博士論文

臨床データベース解析を通じた、アルツハイマー病の

臨床病態に即したバイオマーカーの再構築

佐藤 謙一郎

臨床データベース解析を通じた、アルツハイマー病の

臨床病態に即したバイオマーカーの再構築

所属 脳神経医学専攻 神経内科学

指導教員 戶田 達史

申請者 佐藤 謙一郎

早期からのアルツハイマー病(以下 AD)に関するバイオマーカーは、AD 病理に直接的に関係するものはアクセス性が十分ではなく、一方でアクセス性の良いものは AD 病理との関係性が弱いため再現性が十分ではない、といった trade-off の関係が あった。この関係を踏まえてさらに検査・バイオマーカーの性能を向上させること を目的として、アクセス性ないし AD 病理との直接性がより大きくなるようにする べく、大規模な臨床観察データの多角的な解析を行い、結果として、既存バイオマ ーカーの性能改善の可能性が示された。そのうち、早期のアミロイド蓄積に対する web ベース予測が有望であり、今後のデジタルバイオマーカーとしての発展可能性 も期待できる。

略語

AD, Alzheimer's disease

A β , amyloid beta

CSF, cerebrospinal fluid

MRI, magnetic resonance imaging

J-TRC, Japanese Trial-Ready Cohort

A4 study, Anti-Amyloid Treatment in Asymptomatic Alzheimer's study

PET, positron emission tomography

SUVr, standardized uptake value ratio

J-ADNI, Japanese Alzheimer's Disease Neuroimaging Initiative

MCI, mild cognitive impairment

CN, cognitive normal

WGCNA, weighted gene co-expression network analysis

ADNI, Alzheimer's Disease Neuroimaging Initiative

DNAmeAge, DNA methylation clock

AA, aging acceleration

目次

要		2
	略語	3
第	1章:序文	3
	1-1. 背景	3
	1-1-1. アルツハイマー病 (Alzheimer's disease)	8
	1-1-2. アミロイドカスケード仮説と臨床区分10	0
	1-1-3. A/T/N 分類と対応するバイオマーカー14	4
	1-1-4. AD バイオマーカーとその問題点	6
	1-2. 研究の目的	1
第	2 章: プレクリニカル AD におけるアミロイドリスク予測26	5
	2-1.背景	ó
	2-1-1.AD 治療薬開発のこれまで20	6
	2-1-2. プレクリニカル AD の臨床研究実施に際しての困難さ	8
	2-1-3. 治験即応コホート(Trial-Ready Cohort)	0
	2-1-4. アミロイドリスク予測アルゴリズム導入の必要性	3
	2-2. 本検討(第2章)の目的	7
	2-3. 方法	3
	2-3-1. 倫理委員会承認	8
	2-3-2. J-TRC webstudy データ	8
	2-3-3. A4 study データ	3
	2-3-4. 予測モデルの構築・評価	5
	2-3-5. 統計処理一般について	1
	2-4. 結果	2
	2-4-1. 基本的なプロファイル	2
	2-4-2. 予測モデルの評価(A4 アジア人グループ)5.	5
	2-4-3. 予測モデルによる予測(J-TRC webstudy)	9

2-5. 考察(第2章)	
第3章: 共萎縮ネットワーク解析による背景病理進展の可視化手法	68
3-1. 背景	
3-1-1. 神経変性病理の拡がりとしての脳萎縮	
3-1-2. 先行研究:コネクトーム	
3-1-3.遺伝子発現解析手法 WGCNA の応用	
3-2. 本検討(第3章)の目的	74
3-3. 方法	
3-3-1. 倫理委員会承認	
3-3-2. J-ADNI データについて	
3-3-3. データ取得とサンプルの組み入れ基準	
3-3-4. 脳 structural MRI データ前処理	
3-3-5. 統計解析について	
3-3-6. 重み付き共萎縮ネットワーク解析:WCANA	
3-4. 結果	
3-4-1. 組み入れ症例のプロファイル	
3-4-2. 臨床的な各因子との脳萎縮との関係:単解析	
3-4-3. WCANA による interconnectivity 解析	
3-4. 考察(第3章)	
第4章: 血液 EPIGENETIC AGING を用いた、A/T/N 分類予測の試み	
4-1. 背景	103
4-1-1. Aging acceleration	103
4-1-2. 血液 AD バイオマーカーとしての aging acceleration	104
4-2. 本検討(第4章)の目的	106
4-3. 方法	107
4-3-1. 倫理委員会承認	107
4-3-2. ADNI データについて	107
4-3-3. データ取得とサンプルの組み入れ基準	

4-3-4. A/T/N 分類	109
4-3-5. DNA メチル化について	112
4-3-6. Epigenetic Clock およびAging Acceleration について	114
4-3-7. マイクロアレイデータ前処理	116
4-3-8. epigenetic aging、aging acceleration の計算	121
4-3-9. 予測モデルの構築と評価	124
4-4. 結果	129
4-4-1.サンプルのプロファイル	129
4-4-2. Aging Acceleration	136
4-4-3. 予測モデルの評価	138
4-5. 考察(第4章)	
第5章. 結語と今後の展望	145
5-1. まとめ	145
5-2. 早期 Aβ 陽性検出デジタルバイオマーカーとしての可能性	152
5-3. 結語	155
謝辞	156
参考文献	

第1章:序文

1-1. 背景

1-1-1. アルツハイマー病 (Alzheimer's disease)

アルツハイマー病(Alzheimer's disease:以下 AD)は、主に初老期以降に発症し、記 億障害を主体とする認知機能低下を緩徐進行性にきたす神経変性疾患である[1-3]。認知症の原因疾患のうち 5 割以上を占め最も頻度が高く [4]、また神経変性疾 患としても最も頻度が高い(2 番目に多いのはパーキンソン病)。本症は、1906 年に Aloysius Alzheimer によって初めて報告された。

AD は病理学的にはアミロイド蓄積と神経原線維変化が特徴で[5]、これ に伴い神経細胞のシナプス減少と神経細胞死をきたすことで、脳機能障害を引き起 こす。この病理学的異常は局所的に、海馬周辺を含めた側頭葉内側部から始まり、 病初期から近時記憶低下が目立つ。進行と共に側頭葉内側部から周辺脳領域に徐々 に拡大していき、当該領域に対応した認知機能の低下をきたす[1,2]。具体的に は、見当識障害、側頭葉・頭頂葉への波及に伴う失語・失行・構成障害・視空間認 知障害、などが見られる。これらの中核症状に加えて、周辺症状として、意欲低 下・無関心・幻覚・妄想・徘徊・睡眠障害・抑うつ・不安など精神・行動症状 (BPSD)が早期から出現することが多い[6]。進行につれて徐々に生活機能も障害 され、最終的には全介助を要する状態に至る。経過を通して、周囲の介護者に大き な負担を生じる場合が多く、社会資源的な観点からも超高齢社会での問題となって いる。

AD のうちの一部(~1%程度)は常染色体優性遺伝の家族性 AD であり、単 一原因遺伝子として APP、PSENI、PSEN2 が知られている [7]。また AD 発症率を 高めるリスク遺伝子として、関連遺伝子 APOE の遺伝子多型(特に e4 アレル)が 頻度・発症リスクともに高く、重要である [8]。APOE-e4 アリルの頻度は白人で 14%、本邦では 10%程度とする報告があり、APOE-e4/e3 アリルを持つ場合の (APOE-e3/e3 の場合と比べての) AD 発症オッズ比は欧米では 2-3 程度・本邦では 5 程度、また APOE-e4/e4 の場合の AD 発症オッズ比は欧米では 12 程度・本邦では 30 程度と報告されている [8]。これは、(GWAS などで明らかにされてきた)その他 の関連遺伝子でのリスクアリルを持つ場合の AD 発症オッズ比よりも明らかに高い [9,10]。なお APOE-e2 アリルは頻度が(他のアリルより)低いものの、e4 とは逆 に AD 発症に対して防御的に働くとされている [11]。

AD に対する治療薬としては、大脳基底部から投射されるコリン作動性ニ

9

ューロンが AD で減少している [12] という知見をもとに使用されるようになった コリンエステラーゼ阻害薬であるドネペジル、ガランタミン、リバスチグミンが軽 症以上の AD に対して日常的に用いられている。またそれ以外でも、抗 NMDA 受容 体拮抗薬であるメマンチンも中等度以上の AD に対して用いられる [13]。これらの 薬剤による効果は認知機能を多少改善するが生活機能はほとんど改善しない程度に とどまっており、基本的には対症療法である。次項に述べるアミロイドカスケード 仮説における AD 病態プロセスに介入してその進行を防ぐ or 進行速度を遅延させる 作用、つまり疾患修飾薬(disease-modifying therapy: DMT)としての効果はない。

1-1-2. アミロイドカスケード仮説と臨床区分

AD 発症の病態機序は、図1のように、現在のところアミロイドカスケード仮説と して理解されている [14,15]:細胞膜上にあるアミロイド前駆蛋白 APP から β セク レターゼおよび γ セクレターゼによる切断を経て細胞外に分泌される A β のうち、 神経毒性を持つ A β_{42} モノマーの産生と蓄積が増加し(* クリアランス低下などの理 由による)、凝集して A β オリゴマーを形成してシナプス毒性・神経細胞毒性を来 す。また A β オリゴマーは脳内に大規模に凝集・沈着して老人斑となる。さらに は、Aβ 沈着が引き金となってタウ蛋白のリン酸化と凝集が惹起され、神経原線維変 化をきたす。タウ蛋白による神経毒性から、シナプス機能障害・シナプス減少・神 経機能障害・神経細胞死が徐々に進行し、一定以上の病態の進行と共に臨床症状が 出現してくることになる。最初の Aβ 蓄積から、認知症としての発症に至るまで に、平均的には 15~20 年程度の長期間を要することがわかってきている。

図1:アミロイドカスケード仮説の模式図

Aβ 蓄積→シナプス毒性・タウ介在性神経機能障害、続いて神経細胞死・脳萎縮、これらがある程度まで進むと認知機能低下が明らかになる、という順序である。認知機能の低下の度合いに応じて、preclinical AD, MCI due to AD, AD dementia と分けられている。

ADの最終的な診断は剖検での病理学的診断 [5] によるが、診療における 臨床診断ではそれは無論不可能である。そもそもの AD 臨床診断基準としては 1984 年に策定された NINCDS-ADRDA [1] が長らく用いられてきたが、これらは臨床症 状(認知機能低下)と臨床的な除外診断に重きを置いており、AD に関連するバイ オマーカーは考慮されていなかった。バイオマーカーを含めた診断基準として、 2011年にバイオマーカー情報も組み込んだ NIA-AA 診断ガイドライン [2]、また International Working Group (IWG)からの IWG-2 診断基準 [3] が出されており、この 2つが現在標準的に用いられる臨床診断基準である。特に、2011年に策定された NIA-AA 基準においては、認知機能と生活機能の障害の度合いに応じて、軽度の認 知機能障害があるに留まる(=全般性 CDR 0.5)MCI due to AD(あるいは prodromal AD)、また認知症状があって生活機能への支障が明らかになってくる(=全般性 CDR1以上)時期(AD dementia)とされ、また臨床研究上の区分としてアミロイド 蓄積を認めるが無症状あるいはほぼ症状がない(=全般性 CDR 0)時期(preclinical AD: stage 1~3) も設定されている [14]。ここで AD dementia の部分が以前の NINCDS-ADRDA での AD に相当しており、NIA-AA 基準により、AD 病理を背景に AD として包括される病態(preclinical AD~prodromal AD~AD dementia)の範囲が 拡大したことになる。

1-1-3. A/T/N 分類と対応するバイオマーカー

臨床診断基準として上記の NIA-AA と IWG-2 との間では一定以上の基準の一致をみ ているものの、細かい区分 staging や用語、バイオマーカー所見の解釈などにおいて 相違が見られており、今後もどのように変化していくかは不明である。このため、 (アミロイドカスケード仮説の中での) AD 病理を背景とした連続的な神経変性お よび臨床症状進行の過程を捉えていく上では、この臨床的な定義の相違が(今後 の)混乱の元になりうるという懸念があった [16]。

近年、これに対応する方法論として、AD 病理に関連したバイオマーカー を記述的にそのまま(unbiased に)分類する方法である A/T/N 分類が提唱された [16]。これは、アミロイド病理のあるなし(A)、タウ病理のあるなし(T)、また 神経変性・神経障害のあるなし(N)で、それぞれ+/-で評価し、合計で 2*2*2=8 通 りのパターンに機械的に分けるものである(表 1)。これによって、診断基準の定義 によらず関連するバイオマーカーの状態で分類ができ、より混乱が少なくなるので はないかと考えられている。

	(+)
А	lowered CSF A β or A β -PET (+)
Т	elevated CSF p-tau or Tau-PET (+)
Ν	elevated CSF t-tau or brain atrophy (+) or FDG-PET (+)

表1: A/T/N 分類と各項目に対応するバイオマーカー

A/T/N それぞれについて、アミロイド病理のあるなし(A)、タウ病理のあるなし (T)、また神経変性・神経障害のあるなし(N)で2値化する。 先に述べたアミロイドカスケード仮説に従ってみていくと、初めに Aβ 蓄 積が起こるため A(+)となり、タウ蛋白蓄積が始まると CSF p-tau 増加ないしタウ PET 陽性となり T(+)となり、またシナブス機能不全・神経細胞機能障害を来すと FDG-PET で特徴的な異常所見(側頭葉内側部・頭頂葉の糖代謝低下)が現れるため N(+)となる。さらに神経細胞死から側頭葉内側部の脳萎縮をきたしてくるとやはり これも N(+)となる。このため、カスケード通りの経過の場合、A-/T-/N-(正常状 態) →A+/T-/N-(プレクリニカル AD) →A+/T+/N- (or A+/T-/N+) →A+/T+/N+、の ような経過を辿ることが多い [17] と想定されるが、AD 以外の病理の混在などの 理由でこの通りに推移しないことも多い。なお N(+)自体は他の認知症疾患でもよく 見られる所見であるため、特に A(-)かつ N(+)のものは suspected non-AD pathophysiology (SNAP) と呼ばれる [18]。

1-1-4. AD バイオマーカーとその問題点

AD のバイオマーカーは、これまで様々な種類が研究されてきたが、検査の物質・ modality によって、信頼性・再現性や実用性・アクセス性のレベルは様々である。 大まかには、AD 病理との関係がどこまで直接的か、また検査・マーカーへの modality 的なアクセス性との兼ね合いで、trade-offの関係になっていると考えることができる(図 2)。

まず前項に述べた A/T/N のうち A や T に関連するマーカーは、AD 病理と 関係が深く、再現性も良好である[17,19]。しかしながら、検査 modality の利便性 の観点からは必ずしも十分ではないと考えられる。例えば AB-PET は保険適用では なく施設も限られており、タウ PET はごく最近実用化されたため行える施設がさら に限られている。また髄液検査「19]も、安静を保たなければならず局所麻酔に対 するアレルギーや穿刺後頭痛のリスクなど侵襲性が小さくはないし、個人間・測定 者間・測定ラボ間での結果変動の要素もある[20-23]。また血液中の Aβ およびタウ が AD バイオマーカーとして有用かどうかはこれまで技術的に正確な測定が困難と いう理由もあり、長らく不明であったが「24]、近年、技術改良によって、採血だけ で脳内 Aβ 値をよく反映して血漿 Aβ 値を測定することが可能になってきており [25-28]、Elecsys assay などの自動測定機器開発とともに今後普及が進んでくる有力 候補と期待されている。血液中の p-tau, t-tau も同様に技術開発が進んで測定可能に なってきている [25, 29]。ただし、いずれも 2020 年現在は研究段階に留まってい る。

さらに、A/T/N のうち N については、頭部 MRI は日常臨床で頻用されてお り、ついで FDG-PET も利用されるが、シナプス機能低下・神経細胞死が十分に進 んできていない早期段階においてはこれらの検査による N(+)への感度は十分とは言 えない:例えば正常群 (stage 0) と preclinical AD との比較では、脳 MRI で両側海馬 体積に有意差がない [30,31]、脳室体積に有意差がない [32] などが報告されてい る。

また AD ではタウ介在性神経損傷(の中の軸索損傷)と関連して上昇する 髄液 neurofilament(NfL)および血液 NfL は、認知機能や疾患ステージに応じて上 昇すると報告されていて[33-35] AD ステージマーカーとして有用である可能性が あるが、軸索損傷が発生する他の前頭側頭認知症(FTLD-tau, FTLD-TDP など)でも 増加するため AD に特異的ではない[36]。

ー方、上記の髄液検査や PET より簡便な血液で診断できる代用の検査 modality として、血中のタンパク[37]・脂質[38]・miRNA[39]など様々な物質 の血液バイオマーカーがこれまで盛んに研究されてきたが、各研究で得られた精度 や判別に有用な物質の候補が、必ずしも他の研究で再現性が取れないという問題が あった。例えば、ある代表的な研究[37]では、血液中のシグナル蛋白 120 種を AD 対非 AD で比較して判別に有用な上位 18 種類を選択したところ、造血、免疫、 アポトーシス、神経栄養に関わるタンパク質が同定され、さらにこれらの組み合わ せによる MCI から AD への移行を精度 81%で予測できる、という結果であった が、別のコホートで検証されたところ AD 判別能は下がって 61%であったと報告さ れている [40]。また血液プロテオームを検討した 21 報の研究を解析したシステマ ティックレビューでは、合計 163 種類の候補タンパク質のうち、3 つ以上のコホー トで共通して有用として挙げられたのはわずか 6 種類であった [41]。また AD で変 化があったとされたタンパク質のうちほとんどのものが他の神経疾患でも変化して おり、AD 特異性は高くないという報告もあった [42]。

この再現性が高くならない原因としては、予測因子側の問題として、探索し てきた物質が AD 病理との関連性が低いものであったこと、予測指標側の問題とし て、ターゲットとしての「臨床的に判断された AD」の中に、実際には相当数の非 AD 病理による認知機能低下が紛れ込んでいた可能性があること、このため背景病理の構 成が異なる集団においては判別精度が下がりやすい等が大きく関わっているのでは ないかと考えられる。

AD病理との直接性

各検査・バイオマーカーの、AD 病理との直接性とアクセス性とは、大まかには trade-offの関係として理解できる。

1-2. 研究の目的

さて、ADの治療薬開発のためには、より早期からの疾患修飾薬による予防的介入が 有用なのではないかと考えられるようになってきている(詳細は次章で述べる)。こ れには将来 AD dementia を発症するであろう確率の高い人を早期すなわちほとんど ~あまり症状がない時期に同定して、臨床研究・臨床試験の対象とする必要がある。 そのためには、(例えばメタボ健診のように)より多くの人を対象に広く浅くスクリ ーニングを行うことが有用である可能性があり、A/T/N のうち特に(カスケードのは じめに位置する) A と T に対応した病態をより早期から簡便に検出できるようにす ることが、特に臨床研究組み入れ段階の入り口部分では重要と思われる。しかしなが ら、上に述べたようなこれまでのバイオマーカーおよび検査 modality の問題点のよ うに、早期からの AD に関するバイオマーカーは、AD 病理に直接的に関係するもの はアクセス性が十分ではなく、一方でアクセス性の良いもの(Aβ タウ以外の血液検 査)は AD 病理との関係性が薄いことからくる再現性が十分ではない、というようジ レンマがあることが問題であった。

そこで、本研究では、既存の研究で行われてきた AD 病態の早期検出バイオ マーカー・検査について、これまでの研究におけるものとは異なる多角的な視点・手

21

法からのデータ解析を通じて、予測目標を AD 病理との関連のより強いものに変更す るか(図3でX軸方向に右)、予測因子をスケーラビリティのより高い形式に再構成 するか(図3でY軸方向に上)、これらのいずれかあるいは両方を達成することを目 的とする。これによって、既存の trade-offの関係から脱却して、図3の右上へと位置 付けを改善させ、検査・バイオマーカーの性能をより向上させることができるのでは ないかと考えられる(図3)。

本研究では、既存の研究で行われてきた AD 病態の早期検出バイオマーカー・検査に ついて、これまでの研究におけるものとは異なる多角的な視点・手法からのデータ解 析を通じて、予測目標を AD 病理との関連のより強いものに変更するか(X 軸方向に 右)、予測因子をスケーラビリティのより高い形式に再構成するか(Y 軸方向に上)、 これらのいずれかあるいは両方を達成することを目的とする。これによって、既存の trade-off の関係から脱却して、図の右上へと位置付けを改善させ、検査・バイオマー カーの性能をより向上させることができるのではないかと考えられる。

23

概要図でいうと、まず AD 病理に直接関わる A+に対する予測マーカーとし ては、現状ではアクセス性が悪いことが最大の課題であるため、スケール性の高い代 用指標で構成することが有用ではないかと考えられる(A:Y 軸方向に上に移動させ る)。具体的には、これまで対面で行われることが主流であった認知機能検査をデジ タルに置き換え、web ベースで行えるようにしたテストの A+に対する検査性能を検 討する(第2章)。

次に、脳 MRI は現状の臨床でも有用ではあるがカスケードでは(T~)Nま で来ないと脳萎縮は明らかになって来ないため、その手前の T+について検出できる ことが期待される(B:X 軸方向に右へ)。具体的には、構造的 MRI データに対して 共変化ネットワーク解析を適用することで、萎縮進行の前段階に位置付けられている タウ病理の拡大を可視化する手法について検討する(第3章)。

最後に、(Aβ、タウ以外で)血液バイオマーカーはこれまで unreliable であっ たが、(NINCDS-ADRDA などによる臨床診断)より AD 病理に関係があると考えら れる要素について、有用性を見出せないか検討する(C:X 軸方向に右へ移動させる)。 具体的には、血液バイオマーカーの一つとしてこれまで検討されてこなかった計算指 標である「加齢亢進」(aging acceleration)を導入し、これによって A/T/N 分類への予 測ができないか、検討する(第4章)。

これらの検討によって、A/T/N それぞれに対する現行の直接的なバイオマー カー(CSF, PET)によらず、これまでの conventional なデータ解析手法ではわからな かったような新規の間接的な代用マーカーによる判別が、特に AD 病態の早期から可 能になっていくのではないかと期待するものである。 第2章: プレクリニカル AD におけるアミロイドリスク予測 2-1.背景

2-1-1. AD 治療薬開発のこれまで

現在 AD dementia に対して使用される薬剤は認知機能を多少改善する程度で対症療 法に限られており [13]、疾患修飾薬 (DMT) の開発が長らく望まれてきた。DMT としては、最初の Aβ 蓄積がやはり重要なプロセスと考えられることから、Aβ の産 生・蓄積を防ぐ観点からの薬剤開発・臨床試験が直近の 20 年間で行われてきた [43]。例えば、Aβ 産生を阻害するための γ セクレターゼ阻害剤(semagacestat, avagacestat)・BACE1 阻害薬(verubacestat, elenbecestat, CNP520 など)、Aβ を除去す るための抗 Aβ 抗体(aducanumab, gantenerumab, bapineuzumab, solanezumab, crenezumab, BAN2401 など)、Aβ ワクチン(CAD106 など)、などである。ところ が、これまでの臨床試験においては AD dementia に対する認知機能改善の効果は限 られていて有効性を示せず不成功となったり、中間解析で有意差がつかずに中止と なったり、と数多く失敗であった [43, 44]。

各臨床試験が主要評価項目を達成できず失敗となった原因としては、(a) 約~3 割程度の非 AD 病理が紛れ込んでいた可能性があることがまず挙げられる。 これは、1984 年に策定された NINCDS-ADRDA の臨床診断基準[1] では Aβ など の AD 病理に直接関連したバイオマーカーの規定は何もなく、主に臨床診断に頼る ところが大きいために、病理診断(CERAD 分類 [45] および Braak 分類 [46] の併 用)を gold standard とした時のこの NINCDS-ADRDA 基準による陽性的中率

(PPV) は clinically-probable AD の場合 PPV 62-83%、 clinically-probable/possible AD の場合 PPV 58-79%程度だったとする報告があること「47」からもありうると考えら れる。また(b)治験薬に関連した副反応としての脳症(アミロイド関連画像異常: ARIA-E「48」など)の発症リスクを下げるためには十分な高用量を投与しづらいこ と、(c)特にBACE1阻害剤などより上流に作用する薬剤の場合、効果をもたらす ためには数年以上にわたる薬剤投与継続が必要な可能性があること、またおそらく 最も重要なものとして、(d) AD dementia としてすでに臨床症状が出てきている時 点では神経変性・細胞死はある程度まで進んでしまっているため効果が限定されて いる可能性 [49]、などが原因として考えられた。このため、より早期の、症状が出 る前だが Aβ が蓄積し始まっている段階(=プレクリニカル AD 期)での介入がで きないか、というところが治療介入対象として注目されるようになってきた「49. 50]。

2-1-2. プレクリニカル AD の臨床研究実施に際しての困難さ

このような、Aβ 陽性だがほぼ無症状、という一群は、「プレクリニカル AD」とし て臨床研究目的の診断区分として定義されているが [14]、このプレクリニカル AD 症例を臨床研究にリクルートしていくのは容易でない側面がある。これは、(i)定義 通り無症状であるということ、また(ii)無症状高齢者のなかから Aβ 陽性者を見出す 困難さ、(iii)Aβ 陽性を判定するためにコストがかかる、という3つの主な要因があ る。

まず(i)については、プレクリニカル AD は定義通りほとんど無症状(全般 性 CDR 0 に相当)であるので、(通常の疾患に対する治療のようにそれ自体を主訴 として)病院に来院することはないし、また被験者自身の研究への参加のインセン ティブも(有症状の場合よりも一般に)低いことが想定される。

また(ii)については、認知機能正常者内の Aβ 陽性率の低さがまず問題とな る。認知機能正常者のうち Aβ 陽性である率は、一般に加齢とともに上昇し、例え ば欧米コホート(認知機能正常)においては 50 歳では 10%程度,90 歳では 45%程 度と推定されているため [51]、早期介入の臨床試験に適格なアミロイド陽性被験者 を組み入れようとした場合、(上記(i)の影響もあるため)陽性かどうかが完全にラン ダムであると仮定した場合にはスクリーニングとしてアミロイド PET ないし脳脊髄 液検査を目標サンプル数の少なくとも 3~4 倍以上行うことが必要になる。本邦にお けるアミロイド陽性率は欧米よりもさらに低く、20%程度とする報告があるので [52](これは一般人口における APOE-e4 アリル頻度が欧米と比較して本邦ではよ り低いと推定されていることが一因ではと考えられる [52])、その場合のスクリー ニング数は単純計算で目標サンプル数の 4~5 倍程度必要ということになる。

加えて、(iii)のように、アミロイド陽性/陰性をスクリーニングするのは現 状では手間とコストがかかる。というのは、アミロイド PET は現在 2020 年時点で は保険診療外であり実施可能施設が限られているうえに、1回約10万円程度のコス トもかかる。また脳脊髄液 (CSF) 検査は,脳脊髄液採取に際して時間がかかるの と,採取中の安静を保たなければならないため、脊椎の変形がある・腰痛がひどい など既往によってはうまく採取できない場合がある.また採取手技としての腰椎穿刺 自体の侵襲性も小さいとは言えず、合併症として穿刺後頭痛を起こすことや、表面 麻酔に対するアレルギー反応を稀に伴うこともあるし、また抗凝固薬を内服してい る場合には腰椎穿刺による脳脊髄液採取は禁忌のため行えない。さらに髄液中 Aβ 自体の日内変動による個人内変動 [20]、採取器具への Aβ 吸着による測定者間変動 (ポリスチレン製のチューブを使った場合ポリプロビレン製のチューブと比べて 30%程度濃度が低下したという報告がある[21])、測定ラボによる検査方法の違い など結果に影響しうる要素が複数あり、検査として結果が十分に安定しているわけ では必ずしもないという問題もある[22,23]。

2-1-3. 治験即応コホート (Trial-Ready Cohort)

前述の要因から、臨床試験(phase 2~3)を実施する上で、その研究実施負担・コス トが非常に膨大なものになる事が懸念されていた。このため、Aβ 陽性になってから 認知症状が明らかになるまで少なくとも 10~20 年程度以上の delay があるという点 に着目して、あらかじめ Aβ 陽性で治験候補者となる数百人以上からなる対象者リ ストを作っておいて、適格な薬剤治験が開始された場合には適宜それに参加しても らう、という治験の待機リストのようなシステムを産学連携して作っていく必要性 が論じられるようになってきた [49,50]。それが「治験即応コホート」(Trial-Ready Cohort)であり、はじめにヨーロッパで EPAD-TRC として開始され(http://epad.org)、続いて北米で TRC-PAD として開始(https://trepad.org)、さらにオーストラ リアでも ADNeT(https://www.australiandementianetwork.org.au/adnet-trials/)として開 始されている。本邦でも、2019 年 10 月末から J-TRC が、北米 APT Webstudy/TRC- PAD の基本的なフレームワークを踏襲する形で開始された(https://www.jtrc.org/ja/welcome)。

J-TRC はそのユニークな特徴として 2 段階構成になっており(図 4)、はじ めに(1)webstudy (米国 APT Webstudy に相当)、続いて(2)onsite study (米国 TRC-PAD に相当)となっている [53]。まず(1)webstudy では、web ベースで(新聞記事や新 間広告、web 広告などを介して)全国から広く参加者を募り、基礎情報を入力して もらった上で、web 上で行える簡単な認知機能スクリーニング検査(CFI, CogState)を3ヶ月おきに定期的にフォローアップしていく事となっている。続い てこのうち条件を満たした被験者を、②onsite study では全国に点在する研究実施施 設(病院)に招いて、(オンラインではなく)対面での詳細な認知機能検査、血液検 査(血漿 Aβ・APOE ジェノタイプ)、アミロイド PET 検査などを行う、という流れ になっている。②でのスクリーニングの結果、PET 陽性かつ全般性 CDR = 0 に該当 する被験者を preclinical AD として、治験即応コホート(3)に組み入れていく。研究終 了までの間に最終的に n = 300 程度以上が目標とされている [54]。

図 4: J-TRC の段階的構造

上記の通り、①webstudy と、②onsite study の2段階構造になっている [56]。①は web で完結しているが、②では①の中から適格な人に実際に施設を訪問してもら い、対面検査を含めた詳細なスクリーニングが行われる。

2-1-4. アミロイドリスク予測アルゴリズム導入の必要性

J-TRC 研究においては①webstudy 参加者がある程度集積してから②onsite study を開 始していくことになるが、現実に研究施設側の受け入れ能力の問題もあるところ、 Aβ 陽性の事前確率をより高めて研究効率化を測る目的で、この ①webstudy→②onsite study への被験者の招待プロセスで web 登録された情報から Aβ 陽性確率の高そうな候補者を優先抽出することが必要と考えられる。実際、 ②onsite study 開始が始まろうとしていた 2020 年 8 月初めの時点では、2019 年 10 月 末の webstudy 開始から最初の 9 ヶ月間で有効登録者数 3,000 人を超えていた(* 米 国 APT Webstudy では最初の 36 ヶ月で登録 30,000 人程度)。

例えば、J-TRC においては最終的にプレクリニカル AD n = 300 程度を組み 入れることを目標としているが、認知機能正常の高齢者の中での Aβ 陽性の事前確 率が 20%程度とすると、完全にランダムの場合はおよそ 1,500 人を合計でスクリー ニングすることが必要である。これが webstudy から招待する時に予測アルゴリズム による抽出ステップを挟むことでスクリーニング開始時点での事前確率を例えば 25%程度にでも高めることができれば、必要なスクリーニング人数は約 1,200 人で済 むため、1500 - 1200 = 約 300 人分のスクリーニングの手間が省かれ、より効率化さ れることになる。

また実費コストについても、例えば事前確率 20%程度のとき、アミロイド PET 検査には(約 10 万円/1 回とすると)およそ 1500*10 万円=1.5 億円程度の粗コ ストがかかる事になるが(その他にスクリーニング作業に要する人件費など)、事前 確率 20→25%にできた場合の差分は 300 人であるため、PET 検査代だけでも 300*10 万円=3,000 万円程度の研究コスト節約になる、という大まかな試算になる(図

図5: アミロイド陽性の事前確率の変化により節約される PET コスト試算

ベースラインの認知機能正常高齢者の中でのアミロイド陽性率を20%(垂直のライン)と仮定して、抽出アルゴリズムによって陽性事前確率を操作できた時に、PET 検査の総コストがどの程度節約されるか(水平ラインより上は節約コスト分、ラインより下は追加コスト分)、その変化を計算したもの。
ところが、(本邦におけるトライアルレディコホートの試みは初めてであ り)日本人の web ベースで参加してきた被験者集団に有効な Aβ リスク判定アルゴ リズムは確立されていない。また一般に先行研究においては *APOE*-e4 アリルの有無 や複数の認知機能スケールの複合スコアである Preclinical Alzheimer Cognitive Composite (PACC)が認知機能正常者の中からアミロイド陽性を見出すのに有用とさ れている [55] が、これらのデータは web ベースの研究では取得できず、また webstudy で取得できる情報自体も単純・簡単なものに限定されている。このため、 予測アルゴリズムを何らかの方法によって自前で構築する必要があった。

2-2. 本検討(第2章)の目的

そこで本検討では、(認知機能正常の高齢者の中で)一般的な陽性率として本邦では 恐らく 20 数%程度の Aβ 陽性率から、web ベースで登録された少ない情報でいかに PET スクリーニング時の Aβ 陽性事前確率を高めることができるか、その予測アル ゴリズムを構築し評価すること、を目的とする [56]。

本検討実施時点(2020 年 8 月初頭)では、②で実際に PET 検査まで行わ れた症例はおらず、正解ラベルがない状態であるため、次善の策として、他の類似 データでモデル構築を行い、そのモデルを外挿することとする。このために、同じ プレクリニカル AD を対象としている A4 study のスクリーニングデータを利用する [57]。この A4 試験は、抗 Aβ 抗体である solanezumab をプレクリニカル AD 被験 者を対象に投与した phase 3 の多施設共同 RCT であるが、この A4 試験に組み入れ る際には認知機能が条件に合う参加者全員(n = 約 4,000)にアミロイド PET のス クリーニングを行っている。このスクリーニングデータは J-TRC webstudy で得られ るデータ項目をほぼカバーしている。この A4 study のデータを利用して機械学習ア ルゴリズムを構築し、それを J-TRC webstudy データに適用して、アミロイド蓄積の 状態を予測する。

2-3. 方法

2-3-1. 倫理委員会承認

J-TRC 研究のデータ解析については、東京大学大学院医学系研究科 倫理委員会の承認(審査番号: 2019132NI-(3))を得て施行され、また A4 データ解析については東京大 学大学院医学系研究科 倫理委員会の承認(審査番号: 11628-(3))を得て施行された。J-TRC webstudy 研究では被験者からの研究同意が web 情報入力(同意する or しない の2 択式)で既に得られており、また A4 データは公開データであるため各被験者 からの再同意は本検討では要しない。

2-3-2. J-TRC webstudy データ

J-TRC 研究(https://www.j-trc.org/ja/welcome)は、プレクリニカル およびプロドロ ーマル AD を対象として、米国 ATRI との研究ライセンス合意に基づいて 2019 年 10 月に本邦で開始された臨床研究であり、基本的には米国 APT Webstudy/TRC-PAD と 同様に 2 段階構造となっている。まず第 1 段階の webstudy(図 6)では、認知機能 正常な高齢者を対象に、基本的な情報収集の他に、web からの 3 ヶ月おきの定期的 な認知機能検査が行われる。さらに第 2 段階の onsite study においては、webstudy で アミロイドリスクが高そうな被験者を対象に、さらに全国 7 つの臨床研究実施施設 に招いて直接対面で認知機能検査、血液検査(血漿 Aβ・APOE ジェノタイプ)、ア ミロイド PET 検査(薬剤は[¹⁸F]フルテメタモール)などを行う、ということになっ ている。

J-TRC webstudy のはじめのおよそ9ヶ月(2019 年 10 月 31 日~2020 年 7 月 17 日)までに登録がなされた計 4,429 登録についてレビューを行い、このうち、基 本情報の入力が完了していて、研究への参加同意が得られており、認知症や AD と 診断された既往がなく(自己申告に基づく)、登録時点で 50-85 歳、の全てに該当す る参加者のデータを解析対象とした。なお web 登録では氏名や住所の登録はせず (都道府県レベルでは居住地も登録するが)、メールアドレスに紐付けられた ID は 登録順に数字が割り振られたもので、またメールアドレスも研究者側からは確認で きないため、同一人物による意図的な二重登録は仮にあっても除外困難である。

図6: 基礎情報入力画面の例

J-TRC 🔯	会ホーム			
	生活状況			
	ご両親、ごきょうだいに、アルツハイマー病または認知症と診断 された方はいますか?			
	& wwx			
	□ その他/答えたくありません			
	変更取り消す			
ホーム · FAQ(よくある質問) · お知らせ · 利用規約 · プライバシー · 関係先 · お問い合わせ Convrictive DUSC ATRI and The University of Tokyo 2019, All Rights Reserved				

入力画面の一例(2020年9月時点のもの)。

J-TRC webstudy で収集される情報は基本的にかなり限定されているが、さらに

A4 study と共通して利用可能な以下の項目を用いた。

- 年齢
- 性別
- 教育年数
- 認知症ないし AD の家族歴の有無
- 就業状況(退職済か否か)
- 初回の Cognitive Function Instrument (CFI) 合計スコア
- 初回の CogState 合計スコア
- 2回目(初回から3ヶ月後)の CogState 合計スコアと1回目スコアの差

なお喫煙歴・運動習慣など既存の AD 発症のリスク因子についての情報は J-TRC webstudy, A4study いずれにおいてもある程度の情報は取得されているが、情報の定 義および粒度が大きく異なるため統一的にデータ結合が困難と考えられたため、こ こでは用いなかった。

CFIとは、自覚症状についてのアンケート形式のスコアであり、得点が高いほど

自覚症状が強いということになる。先行研究においては、最も早期の認知機能低下 を検出できると報告されている [58]。本人が申告するものと、ほぼ同じものを本人 に関して家族(スタディパートナー)が申告するものがあるが、ここでは本人によ る自己申告の CFI スコアを用いた。

また CogState [59] とは、PC モニター(or タブレット端末)上にトランプカー ドが順に表示されるので、被験者本人が指示に従いキーボードのボタンを押すこと で回答していく方式の認知機能検査で、精神運動スピードおよび近時記憶を調べる ことができる。内容としては、表示されているトランプカードがめくられたらなる べく早くボタンを押してもらい反応時間を測る Detection、めくられたトランプカー ドが赤色であれば右のボタン、黒色であれば左のボタンを押してもらい、正答に対 する反応時間を測る Identification、めくられたトランプカードの種類がその直前に めくられたものと同じであれば右ボタン、異なれば左ボタンを押してもらい、正答 率を測る One Back、めくられたトランプカードの種類がこれまでに表示されたこと があれば右ボタン、なければ左ボタンを押してもらい、正答率を測る One Card Learning、の4項目を計測する。それぞれについて、正常対照群でのスコアを元に 標準化した Z スコア(= 平均値との差を 1 SD で除したもの)が自動算出されるた め、それら4つのZスコアの和分を合計スコアとして用いる。CogStateの場合、点 数が高いほど認知機能が良好である、ということになる。

なお J-TRC webstudy では教育歴は高校卒業 or 大学卒業 or 大学院卒業、の 3 択式であるため、(A4 データとの互換性のために)それぞれ 12 年、16 年、18 年 と換算して教育年数に数値変換した。最終的に、J-TRC webstudy からは n = 3,081 の 症例を解析対象とした。

2-3-3. A4 study データ

Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study [57] のスクリ -= ングデータは公開されており、データベース web サイトである LONI(https://ida.loni.usc.edu)に先方のデータアクセス委員会の承認を得て、2019 年 10 月に csv ファイルからなる臨床・検査情報のデータをダウンロードした。本データは、抗 Aβ 抗体である solanezumab を用いた phase 3 の多施設共同 RCT(A4 試験)に組み入 れる前の、アミロイド PET(薬剤は[¹⁸F]フロルベタピル)を含めた適格性を判断す るスクリーニング段階までの n = 4,000 程度の大規模データである。A4 試験は、J-TRC study とは異なり、組み入れ対象年齢は 65-85 歳となっている。その他の A4 試 験スクリーニングデータのうちからの組み入れ基準は、A4 study 研究チームから発 表された先行研究 [55] に倣い、全般性 CDR = 0、WMS-R logical memory delayed recall 6-18、MMSE 25-30 とした。これらを全て満たした被験者が A4 試験では PET を撮像されることになっており、さらにアミロイド PET 結果が standardized uptake value ratio (SUVr) データとして得られている症例を本検討での解析対象とした。

利用したデータ項目としては、前述の J-TRC webstudy で選択したものと同 じ項目を用いた。アミロイド蓄積状態は、アミロイド PET(薬剤はフロルベタピ ル)による SUVr 連続値で与えられているが、データ要約のための陽性/陰性の 2 値 化には、先行文献 [55] を参照しここでは SUVr >= 1.15 のカットオフのみを用い、 視覚的評価結果は加味しなかった。

A4 データでの CogState のスコアは J-TRC における結果表示とは異なり各 項目の粗点で与えられているため、"Computarized Cognitive Assessment"のうち 4 項 目 (*Detection* (log 反応時間)、*Identification* (log 反応時間)、*One Card Learning* (正 答率)、*One Back* (正答率)) それぞれのスコアを組み入れ症例全体の中で標準化し て Z スコアとして求め、さらに総和をとって得た。また A4 データでの人種 (アジ ア人か否か)の情報も取得した。最終的に、A4 スクリーニングデータからの症例 n =4,446のデータを検討対象とした。

2-3-4. 予測モデルの構築・評価

本研究においては、A4 スクリーニングデータを用いて、アミロイド蓄積の程度を予 測するモデルを構築し、それを J-TRC webstudy に適用して、onsite study への招待順 序づけを行い、それによってアミロイド陽性確率を高め、研究効率化を図ることを 目的としている。

A4 試験のデータはほとんどが非アジア人(白人が多い)である一方、J-TRC webstudy はアジア人(また日本人)がほとんどであるため、人種による影響が どの程度ありうるか参考にする必要がある。そこで本研究では、図7に示すよう に、①まず A4 データのうち非アジア人サブグループでアミロイド PET SUVr 値を 目標として回帰予測モデル構築し、②そのモデルについて A4 データのうちアジア 人サブグループで SUVr 値予測の精度評価をしておいた上で、③J-TRC webstudy に も適用し、SUVr 値を予測する。これは実際の実務で、onsite 研究への招待順位づけ の参考基準の一つとして利用される。加えて、J-TRC onsite study での PET 結果は解 析時点では得られていないが、他施設での保険外診療や他の臨床研究で過去に施行 されたアミロイド PET(や髄液 CSF Aβ)の自身の結果を知っていて登録している参 加者が少数存在するため、④この自己申告の(過去の)アミロイド検査結果と予測 SUVr 値とを照合し、どの程度一致しているか検討する。

解析フローを示す [56]。A4 非アジア人グループでモデル①を作成し、評価②・ ④、また予測③を行う。なお A4 アジア人サブグループのうち最大 100 人は日本人 (東大病院での治験スクリーニング群)でそれ以外は米国でのアジア系住民である が、どの症例が本邦でのスクリーニング症例かは公開されているデータの範囲から は不明であった。 SUVr値に対する回帰予測モデルにおいては、異なるアルゴリズム種と、異なる特徴 量の組み合わせを用いて、条件によってどの程度精度が向上するか、あるいは向上 しないか、探索的に検討する。まずアルゴリズム種については、一般化線形回帰 (GLM),正則付き線形回帰(ElasticNet),サポートベクターマシン(SVM),ラ ンダムフォレスト(RF),勾配ブースティング(GBM および XGB)の6種類を順 に試していく[60]。なおGLMとしてはlinear regressionを用い、データの分布とし て正規分布を仮定している。ハイパーパラメータの設定は、10-fold cross validation において、Rパッケージ caret の機能によって自動化している[60]。さらにモデル の特徴量の組み合わせは、次の5タイプを用いた。すなわち、

- モデル1:基礎的データのみ(年齢・性別・家族歴・教育年数・就業状況)
- モデル2:モデル1+初回CFI
- モデル3:モデル1+初回 CogState
- モデル4:モデル1+初回 CFI+初回 CogState
- モデル 5:モデル 4+2 回目 CogState (1回目との差分)

このように複数の特徴量の組み合わせを用いたのは、J-TRC webstudy は web ベース の研究であるため各検査の完遂率が対面検査と比べて十分に高くないことがあるた めである。例えば CFI は基礎情報登録に続けて、各自覚症状の程度について選択肢 から選んでいくだけであるため未完遂のままに放置されてしまう率は極めて低いが (基礎情報入力済症例のうち1%未満が脱落)、CogState は15-20分程度と時間がか かりその間の持続的な集中力も要するため、初回 CogState を完了せずそのままにな っていることがしばしば見られる(ブラウザのエラーなど実行環境による要素も一 部含む)。また3ヶ月後に再訪問して2回目のCogStateを行なってくれる参加者数 は1回目 CogState を完了した時点の参加者数よりもさらに少なくなる。参加開始の 時期が遅めであったためにまだ2回目が到来していないだけという場合も一部あ る。このような理由により、モデル1がもっとも組み入れ対象人数が多く、一方で モデル5がもっとも組み入れ対象人数が少ない、という分布になるため、予測可能 対象が大きく異なることになる(表 2)。なおモデル自体については、組み入れた変 数の予測への寄与度として variable importance を計算し [61]、各変数の重要性を可 視化した。

	組み入れ可能な症例数		
モデル1	n = 2,511		
モデル2	n = 2,498		
モデル3	n = 1,692		
モデル4	n = 1,692		
モデル5	n = 849		

モデル別の組入可能人数 [56]。各検査の完遂率が対面検査と比べて十分に高くない ことがあるため、モデル1がもっとも組み入れ対象人数が多く、一方でモデル5が もっとも組み入れ対象人数が少ない、という分布になる。 上記②での A4 アジア人サブグループでの各モデル評価においては、予測 SUVr 値と実際の値との誤差として、root mean squared error (RMSE)、mean absolute error (MAE)を参照し [62]、また Pearson 相関係数 R も利用した。

さらに④上記 J-TRC webstudy のうち他施設で行われたアミロイド検査結果 を知っている少数(n=~36)について、予測 SUVr 値との一致度を検討した。この 「他施設・他試験でのアミロイド検査結果の自己報告」は、陽性だったか陰性だっ たかという2 値であるため、予測値から判別するときの area under the curve (AUC)を 計算した。

2-3-5. 統計処理一般について

全てのデータ処理と解析は統計ソフトR(version 3.5.1)を用いた。RMSE、MAE、 AUC の計算には R パッケージ *MLmetrics* を利用した [62]。相関係数の計算には Pearson 相関を用いた。p 値は特に言及しない限りは有意レベルを p < 0.05 とした。 AUC の計算においては 95% 信頼区間(95% CI)も求めた。

2-4. 結果

2-4-1. 基本的なプロファイル

組み入れた2コホートからのサブグループの基本的な情報について表にまとめた。 A4の非アジア人グループ、A4のアジア人グループ、J-TRC webstudy 全体、また対 象年齢を合わせた J-TRC webstudy のうち 65-85 歳、またアミロイド検査結果を知っ ている少数グループ、の計5サブグループについてまとめている(表3・表4)。

A4 においては、非アジア人グループでは 28%がアミロイド陽性、アジア人 グループでは 17%がアミロイド陽性であった。A4 アジア人グループのうち n = 98 は日本語話者であり、半数以上は日本人症例と考えられる。またアミロイド結果を 自己申告した n = 37 のうちでは、22%がアミロイド陽性で、A4 のアジア人グループ と似た頻度であった。基本的な特徴として、J-TRC webstudy のうち 65 歳以上グルー プと、A4 のアジア人グループとは、年齢・性別・教育年数・CFI・CogState につい て似た分布を示していた。

表 3: J-TRC webstudy の症例プロファイル

	J-TRC Webstudy			
	全体 (n=3081)	65 歳以上 (n=1153)	過去の Aβ 結果を自己申告 した人(n=37)	
SUVr 値	-	-	-	
Aβ 陽性	-	-	8 / 37 (21.6%) (6 / 37 in PET, 2 / 37 in CSF) (* self-reported previous results)	
登録時年齢	61 (55~69)	71 (68 ~ 76)	64.5 (59.25 ~ 72)	
性別 (女性)	1688 / 3081 (54.8%)	444 / 1153 (38.5%)	20/37(54.1%)	
アジア人 (yes)	3065 / 3081 (99.5%)	1145 / 1153 (99.3%)	36/37(97.3%)	
認知症の家族歴あり (yes)	1241 / 3081 (40.3%)	402 / 1153 (34.9%)	14/37(37.8%)	
教育歴 (years)	16 (12 ~ 16)	16 (12 ~ 16)	16 (16 ~ 16)	
退職している (yes)	1049 / 3081 (34%)	755 / 1153 (65.5%)	19/37(51.4%)	
APOE E4 アリル (yes)	-	-	-	
CFI-self(1st) スコア	3 (1.5~4.5)	3.5 (2~5)	2.5 (1.125 ~ 4.875)	
CogState (1st) $\land \exists \mathcal{T}$	-0.261 (-1.715 ~ 1.081)	-0.662 (-2.07 ~ 0.736)	0.107 (-1.052 ~ 1.129)	
CogState (2nd) $\land \exists \neg$	0.41 (-0.961 ~ 1.691)	$0.174(-1.298 \sim 1.527)$	0.231 (-0.331 ~ 2.47)	

J-TRC webstudy における症例プロファイル [56]。これまでのアミロイド結果を自己 申告した n = 37 のうちでは、22%がアミロイド陽性であった。

表4: A4 スクリーニングデータの症例プロファイル

	A4 スクリーニング		
	非アジア人 (n=4277)	アジア人 (n=169)	
SUVr 値	1.03 (0.97 ~ 1.17)	1.02 (0.96 ~ 1.08)	
Aβ陽性(SUVr >= 1.15)	1186 / 4277 (27.7%)	29 / 169 (17.2%)	
登録時年齢	70.28 (67.49 ~ 74.17)	71.56 (68.29 ~ 74.32)	
性別 (女性)	2574 / 4277 (60.2%)	64 / 169 (37.9%)	
人種:アジア人 (yes)	0/4277(0%)	169 / 169 (100%)	
認知症の家族歴あり (yes)	2942 / 4277 (68.8%)	74 / 169 (43.8%)	
教育歴 (years)	16 (15 ~ 18)	16 (16 ~ 18)	
退職している (yes)	3236 / 4277 (75.7%)	134 / 169 (79.3%)	
APOE e4 アリルあり (yes)	1506 / 4277 (35.2%)	37 / 169 (21.9%)	
CFI-self(1st) スコア	1.5 (0.5 ~ 3)	2.5 (1~4.5)	
CogState (1st) $\land \exists ?$	-0.052 (-1.586 ~ 1.525)	-0.22 (-1.944 ~ 1.218)	
CogState (2nd) $\land \exists ?$	-0.053 (-1.564 ~ 1.537)	-0.229 (-1.775 ~ 1.278)	

A4 における症例プロファイル [56]。非アジア人グループでは 28%がアミロイド陽 性、アジア人グループでは 17%がアミロイド陽性であった [56]。なお A4 アジア人 グループのうち半数以上は日本人症例と考えられる。 2-4-2. 予測モデルの評価 (A4 アジア人グループ)

モデルのアルゴリズムのタイプと、特徴量の組み合わせを順に変えていって精度を みた (図 8)。横軸の特徴量組み合わせ (モデル 1-5)を変えていった時に、各アル ゴリズム (それぞれの線分に対応)で精度がどう変わるかをプロットしている。メ イン指標である RMSE および MAE はモデル 1-5 によらず、またアルゴリズム種に も関係なく、大きな差がないことがわかる。相関係数 R を指標にすると、CFI を特 徴量に含むモデル (2・4・5)で当てはまりが多少良くなることがわかる。またアル ゴリズム種のうちでは、GLM、ElasticNet、GBM、XGB がモデル 4・5 で同程度に高 めの R となっている。このことから、計算がシンプル・簡便でよく頻用されてきて いる GLM を主なアルゴリズム種として以下の計算では用いることにした。

モデル5でアルゴリズムがGLMの時に、A4アジア人サブグループでの予 測値と実測値とをプロットすると、弱い相関(R=0.323,p<0.001)を示しているこ とがわかる(図9)。

A4 内でのモデル評価結果 [56]。左から順に、(A) MAE、(B) RMSE、(C) 相関係 数 R、についてプロットしている。

図 9: Y-Y plot の一例

モデル 5 において、アルゴリズムを GLM とした時に、A4 アジア人サブグループでの予測値と実測値とでは弱い相関(R = 0.323, p < 0.001)を示した [56]。

予測モデルの variable importance を計算すると(最大のものを 100%として相対表示)、年齢・CFI・家族歴の3つがもっとも予測に寄与する重要な変数となり、続いて CogState、という順であった。一方で教育年数や就業状況は予測への寄与度が低いという結果であった(図 10)。

2-4-3. 予測モデルによる予測 (J-TRC webstudy)

続いて、このようにして得られた予測モデルを、実際に J-TRC webstudy に適用して みる。各症例での予測された SUVr 値と、それぞれの特徴量との相関は明瞭であっ た。それぞれ、年齢が高いほど、CFI が高いほど、また CogState が低いほど、予測 SUVr は高いという結果であった(図 11)。

また過去のアミロイド結果を自己申告した少数グループでの SUVr 予測値 は、その自己申告結果と良好な一致が見られていた(図 12): モデル 2 では AUC 0.727(95%CI: 0.533-0.922)、モデル 4 では AUC 0.806(95% CI: 0.691-0.992)、モデ ル 5 では AUC 0.833(95%CI: 0.578-1.000)。

図 11: J-TCR webstudy コホートにおける、予測 SUVr 値と、各特徴量との関係

各症例での予測された SUVr 値と、それぞれの特徴量との相関は明瞭であった [56]: vs 年齢では R = 0.484 (p < 0.001), vs CFI では R = 0.598 (p < 0.001), vs CogState では R = -0.498 (p < 0.001)。

過去のアミロイド結果を自己申告した少数グループでの SUVr 予測値は、その自己 申告結果と良好な一致が見られていた [56]:モデル2では AUC 0.727 (95%CI: 0.533-0.922)、モデル4では AUC 0.806 (95% CI: 0.691-0.992)、モデル5では AUC 0.833 (95%CI: 0.578-1.000)。 2-5. 考察(第2章)

本検討では、J-TRC webstudy に適用するためのアミロイドリスク予測を行う予測モ デルを構築した。J-TRC study 自体ではアミロイド蓄積の程度に対する正解情報が未 だないにも関わらず、このような試みを行なったのは、Introductionでも述べたよう に、実務上の要請をも含んでいる。すなわち、J-TRC webstudy から onsite study に招 待する上では、アミロイド蓄積の可能性が高い人から優先的にスクリーニングを行 なっていく方が人的・経済的コスト上で効率が良いし、また登録人数は3.000人を 超えるのに対して対応可能な研究参加施設は全国で7箇所程度と、現実の研究実施 キャパシティの問題も無視できない為であった。実際に本検討で導出した、この onsite study 導入期におけるリスク予測モデルが正しく機能していたものだったか は、ある程度 onsite study でのスクリーニングが進んで、実際の PET 結果と照合し て初めて評価できるものであり、現段階では評価困難である。今後、onsite 研究で のデータの蓄積とともに、アップデートを繰り返していく必要性がある。

とはいえ、一部の被験者で自己申告された他施設でのアミロイド検査結果 とは一定以上の良好な一致を見ており(図 12)、一定程度の妥当性はあるものと考 えられる。実際、2020 年 12 月末までの時点においては、一部施設での onsite 研究 での実際の PET 結果においては、完全にランダムな場合の事前確率を 20%と仮定し ておおよそ 5-10%程度の事前確率の改善が得られており、未だ少数例での検討結果 であるという点はあるものの、これは(Intro で述べたように)J-TRC 研究全体を通 してみると数百人レベルでの PET スクリーニング必要数の削減を見込める結果であ る。また本検討での予測モデルを使わなかった場合を考えるに、やはり手作業で年 齢や CFI などの(先行研究から有用であることが明らかになっている)事前情報か らある程度目星をつけて優先的に招待していくことになると思われるが、これらの 特徴量と、予測 SUVr 値とは明瞭な相関があった(図 11)。つまり、本予測モデル は、manual で onsite study へのリクルートを行なっていることの自動化として、それ ほど実情から外れた予測運用をしている訳ではないものと考えることが可能であ る。

本研究のモデルを利用する上で留意しておかなければならないことは複数 ある。まず A4 のスクリーニングに至るような被験者と、主に新聞や web から興味 を持って webstudy に登録するようになった被験者とでは、その認知機能など含めた 患者背景の分布がどの程度異なるのか、不明である(表3・表4 にあるように、A4 アジア人グループと代表値は似た分布を示しているものの、これはあまりあてにで きない)。特に、女性の比率は A4 訓練グループでは 60%程度であるのに対して J- TRC webstudy (65 歳以上) では 40%未満であり、性別の variable importance は低い というモデル結果ではあるものの、性別の偏りによって予測能の変化(低下)が潜 在的に生じている可能性はある。これについては、訓練データ(A4 study)につい て、その性別比率を評価データ(J-TRC webstudy)での性別比率にある程度一致さ せた上で、性別以外の基礎情報でマッチさせた男女ペア群からなる訓練用データを 抽出し、これを新規の訓練用データとして用いる、などの対策は考えられる。

また webstudy に参加する上ではパソコンで web サイトにアクセスし ID 作 成を含めた登録作業を進めていかなければならないため、認知機能正常でも海馬体 積が減少していると (preclinical stage 3 などに相当)日常のコンピュータ操作時間が 低下することから [63]、軽度認知機能低下 (mild cognitive impairment: MCI)以上の 認知機能低下がある人においても webstudy サイトまで到達しづらく、また登録作業 が完了しにくい可能性は考えられるものの、webstudy の時点では「認知症ないし AD と診断された既往があるかどうか」のチェック項目以外には認知機能が一定程 度低下していても除外する術はないので、MCI を含めたある程度幅広い認知機能状 態の被験者が含まれうる。また本研究へ参加者を募るにあたっては複数ルート (新 聞広告や web での listing 広告/banner 広告) での広報活動が行われており、そのルー トの種類によってもどのような参加者背景がリクルートされやすいか等はわかって

いない(web 広告経由の方が若年傾向にあるかもしれない、等)。これらは web ベー スの研究レジストリである以上は致し方ない側面であるが、想定される認知機能ま た参加者背景の分布が不明であるという要素によって、(認知機能については概ね正 常範囲の被験者に限定されているという) A4 スクリーニングデータからの予測モデ ルをそのまま適用する妥当性が損なわれる要因となりうる。例えば、予測モデルで は CFI が高いほど SUVr 予測値が高いと言う結果であるが(図 11)、これも A4 スク リーニングデータでは予め一部の神経・精神疾患の既往を除外した上で認知機能が 適切な範囲にある(完全に良すぎず、また MCI に至るほど悪くもない)、と言う基 準をクリアした集団をベースとしているが、web サイト経由で登録してきている J-TRC webstudy 参加者に同様に当てはまるとは限らない。また CFI は自己申告制で主 訴が多い方がよりスコアが高くなる形式であるため、以前からの既往としてうつ病 があるなど主として認知症以外の理由でも同様に CFI が高くなったような場合に、 実態に反して予測で陽性判定されてしまうケース(=偽陽性)も想定される。この ように、高すぎる CFI スコアの参加者は実際にはむしろアミロイド予測値が下がる 可能性もありうる(一方で逆に上がりすぎる可能性もある)ので、適切な CFI の対 象範囲も今後の検討事項である。

また webstudy~onsite study で得られる関連情報の中では Aβ 蓄積に対する

最大の予測因子は APOE-e4 アリルの存在と想定されるが [64]、A4 データはコーカ ソイドが大部分を占めるデータであり、APOE-e4 アリル頻度が欧米と本邦で異なっ ていることなどの点において、A4 データによる予測モデルは、たとえ APOE ジェノ タイプをモデルに含めていても、本邦コホートにおいてはその予測精度が十分に高 まらない可能性はありうる。さらに、A4 study での PET 薬剤は[¹⁸F]フロルベタピル であるのに対して J-TRC onsite study で使用される事になっている PET 薬剤は[¹⁸F]フ ルテメタモールと、同一ではないということも、予測能の一定程度の低下に繋がる 可能性はありうる。

本検討では 5 種類の特徴量の組み合わせ(モデル 1~5)で検討したが、 CFI を含んでいる方が相関係数 R は良い傾向にあること、また CogState の寄与度は CFI よりも低かったこと、また CogState を含んだモデルはその実施負担が CFI より 高いことから完遂人数が少ないことなどを踏まえると、予測モデルとしては基礎的 なデータ+初回 CFI、でも概ね良好な精度であって、CogState は必ずしも情報とし て含めなくても良い可能性がある。CogState については、健常であれば定期的に何 回も検査を繰り返した場合に成績が改善する「学習効果」が Aβ+被験者では欠如し ている可能性 [65] もあるため、特に経時的変化を組み入れることで精度が多少上 がる可能性があるのではないかと想定しているものの、その重要性は(特に今回の 検討のように間隔が3ヶ月程度しかなく cross-sectional に近い場合には)CFIよりは 低めであり、可能であれば組み入れる、という扱いが現時点では妥当と考えられ る。また、データを途中まで入力してそこで離脱してしまったということ自体が preclinical AD における軽微な認知機能低下と関連している可能性もありうるため、 この入力完了状況自体も変数化することも考慮される。現在のJ-TRC onsite 研究の 運用では、入力完了が多い人を優先的に検査している状況であるので中途入力で終 えてしまった人のデータは不十分だが、今後のデータの蓄積とともに可能となって いく可能性がある。これらを踏まえると、モデル 1-5 をそれぞれ作って比べるとい うよりは、すべての変数を含んだモデル(欠損値を許容する変数形式で、欠損につ いては別にフラグを作り)を一つ作る、という対応方法は一案として考えられる。 第3章: 共萎縮ネットワーク解析による背景病理進展の可視化 手法

3-1. 背景

3-1-1. 神経変性病理の拡がりとしての脳萎縮

神経変性疾患の脳萎縮の空間的な拡がりは脳 structural MRI でみることができる。こ の時、どの部位がどの程度萎縮しているか、その詳細な検討手段としては、例えば Voxel-based morphometry(VBM)におけるように[66]、脳 structural MRI による脳 の領域部位ごとに、対照と逐一比較することが一般的である。つまり、脳領域ごと に 1:1 で t-test をしたり(図 13 左)、回帰モデルを利用したりして、疾患・病期に応 じてそれぞれの脳領域がどの程度萎縮するか、定量的に検討することになる[67, 68]。

このアプローチの問題点としては、隣接領域同士の時間的・空間的な関連 性は考慮されていない、ということがある。神経変性疾患においては、Aβ、タウ蛋 白、αシヌクレインなどの異常蛋白は「プリオン様に」中枢神経内で細胞間伝播 し、それとともに変性病理への巻き込みが隣接領域に拡がっていく[69-71]ことが 近年わかってきている。つまり隣接領域同士はそれぞれ独立して変性していくわけ ではなく、似たような経時的変化を呈する。このため、部位ごとに単比較を繰り返 すよりは、隣接領域同士での同時的な・協調的な・相互作用的な変化を考慮できる ような検討を行う方(図13右)が、解剖学的・機能的な connection を反映する分だ け、より実態に近い結果を得られる可能性があると考えられる。 図13:比較検討方法の概念図

(1) 領域同士の比較

(2) クラスタ同士の比較

左(1)では分割された各脳領域の1:1での比較を繰り返す。右(2)では、変化の類似度に応じて脳領域をクラスタ化し、その上で比較する。

3-1-2. 先行研究:コネクトーム

これに対するアプローチとしては、connectome [72] と呼ばれる研究分野で研究さ れてきた。このグラフ理論をベースとした方法論においては、それぞれの脳領域は node、領域間のつながりは edge として扱われ、疾患 vs 対照間でのグラフ同士の比 較として、定量的な解析を行うことができる [73]。例えば AD について脳 structural MRI および functional MRI をベースとした研究では、対照群と比較して AD および MCI では前頭葉・側頭葉・頭頂葉間の interconnectivity が減少している、という結果 が得られている [74-78]。また少し異なる手法として、同程度に(疾患 vs 対照で) 変化が見られる領域をまとめてクラスタとして見出す、教師なし学習のアプローチ も存在する [79-81]。Independent Component Analysis などによるこの手法では、あ らかじめ node たる脳領域間の解剖学的・機能的な関係性の前提知識を要せずに、疾 患による変化領域群を見出すことができる(図 13 右)。

しかしながら、これらの先行研究では、同程度に萎縮した脳領域をいくつ かのモジュール(~塊)として扱い、その経時的変化をみるという手法には乏しか った。というのは、病理学的変化が隣接する脳領域に波及していく途上において
は、同程度に病理学的変化の影響を受けて萎縮している領域が同時的に存在するは ずであり、その様な領域分布の経時的変化を見出すことができれば、背景となる病 理学的変化の時空間的広がりを間接的に可視化できる方法となるのではないかと考 えられるからである。具体的に AD でいうと、アミロイドカスケード仮説 [15] に 基づけばタウ病理 (T) の拡がり、脳萎縮 (N) 範囲の拡大、認知症状の増悪、とは 時間的にも強く関連しているため、症状の進行に合わせて同程度に萎縮している脳 領域モジュールがあった時にその経時的拡大は、病理学的背景の一つとして(Braak 神経原線維変化進展ステージ [46] で規定されているように)例えばタウ病理の同 時的な拡がりを一定以上反映しているのではないか、と仮説を立てることができ る。すなわち、structural MRI で見た脳萎縮の拡がりに先立つ、タウ病理の時空間的 拡がり (T) を間接的に可視化しうるのではないかと考えられる。

3-1-3. 遺伝子発現解析手法 WGCNA の応用

例えば第4章で扱うマイクロアレイデータにおいて、疾患 vs 対照で DNA メチル化 の程度が異なる CpG サイトを同定する手法として、第4章では CpG サイト同士の 単比較による手法(differentially-methylated probe: DMP)[82]を用いている。その ほかに頻用される解析手法として、共発現解析、特に WGCNA [83,84] という手法 がある。これは、もともとはトランスクリプトームのデータに対して開発された手 法で、階層クラスタリングを用いて、発現レベルに基づいて各遺伝子を多数のサブ グループにクラスタリングし、そこから、共通して発現している可能性のある遺伝 子をひとまとまりとして(前項で述べたように)モジュール化し、疾患状態での遺 伝子間の関係や相互作用について明らかにする端緒とすることができる。この手法 (WGCNA)の良い点は、トランスクリプトームのみならず DNA メチル化を含む 様々な omics データに適用可能で、またデータ形式が正規化された非負行列である 限りは数学的には(omics データ以外の)どの様な種類のデータにも適用すること が原理的には可能であるということにもある。そのため、すでにこの手法を脳 functional MRI データに対して適用した研究「85」はなされており、その研究におい ては、小領域の集合からなるクラスタを見出す既存の手法(PCA「79]やICA「80. 81])と比較してより妥当なクラスタ結果が導かれた、と結論されており、omics デ ータから離れた脳画像データに適用しても、それら既存の手法よりも良い結果が得 られる可能性がある。ただ、脳画像クラスタの経時的な変化を見た研究や脳 structural MRI データに適用された研究は、本検討実施時点までは明らかではなく、 また上節の様な仮説形成も行われていなかった「86]。

3-2. 本検討(第3章)の目的

そこで本検討では、この WGCNA 手法を MCIの structural MRI データに適用して、 上節の仮説を検証することを目的とする。これによって、疾患に関連して同程度に 萎縮している領域モジュールを同定し、さらにその経時的変化を追うことで、疾患 の進行(認知症状の進行)に伴う脳萎縮前線を可視化することができ、さらに一定 以上はその背景病理の同時的拡がり方の可視化にも繋がるのではないか、と期待で きる「86]。なお本章で MCI を対象としているのは、カスケードにおいてちょうど タウ病理の拡がり・脳萎縮・認知症状と連続的につながってくる時期の認知機能に 最も対応している認知症状区分であることと、髄液 Aβ/p-tau/t-tau の場合いずれも陽 性結果自体に AD dementia に対する疾患マーカーとしての意義はあるものの、数値 による病勢・ステージとの相関は明らかではない、つまり CSF ベースの A/T/N は AD 疾患マーカーとしての意義はあるが MCI due to AD 以降の AD ステージマーカ ーとしては有用ではないと考えられているため [23]、である。

この目的のために利用するデータとしては、ここでは J-ADNI [52] を用い る。これは北米 ADNI 研究とコラボラトリーに開始された本邦における大規模観察 研究である。この J-ADNI では、脳 structural MRI データについては FreeSurfer [87] という専用ソフトウェアで解析されて各脳領域の皮質厚や面積・体積などの 情報が蓄積されているため、これを利用することができる。 3-3. 方法

3-3-1. 倫理委員会承認

以下の過程は、東京大学大学院医学系研究科 倫理委員会の承認(審査番号: 11628-(3))を得て施行した。

3-3-2. J-ADNI データについて

Japanese Alzheimer's Disease Neuroimaging Initiative(J-ADNI)研究[52]は、北米 ADNI 研究とのコラボレーションとして 2010 年に開始された、MRI・PET その他の バイオマーカーや臨床的・神経学的評価を組み合わせることで、軽度認知障害 (mild cognitive impairment: MCI) や早期 AD の進行を予測できるかを検証するため

に始められた多施設での前向き観察研究である。

3-3-3. データ取得とサンプルの組み入れ基準

データベース web サイトである NBDC

(https://humandbs.biosciencedbc.jp/en/hum0043-v1)から、先方のデータアクセス委員

会の承認を得て、2018 年 5 月に csv ファイルからなる臨床・検査情報のデータをダ ウンロードした。公開データであるため、利用にあたり参加者からの再度の同意取 得は不要であった。

本研究では、J-ADNI 観察開始時点で MCI および認知機能正常(cognitive normal: CN)と判定された症例を対象とした。この MCI についての J-ADNI におけ る基準は以下の通りである「88]:自覚的ないし家族からの他覚的な認知機能低下の 訴えがあり、J-ADNI ベースライン時の年齢 60-84 歳で、日本語話者で、MMSE 24-30、全般性 CDR 0.5、また CDR-SOB 0.5 以上、に該当していること、である。J-ADNIでは MCI(および CN)は36ヶ月観察されることになっており、ベースライ ンデータ、および 36 ヶ月後のデータを利用した。また CN については MRI データ 相対化のための対照群として利用することとし、これもベースラインと 36 ヶ月後デ ータを利用した。MCIの臨床的進行度合いを測るマーカーとして、ADAS-cog13, MMSE、また AD への(36 ヶ月以内の) conversion の有無、とした。なおここでの AD は、conventional な基準である NINCDS-ADRDA 基準 [1] で probable AD に該当 する症例としている。またここでの CN の認知機能の該当範囲は「MCI に該当しな い軽症のもの全て」というやや広い意味合いであり、第4章で扱う US-ADNI にお ける CN の対象とする範囲とは完全には一致しない。例えば、US-ADNI では追加さ

れている「わずかな自覚症状を呈する」subjective memory complaints (SMC)という区 分は J-ADNI では相当する区分がなく、CN に含まれる。

3-3-4. 脳 structural MRI データ前処理

データ前処理過程は図 14 に示した様になっている。まず MCI および CN コホート のいずれについても、ベースラインおよび 36 ヶ月時点において 1.5 テスラの MRI で撮像された T1 強調画像のデータが得られている。なお MRI 自体は施行されてい ても *FreeSurfer* [87] による解析が未処理の症例もあるので、36 ヶ月時点での解析 可能な症例数は相対的に減っている(一部、中途ドロップアウトで MRI が撮像され なかった MCI 症例もある)。まずベースラインでの脳構造 MRI データは、 *FreeSurfer* [87] という解析用ソフトウェアを用いて、Desikan-Killiany アトラス

[89] という脳領域分割方式に基づいて、表5に示すように、左右34領域の皮質に ついては厚および面積、さらに28箇所の皮質下領域については体積が得られたもの がデータサーバーに既に upload されている。

78

表 5: 脳領域の分割範囲および laterality、またそれらの略語

脳領域	laterality	脳領域	laterality
Bank of superior temporal sulcus	R/L	Lateral ventricle	R/L
Caudal anterior cingulate cortex	R/L	Thalamus proper	R/L
Caudal middle frontal gyrus	R/L	Caudate	R/L
Cuneus cortex	R/L	Putamen	R/L
Entorhinal cortex	R/L	Pallidum	R/L
Fusiform gyrus	R/L	Third ventricle	-
Inferior parietal cortex	R/L	Hippocampus	R/L
Inferior temporal gyrus	R/L	Amygdala	R/L
Isthmus cingulate cortex	R/L	Accumbens area	R/L
Lateral occipital cortex	R/L	Ventral diencephalon	R/L
Lateral orbitofrontal cortex	R/L	White matter hypointensities	-
Lingual gyrus	R/L	Non-white matter hypointensities	-
Medial orbitofrontal cortex	R/L	Corpus callosum: anterior	-
Middle temporal gyrus	R/L	Corpus callosum: mid-anterior	-
Parahippocampal gyrus	R/L	Corpus callosum: central	-
Paracentral lobule	R/L	Corpus callosum: mid-posterior	-
Pars opercularis	R/L	Corpus callosum: posterior	-
Pars orbitalis	R/L	Unsegmented white matter	R/L
Pars triangularis	R/L		
Pericalcarine cortex	R/L		
Postcentral gyrus	R/L		
Posterior cingulate cortex	R/L		
Precentral gyrus	R/L		
Precuneus cortex	R/L		
Rostral anterior cingulate cortex	R/L		
Rostral middle frontal gyrus	R/L		
Superior frontal gyrus	R/L		
Superior parietal gyrus	R/L		
Superior temporal gyrus	R/L		
Supramarginal gyrus	R/L		
Frontal pole	R/L		
Temporal pole	R/L		
Transverse temporal cortex	R/L		
Insular	R/L		

脳領域分割の方式 [86]。基本的には Desikan-Killiany アトラスに基づいている。

その処理済データを取得し、標準化を行う。この標準化においては、皮質について は皮質平均厚を [90]、皮質以外の領域・空間については体積を頭蓋内体積で除した もの(=相対体積)を用いた [91]。これらを、(ベースラインでの)CN でのデー タを reference として、次の式に従って robust Z 変換した [92]:

$$robust Z = rac{1.3489 \times (rawデータ値 - CN での中央値)}{(CN でのInterquartile Range)}$$

平均値との差を標準偏差 SD で除する通常の Z 変換を用いなかったのは、皮質厚や 相対体積は正規分布に従うとは限らずまた実際に厳密には正規分布に従う分布では なかったためであるのと、また元々の WGCNA において適用されていた遺伝子発現 データと(本検討で用いた構造 MRI の計測データと)ではデータの従う分布が異な る可能性があるためである。さらに、36 ヶ月後の時点のデータとしては、MCI コホ ートのうち 36 ヶ月後にフォローされた MRI データを、CN コホートのうち 36 ヶ月 後に得られた MRI データを reference として、上記同様に robust Z 変換した。そし て、36 ヶ月後の Z データからベースラインの Z データを引き算して、36 ヶ月間の 変化を示すデータとした。この結果、MCI コホートからのベースラインデータ n= 204、また 36 ヶ月間の変化分として n= 100 のデータが得られた(図 14)。

図 14:データ前処理フロー

データ処理フローを示す [86]。まずベースラインのデータセットを作る。これに は、CN を参照基準として Z 変換する。さらに、36 ヶ月後データセットも、(36 ヶ 月後の) CN を参照基準として Z 変換する。差分データセットは、36 ヶ月後のデー タセットからベースラインのデータセットの差分をとったものである(共通してデ ータがある症例のみ)。

3-3-5. 統計解析について

本検討でのデータ処理および解析は全て R を用いている。多重検定の補正には Benjamini & Hochberg (BH) 法 [93] を用いた。また、脳萎縮と関連させる経時的 な臨床指標としては ADAS-cog13 (の変化速度 (=スコア差分/観察月数)) および conversion 有無を用いるが、これら 2 つ (ADAS 変化速度と conversion) に関した脳 萎縮の分布の違いを調べるため、これらについて脳領域 Z スコアで回帰させた結果 の説明モデルにおける variable importance [61] の分布を比較した。算出において は、通常の一般化線形回帰では (隣接する領域同士の相関は通常強いと想定され) 多重共線性の懸念があるため、support vector machine (SVM) を適用した。 importance 算出には R パッケージ caret [60] を用いた。

3-3-6. 重み付き共萎縮ネットワーク解析: WCANA

解析の主要部分は R パッケージ *WGCNA*(weighted gene co-methylation network analysis)[94]を用いた。ここでは共通して萎縮する脳領域のネットワークを見出 す目的であるので、便宜的に weighted co-atrophy network analysis (WCANA)と称して おく。MCI コホート(ベースラインデータないし差分データ)の各サンプルについ

て合計 164 箇所のそれぞれを robust Z 変換した行列をまず得る。ここから、変化方 向を加味した (= signed)、Spearman 順位相関を基にした隣接行列を得る。隣接行列 においては、0/1のカットオフを用いる代わりに、「soft-thresholding」という方法で [0-1]の範囲で重み付けを行なった [84]。この「soft-thresholding」では図のように、 scale-free topography 基準に基づき、ベースラインデータおよび差分データのいずれ でも一定の飽和状態に達する最小の次数を選択した(図15A)。そこからさらに隣接 行列を topological overlap 行列(TOM)に変換した [84]。本検討においては、ベー スラインのみ、あるいは36ヶ月のみ、の cross-sectional な解析がメインではなく、 36ヶ月の時間的変化を検討したいため、ベースラインおよび差分のデータセットそ れぞれについて上記 TOM を算出し、これら2つの TOM の間での行列要素ごとによ り小さい方の値を用いた"consensus TOM"を得る [84]。この行列からデンドログラ ム を描き、各クラスタ(=module)の要素数がなるべく少なく、かつクラスタ数が なるべく多くなる様に、デンドログラム のカットオフ高を決める。ここでは一般的 なカットオフ高として 0.1~0.2 程度の範囲から探索した(図 15B)。

図 15: Soft-thresholding および cut-tree

パラメータ調整の仕方を示す [86]:(A) まず「soft-thresholding」では、scale-free topography 基準に基づき、ベースラインデータおよび差分データのいずれでも一定 の飽和状態に達する最小の次数を選択した(A:矢印)。(B) さらに、TOM 行列か らデンドログラムを描き、各クラスタ(=module)の要素数がなるべく少なく、か つクラスタ数がなるべく多くなる様に、デンドログラム のカットオフ高を決める (B:赤ライン)。

これによってデンドログラム のツリーがカットされ、module ごとに脳領域がクラ スタ化される。module は自動的に色が割り振られる(分類されなかったその他とし ての"gray module"以外)。表の様になっている。module ごとの PCA 第1成分 を"module eigengene"とすると、ADAS-cog13 や conversion 有無など特徴量との相関 をとる指標として用いることができる。これによって、ある module 内の(複数領域 の協調的な)変化が、これら特徴量とどの程度相関してどの方向に変化しているの か(順方向か逆方向か)、見ることができる。上記 WCANA によって得られた module の分布については、R パッケージ ggseg [95] を用いて可視化した。

3-4. 結果

3-4-1. 組み入れ症例のプロファイル

組み入れた MCIn=204 例、また対象としての CN 群の特徴は表 6 の様になってい る。先行研究に矛盾なく、MCI 群はより高齢で、教育年数が短く、認知機能スケー ルもより悪く、APOE-e4 アリルを持つ率が高く、またアミロイド陽性率が高かった (PET ないし CSF) [88]。MCIの中で、36ヶ月以内に AD に convert したのは 108/204 (53%) であった。

表6:症例プロファイル

	CN (n=136)	CN IQR/%	MCI (n=204)	MCI IQR/%	р
登録時年齡 (y/o)	67	(64-71)	74	(69 - 77.25)	< 0.001
性別(女性)	72/136	52.94%	103 / 204	50.49%	0.740
教育歴 (years)	14	(12-16)	12	(12 - 16)	0.008
Baseline ADAS-cog13	7.5	(4.7–10)	20	(15.3-24.7)	< 0.001
Baseline MMSE	30	(29-30)	26	(25-28)	< 0.001
APOEε4 allele(s)	1/32/103		16 / 89 / 97		< 0.001
アミロイド PET 陽性	9/48	18.75%	35 / 55	63.64%	< 0.001
$CSF A\beta (pg/ml)$	467.9	(347.7–571.8)	297.5	(248.7 - 409.2)	< 0.001
CSF Aβ <333 pg/ml	8/50	16.00%	48 / 76	63.16%	< 0.001
CSF p-tau (pg/ml)	34.85	(32.27-40.21)	58.98	(39.75– 78.72)	< 0.001
Baseline CCR (ml/min)	96.3	(78.37-114.0)	79.15	(66.1-94.04)	< 0.001
MCI conversion あり (3 年間)	-	-	108/204	52.94%	-
ADAS 進行速度 (3 年間)	-0.0194	(-0.0833- 0.03818)	0.1833	(0.02502- 0.3611)	<0.001

症例プロファイル表 [86]。J-ADNI は第4章の ADNI データとは異なり、CSF カットオフは Aβ < 333 と高くなっている (これはおそらく測定機器などを含めたラボ環 境による違いが大きく影響しているものと考えられている)。

87

3-4-2. 臨床的な各因子との脳萎縮との関係:単解析

臨床的な各因子との脳萎縮との関係をまず概観するため、まず単純にZスコアと conversion 有無、また ADAS-cog13 の変化速度との相関を各領域について算出し た。まず conversion 有無との関連では、ベースラインの側頭葉・頭頂葉の萎縮と、 年齢・認知機能スコア・アミロイド陽性の有無・*APOE*-e4 アリル有無・将来の増悪 の程度(conversion 有無および ADAS-cog13 進行速度)と有意な相関があった (Spearman's correlation 多重補正後 p < 0.05)(図 16)。一方で、36 ヶ月間の差分デ ータについては、entorhinal cortex & parahippocampal gyrus の相対的な厚減少、また 側脳室・第3 脳室の相対的な拡大が、臨床的な 36 ヶ月間の増悪と関連していた(図

17)。

これらの結果は、MCI のうち conversion する人はしない人に比べて、嗅内 野・海馬・内側側頭葉が萎縮している [68,96,97]、また MCI と AD と比べた時に 左側頭葉・海馬・頭頂葉・側脳室の体積に有意な差がある [98,99]、といった他の コホートでの先行研究結果と矛盾しない。

図 16: ベースラインの各領域値と症例データ項目との相関値

領域値と特徴量との相関表 [86]。有意(q<0.05)な組み合わせのみ、ヒートマッ プで相関係数を表示している。conversion 有無との関連では、ベースラインの側頭 葉・頭頂葉の萎縮と、年齢・認知機能スコア・アミロイド陽性の有無・*APOE*-e4 ア リル有無・将来の増悪の程度(conversion 有無および ADAS-cog13 進行速度)と有 意な相関があった(Spearman's correlation 多重補正後 p<0.05)。

図 17: 差分の各領域値と症例データ項目との相関値

領域値と特徴量との相関表 [86]。有意 (q<0.05) な組み合わせのみ、ヒートマップ で相関係数を表示している。36 ヶ月間の差分データについては、entorhinal cortex & parahippocampal gyrus の相対的な厚減少、また側脳室・第3 脳室の相対的な拡大 が、臨床的な36 ヶ月間の増悪と関連していた (Spearman's correlation 多重補正後 p < 0.05)。 続いて、ADAS-cog13 と conversion に関連した萎縮の分布がどの程度異な るか検討するため、それぞれについての variable importance を算出した。ベースライ ンデータ (図 18A)、および差分データ (図 18B) について、各領域に関して対 conversion 寄与度を X 軸に、対 ADAS 増悪速度寄与度を Y 軸にとって plot した結果 が図 18 である。これは conversion および ADA-cog13 変化速度に対する各領域の寄 与度の違いを示しているが、A では rho = 0.339 (p < 0.001), B では rho = 0.289 (p < 0.001)と有意な相関を示しており、これら conversion と ADAS-cog13 変化速度とは一 定程度対応した分布を示していることがわかる。

図 18:各領域の variable importance を、conversion に対する寄与度 vs ADAS-cog13

変化速度に対する寄与度として plot したもの

各データセットにおける、variable importance の散布図 [86]。A:ベースラインデー タ:rho 0.339 (p < 0.001)、B:差分データ:rho = 0.289 (p < 0.001)、についての plot である [86]。

3-4-3. WCANA による interconnectivity 解析

続いて、当初の目的通りにネットワーク解析を行った。隣接行列を soft-thresholding するにあたっては双方のデータから次数=14 と定めた。consensus TOM を得て、そこ からのデンドログラム でのカットオフ高は 0.2 とした(なお 0.1-0.2 の範囲で変化さ せても同じ結果が得られていた)。

結果として、164 領域のうち 28%に当たる 46 領域が 17 module に分配され た(それ以外はうまくクラスタされなかったもの:gray module)(表 7)。皮質 module は同じ脳葉内に位置する傾向にあり(茶・黄は側頭葉内、シアン・赤・ミッ ドナイトブルーは頭頂葉内)、一方で皮質下 module は両側でまとめて module 化する 傾向にあった(サーモンは両側側脳室、黄緑は両視床、マゼンタ・紫・薄シアンは 両基底核)。

表7:moduleの色と割り当てられた脳領域

Color	Module name	Regions/structures (laterality)
	salmon	Lateral ventricle (R/L)
	greenyellow	Thalamus proper (R/L)
	magenta	Putamen (R/L)
	purple	Caudate (R/L)
	lightcyan	Pallidum (R/L)
	turquoise	Caudal middle frontal (R/L), superior frontal (R/L)
	blue	Rostral middle frontal (R/L), pars triangularis (R/L)
	brown	Fusiform (R), middle temporal (R), superior temporal (R), inferior temporal (R)
	yellow	Fusiform (L), middle temporal (L), superior temporal (L), inferior temporal (L)
	grey60	Lateral occipital (R/L)
	black	Supramarginal (L), pars opercularis (L), inferior parietal (L)
	cyan	Precuneus (L), superior parietal (L)
	green	Precentral (R/L), paracentral (R), postcentral (L)
	red	Inferior parietal (R), postcentral (R), supramarginal (R)
	midnightblue	Precuneus (R), superior parietal (R)
	pink	Unsegmented white matter (R/L)
	tan	Ventral diencephalon (R/L)
	gray	All other regions/structures not shown above.

クラスタ分けの結果表 [86]。164 領域のうち 28%に当たる 46 領域が 17 module に 分配された(これらとは別に、gray module はいずれにも当てはまらなかった「その 他」をまとめたものである)。 それぞれの module と、臨床的特徴量との相関を取った結果が図の様にな る。図 19 はベースラインデータ、図 20 は差分データで、いずれも、列項目の特徴 量と、行項目の module の PCA 第 1 成分との間の相関係数(Spearman rho)および多 重補正後 p 値が各セル内に示されており、p 値によらず rho > 0 の場合は赤色系、rho <0 の場合は青色系で色分けしたヒートマップになっている。

まずベースラインデータを見ると、側頭葉領域のベースラインの萎縮(茶 色:右側頭葉、黄色:左側頭葉)は、将来の MCI conversion および ADAS 増悪と強 い相関を示している。また差分データを見ると、36ヶ月における側頭葉の萎縮進行 (茶・黄 module) ないし側脳室の拡大進行(サーモン module)は臨床的増悪 (conversion 有無および ADAS)と強い相関を示していた。また、頭頂葉や側頭葉 などの皮質の 36ヶ月間の変化もまた、conversion 有りと有意な相関を示していた (これらの場合は ADAS とは相関なし)。 図 19:各 module と特徴量との相関:ベースラインデータ

各 module と特徴量との相関結果 [86]。列項目の特徴量と、行項目の module の第 1PCA 成分との間の相関係数 (Spearman rho) および多重補正後 p 値が各セル内に示 されており、p 値によらず rho > 0 の場合は赤色系、rho < 0 の場合は青色系で色分け したヒートマップになっている。

図 20:各 module と特徴量との相関:差分データ

各 module と特徴量との相関結果 [86]。列項目の特徴量と、行項目の module の第 1PCA 成分との間の相関係数(Spearman rho)および多重補正後 p 値が各セル内に示 されており、p 値によらず rho > 0 の場合は赤色系、rho < 0 の場合は青色系で色分け したヒートマップになっている。 ベースラインから 36 ヶ月間までの縦断的変化についてまとめると、conversion と相 関した同程度の共萎縮領域についてみると、ベースライン当初は側頭葉に限局して いるものの(図 21A)、36 ヶ月間の変化においては側頭葉のみならず頭頂葉にも分 布している(図 21B)。

図 21: conversion に関連している module の分布の変化

Module 分布の経時的変化 [86]。ベースラインの萎縮そのものについてのクラスタ リング分布をまず導出(A)し、さらには 36ヶ月後の時点そのものではなくベース ラインからみて 36ヶ月間の「萎縮変化の差分」についてクラスタリング分布を導出 した(B)。なおクラスタ分けにおいては、module 範囲を(A)と(B)とで共通す るような手法を用いている。また後者(B)で見ている分布は、36ヶ月後までの間 に脳萎縮進行を同程度に示した脳領域の分布である。ここから、当初は側頭葉に限 局しているものの(A)、変化においては側頭葉のみならず頭頂葉にも拡大している (B)ことがわかる。

3-4. 考察(第3章)

本検討における結果をまとめると、クラスタ分けが共通するような手法で module 範 囲を(図 21A)と(図 21B)とで対応させた上で、ベースラインの萎縮そのものに ついてのクラスタリング分布をまず導出(図 21A)し、さらには 36ヶ月後の時点そ のものではなくベースラインからみて 36ヶ月間の萎縮変化の差分についてクラスタ リング分布を導出した(図 21B)。後者(図 21B)で見ている分布は、36ヶ月後ま での間に脳萎縮進行を同程度に示した脳領域の分布である。ここから、(図 21A)と (図 21B)とを対比させて見ると、共通した程度の萎縮の進行は、(MCI conversion に関連して)ベースラインから 36ヶ月後までの間の経過の中で側頭葉から頭頂葉へ 進展していくことが結果として示されたと言える。

一般に神経変性疾患においては、背景病理(異常蛋白の神経細胞間伝播) の拡大・進展の反映としての脳萎縮が拡大・進展していく。このとき、背景病理と 脳萎縮との間に一定程度の時間的相関(例えば AD においては仮説としての T→N のカスケード)を仮定すると、背景病理の空間的な拡大は、一定の delay をもって 同分布での同程度の脳萎縮として顕在化すると考えられる。ということは逆に、共 通する程度の脳萎縮の時系列変化での分布を同定することができれば、背景病理の 拡大していく前線(の少なくとも一部)について推測することができるのではない かと考えられる。このため、本手法は、構造的 MRI データの modality を超えて、よ り上流の病理学的変化の経時的な拡がり方を捉えることができる手法である可能性 がある。実際、結果的に、本検討における共萎縮の時系列変化での分布は AD にお ける既知のタウ病理進展様式「46]と一定程度一致するものであった。

とはいえ、本手法についての上記解釈の妥当性は今のところ単一コホート データで結果が既知の病理学的分布と大きく矛盾はない事を示したに過ぎずそれ自 体不十分であって、これをより十全に検証するためには、他の AD データで同様に 検証することが必要である。また、本検討では AD を検討対象疾患としたが、本手 法の特徴の一つとしてデータ駆動性の解析であって領域間の解剖学的 connection に ついての前提知識が不要であるということが挙げられるため、本手法の有用性は AD に限らず、レビー小体病などの様に病理学的伝播様式がよく知られている疾患 の画像データについても同様に解析を行い、検証してみることが重要と考えられ る。その上で、未だ病理学的進展について十分にわかっていない比較的稀な神経変 性疾患などでの、生前に病理学的な拡大様式を推測・可視化する応用手法の一つと して有用である可能性が期待できる。

本手法と概ね同じ方法論はすでに functional MRI データに WVCNA という 名称で適用された研究「85」があるが、この先行研究と異なる点としては、適用デ ータが functional MRI データではなく structural MRI であって、しかも経時的にデー タを解析することで、背景にある病理学的影響への解釈をも可能になるという点に ある。本章背景で既に述べたように、同様の unsupervised method としては independent component analysis: ICA を functional MRI データ [80] や FDG-PET デー タ [81] に適用した研究や、principle component analysis: PCA を functional MR デー タに用いた研究[79]など、既存の教師なし学習分類手法である PCA や ICA を脳 画像に用いた研究は存在するが、この WVCNA の先行研究は、これらの既存手法よ りも空間的に細かい module を検出することができているためにより妥当と考えられ ると結論している「85]。このため、構造的 MRI データにおいても同様に、本手法 を適用することでより空間解像度よく詳細な変化を見ることができるという利点が あると考えられる。

本検討の limitation としては、本手法で示された MCI conversion に関連した 共萎縮 module がタウ病理の分布と偶然一致しているように見えただけである可能性 がある点、そもそも病理学的な影響と脳萎縮とは常に一定の時間的関係が保たれる とは限らない(全ての脳領域で一様であるとは限らない)し、また病理学的変化の 101 種類によって異なる可能性もあるという点において本手法の有用性が制限される要 因になること、などがまず挙げられる。さらには、ネットワーク解析への入力は (脳部位ごとの計測値そのものではなく) データ内で標準化した数値を用いている ため、(標準化しているとは言え)解析集団ごとに結果が異なる可能性は残る。この ため、ここでは J-ADNI のデータを用いたが、他のコホート(例えば ADNI やオー ストラリアのコホートである AIBL) でも同様の結論が導けるかどうか、validation が必要である。さらに、他の神経変性疾患にも有用であろうとは考えられるもの の、FreeSurfer での解析に供することができる程度に一貫した quality の MRI 検査を 少なくとも数十以上の症例から時系列で得なければならないという点では、稀少す ぎる疾患には適用しづらい。また FreeSurfer による解析自体、1 症例につき少なく とも数時間以上のデータ処理時間を要する点でも、実用性が十分高いとは言い切れ ない。

第4章: 血液 epigenetic aging を用いた、A/T/N 分類予測の試み 4-1. 背景

4-1-1. Aging acceleration

第2章では、プレクリニカル AD の SUVr 予測モデルにおいては「年齢」が最も強 く予測に寄与する因子、という結果であり、これは加齢(生物学的年齢の上昇)と 共にアミロイド陽性率が加速的に上昇していく先行研究と一致するものである [51]。この本質的理由は現在も不明であるが、ここでさらに加齢に関する指標とし て Aging Acceleration (AA):「加齢の亢進」を考えてみる。これは生物学的年齢 (chronological age)を推定する方法から逆算して得られる指標であり、DNA メチル 化情報、テロメア長、トランスクリプトーム 情報、プロテオーム情報、メタボロー ム情報、またこれらの複合、などを用いて算出することができるが、DNA メチル化 情報を用いた方法(= methylation clock)が最も有用であると考えられている[100, 101]。DNA メチル化の程度が(生物学的年齢から逆算される想定メチル化程度より も)加齢方向に変化している場合、「加齢の亢進(aging acceleration: AA)がある」 と表現し[101]、高血圧、肥満、喫煙、冠動脈疾患、悪性腫瘍、ダウン症候群、ウ ェルナー症候群など様々な(病的な)状態で AA が起こることが報告されてきてい

る [101]。

神経疾患でいうと、AD [102] やハンチントン舞踏病 [101] などの神経変 性疾患の剖検脳組織由来の核 DNA を用いた先行研究で、aging acceleration がすでに 報告されている。特に AD では、AD 患者の脳組織(前頭前皮質)からの AA とアミ ロイド蓄積・neuritic plaque [102, 103]、また脳 AA と認知機能との間の相関が報告 されており [102]、脳 AA と AD 病理とは密接に関連している可能性があることは 既に報告されている。

4-1-2. 血液 AD バイオマーカーとしての aging acceleration

一方、脳組織ではなく血液からの AA については、中枢の AD 病理との直接的な関 係はこれまで示されていない。しかしながら、血液 AA と AD 環境リスク因子(高 BMI、高 T-cho/HDL 比、社会経済的 status、高血圧、喫煙歴など)との関連は報告さ れており [104]、また血液脳関門の存在にも関わらず、血液 AA と認知機能低下が 関連していること [105]、血液 AA と大脳白質の integrity の間に関連があることが 報告されていること(MRI-Diffusion-Tensor Imaging において大脳白質線維整合性 (white matter integrity) と血液 AA に負の相関があることが報告されていたり [106]、血液 AA と MRI での大脳白質高信号の程度が相関していることが報告され ていたりする [107]) は報告されている。また他の神経疾患例えばパーキンソン病 でも血液での AA が報告されている [108]。

第1章で既に述べたように、これまでの(Aβ・タウ以外の)血液バイオマ ーカーは再現性が十分ではないものが多いという結果であったが、これは予測する 物質・マーカー自体が AD 病理とあまり関係ないものであった可能性があること、 予測対象が過去の NINCDS-ADRDA 基準を参照していたこと、などが想定されてい る。このため、AD 病理と関連がある可能性がある(しかもこれまで検討されてい ない)血液 AA を予測マーカーとして用いて、かつ臨床診断としての AD ではなく A/T/N 分類に対して予測を行うことで、これらの問題は解決できるのではないかと 考えた。つまり、血液 AA は第2章でみた生物学的年齢に加えた、A/T/N(特に A) に対する有用な代用マーカーの可能性があるのではないかと仮説を立てる。 4-2. 本検討(第4章)の目的

すなわち本検討では、血液 methylation clock を基にした AA による、(amyloid: A を 含めた) A/T/N それぞれをターゲットとした予測が実用的に可能かどうか検討する ことを目的とする [109]。このためのデータセットとしては ADNI 研究 [110] のデ ータを用いる。これは 2003 年に縦断的なバイオマーカーと認知機能の縦断的な変化 を調査するために北米で開始された大規模観察研究で、血液 DNA メチル化情報 (マイクロアレイ)、A/T/N 分類のための検査結果を含めた必要なデータが網羅され ている。 4-3. 方法

4-3-1. 倫理委員会承認

以下の過程は、東京大学大学院医学系研究科 倫理委員会の承認(審査番号: 11628-(3))を得て施行した。

4-3-2. ADNI データについて

Alzheimer's Disease Neuroimaging Initiative (ADNI)研究 [110] は、2003 年に
Michael W. Weiner を PI として、MRI・PET その他のバイオマーカーや臨床的・神経
学的評価を組み合わせることで、MCI や早期 AD の進行を予測できるかを検証する
ために北米で開始された前向き観察研究である。

ADNI 研究の組み入れ基準はまず、60-84 歳までの、自宅で生活し、被験者 本人の状態を知っていて検査に協力できるスタディパートナーがいる男女で、他の 神経疾患の既往(パーキンソン病、多発脳卒中、ハンチントン舞踏病、正常圧水頭 症、てんかん、硬膜下血腫、進行性核上性麻痺、多発性硬化症、後遺症のある頭部 外傷歴、など)や認知機能低下の原因となりうる病態(ビタミン B₁₂欠乏・葉酸欠 乏・甲状腺機能低下・梅毒など)がなく、精神疾患(大うつ病・双極性障害)やア 107
ルコール等依存歴が直近になく、頭部 MRI が施行可能で、特定の向精神病薬やワーファリンの内服がない、と定められている。ADNI 研究の被験者は、組み入れ時点でその認知機能低下の状態に応じて、CN・MCI・AD と分類され、それぞれ定期的に研究参加施設を訪問し、状態および検査所見のフォローが行われる。ADNI 研究は 2021 年までは継続される予定となっており、逐次データが web 上に公開されてきている。

4-3-3. データ取得とサンプルの組み入れ基準

データベース web サイトである LONI (https://ida.loni.usc.edu)に先方のデータアクセ ス委員会の承認を得て、2019 年 10 月に csv ファイルからなる臨床・検査情報のデー タ、また IDAT ファイルからなる血球核 DNA メチル化情報のデータをダウンロード した。公開データであるため、利用にあたり参加者からの再度の同意取得は不要で あった。

利用したデータ項目としては、基本的な情報として年齢、性別、人種(コ ーカシアンか否か)、教育年数、喫煙歴の有無、研究組み入れ時点での臨床診断 (CN・MCI・AD のいずれか)、血液サンプル採取時直近の認知機能検査結果

(MMSE および ADAS-cog13)、APOE ジェノタイプ (e4 アリル数)、A/T/N 分類の ための指標として髄液 Aβ/p-tau/t-tau 値、また epigenetic clock 計算のための血液 DNA メチル化 microarray データ(プラットフォーム:Illumina HumanMethylation EPIC BeadChip)、である。これらのうち認知機能検査結果以外全ての項目が揃って いる n=317 症例から得られた n=317 マイクロアレイサンプルを解析対象とした。 なお本研究では予測ターゲットとして臨床症状(認知機能の程度)ではなく A/T/N 分類を設定していること、また今回参照した CSF による A/T/N (次項参照) は AD 疾患マーカーとしての意義はあるが MCI due to AD 以降の AD ステージマーカーと しては有用ではないと考えられている「23」ことから、認知機能検査の結果は組み 入れ段階では参照せず、結果として正常~AD まで幅広い症例が解析対象となって いる。また認知機能検査の実施日と DNA マイクロアレイサンプル取得のための血 液採取日とは同一とは限らず若干のズレがあるが、その差異は中央値10日であっ た。

4-3-4. A/T/N 分類

A/T/N 分類のうち、A は Aβ-PET でも代用できるが Aβ-PET と CSF での結果は必ず

109

しも一致しないこと(孤発性 AD・優性遺伝性 AD 共に、CSF での AB 変化は Aβ-PET での変化に少し先行して現れる [111, 112])、T については ADNI 研究実施時に タウ PET は研究が進んでおらず実用化されてないため CSF データしかないこと、N については CSF に代替可能な(MRI や) FDG-PET のデータが必ずしも十分ではな いことと基準をどうするか統一的に決定しづらいこと、また同一 modality であるこ とを重視するという理由から、A/T/N 全てに関して髄液検査のみを参照 modality と して、各症例を分類した。ADNI データに関する先行文献 [113] に従い、CSF Aβ < 192 pg/mL で A(+)(それ以外は A-)、CSF p-tau > 23 pg/mL で T(+)(それ以外は T-)、CSF t-tau > 93 pg/mL で N(+)(それ以外は N-)、と A・T・N それぞれについて 2 値化した。それぞれの分布は図 22 ヒストグラムのようになっている。

図 22: CSF 各マーカーの分布

上から、A/T/N それぞれに対応する CSF Aβ, p-tau, t-tau の分布ヒストグラム [109]。 縦の点線は各々の cut-off 値(単位:pg/mL)。

4-3-5. DNA メチル化について

まず DNA メチル化について概説する。DNA メチル化とは、塩基配列によらない発 現制御機構である epigenome のうち一つである(もう一つはヒストン修飾)[114, 115]。DNA メチル化は、図に示すように、DNA メチル化による発現制御機構にお いては、遺伝子プロモーター領域の塩基配列の CpG アイランドにおけるシトシンが メチル化されていない場合、転写因子が結合できるため、その下流の遺伝子翻訳が 行われる (図 23A)。ところが、プロモーター領域の CpG アイランドが DNA methyltransferase (DNMT)によってメチル化シトシンになる $(= メ + \mu \ell z)$ こ とで、転写因子が結合できなくなるため、その下流の遺伝子翻訳が抑制され(図 23B)、結果として遺伝子発現も抑制される(* DNA の脱メチル化は TET1、TET2、 IDH1 などのタンパク質が関与する)。プロモーター領域ではなく遺伝子本体(gene body)の CpG アイランドの DNA がメチル化された場合は、当該遺伝子の転写の増加 を示すこともあるが、プロモーター領域のメチル化の場合ほど定まった傾向がある わけではない。

図 23: DNA メチル化による発現調整機構の概要図

遺伝子プロモーター領域の塩基配列の CpG アイランドにおけるシトシンがメチル化 されていない場合、転写因子が結合できるため、その下流の遺伝子翻訳が行われる (A)。ところが、プロモーター領域の CpG アイランドが DNA methyltransferase (DNMT)によってメチル化シトシンになる(=メチル化される)ことで、転写因子 が結合できなくなるため、その下流の遺伝子翻訳が抑制され(B)、結果として遺伝 子発現も抑制される。 ADにおける DNA メチル化異常については、同病剖検脳において APP、MAPT の遺 伝子のプロモーター領域のメチル化異常が報告されたり [116]、またエピゲノム網 羅的な解析では、(既に GWAS で疾患関連遺伝子として同定されている) BINI や ABCA7、また ANK1 や RHBDF2 の脳組織での DNA メチル化変化 [117, 118]、 BRCA1 の脳での DNA メチル化変化 [119]、海馬での神経分化に関わる遺伝子のメ チル化 [120]、BACE1 をターゲットとする DSCAML1 のエンハンサー領域の調節異 常(脱メチル化) から BACE1 転写産物の増加に繋がりアミロイド産生亢進に寄与し ているという報告 [103]、など AD の病態において脳組織での DNA メチル化変化 が関与しているという知見が蓄積されつつある。

4-3-6. Epigenetic Clock および Aging Acceleration について

この上で、epigenetic clock [100, 101] とは、特定の CpG アイランドのメチル化の程 度が加齢に伴って徐々に変化する(脱メチル化のことが多い)ことから導入された 概念である。健常な状態をベースとして逆算モデルを作っておいて、現在の DNA メチル化の状態に当てはめると、そこから逆に生物学的年齢(chronological age)を 推定することが可能になっている。この推定された年齢は epigenetic clock と呼ばれ る。同様の年齢予測にはテロメア長、トランスクリプトーム 情報、プロテオーム情 報、メタボローム情報、またこれらの複合、などを用いることもできるが、 epigenetic clock はこれらよりも有用であると考えられている [100]。DNA メチル化 情報を使った epigenetic clock (= methylation clock: DNAmeAge) は、はじめに Hanuum らによって成人の血球由来 DNA サンプルから、71 CpG サイトのメチル化 「情報を用いて導入された(Hanuum's clock: [121])。さらに、DNA サンプル元の対 象組織を血液に限らず、様々な組織について個別最適化し、また対象年齢に小児も 含めた version が、Horvath らによって導入された。これは 353 CpG サイトの DNA メチル化情報を用いており、Horvath's clock と呼ばれる [122]。また ELOVL2 遺伝 子上の単一 CpG サイトで予測する報告 [123] もあるが、正確性は十分ではない [101]。いずれも、所与の CpG サイトの DNA メチル化状態を生物学的年齢に回帰 させて得られた機械学習モデルといえる。DNA メチル化は死後変化にも(他の modality と比べると)強いため、法医学の分野で年齢不明の死体の年齢を推定する のに用いうるとする報告がある[124]。

すでに述べたように、病的な状態において、DNA メチル化の程度が(生物 学的年齢から逆算される想定メチル化程度よりも)加齢方向に変化している場合、 115 「加齢の亢進 (aging acceleration : AA) がある」と表現する [101]。AD [102] や ハンチントン舞踏病 [101] などの神経変性疾患においては、脳組織については aging acceleration がすでに報告されている。

4-3-7. マイクロアレイデータ前処理

さて、血液(のうち白血球の核 DNA のみ)の DNA メチル化情報は、ADNI 研究で は Illumina HumanMethylation EPIC BeadChip [125] という規格のマイクロアレイで 計測されデータが提供されているため、これを用いて解析する。DNA メチル化情報 を調べる手法はマイクロアレイ以外にもパイロシークエンシング、定量 PCR、次世 代シークエンサー(NGS)など複数の方法があり、DNAmeAge はいずれの手法であ っても適用できるが [101]、このマイクロアレイを用いて調べる利点としては、多 数の遺伝子について CpG サイトのメチル化状態を網羅的に検討することができて high-throughput であること、分析手法としては既にかなり普及しており標準化も進 み、測定結果も安定していること、コストも比較的にリーズナブルであること、バ イブラインが整備されておりデータ容量も大きくないため解析が比較的容易である こと、などが挙げられる。 以下のすべてのデータ操作および解析は解析ソフトである R (version:

3.5.1) (R Foundation for Statistical Computing, Vienna, Austria) を用いて行った(図 24)。まず血液 DNA メチル化のマイクロアレイデータは IDAT ファイルというファ イル形式で提供されており、これを R パッケージ minfi [126] で読み込み、EPIC プ ラットフォームに合わせて各 CpG サイトのアノテーションを行った。これにより、 ゲノム上に分散して設定されている 70 万箇所以上の CpG サイトのメチル化情報 を、どの遺伝子上のどのような位置(promoter, gene body など)にあるのか、また転 写開始位置(TSS)との相対的な位置関係、などについて整理することができる。 サンプルデータのうち、血液サンプルから核 DNA を調製する際のエラーなどに起 因して DNA メチル化のデータ分布が通常の分布から明らかに外れている(=低ク オリティサンプル) ことがあり、このようなサンプルは minfi の Quality Control (QC)機能で同定し除外した。さらに、R パッケージである ChAMP [82] のフィ ルタリング機能を用いて、性染色体上の CpG サイトや、SNP 上に位置する CpG サ イト、また検出精度が悪い CpG サイト (detection p >= 0.01) を除外した。その上 で、全サンプルを標準化した(ここでは PBC 法 [127] を用いた)。なお標準化方法 やプラットフォームによって DNAmeAge は大きな影響を受けないことが報告されて いる「128]。

さらに、マイクロアレイの Batch に起因するメチル化レベルの差異(batcheffect)を補正した(p<0.05 レベルでは計 188 batch が検出されていた)。これには R パッケージ *sva* [129] の機能を利用し、A・T・N のラベリングは共変量には含め なかった。というのは、通常の解析における疾患 vs 対照などの群間比較では、batch 補正に際して群間の差異まで意図せずに補正してしまい違いがわからなくなってし まうのを防ぐために疾患情報など重要な因子は共変量として設定するのが一般的で あるが、本検討では予測を行うことが目的である(=A/T/N それぞれが+か-かはデ フォルトではわからない)ため、この共変量設定は行わないものとした。これによ り、最終的に 70 万箇所以上の CpG サイトのそれぞれのメチル化の程度(β 値)が サンプル数分揃った β 値行列としてデータが得られた。

また、Differentially-methylated probe (DMP) すなわちメチル化の程度(β 値として 0~1 の範囲の連続値) について群間で差異がある CpG サイトを見出すため に、*ChAMP* の機能を用いて、A+ vs A-、T+ vs T-、N+ vs N-、でそれぞれ比較検定し た [82]。合計約 70 万箇所以上の CpG サイトについて検定を繰り返している、すな わち全体として膨大な回数の多重検定をしていることになるので、p 値補正に一般 的な補正方法である Benjamini-Hochberg(BH) 法 [93] を用いて、補正後 p 値とし て false-discovery rate (FDR) 値を得た。DMP については FDR < 0.05 を有意水準と 118 した。

図 24: microarray 前処理フロー

データファイルを R で読み込み、順に前処理を行っている。()内は利用した R パッケージ名。

4-3-8. epigenetic aging、aging acceleration の計算

既に述べた methylation clock の計算方法のうち、ここでは最も一般的と思われる Horvath らによる方法 [122] を用いる。これは彼らが提供している website での calculator (https://dnamage.genetics.ucla.edu) (図 25) を利用することで、オリジナル の方法通りに計算することが可能である。上記のβ値行列データを csv ファイルに して upload し、計算を行った。

得られる情報としては、実際の年齢(chronological age)と比較して methylation clock から計算される加齢亢進(aging acceleration)のうちでは、外因性 の要素も含めたもの(extrinsic epigenetic aging acceleration: EEAA)と、内因性の要素 だけを考慮したもの(intrinsic epigenetic aging acceleration: IEAA)、とに大別される [101]。白血球成分の構成内訳は年齢と共に変化するため、これを差し引く目的 で、IEAA は実際の年齢および白血球数の構成割合に対して予測年齢を回帰させた 時の残差として得られる。これによって、年齢やその他の全身状態に伴う白血球数 構成の変化に影響を受けない、細胞内因性の(いわばより純粋な)老化について調 べることができるとされている。一方で EEAA は、実際の年齢に対して特定の数百 の CpG サイトのβ 値から計算して推定される年齢を回帰させた残差として定義さ れ、上述の IEAA に加えて、加齢に伴う免疫関連の白血球数構成の変化も反映する ものと説明されている [101]。EEAA はまた生活スタイルや炎症なども IEAA にお けるより強く反映されると報告されている。いずれも AA として使用される指標で あるため、ここでは各サンプルについて、この IEAA および EEAA の双方を得た。

DNA メチル化についてはマイクロアレイや NGS で網羅的に計測されるこ とが現在では一般的であるが、対象となる CpG アイランドの箇所は、要所要所を抽 出したマイクロアレイでも全ゲノム上に分散している合計数十万箇所以上を含んで いて膨大であり、先述のタンパク質や脂質研究での数百レベルの要素数とは桁違い である。一方で得られるサンプル数は通常は多くても数百程度に留まる研究がほと んどであり、疾患 vs 対照での検定を多重補正した結果、個々の CpG アイランドで の平均的なメチル化の程度の差異について検出力が大幅に低下する懸念がある。 epigenetic clock は組織ごと or 症例ごとの単一指標であるため、このようないわゆる 「large-p, small-N」[130]、という問題を避けることができ、また解析がより容易と いう利点もありうるものと期待できる。

図 25: Horvath らによる Calculator website

2020 年 9 月にサイトにアクセス (https://dnamage.genetics.ucla.edu)。

4-3-9. 予測モデルの構築と評価

当初の予定通り、得られた IEAA ないし EEAA、またその他の demographics 情報を もとに、A/T/N 分類について予測することを考える。まず予測目標の A/T/N は、本 来の A/T/N 分類 8 パターンには症例数の偏りが非常に大きく(n=0の区分もあり) 予測に適しない恐れがあったため、A, T, N それぞれについて+/-の 2 値分類を別個に 行うことにした。

さらに、通常、DNA メチル情報は年齢・性別など基本的な情報に追加的に 得られる情報であることから、基本的な情報のみ含めたモデルと、それに aging acceleration (AA)を追加したモデルとを比較することで、DNA メチル化情報を元 にした AA をあえて用いる有用性があるか、検討することにした。また APOE ジェ ノタイプは Aβ 蓄積に大きな影響を与える要素でしかも e4 保有率が高いことから多 くの臨床研究ではデータ取得されている項目であるため、APOE を情報としてモデ ルに含めるか否か、という点でもモデルを分けることにした。またその他の生活習 慣や既往など DNA メチル化に影響を与える[101,131]ものは複数知られている が、中でも血管リスクに影響を与えていてかつ情報が得られやすい、喫煙歴(有 無)、人種(白人か否か)についても、基礎情報として加えることにした。結果として、図 26 のように、

- モデル A1:年齢・性別・喫煙歴・人種
- モデル A2:上記モデル A1+AA(IEAA ないし EEAA)
- モデル B1:上記モデル A1+*APOE* ジェノタイプ
- モデル B2:上記モデル B1+AA(IEAA ないし EEAA)

として、*APOE* なしモデル: A1 vs A2、*APOE* ありモデル: B1 vs B2 でそれぞれ比較 することにした。

データフローは図のように、まず全サンプルを 1:1 にランダム分割する。 この時、予測ターゲット(すなわち A+/-, T+/-, N+/-のいずれか)の配分割合が概ね 同程度になるように配分した。これには R パッケージ caret [60] の機能を用いた。 そして、まず training 用のサブセットと、上記モデルにおける変数の組み合わせを 用いて、予測モデルを構築する。そしてこの精度を、test 用に分けておいたサブセ ットにおいて検証する。モデル構築でのアルゴリズムは ElasticNet を用いる。なお ここで ElasticNet を用いたのは、年齢に相関して変化する CpG サイトを膨大な数か ら絞り込んでいく際に多用されていたアルゴリズムであったということが理由であ る。ただし、変数の数が少なく相互の相関性も CpG サイト間の関係と比較すると高 くないと推定されるため、実質的にはロジスティック回帰を用いた時とほぼ同等の 結果を得ていると考えられる。予測精度の評価には、test データにおいて各サンプ ルが A/T/N それぞれについて(+)である確率を算出し、それと実際の+/-の結果を照 合して、area under the curve (AUC) として精度を算出する。AUC について、モデ ル A1 vs A2、モデル B1 vs B2 について Delong's test で検定を行い、IEAA ないし EEAA をモデルに加えることで予測精度が上昇するかみる。AUC の計算、および DeLong's test には R パッケージ pROC [132] を用いた。

図 26: モデルの構築・評価フロー

モデルの評価フローを示す [109]。訓練用データセットから4種類のモデル (A1,A2,B1,B2) をそれぞれ作成し、*APOE*なしモデル(A): A1 vs A2、*APOE* あり モデル(B): B1 vs B2 で(評価用データセットにおける予測能 AUC を)それぞれ 比較した。 上記の一連の計算は、最初のランダム分割の結果にも影響を受ける、すな わち ADNI データセット内でのサンプルのばらつきにも影響を受けるため、ランダ ム分割~AUC 比較までを 20 回繰り返して行うことにした。これによって、このデ ータセット内での平均的な評価を行うことができるのではないかと期待した。1 回 のランダム化で、EEAA および IEAA それぞれについて model A1 vs A2、model B1 vs B2 についての DeLong's test の結果としての p 値が 2 つ得られるので、つまり合計 4 つの p 値が得られる。それぞれが有意 p < 0.05(ただし p 値は 4 セット比較の多重補 正後)である回数を、20 回のランダム化の繰り返しの中で集計して目安とした。

4-4. 結果

4-4-1. サンプルのプロファイル

demographics が揃っている症例 n = 324 について DNA メチル化データを読み込ん だ。Density plot は図 27 のようになっている。これは(個々の血球の核 DNA におけ るそれぞれの CpG サイトのメチル化状態はメチル化されているか否かの binary な状 態であるが)多量の核 DNA での全 CpG サイトのメチル化状態の平均的な分布を、 サンプルごとにまとめてヒストグラムとしたものである。なお各 CpG サイトのメチ ル化の状態 (0/1) はそれぞれの場所によって大きく偏りがあり、また周囲の CpG サイトのメチル化の状態にも依存するので 2 項分布にはならず、β 値が 0 (= unmethylated) 付近と 1 (= methylated) 付近の 2 峰性の分布となっていることがわか る。

これらのうち、Quality Control [126] によって9例が不適当と判断された (図 28 左の左下の赤 plot)。これらを除外し(図 28 右)、問題ないデータセットと なった。そこからさらに normalize・batch 補正を行い、最終的に、n=315 のサンプ ルによるデータセットが得られた。

β 値の分布は 0 (= unmethylated) 付近と 1 (= methylated) 付近の 2 峰性の分布となっている。

Quality Control (QC) によって9例が不適当と判断された(左図・赤 plot)。これら を除外し(右図)、解析を行った。

これらの症例の A/T/N 分類の内訳は表 8 のようになっている。A+T+N+, A+T+N-, A-T+N-の順に多く、A-T-N+は 1 例しかなく、A-T+N+は含まれなかった。 A・T・N それぞれについて見てみると、61.2%で A+、77.9%で T+、32.8%で N+であ った。A+/-についてデータの揃う範囲では、Aβ-PET との一致度は kappa 係数で 0.706 と「ある程度の一致」を示していた。

さらにこれらの症例のプロファイルとしては、ほとんどが白人 caucasian で、年齢中央値は A+T+N+がもっとも高く、ついで A+T-N-, A+T+N-の順であった。 採血時と最も近い時点での臨床診断としては、CN や MCI では A-T+N-や A+T-N-や A+T+N-などに該当する場合が多いのに対して、AD では A+T+N+が最多であった。 APOE-e4 アリルを持つ場合、A+T+N-か A+T+N+と、A+であるケースが多かった。

表8: A/T/N 別の症例プロファイル

A/T/N	n	actual age	sex	APOE 64 allele(s) [0:1:2]	ethnicity (white / others)	education
A-T-N-	43	70 (65.75 ~ 76.5)	21:22	41:2:0	42:1	16 (14 ~ 18)
A+T-N-	26	74.4 (70.5 ~ 79.9)	18:8	17:8:1	25:1	17 (15 ~ 19.75)
A+T+N-	77	72.7 (67.7 ~ 78.4)	37:40	33:36:8	72:4	16 (14 ~ 18)
A+T-N+	0	NA	NA	NA	NA	NA
A+T+N+	91	75.6 (71.35 ~ 79.4)	45 : 46	29:46:16	89:2	16 (14 ~ 18)
A-T+N-	67	71.7 (67.8 ~ 76.9)	41 : 26	58:9:0	66:0	18 (14 ~ 19)
A-T-N+	1	71.3 (71.3 ~ 71.3)	1:0	1:0:0	1:0	16 (16 ~ 16)
A-T+N+	12	69.5 (65.9 ~ 77.7)	5:7	9:3:0	12:0	18 (16 ~ 19)

A/T/N	n	smoking (yes / no)	baseline diagnosis (AD/MCI/CN/uncertain)	MMSE	ADAS-cog13
A-T-N-	43	15:28	3:25:15:0	29 (28 ~ 30)	10 (8 ~ 13)
A+T-N-	26	10:16	0:18:8:0	29 (28 ~ 29.75)	9(6~15)
A+T+N-	77	38:39	5:52:20:0	29 (27~29)	13 (9 ~ 16)
A+T-N+	0	NA	NA	NA	NA
A+T+N+	91	37 : 54	32:45:13:1	26 (24 ~ 28)	23 (14.5 ~ 30.5)
A-T+N-	67	29:38	2:32:31:2	29 (28 ~ 30)	9 (7~12.5)
A-T-N+	1	0:1	0:1:0:0	29 (29 ~ 29)	11 (11~11)
A-T+N+	12	4:8	1:6:5:0	29 (28 ~ 29.25)	9.5 (7.75 ~ 12.5)

A/T/N 分類の内訳である [109]。A+T+N+, A+T+N-, A-T+N-の順に多く、A-T-N+は1 例しかなく、A-T+N+は含まれなかった。A・T・N それぞれについて見てみると、 61.2%で A+、77.9%で T+、32.8%で N+であった。 続いて、A+ vs A-, T+ vs T-, N+ vs N-のそれぞれで CpG サイトのメチル化レ ベル (β値) について比較検定を行ってみると、DMP としては有意な (FDR < 0.05) CpG サイトは A+ vs A-では DMP n = 1 のみと、1 箇所の CpG サイトのみで有 意差がみられた。T+ vs T-, N+ vs N-の比較では有意な DMP は存在しなかった。この ように、これらの群間ではメチル化の程度の平均的な差異が乏しいことがわかる。 これは MDS プロット [82] で DNA メチル化の症例ごとの分布の違いを 2 次元上に 可視化した図 29 からも推察される。

図 29: MDS plot

MDS plot [109]。(A) A +/-、(B) T +/-、(C) N +/-別に、DNA メチル化の分布の違いを 2 次元上にプロットしたものである。凡例は 0 = (-), 1 = (+)である。

4-4-2. Aging Acceleration

得られたサンプルから、方法で示した通りに Horvath らの方法[122]を用いて推定 される methylation clock (DNAmAge)、また AA (EEAA および IEAA)を各サンプ ルについて得た。CpG サイトのメチル化の程度から推測される methylation と実際の 年齢 (= chronological age) は明瞭な中等度の相関があった (図 30A : Cor = 0.692, p < 0.001)。

AA 自体とA・T・N との関連について、年齢・性別や APOE ジェノタイプ などの影響を補正しつつ一般線形回帰で検討すると、髄液 Aβ 値と IEAA(p =0.025)(図 30A)、また髄液 Aβ 値と EEAA(p = 0.017)の間には、わずかだが有意 な正の相関が見られた。ただし、EEAA ないし IEAA と、髄液 p-tau 値ないし t-tau 値との間には有意な相関は見られなかった。

CSF Aβ (pg/mL)

図 30: DNAmAge と生物学的年齢の相関、また IEAA と CSF の関連

CpG サイトのメチル化の程度から推測される DNAmAge と実際の年齢(= chronological age) は明瞭な中等度の相関があった(A: Pearson cor = 0.692, p < 0.001) [109]。髄液 Aβ 値と IEAA には、わずかだが有意な正の相関が見られた(B: Pearson cor = 0.137, p = 0.025)。(髄液 Aβ 値と EEAA のプロットは省略)

4-4-3. 予測モデルの評価

AA として EEAA を使った場合のモデル A1~B2、また AA として IEAA を使った場 合のモデル A1~B2、すなわち計 8 モデルについて、訓練→評価の比較を行った。1 回のランダム分割で、モデル A1 vs A2、モデル B1 vs B2 での AUC 比較が行われる ことから、それぞれで有意に差異があった回数をカウントした。

合計 20 回のランダム化の中での AUC の平均的な分布と、差が有意であっ た回数を示したのが図 31 である。一見して明らかなように、EEAA(図では省略) および IEAA いずれであっても、*APOE* の情報を含むモデル B1 と B2 はモデル A1 と A2 よりも明らかに AUC はよく、また A1 と A2、B1 と B2 では大きな変化はな い。実際、有意に AUC に差があったケース(多重補正前でも p < 0.05)は 0/20 回 で、観察されなかった。すなわち、今検討の範囲においては、モデルに AA 情報 (EEAA であれ IEAA であれ)を加えても、有意な予測精度向上には繋がらない、 という結果であった。

4-5. 考察(第4章)

本検討では、探索的な試みとして、加齢に関する情報として Aging Acceleration [101] が、血液バイオマーカーとして A/T/N 分類の予測に利用できないか、とい う観点から検討を行った。結果としては、AA を含んだモデルと含まないモデルを 比べた時に、A・T・N いずれの予測目標に対しても予測能は向上しなかった。つま り、今回の検討の範囲においては、aging acceleration は血液バイオマーカーとして有 用とは言えない「109]。

この原因としては、A+ vs A-, T+ vs T, N+ vs N- での DMP がほぼ見られな かったことも併せて考えると、やはり第一には、(A・T・N で分類されるそれぞれ の) AD 病理に伴う中枢の変化と、血球核 DNA メチル化の状態との相関が乏しかっ た可能性があると考えられる。これについては AD と正常対照とで血液 DNA メチ ル化情報を比較した時に差が見られなかったとする同様の先行報告がある [133]。 細かく見ると、①そもそもの血液 DNA メチル化情報と脳 DNA メチル化情報との相 関の程度が弱い、②血液 DNA メチル化情報での AD vs control での差異が少ない、 などが想定される。

まず①については、AD に関連した血球由来 DNA メチル化変化について

は、一般に(一部をのぞいて)大部分の CpG サイトでそのメチル化の状態は脳組織 と血液の間であまり相関が見られないとする報告 [134, 135] や個人差が大きく影響 するとする報告 [136]、また AD 患者の血液と新皮質とで DNA メチル化の程度の 相関は弱いという報告がある [137]。血液と脳とで多少相関する部分があったとし ても、それが AD 病理で変化する CpG サイトに関連するものでなければ、AD 病理 に伴って出現する DNA メチル化変化は末梢血ではやはり捕捉し得ないと思われ る。

さらに②については、AD(vs 正常対照)で血液 DNA メチル化に変化があ ったとする報告も散見されるが [138-140]、複数の研究で確かな再現性を持って報 告されている AD に関連した特定の CpG サイトのメチル化異常はこれまでのところ は明らかにはなっていない [141, 142]: 例えば、複数の先行報告で AD(vs control)において血液 DNA メチル化に変化があるかこれまで調べられた遺伝子とし ては、特に AD 関連遺伝子・AD 発症遺伝子として *APOE、APP、PSENI* に加え、そ のほかにも *BACE1、BDNF、SIRT1、PINI、DNMT1、LINE-1* などの遺伝子について 検討されているが、このうち *BDNF* のみ、2 つの先行研究においてともに有意に変 化があったと報告されている程度である [142]。ある研究報告で仮に AD(vs control)で差異があったとしても、集団や条件によって再現性が見られなくなる程 141 度の差異であるならば [141, 142]、結局はバイオマーカーとしては有用とは言い難 いことになる。

また、メチル化データの前処理の段階における Batch 補正 [129] におい て、通常の疾患 vs 対照で比較する場合に行うように疾患ラベルを共変量に含めるこ とがなかったため(ここでは予測目的であるため)、これが本来 A+/-, T+/-, N+/-の違 いに起因する差異まで過剰に補正してしまった結果である可能性もある。

本検討の Limitation と今後の展望としては、本研究では、既往(肥満・高脂 血症など) や内服などその他の DNA メチル化に影響を及ぼしうる因子 [131] につい てはモデルの共変量に含めていないため、その点では改善の余地がある。また A/T/N 分類の参照元としては CSF のみで、複数の modality データがある時に陽性条件を変 えていった時にどうなるかは、検討の余地がある。例えば A(+)については CSF より も PET の方が、日内変動や測定操作による影響を受けにくく、検査の再現性という 点でより好ましいと考えられる。また本研究で用いた ADNI データにおいて現に有用 でないという結論になったため、他コホートでのデータでの検証にさらに発展させる 意義は本検討からは積極的には見出せないが、他データでの検討は可能であれば無論 参考になるものと考えられる。 なお本研究では A/T/N の元の分類に従って 2 値化判別を行なったが、元の CSF 値は連続値であり、この値に対する回帰予測も検討は可能である(ただし A/T/N 以外のデータの分布は同じであるから、おそらく精度はほぼ同程度と推測さ れる)。

本研究では血球由来の DNA メチル化を元にした AA についてはこのデー タセットでは有用ではないという結論であったが、とはいえ血球由来の DNA メチ ル化情報自体が一般に A/T/N 予測に有用でないと結論するにはまだ尚早と考えられ る。脳組織を用いた先行研究に着目すると、脳組織での DNA メチル化変化が報告 されている BINI, ABCA7, ANKI, RHBDF2 [117, 118], BRCA1 [119], DSCAMLI 「120」などのうち、ABCA7, ANKI, BRCA1 については血液 DNA メチル化を検討し た少数の先行研究でも報告はなされており「142」、特にこれらの遺伝子に着目し て、A/T/N 予測(ないしバイオマーカーに即した AD 診断)に用いることができな いか、検討する意義はあると考えられる。これらの遺伝子における CpG サイトでの メチル化変化は、血液 DNA メチル化の先行研究において AD に関連した変化とし て共通して多く見出されているわけではないが、その理由としては(Introduction で も述べたように)診断基準の違いやバイオマーカー確認の有無など先行研究ごとに 少しずつ異なる集団を検討対象にしているからとも考えることができ、従ってバイ 143
オマーカーに基づいた症例選択基準を踏まえることでむしろよりメチル化の程度の 差異が明瞭になる可能性もある。さらには、例えば、そもそもの血球由来 DNA メ チル化の疾患 vs 対照でのメチル化の程度の差異(あるいはその分散)について大き い順に CpG サイトを選択してきて、それを予測因子として含める [143]、数が大き ければ PCA などで次元削減する [144]、などのフィルタリング手法は変数選択方法 として検討可能と考えられる。

今後の DNA メチル化情報に関連した展望としては、現在 AD に特異的な 血液バイオマーカーとして将来的に最も有望と考えられるものは血漿 Aβ 低下(お よび血中リン酸化タウ増加)であるので、血漿 Aβ が低下するメカニズム(脳内か ら血中へのクリアランス低下、血管への沈着増加などの説がある)[28]の観点か ら、候補となる CpG サイトを追加的に探索する、ことは有用かもしれない。

第5章. 結語と今後の展望

5-1. まとめ

本研究では、早期からの AD に関するバイオマーカーは、AD 病理に直接的に関係 するものはアクセス性が十分ではなく、一方でアクセス性の良いもの(Aβ・タウ以 外の血液検査)は AD 病理との関係性が薄いことからくる再現性が十分ではない、 というように trade-off の関係があった。これに対して、マーカーの目標指標を改良 する or マーカー自体のスケーラビリティを向上させる構成にすることによって位置 付けを移動させ、検査・バイオマーカーの性能を向上させることを目的として、大 規模な臨床観察データの多角的な解析による検討を行ったものである。

 第2章による検討で、現在の AD 臨床研究で重要な介入対象である、発症前 だが Aβ 蓄積が始まっているプレクリニカル AD を web registry データから予 測するアルゴリズムを構築した。実際の正当な精度評価は現時点で行えてお らずこれからの課題であるが、本モデルは 2020 年 9 月からの onsite 研究への 招待における優先順位付において実際に参考活用を開始しており、今後の onsite 研究での PET 結果の蓄積とともに、モデルの評価とアップデートを繰 り返していくことで、現在進行中の J-TRC 研究の効率化が期待できる。テス トヘのアクセス性という点では既存の研究よりも明らかに汎用性が高いが、 一方で APOE ジェノタイプや PACC スコアを含めることができないなどの理 由から精度向上に限度があるのが課題である。

- 第3章では、遺伝子発現解析の手法を脳 structural MRI データに転用し、脳 萎縮の進展していく前線を可視化する手法を考案した。これによって、AD における脳萎縮の背景にある病理学的変化の拡大様式(の少なくとも一部) を間接的に可視化できる可能性をもつ手法であると考えられた。ただし、他 コホートデータでの妥当性検証が必要である事、また脳 structural MRI デー タを基にしており、脳萎縮がある程度拡がった後から後方視的に背景病理の 分布を推測する位置付けであるため、実際の前向き観察において病理学的異 常の早期検出に使えるわけではない点が問題ではある。
- 第4章ではさらに、加齢に関する指標の一つである Aging Acceleration を用いて、Aβのみならず AD 病理に関係したバイオマーカーとして A/T/N 分類 そのものの予測を試みたが、有用とはいえない結果であった。このため、加齢指標としての血液 methylation clock は(第2章における生物学的年齢とは 異なり) AD 病理予測に有用ではない可能性がある。また血球由来 DNA メ

テル化データ自体も A/T/N 予測に有用ではない可能性も考えられた。加齢 自体が AD 発症に寄与する最大の因子であってその根本的理由は不明である ところ、今回検討できなかった要素も含めて、そもそもの AA と A/T/N の関 係についてさらなる検討が重要と考えられる。

第1章・背景で述べた各検査・バイオマーカーの位置付け概要図に再度当てはめて これらの結果を概観すると(図32)、第2章での検討によって、A+に対する検査と して精度は低下すると思われるがアクセス性を大幅に向上させることができた。第 3章での検討では、より AD 病理の上流に近い状態へ転換させることができたと言 えるがアクセス性は(脳 structural MRI データを基にしている点では同じであり)変 わらなかった。また第4章での検討では、有用性が示せなかったため特に位置付け に変更なし、という事になる。全体的には、バイオマーカーの位置付けはやや右上 に移動している。すなわち既存の AD バイオマーカーの性能を、データ解析を通じ てわずかに向上させることができる可能性を示したものと、考えられる(図 33)。

第2章での検討によって、A+に対する検査として精度は低下すると思われるがアク セス性を大幅に向上させることができた。第3章での検討では、より AD 病理の上 流に近い状態へ転換させうると言えるがアクセス性は(脳 structural MRI データを基 にしている点では同じであり)変わらなかった。また第4章での検討では、有用性 が示せなかったため特に位置付けに変更なし、という事になる。

全体的には、バイオマーカーの位置付けはやや右上に移動しており、既存の AD バ イオマーカーの性能を、データ解析を通じてわずかに向上させることができる可能 性を示している。

上記のうち第2章と第3章については、AD の臨床ステージの中での phase が異なるものを分析対象としている(第2章では preclinical AD、第3章では MCI) が、それぞれの手法は相互に応用可能である。例えば、preclinical AD の stage 2 以上 においては軽微な神経障害を呈するとされ [14]、内側側頭葉周辺の萎縮が preclinical AD の段階でも見られるため [30]、この preclinical AD stage 2-3 を対象と し、症状増悪の指標を preclinical AD から MCI への conversion として定義すれば、 第3章におけるよりもさらに極早期の、タウ病理の拡大様式について可視化できる 可能性がある。また、MCI の検出を本研究におけるようにオンラインで行う研究と しては、簡易ゲームデバイス(AltoidaTM)を用いる方法 [145] などがすでに開発さ れており、preclinical AD に対しても同様にオンラインでのアプリ・ゲーム形式でス クリーニングできる方法論が有効である可能性もある。

また、本研究では第 2~4 章でそれぞれ単一の検査 modality のデータをベー スとして検討を行ったが(第 2 章:web データ、第 3 章:MRI データ、第 4 章:血 液 DNA メチル化データ)、これらをさらに統合的に組み合わせることができるよう にすることは今後の課題である。例えば、第 2 章における J-TRC onsite study で血液 検査を行う際に血液検査も行うため、血液 omics データ(ないし血漿 amyloid beta, p-tau などの特異的バイオマーカーのパネルデータ)も取得した上で、J-TRC 150 webstudy の web 入力データと対応させて解析することで、中枢のアミロイド蓄積の みならず、ごく早期のタウ病理検出についても、web ベースに検出するモデルを作 成できると期待できる。

第 2~4 章の各検討全体を通じた Limitation は、他の類似のコホートデータ での検証がなされていないということにある。第 2 章については、米国 TRC-PAD とのデータ共有が今後行われる方向性となっており、そこで、米国データにおいて web ベース情報からの予測がどの程度の精度になるのか、また逆に米国データから 作成した予測アルゴリズムでどの程度の精度が本邦データで出るのか、確認する必 要がある。また第 3 章については、他の AD コホートデータ(北米 ADNI、またオ ーストラリア AIBL など)でのさらなる検証、また他の神経変性疾患における脳 structural MRI データ(パーキンソン病データベース PPMI など)での評価が重要と 考えられる。同様に第 4 章についても、aging acceleration と脳内アミロイド蓄積との 関係について、ADNI 以外でのコホートデータでも検証する余地がある。

また、本研究で利用したデータは観察研究データの組み入れ基準・除外基 準をパスしていて、明らかな他の神経・精神疾患の合併がなく、臨床像としては複 雑ではなく「pure」な症例がほとんどである。実際の臨床においてはそのような症 例はむしろ少数とも言え、本研究で得られたバイオマーカーの精度・知見を、実際 の臨床で用いる、ないしリアルワールドデータとして得られた症例データに適用す る際に、果たして本検討におけるのと同等の結果が得られるかは不透明なところが ある。その意味では、すでにあげた類似の観察研究コホートのデータで validation す るのとは別に、なるべく実際の臨床に近い状況としてリアルワールドデータでの妥 当性検証も(可能であれば)必要と考えられる。

5-2. 早期 Aβ 陽性検出デジタルバイオマーカーとしての可能性

既に述べているように、第2章の検討で導出した A+の早期検出アルゴリズムの課題 は、APOE ジェノタイプや PACC スコアがないため予測精度が必然的に低めになると 想定されること [64] だが、逆に血液サンプリングを要せず、また一定の時間と専門 家の人手が必要な認知機能検査も要しないため、スケール可能性は高い。つまり、通 常の臨床研究とは異なり、webstudy 単独で見れば、参加者数が大幅に増加してもなお 対応可能である。このため、多少なりとも陽性尤度比が保たれていれば、アミロイド 陽性の事前確率を上げることによる研究効率化に関して十分な費用対効果が見込め ることになる。さらに、J-TRC における webstudy は、web を介して広く一般から参加 者を募り Aβ リスク分類を行うもので、そのスキーム自体は(有病率が AD ほど高く ないなどの実際上の課題はあるにしても)取得データ項目を変更すればパーキンソン 病など他の緩徐進行性の神経変性疾患へ適用することも可能である。PC・タブレット で完結し実サンプルを取得せず対面検査も行わずに済むという点で、広い意味では、 未発症の神経変性疾患に対する早期検出デジタルバイオマーカー [145, 146] と位置 付けることも可能である。

デジタルバイオマーカーは新型コロナ感染症 COVID-19 の流行を発端とし たオンライン・リモート診療を普及・継続させていく社会的な流れとも符号するも ので「147」、例えば運動・健康管理、循環器領域、糖尿病領域、リハビリ分野など で、ウェアラブルデバイス、スマートフォンなど様々な形態での研究が進んでいる [148]。神経疾患領域では一例として、アプリ操作による認知機能低下の検出 「145,146】や、ウェアラブルセンサーによるパーキンソン病患者の状態判定 「149〕などがある。プレクリニカル AD に対する臨床研究としても、臨床試験に 耐えうるだけの適切な認知機能検査については (primary endpoint であるため) なお 専門家による厳密な評価が必要ではあるものの、緩徐進行性の疾患であって発症ま での時間的猶予が十分にあり、有病率が認知症の原因疾患としては最多で、治験対 象であれば症状はないか軽微であるためデバイス使用も大きな問題がないと想定さ 153

れる、などと云った面で、神経領域の中でもデジタルバイオマーカーとしてうまく 条件が適合する臨床状況であると考えられる。

デジタルバイオマーカーを含む医療用デジタルデバイス研究の共通の課題 は、いかにして参加者をリクルートし、また定着率を高める(&ドロップアウトを 減らす)かという点があるが「150]、これは J-TRC においても同様に課題である。 J-TRC webstudy への参加者募集においては、近時的なメリット (onsite 研究でアミ ロイド PET を含めた詳細な認知機能に関する評価を無料で受けられる)が得られる のは webstudy 参加者の一部であり、またそのまま治療割付がなされる訳でもなく、 直接的な参加インセンティブが少ない(また参加者背景や自己申告内容が歪む恐れ もあるのでインセンティブは強調できない)。このため、参加ボランティアを募って いく方法の工夫が必要と考えられる。これまでの preliminary な検討では、IROOP™ 「151〕など国内の既存の認知機能レジストリへのメールでの呼びかけによる登録率 は最も高く、新聞広告による募集がそれに次いで登録率が良い、また web 広告経由 だとサイト訪問数は伸びるが登録率向上にはあまり寄与せず、また全体的に登録者 の年齢が少し若年である傾向がある、など流入ルートによって参加者背景が異なる 可能性があり(未公表データ)、認知症の研究・治験参加への興味・関心が高い層に いかにリーチできるかが重要であろうと思われる。

本検討では、ADバイオマーカーは、AD病理をより直接的に反映するものはアクセ ス性が十分ではなく、一方でアクセス性の良いものは AD病理との関係性が弱いた め再現性が十分ではない、といった trade-offの関係があった点を踏まえ、さらに検 査・バイオマーカーの性能を向上させることを目的として、アクセス性ないし AD 病理との直接性がより大きくなるようにするべく、大規模な臨床観察データの多角 的な解析を行った。3つの異なるバイオマーカーについて検討を行い、結果とし て、全体的には、既存バイオマーカーの性能改善の可能性がわずかながら示された と考える。またこれらのうちでは、早期のアミロイド蓄積に対する web ベース予測 が特に有望と考えられ、J-TRC 研究の効率化のみならず、今後のデジタルバイオマ ーカーとしての発展可能性も期待される。 本研究の遂行にあたり、ご指導賜りました東京大学大学院医学系研究科脳神経医学 専攻神経内科学教室 教授 戸田達史先生、准教授 岩田淳先生(現・東京都健康長 寿医療研究センター脳神経内科 部長)に深謝申し上げます。

また研究にあたり様々な御助言をいただきました、東京大学大学院医学系 研究科脳神経医学専攻神経病理学教室 教授 岩坪威先生、東京大学大学院医学系研 究科脳神経医学専攻神経内科学教室 助教 間野達雄先生、また東京大学医学部附 属病院早期・探索開発推進室の先生方に、深謝申し上げます。

参考文献

- McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939-44.
- McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263-9.
- 3. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ,

Schneider L, Stern Y, Scheltens P, Cummings JL. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614-29.

- Cao Q, Tan CC, Xu W, Hu H, Cao XP, Dong Q, Tan L, Yu JT. The Prevalence of Dementia: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2020;73(3):1157-1166.
- 5. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8(1):1-13.
- Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288(12):1475-83.
- Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23(4):213-27.

- Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349-56.
- Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17-23.
- Medway C, Morgan K. Review: The genetics of Alzheimer's disease; putting flesh on the bones. Neuropathol Appl Neurobiol. 2014;40(2):97-105.
- Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7(2):180-4.

- Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Rev Neurother. 2008;8(11):1703-18.
- Raina P, Santaguida P, Ismaila A, Patterson C, Cowan D, Levine M, Booker L, Oremus M. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379-97.
- 14. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):280-92.
- 15. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207-16.

- Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois
 B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539-47.
- Cummings J. The National Institute on Aging-Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials. Alzheimers Dement. 2019;15(1):172-178.
- 18. Jack CR Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, Kantarci K, Gunter JL, Senjem ML, Ivnik RJ, Roberts RO, Rocca WA, Boeve BF, Petersen RC. An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71(6):765-75.
- 19. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673-684.

- 20. Huang Y, Potter R, Sigurdson W, Santacruz A, Shih S, Ju YE, Kasten T, Morris JC, Mintun M, Duntley S, Bateman RJ. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system. Arch Neurol. 2012;69(1):51-8.
- Lewczuk P, Beck G, Esselmann H, Bruckmoser R, Zimmermann R, Fiszer M, Bibl M, Maler JM, Kornhuber J, Wiltfang J. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid beta peptides. Clin Chem. 2006;52(2):332-4.
- 22. Blennow K. A Review of Fluid Biomarkers for Alzheimer's Disease: Moving from CSF to Blood. Neurol Ther. 2017;6(Suppl 1):15-24.
- 23. Blennow K, Zetterberg H. The Past and the Future of Alzheimer's Disease Fluid Biomarkers. J Alzheimers Dis. 2018;62(3):1125-1140.
- 24. Toledo JB, Shaw LM, Trojanowski JQ. Plasma amyloid beta measurements a desired but elusive Alzheimer's disease biomarker. Alzheimers Res Ther. 2013;5(2):8.
- 25. Verberk IMW, Slot RE, Verfaillie SCJ, Heijst H, Prins ND, van Berckel BNM, Scheltens P, Teunissen CE, van der Flier WM. Plasma Amyloid as Prescreener for the Earliest Alzheimer Pathological Changes. Ann Neurol. 2018;84(5):648-658.

- 26. Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, Sullivan M, Paumier K, Holtzman DM, Morris JC, Benzinger T, Fagan AM, Patterson BW, Bateman RJ. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13(8):841-849.
- 27. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K. High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 2018;554(7691):249-254.
- 28. Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Tréluyer JM, Gelé P, Delmaire C, Blanc F, Mangin JF, Buée L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert PH, Godefroy O, Dantoine T, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A; BALTAZAR study group. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers. Alzheimers Dement. 2018;14(7):858-868.

- 29. Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, Kondo M, Allsop D, Tokuda T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome. Mol Neurodegener. 2017;12(1):63.
- 30. Pettigrew C, Soldan A, Sloane K, Cai Q, Wang J, Wang MC, Moghekar A, Miller MI, Albert M; BIOCARD Research Team. Progressive medial temporal lobe atrophy during preclinical Alzheimer's disease. Neuroimage Clin. 2017;16:439-446.
- 31. Dubois B, Epelbaum S, Nyasse F, Bakardjian H, Gagliardi G, Uspenskaya O, Houot M, Lista S, Cacciamani F, Potier MC, Bertrand A, Lamari F, Benali H, Mangin JF, Colliot O, Genthon R, Habert MO, Hampel H; INSIGHT-preAD study group. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 2018;17(4):335-346.
- 32. Donohue MC, Sperling RA, Petersen R, Sun CK, Weiner MW, Aisen PS; Alzheimer's Disease Neuroimaging Initiative. Association Between Elevated Brain Amyloid and

Subsequent Cognitive Decline Among Cognitively Normal Persons. JAMA. 2017;317(22):2305-2316.

- 33. Zetterberg H, Skillbäck T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM, Weiner MW, Blennow K; Alzheimer's Disease Neuroimaging Initiative. Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression. JAMA Neurol. 2016;73(1):60-7.
- 34. Mattsson N, Andreasson U, Zetterberg H, Blennow K; Alzheimer's Disease Neuroimaging Initiative. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2017;74(5):557-566.
- 35. Lewczuk P, Ermann N, Andreasson U, Schultheis C, Podhorna J, Spitzer P, Maler JM, Kornhuber J, Blennow K, Zetterberg H. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer's disease. Alzheimers Res Ther. 2018;10(1):71.
- 36. Meeter LHH, Vijverberg EG, Del Campo M, Rozemuller AJM, Donker Kaat L, de Jong FJ, van der Flier WM, Teunissen CE, van Swieten JC, Pijnenburg YAL. Clinical value of

neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology. 2018;90(14):e1231-e1239.

- 37. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med. 2007;13(11):1359-62.
- 38. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, Nazar MD, Rich SA, Berlau DJ, Peltz CB, Tan MT, Kawas CH, Federoff HJ. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415-8.
- 39. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14(7):R78.

- 40. Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M. Identifying early markers of Alzheimer's disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci. 2009;1180:56-67.
- 41. Kiddle SJ, Sattlecker M, Proitsi P, Simmons A, Westman E, Bazenet C, Nelson SK, Williams S, Hodges A, Johnston C, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Newhouse S, Lovestone S, Dobson RJ. Candidate blood proteome markers of Alzheimer's disease onset and progression: a systematic review and replication study. J Alzheimers Dis. 2014;38(3):515-31.
- 42. Chiam JT, Dobson RJ, Kiddle SJ, Sattlecker M. Are blood-based protein biomarkers for Alzheimer's disease also involved in other brain disorders? A systematic review. J Alzheimers Dis. 2015;43(1):303-14.
- 43. Suzuki K, Iwata A, Iwatsubo T. The past, present, and future of disease-modifying therapies for Alzheimer's disease. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(10):757-771.
- 44. Aisen PS. Editorial: Failure After Failure. What Next in AD Drug Development? J Prev Alzheimers Dis. 2019;6(3):150.

- 45. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479-86.
- Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239-59.
- 47. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010.
 J Neuropathol Exp Neurol. 2012;71(4):266-73.
- 48. Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, Scheltens P, Carrillo MC, Thies W, Bednar MM, Black RS, Brashear HR, Grundman M, Siemers ER, Feldman HH, Schindler RJ. Amyloid-related imaging abnormalities in amyloidmodifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7(4):367-85.
- 49. Aisen PS, Sperling RA, Cummings J, Donohue MC, Langford O, Jimenez-Maggiora GA, Rissman RA, Rafii MS, Walter S, Clanton T, Raman R. The Trial-Ready Cohort for

Preclinical/Prodromal Alzheimer's Disease (TRC-PAD) Project: An Overview. J Prev Alzheimers Dis. 2020;7(4):208-212.

- Rafii MS, Aisen PS. Alzheimer's Disease Clinical Trials: Moving Toward Successful Prevention. CNS Drugs. 2019;33(2):99-106.
- 51. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, Visser PJ; Amyloid Biomarker Study Group, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldeiras I, Barthel H, van Berckel BN, Bibeau K, Blennow K, Brooks DJ, van Buchem MA, Camus V, Cavedo E, Chen K, Chetelat G, Cohen AD, Drzezga A, Engelborghs S, Fagan AM, Fladby T, Fleisher AS, van der Flier WM, Ford L, Förster S, Fortea J, Foskett N, Frederiksen KS, Freund-Levi Y, Frisoni GB, Froelich L, Gabryelewicz T, Gill KD, Gkatzima O, Gómez-Tortosa E, Gordon MF, Grimmer T, Hampel H, Hausner L, Hellwig S, Herukka SK, Hildebrandt H, Ishihara L, Ivanoiu A, Jagust WJ, Johannsen P, Kandimalla R, Kapaki E, Klimkowicz-Mrowiec A, Klunk WE, Köhler S, Koglin N, Kornhuber J, Kramberger MG, Van Laere K, Landau SM, Lee DY, de Leon M, Lisetti V, Lleó A, Madsen K, Maier W, Marcusson J, Mattsson N, de Mendonça A, Meulenbroek O, Meyer PT, Mintun MA, Mok V, Molinuevo JL,

Møllergård HM, Morris JC, Mroczko B, Van der Mussele S, Na DL, Newberg A,

Nordberg A, Nordlund A, Novak GP, Paraskevas GP, Parnetti L, Perera G, Peters O, Popp J, Prabhakar S, Rabinovici GD, Ramakers IH, Rami L, Resende de Oliveira C, Rinne JO, Rodrigue KM, Rodríguez-Rodríguez E, Roe CM, Rot U, Rowe CC, Rüther E, Sabri O, Sanchez-Juan P, Santana I, Sarazin M, Schröder J, Schütte C, Seo SW, Soetewey F, Soininen H, Spiru L, Struyfs H, Teunissen CE, Tsolaki M, Vandenberghe R, Verbeek MM, Villemagne VL, Vos SJ, van Waalwijk van Doorn LJ, Waldemar G, Wallin A, Wallin ÅK, Wiltfang J, Wolk DA, Zboch M, Zetterberg H. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924-38.

52. Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, Senda M, Ito K, Ikeuchi T, Kuwano R, Matsuda H; Japanese Alzheimer's Disease Neuroimaging Initiative, Sun CK, Beckett LA, Petersen RC, Weiner MW, Aisen PS, Donohue MC; Alzheimer's Disease Neuroimaging Initiative. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement. 2018;14(8):1077-1087.

- 53. Jimenez-Maggiora GA, Bruschi S, Raman R, Langford O, Donohue M, Rafii MS, Sperling RA, Cummings JL, Aisen PS. TRC-PAD: Accelerating Recruitment of AD Clinical Trials through Innovative Information Technology. J Prev Alzheimers Dis. 2020;7(4):226-233.
- 54. https://www.amed.go.jp/news/release_20191031.html (2020年10月10日アクセス)
- 55. Sperling RA, Donohue MC, Raman R, Sun CK, Yaari R, Holdridge K, Siemers E, Johnson KA, Aisen PS; A4 Study Team. Association of Factors With Elevated Amyloid Burden in Clinically Normal Older Individuals. JAMA Neurol. 2020;77(6):735-745.
- 56. Sato K, Ihara R, Suzuki K, Niimi Y, Toda T, Jimenez-Maggiora GA, Langford O, Donohue MC, Raman R, Aisen PS, Sperling RA, Iwata A, Iwatsubo T. Predicting amyloid risk by machine learning algorithms based on the A4 screen data: application to the Japanese Trial-Ready Cohort study. (submitted)
- 57. Sperling RA, Rentz DM, Johnson KA, Karlawish J, Donohue M, Salmon DP, Aisen P.
 The A4 study: stopping AD before symptoms begin? Sci Transl Med.
 2014;6(228):228fs13.

- 58. Amariglio RE, Donohue MC, Marshall GA, Rentz DM, Salmon DP, Ferris SH, Karantzoulis S, Aisen PS, Sperling RA; Alzheimer's Disease Cooperative Study. Tracking early decline in cognitive function in older individuals at risk for Alzheimer disease dementia: the Alzheimer's Disease Cooperative Study Cognitive Function Instrument. JAMA Neurol. 2015;72(4):446-54.
- 59. Walter S, Langford OG, Clanton TB, Jimenez-Maggiora GA, Raman R, Rafii MS, Shaffer EJ, Sperling RA, Cummings JL, Aisen PS. The Trial-Ready Cohort for Preclinical and Prodromal Alzheimer's Disease (TRC-PAD): Experience from the First 3 Years. J Prev Alzheimers Dis. 2020;7(4):234-241.
- 60. Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. caret: Classification and Regression Training. R package version 6.0-81. 2018. (https://CRAN.R-project.org/package=caret)

- 61. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RS. Automatic classification of MR scans in Alzheimer's disease. Brain. 2008;131(Pt 3):681-9.
- Yachen Yan. MLmetrics: Machine Learning Evaluation Metrics. R package version 1.1.1.
 2016. (https://CRAN.R-project.org/package=MLmetrics)
- 63. Silbert LC, Dodge HH, Lahna D, Promjunyakul NO, Austin D, Mattek N, Erten-Lyons D, Kaye JA. Less Daily Computer Use is Related to Smaller Hippocampal Volumes in Cognitively Intact Elderly. J Alzheimers Dis. 2016;52(2):713-7.
- 64. Langford O, Raman R, Sperling RA, Cummings J, Sun CK, Jimenez-Maggiora G, Aisen PS, Donohue MC. Predicting Amyloid Burden to Accelerate Recruitment of Secondary Prevention Clinical Trials. J Prev Alzheimers Dis. 2020;7(4):213-218.
- 65. Ihara R, Iwata A, Suzuki K, Ikeuchi T, Kuwano R, Iwatsubo T; Japanese Alzheimer's Disease Neuroimaging Initiative. Clinical and cognitive characteristics of preclinical Alzheimer's disease in the Japanese Alzheimer's Disease Neuroimaging Initiative cohort. Alzheimers Dement (N Y). 2018;4:645-651.

- Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage.
 2000;11(6 Pt 1):805-21.
- 67. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67-77.
- Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32(10):1733-41.
- 69. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11(3):155-9.
- 70. Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11(4):301-7.
- Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501(7465):45-51.
- 72. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186-98.

- Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683-95.
- 74. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T; Alzheimer's Disease Neuroimaging Initiative. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput Biol. 2010;6(11):e1001006.
- 75. Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. Neuroimage. 2013;80:515-26.
- 76. Zhu D, Li K, Terry DP, Puente AN, Wang L, Shen D, Miller LS, Liu T. Connectomescale assessments of structural and functional connectivity in MCI. Hum Brain Mapp. 2014;35(7):2911-23.
- 77. Prescott JW, Guidon A, Doraiswamy PM, Roy Choudhury K, Liu C, Petrella JR;

Alzheimer's Disease Neuroimaging Initiative. The Alzheimer structural connectome: changes in cortical network topology with increased amyloid plaque burden. Radiology. 2014;273(1):175-84.

- 78. Filippi M, Basaia S, Canu E, Imperiale F, Magnani G, Falautano M, Comi G, Falini A, Agosta F. Changes in functional and structural brain connectome along the Alzheimer's disease continuum. Mol Psychiatry. 2020;25(1):230-239.
- 79. Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni JM, Schluep M, Vuilleumier P, Van De Ville D. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage. 2013;83:937-50.
- Iraji A, Calhoun VD, Wiseman NM, Davoodi-Bojd E, Avanaki MRN, Haacke EM, Kou
 Z. The connectivity domain: Analyzing resting state fMRI data using feature-based datadriven and model-based methods. Neuroimage. 2016;134:494-507.
- 81. Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F.
 Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer
 Disease: Analysis of Independent Components of ¹⁸F-FDG PET Data. J Nucl Med.
 2017;58(7):1132-1139.

- Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, Beck S. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics. 2014;30(3):428-30.
- 83. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
- 84. Langfelder P, Horvath S. Eigengene networks for studying the relationships between coexpression modules. BMC Syst Biol. 2007;1:54.
- 85. Mumford JA, Horvath S, Oldham MC, Langfelder P, Geschwind DH, Poldrack RA. Detecting network modules in fMRI time series: a weighted network analysis approach. Neuroimage. 2010;52(4):1465-76.
- 86. Sato K, Mano T, Matsuda H, Senda M, Ihara R, Suzuki K, Arai H, Ishii K, Ito K, Ikeuchi T, Kuwano R, Toda T, Iwatsubo T, Iwata A; Japanese Alzheimer's Disease Neuroimaging Initiative. Visualizing modules of coordinated structural brain atrophy during the course of conversion to Alzheimer's disease by applying methodology from gene co-expression analysis. Neuroimage Clin. 2019;24:101957.
- 87. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774-81.

- 88. Sato K, Mano T, Ihara R, Suzuki K, Tomita N, Arai H, Ishii K, Senda M, Ito K, Ikeuchi T, Kuwano R, Matsuda H, Iwatsubo T, Toda T, Iwata A; Alzheimer's Disease Neuroimaging Initiative, and Japanese Alzheimer's Disease Neuroimaging Initiative. Lower Serum Calcium as a Potentially Associated Factor for Conversion of Mild Cognitive Impairment to Early Alzheimer's Disease in the Japanese Alzheimer's Disease Neuroimaging Initiative. J Alzheimers Dis. 2019;68(2):777-788.
- 89. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-80.
- 90. Westman E, Aguilar C, Muehlboeck JS, Simmons A. Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment. Brain Topogr. 2013;26(1):9-23.
- 91. Voevodskaya O, Simmons A, Nordenskjöld R, Kullberg J, Ahlström H, Lind L, Wahlund LO, Larsson EM, Westman E; Alzheimer's Disease Neuroimaging Initiative.

The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. Front Aging Neurosci. 2014;6:264.

- Puwastien P. Issues in the development and use of food composition databases. Public Health Nutr. 2002;5(6A):991-9.
- 93. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1-2):279-84.
- 94. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
- 95. Athanasia Mo Mowinckel and Didac Vidal Pineiro. ggseg: Plotting tool for brain atlases.
 2019. R package version 1.5.
- 96. Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hänninen T, Pihlajamäki M, Laakso MP, Hallikainen M, Hämäläinen A, Vanhanen M, Helkala EL, Vanninen R, Nissinen A, Rossi R, Frisoni GB, Soininen H. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging. 2008;29(1):31-8.
- 97. Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC; Alzheimer's Disease Neuroimaging Initiative (ADNI). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009;6(4):347-61.
- 98. Yang J, Pan P, Song W, Huang R, Li J, Chen K, Gong Q, Zhong J, Shi H, Shang H. Voxelwise meta-analysis of gray matter anomalies in Alzheimer's disease and mild cognitive impairment using anatomic likelihood estimation. J Neurol Sci. 2012;316(1-2):21-9.
- 99. Sørensen L, Igel C, Pai A, Balas I, Anker C, Lillholm M, Nielsen M; Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Neuroimage Clin. 2016;13:470-482.
- 100.Jylhävä J, Pedersen NL, Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29-36.
- 101.Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371-384.

- 102.Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany NY). 2015;7(12):1198-211.
- 103.Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, Wang T, Petronis A, Labrie V. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nat Commun. 2019;10(1):2246.
- 104.McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, Murray
 AD, Whalley HC, Porteous DJ, McIntosh AM, Evans KL, Deary IJ, Marioni RE.
 Investigating the relationship between DNA methylation age acceleration and risk factors
 for Alzheimer's disease. Alzheimers Dement (Amst). 2018;10:429-437.
- 105.Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, Gibson J, Redmond P, Cox SR, Pattie A, Corley J, Taylor A, Murphy L, Starr JM, Horvath S, Visscher PM, Wray NR, Deary IJ. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol. 2015;44(4):1388-96.
- 106.Hodgson K, Carless MA, Kulkarni H, Curran JE, Sprooten E, Knowles EE, Mathias S, Göring HHH, Yao N, Olvera RL, Fox PT, Almasy L, Duggirala R, Blangero J, Glahn

DC. Epigenetic Age Acceleration Assessed with Human White-Matter Images. J Neurosci. 2017;37(18):4735-4743.

107.Raina A, Zhao X, Grove ML, Bressler J, Gottesman RF, Guan W, Pankow JS, Boerwinkle E, Mosley TH, Fornage M. Cerebral white matter hyperintensities on MRI and acceleration of epigenetic aging: the atherosclerosis risk in communities study. Clin

Epigenetics. 2017;9:21.

- 108.Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY). 2015;7(12):1130-42.
- 109.Sato K, Mano T, Suzuki K, Toda T, Iwatsubo T, Iwata A; for Alzheimer's Disease Neuroimaging Initiative. Attempt to Predict A/T/N-Based Alzheimer's Disease Cerebrospinal Fluid Biomarkers Using a Peripheral Blood DNA Methylation Clock. J Alzheimers Dis Rep. 2020;4(1):287-296.
- 110.Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201-9.

- 111.Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC;
 Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795-804.
- 112.Palmqvist S, Mattsson N, Hansson O; Alzheimer's Disease Neuroimaging Initiative. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139(Pt 4):1226-36.
- 113.Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ; Alzheimer's Disease Neuroimaging Initiative. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403-13.
- 114.Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron. 2011;70(5):813-29.

- 115.Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3-17.
- 116.Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A,
 - Murayama S, Saido T, Tsuji S. Altered CpG methylation in sporadic Alzheimer's disease is associated with APP and MAPT dysregulation. Hum Mol Genet. 2014;23(3):648-56.
- 117.Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald R, Condliffe D, Harries LW, Katsel P, Haroutunian V, Kaminsky Z, Joachim C, Powell J, Lovestone S, Bennett DA, Schalkwyk LC, Mill J. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci. 2014;17(9):1164-70.
- 118.De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML,
 Keenan BT, Ernst J, McCabe C, Tang A, Raj T, Replogle J, Brodeur W, Gabriel S, Chai
 HS, Younkin C, Younkin SG, Zou F, Szyf M, Epstein CB, Schneider JA, Bernstein BE,
 Meissner A, Ertekin-Taner N, Chibnik LB, Kellis M, Mill J, Bennett DA. Alzheimer's
 disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other
 loci. Nat Neurosci. 2014;17(9):1156-63.

- 119.Mano T, Nagata K, Nonaka T, Tarutani A, Imamura T, Hashimoto T, Bannai T, Koshi-Mano K, Tsuchida T, Ohtomo R, Takahashi-Fujigasaki J, Yamashita S, Ohyagi Y,
 Yamasaki R, Tsuji S, Tamaoka A, Ikeuchi T, Saido TC, Iwatsubo T, Ushijima T,
 Murayama S, Hasegawa M, Iwata A. Neuron-specific methylome analysis reveals
 epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer's disease. Proc
 Natl Acad Sci U S A. 2017;114(45):E9645-E9654.
- 120.Altuna M, Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Zelaya MV, Labarga A,
 Lepesant JMJ, Roldán M, Blanco-Luquin I, Perdones Á, Larumbe R, Jericó I, Echavarri
 C, Méndez-López I, Di Stefano L, Mendioroz M. DNA methylation signature of human
 hippocampus in Alzheimer's disease is linked to neurogenesis. Clin Epigenetics.
 2019;11(1):91.
- 121.Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M,
 Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K.
 Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol
 Cell. 2013;49(2):359-367.

- 122.Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
- 123.Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM,
 Gentilini D, Vitale G, Collino S, Rezzi S, Castellani G, Capri M, Salvioli S, Franceschi
 C. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell.
 2012;11(6):1132-4.
- 124.Lee HY, Lee SD, Shin KJ. Forensic DNA methylation profiling from evidence material for investigative leads. BMB Rep. 2016;49(7):359-69.
- 125.Fortin JP, Triche TJ Jr, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558-560.
- 126.Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD,

Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363-9.

127.Wang T, Guan W, Lin J, Boutaoui N, Canino G, Luo J, Celedón JC, Chen W. A systematic study of normalization methods for Infinium 450K methylation data using whole-genome bisulfite sequencing data. Epigenetics. 2015;10(7):662-9.

- 128.McEwen LM, Jones MJ, Lin DTS, Edgar RD, Husquin LT, MacIsaac JL, Ramadori KE, Morin AM, Rider CF, Carlsten C, Quintana-Murci L, Horvath S, Kobor MS. Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clin Epigenetics. 2018;10(1):123.
- 129.Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882-3.
- 130.Johnstone IM, Titterington DM. Statistical challenges of high-dimensional data. Philos Trans A Math Phys Eng Sci. 2009;367(1906):4237-53.
- 131.Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.

- 132.Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
- 133.Tannorella P, Stoccoro A, Tognoni G, Petrozzi L, Salluzzo MG, Ragalmuto A, Siciliano G, Haslberger A, Bosco P, Bonuccelli U, Migliore L, Coppedè F. Methylation analysis of multiple genes in blood DNA of Alzheimer's disease and healthy individuals. Neurosci Lett. 2015;600:143-7.
- 134.Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, Kirsch M, Schackert G,
 Calhoun V, Ehrlich S. Correspondence of DNA Methylation Between Blood and Brain
 Tissue and Its Application to Schizophrenia Research. Schizophr Bull. 2016;42(2):40614.
- 135.Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, Grossbach AJ, Close L, Dlouhy BJ, Howard MA 3rd, Kawasaki H, Potash JB, Shinozaki G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9(1):47.

- 136.Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13(6):R43.
- 137.Yu L, Chibnik LB, Yang J, McCabe C, Xu J, Schneider JA, De Jager PL, Bennett DA.
 Methylation profiles in peripheral blood CD4+ lymphocytes versus brain: The relation to
 Alzheimer's disease pathology. Alzheimers Dement. 2016;12(9):942-951.
- 138.Hou Y, Chen H, He Q, Jiang W, Luo T, Duan J, Mu N, He Y, Wang H. Changes in methylation patterns of multiple genes from peripheral blood leucocytes of Alzheimer's disease patients. Acta Neuropsychiatr. 2013;25(2):66-76.
- 139.Kobayashi N, Shinagawa S, Nagata T, Shimada K, Shibata N, Ohnuma T, Kasanuki K, Arai H, Yamada H, Nakayama K, Kondo K. Development of Biomarkers Based on DNA Methylation in the NCAPH2/LMF2 Promoter Region for Diagnosis of Alzheimer's Disease and Amnesic Mild Cognitive Impairment. PLoS One. 2016;11(1):e0146449.
- 140.Di Francesco A, Arosio B, Falconi A, Micioni Di Bonaventura MV, Karimi M, Mari D, Casati M, Maccarrone M, D'Addario C. Global changes in DNA methylation in

Alzheimer's disease peripheral blood mononuclear cells. Brain Behav Immun. 2015;45:139-44.

- 141.Yokoyama AS, Rutledge JC, Medici V. DNA methylation alterations in Alzheimer's disease. Environ Epigenet. 2017;3(2):dvx008.
- 142.Fransquet PD, Lacaze P, Saffery R, McNeil J, Woods R, Ryan J. Blood DNA methylation as a potential biomarker of dementia: A systematic review. Alzheimers Dement. 2018;14(1):81-103.
- 143.Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics. 2008;9 Suppl 1(Suppl 1):S13.
- 144.Nguyen LH, Holmes S. Ten quick tips for effective dimensionality reduction. PLoS Comput Biol. 2019;15(6):e1006907.
- 145.Buegler M, Harms R, Balasa M, Meier IB, Exarchos T, Rai L, Boyle R, Tort A, Kozori M, Lazarou E, Rampini M, Cavaliere C, Vlamos P, Tsolaki M, Babiloni C, Soricelli A, Frisoni G, Sanchez-Valle R, Whelan R, Merlo-Pich E, Tarnanas I. Digital biomarker-

based individualized prognosis for people at risk of dementia. Alzheimers Dement (Amst). 2020;12(1):e12073.

- 146.Tang F, Uchendu I, Wang F, Dodge HH, Zhou J. Scalable diagnostic screening of mild cognitive impairment using AI dialogue agent. Sci Rep. 2020;10(1):5732.
- 147.Zhao M, Wasfy JH, Singh JP. Sensor-aided continuous care and self-management: implications for the post-COVID era. Lancet Digit Health. 2020. (doi: 10.1016/S2589-7500(20)30220-X.)
- 148.Babrak LM, Menetski J, Rebhan M, Nisato G, Zinggeler M, Brasier N, Baerenfaller K,
 Brenzikofer T, Baltzer L, Vogler C, Gschwind L, Schneider C, Streiff F, Groenen PMA,
 Miho E. Traditional and Digital Biomarkers: Two Worlds Apart? Digit Biomark.
 2019;3(2):92-102.
- 149.Sato K, Mano T, Iwata A, Toda T. Autocorrelation-based method to identify disordered rhythm in Parkinson's disease tasks: A novel approach applicable to multimodal devices. PLoS One. 2020;15(10):e0238486.
- 150.Lane TS, Armin J, Gordon JS. Online Recruitment Methods for Web-Based and Mobile Health Studies: A Review of the Literature. J Med Internet Res. 2015;17(7):e183.

151.Saji N, Sakurai T, Suzuki K, Mizusawa H, Toba K; ORANGE investigators. ORANGE's challenge: developing wide-ranging dementia research in Japan. Lancet Neurol.

2016;15(7):661-662.