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Recently unexpectedly large variations were found in regulatory proteins. These variations may 

significantly affect regulatory network evolution by changing the expressions, molecular 

interactions, and post-translational modifications of the regulator. These events, however, have 

been assumed to be occasional or rare in the context of trans-regulatory research for a long 

time. Trans-species conserved nature was confirmed by comparing orthologous TFs from 

different species. On the contrary, macro evolution of TF families and its potential effect on 

species specificity are less studied. It may be acquisition of new TFs and loss of existing TFs 

that mainly make species unique. In this thesis, I had attempted to answer to this question by 

analysing the evolution of the mammalian TF families. 

 

Multiple isolated transcription factors act as switches and contribute to species uniqueness 

In some mammals, although there are good genome sequencing data, there are few studies on 

the identification of transcription factors in these species. By using the standard hidden Markov 

model (HMM), I constructed a database of TFs from the entire genomes of 96 species of 

mammals. I further annotate our database with orthologous groups information by OrthoDB. 

Now, there exist several animal TF databases, such as humanTFs, animalTFDB3, Riken mouse 

TFdb,FlyTF, TFCat, TFCONES, and ITFP. My database and the others are based on the similar 

pipeline by DNA binding domain (DBD) and HMMER. AnimalTFDB3 contains 125,135 TFs 

from 97 genomes, which ranges from Caenorhabditis elegans to mammal species like human. 

My database contains 140,821 TFs, focusing on 96 mammal species. This may provide a better 

solution in mammal’s TF evolution history. Numbers of TFs varied largely between species, 

with minimum of 1,113 in platypus and maximum of 1,905 in chimpanzee. 

 

To interpret the membership variation of TF families in evolutionary context, I constructed the 

phylogenetic trees of TF families and estimated the events of gene duplication and gene loss 

by reconciling the gene trees with the species tree. It was found that, in mammalian evolution, 

the TF families had increased their members by 37.8% and lost their members or their DBDs 

by 15.0%. As  result, each species has its unique set of TFs. 

 

Largely because existing TF databases had insufficient coverage, previously constructed gene 

regulatory networks (GRNs) for mammals were mostly limited to TF-to-TF relationships and 
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cover only a small subset of orthologues. They revealed the conservation between orthologues, 

with all other TFs ignored. To account for the contribution of birth and death of TFs, I 

constructed more comprehensive GRNs (1,200+ TFs and 8000+ nodes and containing TF-to-

TF and TF-to-TG edges) for mouse and rat generated from whole species gene interaction 

networks using STRING. Because mouse and rat have the same common ancestor not long 

ago, any differences between their GRNs can be assumed to be caused by recent changes. 

 

By comparing the human TF-to-TF interaction network with that of mouse, I confirmed that 

two-thirds of TFs in the largest connected component were conserved. On the other hand, the 

other about 500 isolated TFs, which had been mostly treated as out of target in the preceding 

studies, were variable and prone to be lost from the genome. By comparing the number of 

isolated and primary connected TFs, I found that a large amount of human isolated TFs were 

enriched in the Cys2His2-like (zf-C2H2) TF family. The difference in the members of C2H2 

zinc finger proteins, the largest TF family, was associated with lower expression of their 

interaction genes in human compared with mouse. Knock-out mice that lacked these interacting 

genes had abnormal phenotypes, such as a short tail or hairless skin, which are observed in 

humans.  

 

As the contents of this chapter (page) are anticipated to be 
published in a paper in a scholarly journal, they cannot be 
published online. The paper is scheduled to be published 
within 5 years.  
 

The effect of TF loss 

To quantify the effect of TF loss on the target genes (TGs), I examined TG evolutionary rates 

and found the deceleration effect of TF loss on TGs over the long term. Because the rate of 

molecular evolution of a gene is negatively correlated with the strength of a functional 

constraint, the loss of a TF is expected to have a role in the adaptive evolution of the regulatory 

system. The molecular evolutionary rate of a gene is negatively correlated with its expression 

level. Consistently, in human and mice, TGs lacking TFs had higher expression levels. 

Functional annotation of TGs revealed functions mainly related to the cell cycle, cell migration, 

signal transduction, and inflammation. By comparing GRNs of mouse and rat, I found that loss 

of TF genes lost all its edges and DBD changes resulted in an average loss of 50.7% of the 
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edges, much larger than 30.1% edge loss due to all other factors besides DBD. So, TF and its 

DBD are the main factors affecting its subnetworks in GRN. 

 

I used gene ontology (GO), a standard functional annotation method for comparative research 

among species, to reveal relationships between TFs and their functions. I found that 92.7% of 

TFs (1430 out of 1543 TFs) own unique set of GO items when comparing with any other TFs 

in mouse. Considering the low resolution of some GO items, this means each TFs can be taken 

as unique and have their own functions. In the list of GO items that are governed by single TFs, 

the regulating TFs vary among human, mouse and rat. Through the enrichment analysis of this 

small GO item list, I found that majority of these GO items are phenotype relate functions. 

These functions were found to be regulated by different TFs among species, suggesting 

changes in the regulatory pattern.  

As the contents of this chapter (page) are anticipated to be 
published in a paper in a scholarly journal, they cannot be 
published online. The paper is scheduled to be published 
within 5 years.  
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Gene expression patterns vary among species—even among closely related species that share 

highly similar genomic sequences. These differences in gene expression and regulation are 

believed to be the major sources of species phenotypic variation and important factors in 

evolution. 

 

For many years, mutations in TFs have been thought to be the least likely source of variation, 

mainly because they can be responsible for negative pleiotropic effects. When a mutation 

arises in protein-coding regions of a transcriptional regulator, multiple target genes of the 

regulator are simultaneously affected, potentially causing large-scale detrimental effects. 

Genetic perturbations of 304 human/mouse TF orthologs in mouse associate with phenotypes 

and many individual TF loci have strong GWAS signals for multiple diseases. HOX TF 

genes play a key role in proper body pattern formation [1], while SRY, a TF gene, is 

important for sex determination. In particular, C2H2 zinc finger proteins were found to 

diversify rapidly and to represent most of the rapidly evolving human TFs. 

 

During the past decade, an ever-increasing number of hidden Markov models of DNA 

binding domains (DBDs) and the growing sensitivity of TF detection procedures based on 

these models have contributed to the expansion of TF databases. Several animal TF databases 

have been established, such as animalTFDB3 [2], Riken mouse TFdb [3], FlyTF [4], 

TFCat[5], TFCONES [6], ITFP [7], and humanTFs [8]. These databases collectively contain 

variable numbers of TFs from different species. Scanning of these databases suggests that the 

number of non-orthologous TFs is significant. Recent research on C2H2 TF families has also 

revealed the variability of TFs, but the relative frequency and consequences of global 

variation remain largely unexplored. 

 

Although the systematic mapping of protein–protein interaction (PPI) is far from complete, it 

enables to understand the developmental and disease mechanisms at the system level by 

associating the global topology and dynamic characteristics of the interactome network with 

known biological characteristics. Orthologous human and mouse TFs show preserved TF–TF 

interactions in a TF-to-TF network. In contrast, information regarding the effects of non-

orthologous TFs on gene regulatory networks is still limited. TFs with only non-TF 

interactions are usually ignored in TF-to-TF networks because they lack TF–TF interactions 
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and are considered non-conservative. Since orthologous TFs are shared by both species, they 

are expected to be the core elements of the regulatory networks. Species specificity may be 

generated by microevolution of these orthologous TFs or their downstream target genes in 

each species lineage or it may be generated by rewiring the transcription networks by 

acquisition of new TFs and loss of existing TFs in each lineage. Because the second scenario 

has been largely neglected, I attempted to characterize it in this paper. Some TF/protein 

interactions are less well documented; however, their conservation tends to be low and 

mutated TFs are likely to be lethal, so they are more likely to achieve lineage-specific 

adaptation (reviewed in [9]). What then, are the TFs with rare TF interactions in TF-to-TF 

networks? How do these TFs work to enable different numbers of TFs between species? 

Based on the above findings, I identified such transcription factors, and they conformed to 

the speculated characteristics described in previous studies. I further investigated the origins, 

consequences, and underlying regulatory logic of TF evolution for this set of isolated TFs. 

 

Simplification and complication are both critical aspects of macroevolution. Simplification, 

that is, the reduction of biological complexity to varying degrees, has received less scientific 

attention than complexity. Examples of simplification-driven diversification across the tree of 

life include simplification events in the early history of metazoans, convergent losses of 

complexity in fungi, and simplification during early eukaryotic evolution (reviewed by [10]. 

Nonadaptive simplification, such as drift, can lead to the accumulation of slightly deleterious 

mutations in bacteria [11]. Adaptive genome reduction may also explain some important stages 

of eukaryotic evolution, such as the simplification of animal metabolism [12]. The ‘less-is-

more principle’ suggests that loss of gene function is a common evolutionary response of 

populations undergoing an environmental shift and, consequently, a change in the pattern of 

selective pressures [13]. In this regard, TF patterns may naturally evolve along with 

macroevolution. 

 

The important components of metazoan and embryonic-plant TF kits were present even earlier 

in their respective single-cell ancestors [14]. Given that the origin and expansion of TFs 

occurred long before the big bang of speciation, macroevolution has likely been driven by a 

more direct factor, possibly TF loss. TF loss leading to major diversification has occurred in 

eukaryotes–for instance, the convergent simplification of adaptin complexes in flagellar 

apparatus diversification [10]. As another example, the unexpectedly complex list of Wnt 

family signaling factors evolved in early multicellular animals about 650 million years ago 
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(Mya) [15]. Functional and phenotypic diversification of the mouth was caused by the loss of 

Wnt family signaling factors during animal evolution [16]. 

 

How TFs work when mammalian species quickly adapt to changing environments via 

macroevolution is poorly understood. Advances in comparative genomics have clearly shown 

that the exclusive use of genes as evolutionary units is an oversimplification of actual 

evolutionary relationships [17, 18]. The related concept of orthologous groups refers to a set 

of homologous genes that evolved from a single ancestral gene after a given speciation event. 

Given the close connection between orthologous groups and evolutionary events, I used 

orthologous groups, rather than genes or gene families, as the basic unit in this study to detect 

gain and loss events of global TFs in mammalian evolutionary history. Because of the lack of 

phenotypic data related to orthologous groups and the high resolution of orthologous genes in 

loss events, I used orthologous TFs to identify the association between TF loss and traits. Here, 

I show the pattern of TF loss enrichment in the macroevolutionary process. The role of TFs in 

macroevolutionary processes is further discussed by describing the correlation between TF 

loss, target gene (TG) expression and molecular evolutionary rate, which also between TF loss 

and species traits. This analysis may provide new insights into the role of TF loss under various 

macroevolutionary models as well as its contribution to the rapid adaptation of species to 

different environments. 
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1 ) 1 1 . ) 2 1 ) 1  (
2.1.1	Existing	databases	

The identification of transcription factors is the basis of transcription factor research. In the 

past 20 years, researchers have constructed some mammalian transcription factor databases. 

But today, a large number of databases stopped updating long ago. In the recently updated 

database, the more famous and representative databases are HumanTFs and AnimalTFDB. 

 

In 2018, Lambert et al. published HumanTFs, a database of human transcription factors, in 

cell magazine [8]. This database focuses on humans and has published a list of 1,639 human 

transcription factors. 69 putative TFs with unknown DBD family are included in this list. 

Another database is AnimalTFDB3 [2]. This is version 3 of AnimalTFDB, which is the most 

recently updated version in 2019. AnimalTFDB3 contains 125,135 transcription factors from 

97 species, 72 of which are mammals. 

 

My research focuses on mammals. Because of the need to consider the evolutionary history 

of transcription factors and the number of species changes, more mammals are required to 

provide more dense transcription factor data to improve the accuracy of the final results. 

Because of this need, if possible, my database needs more mammals than 72 species. On the 

other hand, since AnimalTFDB3 has not been released when this research started, and 

AnimalTFDB2 contains only 41 mammalian species, it is necessary to establish a new 

mammalian transcription factor database. 

 

2.1.2	Mammalian	genome	data	

In order to obtain a suitable number of mammalian species, I chose the NCBI database and 

obtained all the protein sequences in 96 mammalian genomes. Since sequencing depth and 

quality may affect the quality of transcription factor identification, I confirmed the 96 

mammalian genome data in the NCBI database. According to Table 2.1. Except for one 

species lacking sequencing depth information, there are 8 species from 5x to 10x, 55 from 

10x to 100x, and 32 from 100x to 500x. Because these species have good sequencing depth 

and quality, it is reliable to use these genome sequences for further transcription factor 

identification. 
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Table 2.1  Genome information of 96 mammalian species 

 
Lineage	 SpeciesName	 protein	

count	
	GC%	 Coverage	

Afrotheria	 Chrysochloris	asiatica	 25227	 41.8	 66x	

Afrotheria	 Elephantulus	edwardii	 25209	 41.5	 62x	

Afrotheria	 Echinops	telfairi	 22926	 43.6	 78x	

Afrotheria	 Loxodonta	africana	 29784	 40.9	 7x	

Afrotheria	 Orycteropus	afer	 25544	 42.1	 44x	

Afrotheria	 Trichechus	manatus	latirostris	 26315	 41.6	 150x	

Carnivora	 Acinonyx	jubatus	 27284	 41.4	 75.0x	

Carnivora	 Ailuropoda	melanoleuca	 36506	 41.7	 60x	

Carnivora	 Canis	lupus	familiaris	 58776	 41.1	 90.0x	

Carnivora	 Felis	catus	 53033	 43.67	 20x	

Carnivora	 Leptonychotes	weddellii	 25718	 43.8	 82x	

Carnivora	 Mustela	putorius	furo	 48107	 41.8	 162x	

Carnivora	 Odobenus	rosmarus	divergens	 31370	 41.7	 200.0x	

Carnivora	 Panthera	tigris	altaica	 29473	 41.5	 99x	

Carnivora	 Ursus	maritimus	 28887	 41.7	 101x	

Cetartiodactyla	 Balaenoptera	acutorostrata	 34821	 41.4	 92x	

Cetartiodactyla	 Bison	bison	bison	 35554	 42.2	 60.0x	

Cetartiodactyla	 Bubalus	bubalis	 41499	 42.2	 70.0x	

Cetartiodactyla	 Bos	mutus	 28881	 42	 130x	

Cetartiodactyla	 Camelus	bactrianus	 28601	 40.45	 79.2x	

Cetartiodactyla	 Camelus	dromedarius	 26729	 41.5	 65x	

Cetartiodactyla	 Camelus	ferus	 31796	 41.3	 30x	

Cetartiodactyla	 Capra	hircus	 42687	 42.69	 50.0x	

Cetartiodactyla	 Lipotes	vexillifer	 26901	 41.4	 115x	

Cetartiodactyla	 Ovis	aries	 48308	 42.4	 166.0x	

Cetartiodactyla	 Orcinus	orca	 27870	 41.7	 200.0x	

Cetartiodactyla	 Physeter	catodon	 31522	 41.3	 75x	

Cetartiodactyla	 Pantholops	hodgsonii	 32279	 42.4	 67.0x	

Cetartiodactyla	 Sus	scrofa	 63577	 41.5	 65.0x	

Cetartiodactyla	 Tursiops	truncatus	 38849	 41.5	 114.5x	

Cetartiodactyla	 Vicugna	pacos	 33208	 41.6	 72.5x	

Chiroptera	 Eptesicus	fuscus	 24147	 43.5	 84x	

Chiroptera	 Myotis	brandtii	 40808	 42.9	 120x	

Chiroptera	 Myotis	davidii	 33106	 43.1	 110x	

Chiroptera	 Myotis	lucifugus	 41184	 42.7	 7x	

Chiroptera	 Miniopterus	natalensis	 29787	 42.4	 77.0x	

Chiroptera	 Pteropus	alecto	 33106	 39.9	 110x	

Chiroptera	 Pteropus	vampyrus	 33311	 40.5	 188.0x	
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Chiroptera	 Rousettus	aegyptiacus	 48803	 40	 169.2x	

Dasyuromorphia	 Sarcophilus	harrisii	 24821	 37.15	 85x	

Dermoptera	 Galeopterus	variegatus	 32104	 41.2	 55x	

Didelphimorphia	 Monodelphis	domestica	 49112	 38.14	 NA	

Insectivora	 Condylura	cristata	 29166	 41.9	 113.1x	

Insectivora	 Erinaceus	europaeus	 29382	 42	 79x	

Insectivora	 Sorex	araneus	 23427	 43.4	 120x	

Lagomorpha	 Oryctolagus	cuniculus	 38463	 44.05	 7.48X	

Lagomorpha	 Ochotona	princeps	 25691	 45.2	 103x	

Monotremata	 Ornithorhynchus	anatinus	 24786	 45.66	 6x	

Perissodactyla	 Ceratotherium	simum	simum	 33629	 41.2	 91x	

Perissodactyla	 Equus	asinus	 42247	 41.4	 42.4x	

Perissodactyla	 Equus	caballus	 36064	 41.48	 90.57x	

Perissodactyla	 Equus	przewalskii	 38416	 41.3	 85.63x	

Pholidota	 Manis	javanica	 41843	 41.5	 60.0x	

Primates	 Aotus	nancymaae	 47568	 41.1	 132.4x	

Primates	 Colobus	angolensis	palliatus	 38656	 41.6	 86.8x	

Primates	 Cercocebus	atys	 65920	 41.1	 192.0x	

Primates	 Cebus	capucinus	imitator	 53175	 41	 81x	

Primates	 Callithrix	jacchus	 45251	 40.8	 60x	

Primates	 Chlorocebus	sabaeus	 61803	 40.93	 95x	

Primates	 Carlito	syrichta	 33081	 41	 48x	

Primates	 Gorilla	gorilla	 46533	 40.98	 80x	

Primates	 Homo	sapiens	 79257	 40.9	 165.0x	

Primates	 Macaca	fascicularis	 40079	 41.34	 68x	

Primates	 Mandrillus	leucophaeus	 38336	 41.6	 117.2x	

Primates	 Macaca	mulatta	 36584	 41.2	 50x	

Primates	 Microcebus	murinus	 59023	 41.34	 221.6x	

Primates	 Macaca	nemestrina	 62876	 41.3	 113.1x	

Primates	 Nomascus	leucogenys	 38654	 41.4	 5.6x	

Primates	 Otolemur	garnettii	 26925	 41.5	 137x	

Primates	 Pongo	abelii	 37509	 41.59	 6x	

Primates	 Papio	anubis	 66659	 41.05	 104.0x	

Primates	 Propithecus	coquereli	 28194	 43.2	 104.7x	

Primates	 Pan	paniscus	 47451	 42.32	 26x	

Primates	 Pan	troglodytes	 79956	 40.88	 55x	

Primates	 Rhinopithecus	bieti	 49595	 41.5	 76.6x	

Primates	 Rhinopithecus	roxellana	 37291	 41	 53.7x	

Primates	 Saimiri	boliviensis	 36241	 41.1	 80x	

Rodentia	 Cricetulus	griseus	 32843	 41.6	 130x	

Rodentia	 Chinchilla	lanigera	 45449	 41.4	 87x	

Rodentia	 Cavia	porcellus	 37720	 40.1	 6.8x	

Rodentia	 Dipodomys	ordii	 29351	 42.6	 181.0x	
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Rodentia	 Fukomys	damarensis	 43907	 40.5	 140x	

Rodentia	 Heterocephalus	glaber	 41292	 40.95	 90x	

Rodentia	 Jaculus	jaculus	 25473	 42.7	 78x	

Rodentia	 Ictidomys	tridecemlineatus	 38592	 40.1	 495.1x	

Rodentia	 Mesocricetus	auratus	 36852	 43.2	 115x	

Rodentia	 Marmota	marmota	marmota	 31750	 40.2	 30x	

Rodentia	 Mus	musculus	 61940	 42.49	 60.0x	

Rodentia	 Microtus	ochrogaster	 30752	 42.83	 94x	

Rodentia	 Nannospalax	galili	 38552	 41.6	 86x	

Rodentia	 Neotoma	lepida	 24320	 36.2	 48.0x	

Rodentia	 Octodon	degus	 27336	 42.5	 80x	

Rodentia	 Peromyscus	maniculatus	bairdii	 45588	 42.7	 110.0x	

Rodentia	 Rattus	norvegicus	 42093	 42.34	 10.0x	

Scandentia	 Tupaia	chinensis	 36148	 42	 80x	

Xenarthra	 Dasypus	novemcinctus	 38202	 41.5	 6x	

These reference genomes information were obtained from NCBI. 
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2.1.3	Pfam	and	Hidden	Markov	Models	

The Pfam[19] database integrates structural information and representative sequence 

information to confirm and classify protein domains or DNA binding domains (DBD) (Figure 

2.1). Many of domain information are based on PDB [20] and Interpro database [21]. By 

categorizing different DBDs or protein domains, pfam defines a family. Therefore, the 

classification of transcription factor families in this study completely complies with the 

definition and classification of transcription factor families in the Pfam database. Through the 

seed sequences in the family, the Pfam database provides the hidden Markov model (HMM) 

of the DBD of this family by HMMER and all the parameter of HMM.  

HMMER can be used for multiple sequence alignments[22-24] and sequence homologs 

search by HMM models [25-29].  HMMER is further improved on the basis of profile HMM 

architecture to make the appraisal result more reliable (Figure 2.2). The HMMER model has 

more insert states than the Profile HMM, which enables HMMER to read the entire sequence 

at one time and detect multiple repeated DBDs in a single sequence. On the other hand, 

HMMER's model allows from any match state to end state, which enables HMMER to detect 

incomplete DBD, which is closer to reality and further improves the sensitivity of detection. 

Therefore, the use of HMMER and HMM to identify transcription factors is widely used. 

Through HMM, I collected sequences containing this DBD from all protein sequences of the 

96 species. And this step of searching is realized by HMMER software. 
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Figure 2.1  TF family and DBD defined by Pfam database. 
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Figure 2.2  Model architecture of profile HMM and HMMER. Diamond is insert state; square is 

match state; circle is delete state; triangle is begin or end state. Match states and insert states of 

proteins each have emission distribution of 20 possible amino acid symbols. 
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2.1.4	Detect	TFs	from	genomes	

I detected TFs by HMMER from all protein sequences of the 96 species based on the Hidden 
Markov models of the 66 transcription factor families (Figure 2.3). Standardizing these 
protein sequences names without deleting or changing the sequences themselves, enables 
them to meet the requirements of the HMMER software, which is conducive to further 
processing in the future. 
 
With a batch program, I obtained the transcription factor family information. I adopted an E 
value of 0.0001 to ensure high reliability. For each single run, I got all the candidate TFs with 
one type of DBD from one species. By 6,336 (96 * 66) runs, I got these 6336 datasets which 
covered 96 mammal species and 66 TF families. 
 
To remove redundancies, protein names were annotated, and only protein isoforms with the 
highest scores were retained; in addition, alternative splicing types were filtered out after TF 
detection for each DBD. The duplications were cleared after identification. This step 
decreased the false negative of transcription factors, which might cause by the alternative 
splicing and sequencing depth, to make the results more accurate.
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Figure 2.3  Pipeline of TF database construction. 
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2.1.5	Detect	number	variation	among	each	TF	families	and	species	

Through the previous steps, I got 6,336 datasets of transcription factors from 66 families and 

96 species (Table 2.2). Note that a transcription factor, which has multiple DBDs,  is included 

in different transcription factor families. I divided the number of the same transcription factor 

family in different species by its average value to get the relative size of the same 

transcription factor family in different species. Using the same method to standardize all 66 

transcription factor families, I obtained the relative sizes of different transcription factor 

families in different species, and used this result to draw a heat map. 

 

In order to study the relationship between transcription factor families, I used the number of 

transcription factor families in different species to compare the transcription factor families in 

pairs to obtain the correlations between transcription factor families, and use these 

correlations to draw heat maps. 

 

In order to obtain the total number of transcription factors in different species, I added the 

number of transcription factors of different families of the same species to get the sum of the 

number of transcription factors of this species, and then arranged them according to the order 

of the species on the species tree. 
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Table 2.2 TF family size among 96 mammalian species 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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Table 2.2 TF family size among 96 mammalian species (continued) 
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Table 2.2  TF family size among 96 mammalian species (continued) 
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In the first project, species tree downloaded from TIMETREE database [30]. Unmatched 

species among 96 mammals were fitted by their closely related species to provide consistence 

on divergent time with other clades. This species tree provided both tree topology of 

mammalian species and divergence times. In the second project, the species tree was 

estimated by integrating gene trees by multi-species coalescent model, following Wu et al. 

[31]. In total, 823 single-copy genes were used to infer a species tree based on the coalescent-

based Njst method that takes account of lineage sorting due to ancestral polymorphism [32]. 

The topology of the inferred species tree was consistent with that of Tarver et al. (2016), who 

placed treeshrew (Tupaia chinensis) as the root lineage of Glires [33]. The phylogenetic 

position of treeshrew is not yet resolved, however, and several researchers consider treeshrew 

to be the root lineage of Euarchonta, not Glires [34]. As an alternative species tree in this 

study, I consequently used a tree in which the position of treeshrew was fixed at the root of 

Euarchonta rather than Glires. Following the same method as Wu et al. 2017, I got the 

divergence times of 96 mammals based on the inferred branch effect (the product of genomic 

rate and time) and fossil calibrations [31]. I used the Atlantogenata topology in main 

research, while Exafroplacentalia and Epitheria topology as complementary analysis (Figure 

2.4-2.6). 

 

I estimated the maximum likelihood tree for each gene using IQ-TREE software [35], which 

automatically performed model selection and determined the best data partitions. The best 

evolutionary model for each gene was independently selected based on the Bayesian 

information criterion and used for inference of the nucleotide tree. All gene trees were 

calculated using 1,000 bootstrap replicates. 

 

Sequences of each TF family from the 96 mammalian species were pooled together and 

aligned using MAFFT7 [36] and MUSCLE3.8 [37]. The aligned datasets were imported into 

DAMBE5 [38], converted to MEGA format, and used to construct phylogenetic trees of 

mammalian TF families in MEGA6 [39]. Among them, only 48 neighbor-joining trees of TF 

families had small member size and could be constructed.  
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2.4.1	network	construction	

Mice (Mus musculus) and rats (Rattus norvegicus) are closely related species that diverged 

20.9 million years ago [30]. All differences between mouse and rat networks can be assumed 

to have arisen recently. I therefore used mouse and rat data to detect factors that affect 

network evolution. Humans and mice are more genetically and phenotypically diverged, and 

much research has been conducted on these two species. I thus looked for human and mouse 

phenotype and expression differences caused by network changes. Whole protein network 

data of humans, mice, and rats (from STRING [40]) were used to construct PPI networks for 

these species. Within each network, all interactions based on 5 main sources (Figure 2.9) and 

had confidence scores ≥ 0.4 (medium + high confidence) from STRING. Global PPI 

networks for mice (19,505 nodes and 847,065 edges), rats (19,920 nodes and 1,099,355 

edges), and humans (18,720 nodes and 782,253 edges) were then constructed (Figure 2.10).  

 

In human, 1555 TFs had TF interactions or non-TF interactions. To detect isolated TFs (TF 

with only non-TF interactions or disconnected from the main TF group), these 1555 human 

TF nodes and TF-to-TF interactions were used to construct the TF-to-TF network. STRING 

collects protein-protein interactions based on multiple types of evidence: co-expression, high-

throughput laboratory experiments, previous knowledge in databases, genomic context 

predictions and automated text-mining. For network construction, I adopted interactions 

when there was any evidence regarding the type of interaction. If there is noise in the 

database, the networks may include false positive interactions but the chance of false 

negatives is minimized to give reliable information on isolated TFs. I also constructed the 

TF-to-TF networks of human, mice and rat by STRING.  
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Figure 2.9  Protein-protein interactions (PPIs) in STRING database. Five main 

sources of PPIs from STRING database listed in green box. Below is an example of 

how interactions are built into a network. The blue circles are nodes and the lines 

are interactions. 
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Figure 2.10  PPI network of human, mouse and rate by R package. H:human , M:mouse, R:rat. 

Black points are nodes; Gray lines are interactions. These shows the overall shape of PPI 

network. 
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2.4.2	Edge	change	ratios	of	transcription	factors	in	PPI	network	

Calculate the number of edges in rats and mice for each node by cytoscape3.5.1 (Figure 

2.11). Through the TF database and blast data, the TF list of rats and mice was manually 

compared, and then transcription factors in the two species were divided into 3 categories. TF 

loss: TF gene is lost in one of the species. DBD loss: TF gene exists in both species, but DBD 

is lost in one species. Others (no loss): TF gene exists in both species and its DBD is not lost. 

The number of edges of transcription factor i in mice is !", and the number of edges in rats is 

#". The edge change ratio $" of transcription factor i between rat and mouse, was calculated 

as: 

$" =
|#" − !"|

|#" + !"|
  

Then count the edge change ratios of transcription factors in each group (Figure 2.12).
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Figure 2.11  Edge number of each nodes in mouse and rat. Gene_loss: TF gene is lost in one of 

the species. DBD_loss: TF gene exists in both species, but DBD is lost in one species. Others 

(no_loss): TF gene exists in both species and its DBD is not lost. General: All genes. 
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Figure 2.12  Example of edge change on Loss of TFs, loss of DBDs and the loss of interactions. 

On the left, the line is the sequence; the dashed line is the sequence loss; the blue rectangle is 

the DBD; and the dashed box is the DBD loss. On the right, the blue ball is TF; the line is edge; 

and the blue ring is the advanced nodes of TF. 
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2.4.3	Functional	Cartography	of	the	Human	PPI	Network	

Using a previously published functional cartography protocol [41], I characterized each gene 

in the human PPI network according to its within-module degree z-score (z) and participation 

coefficient (p). The within-module degree z-score of node i, z*, was calculated as: 

+" =
," −	,./
0123

  

where k* is the number of links between node i and other nodes in its module, k56 is k	 averaged 

over all nodes in s*	, and σ9:6  is the standard deviation of k in s*. The participation coefficient 

of node i, p*	, was calculated as: 

=" = 	1 −	 	(
,".
,"
)A

BC

.DE

  

where k*5 is the number of links between node i and other nodes in module s, and k* is the 

total degree of node i. 

 

Genes were classified into eight groups: (1) those with no experimental interactions, (2) ultra-

peripheral nodes (z < 2.5 and p < 0.05), (3) peripheral nodes (z < 2.5 and 0.05 ≤ p < 0.625), 

(4) non-hub connector nodes (z < 2.5 and 0.625 ≤ p < 0.8), (5) non-hub kinless nodes (z < 2.5 

and p ≥ 0.8), (6) provincial hubs (z ≥ 2.5 and p < 0.3), (7) connector hubs (z ≥ 2.5 and 0.3 ≤ p 

< 0.75), and (8) kinless hubs (p ≥ 0.75). 
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2.5.1	Negative	binomial	regression	analysis	of	the	effect	of	TF	membership	variation	on	gene	
expression	

Gene expression data of 15,796 orthologous human and mouse genes in five organs 

(cerebellum, heart, kidney, liver, and testis) were retrieved [42, 43]. After standardization of 

these data as transcripts per kilobase per million reads, similar average expression levels were 

observed in each organ between humans and mice. To analyze the effect of the variation in 

the membership of TF families on the expression of their interacting genes, all orthologous 

genes were separated into five types: (1) genes without TF interactions, (2) genes with 

orthologous TF interactions, (3) genes with interactions with human- and mouse-specific 

TFs, (4) genes with interactions with human-specific TFs absent in mice, and (5) genes with 

interactions with mouse-specific TFs absent in humans. For each species and organ, I 

estimated gene expression profiles by negative binomial regression: 

log I expression|gene	type = $1 = Q + R1   

using glm.nb in the R package MASS [44, 45]. In this equation, the coefficient β9 is the log 

mean expression of other groups relative to the reference group (genes without TF 

interactions). 

 

2.5.2	The	effect	of	TF	loss	on	TG	expression	profiles:	human–mouse	comparison	

Gene expression data of 15,796 orthologous human and mouse genes in five organs 

(cerebellum, heart, kidney, liver and testis) were retrieved [42]. The average levels of these 

expression data, which were standardized as transcripts per million kilobases, were similar 

between humans and mice in these organs. Regulatory information on TFs and their TGs was 

obtained from TRRUST v.2 [46]. I chose up-regulatory interactions to analyse the effect of TF 

losses on the expressions of their TGs. According to the TF list in the TRRUST database and 

the human and mouse TF lists in my database, the TFs in TRRUST that can up-regulate the 

expression of TGs were divided into two types that exist in the species and those that are lost. 

According to the data of these interactions, I got the corresponding TG. Through the changes 

in the expression of TG in these two groups, the overall impact of the loss of transcription 

factors on the expression of target genes were detected. 
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Gene ontology (GO) data of human and mouse TFs were retrieved [47, 48]. The intersection 

of every TF associated with a GO term was checked between humans and mice, and the 

proportion of intersecting TFs relative to the average number of TFs was obtained by local 

polynomial regression using loess in R [45, 49]. 
 

 

,6G6 I6 67 GL
Protein sequences: NCBI [50]; http://www.ncbi.nlm.nih.gov 

DNA binding domain (DBD) models: Pfam [19]; https://pfam.xfam.org 

Orthologous groups: OrthoDB; www.orthodb.org 

Species tree: TIMETREE [30]; http://www.timetree.org 

Protein interaction data: STRING [40]; https://string-db.org 

Gene ontology data: (1) Gene Ontology Consortium [47], http://www.geneontology.org and 

(2) g:Profiler [48], https://biit.cs.ut.ee/gprofiler 

Gene name data: DAVID [51]; https://david.ncifcrf.gov 

Phenotypic data: MGI [52]; http://www.informatics.jax.org 

Life history traits: ADW; http://animaldiversity.org 
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Chapter	3	Multiple	isolated	transcription	
factors	act	as	switches	and	contribute	to	

species	uniqueness	 	
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To detect the accuracy of TF annotation, I compared our 1625 human TFs list (TF list 

extracted from Table S3.1 that collects 140,821TFs in 96 mammalian genomes) with 2 well-

known TF databases, AnimalTFDB3 and HumanTFs. In humanTFs, there are 1639 TFs 

listed. And in AnimalTFDB3, 1665 human TF listed (Figure 3.1). 1402 TFs listed in all 3 

databases, 82 TFs only in HumanTFs, 123 TFs only in AnimalTFDB3, 140 TFs only in our 

human TF list. My database and the others are based on the similar pipeline by DBD and 

HMMER. AnimalTFDB3 and HumanTFs use human genome in ensemble and I use NCBI’s 

human genome. The DBD list (even the number of DBD) is different among these three 

databases. These may lead to the differences among human TF numbers and lists.  

 

AnimalTFDB3 contains 125,135 TFs from 97 genomes, which ranges from Caenorhabditis 

elegans to mammal species like human. My database contains 140,821 TFs, focusing on 96 

mammal species. This may provide a better solution in mammal’s TF evolution history. To 

avoid the limitation of mammalian species, I further annotated our database with orthologous 

groups information by OrthoDB. By this way, it is possible to trace the TFs in mammalian 

species back to those of bacterial species.  
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Figure 3.1  Venn diagram of human TF lists in HumanTFs, AnimalTFDB3, 
and our database. The numbers in the red, green, and blue circles are the 
number of human transcription factors in AnimalTFDB3, our database 
and HumanTFs. The number of overlapping parts of the circles is the 
number of overlapping parts of transcription factors in different 
databases. 
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TF families vary in scale because of gene duplication and loss, as well as the loss of DBDs. 

To examine variation in the membership of TF families, I de novo detected 140,821putative 

TFs belonging to 66 TF families in 96 mammalian genomes (Supplementary Materials, Table 

S3.1). The total number of TFs varied substantially among species (Figure 3.2). For example, 

Neotoma lepida had 1337 TFs, whereas a closely related species, Peromyscus maniculatus 

bairdii, had 1628. Using a standardized number of each TF family as a control, I observed 

that variation in membership was also very widespread among these TF families (Figure 

3.3a). I examined the correlation between TF families and found that 97.9% of TF family 

pairs (1973 out of 2016) were not strongly correlated (r < 0.5). This result indicates that 

number variations in each TF family tend to be independent of other families. In the TF-

family correlation matrix and heatmap shown in Figure 3.3b, only three small clusters have 

members that are strongly correlated with one another: (1) bZIP_1, bZIP_2, and bZIP_Maf; 

(2) BTD and LAG1_DNAbind; and (3) HMG_box, BTB, Homeobox, Forkhead, and HLH. 

bZIP_1, bZIP_2, and bZIP_Maf are all present in 14 mouse TF genes, while BTD and 

LAG1_DNAbind are both located in two mouse TF genes. Two members of cluster 3, 

HMG_box and HLH, are both found in the gene encoding protein S9YBX2. In other words, 

these strong correlations mostly result from genes sharing multiple DBDs rather than the co-

occurrence of gene duplications or losses.  
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Figure 3.2  Total number of TFs in 96 mammalian species. The black bar is the total number 
of TFs in a species. The species trees are time trees from TimeTree. The adjacent strips of 
different colors on the species tree are different lineages. 
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Figure 3.3  Variation in the number of transcription factors (TFs) within and among TF 
families. The dendrograms show the hierarchical relationships. (a) Variation in the number 
of TFs within each TF family. X-axis: TF family; y-axis: mammalian species. The average 
number of TFs in each TF family was standardized to 1 (black). The colors on the heat map 
represent the degree of TF number variation, where blue is low and yellow is high. (b) 
Correlation of TF number variation among TF families. The colors on the heat map 
represent the degree of correlation (blue, low; red, high). 
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Large TF families, such as C2H2, have been found to rapidly diversify. Families with limited 

members are usually thought to be more conserved and are less researched. To reveal the 

detailed history of variation in TF family membership, phylogenetic trees of 48 small size TF 

families were reconciled with the mammalian species tree. The membership of different TF 

families was found to have changed along nearly all branches of the mammalian species tree 

(Figure 3.4-3.6). Compared with the common mammalian ancestor, an average of 37.8% of 

the TFs of a mammalian species arose during its evolution, whereas 15.0% disappeared. This 

high level of turnover, more than half of the TFs of a species, indicates that TF families have 

generally undergone substantial alteration through isolated TFs. Unlike TF orthologs [53], 

these TF families as a whole are not as conserved as previously thought. TF formation and 

loss have occurred even more extensively along recent branches. These TF formation and 

loss events have shaped the unique TF profile of each species. Among 48 TF families 

(Supplementary Materials, Table S3.2), abundant gains and losses have taken place in 

families such as GATA and Forkhead. Members of the GATA TF family, which include 

more than 15% of all gained TFs, are inducers of the pluripotency reprogramming and may 

serve as important mediators of cell fate conversion (Figure 3.4). The Forkhead TF family, 

which includes 14.5% of all lost TFs, regulates cell growth, proliferation, differentiation, and 

longevity (Figure 3.5). The functional importance of TFs is therefore not dependent of 

evolutionary conservation. TF gains and losses have been prevalent during mammalian 

evolution (Figure 3.6). Since the software Notung only provides event numbers, I could not 

check the proteins that experienced the events in detail. To obtain a clear picture on the effect 

of TF losses, I focused on human and mice and conducted quantitative analysis. I will try to 

find better ways to apply quantitative analysis to whole mammal species in future research.  
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Figure 3.4  TF gains among 48 TF families. X-axis: TF family; y-axis: mammalian species. Tree: 

hierarchical clustering. From blue to red, the number of events increase. 
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Figure 1. Total TF number of 96 species Figure 2. The variation of TF number

Figure 4. TF  lossFigure3. TF duplication

156906 TFs have been identified in the genomes of 96 mammal species and further classified them into 66 TF 
families. Figure 1  shows that the total number changes even between close related animals. Through the 
profiles of TFs, the numbers of TFs in the same TF family vary among species , suggesting that changes in TFs 
indeed exist and that these huge variations could be important sources of gene regulatory network (GRN) 
changes or phenotypic variation among species.

More than 15% duplicate happens on GATA TF family , then follows Forkhead TF family ,12.5%. 
They are twice larger than other TF families. GATA TF family also lost most(about 14.5% of total 
TF loss). GATA TF family play important roles in lineage specification and transdifferentiation. 
Forkhead TF family can affect cell growth, proliferation, differentiation, and longevity. It 
suggests that changes on TFs may contribute to the varieties of these functions.
EBP TF family is involved in different cellular responses, such as in the control of cellular 
proliferation, growth and differentiation, in metabolism, and in immunity. IRF TF family  is 
critical  for adaptive immunity. They both affect immunity. These changes may offer better 
adaptive to different  environments of each species.

GATA TF family Forkhead TF family

EBP TF family IRF TF family
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Figure 6. TF changes  on branches. 
Red:duplication,Green:loss,Blue:both duplication 
and loss,Gray: no changes.
It offers evidence that how TF changes on each 
scale.

Figure 7. Total TF changes on different nodes

Figure 5. Unique TF families  of  TF 
duplication and loss

TF loss is much more than TF duplicate, almost 
1.8 times as the amount of TF duplicate. It 
suggest that only quite a few part TFs survive 
from their common ancestor of mammals.
From Figure 7, more TFs changes during the 
latest divergent to the exist species than the 
period before. These huge changes on these 
limited time period may offer many materials for 
speciation.

Now, the results here at least prove that TF change happens at 
different scales and it is pervasive.
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Figure 3.5  TF loss among 48 TF families. X-axis: TF family; y-axis: mammalian species. Tree: 

hierarchical clustering. From blue to red, the number of events increase. 
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Gene expression patterns vary in different species. Closely related species, even though they share high genome sequence 
similarities, also follow that pattern. These differences in gene expression and regulation are believed to be the major sources
of species phenotypic variation and important factors for evolution. Both changes in cis and trans cause variations of 
transcriptional regulation. A change in cis regulatory sequence allows a single node in the network to evolve, whereas when a 
transcription factor (TF) protein evolves, all of its target genes will be affected. Therefore it has been assumed that 
transcription factors are much more constrained. Recently, researchers have found that more mutations arise in regulatory 
proteins than expected. Thus, changes in TFs might be an effective way to regulate gene expression, although the exact 
mechanisms are still unclear.

Transcription factor (TF)

A prototypical transcription factor that 
contains :
(1)DNA-binding domain (DBD)
(2)signal-sensing domain (SSD)
(3)transactivation domain (TAD). 2.Pipeline

Get hidden Markov model 
From Pfam

Download proteins sequences
From database (96 species)

+

Predicted  TFs

HMMER

Grouped by TFs families

Clean 
redundant  TFs

Calculated and list
All TFs families

Find target TFs families
And construct Phylogenetic Tree

NJtree

Delect
false positive

Check protein domains

Get the LSTs

Blast

Enrichment analysis

Gene regulatory network

Phenotypes

RNA-seq data

Candidate LSTs

Check protein domains

Blast

Delect false positive

Get the LSTs

Enrichment analysis

Gene regulatory network

Phenotypes

RNA-seq data

LST: lineage-specific transcription factor

3. Result

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Af
Ca

si
Af

Ee
dw

Af
Et

el
Af

La
fr

Af
O

af
e

Af
Tm

an
Ca

Aj
ub

Ca
Am

el
Ca

Cl
up

Ca
Fc

at
Ca

Lw
ed

Ca
M

pu
t

Ca
O

ro
s

Ca
Pt

ig
Ca

U
m

ar
Ce

Ba
cu

Ce
Bb

is
Ce

Bb
ub

Ce
Bm

ut
Ce

Cb
ac

Ce
Cd

ro
Ce

Cf
er

Ce
Ch

ir
Ce

Lv
ex

Ce
O

ar
i

Ce
O

or
c

Ce
Pc

at
Ce

Ph
od

Ce
Ss

cr
Ce

Tt
ru

Ce
Vp

ac
Ch

Ef
us

Ch
M

br
a

Ch
M

da
v

Ch
M

lu
c

Ch
M

na
t

Ch
Pa

le
Ch

Pv
am

Ch
Ra

eg
Da

Sh
ar

De
Gv

ar
Di

M
do

m
In

Cc
ri

In
Ee

ur
In

Sa
ra

La
O

cu
n

La
O

pr
i

M
oO

an
a

Pe
Cs

im
Pe

Ea
si

Pe
Ec

ab
Pe

Ep
rz

Ph
M

ja
v

Pr
An

an
Pr

Ca
ng

Pr
Ca

ty
Pr

Cc
ap

Pr
Cj

ac
Pr

Cs
ab

Pr
Cs

yr
Pr

G
go

r
Pr

Hs
ap

Pr
M

fa
s

Pr
M

le
u

Pr
M

m
ul

Pr
M

m
ur

Pr
M

ne
m

Pr
N

le
u

Pr
O

ga
r

Pr
Pa

be
Pr

Pa
nu

Pr
Pc

oq
Pr

Pp
an

Pr
Pt

ro
Pr

Rb
ie

Pr
Rr

ox
Pr

Sb
ol

Ro
Cg

ri
Ro

Cl
an

Ro
Cp

or
Ro

Do
rd

Ro
Fd

am
Ro

Hg
la

Ro
Jja

c
Ro

Lt
ri

Ro
M

au
r

Ro
M

m
ar

Ro
M

m
us

Ro
M

oc
h

Ro
N

ga
l

Ro
N

le
p

Ro
O

de
g

Ro
Pm

an
Ro

Rn
or

Sc
Tc

hi
Xe

Dn
ov

生物測定学研究室 博士課程1年 趙新威

Figure 1. Total TF number of 96 species Figure 2. The variation of TF number

Figure 4. TF  lossFigure3. TF duplication

156906 TFs have been identified in the genomes of 96 mammal species and further classified them into 66 TF 
families. Figure 1  shows that the total number changes even between close related animals. Through the 
profiles of TFs, the numbers of TFs in the same TF family vary among species , suggesting that changes in TFs 
indeed exist and that these huge variations could be important sources of gene regulatory network (GRN) 
changes or phenotypic variation among species.

More than 15% duplicate happens on GATA TF family , then follows Forkhead TF family ,12.5%. 
They are twice larger than other TF families. GATA TF family also lost most(about 14.5% of total 
TF loss). GATA TF family play important roles in lineage specification and transdifferentiation. 
Forkhead TF family can affect cell growth, proliferation, differentiation, and longevity. It 
suggests that changes on TFs may contribute to the varieties of these functions.
EBP TF family is involved in different cellular responses, such as in the control of cellular 
proliferation, growth and differentiation, in metabolism, and in immunity. IRF TF family  is 
critical  for adaptive immunity. They both affect immunity. These changes may offer better 
adaptive to different  environments of each species.
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Figure 6. TF changes  on branches. 
Red:duplication,Green:loss,Blue:both duplication 
and loss,Gray: no changes.
It offers evidence that how TF changes on each 
scale.

Figure 7. Total TF changes on different nodes

Figure 5. Unique TF families  of  TF 
duplication and loss

TF loss is much more than TF duplicate, almost 
1.8 times as the amount of TF duplicate. It 
suggest that only quite a few part TFs survive 
from their common ancestor of mammals.
From Figure 7, more TFs changes during the 
latest divergent to the exist species than the 
period before. These huge changes on these 
limited time period may offer many materials for 
speciation.

Now, the results here at least prove that TF change happens at 
different scales and it is pervasive.
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Figure 3.6  Atlas of formation and loss events in 48 transcription factor (TF) families from 96 

mammalian species over 177 million years. The size of each pie chart is proportional to the 

number of TF gains and losses on each branch; light blue indicates TF loss events, and red 

indicates TF formation events. The bar chart displays the total number of TF gains (red) and 

losses (blue) in each species over 177 million years. The gray bars indicate ancestral TFs. 

Species tree is from TimeTree. 
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I constructed a PPI network of nearly all human genes and a TF-to-TF network based on the 

detected TF list from the whole gene network (see Materials and Methods). Interactions were 

found between 1555 of the 1625 human TFs in the PPI network. This means these 1555 TFs 

have been previously investigated and that interactions have been determined with other TFs 

or non-TFs. One-third (515) were isolated from the other 1040 TFs (no conserved co-

expression, high-throughput laboratory experiments, previous knowledge in databases, 

genomic context predictions or automated text-mining interaction), but were connected with 

non-TF genes (Figure 3.7, Table 3.1, and Table S3.1). Out of 1040 TFs in the large connected 

component of the network, 507 (48.8%) were lethal when mutated, and only 40 (3.8%) were 

not found in mice. In contrast, 26 (5.0%) of the 515 isolated TFs were lethal when mutated, 

and 189 (36.7%) were absent in mice. The average degree (number of connections) of the 

515 isolated TFs in the human gene TF-to-TF network was 10.5 ± 8.8 (mean ± standard 

deviation), whereas TFs in the large connected component had an average degree of 77.9 ± 

127.8. TFs having fewer documented interactions are less conserved and less lethal and are 

therefore more likely to enable lineage-specific adaptation (reviewed in [9]). Isolated TFs are 

consistent with the characteristics of this type of TF. Overall, TFs that are isolated in the TF-

to-TF network generated TF number variation, and the human TFs absent in mice are more 

dispensable for TF–TF interactions. I additionally conducted a functional cartographic 

analysis of all TF and non-TF genes in the human PPI network. TFs were not at the core of 

the human PPI network, but were on the periphery, even compared with non-TF genes. This 

observation is consistent with the variable TF profile uncovered when non-orthologous TFs 

are also considered. However, TFs in the large connected component, which is enriched in 

orthologous TFs, are evolutionarily conserved. In human TF profile, 229 TFs are different 

when compared with mice. Among the 229 TFs, 189 belong to isolated TFs. The isolated TFs 

are largely human-specific; they contribute most to TF profile differentiation, at least among 

human and mice.
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Figure3.7  Human TF-to-TF network that shows interactions between transcription factors. 
Gray blocks are Isolated TFs; Blue Blocks are Main-net TFs; Lines are TF-to-TF interactions. 

Isolated nodes
(515 TF genes)

Main-net nodes
(1040 TF genes)
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Table 3.1. Different features of large-component and isolated transcription factors (TFs). 

TF Type 
TF 

Number 
TFs with Lethal 

Phenotype 
TFs Absent in 

Mouse 
Degrees  

large component TFs 1040 507 (48.8%) 40 (3.8%) 77.9 ± 127.8 

Isolated TFs 515 26 (5.0%) 189 (36.7%) 10.6 ± 8.8 

Values were acquired by network analysis and TF annotation. Large-component TFs 
refer to the largest connected component in a TF-to-TF network. Isolated TFs comprise 
one four-TF component, 12 two-TF components, and other TFs with no TF–TF 
interactions. Degree indicates the average number of degrees of TFs in a human gene 
interaction network. The “lethal” phenotype was assigned to genes identified from a 
search using the keyword “lethal”. 
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Variation in the membership of TF families influences the PPI network. The formation of 

TFs adds new edges, while the loss of TF genes removes them. To determine the effect of 

DBD loss, I compared the global PPI networks of two closely related species, mice and rats. 

The mouse network contained 19,505 nodes and 847,065 edges, while the rat network 

consisted of 19,920 nodes and 1,099,355 edges. Within these networks, I focused on the TF 

subnetworks (1440 and 1288 TF genes in mice and rats, respectively) and their interacting 

genes. Without considering DBD loss, roughly the same numbers of orthologous TFs were 

found to interact, with a relative difference of 30.1 ± 22.3% (Supplementary Materials, Table 

S3.3). When DBD loss was considered, the relative difference in the number of interacting 

genes increased to 50.7 ± 27.9%. In general, a change in a DBD doubled the variation in the 

number of interacting genes. By functional cartography of the human PPI network 

(Figure3.8, Table 3.2), I found transcription factors are more in the periphery of PPI network. 

 

Variation in TF-interacting genes among species may affect their expression profiles. Figure 

3.9 shows the expression profiles of orthologous genes in humans and mice (Supplementary 

Materials, Table S3.4) relative to the expression of non-TF-interacting genes. Generally, the 

relative expression of TF interacting genes compared to non-TF interaction genes is higher in 

mice than in humans, although the difference is small in the testis. In the cerebellum and testis, 

genes interacting with human- and mouse-specific TFs have higher expression levels, 

especially in humans. In the heart, genes interacting with human-specific TFs have the highest 

expression, especially in mice. In the liver, genes interacting with orthologous TFs have the 

highest expression in both humans and mice. Variation in expression profiles is small in the 

kidney. 
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Figure3.8 Functional cartography of experimentally determined gene interactions. I 

characterized each gene in the human PPI network according to its within-module degree z-

score (z) and participation coefficient (p). Genes were classified into eight groups: (NA) those 

with no experimental interactions, (R1) ultra-peripheral nodes (z < 2.5 and p < 0.05), (R2) 

peripheral nodes (z < 2.5 and 0.05 ≤ p < 0.625), (R3) non-hub connector nodes (z < 2.5 and 0.625 ≤ 

p < 0.8), (R4) non-hub kinless nodes (z < 2.5 and p ≥ 0.8), (R5) provincial hubs (z ≥ 2.5 and p < 0.3), 

(R6) connector hubs (z ≥ 2.5 and 0.3 ≤ p < 0.75), and (R7) kinless hubs (p ≥ 0.75). 

Peripheral Core-hub
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Table 3.2 Gene in core hubs 

	 within_module_
degree	

participation_coefficie
nt	

role	 Type	

FLNA	 2.638795333	 0.779336735	 R7:	Kinless	hubs	 NonTF	
PPP1CC	 2.812761616	 0.815193572	 R7:	Kinless	hubs	 NonTF	

CSNK1E	 3.776699562	 0.803506209	 R7:	Kinless	hubs	 NonTF	

IGKV3D-7	 3.753569747	 0.771626947	 R7:	Kinless	hubs	 NonTF	

ENSG000002239
31	

6.798587327	 0.817452513	 R7:	Kinless	hubs	 NonTF	

IGLL5	 3.193238407	 0.802092952	 R7:	Kinless	hubs	 NonTF	
BTRC	 2.582959388	 0.85467128	 R7:	Kinless	hubs	 NonTF	

BABAM1	 3.279226392	 0.80625	 R7:	Kinless	hubs	 NonTF	

PIK3R3	 2.903835891	 0.76953125	 R7:	Kinless	hubs	 NonTF	

USP11	 2.666990665	 0.853741497	 R7:	Kinless	hubs	 NonTF	
CTNNB1	 4.14314548	 0.811791383	 R7:	Kinless	hubs	 NonTF	

BECN1	 2.535077737	 0.8384	 R7:	Kinless	hubs	 NonTF	

KEAP1	 2.80624304	 0.793950851	 R7:	Kinless	hubs	 TF	

PBX2	 2.666666667	 0.824196597	 R7:	Kinless	hubs	 TF	
DAZAP1	 3.051858105	 0.312	 R6:	Connector	hubs	 NonTF	

LDHB	 3.718067748	 0.451325462	 R6:	Connector	hubs	 NonTF	

LDHA	 3.622894942	 0.435502959	 R6:	Connector	hubs	 NonTF	

USP25	 4.005862286	 0.580246914	 R6:	Connector	hubs	 NonTF	
ILF3	 3.731411259	 0.696548397	 R6:	Connector	hubs	 NonTF	

ECH1	 2.751629402	 0.324260355	 R6:	Connector	hubs	 NonTF	

CHCHD2	 3.08088606	 0.441275437	 R6:	Connector	hubs	 NonTF	

PRPF8	 4.629316502	 0.337775927	 R6:	Connector	hubs	 NonTF	
NDUFS3	 4.858872012	 0.445555556	 R6:	Connector	hubs	 NonTF	

OTUD4	 3.328201177	 0.6304	 R6:	Connector	hubs	 NonTF	

HLA-DRB1	 2.547649317	 0.617346939	 R6:	Connector	hubs	 NonTF	

HLA-DRA	 2.771748099	 0.692901235	 R6:	Connector	hubs	 NonTF	
COQ9	 6.702709295	 0.54254907	 R6:	Connector	hubs	 NonTF	

RMND5A	 2.753220395	 0.545	 R6:	Connector	hubs	 NonTF	

DUT	 3.718067748	 0.367643107	 R6:	Connector	hubs	 NonTF	

CFL1	 4.479450197	 0.317906574	 R6:	Connector	hubs	 NonTF	
SLC25A3	 3.005990158	 0.49621417	 R6:	Connector	hubs	 NonTF	

ACTR2	 3.885698622	 0.642509465	 R6:	Connector	hubs	 NonTF	

PCBP1	 3.718067748	 0.548575603	 R6:	Connector	hubs	 NonTF	

C15ORF48	 5.122277338	 0.403045102	 R6:	Connector	hubs	 NonTF	
U2AF2	 4.081334152	 0.439670139	 R6:	Connector	hubs	 NonTF	

MRPL23	 3.335727022	 0.318772137	 R6:	Connector	hubs	 NonTF	

STX12	 2.677600654	 0.550925926	 R6:	Connector	hubs	 NonTF	

STX6	 2.90207017	 0.411242604	 R6:	Connector	hubs	 NonTF	
HSD17B10	 3.622894942	 0.47761194	 R6:	Connector	hubs	 NonTF	
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MSN	 2.671166881	 0.315061728	 R6:	Connector	hubs	 NonTF	

MRPL22	 2.610305921	 0.380485632	 R6:	Connector	hubs	 NonTF	

IGBP1	 5.716696677	 0.441207076	 R6:	Connector	hubs	 NonTF	
HNRNPM	 3.601849595	 0.636824197	 R6:	Connector	hubs	 NonTF	

CDKN1A	 2.54415177	 0.453703704	 R6:	Connector	hubs	 NonTF	

NHP2L1	 3.259360626	 0.667854756	 R6:	Connector	hubs	 NonTF	

PPP2R1A	 2.504565696	 0.726963546	 R6:	Connector	hubs	 NonTF	
PPP2CA	 2.82304537	 0.576594346	 R6:	Connector	hubs	 NonTF	

TRAF2	 3.500180183	 0.676020408	 R6:	Connector	hubs	 NonTF	

HNRNPU	 4.012836358	 0.693530246	 R6:	Connector	hubs	 NonTF	

STIP1	 5.050487034	 0.335638388	 R6:	Connector	hubs	 NonTF	
ALDOC	 2.956685299	 0.324031653	 R6:	Connector	hubs	 NonTF	

NDUFA4	 5.714939322	 0.470100309	 R6:	Connector	hubs	 NonTF	

LATS2	 3.670062883	 0.67638484	 R6:	Connector	hubs	 NonTF	

HSPB1	 3.813240554	 0.5603125	 R6:	Connector	hubs	 NonTF	
TPI1	 3.147030911	 0.497222222	 R6:	Connector	hubs	 NonTF	

PRDX6	 2.575994075	 0.316115702	 R6:	Connector	hubs	 NonTF	

HNRNPK	 2.985369451	 0.537854671	 R6:	Connector	hubs	 NonTF	

SNRPA1	 3.464854008	 0.357659435	 R6:	Connector	hubs	 NonTF	
POLR2E	 2.545609321	 0.478737997	 R6:	Connector	hubs	 NonTF	

ABHD16A	 3.015113446	 0.73015873	 R6:	Connector	hubs	 NonTF	

HNRNPH1	 2.711378276	 0.573129252	 R6:	Connector	hubs	 NonTF	

ICT1	 3.137884904	 0.315631451	 R6:	Connector	hubs	 NonTF	
COPS5	 3.099323019	 0.466942149	 R6:	Connector	hubs	 NonTF	

AHCYL1	 6.192560707	 0.4394	 R6:	Connector	hubs	 NonTF	

SRRM2	 2.916871657	 0.421682099	 R6:	Connector	hubs	 NonTF	

HNRNPR	 3.32785842	 0.654979304	 R6:	Connector	hubs	 NonTF	
DDX5	 2.642880482	 0.488040123	 R6:	Connector	hubs	 NonTF	

UQCRC2	 2.544358548	 0.708189546	 R6:	Connector	hubs	 NonTF	

SNRNP200	 3.396356214	 0.317384953	 R6:	Connector	hubs	 NonTF	

CDK2	 3.5897596	 0.562860438	 R6:	Connector	hubs	 NonTF	
NUP107	 3.988175128	 0.585848075	 R6:	Connector	hubs	 NonTF	

NUP153	 2.529086667	 0.674718867	 R6:	Connector	hubs	 NonTF	

COPS6	 4.582345448	 0.477828541	 R6:	Connector	hubs	 NonTF	

VDAC3	 2.808148039	 0.4896875	 R6:	Connector	hubs	 NonTF	
HSPA8	 2.575994075	 0.668628809	 R6:	Connector	hubs	 NonTF	

SF3B1	 3.670347389	 0.401107266	 R6:	Connector	hubs	 NonTF	

MYO5C	 4.093515837	 0.7024	 R6:	Connector	hubs	 NonTF	

DSTN	 4.669795809	 0.409972299	 R6:	Connector	hubs	 NonTF	
XPO1	 3.242203717	 0.517510708	 R6:	Connector	hubs	 NonTF	

SF3A1	 4.560818708	 0.303757356	 R6:	Connector	hubs	 NonTF	

U2AF1	 3.396356214	 0.399024539	 R6:	Connector	hubs	 NonTF	
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SRSF1	 3.053867245	 0.394445487	 R6:	Connector	hubs	 NonTF	

DHX15	 3.190862833	 0.63239645	 R6:	Connector	hubs	 NonTF	

SNRPD1	 2.848373864	 0.391020408	 R6:	Connector	hubs	 NonTF	
SF3B3	 4.423823121	 0.399551066	 R6:	Connector	hubs	 NonTF	

SF3A3	 2.711378276	 0.309573361	 R6:	Connector	hubs	 NonTF	

EFTUD2	 2.77987607	 0.309901738	 R6:	Connector	hubs	 NonTF	

TXN	 3.051858105	 0.365384615	 R6:	Connector	hubs	 NonTF	
EIF3H	 2.526976695	 0.709572742	 R6:	Connector	hubs	 NonTF	

RYBP	 2.541924884	 0.577777778	 R6:	Connector	hubs	 NonTF	

DOK1	 2.840642326	 0.680555556	 R6:	Connector	hubs	 NonTF	

MRPL53	 3.665463886	 0.358842618	 R6:	Connector	hubs	 NonTF	
AMOT	 3.325994488	 0.640095181	 R6:	Connector	hubs	 NonTF	

UIMC1	 2.950415073	 0.701388889	 R6:	Connector	hubs	 NonTF	

EXOSC8	 2.636595074	 0.380165289	 R6:	Connector	hubs	 NonTF	

PIK3R1	 2.678090412	 0.682222222	 R6:	Connector	hubs	 NonTF	
CLTB	 3.266340979	 0.4453125	 R6:	Connector	hubs	 NonTF	

C3	 2.666666667	 0.642857143	 R6:	Connector	hubs	 NonTF	

BIRC2	 2.560443091	 0.6304	 R6:	Connector	hubs	 NonTF	

MARK2	 3.390604559	 0.656	 R6:	Connector	hubs	 NonTF	
ATM	 2.985826233	 0.620498615	 R6:	Connector	hubs	 NonTF	

B2M	 3.553690788	 0.41322314	 R6:	Connector	hubs	 NonTF	

CDC5L	 3.32785842	 0.562019013	 R6:	Connector	hubs	 TF	
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Figure 3.9 Log expression levels of transcription factor (TF)-interacting and non-interacting 

human and mouse orthologous genes. (a)Expression of genes in cerebellum. (b)Expression of 

genes in heart. mouse orthologous genes. (c)Expression of genes in kidney. (d)Expression of 

genes in liver. (e)Expression of genes in testis. Standard error bars are attached to the means. 

Orthologous genes were divided into four groups according to their interactions with TFs, 

namely, those that interact with orthologous TFs (orth_TF), human- and mouse-specific TFs 

(spec_TF_HM), human- but not mouse-specific TFs (spec_TF_H), and mouse- but not human-

specific TFs (spec_TF_M). 

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

cerebellum

gene type (interacting with)

lo
g 

re
la

tiv
e 

ex
pr

es
sio

n 
to

 g
en

es
 w

ith
ou

t T
F 

in
te

ra
ct

io
n

orth_TF spec_TF_HM spe_TF_H spec_TF_M

human
mouse

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

heart

gene type (interacting with)

lo
g 

re
la

tiv
e 

ex
pr

es
sio

n 
to

 g
en

es
 w

ith
ou

t T
F 

in
te

ra
ct

io
n

orth_TF spec_TF_HM spe_TF_H spec_TF_M

human
mouse

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

kidney

gene type (interacting with)

lo
g 

re
la

tiv
e 

ex
pr

es
sio

n 
to

 g
en

es
 w

ith
ou

t T
F 

in
te

ra
ct

io
n

orth_TF spec_TF_HM spe_TF_H spec_TF_M

human
mouse

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

liver

gene type (interacting with)

lo
g 

re
la

tiv
e 

ex
pr

es
sio

n 
to

 g
en

es
 w

ith
ou

t T
F 

in
te

ra
ct

io
n

orth_TF spec_TF_HM spe_TF_H spec_TF_M

human
mouse

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

testis

gene type (interacting with)

lo
g 

re
la

tiv
e 

ex
pr

es
sio

n 
to

 g
en

es
 w

ith
ou

t T
F 

in
te

ra
ct

io
n

orth_TF spec_TF_HM spe_TF_H spec_TF_M

human
mouse

FIG. 3.
a b c

d e



62 
 

 
1 FF HA6 5-F A I 6 F HG D GLD F G G6 GF HA6 F

Human-isolated TFs are enriched in the Cys2His2-zinc finger (C2H2-zf) TF family. To 

compare the effect of reducing their expression levels in humans and mice, I focused on the 

C2H2-zf-containing Krüppel-associated box (C2H2-KRAB) family, the largest individual 

genome-encoded transcriptional repressor family of higher organisms. I surveyed the knock-

out phenotypes of 672 C2H2-KRAB-interacting genes. A total of 9827 mammalian phenotype 

terms were recorded (Supplementary Materials, Table S3.5). I then collected information on 

mouse C2H2-KRAB-interacting genes that do not participate in this interaction and that are 

known to be responsible for specific mammalian phenotypes (Table 3.3, Table 3.4). I looked 

at the function of genes whose expression is regulated by human specific TFs and these human 

specific TFs also belong to C2H2-KRAB family. Because transcription factors can up-regulate 

or down-regulate the expression of target genes, and the C2H2-KRAB family is mainly down-

regulated, thus the target genes of C2H2-KRAB are selected as extra criteria to keep the 

direction of regulation as consistent as possible. According to the knockout data of mouse 

genes, the phenotypic changes that may be caused by the down-regulation of target gene 

expression caused by the presence of transcription factors in humans are simulated. As 

demonstrated by C2H2-KRAB knock-out phenotypes in mice, morphological differences in 

the corresponding phenotype between humans and mice are due, at least partially, to the 

reduced expression levels of these interacting genes in humans relative to mice (Table 3.3). For 

example, the “short tail” (vs. “long tail”) phenotype in knock-out mice is consistent with the 

absence of tails in humans, while “delayed tooth eruption” (vs. “continually growing teeth”) in 

knock-out mice is comparable to permanent teeth in humans. Other examples include hair and 

skin phenotypes. Although information about target genes of species-specific TFs is lacking, I 

also found a similar trend in TF to target-gene regulation. The human-specific TF, SHOX, 

activates the expression of its target gene, FGFR3. The absence of SHOX in mice may 

contribute to the lower expression of mouse FGFR3. In mice, a humanized FGFR3 gene leads 

to “short tail” phenotypes, whereas knock-out of FGFR3 causes “long-tail” phenotypes (Table 

3.4). These findings indicate that species-specific TFs are responsible for diverse target-gene 

expression because of altered regulatory interactions and that divergent expression of genes 

shapes species-specific phenotypes (Supplementary Materials, Figure 3.10). 
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Table 3.3 Mammalian phenotypes of representative genes that interact with KRAB-C2H2 
and have low expression in humans. 

Organ 
Mouse Normal 

Phenotype 

Gene with 
KRAB-C2H2 
Interactions 

Mammalian 
Phenotype 

Mouse Knock-
Out Phenotype 

Human (Monkey) 
Normal Phenotype 

Tail 

Horizontal tail CACNA1B MP:0003382 Straub tail (Vertical tail) 

Long tail RIPK4 MP:0000592 Short tail Without tail 

Tooth 
Continually 

growing teeth 
OTUD7A MP:0003053 

Delayed tooth 
eruption 

Permanent tooth 

Hair Fur-covered 

CTSL2 MP:0000414 Alopecia 

Hairless  

CTSL2 MP:0000417 Short hair 

Skin 

Epidermis < 25 µm CTSL2 MP:0001219 Thick epidermis Epidermis > 50 µm 

Normal dermis CTSL2 MP:0001245 
Thick dermal 

layer 
Thicker dermis than 

mouse 

Organs exhibiting obvious phenotypic divergence between humans and mice are listed. 
Mammalian and mouse knock-out phenotypes were obtained from MGI. The 
phenotypes for all analyzed genes are listed in Supplementary Materials, Table S5. 
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Table 3.4 The effect of loss of SHOX in mouse inferred from the tail phenotypes 
associated with mutations in mouse FGFR3, the orthologous target gene of human 
SHOX. 

Symbol Mutation allele/type of mouse Phenotype of mutation allele 

Fgfr3tm1Led Targeted (Null/knockout) long tail 

Fgfr3tm2Schl Targeted (Null/knockout) long tail 

Fgfr3tm3.1Cxd Targeted (Humanized sequence) short tail 

  domed cranium 

Fgfr3tm1Llm Targeted (Humanized sequence) small snout 

  short tail 

    domed cranium 

Knock-out phenotypes were obtained from MGI. 
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Figure 3.10 Shaping of species-specific phenotypes by species–specific TFs. The blue 
ellipse is orthologue TF and the orange ellipse is non-orthologue TF. 
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The same logic can also be applied to pathways. Small animals, such as mice, have a high 

metabolic rate. The glycolytic pathway is the basic pathway that supports the metabolic 

demands of different organisms. The isolated TFs can modulate five connected genes (TPI1, 

NLK, ALDOA, PFKL, and PFKM) in the glycolytic pathway, possibly making these genes 

more plastically regulated (Figure 3.11a). Only two TFs (ZNF224 and ZNF256) interacting 

with ALDOA in humans are absent in mice. ZNF224 represses transcription of the ALDOA 

gene, and ZNF256 is a transcriptional repressor. Consequently, ALDOA has relatively lower 

expression in humans than in mice. In all five organs, expression of the ALDOA gene is nearly 

double in mice compared with that in humans (Figure 3.11b). This result indicates that the 

pathway can also be affected by the evolution of isolated TFs. 
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Figure 3.11  Glycolytic pathway component ALDOA and its expression levels in humans 
and mice. (a) Initial steps of glycolytic pathway. White block: metabolite of pathway. Gray 
block: enzyme interacting with isolated TF. Orange block: enzyme interacting with non-
orthologous TFs in human. (b) Expression of ALDOA. The blue bar is the expression of 
ALDOA in mouse. The orange bar is the expression of ALDOA in human. 
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Human and mouse biological functions were found to be regulated by similar numbers of TFs 

(Figure 3.12a) but by different members of TF families (Figure 3.12b). The number of GO 

items in human, mouse and rat are similar (Figure 3.13). GO terms associated with a small 

number of TFs are mostly regulated by orthologous TFs. However, for GO terms regulated by 

many TFs (as many as 400, i.e., ~eU), the proportion of orthologous TFs is as small as 50%. I 

conducted GO and pathway enrichment analyses on these two TF groups and their interacting 

genes (Figure 3.14). Even though the numbers of isolated TFs and their interacting genes were 

much smaller than those of the other set of genes, their functional profiles were very similar 

regarding GO terms and pathways. This outcome indicates that the isolated TFs are not null-

function, though their interaction with those functions may be weaker. Although the amount of 

functional change caused by the formation or loss of isolated TFs is small, the related 

phenotype is still affected. These TFs, especially the isolated ones, thus function through their 

formation or loss like multiple switches that open or close to generate a unique phenotype or a 

divergent function during speciation.
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Figure 3.12  Shared and specific transcription factors (TFs) that regulate gene ontology (GO) 

terms in humans and mice. (a) Comparison of the number of TFs regulating GO terms in 

humans and mice. (b) Proportion of orthologous TFs relative to the average number of TFs. The 

red line in (a) represents the average number of TFs regulating GO terms in humans and mice. 

The smooth red curve in (b) represents the predicted proportion of orthologous TFs regulating 

GO terms. 
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Figure 3.13  The number of GO items in human, mouse and rat. 
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Figure 3.14  Enrichment analysis of gene ontology terms and pathways. (a) Enrichment 
analysis of gene ontology (GO) terms. X-axis: GO terms; Y-axis: percentage of genes in GO 
term. Orange bar: connected TFs and their interaction genes. Blue bar: isolated TFs and their 
interaction genes. (b) Enrichment analysis of pathways. X-axis: percentage of connected TFs 
and their interaction genes. Y-axis: percentage of isolated TFs and their interaction genes. Blue 
dot: pathway. 
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Our TF-to-TF network is based on the STRING database, which collects protein–protein 

interactions based on several types of evidence (see Materials and Methods). Interactions with 

genes for which there is little information may be under-represented in the list. However, 

because of the large amount of human RNA-seq data, the co-expression data coverage is 

comprehensive. TFs can regulate gene expression, so if such regulation exists, it is likely to be 

detected by “conserved co-expression” in STRING. Evidence of co-expression and from high-

throughput laboratory experiments may include unbiased information on the TF-with-protein 

interactions. I adopted the interactions when there was any evidence regarding the type of 

interaction; therefore, the isolation of TFs is likely to be real. 

 

The TF database was constructed by collecting sequences with DBD. Some proteins own DBD 

bud does not have regulatory function and some proteins have regulatory function but do not 

include sequences that are similar to known DBD domain. The number of functional 

annotations and DBDs are growing but these are still incomplete for now. The quality of the 

annotation of regulatory function varies among species. Therefore, our analysis of acquisition 

and loss of transcription factors may be affected by the variation of the quality of functional 

annotation. The analysis will become more solid as many well-annotated genomes across 

whole mammal species become available. 

 

In recent years, studies of the C2H2 TF family and several other TF genes have revealed the 

evolution of TFs. A relationship between TF sequence evolution and changes in DNA binding 

properties has also been found. Reports showing that TFs are evolutionarily conserved were 

based primarily on TFs with known DNA-binding sequence specificities, whereas reports 

showing that TFs are evolutionarily variable always considered entire TF families. I therefore 

hypothesized that there is another type of TF that, along with well-studied TFs, contribute to 

overall TF evolution. Three factors have been proposed to explain how TF evolution has 

circumvented the problem of negative pleiotropy: (1) alternative splicing, (2) short linear 

motifs, and (3) simple sequence repeats. Until now, however, the regulatory logic behind 

overall TF evolution remains unknown. 

 

It was found that one-third of TFs constitute a new TF type that is isolated in the human TF-

to-TF network and that tends to be peripheral in the network of PPIs. These TFs have rarely 
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been reported in previous human TF-to-TF network studies. The characteristics of isolated TFs 

are consistent with the protein characteristics related to lineage-specific phenotypes. Mutations 

of these isolated TFs are far less lethal than those of other TFs, indicating the high tolerance of 

the regulatory network to the evolution of these genes. The less strongly interacting genes 

encoding these isolated TFs contribute to less pleiotropic regulation. The other two-thirds of 

TFs make up a large connected TF component of the human TF-to-TF network containing 

nearly all TFs with known DNA-binding specificities. 

 

The comparative study of mammalian TFs presents an overview of TF member variation and 

demonstrates that TF evolution in mammals is ubiquitous—with changes observed in closely 

related species, not just between humans and mice. Starting from the same TFs in the shared 

common ancestor, the turnover of TFs during mammalian evolution and species–specific 

formation and loss events have gradually led to unique sets of TFs. In our human-mouse model, 

the overall force of TF formation and loss tends to be unilateral, with the overall expression 

level of interacting genes in a species being either relatively higher or lower. Changing the 

expression level of functional genes will consequently change phenotypes and pathway 

efficiency, an idea that is confirmed by the evidence in this study. 

 

An isolated TF has a GO functional term overlay similar to that of connected TFs, which means 

that isolated TFs can also adjust a wide range of functions that are mainly regulated by 

connected TFs. Each GO term was found to be regulated in humans and mice by a similar 

number of TFs, which are largely non-orthologous. 

 

The gain and loss of TFs, mainly the isolated ones, may not be a useless process, even though 

these changes are prevalent and tolerable to organisms. These changes will largely affect the 

properties of an interacting gene, such as its interaction and expression. When interacting TFs 

are absent or newly emerging, the same interacting genes will have different expression levels. 

As TF evolution has been frequent and widespread throughout mammalian history, large-scale 

phenotypes and pathway efficiencies have been shaped among species. These observations 

improve our understanding of the consequences of TF evolution. 

 

I therefore hypothesized that these connected TFs follow the common TF regulatory pattern, 

with their conserved members possibly forming the backbone structure of the regulatory 

network. In contrast, the variable isolated TFs tune the flow of the regulatory network and give 
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rise to species uniqueness by acting as on/off switches. This scenario explains how TFs can 

evolve while tolerating negative pleiotropic effects and identifies a major source of TF 

evolution and why TF numbers vary among species. 

 

This situation may be best visualized by regarding the members of TF families as regulatory 

switches. During evolution, species may have modified the flow of the regulatory network by 

selecting different on/off states. Isolated TFs are an ideal tool for accomplishing this task: the 

relatively less lethal phenotypes of isolated TFs make them more tolerant to changes during 

speciation. In addition, emerging TFs in different species can diversify the expression profiles 

of their target genes, resulting in an adaptive phenotype for each species. Consequently, 

phenotypes have evolved by turning multiple switches on and off—in other words, through the 

formation and loss of isolated TFs. 
 

  



75 
 

4HDD A G6 L A6G
includes large tables in link: 

https://drive.google.com/drive/folders/1gifcglSa5X5BoMeOzsfaKlGNy5Kc3j9Q?usp=sharin

g 

Table S3.1: Isolated TF list and connected TF list in human. 

Table S3.2: Formation and loss events in 48 TF families. The number of gain events on 

branches and the number of loss events on branches. 

Table S3.3: Number of edges between different types of TFs in mouse and rat gene interaction 

networks. (a) TFs with DBD loss among mouse and rat. (b) TFs with gene loss among mouse 

and rat. (c) TFs without loss among mouse and rat. 

Table S3.4: Human and mouse gene expression data. RNA-seq data of 15,796 orthologous 

genes in cerebellum, heart, kidney, liver and testis. 

Table S3.5: Mammalian phenotypes of genes that interact with KRAB-C2H2 and have low 

expression in humans. Mammalian phenotypes of genes were obtained from MGI. 
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As the contents of this chapter (page) are anticipated to be 
published in a paper in a scholarly journal, they cannot be 
published online. The paper is scheduled to be published 
within 5 years.  
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