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Abstract

A Majorana fermion is a superposition of an electron and a hole, and is expected

to find application in topological quantum calculations. Our work has aimed to

realize Majorana fermions in the absence of a magnetic field using the hybrid

junction of an s-wave superconductor and two parallel semiconductor nanowires.

A key requirement for the realization of Majorana fermions is the occurrence of

Cooper pair splitting in the one-dimensional channels formed in the two nanowires;

however, this has never been observed.

First, we used an InAs double nanowire to fabricate a ballistic and gate-tunable

double-nanowire Josephson junction. We distinguished the gate-tunable operation

of each single nanowire and a double nanowire from observation of quantized con-

ductance. We measured the supercurrent flowing through the single nanowires

and the double nanowire separately, and for the first time in the world, demon-

strated Cooper pair splitting in the one-dimensional channels [1]. In addition, we

achieved gate-tuning of the Cooper pair splitting energy and succeeded in increas-

ing the inter-wire pairing strength sufficiently to create the necessary conditions

for realizing Majorana bound states without the presence of a magnetic field.

One of the ways to employ the Josephson junction device for detecting Majo-

rana bound states is to observe the vanishing of the odd-numbered Shapiro steps,

which reflects the change in the period of the Andreev Bound state of the junc-

tion. However, experiments to observe the Shapiro steps in ballistic Josephson

junctions of the semiconductor nanowires used in our study have not yet been

reported. Thus, we fabricated a ballistic Josephson junction using a single InAs

nanowire to measure the Shapiro steps. We succeeded in observing a half-integer

Shapiro step as would be theoretically expected [2]. This paves the way to use
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the measurement of the Shapiro step as a useful tool for detecting the presence of

Majorana fermions in a double-nanowire Josephson junction.
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Chapter 1

Introduction and motivation

I. Introduction and motivation

In recent years, considerable effort has been devoted to the development of

quantum computers. A major challenge associated with this development is the

correction of errors that occur during the process of quantum operations at the

device level. In a topological quantum computer using Majorana fermions (MFs),

typical topological particles, such as qubits, can overcome this challenge because

braiding Majorana modes form the basis of topologically protected quantum gates

which would be tolerant of local perturbations. In this context, there has been

growing interest in searching for MFs in solid-state devices, particularly triggered

by the report from TuDelft in 2012 that MFs have been observed in hybrid s-wave

superconductor (SC)-semiconductor nanowire (NW) devices [3]. Indeed quite a

few experiments to feature MFs have been performed, such as the tunneling con-

ductance measurement of SC-NW devices [4, 5], scanning tunneling microscopy

of ferromagnetic atomic chains on an SC [6], vortex cores in topological SCs [7],

and measurement of the Shapiro-step of topological insulator Josephson junctions

[8, 9]. As a result of these experiments, NW-based devices appear to be the most

promising platform for realizing topological quantum computing based on braid-

ing operations. This is because Majorana bound states (MBSs) are formed at the

edge of the SC in contact with the NW, thereby allowing for simple ways of local

braiding [10, 11].

MBSs in hybrid SC-NW devices only appear in the presence of a strong mag-
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netic field. However, this causes an essential problem in generating robust Ma-

jorana states, because the proximity-induced SC gap in the NW is only well

established for zero or sufficiently weak magnetic fields to avoid the generation of

any finite subgap conductance or quasi-particle excitation. Note the quasi-particle

excitation can degrade the topological protection (known as “quasi-particle poi-

soning”). However, it has been proposed that MBSs can be generated in the

absence of a magnetic field using two time-reversal symmetric one-dimensional

(1D) channel NWs coupled to an s-wave SC. The topological transition in this

system can be induced by ensuring that the inter-wire pairing is larger than the

intra-wire pairing instead of applying a strong magnetic field. Here, inter-wire

pairing indicates that the tunneling of Cooper paired electrons are split between

the two NWs (known as Cooper pair splitting, CPS) whereas intra-wire pairing

entails local Cooper pair tunneling to one of the respective NWs (known as local

pair tunneling, LPT). The concept of CPS was experimentally demonstrated for

two semiconductor quantum dots in 2009, and, although this gave rise to subse-

quent studies of the underlying physics, these studies were restricted to quantum

dots rather than 1D channel NWs, probably owing to the technical difficulty of

device fabrication. These circumstances motivated us to focus on this topic of

double NW (DNW) Josephson devices to study the feasibility of generating CPS

across two NWs with 1D channels and thereby MBSs, in the absence of a magnetic

field.

II. Outline of this thesis

In this work we fabricated samples of a ballistic Josephson junction with a

gate-tunable InAs parallel DNW coupled to two aluminum SCs. This approach
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is necessary for two reasons. First, it would allow the inter- and intra-pairing

strength for the two NWs to be evaluated from measurements of the supercurrent

resulting from CPS and LTP, respectively. The theory predicts that the CPS

efficiency depends on the 1D electron-electron interaction [12], such that it is useful

to electrically modulate the number of 1D propagating modes in the respective

NWs. Second, the observation of 1D quantized conductance steps in the ballistic

transport of NWs facilitates evaluation of the number of 1D channels and also

helps to increase the supercurrent flow through the Josephson junction. Finally,

we can use the same device that was fabricated for CPS measurement for Shapiro-

step measurement to signify the presence of MBSs. Therefore, we made our best

effort to improve the conventional fabrication technique to raise the quality of

the interface between the NWs and Al SCs and shorten the distance between the

Al SCs. In addition, we endeavored to develop a technique to form separate top

gates for the junction to enable the carrier density in each NW to be independently

controlled.

We first used the fabricated device and measured the transport properties under

the normal state conditions, and confirmed ballistic conduction of the NWs and

the gate tunability of the propagating 1D channels. This enabled us to classify

the gate voltage regions to determine whether only one of the NWs is conductive

or whether both NWs are conductive. Then we turned on the superconducting

conditions to characterize the supercurrent resulting from CPS for the DNW and

LPT for the respective single NWs with the two gate voltages as parameters. We

succeeded in clearly distinguishing the contributions to the supercurrent as a result

of CPS and LPT, and revealed the increasing CPS efficiency by decreasing the

number of propagating 1D modes or increasing the electron-electron interaction.

Finally, this result allowed us to confirm that the necessary conditions for intra-
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and inter-wire pairing to generate the MBSs in the absence of a magnetic field

are satisfied with our device configuration. (K. Ueda, S. Matsuo, H. Kamata, S.

Baba, Y. Sato, Y. Takeshige, K. Li, S. Jeppesen, L. Samuelson, H. Xu, S. Tarucha,

Science Advances 5, eaaw2194).

On realizing that the fabricated DNW Josephson junctions could be valuable

devices for hosting zero-magnetic field MBSs, we proceeded to the next stage to

detect the MBSs using the same device. Although several approaches have been

demonstrated to experimentally trace MFs, including the observation of a zero-

bias anomaly in the tunneling conductance, the absence of odd-numbered Shapiro

steps, and half-quantization of the thermal conductance, it is still debatable which

one of these approaches is the most reliable. In reality, the zero-bias anomaly

is often studied in the experiments of NWs but it is frequently argued that it

can be mimicked by the formation of Andreev bound states or disordered states.

Thus, we decided not to become involved in this argument and concentrate on

the experiment based on the Shapiro step.

In a topological SC with MFs formed at the edge, the Andreev bound state in

the Josephson phase is 4π periodic instead of 2π. This can be probed by exploiting

the AC Josephson effect. When the Josephson junction is exposed to microwave

radiation, the Shapiro steps are identified in the form of voltage plateaus at in-

teger multiples of the quantized value (h/2e × frequency) against the current

sweep. The transition to topological SC results in the disappearance of the odd-

numbered Shapiro steps. Although this is a convenient technique with which to

explore the Majorana physics, we first needed to understand the physics of the AC

Josephson effect in ballistic NW Josephson junctions. Apart from this, we had to

develop an experimental technique whereby the weak Josephson current through

the NW could be detected. In particular, the AC Josephson effect of ballistic
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junctions, where the junction is shorter than the coherence length of the super-

conductor and the mean free path of the NW, is theoretically predicted to produce

fractional Shapiro steps, however this has not been studied experimentally. There-

fore, we started by setting up the experimental equipment for the Shapiro-step

measurement and by characterizing the features of the ballistic Josephson junc-

tions using a single InAs NW. We clearly observed half-integer Shapiro steps and

their dependence on the top gate voltage and temperature. On the basis of these

results, we were able to clarify the relation between the half-integer Shapiro steps

and the current phase relation of the short ballistic Josephson junction. This ex-

pertise ultimately paved the way for the observation of Majorana fermions in the

ballistic DNW Josephson junction in the absence of a magnetic field. (K. Ueda,

S. Matsuo, H. Kamata, Y. Sato, Y. Takeshige, K. Li, L. Samuelson, H. Q. Xu, S.

Tarucha, Phys. Rev. Research 2, 033435)
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Chapter 2

Background

This study focuses on the flow of supercurrent through Josephson junctions,

Cooper pair splitting, and the AC Josephson effect. In this chapter, we explain

the fundamental concepts behind these phenomena.

I. Andreev Reflection

A. Andreev reflection

Andreev reflection (AR) occurs at the interface between a normal metal con-

ductor and an SC [13]. Fig. 1 shows a schematic illustration of AR when one

electron is incident on the normal metal-SC interface from the normal metal at

energies less than the superconducting energy gap and one hole of opposite spin

and velocity to the incident electron is reflected. In the SC, a pair of electrons

with upward and downward spins is formed such that the incident electron forms

a Cooper pair with another electron at the interface. In this process, an electron

is taken from the normal metal, resulting in a single hole being retroreflected to

the normal metal. Note that AR preserves the phase coherence; therefore, the

phase difference between the paired electron and hole is given by π/2 plus the

phase of the superconducting order parameter.
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SN

FIG. 1. Schematic of movement of an electron and hole in the AR process. An electron

(yellow) is reflected as a hole (white) on the interface between a normal metal conductor

and an SC.

The AR mechanism is explained using the Bogoliubov de Gennes (BdG) equa-

tion. H(r) ∆(r)

∆(r)∗ −H(r)

u(r)
v(r)

 = E

u(r)
v(r)

 , (1)

where H(r) = (p − eA)/2m − EF ,∆(r) = ∆0 exp(iθ). EF and A are the Fermi

energy and vector potential, respectively. First, we consider the interface from

the normal metal. When an electron with a wave number of k is incident on the

interface from the normal metal, the wave function of the normal metal is written
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as

ΨN(r) =

1

0

 eik+x +

1

0

 e−ik+xree +

0

1

 eik−xrhe

 eipy√
W
, (2)

where W , |ree|2, |rhe|2, k+, and k− are the interface width, the probability of

normal reflection, the probability of AR, the wave number of the electron, and

the wave number of the hole, respectively. Note that the first, second, and third

terms are the wave functions of the incident electron, normal reflected electron,

and Andreev reflected hole, respectively. We obtain the following formula under

the condition of A = 0 and ∆ = 0,

ℏk± =
√

2m(EF ± E). (3)

Here, E is the energy based on EF . When perfect AR occurs (|rhe|2 = 1), the

momentum becomes ℏk± =
√
2mEF . This means that the momentum of the

electron is the same as that of the hole. This satisfies the retroactivity, meaning

that the Andreev-reflected holes return along the exact same path as the incident

electrons. If the incident electron is on the Fermi surface, the momentum is

expressed as ℏkF using the Fermi wavenumber kF . Because the momentum of

the entire Cooper pair is zero as a result of the reflection, the momentum of the

hole is also ℏkF and the momentum is conserved before and after AR. In fact, the

difference between the momentum of the electron and the hole can be ignored if

E ≪ EF and E ̸= 0 because

ℏ(k+ − k−) ≈ E

√
2m

EF

=
2E

vF
. (4)

In addition, when ∆ = 0, the energy of the incident electron and the reflected

hole are E + EF and −E + EF , respectively. The energy is conserved in the AR
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process because the energy of the entire Cooper pair is 2EF . Therefore, both the

momentum and energy are conserved in AR.

Next, we discuss the interface from the SC, the wave function of which is given

by

ΨS(r) =

 u

ve−iϕ

 eiq+xtee +

veiϕ
u

 e−iq−xthe

 eipy√
W
, (5)

where |tee|2, |the|2, q+, and q− are the probability that the incident electron remains

in the SC as an electron, the probability that the incident electron becomes a hole

in the SC, the wave number of the electron, and the wave number of the hole,

respectively. When substituting this into the BdG equation, the momentum is

ℏq± =
√

2m(EF ± (E2 −∆2)1/2). (6)

u and v are

u =

√
1

2
(1 + i

∆2 − E2

E
) (7)

v =

√
1

2
(1− i

∆2 − E2

E
). (8)

We connect the two wave functions by introducing a potential barrier V0δ(x).

ΨS(0, y) = ΨN(0, y) (9)

∂
∂x
(ΨN −ΨS) = 2m

ℏ2 V0Ψ
N . (10)

We obtain

ree = 2rnΩ
(2−|tn|2)

√
E2−∆2+|tn|2E

, (11)

rhe = |tn|2∆e−iϕ

(2−|tn|2)
√
E2−∆2+|tn|2E

, (12)

reh = |tn|2∆eiϕ

(2−|tn|2)
√
E2−∆2+|tn|2E

, (13)
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where tn = k/(k + iZ), k = kp/kF ,Z = mV0/ℏ2kF . When the potential Z = 0,

ree = 0, (14)

rhe = exp[−i arctan(
√
∆2 − E2/E)] · e−iϕ, (15)

reh = exp[−i arctan(
√
∆2 − E2/E)] · e−iϕ. (16)

In this case, the electron or hole moves with the phase difference in the AR process.

The differential conductance is calculated from these coefficients.

GNS =
dI

dV
|eV=

2e2

h

∑
p

(1− |ree|2 + |rhe|2) |eV=E, (17)

which is known as the Blonder-Tinkham-Klapwijk (BTK) model [14]. Fig. 2

shows GNS as a function of the bias voltage at some Z. Especially, GNS doubles

owing to AR when Z = 0. Ensuring that Z remains close to zero is highly

important for observing the physics of the interface between a superconductor and

a semiconductor. In fact, high-efficiency CPS is realized with smaller Z values

in our CPS experiments. In addition, it is necessary that the Josephson junction

to be measured has a skewed CPR for the observation of half-integer retrosteps.

This skewness is related to the probability of the occurrence of Andreev reflection,

which means that Z must be small.
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FIG. 2. GNS as a function of the bias voltage at Z = 0, 0.5, 1.5, 5.0 [14].

B. Crossed Andreev reflection

Crossed Andreev reflection (CAR) takes place in two separated normal leads

with an SC in between, as shown in Fig. 3, where the distance between the metals

is of the order of the SC coherence length. When an electron is incident on the

SC from the normal metal, AR or normal reflection occurs. In addition, CAR can

occur in the case in which an electron is incident on the SC from one of the normal

leads, and the retroreflected hole of opposite spin is not emitted from the same

normal lead, but from another lead. In other words, the electron to form a Cooper

pair with an incident electron is taken from another lead. Because CAR has the

same physical meaning as Cooper pair splitting (CPS), CAR is also referred to as

18



CPS [12, 15–20].

SN L N R

Coherence length

FIG. 3. Schematic of movement of an electron and a hole in the CAR process. An

electron (yellow) passes through as a hole (white) when the separation between two

normal metals is less than the coherence length of the SC.

C. Cooper pair splitting

The physics of CPS has been theoretically studied with the use of quantum

dots (QDs) [15, 21] (Fig. 4). Our explanation of CPS follows that in Ref [15].

The Coulomb interaction U on D1 and D2 and the superconducting gap energy

∆ are key components that induce CPS. Basically, Cooper pairs tunneling into

the same lead—local pair tunneling (LPT)—must be suppressed by the Coulomb

interaction. LPT happens via the two processes, as shown in Fig. 5. The two

electrons can tunnel on the same dot and move to the lead at the cost of Coulomb

energy U . This virtual state is suppressed by 1/U . Alternatively, the two electrons

move to the same lead in a sequential process, as shown in Fig. 5(b). That is, the

two electrons tunnel from the QD to the lead one after another in sequence. The
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FIG. 4. The setup: Two electrons forming a Cooper pair can tunnel from points r1 and

r2 of the SC to two dots, D1 and D2. The dots are coupled to normal leads L1 and

L2 [15].

virtual excitation causes 1/∆ in this process. Therefore, the entire LPT process

should be suppressed by increasing U and ∆. In addition, it is important to

consider the tunnel coupling Γ of QDs. Γ is the sum of ΓN and ΓS, which are the

tunnel couplings between the QD and the lead and that between the QD and the

SC, respectively. In the limit of ΓN ≫ ΓS, the electron can move from the QDs

to the lead faster than it is replaced by new electrons from the SC. Furthermore,

the inter-dot coupling Γ12 must be smaller than ΓN to allow the electrons to move

to the leads before tunneling between each of the QDs. Under these conditions,

CPS happens as a result of LPT suppression.

The CPS and LPT currents are analytically given by using the T-matrix [15,

21]. The CPS component is written as

ICPS =
4eΓ2

S

Γ

[
sin(kF δr)

kF δr

]2
exp(−2δr

πξ
), (18)

where Γ = Γ1 + Γ2, ΓS, kF , δr, and ξ are the sum of tunnel couplings between
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(a) (b) 

FIG. 5. Schematic of two electrons tunneling via the same dot [15]. (a) Two electron

tunnels on the same dot before moving to the lead. (b) After the Cooper pair breaks

up, one electron tunnels on the dot while the other dot stays in a quasiparticle state.

the leads and the two quantum dots (1,2), the tunnel coupling between the su-

perconducting lead and two QDs, the Fermi wavelength of the SC, the distance

between the SC and the two QDs, and the coherence length of the Cooper pair,

respectively. In contrast, the LPT component is expressed as

ILPT =
2eΓ2

SΓ

ϵ
,
1

ϵ
=

1

π∆
+

1

U
, (19)

where ∆ and U are the superconducting energy gap and charging energy of the

QDs, respectively. The important point is that the component of the LPT is

characterized by U , which is the feature value of the QDs. The ratio of CPS to

LPT is given by
ICPS

ILPT

=
2ϵ2

Γ2

[
sin(kF δr)

kF δr

]2
exp(−2δr

πξ
) (20)

The important point in Eq.(20) is that the CPS efficiency, as given by Eq.(20),

strongly depends on U , which represents the charging energy or Coulomb inter-

action of the QDs and Γ. Both the large U and small Γ work to reduce ILPT

because the charge is to a greater extent accumulated in the dot to enlarge the

interaction effect. On the other hand, the purpose of the small Γ is to increase
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ICPS because the accumulation effect promotes the CPS process. In reality, the

CPS efficiency is enhanced by increasing the values of U and Γ [15].

D. First observation of CPS using QDs

Here, we describe the first observation of CPS using QDs [22], one of many

papers concerned with CPS [23–28]. Cooper pairs are entangled pairs of two

electrons. The CPS spatially separates two electrons, which consist of a Cooper

pair of an SC, into each normal lead. This nonlocality has been successfully tested

using paired entangled photons; however, the nonlocality had yet to be realized

in the solid state. The first experimental observation of CPS was reported by

Hofstetter et al., in 2009 [22] and was demonstrated using QDs. In the system of

QDs, the entry of two electrons, which consist of one Cooper pair from an SC, into

the same electrode is suppressed because of the Coulomb blockade. Instead, the

CPS efficiency is enhanced when each of the two electrons tunnels into different

QDs. Fig. 6(a) shows a schematic of the device used in this experiment. In this

study, a single InAs NW is utilized as a platform for double QDs, and is connected

by aluminum (Al) as an SC and two normal leads through the QDs. Each QD is

tuned by varying the top gate voltages, indicated as g1 and g2 in Fig. 6(b). CPS

is studied by measuring the differential conductance of each QD and analyzing

the correlation between them. The voltage Vg1 applied to g1 affects QD1. This

voltage is kept constant while Vg2, which is applied to g2, is changed to tune QD2.

The conductance of QD2 indicates Coulomb oscillation. Upon application of a

magnetic field that exceeds the critical field of aluminum, the superconductivity

of Al vanishes and the metal returns to the normal state, in which CPS is not

expected to occur. Indeed, the differential conductance of G1 of the gray line
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FIG. 6. (a) Schematic of the device with two dots QD1 and QD2 in the single InAs

NW used for CPS [22]. (b) Differential conductance of each QD as a function of Vg2

at B = 120 mT (upper panel), and 0 mT (lower panel): the red and gray lines are

associated with QD1 and QD2, respectively [22].

that corresponds to the conductance of the SC and the electrode through QD1 is

negatively correlated with the differential conductance G2 of QD2, which has the

classical characteristics. On the other hand, G1, as indicated by the red line, is

positively correlated with G2, which is represented by the green line, indicating

the absence of an applied magnetic field. This demonstrates the CPS process,

where a Cooper pair is spatially split to enter two electrodes.

E. Derivation of CPS efficiency using supercurrent

In most previous studies the CPS efficiency was evaluated by measuring the

conductance between the SC and normal leads. However, this method could
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possibly include quasi-particle components that are not Cooper pairs. Here, we

introduce the experiment designed to measure the supercurrent in double-QD

Josephson junctions (DQDJJs) [28]. This method can exclude the contribution

of quasiparticles and allows the enhanced supercurrent to be detected as a result

of CPS, because the Cooper pairs are split to enter each QD separately. Demon-

stration of CPS by supercurrent measurement means that the coherent transport

of the electrons is split to enter different QDs. This implies that the two spins of

the split electrons are correlated by way of spin entanglement.

The device is shown in Fig. 7(a), where two self-assembled InAs QDs are

connected with the Ti/Al source and drain. Two side gates with voltage Vsg1 and

Vsg2 are placed near the respective QDs to tune the energy levels of QD1 and QD2,

respectively. In addition, a global back gate Vbg was used to tune the occupation of

the two QDs simultaneously. Note the two tiny QDs are in close proximity to each

other, because the CPS process is expected to be efficient when the separation

between the two dots is comparable to or shorter than the coherence length of Al.

The CPS process in this device was studied with Vsg1 and Vsg2 as parameters to

turn on and off the resonance between the SC Fermi energy and the levels of QD1

and QD2. Fig. 7(b) shows the measured superconducting-state stability diagram

in the absence of a magnetic field. Line A indicates that QD2 is on resonance,

whereas lines B and C indicate that QD2 is off resonance. The CPS process is

the most efficient when both QDs are on resonance (see Fig. 7(b) and compare

the blue line and the green or red lines in the lower panel).
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FIG. 7. (a) False color scanning electron microscopy (SEM) image of the double-QD

Josephson device. The two gates are used to adjust the energy levels of the two dots in-

dependently [28]. (b) Upper panel: the differential conductance in the superconducting

state as a function of Vsg1 and Vsg2 with Vbg = 0 V. Labels o and e represent even and

odd electron occupations, respectively. Lower panel: the switching current Isw along

lines A, B, and C [28].
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F. CPS in two parallel InAs nanowires

The CPS experiments described thus far were performed using two QDs formed

on both sides of the SC in a single NW(SNW) (see Fig. 6). In our group,

we performed the CPS experiment using two parallel coupled QDs formed in a

parallel couple of DNW [27, 29]. Note the two NWs are placed close to each

other but are electrically isolated. Fig. 8(a) shows the device structure with

such a DNW. Two closely spaced InAs NWs are set in parallel and are coupled

with a superconducting lead indicated by S, with two normal metal leads N1 and

N2 separately connected with the two NWs; QD1 and QD2 are formed in each

NW. Two side gates with voltages Vsg1 and Vsg2 are placed near the two NWs to

tune the energy levels of each QD. Fig. 8(b) shows an SEM image of the device

measured. Note that the two NWs appear to be almost touching each other but

are in fact electrically isolated.

FIG. 8. (a) Schematic of the DNW CPS device [27]. (b) SEM image (false color) of the

measured device. The superconductor is in contact with the DNW whereas the normal

metal electrode is in contact with each NW [27].
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FIG. 9. (a) Differential conductance G1 of QD1 as a function of both VSG1 and VSD

shown in Fig. 8. The dashed white lines indicate the energy of the superconducting gap,

resulting in the suppressed conductance. The dashed black lines show the formation of

the Coulomb blockade [27]. (b) Differential conductance G2 of QD2 as a function of

both VSG2 and VSD [27].

Fig. 9(a) and (b) show the conductance characteristics in a zero magnetic field

(B = 0 T), measured separately for QD1 and QD2, respectively. The Coulomb

resonances are observed in each dot by tuning the respective side gate voltage (see

intersections of two black dashed lines). The superconducting gap is indicated by

the white dashed lines.

Fig. 10(a) and (b) show the differential conductance G1 and G2 of QD1 and

QD2, respectively, measured in the normal state at B = 250 mT. Note that

G1 and G2 are measured simultaneously as a function of Vsg1 and Vsg2. Several

conductance peaks were observed by tuning the respective gate voltages in both

the dots. Fig. 10(c) indicates the cuts along the white dashed lines in (a) and (b),
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and (d) those along the black dashed lines in (a) and (b). The red (green) lines

represent G1 (G2). In Fig. 10(c), G2 becomes small at the G1 peak positions.

Similarly, in Fig. 10(d), G1 becomes small at the G2 peak positions. This means

that a negative correlation exists between G1 and G2, and can be well understood

using the correlation of a classical electrical circuit model; that is, if the resistance

of one QD increases, the current flowing in the other QD increases.

In contrast, Fig. 11 features CPS in the conductance measurement in the su-

perconducting state. The values of G1 and G2 in Fig. 11(a) and (b) are measured

simultaneously in the same way as in Fig. 10(a) and (b) but at zero-magnetic

field. The cuts along the dashed white and black lines in Fig. 11(a) and (b)

show the positive correlation in the conductance peaks when both QDs are in

resonance. The value of G1 along the dashed black lines in Fig. 11(d) is observed

to be enhanced at the peak positions of G2. Similarly, the enhancement of G2

along the dashed white lines in Fig. 11(c) is also observed at the peak positions

of G1. This positive correlation is attributed to the effect of CPS.
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FIG. 10. (a) Differential conductance G1 of QD1 as a function of both VSG1 and VSG2

at B = 250 mT more than the critical field of aluminum [27]. (b) G2 for QD2 at more

than the critical field [27]. (c) Cross sections along the dashed white lines of (a) and

(b) [27]. (d) Cross sections along the dashed black lines of (a) and (b) [27].
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FIG. 11. (a) Differential conductance G1 of QD1 as a function of both VSG1 and

VSG2 [27]. (b) G2 for QD2 [27]. (c) Cross sections along the dashed white lines of

(a) and (b) [27]. (d) Cross sections along the dashed black lines of (a) and (b) [27].

II. Josephson junction

A. Multiple Andreev reflections

When an SNS junction is biased with voltage V equivalent to ±2∆/e, carrier

tunneling is allowed between the SCs, and the differential conductance of the

junction is peaked. This is the so-called quasiparticle tunneling. For the smaller

V < 2∆), no such tunneling occurs but when V = ±∆/e, the Fermi energy

of the SC on the left and the upper or lower edge of the SC gap on the right
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is aligned. In this case, a single AR allows quasi-particle tunneling through this

junction to generate a differential conductance peak (subgap tunneling). Electrons

incoming from the Fermi energy have to form Cooper pairs because they are in

the superconducting gap, whereas electrons (holes) at the upper (lower) edge of

the gap exit as quasi-particles and do not form Cooper pairs. In addition, when

eV = ±2∆/n(n = 1, 2, 3 . . . ), a similar process occurs but via n-1 times ARs.

Then, a series of peaks in the differential conductance peaks. This process is

known as multiple Andreev reflection (MAR). MAR can be observed when the

probability of normal reflection at the SN interface is suppressed owing to the

high-quality transparency of the interface. In this sense, ballistic transport in the

SNS junction is supported by the observation of MAR.

FIG. 12. Typical result of MAR using Ge/Si NWs with Al contacts. [30]
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B. Andreev bound state

In the SC-NW-SC (SNS) junctions studied here, AR can take place at both SN

interfaces. When the ARs are repeated in the junction by preserving the phase

coherence, Andreev bound states (ABSs) are formed at discrete energies within

the gap (see Fig. 13). We here consider the necessary conditions to establish the

ABSs using a couple of assumptions without losing the essence of ABSs. First,

the phase of the SC on the left (right) is θ/2(−θ/2). Second, N is a normal metal

and the electron mean free path therein is shorter than the distance between

the two SCs, such that electrons ballistically travel without being scattered in

the N region. Lastly, the probability of AR is unity, which means that a single

hole reflects perfectly when a single electron is incident on the S region. Under

these assumptions, the ABS energy spectrum is obtained by considering the phase

that an electron acquires in the AR process. In Fig. 13, we consider the phase

exchange between an electron and a hole via the AR process. The electron acquires

an additional phase of −θ/2−φ when it is reflected as AR on the SN interface on

the right. Then the hole reflected as a result of AR also acquires the same phase

when AR takes place at the interface on the left. We note that φ = arccos(E/∆)

is the phase that is acquired in the AR process. When an electron or a hole moves

in the N region of the junction, it acquires an additional phase proportional to the

path length. Consequently, the total phase acquired in the AR process is given

by multiples of 2π to maintain the coherence:

p+L− θ/2− φ− p−L− θ/2− φ = 2nπ

p± =
√

2m(EF ± E)/ℏ,
(21)
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where p±, L, EF , E, andm are the momentum of the electron or hole; the junction

length; the Fermi energy; the eigenenergy of the junction, known as the ABS

energy, and the effective mass of the electron, respectively. Given p+ − p− ≈ 2E
vF
,

E ≪ EF , and the ABS energy becomes

E+
n =

ℏvF
2L

[2(πn+ φ) + θ]. (22)

In addition, considering the inverse process depicted in Fig. 13, we obtain E−
n =

ℏvF
2L

[2(πn + φ) − θ]. If the supercurrent flows through the junction, θ does not

become zero, in which case the ABS energy is split. In particular, when L≪ ξ of

a short ballistic case, the number of bound states is one, and the part on the left,

from which ℏvF/2L of Eq. (22) is subtracted, becomes:

2EL

ℏvF
=

2E

π∆

L

ξ
→ 0. (23)

Therefore, Eq. (22) results in −2φ = ±θ in n = 0. The ABS energy is given by

E = ∆cos(±θ/2). (24)
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FIG. 13. Schematic of ABS process. The discrete energy spectra are formed by AR at

both interfaces of S and N.

C. Current phase relation

In a Josephson junction, supercurrent I flows in response to the phase difference

ϕ between the two separated SCs. In this case, the so-called current phase relation

(CPR) is established between I and ϕ. Generally, the supercurrent is formulated

as

I =
2e

ℏ
dE

dθ
, (25)

where E is the energy of the ABS. When the junction is short ballistic, E is

obtained as

E = ∆[1− τ sin2(θ/2)]1/2, (26)

where ∆ and τ are the superconducting gap and the transmission coefficient of

the junction, respectively, [31]. CPR is affected by the material between the
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two SCs. Next, we discuss CPR for a short ballistic Josephson junction, which

corresponds to the case in which the distance L between two SCs is less than the

coherence length ξ of the superconductor and the mean free path l of the normal

conductor. The short ballistic CPR is given by

I(ϕ) =
e∆(T )

2ℏ
τ sin(ϕ)

[1− τ sin2(ϕ/2)]1/2

× tanh

(
∆(T )

2kBT
[1− τ sin2(ϕ/2)]1/2

)
,

(27)

where T is temperature [31–33]. Eq. (27) shows that CPR does not depend

on L. Beenakker showed that E > ∆ does not contribute to the CPR because

the contribution N(e∆/ℏ)L/ξ from this region becomes 0 when the short case

L/ξ → 0. Fig. 3 shows the case of short ballistic CPR. The CPR of Fig. 14 is

highly skewed compared with the general sinusoidal CPR of sin θ. In particular,

CPR becomes more skewed with larger τ and smaller T .
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short ballistic
sin

FIG. 14. Example of CPR of Josephson junctions: skewed CPR for the short ballistic

Josephson junction (blue) and sinusoidal CPR for the standard Josephson junction

(blue).

The short ballistic CPR was directly measured by Spanton et al. [34], who used

an InAs NW. They fabricated an Al/ InAs NW/Al junction device, in which the

contact between Al and InAs NWwas epitaxially grown. The distance between the

Al SCs was 150 nm, which is much shorter than the mean free path. This device

was inductively coupled with a scanning superconducting quantum interference

device (SQUID), which was used to measure the CPR directly. Fig. 15(a) is an

optical microscopy image of the Al/InAs NW/Al junction connected with an Al

ring. The size of the ring was adjusted to couple inductively to the pickup loop

of the SQUID, which was utilized to measure the current flowing around the ring.

The purple component is a field coil used to apply a phase difference between
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the two SCs of the junction. The bottom gate of Au tunes the carrier density

of a SNW. Fig. 15(b) shows a schematic illustration of the InAs NW (green)

with epitaxial Al (blue) that are connected with an evaporated Al ring (grey). A

typical example of the measured CPR is shown in Fig. 15(c). As theoretically

predicted, the CPR indicated by the dotted line is skewed from the conventional

sinusoidal function by the solid line.
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FIG. 15. (a) Optical microscopy image of a device consisting of an Al ring with a

single epitaxial Al/InAs/Al junction. The blue component in the image is the SQUID

pickup loop, and the purple component is a field coil [34]. (b) Schematic of the epitaxial

Al/InAs NW/Al junction, where L is the distance between two epitaxial Al areas [34].

(c) The CPR indicated by the black curve is measured by an L = 150nm junction at the

back gate VBG = 3.45V and the temperature T = 30mK. The CPR has a non-sinusoidal

shape, whereas the gray curve is a conventional sinusoid used as a reference [34].
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D. RCSJ model

When a finite voltage V is applied to a Josephson junction, the time derivative

of the phase difference ϕ between the two SCs evolves with time, as follows:

V =
ℏ
2e

dϕ

dt
(28)

The biased Josephson junction is represented by the equivalent circuit model

(RCSJ model) of a resistively (R) capacitively (C) shunted Josephson junction [35,

36] (Fig. 17). The current flowing in this circuit is represented by Kirchhoff’s law:

ℏC
2e

d2ϕ

dt2
+

ℏ
2eR

dϕ

dt
+ I(ϕ) = I. (29)

The solution of Eq. (29) yields the CPR I(ϕ) of the junction. On the other

hand, the right-hand side of the equation that expresses I has DC and AC com-

ponents, as follows:

I = Idc + Iac sin(2πft), (30)

where Idc(Iac) and f are the applied DC (AC) current and the applied fre-

quency, respectively. This equation is transformed into a dimensionless equation

with t
′
= (2eIswR)/ℏ · t, which is described as

β
d2ϕ

dt′2
+
dϕ

dt′
+ i(ϕ) = idc + iac sin(2πf

′
t
′
). (31)

Here, β = 2eIswR
2C/ℏ is defined as the Stewart–McCumber parameter [35, 36]

and f
′
= f/2eIswR. When β ≪ 1, the Josephson junction becomes overdamped,

and the I − V trace is a smooth curve. In contrast, the Josephson junction is

underdamped in the case of β ≫ 1. In this case, the voltage jumps at a certain

current value such that the I − V trace exhibits hysteresis behavior.
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FIG. 16. RCSJ model. The DC and AC currents are applied not only to the Josephson

junction, but also to the capacitance and resistance.

E. Shapiro step

Although we studied the circuits driven by both the DC and AC components,

it is mathematically easier to solve the case where an AC voltage is applied to the

circuit. Substituting V = V0 + V1 cos(ωt) into Eq.(28), the phase difference

ϕ = ϕ0 +
2e

ℏ
V0t+

2e

ℏω
V1 sin(ωt). (32)

The supercurrent becomes

I = Ic[sin(
2e

ℏ
(V0t

+∆ϕ0) cos(
2eV1
ℏω

sin(ωt))) + cos(
2e

ℏ
(V0t+∆ϕ0) sin(

2eV1
ℏω

sin(ωt)]).

(33)

Using the formula

exp(ia sin(x)) =
∞∑

k=−∞

Jk(a) cos(kx) + i
∞∑

k=−∞

Jk(a) sin(kx), (34)
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Eq. (33) becomes

I = Ic

∞∑
k=−∞

(−1)kJk(
2eV1
ℏω

) sin(ϕ0 + ωt− kωt). (35)

Note that Jk(a) is a Bessel function and Jk(a) = (−1)kJ−k(a). The supercurrent

has the DC component I = Ic(−1)kJk(
2eV1

ℏ ) sin(ϕ0) when

V0 = nℏω/2e, (n = 0,±1,±2, . . . ) (36)

When an AC current is applied, we have to solve the nonlinear second-order

differential equation of Eq. (29). This is difficult to solve analytically. As a result,

ladder behavior appears in the measurement of the DC current and the average

voltage, referred to as Shapiro steps. The current jumps at the Shapiro steps [37].

The steps occur at voltages of hf/2e (n = 0,±1,±2, . . . ). This interval changes

as a result of changes in various parameters: the CPR, the Stewart–McCumber

parameter β, or the applied frequency.
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FIG. 17. Current-voltage curve for a Josephson junction under microwave irradiation

at different powers, as measured by Grims and Shapiro [37].

Conventional CPR is represented by a sinusoidal function with a period of 2π.

When a higher-order sinusoidal function is added, fractional steps also appear. In

the presence of MBS, the period becomes 4π owing to the zero energy states [38],

and the odd-numbered steps disappear. Even if CPR is only a sinusoidal function,

if β becomes large, the behavior of the RCSJ model as an equation of motion

changes and contributes to the generation of higher-order terms in the sinusoidal

function, causing fractional steps [39]. When f becomes large, the quasiparticle is

directly excised from the gap, inducing fractional steps [40–42]. (see the discussion

in section 6-Ⅱ-F.)
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III. Majorana Fermions

A. General introduction

A Majorana fermion (MF), proposed by Ettore Majorana in 1937, is a special

fermion that is its own anti-particle, and satisfies the following relation:

{γi, γj} = 2δij (37)

B. Kitaev model

Kitaev proposed a toy model of a spinless p-wave 1D SC, known as the Kitaev

model [38]. The Hamiltonian is expressed as:

H = −µ
∑
i

c†ici −
1

2

∑
i

(tc†ici+1 −∆cici+1 + h.c.), (38)

where µ, t, ∆, and ci correspond to the chemical potential energy, nearest-neighbor

hopping energy, superconducting gap energy of the spinless topological SC, and

annihilation operator of the i-th fermion, respectively. In this model, the edge of

the SC hosts the MFs. The i-th fermion is written as

ci =
1

2
(γB,i + iγA,i) (39)

c†i =
1

2
(γB,i − iγA,i) (40)

where γi is the operator of one MF, which forms the i-th fermion. One fermion

consists of two MFs, indicated by indexes A and B, which satisfy the anticommu-

tation relation of fermions (Fig. 18). Using this relation, Eq. (38) is rewritten

as

H = −µ
2

N∑
i

(1 + iγB,iγA,i)−
i

4

N−1∑
i

[(∆ + t)γB,iγA,i+1 + (∆− t)γA,iγB,i+1]. (41)
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Here, the first term expresses the energy excited by one fermion, which is formed

by two MFs. In the case of t = ∆ = 0, the second term becomes zero and only the

first term remains, which is topologically trivial. In contrast, to consider the case

of −t < µ < t, which corresponds to a topologically non-trivial state, we assume

µ = 0 and t = ∆ ̸= 0 for simplicity. We obtain the following equation from Eq.

(41):

H = −i t
2

N−1∑
i

γB,iγA,i+1 (42)

This shows the combination of two MFs at different sites. Using a new definition

of the fermion operator as c̃i =
1
2
(γA,i+1 + iγB,i), we transform Eq. (42) to

H = t
N−1∑
i

(c̃†i c̃i −
1

2
) (43)

This shows that the MFs, which are γA,1 and γB,N at both edges of the model, do

not make any contribution. We can define an additional fermion operator from

these non-local MFs.

f =
1

2
(γA,i + iγB,N). (44)

Eq. 43 does not include any components of γA,1 and γB,N . Therefore, the anticom-

mutation relation {f,H} = 0 is satisfied such that the ground state is degenerate.

Additionally, one fermion exists at the edge as two MFs with zero energy. This is

known as a Majorana zero mode. This fermion is formed by two non-local MFs,

as shown in Eq. (44) and is not influenced by local perturbations. Therefore,

using this fermion as the parity leads to a fault-tolerant quantum computer.
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FIG. 18. (a) Topologically trivial state: Two MFs at the same site combine to form

one fermion. (b) Topologically non-trivial state: Two MFs at different sites combine to

form one fermion.

C. How to realize the Kitaev model

Kitaev demonstrated the realization of a topological SC in a spinless p-wave

1D SC. Interestingly, a hybrid device consisting of a NW with a strong spin-

orbit interaction (SOI) and an s-wave SC exposed to a magnetic field [43, 44] is

considered to be a spinless p-wave SC, such that MFs emerge at the edge of the

device [43].

Let the wire lie along the x-axis, the spin-orbit interaction, α, be along the

z-axis, and a magnetic field B is applied along the y-axis (Fig. 20(a)). The wire
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FIG. 19. (a) Schematic of a hybrid device spin-orbit-coupled NW (yellow) with an

s-wave SC (blue). (b) Schematic of two 1D quantum wires (yellow), which have a

strong Rashba SOI coupled to an s-wave SC (blue). The intrawire proximity-induced

superconductivity of ∆τ illustrates Cooper pair tunneling into the τ wire (τ = 1,−1). In

contrast, the interwire proximity-induced superconductivity of ∆c illustrates the CAR

into both wires [45].

is proximitized with a superconducting gap energy ∆. The Hamiltonian is

H =

∫
Ψ†(x)HΨ(x)dx (45)

Ψ† = (Ψ†
↑,Ψ

†
↓,Ψ↓,−Ψ↑) (46)

H = [p2/2m− µ]τz + αpσzτz +Bσx +∆τx, (47)

Here, ψ†
σ is a creation operator with effective mass m, chemical potential µ, and

Pauli matrix σ, τ in spin and particle-hole space. α > 0 denotes the strength of

spin-orbit coupling along or against the x-direction. In the absence of either a

magnetic field or a superconducting gap, the Hamiltonian has only the Rashba

spin orbital interaction. As a result, the energy spectrum takes the form of two

shifted parabolas, which cross at p = 0. When a magnetic field and a supercon-
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ducting gap are introduced, the energy spectrum is

E2
± = B2 +∆2 + ξ2p + (αp)2 ± 2

√
B2∆2 +B2ξ2p + (αp)2ξ2p , (48)

where ξp = p2/2m − µ. The key point to host MFs is the p = 0 energy gap E0.

The energy is

E0 = |B −
√

∆2 + µ2|. (49)

At B2 = ∆2 + µ2, the topological transition occurs. As B increases, the wire

is in the topological phase for B2 > ∆2 + µ2, with MBSs at the wire ends. A

considerable amount of research has been conducted, and much evidence for the

existence of MFs has been presented [3–5, 8, 46, 47].

D. MFs and parafermions in a double nanowire system

MFs are expected to find application in topological quantum computers [10, 48].

However, they do not satisfy the necessary conditions for universal quantum com-

putation [49]. On the other hand, Fibonacci anyons might be a candidate for

the realization of a universal quantum computer [49, 50]. Parafermions (PFs)

of Fibonacci anyons, referred to as fractional MFs, have the potential for more

universal quantum operations than MFs. In contrast to MFs, PFs require strong

electron–electron interactions. The most well-known theoretical proposals to host

PFs are on edge states of fractional quantum Hall effect (FQHE) systems prox-

imitized by an SC [51]. However, the disadvantage of these systems is the same

as that of a hybrid device consisting of an SC and semiconductor NW to host

MFs. It is necessary to apply a strong magnetic field to the system to realize the

FQHE, which has a negative effect on the superconductivity [52].
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Recently, a theory that holds in the absence of a magnetic field was pro-

posed [45, 53]. The proposed platform for the realization of PFs is illustrated

in Fig. 20. We prepared two 1D quantum wires with Rashba strong SOI. They

are coupled to an s-wave SC, which induces proximitized superconductivity. This

system contains two pairing terms. The first is the intrawire proximity-induced

superconductivity of ∆1(1̄), which corresponds to the Cooper pair tunneling of two

incident electrons on each wire. The other is the interwire SC of ∆c induced by

the CPS, which is equal to the CAR on both wires. The interwire-induced en-

ergy ∆c is more dominant than the intrawire energy ∆1(1̄) in the regime of strong

electron–electron interaction. In this case, the system becomes topologically non-

trivial, such that MFs or PFs are localized at the edges of the 1D system. If the

chemical potential energy is tuned to the Kramers point of the spectrum, the 1D

system hosts two MFs, which are a time-reversal of each other at the edge of the

system. Furthermore, decreasing the chemical potential to one-ninth of the SOI

energy such that the electron–electron interaction is strengthened has the effect

of hosting Z3 PFs as the zero energy state in the system.

We consider a system of two quantum wires with a strong Rashba SOI that is

induced by an s-wave SC in Fig. 20, following Ref. [45]. The upper (lower) wire

parallel to the x-direction is labeled as τ = 1 (τ = 1̄). The Hamiltonian of this

model is described by:

H = H0 +HSO +HS +Hc +HZ . (50)

The Hamiltonian consists of five parts. The first term of Eq. (50) is the kinetic

part, given by

H0 = Στ,σ

∫
dxΨ†

τσ(x)[
−ℏ2∂2x
2m

− µτ ]Ψτσ(x), (51)

where Ψ†
τσ(x)[Ψτσ(x)] is the creation (annihilation) operator of an electron of mass
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FIG. 20. Spectrum of two wires with a positive (negative) Rashba SOI for τ = 1(τ =

1̄) [54]. The solid (dashed) lines represent the spectra of electrons (holes), and the blue

(green) lines correspond to spin-up (spin-down). It is necessary to tune the chemical

potential to the crossing point between the blue and green lines, which is known as

the Kramers point. The term ∆c(∆τ ) is the proximity-induced superconductivity of

different (same) wires. The spectrum becomes gapless for ∆c = ∆1∆1̄, which results in

a topological transition. In the topological phase, two MFs are localized at the edge of

one quantum wire, such that four MFs exist in the system. In this case, the interwire

superconductivity of ∆c couples states with k = 0.

m at position x of the wire τ with spin τ/2 along the z-axis, and µτ is the chemical

potential. The second term is the energy caused by Rashba SOI. The Rashba SOI

field, αRτ , determines the strength and direction of the spin polarization. Thus,

this term is described as

HSO = −iΣτ,σ,σ′αRτ

∫
dxτΨ†

τσ(x)(σ3)ττ ′ prime∂xΨτσ′ (x). (52)

Here, the Pauli matrices σ1,2,3 act on the spin of the electron. The third component

is the Hamiltonian of the intrawire superconductivity of strength ∆τ , which is the
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proximity induced in each quantum wire by Cooper pair tunneling from the SC

to the wire τ . This Cooper pair consists of spin-up and spin-down electrons at

k = 0 or k = ±KF . The intrawire term is written as

HS = Στ,σ,σ′

∫
dx

∆τ

2
[Ψτσ(iσ2)σσ′Ψτσ prime + h.c.]. (53)

The fourth part is due to CPS, which occurs if the distance between two quantum

wires is shorter than the coherence length of an SC in contact with the quantum

wire, which results in interwire proximity-induced superconductivity.

HC = Στ,σ,σ′

∫
dx

∆c

2
[Ψτσ(iσ2)σσ′Ψτ̄σ′ + h.c.], (54)

where ∆c is the energy of the interwire proximity-induced superconductivity,

which is coupled at k = 0. Therefore, CPS is more dominant than Cooper pair

tunneling when ∆c > ∆τ . The last part of the Hamiltonian is

HZ = Στ,σ,σ′∆Zτ

∫
dxΨ†

τσ(σx)ττ ′ primeΨτσ, (55)

where ∆Zτ = gτµBB/2 is the Zeeman splitting in the τ -wire with the magnetic

field along the x-axis. In the absence of a magnetic field, CPS couples the branches

of the energy spectrum to close the gap and induces a topological transition at

k = 0 if ∆2
c = ∆1∆1̄ and k = ±2

√
∆2

c −∆2
1/ℏvF if ∆1 = ∆1̄ < ∆c. If ∆

2
c > ∆1∆1̄

and ∆1 ̸= ∆1̄, the two zero-energy states are localized at the left edge, and the

two states are at the right edge of the system. These two bound states on the

one side engage in Kramers-pairing with each other by time-reversal symmetry

(see the details in [45, 53, 54]). We note that the topological transition occurs if

the interwire superconducting energy is equal to the sum of the intrawire super-

conducting energy and the Zeeman splitting. If we do not take ∆c into account,

the magnetic field couples the states of opposite spin in each NW, similar to the

SNW system in Ⅲ-C.
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Chapter 3

Preceding studies

I. Previous experiments with ballistic nanowire devices

A wide variety of experiments have been conducted using semiconductor

NWs [55–58]. These NWs are 1D conductors, ranging from those that take

advantage of their 1D nature to those that utilize the formation of dots in NWs.

In particular, improving the quality of the NWs and ensuring good contact with

the electrodes leads to the observation of ballistic properties. In this section, we

introduce experiments in which the ballistic properties of NWs are observed.

A. Ballistic conductance of nanowires

The formulation of 1D subbands results in the conductance quantization of

NWs. However, the observation of ballistic transport with conductance quantiza-

tion is rarely reported because it is difficult to fabricate high-quality NWs with

good contacts to the electrodes. Electron scattering occurs when electrons conflict

with impurities in the NW and diffusively reflect at the surface. In particular,

the physical phenomenon where electrons scatter backward is known as backscat-

tering, which is one of the reasons for the difficulty in observing the conductance

quantization. This is because there is little freedom of electron’s forward move-

ment in the NW rather than in a quantum point contact in a two-dimensional

electron gas (Fig. 21). Another important point is the contact between the NWs

and their electrodes. Electrons can also be scattered at the interface. If the inter-
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face is of good quality, the electron transmittance will be close to unity, and the

quantized conductance appears as plateaus of multiples of e2/h. To date, several

transport experiments have been performed for NWs consisting of InAs or InSb.

For the InAs NWs, conducting electrons are accumulated in the surface inversion

layer. Therefore, good electrical contacts can be formed with metal electrodes

but the electron transport is more severely affected by the surface states. On the

other hand, for the InSb NWs, electrons are confined inside the NW. Therefore,

the transport is not affected by the surface states but more careful surface treat-

ment is required to form good contacts with the electrodes. In this work, we are

concerned about the interface quality between the NW and SC, and therefore used

InAs NWs and made efforts to clean the NW surface as much as possible. Thus,

to observe ballistic NWs showing quantized conductance was an important task.

Below we review previous experimental efforts to prepare such ballistic NWs.

FIG. 21. Schematic of electron transport for the case of a 1D channel of the NW in

(a) and a constriction formed in a two-dimensional electron gas in (b) [59]. Electrons

conflict with impurities and reflect if they exist on the route of electron transport in

(a). Compared with (a), the effect of electron scattering in the two-dimensional case is

less than that in (b).

Fig. 22(a) shows an SEM image of a device of an InAs NW and nickel as

51



electrodes [60]. ZrO2 is deposited on the NW as a top-gate Vgs structure using

atomic layer deposition (ALD). Fig. 22(b) shows the conductance as a func-

tion of the gate voltage measured at various temperatures. The first and second

conductance plateaus are clearly visible at 120 K and become blurred as the tem-

perature increases. These conductance plateaus are more clearly defined in InSb

NWs [59, 61]. Fig. 22(c) shows an SEM image of an InSb device with source-

drain contacts of Cr/Au and a top gate of Ti/Au [61]. Fig. 22(d) shows that

the first conductance plateau is well defined at zero-magnetic field and changes to

spin-split plateaus with increasing magnetic field.
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(a) (b)

(c) (d)

FIG. 22. (a) SEM image of an InAs-Ni device [60]. (b) Temperature dependence of

the G− Vgs plots. The plots are shifted for clarity [60]. (c) SEM image of an InSb-Au

device [61]. (d) Vgate dependence of the conductance from 0 T to 5 T. Each curve is

offset by 200 mV [61].

B. Supercurrent in InAs nanowire device

Improving the quality of NWs and forming a clean contact between the NWs

and SC are particularly important to observe the supercurrent flow. Observation

of the quantized conductance allows the number of 1D channels in the NW to be

defined; thus, it is theoretically predicted that the value of the critical supercurrent
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increases by e∆/ℏ with the number of channels [62], where ∆ is the proximitized

superconducting gap of a SC-NW-SC device. Many reports on the supercurrent

in NW devices have been published [56, 58, 63, 64]. Here we introduce one of

them [58]. The sample of Al - InAs NW - Al has a cross-linked structure, and

the carrier density of the device was tuned by a back gate electrode (Fig. 23(a)).

The diameter and length of the NWs were 80 nm and 4 µm, respectively. Fig.

23(b) shows the change in conductance as a function of the back gate voltage Vg

and junction voltage V . The conductance is higher inside the superconducting

gap than outside, and is characterized by the two lines at V = ±∆/e. The

number of channels in the NW increases with Vg because the potential barriers

in the NW become small. The conductance plateaus measured outside the gap

are not quantized at multiples of e2/h. This difference is due to the transmission

of less than unity. In addition, the enhancement of the conductance inside the

superconducting gap is attributed to the contribution of two electrons in the

mechanism of AR. Next, the supercurrent measured as a function of Vg is shown

in Fig. 24(b). The supercurrent starts to flow above the pinch-off voltage Vg =

−0.8 V. Although the supercurrent increases with more channels, the value of

the supercurrent is not stable to form a plateau, and is smaller than theoretically

expected. In fact, the electrons scatter due to the presence of impurities in the

NWs, such that the supercurrent oscillates in plateaus. In addition, the SOI of

the InAs NW must be considered to analyze the values of the supercurrent more

accurately.
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(a) (b) 

FIG. 23. (a) SEM image of the Al-InAs NW-Al sample. A back gate of Ti/Au controls

the carrier density of InAs NWs [58]. (b) Differential conductance as a function of Vg

and V at T = 15 mK [58].

(a) (b) 

FIG. 24. (a) Differential conductance as a function of Vg in the normal (superconduct-

ing) state, in blue (green). The Andreev reflection results in an enhancement of the

conductance in the superconducting gap [58]. (b) Supercurrent as a function of Vg. The

supercurrent increases with Vg. However, the value of the supercurrent in the plateau

of (a) is not constant, but oscillates [58].

55



II. observation of Majorana fermion

A large amount of research has been conducted, and quite a few experiments

have claimed the observation of MBSs in hybrid devices with InAs or InSb NWs

[3–5, 8, 46, 47]. The first experiment was performed using a normal metal (Au) -

InSb NW - SC (NbTiN), shown in Fig. 25(a). The InSb NW has a large g-factor

and strong SOI, both of which favor the generation of MFs at each end of the SC

(see Ⅲ-C). Fig. 25(b) shows the differential conductance measured as a function

of the source-drain voltage V and magnetic field B. A conductance zero-bias

peak is observed at a finite magnetic field, which is attributed to the formation of

MBSs. Soon afterwards observation of a similar zero-bias peak was reported using

an InSb NW [5] and an InAs NW [4](Fig. 25(c) and (d), respectively). Note that

it has recently been debated that measurement of the zero-bias anomaly is not

sufficient to solidify the presence of MFs for other reasons such as ABS [65–67].

Several types of experiments to indicate the presence of MBSs have been pro-

posed. Among the proposed experiments is the exploration of the Shapiro steps.

As described inⅡ-E, in the presence of MFs, the phase periodicity of the Joseph-

son junction of the topological superconductor is modified from 2π to 4π. This

predicts the vanishing of the odd-numbered Shapiro steps. An experiment on this

prediction was carried out for a Josephson junction having an etched constric-

tion formed in an InSb quantum well [8]. The first Shapiro step was observed to

vanish, as shown in Fig. 26. Similar but more definite experiments on the van-

ishing Shapiro-steps were later performed using the HgTe topological insulator

Josephson junctions [9].
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FIG. 25. (a) SEM image of the device in (b). The device is a superconductor (NbTiN)

- InSb NW - a normal conductor (Au) junction [3]. (b) Differential conductance dI/dV

against V at T = 70 mK. Applying B results in a conductance peak at zero bias

attributed to MBS [3]. (c) Differential conductance at T = 25 mK from 0− 4 T using

a Nb-InSb NW device. The conductance peak emerges when B exceeds 1 T [5]. (d)

Differential conductance at T = 30 mK from 0− 1 T using an Al-InAs NW device. The

conductance peak emerges at values larger than 100 mT [4].

Another way to detect MFs was proposed in the same year. In the presence of

MFs, the periodicity of the Josephson junction of the topological superconductor

is modified from 2π to 4π. As a result of the novel periodicity, the odd integer of
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the Shapiro steps vanishes in Fig. 26 [8].
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FIG. 26. Measurement of the Shapiro steps of an InSb - Nb hybrid device. I − V

characteristics under microwave irradiation. The first plateau of the Shapiro steps

disappears as a result of the topological transition for B > 2.1 T [8].
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Chapter 4

Sample fabrication

I. Fabrication of Josephson junction devices

The NW Josephson devices were fabricated by first identifying good candidates

for SNW and DNW among a number of InAs NWs. Then, a pair of closely spaced

Al electrodes were positioned and placed over the SNW (or DNW), and finally, a

top or side gate (or two top or side gates) were placed as close as possible to the

SNW (DNW). The processing details are described below.

A. Preparation of InAs single nanowire and double nanowire

The InAs NWs used in this research were grown by chemical beam epitaxy

(CBE) in Prof. Xu’s group of Lund University [68, 69]. The use of CBE requires

the deposition of pure gold particles on a substrate as seeds from which to grow

the NWs. The typical lengths of the NWs fabricated in this way range from

1 µm to 4 µm, with diameters from 60 nm to 80 nm. First, we have to place

markers on the substrate to accurately position each NW. The markers consist

of Ti/Au. The thickness of the markers should preferably be approximately the

same as the diameter of the NWs because this is convenient for subsequent AFM

or SEM analyses as it would enable the samples to be clearly visualized. Before

transferring the NWs, we have to clean the substrate of SiO2/Si used for NW

devices. We first dipped the substrate in acetone for 5 min to remove impurities.

Second, we placed the substrate on a heater at 180 ◦C for 5 min. Finally, we
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used oxygen plasma to remove residues from the substrate surface. The next

step after cleaning the surface entailed transferring the NWs from the growth

substrate to the device substrate. We selected a large number of NWs from the

growth substrate using a cotton wool bud (Fig. 27(a)(i)) and transferred them

to the device substrate (Fig. 27(a)(ii)). In the case of the DNW experiment,

it is important to choose two adjacent NWs that are aligned parallel to each

other. This was accomplished by accurately locating the NWs using an optical

microscope, AFM, and SEM. After transferring the NWs, we used the optical

microscope to determine how many NWs, especially DNW are on the substrate

and to locate them before using AFM or SEM. SEM (Fig. 27(b)) has a higher

resolution than AFM, which allows for a higher degree of alignment; however,

a critical disadvantage exists. The SEM electron beam damages the NWs and

degrades their transport properties. Therefore, we accurately located the position

of NWs that are suitable for measurement using AFM instead of SEM.

B. Fabrication of superconducting contacts and gate electrodes

Immediately after preparing the NWs, we deposited Ti/Al (1.5 nm/100 nm)

as the superconducting contacts using an e-beam lithography technique. Before

the contacts were deposited, it was necessary to treat the surfaces of the NWs.

Electron beam processing requires the use of PMMA as a resist, which was devel-

oped in the solution MIBK:IPA = 1:2 for 60 s. Next, we removed PMMA residues

by reactive ion etching (RIE, 30 W and 10-30 s), after which the native surface

oxide components of the NWs were removed by etching them in a (NH4)2Sx so-

lution (H2O : 20%, (NH4)2Sx = 10 : 1) for 120 s at 40 ◦C. Finally, we added gate

electrodes to tune the carrier density in the NWs. For this purpose, we initially
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attempted to fabricate side gates near the NWs but on the same plane. However,

with this arrangement it is challenging to tune the carrier density because it is

difficult to maintain a short distance between the NWs and the side gates with

the e-beam lithography process. Therefore, we changed our plan and adopted top

gate structures. We covered the NWs and Al contacts with a 40-num thick Al2O3

layer grown by ALD [1, 27, 29, 70], and then deposited Ti/Au on top of the NWs

as top gates.

C. DNW and SNW Josephson junction devices

Fig. 28 (a) and (b) show an SEM image of the fabricated DNW Josephson

device without and with gate electrodes, respectively. The DNW device has two

SC electrodes separated by approximately 20 nm. We note that the device in

the image is different from the measured device because we refrained from using

SEM to avoid damage to the NW device. Fig. 28(c) shows a schematic of the

DNW Josephson device with two top gates, g1 and g2. These gates can be used to

control the conductance of the two respective NWs, NW1 and NW2, respectively.

Fig. 29 shows an SEM image of the single InAs NW Josephson junction device.

The junction length between the two SCs in blue is approximately 100 nm. A

single to gate in brown covers the entire NWs in the junction and parts of the

SC contacts. This gate can be used to efficiently change the carrier density of the

NWs.

61



Cotton bud

Growth substrate

nanowires
Si substrate

transfer

(a) 

(b) (c) 

(i) (ii) 

FIG. 27. NW transfer process. (a)(i) Many NWs are gathered using a cotton wool

bud. (ii) They are transferred to the device substrate by touching the substrate with

the cotton wool bud. (b) SEM image of the NWs. (c) AFM image of the NWs.
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FIG. 28. (a) SEM image of a device that differs from that used for measurements.

Two Al electrodes were deposited on the DNW. The distance between two contacts was

approximately 30 nm [1]. (b) SEM image of the device with two Al electrodes (blue)

in contact with the DNW. Two top gates (orange) were deposited on the DNW [1]. (c)

Schematic of the devices NW1 and NW2 tuned by the top gate electrode g1 with Vg1

and g2 with Vg2, respectively, [1].

300 nm

FIG. 29. SEM image of an InAs NW with a top gate structure (orange). This device in

the image differs from that used for measurements in this study. The junction length

between the two Al areas (blue) was approximately 100 nm [2].
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II. Measurement system

We employed a standard lock-in technique and measured the DNW sample in a

dilution fridge (K400, Oxford Instruments). For the SNW sample, we performed

standard constant voltage and constant current measurements in a dilution fridge

(MX50, Oxford Instruments). The setup required for the measurement of the

Shapiro step is shown in Fig. 30(a). Microwave is irradiated onto the sample

through a semirigid cable placed just on top (Fig. 30(b)). We incorporated

attenuators because the direct application of high frequency from the generator

to the sample was too powerful. The applied frequency was set to 1–5 GHz

to avoid affecting the measured temperature and the nonadiabatic effect caused

by the high applied frequency (see Chapter 2-Ⅱ-E). To reduce the noise in the

measurement, we prepared a copper block, a copper ribbon, and a NbTi coaxial

cable (Fig. 31). Copper is the most reliable material for shielding from radio

frequencies because it absorbs and attenuates both magnetic and radio waves.

NbTi coaxial cables have extremely low thermal conductivity and are not affected

by a strong magnetic field.
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FIG. 30. (a) RF setup for measurement of the Shapiro step. (b) PCB board connected

with semirigid RF cables. Inset:PCB board. Samples are set in the center of the PCB

board.
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FIG. 31. Thermal anchor. NbTi coaxial cables and copper block and ribbon were used

to reduce the noise of the thermal effect, magnetic field, and radio waves.
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Chapter 5

Observation of CPS in ballistic

double nanowire systems

I. General introduction

CPS has been demonstrated using QDs formed in SNW and parallel double

NW (DNW) systems, but experiments in 1D systems have not yet been performed.

The realization of CPS in 1D systems enables us to transport and manipulate

Cooper pairs more effectively because the freedom of electron’s motion increases.

In addition, a theory exists that the realization of CPS in 1D conductors leads to

topological transitions without any magnetic field, generating MFs at the edge of

the system [45, 54, 71–73]. In our group, we studied techniques to fabricate DNW

and used these DNW to conduct CPS experiments. In this chapter, we demon-

strate the CPS in a 1D system of DNW using supercurrent measurements [1].

We discovered that the measured switching current to the two separate NWs was

significantly higher than the sum of the switching currents to each of the NWs,

indicating that the interwire superconductivity is dominant over the intrawire su-

perconductivity. This satisfies the necessary condition for engineering MFs in the

absence of a magnetic field.
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II. Measurement results

A. Normal state conductance property

The device in Fig. 28 was measured in a dilution refrigerator at 50 mK− 4 K.

We used a standard lock-in technique to measure the differential conductance and

supercurrent of the device.

First, we measured the differential conductance G of the Josephson junction

device by applying a strong magnetic field B = 250 mT, which exceeds the critical

field of Al. Fig. 32(a) shows G as a function of two voltages Vg1 and Vg2 for g1

and g2 to show the normal state transport of the device. The region below the

blue solid line and to the left of the red solid line is the area in which both NW1

and NW2 are pinched off. The conduction areas are divided into four regions

separated by the blue and red lines: a SNW to the conduction through each SNW

(upper left for NW1 lower right for NW2), contribution of the DNW to conduction

through the DNW (upper right), and no conduction (lower left).

Fig. 32(b) shows certain sections of the conductance line from Fig. 32(a). The

blue (red) lines correspond to G in the SNW region of NW1 (NW2), measured

by setting Vg2 between -5.0 and -8.0 V (Vg1 between － -17.0 and － -20.0 V). A

quantized plateau-like structure was observed for G = ne2/h (n = 2, 4, 6). Typ-

ical data of the quantized conductance are shown in bold lines. The oscillations

near the plateau are due to the scattering of impurities. The observation of the

quantized conductance proves that our device is ballistic.

Therefore, G in the DNW region (upper right) is given by G(m,n) = me2/h+

ne2/h, where m and n are the number of channels of NW1 and NW2, respectively.

We define this (m,n) region as (m,n).
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Next, we focused on electron conduction in the DNW region. Fig. 32(c) shows

G from the purple line in Fig. 32(a). This purple line is on (0,0),(2,2), and (4,4).

Fig. 32(c) explains this well, because quantized plateaus appear at G = 4e2/h

and 8e2/h. As in the previous statement regarding the SNW region, we confirmed

that the DNW are ballistic, and the conductance in the normal state represents

the sum of the independent conductance of the two respective NWs.
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FIG. 32. Differential conductance G normalized by e2/h as a function of Vg1 and Vg2 [1].

(a) G in the normal state as a function of Vg1 and Vg2 for B = 250 mT and T = 50 mK.

The solid blue and red lines are along the NW1 and NW2 pinch-off areas. The dashed

lines parallel to the solid lines are transition lines between the respective NW plateaus.

(b)G vs. Vg1 (blue) in the range from Vg2 = −5.0 V to Vg2−8.0 V, where NW2 is pinched

off, and G vs. Vg2 (red) in the range of Vg1 = −17.0 V to Vg2 − 20.0 V, where NW1

is pinched off. All the curves have plateau-like structures at G = 2e2/h, 4e2/h, 6e2/h.

(c) G plotted along the purple line of (a), where both NW1 and NW2 contribute to the

conduction of the device. The conductance plateaus are observed at 4e2/h and 8e2/h.70



B. Estimation of the superconducting gap

We studied the superconducting properties of the Josephson junction device

in the absence of the magnetic field. We measured G as a function of the bias

voltage Vsd at Vg1 = −9.94 V and Vg2 = −8.19 V in the SNW region, where NW2

is pinched off, to evaluate the superconducting gap in contact with the device

and its dependence on the magnetic field. Fig. 33(a) shows G against Vsd. We

observed two large peaks attributed to quasiparticle tunneling, indicated by red

arrows. These peaks correspond to 2∆/e, where ∆ is the superconducting gap;

therefore, ∆ is estimated as 185 µeV, which is a typical value of bulk Al. We also

measured G as a function of Vsd and the magnetic field B in Fig. 33(b). The gap

decreases by increasing B and finally disappears at B = 160 mT, which is the

critical field of the junction. This is a typical result for the s-wave superconductor

Al.

C. Multiple Andreev reflection and conductance quantization outside the

superconducting gap

Fig.34 shows typical results ofG against Vsd in the plateau regions of (2,0),(0,2),

and (2,2). Multiple structures are observed in Vsd < 2∆/e ≈ 370 µeV in all

regions. These peaks are due to MAR. Moreover, for a large bias voltage outside

the superconducting gap, G converges at a constant conductance value of (m +

n)×2e2/h for the (m,n) plateau [56, 57]. These results support the ballistic nature

of the junction and the measured points in Fig. 34 are certainly on the normal

state conductance plateaus of the DNW.
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FIG. 33. Differential conductance G of the DNW device [1]. (a) G as a function of

Vsd at B = 0 T. The two red peaks at Vsd = ±370 µeV indicate the magnitude of the

superconducting gap due to quasiparticle tunneling at |Vsd| = 2∆/e. The estimated

gap ∆ = 185 µeV is consistent with the superconducting gap of Al. The small peaks at

|Vsd| = ∆/e are due to the AR. (b) G as a function of Vsd and B. The superconducting

gap becomes smaller and closes completely at B = 160 mT.
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(b)

(c)

FIG. 34. G as a function of Vsd at B = 0 T for some points on the plateau of (m,n) in Fig.

32(a). Typical results for the plateau of (a) (2,0) at Vg1 = −8.75 V and Vg2 = −5.58 V,

(b) (0,2) at Vg1 = −17.0 V and Vg2 = −5.00 V, and (c) (2,2) at Vg1 = −10.6 V and

Vg2 = 2.20 V. The conductance outside the superconducting gap becomes 2e2/h in (a),

2e2/h in (b), and 4e2/h in (c) [1].
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D. Measurement points for supercurrent

The flow of the supercurrent through the SNW and the DNW was studied by

choosing several points in each (m,n) region, measuring the supercurrent, and de-

riving the mean value and standard deviation of Isw(m,n), which is the switching

current in (m,n). The measured points, shown in Fig. 35, are represented by

circles on the surface plot of G of Fig. 32. The blue, red, and purple points are in

the SNW of NW1, SNW of NW2, and DNW regions. We note that all the points

in each (m,n) region coincide with the value of (m+n)× e2/h within the error of

±0.1× 2e2/h.

FIG. 35. Points at which the supercurrent was measured at B = 0 T indicated on the

surface plot of G as a function of Vg1 and Vg2 at B = 250 mT of Fig. 32. More than

ten points were chosen for supercurrent measurement in each region [1].
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E. Supercurrent in SNW

Next, we measured the differential resistance R against bias current I without

applying a magnetic field to measure the supercurrent. Fig. 36(a) and (b) show

typical results in the SNW region of NW1 and NW2. The resistance R becomes

almost zero in the finite range of the bias current at approximately I = 0 A, which

represents the supercurrent flowing through NW1 or NW2. We determined the

peak positions of R as the magnitude of the supercurrent in each measurement.

We chose several points on the same plateaus and took their average (see Fig. 35

about the points). Fig. 36(c) and (d) show the average switching current against

G plots of NW1 and NW2, respectively.

F. Supercurrent in DNW

We measured the supercurrent in the DNW regions of (2,2), (4,2), (6,2), (2,4),

(2,6), and (4,4) to study the CPS contribution depending on the number of 1D

channels. Fig. 37(a) shows typical results in (2,2) (black), referring to (2,0) and

(0,2) (blue and red, respectively). Similarly, Fig. 37(b) shows the results in (4,4)

(black) with (4,0) and (0,4) (blue and red, respectively). In Fig. 37(a), the typical

result Isw(2, 2) = 11.3 nA is much larger than the sum of Isw(2, 0) + Isw(0, 2) =

4.78 nA. Fig. 37(c) shows Isw(m,n) against G(m,n) plotted by purple triangles

in the DNW and Isw(m, 0) + Isw(0, n) against G(m, 0) + G(0, n) by pink circles

in the SNW regions. Certainly, Isw(m,n) is larger than the sum of Isw(m, 0) and

Isw(0, n) for all values of m and n. The contribution of Isw for the respective NWs

is due to the contribution of the local pair tunneling (LPT) to the supercurrent.

In the situation where both NWs contribute to the supercurrent, CPS is observed
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as the difference between Isw measured in DNW and the sum of Isw measured for

the respective NWs. Incidentally, because this device does not contain any QDs,

the CPS mechanism cannot be explained by the electrostatic energy or Coulomb

blockade effect of the dots, as previously reported.
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FIG. 36. Supercurrent in SNW regions [1]. (a) Typical R as a function of I at B = 0 T

at several blue points in Fig. 35 on the conductance plateaus of (2,0), (4,0), and (6,0).

The supercurrent flows through the Josephson junction in the range of R ≈ 0 kΩ; Isw

is evaluated from the peak of R. (b) Isw vs. G derived from the results in the SNW

of the NW1 region of Fig. 35. The bars indicate variations in the measurements of Isw

and G at certain points in Fig. 35. (c) and (d) Identical plots to (a) and (b) in regions

of (0,2),(0,4), and (0,6).
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FIG. 37. Supercurrent in the DNW regions, and comparison with that in SNW re-

gions [1]. (a) Typical R as a function of I at B = 0 T at several blue points in Fig. 35

on the conductance plateaus of (2,0), (0,2), and (2,2); Isw in (2,2) is explicitly larger

than the sum of Isw(2, 0) and Isw(0, 2). (b) R as a function of I on the conductance

plateaus of (4,0), (0,4), and (4,4). Similar to (a), Isw(4, 4) is much larger than the

sum of Isw(4, 0) and Isw(0, 4). (c) Isw(m,n) vs. G(m,n) in the conductance plateau

regions (2,2), (2,4), (4,2), (2,6), (6,2), and (4,4), respectively. For comparison, the sum

of Isw(m, 0) and Isw(0, n) vs. the sum of G(m, 0) and G(0, n) is plotted. The bars

represent the variations in the measurements of Isw and G at certain points on the

respective plateaus. The difference between Isw(m,n) and the sum of Isw(m, 0) and

Isw(0, n) is the CPS contribution.

Other possible reasons for the enhancement of Isw, such as macroscopic quan-
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tum tunneling (MQT), thermal effects, and Joule heating also need to be con-

sidered. First, we consider the crossover temperature of MQT. We estimated the

quality factor Q and plasma frequency ω using a junction capacitance of less than

100 fF and the junction resistance measured in Fig. 32, resulting in Q = 0.1 and

ω = 1010 [28, 74]. Using this quality factor and theoretical representation of the

crossover temperature in MQT Tcr =
ℏω

2πkB
(1 +Q2/4)1/2 −Q/2 [75], we estimated

Tcr ≈ 20 mK, which is lower than the base temperature of 50 mK. Therefore, we

can ignore the MQT in the junction. Second, we considered the crossover temper-

ature between the thermal activation regime and tunnel regime using the RCSJ

model. We found that the crossover temperature is also approximately 20 mK.

Therefore, the junction is in the thermal activation regime, and we should consider

the thermal effect. We analyzed the magnetic field dependence more precisely to

determine whether the aforementioned thermal effect causes the enhancement of

the measured Isw. If the estimated Isw is smeared owing to thermal noise [76],

Isw(m, 0) + Isw(0, n) is not proportional to the number of channels. Fig. 38(a) is

Isw(m, 0)+Isw(0, n) vs. G(m, 0)+G(0, n) at B = 80, 120 mT, where the magnetic

field suppresses the enhancement of Isw at 0 T, and the thermal effect should have

an important role in the estimation of Isw because the obtained Isw is lower than

that at 0 T. We found that Isw(m, 0) + Isw(0, n) measured at B > 80 mT follows

the proportionality of G(m, 0)+G(0, n), corresponding to the number of channels

in the NWs. This supports the hypothesis that the smearing is independent of

the enhancement of Isw at approximately 0 T. We note that the differential re-

sistance is measured by a lock-in technique with finite excitation. We converted

the excitation we used into the current through the junction, resulting in 1 nA.

Therefore, the finite resistance around zero bias current occurs owing to the finite

excitation from the measurement and a possible offset of the lock-in-amplifier.
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Joule heating can be evaluated as 200 mK using the thermal model [77]. The

heating power in the DNW region is distributed to the two NWs and is weaker

than in the SNW region. This may cause an enhancement. We measured the

temperature dependence of Isw(2, 2) in Fig. 38(b). If Joule heating is responsible

for the enhancement, Isw(2, 2) at 260 mK should be the same as that at 50 mK.

However, the measured Isw(2, 2) at 260 mK is 9 nA, which is still larger than

Isw(2, 0)+ Isw(0, 2) = 5 nA. If the enhancement is due to Joule heating, the heat-

ing should be 450 mK. This is not completely realistic. This conclusion enables us

to rule out the contribution by Joule heating. We note that, because the junction

is short ballistic, the heating may be overestimated.

(a) (b)

FIG. 38. (a) Isw(m, 0) + Isw(0, n) vs. G(m, 0) + G(0, n) measured at B = 80 mT

(shown as red circles) and B = 120 mT (indicated by yellow circles) [1]. (b) Isw(2, 2) as

a function of temperature. Isw(2, 2) below 460 mK is larger than Isw(m, 0) + Isw(0, n)

at 50 mK, shown as a pink line [1].

G. CPS efficiency

We evaluated the CPS efficiency η, defined by
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η =
Isw(m,n)− (Isw(m, 0) + Isw(0, n))

Isw(m,n)
× 100 [%]. (56)

The estimated efficiency of η(m,n) is shown in Fig. 39. The values in the (2,2),

(4,2), (6,2), (2,4), (2,6), and (4,4) regions are 57.3, 31.6, 27.8, 48.8, 41.7, and 47.4

%, respectively. A value of η that is greater than 50 % means that the contribution

to the supercurrent of CPS is dominant over that of LPT. We note that the two

split electrons from the CPS components flow through the NWs as coherent single

pairs, indicating that quasiparticle tunneling makes no substantial contribution.

We consider the difference of the efficiency in each region. For example, η(2, 2) ex-

ceeds 50 % for (2,2). This indicates that the LPT component is suppressed. This

can be explained by the theoretical model of CPS in the junction of a superconduc-

tor connected to two Tomonaga–Luttinger liquid (TLL) models [78, 79]. In this

model, the TLL parameter Kc = 1, which means the absence of electron–electron

interaction, indicates the probability of CPS and LPT is the same. This equates

to the simple problem of which electron moves into which NW. On the other hand,

when Kc < 1 in the case of electron–electron interaction, the LPT process is more

difficult and less likely to occur than CPS. Therefore, η(2, 2) = 57.3 % indicates

that the presence of electron–electron interactions is important for understanding

the mechanism of CPS in one dimension. We note that InAs wires have strong

1D electron–electron interactions because the small effective electron mass in the

InAs wires induces a stronger spatial confinement [80].

η is asymmetric with each m and n. Although G in the normal state is the

same in (4,2) and (2,4), η(4, 2) is smaller than η(2, 4). Similarly, η(6, 2) is smaller

than η(2, 6). These features are assigned to the asymmetric carrier densities of the

respective NWs in the proximity region. We see that NW1 is fully covered with

Al; however, NW2 is not Al, thus the proximity region of NW1 has a higher carrier
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FIG. 39. Schematic table of Isw, which includes the averages and variations, and CPS

efficiency η, for various values of m and n; Isw is enhanced owing to the CPS for all

conductance plateaus. The efficiency η is greater than 50 % in (2,2) [1].

density than that of NW2. We confirm this from the pinch-off values of each NW;

the NW1 pinch-off voltage at Vg2 = 0 V is Vg1 ≈ −12 V, whereas for NW2 at

Vg1 = 0 V, it is Vg2 ≈ −2 V. In theory, the lower carrier density in the NWs

results in a small value of Kc in the TLL, which means stronger electron–electron

interaction than kinetic energy; thus, the expected η becomes larger. Therefore,

the stronger electron–electron interaction of NW2 than NW1 has the effect of a

more significant suppression of LPT than in NW1. This could be the reason for

the asymmetric efficiency of η(4, 2) < η(2, 4) and η(6, 2) < η(2, 6).

Furthermore, we found that η decreases as the number of NW conduction

channels increases. This is also due to the weaker electron–electron interaction at

higher carrier densities of the respective NWs. Therefore, smaller values of η are

obtained with more channels.
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H. Gap energy estimation

We discuss the case in which the energy of CPS or LPT contributes to the

superconducting gap energy. We define the ratio of the induced superconducting

gap energy due to CPS or LPT as follows:

ξ(m,n) =
∆CPS(m,n)√

∆NW1(m, 0)∆NW2(0, n)
, (57)

where ∆CPS(m,n),∆NW1(m, 0), and ∆NW2(0, n) are the superconducting gap en-

ergies of the interwire superconductivity via CPS, the intra-wire superconducting

gap energy via the LPT of NW1, and that of NW2, respectively. Thus, ξ becomes

a measure for determining whether the DNW is nontrivial or trivial. When ξ is

greater than one, it satisfies the condition for the realization of MFs or PFs in

DNW without any magnetic field. The superconducting gap in the short ballistic

Josephson junction with Rn is represented as RnIsw = π∆/e [62, 81]. Therefore,

the superconducting energy of ∆CPS(m,n), ∆NW1(m, 0), ∆NW2(0, n) are esti-

mated as G(m,n)−1(Isw(m,n)− (Isw(m, 0) + Isw(0, n)), G(m, 0)
−1Isw(m, 0), and

G(0, n)−1Isw(0, n), respectively. The estimated gap energies are shown in Fig. 40,

where ∆NW1(m, 0), and ∆NW2(0, n) decrease with smaller m and n, respectively.

This is consistent with the theory that the extent to which LPT is suppressed is

greater for fewer channels because of the stronger electron–electron interaction.

Consequently, ξ becomes larger for fewer channels. In particular, ξ in the (2,2)

and (2,4) regions becomes more than unity, and satisfies the condition for hosting

MFs or PFs in our DNW system.
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FIG. 40. Schematic table of estimated superconducting gap energies, and the ratio of

the interwire and intrawire superconducting gap energies ξ in the (m,n) regions; ξ in

(2, 2) and (2, 4) are greater than unity [1].

I. Dependence of CPS on the magnetic field

Fig. 41(a) shows the magnetic field dependence of Isw(2, 2) and Isw(2, 0) +

Isw(0, 2); Isw(2, 2) gradually decreases by B = 80 mT, whereas Isw(2, 0)+Isw(0, 2)

is almost the same. These two values almost converge at B = 80 mT, and then

decrease in the same way. Therefore, a CPS component exists in the range of

B = 0 to 80 mT, as shown by the purple shaded area in Fig. 41(a). A similar

feature with a (2,2) region can be observed in other regions.

The theory states that the critical field of a superconducting thin film whose

thickness is less than the coherence length and penetration length is inversely

proportional to the film thickness [82]. This is applicable to our device when a

magnetic field is applied perpendicular to the direction of the wire. As a result,

the critical field of CPS, at which the Cooper pairs split into two different NWs,

becomes half as large as that of LPT with Cooper pairs on either of the NWs.

83



Therefore, the dependence on B supports the fact that the enhancement of Isw in

the DNW regions has its origins in CPS.

(c) (d)

(a) (b)

FIG. 41. Magnetic field dependence of CPS and LPT [1]. (a) Isw(2, 2) and Isw(2, 0) +

Isw(0, 2) as functions of B. The CPS contribution vanishes at B = 80 mT. (b) Isw(2, 4)

and Isw(2, 0) + Isw(0, 4) as a function of B. (c) Isw(4, 2) and Isw(4, 0) + Isw(0, 2) as

functions of B. (d) Isw(4, 4) and Isw(4, 0) + Isw(0, 4) as a function of B.
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J. Conclusion

In this study, we conducted supercurrent measurements on a ballistic DNW

Josephson junction device to investigate CPS and LPT. We observed large CPS

efficiency owing to the suppression of LPT by electron–electron interaction in

the 1D NWs. In particular, we achieved a CPS efficiency of more than 50% by

gate manipulation of the 1D electron interaction. In addition, we found that

the CPS energy was dominant over the LPT energy when the number of the 1D

channels was reduced to just one or two. Indicating that the necessary conditions

for hosting MFs in the absence of a magnetic field can be satisfied in our CPS

devices. This result clarifies the physics of CPS in one dimension and paves the

way for the engineering of MFs using CPS.
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Chapter 6

Half-integer Shapiro steps in a

short ballistic InAs nanowire

Josephson junction

I. General introduction

In an SNS Josephson junction, a periodicity of 2π is usually present in the

ABSs. When the superconductor becomes a topological superconductor, the pe-

riodicity changes to 4π because MFs exist at the edge of the topological super-

conductor. In such a case, odd-integer multiples of Shapiro steps are absent, such

that we can see a trace of MFs in the Shapiro step measurement [8, 9, 83, 84].

In the preceding section, we demonstrated CPS in a ballistic Josephson junction

and showed the possibility of realizing MFs in DNW architecture. As a next

step, we have to understand the physics of the ballistic Josephson junction before

undertaking research of MFs in a ballistic Josephson junction by measuring the

Shapiro steps. When CPR is sinusoidal with a periodicity of 2π, it produces only

the integer steps at V = ±nhf/2e(n = 1, 2, 3, . . . ) in an overdamped Josephson

junction [85, 86]. On the other hand, a ballistic semiconductor Josephson junction

has a skewed CPR, which is expected to produce fractional steps. However, this

has not yet been experimentally observed. To observe MFs in ballistic Josephson

junctions using the Shapiro step measurement, it is first necessary to experimen-

tally feature fractionalized Shapiro steps in ballistic Josephson junctions, and to
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understand their physics. Here, we report the observation of the half-integer

Shapiro step using the device shown in Fig. 29 originating from skewed sinusoidal

CPR [2].

II. Measurement results

A. Fundamental device properties

We used the SNW device shown in Part IV and characterized the transport

properties of the junction first under the normal state condition and then under

the superconducting condition. Fig. 42(a) shows the differential conductance

G as a function of the top gate Vg for temperature T = 4 K, which is greater

than the critical temperature of Al. The pinch-off voltage at which the carrier

density of the NW is depleted is Vg = −12 V. We completely controlled the

carrier density of the NW of the junction to depletion. We also investigated G

against a bias voltage V at Vg = 0 V and T = 50 mK in Fig. 42(b). We observed

peaks at V = ±2∆/ne(n = 1, 2, 3, . . . ) due to MAR. Based on the conductance

peaks of MAR, the superconducting gap ∆ of Al is estimated to exist at 140 µV.

In this measurement, the conductance peaks of MAR appear at these voltages

for n = 1, 2, 3. This means that an elastic AR occurs at both interfaces of the

Al contact and the NW. Therefore, the interfaces are sufficiently clean such that

our junction is ballistic at Vg = 0 V [87]. Fig. 42(c) shows the I − V curves of

our junction at Vg = 0 V and T = 50 mK. The red (blue) curve represents the

downward (upward) current sweep. The switching current Isw corresponding to

the magnitude of the supercurrent was estimated to be 40 nA.
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FIG. 42. (a) Conductance G as a function of Vg at V = 1 µV for T = 4 K. The

device is pinched-off at Vg = −12 V [2]. (b) G against V at Vg = 0 V and T = 50 mK.

The conductance peaks are attributed to MAR [2]. (c) I − V curves of our junction at

Vg = 0 V and T = 50 mK. The red (blue) line corresponds to a downward (upward)

current sweep [2].
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B. Observation of half-integer Shapiro steps

We studied the AC Josephson effects or Shapiro steps by irradiating the SNW

Josephson device. The measurements of the Shapiro steps were conducted at an

applied frequency of f = 4.2 GHz. The black curve in Fig. 43(a) shows the I −V

curve at f = 4.2 GHz, Vg = 0 V, and the applied power P = 6 dBm. In addi-

tion to the conventional Shapiro steps observed at V = nhf/2e(n = 1, 2, 3, . . . ),

additional steps are observed at half-integer multiples of hf/2e. In Fig. 44(a), we

also observe half-integers at P = 0 dBm and P = 15 dBm. We note that the red

curves in Fig. 43(a) and Fig. 44(a) are obtained from Fig. 44(b). The differential

resistance R against I becomes zero at the integer steps shown by the red dotted

line in Fig. 43(a). Half-integer steps are found in the trace of R vs. I as small

dips between two sharp peaks.

Next, we consider the origin of the half-integer steps. The short ballistic CPR

is expressed as in Eq. (27). The CPR is highly skewed from sin(ϕ) of the con-

ventional Josephson junction. Skewed CPR produces half-integer steps because

CPR has higher harmonic components, which are fractions of 2π. We simulated

the Shapiro steps from CPR with τ = 0.98 and T = 50 mK. Fig. 43(b) shows

the calculated result for β = 0.008, f
′
= 0.095, and iac = 2 (see Eq. (29) for

these parameters). The black solid (red dotted) line represents V (the differential

resistance δR) against I/Isw. It is obvious that the numerical calculation repro-

duces the experimentally observed half-integer steps. Furthermore, steps such as

one-third or two-thirds of the steps, which reflect the higher components, can be

obtained in our simulation. We expect to detect these steps if we prepare the

experimental setup with higher resolution. We assumed that all the channels in

the NW have the same τ in our calculation because it is difficult to determine τ
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strictly for each channel.
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FIG. 43. (a) Shapiro steps under microwave irradiation at f = 4.2 GHz, Vg = 0 V,

and microwave power P = 6 dBm (black curve). The red curve is the resistance R of

the I − V curve [2]. (b) Numerical calculation of Shapiro measurement at β = 0.008,

f
′
= 0.095, and iac = 2 (these parameters are explained in the text) [2].
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FIG. 44. (a) Shapiro steps (black curves) at f = 4.2 GHz, Vg = 0 V with P = 0 dBm (left

panel) and P = 15 dBm (right panel). The red curves show R of the I–V curve [2]. (b)

Color plot of R as a function of I and P at f = 4.2 GHz, Vg = 0 V, and T = 50 mK [2].

Additional half-integer steps were observed by conducting measurements by

varying the microwave frequency and power. We show the measured results with

f = 3.7 GHz and f = 1.8 GHz. The curves of Fig. 45(b) represent line profiles

at f = 3.7 GHz from Fig. 45(a). The panels on the left and right represent

the case of P = 10 dBm and P = 15 dBm. Fig. 45(c) shows the Shapiro steps

measurements at f = 1.8 GHz. The curves in Fig. 45(d) represent the line profiles

of P = −16 dBm (left panel) and P = −10 dBm (right panel).
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FIG. 45. Shapiro steps at other frequencies [2]: (a) Color plot of R as a function of I

and P at f = 3.7 GHz and Vg = 0 V. (b) Shapiro steps (black curves) at f = 3.7 GHz

and Vg = 0 V. Left panel: P = 10 dBm. Right panel: P = 15 dBm. The red curves

show R of the I–V curve. (c) Color plot of R as a function of I and P at f = 1.8 GHz,

Vg = 0 V. (d) Shapiro steps (black curves) at f = 1.8 GHz, Vg = 0 V. Left panel:

P = −16 dBm. Right panel: P = −10 dBm. The red curves show R of the I–V curve.92



C. Dependence of the half-integer steps on the gate voltage

The short ballistic CPR of Eq. (27) depends on both τ and T . To exam-

ine the relationship between the CPR skewness and the half-integer steps, we

investigated Isw vs. T at several Vg. Fig. 46(a) shows the dependence of Isw at

Vg = 0,−1,−2,−3 V on T . The solid lines are the numerical fitting of the exper-

imental results indicated by dots with the maximum of Eq. (27) with τ and the

effective channel number as free fitting parameters. The experimental results are

in good agreement with the simulated data using short ballistic CPR. Each τ at

Vg = 0,−1,−2, and −3 V is estimated to be 0.98, 0.85, 0.89, and 0.7, respectively,

from the numerical fitting. The term τ decreases with decreasing conductance by

applying negative gate voltage. As shown in Fig. 46(b), the CPR is most highly

skewed at Vg = 0 V among these voltages because τ at Vg = 0 V is almost unity.
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FIG. 46. (a) Isw as a function of T for various values of Vg. The red, orange, blue, and

purple dots correspond to Vg = 0,−1,−2,−3 V, respectively, [2]. (b) Short ballistic

CPR curves for τ = 0.98 (red), τ = 0.85 (orange), τ = 0.89 (blue), and τ = 0.7 (purple)

at T = 50 mK [2].

We measured the dependence of the Shapiro steps on Vg at f = 1.8 GHz, P =
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−17 dBm, and T = 50 mK (Fig. 46(a)). The half-integer steps disappear with

decreasing Vg. We studied the relationship between β and τ because β is critical

for understanding the junction dynamics. Fig. 47(b) shows the dependence of

both β and τ on Vg; β is approximately 0.01 in the Vg range from 0 V to −3 V,

indicating that the RCSJ circuit of our junction is overdamped. In contrast, τ

decreases with decreasing Vg. Therefore, the Vg dependence of the half-integer

steps is not attributable to β. We conclude that the disappearance of the half-

integer steps with decreasing Vg is mainly due to the skewness of the CPR.
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FIG. 47. (a) I–V curves at Vg = 0,−1,−2, and −3 V with P = −17 dBm and f = 1.8

GHz [2]. (b) β and τ as functions of Vg [2].

D. Temperature dependence of the half-integer steps

We measured the dependence of the Shapiro steps on T at Vg = 0 V. The

simulated CPR with τ = 0.98 at T = 50, 150, 250, and 750 mK is shown in Fig.

47(a), which shows that the CPR loses skewness as T increases. The I−V curves

measured under microwave irradiation between T = 150 − 900 mK are shown in
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Fig. 47(b). The half-integer steps still appear, whereas the conventional Shapiro

steps disappear as T increases. This is consistent with the experimentally observed

dependence of the CPR on T in Fig. 47(a). This supports the assertion that the

half-integer steps are attributed to the skewed CPR.
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FIG. 48. (a) Short ballistic CPR curves for T = 50 mK (red), T = 150 mK (orange),

T = 250 mK (yellow), and T = 750 mK (blue) at τ = 0.98 [2]. (b) Dependence of the

Shapiro steps on T at f = 4.2 GHz and P = 11 dBm. Each data line is offset by hf/2e,

except for the data line for 150 mK [2].

E. Temperature dependence of the integer steps

Finally, we show the normalized integer Shapiro steps as a ratio of the length

of the integer steps at each T to that at T = 150 mk, which supports the assertion

described above. Fig. 48 shows the normalized step length vs. T . Fig. 48(a),(b),

and (c) corresponds to the steps with n = 0, 1, and 2, respectively. The circular

points represent the experimental data at Vg = 0 V. The square and triangular
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points indicate the numerical results using the RCSJ circuit with short ballistic

CPR and sinusoidal CPR, respectively. The parameters used were τ = 0.98

and β = 0.008. The experimental results coincide with the squares of the short

ballistic Josephson junction rather than the triangles of the sinusoidal CPR. This

also supports the assertion that our device is well characterized by the CPR of a

short ballistic Josephson junction.
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FIG. 49. T dependence of normalized step length ratio at V = nhf/2e for (a) n = 0,

(b) n = 1, and (c) n = 2. The circles, squares, and triangles correspond to the experi-

mental results, the numerical simulation of the short ballistic CPR, and the numerical

simulation of sinusoidal CPR, respectively, [2].
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F. Discussion

When the microwave frequency is greater than the energy relaxation and the

energy gap in the SNS junction, the quasi-particles are directly excited across

the gap by the microwave absorption, resulting in varying CPR. Therefore, this

effect, known as the nonadiabatic effect, causes half-integer Shapiro [40–42]. The

energy gap in the ballistic case corresponds to IswR. IswR with our case of f =

1.8 GHz and Vg = 0 V is estimated as 33 µeV, which is much larger than f =

1.8 GHz. Furthermore, ISwR is smaller with negative Vg. If the nonadiabatic

effect is dominant, then the half-integer steps with smaller Vg of Fig. 47(a) should

be observed clearly because the energy of ISwR closely approaches that of f .

G. Conclusion

We observed the half-integer Shapiro steps in the short ballistic Josephson

junction of an InAs NW. We studied the origin of the experimentally observed

half-integer steps by numerical calculations. A comparison of the Vg dependence

of τ and the T dependence of Isw between the numerical and experimental results

enabled us to confirm the assertion that the half-integer steps originate from CPR

skewness of short ballistic junctions. In addition, this result paves the way for

the observation of MFs using the Shapiro response via the ballistic Josephson

junction.
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Chapter 7

Summary and Outlook

In this thesis, we explored the superconducting properties of InAs DNW or SNW

Josephson junctions, with the goal of generating and detecting robust MBSs with

no magnetic field. The major achievements are described in Chapter 4 to 6. In

Chapter 4, we developed a fabrication method for ballistic Josephson junction

samples using InAs NWs. Compared with previous fabrication techniques in our

group, we achieved the following improvements:

• We refined the fabrication technique to improve the quality of electrical

contacts between a SC and a NW.

• The distance between the SCs is considerably shortened to obtain a ballistic

junction.

• The electron density of the NW is easily controlled using top gates above

the NW.

In Chapter 5, we demonstrated CPS in 1D channels of a DNW for the first time:

• We succeeded in the fabrication of a ballistic SC-DNW-SC Josephson junc-

tion sample.

• The CPS efficiency was controlled with gate voltage and increased to dom-

inate the supercurrent by increasing the 1D electron-electron interaction.

• The condition of inter-wire pairing strength ¿ intra-wire pairing strength

(∆2
CPS > ∆NW1∆NW2) necessary for the emergence of MBSs with no mag-

netic field.
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In Chapter 6, we performed Shapiro step measurement with a ballistic InAs NW

Josephson junction device for the first time and confirmed the specific properties

of the ballistic junction.

• We fabricated a ballistic SC-InAs NW-SC Josephson junction sample.

• Half-integer Shapiro steps, which are consistent with calculations using CPR

for the short ballistic junction, were observed, and their dependencies on

temperature and gate voltage were well understood.

• The relationship between the short ballistic CPR and AC Josephson dy-

namics were clarified.

• We confirmed that the Shapiro step measurement could pave the way for

observing MFs with no magnetic field.

Throughout the thesis, we demonstrated CPS in 1D channels of a SC-DNW-SC

junction and revealed a necessary condition for generating MBSs in the absence

of a magnetic field. We characterized and numerically analyzed the Shapiro-step

features in the ballistic NW Josephson junction. We have deepened our knowledge

of the physics of ballistic junctions and are now prepared to detect MBSs with

the DNW system. Finally, we provide some notes on how to observe MFs.

• There is room for improvement of the SC-NW interface. In the real world,

epitaxial deposition and other methods are being used to improve the inter-

face quality.

• In particular, tuning the Fermi energy in the proximity region is important,

if yet difficult. It is necessary to devise a gate electrode with pinpoint

accuracy, avoiding the SC screening, to generate and detect MBSs.
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• The mechanism of CPS generation in 1D channels is still not clear. It is

important to at least evaluate the inter-wire and intra-wire pairing strengths

correctly.

• To generate the MBSs at zero or weak magnetic fields, it is necessary to

adjust the chemical potential of the proximity region at the cross points of

the SOI split bands, as well as the asymmetry of the SOI energy between

the NWs. For both, it is crucial to control the gate tuning of the two NWs,

which remains challenging. There needs to be a technical development to

devise gate electrodes on the two NWs with pinpoint accuracy to avoid SC

screening.

• In reality, finite contributions of quasiparticles other than MFs are thought

to be present in hybrid SC-NW junction devices. This will affect the error-

free nature of topological quantum calculations, which is one of the greatest

advantages of topological quantum calculations. Therefore, it is essential to

resolve this issue.
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