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In the last two decades, our understanding of thermodynamics of small systems has 
developed substantially, being formulated as stochastic thermodynamics. For example, 
when a pulling experiment of a folded RNA is conducted, the dissipated work fluctuates 
from sample to sample even if the experimental condition is fixed. This is in contrast to 
conventional thermodynamics. To take such stochasticity into account, thermodynamic 
quantities are defined at the level of single realizations. This formulation has enabled us 
to discover universal laws that hold for nonequilibrium processes far from equilibrium. 
     Among such laws, a notable example is the fluctuation theorem, which states that 
the entropy production is the logarithm of the ratio between forward and backward 
transition probabilities, representing the time-reversal symmetry breaking. A closely 
related concept is information thermodynamics, which reveals the interplay between the 
thermodynamic entropy and information flow. Finally, yet another fundamental relation 
called the thermodynamic uncertainty relation (TUR) has been discovered recently. The 
TUR is a tradeoff relation between the entropy production and the fluctuation of 
currents, and thus gives a tight constraint on possible realization of currents. 
     On another front, living systems are primary examples where nonequilibrium is 
essential. Especially, cellular processes are often enhanced by nonequilibrium driving to 
perform their function. Recent developments in experiments enable us to observe such 
cellular activities at the level close to elementary stochastic processes. For example, 
primary cilia, hairlike organelles protruding from the surface of eukaryotic cells, show 
apparently random behavior. A recent study has shown that its nonequilibrium activity 
is detectable as circulating probability currents in some phase space mapped from the 
real space dynamics, and thus the motion of primary cilia is not thermal.  
     To quantify such nonequilibrium activity beyond the qualitative classification of 



thermal or active, the estimation of the entropy production is demanded. However, its 
estimation from experimental data is still not an easily tractable problem. For example, 
the estimation of the forward and backward transition probabilities requires full details 
of the stochastic dynamics, and thus the direct use of the fluctuation theorem is not 
practical.  
     The present thesis is devoted to develop a framework for estimating the entropy 
production solely on the basis of time-series data using variational approaches with 
machine learning. Especially, we consider to apply the TUR for the estimation. This 
approach has been recently proposed, where the main idea is as follows: (i) view the 
TUR as an inequality that gives a lower bound on the entropy production, (ii) find an 
optimal current that maximizes the lower bound, and (iii) use the lower bound as an 
estimate of the entropy production. This variational approach is expected to be data 
efficient since it requires only the mean and the variance of a single fluctuating current. 
In addition, it has been numerically suggested that this method can give the exact 
estimate by taking the short-time limit of the optimizing current (short-time TUR). 
     There are three fundamental remaining issues in the previous researches. First, 
the equality condition of the short-time TUR has not been analytically studied, and thus 
its range of applicability has been unclear. Second, only a few previous studies actually 
consider the maximization process in numerical setups that are applicable to practical 
situations. Third, its practical effectiveness is not well understood: for example, whether 
this approach works well at high-dimensional or non-stationary setups. 
     To overcome these issues and to go beyond, we present two main results in this 
thesis. In the first part, we resolve the above issues and develop a practical estimation 
method for stationary dynamics. In the second part, we theoretically reveal the 
relationship between several variational representations of the entropy production 
including the short-time TUR. Then, an estimation method for non-stationary dynamics 
is provided. Our method is of practical significance since all it requires are trajectory 
data without prior knowledge of the system parameters. In addition, we find that our 
method performs well even in high-dimensional, non-linear, and non-stationary 
dynamics. Below, we explain these points in more detail. 
     In the first part of this thesis, we formulate the short-time TUR and analytically 
study the equality condition. As a result, we show that the short-time TUR can give the 
exact estimate of the entropy production in overdamped Langevin dynamics, while this 
is not the case in general Markov jump processes. In addition, we show that the 
short-time TUR holds for the partial entropy production of subsystems under 
autonomous interaction, which reveals the hierarchy of the estimation when the 



optimizing currents are partially masked. 
     On the basis of the above theoretical result, we develop a practical estimator of the 
entropy production for overdamped Langevin dynamics in the stationary state by 
combining the short-time TUR with machine learning techniques such as the gradient 
ascent. The learning estimator works solely on the basis of trajectory data without 
requiring prior knowledge of the parameters of the underlying dynamics. We 
numerically demonstrate that the learning estimator performs well even in nonlinear 
and high-dimensional Langevin dynamics. We also discuss the estimation in Markov 
jump processes and develop a learning estimator for them. It is found that the learning 
estimator is robust against the choice of the sampling interval of trajectory data, while 
the exact estimation is shown to be impossible in general. 
     The estimation of the entropy production in non-stationary dynamics is yet 
another important but largely unexplored issue. In the second part of this thesis, we 
extend the learning algorithm developed in the first part to non-stationary dynamics. 
First, we establish the theoretical relationship between two variational representations of 
the entropy production: one is the short-time TUR, and the other is Neural Estimator 
for Entropy Production (NEEP) which has been proposed after the short-time TUR. 
Especially, we show that the short-time TUR gives a tighter bound on the entropy 
production than the NEEP in Langevin dynamics by deriving an intermediate 
variational representation of them. In addition, we reveal that the NEEP is related to a 
dual representation of the Kullback-Leibler divergence, and show that the NEEP is also 
applicable to non-stationary dynamics. 
     Next, we develop an efficient algorithm for the non-stationary estimation on the 
basis of the variational representations. For the non-stationary estimation, an ensemble 
of trajectories sampled from repeated experiments is necessary, in contrast to the 
stationary case where a single long trajectory is enough. To take advantage of this setup, 
we propose a method that finds the optimal currents continuously in time using a 
feedforward neural network, namely using the optimal current at one time to help 
finding the optimal currents in the near time. Indeed, we numerically find that the 
estimate of our method converges not only by increasing the number of trajectories but 
also by increasing the number of time instances contained in each trajectory, which is of 
practical importance since preparing a large number of trajectories may not be easy. 
     Meanwhile, as a side issue to the foregoing main two results, we study 
information-thermodynamic efficiencies of F1-ATPase (or F1). F1 is a molecular motor, 
which rotates and converts chemical energy into mechanical work reversibly and very 
efficiently. According to recent experiments, the F1 keeps the internal heat dissipation 



close to zero. A theoretical study has shown that a reaction-diffusion model of the F1 
reproduces its energetics, suggesting that the feedback structure plays a certain role. 
Since a feedback usually entails information flow, F1 is interesting from the 
information-thermodynamic perspective. However, a quantitative understanding of the 
interplay between heat dissipation and information flow has been lacking. In this thesis, 
we numerically study the information flow and the information-thermodynamic 
dissipation, which is a partial entropy production defined by heat dissipation minus 
information flow, on the basis of the reaction-diffusion model. We show that in the free 
rotation setup, the rotational degree of freedom plays a role of Maxwellʼs demon, which 
acquires information of the internal state. From this perspective, the small internal heat 
dissipation can be understood as a consequence of the feedback control by Maxwellʼs 
demon.  
     In summary, we have made a platform for applying machine learning to the 
estimation of the entropy production by variational methods. Our method has been 
shown to perform well even in high-dimensional, non-linear and non-stationary 
dynamics, and thus is applicable to a broad class of stochastic dynamics. Its application 
to real experimental data including biological ones is an important future issue. In 
addition, we have theoretically established the variational representations of the entropy 
production. We expect that these representations are useful for the future searching of 
universal laws regarding the entropy production far from equilibrium. 


