣Dd(jωk, ad(i), bd(i))

∣∣︸ ︷︷ ︸
newly-obtained

,

(3.45)

where Ψd = Fd(jωk, ad(i−1), bd(i−1))+∇Fd(jωk, ad(i−1), bi)(ad(i)−ad(i−1))+∇Fd(jωk, ad(i), bd(i−1))(bd(i)−
bd(i−1)) and ∇Fd can be obtained by using Eq. (3.15).

Constraint for sensitivity function

For the sensitivity function constraint Eq. (3.44d), following results are obtained.∣∣Wp(jωk, ωp(i))S(jωk, ad(i), bd(i))
∣∣ ≤ 1︸ ︷︷ ︸

original

⇔
∣∣Wp(jωk, ωp(i))S(jωk, ad(i), bd(i))

∣∣2 ≤ 1

⇐
[

ω2
kϕd(i) D(jωk, ad(i), bd(i))

(D(jωk, ad(i), bd(i)))
∗ Φd

]
≥ 0, ϕd(i) > 0,

[
2ω2

p(i−1) − ϕd(i)ω
4
p(i−1) ωp(i)

ωp(i) 1

]
> 0︸ ︷︷ ︸

newly-obtained

.
(3.46)

in which∣∣Dd(jωk, ad(i), bd(i)) +Nd(jωk, ad(i))
∣∣2 ≜ (Md(jωk, ad(i), bd(i)))

2︸ ︷︷ ︸
original

≥ Φd︸︷︷︸
newly-obtained

:= (Md(jωk, ad(i−1), bd(i−1)))
2 +∇(Md(jωk, ad(i−1), bd(i)))

2(ad(i) − ad(i−1))

+∇(Md(jωk, ad(i), bd(i−1)))
2(bd(i) − bd(i−1)),

(3.47)

in which ∇Md(jωk, ad(i−1), bd(i))
2 as well as ∇Md(jωk, ad(i), bd(i−1))

2 are calculated similarly to Eq.

(3.15).

Constraint for complementary sensitivity function

The complementary sensitivity function constraint Eq. (3.44e) is changed into the following form

(Selection of the form depends on whether the numerator of Qd contains optimization variables or not ).∣∣Wm(jωk, ωt(i))T (jωk, ad(i), bd(i))
∣∣ ≤ 1　

⇔

 ω2
t

(Nd(jωk, ad(i))(jωk + ωt))

Mt
(Nd(jωk, ad(i))(jωk + ωt))

∗

Mt
Φd

 ≥ 0, (3.48)
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or ∣∣Wm(jωk, ωt(i))T (jωk, ad(i), bd(i))
∣∣ ≤ 1

⇔

2ωt(i)ωt(i−1) − ω2
t(i−1)

(Nd(jωk)(jωk + ωt))

Mt
(Nd(jωk)(jωk + ωt))

∗

Mt
Φd

 ≥ 0, (3.49)

in which Φd is the same item as in Eq. (3.47).

Constraint for guaranteeing the stability of low pass filter

For constraint Eq. (3.44f), the following technique is employed to obtain its sufficient condition in

convex form.

|Lqd(jωk, bd(i))− Lqd(jωk, bd(i−1))| ≤ |Lqd(jωk, bd(i−1)) + 1|︸ ︷︷ ︸
original

⇔
∣∣∣∣ bdc(i)

Dqd(jωk, bd(i))
−

bdc(i−1)

Dqd(jωk, bd(i−1))

∣∣∣∣ ≤ ∣∣∣∣ bdc(i−1)

Dqd(jωk, bd(i−1))
+ 1

∣∣∣∣ . (3.50)

Using ∆Dqd to represent Dqd(jωk, bd(i−1)) × bdc(i) − Dqd(jωk, bd(i)) × bdc(i−1), the following equation

can be derived.

|∆Dqd| ≤ |Dqd(jωk, bd(i))||Dqd(jωk, bd(i−1)) + bdc(i−1)|. (3.51)

By squaring the above equation and using the Schur complement, the following equation is obtained.[
|Dqd(jωk, bd(i−1)) + bdc(i−1)|2 ∆Dqd

(∆Dqd)
∗ Φqd

]
≥ 0︸ ︷︷ ︸

newly-obtained

, (3.52)

in which∣∣Dqd(jωk, bd(i))
∣∣2︸ ︷︷ ︸

original

≥ Φqd := (Dqd(jωk, bd(i−1)))
2 +∇(Dqd(jωk, bd(i−1)))

2(bd(i) − bd(i−1))︸ ︷︷ ︸
newly-obtained

, (3.53)

with ∇(Dqd(jωk, bd(i−1)))
2 denoting the differential result of (Dqd(jωk, bd(i−1)))

2 in terms of bd(i−1).
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3.3.4 Problem reformulation

By summarizing Eq. (3.45), Eq. (3.46), Eq. (3.48) (or Eq. (3.49)) and Eq. (3.52), the original problem

is reformulated as follows.

Maximize
ad,bd,ϕd

ωp

Subject to ωt(i) > ωp(i) > 0, (3.54a)

ϕd(i) > 0,Ψd − rmDd(jω, ad(i), bd(i)) ≥ 0, (3.54b)[
ω2
kϕd(i) Dd(jωk, ad(i), bd(i))

(Dd(jωk, ad(i), bd(i)))
∗ Φd

]
≥ 0, (3.54c)[

2ω2
p(i−1) − ϕd(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
≥ 0, (3.54d) ω2

t

|Nd(jωk, ad(i))|(jωk + ωt(i))

Mt
|Nd(jωk, ad(i))|(jωk + ωt(i))

∗

Mt
Φd

 ≥ 0, (3.54e)

[
|Dqd(jωk, bd(i−1)) + bdc(i−1)|2 ∆Dqd

(∆Dqd)
∗ Φqd

]
≥ 0. (3.54f)

The new optimization problem is a convex optimization problem and can be solved by commercial solvers.

3.3.5 Procedures of designing low pass filter in discrete domain

Based on the previous analysis, procedures of designing low pass filter in discrete domain can be

summarized as follows.

1. Select the form of Q(z) filter and relative order based on the nominal plant

（a）The relative order of Q(z) filter should be no smaller than relative order of nominal plant.

Different from the design in continuous domain, if the Tustin transformation is used, the

relative order of discrete form of nominal plant model is 0. In such case, the relative order of

Q(z) filter can also be selected as 0.

（b）The form of Q(z) filter depends on the type of nominal plant model.

Same as in continuous domain, for an ordinary minimum phase nominal plant or a minimum

phase approximation of a non-minimum phase plant, a minimum phase Q(z) filter is used. For

a non-minimum phase nominal plant model, Q(z) filter should also contain the same unstable

zeros as nominal plant model has.

2. Define desired gain margin as well as phase margin and formulate the design problem as shown in

previous section.

3. Solve the convex optimization in optimization software and confirm defined constraints have been

satisfied.

3.4 Summary

This chapter has introduced the theoretical analysis on FRD-based low pass filter design in disturbance

observer.
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1. The problem formulation process of FRD-based low pass filter design in disturbance observer has

been illustrated.

2. Original non-convex constraints have been transformed into convex form, which can be solved

by convex optimization method by utilizing off the shelf optimization toolboxes. The detailed

mathematical transformation process in continuous domain as well as in discrete domain have

been present.

3. Obtained convex constraints are the sufficient condition of original constraints which ensures that

obtained DOB satisfies original constraints successfully.

4. No limitations on nominal plant or Q filter, e.g., the nominal plant should be minimum phase or

the order of Q filter, are required in this method which indicates that the proposal is a general and

systematic way of designing DOB system.
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Chapter 4

Convex optimization problem formulation of plant
model identification and low pass filter design in
disturbance observer

4.1 Overview

This chapter has summarized the content of identifying nominal plant model and designing low pass

filter simultaneously in DOB in continuous domain as well as in discrete domain.

Same as in low pass filter design, the original non-convex problem formulation as well as the convex

optimization problem reformulation process have been discussed. In previous studies of DOB which has

been introduced in Introduction (Chapter 1), the nominal plant is given and to the best of our knowledge,

for the first time the plant has been simultaneously obtained from the DOB design process. The necessity

for design plant and filter simultaneously can be simply summarized as more freedom in tuning DOB loop

open loop function if plant is not fixed which will be further discussed in the case study and experimental

results.

Since identification of nominal plant model and design of low pass filter have been done simultaneously

in the optimization process, the separation of nominal plant model and low pass filter is needed and

separation methods have also been present in this chapter.

4.2 Plant model identification and low pass filter design in continuous
domain

4.2.1 Block diagram analysis

In the disturbance observer control system as shown in Fig. 4.1, Pr denotes real plant which is defined

by FRD. Signals d, d̂, ua, y denote external disturbance input, estimated disturbance, control input and

output, respectively. Pn(s) and Q(s) represent the to-be-decided nominal plant model and low pass filter.

In this chapter, Q(s) and Pn(s) (irreducible) are selected as follows in which â ≜ [â1, · · · , ânq
]T ,

b̂ ≜ [b̂1, · · · , b̂nq−r∗ ]
T , f̂ ≜ [f̂1, · · · , f̂sn]T , ĉ ≜ [ĉ0, · · · , ĉsd]T are parameters to be decided and orders nq,

sn, sd are selected by designer but r∗ ≥ sd− sn should be satisfied to guarantee the causality.
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Q(s) =
b̂nq−r∗s

nq−r∗ + · · ·+ b̂1s+ 1

ânq
snq + · · ·+ â1s+ 1

≜ QNs

QDs
, Pn(s) =

f̂sns
sn + · · ·+ f̂1s+ 1

ĉsdssd + · · ·+ ĉ1s+ ĉ0
≜

Pn(Ns)

Pn(Ds)
. (4.1)

The loop gain (Lfs), sensitivity function (Sfs) and complementary sensitivity function (Tfs) are ob-

tained for Fig. 4.1 as follows.

Lfs(jωk, t, h) = P−1
n (s)Q(s)(1−Q(s))−1Pr(jωk) =

Pr(jωk)(hfhs
fh + · · ·+ h0)

sft + · · ·+ t1s+ t0
=

Nfs(jωk, h)

Dfs(jωk, t)
,

(4.2a)

Sfs(jωk, t, h) =
1

1 + (1−Q(s))−1Q(s)P−1
n (s)Pr(jωk)

=
Dfs(t)

Dfs(jωk, t) +Nfs(jωk, h)
, (4.2b)

y

d
=

Pr(jωk)

1 + (1−Q(s))−1Q(s)P−1
n (s)Pr(jωk)

= Sfs(jωk, t, h)Pr(jωk), (4.2c)

d̂

d
=

(1−Q(s))−1Q(s)P−1
n (s)Pr(jωk)

1 + (1−Q(s))−1Q(s)P−1
n (s)Pr(jωk)

= Tfs(jωk, t, h), (4.2d)

in which

hfhs
fh + · · ·+ h0 = (Pn(Ds))× (QNs), s

ft + · · ·+ t1s+ t0 = (Pn(Ns))× (QDs −QNs), (4.3)

DC gain of (hfhs
fh + · · ·+ h0) ≥ DC gain of (sft + · · ·+ t1s+ t0). (4.4)

Remark 1: when the plant is of non-minimum phase and Q filter is selected to contain unstable zeros

of plant, pole-zero cancellation exists in Eq. (4.2a).

In the next section, constraints, such as constraint for guaranteeing stability margins, have been designed

to achieve satisfactory disturbance rejection performance. However, constraints for guaranteeing margins

and (complementary) sensitivity limitation has been introduced briefly due to the repetition of Chapter 3

while internal stability constraints have been discussed in detail. Furthermore, the separation process of

Pn(s) and Q(s) from optimized Lfs(jωk, t, h) has been present. Subsequently, simultaneous identification

of nominal plant model and design of low pass filter has been formulated into an optimization problem in

which h as well as t are optimization parameters and the bandwidth of DOB is the optimization objective.

4.2.2 Constraints formulation

À Constraint for stability margins

The same circle condition ( [88]), which is shown in Fig. 3.2, is defined to guarantee the desired gain

margin gm and phase margin ϕm. The same mathematical representation is given as follows:

|σ + Lfs(jωk, h, t)| − rm ≥ 0, (4.5)

in which

σ =
g2m − 1

2gm(gm cosϕm − 1)
, rm =

(gm − 1)2 + 2gm(1− cosϕm)

2gm(gm cosϕm − 1)
. (4.6)

Á Constraints for sensitivity function and complementary sensitivity function

Same constraints for the sensitivity function Sfs and the complementary sensitivity function Tfs, which

are graphically shown in Fig. 3.3 and Fig. 3.4, are determined as follows. ωp is selected as the optimization
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objective. When the optimal point ωp(opt) is found, h, t are obtained simultaneously and nominal plant

as well as Q filter can be obtained subsequently.

Wp(jωk, ωp) =
ωp

jωk
, |Wp(jωk, ωp)Sfs(jωk, h, t)| ≤ 1, (4.7)

Wm(jωk, ωt) =
jωk + ωt

Mtωt
, |Wm(jωk, ωt)Tfs(jωk, h, t)| ≤ 1. (4.8)

Â Constraints for guaranteeing internal stability

From the perspective of internal stability, (Pn(s)
−1Q(s)(1 − Q(s))−1) should not contain any unstable

poles. Moreover, based on Eq. (4.3), the desired nominal plant should not contain any unstable poles

which means the numerator of (Pn(s)
−1Q(s)(1−Q(s))−1) should also not contain any unstable roots.

By intentionally designing open loop function Lld(s, hi, ti) as follows, the same strategy as in dealing

with continuous domain high order Q(s) filter stability has been employed.

Lld(s, ti) =
t0(i)

sft + · · ·+ t2(i)s2 + t1(i)s
=

t0(i)

Dld
, (4.9)

Hld(s, ti) =
Lq(s, ti)

1 + Lq(s, ti)
=

t0(i)

sft + · · ·+ t2(i)s2 + t1(i)s+ t0(i)
. (4.10)

Remark: if t0 = 0, the Lld(s, ti) can be defined as follows. But since the analysis is similar for different

Lld, in this thesis, the above defined one is used in the following discussion.

Lld(s, ti) =
t1(i)

sft−1 + · · ·+ t2(i)s
. (4.11)

The mathematical interpretation is given as Eq. (4.12) which means the distance |Lld(jωk, ti) −
Lld(jωk, ti−1)| should be no larger than the distance between Lld(jωk, ti−1) and (−1, 0) at every fre-

quency point during every iteration.

|Lld(jωk, ti)− Lld(jωk, ti−1)| ≤ |Lld(jωk, ti−1) + 1|. (4.12)

By employing the same method to the constraint of numerator, the following constraint can be obtained.

|Lln(jωk, hi)− Lln(jωk, hi−1)| ≤ |Lln(jωk, hi−1) + 1|, (4.13)

in which

Lln(s, hi) =
h0(i)

hfh(i)sfh + · · ·+ h1(i)s
. (4.14)

In summary, the simultaneous identification of nominal plant model and design of low pass filter in

disturbance observer is formulated into the following non-convex optimization problem.

Maximize
h,t,ωt

ωp (4.15a)

Subject to 0 < h, t, 0 < ωp < ωt, (4.15b)

|Lfs(jωk, hi, ti) + σ| ≥ rm, (4.15c)

|Wp(jωk, ωp)Sfs(jωk, hi, ti)| ≤ 1, (4.15d)

|Wm(jωk)Tfs(jωk, hi, ti)| ≤ 1, (4.15e)

|Lld(jωk, ti)− Lld(jωk, ti−1)| ≤ |Lld(jωk, ti−1) + 1|, (4.15f)

|Lln(jωk, hi)− Lln(jωk, hi−1)| ≤ |Lln(jωk, hi−1) + 1|. (4.15g)

The optimization process will produce the maximized ωp and optimized parameter vectors

h ≜ [h0, · · · , hfh]
T as well as t ≜ [t0, t1, · · · , tft−1]

T . Thereafter parameter vectors â ≜ [â1, · · · , ânq
]T ,
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b̂ ≜ [b̂1, · · · , b̂nq−r∗ ]
T , f̂ ≜ [f̂1, · · · , f̂sn]T , ĉ ≜ [ĉ0, · · · , ĉsd]T are separated from optimized vectors t and

h.

4.2.3 Separation of Pn(s) and Q(s) from (P−1
n (s)Q(s)(1−Q(s))−1)opt

À Allocate poles and zeros of (P−1
n (s)Q(s)(1−Q(s))−1)opt to Pn(s) and Q(s).

1. Zeros of (P−1
n (s)Q(s)(1−Q(s))−1)opt consist of poles of Pn(s) and zeros of Q(z)(1−Q(z))−1, see

Eq. (4.2a) and Eq. (4.3).

2. Poles of (P−1
n (s)Q(s)(1−Q(s))−1)opt are made up of zeros of Pn(s) and poles of Q(z)(1−Q(z))−1,

see Eq. (4.2a) and Eq. (4.3).

3. Designer may choose among the following three different cases to obtain Pn(s) and Q(s).

（a）Pn(s) is minimum phase and Q(s) is a minimum phase low pass filter.

（b）Pn(s) is non-minimum phase and Q(s) has the same unstable zeros as nominal plant has.

In this case, pole-zero cancellation exists.

（c）Pn(s) is the minimum phase approximation of a non-minimum phase plant and Q(s) is a

minimum phase low pass filter.

4. The separation of poles and zeros are done by referring to the phase information of FRD and poles’

distribution in the optimization initial condition.

The separation result can be shown as follows:

(hfhs
nfh + · · ·+ h1s+ h0)

sft + · · ·+ t1s+ t0
=

Gpqs(s+ z1) · · · (s+ zfh)

s(s+ p1) · · · (s+ pft)
,

=
Gpqs1(s+ zq1) · · · (s+ zqnq−r∗ )

(s+ pq1) · · · (s+ pqnq
)︸ ︷︷ ︸

Q(1−Q)−1

×

P−1
n (nums)︷ ︸︸ ︷

(s+ z1) · · · (s+ zsn)

Gpqs2 (s+ pp1
) · · · (s+ psd)︸ ︷︷ ︸

P−1
n (dens)

, (4.16)

in which Gpqs1 and Gpqs2 are gains to be calculated.

Á Calculate Gpqs1, Gpqs2 as well as Q(s).

1. Gpqs2 is calculated by using FRD information of plant and Eq. (4.17).

To eliminate the influence of noise, least squares fitting is used.

|(Pr(jωk))| =
Gpqs2|P−1

n (dens)(jωk)|
|P−1

n (nums)(jωk)|
. (4.17)

2. Gpqs1 is the multiplication of Gpqs and Gpqs2 and Q(s) can be calculated from Eq. (4.16).

Gpqs1 = Gpqs ×Gpqs2. (4.18)

4.2.4 Convex Constraints Derivation

In this section, above-listed non-convex constraints are all transformed into LMI form of variables ωp, t,

h. Derived constraints are sufficient condition of original constraints which implies that if newly-obtained

constraints are satisfied, original constraints undoubtedly hold. The process for transforming constraints
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for margins and sensitivity function along with complementary sensitivity function is similar to the design

in the previous Chapter. Therefore, only obtained convex constraints are shown in this section. As for

constraints for guaranteeing internal stability, similar technique as in dealing with the constraint for

ensuring stability of high order Q filter is employed.

Constraint for guaranteeing stability margins

In this subsection, Eq. (4.15c) is converted to the following convex constraint.

|Lfs(jωk, hi, ti) + σ| − rm =

∣∣∣∣Nfs(jωk, hi)

Dfs(jωk, ti)
+ σ

∣∣∣∣− rm ≥ 0

⇔ |Nfs(jωk, hi) +Dfs(jωk, ti)σ| ≜ Ffs(jωk, hi, ti) ≥ rm |Dfs(jωk, ti)|︸ ︷︷ ︸
original

⇐ Ψfs ≥ rm |Dfs(jωk, ti)|︸ ︷︷ ︸
newly-obtained

,

(4.19)

where Ψfs = Ffs(jωk, hi−1, ti−1) + ∇Ffs(jωk, hi, ti−1)(ti − ti−1) + ∇Ffs(jωk, hi−1, ti)(hi − hi−1) and

∇Ffs(jωk, hi, ti−1) as well as ∇Ffs(jωk, hi−1, ti) can be obtained by using Eq. (3.15).

Constraint for sensitivity function

For the sensitivity function constraint Eq. (4.15d), following results are obtained.∣∣Wp(jωk, ωp(i))Sfs(jωk, hi, ti)
∣∣ ≤ 1︸ ︷︷ ︸

original

⇔
∣∣Wp(jωk, ωp(i))Sfs(jωk, hi, ti)

∣∣2 ≤ 1

⇐
[

ω2
kϕfs(i) Dfs(jωk, ti)

(Dfs(jωk, ti))
∗ Φfs

]
≥ 0, ϕfs(i) > 0,

[
2ω2

p(i−1) − ϕfs(i)ω
4
p(i−1) ωp(i)

ωp(i) 1

]
> 0︸ ︷︷ ︸

newly-obtained

,
(4.20)

in which ϕfs(i) is a variable and

|Dfs(jωk, ti) +Nfs(jωk, hi)|2 ≜ (Mfs(jωk, hi, ti))
2︸ ︷︷ ︸

original

≥ Φfs︸︷︷︸
newly-obtained

:= (Mfs(jωk, hi−1, ti−1))
2 +∇(Mfs(jωk, hi−1, t(i)))

2(hi − ti−1)

+∇(Mfs(jωk, hi, ti−1))
2(ti − ti−1),

(4.21)

while ∇Mfs(jωk, hi−1, ti)
2 as well as ∇Mfs(jωk, hi, ti−1)

2 are calculated similarly to Eq. (3.15).

Constraint for complementary sensitivity function

For the complementary sensitivity function constraint Eq. (4.15e), the following convex constraint can

be obtained.∣∣Wm(jωk, ωt(i))Tfs(jωk, hi, ti)
∣∣ ≤ 1︸ ︷︷ ︸

original

⇔

 ω2
t

(Nfs(jωk, h(i))(jωk + ωt))

Mt
(Nfs(jωk, hi)(jωk + ωt))

∗

Mt
Φfs

 ≥ 0

︸ ︷︷ ︸
newly-obtained

, (4.22)

in which Φfs is the same item as in Eq. (4.21).
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Constraints for guaranteeing internal stability

For constraint Eq. (4.15f), same technique as in dealing with Eq. (3.12f) (constraint for high order Q

filter’s stability) has been utilized to obtain its approximate convex form.

|Lld(jωk, ti)− Lld(jωk, ti−1)| ≤ |Lld(jωk, ti−1) + 1|︸ ︷︷ ︸
original

⇔
[
|Dld(jωk, ti−1) + t0(i−1)|2 ∆Dld

(∆Dld)
∗ Φld

]
≥ 0︸ ︷︷ ︸

newly-obtained

, (4.23)

where

∆Dld = Dld(jωk, ti)× t0(i−1) −Dld(jωk, ti−1)× t0(i), (4.24)∣∣Dld(jωk, t(i−1))
∣∣2︸ ︷︷ ︸

original

≥ Φld := (Dqd(jωk, ti−1))
2 +∇(Dld(jωk, ti−1))

2(ti − ti−1)︸ ︷︷ ︸
newly-obtained

, (4.25)

with ∇(Dld(jωk, ti−1))
2 denoting the differential result of (Dld(jωk, ti−1))

2 in terms of ti−1.

Similarly, for the constraint Eq. (4.15g), the following convex constraint can be obtained.

|Lln(jωk, hi)− Lln(jωk, hi−1)| ≤ |Lln(jωk, h(i−1)) + 1|.︸ ︷︷ ︸
original

⇔
[
|Dln(jωk, hi−1) + h0(i−1)|2 ∆Dln

(∆Dln)
∗ Φln

]
≥ 0︸ ︷︷ ︸

newly-obtained

, (4.26)

where

Dln = hfh(i)s
fh + · · ·+ h1(i)s, (4.27)

∆Dln = Dln(jωk, hi)× h0(i−1) −Dln(jωk, hi−1)× h0(i), (4.28)

|Dln(jωk, hi−1)|2︸ ︷︷ ︸
original

≥ Φln := (Dln(jωk, hi−1))
2 +∇(Dln(jωk, hi−1))

2(hi − hi−1)︸ ︷︷ ︸
newly-obtained

, (4.29)

with ∇(Dln(jωk, hi−1))
2 denoting the differential result of (Dln(jωk, hi−1))

2 in terms of hi−1.
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4.2.5 Problem reformulation

After finishing the process mentioned above, the original problem is reformulated as follows.

Maximize
h,t,ϕfs

ωp (4.30a)

Subject to 0 < h, 0 < t (4.30b)

0 < wp(i) < wt, 0 < ϕfs(i), (4.30c)

Ψfs − rmDfs(jωk, ti) ≥ 0, (4.30d)[
ω2
kϕfs(i) Dfs(jωk, ti)

(Dfs(jωk, ti))
∗ Φfs

]
≥ 0, (4.30e)[

2ω2
p(i−1) − ϕfs(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
≥ 0, (4.30f) ω2

t

(Nfs(jωk, hi))(jωk + ωt)

Mt
(Nfs(jωk, hi)(jωk + ωt))

∗

Mt
Φfs

 ≥ 0, (4.30g)

[
|Dld(jωk, ti−1) + t0(i−1)|2 ∆Dld

(∆Dld)
∗ Φld

]
≥ 0, (4.30h)[

|Dln(jωk, hi−1) + h0(i−1)|2 ∆Dln

(∆Dln)
∗ Φln

]
≥ 0. (4.30i)

The new optimization problem is a convex optimization problem and can be solved by commercial solvers.

After the convex optimization process, Pn(s) and Q(s) can be separated from Lfs(opt)(s) and be imple-

mented in real control system.

4.2.6 Procedures of simultaneous identification of nominal plant model and design of low pass
filter in continuous domain

1. The order of nominal plant should be determined first by designer.

2. Select the form and relative order for Q(s) filter in order to get the form of (P−1
n (s)Q(s)(1 −

Q(s))−1).

（a）The relative order of Q(s) filter should be no smaller than relative order of nominal plant.

（b）The form of Q(s) filter depends on the type of nominal plant model.

For an ordinary minimum phase nominal plant or the minimum phase approximation of a

non-minimum phase plant, a minimum phase Q(s) filter is used. However, for a non-minimum

phase nominal plant model, since Q(s) filter also contains the same unstable zeros as nominal

plant model has, pole-zero cancellation appears.

3. Define desired gain margin as well as phase margin and obtain the problem formulation result as

shown in section 4.2.5.

4. Solve the convex optimization in optimization software and confirm defined constraints have all

been satisfied.

5. Separate Pn(s) and Q(s) from optimized results based on the analysis in section 4.2.3.
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4.3 Plant model identification and low pass filter design in discrete domain

4.3.1 Block diagram analysis

In the discrete domain disturbance observer control system as shown in Fig. 4.2, Pr denotes real plant

which is defined by FRD. Same as in continuous domain, signals d, d̂, ua, y are external disturbance

input, estimated disturbance, control input and output, respectively. In this section, Q(z) and Pn(z)

(irreducible) are selected as follows in which ā ≜ [ā0, · · · , āzq]T , b̄ ≜ [b̄1, · · · , b̄zq−r̃]
T , c̄ ≜ [c̄0, · · · , c̄zd]T

and f̄ ≜ [f̄1, · · · , f̄zn]T are to-be-decided parameters and orders r̃ ≥ zd − zn, zd and zn are selected by

designer.

Q(z) =
b̄zq−r̃z

zq−r̃ + · · ·+ 1

āzqzzq + · · ·+ ā0
≜ QNz

QDz
, Pn(z) =

f̄znz
zn + · · ·+ 1

c̄zdzzd + · · ·+ c̄0
≜

Pn(Nz)

Pn(Dz)
. (4.31)

in which

b̄zq−r̃ + · · ·+ b̄1 + 1 = āzq + · · ·+ ā0. (4.32)

The loop gain (Lfz), sensitivity function (Sfz) and complementary sensitivity function (Tfz) can be

written as follows for Fig. 4.2.

Lfz(jωk, h̄, t̄) = P−1
n (z)Q(z)(1−Q(z))−1Pr(jωk) =

Pr(jωk)(h̄zhz
zh + · · ·+ h̄0)

zzt + · · ·+ t̄0
=

Nfz(jωk, h̄)

Dfz(jωk, t̄)
,

(4.33a)

Sfz(jωk, h̄, t̄) =
1

1 + (1−Q(z))−1Q(z)P−1
n (z)Pr(jωk)

=
Dfz(jωk, t̄)

Dfz(jωk, t̄) +Nfz(jωk, h̄)
, (4.33b)

y

d
=

Pr(jωk)

1 + (1−Q(z))−1Q(z)P−1
n (z)Pr(jωk)

=
Pr(jωk)

1 + Lfz(jωk, h̄, t̄)
, (4.33c)

d̂

d
=

(1−Q(z))−1Q(z)P−1
n (z)Pr(jωk)

1 + (1−Q(z))−1QP−1
n (z)Pr(jωk)

= Tfz(jωk, h̄, t̄), (4.33d)

in which

h̄zhz
zh + · · ·+ h̄0 = (Pn(Dz))× (QNz), z

zt + · · ·+ t̄0 = (Pn(Nz))× (QDz −QNz), (4.34)

h̄zh + · · ·+ h̄0 ≥ 1 + · · ·+ t̄0. (4.35)

In the following section, same constraints as in continuous domain have been designed to obtain satis-

factory disturbance rejection performance. Then the simultaneous identification of nominal plant model

and design of low pass filter in discrete domain has been formulated into an optimization problem in which

h̄ as well as t̄ are optimization parameters and the bandwidth of DOB is the optimization objective.

4.3.2 Constraints formulation

Á Constraint for guaranteeing stability margins

The same circle condition ( [88]) for guaranteeing the desired gain margin gm and phase margin ϕm,

which is shown in Fig. 3.2, is presented as follows.

|σ + Lfz(jωk, h̄, t̄)| − rm ≥ 0. (4.36)
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in which

σ =
g2m − 1

2gm(gm cosϕm − 1)
, rm =

(gm − 1)2 + 2gm(1− cosϕm)

2gm(gm cosϕm − 1)
. (4.37)

Á Constraints for sensitivity function and complementary sensitivity function

Constraints for the sensitivity function Sfz and the complementary sensitivity function Tfz, which are

graphically shown in Fig. 3.3 and Fig. 3.4, are shown as follows.

Wp(jωk, ωp) =
ωp

jωk
, |Wp(jωk, ωp)S(jωk, h̄, t̄)| ≤ 1, (4.38)

Wm(jωk, ωt) =
jωk + ωt

Mtωt
, |Wm(jωk, ωt)T (jωk, h̄, t̄)| ≤ 1, (4.39)

in which ωp is the crossover frequency of weighting function of sensitivity function and selected as the

optimization objective.

When the optimal point ωp(opt) is found, h̄, t̄ are obtained simultaneously.

Â Constraints for guaranteeing internal stability

Same as in continuous domain, the internal stability should be guaranteed. For the stability of denom-

inator of Lfz which is Dfz, the Nyquist plot of intentionally defined open loop function Ltd(z, t̄i) (ith

iteration), which is defined in Eq. (4.40), never encircles (-1,0), the stability of closed loop function Htd

which is the stability of Dfz is guaranteed during the optimization process.

Ltd(z, t̄i) =
dzdc(i)

zzt + · · ·+ t̄1(i)z + t̄0(i) − ddc(i)
=

dzdc(i)

Dtd(z, t̄i)
, (4.40)

Htd(z, t̄i) =
Ltd(z, t̄i)

1 + Ltd(z, t̄i)

=
dzdc(i)

znld + · · ·+ t̄0(i)
=

dzdc(i)

Dfz(z, t̄i)
, (4.41)

in which dzdc(i) is the DC gain of zzt + · · ·+ t̄0(i).

The mathematical interpretation is given as Eq. (4.42) which means the distance |Ltd(jωk, t̄i) −
Ltd(jωk, t̄i−1)| should be no larger than the distance between Ltd(jωk, t̄i−1) and (−1, 0) at every fre-

quency point after every iteration.

|Ltd(jωk, t̄i)− Ltd(jωk, t̄i−1)| ≤ |Ltd(jωk, t̄i−1) + 1|. (4.42)

By employing the same method to the constraint of numerator, the following constraint can be obtained.

|Ltn(jωk, h̄i)− Ltn(jωk, h̄i−1)| ≤ |Ltn(jωk, h̄i−1) + 1|, (4.43)

in which

Ltn(z, h̄i) =
nzdc(i)

h̄zh(i)zzh + · · ·+ h̄0(i) − nzdc(i)

, nzdc(i) = h̄zh(i) + · · ·+ h̄0(i). (4.44)

In summary, the disturbance observer design problem in discrete domain is formulated into the following
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optimization problem.

Maximize
h̄,t̄

ωp (4.45a)

Subject to 0 < ωp < ωt, (4.45b)

|Lfz(jωk, h̄i, h̄i) + σ| ≥ rm, (4.45c)

|Wp(jωk, ωp)Sfz(jωk, h̄i, t̄i)| ≤ 1, (4.45d)

|Wm(jωk)Tfz(jωk, h̄i, t̄i)| ≤ 1, (4.45e)

|Ltd(jωk, t̄i)− Ltd(jωk, t̄i−1)| ≤ |Ltd(jωk, t̄i−1) + 1|, (4.45f)

|Ltn(jωk, h̄i)− Ltn(jωk, h̄i−1)| ≤ |Ltn(jωk, h̄i−1) + 1|. (4.45g)

After the optimization process, ωp and the loop gain Lfz consist of parameter vectors h̄ ≜ [h̄0, · · · , h̄zh]
T

and t̄ ≜ [t̄0, · · · , t̄zt−1]
T are optimized simultaneously. However, Pn(z) and Q(z) need to be separated

from the optimized P−1
n (z)Q(z)(1−Q(z))−1.

4.3.3 Separation of Pn(z) and Q(z) from P−1
n (z)Q(z)(1−Q(z))−1

À Allocate poles and zeros of P−1
n (z)Q(z)(1−Q(z))−1 to Pn(z) and Q(z).

1. Zeros of P−1
n (z)Q(z)(1−Q(z))−1 are poles of Pn(z) and zeros of Q(z)(1−Q(z))−1, see (4.33a).

2. Poles of P−1
n (z)Q(z)(1−Q(z))−1 is made up of zeros of Pn(z) and poles of Q(z)(1−Q(z))−1, see

(4.33a).

3. The separation result of Pn(z) and Q(z) can be classified into following three types.

（a）Pn(z) is of minimum phase and Q(z) is a minimum phase low pass filter.

（b）Pn(z) is of non-minimum phase and Q(z) has the same unstable zeros as nominal plant has.

In this case, pole-zero cancellation exists.

（c）Pn(z) is the minimum phase approximation of a non-minimum phase plant and Q(z) is a

minimum phase low pass filter.

4. The separation of poles is done by referring to the poles’ distribution in the optimization initial

condition of P−1
n (z)Q(z)(1−Q(z))−1 and phase information of FRD.

The separation result is shown as follows:

(h̄zhz
zh + · · ·+ h̄0)

zzt + · · ·+ t̄1z + t̄0
=

Gpqz(z + z1) · · · (z + zzh)

(z + p1) · · · (z + pzt)

=
Gpqz1

(z + pq1) · · · (z + pqzq )︸ ︷︷ ︸
Q(1−Q)−1

×

P−1
n (numz)︷ ︸︸ ︷

(z + z1) · · · (z + zzd)

Gpqz2 (z + pp1) · · · (z + ppzn)︸ ︷︷ ︸
P−1

n (denz)

. (4.46)

in which Gpqz1 and Gpqz2 are gains to be calculated.

Á Calculate Gpqz1, Gpqz2 and Q(z).

1. Gpqz2 is calculated by using FRD information of plant and Eq. (4.47).

Gpqz2 =
|(Pr(jωk))||P−1

n (numz)|
|P−1

n (denz)|
. (4.47)

2. Gpqz1 is the multiplication of Gpqz and Gpqz2 and Q(z) can be calculated from (4.46).

Gpqz1 = Gpqz ×Gpqz2. (4.48)
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Obtained non-convex constraints should be transformed into linear functions or LMI form of variables

ωp, h̄, t̄ which is introduced in the following section.

4.3.4 Convex constraints derivation

Constraint for guaranteeing stability margins

In this subsection, Eq. (4.45c), which is for ensuring the gain margin and phase margin, is converted

to the following convex constraint.∣∣Lfz(jωk, h̄i, t̄i) + σ
∣∣− rm =

∣∣∣∣Nfz(jωk, h̄i)

Dfz(jωk, t̄i)
+ σ

∣∣∣∣− rm ≥ 0

⇔
∣∣Nfz(jωk, h̄i) +Dfz(jωk, t̄i)σ

∣∣ ≜ Ffz(jωk, h̄i, t̄i) ≥ rm |Dfz(jωk, t̄i)|︸ ︷︷ ︸
original

⇐ Ψfz ≥ rm |Dfz(jωk, t̄i)|︸ ︷︷ ︸
newly-obtained

,

(4.49)

where Ψfz = Ffz(jωk, h̄i−1, t̄i−1) + ∇Ffz(jωk, h̄i, t̄i−1)(t̄i − t̄i−1) + ∇Ffz(jωk, h̄i−1, t̄i)(h̄i − h̄i−1) and

∇Ffz(jωk, h̄i, t̄i−1) as well as ∇Ffz(jωk, h̄i−1, t̄i) can be obtained by using Eq.(3.15).

Constraint for sensitivity function

For the sensitivity function constraint Eq. (4.45d), following results are obtained.∣∣Wp(jωk, ωp(i))Sfs(jωk, h̄i, t̄i)
∣∣ ≤ 1︸ ︷︷ ︸

original

⇔
∣∣Wp(jωk, ωp(i))Sfz(jωk, h̄i, t̄i)

∣∣2 ≤ 1

⇐
[

ω2
kϕfz(i) Dfz(jωk, t̄i)

(Dfz(jωk, t̄i))
∗ Φfz

]
≥ 0, ϕfz(i) > 0,

[
2ω2

p(i−1) − ϕfz(i)ω
4
p(i−1) ωp(i)

ωp(i) 1

]
> 0︸ ︷︷ ︸

newly-obtained

,
(4.50)

in which ϕfz(i) is a variable and∣∣Dfz(jωk, t̄i) +Nfz(jωk, h̄i)
∣∣2 ≜ (Mfz(jωk, h̄i, t̄i))

2︸ ︷︷ ︸
original

≥ Φfz︸︷︷︸
newly-obtained

:= (Mfz(jωk, h̄i−1, t̄i−1))
2 +∇(Mfz(jωk, h̄i−1, t̄i))

2(h̄i − h̄i−1)

+∇(Mfz(jωk, h̄i, t̄i−1))
2(t̄i − t̄i−1),

(4.51)

in which ∇Mfz(jωk, h̄i−1, t̄i)
2 as well as ∇Mfz(jωk, h̄i, t̄i−1)

2 are calculated similarly to Eq. (3.15).

Constraint for complementary sensitivity function

The complementary sensitivity function constraint Eq. (4.45e) can be changed into the following form.∣∣Wm(jωk, ωt(i))Tfz(jωk, h̄i, t̄i)
∣∣ ≤ 1︸ ︷︷ ︸

original

(4.52)

⇔

 ω2
t

(Nfz(jωk, h̄i)(jωk + ωt))

Mt
(Nfz(jωk, h̄i)(jωk + ωt))

∗

Mt
Φfz

 ≥ 0

︸ ︷︷ ︸
newly-obtained

, (4.53)

in which Φfz is the same item as in Eq. (4.21).
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Constraint for guaranteeing internal stability

For constraint Eq. (4.45f), the following technique is used.

|Ltd(jωk, t̄i)− Ltd(jωk, t̄i−1)| ≤ |Ltd(jωk, t̄i−1) + 1|︸ ︷︷ ︸
original

⇔
[
|Dtd(jωk, t̄i−1) + dzdc(i−1)|2 ∆Dtd

(∆Dtd)
∗ Φtd

]
≥ 0︸ ︷︷ ︸

newly-obtained

, (4.54)

where

∆Dtd = Dtd(jωk, t̄i)× dzdc(i−1) −Dtd(jωk, t̄i−1)× dzdc(i), (4.55)

|Dtd(jωk, t̄i−1)|2︸ ︷︷ ︸
original

≥ Φtd := (Dtd(jωk, t̄i−1))
2 +∇(Dtd(jωk, t̄i−1))

2(t̄i − t̄i−1)︸ ︷︷ ︸
newly-obtained

, (4.56)

with ∇Dtd(jωk, t̄i−1)
2 denoting the differential result of Dtd(jωk, t̄i−1)

2 in terms of t̄i−1.

Similarly, the following convex constraint can be obtained for constraint Eq. (4.45g).

|Ltn(jωk, h̄i)− Ltn(jωk, h̄i−1)| ≤ |Ltn(jωk, h̄i−1) + 1|︸ ︷︷ ︸
original

⇔
[
|Dtn(jωk, h̄i−1) + nzdc(i−1)|2 ∆Dtn

(∆Dtn)
∗ Φtn

]
≥ 0︸ ︷︷ ︸

newly-obtained

, (4.57)

where

Dtn(jωk, h̄i) = h̄zh(i)z
zh + · · ·+ h̄0(i) − nzdc(i), (4.58)

∆Dtn = Dtn(jωk, h̄i)× nzdc(i−1) −Dtn(jωk, h̄i−1)× nzdc(i), (4.59)∣∣Dtn(jωk, h̄i−1)
∣∣2︸ ︷︷ ︸

original

≥ Φtn := (Dtn(jωk, h̄i−1))
2 +∇(Dtn(jωk, h̄i−1))

2(h̄i − h̄i−1)︸ ︷︷ ︸
newly-obtained

, (4.60)

with ∇Dtn(jωk, h̄i−1)
2 denoting the differential result of Dtn(jωk, h̄i−1)

2 in terms of h̄i−1.
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4.3.5 Problem reformulation

After finishing all the process mentioned above, the original problem is reformulated as follows.

Maximize
h̄,t̄,ϕfz

ωp

Subject to 0 < ωp(i) < ωt, 0 < ϕfz(i),

Ψfz − rmDfz(jωk, t̄i) ≥ 0,[
ω2
kϕfz(i) Dfz(jωk, t̄i)

(Dfz(jωk, t̄i))
∗ Φfz

]
≥ 0,[

|Dtd(jωk, t̄(i−1)) + dzdc(i−1)|2 ∆Dtd

(∆Dtd)
∗ Φtd

]
≥ 0,[

|Dtn(jωk, h̄(i−1)) + nzdc(i−1)|2 ∆Dtn

(∆Dtn)
∗ Φtn

]
≥ 0,[

2ω2
p(i−1) − ϕfz(i)ω

4
p(i−1) ωp(i)

ωp(i) 1

]
≥ 0, ω2

t

(Nfz(jωk, h̄i))(jωk + ωt)

Mt
(Nfz(jωk, h̄i)(jωk + ωt))

∗

Mt
Φfz

 ≥ 0.

The new optimization problem is a convex optimization problem and can be solved by commercial solvers.

4.3.6 Procedures of identifying nominal plant model and designing low pass filter altogether
in discrete domain

1. Decide the order of desired nominal plant model.

2. Select the form and relative order for Q(z) filter.

（a）The relative order of Q(z) filter should be no smaller than the relative order of nominal plant.

（b）The form of Q(z) filter depends on the type of nominal plant model.

Same as in continuous domain, for an ordinary minimum phase nominal plant or the minimum

phase approximation of a non-minimum phase plant, a minimum phase Q(z) filter is used.

However, for a non-minimum phase nominal plant model, since Q(z) filter also contains the

same unstable zeros as nominal plant model has, pole-zero cancellation exists.

3. Define desired gain margin as well as phase margin and sampling frequency and obtain the problem

formulation result as shown in section 4.3.5.

4. Solve the convex optimization in optimization software and confirm all the defined constraints have

been satisfied.

5. Separate Pn(z) and Q(z) from optimized results based on the analysis in section 4.3.3.

4.4 Summary

This chapter has present identification of nominal plant model and design of low pass filter altogether

in disturbance observer by only employing frequency response data in continuous domain and discrete

domain.
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1. The original non-convex design problem has been formulated into a convex optimization problem by

transforming non-convex constraints into convex form, which can be solved by convex optimization

method by utilizing optimization software. The detailed mathematical transformation process has

been present.

2. When the plant model and low pass filter are obtained simultaneously, separation methods have

been provided.
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Figure 4.1 Block diagram of disturbance observer system in the simultaneous identification of
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Chapter 5

Numerical case study results of FRD-based DOB
design for a minimum phase plant

5.1 Overview

This chapter is to show the case study results of proposed methods in Chapter 3 and Chapter 4 for a

minimum phase plant which is a high-precision positioning stage. Results of low pass filter design (relative

order of nominal plant model is 2) and simultaneous identification of plant model and design of low pass

filter in continuous domain as well as in discrete domain are given. More specifically, case studies can be

classified as shown in the following table. For each case, Nyquist plots of open loop function (constraint

Table 5.1 Case study summary for the minimum phase plant employed in this chapter

section corresponding sec-

tion of theoretical

analysis

number of to-be-decided param-

eters

low pass filter design

(s domain)

✓ (section 5.3.1) section 3.2 2 parameters of filter

low pass filter design

(z domain )

✓(section 5.3.2) section 3.3 2 parameters of filter

nominal plant model

identification and

low pass filter design

(s domain )

✓(section 5.3.3) section 4.2 7 parameters of plant and filter

nominal plant model

identification and

low pass filter design

(z domain )

✓(section 5.3.4) section 4.3 7 parameters of plant and filter

trial-and-error

method

5.4 1 parameter of filter

for guaranteeing margins) and magnitude plots of WpS and WmT (constraints for sensitivity function

as well as the complementary sensitivity function ) are provided to verify the satisfaction of constraints.

Furthermore, the comparison between different case studies have been discussed.
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Finally, the comparison with trial-and-error method is present which is to show the superiority of the

proposed method in terms of design effort along with obtained bandwidth.

5.2 Simulation conditions

1. Software: Matlab R2020a (Yalmip [103] and Mosek [104] toolboxes)

2. Gain margin 6 [dB], phase margin 30◦.

According to Eq. (3.5), σ = 1.03, rm = 0.525 and the stability circle Cs in Fig. 3.2 can be decided.

3. Minimum phase plant Pmp.

This plant is a high-precision positioning stage ( [105]) and Bode plots of frequency response data

and nominal plant model Pmp are shown in Fig. 5.1.

Pmp(s) =
59.275(s2 + 8.402s+ 6.573× 104)

s(s+ 2.101)(s2 + 10.89s+ 3.665× 104)
. (5.1)

4. Discrete minimum phase plant Pmpd (Discretization method: Tustin transformation, 4 [kHz])

Pmpd(z) =
9.2607× 10−7(z + 1)2(z2 − 1.994z + 0.9979)

(z − 1)(z − 0.9995)(z2 − 1.995z + 0.9973)
. (5.2)

5.3 Case study results for a minimum phase plant

5.3.1 Low pass filter design result in continuous domain for a minimum phase plant

Since the relative order of Pmp is 2, a second order Q filter is selected and by solving the optimiza-

tion problem formulated in Chapter 3 section 3.2, the optimized Qmp(qs)(s) and crossover frequency of

weighting function of sensitivity function ωp(qs,mp) are shown as follows ( [106]). Resultant Nyquist plots

as well as Bode plots of WpS and WmT are depicted in Fig. 5.2, Fig. 5.3 Fig. 5.4.

Pmp(s) =
59.275(s2 + 8.402s+ 6.573× 104)

s(s+ 2.101)(s2 + 10.89s+ 3.665× 104)
, (5.3)

Qmp(qs)(s) =
1

5.79× 10−5s2 + 0.0071s+ 1
, ωp(qs,mp) = 88.6 [rad/s]. (5.4)

5.3.2 Low pass filter design result in discrete domain for a minimum phase plant

For low pass filter design in discrete domain (problem formulation can be found in Chapter 3 section

3.3), a second order low pass filter is selected and the optimized Qmp(qz)(z) and ωp(qz,mp) are obtained

as shown in Eq. (5.6). Corresponding figures are Fig. 5.5, Fig. 5.6 along with Fig. 5.7.

Pmpd(z) =
9.2607× 10−7(z + 1)2(z2 − 1.994z + 0.9979)

(z − 1)(z − 0.9995)(z2 − 1.995z + 0.9973)
, (5.5)

Qmp(qz)(z) =
z2 + 2z + 1

3904z2 − 7689z + 3789
, ωp(qz,mp) = 87.0 [rad/s]. (5.6)
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Figure 5.1 Bode plots of frequency response data (FRD) and nominal plant model Pmp(s) for a

minimum phase high-precision positioning stage
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optimized case, is tangent to the stability circle (gray line) defined by the gain margin and phase

margin.
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5.3.3 Identification of nominal plant model and design of low pass filter in continuous domain
for a minimum phase plant

Based on the problem formulation process in Chapter 4 section 4.2, low pass filter and nominal plant

model can be obtained simultaneously. The bandwidth has been significantly increased compared to

design low pass filter only which can be told from Eq. (5.8). Obtained figures are present in Fig. 5.8,

Fig. 5.9, Fig. 5.10, and Fig. 5.11.

Pmp(opts)(s) =
79.795(s2 + 6.724s+ 7.131× 104)

s(s+ 3.033)(s2 + 8.258s+ 3.522× 104)
, (5.7)

Qmp(pqs)(s) =
9.086× 104

s2 + 267.8s+ 9.086× 104
, ωp(pqs,mp) = 160.9 [rad/s], (5.8)

in which Pmp(opts)(s) and Qmp(pqs)(s) are the obtained nominal plant model as well as the low pass filter

in continuous domain, respectively; ωp(pqs,mp) is the optimized bandwidth.

5.3.4 Identification of nominal plant model and design of low pass filter in discrete domain
for a minimum phase plant

By following the theoretical analysis introduced in Chapter 4 section 4.3, results of designing low pass

filter and nominal plant model altogether in discrete domain for a minimum phase plant are given in Eq.

(5.10). Acquired figures are present in Fig. 5.12, Fig. 5.13, Fig. 5.14, and Fig. 5.15.

Pmp(optz)(z) =
1.2462× 106(z + 1)2(z2 − 1.994z + 0.9983)

(z − 0.9992)(z − 1)(z2 − 1.996z + 0.9979)
, (5.9)

Qmp(pqz)(z) =
1.372× 10−3(z + 1)2

(z2 − 1.93z + 0.9353)
, ωp(pqz,mp) = 160.9 [rad/s], (5.10)

in which Pmp(optz)(z) and Qmp(pqz)(z) are optimized nominal plant and low pass filter in discrete domain,

respectively; ωp(pqz,mp) is the optimized bandwidth in discrete domain.

5.3.5 Analysis on simulation results for a minimum phase plant

1. Constraints have been satisfied.

Nyquist plots of loop gain L (initial and optimized) did not enter the gray circle (stability circle)

which implies that the stability margin constraint holds successfully as shown in Fig. 5.2, Fig. 5.5,

Fig. 5.9, and Fig. 5.13. With the stability margin constraint satisfied, the peak value of sensitivity

function is limited because the closest distance from Nyquist plot to critical point (−1, 0) is the

inverse of the peak value of the sensitivity function. Finally, proposed optimization method forces

the optimized Nyquist plot to be tangent to the gray circle which implies that the bandwidth of L

is maximized under the limitation of constraints. Furthermore, constraints for sensitivity function

and complementary sensitivity function are satisfied as |WpS| and |WmT | are always under 0 [dB]

in Fig. 5.3, Fig. 5.6, Fig. 5.10, and Fig. 5.14.

2. Bandwidth comparison

（a）Designing low pass filter with identifying plant simultaneously in continuous domain and dis-

crete domain (ωp : around 160.9 [rad/s]) have obtained larger bandwidth than case of designing

low pass filter only (ωp : no larger than 88.6 [rad/s] ).
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i. More tuning freedom is in simultaneous design which can be understood from Eq. (5.11)

and Eq. (5.12) and thus, better performance has been gained.

A. Design low pass filter only:

Lq,mp(loop gain) = P(mp,FRD)P
−1
mp︸ ︷︷ ︸

fixed

Q(1−Q)−1︸ ︷︷ ︸
optimized

. (5.11)

B. Design low pass filter and identify plant simultaneously:

Lpq,mp(loop gain) = P(mp,FRD)︸ ︷︷ ︸
fixed

P−1
mp(opt)Q(1−Q)−1︸ ︷︷ ︸

optimized

. (5.12)

in which P(mp,FRD) is the frequency response data of plant and Pmp is the nominal plant

model identified from frequency response data while Pmp(opt) is the plant model obtained

from proposal.

ii. Faster disturbance estimation performance is in simultaneous design which is explained as

follows.

The disturbance estimation performance is represented by complementary sensitivity func-

tion (
d̂

d
=

(1−Q(s))−1Q(s)Pn(s)
−1Pr(jωk)

1 + (1−Q(s))−1Q(s)Pn(s)−1Pr(jωk)
= T ). The complementary sensitivity

function comparison between design low pass filter only and tune plant model and low

pass filter altogether is shown in Fig. 5.16. Larger bandwidth of T means faster estima-

tion which implies that tuning nominal plant model simultaneously with low pass filter

has achieved faster estimation performance.

（b）Although discrete domain design is not as convenient as continuous domain, discrete domain

design has obtained comparative performance with continuous domain.

i. The design in continuous domain is more straightforward because the meaning of coeffi-

cients in low pass filter as well as in nominal plant model is clear and the stability analysis

is easier.

ii. Necessity of designing in discrete domain.

A. After discretizing the continuous domain controller into discrete domain, the Bode

plot has deviation which can be told from Fig. 5.17 in which the Nyquist plot of

discretized open loop function is not strictly same as original open loop function in

continuous domain. (The Nyquist plot of discretized open loop function has entered

stability circle.).

B. The implementation is in discrete domain.

5.4 Comparison with trial-and-error method

In this section, proposed low pass filter design in continuous domain has been compared with trial-and-

error method. In order to compare with the proposal fairly, same gain margin (6 [dB]) and phase margin

(30◦) have been guaranteed which is shown in Fig. 5.18. The low pass filter in trial-and-error method

design has been selected as the following form:

Qtrial(s) =
1

(τmps+ 1)tm
, (5.13)
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in which τmp is the tuning parameter and tm is the relative order.

The tuning process can be summarized as follows when P(mp,FRD) and Pmp(s) represent the frequency

response data of a minimum phase plant and the nominal plant model which is identified from frequency

response data respectively.

1. Give τmp a value and plot Nyquist plot of Ltrial = P(mp,FRD)Pmp(s)Qtrial(s)(1−Qtrial(s)) to check

whether it satisfies the constraint for stability margins or not.

2. If the Ltrial in previous step satisfies the constraint, decrease the value of τmp and check new Ltrial

again.

3. If the Ltrial does not satisfy the constraint, increase the value of τmp and check new Ltrial again.

4. Repeat the above steps until the Ltrial becomes tangent to the stability circle.

Based on the tuning process, Qtrial(s) is obtained as in Eq. (5.14).

Qtrial(s) =
1

(5.4× 10−3s+ 1)2
, ωp(trial) = 65 [rad/s]. (5.14)

As can be told from the Fig. 5.18 and Eq. (5.14), proposed method has obtained a larger bandwidth

than trial-and-error method.

5.5 Summary

This chapter has enumerated case study results for a minimum phase plant and compared proposed

methods with trial-and-error method which can be summarized as Table 3.2.

1. Desired constraints have all been satisfied and bandwidth-maximized DOB has been designed

successfully for each case which verified the feasibility of the proposed method for minimum phase

plant.

2. Proposed methods has over-performed trial-and-error method in terms of design effort (no trial-

and-error process) and design result (bandwidth).

3. Simultaneous identification of plant model and design of low pass filter has obtained larger band-

width compared with design low pass filter only which shows the necessity of tuning plant model

together.

4. Discrete domain design has achieved comparative performance as continuous domain which is

promising and convenient in the implementation.



Chapter 5 Numerical case study results of FRD-based DOB design for a minimum phase plant52

10
0

10
1

10
2

Frequency (Hz)

-40

-20

0

M
ag

n
it

u
d
e 

(d
B

)

Figure 5.3 Magnitude plots of WpS and WmT of low pass filter design in continuous domain for

a minimum phase plant. |WpS| and |WmT | are under 0 [dB] line which means constraints for

sensitivity function and complementary sensitivity function have been satisfied.
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Figure 5.4 Magnitude plots of 1
Wp

, S (initial) and S (optimized) of low pass filter design in contin-

uous domain for a minimum phase plant. This figure shows the crossover frequency of sensitivity

function (S) has been increased which means better disturbance rejection performance.
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Figure 5.5 Nyquist plots of loop gain (L) (Initial and Optimized) of low pass filter design in discrete

domain for a minimum phase plant. Discrete domain design result also makes optimized loop gain

(dark blue line) become tangent to the stability circle (gray line) which means the constraint for

guaranteeing stability margins has been satisfied.
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Figure 5.6 Magnitude plots of WpS and WmT of low pass filter design in discrete domain for a

minimum phase plant. Constraints for sensitivity function and complementary sensitivity function

have been satisfied successfully since magnitude plots of WpS and WmT are under 0 [dB] line.
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Figure 5.7 Magnitude plots of 1
Wp

, S (initial) and S (optimized) of low pass filter design in discrete

domain for a minimum phase plant. Same as in continuous domain design, the design result

has made the crossover frequency of sensitivity function (S) increased which represents for better

disturbance rejection performance compared to initial condition.
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Figure 5.8 Bode plots of frequency response data (FRD), nominal plant model Pmp(s) (identified

from frequency response data) and optimized nominal plant model Pmp(opts)(s) in the simultaneous

identification of nominal plant model and design of low pass filter (s domain) for a minimum phase

plant.
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Figure 5.9 Nyquist plots of loop gain (L) (Initial and after optimized) in the simultaneous identi-

fication of nominal plant model and design of low pass filter (s domain) for a minimum phase plant

in which the constraint for guaranteeing stability margins holds because the optimized loop gain L

did not enter the stability circle (gray line).
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Figure 5.10 Magnitude plots of WpS and WmT in the simultaneous identification of nominal plant

model and design of low pass filter (s domain) for a minimum phase plant. Constraints for sensitivity

function (|WpS| ≤ 1) and complementary sensitivity function (|WmT | ≤ 1) have been satisfied.
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Figure 5.11 Magnitude plots of 1
Wp

, S (initial) and S (optimized) in the simultaneous identification

of nominal plant model and design of low pass filter (s domain) for a minimum phase plant. This

figure has shown the comparison of initial sensitivity function and optimized sensitivity function.
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Figure 5.12 Bode plots of frequency response data, nominal plant model Pmpd (discretized from

Pmp) and optimized plant model Pmp(optz)(z) in designing low pass filter and identifying nominal

plant model simultaneously (z domain) for a minimum phase plant.
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Figure 5.13 Nyquist plots of loop gain (L) (Initial and after optimized) in the simultaneous iden-

tification of nominal plant model and design of low pass filter (z domain) for a minimum phase

plant. Constraint for guaranteeing stability margins has been satisfied successfully since optimized

loop gain (dark blue line) does not invade into the stability circle (gray line).

10
0

10
1

10
2

Frequency (Hz)

-40

-20

0

M
ag

n
it

u
d
e 

(d
B

)

Figure 5.14 Magnitude plots of WpS and WmT in the simultaneous identification of nominal plant

model and design of low pass filter (z domain) for a minimum phase plant. The satisfication

of constraints for sensitivity function (|WpS| ≤ 1) as well as complementary sensitivity function

|WmT | ≤ 1 is verified in this figure.
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Figure 5.15 Magnitude plots of 1
Wp

, S (initial) and S (optimized) in the simultaneous identi-

fication of nominal plant model and design of low pass filter (z domain) for a minimum phase

plant. Optimized sensitivity function (S) has larger crossover frequency than initial case which is

straightforward.
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Figure 5.16 Complementary sensitivity function comparison between design low pass filter only

and tune plant model and low pass filter altogether. T (simultaneous design, s domain), which

represents for the complementary sensitivity function of designing low pass filter and identifying

nominal plant model simultaneously case, has larger bandwidth, which reflects the disturbance esti-

mation performance, than T (low pass filter only, s domain) which represents for the complementary

sensitivity function of designing low pass filter only case.
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Figure 5.17 Locally-enlarged Nyquist plots of continuous domain loop gain and corresponding

discretized loop gain. Lcontinuous means original continuous version while Ldiscretized is discretized

from the continuous one. The Ldiscretized has entered stability circle which breaks the constraint for

guaranteeing stability margins.

Table 5.2 Summary of case study results for a minimum phase plant

Cases Constraint Bandwidth

[rad/s]

low pass filter design (s domain) (section

5.3.1)

satisfied 88.6

low pass filter design (z domain) (section

5.3.2)

satisfied 87

nominal plant model identification and

low pass filter design (s domain ) (section

5.3.3)

satisfied 160.9

nominal plant model identification and

low pass filter design (z domain ) (section

5.3.4)

satisfied 160.9

trial-and-error method (section 5.4) satisfied 65
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Figure 5.18 Comparison of Nyquist plots of loop gain L obtained by trial-and-error method (Ltrial)

and proposed method of designing low pass filter only in s domain for a minimum phase plant

(Lpropsoed). The proposed method has gained larger bandwidth than trial-and-error method al-

though both methods have satisfied the constraint for guaranteeing stability margins since both

Nyquist plots stay outside of stability circle (gray line).
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Chapter 6

Numerical case study results of FRD-based DOB
design for a non-minimum phase plant

6.1 Overview

This chapter is to show case study results of proposed methods in Chapter 3 and Chapter 4 for a

non-minimum phase plant who is a motion stage and has one real unstable zero.

When building a DOB configuration for a non-minimum phase plant, the internal stability problem

appears (QP−1
n ) due to the unstable inversion caused by the existence of unstable zero(s). To deal with

this problem, two different types of methods have been employed which can both be handled by proposed

methods.

One way is to approximate the nominal plant model into a minimum phase one, and in this Chapter,

second order approximation, zero magnitude error approximation and zero phase error approximation

have been employed in designing low pass filter. The other is to make low pass filter contain the same

unstable zero(s) as non-minimum phase nominal plant has. Additionally, for a non-minimum phase plant,

identifying nominal plant model and designing low pass filter simultaneously have also been investigated.

Therefore, case studies have been classified as shown in Table 6.1. Furthermore, discrete domain design

results have also been discussed.

Same as in minimum phase plant case, Nyquist plots of open loop function (constraint for guaranteeing

margins) and magnitude plots of WpS and WmT (constraints for sensitivity function as well as the

complementary sensitivity function ) are provided to verify the satisfaction of constraints for each case

study. Furthermore, the comparison between different case studies and analysis on simulation results

have been given. Finally, two design methods selected from previous research have been introduced and

comparison results are present.

6.2 Simulation conditions

1. Software: Matlab R2020a (Yalmip [103] and Mosek [104] toolboxes)

2. Gain margin 6 [dB], phase margin 30◦.

According to Eq. (3.5), σ = 1.03, rm = 0.525 and the stability circle Cs in Fig. 3.2 can be decided.
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3. Non-minimum phase plant Pnmp ( [109]).

Pnmp(s) =
−40(s+ 957.6)(s− 687.5)

s(s+ 8.131)(s2 + 20s+ 5.6× 104)
, (6.1)

Ps(s) =
470.25

s(s+ 8.131)
, (6.2)

Pzme(s) =
40(s+ 957.6)(s+ 687.5)

s(s+ 8.131)(s2 + 20s+ 5.6× 104)
, (6.3)

Pzpe(s) =
1.8906× 107(s+ 957.6)

s(s+ 8.131)(s+ 687.5)(s2 + 20s+ 5.610× 104)
, (6.4)

in which Ps(s), Pzme(s) and Pzpe(s) are the second order approximation, zero magnitude approx-

imation (ZME) and zero phase error approximation (ZPE) of Pnmp, respectively and Bode plots

are shown as Fig. 6.1.

4. Discrete non-minimum phase plant Pmpd (discretized from Pnmp) and Pzmed (discretized from

Pzme) (discretization method: Tustin transformation, 4 [kHz]).

Pnmpd(z) =
6.3687× 10−7(z + 1)2(z − 1.188)(z − 0.7862)

(z − 0.998)(z − 1)(z2 − 1.992z + 0.995)
, (6.5)

Pzmed(z) =
7.5663× 10−7(z − 0.8417)(z − 0.7862)(z + 1)2

(z − 1)(z − 0.998)(z2 − 1.992z + 0.995)
. (6.6)

6.3 Low pass filter design results in continuous domain for a non-minimum
phase plant

6.3.1 Case of second order approximation Ps(s)

When the second order approximation of nominal plant Ps(s) is selected, the following result is obtained.

Furthermore, resultant figures are shown in Fig. 6.2, Fig. 6.3 and Fig. 6.4.

Ps(s) =
470.25

s(s+ 8.131)
, Qnmp(ps)(s) =

1

2.59× 10−4s2 + 0.02424s+ 1
, ωnmp(ps) = 30.8 [rad/s], (6.7)

in which Qnmp(ps)(s) and ωnmp(ps) represent for the optimized low pass filter and crossover frequency of

weighting function of sensitivity function.

6.3.2 Case of fourth order zero magnitude error approximation Pzme(s)

When the zero magnitude error approximation Pzme(s) is employed and Qnmp(zme)(s) is selected as

a second order filter to guarantee the causality of the system. The resultant filter (Qnmp(zme)(s)) and

bandwidth (ωnmp(zme)) are shown in Eq. (6.9). Corresponding figures are present in Fig. 6.5, Fig. 6.6

and Fig. 6.7.

Pzme(s) =
40(s+ 957.6)(s+ 687.5)

s(s+ 8.131)(s2 + 20s+ 5.6× 104)
, (6.8)

Qnmp(zme)(s) =
1

2.839× 10−5s2 + 0.0224s+ 1
, ωnmp(zme) = 37.4 [rad/s]. (6.9)
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Figure 6.1 Bode plots of frequency response data of a non-minimum phase plant, identified nominal

plant model Pnmp, Pzme (zero magnitude error approximation of Pnmp), Pzpe (zero phase error

approximation of Pnmp) and Ps (second order approximation of Pnmp)
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Figure 6.2 Nyquist plots of loop gain (L) (Initial and Optimized) when second order approximation

Ps(s) is used in designing low pass filter for a non-minimum phase plant. The tangency to the

stability circle of optimized loop gain (dark blue line) has verified that constraint for guaranteeing

stability margins has been satisfied.
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Figure 6.3 Magnitude plots of WpS and WmT when second order approximation Ps(s) is used

in designing low pass filter for a non-minimum phase plant. Magnitude plots of WpS and WmT

are under 0 [dB] shows that constraints for sensitivity function (|WpS| ≤ 1) and complementary

sensitivity function (|WmT | ≤ 1) have been satisfied.
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Figure 6.4 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) when second order approximation

Ps(s) is used in designing low pass filter for a non-minimum phase plant. Larger crossover frequency

of sensitivity function can be recognized from this figure showing that the optimization process has

made the disturbance rejection performance become better.



Chapter 6 Numerical case study results of FRD-based DOB design for a non-minimum phase plant65

-1.5 -0.5 0.5

Real axis

-1.5

-1

-0.5

0

0.5

1

Im
ag

in
ar

y
 a

x
is

Initial

Optimized

Figure 6.5 Nyquist plots of loop gain (L) (Initial and Optimized) when zero magnitude error

approximation Pzme(s) is used in designing low pass filter for a non-minimum phase plant. The

constraint |L+σ| ≥ rm has been satisfied successfully in which (−σ, 0) and rm are center point and

radius of stability circle (gray line) respectively.
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Figure 6.6 Magnitude plots of WpS and WmT when zero magnitude error approximation Pzme(s)

is used in designing low pass filter for a non-minimum phase plant. The optimized low pass filter

has made the whole system satisfy constraints |WpS| ≤ 1 and |WmT | ≤ 1.
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6.3.3 Case of fourth order nominal plant Pzpe(s)

When the zero phase error approximation Pzpe(s) is employed and Qnmp(zpe)(s) is selected as a fourth

order filter to guarantee the causality of the system. Obtained figures are displayed in Fig. 6.8, Fig. 6.9

and Fig. 6.10.

Pzpe(s) =
1.8906× 107(s+ 957.6)

s(s+ 8.131)(s+ 687.5)(s2 + 20s+ 5.610× 104)
, (6.10)

Qnmp(zpe)(s) =
1

2.335× 10−10s4 + 4.176× 10−8s3 + 1.212× 10−4s2 + 0.01831s+ 1
, (6.11)

ωnmp(zpe) = 43.0 [rad/s], (6.12)

in which Qnmp(zpe)(s) and ωnmp(zpe) are optimized low pass filter and bandwidth, respectively.

6.3.4 Case of fourth order nominal plant Pnmp(s)

When the non-minimum phase nominal plant model Pnmp(s) is utilized, Qnmp(pn)(s) can be obtained

as follows. It should be noticed that the obtained filter Qnmp(pn)(s) is also a non-minimum phase one

and contains one unstable zero (687.5). Acquired figures are exhibited in Fig. 6.11, Fig. 6.12 and Fig.

6.13.

Pnmp(s) =
−40(s+ 957.6)(s− 687.5)

s(s+ 8.131)(s2 + 20s+ 5.6× 104)
, (6.13)

Qnmp(pn)(s) =
−14286(687.5− s)

(s+ 814.6)(s+ 121.9)(s+ 98.94)
, ωnmp(pn) = 38.2 [rad/s], (6.14)

in which ωnmp(pn) represents for the optimized bandwidth.

6.4 Low pass filter design result in discrete domain for a non-minimum
phase plant

Fourth order discrete nominal plant Pzmed(z) (discretized from Pzme) is used in the design of low pass

filter for a non-minimum phase plant and the optimized results are shown in Eq. (6.16) along with

corresponding figures shown in Fig. 6.14, Fig. 6.15 and Fig. 6.16.

Pzmed(z) =
7.5663× 10−7(z − 0.8417)(z − 0.7862)(z + 1)2

(z − 1)(z − 0.998)(z2 − 1.992z + 0.995)
, (6.15)

Qnmp(zmed)(z) =
z2 + 2z + 1

2026z2 − 3676z + 1655
, ωnmp(zmed) = 36.3 [rad/s]. (6.16)

6.5 Identification of nominal plant model and design of low pass filter in
continuous domain for a non-minimum phase plant

By following procedures in Chapter 4 section 4.2.6, results of designing low pass filter along with

identifying nominal plant model for the non-minimum phase plant are shown as follows. To show design
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Figure 6.7 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) when zero magnitude error

approximation Pzme(s) is used in designing low pass filter for a non-minimum phase plant. The

effective disturbance rejection area (the magnitude of sensitivity function S is smaller than 1) has

been enlarged after the optimization process.

-1.5 -0.5 0.5

Real axis

-1.5

-1

-0.5

0

0.5

1

Im
ag

in
ar

y
 a

x
is

Initial

Optimized

Figure 6.8 Nyquist plots of loop gain (L) (Initial and Optimized) when zero phase error approxi-

mation Pzpe(s) is used in designing low pass filter for a non-minimum phase plant. The resultant

Nyquist plot is tangent to the stability circle (gray line) which indicates that stability margins have

been satisfied.
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Figure 6.9 Magnitude plots of WpS and WmT when zero phase error approximation Pzpe(s) is used

in designing low pass filter for a non-minimum phase plant. Wp and Wm are weighting functions

for sensitivity function (S) as well as complementary sensitivity function (T ) respectively and thus,

this figure shows that optimized S and T have satisfied the corresponding constraints successfully.
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Figure 6.10 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) when zero phase error approxi-

mation Pzpe(s) is used in designing low pass filter for a non-minimum phase plant. The optimization

process has pushed the sensitivity function (S) to have larger crossover frequency which can be told

from this figure.
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Figure 6.11 Nyquist plots of loop gain (L) (Initial and Optimized) when the non-minimum phase

plant Pnmp(s) is used in designing low pass filter for a non-minimum phase plant. The dark blue

line is the optimized open loop function and since it stays outside of the stability circle (gray line),

the constraint for guaranteeing stability margins holds straightforwardly.
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Figure 6.12 Magnitude plots of WpS and WmT when the non-minimum phase plant Pnmp(s) is

used in designing low pass filter for a non-minimum phase plant. This figure is to show that

constraints |WpS| ≤ 1 and |WmT | ≤ 1 have been met.
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Figure 6.13 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) when the non-minimum phase

plant Pnmp(s) is used in designing low pass filter for a non-minimum phase plant. The crossover

frequency of optimized weighting function (Wp), which is used in representing the bandwidth of

DOB, is larger compared to the initial case.
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Figure 6.14 Nyquist plots of loop gain (L) (Initial and Optimized) when discrete nominal plant

model Pzmed(z) (discretized from zero magnitude error approximation Pzme) is used in designing

low pass filter for a non-minimum phase plant. The design in discrete domain has successfully made

the constraint |L + σ| > rm hold in which (−σ, 0) and rm are center point and radius of stability

circle (gray line), respectively.
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Figure 6.15 Magnitude plots of WpS and WmT when discrete nominal plant model Pzmed(z)

(discretized from zero magnitude error approximation Pzme) is used in designing low pass filter for

a non-minimum phase plant. From this figure, predefined constraints |WpS| ≤ 1 and |WmT | ≤ 1

have been satisfied.
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Figure 6.16 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) when discrete nominal plant

model Pzmed(z) (discretized from zero magnitude error approximation Pzme) is used in designing

low pass filter for a non-minimum phase plant. From this figure, the crossover frequency of sensi-

tivity function has become larger which indicates that disturbance rejection performance has been

improved.
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results straightforwardly, figures Fig. 6.17, Fig. 6.18, Fig. 6.19 and Fig. 6.20 have been present.

Pnmp(pqs)(s) =
6.410(s2 + 4129s+ 5.021× 106)

s(s+ 7.776)(s2 + 48.19s+ 5.011× 104)
, (6.17)

Qnmp(pqs)(s) =
1.645× 104

s2 + 199.2s+ 1.645× 104
, ωnmp(pqs) = 47.8 [rad/s]. (6.18)

6.6 Identification of nominal plant model and design of low pass filter in
discrete domain for a non-minimum phase plant

The identification of nominal plant model and design of low pass filter in discrete domain has also been

accomplished and the obtained result is in Eq. (6.20). Correspondingly, obtained figures are present in

Fig. 6.21, Fig. 6.22, Fig. 6.23 as well as Fig. 6.24 to analyze the result effectively.

Pnmp(pqz)(z) =
3.915× 10−7(z + 1)2(z2 − 1.477z + 0.5576)

(z − 0.998)(z − 1)(z2 − 1.986z + 0.9888)
, (6.19)

Qnmp(pqz)(z) =
2.724× 10−4(z + 1)2

z2 − 1.945z + 0.9456
, ωnmp(pqz) = 45.6 [rad/s]. (6.20)

6.7 Analysis on simulation results for a non-minimum phase plant

1. Constraints have all been satisfied.

For all these case studies, Nyquist plots of loop gain L (Initial and Optimized)), which are shown

in Fig. 6.2, Fig. 6.5 and Fig. 6.8, Fig. 6.11, Fig. 6.14, as well as Fig. 6.18, Fig. 6.22, respectively,

stay outside of the stability circle (gray line) which implies that the stability margin constraint

holds successfully for all these cases. Furthermore, proposed optimization method forces the op-

timized Nyquist plot to be tangent to the gray circle which implies that the bandwidth of L is

maximized under the limitation of constraints. In addition, constraints for sensitivity function and

complementary sensitivity function are satisfied as |WpS| and |WmT | are always under 0 [dB] as

shown in Fig. 6.3, Fig. 6.6, Fig. 6.9, Fig. 6.12 and Fig. 6.15, Fig. 6.19, Fig. 6.23.

2. Comparison of optimized bandwidth results.

（a）Simultaneous identification of nominal plant model and design of low pass filter (ωp :

over 45 [rad/s]) (s domain and z domain) have obtained larger bandwidth than cases of

designing low pass filter only (ωp : smaller than 44 [rad/s]).

Same as in the analysis of minimum phase plant, more tuning freedom is in simultaneous

design which accounts for such phenomenon.

（b）Discrete domain design has achieved comparative performance as continuous domain design

which can be straightforwardly understood from Fig. 6.25.

（c）When approximations of non-minimum phase plant are used in the design of low pass filter, zero

phase error approximation case has obtained largest bandwidth due to more tuning freedom.

ωnmp(zpe) (43.0 [rad/s]) > ωnmp(zme)(37.4 [rad/s]) > ωnmp(ps) (30.8 [rad/s]) (6.21)
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Figure 6.17 Bode plots of frequency response data (FRD), nominal plant model Pnmp(s) (identified

from FRD) and optimized nominal plant model Pnmp(pqs)(s) in the simultaneous identification of

nominal plant model and design of low pass filter (s domain) for a non-minimum phase plant.
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Figure 6.18 Nyquist plots of loop gain (L) (Initial and Optimized) in the simultaneous identifica-

tion of nominal plant model and design of low pass filter (s domain) for a non-minimum phase plant.

This figure is to show that the optimized loop gain has satisfied the constraint for guaranteeing

stability margins since it stays outside of the stability circle (gray line).
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Figure 6.19 Magnitude plots of WpS and WmT in the simultaneous identification of nominal plant

model and design of low pass filter (s domain) for a non-minimum phase plant. From this figure,

|WpS| ≤ 1 and |WmT | ≤ 1 hold successfully.
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Figure 6.20 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) in the simultaneous identification

of nominal plant model and design of low pass filter (s domain) for a non-minimum phase plant.

Optimization process has pushed the sensitivity function to have a larger crossover frequency.
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Figure 6.21 Bode plots of frequency response data (FRD), nominal plant model Pnmpd(z) (identi-

fied from FRD) and optimized nominal plant model Pnmp(pqz)(z) in the simultaneous identification

of nominal plant model and design of low pass filter (z domain) for a non-minimum phase plant.
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Figure 6.22 Nyquist plots of loop gain (L) (Initial and Optimized) in the simultaneous identifi-

cation of nominal plant model and design of low pass filter (z domain) for a non-minimum phase

plant. The design in discrete domain has achieved a similar Nyquist plot as in continuous domain

which satisfies the gain margin and phase margin successfully.
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Figure 6.23 Magnitude plots of WpS and WmT in the simultaneous identification of nominal plant

model and design of low pass filter (z domain) for a non-minimum phase plant. Similar as the result

in continuous domain, constraints |WpS| ≤ 1 and |WmT | ≤ 1 have been met.
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Figure 6.24 Magnitude plots of 1
Wp

, S (Initial) and S (Optimized) in the simultaneous identification

of nominal plant model and design of low pass filter (z domain) for a non-minimum phase plant. The

crossover frequency has become larger compared to the initial case which means better disturbance

rejection performance. Furthermore, sensitivity function (S(Optimized)) is under 1
Wp

which shows

that |WpS| ≤ 1 has been satisfied.
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（d）Comparison results when same relative order Q(s) filter is designed.

ωnmp(pn)(38.2 [rad/s]) > ωnmp(zme)(37.4 [rad/s]) > ωnmp(ps)(30.8 [rad/s]). (6.22)

Remark:

1. Qualitative analysis

Since L =

FRD︷ ︸︸ ︷
P (nmp, FRD)

nominal plant︷︸︸︷
P−1
n︸ ︷︷ ︸

approximation error

Q/(1−Q), the approximation error influences the bandwidth

of L and Q/(1 − Q) part amplifies the gain of approximation error and adds phase delay in the

low frequency region while decreases the gain in higher frequency region. The objective for tuning

L is to make it have larger gain (qualitatively) in low frequency region .

As shown in Fig. 6.26, the obtained nominal plant model Pnmp(pqs) has less gain approximation

error compared with Pzpe and phase lead in the high frequency region which is beneficial for gain

amplification. Therefore, higher bandwidth of L can be expected.

2. Selection of orders of nominal plant model and low pass filter

In this thesis, when the nominal plant model is tuned with low pass filter simultaneously, the

order of nominal plant model should be decided at first. The typical oscillation modes should be

considered in order to obtain satisfactory bandwidth. However, if too many oscillation modes are

selected into the nominal plant model, the resultant low pass filter will have high order which adds

calculation burden to the optimization software and may lead to numerical problems. Therefore,

the selection of order of nominal plant is important but more of experience-based procedure.

3. Variations of frequency response data

If the frequency response data of system varies as working environment changes, proposed methods

can obtain a robust result which satisfies all the constraints by employing all frequency data sets

rather than one frequency response data set into proposal.

4. Notes on implementation in optimization software

Since proposed methods are data-based calculation methods and the value of high order frequency

item (e.g. (jω)4) varies in a large range as the frequency point changes which could become a

burden for the optimization software and cause numerical errors or more seriously, solution error.

Therefore, the modeling of the problem in software should be adjusted (basic idea and example

is shown in Eq. (6.23) and Eq. (6.24)). When ωk changes from 1 to 400, assuming the range is

shown as follows,

N1 = ((jωk)
3 + ϵ2(jωk)

2 + ϵ1(jωk) + ϵ0) ∈ [0, 106],

D1 = ((jωk)
3 + ϵ5(jωk)

2 + ϵ4(jωk) + ϵ3) ∈ [0, 106]. (6.23)

Take constraint for stability margins as an example,

|N1

D1
+ σ| > rm(original one) ⇔ |N1 + σD1|

103
>

rm|D1|
103

(adjusted one). (6.24)

then the adjusted one should be used in optimization. Importantly, such method can only release

the calculation burden to some extent. Selection of a very high order low pass filter could lead to

such problem which should be paid attention to.
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6.8 Comparison with existing methods

To better show the efficacy of the proposal, the following two typical methods are compared with

proposed methods. For these two methods, Pnmp is selected as the nominal plant. To make a fair

comparison, same stability margins as ones used in proposal are guaranteed. To guarantee the internal

stability, Q(s) should contain the same unstable zeros as nominal plant model has.

6.8.1 Introduction on existing methods

Trial-and-error method

The Qtrial(nmp)(s) is selected as the following form:

Qtrial(nmp)(s) =
1

(τnmps+ 1)tq
(z0 − s) · · · (zj∗ − s)

(s+ z0) · · · (s+ zj∗)
, (6.25)

in which z0 · · · zj∗ are unstable zeros of nominal plant and τnmp is the parameter to be designed; tq is the

relative order.

Similar as in minimum phase case,the tuning process can be summarized as follows when P(nmp,FRD)

and Pnmp(s) represent the frequency response data of a non-minimum phase plant and nominal plant

model identified from frequency response data, respectively.

1. Give τnmp a value and plot Nyquist plot of Ltrial(nmp) = P(nmp,FRD)Pnmp(s)Qtrial(nmp)(s)(1 −
Qtrial(nmp)(s)) to check whether it satisfies the constraint for stability margins or not.

2. If the Ltrial(nmp) in previous step satisfies the constraint, decrease the value of τnmp and check new

Ltrial(nmp) again.

3. If the Ltrial(nmp) does not satisfy the constraint, increase the value of τnmp and check new Ltrial(nmp)

again.

4. Repeat the above steps until the Ltrial(nmp) becomes tangent to the stability circle.

Based on the tuning process, Qtrial(nmp)(s) is obtained as in Eq. (6.26).

Qtrial(nmp)(s) =
(−s+ 687.5)

(9.025× 10−3s+ 1)2(s+ 687.5)
, ωptrial(nmp) = 38.1 [rad/s]. (6.26)

H∞ method

By selecting appropriate weighting functions, Q filter design problem has been formulated into Eq.

(6.27) and further formulated into Eq. (6.28) which is a standard H∞ optimization problem [70].

Maximize λ̃ (6.27a)

s.t. min

∥∥∥∥[λ̃W1(s)(1−Qhinf(s))
W2(s)Qhinf(s)

]∥∥∥∥
∞

≤ 1. (6.27b)

⇔

Maximize λ̃ (6.28a)

s.t. min

∥∥∥∥[ λ̃W1(s)(P̃ K̃ + 1)−1)

W2(s)P̃ K̃(P̃ K̃ + 1)−1)

]∥∥∥∥
∞

≤ 1. (6.28b)
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where W1(s) as well as W2(s) are weighting functions and

Qhinf(s) =
P̃ (s)K̃(s)

P̃ (s)K̃(s) + 1
, P̃ (s) = P̃0(s)P̃l(s), (6.29)

while P̃0(s) is a stable transfer function and P̃l(s) is an allpass portion with all the unstable zeros of

nominal plant which makes the resultant Q filter also contains the same unstable zeros as nominal plant

has.

By utilizing H∞ method introduced above [70], the following Qhinf is obtained.

Qhinf(s) =
−27859(s− 687.5)

(s+ 820.9)(s+ 687.3)(s+ 33.95)
, ωphinf = 25.5 [rad/s]. (6.30)

6.8.2 Comparison results of existing methods and proposed methods

Comparison results are shown in Fig. 6.27 and Fig. 6.28. Proposed low pass filter design methods

when non-minimum phase nominal plant model Pnmp is used (trial-and-error and H∞ also employed this

nominal plant model) as well as when Pzpe is used (the largest bandwidth of our proposal in continuous

domain when only low pass filter is designed ) have been picked out to finish the following analysis.

1. Comparison results of obtained bandwidth when same nominal plant model Pnmp is used in design

low pass filter.

ωnmp(pn)(38.2 [rad/s]) > ωptrial(nmp)(38.1 [rad/s]) > ωphinf(25.5 [rad/s]). (6.31)

When the same nominal plant, e.g. non-minimum phase plant, has been selected, the non-minimum

phase Q filter designed by proposal has obtained a slightly larger bandwidth compared to trial-

and-error method and a much large bandwidth compared to H∞ method. Furthermore, proposed

methods are an auto-tuning process which saves design effort.

2. Comparison results of obtained bandwidth when minimum phase approximation of plant model

Pnmp is used in design low pass filter.

ωnmp(zpe)(43.0 [rad/s]) > ωnmp(pn)(38.2 [rad/s]) > ωp(trial)(38.1 [rad/s]). (6.32)

When the approximation of the nominal plant is used, proposed method is applicable and the

resultant bandwidth is the largest.

3. Tuning nominal plant model and low pass filter together has the largest bandwidth among all

design methodologies.

6.9 Summary

This chapter has presented extensive case study results for a non-minimum phase plant and compared

proposed methods with existing methods which can be summarized as Table 6.2.

1. Desired constraints have been satisfied in proposed methods and bandwidth-maximized DOB has

been designed successfully for each case which verified the feasibility of the proposed method for

non-minimum phase plant.
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2. Compared with trial-and-error method and H∞ method, larger bandwidth has been obtained

by utilizing proposed methods which shows the superiority of proposed method. Furthermore,

design effort has been decreased since the proposed method is an auto-tuning process rather than

experiences-based process.

3. Continuous domain and discrete domain have all been investigated and comparative performance

has been achieved. Continuous domain design is more convenient and straightforward and larger

bandwidth can be obtained. However, discrete domain design is more promising in terms of im-

plementation.

4. For a non-minimum phase plant, low pass filter can be designed no matter the identified non-

minimum phase plant or its approximation is used in the proposal. In this case study, zero phase

error approximation case has gained largest bandwidth when only low pass filter is designed.

5. Simultaneous identification of plant model and design of low pass filter has obtained larger band-

width compared with design low pass filter only.
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Table 6.1 Case study summary for the non-minimum phase plant employed in this chapter

corresponding

section of

theoretical

analysis

employed nominal plant

model

number of to-be-

decided parameters

low pass filter

design (s domain)

(section 6.3)

section 3.2

1. second order nominal

plant

2. zero magnitude error

approximation (ZME,

[107]) of non-minimum

phase plant

3. zero phase er-

ror approximation

(ZPE, [108]) of non-

minimum phase plant

4. non-minimum phase

plant

1. 2 parameters of

filter

2. 2 parameters of

filter

3. 4 parameters of

filter

4. 3 parameters of

filter

low pass filter de-

sign (z domain )

(section 6.4)

section 3.3 discretized from ZME of non-

minimum phase plant

2 parameters of filter

nominal plant

model identifica-

tion and low pass

filter design (s

domain) (section

6.5)

section 4.2 obtained from optimization

process

7 parameters of plant

and filter

nominal plant

model identifica-

tion and low pass

filter design (z

domain) (section

6.6)

section 4.3 obtained from optimization

process

7 parameters of plant

and filter

trial-and-error

method (section

6.8)

non-minimum phase plant 1 parameter of filter

H∞ method (sec-

tion 6.8)

non-minimum phase plant
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Figure 6.25 Comparison of magnitude plots of optimized sensitivity function in continuous domain

S(pqs)(s) and discrete domain S(pqz)(z) when nominal plant model and low pass filter are tuned

simultaneously. From this figure, the obtained sensitivity function in continuous domain and discrete

domain has comparative crossover frequency (slightly larger in continuous case).
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Figure 6.26 Comparison of approximation error of zero magnitude error approximation Pzme, zero

phase error approximation Pzpe and optimized nominal plant model Pnmp(pqs).
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Figure 6.27 Comparison of Q filters designed by proposed methods and existing methods in which

Q(trial), Q(hinf), Q(pn), Q(zpe) and Q(pqs) represent for the low pass filter designed by trial-and-

error method, H∞ method, proposed method where non-minimum phase plant is used, proposed

method where zero phase error magnitude approximation is used and proposed method in which

nominal plant model and low pass filter have been tuned simultaneously, respectively. The Q(pqs)

has the largest bandwidth and Q(zpe) has a relatively large bandwidth while a peak appears around

100 Hz which is not friendly to noise suppression around that frequency range.
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Figure 6.28 Comparison of sensitivity functions of proposed methods and existing methods in

which S(trial), S(hinf), S(pn), S(zpe) and S(pqs) represent for the sensitivity function obtained

by trial-and-error method, H∞ method, proposed method where non-minimum phase plant is used,

proposed method where zero phase error magnitude approximation is used and proposed method in

which nominal plant model and low pass filter have been tuned simultaneously, respectively. From

this figure, the crossover frequency of sensitivity function has the largest value in the case of S(pqs).
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Table 6.2 Summary of case study results for a non-minimum phase plant

Cases Nominal plant model Bandwidth [rad/s]

low pass filter

design (s domain)

(section 6.3)

1. second order nominal plant (section

6.3.1)

2. ZME of non-minimum phase plant (sec-

tion 6.3.2)

3. ZPE of non-minimum phase plant (sec-

tion 6.3.3)

4. non-minimum phase plant (section

6.3.4)

1. 30.8

2. 37.4

3. 43.0

4. 38.2

low pass filter

design (z domain)

(section 6.4)

discretized form of ZME of non-minimum

phase plant

36.3

nominal plant

model identifica-

tion and low pass

filter design (s

domain ) (section

6.5)

obtained from optimization process 47.8(largest)

nominal plant

model identifica-

tion and low pass

filter design (z

domain ) (section

6.6)

obtained from optimization process 45.6

trial-and-error (sec-

tion 6.8)

non-minimum phase plant 38.1

H∞ (section 6.8) non-minimum phase plant 25.5
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Chapter 7

Experimental verification with a non-minimum
phase motion stage

7.1 Overview

In this chapter, experimental results for a non-minimum phase system are presented.

To start with, the structure of the experimental test bench is introduced. Then the detailed system

identification process for obtaining frequency response data which has been directly used in the design

of DOB has been present. Subsequently, DOBs designed in the case study of Chapter 6 have all been

implemented to the test bench and output responses are recorded to analyze the disturbance rejection

performance. Finally, experimental results have been compared and analyzed among different cases

including proposed methods and previous methods. Design methodology of simultaneous identification of

nominal plant model and design of low pass filter has provided the best disturbance rejection performance.

7.2 Experimental test bench introduction

The experimental test bench (left side) and its simplified model (right side) are shown in Fig. 7.1.

The test bench constitutes two parts: the linear motor whose stroke is 200mm and the stage which are

connected to each other by a leaf spring. Side view of the stage has U-type trough structure and another

linear motor which can not be seen from figure is placed at the bottom of it.

Two encoders are used and one of it is for recording linear motor position (has not been marked out

in the figure) and the other is to record stage position whose possible positions are shown as the blue

dots in the Left side figure of Fig. 7.1. Different positions present different plant dynamics changing from

minimum phase one to non-minimum phase one ( [17]). In this thesis, the non-minimum phase case,

which refers to the highest position (reference point is the desk), is used.

The setup for experimental test bench is shown as Fig. 7.2. Signal transmission is done by Ethercat and

the detailed control hardware setup introduction is given in Appendix. In order to obtain the frequency

response data from the current reference of linear motor to the stage position, system identification was

conducted and the detailed process is introduced as follows.

7.3 System identification process

À System identification condition [110]
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1. Objective: obtain the frequency response data from the motor force to the stage position

2. Signals: input signal: current reference; output signal: stage position

3. Excitation signals: multi-sine signals

4. Frequency range: [1 [Hz], 400 [Hz]]

5. Sampling frequency: 4 [kHz]; current controller bandwidth: around 1 [kHz]

6. Excitation methods: divide frequency range into several intervals

Inject signals which belong to [1 [Hz], 20 [Hz]], [21 [Hz], 60 [Hz]], [61 [Hz], 100 [Hz]], [101 [Hz], 200 [Hz]],

[201 [Hz], 300 [Hz]], [301 [Hz], 400 [Hz]] respectively into the system and record stage position and

current reference data.

7. Time domain data selection

After recording the time domain data (position signal and current reference signal) for several

periods (in this case, 100 periods are recorded), data which present high repeatability were selected.

After the time domain data (position and current reference) has been selected, the frequency response

data can be obtained by Fast Fourier transformation in Matlab. Furthermore, the nominal plant model

can be identified based on the frequency response data.

Á System identification result

The plant dynamics (from the motor current reference to the stage position) including real plant (FRD,

Pr(jωk)) and nominal plant (Pnmp) are shown in Fig. 7.3. The plant FRD will be directly used in the

design of DOB and nominal plant Pnmp is intentionally selected as a fourth order non-minimum phase

one as represented in Eq. (7.1).

Pnmp =
−40(s+ 957.6)(s− 687.5)

s(s+ 8.131)(s2 + 20s+ 5.6× 104)
. (7.1)

Â Notes on system identification process

1. Frequency range

At first, larger frequency range ([0.1 [Hz], 500 [Hz]]) was desired. However, the frequency response

data of [0.1 [Hz], 1 [Hz]) and (400 [Hz], 500 [Hz]] has been abandoned due to the following reasons.

When high frequency signals are injected into the system, the movement of motor can barely be

recognized and is of less repeatability which means the frequency response data is of large variance.

When very low frequency range signals are injected, due to the influence of friction, the accuracy

of frequency response data is of less reliability.

7.4 Experiment condition

7.4.1 Block diagram

Fig. 7.4 is used to test the disturbance rejection performance of designed disturbance observers. In

Fig. 7.4, C is the current controller inside motor driver and K is the back emf constant of motor. The

back emf (the detailed measurement process is shown in Appendix) has been measured and its influence

has been compensated by the motor driver. d is the injected disturbance (1.5 [A]) while f is the real

friction. If the designed DOB can reach good disturbance (d) rejection performance, then the conclusion

of rejection performance of real friction is satisfactory can be made. The reference signal r is set as 0 and
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output position signal (y) is recorded to verify the disturbance rejection performance.

7.4.2 PD controller

Reasons for selecting PD controller

PD controller is selected in this experiment and reasons are elaborated as follows:

1. Step disturbance can be rejected without steady state error by using DOB plus PD controller

configuration.

If only DOB part in Fig. 7.5 is considered,
y

d
=

Pr(1−Q)

1−Q+ PrP
−1
n Q+ CfbPr

holds.

When Pr
∼= Pn,

y

d
∼=

Pr

1 + CfbPr
(1 − Q). Since Q is a low pass filter, 1 − Q contains one s in

numerator.

e.g. Q =
bmsm + · · ·+ b1s+ 1

ansm + · · ·+ a1s+ 1
, 1−Q =

ans
n + · · ·+ (a1 − b1)s

ansn + · · ·+ a0 + 1
,

lim
t→∞

y = lim
s→0

Pr

1 + CfbPr

ans
n + · · ·+ (a1 − b1)s

ansn + · · ·+ a0 + 1

1

s
s = 0.

2. For mechanical systems with large friction, limit cycle may occur if controller which contains

integrator is used, e.g. PID controller.

When motor arrives at point whose velocity is 0 [mm/s], motor stops due to friction, But as time

goes on, existence of integrator makes the force become larger and larger and finally win stick-slip

friction force and motor will move again. Such process will repeat again and again which is called

as limit cycle.

Selection of PD controller

In order to make sure the open loop function Lcl for Fig. 7.5 which is shown as Eq. (7.2) has stability

margins, the controller is selected and fixed as shown in Eq. (7.3).

Lcl =
CfbPr

1−Q+ PrP
−1
n Q

. (7.2)

Examples of Nyquist plots of open loop function for different case study results are shown in Fig. 7.6

(cases of when Pzme(s) and Pzpe(s) are used in designing low pass filter and simultaneous design of plant

model and Q filter in s domain case are shown due to their large bandwidth).

Cfb(s) = 1.05 +
0.049s

0.0146s+ 1
. (7.3)

7.5 Analysis on experimental results

Experimental results for all the case study results of the non-minimum phase motion stage have been

shown in Fig. 7.7.

1. The disturbance has been well-rejected by proposed disturbance observers. Moreover, proposed

method of simultaneous identification of nominal plant model and design of low pass filter as well
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as only low pass filter design when Pnmp(s) (non-minimum phase plant) or Pzpe(s) (zero phase

error approximation) is used have overperformed trial-and-error method along with H∞ method.

2. The deviation from origin which is reflected by ||e||∞ has matched well with simulation results.

7.6 Summary

In this chapter, the experiment-related introduction has been first given starting from the structure of

experimental test bench followed by the process for obtaining frequency response data. Then experimental

results for the corresponding numerical case study have been shown and can be summarized as Table 7.1.

1. In system identification process, the measurement of frequency response data is of vital importance.

From practical point of view, very low frequency range and very high frequency range have been

abandoned due to the influence of friction and encoder resolution. For different application, such

issue should be paid attention to.

2. Experimental results have shown that proposed methods have designed larger bandwidth DOBs

which have satisfactory disturbance rejection performance.

3. Proposed methods have better disturbance rejection performance compared to existing methods

in terms of ||e||∞.
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figure, combining employed feedback controller Cfb with proposed DOBs does not have any stability

problem.
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In this figure, totally nine different cases of experiment have been conducted. Firstly, the DOB

designed by trial-and-error method (EXP(trial)) and DOB designed by H∞ method (EXP(Hinf))

are shown. Thereafter, DOBs designed by proposed methods starting from low pass filter design

in continuous domain including case of second order approximation of non-minimum phase plant

model is used (EXP(Ps)), case of ZME approximation of non-minimum phase plant model is used

(EXP(zme)), case of ZPE approximation of non-minimum phase plant model is used (EXP(zpe))

along with case of non-minimum phase plant model is used (EXP(pn)) have been present. Then

DOB designed in discrete domain (EXP(zmez)) is shown. Finally, DOBs designed by tuning the

nominal plant model and low pass filter together in continuous domain (EXP(pqs)) as well as in dis-

crete domain (EXP(pqz)) have also been implemented. The best disturbance rejection performance

is found in EXP(pqs) case in terms of ||e||∞.
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Table 7.1 Summary of experimental results for a non-minimum phase motion stage

Cases Employed nominal plant Bandwidth

[rad/s]

||e||∞

low pass filter de-

sign (s domain) 1. second order nominal plant

2. ZME of non-minimum phase

plant

3. ZPE of non-minimum phase

plant

4. non-minimum phase plant

1. 30.8

2. 37.4

3. 43.0

4. 38.2

1. 0.270

2. 0.214

3. 0.190

4. 0.208

low pass filter de-

sign (z domain)

discretized from ZME of non-minimum

phase plant

36.3 0.226

nominal plant

model identifica-

tion and low pass

filter design (s

domain )

obtained from optimization process 47.8 0.151(smallest)

nominal plant

model identifica-

tion and low pass

filter design (z

domain )

obtained from optimization process 45.6 0.170

trial-and-error

method

non-minimum phase plant 38.1 0.210

H∞ method non-minimum phase plant 25.5 0.338
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Chapter 8

Conclusion

This thesis has proposed a frequency response data-based auto-tuning method to maximize the band-

width of disturbance observer by convex optimization in order to reduce the harmful effects of disturbances

in applications of precision machine.

FRD-based low pass filter design is investigated in Chapter 3 in which a systematic design methodology

has been proposed (design procedures can be found in section 3.2.5). Importantly, proposed methods are

also applicable to non-minimum phase plant, which is difficult to handle and has special characteristics,

e.g. unstable inversion. Thereafter, for the first time in disturbance observer design, identification of

nominal plant model and design of low pass filter have been accomplished simultaneously by an auto-

tuning process proposed in Chapter 4 (see design procedures in section 4.2.6) irrespective of whether the

system is minimum phase or non-minimum phase. Furthermore, the separation method of nominal plant

model and low pass filter from optimized open loop function has been presented. Moreover, auto-tuning

process to design a large bandwidth disturbance observer in discrete domain has also been investigated

which is promising in terms of implementation (see design procedures in section 3.3.5 and 4.3.6).

Proposed methods have turned the original non-convex design problem into a convex optimization

problem by transforming original non-convex constraints to convex constraints by mathematical deriva-

tion process in Chapter 3 and Chapter 4. Newly-obtained convex constraints are sufficient condition

of original constraints and thus, obtained optimal point undoubtedly satisfies the original optimization

problem also. By using ordinary optimization software, the bandwidth-maximized disturbance observer

can be designed. Additionally, compared to existing methods, proposed methods neither have trial-and-

error process nor require repetitive selection process of weighting functions. Moreover, since frequency

response data is directly employed in the design process, the effort in careful identification of parametric

nominal plant model can be decreased.

Case studies have been conducted to verify the feasibility of proposed methods in Chapter 5 and

Chapter 6. For both minimum phase system and non-minimum phase system, optimized DOBs realize

the maximized bandwidth and satisfy pre-defined constraints (see Table 5.2 and Table 6.2). Identifying

nominal plant model and designing low pass filter at the same time has obtained largest bandwidth due

to more tuning freedom and discrete domain design performs comparatively as continuous domain design.

Additionally, larger bandwidth has been obtained by proposal compared to existing methods.

Finally, proposed disturbance observers have been implemented to a non-minimum phase motion stage

in Chapter 7 and satisfactory disturbance rejection performance has been obtained (results have been

summarized in Table 7.1). In terms of ||e||∞, identifying nominal plant model and designing low pass filter
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at the same time in continuous domain has provided the minimum value which means best disturbance

rejection performance.

In summary, the contributions of this thesis can be enumerated as following:

1. Systematic methodologies with less design effort, which directly employ the numerical data of the

frequency characteristics of the control target measured for plant identification rather than an

approximate mathematical plant model, have been developed for designing disturbance observer

with maximized bandwidth.

2. Identifying the nominal plant model and designing the low pass filter at the same time in an

auto-tuning process for obtaining maximal bandwidth disturbance observer has been proposed.

3. Numerical case studies as well as experimental applications to a non-minimum phase motion stage

have verified the usefulness of proposed methods.

8.1 Future work

1. Relationship between quality of frequency response data and design result

Since this thesis is a frequency response data-based research, the quality of frequency response

data matters. Quality refers to the range, the density, the influences of noise etc. From a practical

point of view, low frequency range data may be influenced by friction and high frequency range

data may be influenced by the resolution of encoder. The influence of quality issues on disturbance

observer design shall be investigated in depth.

2. Outer loop feedback controller design

This thesis focused on the design of inner loop which is disturbance observer part. However, the

selection of outer loop feedback controller has an impact on the performance of whole system.

Designing an appropriate controller for realizing good disturbance rejection as well as reference

tracking is one direction to extend the current work. The design could use an iterative double-

layer nested optimization algorithm in which feedback controller is in the outer layer and DOB

design is in the inner layer. In every iteration, inner layer DOB is the first one to be optimized

and then outer layer feedback controller is to be optimized.

3. Multi-input-multi-output (MIMO) system design

This thesis has conducted the DOB design for single-input-single-output (SISO) system. However,

many practical applications need to be modeled as MIMO system (e.g. load side disturbance

rejection problem) and its FRD-based design shall be studied.
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Appendix A:

Control hardware setup

À Experimental test bench control hardware introduction

As shown in Fig. A.1, the whole setup contains two motor drivers and a PMAC controller. Two motor

drivers (G-SOLTW10/100EE7) belong to Elmo Gold Solo series. PMAC is a CK3M series product and

takes position signals from two motor drivers and provides current reference signals to both of them by

Ethercat. The sampling frequency of PMAC is set as 4 [kHz] and current controller bandwidth of motor

drivers are adjusted as around 1 [kHz]. Two Heidenhain encoders whose resolution are 100 [nm], of which

one is absolute type and the other is incremental type, are used to record position signals.

Á Notes on setting up machine

1. Measurement of parameter of motor

Before setting up the motor driver, back emf should be measured. By connecting each phase

correctly to the oscilloscope probes and moving the motor by hand, waveforms can be captured on

oscilloscope. Since one period of back emf waveform corresponds to a distance of 2τp (pole pitch)

and the time tp for one period can be recognized from oscilloscope, velocity can be obtained as
2τp
tp

.

Furthermore, linear relationship exists between back emf and velocity, then back emf corresponds

to a velocity of 1 [m/s] can be obtained.

2. Procedures of setting up motor driver

By connecting a motor driver to a laptop by an USB cable, the motor driver can be well tuned by

utilizing an user-friendly interface called as Elmo application studio (EASII) developed by ELMO

company as shown in Fig. A.2. By inputting all the necessary information, such as the encoder

resolution and current limit, the connection between encoder, motor and motor driver can be well

built. Furthermore, the movement of motor can be verified after current controller and position

controller have been tuned. Importantly, in our experiment, the torque control mode is selected

which means only the designed current controller of motor driver is employed. After finishing all

setup procedures of motor drivers, motor drivers should be connected to PMAC rather than the

laptop by Ethercat cable.

3. Procedures of setting up PMAC

The PMAC should be connected to a laptop by an Ethernet cable and setup of PMAC is done by

an interface called as PowerPmac IDE.

Firstly, signals transmission environment which is Ethercat should be built. It is done by appending

slaves to master under system item in solution explorer as shown in Fig. A.3. Furthermore, each

slave should be connected to one motor. Signals on transmission line should be defined by the user
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by setting up PDO mapping (Fig. A.4). In my setting, the position signal is taken from motor

driver and control word as well as current reference are sent back to motor driver. The control word

signal is of significant importance in protecting motor from over-current damage. Other signals can

also be taken, such as current velocity or torque, as long as PDO mapping is well defined. After

loading mapping to PMAC and activating the Ethercat, the Ethercat transmission environment

can be successfully built.

The next step is to set up the PMAC to recognize position signals which is shown in Fig. A.5. The

control type as well as the encoder resolution can be defined. After finishing this step, the PMAC

should be able to recognize position signals in defined units, in this case, millimeter.

The final step is to implement the designed disturbance observer as well as the feedback controller

by C code written in rticplc.c file (which is in C language item combo box).
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Figure A.2 Interface of EASII

Figure A.3 Interface of IDE
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Figure A.4 Figure of PDO mapping

Figure A.5 Figure of motor setup in IDE
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