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Abstract

In the last two decades, our understanding of thermodynamics of small systems has de-
veloped substantially, being formulated as stochastic thermodynamics. For example, when
a pulling experiment of a folded RNA is conducted, the dissipated work fluctuates from
sample to sample even if the experimental condition is fixed. This is in contrast to conven-
tional thermodynamics. To take such stochasticity into account, thermodynamic quantities
are defined at the level of single realizations. This formulation has enabled us to discover
universal laws that hold for nonequilibrium processes far from equilibrium.

Among such laws, a notable example is the fluctuation theorem, which states that the
entropy production is the logarithm of the ratio between forward and backward transition
probabilities, representing the time-reversal symmetry breaking. A closely related concept
is information thermodynamics, which reveals the interplay between the thermodynamic
entropy and information flow. Finally, yet another fundamental relation called the thermo-
dynamic uncertainty relation (TUR) has been discovered recently. The TUR is a tradeoff
relation between the entropy production and the fluctuation of currents, and thus gives a
tight constraint on possible realization of currents.

On another front, living systems are primary examples where nonequilibrium is essen-
tial. Especially, cellular processes are often enhanced by nonequilibrium driving to perform
their function. Recent developments in experiments enable us to observe such cellular ac-
tivities at the level close to elementary stochastic processes. For example, primary cilia,
hairlike organelles protruding from the surface of eukaryotic cells, show apparently random
behavior. A recent study has shown that its nonequilibrium activity is detectable as cir-
culating probability currents in some phase space mapped from the real space dynamics,
and thus the motion of primary cilia is not thermal.

To quantify such nonequilibrium activity beyond the qualitative classification of thermal
or active, the estimation of the entropy production is demanded. However, its estimation
from experimental data is still not an easily tractable problem. For example, the estimation
of the forward and backward transition probabilities requires full details of the stochastic
dynamics, and thus the direct use of the fluctuation theorem is not practical.

The present thesis is devoted to develop a framework for estimating the entropy pro-
duction solely on the basis of time-series data using variational approaches with machine
learning. Especially, we consider to apply the TUR for the estimation. This approach has



been recently proposed, where the main idea is as follows: (i) view the TUR as an inequal-
ity that gives a lower bound on the entropy production, (ii) find an optimal current that
maximizes the lower bound, and (iii) use the lower bound as an estimate of the entropy
production. This variational approach is expected to be data efficient since it requires only
the mean and the variance of a single fluctuating current. In addition, it has been numeri-
cally suggested that this method can give the exact estimate by taking the short-time limit
of the optimizing current (the short-time TUR).

There are three fundamental remaining issues in the previous researches. First, the
equality condition of the short-time TUR has not been analytically studied, and thus
its range of applicability has been unclear. Second, only a few previous studies actually
consider the maximization process in numerical setups that are applicable to practical sit-
uations. Third, its practical effectiveness is not well understood: for example, whether this
approach works well at high-dimensional or non-stationary setups.

To overcome these issues and to go beyond, we present two main results in this thesis.
In the first part, we resolve the above issues and develop a practical estimation method for
stationary dynamics. In the second part, we theoretically reveal the relationship between
several variational representations of the entropy production including the short-time TUR.
Then, an estimation method for non-stationary dynamics is provided. Our method is of
practical significance since all it requires are trajectory data without prior knowledge of
the system parameters. In addition, we find that our method performs well even in high-
dimensional, non-linear, and non-stationary dynamics. Below, we explain these points in
more detail.

In the first part of this thesis, we formulate the short-time TUR and analytically study
the equality condition. As a result, we show that the short-time TUR can give the ex-
act estimate of the entropy production in overdamped Langevin dynamics, while this is
not the case in general Markov jump processes. In addition, we show that the short-time
TUR holds for the partial entropy production of subsystems under autonomous interaction,
which reveals the hierarchy of the estimation when the optimizing currents are partially
masked.

On the basis of the above theoretical result, we develop a practical estimator of the
entropy production for overdamped Langevin dynamics in the stationary state by com-
bining the short-time TUR with machine learning techniques such as the gradient ascent.
The learning estimator works solely on the basis of trajectory data without requiring prior
knowledge of the parameters of the underlying dynamics. We numerically demonstrate
that the learning estimator performs well even in nonlinear and high-dimensional Langevin
dynamics. We also discuss the estimation in Markov jump processes and develop a learning
estimator for them. It is found that the learning estimator is robust against the choice of
the sampling interval of trajectory data, while the exact estimation is shown to be impos-
sible in general.

The estimation of the entropy production in non-stationary dynamics is yet another
important but largely unexplored issue. In the second part of this thesis, we extend the
learning algorithm developed in the first part to non-stationary dynamics. First, we es-
tablish the theoretical relationship between two variational representations of the entropy
production: one is the short-time TUR, and the other is Neural Estimator for Entropy
Production (NEEP) which has been proposed after the short-time TUR. Especially, we



show that the short-time TUR gives a tighter bound on the entropy production than the
NEEP in Langevin dynamics by deriving an intermediate variational representation of
them. In addition, we reveal that the NEEP is related to a dual representation of the
Kullback-Leibler divergence, and show that the NEEP is also applicable to non-stationary
dynamics.

Next, we develop an efficient algorithm for the non-stationary estimation on the ba-
sis of the variational representations. For the non-stationary estimation, an ensemble of
trajectories sampled from repeated experiments is necessary, in contrast to the stationary
case where a single long trajectory is enough. To take advantage of this setup, we propose
a method that finds the optimal currents continuously in time using a feedforward neural
network, namely using the optimal current at one time to help finding the optimal currents
in the near time. Indeed, we numerically find that the estimate of our method converges
not only by increasing the number of trajectories but also by increasing the number of time
instances contained in each trajectory, which is of practical importance since preparing a
large number of trajectories may not be easy.

Meanwhile, as a side issue to the foregoing main two results, we study information-
thermodynamic efficiencies of F1-ATPase (or F1). F1 is a molecular motor, which rotates
and converts chemical energy into mechanical work reversibly and very efficiently. Ac-
cording to recent experiments, the F1 keeps the internal heat dissipation close to zero. A
theoretical study has shown that a reaction-diffusion model of the F1 reproduces its ener-
getics, suggesting that the feedback structure plays a certain role. Since a feedback usually
entails information flow, F1 is interesting from the information-thermodynamic perspective.
However, a quantitative understanding of the interplay between heat dissipation and infor-
mation flow has been lacking. In this thesis, we numerically study the information flow and
the information-thermodynamic dissipation, which is a partial entropy production defined
by heat dissipation minus information flow, on the basis of the reaction-diffusion model.
We show that in the free rotation setup, the rotational degree of freedom plays a role of
Maxwell’s demon, which acquires information of the internal state. From this perspective,
the small internal heat dissipation can be understood as a consequence of the feedback
control by Maxwell’s demon.

In summary, we have made a platform for applying machine learning to the estimation
of the entropy production by variational methods. Our method has been shown to perform
well even in high-dimensional, non-linear and non-stationary dynamics, and thus is appli-
cable to a broad class of stochastic dynamics. Its application to real experimental data
including biological ones is an important future issue. In addition, we have theoretically
established the variational representations of the entropy production. We expect that these
representations are useful for the future searching of universal laws regarding the entropy
production far from equilibrium.
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Chapter 1

Introduction

First of all, we give a brief overview of the background of our research. Then, we summarize
the outline of this thesis.

1.1 Background

Stochastic thermodynamics [1–6] is a recently developed framework for thermodynamics of
small systems such as colloidal particles [7], quantum dots [8], molecular motors [9], and
biochemical networks [10, 11]. In such small systems, thermodynamic quantities fluctuate
due to thermal noise even if we repeat an experiment with the same protocol. Figure 1.1
shows an experiment [12] that repeatedly measures the dissipated work Wdiss := W −∆G
associated with the pulling of a folded RNA molecule. Here, W is the work done on
the molecule, and ∆G is the free energy change. In conventional thermodynamics, Wdiss

takes a deterministic value when the protocol is fixed, and satisfies the second law of ther-
modynamics represented as Wdiss ≥ 0. On the other hand, in the setup of stochastic
thermodynamics, Wdiss fluctuates from sample to sample, and occasionally takes even neg-
ative values as shown in Fig. 1.1(b). Given that, in stochastic thermodynamics, the second
law is satisfied at the ensemble level, ⟨Wdiss⟩ ≥ 0, where the bracket denotes the ensemble
average. To take such stochasticity into account, thermodynamic quantities are defined at
the level of individual realizations, which enables us to explore the universal laws that hold
in non-equilibrium processes far from equilibrium.

A notable example of such universal laws is the fluctuation theorem (or the Jarzyn-
ski equality) [1–3, 6, 12–14], which states that the entropy production S (:= Wdiss/T with
temperature T ) satisfies the equality ⟨exp(−S)⟩ = 1, if the system is driven from equi-
librium to far-from-equilibrium. This relation essentially comes from the fact that the
entropy production can be written as the logarithm of the ratio between the forward and
backward transition probabilities, which quantifies the breaking of time-reversal symme-
try. The fluctuation theorem is regarded as a generalization of the second law including the
higher-order statistics, and the second law ⟨S⟩ ≥ 0 can be derived by the convex inequality
⟨exp(−S)⟩ ≥ exp (−⟨S⟩).

As a closely related concept, information thermodynamics has attracted much atten-
tion recently [15–21]. Information thermodynamics has been originally considered in the
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Figure 1.1: Pulling experiment of a folded RNA molecule. (a) Schematic of the experiment.
An RNA hairpin is pulled by the two beads attached to it. (b) Histogram of the dissipated
work with different pulling speeds from blue (slow) to red (fast). From Ref. [12] (DOI:
10.1126/science.1071152). Reprinted with permission from AAAS.

Figure 1.2: Schematic of Maxwell’s demon. (a) Brownian particle under a staircase poten-
tial with the step height comparable to kBT . The particle typically goes down the stairs,
while it sometimes climbs due to thermal fluctuations. (b) Maxwell’s demon enables the
particle to steadily climb by measurement and feedback control. When the particle jumps
upward, the demon places a thin barrier behind the particle.

http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1126/science.1071152
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context of Maxwell’s demon [22, 23]. For example, let us consider a Brownian particle
under a staircase potential as illustrated in Fig. 1.2(a). The particle typically goes down
the stairs dissipating heat into the environment, while it can climb the stairs with a cer-
tain small probability due to thermal fluctuations if the stair height is comparable to kBT
(kB is the Boltzmann constant). However, if there is a demon that observes the position
of the particle and places a barrier behind the particle right after the upward jump, the
particle can steadily climb the stairs absorbing heat from the environment as illustrated
in Fig. 1.2(b). This can be regarded as a measurement-feedback process at the level of
thermal fluctuations. Since the placement of the barrier does not perform any work on the
particle, this phenomenon apparently violates the second law. Information thermodynam-
ics reveals that information entropy associated with the measurement outcome should be
equally treated as thermodynamic entropy, which compensates for the apparent entropy
decrease to recover the second law in the total system of the particle and the demon. Infor-
mation thermodynamics has been demonstrated in various experiments [24–29]. It has also
theoretically been extended to autonomous processes, where measurement and feedback
control are not separated in time [19,20,30–34].

Meanwhile, another fundamental relation called the thermodynamic uncertainty rela-
tion (TUR) has been discovered recently [35–38]. The TUR is a tradeoff relation between
the dissipation and the fluctuation of currents Jd:

⟨S⟩ ≥ 2kB ⟨Jd⟩2

Var(Jd)
, (1.1)

where Jd depends on the choice of the coefficient d and is called the generalized current
(see Sec. 3.1.1 for the definition), and Var(Jd) is the variance of Jd. The TUR has been one
of the hottest topics in stochastic thermodynamics over the past few years, since the TUR
gives a strictly tighter constraint on the entropy production than the second law, and thus
has a lot of applications. In this thesis, our primary interest lies in its application to the
estimation of the entropy production as described later.

The estimation of the entropy production in biological systems has been gaining much
interest in recent years [39–41]. This is because recent developments in experimental tech-
niques have enabled us to observe dynamics of biological systems at the level close to
elementary stochastic processes, and the entropy production can ideally quantify the en-
ergy consumption of the dynamics [42]. For example, as shown in Fig. 1.3, the entropy
production has been used to quantitatively study the relation between the dynamical sta-
bility and the energy consumption rate of a contractile actomyosin network [39], which is
driven out of equilibrium by the myosin activity. It is concluded that the entropy produc-
tion rate is maximized before the contraction (denoted as S1), while it decreases during the
contraction (denoted as C) because of the mechanical relaxation such as polarity sorting
and filament severing.

The TUR is expected to be useful for the estimation of the entropy production on the
basis of trajectory data [43–45], which is still not an easily tractable problem. For example,
the estimation of the forward and backward transition probabilities requires full details of
the stochastic dynamics, and thus the direct use of the fluctuation theorem is not practical.
On the other hand, the TUR provides a variational estimation method as follows: (i) find
the optimal current J∗

d (or optimal coefficient d∗) that maximizes the lower bound of the



1.1 Background 15

Figure 1.3: Contraction of actomyosin and the entropy production. (a) Filamentous actin
network contracts due to the myosin activity. (b) Ensemble averaged entropy production
per unit length of a single myosin filament. The dynamics is classified as S0 (stable state
before myosin thick filament formation), S1 (stable state as myosin thick filament accumu-
lates), and C (contractile state). The entropy production rate, which is the slope of the
blue dots, is maximized at S1. Reprinted figure from Ref. [39] (DOI: 10.1038/s41467-018-
07413-5). Figure is available under the terms of the Creative Commons Attribution 4.0
International license.

TUR (Eq. (1.1)), and (ii) use the lower bound as an estimate of the entropy production.
This approach is expected to be data efficient, since it only requires the mean and the
variance of a single fluctuating current Jd, which can be estimated with trajectory data.
Moreover, this approach has turned out to be promising because it has been numerically
suggested that the TUR can give the exact estimate, not only a lower bound, of the entropy
production by taking the short-time limit for the generalized current (which we refer to as
the short-time TUR) [45].

There are three fundamental remaining issues in this approach. First, the equality con-
dition of the short-time TUR has not been analytically studied, and its range of applicabil-
ity has been unclear. Second, the previous studies have not considered the maximization
in practical setups. Third, the practical effectiveness of this approach has been still un-
clear, for example, whether this approach is good at high-dimensional data as suggested in
Ref. [44].

In this thesis, we present two main results to establish the variational estimation
method. In the first part, we resolve these issues. First, we formulate the short-time
TUR and reveal the equality condition analytically. Next, we develop a platform for ap-
plying machine learning to this variational approach, and construct practical estimators,
which leverage the benefit of maximization, for stationary dynamics. Then, we numerically
demonstrate the effectiveness of our method, especially in high-dimensional and non-linear
setups.

In the second part, we extend the variational method developed in the first part to
non-stationary dynamics. For the non-stationary estimation, an ensemble of trajectories

http://dx.doi.org/10.1038/s41467-018-07413-5
http://dx.doi.org/10.1038/s41467-018-07413-5
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sampled from repeated experiments is necessary, in contrast to the stationary case where a
single long trajectory is enough. Thus, it is desirable to consider a method that can reduce
the number of necessary trajectories. With this motivation, we propose the continuous-
time estimation scheme that learns the thermodynamic force continuously in time. We
show that the continuous-time estimation is data efficient since the estimate converges not
only by increasing the number of trajectories but also by increasing the sampling frequency
of the trajectories.

Our method is of practical significance since it is solely based on trajectory data and
applicable to a broad class of stochastic dynamics out of equilibrium. More details of our
main results will be summarized in the next section below.

1.2 Outline of the thesis

This thesis is organized as follows. In Chapters 2, 3, and 4, we review fundamental concepts
and previous results related to this study. In Chapters 5, 6, and Appendix A, we show our
main results.

In Chapter 2, we review the framework of stochastic thermodynamics both for Langevin
dynamics and Markov jump processes. We also introduce the partial entropy production to
formulate information thermodynamics. In Chapter 3, we review the TUR. We especially
explain in detail a jump process approximation of Langevin dynamics and the equality
condition of the TUR. In Chapter 4, we review previous studies on the estimation of the
entropy production, especially focusing on non-invasive methods. In the review part, we
assume a little prior knowledge of stochastic calculus and information theory.

In Chapter 5, we establish the variational estimation method of the entropy production
in stationary dynamics using the short-time TUR along with machine learning techniques.
First, we formulate the short-time TUR both for Markov jump processes and overdamped
Langevin dynamics, and reveal the equality condition analytically. We find that the equal-
ity is always achievable in Langevin dynamics, while this is not the case in general Markov
jump processes. Next, we propose a variational estimation method by employing ideas from
machine learning such as the gradient ascent and the data splitting scheme. Then, we con-
struct practical learning estimators and numerically demonstrate our method. As a result,
we find that the learning estimators outperform a previous method in high-dimensional
and non-linear Langevin dynamics. In addition, the learning estimator in Markov jump
processes is shown to be robust against the sampling interval of trajectories.

In Chapter 6, we develop an estimation method of the entropy production in non-
stationary dynamics by extending the learning algorithm developed in Chapter 5. First,
we establish the theoretical relationship between the variational representations including
the short-time TUR. Next, we propose the continuous-time estimation scheme that learns
the time-dependent thermodynamic force by using an ensemble of trajectories. We im-
plement our method using neural networks, and demonstrate it with two linear Langevin
models by comparing the estimation results with the analytical solutions. We show that
the continuous-time estimation method gives an exact estimate of the entropy production
and the thermodynamic force, and that it is data efficient since the estimate converges not
only by increasing the number of trajectories but also by increasing the number of time
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instances contained in each trajectory. We also demonstrate the practical effectiveness of
our method by considering various perturbations to the setup.

In Chapter 7, we summarize the above results and give some remarks on future per-
spectives.

In Appendix A, we study information thermodynamics of a molecular motor called
F1-ATPase (or F1), which is a side issue and rather independent of the foregoing main
results. After we introduce the reaction-diffusion model of F1, we formulate information
thermodynamics of the model. Then, we numerically study the behavior of information-
thermodynamic quantities. We show that F1 is information-thermodynamically efficient,
and even negative internal heat dissipation is realized as a result of the (demon-like) feed-
back structure underlying the dynamics.



Chapter 2

Stochastic thermodynamics

In this chapter, we review the framework of stochastic thermodynamics [1–6]. We explain
its formulation in Langevin dynamics in Sec. 2.1, and Markov jump processes in Sec. 2.2.
In Sec. 2.3, we introduce the partial entropy production, and explain information thermo-
dynamics [15–21].

2.1 Dynamics on continuous state spaces

In this section, we review the framework of stochastic thermodynamics in Langevin dy-
namics. We first explain how thermodynamic quantities are defined at the level of single
trajectories using a simple example, and introduce the first and second laws of thermody-
namics. Then, we introduce a general formulation, and derive the fluctuation theorem and
the expression of the entropy production rate. In the last subsection, we get back to the
first example, and check the consistency of the general formulation.

2.1.1 Stochastic energetics in Langevin dynamics

Let us consider a Brownian particle moving under external force f(t). The dynamics of
the particle can be described by an underdamped Langevin equation:

ẋ(t) = v(t), (2.1)

mv̇(t) = −γv(t) + f(t) +
√

2γTη(t), (2.2)

where m is the mass, γ is the viscous damping coefficient, T is the temperature, and η(t)
is the Gaussian white noise satisfying ⟨η(t)η(t′)⟩ = δ(t − t′). Here, the noise intensity√
2γT is determined by the condition that the velocity should relax to the Boltzmann

distribution, which is often referred to as the second fluctuation-dissipation theorem. Since
the inertia term mv̇t is known to be negligibly small in many experimental setups, the
following equation that drops the inertia term is often used:

γẋ(t) = f(t) +
√
2γTη(t), (2.3)

which is called the overdamped Langevin equation.
The central task to formulate stochastic thermodynamics is to define the heat dissipated
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Figure 2.1: Schematic of a Brownian particle and the entropy change. The dissipated heat
is associated with the entropy change of the medium.

into the environment. Since the particle feels the force (−γẋ(t) +
√
2γTη(t)) from the

environment through the friction and the noise, we can consider that the particle does
the equivalent work against the environment by action-reaction principle. Thus, the heat
dissipated into the environment is identified as [5]

dQ := dx(t) ◦
(
γẋ(t)−

√
2γTη(t)

)
, (2.4)

where ◦ is the Stratonovich product.
We can formulate the first law of thermodynamics by substituting Eq. (2.4) into Eq. (2.2).

A proper definition of the internal energy E depends on the case, and the definition of the
work changes accordingly. For example, if we define the internal energy as E = 1

2
mv2, the

extracted work is identified as dW = −fdx, leading to the first law of thermodynamics:

dE = −dQ− dW. (2.5)

In another case in which the external force is conservative and described by some potential
f(x, t) = −∂xU(x, a) with parameter a(t), it is natural to define the internal energy as
E = 1

2
mv2 + U(x, a), and the extracted work becomes −∂aU(x, a) ◦ da in this case. We

note that these expressions hold straightforwardly in overdamped Langevin dynamics by
setting m = 0.

Next, we introduce the entropy production. The entropy change in the system is
defined by

dSsys := −d ln p(x(t), v(t), t), (2.6)

where p(x, v, t) is the probability density. The system entropy change quantifies the dis-
placement of the Shannon entropy −

∫
dxdvp(x, v, t) ln p(x, v, t) when ensemble averaged.

We note that the Boltzmann constant is set to unity kB = 1 hereafter. In overdamped
Langevin dynamics, the velocity does not appear in the probability density, and the system
entropy change is defined by dSsys := −d ln p(x(t), t). The dissipated heat can be regarded
as the entropy change in the environment, or the medium, dSmed, and the total entropy
production dS is defined as the summation of these terms (see Fig. 2.1 for a schematic):

dSmed :=
dQ

T
, (2.7)

dS := dSsys + dSmed. (2.8)
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We emphasize that the thermodynamic quantities defined in this section are stochastic
quantities at the level of single trajectories. In contrast to the first law, which holds at
the trajectory level by definition, the second law of thermodynamics holds in the ensemble
level as

⟨dS⟩ ≥ 0. (2.9)

It means that the entropy production can be negative with a certain small probability,
while its ensemble average always takes non-negative values. Here, the entropy production
was defined as an infinitesimal displacement, and the entropy production along a trajectory
is defined by its integral

S :=

∫ t

0

dS, (2.10)

which also satisfies the second law ⟨S⟩ ≥ 0. Note that we use d to denote an infinitesimal
displacement in time, but not necessarily the total differentiation, and S is not a state
variable in this thesis.

In the following subsections, we reformulate these thermodynamic quantities in a general
setup, and show that the entropy production satisfies the second law as a consequence of
the fluctuation theorem.

2.1.2 Setup for a general formulation

We consider an n-dimensional Langevin equation with multiplicative noise:

ẋ(t) = A(x(t), t) +B(x(t), t) · η(t), (2.11)

where A(x, t) is the drift vector and B(x, t) is an n× n matrix, and η(t) is the Gaussian
white noise satisfying ⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′). The noise is multiplicative, and the
product · is taken in the Ito sense. Note that when the diffusion matrix depends on the
state variables, the noise is called multiplicative. If it does not, the noise is called additive.

The variables xi can be either even or odd under time reversal. We define the time
reversal operation εx = (ε1x1, ε2x2, ..., εNxN) with εi = ±1 for even and odd variables
xi, respectively. It is convenient to decompose the drift term A(x, t) into reversible and
irreversible components as

Air
i (x, t) :=

1

2
[Ai(x, t) + εiAi(εx, t)] = εiA

ir
i (εx, t), (2.12)

Arev
i (x, t) :=

1

2
[Ai(x, t)− εiAi(εx, t)] = −εiA

rev
i (εx, t). (2.13)

Next, we introduce the Fokker-Planck equation corresponding to the Ito-type Langevin
equation (2.11):

∂tp(x, t) = −∇ j(x, t), (2.14)

j(x, t) := A(x, t)p(x, t)−∇ [D(x, t)p(x, t)] , (2.15)
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where p(x, t) is the probability density, and D(x, t) is the diffusion matrix defined by

D(x, t) :=
1

2
B(x, t)B(x, t)T. (2.16)

The diffusion matrix is assumed to be symmetric under time reversal Di(εx) = Di(x).
The Fokker-Planck equation describes the time-evolution of the probability density,

and is useful for discussing thermodynamic quantities at the ensemble level. For the latter
convenience, we define the reversible and irreversible components of the probability current
j(x, t) as

j(x, t) = ȷir(x, t) + ȷrev(x, t), (2.17)

ȷir(x, t) := Air(x, t)p(x, t)−∇ [D(x, t)p(x, t)] , (2.18)

ȷrev(x, t) := Arev(x, t)p(x, t). (2.19)

In the next subsection, we see that only the irreversible current appears in the expression
of the entropy production rate, which is the reason why it is called irreversible.

2.1.3 Entropy production

Here, we define the entropy production in a general manner, and derive the fluctuation the-
orem and the second law of thermodynamics. Its consistency to the definition in Sec. 2.1.1
is discussed in Sec. 2.1.5. We also introduce the expression of the entropy production rate.

First, the single-step entropy production dS associated with a jump from x to x′ during
a time interval [t, t+ dt] is defined as

dS = dSsys + dSmed, (2.20)

dSsys := ln
p(x, t)

p(x′, t+ dt)
, (2.21)

dSmed := ln
p(x′, t+ dt|x, t)

p(εx, t+ dt|εx′, t)
, (2.22)

where dSsys is the single-step entropy change of the system, and dSmed is that of the
environment, and p(x′, t+dt|x, t) is the transition probability density from x to x′ at time
t. Then, the entropy production along a stochastic trajectory S[x(·), t] is defined by the
integral of dS:

S :=

∫ τ

0

dS. (2.23)

The definition of dSsys is the same as in Sec. 2.1.1, while dSmed is more abstract. If we
accept this definition, it is easy to derive the fluctuation theorem:

⟨exp (−S)⟩ = 1. (2.24)

As a consequence, the entropy production becomes non-negative on average:

⟨S⟩ ≥ 0. (2.25)



22 Stochastic thermodynamics

The derivation is as follows. By definition, the entropy production S can be written
as the logarithm of the ratio between the forward and backward transition probability
densities:

S = ln
p(x(0), 0)

p(x(τ), τ)
+ ln

P [x(τ)|x(0)]
P† [εx(0)|εx(τ)]

, (2.26)

where P is the probability density of the forward transition, P† is that of the backward
transition under the time reversed protocol, and P† [εx(0)|εx(τ)] can be explicitly written
by the product of p(εx(t), t+dt|εx(t+dt), t) for a given path x(t). Then, the fluctuation
theorem can be derived as follows:

⟨exp (−S)⟩ =

∫
dΓp(x(0), 0)P [x(τ)|x(0)] exp (−S) (2.27)

=

∫
dΓp(x(τ), τ)P† [εx(0)|εx(τ)] (2.28)

= 1, (2.29)

where dΓ is the volume element of the forward trajectory, and we used
∫
dx(t)p(εx(t), t+

dt|εx(t + dt), t) = 1. Then, the non-negativity of the mean entropy production directly
follows from the convex inequality ⟨exp(−S)⟩ ≥ exp (−⟨S⟩).

Next, we introduce the entropy production rate. The entropy production rate defined
by σ(t) := ⟨dS⟩ /dt has the following expression:

σ(t) =

∫
dx

ȷir(x, t)TD(x, t)−1ȷir(x, t)

p(x, t)
. (2.30)

The derivation is explained in the next subsection. From this expression, it is clear that
the entropy production rate is non-negative σ(t) ≥ 0. We note that the entropy production
rate is always an averaged quantity, since the variance of dS/dt diverges.

In overdamped Langevin dynamics, the irreversible current equals the probability cur-
rent. In this case, the entropy production rate can be written as

σ(t) =

∫
dx F (x, t)j(x, t), (2.31)

where F (x, t) is the thermodynamic force defined using the mean local velocity ν(x, t) as

F (x, t) := ν(x, t)TD(x, t)−1, (2.32)

ν(x, t) := j(x, t)/p(x, t). (2.33)

The thermodynamic force quantifies the local dissipation, and contains information of
the system and the medium entropy changes. For example, if the diffusion matrix is
independent of the state variables, the thermodynamic force is explicitly written as

F (x, t) = D−1A(x, t)−∇ ln p(x, t). (2.34)

Here, the first term quantifies the local medium entropy change, and the second term
quantifies the local system entropy change.
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2.1.4 Derivation of the entropy production rate

In this subsection, we derive the expression (2.30), generalizing the derivation in Ref. [46]
where the diffusion matrix is assumed to be diagonal.

Transition probability density

Here, we derive the transition probability density p(x′, t + dt|x, t), which is necessary for
calculating dS. The transition probability density for the Fokker-Planck equation (2.14)
can be obtained as

p(x′, t+ dt|x, t) = N exp

[
− 1

4dt
P TD−1P − a∇A(z)dt+ a2Qdt

]
, (2.35a)

N :=
1√

(4πdt)n det(D(z))
(2.35b)

P := x′ − x−A(z)dt+ 2a∇D(z)dt, (2.35c)

Q :=
∑
i,j

∇i∇jDij(x)
∣∣
x=z

, (2.35d)

where the time dependence of each term is omitted for simplicity. The parameter a can
be chosen arbitrarily ranging from 0 to 1, which determines the evaluation point z :=
ax′ + (1− a)x.

We give some remarks for the free parameter a. The transition probability density
is correct up to the order of dt, whatever value is used for a. It can be determined
independently of the underlying dynamics, and thus we need not choose a = 0 even if
the underlying dynamics is the Ito-type Langevin equation (2.11).

However, the choice of a is important when we calculate the entropy production. Let
us say that the evaluation point for the backward transition probability density p(εx, t +
dt|εx′, t) is z′ = bx + (1 − b)x′. Then, it is shown that a + b = 1 should be satisfied
so that the entropy production becomes independent of the free parameters a and b [46].
This condition means that both the forward and backward transition probability densities
should be evaluated at the same point, i.e., z′ = z.

Here, we derive the transition probability density (2.35a). We first rewrite the Fokker-
Planck equation (2.14) using the time-evolution operator LFP(x) as

∂tp(x, t) = LFP(x)p(x, t), (2.36)

LFP(x) := −∇A(x) +
∑
i,j

∇i∇jDij(x). (2.37)

Since Eq. (2.36) means p(x, t + dt) = [1 + LFP(x)dt] p(x, t), we can derive the transition
probability density by dividing the both sides by p(x0, t) as

p(x, t+ dt|x0, t) = [1 + LFP(z)dt+O(dt2)] δ(x− x0), (2.38)

LFP(z) = −∇A(z) +
∑
i,j

∇i∇jDij(z) (2.39)

= − [a∇A(z)]−A(z)∇+
[
a2∇i∇jDij(z)

]
+2a [∇iDij(z)]∇j +Dij(z)∇i∇j, (2.40)



24 Stochastic thermodynamics

where we replaced x with z since the change of LFP(z, t)dt is just O(dt2). Then, we can get
Eq. (2.35a) by using the Fourier transformation of δ(x−x0) and conducting the Gaussian
integral [47].

Derivation of Eq. (2.30)

We derive the expression (2.30) of the entropy production rate. The evaluation point is
set to a = 0 and b = 1 here for simplicity. In this case, the forward transition probability
density becomes

p(x′, t+ dt|x, t) = N exp

[
− 1

4dt
P TD−1P

]
(2.41a)

P := x′ − x−
(
Arev(x) +Air(x)

)
dt, (2.41b)

while the backward transition probability density becomes

p(εx, t+ dt|εx′, t) = N exp

[
− 1

4dt
P ′TD−1P ′ − ε∇

(
Arev(εx) +Air(εx)

)
dt+Qdt

]
(2.42a)

= N exp

[
− 1

4dt
P ′TD−1P ′ −∇

(
−Arev(x) +Air(x)

)
dt+Qdt

]
, (2.42b)

P ′ := −ε(x′ − x)−
(
Arev(εx) +Air(εx)

)
dt+ 2ε∇D(εx)dt (2.42c)

= ε
{
−(x′ − x)−

(
−Arev(x) +Air(x)

)
dt+ 2∇D(x)dt

}
(2.42d)

= −(x′ − x)−
(
−Arev(x) +Air(x)

)
dt+ 2∇D(x)dt, (2.42e)

Q :=
∑
i,j

εi∇iεj∇jDij(εx) (2.42f)

=
∑
i,j

∇i∇jDij(εx), (2.42g)

where in the third line of P ′ and in the second line of Q, we used the fact that ε cancels at
P ′TD−1P ′. The medium entropy change is evaluated as the logarithm of the ratio between
these two probability densities. On the other hand, the system entropy change is evaluated
as

dSsys = −d [ln p] (2.43a)

= −1

p
∂tp dt− 1

p
(∇p) dx− 1

2

∑
i,j

∇i∇j ln p dxidxj (2.43b)

= −1

p
∂tp dt− 1

p
(∇p) dx−

∑
i,j

Dij∇i∇j ln p dt. (2.43c)

Then, we calculate the entropy production rate by taking the average:

σ(t) =
⟨dS⟩
dt

(2.44a)

=
1

dt

∫
dx

∫
dx′p(x, t)p(x′, t+ dt|x, t)dS (2.44b)

=:
1

dt

∫
dx p(x, t) ⟨dS|x⟩ , (2.44c)
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where ⟨dS|x⟩ :=
∫
dx′p(x′, t + dt|x, t)dS is the conditional average. It is straightforward

to calculate σ(t) by noticing the fact that the conditional average ⟨dS|x⟩ can be evaluated
just by replacing x′ − x with

(
Arev +Air

)
dt. The conditional averages of the system and

medium entropy change rates are evaluated as

⟨dSmed|x⟩
dt

=
1

dt

〈
ln

p(x′, t+ dt|x, t)
p(εx, t+ dt|εx′, t)

∣∣∣∣ x〉 , (2.45a)

= (∇ D)TD−1(∇D)−AirD−1∇D − (∇D)T D−1Air +AirD−1Air

+∇ Air −∇ Arev −
∑
i,j

∇i∇jDij, (2.45b)

⟨dSsys|x⟩
dt

= −1

p
∂tp−

1

p
(∇p)

(
Arev +Air

)
−
∑
i,j

Dij∇i∇j ln p. (2.45c)

Then, we get the expression (2.30) of the entropy production rate by substituting the sum of
these terms into Eq. (2.44c), and assuming p(x, t) and ∇i p(x, t) vanish at the boundaries.

2.1.5 Consistency of the general formulation

In this subsection, we get back to the first example, and check the consistency of the general
formulation. In the general formulation, the medium entropy change is defined as the loga-
rithm of the ratio between forward and backward transition probabilities. Its connection to
the heat dissipation (Eq. (2.7)) is actually guaranteed by the second fluctuation-dissipation
theorem, which determines the noise intensity. In the following, we see this connection by
evaluating Eq. (2.22).

If we adopt the underdamped Langevin equation (2.2), the drift term is decomposed
into Air

v = −γv/m and Arev
v = f/m. Then, the medium entropy change is evaluated as

ln
p(v′, t+ dt|v, t)

p(−v, t+ dt| − v′, t)
= Air

vD
−1(v′ − v − Arev

v dt) + ∂vA
ir
v (2.46a)

= −mv

T

(
dv − f

m
dt

)
− γ

m
dt (2.46b)

=
1

T

(
γv2dt− v

√
2γTη − γT

m
dt

)
. (2.46c)

On the other hand, the dissipated heat is evaluated as

dQ = dx ◦ (γẋ−
√

2γTη) (2.47a)

= γv2dt− v + v′

2

√
2γTη (2.47b)

= γv2dt− v
√

2γTη − dv

2

√
2γTη (2.47c)

= γv2dt− v
√

2γTη − γT

m
dt. (2.47d)

Therefore, dSmed = dQ/T holds. It is important to notice that the Stratonovich product
in dQ is essential to derive this relation.
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Even if the overdamped Langevin equation (2.3) is adopted, we can get the same rela-
tion. In this case, the drift term is decomposed into Air

x = f/γ and Arev
x = 0. Then, the

medium entropy change is evaluated as

ln
p(x′, t+ dt|x, t)
p(x, t+ dt|x′, t)

= Air
xD

−1(x′ − x− Arev
x dt) (2.48a)

=
f

T
dx (2.48b)

= (γẋ−
√
2γTη)dx. (2.48c)

Thus, dSmed = dQ/T holds. We note that the Stratonovich product is equivalent to the
normal product in this case as can be seen from Eq. (2.48b).

2.2 Dynamics on discrete state spaces

In this section, we briefly review the framework of stochastic thermodynamics in Markov
jump processes. We consider a system with a finite number of states, whose jump dynamics
is described by a continuous-time Markov jump process. If we write the transition rate
from y to z as rt(y, z), the probability distribution pt(x) evolves according to the master
equation:

∂tpt(x) =
∑
y

j(y, x; t) (2.49)

:=
∑
y

pt(y)rt(y, x)− pt(x)rt(x, y), (2.50)

where j(y, z; t) is the probability current from y to z.
We assume that each transition is coupled to a bath at temperature T , and satisfies the

local detailed balance condition:

Q(y, z; t)

T
= ln

rt(y, z)

rt(z, y)
, (2.51)

where Q(y, z; t) is the heat dissipation associated with the transition from y to z. This
condition guarantees that the logarithm of the ratio between forward and backward tran-
sition probabilities corresponds to the heat dissipation, and Eq. (2.51) can be regarded as
the medium entropy change.

We define the total entropy production. Let us consider the case that jumps occur N
times at t1, ..., tN during a time interval [0, τ ] (t0 := 0, tN+1 := τ). The entropy production
along this trajectory is defined by

S :=
1

T

N∑
i=1

Q(xi−1, xi; ti) + ∆s, (2.52)

∆s := ln p0(x0)− ln pτ (xN), (2.53)

where xi is the state during [ti, ti+1], and ∆s is the system entropy change. Then, it is easy
to show that the entropy production satisfies the fluctuation theorem, and thus ⟨S⟩ ≥ 0
holds.
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2.3 Partial entropy production

In this section, we introduce the partial entropy production [48, 49] for Markov jump pro-
cesses using the setup in Sec. 2.2. The partial entropy production is a proper definition
of the entropy production of subsystems under autonomous interaction. If it is applied to
a bivariate system and ensemble-averaged, it gives an information-thermodynamic dissi-
pation. In the following, we introduce the partial entropy production, and briefly explain
information thermodynamics.

Here, we consider to define the partial entropy production in a hierarchical manner. We
first define the partial entropy production on a transition from y to z (written as Sy→z),
and then on a set of transitions Ω (written as SΩ). There are two requirements for the
definition.

• (i)Additivity : SΩ =
∑

y→z∈Ω

Sy→z and S = SG, where G is all the transitions.

• (ii)Fluctuation theorem : ⟨exp (−SΩ)⟩ = 1 holds for any set of transitions Ω.

It is nontrivial that there is such a decomposition of the total entropy production. However,
it is shown in Ref. [48] that the partial entropy production defined below satisfies these
conditions.

The partial entropy production associated with a transition from y to z (hereafter
denoted by y → z) is defined as

Sy→z :=
1

T
Qy→z +∆sy→z, (2.54)

where Qy→z is the heat dissipation that occurred on the transition y → z:

Qy→z :=
N∑
i=1

Q(xi−1, xi; ti)δy,xi−1
δz,xi

, (2.55)

and ∆sy→z is the system entropy change that occurred on the transition y → z:

∆sy→z := sy→z,jump −
∫ τ

0

j(y, z; t)δx(t),z
pt(z)

dt, (2.56)

sy→z,jump :=
N∑
i=1

{ln pti(xi−1)− ln pti(xi)} δy,xi−1
δz,xi

. (2.57)

Here, Qy→z and sy→z,jump are associated with jumps on the transition, while the second
term of ∆sy→z changes between jumps. The meaning of ∆sy→z becomes clear by considering
the derivative of − ln pt(x(t)) as

d [− ln pt(x(t))] = ln pt(x(t))− ln pt+dt(x(t+ dt)) (2.58a)

= −∂tpt(x)

p(x)
dt

∣∣∣∣
x=x(t)

+ ln pt(x(t))− ln pt(x(t+ dt)) (2.58b)

= −
∑
y

j(y, z; t)

pt(z)
dt

∣∣∣∣
z=x(t)

+ ln pt(x(t))− ln pt(x(t+ dt)). (2.58c)
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Thus, ∆sy→z quantifies the contribution of the transition y → z to d[− ln pt(x(t))] during
the time interval [0, τ ], and satisfies∑

y→z∈G

∆sy→z =

∫ τ

0

d [− ln pt(x(t))] (2.59a)

= ln p0(x0)− ln pτ (xN). (2.59b)

The partial entropy production for a set of transitions Ω is then defined by summing
Sy→z

SΩ :=
∑

y→z∈Ω

Sy→z. (2.60)

It is shown in Ref. [48] that SΩ satisfies the fluctuation theorem ⟨exp (−SΩ)⟩ = 1, and thus
⟨SΩ⟩ ≥ 0 holds.

In the following, we study the average of the partial entropy production for two cases:
(i) on a transition edge, i.e., Ω = {y → z, z → y}, and (ii) on a subsystem of a bipartite sys-
tem, where the partial entropy production corresponds to the information-thermodynamic
dissipation (see Fig. 2.2 for schematics).

A transition edge

We define the partial entropy production rate associated with a transition edge between
y and z as σ(y,z) := (⟨dSy→z⟩+ ⟨dSz→y⟩) /dt. The partial entropy production rate can be
explicitly obtained as follows:

σ(y,z) = j(y, z; t) ln
pt(y)rt(y, z)

pt(z)rt(z, y)
. (2.61)

In the derivation, we use the fact that the second term of ∆s cancels with each other when
averaged: 〈

j(y, z; t)δx(t),z
pt(z)

〉
+

〈
j(z, y; t)δx(t),y

pt(y)

〉
= j(y, z; t) + j(z, y; t) (2.62a)

= 0. (2.62b)

This means that the second term is relevant only for the higher order cumulants of the
partial entropy production when both directions of each transition are included in Ω.

Bipartite system

Here, we consider the partial entropy production of a bipartite system. Let us assume that
the system is described as a direct product of subsystems X and Y , whose state is written
as {x, y}. Note that we use X,Y to denote the stochastic variables, and x, y to denote their
states here. It is called bipartite when the transition rate from {x, y} to {x′, y′} satisfies
the following condition:

rt ({x, y}, {x′, y′}) = 0 if x ̸= x′ and y ̸= y′. (2.63)
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Figure 2.2: Schematics of the set of transitions described by the red arrows: (a) a transition
edge, (b) a subsystem of a bipartite system. In (a), only a part of a whole network is drawn.
In (b), we show a four state model with states (x, y), where the subsystems take two values
0 or 1.

This means that the two variables do not jump simultaneously, or its probability is negli-
gibly small. With the bipartite condition, the probability current is decomposed into two
parts:

∂tpt(x, y) =
∑
x′,y′

j ({x′, y′}, {x, y}; t) (2.64a)

=
∑
x′

j ({x′, y}, {x, y}; t) +
∑
y′

j ({x, y′}, {x, y}; t) . (2.64b)

We define SX (resp. SY ) as the partial entropy production associated with transitions
by the subsystem X (resp. Y ). Then, their rates are explicitly obtained as follows [19]:

σX =
∑

x>x′,y

j ({x′, y}, {x, y}; t) ln pt(x
′, y)rt ({x′, y}, {x, y})

pt(x, y)rt ({x, y}, {x′, y})
, (2.65)

σY =
∑

x,y>y′

j ({x, y′}, {x, y}; t) ln pt(x, y
′)rt ({x, y′}, {x, y})

pt(x, y)rt ({x, y}, {x, y′})
. (2.66)

σX can be decomposed into three parts:

σX = σsys
X + σmed

X − lX , (2.67)

σsys
X :=

∑
x>x′,y

j ({x′, y}, {x, y}; t) ln pt(x
′)

pt(x)
, (2.68)

σmed
X :=

∑
x>x′,y

j ({x′, y}, {x, y}; t) ln rt ({x′, y}, {x, y})
rt ({x, y}, {x′, y})

, (2.69)

lX :=
∑

x>x′,y

j ({x′, y}, {x, y}; t) ln pt(y|x)
pt(y|x′)

, (2.70)

where pt(y|x) is the conditional probability defined by pt(y|x) := pt(x, y)/pt(x). The partial
entropy production rate σY can also be decomposed into three parts σsys

Y , σmed
Y , and lY in
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the same manner. We call σX and σY information-thermodynamic dissipation.
In addition to the conventional entropy production σsys

X +σmed
X , an information-theoretic

term lX called learning rate [30, 31, 33, 34] appears in σX . To illustrate the meaning of lX ,
we introduce the mutual information I(X,Y ; t) defined by

I(X,Y ; t) :=
∑
x,y

pt(x, y) ln
pt(x, y)

pt(x)pt(y)
≥ 0. (2.71)

The mutual information quantifies the correlation between X and Y . For example, it
becomes zero if and only if the two variables are independent, i.e., pt(x, y) = pt(x)pt(y) for
any pair of x and y. The learning rate of X (resp. Y ) quantifies the increase of the mutual
information by the transitions of X (resp. Y ), and their sum equals the time derivative of
the mutual information:

∂tI(X,Y ; t) =
∑
x,y

{
∂tpt(x, y) ln

pt(x, y)

pt(x)pt(y)
+ pt(x, y)∂t

(
ln

pt(x, y)

pt(x)pt(y)

)}
(2.72a)

=
∑
x,y

∂tpt(x, y) ln
pt(x, y)

pt(x)pt(y)
(2.72b)

=
∑
x,y

∑
x′

j ({x′, y}, {x, y}; t) ln pt(x, y)

pt(x)pt(y)

+
∑
x,y

∑
y′

j ({x, y′}, {x, y}; t) ln pt(x, y)

pt(x)pt(y)
(2.72c)

=
∑

x>x′,y

j ({x′, y}, {x, y}; t)
(
ln

pt(x, y)

pt(x)pt(y)
− ln

pt(x
′, y)

pt(x′)pt(y)

)
+
∑

x,y>y′

j ({x, y′}, {x, y}; t)
(
ln

pt(x, y)

pt(x)pt(y)
− ln

pt(x, y
′)

pt(x)pt(y′)

)
(2.72d)

= lX + lY . (2.72e)

Thus, lX + lY = 0 holds in the stationary state.
We can interpret the information-thermodynamic dissipation in the context of Maxwell’s

demon [21]. For example, if lX > 0 and lY < 0 hold, X is Maxwell’s demon and Y is the
controlled system. This is because lX > 0 means that X acquires information of Y , while
lY < 0 means that the correlation is consumed, which suggests that X performs feedback
control on Y . As a consequence of the feedback control, the conventional entropy produc-
tion σsys

Y +σmed
Y can be negative because of the second law of information thermodynamics:

σsys
Y + σmed

Y ≥ lY . (2.73)

In the stationary state, it can be written as

Q̇Y ≥ T lY . (2.74)

Thus, the heat dissipation from the subsystem Y can be negative under the feedback
control. Indeed, such phenomena have been realized in several artificial setups [27, 28,
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50]. We note that the second law of thermodynamics can be recovered by summing the
contribution from X as

Q̇X + Q̇Y ≥ T (lX + lY ) = 0. (2.75)



Chapter 3

Thermodynamic uncertainty relation

In this chapter, we review thermodynamic uncertainty relation (TUR). In Sec. 3.1, we
explain the main idea, and provide a brief review on this topic. In Sec. 3.2, we explain the
outline of the derivation proposed in Refs. [36, 43], which are based on the large deviation
theory. In Sec. 3.3, we review previous results on the tightness of the TUR bound.

3.1 Overview

In this section, we introduce the TUR, and provide a brief review on its extensions and
applications.

3.1.1 Main idea

Recently, a fundamental relation called TUR has been proposed [35–38]. Roughly speaking,
the TUR represents a tradeoff relation between dissipation and fluctuation of currents:

σ
τVar(jd)

⟨jd⟩2
≥ 2, (3.1)

where ⟨jd⟩ and Var(jd) are the mean and the variance of a fluctuating current jd called
generalized current, and τ is the observation time of the current. Here, the generalized
current jd includes any current observables, and thus Eq. (3.1) imposes strict limitation on
the realization of currents. This relation can also be viewed as a refinement of the second
law, since it means that the entropy production rate becomes strictly positive under the
presence of any currents unless their variance is finite.

This relation has been mainly formulated for stationary dynamics described by Markov
jump processes [35–37] or overdamped Langevin dynamics [51]. Here, we explain the
definition of the generalized current in these processes. In Markov jump processes, we first
define an integrated empirical current on a transition edge from y to z as

Jτ (y, z) :=

∫ τ

0

dt(δx(t−),yδx(t+),z − δx(t−),zδx(t+),y), (3.2)

where x(t±) represents the state before (after) the jump at time t. Jτ (y, z) counts the net
number of jumps from y to z during the time interval [0, τ ]. We define the integrated
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Figure 3.1: Generalized current in Langevin dynamics. (a) A sample trajectory generated
by the two beads model (the details of the model can be found in Sec. 5.3) and the thermo-
dynamic force field. (b) The generalized current is defined as the slope of the accumulated
current (3.3), which is a stochastic variable as illustrated in the inset figure. Reprinted
figure from [44] (DOI: 10.1038/s41467-019-09631-x). Figure is available under the terms of
the Creative Commons Attribution 4.0 International license.

generalized current as a linear combination of Jτ (y, z) with some coefficient satisfying
d(y, z) = −d(z, y):

Jd :=
∑
y,z

d(y, z)Jτ (y, z). (3.3)

Then, the generalized current is defined by jd := Jd/τ . We stress that these are stochastic
variables, and the mean and the variance of any generalized current satisfy the TUR (3.1).
Here, the observation time τ is relevant for the variance τVar(jd), while ⟨jd⟩ and σ are
independent of τ in the stationary state. Thus, we often distinguish the TUR in terms
of the time scale as follows: the long-time TUR (τ → ∞), the finite-time TUR (τ > 0),
and the short-time TUR (τ → 0). Among them, the finite-time TUR is the most general
concept, and includes the others.

An important example of the generalized current is the entropy production. In this case,
we use d(y, z) = ln π(y)r(y,z)

π(z)r(z,y)
for the coefficient, where r(y, z) is the transition rate from y to

z and π is the stationary distribution. Then, Jd represents the entropy production during
the observation time [0, τ ], and the mean of jd gives the entropy production rate as

⟨jd⟩ =
∑
y,z

{π(y)r(y, z)− π(z)r(z, y)} ln π(y)r(y, z)

π(z)r(z, y)
. (3.4)

In the same manner, any currents associated with transitions can be expressed as the
generalized current.

In Langevin dynamics, the integrated generalized current is defined by

Jd :=

∫ τ

0

d(x) ◦ dx(t), (3.5)

http://dx.doi.org/10.1038/s41467-019-09631-x
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which is the integral of the Stratonovich product between some coefficient field d(x) and
the displacement of the state dx(t) := x(t+dt)−x(t). Once again, an important example
is the entropy production, where the coefficient field is given by the thermodynamic force
F (x). Since x(t) changes stochastically, Jd is a stochastic variable, and its time average
jd = Jd/τ satisfies the TUR (3.1) for any choice of d(x). In Fig. 3.1, we illustrate a sample
trajectory and the corresponding generalized current.

In this chapter, the expression of (3.1) that consists of the rate quantities is studied
since it fits to the large deviation analysis in the next section, while in the later chapters
we often use the following expression:

σ
τVar(Jd)

⟨Jd⟩2
≥ 2, (3.6)

which consists of the integrated quantities by viewing στ as the mean entropy production
during the time interval τ . This is because Var(jd) diverges in the short-time limit τ → 0.

3.1.2 Extensions and applications of the TUR

Here, we review the recent development of the TUR. The TUR has been first proposed in
biomolecular processes [35]. Rigorous proofs are provided for the long-time TUR (τ → ∞)
for the first time [36], and then for the finite-time TUR in Markov jump processes [37, 52]
and overdamped Langevin dynamics [43,51]. Since then, numerous works have studied the
range of applicability, for example, in underdamped Langevin dynamics [53–56], processes
under measurement and feedback control [57,58], periodically driven systems [59–61], and
discrete-time systems [62], all of which require some modifications to the original expression
(3.1). Moreover, various extensions [63–70] or generalizations [71–75] of the original TUR
have been considered. Given these theoretical developments, it is interesting to consider
its application. In the following, we give three examples.

Efficiency bound

Since the TUR is a refinement of the second law, it is interesting to consider how the TUR
imposes fundamental limits on thermodynamic efficiencies [76,77].

For example, in Ref. [76], a thermodynamic efficiency of a molecular motor is studied,
where the molecular motor walks along a periodic track with velocity v against an external
force f . The thermodynamic efficiency is defined by the ratio between the extracted work
fv and the rate of chemical energy consumption ẇchem as η := fv/ẇchem. As a consequence
of the TUR, η is bounded by

η ≤ 1

1 + vkBT/Df
, (3.7)

which is strictly tighter than the bound η ≤ 1 given by the second law. Here, T is
the temperature, and D is the diffusion coefficient. This bound not only deepens our
understanding of the limitation but also provides a useful information on the efficiency in
experiments, since the bound consists of quantities measurable through the kinetic motion
of the motor.
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Optimal engine beyond the TUR

The search for an optimal engine whose efficiency surpasses the original TUR bound is an
interesting direction. In order to realize such an engine, we need to violate some of the
necessary conditions of the TUR.

An interesting example is a periodically driven system [59, 78]. Since it is not a sta-
tionary process, the TUR (3.1) does not necessarily hold. It is shown in Ref. [78] that the
following inequality holds when a system is periodically driven by changing some parame-
ters with a frequency ω:

σ
DJ

J2
≥
[
1− ω

J ′

J

]2
, (3.8)

where J is the mean of the generalized current per period, and DJ is its diffusion coefficient,
and ′ is the derivative with respect to ω. This relation suggests that the TUR bound goes
to zero when the current is proportional to the frequency, i.e, J(ω) ∝ ω. Indeed, such an
example is presented in Ref. [59], and it is shown that an adiabatic pump system [79–81]
can achieve arbitrary precision at arbitrarily low cost.

Estimation of the entropy production

The application of the TUR for the estimation of the entropy production is one of the hot
topics recently [43–45]. Since this is the main interest of this thesis, we explain it in detail
in the next chapter. For this application, the tightness of the TUR bound becomes an
important issue. Thus, in the last section of this chapter, we give a review on this point.

3.2 Derivation of the TUR

In this section, we explain the outline of the proof of the TUR proposed in Refs. [36,43]. In
Sec. 3.2.1, we explain the proof of the TUR in Markov jump processes [36]. In Sec. 3.2.2,
we show that the TUR straightforwardly holds in overdamped Langevin dynamics since it
is a special limit of Markov jump processes [43].

3.2.1 Markov jump process

Here, we explain the derivation of the long-time TUR in Markov jump processes [36]. The
idea is to study the rate function I(jd) of the generalized current, which is defined by

I(jd) := lim
τ→∞

−1

τ
lnP (Jd = τjd). (3.9)

This means that the probability of taking Jd (or corresponding jd) asymptotically behaves
as e−τI(jd) in the long time limit τ → ∞. The rate function should satisfy I(jd) ≥ 0
and take the minimum value of 0 at the stationary value jπd , i.e., I(j

π
d ) = 0 so that the

probability distribution converges properly. Here, π denotes the value in the stationary
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state, and jπd can be explicitly written as

jπd =
∑
y<z

d(y, z){π(y)r(y, z)− π(z)r(z, y)}. (3.10)

As a result of the above properties, we get I(jd) = I ′′(jπd )(jd − jπd )
2 + o ((jd − jπd )

2) by the
Taylor expansion around jπd . Since it means that P (jd) ∼ exp [−τI ′′(jπd )(jd − jπd )

2] in the
long time limit, the probability distribution of jd converges to the Gaussian distribution
with mean ⟨jd⟩ = jπd and variance Var(jd) = 1/ (τI ′′(jd)), which corresponds to the central
limit theorem.

Since it is hard to obtain the analytical expression for I(jd), we consider to evaluate
I(jd) by deriving a bound. The starting point is the rate function I(p, j) for the empirical
density pτ (y) =

1
τ

∫ τ

0
dtδx(t),y and the empirical current jτ = Jτ/τ (see Eq. (3.2)), whose an-

alytical expression is obtained in Ref. [82]. Note that I(p, j) is a function of set {p(y)} and
{j(y, z)} for all y and z. Then, the rate function for the generalized current is obtained by
the contraction principle, i.e., I(jd) = infp,j I(p, j), where the infimum is taken over all p(y)
and j(y, z) that satisfies the conservation law of the current and

∑
y,z d(y, z)j(y, z) = jd.

Although infp,j I(p, j) is not analytically solvable, it is feasible to obtain a bound. Con-
cretely, a bound on I(jd) is obtained in Ref. [36] as

I(jd) ≤
(jd − jπd )

2

4(jπd )
2

σ, (3.11)

which leads to

I ′′(jd) ≤
σ

2(jπd )
2
. (3.12)

Therefore, we get the TUR (3.1) by substituting I ′′(jd) = 1/ (τVar(jd)) and jπd = ⟨jd⟩.
The derived inequality is the long-time TUR since Var(jd) is the variance obtained in the
long-time limit. We note that the finite-time TUR can also be proved in the same manner
by considering the large deviation on the number of copy processes, i.e., by preparing N
independent finite-length trajectories and considering the rate function for N → ∞ [37].

3.2.2 Overdamped Langevin dynamics

Next, we explain that overdamped Langevin dynamics is a special limit of Markov jump
processes, and thus the TUR holds straightforwardly [43]. Here, we slightly extend the dis-
cussion in Ref. [43], and consider an n-dimensional Langevin equation with multiplicative
noise described by Eq. (2.11) for the latter use in Chap. 5.

We explain a jump process approximation of the Langevin dynamics described by
Eq. (2.11). Here, we assume without loss of generality that the diffusion matrix is di-
agonal by transforming the coordinates properly. The Langevin dynamics can be spatially
discretized into a Markov jump process with lattice states, whose lattice spacing is h. We
describe the unit vector in the i-th axis as ei, and the transition rates from x to x±hei as
Wi,±(x). Here, Wi,±(x) should be determined so that the first two jump moments match
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Figure 3.2: A jump process approximation of Langevin dynamics. The continuous space is
discretized into lattice states.

the drift term and the diffusion matrix [83]. This can be realized, for example, by requiring

h (Wi,+(x)−Wi,−(x)) = Ai(x), (3.13)

h2 (Wi,+(x) +Wi,−(x)) = 2Dii(x). (3.14)

Then, we obtain the transition rates of the jump process approximation as

Wi,+(x) =
Ai(x)

2h
+

Dii(x)

h2
, (3.15)

Wi,−(x) = −Ai(x)

2h
+

Dii(x)

h2
, (3.16)

whose dynamics converges to the Langevin dynamics described by Eq. (2.11) as h → 0.
This approximation preserves the structure of thermodynamics. For example, the prob-

ability current (2.15) and the thermodynamic force (2.32) are obtained as

jpi,+(x) = p(x)Wi,+(x)− p(x+ hei)Wi,−(x+ hei) (3.17a)

= (Ai(x)ρ(x)−∇i [Dii(x)ρ(x)])h
n−1 +O(hn) (3.17b)

= J ρ
i (x)h

n−1 +O(h2), (3.17c)

and

F p
i,+(x) = ln

p(x)Wi,+(x)

p(x+ hei)Wi,−(x+ hei)
(3.18a)

=
1

Dii(x)ρ(x)
(Ai(x)ρ(x)−∇i [Dii(x)ρ(x)])h+O(h2) (3.18b)

= Fρ
i (x)h+O(h2), (3.18c)
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where ρ(x) = p(x)hn. Here, different notations ρ(x), J ρ
i (x) and Fρ

i (x) are used for the
Langevin dynamics to distinguish them from their counterparts, p(x), jpi,+(x) and F p

i,+(x),
in the Markov jump process. The expression of the entropy production rate (2.30) is also
obtained as∑

x,i

jpi,+(x)F
p
i,+(x) =

∑
x,i

J ρ
i (x)F

ρ
i (x)h

n →
∫

dx
∑
i

J ρ
i (x)F

ρ
i (x). (3.19)

Thus, the results obtained in Markov jump processes straightforwardly hold in overdamped
Langevin dynamics.

In Ref. [43], the tightness of the long-time TUR in Langevin dynamics is further dis-
cussed using this approximation. They concluded that the equality of the long-time TUR
is not generally achievable, while the bound on the rate function (3.1) is tighter in Langevin
dynamics than in Markov jump processes in the sense that one of inequalities appeared in
the derivation of Eq. (3.1) becomes equality.

We note that a similar approximation holds for underdamped Langevin dynamics, while
in that case the distinction of transitions between reversible and irreversible contributions
is necessary in the approximated jump process [84], and thus results obtained in Markov
jump processes cannot be directly applied to underdamped Langevin dynamics.

3.3 Equality condition

Here, we review previous results on the equality condition of the TUR. As explained in
the previous section, the equality of the long-time TUR is not generally achievable even in
Langevin dynamics. This fact directly means that the equality of the finite-time TUR is not
generally achievable both in Langevin dynamics and Markov jump processes. Importantly,
however, this fact does not tell anything about particular cases such as the short-time limit,
which we study in detail in Chap. 5. Similarly, the equality of the finite-time TUR is known
to be always achievable in the equilibrium limit [36, 63, 66, 67] although this is somewhat
trivial since σ goes to zero.

Then, it is interesting to question which current makes the bound tightest, even though
the equality may not be always achieved. In this thesis, the current that makes the bound
tightest is called hyperaccurate current, while the current that achieves the equality is called
optimal current. The property of the hyperaccurate current is explored in Ref. [85], which
can be summarized as follows: (i) If there are any optimal currents, the optimal currents
are the entropy production itself or a current proportional to it. (ii) In the long-time limit,
if the entropy production is a hyperaccurate current, the entropy production is also an
optimal current.

The first statement is proved under the finite-time condition, which means that only the
entropy production or a current proportional to it can be optimal currents. Note that there
is a degree of freedom in the optimal currents, since the TUR is invariant under the scaling
of the coefficient, i.e., d(x) and d̃(x) := cd(x) give the same value for Var(jd)/ ⟨jd⟩2. In
the following, we regard them as an identical current. The second statement is proved
under the long-time limit, which means that if the entropy production is not an optimal
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Figure 3.3: The hyperaccurate current and the entropy production in the long-time limit.
(a) The bounds set by the hyperaccurate current and the entropy production are studied
with a two-dimensional Langevin equation (see Ref. [85] for the details). The horizontal
axis is a parameter of the equation, and the vertical axis is the coefficient of variation
squared (CV2 := τVar(jd)/ ⟨jd⟩2). Rh, S and Bound represent the CV2 of the hyperaccu-
rate current, the entropy production and 2/σ, respectively, and they are calculated using
analytical expressions. (b) A coefficient of the hyperaccurate current. As the system be-
comes away from equilibrium (f = 0 is the equilibrium case), the hyperaccurate current
deviates from the entropy production. Reprinted figure with permission from [85] (DOI:
10.1103/PhysRevE.100.060102). Copyright 2019 by the American Physical Society.

current, the hyperaccurate current is other than the entropy production.
In Fig. 3.3, the relation between the entropy production and the hyperaccurate current

is studied. Since the entropy production is not an optimal current in this example, there
is a hyperaccurate current that sets a tighter bound on the entropy production than the
entropy production itself, while the hyperaccurate current does not saturate the bound
as predicted above. Interestingly, the hyperaccurate current deviates from the entropy
production as the system becomes away from equilibrium.

http://dx.doi.org/10.1103/PhysRevE.100.060102
http://dx.doi.org/10.1103/PhysRevE.100.060102


Chapter 4

Estimation of entropy production

In this chapter, we review the methods for estimating the entropy production. In Sec 4.1,
we give an overview of this topic. Then, we explain in detail non-invasive methods, which
are the main interests of this thesis (from Sec. 4.2 to Sec. 4.4).

4.1 Overview

Recent developments in experimental techniques enable us to study nonequilibrium activ-
ity of small systems. Especially, there is great interest in nonequilibrium activity of living
systems, since they often operate far from equilibrium by consuming biochemical energy
sources such as ATP. For example, a primary cilium, which is a hairlike structure protrud-
ing from many eukaryotic cells, shows apparently random behavior (Fig. 4.1B). However,
when the dynamics is viewed over some phase space, clockwise probability currents appear
(Fig. 4.1C), which suggests that the primary cilium not only fluctuates thermally but also
is enhanced by non-equilibrium driving [40].

To quantify nonequilibrium activity beyond the qualitative classification of thermal or
active, it is demanded to estimate the entropy production. There are two methods that
immediately come to mind on the basis of the following two expressions of the entropy
production S:

S = Ssys +
Q

T
= ln

P (Γ)

P †(Γ†)
. (4.1)

One is the direct calorimetric measurement of the heat dissipation Q when the stationary
dynamics is considered (Ssys = 0), but it seems difficult to realize experimentally. The other
is based on the detailed fluctuation theorem, which requires estimation of the forward and
backward transition probabilities. However, the estimation of these probabilities is not easy
in general since it is equivalent to get full cumulant information on probability currents.

As the demand from experiments increases, more sophisticated methods have been
considered. One is an invasive method that uses the Harada-Sasa equality [86–88]:

˙⟨Q⟩ = γ

{
⟨v⟩2 +

∫ ∞

−∞
df
[
C̃(f)− 2TR̃′(f)

]}
, (4.2)
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Figure 4.1: Nonequilibrium fluctuation of MDCK-II primary cilia. (A) Schematic of pri-
mary cilium and snapshots in the experiment. (B) Time series of the angle θ and the
curvature κ. (C) Phase-space probability distribution (color) and flux map (white arrows).
From [40] (DOI: 10.1126/science.aac8167). Reprinted with permission from AAAS.

where C̃(f) is the Fourier transform of the time correlation function of velocity fluctuations,
and R̃′(f) is the real part of the Fourier transform of the response function against pertur-
bation force (see Refs. [86, 87] for the details). The second term represents the violation
of the fluctuation-response relation that holds at the equilibrium, i.e., C̃(f) = 2TR̃′(f).
Since the physical meaning of this equality is clear, it has been applied to several bio-
logical systems including F1-ATPase [50, 89], kinesin [90], and actomyosin [91]. Another
characteristic of this approach is that it is applicable to underdamped Langevin equations,
which is not the case for most of the other methods introduced in this chapter. However,
invasive methods can be challenging in general. For example, it is mentioned in Ref. [90]
that they cannot probe all the bandwidth since the kinesin moves out of detectable range
in sub-second time scales.

Recently, various non-invasive methods have been developed. They estimate the en-
tropy production solely on the basis of finite-length trajectory data without perturbing
systems (note that some of them require additional knowledge of the diffusion matrix).
The possibility of a non-invasive method was first proposed in Ref. [92], which is based on
the expression (2.30). However, this method involves the estimation of the probability dis-
tribution and the mean local velocity over the phase space, which requires a huge amount
of data [44]. Currently, there are three methods that seem to be useful in practice: KDE
(kernel density estimation) [44], SFI (stochastic force inference) [93], and TUR [43–45]. In
the following sections, we explain these methods in detail.

Finally, we give some remarks on other methods for the completeness of this review. In
Ref. [94], a method for systems with hidden degrees of freedom is proposed. The method
is based on the estimation of the forward and backward multiple jump sequences, in which
the timing of jumps is not taken into account. In Ref. [95], as a refinement of Ref. [94],
it is shown that the timing of jumps can play a crucial role in detecting broken detailed
balance. In Ref. [96], a method that can fully utilize the information contained in multiple
transition probabilities is proposed.

http://dx.doi.org/10.1126/science.aac8167
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4.2 Kernel density estimation

First, we introduce KDE [44]. This method estimates the thermodynamic force by smooth-
ing the data with a kernel function, and estimates the entropy production rate using the
obtained thermodynamic force. In Ref. [44], two types of estimators for the entropy pro-
duction rate were proposed: one is based on the expression (2.30), and the other is based on
the TUR. In this section, we review the former estimator, while the TUR-based estimator
is described in the last section of this chapter.

The characteristic of KDE is that it is a non-parametric method, which estimates the
thermodynamic force using all the data points directly. KDE deals with the problem of
underfitting and overfitting by determining an appropriate bandwidth of the kernel func-
tion assuming that the data points follow a Gaussian distribution.

In the following, we explain the proposed method, and discuss these points in more
detail.

4.2.1 Proposed method

The entropy production rate can be estimated by the following procedure.

KDE (kernel density estimation)

Let us consider the case that we have access to a finite-length trajectory
{x0,x∆t, ...,xτobs(= xN∆t)} sampled from the stationary dynamics of the following n-
dimensional Langevin equation:

ẋ(t) = A(x) +
√
2D · η(t). (4.3)

In KDE, an estimate of the thermodynamic force F̂sm(x) is obtained by smoothing the
displacements which occurred around the position x:

F̂sm(x) =
ĵ(x)D−1

p̂(x)
(4.4)

:=
1

2∆t

∑
i L(xi∆t,x)

[
x(i+1)∆t − x(i−1)∆t

]
D−1∑

i L(xi∆t,x)
, (4.5)

where L(x′,x) is a kernel function. Concretely, the Epanechnikov kernel is shown to achieve
the fastest convergence:

L(xi∆t,x)∝

{∏n
j=1

(
1− (xi∆t;j−xj)

2

b2j

)
, ∀j |xi∆t,j − xj| < bj,

0, otherwise,
(4.6)

where its bandwidth bj is determined by

b :=

(
4

N(n+ 2)

) 1
(n+4) σ̃

0.6745
. (4.7)
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σ̃ is a median absolute deviation:

σ̃ :=
√

median {|v −median(v)|}median {|x−median(x)|}, (4.8)

where v is the magnitude of the velocities, i.e., vi =
√∑

j(x(i+1)∆t,j − xi∆t,j)2/∆t. Note

that the diffusion matrix D should be obtained beforehand, and the bandwidth bj would
be optimized under the assumption that the data points follow a Gaussian distribution.

Then, it is proposed to use the following temporal average as an estimator of the entropy
production rate:

̂̇Stemp

ss :=
1

τobs

∫ τobs

0

F̂ss(x(t)) ◦ dx(t) (4.9)

≈ 1

τobs

∑
i

F̂ss

(
x(i+1)∆t + xi∆t

2

)[
x(i+1)∆t − xi∆t

]
. (4.10)

The main idea of KDE is to estimate the thermodynamic force at a position x on
the basis of the displacements which occurred around x. The bandwidth of the kernel
function determines the distance from x, within which the displacements of data points
are taken into account for calculating F̂sm(x). Here, there is a bias-variance tradeoff, or a
tradeoff between underfitting and overfitting, depending on the bandwidth. Concretely, the
estimate becomes vulnerable to the noise when the bandwidth is small, while the estimate
becomes biased when the bandwidth is large.

To determine the appropriate bandwidth, KDE would assume that the data points
follow a Gaussian distribution, although it was not stated explicitly in Ref. [44]. This
is because the expression of (4.7) is usually derived by assuming a Gaussian distribution
when the kernel function is used for the probability density estimation [97]. However, the
derivation of (4.7) may not be straightforward in this case, since the estimated quantity ĵ/p̂
is not a density. In fact, it was explained as a rule of thumb in Ref. [44]. We show in the

later chapter that the convergence of ̂̇Stemp

ss becomes indeed very slow for nonlinear Langevin
equations, in which the stationary distributions are distinct from Gaussian distributions.

4.3 Stochastic force inference

Next, we introduce SFI [93], which is based on function fitting. We give a brief review on
SFI from the perspective of the estimation of the entropy production rate, while the main
focus of Ref. [93] was the estimation of the force, i.e., the drift term A(x) when the noise
is additive.

The characteristic of SFI compared to KDE is that it does not have any prior as-
sumptions on the equation, and can be used even for nonlinear Langevin equations with
multiplicative noise. SFI estimates the thermodynamic force F (x) = ν(x)D(x)−1 by es-
timating the diffusion matrix D(x) and the mean local velocity ν(x), respectively, each of
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which is expressed as a linear combination of basis functions. Then, the entropy produc-
tion rate is estimated using the obtained thermodynamic force, similarly to KDE. Another
interesting characteristic of SFI is that it deals with the problem of underfitting and over-
fitting by deriving a practical criterion to determine the complexity of the model function.
The criterion is based on the Shannon’s noisy-channel coding theorem [98].

In the following, we explain the proposed method in the case of a Langevin equation
with additive noise. We also explain how to choose an appropriate model function that
can avoid underfitting and overfitting.

4.3.1 Proposed method

The entropy production rate can be estimated by the following procedure.

SFI (stochastic force inference)

Let us consider the case that we have access to a finite-length trajectory
{x0,x∆t, ...,xτobs} sampled from the stationary dynamics of the following n-dimensional
Langevin equation:

ẋ(t) = A(x) +
√
2D · η(t). (4.11)

In SFI, the force A(x) and the mean local velocity ν(x) are estimated as a linear combi-
nation of fixed basis functions {ĉα(x)}:

Âk(x) =
∑
α

Âkαĉα(x), (4.12)

Âkα =
1

τobs

∑
i

{
x(i+1)∆t,k − xi∆t,k

}
ĉα(xi∆t), (4.13)

ν̂k(x) =
∑
α

ν̂kαĉα(x), (4.14)

ν̂kα =
1

τobs

∑
i

{
x(i+1)∆t,k − xi∆t,k

}
ĉα

(
x(i+1)∆t + xi∆t

2

)
, (4.15)

(4.16)

where the basis functions {ĉα(x)} are prepared from a set of functions {bα(x)} as

ĉα =
∑
β

B̂
−1/2
αβ bβ, (4.17)

B̂αβ =
∆t

τobs

∑
i

bα(xi∆t)bβ(xi∆t). (4.18)

Then, the entropy production rate σ can be estimated by

σ̂ =
∑
k,l,α

D−1
kl ν̂kαν̂lα. (4.19)
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We note that a Langevin equation with additive noise is considered here, but SFI is also
applicable to a system with multiplicative noise. In that case, the diffusion matrix D(x)

is estimated as a linear combination of basis functions, i.e., D̂kl(x) =
∑

α D̂klαĉα(x).

4.3.2 Derivation

We explain how to derive these expressions. First, the basis functions {ĉα(x)} are normal-
ized as ∫

dx ĉα(x)ĉβ(x)p(x) ≈ ∆t

τobs

∑
i

ĉα(xi∆t)ĉβ(xi∆t) (4.20a)

= δαβ, (4.20b)

which directly follows from its construction in Eq. (4.17). Then, the expansion coefficients
of the force are derived as

Âkα =

∫
Ak(x)ĉα(x)p(x)dx (4.21a)

≈ ∆t

τobs

∑
i

Ak(xi∆t) ĉα(xi∆t) (4.21b)

≈ 1

τobs

∑
i

{
x(i+1)∆t,k − xi∆t,k

}
ĉα(xi∆t), (4.21c)

where we used the fact that
〈
x(i+1)∆t,k − xi∆t,k

〉
= Ak(xi∆t)∆t. Thus, Â(x) defined in

Eq. (4.12) serves as an estimator of the force.
The expansion coefficients of the mean local velocity can also be derived in a similar

manner:

ν̂kα =

∫
νk(x)ĉα(x)p(x)dx (4.22a)

=

∫ (
Ak(x)−

1

p(x)
Dkj∇jp(x)

)
ĉα(x)p(x)dx (4.22b)

=

∫
Ak(x)(ĉα(x) +Dkj∇j ĉα(x))p(x)dx (4.22c)

≈ 1

τobs

∑
i

{
x(i+1)∆t,k − xi∆t,k

} (
ĉα(xi∆t) +

{
x(i+1)∆t,j − xi∆t,j

}
2

∇j ĉα(xi∆t)

)
(4.22d)

≈ 1

τobs

∑
i

{
x(i+1)∆t,k − xi∆t,k

}
ĉα

(
x(i+1)∆t + xi∆t

2

)
, (4.22e)

where we used the fact that
{
x(i+1)∆t,k − xi∆t,k

}{
x(i+1)∆t,j − xi∆t,j

}
= 2Dkj∆t. The deriva-

tion of σ̂ is also straightforward by substituting ν̂(x) into the expression of the entropy
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Figure 4.2: Tradeoff between underfitting and overfitting. The horizontal axis is the number
of basis functions Nb, and the vertical axis is the mean squared relative error of the esti-
mated force along a trajectory δA2/A2 :=

〈∑
k,l(Âk −Ak)D

−1
kl (Âl −Al)

〉/〈∑
k,l ÂkD

−1
kl Âl

〉
(note

that a different notation δF 2/F 2 is used in this figure). Here, a Fourier basis is adopted,
and the results with different number of data points Npts := τobs/∆t are shown. Sample
trajectories with Npts = 212 are drawn in each subfigure (see Ref. [93] for the details of
the equations). The star symbols are the optimal number N∗

b determined by maximizing

Îb − δÎb. The increase of errors at Nb < N∗
b suggests underfitting, and that at Nb > N∗

b

suggests overfitting. Reprinted figure from Ref. [93] (DOI: 10.1103/PhysRevX.10.021009).
Figure is available under the terms of the Creative Commons Attribution 4.0 International
license.

production rate as

σ̂ =

∫
dx
∑
kl

D−1
kl ν̂k(x)ν̂l(x)p(x) (4.23a)

≈
∫

dx
∑
k,l,α,β

D−1
kl ν̂kαν̂lβ ĉα(x)ĉβ(x)p(x) (4.23b)

≈
∑
k,l,α,β

D−1
kl ν̂kαν̂lβ

∑
i

ĉα(xi∆t)ĉβ(xi∆t)
∆t

τobs
(4.23c)

=
∑
k,l,α

D−1
kl ν̂kαν̂lα. (4.23d)

4.3.3 How to choose an appropriate model function

It is important for an estimator to have a criterion to determine the hyperparameters solely
on the basis of data. Here, parameters which need to be determined before the fitting are
called hyperparameters. The hyperparameter of SFI is the number of basis functions Nb.
In Ref. [93], a practical criterion is proposed to determine the appropriate number. In
this subsection, we explain the criterion focusing on the case of the force inference as in
Ref. [93].

http://dx.doi.org/10.1103/PhysRevX.10.021009
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First of all, we explain how the number of basis functions Nb affects the precision of the
force inference. In Fig. 4.2, the Nb dependence of the inference error is plotted. We can see a
clear tradeoff between underfitting and overfitting as is the case for many machine learning
problems. Here, underfitting occurs at smaller Nb because of the poor representation ability
of the model function, while overfitting occurs at larger Nb because the overparametrized
model function is easily adapted to the noise of the data. Therefore, our task is to find an
appropriate size Nb between the underfitting and overfitting regimes.

We explain the proposed criterion to determine Nb. First, information contained in the
trajectory data is estimated by

Îb :=
τobs
4

∑
k,l,α

D−1
kl ÂkαÂlα. (4.24)

It is shown in Ref. [93] that Îb/τobs actually estimates the channel capacity of the Gaussian
communication channel, where Ak[x(t)] and ẋ(t) are viewed as the code word and the

output of the channel, respectively. It is further proposed to use Îb as an objective function
to maximize by regarding it as information captured by the model function. However, Îb
steadily increases as Nb increases, which means that Îb alone cannot detect the overfitting
of the model function.

In order to deal with the problem of overfitting, the estimation error of Îb is approxi-
mated as

δÎb ∼
√

2Îb +
N2

b

4
, (4.25)

which increases as the model function becomes overfitted to the trajectory data. Therefore,
the model function that maximizes Îb−δÎb would be balanced between the underfitting and
overfitting. Indeed, it is numerically checked that the estimation error becomes minimum
at the optimal number N∗

b which maximizes Îb − δÎb as shown in Fig. 4.2.

4.4 Thermodynamic uncertainty relation

Finally, we introduce TUR-based estimators [43–45]. The idea of this method is to use the
lower bound of the TUR as an estimator of the entropy production rate after performing
its maximization:

σ ≥ max
d

2 ⟨Jd⟩2

τVar(Jd)
. (4.26)

Since it requires only the mean and the variance of a single projected fluctuating current
Jd, we can expect that the estimation converges with small amount of data at the cost
that it returns only a lower bound. Indeed, it is suggested in Ref. [44] that a TUR-based
estimator shows a good convergence rate at high-dimensional data. Also, its robustness
against coarse-graining of dynamics is suggested in Ref. [43].

Recently, this approach has turned out to be promising since it is numerically suggested
that the exact estimation is possible by taking the short-time limit of the generalized current
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Figure 4.3: Performance of the estimators. Trajectory data generated by two-beads and
five-beads models are used for numerical experiments in (a) and (b), respectively (the
details of the models can be found in Sec. 5.3). Since the finite-time TUR is used in this
study, Ṡ(F )

TUR < Ṡ
(d∗)
TUR < Ṡss holds (note that Ṡss = σ in our notation). The convergence rate of

these estimators are shown as inset plots with error bars reporting standard deviation of
10 independent trials. The result suggests that the TUR-based estimator may be useful for
high-dimensional data. Reprinted figure from Ref. [44] (DOI: 10.1038/s41467-019-09631-x).
Figure is available under the terms of the Creative Commons Attribution 4.0 International
license.

τ → 0 [45]. This fact is also suggested in a concrete Langevin model with analytical
calculation [99]. However, its range of applicability is not well understood since there is no
analytical proof under general conditions. In addition, a practical estimation method that
leverages the benefit of maximization has not yet been considered.

In the following, we explain these points in detail.

4.4.1 Proposed method

The entropy production rate can be estimated by the following procedure.

TUR-based estimation

Let us consider the case that we have access to a finite-length trajectory
{x0,x∆t, ...,xτobs} sampled from the stationary dynamics of the following n-dimensional
Langevin equation:

ẋ(t) = A(x) +
√
2D · η(t). (4.27)

In this method, a lower bound of the TUR is used as an estimator of the entropy production
rate:

̂̇S(d)

TUR :=
1

τ

2⟨̂Jd⟩
2

V̂ar(Jd)
, (4.28)

http://dx.doi.org/10.1038/s41467-019-09631-x
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where ⟨̂Jd⟩ and V̂ar(Jd) are the estimated mean and variance of the generalized current.
Here, we first divide the whole trajectory into τobs/τ subtrajectories, and a realization of
the generalized current is calculated for each subtrajectory as

Jd =
∑
i

d

(
x(i+1)∆t + xi∆t

2

)[
x(i+1)∆t − xi∆t

]
. (4.29)

Then, the mean and the variance are estimated using the τobs/τ realizations.
In Ref. [44], two types of functions are adopted for d(x). One uses the thermodynamic

force F̂sm(x) estimated by KDE, and this estimator is denoted as ̂̇S(F̂ )

TUR. The other uses
d∗(x) which maximizes Ṡ

(d)
TUR , and this estimator is denoted as Ṡ

(d∗)
TUR (the hat symbol is not

attached here since this estimator was studied only with population distribution).

In Fig. 4.3, the performances of the TUR-based estimators are studied. First, the TUR
bounds are shown as main plots. Since the finite-time TUR is used in this study, the
following inequalities hold:

Ṡ
(F )
TUR < Ṡ

(d∗)
TUR < σ, (4.30)

which become tight at the equilibrium limit in accordance with the discussion in Sec. 3.3.
We note that these quantities are calculated with the analytical probability distribution,
and thus they are not estimated quantities here.

Next, the performance of ̂̇S(F̂ )

TUR is compared with that of ̂̇Stemp

ss defined in Sec. 4.2 using

finite-length trajectory data in the inset plots of Fig. 4.3. ̂̇S(F̂ )

TUR shows the similar conver-

gence rate to ̂̇Stemp

ss overall, but ̂̇S(F̂ )

TUR converges much faster at Tc/Th = 0.5 of the five-beads
model, which is described by a five-dimensional Langevin equation (the details of the model
can be found in Sec. 5.3). On the basis of the result, it is argued that TUR-based esti-
mators may have some advantages for weakly driven high-dimensional Langevin equations.
We note that although Ṡ

(d∗)
TUR should be better for estimating the entropy production rate,

a practical estimator that includes the maximization process is not proposed in Ref. [44].
There is a clear drawback for the TUR-based estimators that they only return lower

bounds on the entropy production rate. However, it is recently suggested that the exact
estimation is possible even if the state is far from equilibrium by taking the short-time
limit of the generalized current [45]:

σ = max
d

lim
τ→0

2 ⟨Jd⟩2

τVar(Jd)
. (4.31)

In Fig. 4.4, the time interval τ dependence of the TUR bounds are shown with several
choices of the generalized current. When the time interval is finite, the TUR bounds take
similar values. On the other hand, when the short-time limit is considered, the range of
values expands and some of the generalized current can achieve the equality. Concretely,
the generalized current which is proportional to the entropy production itself achieves the
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Figure 4.4: The time interval dependence of the TUR bound. The generalized current
is chosen as a linear combination of thermodynamic quantities like J = c1(ηC/T2)Q1 +
c2(1/T2)W + c3∆Sint, and c1, c2 and c3 are chosen uniformly randomly from [−1, 1] (see
Ref. [45] for the details of the model and the notation). c1 = c2 = c3 = 1 corresponds
to the entropy production (green dashed line). Reprinted figure from Ref. [45] (DOI:
10.1103/PhysRevLett.124.120603). Figure is available under the terms of the Creative
Commons Attribution 4.0 International License.

equality (green dashed line in Fig. 4.4).
However, this study relies on the knowledge of the underlying Langevin equation, and

a practical estimator that is solely based on trajectory data is not considered.

4.4.2 Remaining issues

As seen above, the TUR-based approach has some promising characteristics. However, the
following questions still remain.

babababababababababababababababababababab

• The equality condition of the short-time TUR has not been analytically stud-
ied.

• There is no practical estimation method that leverages the benefit of maxi-
mization.

• It is still not clear whether the TUR-based approach is good at high-
dimensional setups.

In the next chapter, we resolve these remaining issues. For example, we show that the
short-time TUR is saturable only in overdamped Langevin dynamics, while this is not the
case in general Markov jump processes.

http://dx.doi.org/10.1103/PhysRevLett.124.120603
http://dx.doi.org/10.1103/PhysRevLett.124.120603


Chapter 5

Estimating entropy production by
machine learning

In this chapter, we investigate a theoretical framework for estimation of the entropy produc-
tion using the short-time TUR with machine learning techniques. Concretely, we resolve
the three remaining issues presented in Sec. 4.4.2. In Sec. 5.1, we reveal the equality
condition of the short-time TUR analytically. As a result, we show that the short-time
TUR gives the exact estimate of the entropy production in overdamped Langevin dynam-
ics, while this is not the case in general Markov jump processes. In Sec. 5.2, we propose
a practical estimation method that combines the short-time TUR with machine learning
techniques such as the gradient ascent. In Sec. 5.3, we numerically demonstrate that our
method performs well even in high-dimensional and non-linear Langevin dynamics. We
also find that our method is robust against the choice of the sampling interval in Markov
jump processes, while the exact estimation is shown to be impossible. A schematic of our
estimation method is shown in Fig. 5.1. The results presented in this chapter are based on
our paper [100].

5.1 Short-time TUR

In this section, we formulate the short-time TUR in both Markov jump processes (Sec. 5.1.1)
and overdamped Langevin dynamics (Sec. 5.1.2), and reveal its equality condition. We
show that the equality is always achievable in overdamped Langevin dynamics, while this
is not the case in general Markov jump processes. Our formulation is based on the partial
entropy production, which reveals the hierarchy of the bound when the generalized current
is constrained. We note that the following discussion holds for non-stationary dynamics,
while the estimation in stationary dynamics is addressed in later sections.

5.1.1 Markov jump process

Here we formulate the short-time TUR in Markov jump processes. As in Sec. 3.1, we
consider a system with a finite number of states, whose transition rate from y to z is
written as r(y, z). Note that we omit the time-dependence for simplicity, and we use
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Figure 5.1: Schematic of the estimation method. Our method is solely based on finite-
length trajectory data. We use a half of the data to train parameters θ of a model function
d(x|θ) by regarding the short-time TUR bound as the objective function to maximize.
We use the other half for testing the generalization performance of the model function.
This data splitting scheme is useful for choosing the model function and its parameter
values as illustrated in inset plots (a)-(c). The horizontal axis is the iteration step of the
gradient ascent, and the vertical axis is the value of the objective function σ̂ calculated
with training data (green dashed line) and test data (blue line), normalized by the true
entropy production rate σ. These plots are based on the binned learning estimator and the
two-beads model (see later sections for their explanations). Figure (a) is the case of a model
function with many parameters, which leads to overfitting. Figure (c) is the case with a few
parameters, which leads to underfitting. Figure (b) is the case with an appropriate number
of parameters, where the value σ̂ calculated with the test data becomes the largest. We
adopt the maximum of the learning curves evaluated with the test data among these trials
(described as the best score) as an estimate of the entropy production rate. The system
parameters and hyperparameters are as follows: τobs = 102,∆t = 10−3, Tc/Th = 0.1, α =
1, λ = 0, and Nbin = (a)10, (b)6, (c)2. The other parameters are the same as in Fig. 5.4.
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quantities defined in Sec. 3.1 without mentioning.
We consider currents in the short-time limit τ = dt. First, the mean and the variance

of the integrated empirical current are explicitly obtained as

⟨Jdt(y, z)⟩ = {p(y)r(y, z)− p(z)r(z, y)} dt+O(dt2), (5.1)

Var(Jdt(y, z)) = {p(y)r(y, z) + p(z)r(z, y)} dt
− {p(y)r(y, z)− p(z)r(z, y)}2 dt2 +O(dt2), (5.2)

where p(y) is the probability distribution. These expressions are obtained by considering
the fact that Jdt(y, z) counts 1 (resp. -1) when a jump occurs from y to z (resp. z to
y), and its probability is p(y)r(y, z)dt (resp. p(z)r(z, y)dt). Meanwhile, we calculated the
partial entropy production rate on a transition edge between y and z in Eq. (2.61) as

σ(y,z) = {p(y)r(y, z)− p(z)r(z, y)} log p(y)r(y, z)

p(z)r(z, y)
. (5.3)

Then, we claim the following inequality as the short-time TUR on a transition edge between
y and z:

σ(y,z)
dtVar(Jdt(y, z))

⟨Jdt(y, z)⟩2
≥ 2. (5.4)

The derivation is as follows:

σ(y,z)
dtVar(Jdt(y, z))

⟨Jdt(y, z)⟩2
= {p(y)r(y, z)− p(z)r(z, y)} log p(y)r(y, z)

p(z)r(z, y)

p(y)r(y, z) + p(z)r(z, y)

{p(y)r(y, z)− p(z)r(z, y)}2
(5.5a)

≥ 2
{p(y)r(y, z)− p(z)r(z, y)}2

p(y)r(y, z) + p(z)r(z, y)

p(y)r(y, z) + p(z)r(z, y)

{p(y)r(y, z)− p(z)r(z, y)}2
(5.5b)

= 2, (5.5c)

where we used the inequality (a− b) ln a/b ≥ 2(a− b)2/(a+ b).
We next formulate the short-time TUR for a subsystem X by summing Eq. (5.4) us-

ing the Cauchy-Schwarz inequality. First, the mean and the variance of the (integrated)
generalized current are obtained as

⟨Jd⟩ =
∑
y<z

d(y, z) {p(y)r(y, z)− p(z)r(z, y)} dt, (5.6)

Var(Jd) =
∑
y<z

d(y, z)2 {p(y)r(y, z) + p(z)r(z, y)} dt. (5.7)

The partial entropy production rate for a set of transitions X is obtained as

σX =
∑

y<z, (y,z)∈X

{p(y)r(y, z)− p(z)r(z, y)} log p(y)r(y, z)

p(z)r(z, y)
, (5.8)

which is derived by summing σ(y,z). Note that σX includes information-thermodynamic
dissipation and the total entropy production rate, for example. We define N as a set of
transition edges (y, z) such that d(y, z) ̸= 0. Then, we claim the following inequality as the
short-time TUR for the subsystem X.
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Result: Short-time TUR for a subsystem

If N ⊂ X is satisfied, the short-time TUR for the subsystem X holds as

σX
dtVar(Jd)

⟨Jd⟩2
≥ 2. (5.9)

This relation holds for non-stationary dynamics as well as stationary dynamics. The opti-
mal coefficient d∗ that makes the bound tightest is given by

d∗(y, z) = c
p(y)r(y, z)− p(z)r(z, y)

p(y)r(y, z) + p(z)r(z, y)
, (5.10)

where c is a constant.

The condition N ⊂ X is reasonable since it means that the generalized current should
be defined within the subsystem X. The derivation is as follows:

σX
dtVar(Jd)

⟨Jd⟩2

=
∑

y<z, (y,z)∈X

{p(y)r(y, z)− p(z)r(z, y)} log p(y)r(y, z)

p(z)r(z, y)

∑
y<z d(y, z)

2 {p(y)r(y, z) + p(z)r(z, y)}[∑
y<z d(y, z) {p(y)r(y, z)− p(z)r(z, y)}

]2 (5.11a)

≥
∑

y<z, (y,z)∈N

2d(y, z)2 {p(y)r(y, z)− p(z)r(z, y)}2

d(y, z)2 {p(y)r(y, z) + p(z)r(z, y)}

∑
y<z,(y,z)∈N d(y, z)2 {p(y)r(y, z) + p(z)r(z, y)}[∑
y<z,(y,z)∈N d(y, z) {p(y)r(y, z)− p(z)r(z, y)}

]2(5.11b)
≥ 2, (5.11c)

where we used the Cauchy-Schwarz inequality
∑

a2i
∑

b2i ≥ (
∑

aibi)
2 in Eq. (5.11c). The

bound becomes the tightest when d satisfies the equality condition of the Cauchy-Schwarz
inequality, which is explicitly given by Eq. (5.10).

The short-time TUR (5.9) is an extension of the TUR under measurement and feedback
control [57,58] to subsystems under autonomous interaction. When we take X as the total
system, the short-time TUR becomes the special case (τ → 0) of the finite-time TUR (3.1).
In the following, we mainly consider the total entropy production, and omit the suffix X.

Next, we discuss the achievability of the bound. The equality of the short-time TUR is
not achievable in general because of the inequality of Eq. (5.11b). However, we can consider
two limits that asymptotically saturate the bound: one is the equilibrium limit, and the
other is the Langevin limit. The equilibrium limit is a well known condition for the equality
of the finite-time TUR [36,63,66,67], which states that p(y)r(y, z)−p(z)r(z, y) goes to zero
for all the pairs of y and z. In this study, we newly find that the Langevin limit also achieves
the equality, which states that ∆ := 2 {p(y)r(y, z)− p(z)r(z, y)} / {p(y)r(y, z) + p(z)r(z, y)}
goes to zero for all the pairs of y and z. We call it the Langevin limit since it is satisfied in
the jump process approximation (3.15). We can check that the inequality (5.11b) becomes
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the equality in this limit by the following scaling analysis:

ln
p(y)r(y, z)

p(z)r(z, y)
= ln

(
1 +

∆

1−∆/2

)
(5.12a)

= ∆ +O(∆3). (5.12b)

This suggests a striking fact that the equality of the short-time TUR is always achievable
even if the state is far from equilibrium in Langevin dynamics. Indeed, we reproduce this
fact on the basis of the general Langevin equation with multiplicative noise (2.11) in the
next subsection.

5.1.2 Overdamped Langevin dynamics

Here, we formulate the short-time TUR in overdamped Langevin dynamics described by
Eq. (2.11), and show that the equality is always achievable.

First, the generalized current can be expressed in the short-time limit τ = dt as

Jd =
∑
i

di(x(t), t) ◦ dxi(t) (5.13a)

=
∑
i

di(x(t+ dt), t+ dt)− di(x(t), t)

2
dxi(t) + di(x(t), t)dxi(t) (5.13b)

=
1

2

∑
i,j

[∇jdi(x(t), t)] dxj(t)dxi(t) +
∑
i

di(x(t), t)dxi(t) +O(dt
3
2 ) (5.13c)

=
1

2

∑
i,j,l

[∇jdi(x(t), t)]BilBjldt+
∑
i

di(x(t), t)(Aidt+
∑
l

√
2Bildwl) +O(dt

3
2 ),(5.13d)

where dw(t) := η(t)dt. Then, the ensemble average of the generalized current is obtained
as

⟨Jd⟩ =

∫
dxp(x, t)δ(x(t)− x)Jd (5.14a)

= dt

∫
dx
∑
i,j

−di(x, t)∇j [Dijp(x, t)] +
∑
i

di(x, t)Aip(x, t) (5.14b)

= dt

∫
dxd(x, t)Tj(x, t), (5.14c)

where j(x, t) is the probability current defined in Eq. (2.15). Similarly, the variance of the
generalized current is obtained as

Var(Jd) =
〈
J2
d

〉
− ⟨Jd⟩2 (5.15a)

=

∫
dxp(x, t)

[∑
i,j,l

∇j (di)BilBjldt+
∑
i

di(Aidt+
∑
l

√
2Bildwl)

]2
−⟨Jd⟩2 (5.15b)

= 2dt

∫
dxPdTDd. (5.15c)
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Since we assume the overdamped Langevin dynamics, the entropy production rate is given
by Eq. (2.31). Then, the short-time TUR can be derived as follows:

σ
dtVar(Jd)

⟨Jd⟩2
=

2
[∫

dx jTD−1DD−1j
p

] [∫
dxpdTDd

]
(∫

dxdTj
)2 (5.16a)

≥
2
(∫

dxjTD−1Dd
)2(∫

dxdTj
)2 (5.16b)

= 2, (5.16c)

where we used the Cauchy-Schwarz inequality in Eq. (5.16b) in terms of the inner product:

⟨f , g⟩ :=
∫

dxfTDg. (5.17)

The optimal coefficient d∗(x, t) is given by the equality condition of the Cauchy-Schwarz
inequality. It is clear from the derivation that the optimal coefficient makes the bound the
equality as suggested in the previous subsection.

We summarize the above results as follows.

Result: Short-time TUR in overdamped Langevin dynamics

The short-time TUR holds as

σ
dtVar(Jd)

⟨Jd⟩2
≥ 2. (5.18)

This relation holds for non-stationary dynamics as well as stationary dynamics. The opti-
mal coefficient d∗(x, t) that makes the bound the equality is given by

d∗(x, t) = c
j(x, t)TD(x, t)−1

p(x, t)
(5.19a)

= c F (x, t), (5.19b)

where c is a constant and F (x, t) is the thermodynamic force defined in Eq. (2.32).

Related to the short-time TUR, we often use the following formulas. The optimal
current with the coefficient d(x, t) = cF (x, t) satisfies

Jd = cdS, (5.20)

⟨Jd⟩ = cσdt, (5.21)

Var(Jd) = 2c2σdt, (5.22)

Var(J2
d) ∝ dt2, (5.23)

and thus the constant factor c can be obtained by calculating

c =
Var(Jd)

2 ⟨Jd⟩
. (5.24)
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We can derive Eqs. (5.20) to (5.22) just by substituting the coefficient into their expressions,
and Eq. (5.23) by evaluating ⟨J4

d⟩ and ⟨J2
d⟩

2
. Eq. (5.23) actually holds for arbitrary choice

of d(x), and it will be used in the next chapter.
The short-time TUR also holds for a subsystem. In Langevin dynamics, each coordinate

corresponds to a subsystem [49], and the partial entropy production rate σi associated with
the i-th coordinate is given by

σi =

∫
dxFi(x, t)ji(x, t). (5.25)

Then, the short-time TUR holds for the generalized current satisfying dj(x, t) = 0 for j ̸= i
as

σi
dtVar(Jdi)

⟨Jdi⟩
2 =

2
∫
dx

jiD
−1
ii ji
p

×
∫
dxdiDiidip(∫

dxdiji
)2 (5.26a)

≥ 2. (5.26b)

The short-time TUR for subsystems reveal the hierarchy of the bound when the gen-
eralized current is constrained. Here, we view the short-time TUR as an inequality that
gives a lower bound on the entropy production rate. For example, when the generalized
current is constrained to satisfy dj(x, t) = 0 for j ̸= i, the maximization of the lower bound
only yields σi rather than σ:

σ ≥ σi ≥
2 ⟨Jdi⟩

2

dtVar(Jdi)
. (5.27)

In another case where the degrees of freedom other than the i-th variable are completely
hidden, there is a further constraint on the generalized current that it only depends on xi,
i.e., the coefficient is written as di(xi, t). In this case, the maximization of the lower bound
only gives a lower value than σi.

5.2 Estimation method

In this section, we present our framework for the estimation of the entropy production
in stationary dynamics using the short-time TUR along with machine learning techniques.
The aim of our method is to estimate the entropy production solely on the basis of a limited
amount of trajectory data. First, we explain the main idea of applying machine learning
for the estimation problem in Sec. 5.2.1. After that, we construct practical estimators for
Langevin dynamics in Sec. 5.2.2 and for Markov jump processes in Sec. 5.2.3.

5.2.1 General idea

Here, we explain the idea of applying machine learning for the estimation problem. As
explained in Sec. 4.4, we can estimate the entropy production rate by finding the optimal
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coefficient d∗ that maximizes the lower bound of the TUR:

d∗ := arg max σ̃[d], (5.28)

σ̃[d] :=
2 ⟨Jd⟩2

dtVar(Jd)
. (5.29)

Then, σ̃[d∗] serves as an estimate of the entropy production rate. As shown in the previous
section, if the short-time TUR is used, σ̃[d∗] gives an exact estimate of the entropy pro-
duction rate in Langevin dynamics.

However, we are interested in the case that only a finite-length trajectory data is avail-
able. In this case, we need to estimate the mean and the variance of the generalized current,
which generally differ from ⟨Jd⟩ and Var(Jd) calculated with the population distribution.

If we write these estimates as ⟨̂Jd⟩ and V̂ar(Jd), the objective function to maximize is given
by

σ̂[d] :=
2⟨̂Jd⟩

2

dtV̂ar(Jd)
, (5.30)

where we use the hat symbol for quantities that are estimated by data.
In Langevin dynamics, the coefficient d(x) is a vector field over the space, which is

equivalent to have an infinite number of parameters. Thus we first consider to approximate
the coefficient by some model function d(x|θ) with a finite number of parameters θ. On
the other hand, such approximation is not necessary in Markov jump processes in general,
since the number of coefficients d(y, z) is already finite. We update the parameters θ
using the gradient ascent by regarding the objective function as a function of θ defined by
f(θ) := σ̂[d(x|θ)]. The basic update rule of the gradient ascent is as follows:

θ → θ + α∇θf(θ), (5.31)

where α is the step size. By repeating the above update, the parameters θ are expected
to converge into the optimal values θ∗ that maximize the objective function, since the
gradient ascent updates θ in the direction where the objective function increases the most.
Specifically, we implement an algorithm called Adam [101] for the gradient ascent to im-
prove the convergence.

Here, as is the case for the other estimators reviewed in Chap. 4, the underfitting and
the overfitting of the model function to the trajectory data become the major issues. To
overcome these problems, we employ ideas from machine learning, namely the data split-
ting scheme. A schematic of this idea is presented in Fig. 5.1. First, we divide the whole
trajectory into two parts: training and test data. We use only the training data for calcu-
lating the objective function σ̂[d]|train, and optimize the model function with respect to this
objective function. This process is called learning, and the progress of learning is moni-
tored by the objective function calculated with the test data σ̂[d]|test. When the correlation
between the training and the test data is negligible, the test value σ̂[d]|test can evaluate
the generalization performance of the trained model function. For example, the learning
curve of the test value σ̂[d]|test often has a peak structure (see the inset plots (a) and (b) in
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Figure 5.2: Hyperparameter dependence of the test and the training values. Typical behav-
iors of σ̂[d∗]|train and σ̂[d∗]|test are illustrated. For example, as we increase Nbin (defined in
the next subsection), the model complexity increases. In another case, as we decrease the
step size α, the granularity of the gradient ascent improves. In the both cases, the model
function becomes easily overfitted to the training data, leading to the decrease of σ̂[d∗]|test.
On the other hand, if we decrease Nbin or increase α too much, the model function cannot
be adapted to the training data, which is called underfitting. We can expect that when
σ̂[d∗]|test is maximized, its value is closest to the true entropy production rate from below.

Fig. 5.1), which suggests that the model function becomes overfitted to the training data
after the peak. Thus, we adopt the parameters that maximize the learning curve as the
optimal values θ∗, and use σ̂[d(x|θ∗)]|test as an estimate of the entropy production rate,
which is described as the best score in Fig. 5.1.

How to choose an appropriate model function

The data splitting scheme is also useful for determining an appropriate model function and
checking the convergence of the estimate. In the next subsection, we construct practical
estimators by assuming some model functions for the coefficient. The parameters of a
model function that should be predetermined before the learning are called hyperparame-
ters. Hyperparameters often determine the complexity of a model function, for example,
the number of parameters to optimize. It is important for an estimator to have a criterion
to determine hyperparameters solely on the basis of trajectory data so that we can avoid
the problem of underfitting and overfitting.

For this purpose, the data splitting scheme is useful. As a practical criterion to deter-
mine hyperparameters, we propose to use the values that maximize the peak of the test
value σ̂[d∗]|test (d∗ := d(x|θ∗)) for the hyperparameters. To explain this idea, we illustrate
a typical hyperparameter dependence of the test and the training values in Fig. 5.2. When
the complexity of the model function is too low, both of σ̂[d∗]|train and σ̂[d∗]|test become
small. This is because the model function cannot express the optimal coefficient cF (x)
well due to the underfitting. As we increase the complexity, both of σ̂[d∗]|train and σ̂[d∗]|test
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Figure 5.3: Sketch of the model function dbin(x). A two dimensional case is illustrated as
an example. It discretize the space into bins aligned on a square lattice. A single vector
value is attached to each bin.

increase. However, at some point, the value of σ̂[d∗]|test starts to decrease. This is because
the model function becomes overfitted to the training data, often being away from the
optimal coefficient cF (x). Thus, the complexity of the model function is expected to be
the most appropriate when σ̂[d∗]|test takes the maximum value. An example of the actual
hyperparameter dependence is presented in Fig. 5.10.

The test value σ̂[d∗]|test usually approaches to the true entropy production rate from
below as the length of available trajectory increases. This is because the model function
cannot adapt to the fluctuation of the test data, since it is optimized using only the train-
ing data. On the other hand, the training value σ̂[d∗]|train usually approaches to the true
entropy production rate from above. Thus, when the values of σ̂[d∗]|test and σ̂[d∗]|train are
close to each other, they are expected to give a good estimate of the entropy production
rate. We note that, however, the test value sometimes becomes higher than the true en-
tropy production rate in practice. We discuss the reason in Sec. 5.5.2.

In short, the estimation procedure can be summarized as in Fig. 5.1. We try several
model functions with different hyperparameter values. Then, we adopt the trial that gives
the largest test value σ̂[d∗]|test for the estimation. We use σ̂[d∗]|test as an estimate of the
entropy production rate, and d∗ as that of the thermodynamic force cF (x).

5.2.2 Estimators in Langevin dynamics

In this subsection, we explain the setup of the estimation, and propose two learning es-
timators. Here, we focus on the main idea of the learning estimators, and their details
are provided in Sec. 5.5.1. We also explain the characteristics of the learning estimators
compared to previous methods, KDE (Kernel density estimation) [44] and SFI (Stochastic
force inference) [93], which are reviewed in Chap. 4.

We first explain the setup. We consider the case that we have access to a finite-length
trajectory {x0,x∆t, ...,xτobs(= xN∆t)} sampled from a stationary Langevin dynamics with
interval ∆t. The mean and the variance of the generalized current can be computed by
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viewing

Jd = d

(
xi∆t + x(i−1)∆t

2

)[
xi∆t − x(i−1)∆t

]
(i = 1, 2, ..., N) (5.32)

as a realization of the generalized current. We use only the first half (i = 1, 2, ..., N/2) for
training the model function, and the other half (i = N/2 + 1, ..., N) for the evaluation.

As explained in the previous subsection, we construct estimators by assuming model
functions for the coefficient. In this study, we consider two types of model functions: one
is a histogram-like function dbin(x) and the other is a linear combination of Gaussian func-
tions dGauss(x). We call the estimators with these model functions the binned learning
estimator σ̂[dbin] and the Gaussian learning estimator σ̂[dGauss] respectively.

In the binned learning estimator, the model function dbin(x) discretizes the space into
bins aligned on a hypercube lattice, and returns a single vector value for each bin as illus-
trated in Fig. 5.3. Here, Nbin is a hyperparameter that determines the number of divisions
in each coordinate. The binned learning estimator is not so data efficient, since the vec-
tors are trained independently of transition data which occurred outside of the same bins.
To improve the generalization performance, a regularization term is further added to the
objective function so that the vectors change smoothly between neighboring bins. We de-
scribe the binned learning estimator with the regularization term as σ̂λ[dbin], denoting the
strength of the regularization by λ. We predetermine the hyperparameters α (the step size
of the gradient ascent), Nbin, and λ, and optimize the vectors of the bins.

In the Gaussian learning estimator, the model function is a linear combination of Gaus-
sian functions whose centers are placed at the centers of the bins. Here, the widths of
the Gaussian functions and the coefficients of the linear combination are the parameters
to optimize, and α and Nbin are the hyperparameters. In contrast to the binned learning
estimator, the Gaussian learning estimator shows high generalization performance since
the Gaussian functions are trained on the basis of all the transition data. However, the
Gaussian learning estimator is computationally costly when the data is high dimensional
since the number of Gaussian functions increases exponentially. Thus, we also use a mod-
ification of the Gaussian learning estimator in which the centers of Gaussian functions are
also parameters to optimize. In this case, the hyperparameters are the number of Gaussian
functions NGauss and α. We describe this estimator as σ̂[dGauss,m].

In this study, we mainly use σ̂[dGauss], while σ̂λ[dbin] and σ̂[dGauss,m] are used for high
dimensional setups. Their hyperparameters are determined beforehand using another tra-
jectory data, and the performance of the estimators are evaluated using 10 independent
trajectories. In practice, however, we can conduct both of the hyperparameter tuning and
the estimation using a single trajectory.

Our approach can be viewed as a method to estimate the thermodynamic force since
the optimal coefficient is cF (x). In this sense, the learning estimators are related to the
previous methods, KDE and SFI. In KDE, the thermodynamic force is estimated by kernel
smoothing of the data. The bandwidth of the kernel function is determined by assuming
a Gaussian distribution for the data. On the other hand, the learning estimators do not
assume any distribution, since dbin(x) and dGauss(x) can approximate any function when
Nbin is large enough. Indeed, we show in the next section that the learning estimators
outperform the KDE estimators in non-linear Langevin dynamics, where the stationary
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distribution becomes non-Gaussian.
In SFI, the thermodynamic force F (x) = ν(x)D(x)−1 is estimated by fitting of the

mean local velocity ν(x) and the diffusion matrix D(x), respectively. Since a quantitative
comparison between our method and SFI, both of which depend on the choice of the model
function, is difficult, we clarify their qualitative difference here. In SFI, the available model
function is restricted to a linear combination of fixed basis functions. On the other hand,
our method can use an arbitrary function as the model function. There is also a difference
in the way to avoid underfitting and overfitting. In SFI, a practical criterion is derived,
but its range of applicability may not be clear (see Sec. 4.3.3). On the other hand, our
method is simply based on the data splitting scheme, which is enabled by the fact that we
have the objective function to maximize.

5.2.3 Estimators in Markov jump processes

In this subsection, we explain the setup of the estimation in Markov jump processes, and
propose a learning estimator. We also introduce a simple estimator, which is based on the
fluctuation theorem.

We first explain the setup. Similarly to the Langevin case, we suppose that we have
access to a finite-length trajectory {x0, x∆t, ..., xτobs(= xN∆t)} sampled from a stationary
Markov jump process with interval ∆t. In Markov jump processes, however, we need to
reconstruct the underlying jump sequence from the observed trajectory to compute the
generalized current. If we write the reconstructed jump sequence which occurred between
{xi∆t, x(i+1)∆t} by {xi

0 (= xi∆t) , x
i
1, ..., x

i
mi

(
= x(i+1)∆t

)
}, we can compute a generalized cur-

rent by

Jd =

mi−1∑
j=0

d(xi
j, x

i
j+1), (5.33)

where d(y, z) is a coefficient that satisfies d(y, z) = −d(z, y). Although this is a non-trivial
task in general, such a reconstruction is always possible if the system is one-dimensional.
For example, we can estmate the sequence by connecting xi∆t and x(i+1)∆t with the shortest
path. We note that such a reconstruction is not necessary if the sampling interval is small
enough so that only a single jump occurs at most between the samplings.

Since the coefficient d(y, z) already consists of a finite number of parameters, we use
σ̂[d] as an estimator of the entropy production rate without approximating the coefficient.
We describe the estimator by σ̂M[d], and compare it with a simple estimator σ̂M

simple which
is based on the fluctuation theorem. If we write all the reconstructed jump sequences as
{x0, x1, ..., xm}, the simple estimator is defined as follows:

σ̂M
simple :=

∑
y<z

{
ĵ(y, z)− ĵ(z, y)

}
ln

ĵ(y, z)

ĵ(z, y)
, (5.34)

ĵ(y, z) :=
1

τobs

m−1∑
i=0

χy,z(xi, xi+1), (5.35)

where χy,z(xi, xi+1) := δy,xi
δz,xi+1

.
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5.3 Numerical experiments

In this section, we numerically demonstrate the performance of the learning estimators, and

compare them with the KDE estimators ̂̇Stemp

ss and σ̂[F̂sm] (see Sec. 4.2 and Sec. 4.4 for their

definitions). Here, we use the short-time TUR instead of the finite-time TUR for ̂̇S(F̂ )

TUR,

and thus a different notation σ̂[F̂sm] from
̂̇S(F̂ )

TUR is used in this section. We use the following
three models for the demonstration: (i) N -beads model (N = 2, 5, 10, 15), (ii) Mexican-
hat potential model, and (iii) one-dimensional hopping model. For the N -beads model,
which is an N -dimensional linear Langevin equation, we show that both the estimators
show similar convergence for N = 2, while the learning estimators outperform the KDE
estimators for the higher-dimensional cases. For the Mexican-hat potential model, which
is a two-dimensional nonlinear Langevin equation, we show that the learning estimator
σ̂[dGauss] outperforms the KDE estimators. This is because the learning estimator does not
assume any distribution on data, while this is not the case for the KDE estimators. For the
one-dimensional hopping model, we confirm that the learning estimator gives only a lower
bound on the entropy production rate, and the estimate becomes exact in the equilibrium
and the Langevin limits. We also find that the learning estimator is robust against the
choice of the sampling interval.

5.3.1 N-beads model

In this subsection, we compare the learning estimators with the KDE estimators using the
N -beads model described by an N -dimensional linear Langevin equation. We show that
the learning estimators and the KDE estimators show similar convergence for N = 2, while
the learning estimators outperform the KDE estimators for the higher dimensional setups
N = 5, 10, 15.

The N -beads model describes the motion of beads which are connected to each other
and to the boundary walls by springs with stiffness k (see Fig. 5.4(a) for a schematic). The
beads are independently immersed in viscous fluids with temperature Ti, which satisfies
Ti = Th + (Tc − Th)(i − 1)/(N − 1) (i = 1, 2, ..., N) with Tc the coldest, Th the hottest
temperatures. The ratio r := Tc/Th determines the degree of non-equilibrium, and the
system is in equilibrium at r = 1. When Tc < Th, the heat is dissipated into or absorbed
from the fluids though the friction γ.

The displacements of the beads from their equilibrium positions are described by an
N -dimensional linear Langevin equation. For example, the two-beads model is described
by

ẋ(t) = Ax(t) + Fη(t), (5.36)

A =

(
−2k/γ k/γ
k/γ −2k/γ

)
, (5.37)

F =

(√
2Th/γ 0

0
√
2Tc/γ

,

)
. (5.38)
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Figure 5.4: Numerical experiment with the two-beads model. (a) Temperature ratio versus
the entropy production rate. (b)(c) Performance of the estimators at (b) Tc/Th = 0.1 and

(c) Tc/Th = 0.5 with ̂̇Stemp

ss (yellow squares), σ̂[F̂sm] (blue triangles), and σ̂[dGauss] (black
circles). The system parameters are set to k = γ = 1, Th = 250, and ∆t = 10−3. The
mean and its standard deviation of 10 independent trials are plotted. Reprinted figure with
permission from Ref. [100] (DOI: 10.1103/PhysRevE.101.062106). Copyright 2020 by the
American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
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Figure 5.5: Numerical experiment with the five-beads model. (a) Temperature ratio versus
the entropy production rate. (b)(c) Performance of the estimators at (b) Tc/Th = 0.1 and

(c) Tc/Th = 0.5 with ̂̇Stemp

ss (yellow squares), σ̂[F̂sm] (blue triangles), σ̂λ[dbin] (black circles),
and σ̂[dGauss,m] (green triangles). The system parameters are set to k = γ = 1, Th = 250,
and ∆t = 10−3. The mean and its standard deviation of 10 independent trials are plotted.
Reprinted figure with permission from Ref. [100] (DOI: 10.1103/PhysRevE.101.062106).
Copyright 2020 by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106


66 Estimating entropy production by machine learning

In higher dimensional setups, A and F can be written as Aij = δi,j(−2k/γ) + (δi,j+1 +

δi+1,j)k/γ and Fi,j = δi,j
√
2Ti/γ. Since this is a linear Langevin equation, the stationary

distribution becomes a Gaussian distribution, and the entropy production rate can be
obtained analytically. For example, it is obtained as

σ =
k (Th − Tc)

2

4γThTc

(5.39)

for the two-beads model, and

σ =
k(Th − Tc)

2(111T 2
h + 430ThTc + 111T 2

c )

495ThTc(3Th + Tc)(Th + 3Tc)γ
(5.40)

for the five-beads model [44]. In this study, we use these analytical expressions for N = 2
and 5, while we numerically calculate the entropy production rate using the stationary
distribution obtained by solving the Riccati equation [47] for N = 10 and 15. In the
following, we compare the entropy production rate obtained as above with its estimates
obtained solely on the basis of a finite-length trajectory.

In Fig. 5.4, we show the results of the numerical experiment with the two-beads model.
In Fig. 5.4(a), we show the dependence of the entropy production rate on the tempera-
ture ratio r. In Fig. 5.4(b) and (c), we compare the performance of the Gaussian learning

estimator σ̂[dGauss] with the KDE estimators ̂̇Stemp

ss and σ̂[F̂sm] at r = 0.1 and 0.5. The
system parameters are set to k = γ = 1, Th = 250,∆t = 10−3, and thus the number of
transitions contained in each trajectory is 103τobs. We find that all the estimators show
similar convergence in this setup. The convergence at r = 0.5 is worse than that at r = 0.1
for all the estimators, since the mean local velocity is small when the system is close to
equilibrium, and its detection within the thermal noise becomes difficult.

In Fig. 5.5, we show the results of the numerical experiment with the five-beads model
in the same manner as Fig. 5.4. The system parameters are set to k = γ = 1, Th = 250,
and ∆t = 10−3. Since σ̂[dGauss] is computationally costly in the high dimensional setups,
σ̂[dGauss,m] and σ̂λ[dbin] are used instead. We find that the learning estimators outperform
the KDE estimators in this setup. Their difference is significant especially at r = 0.5, where
the learning estimators with τobs = 10 show similar performance as the KDE estimators
with τobs = 104. Thus, we conclude that the learning estimators perform well even at high
dimensional setups. In addition, we find that σ̂[dGauss,m] shows better performance than
σ̂λ[dbin] for all the trajectory lengths. Since we have the criterion to choose the highest test
value as an estimate, we can choose σ̂[dGauss,m] in practice at large τobs. Note that this cri-
terion gives a little worse value, i.e., the value of σ̂λ[dbin], at small τobs in this case, because
the test values somehow come above the true entropy production rate. This problem may
be avoidable by checking the fluctuation of the learning curve, for example, on the basis of
the discussion in Sec. 5.5.2, while we do not pursue this point further in this thesis.

Next, we study the scalability of our approach to higher dimensional data. Here, at
the same time, we study how the representation ability of the model function affects the
estimation performance, since this is a qualitatively different point of our method from
SFI as explained in Sec. 5.2.2. For this purpose, we compare two estimators: one is the
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Figure 5.6: Numerical experiment with the N -beads model. (a)(c)(e) The number of the
Gaussian functions NGauss versus the performance of the Gaussian deterministic estimator
σ̂det[dGauss,m]. (b)(d)(f) The number of the Gaussian functions NGauss versus the perfor-
mance of the Gaussian learning estimator σ̂[dGauss,m]. The dimension N is set to (a)(b)
5, (c)(d) 10, and (e)(f) 15. We use larger values for NGauss of the Gaussian determinis-
tic estimator, since each Gaussian function has fewer number of parameters. The system
parameters are set to k = γ = 1, Tc = 25, Th = 250, and ∆t = 10−3. The mean and its
standard deviation of 10 independent trials are plotted. Reprinted figure with permission
from Ref. [100] (DOI: 10.1103/PhysRevE.101.062106). Copyright 2020 by the American
Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
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Gaussian learning estimator σ̂[dGauss,m], and the other is the Gaussian deterministic es-
timator σ̂det[dGauss,m] which optimizes only the coefficient of the linear combination in a
deterministic manner [102] (see Sec. 5.5.1 for more details).

In Fig. 5.6, we show the results of the numerical experiment with the N -beads model
(N = 5, 10, 15). We plot the performance of the estimators changing the number of Gaus-
sian functions. The system parameters are set to k = γ = 1, Tc = 25, Th = 250, and
∆t = 10−3. We find that both of the estimators show good convergence even for the 15
dimensional data. The Gaussian learning estimator shows the better convergence, and
performs equally well for various choice of NGauss. Surprisingly, even NGauss = 4 is enough
for all the setups, reflecting the high representation ability of the model function. Thus,
we conclude that the learning estimators are scalable to higher dimensional data, and the
high representation ability of the model function can improve the estimation.

5.3.2 Mexican-hat potential model

In this subsection, we compare the Gaussian learning estimator with the KDE estimators
using a two-dimensional nonlinear Langevin equation named Mexican-hat potential model.
We show that the Gaussian learning estimator performs very well, while the KDE estima-
tors do not work well especially when the nonlinearity is large. In addition, we show the
results on the estimation of the thermodynamic force.

Here, we consider a two variable (x, y) dynamics described by the following Langevin
equation:

ẋ(t) = −1

γ
∇U(x(t)) + Fη(t), (5.41)

U(x) = Ak(r4 − r2) + k(x2 + y2 − xy), (5.42)

F =

(√
2Th/γ 0

0
√

2Tc/γ

)
, (5.43)

where ∇U is the gradient of the potential U , r =
√
x2 + y2, and A is a parameter that

determines the nonlinearity of this equation. When A = 0, this model reduces to the
two-beads model. As we increase A, a small hill appears in the center of the potential, and
the stationary distribution deviates from the Gaussian distribution (see Fig. 5.7(a) for an
illustration of the potential). In this model, we calculate the true entropy production rate
using the stationary distribution obtained by the exact diagonalization of the transition
matrix of the corresponding Fokker-Planck equation.

In Fig. 5.7, we show the results of the numerical experiment with this model. Figure 5.7
shows the nonlinearity A dependence of the entropy production rate. In Figs. 5.7(b)-(d),
we compare the Gaussian learning estimator with the KDE estimators for A = 10−4, 1,
and 102. We find that the Gaussian learning estimator converges the best in all the setups,
while the KDE estimators do not work well at highly nonlinear setups, since the KDE
estimators assume a Gaussian distribution on the data. On the other hand, the learning
estimators works well even if the equation is nonlinear, since they do not assume anything
on the distribution.

The learning estimators can also be used for the estimation of the thermodynamic force,
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Figure 5.7: Numerical experiment with the Mexican-hat potential model. (a) The non-
linearity A versus the entropy production rate. The model becomes equivalent to the
two-beads model at A = 0. The potential shapes at A = 10−4 and A = 102 are drawn.
(b)(c)(d) Performance of the estimators at (b) A = 10−4, (c) A = 1, and (d) A = 102

with ̂̇Stemp

ss (yellow squares), σ̂[F̂sm] (blue triangles), and σ̂[dGauss] (black circles). In (d),

a point of ̂̇Stemp

ss is lacking since it is a negative value. The system parameters are set to
k = γ = 1, Tc = 25, Th = 250, and ∆t = 10−4. The mean and its standard deviation of
10 independent trials are plotted. Reprinted figure with permission from Ref. [100] (DOI:
10.1103/PhysRevE.101.062106). Copyright 2020 by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
http://dx.doi.org/10.1103/PhysRevE.101.062106
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Figure 5.8: Comparison between the true and the estimated thermodynamic force field:
(a)(c) Analytically obtained thermodynamic force for the two-beads model in (a) and for
the Mexican-hat potential model in (c). (b)(d) Estimated thermodynamic force for the
two-beads model in (b) and for the Mexican-hat potential model in (d). The thermody-
namic force is estimated by the Gaussian learning estimator. For the two-beads model,
we use r = 0.1, τobs = 103 with the other system parameters the same as in Fig. 5.4. For
the Mexican-hat potential model, we use A = 102, τobs = 102 with the other system pa-
rameters the same as in Fig. 5.7. Reprinted figure with permission from Ref. [100] (DOI:
10.1103/PhysRevE.101.062106). Copyright 2020 by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
http://dx.doi.org/10.1103/PhysRevE.101.062106
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since the optimal coefficient is proportional to the thermodynamic force d∗(x) = cF (x).
Here, the constant factor c can be removed by estimating Eq. (5.24). In Fig. 5.8, we
compare the true and the estimated thermodynamic force. We can see that the estimated
thermodynamic force agrees well with the analytically obtained thermodynamic force.

5.3.3 One-dimensional hopping model

In this subsection, we compare the learning estimator σ̂M[d] with the simple estimator σ̂M
simple

using a one-dimensional hopping model. First, we check that the optimal estimate of the
learning estimator only gives a lower bound on the entropy production rate, which becomes
exact in the equilibrium and the Langevin limits. Then, we numerically demonstrate the
estimators. We find that the learning estimator is robust against the choice of the sampling
interval.

We consider the hopping dynamics over Nstate states on a one-dimensional ring with
radius 1. The transition rate between the neighboring states is given by

r(i, i+ 1) =
D

h2
+

A

h
(− cos [hi] + f) , (5.44)

r(i+ 1, i) =
D

h2
, (5.45)

where A determines the degree of non-equilibrium, and h = 2π/Nstate is the distance
between the states. We adopt this model since the dynamics converges to the following
Langevin equation in the limit Nstate → ∞:

ẋ(t) = A(− cos [x(t)] + f) +
√
2Dη(t). (5.46)

As explained in Sec. 5.1.1, the short-time TUR does not give the exact estimate in
Markov jump processes. In this setup, the optimal estimate σ̃M [d∗] and the entropy pro-
duction rate are given by

σ̃M [d∗] =
∑
i

2 {p(i)r(i, i+ 1)− p(i+ 1)r(i+ 1, i)}2

p(i)r(i, i+ 1) + p(i+ 1)r(i+ 1, i)
, (5.47)

σ =
∑
i

{p(i)r(i, i+ 1)− p(i+ 1)r(i+ 1, i)} ln p(i)r(i, i+ 1)

p(i+ 1)r(i+ 1, i)
. (5.48)

In Fig. 5.9(a) and (b), we study the behavior of the optimal estimate. We confirm that the
optimal estimate is only a lower bound on the entropy production rate in general, while it
becomes exact in the equilibrium A → 0 and the Langevin Nstate → ∞ limits, which is in
accordance with the discussion in Sec. 5.1.1.

Next, we compare the learning estimator with the simple estimator. In Fig. 5.9(c), the
convergence of the estimators is studied. We find that the learning estimator shows the
better convergence than the simple estimator. In Fig. 5.9(d), the sampling interval ∆t
dependence of the estimates is studied. Interestingly, as we increase the sampling interval,
the simple estimator deviates from the true entropy production rate, while the learning
estimator is not affected much. This is because as we increase the sampling interval, we
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Figure 5.9: Numerical experiment with the one-dimensional hopping model. (a) The degree
of non-equilibrium A versus the optimal estimate σ̃M[d∗] with Nstate = 10. (b) The number
of states Nstate versus the optimal estimate σ̃M[d∗] with A = 10. The optimal estimate
becomes exact in the equilibrium (A → 0) and the Langevin (Nstate → ∞) limits. (c)
The trajectory length τobs versus the performance of the estimators with Nstate = 10, A =
10,∆t = 10−3. (d) The sampling interval ∆t versus the performance of the estimators with
Nstate = 1000, A = 10, τobs = 100. The other system parameters are set as D = 1, f = 3.
The mean and its standard deviation of ten independent trials are plotted in (c) and (d).
Reprinted figure with permission from Ref. [100] (DOI: 10.1103/PhysRevE.101.062106).
Copyright 2020 by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
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fail to reconstruct the underlying dynamics in terms of the back and forth dynamics (for
example 1 → 2 → 1), which makes it hard to estimate the transition probability ĵ(y, z)
accurately (see Eq. (5.35)). On the other hand, the learning estimator is not affected much
since the back and forth dynamics just cancels when we calculate the generalized current
(see Eq. (5.33)).

5.4 Conclusions

In this chapter, we have developed a platform for applying machine learning to the es-
timation of the entropy production using the short-time TUR. We have formulated the
estimation method both for Langevin dynamics and Markov jump processes in the station-
ary state, which can be applied to a wide range of stochastic dynamics including biological
systems [50,103].

First, we have formulated the short-time TUR, and revealed the equality condition
by deriving the optimal coefficient as in Eqs. (5.10) and (5.19b). The equality is always
achievable in Langevin dynamics, while this is not the case in Markov jump processes.
The achievability of the bound in Langevin dynamics is revealed by the scaling analysis in
Eq. (5.12b) as well as by the direct evaluation of the general Langevin dynamics described
by Eq. (2.11). These results are consistent with the previous results in Sec. 3.3, since the
short-time TUR is a special case of the finite-time TUR.

Next, we have constructed the learning estimators [the binned learning estimator σ̂λ[dbin]
as in Eq. (5.49), the Gaussian learning estimators σ̂[dGauss], σ̂[dGauss] as in Eqs. (5.55) and
(5.56)] for Langevin dynamics and compared them with the KDE estimators. As a result,
we have found that the learning estimators outperform the KDE estimators especially in
the high dimensional and nonlinear setups as shown in Figs. 5.5 and 5.7.

We have also formulated the estimation in Markov jump processes, and constructed the
learning estimator σ̂M[d] in Sec. 5.2.3. The learning estimator gives an exact estimate only
in the equilibrium and the Langevin limits as shown in Fig. 5.9(a) and (b). However, as
an advantage of the learning estimator, we have found that it is robust against the choice
of the sampling interval, which is of practical importance since the time resolution of a
detector is usually limited.

In summary, we have resolved the three remaining issues presented in Sec. 4.4.2. It
is an interesting future issue to give a theoretical foundation, for example, on the rela-
tion between the convergence and the choice of the model function. The application of
the learning estimator for more complex Markov jump processes is also a remaining issue,
where the reconstruction of the underlying dynamics becomes a non-trivial task.

5.5 Supplementary to Chapter 5

In this section, we give supplementary information on the learning estimators. In Sec. 5.5.1,
we explain the details of the learning estimators from their definition to hyperparameter
tuning. In Sec. 5.5.2, we discuss the reason why the test value sometimes becomes larger
than the entropy production rate. In Sec. 5.5.3, we study the effect of the measurement
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noise on the estimation.

5.5.1 Details of the learning estimators

Here, we explain the binned learning estimator σ̂λ[dbin] and the Gaussian learning estima-
tors σ̂[dGauss], σ̂[dGauss,m] in detail. We define them by assuming two-dimensional data for
simplicity, but their extensions to higher dimensional data are straightforward.

Binned learning estimator

In the binned learning estimator, we assume a histogram-like function dbin(x) for the
coefficient. Concretely, the model function is defined by

dbin(x) := d(i(x), j(y)),

with i(x) :=

⌈
x− xmin

bx

⌉
, j(y) :=

⌈
y − ymin

by

⌉
, (5.49)

where i(x) and i(y) specify the bin, xmin and ymin are the minimum of the data in each
coordinate, bx and by are the widths of the bins, and the brackets denote the ceiling function.
Here, the widths are defined as

bx =
xmax − xmin

Nbin

, (5.50)

by =
ymax − ymin

Nbin

, (5.51)

where Nbin is a hyperparameter that determines the number of divisions in each coordinate.
When the gradient ascent is performed, the updates of the vector d(i, j) depend only

on the transitions that occurred in the same bin (i, j). To take into account transitions
outside of the bins, we introduce a regularization term to the objective function as

f(dbin) = σ̂[dbin]−
λ

4
R(dbin), (5.52)

R(dbin) :=
∑
i,j

∑
i′,j′∈nn(i,j)

||d(i, j)− d(i′, j′)||2, (5.53)

where nn(i, j) := {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} is a set of the nearest neighbors,

|| · || is the L2-norm defined by ||a|| =
√∑

i a
2
i , and λ is a hyperparameter that determines

the strength of the regularization. The regularization term can improve the generalization
performance of the estimator, since it requires the vectors to change smoothly between
neighboring bins which can prevent the model function from being overfitted to training
data.

In the numerical experiments, the parameters are initialized by {d(i, j)}k = uni(−1, 1)
before the gradient ascent, where uni(a, b) returns a value x uniformly randomly from
a < x ≤ b. The hyperparameters α,Nbin and λ are determined as explained in the end of
this subsection, and their values are listed in Table 5.1.
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Gaussian learning estimator

In the Gaussian learning estimator, we assume a linear combination of Gaussian functions
dGauss(x) for the coefficient. Concretely, the model function is defined by

{dGauss(x)}k :=
Nbin∑
i=1

Nbin∑
j=1

ωk(i, j)Kk(x; i, j), (5.54)

Kk(x; i, j) := e−(x−x̄(i,j))TM (k)(i,j)
−1

(x−x̄(i,j)), (5.55)

where x̄(i, j) =
(
xmin + bx

(
i− 1

2

)
, ymin + by

(
j − 1

2

))
are the centers of the Gaussian func-

tions, and xmin, ymin, bx and by are the same as in the binned learning estimator. M (k)(i, j)

is a diagonal matrix whose lth element is M (k)(i, j)ll = (m
(k)
l (i, j))2.

Here, ωk(i, j) and m
(k)
l (i, j) are the parameters to optimize, while α and Nbin are the

hyperparameters. The parameters are initialized by ωk(i, j) = uni(−1, 1) and m
(k)
l (i, j) =

uni(0, 1) before the gradient ascent, and the hyperparameters are determined as listed in
Table 5.1.

In contrast to the binned learning estimator, the Gaussian learning estimator shows high
generalization performance as it is. This is because the updates of the Gaussian functions
are dependent on all the transition data, and thus the vector field becomes automatically
smooth over the space. However, the computational complexity of the Gaussian learning
estimator scales O(Nn

bin) for n-dimensional data, reflecting the exponential increase of the
Gaussian functions. To deal with this problem, we also consider a modification of the
Gaussian learning estimator whose model function dGauss,m(x) is defined by

{dGauss,m(x)}k :=
NGauss∑
i=1

ωk(i)Kk(x; i), (5.56)

Kk(x; i) := e−(x−x̄(k)(i))
T
M (k)(i)

−1(x−x̄(k)(i)), (5.57)

where NGauss is the number of Gaussian functions, and the centers of the Gaussian func-
tions x̄(k)(i) are additionally regarded as the parameters to optimize. This estimator
σ̂[dGauss,m(x)] is used for high dimensional setups in this study. In fact, we find that
even NGauss = 4 is enough for the N -beads model as shown in Fig. 5.6, and thus the esti-
mation can be done with a small computational cost.

In the numerical experiments, the parameters are initialized as follows:

wk(i) = uni(−1, 1), (5.58)

x̄
(k)
l (i) = uni(xmin,l, xmax,l), (5.59)

m
(k)
l (i) = xmax,l − xmin,l, (5.60)

where xmin,l and xmax,l are the minimum and the maximum of the data in the l-th coordi-
nate.

In Fig. 5.6 and Fig. 5.11, we use the Gaussian deterministic estimator [102] which op-
timizes only the coefficient ωk(i) in a deterministic manner. In Fig. 5.6, the Gaussian
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deterministic estimator with the model function dGauss,m(x) is used, where we set x̄
(k)
l (i)

and m
(k)
l (i) as Eqs. (5.59) and (5.60). In Fig. 5.11, the Gaussian deterministic estimator

with the model function dGauss(x) is used, where we set m
(k)
l (i, j) =

√
2(xmax,l−xmin,l)/Nbin

following the definition in Ref. [102].

Hyperparameter tuning

Here, we explain the hyperparameter tuning of the learning estimators. In Fig. 5.10, we
show the hyperparameter dependence of the Gaussian learning estimator. We find that
the hyperparameter dependence is monotonic, and thus we can determine their values by
changing them in the direction which increases the test value σ̂[d∗

Gauss]. The behaviors of
the test and the training values are in accordance with the sketch of Fig. 5.2. On the
basis of Fig. 5.10(c), we adopt α = 10 in this study. It is an interesting future issue to
give a theoretical foundation for these behaviors: for example, why α dependence is more
significant.

In the same manner, we determine the hyperparameters of all the learning estimators
as listed in Table 5.1. For simplicity, the hyperparameters are determined before numerical
experiments using other trajectories in this study, but there is no problem for doing both
of the hyperparameter tuning and the estimation for a single trajectory data in practice.

5.5.2 Bias of the learning estimators

In this subsection, we discuss the reason why the test value sometimes becomes larger than
the entropy production rate. We consider that there are three reasons for this behavior:
(i) bias of the short-time TUR, (ii) fluctuation of the gradient ascent, and (iii) correlation
between training and test data. To explain these points, we study the behavior of σ̂[F ],
σ̂[dGauss]|test, σ̂det[dGauss]|test, and σ̂det[dGauss]|train in Fig. 5.11.

First, the short-time TUR is biased in the sense that even if the thermodynamic force
F (x) is used for the coefficient, σ̂[F ] can be systematically shifted from the true entropy
production rate. This is because the mean and the variance of the generalized current
are estimated with a finite-length trajectory. Indeed, σ̂[F ] gives a larger value than the
entropy production rate in Fig. 5.11 especially when the trajectory length is small. As a

criterion to judge the bias in practice, we propose to compare the mean Mean
[
⟨̂JF ⟩

]
and

the standard deviation Std
[
⟨̂JF ⟩

]
of the estimated entropy production ⟨̂JF ⟩:

Mean
[
⟨̂JF ⟩

]
≈ σ̂τ, (5.61)

Std
[
⟨̂JF ⟩

]
≈

√
2σ̂τ

N
, (5.62)

where τ is the time interval of the generalized current (τ = ∆t if it is defined by Eq. (5.32))
and N is the number of transitions used for the computation. Here, the standard deviation

is derived using Var(JF ) = 2στ and the central limit theorem for ⟨̂JF ⟩ =
∑

JF /N . When
the standard deviation is larger than the mean, we should be careful of the bias. For
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Figure 5.10: Hyperparameter dependence of the Gaussian learning estimator for the two-
beads model (r = 0.1 with the same system parameters as in Fig. 5.4). (a)(b) Nbin and α
dependence for (a) τobs = 100 and (b) τobs = 1000. (c) α dependence of the normalized test
value σ̂[d∗

Gauss]/σ for τobs = 10 to 104 with Nbin = 6. (d) α dependence of the normalized
training value σ̂[dGauss]|train/σ for τobs = 10 to 104 with Nbin = 6. The hyperparameter
dependence is in accordance with Fig. 5.2. Note that the peak of the training curve is
used for (d), but the similar results can be obtained even if d∗, which is the optimal
model function that maximizes the test curve, is used. In (c) and (d), the mean and its
standard deviation of 10 independent trials are plotted. Reprinted figure with permission
from Ref. [100] (DOI: 10.1103/PhysRevE.101.062106). Copyright 2020 by the American
Physical Society.

http://dx.doi.org/10.1103/PhysRevE.101.062106
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Figure 5.11: Bias of the short-time TUR for the two-beads model (r = 0.5 with the same
system parameters as in Fig. 5.4). We plot the convergence rate of the short-time TUR with
the optimal coefficient σ̂[F ] (black circles), the Gaussian learning estimator σ̂[dGauss]|test
(green triangles), and the test and the training values of the Gaussian deterministic esti-
mator σ̂det[dGauss]|test (blue triangles), σ̂det[dGauss]|train (orange squares). The mean and its
standard deviation of 10 independent trials are plotted.

example, if the system is close to equilibrium, i.e., σ is small, we should use a larger time
interval τ for the generalized current.

Second, the test value can actually adapt to the fluctuation of the test data because of
the fluctuation of the gradient ascent. When the trajectory length is small, the learning
curve becomes very noisy. Since we pick up the peak of the test curve, the model function
can adapt to the test data by coincidence. Indeed, for the Gaussian deterministic estimator,
all of the test values are placed below the optimal value σ̂[F ] in Fig. 5.11, since there is no
chance for the model function to adapt to the fluctuation of the test data in this estimator.
On the other hand, for the Gaussian learning estimator, some of the test values come above
the entropy production rate when the trajectory length is small.

Third, the correlation between the training and the test data becomes non-negligible
when the trajectory length is small. For example, in Fig. 5.11, σ̂det[dGauss]|test takes an
unnaturally large value for τobs = 10, which cannot be explained by (i) and (ii). We
consider that this is caused by the correlation between the training and the test data in
term of their positions. The effect of the correlation can be confirmed, for example, by
using {(x0,x∆t), (x2∆t,x3∆t), ...} for the training data and {(x∆t,x2∆t), (x3∆t,x4∆t), ...}
for the test data, where available transitions are described by the parentheses. With this
data splitting, we can check that the test value always comes above the entropy production
rate due to the correlation.
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Figure 5.12: Effect of the measurement noise for the two-beads model (r = 0.1, τobs = 104,
and ∆t = 10−2 with the other system parameters the same as in Fig. 5.4). The horizontal
axis is the strength of the measurement noise Λ compared to the thermal noise of the cold
bead

√
2Tc∆t/γ. The estimates of the Gaussian learning estimator with the time interval

τ = 10−1 (yellow triangles), and τ = 10−2 (black circles) are plotted. Here, the generalized
current with length τ = 10−1 is calculated using a pair {xi∆t,x(i+10)∆t}. Since we have
the criterion that the higher is the better as an estimate, the dotted line would be the
estimates we can get by tuning the time interval τ . The mean and its standard deviation
of 10 independent trials are plotted.

5.5.3 Effect of measurement noise

Here, we study the effect of a measurement noise on the estimation. We simulate a mea-
surement noise by adding a white noise to the data as

yi∆t = xi∆t +
√
Ληi, (5.63)

where Λ is the strength of the measurement noise, and ηi satisfies
〈
ηiaη

j
b

〉
= δa,bδi,j.

We estimate the entropy production rate solely on the basis of the observed trajectory
{y0,y∆t, ...,yN∆t}.

In Fig. 5.12, we study its effect using the two-beads model. Here, the strength Λ is
determined compared to the thermal noise for the cold bead

√
2Tc∆t/γ. We find that

the estimates take smaller values than the actual entropy production rate due to the mea-
surement noise, while its effect can be mitigated by using a larger time interval for the
generalized current. In Fig. 5.12, the estimates of the Gaussian learning estimator with the
time interval τ = ∆t and τ = 10∆t are plotted. When the measurement noise is small, the
estimate is better with τ = ∆t, since the TUR cannot be regarded as the short-time TUR
with the time interval τ = 10∆t in this setup. On the other hand, when the measurement
noise is large, the estimate is better with τ = 10∆t, which suggests that the finite-time
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Model τobs Algorithm Nbin α λ Nstep

Two-beads (r = 0.1) 10− 104 σ̂[dGauss] 6 10 100
104 σ̂λ[dbin] 20 1 10−4 300
103 σ̂λ[dbin] 12 1 10−2 300
102 σ̂λ[dbin] 8 1 10−1 300
10 σ̂λ[dbin] 8 1 102 300

Two-beads (r = 0.5) 10− 104 σ̂[dGauss] 6 10 100
Five-beads (r = 0.1) 10− 104 σ̂[dGauss,m] 1 100

104 σ̂λ[dbin] 2 1 10−5 300
103 σ̂λ[dbin] 2 1 10−2 300
102 σ̂λ[dbin] 2 1 10−1 300
10 σ̂λ[dbin] 2 1 1 300

Five-beads (r = 0.5) 104 σ̂λ[dbin] 2 1 10−3 300
103 σ̂λ[dbin] 2 1 10−2 300
102 σ̂λ[dbin] 2 1 10−1 300
10 σ̂λ[dbin] 2 1 10 300

10, 15-beads (r = 0.1) 10− 104 σ̂[dGauss,m] 1 100
Mexican-hat (A = 10−4) 10− 104 σ̂[dGauss] 6 10 100
Mexican-hat (A = 1) 10− 104 σ̂[dGauss] 6 1 100
Mexican-hat (A = 102) 10− 104 σ̂[dGauss] 6 0.3 100

One-dimensional hopping σ̂M[d] 0.01 300

Table 5.1: Hyperparameters used for the learning estimators in this study. Nstep is the
iteration number of the gradient ascent.

TUR is robust against the measurement noise. Since we have the criterion that the higher
is the better as an estimate, we can get the best estimate which is illustrated as a dotted
line in Fig. 5.12 by tuning the time interval in practice.



Chapter 6

Estimating entropy production along
non-stationary trajectories

In this chapter, we extend the learning algorithm developed in Chap. 5 to non-stationary
dynamics. In Sec. 6.1, we give a short introduction to this study. In Sec. 6.2, we establish
the theoretical relationship between two variational representations of the entropy pro-
duction, one is the short-time TUR and the other is the NEEP, in terms of the range of
applicability, the optimal coefficient field, and the tightness of the bound in non-stationary
dynamics. On the basis of this result, we propose an efficient estimation method that
estimates the thermodynamic force continuously in time in Sec. 6.3. Specifically, we adopt
feedforward neural networks for the model function in this chapter. In Sec. 6.4, we numer-
ically demonstrate the working of our method using time-dependent Langevin models. We
show that the continuous-time estimation is data efficient since the estimate converges not
only by increasing the number of trajectories but also by increasing the number of time
instances contained in each trajectory. In this chapter, we mainly consider non-stationary
Langevin dynamics, while our method is straightforwardly extendable to Markov jump
processes. The results presented in this chapter are based on our paper [104].

6.1 Introduction

In biological systems, non-stationary dynamics ubiquitously appear as, for example, adap-
tive responses to environmental change [105, 106] or spontaneous oscillations [107–109].
However, in contrast to the stationary case, the estimation of the entropy production in
non-stationary dynamics is largely unexplored. This is because the non-stationary estima-
tion requires repeating of the same experiments many times, which can be a significant
hurdle in practice. On the other hand, it has been recently proposed to use a modified
TUR for the non-stationary estimation [110]. The proposed method, however, gives only
a lower estimate of the entropy production and requires perturbations to dynamics. Thus,
it is desirable to establish an estimation method that can give an exact estimate solely on
the basis of a small number of trajectories.

In the previous chapter, we have developed a variational estimation method for the
stationary entropy production. This method can actually be applied to non-stationary
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Rep. Markov jump Langevin Optimal field Tightness
σNEEP Yes Yes d∗(x) = F (x, t) Loose
σSimple No Yes d∗(x) = F (x, t) Loose
σTUR No Yes d∗(x) ∝ F (x, t) Tight

Table 6.1: Summary of the comparison among the variational representations σNEEP, σSimple

and σTUR.

dynamics straightforwardly. This is because if we look at only an ensemble of jumps that
occur at a particular time t to estimate the instantaneous thermodynamic force F (x),
the same estimation method as the stationary case can be applied. Let us call this ap-
proach instantaneous-time estimation. However, this approach discards a lot of information
that the whole trajectories have, since it ignores the jumps that occur at times near to t,
while the thermodynamic force should be close to each other when their times are close.
Thus, there is room for improvement of the non-stationary estimation method beyond the
instantaneous-time estimation.

On another front, a variational representation of the entropy production other than the
short-time TUR has been recently proposed, which is called Neural Estimator for Entropy
Production (NEEP) [111]. In contrast to the short-time TUR, the NEEP gives an exact
estimate in both Markov jump processes and overdamped Langevin dynamics. However,
the relationship between the short-time TUR and the NEEP has not been revealed yet.

In this chapter, we resolve these issues. First, we establish the theoretical relationship
between the short-time TUR and the NEEP. Then, we propose a continuous-time estima-
tion method that learns the whole trajectories at once and estimates the thermodynamic
force continuously in time, i.e., F (x, t). Our method can estimate the entropy production
along single trajectories and the entropy production rate using the obtained thermody-
namic force (see Fig. 6.1). We find that the continuous-time estimation indeed converges
better than the instantaneous-time estimation, which shows the effectiveness of our vari-
ational approach for non-stationary dynamics as well as nonlinear and high-dimensional
dynamics.

6.2 Short-time variational representations of the en-

tropy production

Here, we establish the theoretical relationship between the short-time TUR and the NEEP
by deriving an intermediate variational representation of them called the simple dual rep-
resentation. In addition, we show that the NEEP is related to a dual representation of
the Kullback-Leibler divergence [112–114] and it is applicable to non-stationary dynamics,
complementing the original result for stationary dynamics [111]. The summary of the com-
parison is presented in Table 6.1.

First, we introduce the short-time TUR representation, which has been formulated in
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Figure 6.1: Estimating the entropy production along single trajectories. (a) Schematic of
our estimation scheme. Our method is solely based on an ensemble of trajectories which
are sampled from repeated experiments. We optimize the model function in terms of the
parameters θ to get an estimate of the thermodynamic force d(x, t|θ∗), and use it to
estimate the entropy production along a single trajectory or the entropy production rate.
We show an example of a trajectory sampled from the breathing parabola model in the left
box. (b) Estimated entropy production along a single trajectory. The thin green line is the
estimated entropy production, and the thick black line is the true entropy production. The
estimation is conducted for the trajectory drawn in (a) after training the model function
using an ensemble of single transitions at T16 of 106 trajectories (see Sec. 6.3.1 for the
definition of Tk). (c) Estimated entropy production rate. The blue circles are the estimated
values using 105 (left) and 106 (right) trajectories with T16, and the black line is the true
entropy production rate. The mean and its standard deviation of 10 independent trials are
plotted for the estimated values. For (a)-(c), trajectories are sampled from the breathing
parabola model with system parameters γ = T = 1,∆t = 10−3 and τobs = 2.048, and the
simple dual representation (Eq. (6.3)) is used for both the training and the evaluation.
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the previous chapter. In this chapter, we describe this representation as σTUR defined by

σTUR(t) :=
1

dt
max

d

2 ⟨Jd⟩2

Var(Jd)
, (6.1)

where Jd = d(x) ◦ dx(t) is the (single-step) generalized current with some coefficient
field d(x). The short-time TUR gives an exact estimate of the entropy production rate
in overdamped Langevin dynamics, while it gives only a lower estimate in Markov jump
processes. The optimal coefficient is proportional to the thermodynamic force d(x) =
cF (x, t), and its constant factor c can be calculated by c = Var(Jd)/2 ⟨Jd⟩ as shown in
Eq. (5.24).

Next, we introduce the NEEP representation [111]. We formulate the NEEP in the
form of a variational representation of the entropy production rate:

σNEEP(t) :=
1

dt
max

d

〈
Jd − e−Jd + 1

〉
, (6.2)

which is a slight modification from the original expression in Ref. [111]. In contrast to the
short-time TUR, the NEEP gives an exact estimate for both Markov jump processes and
overdamped Langevin dynamics, and the optimal coefficient directly gives the thermody-
namic force d∗(x) = F (x). In the end of this section, we show that the NEEP is also
applicable to non-stationary dynamics, although it was derived for stationary dynamics in
Ref. [111].

Then, we reveal the pros and cons of the short-time TUR and the NEEP. For the com-
parison, we derive another variational representation named the simple dual representation
σSimple from σNEEP by assuming Langevin dynamics and by expanding

〈
e−Jd

〉
as

σSimple(t) :=
1

dt
max

d

[
2 ⟨Jd⟩ −

Var(Jd)

2

]
, (6.3)

where we used
〈
e−Jd

〉
= 1−⟨Jd⟩+Var(Jd)/2+o(dt). Since Langevin dynamics is assumed

for the expansion of
〈
e−Jd

〉
, the simple dual representation gives an exact estimate only in

Langevin dynamics. Note that we do not assume anything on the probability distribution
for the expansion, and it always holds for general Langevin dynamics. Interestingly, the
simple dual representation consists of only the mean and the variance of the generalized
current similarly to the short-time TUR.

The simple dual representation reveals the relation between the short-time TUR and
the NEEP in terms of the tightness of the bounds in Langevin dynamics. Concretely, the
following inequality holds for any fixed choice of Jd:

σdt ≥ 2 ⟨Jd⟩2

Var(Jd)
≥ 2 ⟨Jd⟩ −

Var(Jd)

2
, (6.4)

where we used the inequality 2a2

b
≥ 2a − b

2
for any a and b > 0. Since a tighter bound is

advantageous for the estimation [114,115], the short-time TUR would be more effective for
the estimation of the entropy production rate. Note that the NEEP and the simple dual
representation have slightly different statistical properties when they are estimated with
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data, and thus the relation (6.4) does not hold in a strict sense between the NEEP and
the short-time TUR in practice. However, we numerically find that the short-time TUR
indeed converges the fastest, while the NEEP and the simple dual representation show
similar convergence (see Sec. 6.6.1).

On the other hand, the NEEP and the simple dual representation would be more effec-
tive for the estimation of the thermodynamic force. This is because the optimal coefficient
directly gives the thermodynamic force in the NEEP and the simple dual representation,
while the short-time TUR necessitates the correction of the constant factor. In the next
section, we introduce the continuous-time estimation that improves the estimate of the
thermodynamic force using the whole trajectories. The correction of the constant factor
can negate the benefit of the continuous-time estimation by adding relatively large sta-
tistical error, since it is calculated by using an ensemble of jumps at a single time t as
c(t) = Var(Jd)/2 ⟨Jd⟩. Here, the time dependence is explicitly written for c(t) to empha-
size that it can be different from time to time (see Sec. 6.6.1 for a numerical experiment).
In Table 6.1, we summarize the above discussion.

Finally, we show that the NEEP is mathematically related to a dual representation
of the Kullback-Leibler (KL) divergence [112–114], and it is applicable to non-stationary
dynamics. We consider probability distributions P (x) and Q(x) over a discrete state space
Ω. The KL divergence between P and Q is defined by

DKL(P ||Q) :=
∑
x∈Ω

P (x) ln
P (x)

Q(x)
. (6.5)

The KL divergence can be expressed in a variational form:

DKL(P ||Q) = max
h∈F

EP [h+ 1]− EQ[e
h], (6.6)

where F is a set of functions h : Ω → R such that the two expectations EP [h + 1] and

EQ[e
h] are finite, and the optimal function is given by h∗ = ln P (x)

Q(x)
. This representation is

derived using the Fenchel convex duality [112–114], and called a dual representation of the
KL divergence.

We derive the NEEP by assuming Markov jump processes. The entropy production
rate can be written as the KL divergence [6]

σ(t) = DKL(pt(x)rt(x, x
′)||pt(x′)rt(x

′, x)), (6.7)

where pt(x) is the probability distribution, and rt(x, x
′) is the transition rate from x to x′

at time t. Then, we get the NEEP by applying Eq. (6.6) as

σ(t) =
1

dt
max
h∈F ′

〈
h− e−h + 1

〉
, (6.8)

where F ′ is a set of functions h : Ω×Ω → R which make the above expectation finite and
satisfy h(x, x′) = −h(x′, x). Here, the expectation is taken as

⟨f(x, x′)⟩ := dt
∑
x,x′

pt(x)rt(x, x
′)f(x, x′), (6.9)
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and the optimal function is the entropy production h∗ = ln pt(x)rt(x,x′)
pt(x′)rt(x′,x)

. We can further

derive Eq. (6.2) from Eq. (6.8) by using the fact that h∗ can be written as the generalized
current, and thus the generalized current can be adopted as the function h. Importantly, the
NEEP holds for non-stationary dynamics since the stationarity is not assumed in Eq. (6.7).
The derivation of Eq. (6.8) is as follows:

σ = DKL(pt(x)rt(x, x
′)||pt(x′)rt(x

′, x)) (6.10a)

= max
h∈F

[∑
x,x′

pt(x)rt(x, x
′)h(x, x′)−

∑
x,x′

pt(x
′)rt(x

′, x)eh(x,x
′) + 1

]
(6.10b)

= max
h∈F ′

[∑
x,x′

pt(x)rt(x, x
′)h(x, x′)−

∑
x,x′

pt(x
′)rt(x

′, x)eh(x,x
′) + 1

]
(6.10c)

= max
h∈F ′

[∑
x,x′

pt(x)rt(x, x
′)
{
h(x, x′)− e−h(x,x′) + 1

}]
(6.10d)

=
1

dt
max
h∈F ′

〈
h− e−h + 1

〉
, (6.10e)

where we used Eq. (6.6) in Eq. (6.10b), and added a new constraint h(x′, x) = −h(x, x′)
in Eq. (6.10c) using the fact that h∗ satisfies the constraint. Note that we derived the
NEEP by assuming Markov jump processes here, but it means that the NEEP also holds
in overdamped Langevin dynamics through the jump process approximation (Eq. (3.15)).

6.3 Estimation method for non-stationary dynamics

In this section, we propose the continuous-time estimation scheme for non-stationary dy-
namics, which estimates the thermodynamic force continuously in time. In Sec. 6.3.1, we
explain the main idea. In Sec. 6.3.2, we explain the implementation details of our method
using feedforward neural networks.

6.3.1 General idea

A schematic of our estimation method is presented in Fig. 6.1. Our method is solely based
on an ensemble of trajectories sampled from a non-stationary dynamics with sampling
interval ∆t:

Γi = {x0,x∆t, ...,xτobs(= xM∆t)}i (i = 1, ..., N), (6.11)

where i is the index of trajectories, τobs is the observation time, M is the number of tran-
sitions, and N is the number of trajectories.

We can estimate the entropy production rate σ(t) using only an ensemble of single tran-
sitions at time t: {xt,xt+∆t}i (i = 1, ..., N) in the same manner as in Chap. 5. Concretely,
we optimize a model function d(x|θ) with respect to the objective function σ̂(t)|train calcu-
lated with only a half of the ensemble {xt,xt+∆t}i (i = 1, ..., N/2). Here, σ̂(t) denotes any
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of σ̂TUR(t), σ̂NEEP(t), and σ̂Simple(t), and we use the hat symbol for estimated quantities.
Then, we evaluate the trained model function d(x|θ) with the objective function σ̂(t)|test
calculated with the other half {xt,xt+∆t}i (i = N/2 + 1, ..., N). Let us call this approach
the instantaneous-time estimation.

However, as we have discussed in Sec. 6.1, the instantaneous-time estimation is not
data efficient, since it discards information contained in the other single transitions. To
overcome this problem, we consider to optimize a time-dependent model function d(x, t|θ)
using the whole trajectories at once. Concretely, we construct an objective function as
follows:

f̂Tk(θ) :=
∑
t∈Tk

a(t)σ̂(t)
/∑

t∈Tk

a(t), (6.12)

where Tk is a set of time instances, and a(t) is any positive value defined for t ∈ Tk

(see Sec. 6.3.2 for the details of a(t)). Here, a set of time instances is defined as Tk :=
{0, k∆t, 2k∆t, ..., lk∆t}, where l is the maximum integer satisfying lk+1 ≤ M . Similarly to
the instantaneous-time estimation, we optimize the model function d(x, t|θ) with respect to
the objective function fTk(θ)|train calculated with a half of the ensemble Γi (i = 1, ..., N/2),
and evaluate it with fTk(θ)|test calculated with the other half Γi (i = N/2+1, ..., N). Here,
σ̂(t) is calculated by viewing

Jd = d

(
xt + xt+∆t

2
, t+

∆t

2

∣∣∣θ) [xt+∆t − xt] (6.13)

as a realization of the generalized current. Specifically, we perform the gradient ascent
for fTk(θ)|train, and find the optimal parameters θ∗ which maximize fTk(θ)|test. Then,
d(x, t|θ∗) is expected to converge to the thermodynamic force F (x, t) at least at t ∈ Tk,
and even at interpolating times if k∆t is sufficiently small. Let us call this approach the
continuous-time estimation.

We give some remarks on the set of time instances Tk. First, we basically use an
ensemble of single transitions {{x0,x∆t}i, {xk∆t,x(k+1)∆t}i, ..., {xlk∆t,x(lk+1)∆t}i} for both
the training and the evaluation during the gradient ascent when Tk is adopted. Although
Tk with k ≥ 2 is not a natural data set, we introduce this notation (i) to study the
convergence of the estimate as we increase the number of time instances (i.e., as we decrease
k) contained in each trajectory, and (ii) to decrease the computational cost. Second, we
sometimes use {xt,xt+τ}i with τ = m∆t (m ≥ 2) to calculate σ̂(t), i.e., use an ensemble
of single transitions {{x0,xτ}i, {xk∆t,xk∆t+τ}i, ...} for Tk. This is because a smaller time
interval does not necessarily lead to a better estimate as we have seen in Chap. 5.

6.3.2 Implementation with neural networks

Here, we explain the implementation details.

Basic algorithm

We adopt feedforward neural networks for the model function d(x, t|θ) to learn the ther-
modynamic force F (x, t). This is because a neural network is suitable for expressing a



88 Estimating entropy production along non-stationary trajectories

Figure 6.2: Training of the neural network. (a) An example of the learning curve of the
test value for trajectories generated by the breathing parabola model. As the inset plots,
we show scatter plots between the true (Eq. (6.21)) and the estimated (Eq. 6.20) single-
step entropy production along a single trajectory, and ρ is the correlation between them
evaluated along 100 trajectories. As the gradient ascent proceeds, the estimate becomes
more accurate. The same system parameters as in Fig. 6.1 are used for the breathing
parabola model. (b) Sketch of the feedforward neural network. We adopt a five-layer
network with three hidden layers. (c) Sketch of the modified neural network. We adopt a
four-layer network with two hidden layers, where the gray and the blue units are regarded
as a single output layer. We basically use the normal neural network depicted in (b) unless
explicitly stated otherwise.
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nontrivial functional form of the thermodynamic force with time dependence [111, 116],
and it is known to perform well for interpolation of discrete data [117], which is essential
for the continuous-time estimation. Concretely, we mainly use a five-layer network depicted
in Fig. 6.2(b). The network inputs x and t, and outputs the coefficient field d. The ith
layer is fully-connected to the (i + 1)th layer, and the rectified linear function (ReLU) is
adopted as the activation function for the hidden layers (i = 2, 3, 4). The hyperparameters
of the neural network are the number of hidden layers Nlayer and the number of units in
each hidden layer Nhidden, which are predetermined similarly to the previous chapter (see
Sec. 6.6.2 for the details).

We update the parameters of the neural network θ by the gradient ascent:

θ → θ + α∇θf̂Tk |train, (6.14)

and evaluate the model function with f̂Tk |test. Here, we set a(t) uniformly randomly from

0 < x ≤ 1 for f̂Tk |train in every iteration to introduce stochasticity, which can be regarded

as the stochastic gradient ascent [118]. On the other hand, we set a(t) = 1 for f̂Tk |test
to evaluate the model function with equal weight on σ̂(t). f̂Tk |test is an estimate of the
time-averaged entropy production rate

∑
t∈Tk

σ̂(t)/
∑

t∈Tk
1, and we describe it as the test

value. Specifically, we implement an algorithm called Adam [101] for the gradient ascent
to improve the convergence.

In Fig. 6.2(a), we show an example of the learning curve of the test value. We adopt the
parameters θ∗ at the peak of the learning curve for the estimation, and regard d(x, t|θ∗) as
an estimate of the thermodynamic force. Note that we multiple d(x, t|θ∗) by 2⟨̂Jd⟩/V̂ar(Jd),
which is calculated using an ensemble of jumps {xt,xt+∆t}i (i = N/2 + 1, ..., N), if the
short-time TUR is used.

Further improvement

In the next section, we basically use the above algorithm (for Figs. 6.1, 6.3, and 6.4), while
we consider two improvements in Fig. 6.5 to demonstrate the effectiveness of our method
in practice. Concretely, we consider to use Var(Jd)/2dt as an estimator of the entropy pro-
duction rate and use a modified neural network depicted in Fig. 6.2(c).

First, Var(Jd)/2dt gives an estimate of the entropy production rate when the coefficient
is the thermodynamic force d = F as shown in Eq. (5.22). We find that Var(Jd)/2dt can sig-
nificantly reduce the statistical error compared to the objective functions of the variational

representations. This is because the estimated quantity V̂ar(Jd) has a smaller variance than
⟨̂Jd⟩ as follows:

Var
[
⟨̂Jd⟩

]
∝ dt, (6.15)

Var
[
V̂ar(Jd)

]
∝ dt2, (6.16)

which can be derived using the fact that Var(Jd) ∝ dt, Var(J2
d) ∝ dt2 (see Eq. (5.23)), and

these quantities are estimated by ⟨̂Jd⟩ =
∑

i Jd/N , V̂ar(Jd) =
∑

i J
2
d/N − (

∑
i Jd/N)2 .
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The use of Var(Jd)/2dt is effective only for the continuous-time estimation with the
NEEP and the simple dual representation. This is because the variance of the objective

function σ̂(t), which consists of ⟨̂Jd⟩ and V̂ar(Jd), inevitably leads to the similar vari-
ance of the estimated thermodynamic force d(x, t|θ∗) in the instantaneous-time estima-

tion. For the short-time TUR, V̂ar(Jd)/2dt becomes equivalent to the objective function

2⟨̂Jd⟩
2
/V̂ar(Jd)dt itself, which can be derived by substituting the model function with the

correction term 2⟨̂Jd⟩/V̂ar(Jd) into V̂ar(Jd)/2dt.
Second, we numerically find that the modified neural network depicted in Fig. 6.2(c)

converges better than the normal neural network. The difference from the normal network
is that the time-dependence appears only in the output layer, and the output is given by

d =

Noutput∑
k=1

dk exp

[
−
(
t− tk
b

)2
]
, (6.17)

where Noutput is the number of units in the output layer, tk = k−1
N−1

τobs, and b = τobs
Noutput−1

.

The idea of this neural network is that the unit dk learns the thermodynamic force around
time tk. The modified network performs better since it implicitly assumes that the local
thermodynamic force changes at a similar speed for all the position x, which is the case in
our setups. In practice, we can decide which network to use by comparing their test values
as presented in Fig. 6.5(a).

6.4 Numerical experiments

In this section, we numerically demonstrate our method using the following two linear
Langevin models: (i) a one-dimensional breathing parabola model, and (ii) a two-dimensional
adaptation model. In the both models, a number of trajectories are sampled by repeating
the same simulations many times, and we estimate the entropy production solely on the
basis of the sampled trajectories. First, we show that our method gives an exact estimate
of the entropy production rate, the entropy production along a single trajectory, and the
thermodynamic force by comparing the estimation results with the analytical solutions.
Next, we show that our method is data efficient since the estimate converges not only by
increasing the number of trajectories but also by increasing the number of time instances.
Finally, we study the practical effectiveness of our method in various setups. In this section,
we only use the simple dual representation for the training of the model function, while we
compare the performance of the variational representations in Sec. 6.6.1.

6.4.1 Main results

We first consider the breathing parabola model [120,121] that describes a Brownian particle

inside a harmonic potential V (x, t) = κ(t)
2
x2. The system is in equilibrium at t = 0 and

follows a Gaussian distribution, and it is driven out of equilibrium by the change in the
stiffness of the potential as κ(t) = 1

1+t
. Its dynamics is described by the following Langevin

equation:

γẋ(t) = −κ(t)x(t) +
√

2γT η(t), (6.18)
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Figure 6.3: Estimation in the adaptation model. (a) Schematic of the model. The average
dynamics of a and m after the inhibitory input by l are plotted. (b) Estimated entropy
production rate. The blue circles are the estimated values using an ensemble of single
transitions at T10 of 10

6 trajectories, and the black line is the true entropy production rate.
The mean and its standard deviation of 10 independent trials are plotted. (c) Estimated
thermodynamic force. The lower three figures are the estimated field at t = 0, 0.01, 0.09
by the model function trained with an ensemble of single transitions of size (106, T10), and
the upper three figures are the corresponding analytical fields. The horizontal axis is the
direction of a, and the vertical axis is that of m, and a reference vector with size 100 is
shown at the top of each plot. For (a)-(c), the system parameters are set as τa = 0.02, τm =
0.2, α = 2.7, β = 1,∆a = 0.005(t < 0), 0.5(t ≥ 0),∆m = 0.005, l(t) = 0(t < 0), 0.01(t ≥ 0)
which are taken from Refs. [105, 119] as realistic parameters of E. coli chemotaxis. The
trajectories are sampled with ∆t = 10−4, τobs = 0.1, and the simple dual representation
(Eq. (6.3)) is used for both the training and the evaluation.
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where γ is the viscous drag and T is the temperature.
In Fig. 6.1, we show the estimation results for the breathing parabola model. We train

the model function d(x, t|θ), which is the neural network depicted in Fig. 6.2(b), using
an ensemble of single transitions at T16 of 105 or 106 trajectories. We estimate the en-
tropy production along a single trajectory (Fig. 6.1(b)), and the entropy production rate
(Fig. 6.1(c)) using the trained model function d(x, t|θ∗). The estimation results are com-
pared with the analytical solutions, which are obtained using the fact that the probability
density becomes a Gaussian distribution, and its variance evolves according to the Riccati
equation [47]. For example, the thermodynamic force is explicitly obtained as

F (x, t) =
t(3 + 3t+ 3t2)x

(1 + t)(3 + 6t+ 6t2 + 2t3)
. (6.19)

As we can see, the thermodynamic force is linear in terms of the position x but nonlinear
in terms of the time t. The entropy production Ŝ(t) is estimated along a trajectory by
summing the estimated single-step entropy production:

∆Ŝ(t) := d

(
xt + xt+∆t

2
, t+

∆t

2

∣∣∣θ∗
)

(xt+∆t − xt), (6.20)

while the true entropy production S(t) is calculated by summing the true single-step entropy
production:

∆S(t) := F

(
xt + xt+∆t

2
, t+

∆t

2

)
(xt+∆t − xt). (6.21)

Note that they are stochastic variables which depend on the realization of x(t).
In Fig. 6.1(b), the entropy production is estimated along a trajectory, i.e., evaluated

at T1, while the model function is trained using the single transitions at T16. The good
agreement with the true entropy production shows that the model function estimates the
thermodynamics force well even at the time instances where the training data are absent.
In Fig. 6.1(c), the entropy production rate is estimated using 105 or 106 trajectories. We
can see the convergence of the estimate as the number of trajectories increases.

Next, we demonstrate the thermodynamic force estimation using a two-dimensional
Langevin model, which has been used to study adaptive behaviors of living systems [34,
105, 106, 119]. The model consists of the output activity a, the negative controller m, and
the input signal l, which is regarded as a deterministic protocol here. The dynamics of a
and m are described by the following Langevin equation:

ȧ(t) = − 1

τa
[a(t)− ā(m(t), l(t))] +

√
2∆a ηa(t), (6.22a)

ṁ(t) = − 1

τm
a(t) +

√
2∆m ηm(t), (6.22b)

where τa and τm are the time constants satisfying τm ≫ τa. The stationary value of the
activity is determined by ā(m(t), l(t)) for which we assume a linear function ā(m(t), l(t)) =
αm(t)− βl(t) in this study.
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In Fig. 6.3(a), the average dynamics of a and m after the switching of l is plotted.
The activity responds to the change of the input l for a while, and relaxes to the signal-
independent value, which is called the adaptation. The adaptation often appears in living
systems to maintain their sensitivity and fitness under time-varying environments. Specif-
ically, this model is used to describe E. coli chemotaxis, where the activity a controls the
motion of E. coli to move towards the gradient of the input molecules l [122].

In Fig. 6.3(b) and (c), we show the estimation results using an ensemble of single tran-
sitions at T10 of 106 trajectories. In this model, the estimation is difficult because of the
rapid change of the state at the beginning, which diminishes the benefit of the continuous-
time estimation. Nonetheless, we find that the model function is trained well to accurately
estimate the thermodynamic force in Fig. 6.3(c), and thus the entropy production rate
as well in Fig. 6.3(b). Note that the analytical expression of the thermodynamic force is
linear in terms of a and m but nonlinear in terms of t similarly to Eq. (6.19), while it is
too complex to show here.

The thermodynamic force shows the spatial trend of the dynamics as well as the local
dissipation since it is proportional to the mean local velocity when the noise is additive
F (x, t) ∝ j(x, t)/p(x, t). For example, the thermodynamic force at the beginning (t = 0)
reflects that the state tends to expand outside due to the rapid increase in the noise inten-
sity ∆a. As the state relaxes to the stationary state, the thermodynamic force begins to
circulate around the stationary distribution gradually. Interestingly, the thermodynamic
force is aligned in the direction of m at t = 0.01, which suggests that the dynamics of a
becomes dissipationless.

So far, we have demonstrated the working of our estimation method. Next, we show
the benefit of the continuous-time estimation that it can reduce the number of necessary
trajectories to achieve the convergence by increasing the sampling frequency. Concretely,
we study the ensemble size dependence of the estimate using the breathing parabola model
in Fig. 6.4. The performance of the estimation is measured by the correlation between the
estimated (Eq. (6.20)) and the true (Eq. (6.21)) single-step entropy production at T1 or T64

of 100 trajectories.
In Fig. 6.4(a), we show the convergence by increasing the number of time instances. We

find that the estimate of the thermodynamic force improves independently of the evaluation
time, which suggests that the estimate becomes overall accurate for the whole time interval
[0, τobs]. The increase of the correlation evaluated at T64 shows that the single transitions at
other than T64 improves the estimate of the thermodynamic force at T64. This suggests that
the continuous-time estimation improves the estimate at time t using information of single
transitions at neighboring times. In Fig. 6.4(b), we show the convergence by increasing
the number of trajectories. We find that the correlation increases in a similar manner to
Fig. 6.4(a), while the increase is larger in (a).

Therefore, the continuous-time estimation is data efficient since it fully utilizes the in-
formation that trajectories have as a whole, and its estimate improves by increasing the
number of time instances as well as the number of trajectories. We can increase the number
of time instances, for example, by increasing the sampling frequency (i.e., decreasing ∆t),
which may be easier to realize in experiments.
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Figure 6.4: Convergence of the estimate by increasing (a) the number of time instances
and (b) the number of trajectories used for training the model function. The blue circles
(resp. orange squares) are the correlation between the estimated (Eq. (6.20)) and the true
(Eq. (6.21)) single-step entropy production along T1 (resp. T64) of 100 trajectories. The
number of trajectories is fixed to 105 in (a), and the set of time instances is fixed to T1 in
(b). The trajectories are sampled from the breathing parabola model with the same system
parameters as in Fig. 6.1, and the mean and its standard deviation of 10 independent trials
are plotted.
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6.4.2 Practical effectiveness

Here, we demonstrate the practical effectiveness of our method. Concretely, we consider the
following four cases: (i) with a smaller number of trajectories, (ii) with a larger sampling
interval, (iii) with a measurement error, and (iv) with a synchronization error. In Fig. 6.5,
we show the results of the estimation with these changes using the adaptation model. Note
that we consider a shorter observation time τobs = 0.01 to reduce the computational cost
here.

In Fig. 6.5(a)-(c), we show the results of the estimation with 1000 trajectories. To
improve the convergence, we consider to use the modified network depicted in Fig. 6.2(c).
In Fig. 6.5(a), we compare the performance of the normal and the modified networks. We
find that the modified network performs better at the beginning (t = 0), while they per-
form equally well at later times. Since we have the criterion that the higher test value is
the better, we can choose the modified network in practice on the basis of the estimate at
t = 0.

In addition, we consider to use Var(Jd)/2dt as an estimator of the entropy produc-
tion rate. In Fig. 6.5(b) and (c), we compare the continuous-time estimation with the
instantaneous-time estimation using (b) σSimple and (c) Var(Jd)/2dt as estimators of the
entropy production rate. These estimators are used after training the model function with
the simple dual representation. For the instantaneous-time estimation, we use the normal
neural network that drops t from the input layer (see Table 6.2 for the hyperparameters),
and perform the gradient ascent for each time t independently. As expected, we find that
the use of Var(Jd)/2dt significantly reduces the statistical error for the continuous-time
estimation, while this is not the case for the instantaneous-time estimation.

Next, we study the effect of a larger sampling interval ∆t. In Fig. 6.5(d), we show
the estimation results with three choices for ∆t and the time interval of the generalized
current τ = m∆t (m ≥ 1). We find that the estimate becomes lower than the true entropy
production rate as we increase τ . Since the bias becomes small as the time variation of
the entropy production rate vanishes, the lower estimate would be caused by the averaging
due to the large time interval.

However, a larger time interval τ is sometimes beneficial. In Fig. 6.5(e), we study
the effect of a measurement error by changing its strength Λ and the time interval with
τ = ∆t. Here, the measurement error is added to the trajectory data in the same manner
as in Sec. 5.5.3:

yi∆t = xi∆t +
√
Ληi, (6.23)

where Λ is the strength of the error, and ηi is the Gaussian white noise satisfying
〈
ηiaη

j
b

〉
=

δa,bδi,j. The strength Λ is compared to Λ0 = 0.03 which approximates the standard devi-
ation of m. We find that the measurement error makes the estimate lower than the true
entropy production rate, while a larger time interval τ can mitigate this effect. This result
is in accordance with the result in Sec. 5.5.3.

Lastly, we study the effect of a synchronization error in Fig. 6.5(f). Here, we introduce
the synchronization error by starting the sampling of each trajectory at time

t̃ =

⌊
uni(0,Π)

∆t

⌋
∆t, (6.24)
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Figure 6.5: Practical effectiveness of the continuous-time estimation in the adaptation
model. (a) Comparison between the normal and the modified neural networks. The mod-
ified network shows the better convergence at the initial time. (b) Comparison between
the instantaneous-time estimation and the continuous-time estimation with the modified
network. (c) The same comparison using V̂ar(Jd)/2dt as an estimator of the entropy pro-
duction rate. Only the continuous-time estimation improves. The orange square is missing
at t = 0 since the value becomes much higher. (d) Effect of the larger sampling interval.
∆t is the sampling interval of the trajectories, and τ is the time interval of the generalized
current. As τ increases, the estimate becomes lower than the true value. The black circles
are missing at t = 0.008, 0.009 since a pair of {xi∆t,x(i+3)∆t} is used for calculating the
generalized current. (e) Effect of the measurement error. As the measurement error Λ
increases, the estimate becomes lower than the true value. A larger time interval τ can
mitigate this effect (τ is set to ∆t in this plot). (f) Effect of the synchronization error. The
estimate becomes an averaged value in the time direction, and this effect is small when
the dynamics is close to stationary. In contrast to (e), the time interval τ does not affect
this effect (τ = ∆t). For (a)-(c), 1000 trajectories with T1 are used for the estimation
with τ = ∆t = 10−4. For (d)-(f), 10000 trajectories with T1 are used for the estimation,
and the modified neural network is used for the model function, and V̂ar(Jd)/2dt is used
for estimating σ̂ after the learning. For (a)-(f), the simple dual representation is used for
the training, and the black line is the true entropy production rate, and the mean and its
standard deviation of four independent trials are plotted. The system parameters are the
same as in Fig. 6.3 except τobs = 0.01.
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where uni(0,Π) returns a value x uniformly randomly from 0 < x ≤ Π, and the brackets
denote the floor function. For example, when t̃ = 3∆t, we obtain a trajectory for t =
0,∆t, ... as {x3∆t,x4∆t, ...}. The strength of the error Π is compared to Π0 = 5×10−4 which
approximately satisfies σ(Π0) ≈ σ(0)/2. We find that the effect of the synchronization error
appears as an averaging in the time direction similarly to Fig. 6.5(d). In this case, the choice
of the time interval τ does not affect the estimation much.

In contrast to the stationary case, we need to carefully choose the time interval τ for
the generalized current in non-stationary dynamics. This is because when the true entropy
production rate increases in time, a larger time interval may lead to a higher estimate of
the entropy production rate as suggested by Fig. 6.5(d), which is incompatible with our
criterion to select the higher test value.

6.5 Conclusions

In this chapter, we have developed an efficient estimation method for the non-stationary
entropy production by extending the method in Chap. 5. First, we have established the
theoretical relationship among the variational representations in terms of the range of
applicability, the optimal coefficient, and the tightness of the bound as summarized in
Table 6.1. Specifically, we have derived the simple dual representation in Eq. (6.3), which
reveals the tightness of the bounds as in Eq. (6.4). In addition, we have shown that the
NEEP is related to a dual representation of the KL divergence in Eq. (6.8), and it is
applicable to non-stationary dynamics.

On the basis of the result, we have proposed the continuous-time estimation scheme
which trains a model function continuously in time using the objective function defined
in Eq. (6.12). We have demonstrated the effectiveness of our method using the two linear
Langevin models. Our method gives an exact estimate on the entropy production and the
thermodynamic force as presented in Figs. 6.1 and 6.3. In addition, we have shown that the
estimate converges not only by increasing the number of trajectories but also by increasing
the number of time instances in Fig. 6.4, which would lower the hurdle for the experimental
realization. Finally, we have tested our method in various setups, for example, with errors
in measurement and synchronization in Fig. 6.5.

Our method is of practical significance since it requires only an ensemble of trajectories,
and it is data efficient. One of the prominent fields for the future application would be the
study of biological [109] or active matter systems [123].

6.6 Supplementary to Chapter 6

In this section, we show supplementary results. In Sec. 6.6.1, we compare the performance
of the variational representations. In Sec. 6.6.2, we show an example of the hyperparameter
tuning of the neural networks.
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Figure 6.6: Comparison of the convergence among σ̂Simple (orange squares), σ̂NEEP (blue
triangles), and σ̂TUR (black circles) in the adaptation model at time (a) t = 0 and (b)
t = 0.09. The system parameters are the same as in Fig. 6.3, and the mean and its
standard deviation of 10 independent trials are plotted.

Figure 6.7: Comparison of the thermodynamic force estimation between (a) the short-time
TUR and (b) the simple dual representation. The scatter plots between the estimated
(Eq. (6.20)) and the true (Eq. (6.21)) entropy production along 20 trajectories are shown.
In panel (a), the green dots are the estimation before the correction of the constant factor
c(t), while the blue dots are after the correction. As shown in (a), the correction of c(t)
typically increases the statistical error. The system parameters are the same as in Fig. 6.1
except ∆t = 10−2 and τobs = 2.0 to suppress the bias of σTUR.
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Figure 6.8: Hyperparameter tuning of the modified network in the adaptation model. The
test values of four independent trials are plotted with different markers respectively. These
plots suggest that, for example, we can safely chooseNlayer larger than 1 even if we only have
access to a single set of trajectories, which is the case in practice. The system parameters
are the same as in Fig. 6.5 with τ = ∆t = 10−4, and 10000 trajectories are used.

6.6.1 Comparison among the variational representations

Here, we compare the performance of the variational representations in terms of the esti-
mation of the entropy production rate (Fig. 6.6) and the thermodynamic force (Fig. 6.7).

In Fig. 6.6, we show the convergence of the estimated entropy production rate at (a)
t = 0 and (b) t = 0.09 of the adaptation model. We find that the short-time TUR realizes
the fastest convergence, while the NEEP and the simple dual representation show similar
convergence, which is in accordance with the discussion in Sec. 6.2. The convergence at
t = 0 is slow since the estimation is difficult due to the rapid change in the state, which
diminishes the benefit of the continuous-time estimation.

In Fig. 6.7, we show the scatter plots between the estimated (Eq. (6.20)) and the true
(Eq. (6.21)) single-step entropy production evaluated along 20 trajectories when (a) the
short-time TUR and (b) the simple dual representation are used for training the model
function. In Fig. 6.7(a), the scatter plot before the correction of the constant factor c(t)
is shown with the green dots. Interestingly, we find that c(t) is almost constant in this
case. We can see that the dots after the correction in (a) has a larger statistical error than
those before the correction and those in (b). It is an interesting future issue to estimate the
constant factor c(t) with small statistical error. For example, if we can ensure that c(t) is
constant independent of t, we can use the whole trajectories to estimate c(t), which would
significantly decrease the statistical error.

6.6.2 Hyperparameter tuning

Here, we explain the hyperparameter tuning of the neural networks. In Fig. 6.8, we show
an example of the hyperparameter tuning in the modified network. The test values of four
independent trials, each of which uses 10000 trajectories, are shown in these plots. As
explained in Chap. 5, we adopt the hyperparameter values that maximize the test value.
On the basis of these plots, we adopt Nlayer = 2, Nhidden = 30, Noutput = 20 for the modified
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Model Neural network Nlayer Nhidden Noutput Nstep

Breathing parabola model normal 3 10 1000
normal 3 30 50000

Adaptation model time-independent 2 20 50000
modified 2 30 20 5000

Table 6.2: Hyperparameters used for the neural networks. Nlayer is the number of hidden
layers, and Nhidden is the number of units in each hidden layer, and Noutput is the number of
units in the output layer for the modified network (gray units in Fig. 6.2(c)), and Nstep is
the iteration number of the gradient ascent. The normal network is depicted in Fig. 6.2(b),
and the modified network is depicted in Fig. 6.2(c), and the time-independent network is
the normal network that drops t from the input layer. Since we find that the step size
of the gradient ascent α does not affect the performance much in these model functions,
α = 1 is used in this chapter.

neural network in this study. In Table 6.2, we summarize the hyperparameter values used
in this study.



Chapter 7

Conclusions and future perspectives

7.1 Conclusions

In this thesis, we have established the variational estimation method of the entropy pro-
duction. As for the theoretical results, we have formulated the variational representations
of the entropy production. On the basis of the results, we have made a platform for apply-
ing machine learning to the estimation problem. Our method is of practical significance
since all it requires are trajectory data and it is applicable to a broad class of stochastic
dynamics out of equilibrium. Specifically, we have shown that our method is effective for
non-linear, high-dimensional, and non-stationary dynamics.

In Chapter 5, we have investigated the theoretical framework for estimation of the en-
tropy production using the short-time TUR along with machine learning techniques. First,
we have formulated the short-time TUR both for Markov jump processes (Eq. (5.9)) and
overdamped Langevin dynamics (Eq. (5.18)), and proved their equality conditions. As a re-
sult, we have found that the equality of the short-time TUR is always achievable in Langevin
dynamics, while this is not the case in general Markov jump processes. Next, we have pro-
posed the variational estimation method for stationary entropy production by employing
ideas from machine learning such as the gradient ascent and the data splitting scheme.
We have constructed the learning estimators [the binned learning estimator σ̂λ[dbin] as in
Eq. (5.49), the Gaussian learning estimators σ̂[dGauss], σ̂[dGauss] as in Eqs. (5.55) and (5.56)]
for Langevin dynamics and compared them with the KDE estimators defined in Sec. 4.2.
We have found that the learning estimators outperform the KDE estimators especially
at high-dimensional and non-linear setups as shown in Figs. 5.5 and 5.7. We have also
formulated the estimation in Markov jump processes and proposed the learning estimator
σ̂M [d] in Sec. 5.2.3. The learning estimator σ̂M [d] gives only a lower bound on the entropy
production rate in general. However, as an advantage of the learning estimator, we have
found that it is robust against the choice of the sampling interval as shown in Fig. 5.9. In
summary, we have established the variational estimation scheme using the short-time TUR
and resolved the three remaining issues presented in Sec. 4.4.2.

In Chapter 6, we have developed the continuous-time estimation method for non-
stationary entropy production, extending the learning algorithm developed in Chapter 5.
First, we have established the theoretical relationship between the variational representa-
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tions in terms of the range of applicability, the optimal coefficient, and the tightness of the
bound as summarized in Table 6.1. Especially, we have derived the simple dual representa-
tion in Eq. (6.3) from the NEEP and revealed the tightness of the bounds as in Eq. (6.4).
Next, we have proposed the continuous-time estimation that trains the model function
continuously in time with an objective function defined by Eq. (6.12) using an ensemble
of trajectories. For the model function, we have adopted the neural networks depicted in
Fig. 6.2. We have numerically demonstrated our method using linear Langevin models
and comparing the estimation results with the analytical solutions. We have checked that
the continuous-time estimation gives an exact estimate on the entropy production and the
thermodynamic force as shown in Figs. 6.1 and 6.3. We have shown that the continuous-
time estimation is data efficient since the estimate converges not only by increasing the
number of trajectories but also by increasing the number of time instances contained in
each trajectory in Fig. 6.4. Finally, we have demonstrated the practical effectiveness of our
method by considering various perturbations to the setup in Fig. 6.5.

7.2 Future perspectives

We discuss some future perspectives. First, an application of the estimation method for
biological experimental data would be the most important future issue. In the last few
years, several methods have been proposed to estimate the entropy production on the ba-
sis of trajectory data [44, 93, 100, 124], while there are only a few successful applications
beyond the detection of the broken detailed balance [39–41]. This may be because it is
often the case in experiments that only a part of the total system is observable. The
estimation in coarse-grained dynamics leads to an estimate lower than the total entropy
production [42, 125, 126], which makes the meaning of the estimated entropy production
unclear. Thus, it is interesting to apply our method to easily tractable systems such as F1-
ATPase first, where the estimation of the information-thermodynamic dissipation would
deepen our understanding on the energetics as discussed in Appendix A. On the other
hand, it is a fundamentally important issue to extract useful information on the system
from the entropy production of the coarse-grained dynamics.

To directly tackle the coarse-graining problem, a further development of our machine
learning method is desirable. For example, a new estimation scheme that can fully utilize
the information contained in multiple transitions has been recently proposed [96]. It is
shown that the proposed method can estimate the entropy production of hidden dynamics
to a great extent, while it is only applicable to a few state systems. On the other hand,
it is shown in Ref. [111] that the machine learning method with the NEEP representation
can be applied to the estimation using multiple transitions. However, their relationship is
not clear, and it is interesting to explore the direction in between them.

Another interesting direction would be the problem of the free energy estimation [127–
129]. The aim of this problem is to estimate the free energy difference between two thermo-
dynamic states by simulating multi-particle Langevin dynamics given the energy function
of the thermodynamic states. The free energy difference is calculated by the equality called
free energy perturbation [127], which is a special limit of the Jarzynski equality [1]. Al-
though this problem has a long history, it has been still actively studied from the machine
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learning perspective [129]. Since the problem setting is somewhat similar to the entropy
production estimation and our method can be directly applied to this problem in princi-
ple, it is interesting to consider a connection between these two streams of research. For
this purpose, it will be helpful to deepen our understanding on the TUR and stochastic
thermodynamics of multi-particle systems.



Appendix A

Information thermodynamics of
F1-ATPase

In this appendix, we investigate the information-thermodynamic efficiencies of F1-ATPase
(or F1). In Sec. A.1, we give a short introduction to this subject. In Sec. A.2, we explain the
setup of our study based on a reaction-diffusion model of F1. In Secs. A.3 and A.4, we show
numerical and analytical results on the behavior of information-thermodynamic quantities.
We find that the rotational degree of freedom plays the role of Maxwell’s demon, which
leads to a small amount of internal heat dissipation. We also find that the information-
thermodynamic efficiencies increase as we apply an external force against the rotation. As
a result, the internal heat dissipation can be even negative, which is analogous to artificial
systems realizing Maxwell’s demon [27, 28, 50]. The results presented in this appendix are
based on our manuscript in preparation [130].

A.1 Introduction

As we have reviewed in Sec. 1.1, our understanding on the relation between the thermo-
dynamic entropy and information flow has been deepened recently, which is formulated
as information thermodynamics. Information propagation and energetic consumption are
the essential aspects of biological systems, and information thermodynamics is expected
to reveal fundamental limits of biological phenomena from these perspectives. In fact, it
has been applied, for example, to chemotaxis of E. coli [119], and information propaga-
tion in reaction networks [131] and in sensory systems [132, 133], to reveal the effect of
information flow on thermodynamic quantities. We are now in a good position to study
information thermodynamics of molecular motors [134,135], which work in non-equilibrium
steady states and whose motions are elaborately controlled, suggesting the existence of in-
formation flow.

ATP synthase is a molecular motor that produces adenosine triphosphate (ATP), the
energy currency of a cell, in almost all organisms including bacteria, plants, and ani-
mals [136]. In addition to its importance in biological systems, the elegant mechanics and
energetic properties of F1 have attracted much attention. In experiments, we often focus
on a subpart of ATP synthase called F1-ATPase (or F1) [134, 137], whose central γ shaft
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rotates within a cylinder consisting of three α and β subunits [138, 139]. F1 works as an
enzyme of ATP hydrolysis, and its 120◦ rotation is tightly coupled to the following reac-
tion in a reversible manner: ATP ⇄ ADP + phosphate (Pi) [140, 141] (see Fig. A.1 for a
schematic). In the free rotation setup, the reaction goes to the ATP hydrolysis direction if
there are sufficient ATP molecules, while it can be reversed to the ATP synthesis direction
by rotating the γ shaft in the opposite direction with external force.

F1 is known to be thermodynamically efficient [142,143]. In experiments, a probe bead
is attached to the γ shaft, and the chemical free energy (∆µ) extracted from the ATP
hydrolysis is dissipated through the rotation of the bead (Qext) or the main body’s con-
formational change (Qint). Interestingly, according to recent experiments [50, 89, 144], the
internal heat dissipation Qint is almost zero in all the free rotation setups [50]. As we apply
external force against the rotation, Qext decreases while keeping Qint close to zero, and
100% efficiency is realized for the energy conversion from ∆µ to the extracted work in the
stall force limit [89,144].

In previous theoretical studies [145–147], it has been shown that a reaction-diffusion
model explains the experimental results well. Especially, the model called TASAM (totally
asymmetric allosteric model) well reproduces the above energetic properties of F1 [147].
This model describes the motion of the bead as a Brownian particle in three potentials,
each of which corresponds to an internal state (see Fig. A.1). On the basis of this model, the
small internal heat dissipation can be explained by the fact that the internal state jumps
when the position of the bead is close to the potential intersection points. Since such
feedback structure usually entails information flow, F1 is interesting from the information-
thermodynamic perspective. However, a quantitative understanding of the interplay be-
tween the heat dissipation and information flow has been still lacking.

In the following, we study information thermodynamics of F1-ATPase. After we intro-
duce the reaction-diffusion model and information-thermodynamic quantities in Sec. A.2,
we show our results in Sec. A.3.

A.2 Setup

In this section, we introduce the reaction-diffusion model of F1. We also formulate infor-
mation thermodynamics on the basis of this model.

A.2.1 Reaction-diffusion model

We introduce the reaction-diffusion model proposed in Refs. [146,147]. The model consists
of two degrees of freedom, the angular position of the probe bead x, and the state of the
main body’s conformation n. The model is described as a one-dimensional system with
x ∈ (−∞,∞) and n ∈ Z, where Z is the set of integers. We interpret it as a model of F1 by
identifying x and x+2π, n and n+3, which maps the state space as (−∞,∞) → [0, 2π) and
Z → {0, 1, 2}. There are three trapping potentials at 0, 2π/3, 4π/3 rad, and n represents
the potential in which the bead is trapped. The bead shows a Brownian motion inside a
potential, and at some point the potential is switched to the next potential. Then, the
bead moves towards the center of the next potential. As we describe below, these processes
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Figure A.1: Energetics of F1-ATPase in the free rotation. (a) The rate of energy flow.
We study the effect of information flow l on the heat dissipation Q̇int and Q̇ext. (b) The
free-energy landscape of the reaction-diffusion model. The probe bead is described as
a Brownian particle inside a potential, and the potential switches to the next potential
stochastically depending on the free energy difference. Because of the chemical free energy
∆µ, the bead tends to move in the positive direction.

occur stochastically.
The dynamics of x is described by an overdamped Langevin equation:

Γẋ(t) = − ∂

∂x
Un(x(t))− F +

√
2ΓTη(t), (A.1)

where η(t) is a Gaussian white noise with unit variance, Γ is the friction coefficient, F is
an external force applied against the free rotation direction, and T is the temperature of
the medium. Un(x) is the nth potential given by

Un(x) =
k

2
(x− nL)2 , (A.2)

where k is the spring constant, and L is the distance between the potentials L = 2π/3 rad.
On the other hand, the dynamics of n is described by a Markov jump process whose

transition rates satisfy the detailed balance condition:

R+
n (x)

R−
n+1(x)

= exp

{
1

T
[Un(x)− Un+1(x) + ∆µ]

}
, (A.3)

where R+
n (x) is the forward transition (n → n+1) rate at x, and R−

n+1(x) is the backward
transition (n+1 → n) rate at x. ∆µ is the free energy difference between a single molecule
ATP and ADP + Pi, which can be expressed as ∆µ = ∆µ0+T log (nATP/nADPnPi) using the
concentrations of the nucleotides ni. In experiments, these concentrations can be varied,
and thus ∆µ is a control parameter.
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We further express the transition rates explicitly introducing parameters 0 ≤ q ≤ 1 and
W > 0 as

R+
n (x) = W exp

{
q

kBT
[Un(x)− Un+1(x) + ∆µ]

}
, (A.4)

R−
n+1(x) = W exp

{
q − 1

kBT
[Un(x)− Un+1(x) + ∆µ]

}
. (A.5)

The switching rate W depends on the concentrations of the nucleotides, and if we scale
nATP as cnATP while fixing ∆µ constant, W also scales linearly cW [146]. It has been
shown that the model with q = 0 ∼ 0.1 well reproduces the energetic properties of F1,
and especially the model with q = 0 is called TASAM [147]. In this model, the forward
transition occurs independently of the position x, while its backward transition is strongly
dependent on the position.

We note that the model introduced here is a simplified version. It is known that there
is a substate at around nL + 2L/3 (= 80◦) between the potentials [148, 149]. The first
2L/3 substep is associated with ATP binding and ADP release, while the next L/3 substep
is associated with Pi release and ATP hydrolysis. However, since the latter substep is
very fast, it cannot be detected unless a mutated F1 is used [150–152]. In the previous
study [147], the effect of this substep is taken into account by modifying the harmonic
potential (Eq. (A.2)), while it does not change the energetic properties so much from the
harmonic potential case. Thus, we adopt the model with three harmonic potentials in this
study.

In the numerical experiments, we vary W as a control parameter and consider the
stationary state. The stationary distribution p(n, x) is normalized as∑

n=0,1,2

∫ ∞

−∞
dxp(n, x) = 1. (A.6)

Then, the rotational velocity v can be calculated by

v =

∫ ∞

−∞
dxΛn(x), (A.7)

Λn(x) := p(n, x)R+
n (x)− p(n+ 1, x)R−

n+1(x), (A.8)

where Λn(x) is the local flux in n for a given position x. There is a saturation velocity vmax

in the limit of W → ∞ (see Sec. A.4.1), and F1 follows the Michaelis-Menten like curve in
terms of W . It should be noted that the diffusion of the bead serves as the rate-limiting
process in this model. However, the actual rate-limiting process is considered to be the
L/3 substep [152], which becomes non-negligible in the fast switching limit.

A.2.2 Information thermodynamics

In this subsection, we formulate information thermodynamics of F1 on the basis of the
reaction-diffusion model. Note that we only consider averaged quantities in this chapter.
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First, we introduce heat dissipation. There are two types of heat dissipation Qint and
Qext associated with the dynamics of n and x, respectively (see Fig. A.1 for a schematic).
Qint is the internal heat dissipation during the potential switching. Its rate Q̇int can be
calculated using the local flux Λn(x) as

Q̇int :=
∑

n=0,1,2

∫ ∞

−∞
dxΛn(x) [Un(x)− Un+1(x) + ∆µ] . (A.9)

Qext is the external heat dissipation during the rotation of the probe bead. Its rate Q̇ext is
calculated by

Q̇ext :=

〈
ẋ

(
− ∂

∂x
Un(x)− F

)〉
, (A.10)

which is the definition introduced in Sec. 2.1. Since the chemical free energy ∆µ is con-
sumed per 2π/3 rotation and the extracted work during the process is FL, the first law of
thermodynamics holds as follows:

Q̇int + Q̇ext = |3v(∆µ− FL)|. (A.11)

In the numerical experiments, we use Eq. (A.11) rather than Eq. (A.10) to calculate Q̇ext

since Eq. (A.9) is easier to calculate than Eq. (A.10) numerically.
Next, we introduce the learning rate and the information-thermodynamic dissipation.

The learning rate is a measure of information flow in bipartite systems. Since the reaction-
diffusion model satisfies the bipartite condition (Eq. (2.63)), we define the learning rate lx
and ln as in Eq. (2.70), which satisfy

lx = −ln (A.12)

in the stationary state. Note that we use the small letters here by viewing x and n
as stochastic variables unlike Eq. (2.70). We also define the information-thermodynamic
dissipation as in Eq. (2.67):

σn =
Q̇int

T
− ln, (A.13)

σx =
Q̇ext

T
− lx, (A.14)

which take non-negative values σx ≥ 0 and σn ≥ 0. In the next section, we show that lx > 0
(ln < 0) holds for the model with q = 0, which means that x plays the role of Maxwell’s
demon or the feedback controller. In this case, we define the information-thermodynamic
efficiencies as

ηn :=
Q̇int

T ln
, (A.15)

ηx :=
T lx

Q̇ext

, (A.16)
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which satisfy ηn ≤ 1 and ηx ≤ 1.
We explain the meaning of the information-thermodynamic efficiencies. As explained

in Sec. 2.3, the learning rate lx (resp. ln) quantifies the increase of the mutual information
between x and n by the transition of x (resp. n). The positive learning rate lx > 0 means
that x gets information on n, which requires the positive heat dissipation Q̇ext > 0. Thus,
ηx quantifies the efficiency of acquiring information with necessary heat dissipation. On
the other hand, the negative learning rate ln < 0 means that the dynamics of n consumes
the correlation, which can decrease the internal heat dissipation. Especially, when Q̇int is
negative, ηn is meaningful since it quantifies how efficiently the feedback control performed
by x on n converts the correlation into the heat absorption, which is a phenomenon unique
to information-thermodynamic setups.

A.3 Main results

We now show our main results. We study the behavior of the information-thermodynamic
quantities with and without external force by changing the switching rate W . We find
that the rotational degree of freedom plays the role of Maxwell’s demon (lx > 0) for the
realistic model q = 0, 0.1, and the effect of the feedback is relevant in the slow rotation
regime. The information-thermodynamic dissipation shows monotonic behavior unlike the
heat dissipation, which provides us a clear understanding on the small internal heat dissi-
pation. We also find that the external force only decreases the information-thermodynamic
dissipation while keeping the learning rate almost constant, which means that F1 becomes
information-thermodynamically efficient. As a result, we find that even the negative heat
dissipation is realized.

In Fig. A.2, we show the relation between the rotational velocity and the information-
thermodynamic quantities. Here, we use the following parameters kB = 1,∆µ = 19kBT,Γ =
kBT/3.3L

2, k = 50kBT/L
2 [147], and calculate the information-thermodynamic quantities

numerically using the stationary distribution obtained by the exact diagonalization of the
transition matrix. The information-thermodynamic quantities are normalized by 3v∆µ/T
so that σ̃x + σ̃n = |1 − FL/∆µ| holds. Here, we denote the normalization by the tilde
symbol. For example, σ̃x quantifies the information-thermodynamic dissipation of x per
potential switching.

We find that the learning rate of x becomes positive for the realistic model q = 0, 0.1,
which means that the rotational degree of freedom behaves as Maxwell’s demon. The
normalized learning rate becomes large in the slow rotation limit, and its sign changes
depending on q. In fact, in this limit, we can calculate the learning rate analytically as

l̃x =
kL2(1− 2q)

2T∆µ
, (A.17)

and thus its sign changes at q = 0.5 (see Sec. A.4.1 for the analytical calculation). We note
that since the velocity goes to zero in this limit, the learning rate also vanishes when it is
not normalized.

Next, we find that the information-thermodynamic dissipation changes monotonously
as the velocity increases. We analytically show that σ̃x = 0 and σ̃n = 0 hold in the slow and



110 Information thermodynamics of F1-ATPase

Figure A.2: Information-thermodynamic dissipation and learning rate. (a)(b) The rota-
tional velocity versus the information-thermodynamic dissipation and the learning rate
(a) in the free rotation and (b) with external force (F = 0.5∆µ/L) for various choice
of q. The information-thermodynamic quantities are normalized by 3v∆µ/T so that
σ̃x + σ̃n = |1 − FL/∆µ| holds, and the rotational velocity is normalized by the satura-
tion velocity vmax. The rotational velocity is varied by changing W from 10−10 to 106.
The information-thermodynamic dissipation is decreased by the external force, while the
learning rate is not affected much.
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Figure A.3: Negative internal heat dissipation and information-thermodynamic efficiencies.
(a) The time scale ratio versus the internal heat dissipation, the learning rate of n, and
the velocity in the free rotation for q = 0 and q = 0.1. v(Γ) (resp. v(W )) is the rota-
tional velocity when Γ (resp. W ) is varied. The left axis is for Q̃int/T and l̃n, and the
right axis is for v(Γ) and v(W ). The behavior of Q̃int has been tested with experimen-
tal data for the green shaded region in Ref. [147]. (b)(c) The time scale ratio versus the
information-thermodynamic efficiencies (b) in the free rotation and (c) with external force
(F = 0.5∆µ/L) for q = 0 and q = 0.1. As can be seen from ηn > 0, the internal heat
dissipation is negative for most of the parameter values in (c). We note that Γ and W are
varied, while k is fixed in these plots.
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the fast switching limits respectively and they hold independently of the potential shape
Un(x) (see Sec. A.4.1). Thus, we expect that the monotonic behavior of the information-
thermodynamic dissipation reflects the change of the time scale ratio between x and n,
while the monotonicity is not proved analytically in the intermediate regime.

It is experimentally shown that Q̃ext/T ∼ 1 (or equivalently Q̃int/T ∼ 0) holds inde-
pendently of the velocity in the free rotation [50]. In the previous study [147], this result
is explained by the fact that the potential switches when the bead is close to the potential
intersection points for the q = 0 model. From the information-thermodynamic perspective,
this result can be explained using the relation Q̃ext/T = σ̃x + l̃x as follows. Q̃ext/T basi-
cally follows the information-thermodynamic dissipation σ̃x especially in the fast rotation
regime. On the other hand, in the slow rotation regime, the learning rate l̃x compensates
for the decrease of σ̃x. As a result, the external heat dissipation Q̃ext/T becomes almost
constant for all the velocity regime.

We find that this decomposition of the heat dissipation is useful to understand its de-
pendence on the external force. Interestingly, when the external force is applied against the
free rotation, only the information-thermodynamic dissipation decreases while the learning
rate remains almost constant as shown in Fig. A.2(b). Indeed, the analytical expression
of the learning rate in the slow switching limit (Eq. (A.17)) is independent of the external
force. This result suggests that the information-thermodynamic efficiencies increase as we
apply the external force, and even the negative internal heat dissipation can be realized
since Q̃int/T ∼ l̃n = −l̃x when σ̃n ∼ 0.

In Fig. A.3, we investigate these points in detail. In Fig. A.3(a), we show the relation
between the time scale ratio and the behavior of the internal heat dissipation, the learning
rate of n, and the velocities v(W ) and v(Γ) (see Sec. A.4.1 for the derivation of the time
scale ratio ΓW/k, and the discussion on the equivalence of changing Γ and W ). Here, v(W )
(resp. v(Γ)) denotes the velocity when W (resp. Γ) is varied. As expected, the internal
heat dissipation becomes negative in the slow switching or the fast diffusion limit (Γ → 0).
We note that although unnormalized Q̇int vanishes in the slow switching limit, Q̇int can
take a strictly negative value in the fast diffusion limit, since the velocity v(Γ) does not
vanish in this limit.

In Fig. A.3(b) and (c), we show the relation between the time scale ratio and the
information-thermodynamic efficiencies. Since the reaction-diffusion model has been veri-
fied with experimental data only in the green shaded region, we show the results around
this region. As expected, we find that the information-thermodynamic efficiencies increase
when the external force is applied. Especially, ηn > 0 holds for most of the region, which
means that the internal heat dissipation becomes negative Q̃int < 0.

A.4 Analytical results

In this section, we show the results of the analytical calculation using the time scale sep-
aration. We also show that the Stokes efficiency proposed in the context of molecular
motors [146,153] is related to the short-time TUR.
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A.4.1 Time scale separation

First, we explain that ΓW/k determines the time scale ratio between x and n [147]. We
start from the Fokker-Planck equation of the reaction-diffusion model:

∂

∂t
pt(n, x) = R+

n−1(x)pt(n− 1, x) +R−
n+1(x)pt(n+ 1, x)− (R+

n (x) +R−
n (x))pt(n, x)

+
1

Γ

∂

∂x

{(
∂

∂x
Un(x) + F

)
pt(n, x) + T

∂

∂x
pt(n, x)

}
, (A.18)

where the time dependence of the probability density is written explicitly. We non-
dimensionalize the equation by replacing the variables as t̃ = Wt, x̃ = x/lv:

∂

∂t̃
pt(n, x) = f+

n−1(x)pt(n− 1, x) + f−
n+1(x)pt(n+ 1, x)− (f+

n (x) + f−
n (x))pt(n, x)

+
1

ε

∂

∂x̃

{
l2v
T

[
k

(
x̃− Ln

lv

)
+

F

lv

]
pt(n, x) +

∂

∂x̃
pt(n, x)

}
, (A.19)

where lv is a typical length scale, and ε and f±
n (x) are defined as ε := ΓWl2v/T and

f±
n (x) := R±

n (x)/W . We can see that ε determines the time scale ratio between x and n,
and get ε = ΓW/k by choosing lv =

√
T/k. Since Γ and W appear only at ε in Eq. (A.19),

the information-thermodynamic quantities depend on Γ and W in the same manner when
they are normalized (see Fig. A.3).

In the following, we show the analytical calculation of the model in the slow and the
fast switching limits.

Slow switching limit

In the slow switching limit W → 0, the rotational degree of freedom equilibrates. In this
case, the conditional probability density p(x|n) is given by

p(x|n) =
√

k

2πT
exp

[
− 1

T
Un(x)

]
, (A.20)

and the probability p(n) obeys an effective master equation with rates R+
n and R−

n given
by

R+
n =

∫
R+

n (x)p(x|n)dx = W exp

[
kL2

2T
q(q − 1) +

∆µ

T
q

]
, (A.21)

R−
n =

∫
R−

n (x)p(x|n)dx = W exp

[
kL2

2T
q(q − 1) +

∆µ

T
(q − 1)

]
, (A.22)

which are independent of the internal state n. We can calculate the learning rate ln using
the conditional probability density as

ln = −
∑
n

∫
dxΛn(x) ln

p(x|n)
p(x|n+ 1)

= 3v
kL2

2T
(2q − 1), (A.23)
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where v is the rotational velocity obtained as

v = p(n)R+
n − p(n+ 1)R−

n+1 (A.24)

=
W

3
exp

[
kL2

2T
q(q − 1)

]
eq

∆µ
T

(
1− e−

∆µ
T

)
. (A.25)

In addition, we can show that σ̃x = 0 holds regardless of the potential shape in this
limit. This can be derived by calculating σn as

σn =
Q̇int

T
− ln (A.26a)

=
∑
n

∫
dxΛn(x)

{
1

T
[Un(x)− Un+1(x) + ∆µ] + ln

p(x|n)
p(x|n+ 1)

}
(A.26b)

=
∑
n

∫
dxΛn(x)

{
1

T
[Un(x)− Un+1(x) + ∆µ] +

1

T
[Un+1(x)− Un(x)]

}
(A.26c)

= 3v
∆µ

T
, (A.26d)

and by using the first law σx + σn = 3v∆µ/T , where F = 0 is assumed for simplicity. We
note that σ̃x = 0 is not so trivial, since this is a normalized quantity and it means σx ∝ vα

with α > 1, which cannot be derived from the time scale separation straightforwadly.

Fast switching limit

In the fast switching limit W → ∞, the internal degree of freedom equilibrates. In this
case, the conditional probability p(n|x) is given by

p(n|x) = exp {−[Un(x)− n∆µ]/T}∑m=1
m=−1 exp {−[Un(x)− (n+m)∆µ]/T}

. (A.27)

As a result, the local flux vanishes Λn(x) = 0, which leads to the vanishing of the
information-thermodynamic quantities σn = ln = lx = 0. Thus, σ̃n = 0 holds regard-
less of the potential shape.

The dynamics of x is described by an overdamped Langevin equation under the effective
conservative force F ∗ given by

F ∗(x) =
∑
n

p(n|x)∂Un(x)

∂x
. (A.28)

The saturation velocity vmax can be calculated using the effective Langevin equation. It
is clear that vmax remains finite in the fast switching limit W → ∞ because the diffusion
takes finite time.

A.4.2 Stokes efficiency

Here, we show the relation between the Stokes efficiency [146, 153] and the short-time
TUR. We note that the results in this subsection are independent of the main results in
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this chapter.
In the reaction-diffusion model, the Stokes efficiency ηS is defined by [146]

ηS := −kL ⟨y⟩
∆µ

, (A.29)

where y := x − nL is the relative position from the potential center. It has been shown
that ηS satisfies ηS ≤ 1 in the absence of the external force [153]. However, the meaning of
the Stokes efficiency may not be clear compared to the other efficiencies such as ηx, since
its thermodynamic origin is not very clear.

We find that the Stokes efficiency is a combination of the short-time TUR and the
second law of information thermodynamics. Concretely, we can derive the Stokes efficiency
on the basis of the following inequality:

2 ⟨ẋ⟩2 ≤ dtVar(ẋ)σx (A.30)

≤ dtVar(ẋ)
3v∆µ

T
, (A.31)

where we used the short-time TUR in the first line, and σn ≥ 0 in the second line. Then,
we can derive the Stokes efficiency as

2 ⟨ẋ⟩2

dtVar(ẋ)

T

3v∆µ
= −6vL

k ⟨y⟩
Γ

Γ

2T

T

3v∆µ
(A.32)

= −kL ⟨y⟩
∆µ

(A.33)

= ηS, (A.34)

where we used dtVar(ẋ) = 2T/Γ and ⟨ẋ⟩ = −k ⟨y⟩ /Γ = 3vL. Thus, ηS ≤ 1 holds.

A.5 Conclusions

In this appendix, we study information thermodynamics of F1. We investigate the rota-
tional velocity versus the information-thermodynamic quantities in Fig. A.2, and the time
scale ratio versus the information-thermodynamic efficiencies in Fig. A.3. We find that the
rotational degree of freedom behaves as Maxwell’s demon, which leads to a small amount
of internal heat dissipation. We also find that the information-thermodynamic efficiencies
increase by the external force, and as a result even the negative internal heat dissipation
is realized.

Since we can estimate the information-thermodynamic dissipation by the method de-
veloped in Chap. 5, these results can be experimentally tested. Furthermore, we can even
estimate the learning rate by using the heat dissipation already obtained in the previous
studies [50, 89]. Therefore, this is an interesting future issue, which can validate both the
estimation method and the reaction-diffusion model.
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