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1 Introduction 

The mission of crop breeding is to improve agricultural products’ quality and quantity by 

creating new genotypes. To date, many theories and methods have been studied in order to achieve 

better improvement in breeding procedures. In recent years, the development of technologies for 

acquiring genomic data has increased the importance of statistical models that relate genomic data 

(i.e., whole-genome genotype data) to phenotypic data of target traits. Quantitative genetic models, 

such as genome-wide association study (GWAS) and genomic prediction (GP), have been applied 

to crop improvement by enabling the discovery of genetic variants and the prediction of genetic 

ability. Quantitative genetic models will continue to play an essential role in plant breeding. The 

use of genomic data and quantitative genetic models is expected to increase the efficiency and 

speed of plant breeding. 

 To increase the potential of genomics-assisted plant breeding, it is necessary to consider the 

impact of non-genetic factors on the traits of interest. Environmental effects and their interactions 

(genotype-by-environment interactions, G × E) have considerable effects on crop production 

(Kang, 2001). Several analytical methods for environmental effects and G × E (Burgueño et al., 

2012; Jarquín et al., 2014) and the integrated use of quantitative genetic and plant physiological 

models (Heslot et al., 2014; Technow et al., 2015) were proposed. Crop growth models (CGM) 

are systematic models of plant growth under environmental changes in which accumulated 

physiological knowledge is aggregated, providing the ability to simulate plant growth under a 

given environment. The integration of CGMs and GP is expected to be a promising approach to 

systematically consider both genetic and environmental effects (Ramirez-Villegas et al., 2015).  

In CGMs, crop traits at harvest are described as a chronological accumulation of growth. In 

plant physiology, many models of the relationship between plant growth and environmental 

factors have been discovered and accumulated in the main and sub-models of CGMs. However, 

genetic effects and the effect of G × E on plant growth have not been fully considered in CGMs 

because they require time-series data observed during the plant growth process of many genotypes. 

Since  many genotypes are evaluated simultaneously in a breeding program, the collection of 

time-series data requires a great deal of effort. 

In recent years, rapid advances in sensing technologies have made it possible to measure plant 

phenotypes in a high-throughput and time-series manner. A variety of sensing machinery, such as 

unmanned aerial vehicles (UAVs), tractors, and hand-held devices, can not be used to acquire 

phenotypic data of various characteristics for a large number of plants in the  field.  Also,  

several automated sensing facilities, called high-throughput phenotyping platforms, have been 

developed to track plant growth accurately under controlled environments. Thus, it is expected 

that the application of the high-throughput phenotyping will provide time-series data of a large 

number of genotypes, which will enable the modeling and analysis of G × E patterns present in 

plant growth processes. 

This dissertation consists of four topics to develop new models for the relationships among 

crop growth process data, genomic data, and environmental data. 
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As the first step, CGM parameters of various rice genotypes were estimated using accurate 

growth process data measured manually. Next, the application of GP to the estimated CGM 

parameters was tested on whether it would improve the prediction accuracy of biomass at harvest. 

Here, an integrated  CGM and GP model including growth process data was developed in  

Chapter 3. In this study, phenotype data of recombinant inbred lines of rice were used. The time-

series data of leaf number and tiller number were parameterized with other growth-related traits 

in CGM, and the estimated parameters were predicted in GP using the genotypic data. The 

predicted biomass was calculated using the parameters predicted by CGM. The results showed 

that the proposed model improves the accuracy of biomass prediction. 

In the previous section, the inclusion of manually measured growth process data improved 

the GP accuracy of biomass. In Chapter 4,  the same approach was examined with the growth 

process measurements using UAV remote sensing (UAV-RS). UAV-RS was used as growth 

process data to measure the canopy area and height of soybean core collections. Simple growth 

models were used to summarize their growth patterns as parameters because UAV-RS was less 

accurate than manual measurements, and it was difficult to estimate CGM parameters. These 

parameters were used as secondary traits in GP of biomass to test whether this growth evaluation 

method would benefit genomic selection. The inclusion of growth process data and estimated 

parameters was found to improve the biomass prediction accuracy over the standard GP. Growth 

model fitting was shown to be an effective way to summarize the growth process data. 

In Chapter 5, the fitting of the growth model was used to predict the growth process measured 

with UAV-RS. Time-series changes in the canopy area of soybean core collections were observed 

more frequently than in Chapter 4 to trace the growth process more accurately. Next, the 

prediction accuracy of an integrated model of the growth model and GP was tested in several 

prediction schemes. The proposed model successfully improved the second half of the growth 

process’s prediction accuracy when the first half of the growth process was supplied as training 

data. 

In Chapters 4 and 5, models were developed that connect the marker genotype and growth 

process, ignoring the environmental factors’ influence. In Chapter 6, using the same data as 

Chapter 5, the environmental effects and the G × E effect on daily growth were estimated. Since 

the UAV-RS data had significant noise and bias, making it difficult to estimate the subtle 

environmental response, a noise filtering model was developed and applied to the canopy area 

and height. Next, statistical and machine-learning models were developed to explain the 

relationship between the estimated daily growth and environmental factors. Although the 

environmental response estimation was largely dependent on environmental data characteristics, 

the G × E related to daily growth was visualized by soil moisture. 
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2 Summary of prior studies about the modeling of the 

growth process in crop breeding 

2.1 General methods of quantitative genetic analysis 

Various quantitative genetics methods have been proposed to model the association between 

marker genotype data and phenotype data. The objectives of the methods include analysis of the 

genetic effects on traits, such as heritability estimation, detection of genes and quantitative trait 

locus (QTL), such as genome-wide association study (GWAS), and prediction of phenotypes also 

known as genomic prediction (GP). Despite the wide range of objectives, the basis of these 

methods is linear mixed models. This section briefly explains the basic concepts of these methods. 

Before these analyses, it is common to calculate the genotypic values (or breeding values) 

with mixed models in recent studies. The genotypic value is assumed to reflect the actual genetic 

ability that each genotype possesses. The phenotypic values of block i, genotype j, and repetition 

k are decomposed into three terms: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛽𝑖 + 𝑠𝑗 + 𝑒𝑖𝑗𝑘  (2-1), 

where yijk is a phenotypic value, μ is a mean, βi is a fixed effect, sj is a random effect of 

genotype (breeding value), and eijk is a residual. The breeding values and residuals are assumed 

to follow the Gaussian distribution, N(sj | 0, σg
2) and N(eijk | 0, σe

2). The matrix notation of Eq. 2-

1 is 

𝐲 = 𝜇𝟏 + 𝐋𝛃 + 𝐐𝐬 + 𝐞 (2-2), 

where 1 is a vector in which all the elements are one, y, β, s, and e are vectors of yijk, βi, sj, 

and eijk, respectively, and L and Q are design matrices. Here, s and e are assumed to follow the 

multivariate Gaussian distribution, N(s | 0, σg
2I) and N(e | 0, σe

2I). The meanings and the number 

of the terms depend on each analysis (e.g., βi may be a block effect, a yearly effect, or an 

environmental effect). The genotypic value (g) is then calculated by adjusting breeding values 

with the mean, 

𝐠 = 𝜇𝟏 + 𝐬 (2-3). 

A basic model for associating genotypic values with marker genotype data, which is common 

to genomic heritability estimation and GP, can be described with the simple equation: 

𝐠 = 𝑚𝟏 + 𝐙𝐮+ 𝛆 (2-4), 

where m is a mean, u is a vector of fitted or predicted genotypic values that follows the 

multivariate Gaussian distribution, N(u | 0, σu
2G), and ε is a residual vector that follows N(ε | 0, 

σε
2I). G is a matrix determining the covariance structure of the predicted values, calculated with 



6 

 

marker genotype data. One definition of heritability can be written as the ratio of the estimated 

variances, σu
2 / (σu

2 + σε
2), which is called genomic heritability. 

GP is a statistical method for predicting genotypic values of selection candidates from whole-

genome marker genotypes. Equation 2-4 expresses a prior assumption in GP; the similarity of 

their whole-genome marker genotypes determines genotypic values. Two genotypic values will 

be similar if their marker genotypes are similar. If their whole-genome marker genotypes are 

significantly different, two genotypic values will not correlate or negatively correlate. Therefore, 

the genotypic values not obtained can be predicted using obtained genotypic values with similar 

marker genotypes. 

The estimation of genotypic values (Eq. 2-2) and prediction of the genotypic values (Eq. 2-4) 

are sometimes integrated, 

𝐲 = 𝐋𝛃 + 𝐙𝐮 + 𝐞 (2-5). 

Here, the mean value, μ, is included as one of the elements of β. This integrated approach is 

often used in growth analysis models to utilize marker genotype data in estimating growth model 

parameters, described in Section 1.1.2. 

The variance-covariance matrix of the predicted genotypic values (G) can be calculated in 

several ways. The inner product of the marker genotype data is one of the indices to evaluate the 

genotypic similarity, 

𝐆 = 𝐗𝐗T 𝑐⁄ (2-6), 

where X is an N × M marker genotype matrix (N and M are the numbers of genotypes and 

markers, respectively), and c is the normalization constant (Endelman & Jannink, 2012). Here, 

the elements of X were represented as −1, 0, and 1. Instead of the inner product, any kernel 

functions such as Gaussian kernel can also be applied.  

Replacement of random effect (u) of Eq. 2-4 with marker regression will lead to another 

formulation of GP (Meuwissen et al., 2001), 

𝐠 = 𝑚𝟏 + 𝐙(∑ 𝑤𝑚𝐱𝑚

𝑀

𝑚=1

) + 𝛆 (2-7), 

where xm is a vector of markers (mth column vector of X), and wm is an effect of mth marker on 

the genotypic values. In this case, the sum of the M marker effects is used to predict the 

unobserved genotypic values. Since the number of markers is usually larger than the number of 

genotypes (N < M), the least sum of squares’ criterion cannot estimate the marker effects., 

Regularization methods (ridge regression, LASSO, and elastic net) and the Bayesian methods 

(Habier et al., 2011; Gianola, 2013) have been mainly used to circumvent this problem. 

In breeding programs and field experiments, multiple traits are often measured from the same 

genotype. In such cases, a multivariate GP model can be applied to predict multiple traits 

simultaneously (Calus & Veerkamp, 2011; Jia & Jannink, 2012). If the measured traits have high 
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genetic correlations among them, the prediction accuracy of traits with low heritability can be 

improved (Calus & Veerkamp, 2011). The multivariate GP model can be expressed by extending 

Eq. 2-4 to K traits, 

(

𝐠1

⋮
𝐠𝐾

) = (
𝑚1𝟏
⋮

𝑚𝐾𝟏
) + (

𝐙1 ⋯ 𝐎
⋮ ⋱ ⋮
𝐎 ⋯ 𝐙𝐾

)(

𝐮1

⋮
𝐮𝐾

) + (

𝛆1
⋮
𝛆𝐾

) (2-8). 

The predicted breeding values uall = (u1
T, …, uK

T)T are assumed to follow the multivariate 

Gaussian distribution N(uall | 0, K ⨂ G), where K is the genotypic variance-covariance matrix of 

the traits and ⨂ is the Kronecker product. Therefore, data of correlated traits can be used to 

estimate or predict genotypic values. The residuals εall = (ε1
T, …, εK

T)T are assumed to follow the 

distribution N(εall | 0, R ⨂ I), where R is the residual variance-covariance matrix of the traits. 

For GWAS, the effect of the target marker is included in the mixed model (Eq. 2-4),  

𝐠 = 𝑚𝟏 + 𝑏𝑚𝐱𝑚 + 𝐙𝐮 + 𝛆 (2-9), 

where bm is the effect of mth marker. In this case, u is included to eliminate confounding genetic 

factors such as other QTLs and subpopulation effects. By testing the estimated effect of marker 

bm, the probability of the existence of a causal QTL is statistically quantified (Zeng, 1994). 

2.2 Modeling methods of the growth process 

2.2.1 Drawbacks in the application of standard approaches 

The simplest way to analyze time-series data is to apply the standard mixed models to the 

phenotype data at each time point separately. However, this method ignores covariances among 

time points, which leads to failure in analyses, such as loss of GP accuracy (Yin et al., 2004; Sun 

et al., 2017). 

Another method is to apply a multivariate mixed model, but this is also problematic. As the 

number of measurements increases, the variance-covariance matrix’s size among traits (K in Eq. 

2-8) becomes too large to be estimated (Pletcher & Geyer, 1999). Thus, it is necessary to introduce 

models considering the longitudinal data structure. 

2.2.2 Use of growth models 

A common way to analyze time-series growth data is to fit a growth model. Several growth 

models have been proposed, including the Gompertz model (Winsor, 1932), the logistic model 

(Nelder, 1961), and the Richards model (Richards, 1959), 

𝑦 = 𝑎 exp{−𝑏 exp(−𝑘𝑡)} (2-10), 

𝑦 = 𝑎 {1 + 𝑏 exp(−𝑘𝑡)}⁄ (2-11), 
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𝑦 = 𝑎{1 + 𝑏 exp(−𝑘𝑡)}𝑐 (2-12), 

where t is observed time, and a, b, c, and k are the model parameters (Crispim et al., 2015). 

The parameters of a growth model are estimated by fitting the model to observed growth data. 

The estimation can be expressed by the following equation: 

𝐲𝑡 = 𝑓(𝑡|𝛉1, … , 𝛉𝐾) + 𝐞𝑡 (2-13), 

where yt is a vector of phenotypic values at time point t, and f (t | θ1, …, θK) is a growth function 

such as Eq. 2-10‒2-12 with parameters θ1, …, θK. Here, f (t | θ1, …, θK) means the vector of length 

L in which the elements are f (t | θ1l, …, θKl) (l = 1, …, L). The growth trajectory is summarized 

into the growth model parameters representing growth characteristics such as growth rate and 

growth period. The estimated model parameters are then analyzed with mixed models; if we apply 

Eq. 2-5, the parameters are expressed as 

𝛉𝑘 = 𝐋𝛃𝑘 + 𝐙𝐮𝑘 + 𝛆𝑘   (𝑘 = 1, … , 𝐾) (2-14). 

This model is used as an analytical tool (Onogi et al., 2016), QTL analysis (Ma et al., 2002; 

Wu et al., 2002), and GWAS (Crispim et al., 2015). Estimation of growth parameters (Eq. 2-13) 

and fitting of mixed models to the parameters (Eq. 2-14) can be done either stepwise (Wu et al., 

2002; Crispim et al., 2015) or jointly (Ma et al., 2002; Onogi et al., 2016). 

Since most growth models have several correlated parameters, it is natural to develop a 

multivariate mixed model of the parameters (Ma et al., 2002; Onogi et al., 2016), 

(
𝛉1

⋮
𝛉𝐾

) = (
𝐋1 ⋯ 𝐎
⋮ ⋱ ⋮
𝐎 ⋯ 𝐋𝐾

)(
𝛃1

⋮
𝛃𝐾

) + (
𝐙1 ⋯ 𝐎
⋮ ⋱ ⋮
𝐎 ⋯ 𝐙𝐾

)(

𝐮1

⋮
𝐮𝐾

) + (

𝛆1
⋮
𝛆𝐾

) (2-15). 

2.2.3 Random regression 

Random regression is also one of the common modeling methods for time-series data. 

Although random regression is not employed as an analytical tool in this dissertation, it is 

introduced here because it is a powerful tool for dealing with growth processes. The first 

implementation was explained by introducing a time-series structure for covariances among traits 

(Kirkpatrick & Heckman, 1989; Kirkpatrick et al., 1990), but here, since these two 

implementations were equivalent (Meyer & Hill, 1997), time-series functions of fixed or random 

effects (Jamrozik & Schaeffer, 1997) are introduced. 

Random regression can be described as an expansion of the mixed model (Eq. 2-5), 

𝐲𝑡 = 𝐋𝛃(𝑡) + 𝐙𝐮(𝑡) + 𝐞𝑡 (2-16), 

where β(t) and u(t) are vectors of fixed and random effects, respectively, determined by the 

measurement time. Unlike Section 1.2.1, the shape of growth curves is not determined. Instead, 

the growth trajectory is expressed with the functions which show flexible shapes such as 

polynomials, the cubic spline, or the Legendre polynomials. An essential characteristic of these 
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functions is that they can be described with linear expansion (i.e., linear connections of feature 

vectors), 

𝛃(𝑡) = 𝚽𝛽𝑡𝐰𝛽 , 𝐮(𝑡) = 𝚽𝑢𝑡𝐰𝑢  (2-17), 

where Φβt and Φut are N × D matrices of features of β(t) and u(t), N and D are the numbers of 

samples and features, and wβ and wβ are coefficients. Therefore, Eq. 2-16 can be expressed as 

𝐲𝑡 = 𝐋𝚽𝛽𝑡𝐰𝛽 + 𝐙𝚽𝑢𝑡𝐰𝑢 + 𝐞𝑡 (2-18). 

Thus, the random regression can be written with a linear combination of feature vectors 

making it easy to implement random regression in various software (Meyer, 2002; Meyer, 2007). 

The use of random regression is widely seen in research on the growth process such as GP (Sun 

et al., 2017; Campbell et al., 2018) and GWAS (Das, Li, Fu, et al., 2011; Das, Li, Wang, et al., 

2011). One of the shortcomings of random regression is that the meanings of the estimated 

coefficients (w) are hardly understood compared to using a growth function (Section 1.2.2). 

2.3 Use of crop growth models 

Crop growth models (CGMs) have been developed to describe and predict plant growth using 

environmental data. The construction of CGM began in the 1960s with photosynthesis models 

and light interception (Wit, 1965; Bouman et al., 1996). Nowadays, many advanced CGMs are 

available for various purposes, from field management to political decision-making (Soltani & 

Sinclair, 2012). By utilizing the extensive knowledge of plant physiology, CGMs include various 

environmental factors on crop growth processes. 

Here, the basic components of CGMs are explained. One essential component of CGMs is a 

model of the growth stage. Its basis is the cumulation of daily growth: 

DVS𝑑 = ∑DVR𝑑

𝑑

(2-19), 

DVR𝑑 = 𝑓(T𝑑 , P𝑑) (2-20), 

where DVSd is a developmental stage of day d, DVRd is a developmental rate, Td is the daily 

temperature, and Pd is the day length. The developmental stage corresponds to the plant phenology, 

e.g., DVS = 0, 1, and 2 correspond to emergence, flowering, and maturity, respectively (Horie, 

1987). 

The developmental stage can be used as an explanatory variable for growth process data. QTL 

analysis of the rice growth process using the developmental stage has shown that the effect of a 

gene related to the heading date was distinguished (Yin et al., 1999).  

Another essential component of the model is the formalization of plant biomass products 

(Soltani & Sinclair, 2012). The daily value of dry matter production (DMPd) can be expressed as 
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DMP𝑑 = RUE𝑑 × PAR𝑑 × FINT𝑑 (2-21), 

where RUEd is radiation use efficiency (g MJ–1), PARd is photosynthetically active radiation 

(MJ), FINTd is the fraction of the incident radiation intercepted by the leaves. It is known that 

FINTd can be estimated as an exponential equation of the leaf area index (LAI) based on the Beer-

Lambert Law,  

FINT𝑑 = 1 − exp(−KPAR × LAI𝑑) (2-22), 

where KPAR is the extinction coefficient, which differs for each species. The formation of 

LAI can be decomposed into detailed factors such as the number of nodes, the growth stage, and 

leaf shape parameters. Environmental stresses such as drought, heat, nutrition deficit can be 

included in CGMs by setting models of environmental effects on RUE, LAI, and other detailed 

components. 

In terms of data assimilation, integrative analysis of CGM and growth process data has been 

considered. In those studies, CGM parameters were adjusted for each field and cultivar by data 

assimilation using time-series satellite RS data (Jin et al., 2018; Kasampalis et al., 2018). The 

purpose of these studies was the application to field management, not breeding. However, CGM 

integration with quantitative genetic models is expected to further improve crop production 

through breeding (Ramirez-Villegas et al., 2015). 
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3 Predicting biomass of rice with intermediate traits: 

modeling method combining crop growth models and 

genomic prediction models 

3.1 Introduction 

Genomic selection (GS) is a novel method increasingly being used in plant and animal 

breeding. In GS, the candidate genotypes are selected using genotypic values predicted with GP 

(Meuwissen et al., 2001). GP enables the prediction of genotypic values of a target trait without 

information about its causal genes, even when the target trait is controlled by a number of genes 

with complex interactions. Recent falls in the cost of genotyping high-density genome-wide 

markers have inspired the increased use of GP in animal breeding (García-Ruiz et al., 2016) and 

plant breeding (Asoro et al., 2013; Yabe et al., 2014; Rutkoski et al., 2015). Because phenotypic 

values predicted by GP can be used as alternatives to phenotypic values observed in field trials, 

GP can accelerate breeding by skipping field experiments for selection, and thus is expected to 

increase selection gains per unit time (Heffner et al., 2009). 

Because environmental effects, i.e., the main effects of the environment and of the genotype-

by-environment interaction (G×E), are generally not trivial in plant breeding, the use of GP 

models without consideration of these effects can cause difficulties in the application of GP to 

yield-related traits, which can be strongly influenced by these effects (Kang, 2001). Several 

methods have been proposed to consider environmental effects, including the modeling of 

covariance between genotype and environment (Burgueño et al., 2012; Jarquín et al., 2014), 

consideration of marker-by-environment interactions (Schulz‐Streeck et al., 2013), and inclusion 

of environmental covariates (Pierre et al., 2016). Moreover, a GP model that can take 

environmental effects into account will benefit the application of GS in plant breeding because it 

will lead to more accurate predictions of genetic values for yield-related traits under a target 

environment and thus to a higher genetic gain per cycle (Heffner et al., 2009). 

Crop growth models (CGMs) are expected to be an important tool for plant breeding because 

they incorporate environmental effects into the GP framework (Ramirez-Villegas et al., 2015). 

For example, a CGM was used to select the environmental covariates which were included in a 

GP model (Heslot et al., 2014). Also, a method for integrating a CGM and a GP model with 

approximate Bayesian computation was proposed (Technow et al., 2015), and it was applied the 

method to maize data (Cooper et al., 2016). However, the models in these studies attained only a 

small improvement in accuracy when applied to real data. One of the reasons for the small 

improvement may be the difficulty in parameter estimation of CGMs. The accurate estimation of 

CGM parameters is difficult when it is only based on observations of a target trait. In other words, 

the accuracy can be improved when observation of traits related to the target traits is included in 

the parameter estimation of CGM. 
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The growth-related traits may be good candidate traits to improve the prediction accuracy of 

target traits. Several studies have used growth-related traits with multivariate GP models to 

improve the prediction accuracy of target traits (Rutkoski et al., 2016; Sun et al., 2017), suggesting 

that the growth-related traits convey precise growth details and provide useful information for 

target trait prediction. To date, there has been no research that used growth-related traits for CGM 

and GP integration. In this study, a method to use the phenotypic data of growth-related traits in 

the integrated models of GP and CGM was proposed. This method has two steps. First, the 

growth-related traits are treated as “intermediate traits” and are predicted by GP. Second, the target 

traits are predicted from the predicted values of the “intermediate traits” and environmental data 

using a CGM. By dividing the model into two steps that correspond to GP and CGM, the 

“intermediate traits” can be naturally included into the model without complex statistical 

modeling of the relation between GP and CGM. 

To validate this integrated model, rice [Oryza sativa (L.)] is a suitable research species 

because there have been previous studies of the application of GP (Xu et al., 2014; Grenier et al., 

2015; Onogi et al., 2015; Spindel et al., 2015; Spindel et al., 2016; Wang et al., 2016) and CGMs 

(Pinnschmidt et al., 1995; Timsina & Humphreys, 2006; Iizumi et al., 2009), such as SIMRIW 

(Horie, 1987) and CERES-rice (Ritchie et al., 1987). However, attempts to integrate these 

methods to predict phenotypic variations in rice have been lacking, with some exceptions (Onogi, 

Watanabe, et al., 2016). Biomass is also a suitable trait for validation. Biomass is a direct target 

of breeding for biofuel rice (Oraby et al., 2007; Jahn et al., 2010) and is an important component 

of grain yield (Zhang et al., 2004; Khush, 2013). 

In this study, models were developed to predict the biomass of rice, in which the observed 

phenotypic data of growth-related traits, whole-genome marker genotype, and environmental data 

were used. The model comprised two steps wherein the intermediate traits were predicted with 

GP in the first step and biomass was predicted from the predicted values of the intermediate traits 

in the second step. In the intermediate traits, the heading date is exceptionally predicted using a 

development rate (DVR) model based on the data obtained from multi-environmental trials 

(METs) and the genotypes of heading-date-related markers. Additionally, in the second step, the 

potential of a “black box”-type machine-learning model was evaluated, in which a detailed model 

structure was not defined as a priority for substituting the CGM. 

These models were validated with a recombinant inbred line (RIL) population of japonica rice 

for biomass prediction. Phenotype data of 2-year field experiments of the population was provided 

for the analysis. The experiments were conducted with different timings of sowing (and planting) 

between both years to evaluate the potential of the models under different environments. The 

difference in sowing (and planting) dates was about one month, and this caused different 

phenological developments of the plants between those two years. Finally, the models were 

evaluated for their accuracy of biomass prediction within the experiments (using the same-year 

experiment for training and validation) and between the experiments (using one year’s experiment 

for training and the other year’s experiment for validation). 
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3.2 Materials and methods 

3.2.1 Phenotype data 

The analyses were conducted using phenotype data of 123 RILs derived from a cross between 

two japonica cultivars—Koshihikari and Kinmaze—and both parental lines. The construction of 

RIL was in the F8 generation in 2014 and in the F9 generation in 2015. Because Kinmaze and 

Koshihikari have different growth patterns and plant structure, these RILs were expected to be 

suitable for analyzing genetic variations observed in growth differences. In 2014 and 2015, 

experiments were conducted in an experimental paddy field of the National Agriculture and Food 

Research Organization, Tsukuba, Ibaraki, Japan (36 ̊ 01’ N, 140̊ 06’ E, 22m above sea level). 

Sowing and transplanting were performed in different months between years to produce results 

under different conditions of day length and temperature; seeds were sowed on 22 April 2014 and 

19 May 2015 and transplanted seedlings into the field on 20 May 2014 and 18 June 2015. Because 

of different cultivation periods during 2014 and 2015, the 2-year experiments were not simply 

yearly replications but were expected to induce different growth patterns under different 

environmental conditions. Plants were transplanted 15 cm apart in rows 30 cm apart in plots. Two 

seedlings were transplanted per hill. The area for each line per replicate was 60 cm × 105 cm (2 

rows × 7 hills). Inorganic fertilizer (80–100–100 kg of N-P2O5-K2O ha−1) was applied to the field. 

Aboveground plant organs were harvested to determine biomass at physiological maturity, which 

spanned from 29 August to 10 October in 2014 and from 17 September to 5 November in 2015 

depending on variation among lines. Dry matter weight above ground was used as biomass. 

Leaf age and number of tillers were recorded on each of several dates to evaluate variations 

in the growth pattern of the RILs (Table 3-1). The leaf age is calculated using the following 

formula (Zhou et al., 2001): 

Leaf age = Number of developed leaves +
Length of the developing leaf

Final length of the developing leaf
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Year Sowing date Trait Dates 

2014 4/22 
Leaf age 

5/19, 6/2, 6/9, 6/16, 6/23, 

6/30, 7/7, 7/14, 7/22, 7/28, 8/4 

Number of tillers 6/9, 6/16, 6/23 

2015 5/19 
Leaf age 

6/15, 6/25, 7/2, 7/9, 7/16, 7/23, 

7/30, 8/5, 8/10, 8/17, 8/24, 8/31 

Number of tillers 6/25, 7/2, 7/9, 7/16, 7/23 

Table 3-1. Dates of observation of leaf age and number of tillers. 

 

Leaf age was used instead of leaf number to treat the development of leaves as continuous 

values. The maximum tiller number was determined on the basis of measurements of the tiller 

number observed at three and five different time points in 2014 and 2015, respectively. The 

measurements were continued until the leaf number on the main culm reached to 11 or more. This 

was because the preliminary experiments with nine diverse cultivars suggested that the tiller 

number reached its maximum before 11 leaves were observed. 

Length of the fully expanded leaf blades was measured for the 5th leaf, 11th leaf, flag leaf 

and 2 leaves below the flag leaf. According to the preliminary study, the final length of the leaf 

blade on the main culm increased almost linearly with the leaf age from 5 to 11. The increment 

in the final length per leaf age (ΔLL) was derived from the 5th and 11th leaves. Leaf age, number 

of tillers and leaf blade length on the main culm were recorded for two plants per entry for each 

replicate. Heading date and biomass were recorded on 6 plants per entry. 

The marker genotype data of RILs were also provided. A method similar to (Okada et al., 

2017) for the genotyping of RILs was used by extracting DNA from bulked seedlings of each F7 

line (corresponding to the F6 generation). Single-nucleotide polymorphism (SNP) markers were 

used for the linkage map construction, and a total of 703 SNPs were selected from genome-wide 

SNP data (Nagasaki et al., 2010; Yamamoto et al., 2010). Using R software (R core team, 2017) 

and the R/qtl package (Broman et al., 2003), SNPs with identical genotypes were deleted. Finally, 

a total of 315 SNPs were used for the genotyping of RILs (Fig. 3-1). 
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Figure 3-1. Genetic map of SNP markers of RILs. 
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Air temperature and solar radiation were recorded on-site (available at 

http://www.naro.affrc.go.jp/org/niaes/aws/). Photosynthetically active radiation (PAR) was 

estimated from the solar radiation assuming that proportion of PAR to the global solar radiation 

is 0.5 (Soltani & Sinclair, 2012). Daily means of temperatures are shown in Fig. 3-2. 

 

 

 

 

Figure 3-2. Environmental data during growing season. Daily mean temperature, theoretical day 

length and photosynthetically active radiation (PAR) of Tsukuba under field trial of RILs are 

shown. Data in both 2014 and 2015 are expressed as solid and dotted lines, respectively. 
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Because the RIL population was cultivated in only one field, it was difficult to estimate model 

parameters for heading date in CGM. To obtain the model parameters, heading dates recorded in 

METs were used that tested 112 cultivars, including Kinmaze and Koshihikari, most of which 

were developed in Japan. METs were conducted in six locations in several years (33 trials, Table 

3-2). 

 

 

Location 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Daisen, Akita         1 1 1 

Tsukuba, Ibaraki     1 1 2 3 3 1 1 

Tsukubamirai, 

Ibaraki 

2 2          

Kasai, Hyogo   1 1 1 1 1 1 1 1 1 

Fukuyama, 

Hiroshima 

  1 1 1 1 2 2 2 2 2 

Fukuoka, Fukuoka         1 1 1 

Table 3-2. Location, year, and number of replications of field experiments to record heading date. 
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3.2.2 Genetic analysis of observed traits 

All statistical analyses were conducted in R software (R core team, 2017). The arithmetic 

means of observed values were used as phenotypic values for each RIL in the following analysis. 

The number of replications for each trait was described in the previous section. Analysis of 

variance (ANOVA) was conducted to evaluate the significance of genotype and environmental 

effects and their interaction. 

The accuracy of GP of all traits was evaluated with 10-fold cross-validation. For building the 

GP models, four methods were employed. Two of them were regularized regression: ridge 

regression (RR) and LASSO, and the other two were Gaussian process regression (Xavier et al., 

2016): one based on an additive relationship matrix (GBLUP) and the other on a Gaussian kernel 

matrix (RKHS) as a representative of covariance matrix. The “glmnet” package (Friedman et al., 

2010) was used for RR and LASSO, and the “rrBLUP” package (Endelman, 2011) was used for 

GBLUP and RKHS. The narrow-sense heritability of each trait was estimated using a mixed 

model based on an additive relationship matrix in GBLUP. 

3.2.3 Growth process analysis 

The change in leaf age and the number of tillers during growth was analyzed as a simple 

function of heat units (accumulated daily mean temperature). The leaf age and the number of 

tillers on the ith day from sowing (Leafi, Tilli, dimensionless) were represented as: 

Leaf𝑖 = min(ΔLeaf × HU𝑖, LeafMAX) (2-1) 

 

Till𝑖 = {
1 (HU𝑖 ≤ 800)

min(ΔTill × HU𝑖, TillMAX) (HU𝑖 > 800)
(2-2) 

where HUi (°C) represents heat unit (daily mean temperature from emergence to the ith date); 

∆Leaf (°C−1) and ∆Till (°C−1) represent the rate of change per HU; and LeafMAX and TillMAX 

represent maximum values. Because the growth of each line was observed, ∆Leaf and ∆Till were 

estimated as slopes of linear regression of phenotypic data during the study period, whereas 

LeafMAX and TillMAX were measured at the end of the growth period. Because leaf age and number 

of tillers are generally not considered linear to HU, it was assumed that its growth was 

approximated by a combination of linear functions. 

Generally, the growth of rice does not proceed when the daily temperature is low. To take this 

assumption into consideration, the growth models of leaf age and number of tillers were 

developed based on the heat unit, in which the base temperature of the growth of rice was 

considered (Σ max(0, daily mean temperature − 8°C)) instead of the simple heat unit. The lower 

bound of temperature was obtained from the previous knowledge (Soltani & Sinclair, 2012). 

However, the result did not largely differ or was even more inaccurate in the prediction accuracy 

than models developed based on the simple heat unit. Thus, only the results based on the simple 

heat unit are presented in this paper. 
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3.2.4 Prediction of heading date by DVR model 

To predict heading date in a target environment, Yin et al.’s model (Yin et al., 1997) modified 

by Nakagawa et al. (Nakagawa et al., 2005) was used, which describes daily developmental rate 

(DVR) as a function of environmental factors (DVR model, hereafter). In the DVR model, daily 

progress of a developmental stage is expressed as a continuous value representing developmental 

stage (DVS), ranging from 0 (emergence) to 1 (heading). The DVS at the nth day after emergence 

is the sum of the daily development rates (DVRi): 

DVS𝑛 = ∑DVR𝑖

𝑛

𝑖=1

(2-3) 

where DVRi is given by daily mean temperature (Ti, °C) and day length (Pi, h): 

DVR𝑖 =

{
 

 
𝑓(𝑇𝑖)

α𝑔(𝑃𝑖)
β

𝐺
(if 0.145 + 0.005𝐺 ≤ DVS ≤ 0.345 + 0.005𝐺)

𝑓(𝑇𝑖)
α

𝐺
(if DVS < 0.145 + 0.005𝐺, 0.345 + 0.005𝐺 < 𝐷𝑉𝑆)

(2-4) 

𝑓(𝑇𝑖) = {
𝑇𝑖 − 𝑇b 

𝑇o − 𝑇b
(
𝑇c − 𝑇𝑖
𝑇c − 𝑇o

)

𝑇𝑐−𝑇𝑜
𝑇𝑜−𝑇𝑏

(𝑖𝑓 𝑇b ≤ 𝑇𝑖 ≤ 𝑇c)

0 (𝑖𝑓 𝑇𝑖 < 𝑇b, 𝑇c < 𝑇𝑖)

(2-5) 

𝑔(𝑃𝑖) = {
𝑃𝑖 − 𝑃b 

𝑃o − 𝑃b
(
𝑃c − 𝑃𝑖
𝑃c − 𝑃o

)

𝑃𝑐−𝑃𝑜
𝑃𝑜−𝑃𝑏

(𝑖𝑓 𝑃𝑖 ≥ 𝑃o)

1 (𝑖𝑓 𝑃𝑖 < 𝑃o)

(2-6) 

Six parameters were fixed (Tb = 8°C, To = 30°C, Tc = 42°C, Pb = 0h, Po = 10h, Pc = 24h) among 

lines as in (Yin et al., 1997). The parameters α, β, G represent sensitivity to temperature, 

sensitivity to day length, and growth period, respectively, and are assumed to have specific values 

for each line. These parameter were estimated from the MET data using particle swarm 

optimization (Eberhart & Kennedy, 1995), which is used to optimize non-linear functions 

(Experiment A in Fig. 3-3). 
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Figure 3-3. Flow chart of model structures. Experiment A: Process for estimating values of three 

parameters (α, β, G) related to heading date. Multi-environment trial data of heading date of 112 

lines were used to model the relationship between parameter values and marker genotypes of 

heading-date-related genes using Extreme Learning Machine (ELM). Experiment B: Structure of 

conventional genomic prediction (GP), integrated CGM (IntCGM), and integrated machine-

learning (IntML) models. 

  

Exp. A – Genomic prediction

GP

DVR
(development rate)

model

temperature

day length

marker
genotype

Intermediate traits

growth speed of 
number of tillers

growth speed of
leaf age

final leaf age

ΔLL

harvest index

heading date

daily leaf age

daily number of 
tillers daily 

leaf area 
index

radiationtemperature

biomass

panicle weight

  

 , 𝛽, 𝐺

ELM (from Exp.B)

marker
genotype

biomass

panicle weight
GP

biomass

panicle weight

GP

DVR
(development rate)

model

temperature

day length

marker
genotype

Intermediate traits

growth speed of 
number of tillers

growth speed of
leaf age

final leaf age

ΔLL

harvest index

heading date

 , 𝛽, 𝐺

ELM (from Exp.B)

Exp. A – IntCGM 

Exp. A – IntML 

machine
learning

Exp. B

environmental 
data

33 env.
temperature

day length

heading date

112 lines
33 env.

genotype

112 lines
Hd1 Hd3a Hd6

Hd16 Hd17 Ghd7

parameters

112 lines
 , 𝛽, 𝐺 

Parameter 
estimation 
with PSO

function
heading date
= 𝑓( , 𝛽, 𝐺, env. data)

Construction of 
prediction model

with ELM

function
 
𝛽
𝐺

= 𝑓(genot pe)



21 

 

To calculate the values of α, β, G of the target RILs, models were constructed to predict them 

from marker genotypes (Experiment A in Fig. 3-3) of six heading-date–related genes (Hd1, Hd3a, 

Hd6, Hd16, Hd17, and Ghd7) (Yano et al., 2000; Takahashi et al., 2001; Kojima et al., 2002; Xue 

et al., 2008; Matsubara et al., 2012; Hori et al., 2013) of 112 lines. Extreme Learning Machine 

(ELM) (Huang et al., 2006), which is a machine learning method based on a neural network with 

advantages in generalization performance and learning speed, was used to model the relationships 

between the parameter values and the marker genotypes. After modeling these relationships, the 

values of α, β, G of the RILs were estimated by using the ELM prediction model (Experiment B 

in Fig. 3-3). The marker genotypes of the heading-date-related genes of the RILs were assumed 

to be the same as those of the SNP nearest to the genes, and were used as inputs of the ELM 

model. 

3.2.5 Integrated GP–CGM model 

Environmental effects were included in the model of yield-related traits by integrating the GP 

models and a CGM proposed by (Soltani & Sinclair, 2012), with modifications, to create an 

integrated CGM (IntCGM). 

IntCGM has two steps (Experiment A in Fig. 3-3). First, the GP and DVR models predict 

“intermediate traits” related to biomass. LASSO was selected as a representative GP model 

because it showed the highest accuracy among all the GP models in 10 of 14 traits (i.e., six 

intermediate traits and biomass in two years). Second, the CGM simulates the daily change in 

biomass from the “intermediate traits”. 

Total biomass (BM, g m-2) was estimated as the product of the total biomass at the day of 

termination of seed growth (BMTSG, g m-2) and a technical coefficient τ (dimensionless): 

BM =   BMTSG (2-7) 

where τ represents the influence of factors that are not included in the model (e.g., 

precipitation, nutrient condition, disease) (Iizumi et al., 2009). The parameter τ was estimated as 

an average of the ratio of BMTSG and observed BM when the prediction was conducted. The day 

of termination of seed growth was presumed to be the day when the accumulation of daily mean 

temperature after heading date reached 630 °C (Soltani & Sinclair, 2012). BMTSG was calculated 

as the sum of daily increases of biomass: 

BMTSG = ∑RUE𝑖 × FINT𝑖 × PAR𝑖

TSG

𝑖=1

 (2-8) 

where TSG is the day of termination of seed growth, FINTi is fraction of PAR intercepted by 

canopy of ith day (dimensionless), RUEi is radiation use efficiency (g MJ−1), PARi is 

photosynthetically active radiation (MJ m−2). RUEi is the product of the maximum RUE (IRUE = 

2.2 g MJ−1) and the ratio of actual daily RUE to IRUE (TRFRUEi, dimensionless): 

RUE𝑖 = IRUE × TRFRUE𝑖 (2-9) 
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where TRFRUEi is a function of daily mean temperature (Ti) (Soltani and Sinclair, 2012): 

TRFRUE𝑖 =

{
 
 

 
 
𝑇𝑖 − 10

15
(10 < 𝑇𝑖 ≤ 25)

1 (25 < 𝑇𝑖 ≤ 32)
𝑇𝑖 − 42

10
(32 < 𝑇𝑖 ≤ 42)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

(2-10) 

FINTi is estimated from the leaf area index, LAIi (dimensionless), and the extinction 

coefficient (k = 0.6): 

FINT𝑖 = exp(1 − 𝑘LAI𝑖) . (2-11) 

Although IRUE and k are known to have variation among lines and environments (Soltani & 

Sinclair, 2012), they are assumed to be constant in this study because of the difficulty in the 

estimation of IRUE and k for each line and environment. LAIi is expressed as: 

LAI𝑖 =
𝛽 Till𝑖

𝑆
∑ (𝑙 × ΔLL)2

Leaf𝑖

𝑙=1

(2-12) 

where ΔLL (m) is the increase of leaf length per unit increase of leaf age, β = 0.003 is a 

technical coefficient explaining shape of leaves and S = 225cm2 is the ground area of one plant. 

Thus, l × ΔLL represents the length of a leaf in one node, which came out in lth order, and 

∑ (𝑙 × ΔLL)2
Leaf𝑖
𝑙=1  is expected to be proportional to leaf area of one tiller. 

3.2.6 GP model integrated with machine learning 

A model replacing the CGM with a machine learning method was also constructed. This 

integrated machine-learning model (IntML) has the same two-step structure as IntCGM, but the 

second step uses machine learning methods. In the second step, machine learning models that use 

intermediate traits as explanatory variables to predict biomass was built. A multiple regression 

model was chosen as a linear machine-learning method (IntML1) and the Random forest 

(Breiman, 2001) model was chosen as a non-linear method (IntML2). The R package 

“randomForest” (Liaw & Wiener, 2002) was used to build the Random forest prediction models. 

When building the model, the parameter “mtry” was set as 2 and the other parameters were set as 

default. 

3.2.7 Model validation 

The ability of the models to predict biomass was evaluated with 10-fold cross-validation 

among genotypes. The prediction of tested (i.e., training) and untested (i.e., validation) 

environments was also attempted. In the prediction of the tested environment, the data from the 

same year were used as both training and validation data; that is, biomass of a fold in one year 

was predicted from the data of the remaining folds and environmental data in the same year. This 
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assumption corresponds to the situation in which we want to predict the biomass of untested lines 

in tested environments. In the prediction of the untested environment, data from different years 

were chosen as training and validation data; that is, biomass of a fold in one year was predicted 

from the data of the remaining folds and environmental data in the other year. This assumption 

corresponds to the situation in which we want to predict the biomass of untested lines in untested 

environments. 

Three statistics were calculated to measure prediction accuracy. The correlation coefficient of 

observed versus predicted values (r) is a measure of strength of relative relation between both 

values. The root mean squared error (RMSE) expresses the discrepancy between predicted and 

observed values. The regression coefficient of observed versus predicted values (slope) is a 

measure of shrinkage in the predicted values over the observed values. Observed and predicted 

values were used as dependent and independent variables, respectively. When predicted values 

approach observed values, r and slope approach 1 and RMSE decreases. The cross validation was 

repeated of 100 replicates of each combination of models and prediction schemes to estimate the 

standard deviation of indices (r and slope) of prediction accuracy. The Steel–Dwass test, a 

nonparametric multiple comparison test, was performed to examine significant differences in 

prediction accuracy. 

3.3 Results 

3.3.1 Growth patterns and correlations among traits 

Growth curves and fitted models of leaf age and number of tillers are shown in Fig. 3-4. The 

results indicated that the models could express the growth of each trait despite their simplicity. 

The comparison of phenotypic values between the two years of experiment is shown in Fig. 

3-5. Among estimated parameters of the growth models, strong correlations between the years 

were observed in LeafMAX and heading date whereas weak correlations were observed in TillMAX 

(Fig. 3-5). However, the distributions of ∆Leaf and ∆Till differed between the years. The ranges 

of phenotypic values of the heading date (e.g., minimum values were ca. 90 and 80 days in 2014 

and 2015, respectively) and biomass also differed between the years, despite their high 

correlations. The G×E effect was found to be significant (p < 0.01) for all traits using ANOVA. 

The correlation coefficients between growth-related traits and biomass were higher in 2015 than 

in 2014.  
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Figure 3-4. Growth curves and growth models of leaf age and number of tillers. The line means 

of both traits in 2014 and 2015 are plotted in four figures in the upper side. The parents, 

Koshihikari and Kinmaze, and RILs are expressed as blue, red and gray lines, respectively. The 

growth models of those traits are shown in two figures in the bottom side. The growth model and 

the observed values of parents in 2015 are shown. Heat unit is used as horizontal axes. 
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Figure 3-5. Comparison of observed traits between 2014 and 2015. Estimates of correlation 

coefficients between phenotypes of two years are shown in the top-left of each box. 

Abbreviations: ∆Leaf, growth rate of leaf age; LeafMAX, final leaf age; ∆Till, growth rate of 

number of tillers; TillMAX, maximum number of tillers; ∆LL, growth rate of leaf length per leaf 

age; HD, heading date; HI, harvest index; BM, biomass. 
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3.3.2 Genomic prediction of growth-related traits 

The prediction accuracy of the GP models (Fig. 3-6) in growth-related traits were assessed, 

which corresponded to the first step of integrated models (IntCGM and IntML, Experiment B in 

Fig. 3-3). Accuracy was higher in 2015 than in 2014. Traits that showed higher correlation 

between years in Fig. 3-5 tended to have higher values both in heritability and prediction accuracy. 

In ΔTill and Tillmax, the accuracy was lower than in biomass. In the following analyses, LASSO 

was chosen as a representative GP model because it showed the highest accuracy among the 

models in 10 of 14 traits (six intermediate traits and biomass for two years). Five models were 

compared for heading date: the DVR model which used weather data and genome-wide marker 

data as explanatory variables and 4 GP models used only genome-wide marker data. The 

prediction accuracy was slightly lower in the DVR model than that in GP. 
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Figure 3-6. Comparison of prediction accuracy of GP and heritability in growth-related traits. 

Estimated correlation coefficients of observed values and values predicted using the five models 

for seven growth-related traits are shown as bars. The five models included four methods of 

whole-genome prediction (for all traits) and a DVR model with marker genotypes of the heading-

date–related genes (for heading dates). The square roots of heritability of the seven traits are 

shown as crosses. Error bars represent ± 1 s.d. 
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3.3.3 Prediction of biomass 

In the tested environment, IntCGM, IntML, or both were more accurate at biomass prediction 

than GP with LASSO by all three statistics (Fig. 3-7-A), especially when the 2014 dataset was 

used as validation data: that is, IntCGM and IntML gave higher r values and regression slopes 

closer to one than GP, and IntML gave lower RMSE than GP. This tendency was supported by the 

fact that differences between r and slope of the proposed models and those of GP were all 

statistically significant (p < 0.01).  

IntCGM, IntML, or both performed better than or the same as GP in the untested environment 

(Fig. 3-7-B); both models gave significantly higher r and slope than GP except when IntML2 was 

tested with 2014 dataset as validation. IntCGM had a lower RMSE than that of GP using the 2015 

dataset for validation but had a higher RMSE than that of GP using the 2014 dataset for validation. 

The prediction of the panicle weight was also attempted with IntCGM, wherein the panicle 

weight was expressed as the multiplication of biomass and harvest index and the harvest index 

was predicted using GP. However, the prediction accuracy of IntCGM was worse than GP because 

the harvest index itself was largely affected by the environment (Fig. 3-8). 
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Figure 3-7. Comparison of prediction accuracy of biomass. Result of prediction of tested 

environment (A) and untested environment (B) are shown. LASSO was chosen as a representative 

GP model. Three indices are used: Correlation coefficient (r), RMSE (root mean squared error), 

and slope of the regression line for predicted and observed values. Error bars represent ± 1 s.d. 

Letters above the bars indicate a significant difference as determined by the Steel-Dwass test (p 

< 0.01).  
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Figure 3-8. Comparison of prediction accuracy of panicle weight. The result of prediction of 

tested (A) and untested (B) environments are shown. LASSO was chosen as a representative GP 

model. Three indices are used: Correlation coefficient (r), RMSE (root mean squared error), and 

slope of the regression line for predicted and observed values. Error bars represent ± 1 s.d. Letters 

above the bars indicate a significant differences determined by the Steel-Dwass test (p < 0.01). 
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3.4 Discussion 

3.4.1 Accuracy of prediction of biomass 

The r in the new models was the same as, or higher than, that of the conventional GP in the 

prediction of biomass (Fig. 3-7). There was a substantial difference in the r of GP between 2014 

and 2015 in the prediction of the tested environment, indicating that there was a difficulty in 

explaining the variation of biomass in 2014 through the direct linear regression of the genotypic 

markers. In contrast, the integrated models showed the significant increase in r compared with 

that of GP in the 2014 prediction. These results indicate that the use of the intermediate traits was 

beneficial for improving accuracy of biomass prediction. Heading date prediction, which showed 

high heritability in both years, mostly contributed to the improved prediction accuracy. 

Focusing on the GP trained with biomass of 2014, the accuracy was higher in biomass 

prediction of 2015 than in that of 2014. This intuitively unexpected result might be owing to two 

reasons. One is the low heritability of biomass in 2014, which led to lower prediction accuracy in 

the models (Daetwyler et al., 2008; T. H. E. Meuwissen, 2009). To reduce the influence of the 

heritability level on the index of the prediction accuracy (i.e., a correlation coefficient between 

observed and predicted phenotypes), the value of r was adjusted by dividing it by the square root 

of genomic heritability. The adjusted values of r became 0.652 and 0.746 for the biomass in 2014 

and 2015, respectively, and had smaller differences than the previous r. Another reason for the 

higher biomass prediction accuracy in 2015 is the GS model built with LASSO. In Fig. 3-6, the 

biomass prediction accuracy was lower in LASSO than in other models in 2014, whereas the 

result was the opposite in 2015. Polygenic marker effects seemed more dominant in biomass in 

2014 than in 2015 because LASSO is not good at capturing the small effects of a large number of 

variables. In contrast, the estimation of genomic heritability effectively reflects polygene effects. 

The differences in the characteristics of each estimation method subsequently caused the 

difference in the adjusted values of r for the biomass in 2014 and 2015. 

Although heading date was predicted by ELM and DVR models in the prediction models, the 

prediction accuracy was worse than that by GP. One possible reason is that the heading date of 

RILs could not be completely explained by heading-date-related genes, (i.e., Hd1, Hd3a, Hd6, 

Hd16, Hd17, and Ghd7) considered in ELM and DVR models. However, the DVR model was 

employed in the prediction models because it can be used to predict the heading date in a new 

environment. 

3.4.2 Comparison with models in other studies 

An advantage of the new approach over conventional researches of integrated models of GP 

and CGM is the inclusion of observed growth data in the model as “intermediate traits”. This 

enables us to treat parameters in the model as representations of actual crop conditions. Two 

studies designed to integrate a genomic prediction model with a crop model (Technow et al., 2015; 

Onogi, Watanabe, et al., 2016) tried to estimate growth parameters by using only phenotypic 

values of target traits. Technow et al. integrated GP and CGM to predict the yield of maize using 
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parameter estimation with the approximate Bayesian computation (Technow et al., 2015). Onogi 

et al. also constructed an integrated model to predict the heading date of rice (Onogi, Watanabe, 

et al., 2016). However, this approach is difficult to apply to a complex trait, such as yield, and did 

not improve the prediction accuracy when it was applied to real-yield data (Cooper et al., 2016). 

It is also difficult to validate the accuracy of the estimated growth parameters. The use of the 

intermediate traits was beneficial for improving prediction accuracy and for further understanding 

how the parameters influence the target traits. 

A multivariate GP is another approach to predict target traits with intermediate traits (or 

secondary traits). In this model, the covariance structure among target and intermediate traits is 

considered to improve prediction accuracy (Calus & Veerkamp, 2011; Jia & Jannink, 2012). For 

example, there are studies in which longitudinal traits measured by remote sensing were used as 

intermediate (or secondary) traits and modeled with a multivariate GP model to predict wheat 

grain yield (Jessica Rutkoski et al., 2016; Sun et al., 2017). Grain yield was predicted for untested 

environment in which phenotypic data of a target population was not available. The prediction 

accuracy, however, was not improved with a multivariate GP model (Sun et al., 2017). Compared 

with multivariate GP model approach, the proposed two-step approach has a good flexibility to 

model nonlinear relationship among target and intermediate traits through applying a nonlinear 

model at the second step (e.g. CGM as in IntCGM or Random forest as in IntML2). 

Another benefit of IntCGM was that the range of predicted among-lines variation [i.e., the 

regression coefficient (slope) of observed versus predicted values of IntCGM] was closer to 1 

compared with that of GP (Fig. 3-7). This would be important in breeding programs (Moser et al., 

2009; Onogi, Watanabe, et al., 2016), although it has not been evaluated in recent studies of the 

prediction of G×E by GP (Burgueño et al., 2012; Heslot et al., 2014; Jarquín et al., 2014; Cooper 

et al., 2016). In those studies, the accuracy of prediction models was assessed mainly by 

correlation between predicted and observed (or estimated) values. Although correlation is a good 

measure of the ordinal accuracy of the prediction (i.e., the accuracy of predicting the order of 

genotypic values), it does not necessarily reflect the range of genetic variations (González-Recio 

et al., 2014). In some cases, the accurate prediction of phenotypic values is important for breeding; 

for example, we may need to maintain the flowering date within a certain range for ease of field 

management or limit plant height to prevent lodging. When aiming at the application of GP to 

actual breeding the accurate prediction of the size of genetic variation in a population is as 

important as the ordinal relationship among genotypes in the population. 

3.4.3 Further improvement of the prediction model 

The prediction accuracy of the models was validated using 2-year experiments, which had a 

1-month difference in the timing of sowing and planting; one year was used for training, whereas 

the other year was used as testing the prediction accuracy as previous researches did (Technow et 

al., 2015; Cooper et al., 2016). Although experiments in 2014 and 2015 were performed in one 

location, the 2-year experiments were conducted under different environmental conditions (e.g., 

temperature, day length, and radiation) by employing different cropping seasons. However, other 

environmental factors, such as soil condition, were fixed in these experiments. To apply the 
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proposed models to a dataset with multiple locations and years, we should take into account other 

environmental factors, such as soil condition, water supply, and cultivation management, in the 

models. 

In this study the biomass was selected as the target trait for prediction, but the prediction of 

yield was more challenging. A possible method of implementing accurate prediction of yield is 

the use of sophisticated CGMs. The potential of several CGMs, such as APSIM (Holzworth et al., 

2014), has been already demonstrated in practical applications. However, certain complexities 

may create problems. One of the problems is the accumulation of errors: the errors of parameter 

estimation would be large if the model includes several parameters. Therefore, models must be 

simplified in ways such as the use of machine learning (IntML) or variable selection. A sensitivity 

analysis will be effective to select modules of the models in which variables with little influence 

on target traits will be distinguished. 

Another problem is the increased effort required for measuring plant growth if a model 

requires a large number of growth parameters. Parameter estimation is one effective solution 

(Iizumi et al., 2009; Technow et al., 2015; Onogi, Watanabe, et al., 2016). Through these methods, 

the measurement of some growth-related traits can be omitted by estimating them as parameters 

in a CGM while measuring the remaining traits in the field. The use of high-throughput 

phenotyping is another way to enable plant growth to be measured in detail. For example, LAI 

(Córcoles et al., 2013; Duan et al., 2014) and biomass (Montes et al., 2011; Watanabe et al., 2017) 

can be measured in a non-destructive way by remote sensing with unmanned aerial vehicles. Such 

techniques would enable us to measure various kinds of growth-related traits continuously during 

growth. GP and high-throughput phenotyping technologies could revolutionize breeding 

(Cabrera‐Bosquet et al., 2012). 

Moreover, the use of a deterministic model in IntCGM may reduce phenotyping costs for the 

target traits. In IntCGM, the phenotypic values of biomass in the training data were used only for 

scaling the model’s prediction values onto the phenotypic values with τ as the scaling parameter. 

Using τ, the RMSE of biomass in known environments decreased by 45% and 68% in 2014 and 

2015, respectively. However, the scaling procedure (i.e., the training of model with the phenotypic 

values of biomass) was not necessary with the use of the prediction values for selecting superior 

genotypes because the correlation between the predicted and genotypic values of biomass did not 

change with scaling. This is because the CGM used in this study was deterministic and did not 

include any parameters to be estimated other than τ. This is another great advantage of IntCGM 

because the model does not require the phenotypic data of biomass, which in turn requires the 

laborious destructive measurements of plants. 

3.4.4 Toward application for breeding 

In this study, the proposed method was validated with the dataset of the 2-year experiments, 

which had a 1-month difference in their timings of sowing and planting to simulate different 

environmental conditions. Although the validation is insufficient to evaluate the potential of the 

method, the proposed models may be applicable to multi-location-multi-year dataset because 
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CGM is expected to describe G×E when it has an appropriate model structure and the necessary 

environmental factors. Thus, IntCGM may enable accurate prediction of phenotypes in each target 

environment and accelerate the development of varieties having excellent viability in the target 

environments. 

The proposed models may also help to explain the mechanisms causing G×E effects on yield-

related traits because they can predict the effects physiologically through CGMs. The predicted 

values of growth-related “intermediate traits,” as well as of yield-related traits, allow us to 

understand how environmental factors affect growth and have a large impact on yield. This 

understanding will be of benefit to the mechanical evaluation of environmental characteristics of 

locations and the appropriate choice of locations used in METs. 
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4 Genomic prediction modeling using longitudinal 

model parameters and its application to soybean 

biomass and UAV-based remotely sensed data 

4.1 Introduction 

The phenotype of a plant at harvest is a result of its genotype and growth process. From a 

plant physiology or crop growth modeling viewpoint, plant phenotype at harvest can be expressed 

as a result of the translocations and accumulation of carbon production throughout their growth 

(Soltani & Sinclair, 2012). Therefore, it is expected that the estimation or prediction of plant traits 

at harvest will improve in accuracy if the growth processes are appropriately accounted for in the 

models. This hypothesis can also be applied to genomic prediction (GP) models, which predict 

genotypic values (breeding values) from genome-wide marker data using statistical methods (T. 

H. Meuwissen et al., 2001). Recently, some extensions of GP models were proposed that 

incorporated plant growth processes (Technow et al., 2015). These reports suggested that the 

inclusion of growth processes into the GP models may improve the prediction accuracy and 

further the applications of GP in plant breeding (Technow et al., 2015). 

To model growth processes in GP appropriately, sufficient data about the growth patterns of 

the target plant population are essential. However, there is a high labor cost to measure plants 

during growth in a breeding program, if relying on hand measurements and visual judgments. 

Recent technological developments have yielded an alternative phenotyping procedure, i.e., 

remote sensing (RS). For plant breeding, RS with tractors (White et al., 2012) or aerial devices 

such as unmanned aerial vehicles (UAVs) (Yang et al., 2017) were used to evaluate genetic 

variation in plant growth. It has already been shown that RS could capture the variation in a 

breeding population (Watanabe et al., 2017). Also, GP models that use a time-series of RS data 

could improve the prediction accuracies of wheat yields (Rutkoski et al., 2016). Therefore, the 

accuracy of GP is expected to improve by including longitudinal growth processes of plants as 

measured by RS. 

Several approaches can be applied to include RS data into GP models. A multivariate GP 

(MGP) model (Calus & Veerkamp, 2011; Jia & Jannink, 2012) has been recently used to 

incorporate several traits into the GP model (Rutkoski et al., 2016; Crain et al., 2018). By 

leveraging correlation among traits, an MGP model could improve the prediction accuracies of 

those traits with low heritability (Jia & Jannink, 2012). However, the accurate estimation of a 

covariance matrix may be difficult if the number of traits being measured becomes too large. This 

leads to a dilemma, in which frequent RS will provide detailed data of growth processes of plants 

to the improvement of GP accuracy, but incorporation of this data enlarges the dimension of the 

covariance matrix of the MGP model and hence decreases the accuracy due to the estimates of 

the covariance matrix. In such cases, an appropriate dimension-reduction method, which can be 
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applied to longitudinal RS data, may improve the accuracy of a MGP model with a low 

dimensional covariance matrix. 

There are several statistical methods of dimension reduction, including a principal component 

analysis. However, there is no guarantee that the selected direction of data compression reflects 

the genetic divergence of growth curves. On the other hand, usually some empirical prior 

knowledge about the patterns of the growth curves can be obtained. The modeling of the variations 

in the patterns of growth curves based on prior knowledge may enable the effective extraction of 

growth characteristics as model parameters. Here fitted simple growth models were fitted to RS 

data and used model parameters as a representation of each growth curve. Several reports have 

shown that the use of growth models improved the results of QTL analyses (Ma et al., 2002; Wu 

et al., 2002). The use of growth parameters in the MGP model is also expected to lead to an 

improvement in prediction accuracies. 

Another possibility to improve the prediction accuracy of target traits is the use of a two-step 

GP (TGP) model. In the TGP model, secondary traits were first predicted using GP, and target 

traits were identified using predicted values of secondary traits (Chapter 3). Because this method 

estimates the direct linear relationship between secondary and target traits, instead of the 

covariance matrix between all traits, the TGP model may be effective even when high-

dimensional RS data is included. 

Prediction accuracies of several models were compared in this study, in which soybean 

[Glycine max (L.) Merr.] biomass was chosen as the target trait. Canopy height and area were 

estimated with UAV images, and simple growth models were fitted to growth curves of the canopy 

height and area to extract growth characteristics. The prediction accuracies of the biomass using 

GP, MGP, and TGP models were compared, using the observed values or growth parameters of 

canopy height and area as secondary traits. 

4.2 Materials and Methods 

4.2.1 Field trial 

198 accessions of soybean registered in the National Agriculture and Food Research 

Organization Genebank (https://www.gene.affrc.go.jp/index_en.php) were employed in this study. 

In 2016, a field trial of the 198 accessions was conducted in an experimental field with sandy soil 

at the Arid Land Research Center, Tottori University (35°32’ N lat, 134°12’ E long, 14 m above 

sea level). Distances between each row, plot, and individual were 100 cm, 80 cm, and 20 cm, 

respectively (Fig. 4-1a). Each plot consisted of five plants. Sowing was performed on 4 July, 2016. 

Basal fertilizer (7.8, 9.6, 9.6, 11.2, and 40 g/m2 of N, P, K, Mg, and Ca, respectively) was applied 

to the field before sowing, and 25% more was applied as additional fertilizer on 30 Aug, 2016. 

Plants were watered with sprinklers three times per day for 15 minutes each until 9 Aug, 2016. 

To evaluate the phenotypic variation between different environmental conditions, plants were 



37 

 

divided into two treatments, i.e., well-watered (WW) and less-watered (LW). Since 10 Aug., 2016, 

plants in the WW treatment group were watered with sprinklers almost once every two days, 

whereas plants in the LW treatment were watered almost once every four days. Two replications 

with randomized plots were taken for each treatment, but the places of cultivars were the same 

between the corresponding replications of treatments (WW1/LW1, WW2/LW2) (Fig. 4-1b and 4-

1c). 
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Figure 4-1. The layout of the plots of well-watered (WW) and less-watered (LW) plants and the 

result of remote sensing. (a) The layout of plots. (b) An ortho-mosaic image (OMI) of the field, 

obtained on 24 Aug, 2016. The near-infrared (NIR) information was used instead of blue color. 

(c) Digital surface model (DSM) of the field obtained on 24 Aug, 2016. 
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4.2.2 Remote sensing and destructive measurements 

UAV-RS began two weeks after sowing, and was performed about once every ten days. A 

Red-Green-NIR (near-infrared) camera (DJI Zenmuse X3 Camera Green-Red-NIR 800–900nm, 

LDP LLC, USA) mounted on a consumer drone (DJI Inspire 1, Shenzhen, China) was used for 

the image collection. The UAV flew 12 m above the ground and took images at two second-

intervals using an autofocus function. A single UAV flight took about 10 minutes, and collected 

500 to 600 images from each treatment region. The height of plants cultivated in the WW1 block 

was measured manually with rulers on the same day of RS as the ground-truth of the canopy 

height. 

Destructive sampling was conducted from 13 to 15 Sept., 2016, to measure the biomass of the 

plants (fresh weight of the above-ground part of a plant) to use as a target trait for prediction. Also, 

images of leaves separated from tillers were taken with a camera (7R, SONY, Japan) with a 35 

mm lens (SEL35F28Z, SONY, Japan) to estimate the total leaf area of a plant, and to compare 

with canopy area measured by UAV-RS. The camera had been remodeled to take a Red, Green, 

NIR (RGN) image. Images of leaves were taken only for plants cultivated in the WW1 block. The 

estimated leaf area was compared with the values of the canopy area obtained by RS. 

4.2.3 Estimation of traits using RS data 

Digital surface models (DSM) and ortho-mosaic images (OMI) of the field on each 

observation date were constructed (Fig. 4-1b and 4-1c) using the images collected by UAV-RS 

and Pix4Dmapper software (Pix4D, Switzerland). Constructions of 3D data failed on some dates 

due to the difficulty in finding matching points of reference between several images. Individual 

plots were segmented out from the DSM and OMI using geolocation information. Then, regions 

of the canopies and the ground were segmented out from the OMI of an individual plot via the 

thresholding of the OMI based on NDVI. Finally, the canopy height and canopy area of each plot 

were estimated based on the DSM and OMI, respectively. The canopy height was estimated as 

the difference in mean values of ground elevation and the top elevation of the canopy in the DSM. 

The canopy area was estimated as the area of the canopy projected in the OMI. Python 2.7 

(https://www.python.org) was used for image analysis, and R 3.5.2 (R Core Team, 2020) was used 

for the other analyses below. 

Since canopy height measured with the image analysis had such a large bias that longitudinal 

growth patterns were hardly observable, it was corrected using the manually-measured plant 

height of a subset of plots. It was assumed that canopy height measured by UAV was modeled as 

CH𝑖𝑗  =  𝑎𝑗PH𝑖𝑗  +  𝑒𝑖𝑗  (4-1), 

where CHij is the canopy height measured by the UAV of the ith plot on the jth observation 

date, PHij is plant height measured manually, eij is the error of estimation of the ith plot on the jth 

observation date, and aj is a bias in the estimation of canopy height due to error inherent in the 

construction of the DSM. The bias aj was estimated based on the regression, and then obtained 
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canopy height calibrated by the bias, i.e., CHij/aj. The accuracy of calibrated canopy height was 

evaluated with root mean squared errors (RMSE) between calibrated canopy height and plant 

height, and RMSE divided by the mean of calibrated canopy height (ratio of RMSE to mean 

values, RRMSE). The calibrated canopy height was used as the phenotypic value in subsequent 

analyses. As plant height was not measured manually around 5 or 6 Sept., 2016, the correction of 

canopy height measured by UAV was not performed for data collected on those dates. Also, 

canopy height observed on 10 Aug., 2016 was removed in the following analysis due to lack of 

reliability (Fig. 4-2). 
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Figure 4-2-1. Comparison of the canopy height, as measured by UAV-RS, and plant height, 

measured manually. Non-calibrated and calibrated canopy heights are plotted in the left and right 

panels, respectively. The plant height of the closest date to the UAV-RS was chosen to be plotted. 

The plant height of the closest day was chosen to plot. The number of data points (n), RMSE (root 

mean square error), and RRMSE (the ratio of RMSE to the mean) are indicated in the figure. 
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Figure 4-2-2. Comparison of the canopy height, as measured by UAV-RS, and plant height, 

measured manually. Non-calibrated and calibrated canopy heights are plotted in the left and right 

panels, respectively. The plant height of the closest date to the UAV-RS was chosen to be plotted. 

The number of data points (n), RMSE (root mean square error), and RRMSE (the ratio of RMSE 

to the mean) are indicated in the figure. 
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Figure 4-2-3. Comparison of the canopy height, as measured by UAV-RS, and plant height, 

measured manually. Non-calibrated and calibrated canopy heights are plotted in the left and right 

panels, respectively. The plant height of the closest date to the UAV-RS was chosen to be plotted. 

The number of data points (n), RMSE (root mean square error), and RRMSE (the ratio of RMSE 

to the mean) are indicated in the figure. 
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4.2.4 Growth model of longitudinal traits 

To model growth patterns of canopy height and area, segmented regression lines were fitted 

to the longitudinal data. The cumulative temperature after the sowing date, or heat unit, was used 

as a dependent variable. The segmented regression model for the canopy height was 

𝑦𝑖𝑗 = {
𝑘𝑖HU𝑗  𝑖𝑓 HU𝑗 < GTP𝑖
 max 𝑖 𝑖𝑓 HU𝑗 ≥ GTP𝑖

(4-2), 

where yij is the canopy height of the ith plot on the jth observation date; HUj is the heat unit on 

the jth observation date; ki is the growth speed of the canopy height of the ith plot; GTPi is the value 

of the heat unit at the growth termination point of the ith plot; ymaxi is the maximum value of the 

canopy height of the ith plot. The segmented regression model for the canopy area is 

𝑦𝑖𝑗 = {

0 𝑖𝑓 HU𝑗 < GSP𝑖

𝑘𝑖(HU𝑗 − GSP𝑖)  𝑖𝑓 GSP𝑖 ≤ HU𝑗 < GTP𝑖
 max𝑖  𝑖𝑓 HU𝑗 ≥ GTP𝑖

 (4-3), 

where yij is the canopy area of the ith plot on the jth observation date, GSPi is the heat unit at 

the growth start point of the ith plot, and the other variables are the same as those in Eq. 4-2. Fig. 

4-3 illustrates the models fitted to the data of the WW treatment group. 

 

 

Figure 4-3. Examples of growth models used. The canopy height and area of a plot in the WW2 

block were plotted as crosses. The solid lines represent the fitted segmented regression lines of 

the growth models. 
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4.2.5 Genotypic values of traits and parameters 

Genotypic values of all traits (biomass, canopy height, leaf area, canopy height, and canopy 

area) and growth parameters were estimated for use in genomic prediction. The following mixed 

model was fitted for each trait and treatment: 

𝐲 = 𝜇𝟏 + 𝐋𝛃 + 𝐐𝐬 + 𝐞 (4-4), 

𝐠 = 𝜇𝟏 + 𝐬 (4-5), 

where y is a vector of the phenotype, μ is a mean, 1 is a vector in which all the elements are 

one, β is a vector of block effect representing differences between replications, s is a vector of 

random effect of genotype (with the assumption that was yielded from the Gaussian probability 

distribution N(s | 0, σu
2I), where σu

2 is a genetic variance and I is an identity matrix), e is a vector 

of residuals (with the assumption N(e | 0, σe
2I) where σe

2 is a residual variance), L and Q are 

design matrices, and g is a vector of the genotypic values. The R package lme4 (ver. 1.1-20) was 

used to solve for Eq. 4-4. For canopy height and canopy area, Eq. 4-4 was applied separately for 

each observation date. 

4.2.6 Genomic relationship matrix and heritability 

Whole-genome sequencing data of all 198 accessions were available (Kanegae et al., 

manuscript submitted for publication). This genotyping data identified of 4,776,813 SNPs. 

Genotypes for individual alleles were represented as −1 (homozygous for the reference allele), 1 

(homozygous for the alternative allele), or 0 (heterozygous for the reference and alternative 

alleles). A genomic relationship matrix G was estimated as G = XXT / c, where X is an n × m 

marker genotype matrix (n and m are the numbers of lines and markers, respectively), and c is the 

normalization constant (Endelman & Jannink, 2012). Then, the genetic heritability was estimated 

for all traits with the genomic best linear unbiased prediction (G-BLUP) model, 

𝐠 = 𝑚𝟏 + 𝐙𝐮+ 𝛆 (4-6), 

where g is a vector of genotypic values estimated with Eq. 4-4 and 4-5, m is a mean value, u 

is a vector of random genetic effect which follows N(u | 0, σu
2G), ε is a vector of residuals which 

follows N(ε | 0, σε
2I)), and Z is a design matrix. The R package rrBLUP (version 4.6) (Endelman, 

2011) was used to solve for Eq. 4-6. After solving this mixed model, genomic heritability was 

estimated as h2 = σg
2 / (σg

2 + σε
2).  

4.2.7 Genomic models predicting biomass 

Three types of models were constructed to predict biomass (Fig. 4-4): GP, MGP, and TGP 

models. The GP model was the same as the model shown in Eq. 4-6, where only the data of 

biomass was used in the prediction.  
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Figure 4-4. Comparison of the structures of three prediction models: genomic prediction (GP), 

multivariate GP (MGP), and two-step GP (TGP) models. The relationship between genotype data, 

secondary traits (the traits measured by UAV-RS or growth parameters), and biomass are shown. 
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The MGP model was an extension of the GP model, and attempted to explain the genetic 

values of several traits simultaneously (Calus & Veerkamp, 2011; Jia & Jannink, 2012). If 

secondary traits, which are involved in a model along with biomass, are both highly correlated 

with biomass and demonstrate high heritability, incorporation of these traits is expected to 

improve the prediction accuracy of biomass (Calus & Veerkamp, 2011). This model can be 

expressed as 

(

𝐲1
⋮
𝐲𝐷

) = (

𝝁1

⋮
𝝁𝐷

) + (
𝐙1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝐙𝐷

)(

𝐠1

⋮
𝐠𝐷

) + (

𝐞1
⋮
𝐞𝐷

) (4-7), 

where D is the number of traits in the model, and yd, μd, gd, and ed are vectors of genotypic 

values, mean values, random genetic effects, and residuals of dth trait, respectively. Assumptions 

for random effects were included in the model: (g1
T, …, gD

T)T ~ N(0, A ⨂ H) and (e1
T, …, eD

T)T 

~ N(0, I ⨂ R), where H is a genomic variance-covariance matrix between traits, and R is a 

residual variance-covariance matrix between traits. The R package EMMREML was used to solve 

Eq. 4-7, in which the high-speed approximation algorithm EMMA (Kang et al., 2008) was used. 

Two models, one in which the measured values of canopy height and area were used as secondary 

traits (MGPuav), and the other in which the growth parameters estimated by model (2, 3) were 

used (MGPpar), were tested. The observed values of secondary traits in the training population 

were used to build a prediction model, while the observed values of secondary traits in the test 

population were not used in the prediction of biomass in the test population. 

The TGP model used a two-step approach. In the first step, intermediate traits were predicted 

using GP. In the second step, biomass was calculated from predicted intermediate traits using 

multiple regression analysis. Genetic values of biomass and those of intermediate traits in the 

training population were used to estimate coefficients of multiple regression, whereas the values 

of intermediate traits in the test population predicted by GP were used to predict values of biomass 

in the test population. Note that only measured values of intermediate traits of the training sets 

were used; phenotypic values of intermediate traits were not used in the prediction for the test set 

by replacing them with genomic predicted values. To compare to the MGP model, two cases, one 

in which the observed values of canopy height and area were used as the intermediate traits 

(TGPuav), and one in which the growth parameters estimated by model (2, 3) were used (TGPpar), 

were tested. 

Ten-fold cross-validation was repeated 10 times to validate the prediction accuracies of the 

prediction models. Prediction accuracies were evaluated using correlation coefficients of the 

genetic values from Eq. 4-4 and predicted values.  
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4.3 Results 

4.3.1 Estimation accuracy of crop traits by UAV-RS 

The estimation bias in canopy height measured by the image processing was so large that the 

longitudinal tendency of growth could not be tracked (Fig. 4-5a). However, the measured values 

of canopy height were correlated with the values of plant height measured manually on each 

observation date (Fig. 4-2). Upon correction of the canopy height using the manually-measured 

plant height and model (1), the estimation bias decreased, as shown by RMSE and RRMSE values 

(Table 4-1), and the growth processes were then able to be tracked (Fig. 4-5b), accepting only 

those results obtained on 10 Aug. 2016.  

 

 

 

Figure 4-5. Longitudinal patterns of the canopy height and canopy area. (a) Canopy height 

obtained from the image processing, (b) canopy height corrected with plant height manually 

measured, (c) and canopy area. Vertical lines indicate the date of UAV-RS; solid lines indicate the 

dates when data were available, whereas dashed lines indicate the dates when data were 

unavailable due to failure in the construction of digital surface models (DSM) in Pix4Dmapper. 
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Compared with the height, the growth pattern in the canopy area was clear without correction 

(Fig. 4-5c). The canopy area as measured by UAV-RS at harvest and the leaf area as measured in 

the destructive sampling demonstrated a significant correlation (adjusted R2 = 0.540) (Fig. 4-6). 

 

 

 

Figure 4-6. Comparison of canopy area and leaf area. The values of the leaf area of one plant are 

plotted on the horizontal axis, whereas the values of the canopy area of one plot are plotted on the 

vertical axis. The blue line represents a regression line of canopy area to leaf area. 
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Date of 

UAV-RS 

Date of 

manual 

measurem

ent 

Number of 

samples 

CH Calibrated CH 

RMSE RRMSE RMSE RRMSE 

5 Aug. 3 Aug. 87 7.17 0.432 2.85 0.172 

8 Aug. 9 Aug. 180 3.72 0.157 3.75 0.159 

9 Aug. 9 Aug. 321 13.43 0.569 6.58 0.279 

10 Aug. 10 Aug. 357 12.58 0.539 12.05 0.516 

23 Aug. 23 Aug. 177 26.95 0.914 7.45 0.253 

24 Aug. 23 Aug. 177 7.09 0.240 6.85 0.232 

12 Sept. 12 Sept. 671 10.65 0.276 8.53 0.221 

Table 4-1. Estimation accuracy of canopy height. The values of canopy height obtained from 

image processing (CH) and canopy height calibrated with the plant height were used to evaluate 

estimation accuracy. Root mean squared errors (RMSE) and RMSE divided by the mean of CH 

(RRMSE) are shown. The nearest dates of manual measurement from the dates of UAV-RS were 

chosen for comparison. 
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4.3.2 Correlation with biomass and heritability of traits as measured by UAV-

RS 

Correlation coefficients between canopy height and biomass ranged from 0.314 to 0.697, and 

those between canopy area and biomass ranged from 0.401 to 0.864 (Table 4-2). Those values 

tended to increase closer to the date of destructive sampling, and to display higher values in 

canopy area than in canopy height. 

Canopy height and area showed increasing heritability, ranging from 0.188 to 0.853 in canopy 

height and from 0.000 to 0.854 in the canopy area. The canopy area of the WW treatment group 

in the early growth stage showed notably low heritability due to the effect of weeds; compared 

with heritability in biomass (0.383 in the WW treatment group and 0.373 in the LW treatment 

group), heritability in canopy height and area in the late growth period was higher. 

 

 Correlation with biomass Heritability 

Trait Canopy height Canopy area Canopy height Canopy area 

Treatme

nt 
WW LW WW LW WW LW WW LW 

4 Aug. - - 0.444 0.600 - - 0.000 0.275 

5 Aug. 0.314 - 0.401 - 0.223 - 0.000 - 

8 Aug. 0.343 - - - 0.188 - - - 

9 Aug. 0.440 0.446 0.467 0.595 0.229 0.327 0.000 0.181 

10 Aug. - - 0.498 0.606 - - 0.000 0.156 

23 Aug. 0.681 0.685 0.752 0.833 0.371 0.394 0.239 0.231 

24 Aug. 0.681 0.691 0.800 0.742 0.355 0.47 0.262 0.178 

5 Sept. - - 0.844 0.864 - - 0.681 0.572 

6 Sept. - - 0.833 0.855 - - 0.797 0.596 

12 Sept. 0.572 0.697 0.829 0.840 0.853 0.675 0.854 0.663 

GSP - - −0.237 −0.394 - - 0.152 0.312 

GTP 0.078 0.251 0.496 0.447 0.384 0.399 0.825 0.836 

k 0.580 0.593 0.223 0.207 0.333 0.291 0.185 0.000 

ymax 0.632 0.725 0.830 0.854 0.851 0.595 0.729 0.606 

Table 4-2. Correlation coefficients between canopy height/area and biomass, and genomic 

heritability of canopy height/area. Observed values at each date and growth parameters as 

calculated using Eq. 4-2 and 4-3 were used. The values of well-watered and less-watered 

treatment groups (WW/LW) are shown separately. 
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4.3.3 Parameters of growth models 

The correlation between the phenotypic values measured by UAV-RS and the parameters of 

growth models showed various patterns in growth parameters (Fig. 4-7). The correlation between 

ymax and the observed values of canopy height and area increased, as did GTP. The correlation 

between k and the observed values was stable over the observed time period. 

 

 

  

Figure 4-7. Longitudinal pattern of correlation coefficients between observed UAV-RS values 

and growth parameters. The results of canopy height (left) and canopy area (right) are shown. 

Solid and dashed lines indicate the results of WW and LW treatments, respectively. Vertical 

dashed lines indicate the date UAV-RS values were obtained.  
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The correlation coefficient between ymax and biomass was the highest in the parameters of 

canopy height and canopy area (Table 4-2). Heritability of GTP of canopy height and ymax of the 

canopy area was the highest among all parameters, while k of canopy height and GSP or k of the 

canopy area was the lowest. 

By comparison with the flowering date, it was found that GTP of both canopy height and area 

tended to be longer than the number of days to flowering; in other words, termination of growth 

of canopy height and area were estimated to be later than their flowering (Fig. 4-8). 

 

 

 

Figure 4-8. Comparison of GTP and days to flowering. Dotted lines indicate the correspondence 

of the date and heat unit. 
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4.3.4 Genomic prediction 

In the WW treatment group, the prediction accuracy of the MGPuav model was the highest, 

at 21.2% higher than the GP model. On the other hand, in the LW treatment group, the prediction 

accuracy of the TGPuav model was the highest at 24.1% higher than the GP model (Fig. 4-9). 

Accuracies of the models using the growth parameters (MGPpar, TGPpar) were lower than the 

models with the values calculated using data observed by UAV (MGPuav, TGPuav), excepting 

the accuracy of the MGP model in the LW treatment group, for which the accuracy of the MGPuav 

model was notably low. 

 

 

 

Figure 4-9. Prediction accuracies of biomass. Correlation coefficients of observed and predicted 

values were plotted. The accuracies of WW and LW treatment groups are shown on the left and 

right sides, respectively. Error bars indicate ± 1 s.d. 
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4.4 Discussion 

4.4.1 Acquisition of longitudinal growth traits through UAV-RS 

A large estimation bias was observed in canopy height due to the effects of wind or change in 

radiation levels. Such bias, which is inevitable in the field of RS, hinders and prevents the tracking 

of detailed plant growth process. However, as shown in (Hu et al., 2018) and by this research, 

calibration using manual measurements can greatly reduce this bias. As plant height is strongly 

related to biomass (Bendig et al., 2015), such a calibration method can play an essential role in 

breeding to observe the longitudinal growth of plants. 

On the other hand, the canopy area showed lower bias than canopy height, and did not require 

any correction with manual measurements, suggesting that canopy area can be a robust 

measurement of temporal growth of soybean plants. Also, the correlation between the canopy area 

and biomass was high from an early stage of growth (Table 4-2). A similar trait, projected leaf 

area, was already shown to be highly correlated with biomass in a high-throughput phenotyping 

platform (Golzarian et al., 2011). Plot-level vegetation indices are widely used in field RS (Jessica 

Rutkoski et al., 2016; Tattaris et al., 2016; Duan et al., 2017), but plant-level traits such as canopy 

area are also a suitable trait for the observation of plant conditions, due to their robustness and 

correlation with biomass. 

4.4.2 Growth model 

Large differences were observed among the heritability of the growth parameters of the 

canopy area (Table 4-2). The parameters k and GSP demonstrated low heritability, possibly 

because these parameters reflected the influence of weeds during the early growth period. On the 

other hand, high heritability was observed in the GTP and ymax parameters, indicating that these 

parameters reflected the genetic characteristics of growth patterns of the canopy area. ymax was 

especially suitable as a secondary trait in GP, due to its high heritability and correlation with 

biomass. The growth parameter canopy height showed varied heritability, whereas ymax had high 

heritability and correlation with biomass, but no parameter showed higher heritability and 

correlation with biomass than those of GTP of canopy area. 

It was additionally shown that the GTP of canopy height and area was later than flowering 

(Fig. 4-8). This result matches a characteristic of soybean, of which the stems and leaves keep 

growing after the beginning of flowering. The growth models of Eq. 4-2 and 4-3 were found to 

appropriately extract these growth characteristics from UAV-RS data. 

4.4.3 Prediction accuracies of MGP and TGP models 

Both MGP and TGP models could improve the prediction accuracy of GP (Fig. 4-9). This 

improvement was not observed in previous studies in cases where secondary traits were 

unavailable in the test population (Rutkoski et al., 2016; Sun et al., 2017). One reason that these 

models improved accuracy in this study is the high heritability of the secondary traits, especially 
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the canopy area. It was reported that the MGP model could improve the prediction accuracy if 

secondary traits were highly correlated with the target trait and also display high heritability 

(Calus & Veerkamp, 2011); canopy area was fould to be a good secondary trait in predicting 

biomass from this point of view (Table 4-2). 

Comparing the results of the MGP and TGP models, the prediction accuracies were generally 

higher in the MGP model. This is because MGP estimates the random genetic effect of multiple 

traits simultaneously, whereas TGP does so for each trait separately. However, the accuracy of the 

MGPuav model in the LW treatment group was particularly low, and the accuracy of the TGPuav 

model exceeded it. This was due to the failure of estimation of covariance structures in the 

MGPuav model, which was suggested by the lower heritability of biomass in the MGPuav model 

than in the G-BLUP of Eq. 4-6 (Fig. 4-10). An increase in the number of secondary traits can also 

cause such estimation failures. On the other hand, the prediction accuracy of the TGP model was 

assumed to be stable, because it does not require complex computation. TGP is a robust approach 

to incorporate an increase in the number of secondary traits. 
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Figure 4-10. Comparison of the heritability (x-axis) and the prediction accuracy (y-axis) of 

biomass for each prediction model. Results of GP, MGPuav, MGPpar, TGPuav, and TGPpar are 

shown. Blue and red points indicate WW and LW treatments, respectively. 
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Linear regression was used in the second step of the TGP model in this study, but other 

statistical approaches can alternatively be used (Chapter 3). If the correlation among the 

intermediate traits is high, partial least squares regression or principal component regression are 

recommended for the second step of TGP to avoid a problem with multi-collinearity. Also, non-

linear models, such as Random forest (Breiman, 2001), or support vector machines can be used 

to include a non-linear relationship between the intermediate traits and the target traits in the final 

model. 

4.4.4 Use of growth parameters in the prediction model 

The prediction accuracies of the MGPuav and TGPuav models were generally higher than 

those of the MGPpar and TGPpar models. The reduction in prediction accuracies in the MGPpar 

and TGPpar models likely occurred because the information in the original RS data was partially 

lost when growth models were fitted. However, the prediction accuracy of the MGPpar model in 

the LW treatment group was higher than that of the MGPuav model (Fig. 4-9), although the 

heritability of the biomass estimated with the MGPpar model was lower than that estimated with 

the MGPuav model (Fig. 4-10). The MGPuav and MGPpar models could not estimate the 

covariance matrix in this case, but the high heritability of the growth parameters (Table 4-2) 

increased the prediction accuracy in the MGPpar model. Although the prediction accuracy of the 

MGPpar model was not different from that of GP, it indicated that the incorporation of a growth 

model could effectively compress the longitudinal traits as growth parameters, and improve the 

predictive ability of the MGP model. 

One alternative approach to incorporate longitudinal RS data is a random regression model, 

which is a statistical method to consider the longitudinal structure of traits in GP. The time-

dependent structure of a covariance matrix is included in the model by explaining growth curves 

with base expansions using arbitrary functions (Kirkpatrick and Heckman, 1989). Several reports 

have shown that random regression was an effective method when applied to longitudinal RS data 

(Sun et al., 2017) or growth data measured by a high-throughput phenotyping platform (Campbell 

et al., 2018). Random regression can be understood as a dimension reduction of growth curves 

using functions such as Legendre polynomials or spline functions. Such functions have little 

restriction on their forms, and are applicable to a wide range of growth patterns. Still, even in 

exchange for flexibility, it is challenging to include prior information about the target growth 

pattern in random regression. One advantage of the proposed approach using growth models is 

that we could include prior knowledge about growth directly in the model, which led to the 

effective extraction of characteristics of the growth curves. Validation of the prediction ability of 

these methods using various datasets can help in choosing a more appropriate method when 

applied to real datasets.  

Simple growth models were used to express the growth of the canopy height and area, but 

more complex models such as crop growth models can also be included in the framework. Crop 

growth models are simulation models where crop yield is expressed as an accumulation of carbon 

production during the cultivation period. Some reports have applied crop growth models in the 

framework of GP (Technow et al., 2015). Also, several methods have been developed to combine 
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crop growth models and longitudinal RS data via data assimilation (Jin et al., 2018; Kasampalis 

et al., 2018). It is expected that detailed growth characteristics can be estimated from longitudinal 

RS data using sophisticated models such as crop growth models. 
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5 Longitudinal growth analysis of soybean using UAV-

based remote sensing and its application on genomic 

prediction 

5.1 Introduction 

Genetic mechanisms of growth processes have become a crucial topic in plant breeding. 

Genetic dissection of the formation process of target traits will provide a profound understanding 

of its mechanism, which will lead to the efficient genetic improvement of the target traits. This 

understanding is important in genomic selection (GS), where breeders skip field trials and select 

promising candidates based on the predicted breeding value provided by genomic prediction (GP). 

Most GP studies for crops have focused on traits at harvests, such as yield and quality. If GP can 

predict phenotypic changes during the growth process, breeders can accurately determine the 

behavior of the genotypes obtained by GS and select the appropriate candidates. Also, the growth 

prediction in the latter growth period using growth data of the early period will enable the 

selection in the early growth stages, which leads to the reduction of the cost for field trials. 

However, cost- and labor-intensive phenotyping of measuring the longitudinal growth data of 

traits has been a major bottleneck for the genetic dissection of the formation process of target 

traits. In particular, it has been difficult to measure data for  many genotypes grown in the field. 

Thanks to the rapid development of sensing technologies in recent years, high-throughput 

phenotyping has become available in plant breeding, and the measurement of longitudinal growth 

data is becoming more practical. Accurate and detailed acquisition of growth processes through 

high-throughput measurement is expected to lead to an improved genetic gain in plant breeding 

(Furbank & Tester, 2011; Cabrera‐Bosquet et al., 2012; Araus & Cairns, 2014). For example, an 

automated phenotyping platform for measuring time-series three-dimensional plant growth in a 

greenhouse has enabled the genetic dissection of the growth processes with a longitudinal model 

(Campbell et al., 2018). In a field experiment, high-throughput phenotyping using unmanned 

aerial vehicles (UAVs) (Yang et al., 2017) and tractors (White et al., 2012) has become available 

for measuring plant growth. Until recent years, however, studies on field remote sensing (RS) of 

plant growth have mainly focused on the application in field management. The application of the 

field RS to the genetic dissection of the plant growth process has still been limited (Blancon et 

al., 2019). 

Several methods have been proposed to analyze longitudinal growth data. One common 

method is to fit a growth model function, such as Gompertz (Winsor, 1932) and logistic (Nelder, 

1961) curves, to the data and use the parameters of the function for quantifying the pattern of 

growth. This method can be applied to various types of longitudinal growth data. Various methods 

of quantitative genetics, such as quantitative trait loci (QTL) analysis (Ma et al., 2002; Wu et al., 

2002) and genome-wide association (GWAS) studies (Das, Li, Wang, et al., 2011; Crispim et al., 

2015), has been applied to analyze genetic variations in the growth model parameters. Growth 
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models have also been used as a flexible tool to analyze various factors, such as the effect of 

selection in breeding (Piles et al., 2003) and the relationship among traits (Onogi et al., 2019). Its 

application to GP, however, has not been discussed in previous studies. 

In this study, a method integrating a growth model function and GP is proposed and applied 

to the soybean canopy area’s longitudinal growth data. The growth patterns of soybean germplasm 

accessions were described with five parameters of the fitted growth model. Genetic variations in 

the growth pattern were quantified by decomposing the parameters into genetic and residual 

effects with mixed models. Finally, the integrated method of GP and the growth model were 

applied to the prediction of growth processes in several prediction schemes. 

5.2 Material and methods 

5.2.1 Field trials 

Soybean accessions registered in the National Agriculture and Food Research Organization 

Genebank (https://www.gene.affrc.go.jp/index_en.php) were employed. From 2017 to 2019, the 

field trial was conducted in an experimental field with sandy soil at Arid Land Research Center, 

Tottori University (35°32’ N lat, 134°12’ E long, 14 m above sea level). One hundred eighty-six 

accessions were used in 2017, and 198 accessions were used in 2018‒2019. Each plot consisted 

of four plants, and the distances between two rows, two plots, and two individuals were 50 cm, 

80 cm, and 20 cm, respectively (Fig. 5-1d). Sowing was performed at the beginning of July, 

followed by thinning after two weeks (Fig. 5-2). Fertilizer (15, 6.0, 20, 11, 7.0 g m-2 of N, P, K, 

Mg, and Ca, respectively) was applied to the field before sowing. 

Two watering treatment levels, control (C) and drought (D), were used to evaluate genetic 

variations in the responses to different environmental conditions. White mulching sheets (Tyvek, 

Dupond, US) were laid to prevent rainwater infiltration (Fig. 5-1b) to control soil conditions with 

artificial irrigation. Watering tubes were installed under the sheets to irrigate the field. Artificial 

irrigation was applied for five hours daily (7:00‒9:00, 12:00‒14:00, 16:00‒17:00) starting the day 

after the thinning in treatment C, but no artificial irrigation was performed in treatment D. In the 

following text, an abbreviation for denoting a specific combination of the level of the treatment 

and the year of the experiment is used; e.g., treatment C in 2017 is abbreviated as “2017-C”. 
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Figure 5-1. Explanation of the field design in the experiment. (a) An ortho-mosaic image (OMI) 

of the field, obtained on 25 Aug. 2018. The OMIs were created for each treatment and synthesized. 

(b, c) Photos of treatment C and D were taken from the ground. (d) The layout of plots and plants. 

 

 

 

Figure 5-2. Calendar of field management and remote sensing in the field experiment. Dates of 

sowing, thinning, harvest, and remote sensing (RS) are shown. 
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5.2.2 Remote sensing and image analysis 

UAV-RS started after the thinning and was performed 16–35 times in the cultivation period 

(Fig. 5-2). A consumer drone (DJI Phantom 4 Advanced, Shenzhen, China) was used for the RGB 

image collection. The UAV flew 12–14 m above the ground and took images with an interval of 

two seconds with autofocus function. A single UAV flight took about 15 minutes and collected 

500 to 600 images for each treatment. 

Digital surface models (DSM) and ortho-mosaic images (OMI) of the field of each UAV-RS 

were constructed using the images corrected in the UAV-RS and Pix4Dmapper (Pix4D, 

Switzerland). The geolocation information was used to segment individual plots from the DSM 

and OMI. Next, NDVI-based thresholds were used to segment the canopy and ground regions 

from the individual plots’ OMI. Finally, the canopy area of each plot was estimated based on the 

DSM and OMI, respectively. The canopy area was estimated as the area of the canopy projected 

onto OMI. Python 2.7 (https://www.python.org) was used for the image analysis. For data in 2019, 

a similar procedure was used by Hiphen inc. (France). 

5.2.3 Growth-process modeling 

A growth model (Koetz et al., 2005) was applied to the canopy area’s time-series 

measurements to quantify each plot’s growth pattern with a small number of parameters. R (ver. 

4.0.3) (R Core Team, 2020) was used for the analyses. By fitting the model to observed canopy 

area values, parameters were estimated for each plot. In this model, the leaf area index (LAI) on 

day d after sowing (LAId) is expressed as follows (Fig. 5-3): 

LAI𝑑 = LAIamp {
1

1 + exp(−𝑟𝑔(HU𝑑 − T𝑔))
− exp(𝑟𝑠(HU𝑑 − T𝑠))} (5-1). 

 

 

Figure 5-3. An explanation of the growth model Eq. 5-1. 
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The first and second terms in the parenthesis represent the logistic growth and exponential 

senescence, respectively. HUd is a heat unit on day d. The heat unit is an indicator of the plant 

growth calculated as the cumulation of daily mean temperature adjusted by base temperature after 

the sowing date. The base temperature was set to 8°C in this study (Soltani & Sinclair, 2012). 

Thus,  

HU𝑑 = ∑(Temp𝑖 − 8°C)

𝑑

𝑖=1

(5-2), 

where Tempi is the daily mean temperature on the day i. LAIamp, rg, rs, Tg, Ts in Eq. 5-1 are 

the parameters of this model, estimated for each plot. LAIamp is the maximum value of the LAI in 

the growth curve; rg is growth speed rate; rs is senescence speed rate; Tg is heat unit when growth 

speed reaches the maximum; Ts is heat unit when LAI becomes zero, respectively. LAI values on 

day d can be converted to the canopy area (CAd), 

CA𝑑 = 𝑆{1 − exp(−𝑘 LAI𝑑)} (5-3). 

Eq. 5-3 is based on a famous equation of the relationship between LAI and the amount of light 

interception (Soltani & Sinclair, 2012). k is an extinction coefficient that is known to differ among 

plant species. In this model, the value of commonly used soybean, k = 0.5, was assigned (Soltani 

& Sinclair, 2012). S is the area for each plot (S = 1.68 m2). 

The five parameters, LAIamp, rg, rs, Tg, and Ts, should be estimated for each plot. However, 

fitting the growth model to each plot’s data was difficult because the canopy area in treatment D 

was so small that the noise disturbed the search for the best parameter sets. Therefore, the 

estimation was conducted along with the following steps. 

1. Estimation of genotype-specific values. For each genotype (an accession in the 

evaluated collections), the same value of a parameter was applied to the time-series 

canopy area data of all plots, except LAIamp, which is assumed to be different among plots. 

The optimal values of Tg and Ts were found with a grid search. Tg and Ts’s search ranges 

were set to (300, 1200) and (1400, 3000), respectively, and seven points were chosen in 

equal intervals as grid points of each parameter. At the same time, the optimal values of 

the other parameters were estimated with the Nelder-Mead method. 

2. Estimation of plot-specific values. The parameter estimation was conducted for each 

plot. A grid search was used to optimize the values of Tg and Ts. In the grid search, the Tg 

and Ts’s optimized values obtained in Step 1 were used to determine the center of the 

searching spaces, and its range was narrower than Step 1 (estimated values ± 200 for Tg, 

estimated values ± 400 for Ts). The other parameters were estimated with the Nelder-

Mead method, using estimated values in Step 1 as the initial values. 

 

Usually, the minimization of the sum of squares is used to fit the growth model. However, in 

the canopy area, the variances of measurement noises showed heterogeneity and were 
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proportional to each day’s mean values (Fig. 5-4). Therefore, in the estimation of parameters, the 

adjusted sum of squares was minimized: 

∑∑
(𝑦𝑖,𝑑 − 𝑦̂𝑖,𝑑)

2

𝑦̅𝑑
𝑖𝑑

(5-4), 

where yi,d is the canopy area of plot i on day d, 𝑦̂𝑖,𝑑 is the fitted value of the canopy area with 

the growth model, and 𝑦̅𝑑  is the mean value of the canopy area on day d. In Fig. 5-4, the 

variances of noise were estimated with the fitted values of the growth model: ∑ (𝑦𝑖,𝑑 − 𝑦̂𝑖,𝑑)
2

𝑖 𝑁⁄  

where N is the number of plots. 

 

 

 

Figure 5-4. Scatterplot of the noise variances on the x-axis and mean values (𝑦̅𝑑) of the canopy 

area on the y-axis. Noise variances were estimated with the fitted values of the growth model: 

∑ (𝑦𝑖,𝑑 − 𝑦̂𝑖,𝑑)
2

𝒊 𝑁⁄  where N is the number of plots. The logarithmic scale was used for both axes. 
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5.2.4 Estimation of genotypic values 

Genotypic values of the canopy area and growth parameters were estimated for use in GP. For 

each combination of a trait (canopy area or a growth parameter) and a treatment (C or D), the 

following mixed model was fitted (cf. Eq. 2-2): 

𝐲 = 𝜇𝟏 + 𝐋𝛃 + 𝐐𝐬 + 𝐞 (5-5), 

where y is a vector of the phenotypic values, μ is a mean, β is a vector of block effect 

representing differences between replications, s is a vector of genotypic values which follows N(s 

| 0, σs
2I), σs

2 is a genotypic variance, e is a vector of residuals which follows N(e | 0, σe
2I), σe

2 is a 

residual variance, 1 is a vector in which all the elements are one, I is an identity matrix, and L 

and Q are design matrices. The genotypic value (g) was then calculated by (cf. Eq. 2-3) 

𝐠 = 𝜇𝟏 + 𝐬 (5-6). 

The R package lme4 (ver. 1.1-20) was used to solve Eq. 5-5. For the canopy area, the 

genotypic value estimation was applied separately for each date of UAV-RS. 

5.2.5 Genomic relationship matrix and genetic analysis 

Whole-genome resequencing data of all 198 accessions were available (Kanegae et al., 

manuscript submitted for publication). A genomic relationship matrix G was estimated using the 

marker genotype data. The detailed information is the same as Section 5.2.6 (Endelman & Jannink, 

2012). Then, the genetic heritability was estimated for all traits with the genomic best linear 

unbiased prediction (G-BLUP) model, 

𝐠 = 𝑚𝟏 + 𝐙𝐮+ 𝛆 (5-7), 

where g is a vector of genotypic values estimated with Eq. 5-5 and 5-6, m is a mean, u is a 

vector of random genetic effect which follows N(u | 0, σu
2G), e is a vector of residuals which 

follows N(e | 0, σε
2I), σu

2 and σε
2 are genetic and residual variances, respectively, and Z is a design 

matrix. The R package rrBLUP (ver. 4.6) (Endelman, 2011) was used to solve Eq. 5-7. After 

solving the mixed model, genomic heritability was estimated as h2 = σu
2 / (σu 

2 + σε
2). 

5.2.6 Prediction of the growth process 

Three cross-validation schemes were conducted to validate if the estimated growth parameters 

can improve the growth process prediction (Fig. 5-5a). The first scheme is the cross-validation 

over genotypes (CV1). In this scheme, the data from a subset of genotypes in any treatments or 

years were left out of training data. A prediction model built with the training data was validated 

with the subset of left-out genotypes. The left-out genotypes were randomly selected. In this study, 

10-fold cross-validation was employed. 
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Figure 5-5-1. Visualization of prediction schemes and models. (a) Cross-validation schemes 

(CV1, CV2, and CV3). Left-out data in cross-validation is highlighted by a rectangle with dashed 

red lines. (b) Prediction models (GP and MGP). 
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Figure 5-5-2. Visualization of prediction schemes and models. (c) Prediction models (TGP and 

TMGP). (d) Prediction models (TMGPG).  
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In CV1, the prediction accuracies of four models were compared (Fig. 5-5b and 5-5c); 

genomic prediction (GP), two-step GP (TGP), multivariate GP (MGP), and two-step multivariate 

GP (TMGP). For GP, a mixed model expressed as Eq. 5-7 was applied to the canopy area each 

day in the training data. Then, the random genetic values g of left-out genotypes were used as 

predicted values.  

TGP consisted of two steps. The same GP model (Eq. 5-7) was applied to the growth 

parameters at first. Then, canopy areas of left-out genotypes on each day were calculated using 

the growth model and the predicted growth parameters (Eq.5-1 and 5-2). 

MGP is an extension of the GP, which simultaneously predicts several traits (Calus & 

Veerkamp, 2011; Jia & Jannink, 2012). The model is expected to enhance the accuracy of genomic 

prediction via genetic correlation among traits. This model can be expressed as 

(

𝐠1

⋮
𝐠𝐾

) = (
𝑚1𝟏
⋮

𝑚𝐾𝟏
) + (

𝐙1 ⋯ 𝐎
⋮ ⋱ ⋮
𝐎 ⋯ 𝐙𝐾

)(

𝐮1

⋮
𝐮𝐾

) + (

𝛆1
⋮
𝛆𝐾

) (5-8), 

where K is the number of variates in the model, gk, uk, and εk are vectors of genotypic values, 

random genetic effects, and residuals of variate k, respectively, and mk is a mean of variate k. 

Assumptions for the random effects were included in which gall = (g1
T, …, gD

T)T follows N(gall | 

0, K ⨂ G) and eall = (e1
T, …, eD

T)T follows N(eall | 0, R ⨂ I). K is a genomic variance-covariance 

matrix between variates, and R is a residual variance-covariance matrix between variates. The R 

package MTM (ver. 1.0.0) was used to solve Eq. 5-8 based on the Markov-chain Monte-Carlo 

(MCMC) method. 

Since the canopy area was measured repeatedly in each environment, the number of 

observations was 152 in total. It was difficult to include such many phenotype data in MGP 

because the variance-covariance matrix would be too large to be appropriately estimated. Thus, a 

strategy was applied where MGP was repeated for each environment’s observation date, and ten 

additional variates were selected from the whole data to support the prediction every time. In 

other words, eleven variates included in the MGP every time consisted of one target variate and 

ten supporting variates. The criterion to select supporting variates is based on the heritability and 

the correlation with the target variate. These two factors were essential to improve the prediction 

accuracy in MGP (Calus & Veerkamp, 2011). Top-10 observations of the following criterion were 

selected as supporting variates: 

𝑠(ℎ2) + 𝑠(|𝑟|) (5-9), 

where s(.) is a scaling function that makes the mean and variance of an input vector zero and 

one, respectively, h2 is the heritability, and r is the correlation coefficient with a target variate. 

As TGP, TMGP consisted of two steps, i.e., MGP of the growth parameters and the calculation 

of the canopy area using predicted growth parameters. The same criterion of the variate selection 

(Eq. 5-9) was applied to select ten supporting variates. 
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The second prediction scheme is the cross-validation for combining a genotype and an 

environment (CV2), where data of the target genotype in one environment were left out (Fig. 5-

5a). As in CV1, four models’ prediction accuracies (GP, TGP, MGP, and TMGP) were compared. 

In this scheme, the combination of a treatment and a year was treated as an environment; there 

were six environments (two treatments × three years). GP and TGP outputted the same predicted 

values as CV1 since they did not use data of non-target environments. On the other hand, MGP 

and TMGP could utilize data in non-target environments by selecting them as supporting traits, 

which might improve their prediction accuracy. 

The third prediction scheme (CV3) is similar to CV2 but focused on the later growth period. 

As in CV2, data of the target genotypes in one treatment on one year were left out, but data in the 

former half of the growth period were given. In this scheme, the accuracy of GP, TGP, MGP, and 

TMGP for the prediction of future growth (TMGPG, Fig. 5-5d) was compared. The model for 

MGP in CV3 is the same as in CV2, but the selected supporting variates were different. Seven 

out of ten supporting variates were selected using the selection criterion (Eq. 5-9). Additionally, 

the canopy area of the latest three days in the former half of the target environment’s growth 

period was chosen as the supporting variates. The canopy area in the former half of the growth 

period in the target environment was expected to improve the accuracy due to high correlations 

with the canopy area, which was the target of the prediction, even when they had low heritability. 

TMGPG consisted of three steps. The first two steps are the same as TMGP. In these steps, 

the growth parameters were predicted without using the data from the former half of the growth 

period. One different point was that the MCMC samples of the growth parameters were saved, 

whereas the samples' average was used as the predicted values in TMGP. As a result, 60,000 

samples of the predicted growth curves could be obtained for each genotype. Those samples can 

be understood as samples from a probability distribution before the growth data acquisition. Then, 

the former half of the growth period’s data were reflected using the approximate Bayesian 

computation (ABC) method. Sixty samples of growth curves were selected for each genotype by 

evaluating each sample by the sum of squares of the differences between the predicted growth 

curves and the given growth data. Finally, the mean values of the 60 samples of growth curves 

were used as the predicted values. 

Cross-validation was repeated three times for the combination of a cross-validation scheme 

and a model. The correlation coefficient between genotypic values (g) and their predicted values 

(u) of the canopy area was used to evaluate the prediction accuracy. 
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5.3 Results 

5.3.1 Time-series canopy area data measured with UAV-RS 

The canopy area’s longitudinal growth processes could be obtained using UAV-RS (Fig. 5-6). 

Large variations in growth patterns of each plot were observed. Because of severe heat stress in 

the experimental field of 2019, the canopy area of 2019-D was smaller than the others. 

 

 

 

Figure 5-6. Longitudinal process of the canopy area measured with UAV-RS. The canopy area in 

treatment C and D are shown in blue and red lines, respectively. The number of days after sowing 

(DAS) was used as the x-axis. 
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The time-series heritability of the canopy area showed a U-shape pattern in all the 

environments (Fig. 5-7) where the value decreased until 40–50 days after sowing and increased 

from 50 days after sowing. 

 

 

 

Figure 5-7. Heritability of the time-series canopy area of treatment C and D. Red, blue, and green 

lines indicate the values in 2017, 2018, and 2019, respectively. 
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5.3.2 Growth parameter estimation 

The growth model fitted a wide range of canopy area growth patterns (Fig. 5-8). However, 

the goodness of fit was not sufficient in a few cases. 

 

 

 

Figure 5-8. Longitudinal growth data of the canopy area of the genotype “Enrei,” a famous 

Japanese cultivar, and growth curves fitted to the data. The results of each plot are displayed 

separately. 
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The heritability of the growth parameters varied among the treatments and the years (Fig. 5-

9). The heritabilities of LAIamp and Tg were relatively higher than the others. The heritability was 

the highest in 2017 when that of LAIamp was around 0.6 and the lowest in 2018 when that of 

LAIamp was around 0.2. The heritabilities of rg and rs were low, except for those of 2017-D. 

 

 

 

Figure 5-9. Heritability of the growth parameters in each environment (a combination of 

treatment and year). 
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5.3.3 Prediction of growth patterns 

In CV1, the prediction accuracy of TGP and MGP was higher than GP (Fig. 5-10 and 5-11). 

Significant improvement of prediction accuracy was observed in 2019-D, where the accuracy of 

GP was close to zero in the latter half of the growth period. Comparing MGP and TGP, the 

accuracy of MGP tended to be slightly higher than that of TGP. The accuracy of TMGP differed 

among environments; it was lower than the accuracy of GP when predicting the canopy area in 

2018, while it was higher than the accuracy of MGP when predicting the canopy area in the latter 

half of the growth period in 2019. 

  



76 

 

 

Figure 5-10. The prediction accuracy of the canopy area using four models in CV1. The number 

of days after sowing (DAS) was used as the x-axis, whereas the correlation coefficients (r) 

between observed and predicted values yielded were plotted as the y-axis. The mean values of 

correlations yielded from repeated cross-validation were plotted as dots, and the range of ±1 

standard deviations was expressed as vertical bars added to each dot. Red, blue, green, and purple 

lines correspond to the accuracy of GP, MGP, TGP, and TMGP, respectively.  
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Figure 5-11. Comparison of the prediction accuracy in CV1. Two out of four models (GP, MGP, 

TGP, and TMGP) were selected in each panel. The correlation coefficients between genotypic 

values and their predicted values were compared between the two models. Solid lines indicate 

where the accuracy was equal between the two models. The colors of the points (red/blue) indicate 

whether each point is upper or lower than the solid lines. The red and blue numbers are the number 

of red and blue points, respectively.  
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Predicted values with GP and TGP in CV2 are equal to those in CV1 because they did not 

utilize data in environments other than their targets. Thus, for CV2, focus will be on the accuracy 

of MGP and TMGP. The accuracy of MGP was higher in CV2 than CV1 and was significantly 

higher than that of TGP (Fig. 5-12 and 5-13). The accuracy of TMGP was lower in CV2 than CV1 

in 2018, while it was higher in CV2 than CV1 in the other years. Comparing MGP and TMGP, 

the accuracy of MGP was higher in 2018 and the former half of the growth period, while that of 

TMGP was higher in other environments. 
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Figure 5-12. The prediction accuracy of the canopy area using four models in CV2. The number 

of days after sowing (DAS) was used as the x-axis, whereas the correlation coefficients (r) 

between observed and predicted values yielded were plotted as the y-axis. The mean values of 

correlations yielded from repeated cross-validation were plotted as dots, and the range of ±1 

standard deviations was expressed as vertical bars added to each dot. Red, blue, green, and purple 

lines correspond to the accuracy of GP, MGP, TGP, and TMGP, respectively.  
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Figure 5-13. Comparison of the prediction accuracy in CV2. Two out of four models (GP, MGP, 

TGP, and TMGP) were selected in each panel. The correlation coefficients between genotypic 

values and their predicted values were compared between the two models. Solid lines indicate 

where the accuracy was equal between the two models. The colors of the points (red/blue) indicate 

whether each point is upper or lower than the solid lines. The red and blue numbers are the number 

of red and blue points, respectively.  
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In CV3, the prediction accuracy of TMGPG was the best in all environments and the whole 

growth period (Fig. 5-14 and 5-15). The correlation coefficients between the predicted values of 

TMGPG and the genotypic values were higher than 0.6 in most cases. The accuracy of MGP was 

higher than that of GP and TGP but lower than that of TMGPG. As in CV2, predicted values with 

GP and TGP in CV3 are the same as CV1.  
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Figure 5-14. The prediction accuracy of the canopy area using four models in CV3. The number 

of days after sowing (DAS) was used as the x-axis, whereas the correlation coefficients (r) 

between observed and predicted values yielded were plotted as the y-axis. The mean values of 

correlations yielded from repeated cross-validation were plotted as dots, and the range of ±1 

standard deviations was expressed as vertical bars added to each dot. Red, blue, green, and purple 

lines correspond to the accuracy of GP, MGP, TGP, and TMGPG, respectively. The accuracy in 

the former half of the growth period of GP and MGP is shown in fine points.  
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Figure 5-15. Comparison of the prediction accuracy in CV3. Two out of four models (GP, MGP, 

TGP, and TMGPG) were selected in each panel. The correlation coefficients between genotypic 

values and their predicted values were compared between the two models. Solid lines indicate 

where the accuracy was equal between the two models. The colors of the points (red/blue) indicate 

whether each point is upper or lower than the solid lines. The red and blue numbers are the number 

of red and blue points, respectively.   
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5.4 Discussion 

5.4.1 UAV-RS as a tool to evaluate growth patterns 

This study showed that the canopy area’s UAV-RS measurement could be used to assess 

genetic diversity in soybean growth patterns. A U-shape longitudinal pattern was observed in the 

heritability of the canopy area in all the environments (Fig. 5-7). The reason for the U-shape 

heritability patterns can be explained in three steps. In the early stage of growth, the canopy area 

seemed to be determined by a few factors regarding initial growth speed, such as radiation use 

efficiency, which results in high heritability of the canopy area. At about 25 days after sowing, 

several factors such as growth phenology and plant structure related to the determination of 

growth phenology started to affect the canopy area, which decreased the heritability. Then, a 

saturation of the canopy area occurred around 45–60 days after sowing. In this period, the 

confounding factors related to growth phenology became weak, leading to increased heritability. 

5.4.2 Fitting of growth models 

The growth model was flexible enough to represent various growth patterns in different 

environments (Fig. 5-8). By fitting the model, the time-series canopy area was decomposed into 

five parameters. The genetic variation in the growth process was examined in detail, focusing on 

each parameter.  

Genetic analysis of the parameters showed that the heritability of LAIamp was high (Fig. 5-9). 

This result explains why the heritability of the canopy area increased in the later stages of growth. 

Tg, which describes the stage-shift timing of the canopy area, also showed high heritability in 

2017-C and 2019-D.  

For the senescence stage, the heritability was low in Ts and rs except for 2017-D. Due to the 

long cultivation period in 2017 and early senescence in treatment D, model fitting of the 

senescence part succeeded in that environment. Heritability of rs was higher than Ts, which means 

that the change of canopy area in the senescence stage was mainly determined by its speed, rs, 

rather than the timing of senescence, Ts. It is expected that the senescence pattern will be evaluated 

more precisely in 2017 and 2018 by extending the cultivation periods to observe the whole process 

of senescence. 

Several useful results were obtained by applying the growth model, and some problems were 

found to be improved. Because of the high heritability of the canopy area in the early stages, it 

was expected that the growth speed, rg, was mainly determined by genetic factors. However, the 

heritability of rg was low, except for 2017-D. The use of other growth functions, such as the 

Gompertz (Winsor, 1932) curve, may improve the goodness of fit of a growth curve to the canopy 

area in the early growth stages. It was reported that the growth model that takes into account leaf 

appearance could explain the dynamics of green LAI (GLAI) well (Blancon et al., 2019). Such 

structural models can also be candidates for growth curves modeling approaches. 
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Another possible improvement of the model is the inclusion of other environmental effects, 

such as soil moisture and drought stress. In the growth model, the effect of temperature on growth 

stages was considered. However, the inclusion of other factors may allow for improved fitting 

and the simultaneous parameter estimation of multiple environments. For example, the low 

heritability in 2018 of the growth parameters was because severe heat stress in the summer of 

2018 made the growth slower than usual years, and thus the sigmoid pattern in growth was 

truncated at the end of the cultivation (Fig. 5-6). Considering other environmental factors will 

allow simultaneous parameter estimation with other environments, leading to stability in the 

estimated parameters. 

5.4.3 Prediction of growth curves 

In CV1, the accuracy was close between GP and TGP (Fig. 5-11). This result suggests that the 

growth model used in TGP could extract sufficient genetic variations from phenotypic variations 

in the longitudinal growth pattern to achieve the same predictive accuracy as the GP. 

Models with multivariate GP yielded better accuracy than those with univariate GP; the 

accuracy of MGP and TMGP were better than those of GP and TGP, respectively (Fig. 5-11). High 

correlations among variates, a typical property of longitudinal data, suggest that multivariate GP 

improves the prediction accuracy because MTG and TMGP can leverage the among-

characteristics correlation. In the following paragraphs, the focus is on the comparison of MGP 

and TMGP. 

In 2018, the accuracy of TMGP was lower than that of MGP in CV1 and CV2 (Fig. 5-10 and 

5-12) due to the low heritability of the growth parameters, as described in Section 5.4.2. On the 

other hand, the accuracy of TMGP was higher than that of MGP in 2019 in CV2. TMGP was 

better than MGP due to the higher heritability of growth parameters than the canopy area in 2018. 

Extraction of genetic variance in growth patterns in 2019 was successful as LAIamp in 2019-C and 

Tg in 2019-D, leading to improved prediction accuracy. 

In CV3, the prediction accuracy of TMGPG outperformed the other models (Fig. 5-15). The 

higher prediction accuracy than MGP indicates that the former growth period’s data could be 

effectively included in the model by specifying the growth curve’s shape through the growth 

model. Correlation coefficients between the predicted values of TMGPG and the genotypic values 

exceeded 0.6 in most cases in all environments, indicating that TMGPG is robust to changes in 

the environment. Similar prediction accuracy of MGP and TMGPG in 2017-D may be due to the 

lack of change in the canopy area in the second half of this environment’s growth period. This 

approach to future prediction through growth models has potential application for selection in 

early growth stages in crop breeding. 

In this study, the growth model and GP/MGP were used separately in TGP/TMGP, but they 

can be integrated as one hierarchical model. Several reports have shown the effectiveness of 

hierarchical models in the analysis of longitudinal traits (Onogi et al., 2019), QTL analysis (Ma 

et al., 2002), and GWAS (Das, Li, Wang, et al., 2011; Crispim et al., 2015). It is expected that the 
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joint analysis will make the parameter estimation robust. In this study, two steps are required to 

estimate the growth parameters, but joint estimation may simplify the estimation process. 

A random regression model is also known as a regression method of longitudinal data with a 

mixed model structure, and it was used in GP of longitudinal growth data (Sun et al., 2017; 

Campbell et al., 2018). Although random regression cannot incorporate the growth curve structure 

like the growth model in this study, its formulation is simple (see Section 2.2.3). Random 

regression is assumed to perform better than MGP in the prediction scheme of CV3, but it will 

not be as accurate as TMGPG. 

5.4.4 Growth analysis on remote sensing data for plant breeding 

Applying the growth model to longitudinal growth data measured using UAV-RS data allows 

us to capture genetic variation in growth patterns. The integration of growth model functions with 

genetic analysis was shown to be a practical approach for analyzing field experiments growth 

processes. The integrated model of GP and the growth model was able to predict the future growth 

curve in the early growth stage. The future growth prediction can be used for selection in the early 

growth stages, which will reduce the cost for the field trials. This study suggested that data 

collection using UAV-RS and its analysis using growth models and mixed models will benefit 

crop breeding.  

In the near future, it is expected that UAV-RS will play an active role in the plant breeding 

field and provide growth trajectory data from multiple breeding programs. It will be possible for 

breeders and researchers to focus on new genotypes to select and develop new varieties suitable 

for the target environment. The integrated use of growth models and GP will be a useful method 

to effectively link growth process data with marker genotype data to improve genetic gain for 

genomic selection. 
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6 Prediction of soybean growth curves by modeling 

genetic and environmental effects on daily growth 

6.1 Introduction 

It is well known that many plant traits are affected by both genetic and environmental factors. 

Genotypic, environmental, and genotype-by-environment interaction (G × E) effects have been 

considered and evaluated simultaneously in plant breeding and genetics. For example, several 

studies have proposed models that include these three effects in genomic prediction (GP) (Schulz‐

Streeck et al., 2013; Technow et al., 2015; Onogi, Watanabe, et al., 2016; Jarquin et al., 2018). 

Previous studies on G × E analysis have mainly focused on traits at harvest because they directly 

determine the agricultural value of crops and genotypes (Kang, 2001). However, considering the 

actual mechanism, the G × E of traits at harvest is determined by the accumulation of G × E during 

the growth process. If we can evaluate G × E during the growth process, we can gain useful 

knowledge in plant breeding, such as environmental factors affecting a trait at any particular time 

during the growth process. 

However, In crop breeding, it has been difficult to observe the growth process since many 

genotypes are usually tested simultaneously in a field trial. Thanks to the rapid development of 

sensing technologies in recent years, high-throughput phenotyping is becoming available in plant 

genetics and breeding, and the measurement of longitudinal growth data is becoming more 

practical. Accurate and detailed acquisition of the growth process by high-throughput 

measurements is expected to improve genetic gain in plant breeding (Araus & Cairns, 2014; 

Cabrera‐Bosquet et al., 2012; Furbank & Tester, 2011). For field phenotyping, the application of 

remote sensing with unmanned aerial vehicles (UAV-RS) is expected because of its low cost of 

implementation and management. One of the problems is that the phenotypic data obtained from 

UAV-RS is noisy because UAVs usually obtain plant images from a distance of 10 to 100 meters. 

To properly trace the plant growth process, it is necessary to develop a noise filtering method 

suitable for UAV-RS data. 

In this section, two topics were considered to develop a G × E analysis method of the growth 

process. The first is the development of a model to estimate the growth curves using UAV-RS 

data accurately. The proposed model assumed that the UAV-RS data is affected by two factors, 

noise and bias, and these were included in a hierarchical Bayesian model. The model was applied 

to the soybean canopy area and height, and the results were validated with ground-truth data of 

the canopy height. 

The second topic is the modeling of the daily response of growth traits to environmental 

factors. Two approaches were proposed: an additive spline (AS) model and a machine learning 

(ML) model. In the AS model, the daily response curve to environmental effects was represented 

by additive splines whose coefficients were determined by considering the genotypic relationship 

matrix. On the other hand, in the ML model, environmental factors and marker genotypic data 
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were used equally as dependent variables in the Random forest. Although the ML model cannot 

explicitly model the plant traits' environmental response, it can incorporate complex interaction 

among environmental factors and may have higher prediction accuracy than the AS model. 

6.2 Material and methods 

6.2.1 Data acquisition 

The data was obtained from the same field experiments as Chapter 4 (Fig. 6-1). In 2017 and 

2018, no-watered (W0) and well-watered (WW) treatments were set to evaluate the influence of 

drought and control conditions on phenotypic variations, as explained in Chapter 4. In 2019, four 

watering levels were investigated. Two of them were equivalent to those in 2017 and 2018, i.e., 

W0 and WW, but different watering patterns were set for the rest two; five days watering followed 

by five days no-watering (W5), and ten days watering, and ten days no-watering (W10). Watering 

treatment started after thinning every year (Fig. 5-2). I use an abbreviation for the combination of 

the treatment and year; treatment WW in 2017 is called “2017-WW”. 

Plant height of a subset of plots was measured manually as the ground truth data and was used 

to correct the UAV-RS-based canopy height measurement bias. Plant height was defined as the 

height of the top of a plant from the ground. In 2017, all plots were separated into three groups. 

The plant height of each group was measured in turn almost once a week. In 2018 and 2019, nine 

and eight plots were chosen from each block, respectively. The plant height of the selected plots 

was measured every day. 

Minimum, mean, and maximum temperature, solar radiation, and transpiration were measured 

as environmental factors (Fig. 6-2). Also, soil moisture was measured using (TDR-341F, Fujiwara 

Seisakusho, Japan) every day at several points in the field.  
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Figure 6-1-1. The canopy area measured by UAV-RS. Observed values of each treatment were 

plotted. Phenotypic data of the same year was plotted with gray lines.  

30 40 50 60 70 80

0
.0

0
.5

1
.0

1
.5

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2017-WW

N = 398

30 40 50 60 70 80

0
.0

0
.5

1
.0

1
.5

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2017-W0

N = 398

20 30 40 50

0
.0

0
.4

0
.8

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2018-WW

N = 400

20 30 40 50

0
.0

0
.4

0
.8

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2018-W0

N = 400

20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2019-WW

N = 200

20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2019-W5

N = 200

20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2019-W10

N = 200

20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

DAS

C
a

n
o

p
y
 a

re
a

  
(m

2
)

2019-W0

N = 200



90 

 

 

Figure 6-1-2. The canopy height measured by UAV-RS. Observed values of each treatment were 

plotted. Phenotypic data of the same year was plotted with gray lines.  
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Figure 6-2. The longitudinal curves of the environmental factors. Average, maximum, and 

minimum daily temperature, rainfall, and radiation are shown. Data, before the observation started, 

are plotted in fine lines and points.  

0 20 40 60 80

2
0

2
4

2
8

3
2

DAS

A
v
e
. 
te

m
p
. 
(°

C
)

2017
2018
2019

0 20 40 60 80

1
6

2
0

2
4

2
8

DAS
M

a
x
. 
te

m
p
. 
(°

C
)

2017
2018
2019

0 20 40 60 80

2
0

2
5

3
0

3
5

DAS

M
in

. 
te

m
p
. 
(°

C
)

2017
2018
2019

0 20 40 60 80

0
2
0

4
0

6
0

8
0

DAS

R
a
in

fa
ll 

(m
m

)

2017
2018
2019

0 20 40 60 80

5
1
0

1
5

2
0

2
5

3
0

DAS

R
a
d
ia

ti
o
n
 (

M
J
)

2017
2018
2019



92 

 

6.2.1 Filtering of noise and bias 

The canopy area and height data were found to have large measurement noise and bias. 

However, standard noise filtering methods such as a spline fitting were not appropriate because 

the canopy area and height sometimes showed a sudden increase and decrease (Fig. 6-1). 

Therefore, a statistical method to remove the noise and bias was developed (Fig. 6-3). R 

(http://www.r-project.org) was used for the following analyses. 

 

Figure 6-3. The model structure assumed to filter the measurement bias and noise. White, gray, 

and black nodes indicate latent variables, given variables, and hyperparameters, respectively. 
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First, the measured values were decomposed into several factors as 

𝑦𝑖,𝑑 = 𝑧𝑖,𝑑𝑏𝑑 + 𝑒𝑖,𝑑 (6-1), 

where yi,d is the measured values of the canopy area or height of plot i on day d, zi,d is the true 

value of the canopy area or height, bd is the measurement bias, and ei,d is the measurement noise. 

The measurement bias was assumed to be shared by all plots on each day. The measurement noise 

ei,d was assumed to be independent: 

𝑝(𝑒𝑖,𝑑) = 𝑁(𝑒𝑖,𝑑|0, 𝛾𝑑
−1) (6-2), 

𝑝(𝛾𝑑) = Gamma(𝛾𝑑| 𝛾, 𝛽𝛾) (6-3), 

where N(. | 0, γd
-1) is the Gaussian distribution with mean 0 and variance γd

-1, Gamma(. | α, β) is 

the Gamma distribution with parameter α and β, 

Gamma(𝑥| , 𝛽) =
1

Γ( )
𝛽𝛼𝑥𝛼−1 exp(−𝛽𝑥) (6-4). 

The hyperparameters were set as αγ = 0.1 and βγ = 0.1 so that the prior would be close to 

noninformative distribution. The bias, bd, seems to be one on most days (when plant height was 

estimated without bias) but may not be one on the others (when plant high was estimated with 

bias). Such characteristics can be expressed with a hierarchical model as 

𝑝(𝑏𝑑|𝜈𝑑) = {
 𝛿(𝑏𝑑 − 1)        if 𝜈𝑑 = 0
 Unif(𝑏𝑑|0, 2)       if 𝜈𝑑 = 1

(6-5), 

𝑝(𝜈𝑑|𝜁) = Bern(𝜈𝑑|𝜁) (6-6), 

𝑝(𝜁) = Beta(𝜁| 𝜁 , 𝛽𝜁) (6-7), 

where δ(.) is the Dirac’s delta function value of which is zero when the input is not zero, Unif(. 

| α, β) is the uniform distribution value of which is constant when the input is larger than α and 

smaller than β, Bern(. | ζ) is the Bernoulli distribution with success rate ζ, and Beta(. | α, β) is the 

Beta distribution with parameter α and β, 

Beta(𝑥| , 𝛽) =
Γ( + 𝛽)

Γ( )Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 (6-8). 

Thus, νd is a latent variable determining whether there was a bias on day d, and ζ indicates the 

probability of the occurrence of the bias. The hyperparameters were set as αζ = 0.01 and βζ = 0.01 

so that the prior would be close to noninformative distribution. 

The true values of the canopy area and height, zi,d, of a plot were assumed to be on a spline 

curve. Since the spline function can be described with a linear combination of basis functions, its 

structure can be written as 
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𝑧𝑖,𝑑 = ∑𝑤𝑖,𝑞𝜙𝑑,𝑞

𝑄

𝑞=1

(6-9), 

𝑝(𝑤𝑖,𝑞) =  𝑁(𝑤𝑖,𝑞|0, 𝜂
−1) (6-10), 

where ϕd,q is the qth basis of the B-spline on day d, Q is the number of bases (Q = 6), wi,q is the 

linear combination coefficient, and η is a hyperparameter determining the variance of wi,q. The 

hyperparameter was set as η = 10-6 so that the prior would be flat.  

The variational Bayes method was used to estimate the parameters. The joint distribution of 

all the parameters is 

     𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄,𝐰,𝚽, 𝛎, 𝜁)

= 𝑝(𝐘|𝐙, 𝐛, 𝛄)𝑝(𝐘0|𝐙, 𝐛, 𝛄)𝑝(𝛄)𝑝(𝐙|𝐰,𝚽)𝑝(𝐰)𝑝(𝐛|𝛎)𝑝(𝛎|𝜁)𝑝(𝜁) 
(6-11), 

where Y, Z, b, γ, w, Φ, and ν are matrices or vectors yi,d, zi,d, bd, γd, wi,q, ϕd,q, and νd, respectively. 

In those variables, Y and Φ are the given values as data, and the rest are the parameters to be 

estimated. Here, the growth process data was separated in Y and Y0, the observed and missing 

values, to distinguish given values and parameters to be estimated. The missing observation data 

appeared when the image processing of UAV-RS data with the software Pix4Dmapper failed. It 

was assumed that the joint distribution Eq. 6-11 could be approximated with a probability density 

𝑞(𝐘0, 𝐙, 𝐛, 𝛄, 𝐰, 𝛎, 𝜁) = 𝑞1(𝐙,𝐰)𝑞2(𝐛, 𝛎)𝑞3(𝐘0, 𝛄, 𝜁) (6-12), 

under the assumption that the joint distribution can be decomposed into three distributions. 

Then, it is known that the 𝑞𝑘
⋆  (k = 1, 2, and 3), which is the nearest approximation of joint 

distribution (Eq. 6-12), can be estimated by (Bishop, 2006) 

ln 𝑞𝑘
⋆ (𝛉𝑘) = 𝔼𝑘′≠𝑘[ln 𝑝(𝐗, 𝛉)] + const. (6-13), 

where θk is the parameter vector of qk, θ is the parameter vector of q, 𝔼k’≠k [.] is the expectation 

with the parameters of qk’ where k’ ≠ k, and X is the given data. In this study, 𝑞1
⋆ and 𝑞2

⋆ are 

ln 𝑞1
⋆ (𝐙,𝐰) = 𝔼𝐘0 ,𝐛,𝛄,𝛎,𝜁

[ln 𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄, 𝐰,𝚽, 𝛎, 𝜁)] + const.

= 𝔼𝐘0 ,𝐛,𝛄
[ln 𝑝(𝐘, 𝐘0|𝐙, 𝐰, 𝐛, 𝛄)] + 𝔼[ln𝑝(𝐙,𝐰)] + const. 

(6-14), 

ln 𝑞2
⋆ (𝐛, 𝛎) = 𝔼𝐘0,𝐙,𝛄,𝐰,𝜁[ln 𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄,𝐰,𝚽, 𝛎, 𝜁)] + const.

= 𝔼𝐙,𝛄[ln 𝑝(𝐘|𝐙, 𝐛, 𝛄)] + ln 𝑝(𝐛|𝛎) + 𝔼𝜁[ln 𝑝(𝛎|ζ)] + const. 
(6-15). 

Since Y0, γ, and ζ are independent when other parameters are given, 𝑞3
⋆ can be decomposed 

into three terms: 

ln 𝑞3
⋆ (𝐘0, 𝛄, 𝜁) = ln 𝑞3𝑌0

⋆ (𝐘0) + ln𝑞3𝛾
⋆ (𝛄) + ln 𝑞3𝜁

⋆ (𝜁) (6-16), 
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ln 𝑞3𝑌0
⋆ (𝐘0) = 𝔼𝐙,𝐛,𝛄,𝐰,𝛎,𝜁[ln 𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄,𝐰,𝚽, 𝛎, 𝜁)] + const.

= 𝔼𝐙,𝐛,𝛄[ln 𝑝(𝐘0|𝐙, 𝐛, 𝛄)] + const. 
(6-17), 

ln 𝑞3𝛾
⋆ (𝛄) = 𝔼𝐘0,𝐙,𝐛,𝐰,𝛎,𝜁[ln 𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄,𝐰,𝚽, 𝛎, 𝜁)] + const.

= 𝔼𝐘0,𝐙,𝐛
[ln 𝑝(𝐘, 𝐘0|𝐙, 𝐛, 𝛄)] + ln 𝑝(𝛄) + const. 

(6-18), 

ln 𝑞3𝜁
⋆ (𝜁) = 𝔼𝐘0,𝐙,𝐛,𝛄,𝐰,𝛎[ln 𝑝(𝐘, 𝐘0, 𝐙, 𝐛, 𝛄, 𝐰,𝚽, 𝛎, 𝜁)] + const.

= 𝔼𝛎[ln 𝑝(𝛎|𝜁)] + ln 𝑝(𝜁) + const.  
(6-19). 

Then, the parameters were estimated with the variational Bayes method. In the method, the 

expectations of parameters of qk were calculated as 

𝔼[𝛉𝑘|𝛉̂−𝑘] = ∫𝛉𝑘𝑞(𝛉𝑘|𝛉̂−𝑘)𝑑𝜽𝑘 (6-20), 

where 𝛉̂-k is a vector of the expectation of the parameters of the distribution other than qk. By 

repeating the estimation of the expected values of the parameters (Eq. 6-20) of qk for each k = 1, 

2, and 3, the parameter values will converge to the joint distribution (Eq. 6-11). The estimation 

was applied to each block’s data in the actual execution, and the estimation procedure was 

repeated ten times. 

6.2.2 Interpolation of soil moisture 

Since the soil moisture was measured in limited locations and dates, the soil moisture in all 

the plots and dates was interpolated. Spatial and temporal similarities of the soil moisture were 

modeled with the kernel method: 

𝑦𝑖,𝑗,𝑑 = ∑∑𝑘𝑠(𝑙𝑗 − 𝑙𝑗′) 𝑘𝑡(𝑑 − 𝑑′)𝐼(𝑖 = 𝑖′) 𝑦𝑖′,𝑗′,𝑑′

𝑑′𝑗′

(6-21), 

where y is the soil moisture data of row i, plot j on day t, ks(.) is the kernel function for spatial 

effect, kt(.) is the kernel function for temporal effect, li is the location (integer) of plot i, and I(.) 

is a function to select the same row where I(0) = 1 and otherwise 0. It means that the soil moisture 

data measured only in the same row was used for the estimation because the soil moisture 

condition was assumed to depend on each watering tube (i.e., to be independent among different 

watering tubes). The Gaussian kernel was used for ks(.) and kt(.), thus 

𝑘𝑠(𝑥) = exp(−𝑥2 𝜆𝑠⁄ ) (6-22), 

𝑘𝑡(𝑥) = exp(−𝑥2 𝜆𝑡⁄ ) (6-23). 

The bandwidths of the kernels, λs and λt, were selected from the candidate values (17 values 

from 0.1 to 1000) each year using leave-one-out cross-validation. Root mean squared errors 

(RMSE) were used to evaluate the accuracy of the estimation in cross-validation. 
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6.2.3 Daily growth model 

Two models were used to explain the growth curve of the canopy area and height. One model 

is the Random forest (RF) model (Breiman, 2001), where daily growth was modeled with machine 

learning using genotypic and environmental factors as predictors,  

𝑦𝑖,𝑑 = RF(𝑦̂𝑖,𝑑−1, 𝐚𝑖 , 𝐰𝑑−1, 𝑠𝑖,𝑑−1, 𝑑) + 𝑒𝑖,𝑑 (6-24), 

where RF(.) is a function of RF, 𝑦̂𝑖,𝑑−1 is a predicted value of the canopy area or height on 

day d ‒ 1, ai is a column vector of genotypic relationship matrix A corresponding to the genotype 

in plot i, wd‒1 is a vector of the weather variables on day d ‒ 1, si, d ‒ 1 is a measure of the soil 

moisture. Thus, this model includes the effect of genotype (ai), environment (wd‒1, si,d‒1), plant 

size one day before (𝑦̂𝑖,𝑑−1), and growth stage (d). The column vector of A was used to represent 

the genotypic effect since the original whole-marker genotype data is too large to evaluate. The 

weather variables, wd‒1, consisted of the minimum, mean, and maximum temperature, solar 

radiation, and transpiration. When training the model, the measured value of the canopy area or 

height on day d ‒ 1, yi,d-1, was used instead of 𝑦̂𝑖,𝑑−1 as an input. 

Another model is the additive spline (AS) model, where daily growth was expressed with a 

statistical model, 

Δ𝑦𝑖,𝑑 = 𝑦𝑖,𝑑 − 𝑦̂𝑖,𝑑−1 = ∑SP𝑘,𝑖,𝑑(𝑤𝑘,𝑑−1)

5

𝑘=1

+ SP6,𝑖,𝑑(𝑠𝑖,𝑑−1) + 𝑒𝑖,𝑑 (6-25), 

where Δyi,d, SPk,i,d(.) is the spline function for variable k and plot i on day d, wk,d‒1 is a kth 

weather variable on day d ‒ 1. Since the spline function can be described with a linear connection 

of the basis functions, 

SP𝑘,𝑖,𝑑(𝑤𝑘,𝑑−1) = ∑ 𝑐𝑞,𝑘,𝑖,𝑑𝜙𝑞(𝑤𝑘,𝑑−1)

𝑄

𝑞=1

(6-26), 

where Q is the number of basis functions of the spline, ϕq is qth basis function, and cq,k,i,d is its 

coefficient. Here, the B-spline basis function was used as ϕq. Three values (3, 4, 5) were assigned 

to the number of the basis functions, Q. 

The varying coefficient model (Hastie et al., 2009) was used to estimate coefficients cq,k,i,d 

with consideration of genotypic relationship. It was assumed that the coefficients cq,k,i,d of 

genetically close genotypes were similar, and those on close observation dates were similar. In 

other words, the coefficients are assumed to vary among genotypes and dates smoothly. These 

assumptions can be reflected in the estimation criterion of the coefficients. Here, the minimization 

of the weighted least squares was used for the estimation, 

min
𝑐𝑞,𝑘,𝑖,𝑑
𝑘=1,…,6
𝑞=1,..,𝑄

∑ ∑ 𝑎𝑖,𝑖′𝑘𝑑(𝑑 − 𝑑′)(𝑦𝑖′,𝑑′ − 𝑦̂𝑖,𝑑−1 − Δ𝑦̂𝑖,𝑑)
2

𝐷

𝑑′=1

𝑁

𝑖′=1

(6-27), 
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𝑘𝑑(𝑥) = exp(−𝑥2 𝜆𝑑⁄ ) (6-28), 

where ai,i’ is an element of matrix A corresponding to the genotypes of plot i and i’, kd (.) is 

the Gaussian kernel of observation date, yi’,d’ is an observed value of plot i’ on day d’, Δ𝑦̂𝑖,𝑑 is a 

fitted value of Eq. 6-25 of plot i on day d, and λd is the kernel width. Therefore, data of variety i’ 

or day d’ were weighted based on the genotypic similarity ai,i’ and closeness of date kd (d ‒ d’) 

when estimating the daily growth of variety i or day d. Three values (10, 30, 60) were assigned to 

the kernel bandwidth, λd. For ease of the calculation, zero was assigned to ai,i’ if it was smaller 

than zero. 

The model performances were assessed using the prediction accuracy with leave-one-

environment-out cross-validation. One combination of the treatment and year (e.g., 2017-WW) 

was eliminated from the dataset, and the rest were used for model training. Then, the eliminated 

data was used to validate the prediction accuracy of the trained model. The model accuracy was 

evaluated with the correlation coefficients between predicted and observed values. 

6.3 Results 

6.3.1 Filtering of noise and bias 

The canopy area and height’s estimated true growth processes were smoother than the 

observed values (Fig. 6-4, 6-5). The measurement bias (bd) and the probability of bias occurrence 

(νd) were estimated for each block, which seemed appropriate for most cases. The correlation 

coefficients between the estimated bias and the true bias calculated from the canopy height 

measured by hand were more than 0.5 in 9 cases out of 12 (Fig. 6-6). The correlation was low in 

the estimation of the 2019 data. The estimated bias was larger than the ground-truth values in 

2017 and 2018, whereas they were smaller in 2019. On the other hand, the growth curves 

estimated by the model (Fig. 6-4c, 6-5c) were not much different compared with those estimated 

by the simple fitting of B-splines (Fig. 6-4g, 6-5g). 
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Figure 6-A4-1. The result of the noise and bias filtering of the canopy area in 2017-WW. (a‒c) 

Observed canopy area (Y), estimated canopy area (Z), and estimated growth curve (ΦwT). (d‒f) 

The estimated values of the bias (b), the probability of bias occurrence (ν), and the variance of 

noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees was 

the same as used in the estimation model. 
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Figure 6-A4-2. The result of the noise and bias filtering of the canopy area in 2017-W0. (a‒c) 

Observed canopy area (Y), estimated canopy area (Z), and estimated growth curve (ΦwT). (d‒f) 

The estimated values of the bias (b), the probability of bias occurrence (ν), and the variance of 

noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees was 

the same as used in the estimation model. 
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Figure 6-A4-3. The result of the noise and bias filtering of the canopy area in 2018-WW. (a‒c) 

Observed canopy area (Y), estimated canopy area (Z), and estimated growth curve (ΦwT). (d‒f) 

The estimated values of the bias (b), the probability of bias occurrence (ν), and the variance of 

noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees was 

the same as used in the estimation model. 
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Figure 6-A4-4. The result of the noise and bias filtering of the canopy area in 2018-W0. (a‒c) 

Observed canopy area (Y), estimated canopy area (Z), and estimated growth curve (ΦwT). (d‒f) 

The estimated values of the bias (b), the probability of bias occurrence (ν), and the variance of 

noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees was 

the same as used in the estimation model. 
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Figure 6-A4-5. The result of the noise and bias filtering of the canopy area in 2019-WW and 

2019-W5. (a‒c) Observed canopy area (Y), estimated canopy area (Z), and estimated growth 

curve (ΦwT). (d‒f) The estimated values of the bias (b), the probability of bias occurrence (ν), 

and the variance of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The 

number of degrees was the same as used in the estimation model. 
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Figure 6-A4-6. The result of the noise and bias filtering of the canopy area in 2019-W10 and 

2019-W0. (a‒c) Observed canopy area (Y), estimated canopy area (Z), and estimated growth 

curve (ΦwT). (d‒f) The estimated values of the bias (b), the probability of bias occurrence (ν), 

and the variance of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The 

number of degrees was the same as used in the estimation model. 
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Figure 6-A5-1. The result of the noise and bias filtering of the canopy height in 2017-WW. (a‒c) 

the measured canopy height (Y), the estimated values (Z), and the estimated growth curve (ΦwT). 

(d‒f) the estimated values of the bias (b), the probability of bias occurrence (ν), and the variance 

of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees 

was the same as used in the estimation model. 
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Figure 6-A5-2. The result of the noise and bias filtering of the canopy height in 2017-W0. (a‒c) 

the measured canopy height (Y), the estimated values (Z), and the estimated growth curve (ΦwT). 

(d‒f) the estimated values of the bias (b), the probability of bias occurrence (ν), and the variance 

of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees 

was the same as used in the estimation model. 
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Figure 6-A5-3. The result of the noise and bias filtering of the canopy height in 2018-WW. (a‒c) 

the measured canopy height (Y), the estimated values (Z), and the estimated growth curve (ΦwT). 

(d‒f) the estimated values of the bias (b), the probability of bias occurrence (ν), and the variance 

of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees 

was the same as used in the estimation model. 
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Figure 6-A5-4. The result of the noise and bias filtering of the canopy height in 2018-W0. (a‒c) 

the measured canopy height (Y), the estimated values (Z), and the estimated growth curve (ΦwT). 

(d‒f) the estimated values of the bias (b), the probability of bias occurrence (ν), and the variance 

of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The number of degrees 

was the same as used in the estimation model. 
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Figure 6-A5-5. The result of the noise and bias filtering of the canopy height in 2019-WW and 

2019-W5. (a‒c) the measured canopy height (Y), the estimated values (Z), and the estimated 

growth curve (ΦwT). (d‒f) the estimated values of the bias (b), the probability of bias occurrence 

(ν), and the variance of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The 

number of degrees was the same as used in the estimation model. 
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Figure 6-A5-6. The result of the noise and bias filtering of the canopy height in 2019-W10 and 

2019-W0. (a‒c) the measured canopy height (Y), the estimated values (Z), and the estimated 

growth curve (ΦwT). (d‒f) the estimated values of the bias (b), the probability of bias occurrence 

(ν), and the variance of noise (γ-1). (g) The estimated growth curve by fitting a simple spline. The 

number of degrees was the same as used in the estimation model. 
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Figure 6-6. Comparison between the bias (b) estimated by the model and obtained from manual 

measurement in each block. Their correlation coefficients (r) are shown in the bottom right of 

each plot.  

0.6 0.8 1.0 1.2

0
.6

0
.8

1
.0

1
.2

2017-WW-1

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.729

0.6 0.8 1.0 1.2

0
.6

0
.8

1
.0

1
.2

2017-WW-2

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.701

0.6 1.0 1.4

0
.6

1
.0

1
.4

2017-W0-1

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.808

0.4 0.8 1.2

0
.4

0
.8

1
.2

2017-W0-2

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.803

0.6 0.8 1.0 1.2

0
.6

0
.8

1
.0

1
.2

2018-WW-1

Bias (ground truth)
B

ia
s
 (

e
s
ti
m

a
te

d
)

r = 0.761

0.6 0.8 1.0 1.2

0
.6

0
.8

1
.0

1
.2

2018-WW-2

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.778

0.4 0.6 0.8 1.0 1.2

0
.4

0
.8

1
.2

2018-W0-1

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.631

0.4 0.6 0.8 1.0 1.2

0
.4

0
.8

1
.2

2018-W0-2

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.707

1.0 1.2 1.4 1.6

1
.0

1
.2

1
.4

1
.6

2019-WW

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.233

0.8 0.9 1.0 1.1 1.2

0
.8

1
.0

1
.2

2019-W5

Bias (ground truth)
B

ia
s
 (

e
s
ti
m

a
te

d
)

r = 0.367

1.0 1.1 1.2 1.3

1
.0

1
.1

1
.2

1
.3

2019-W10

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.445

1.0 1.2 1.4 1.6

1
.0

1
.2

1
.4

1
.6

2019-W0

Bias (ground truth)

B
ia

s
 (

e
s
ti
m

a
te

d
)

r = 0.513



111 

 

6.3.2 Interpolation of soil moisture 

The selected bandwidths of the temporal effect, λt, were stable among years, whereas the 

selected bandwidths of the spatial effect, λs, were smaller in 2017 than those in the other years 

(Fig. 6-7). The differences in the optimal λs among years were caused mainly by the heterogeneity 

of soil moisture in 2017 in a specific row (Fig. 6-8-1, the lower row of WW-1). The estimated 

parameters, λt, and λs, were used to estimate the soil moisture in all the plots on all the dates (Fig 

6-9). In 2017, the estimated soil moisture converged to the nearest locations’ observed values 

because the kernel function ks(.) behaved as a nearest-neighborhood estimation with small λs. 

 

 

 

Figure 6-7. Heatmaps of RMSE for variant bandwidths of the kernels, λs, and λt. The sets of 

bandwidths with the lowest RMSE in each year were marked with crosses.  
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Figure 6-8-1. Heatmap of the interpolated soil moisture in 2017. The values of 25 and 57 days 

after sowing were chosen. The measured values were plotted as circles.  
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Figure 6-8-2. Heatmap of the interpolated soil moisture in 2018. The values of 27 and 57 days 

after sowing were chosen. The measured values were plotted as circles.  
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Figure 6-8-3. Heatmap of the interpolated soil moisture in 2019. The values of 26 and 57 days 

after sowing were chosen. The measured values were plotted as circles.  
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Figure 6-9. Time-series soil moisture interpolated for all the plots. Line colors identified different 

treatments. Observed values of each treatment were plotted. Phenotypic data of the same year was 

plotted with gray lines.  
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6.3.1 Daily growth model 

First, nine sets of hyperparamterses (Q, λd) of the AS modelwere compared (Fig. 6-10). The 

best hyperparameters were different for each observation or environment, but (Q, λd) = (4, 10) 

and (5, 10) were the best hyperparameters in most cases for the prediction of canopy area and 

height, respectively. In the following paragraphs, these hyperparameters were used as a 

representative of the AS model. 

 

 

Figure 6-10. Comparison of the AS model's prediction accuracy with various sets of 

hyperparameters (Q and λd). The correlation coefficients of the predicted and observed values are 

used as the y-axis. The numbers at the bottom of each plot are the number of points, the accuracy 

of which was the best with each set of hyperparameters.  
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The RF model exceeded the AS model in predicting accuracy in almost all environments (Fig. 

6-11). The accuracy of the RF model was higher than that of the AS model. The AS model's 

accuracy was especially low in the later growth period in 2017, where the data was not supplied 

from the other environments. 
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Figure 6-11. Prediction accuracy of the daily growth of the canopy area using the RF and AS 

models. The accuracy was measured as the correlation coefficient between observed and predicted 

values and plotted for each environment. For the AS model, the hyperparameters Q = 4 and λd = 

10 were used. Red and blue lines correspond to the accuracy of the RF and the AS models, 

respectively. 
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Figure 6-12. Prediction accuracy of the daily growth of the canopy height using RF and AS 

models. The accuracy was measured as the correlation coefficient between observed and predicted 

values and plotted for each environment. For the AS model, the hyperparameters Q = 5 and λd = 

10 were used. Red and blue lines correspond to the accuracy of the RF and the AS models, 

respectively. 
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The estimated environmental response in each plot was drawn as a curve using the estimated 

coefficients. The curves of all plots were overlayed in Fig. 6-13, 6-14. There were tendencies that 

daily growth increased with soil moisture in the canopy area and height, whereas common 

tendencies could not be found in the other factors. The estimated curves were not stable where 

the data were not obtained around the day. 
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Figure 6-13-1. The estimated relationship between environmental factors (except for the soil 

moisture) and the canopy area’s daily growth. The results at the hyperparameter values of Q = 4 

and λd = 10 were selected. The drawn curves were scaled so that the y-value becomes zero when 

the predictor is equal to its mean values. Tick marks were put on the data points observed five 

days before and after. Six dates were selected for the visualization based on days after sowing 

(DAS).  
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Figure 6-13-2. The estimated relationship between the soil moisture and the daily growth of the 

canopy area. The results at the hyperparameter values of Q = 4 and λd = 10 were selected. The 

drawn curves were scaled so that the y-value becomes zero when the predictor is equal to its mean 

values. Tick marks were put on the data points observed five days before and after. Six dates were 

selected for the visualization based on days after sowing (DAS). Data in 2017 and 2018 were only 

available in 20 DAS, and data in 2019 was only available in 60 and 70 DAS.  
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Figure 6-14-1. The estimated relationship between environmental factors (except for the soil 

moisture) and the canopy height’s daily growth. The results at the hyperparameter values of Q = 

5 and λd = 10 were selected. The drawn curves were scaled so that the y-value becomes zero when 

the predictor is equal to its mean values. Tick marks were put on the data points observed five 

days before and after. Six dates were selected for the visualization based on days after sowing 

(DAS).  
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Figure 6-14-2. The estimated relationship between the soil moisture and the daily growth of the 

canopy height. The results at the hyperparameter values of Q = 5 and λd = 10 were selected. The 

drawn curves were scaled so that the y-value becomes zero when the predictor is equal to its mean 

values. Tick marks were put on the data points observed five days before and after. Six dates were 

selected for the visualization based on days after sowing (DAS). Data in 2017 and 2018 were only 

available in 20 DAS, and data in 2019 was only available in 60 and 70 DAS.  
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6.4 Discussion 

6.4.1 Filtering of noise and bias 

Correlation coefficients between the estimated and the ground-truth bias were high (r > 0.5 in 

2017 and 2018), indicating that the model could yield appropriate estimates about the 

measurement bias (Fig. 6-6). The estimated bias term (bd) was higher than the estimated value 

with ground-truthing. This is because the bias was assumed not to exist basically (bd = 1 if νd = 

0), although the actual bias was lower than one in most cases. This problem may be solved if the 

value of bias is parameterized and estimated when νd = 0. 

The estimated results were worse in 2019 than those in the other years. The reason was the 

difference in the noise structure. As shown in the observed growth curves of the canopy height 

(Fig. 6-1-2), the growth curves in 2019 fluctuated in every observation, whereas the large bias 

existed in a few days in 2017 and 2018. In other words, a small bias existed in most of the 

observations in 2019. It was shown that the bias estimation in such data was difficult using the 

proposed model. 

Although the proposed model included the characteristics of noise and bias of UAV-RS, the 

estimated growth curves (ΦwT, Fig. 6-4 and 6-5) were similar to those estimated by simply fitting 

splines. Further improvement is required for the proposed model to provide results superior to 

spline fitting. For example, the degree of freedom of the spline function for the true growth curve 

can be optimized. The automatic selection of the smoothness enables the closer estimation of true 

growth curves. Such a method might improve the results in 2017-C, in which the estimated curves 

were wavy and unreliable. The likelihood or AIC calculated using the estimated expectation of 

the parameters can be used for the optimization. The smoothing splines may also be useful for 

implementing the auto-determination of the smoothness since a single continuous smoothing 

parameter can determine the degree of freedom of the smoothing spline. 

Consideration of other growth functions may lead to more robust estimation. For the growth 

functions, such as the Gompertz curves and the function used in Chapter 5, the growth curve’s 

shape can be determined in advance. This determination would lead to a more robust estimation 

of the noise and bias against the influence of noise. It is also possible to include the AS model 

defined in Section 6.2.4. Although it requires a complex algorithm and much computation time, 

it would provide an advanced method to analyze the UAV-RS model that simultaneously includes 

the structure of measurement noise and the plant growth daily response. 

6.4.2 Modeling of genetic and environmental effects on daily growth 

The AS model was also used to visualize the growth responses to soil moisture (Fig 6-13 and 

6-14). The result suggests that the AS model can estimate the impact of environmental factors on 

target traits. The model may also accurately estimate the growth response to soil moisture when 

multiple treatment levels and sufficient soil moisture data are available.  
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For the canopy area, changes in the soil moisture’s response curve with days after sowing 

were observed. The result showed that daily growth was proportional to soil moisture around 30 

days after sowing, but saturation in the daily growth appeared 40 days after sowing. It was 

suggested that the increase of soil moisture  no longer affected the canopy area when the soil 

moisture was more than 5%. This increase may be a correct estimation of the growth response 

curve, but other reasons are also possible; the growth of the canopy area of many genotypes 

reached the maximum in WW treatments due to the overlap of the leaves or the maturity. Further 

analysis of growth curves is necessary to validate these reasons. 

On the other hand, it was difficult to find common tendencies in other environmental factors. 

One reason is that the measurements of the weather variables were common for all the plots, 

unlike the soil moisture. Another reason is using the kernel function of time to estimate the 

environmental response (kd in Eq. 6-27). The estimation of the changing environmental response 

was attempted by weighing the data around the target date, but the lack and bias of the 

environmental data occurred. This lack and bias in the data were also caused by the seasonal 

patterns in temperature and the biased distribution of the transpiration where most values were 

equal to zero. The removal of the kernel function of time may improve the robustness of the 

estimation for such environmental factors 

Consideration of a longitudinal data structure is an important way to extend the AS model. a 

robust analysis of the environmental responses would be possible by separating the weather data 

into the seasonal trend and other micro-environmental patterns. Another issue is the 

autocorrelation of dependent variables, yi,d. The Markov chain model should be formally 

implemented to explain the relationship between yi,d and yi,d+1. For the estimation of the growth 

parameters, the Kalman filter and smoother can also be applied. Several reports using the Kalman 

filter for data assimilation of RS and CGMs could be found (Jin et al., 2018), suggesting that such 

a method will help analyze growth data. 

The RF model's prediction accuracy exceeded that of the AS model (Fig. 6-11 and 6-12). It 

was suggested that the daily growth was affected by the interaction terms among the 

environmental factors, which was not included in the additive model. However, the RF model 

might overfit the given data due to the small input data size and the seasonal environmental factors 

pattern. It is necessary to train a prediction model with larger datasets to precisely validate the RF 

model prediction ability. 

The two models proposed in this study took either a statistical or a machine learning approach, 

and the estimation results were highly dependent on the data in both cases. These approaches 

allow the flexible estimation of environmental responses. However, their results would be 

unreliable if enough data is not supplied or the data's characteristics are not taken into account. 

Crop growth models (CGMs), in which environmental effects on plant growth are modeled based 

on plant physiological knowledge, might help overcome the problem. For example, the estimation 

of daily response to the temperature would be robust by replacing the spline of the AS model with 

the function used in CGMs as the response curve of temperature. Although it requires a complex 

parameter estimation procedure, effective integration of statistical or machine-learning models 

and CGMs may enable improved analysis and prediction of the growth process.  
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7 Discussion 

In the chapters up to this point, four research topics were introduced and discussed. In this 

chapter, the topics will be discussed from two viewpoints: data acquisition and modeling methods. 

7.1 Data acquisition 

In Chapters 4, 5, and 6, UAV-RS was used to measure the growth process of soybean canopy 

area and height. One difficulty in tracking plant growth using UAV-RS is the considerable 

measurement noise. One solution is calibration using manually measured ground-truth data for a 

limited number of plants. This calibration was shown to be useful for the soybean canopy height 

in this dissertation (Chapters 4 and 6) and sorghum plant height (Hu et al., 2018). However, this 

calibration method cannot be applied to traits that are difficult to measure manually, such as the 

canopy area. Another solution is the estimation of noise using statistical models. The simplest 

way is to fit curves to the observed data by minimizing the sum of squares of the residuals, but 

biased results may be obtained if observed data has a specific pattern of noise. In Chapter 6, the 

noise of the UAV-RS data was estimated with a statistical model, including the estimation of the 

size and presence of the noise on each day. Although the appropriate model structures may differ 

for each dataset, the application of statistical models is considered indispensable to estimate 

precise growth processes from noisy field RS data. 

The usefulness of UAV-RS data was demonstrated in Chapters 4, 5, and 6. In Chapter 4, it 

was shown that growth process data obtained with UAV-RS could improve GP of soybean 

biomass. Chapters 5 and 6 showed that UAV-RS enabled modeling the influences of genotypic 

and environmental factors on soybean growth.  

Although  UAV-RS has high potential in the analysis and modeling of the growth process, 

the type of traits measured with UAV-RS are limited compared to the ones measured manually. 

In Chapter 3, the integrated modeling of rice biomass with CGM and GP was proposed. For the 

modeling, the precise measurement of the leaf age, the number of tillers, the length of leaves, and 

the heading date were essential for attaining a high accuracy by the prediction model. 

Development of methods to measure detailed plant traits using RS-based image data will replace 

manual measurements with field high-throughput phenotyping. 

The rapid growth of deep learning might contribute to the precise measurement of traits with 

UAV-RS. Deep learning is a machine learning method based on neural network models. Deep 

learning now became a state-of-the-art image analysis method by estimating numerous 

parameters with large training data. UAV-RS seems to be compatible with deep learning because 

UAV-RS can supply many images using small cost and labor. Although deep learning requires the 

time-consuming annotation of images to use them as training data, several reports proposed 

efficient methods to prepare training data for plant phenotyping (Chandra et al., 2020; Toda et al., 
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2020). The development of machine learning methods will increase the range and accuracy of 

phenotype data acquired with UAV-RS. 

7.2 Modeling methods 

In this dissertation, three different modeling methods to extend GP to deal with the growth 

process data are proposed. The first method is the use of simple growth models introduced in 

Chapters 4 and 5. Although these growth models are simple, their application has contributed to 

the improvement of GP of the biomass (Chapter 4) and GP of the growth pattern (Chapter 5). 

Since these simple growth models have high generalization abilities, it is expected that these 

methods would apply to a wide range of longitudinal data. 

The second method is the integration of CGM and GP introduced in Chapter 3. This method 

was first proposed by Technow et al., 2015. In that paper, CGM parameters were estimated using 

only target trait data, without growth process data. Although the concept of the integration of 

CGM and GP was innovative, its prediction accuracy was not higher than the standard GP when 

validated with real data (Cooper et al., 2016). The study in Chapter 3 can be interpreted as a 

successful extension of the proposed model to reflect the growth process data and improve 

prediction accuracy. 

One of the advantages of CGM is that it can be extended to take advantage of previous plant 

physiological knowledge. For example, the model in Chapter 3 considers three environmental 

factors, solar radiation, temperature, and day length, based on physiological knowledge. In cases 

where other environmental factors such as drought or nutrient conditions should be considered, 

these can be easily incorporated into the model by referring to previous research about each 

factor’s effects. Such extensibility is attractive for creating a versatile environmental response 

model. However, it is essential to note that models with high complexity and too many parameters 

may degrade generalization performance. 

The third method is the modeling of daily response to environmental factors on plant growth. 

Although many genotypes’ daily growth process is hard to measure manually, the widespread use 

of high-throughput phenotyping technology has made this new method possible. The method is 

innovative in that it models G × E through the plant growth process. In addition, it was shown 

that the proposed method is based on statistical or machine-learning models and requires a 

sufficient amount of data for both the growth process and environmental data. It was found that a 

sufficient amount of data was needed to estimate the daily environmental data for each plot when 

applied to field trials in a few years. Continual improvement of modeling methods is essential to 

expand the use of growth process data in crop breeding. Several improvements can be made in 

the methods mentioned in this dissertation. For example, in the integrated model of CGM and GP 

(Chapter 3) and that of the growth model and GP (Chapters 4 and 5), the estimation of CGM or 

growth model parameters and their GP were executed separately. However, these two procedures 

can be unified using hierarchical modeling (Das, Li, Wang, et al., 2011; Ma et al., 2002; Technow 

et al., 2015; Onogi, Watanabe, et al., 2016). Although integrating estimation and prediction 
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increases computational cost, it is expected to enable parameter estimation not affected by outliers 

or local optimum solutions. In the growth model, including daily environmental response 

(Chapter 6), it is necessary to introduce statistical methods for time series analysis, such as linear 

dynamic systems, to handle the time-series data structure more accurately. Another interesting 

topic that could not be touched upon in this study is comparing the growth model’s performance 

(Chapters 4 and 5) with a similar method, random regression (Section 2.2.3). 

The most important thing for making the best use of growth process data for breeding is to 

choose an appropriate model for each case according to the characteristics of the data and the 

purpose of the analysis. In the models used in this dissertation, the CGM should be used when 

focusing on the physiological mechanisms of plant growth. A simple growth model has a wide 

range of applicability, which can be used without much knowledge about the growth process’s 

mechanism. If growth process data does not match existing growth models, random regression 

can be applied. The statistical model of environmental effects on daily growth proposed in 

Chapter 6 can be used when there are environmental factors of interest and sufficient data. Finally, 

in all cases, machine learning models are powerful tools in the pursuit of prediction accuracy.  

 

In this dissertation, the relationship of the plant growth process data, genomic data, and 

environmental data using the CGM, GP, and growth models was modeled. The studies’ main 

novelty is that the growth processes of several genotypes were measured and analyzed 

simultaneously. In particular, the growth process was frequently measured in Chapters 5 and 6. In 

other studies using field experiments, we do not find any data where the growth process was 

measured as frequently as ones in Chapters 5 and 6. As high-throughput phenotyping systems 

become more widely used in plant breeding, such data will become almost routinely available. 

This usage is also true for the availability of crop genomic data with the common use of high-

throughput genotyping technologies. The use of time-series growth data in crop breeding is still 

in its infancy. The findings in this dissertation will serve as a basis for future studies on crop 

growth processes. 
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9 Abstract 

The growth process of crops is an important research topic in breeding science because traits, 

such as yield and quality, observed at harvest time are determined in a series of growth processes. 

By dissecting the formation process of a target trait, we can obtain a deeper understanding of its 

mechanism, which will improve the efficiency of genetic improvement of the target traits. The 

growth process, however, has been largely neglected in crop breeding research because obtaining 

data on the growth process requires time-series observations of plants. Since a large number of 

genotypes are tested in a breeding program, their time-series measurement is time-consuming and 

labor-intensive. 

Recent developments in sensing technology have made high-throughput phenotyping possible. 

The application of sensing devices, such as unmanned aerial vehicles (UAVs), can reduce the time 

and labor required for the measurement of plant traits. It is expected that observation of the growth 

process of many genotypes will become more accessible for crop breeding. The development and 

application of appropriate modeling methods are necessary to maximize the benefits derived from 

such growth process data. In this dissertation, I proposed several modeling methods to evaluate 

the relationships among crop growth, genomic, and environmental data, and validated whether 

the models are useful for crop breeding. 

1. Predicting biomass of rice with intermediate traits: Modeling method combining crop 

growth models and genomic prediction models 

Genomic prediction (GP) is a method that uses genome-wide marker data and statistical 

models to predict genotypic values of a target trait. Although GP is a useful method for predicting 

the phenotype of a target trait, the standard GP model cannot take into account the effect of 

genotype-by-environment interaction on the trait. In this study, I developed new prediction 

models of rice biomass that take into account manually measured growth process data. 

‘Kinmaze’, ‘Koshihikari’, and their 123 recombinant inbred lines (RILs) were used as plant 

materials. The manually measured phenotypic data from field experiments conducted in Tsukuba, 

Japan in 2014‒2015 were provided and used in the study. The phenotypic data included time-

series data of leaf age (a continuous index of the emergence of ith leaf number), the number of 

tillers, heading date, leaf length, and biomass. RILs were genotyped with 362 SNPs. 

Simple growth models were applied to time-series growth data, and the estimated parameters 

were used as growth-related traits along with the other traits. Two-step models were developed to 

predict biomass. In the first step, growth-related traits except heading date were predicted by 

simple GP. The heading date was predicted with a model that takes into account the effect of the 

heading-date-related genes and a developmental rate model. In the second step, the predicted 

growth-related traits were used to predict the biomass using a crop growth model (CGM) or 

machine learning (ML). In CGM, the biomass was described as the summation of daily growth 

calculated from growth-related traits and environmental information. In ML, the relationship 
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between the biomass and the growth-related traits was modeled using linear regression or Random 

forest. As a result, the CGM based model worked better than the standard GP in both known and 

unknown environments. It was concluded that the efficient use of growth process data could 

increase the accuracy and robustness of genomic prediction in yield-related traits that are affected 

by environmental variations. 

2. Genomic prediction modeling of soybean biomass using UAV-based remote sensing and 

longitudinal model parameters 

The application of remote sensing (RS) to crop breeding can provide a wealth of information 

on plant growth processes in field trials. The inclusion of RS data in multivariate GP (MGP) 

models has been shown to improve the prediction accuracy of target traits, indicating that traits 

measured by RS were also beneficial for GP. However, the current MGP model cannot incorporate 

high-dimensional RS data due to the difficulty in estimating the covariance matrix among 

variables. In this study, I applied growth models to the time-series RS data and used several 

parameters to represent the growth pattern, and investigated whether the MGP model with these 

parameters could improve the prediction accuracy of soybean biomass. 

In 2016, 198 genotypes of soybean germplasm were grown in experimental fields in Tottori, 

Japan. Unmanned aerial vehicle (UAV)-RS was used to measure longitudinal changes in canopy 

height and area continuously. Growth parameters were estimated by applying simple growth 

models and incorporated into the GP of biomass. The assessment of genomic heritability and 

correlation of the parameters indicated that the estimated growth parameters adequately 

represented the observed growth curves. The incorporation of these growth parameters into the 

MGP model partially contributed to the accuracy of biomass prediction. It was concluded that 

these growth models could represent genetic variations in the growth pattern as a function of 

multiple growth parameters measured by RS. These dimensionally reduced growth models are 

essential for extracting useful information from RS data and using it for GP and plant breeding. 

3. Longitudinal growth analysis of soybean using UAV-based remote sensing and its 

application on genomic prediction 

In this study, I developed models to predict the growth process. With the widespread use of 

high-throughput phenotyping systems, it is expected that the acquisition of the growth process 

data will become much easily available. Therefore, by applying GP models to growth data, it is 

expected to be able to predict the growth of untested genotypes. The growth prediction will be 

useful for crop breeding because it is essential for cultivation to take into account the growth 

process. In this study, I implemented several prediction models combining GP and a growth model. 

The accuracy of the models was validated using growth process data measured with UAV-RS. 

In 2017‒2019, 198 genotypes of soybean germplasm were grown in experimental fields in 

Tottori, Japan. The longitudinal changes in their canopy area were measured using UAV-RS. A 

growth model was applied to the canopy area, with growth expressed as a logistic function and 

senescence expressed as an exponential function. Next, I developed a two-step GP (TGP) model 
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and tested whether the growth model contributed to the improvement of growth prediction. In the 

TGP model, the growth process was predicted by first predicting the parameters of the growth 

model with GP and then substituting the predicted values for the parameters of the growth model. 

The prediction accuracy was compared with GP and MGP under three prediction schemes. As a 

result, TGP showed higher prediction accuracy than the other models in the scheme of future 

growth prediction, in which the second half of the growth period was predicted from the data of 

the first half of the growth period. It was concluded that the TGP was useful for future growth 

prediction using data from the early growth period. This prediction method could be applied to 

the selection at an early growth stage in crop breeding, and could reduce the cost and time of field 

trials. 

4. Prediction of soybean growth curves by modeling genetic and environmental effects on 

daily growth 

It is well known that genotype-by-environment (G×E) interaction has non-negligible effects 

on crop traits. Compared to G×E on harvest traits, G×E for growth process has been less discussed 

due to the difficulty of measuring growth. The analysis of G×E on growth process is essential to 

clarify and understand the mechanism of G×E. In this study, I developed a statistical model to 

describe G×E on the growth process measured by UAV-RS. 

Phenotypic data of canopy area and height measured using UAV-RS in the same field trials 

were used. Prior to the modeling of G×E, it is necessary to estimate daily phenotypic values of 

the canopy area and height. Because the measurement data of UAV-RS were affected by certain 

noises, I develop a model to distinguish between growth and noise. The model was validated to 

be proper by comparing estimates of canopy height with the plant height data measured manually. 

Next, I developed models of the environmental response of daily growth using statistical and 

machine learning methods. In the machine learning model, environmental data and marker 

genotype data were included as inputs. On the other hand, in the statistical model, marker 

genotype data were included as input to account for the similarity among genotypes in the shape 

of environmental response curves. As a result, the estimated daily response of the soil moisture 

explained the drought stress on the growth well, although no specific tendency was observed for 

the other environmental factors. The ability to adequately estimate the effect of soil moisture was 

supported by the experimental design using the multi-level watering treatment and abundant soil 

moisture data. By comparing the prediction accuracy, the machine learning model outperformed 

the statistical model in predicting the growth process, although the possibility of overfitting could 

not be ignored. The results indicated that attention should be paid to data structure when building 

statistical and machine learning models for G×E of crop growth. 

 

In this dissertation, I proposed several modeling methods to include the growth process data 

in the prediction of harvest traits or to analyze the growth process. In these models, the 

relationships among the plant growth process data, genomic data, and environmental data were 

modeled using CGM, GP, and growth models. The main novelty of these studies was that the 
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simultaneous measurement and modeling of the growth processes of a large number of genotypes. 

As high-throughput phenotyping systems become more widely used for crop breeding, such data 

will become more readily available. Further improvements in methods for modeling growth 

process data will be essential to extract useful insights and generate benefits for crop breeding. 
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