博士論文

論文題目

Bounded cohomology of volume－preserving diffeomorphism groups

（体積保存微分同相群の有界コホモロジー）

木村 満晃（Mitsuaki Kimura）

学籍番号 45－157011

Abstract

Since Gromov's seminal paper [34], bounded cohomology has been extensively studied by many authors. Although, the computation of bounded cohomology is difficult in general. We consider the real coefficient case. The second bounded cohomology has been relatively well studied by using a realvalued function on a group, which is called a quasimorphism. It seems that there have been few results on the third bounded cohomology for a while, but several results have appeared in the last few years. In this thesis, we study bounded cohomology and quasimorphisms on certain diffeomorphism groups. Let us discuss three main results in this thesis.

First, we introduce the notion of G-invariant quasimorphism and study its properties and applications. We prove Bavard's duality theorem for G invariant quasimorphisms. We also study the extension problem of quasimorphisms. We show that Py's Calabi quasimorphism, which is a $\operatorname{Symp}_{0}\left(\Sigma_{g}, \omega\right)$ invariant quasimorphism on $\operatorname{Ham}\left(\Sigma_{g}, \omega\right)$, does not extend to $\operatorname{Symp}_{0}\left(\Sigma_{g}, \omega\right)$ if $g \geq 2$. As a corollary, if $g \geq 2$, we show that the flux homomorphism $\operatorname{Symp}_{0}\left(\Sigma_{g}, \omega\right) \rightarrow H^{1}\left(\Sigma_{g}, \mathbb{R}\right)$ does not have a section homomorphism.

Next, we generalize the result of Brandenbursky and Marcinkowski [9]. They studied the third bounded cohomology $H_{b}^{3}\left(\mathcal{T}_{M}\right)$ of a certain transformation group \mathcal{T}_{M} on a complete Riemannian manifold M of finite volume. They proved that $\operatorname{dim}_{\mathbb{R}} H_{b}^{3}\left(\mathcal{T}_{M}\right)$ is infinite if $\pi_{1}(M)$ is "complicated enough". We extend their results to the case where the volume of M can be infinite. To do this, we introduce the notion of norm controlled cohomology.

Finally, we study the third bounded cohomology $H_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ of the areapreserving diffeomorphism group \mathcal{G}_{Σ} on a compact surface Σ. We show that $\operatorname{dim}_{\mathbb{R}} H_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is infinite for every surface Σ. Although the case $\chi(\Sigma)<0$ is covered by [9], the case $\chi(\Sigma) \geq 0$ remains. To deal with this case, we define a higher-degree version of Gambaudo-Ghys' construction [30] and prove the injectivity theorem, which is a generalization of Ishida's result [35].

Acknowledgment

I am very indebted to Professor Takashi Tsuboi who was my supervisor for a long time, from when I was a master's student until he retired. I would like to express my great appreciation to Professor Toshitake Kohno for accepting me into his lab and supervising me. I am deeply grateful to my current supervisor Professor Nariya Kawazumi for his instruction and consideration.

I would particularly like to thank Morimichi Kawasaki for frequent discussions and for his many suggestions and comments. The work in Chapter 3 and 4 would not have been done without him. The work of Michael Brandenbursky and Michał Marcinkowski [9] was the trigger for the study in Chapters 4 and 5. I am grateful to them for their comments on the webinar too. I would like to thank Takahiro Matsushita, Masato Mimura, and Ryuma Orita for their comments, advice, and encouragement. I thank the organizers and members of Shin Kyoto Seminar and Dosemi (Saturday Seminar) for the many opportunities they have given me to talk and their comments.

Finally, I would like to express my gratitude to my family for their understanding and support.

Contents

1 Introduction and main results 5
1.1 Introduction 5
1.2 Main results 7
2 Preliminaries 11
2.1 Geometric group theory 11
2.1.1 Quasi-isometry 11
2.1.2 Hyperbolic groups 12
2.1.3 Acylindrically hyperbolic groups 14
2.1.4 Amenable groups 15
2.2 Group cohomology 15
2.2.1 Group cohomology 15
2.2.2 Bounded cohomology 16
2.3 Diffeomorphism and homeomorphism groups 18
2.3.1 Volume-preserving diffeomorphism groups 18
2.3.2 Symplectomorphism groups 19
2.3.3 Measure-preserving homeomorphism groups 20
2.4 Quasimorphisms 21
2.4.1 Definitions and Properties 21
2.4.2 Bavard's duality 25
$3 G$-invariant quasimorphisms and their applications 26
$3.1 G$-invariant quasimorphisms 26
3.2 Proof of G-invariant Bavard duality 28
3.3 Extension problem 30
3.4 Comparison of commutator lengths 33
3.4.1 $\operatorname{scl}_{G, H} \mathrm{vs} \mathrm{scl}_{G}$ 34
3.4.2 $\operatorname{scl}_{G, H} \mathrm{vS} \mathrm{scl}_{H}$ 37
3.5 Appendix 38
4 Norm controlled cohomology of transformation groups 42
4.1 Norm controlled cohomology 42
4.1.1 Definition 42
4.1.2 Functoriality 45
4.2 Norm controlled cohomology of transformation groups 47
4.2.1 Brandenbursky-Marcinkowski's construction 47
4.2.2 Infinite volume case 48
5 Bounded cohomology of area-preserving diffeomorphism groups 54
5.1 Gambaudo-Ghys' construction 54
5.2 Generalized Ishida's theorem 58
5.3 The case of other surfaces 63
5.3.1 For a disk 64
5.3.2 For a sphere 64
5.3.3 For a torus 67
5.3.4 For an annulus 69
5.3.5 Proof of the injectivity theorem 70

Chapter 1

Introduction and main results

1.1 Introduction

Geometric group theory studies geometric aspects of groups. One can regard a group as a metric space by its norm.

Definition 1.1.1. Let G be a group and e denotes the identity element of G. A function $\nu: G \rightarrow[0, \infty)$ is a norm if it satisfies
(1) $\nu(g h) \leq \nu(g)+\nu(h)$ for any $g, h \in G$,
(2) $\nu\left(g^{-1}\right)=\nu(g)$ for any $g \in G$,
(3) $\nu(e)=0$,
(4) $\nu(g)>0$ if $g \neq e$.

If one drops the condition (4), ν is said to be a pseudo norm.
For finitely generated groups, which are main objects in geometric group theory, a natural norm called the word norm is defined. In [33], Gromov introduced the notion of hyperbolic groups. A finitely generated group is said to be hyperbolic if the group is "negatively curved" in some sense with respect to its word norm (Section 2.1.2). This works played a role in establishing geometric group theory as a field of study. Various attempts have been made to extend the notion of hyperbolic groups, for example, acylindrically hyperbolic groups [47] (Section 2.1.3).

In [12], Burago, Ivanov, and Polterovich introduced the notion of conjugation invariant norms. A norm ν is said to be conjugation-invariant if it satisfies $\nu\left(h g h^{-1}\right)=\nu(g)$ for every $g, h \in G$. It gives a framework for geometric group theory for groups that are not necessarily finitely generated. The following are typical examples of conjugation-invariant norms.

Example 1.1.2. (1) Let G be a group and $[G, G]$ the commutator subgroup. The commutator length $\mathrm{cl}:[G, G] \rightarrow \mathbb{N}$ is defined by

$$
\operatorname{cl}(h)=\min \left\{k \mid \exists f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{k} \in S, h=\left[f_{1}, g_{1}\right] \ldots\left[f_{k}, g_{k}\right]\right\}
$$

for every $h \in[G, G]$.
(2) Let M be a connected orientable smooth manifold. For simplicity, assume that M is closed (i.e, compact and without boundary). Let $\operatorname{Diff}_{0}(M)$ denote the identity component of the group of diffeomorphisms on M. For a non-empty open subset U of M, we define the fragmentation norm $\nu_{U}: \operatorname{Diff}_{0}(M) \rightarrow \mathbb{N}$ with respect to U is defined by

$$
\nu_{U}(h)=\min \left\{\begin{array}{c|c}
\exists f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{k} \in \operatorname{Diff}_{0}(M), \\
h=\left(f_{1} g_{1} f_{1}^{-1}\right) \cdots\left(f_{k} g_{k} f_{k}^{-1}\right), \operatorname{supp}\left(g_{i}\right) \subset U
\end{array}\right\}
$$

for every $h \in \operatorname{Diff}_{0}(M)$.
A quasimorphism is a real-valued function ϕ on a group G such that

$$
D(\phi)=\sup _{g, h \in G}|\phi(g h)-\phi(g)-\phi(h)|<\infty .
$$

Quasimorphisms are useful to study conjugate invariant norms. Especially, quasimorphisms and commutator length are closely related by Bavard's duality [3] (Theorem 2.4.8). If $\operatorname{Diff}_{0}(M)$ admits a non-trivial quasimorphism, then the fragmentation norm on $\operatorname{Diff}_{0}(M)$ with respect to an open ball is unbounded [12]. Recently, for the closed surface Σ_{g} with genus $g \geq 1$, Bowden, Hensel and Webb [6] proved that the fragmentation norm on $\operatorname{Diff}_{0}\left(\Sigma_{g}\right)$ is unbounded by constructing non-trivial quasimorphisms. In contrast, it is known that the fragmentation norm on $\operatorname{Diff}_{0}(M)$ is bounded when $\operatorname{dim}(M) \neq 2,4$ [12, 55, 56].

A quasimorphism can be thought of as a second bounded cohomology class. Bounded cohomology was introduced by Gromov [34] in his study of
(simplicial) volume of Riemannian manifolds. From the viewpoint of geometric group theory, the non-triviality of bounded cohomology of groups reflects the negatively curved nature of groups. For example, the bounded cohomology of an acylindrically hyperbolic group is highly non-trivial [4, 28]. On the other hand, the bounded cohomology of an amenable group is trivial.

Bounded cohomology has been extensively studied, but its computation is difficult in general. For the real coefficient case, the first bounded cohomology is trivial. The second bounded cohomology has been relatively well studied by constructing non-trivial quasimorphisms. Except for the early works of Yoshida [58] and Soma [54], it seems that there had been no work on the third bounded cohomology for a while. However, there have been several works on the third bounded cohomology in the last few years [24, 25, 26, 28]. Recently, Brandenbursky and Marcinkowski proved the following theorem.
Theorem 1.1.3 ([9]). Let M be a complete Riemannian manifold with finite volume. Let \mathcal{T}_{M} denote $\operatorname{Homeo}_{0}(M, \mu)$ or $\operatorname{Diff}(M, \operatorname{vol})$ or $\operatorname{Symp}(M, \omega)$. Set $\pi_{M}=\pi_{1}(M) / Z\left(\pi_{1}(M)\right)$. If either
(1) π_{M} surjects onto F_{2} or
(2) π_{M} is an acylindrically hyperbolic group,
then the (reduced exact) third bounded cohomology $\overline{E H}_{b}^{3}\left(\mathcal{T}_{M}\right)$ is uncountably infinite-dimensional.

1.2 Main results

In this thesis, we establish three main results. First, we introduce the notion of G-invariant quasimorphism and study its properties and applications. This part contains joint work with Morimichi Kawasaki. Let G be a group and H its normal subgroup. A quasimorphism ϕ on H is said to be G-invariant if $\phi\left(g h g^{-1}\right)=\phi(h)$ for every $g \in G$ and $h \in H$. Let $Q(H)^{G}$ denote the space of homogeneous G-invariant quasimorphisms. We consider a (G, H) commutator $(g \in G, h \in H)$ and define (G, H)-commutator subgroup $[G, H]$ and (G, H)-commutator length $\mathrm{cl}_{G, H}$ as the ordinary ones. We prove the following Bavard-type duality theorem for G-invariant quasimorphisms.
Theorem 1.2.1. Assume that $H=[G, H]$. For any $x \in[G, H]$,

$$
\operatorname{scl}_{G, H}(x)=\frac{1}{2} \sup _{\phi \in Q(H)^{G}} \frac{|\phi(x)|}{D(\phi)} .
$$

Here, $\operatorname{scl}_{G, H}(x)=\lim _{n \rightarrow \infty} \operatorname{cl}_{G, H}\left(x^{n}\right) / n$. Note that the assumption $H=$ $[G, H]$ in the above theorem was removed in [38].

We also consider the extension problem of quasimorphisms. A homogeneous quasimorphism ϕ on H is extendable to G if there exists a homogeneous quasimorphism ψ on G such that $\left.\psi\right|_{H}=\phi$. If a quasimorphism on H is extendable to G, it is necessary to be G-invariant. We find an example of non-extendable G-invariant quasimorphism.

Theorem 1.2.2. Let Σ_{g} be an oriented closed surface wits genus $g \geq 2$ and ω a symplectic form on Σ_{g}. Py's Calabi quasimorphism $\mu_{P}: \operatorname{Ham}\left(\Sigma_{g}, \omega\right) \rightarrow \mathbb{R}$ is non-extendable to $\operatorname{Symp}_{0}\left(\Sigma_{g}, \omega\right)$.

We obtain the following interesting corollary from the above theorem.
Corollary 1.2.3. If $g \geq 2$, the flux homomorphism $\operatorname{Flux}_{\omega}: \operatorname{Symp}_{0}\left(\Sigma_{g}, \omega\right) \rightarrow$ $H^{1}\left(\Sigma_{g} ; \mathbb{R}\right)$ does not have a section homomorphism.

Note that if $g=1$, the (descended) flux homomorphism $\operatorname{Flux}_{\omega}: \operatorname{Symp}_{0}\left(\Sigma_{1}, \omega\right) \rightarrow$ $H^{1}\left(\Sigma_{1} ; \mathbb{R}\right) / H^{1}\left(\Sigma_{1} ; \mathbb{Z}\right)$ has a section homomorphism.

Next, we introduce the notion of norm controlled cohomology which is a generalization of bounded cohomology.

Definition 1.2.4. Let G be a group and ν a (pseudo) norm on G. An inhomogeneous cochains $\bar{c} \in \bar{C}^{n}(G)$ is a level d norm controlled cochain if there exist $C, D \geq 0$, for all $g_{1}, \ldots, g_{n} \in G$,

$$
\left|\bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| \leq C \cdot \min _{\substack{I \subset\{1, \ldots, n\} \\ \# I=n-d}}\left\{\sum_{i \in I} \nu\left(g_{i}\right)\right\}+D .
$$

When $d \geq n$, let a norm controlled cochain mean a bounded cochain. Let $\bar{C}^{n}(G, \nu)$ denotes the set of level d norm controlled cochains. The norm controlled cohomology, denoted by $H_{(d)}^{n}(G, \nu)$, is defined to be the cohomology of the cochain complex $\left(\bar{C}_{\nu}^{n}(G), \bar{\delta}\right)$. The exact norm controlled cohomology $E H_{(d)}^{n}(G, \nu)$ is the kernel of the comparison map $H_{(d)}^{n}(G, \nu) \rightarrow H^{n}(G)$.

If ν is a bounded norm, then the norm controlled cohomology $H_{(d)}^{n}(G, \nu)$ is nothing but the bounded cohomology $H_{b}^{n}(G)$. Our next main theorem is the following.

Theorem 1.2.5. Let M be a complete Riemannian manifold. Let \mathcal{T}_{M} denote $\operatorname{Homeo}_{0}(M, \mu), \operatorname{Diff}_{0}(M$, vol $)$ or $\operatorname{Symp}(M, \omega)$. Set $\pi_{M}=\pi_{1}(M) / Z\left(\pi_{1}(M)\right)$. Assume that there exists an open subset U of M with finite volume such that the fragmentation norm ν_{U} is well-defined on \mathcal{T}_{M}. If either
(1) π_{M} surjects onto F_{2} or
(2) π_{M} is an acylindrically hyperbolic group,
then $E H_{(d)}^{3}\left(\mathcal{T}_{M}\right)$ is uncountably infinite-dimensional for $d=0,1,2$.
Note that ν_{U} is well-defined on \mathcal{T}_{M} if the inclusion $U \rightarrow M$ is homotopy equivalent. If M has a finite volume and $U=M$, this implies (a weak version of) the result of Theorem 1.1.3.

Example 1.2.6. It is known that for most 3-manifolds, their fundamental groups are acylindrically hyperbolic [43]. On the other hand, if M is 3 -dimensional and $\pi_{1}(M)$ is finitely generated, there exists a 3-dimensional compact submanifold C such that the inclusion $C \rightarrow M$ is homotopy equivalent by the Scott core theorem [52]. Hence we can find an open subset U of M which is of finite volume and homotopy equivalent to M. Thus most 3-manifolds enjoy the assumption of the above theorem.

Finally, we consider bounded cohomology of area-preserving diffeomorphism groups on surfaces. First, we consider the case of the 2-disk \mathbb{D}.

Let \mathcal{G} denote the group of area-preserving diffeomorphisms Diff($\mathbb{D}, \partial \mathbb{D}$, area) on \mathbb{D} which are the identity near the boundary $\partial \mathbb{D}$. In [30], Gambaudo and Ghys constructed a linear map $\Gamma: Q\left(P_{m}\right) \rightarrow Q(\mathcal{G})$, where $Q(G)$ denotes the space of homogenous quasimorphisms on a group G and P_{m} denotes the pure braid group on m strands. Let B_{m} be the braid group on m strands and $i: P_{m} \rightarrow B_{m}$ be the standard inclusion. Ishida [35] proved that the composition map $\Gamma \circ i^{*}: Q\left(B_{m}\right) \rightarrow Q(\mathcal{G})$ is injective. He also proved that the $\operatorname{map} E H_{b}^{2}\left(B_{m}\right) \rightarrow E H_{b}^{2}(\mathcal{G})$ induced by $\Gamma \circ i^{*}$ is also injective, where $E H_{b}^{n}(G)$ denotes the exact bounded cohomology of G.

We generalize Ishida's result to higher dimensional bounded cohomology for the case of three strands. We define a map $\overline{E \Gamma}_{b}: \overline{E H}_{b}^{n}\left(P_{m}\right) \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ which generalizes Gambaudo-Ghys' construction and prove the following theorem.

Theorem 1.2.7. The composition map $\overline{E \Gamma}_{b} \circ i^{*}: \overline{E H}_{b}^{n}\left(B_{3}\right) \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ is injective.

Here $\overline{E H}_{b}^{n}(G)$ denotes the reduced exact bounded cohomology of G. As a corollary, we obtain the following result.

Corollary 1.2.8. The dimension of $\overline{E H}_{b}^{3}(\mathcal{G})$ is uncountably infinite.
We also prove similar results for compact surfaces Σ with non-negative Euler characteristic $\chi(\Sigma) \geq 0$. Let $B_{m}(\Sigma)$ and $P_{m}(\Sigma)$ denote the braid group and the pure braid group on a surface Σ, respectively. Let \mathcal{G}_{Σ} denote the identity component of the group of area-preserving diffeomorphisms $\operatorname{Diff}_{0}(\Sigma, \partial \Sigma$, area) on Σ which are the identity near the boundary $\partial \Sigma$. The notation G^{Z} is used to denote the central quotient $G / Z(G)$ of a group G. We define a map $\overline{E \Gamma}_{b}^{Z}: \overline{E H}_{b}^{n}\left(P_{m}(\Sigma)^{Z}\right) \rightarrow \overline{E H}_{b}^{n}\left(\mathcal{G}_{\Sigma}\right)$ instead of on $\overline{E H}_{b}^{n}\left(P_{m}(\Sigma)\right)$ because \mathcal{G}_{Σ} is not contractible in general. Let $i^{Z}: P_{m}(\Sigma)^{Z} \rightarrow B_{m}(\Sigma)^{Z}$ denote the map induced by the standard inclusion $i: P_{m}(\Sigma) \rightarrow B_{m}(\Sigma)$.

Theorem 1.2.9. Let Σ be a compact oriented surface such that $\chi(\Sigma) \geq 0$. The maps $\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}: \overline{E H}_{b}^{n}\left(B_{m}(\Sigma)^{Z}\right) \rightarrow \overline{E H}_{b}^{n}\left(\mathcal{G}_{\Sigma}\right)$ is injective for $m=$ $2+\chi(\Sigma)$.

As a corollary of Theorem 1.2.9, we obtain the following.
Corollary 1.2.10. Let Σ be a compact oriented surface such that $\chi(\Sigma) \geq 0$. The dimension of $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is uncountably infinite.

We remark that Corollary 1.2.10 is not covered by the result of Brandenbursky and Marcinkowski. On the other hand, their result covers the case of surfaces with negative Euler characteristics. Therefore, in some sense, our results and theirs are complementary to each other in the case of 2-manifolds. Namely, we obtain the following.

Theorem 1.2.11. For any compact oriented surface Σ, the dimension of $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is uncountably infinite.

Chapter 2

Preliminaries

2.1 Geometric group theory

2.1.1 Quasi-isometry

Definition 2.1.1. Let $K \geq 1, L \geq 0$, and $f: X \rightarrow Y$ be a map between metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$.

- The map f is called (K, L)-quasi-isometric embedding if

$$
\frac{1}{K} d_{X}\left(x_{1}, x_{2}\right)-L \leq d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq K d_{X}\left(x_{1}, x_{2}\right)+L
$$

for any $x_{1}, x_{2} \in X$.

- The map f has a quasi-dense image if there exists a constant $C \geq 0$ such that for every $y \in Y$ there exists $x \in X$ such that

$$
d_{Y}(f(x), y) \leq C
$$

- The map f is a (K, L)-quasi-isometry if it is (K, L)-quasi-isometric embedding with a quasi-dense image. We say that f is quasi-isometric if it is (K, L)-quasi-isometric for some K and L.
- The spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are said to be (K, L)-quasi-isometric if there exists a (K, L)-quasi-isometry between X and Y. We say that X and Y are quasi-isometric if they are (K, L)-quasi-isometric for some K and L.

The following \breve{S} varc-Milnor lemma is fundamental in geometric group theory.

Lemma 2.1.2. Assume that a group G acts on a (K, L)-quasi-geodesic space (X, d) by isometries. If there exists a subset $B \subset X$ such that

- the diameter of B is finite,
- $X=\bigcup_{g \in G} g \cdot B$, and
- the set

$$
S=\left\{g \in G \mid g \cdot B^{\prime} \cap B^{\prime}\right\}
$$

is finite, where B^{\prime} is the $2 L$-neighborhood of B,
then G is generated by S, and the map $\left(G, d_{S}\right) \rightarrow(X, d)$ defined by $g \mapsto g \cdot x$ is a quasi-isometry for all $x \in X$, where d_{S} denotes the word metric on G.

In many cases, this lemma is used in the following form (Corollary 2.1.3). A metric space is proper if any closed ball is compact. An action of a group G on a topological space X is proper if the set $\{g \in G \mid g \cdot B \cap B\}$ is finite for all compact sets $B \subset X$. A map $\gamma: I \rightarrow X$ on a closed segment $I \subset \mathbb{R}$ to a metric space is a geodesic if γ is an isometry. A metric space is a geodesic space if any two points are connected by a geodesic.

Corollary 2.1.3. Let G be a group acting on a proper geodesic space X by isometry. Assume that this action is proper and cocompact. Then G is finitely generated and the map $G \rightarrow X$ defined by $g \mapsto g \cdot x$ is a quasi-isometry.

2.1.2 Hyperbolic groups

We review a definition of Gromov hyperbolic space for metric spaces. Note that there are several equivalent definitions of hyperbolicity for geodesic spaces (see [31] for example). Let (X, d) be a metric space.

Definition 2.1.4. For $x, y, z \in X$, we define the Gromov product $(y \mid z)_{x}$ by

$$
(y \mid z)_{x}=\frac{1}{2}\{d(y, z)+d(z, x)-d(y, z)\} .
$$

Definition 2.1.5. Let (X, d) be a metric space and $x_{0} \in X$ a base point. For $\delta \geq 0$, we say that (X, d) is δ-hyperbolic with respect to x_{0} if

$$
(x \mid y)_{x_{0}} \geq \min \left\{(x \mid z)_{x_{0}},(y \mid z)_{x_{0}}\right\}-\delta
$$

for every $x, y, z \in X$. The space (X, d) is said to be hyperbolic if there exists δ such that (X, d) is δ-hyperbolic with respect to some base point $x_{0} \in X$.

It is known that the existence of δ does not depend on the choice of the base point. The following proposition states that the hyperbolicity is quasi-isometric invariant.

Proposition 2.1.6. Let X and Y be metric spaces. Assume that X and Y are quasi-isometric. If X is hyperbolic, then Y is also hyperbolic.

We can define a natural metric d on a connected graph Γ by setting the length of each edge to 1 . In particular, for each vertices v and w, the distance $d(v, w)$ between v and w is represented by the minimal length of a path in Γ which connects v and w.
Remark 2.1.7. A tree (i.e., a graph without cycles) is a 0 -hyperbolic space.
For a finitely generated group (G, S), we can define a graph $\Gamma(G, S)$ which is called the Cayley graph.

Definition 2.1.8. For a group G with a generating set S, we define the Cayley graph $\Gamma=\Gamma(G, S)$ of G with respect to S as follows. The set of vertices $V(\Gamma)$ is the set of elements of G. The set of edges $E(\Gamma)$ is defined by

$$
E(\Gamma)=\{\{g, h\} \mid g, h \in G, \exists s \in S, g s=h\} .
$$

Definition 2.1.9. A finitely generated group G is hyperbolic if its Cayley graph $\Gamma(G, S)$ is Gromov hyperbolic for some (any) finite generating set S.

Since the quasi-isometry type of a Cayley graph does not depend on the choice of a finite generating set and Gromov hyperbolicity is a quasi-isometric invariant, the hyperbolicity of a group is a property of the group.

A finite group is hyperbolic. The group \mathbb{Z} is hyperbolic since the Cayley graph $\Gamma(\mathbb{Z},\{ \pm 1\})$ is a tree and thus 0 -hyperbolic. If a group G is virtually \mathbb{Z} (i.e., G contains a finite index subgroup which is isomorphic to \mathbb{Z}), then G is hyperbolic since G is quasi-isometric to \mathbb{Z}.

Definition 2.1.10. A hyperbolic group G is elementary if G is finite or virtually \mathbb{Z}. Otherwise, G is called a non-elementary hyperbolic group.

2.1.3 Acylindrically hyperbolic groups

In [47], Osin introduced the notion of acylindrically hyperbolic groups which is a generalization of hyperbolic groups. We review one of the definitions of acylindrically hyperbolic groups.

Let G be a group, H a subgroup of G, and \mathcal{X} a subset of G. Assume that $\mathcal{X} \cup H$ generates G. Let $\Gamma(G, \mathcal{X} \sqcup H)$ denote the Cayley graph of G with respect to the disjoint union $\mathcal{X} \sqcup H$. That is, for $g \in G$, if $s \in \mathcal{X} \cap H$ then g and $g s$ in the vertex of $\Gamma(G, \mathcal{X} \sqcup H)$ are joined by two edges labeled by $s \in \mathcal{X}$ and $s \in H$.

We define a metric $\widehat{d}: H \times H \rightarrow[0, \infty]$. We say that a path p in $\Gamma(G, \mathcal{X} \sqcup$ $H)$ is admissible if p does not contain the edge of the complete subgraph $\Gamma(H, H) \subset \Gamma(G, \mathcal{X} \sqcup H)$. For $h_{1}, h_{2} \in H$, we define $\widehat{d}\left(h_{1}, h_{2}\right)$ to be the length of a shortest admissible path from h_{1} to h_{2}. If no such path exists, we set $\widehat{d}\left(h_{1}, h_{2}\right)=\infty$.

Definition 2.1.11. We say that H is hyperbolically embedded in G with respect to \mathcal{X} (and write $H \hookrightarrow_{h}(G, \mathcal{X})$) if the graph $\Gamma(G, \mathcal{X} \sqcup H)$ is hyperbolic and the metric \widehat{d} is proper. We also say that H is hyperbolically embedded in G (and write $H \hookrightarrow_{h} G$) if $H \hookrightarrow_{h}(G, \mathcal{X})$ for some \mathcal{X}.

For every group $G, G \hookrightarrow_{h} G$ for $\mathcal{X}=\emptyset$ since $\Gamma(G, G)$ has diameter 1 and $\widehat{d}\left(h_{1}, h_{2}\right)=\infty$ if $h_{1} \neq h_{2}$. If H is a finite subgroup of G, then $H \hookrightarrow_{h} G$ for $\mathcal{X}=G$. Thus we are interested in the case where H is a proper infinite subgroup.

Definition 2.1.12. A group G is said to be acylindrically hyperbolic if there exists a proper infinite hyperbolically embedded subgroup of G.

Example 2.1.13. Examples of acylindrically hyperbolic groups include;

- non-elementary hyperbolic groups,
- mapping class group of hyperbolic surfaces,
- most 3-manifold groups [43].

We can choose a special form as a hyperbolically embedded subgroup.
Theorem 2.1.14 ([17]). Suppose that G is acylindrically hyperbolic. Then there exists a subgroup H of G such that $H \hookrightarrow_{h} G$ and $H \cong F_{2} \times K$, where F_{2} is a free group of rank 2 and K is a finite group.

2.1.4 Amenable groups

Amenable groups are introduced by von Neumann [57] in the study of BanachTarski paradox. See [14, 29] for more information.

Let $L^{\infty}(G)$ denote the set of all bounded real-valued functions on a group G. The set $L^{\infty}(G)$ has a structure of \mathbb{R}-vector space. The group G acts on $L^{\infty}(G)$ by

$$
g \cdot f(h)=f\left(g^{-1} h\right)
$$

for all $f \in L^{\infty}(G)$ and $g, h \in G$.
Definition 2.1.15. A group G is amenable if there exists a left-invariant mean $m: L^{\infty}(G) \rightarrow \mathbb{R}$. That is, the map m is \mathbb{R}-linear and satisfies the following:

- $m\left(1_{G}\right)=1$, where $1_{G}: G \rightarrow \mathbb{R}, g \mapsto 1$ is the constant map,
- $m(f) \geq 0$ for all $f \in L^{\infty}(G)$ that satisfy $f \geq 0$,
- $m(g \cdot f)=m(f)$ for all $f \in L^{\infty}(G)$ and $g \in G$.

Example 2.1.16. A finite group is amenable. An abelian group is amenable [57]. Moreover, virtually solvable groups are amenable.

Remark 2.1.17. The class of amenable groups is closed under the operations of taking subgroups, forming quotients, forming extensions, and taking direct unions. The smallest class of groups which contains all finite and abelian groups, and is closed under these operations, is called elementary amenable groups. For example, virtually solvable groups are elementary amenable.

2.2 Group cohomology

2.2.1 Group cohomology

Throughout this thesis, we only consider the cohomology with real coefficients. In this section, we define inhomogeneous complex $\bar{C}(-)$ and homogeneous complex $C^{\bullet}(-)$. Then we recall the correspondence between them.

Let G be a group. We consider the space of (inhomogeneous) n-cochains

$$
\bar{C}^{n}(G)=\left\{\bar{c}: G^{n} \rightarrow \mathbb{R}\right\}
$$

and the coboundary map $\bar{\delta}: \bar{C}^{n-1}(G) \rightarrow \bar{C}^{n}(G)$ defined by
$\bar{\delta} \bar{c}\left(g_{1}, \ldots, g_{n}\right)=\bar{c}\left(g_{2}, \ldots, g_{n}\right)+\sum_{i=1}^{n-1}(-1)^{i} \bar{c}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right)+(-1)^{n} \bar{c}\left(g_{1}, \ldots, g_{n-1}\right)$
for $\bar{c} \in \bar{C}^{n}(G)$ and $g_{1}, \ldots, g_{n} \in G$. The cohomology of this cochain complex is called the (group) cohomology of G and denoted by $H^{n}(G)$.

There is another definition of this cohomology. A map $c: G^{n+1} \rightarrow \mathbb{R}$ is said to be homogeneous if $c\left(g_{0} h, \ldots, g_{n} h\right)=c\left(g_{0}, \ldots, g_{n}\right)$ for every $g_{0}, \ldots, g_{n}, h \in$ G. The space of (homogeneous) n-cochains is

$$
C^{n}(G)=\left\{c: G^{n+1} \rightarrow \mathbb{R} \mid c \text { is homogeneous }\right\}
$$

and the coboundary map $\delta: C^{n-1}(G) \rightarrow C^{n}(G)$ is defined by

$$
\delta c\left(g_{0}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i} c\left(g_{0}, \ldots, \widehat{g}_{i}, \ldots, g_{n}\right)
$$

for $c \in C^{n}(G)$ and $g_{0}, \ldots, g_{n} \in G$, where $\widehat{g_{i}}$ means that we omit the entry g_{i}. The cohomology of $\left(C^{n}(G), \delta\right)$ also defines $H^{n}(G)$.

The correspondence between an inhomogeneous cochain $\bar{c} \in \bar{C}^{n}(G)$ and homogeneous one $c \in C^{n}(G)$ is the following:

$$
\begin{align*}
\bar{c}\left(g_{1}, g_{2}, \ldots, g_{n}\right) & =c\left(1, g_{1}, g_{1} g_{2}, \ldots, g_{1} g_{2} \ldots g_{n}\right) \tag{2.2.1}\\
c\left(g_{0}, g_{1}, \ldots, g_{n}\right) & =\bar{c}\left(g_{0}^{-1} g_{1}, g_{1}^{-1} g_{2}, \ldots, g_{n-1}^{-1} g_{n}\right) \tag{2.2.2}
\end{align*}
$$

We call that a cochain $c \in C^{n}(G)$ is alternating if

$$
c\left(g_{\sigma(0)}, \ldots, g_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) c\left(g_{0}, \ldots, g_{n}\right)
$$

for any $g_{0}, \ldots, g_{n} \in G$ and $\sigma \in \mathfrak{S}_{n+1}$, where $\operatorname{sgn}(\sigma) \in\{ \pm 1\}$ is the sign of σ. Let $C_{\text {alt }}^{n}(G)$ denote the set of alternating n-cochains. Then $\left(C_{\text {alt }}^{n}(G), \delta\right)$ is a subcomplex of $\left(C^{n}(G), \delta\right)$. It is known that the cohomology of $\left(C_{\text {alt }}^{n}(G), \delta\right)$ coincides with $H^{n}(G)$.

2.2.2 Bounded cohomology

We review the definition of bounded cohomology. We only mention the inhomogeneous case but the homogeneous case is defined similarly. If we consider the subcomplex

$$
\bar{C}_{b}^{n}(G)=\left\{\bar{c}: G^{n} \rightarrow \mathbb{R} \mid \bar{c} \text { is bounded }\right\}
$$

of \bar{C}^{n}, the homology of the complex $\left(\bar{C}_{b}^{n}(G), \bar{\delta}\right)$ is called the bounded cohomology of G and is denoted by $H_{b}^{n}(G)$. The natural inclusion $\bar{C}_{b}^{n}(G) \rightarrow \bar{C}^{n}(G)$ induces the homomorphism $H_{b}^{n}(G) \rightarrow H^{n}(G)$ called the comparison map. The kernel of the comparison map $H_{b}^{n}(G) \rightarrow H^{n}(G)$ is called the exact bounded cohomology and is denoted by $E H_{b}^{n}(G)$.

For a cochain $\bar{c} \in \bar{C}_{b}^{n}(G)$, we define the norm $\|\bar{c}\|$ of \bar{c} by

$$
\|\bar{c}\|=\sup _{g_{1}, \ldots, g_{n} \in G}\left|\bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| .
$$

This norm induces a natural norm on $H_{b}^{n}(G)$ which is also denoted by $\|\cdot\|$. Let $N^{n}(G)$ denote the norm zero subspace of $H_{b}^{n}(G)$, i.e.,

$$
N^{n}(G)=\left\{\alpha \in H_{b}^{n}(G) \mid\|\alpha\|=0\right\} .
$$

The reduced cohomology $\bar{H}_{b}^{n}(G)$ is defined by the quotient $H_{b}^{n}(G) / N^{n}(G)$. The reduced exact cohomology $\overline{E H}_{b}^{n}(G)$ is defined by $E H_{b}^{n}(G) / E N(G)$, where $E N^{n}(G)=N^{n}(G) \cap E H_{b}^{n}(G)$.

We can consider the homogeneous complex $C_{b}^{\bullet}(G)$, alternating homogeneous and inhomogeneous subcomplex $C_{b, \text { alt }}^{\bullet}(G)$ and $\bar{C}_{b, \text { alt }}^{\bullet}(G)$, and they also define the cohomology $H_{b}^{\bullet}(G)$.

We summarize several facts which we use later.
Lemma 2.2.1. Let G be a group and H a normal subgroup of G of finite index. Then the inclusion map $H \rightarrow G$ induces an isomorphism $H^{n}(G) \cong$ $H^{n}(H)^{G}$ and an isometric isomorphism $H_{b}^{n}(G) \cong H_{b}^{n}(H)^{G}$.

The inverse maps of those isomorphisms are given by the transfer maps (see $[11,14]$). We remark that $H_{b}^{n}(G) \rightarrow H_{b}^{n}(H)^{G}$ is an isometric isomorphism even if G / H is amenable [34].

The following theorem is known as the mapping theorem (for groups).
Theorem 2.2.2 ([34]). If $\phi: G_{1} \rightarrow G_{2}$ is a surjective group homomorphism with an amenable kernel, then $\phi^{*}: H_{b}^{n}\left(G_{2}\right) \rightarrow H_{b}^{n}\left(G_{1}\right)$ is an isometric isomorphism.

It is known that the bounded cohomology of an amenable group is trivial in every degree. On the other hand, non-positively curved groups tend to have highly non-trivial bounded cohomology. For example, the following theorem is known.

Theorem 2.2.3 ([28]). If G is an acylindrically hyperbolic group, then the dimension of $\overline{E H}_{b}^{3}(G)$ is uncountably infinite.

In particular, the third bounded cohomology of a non-elementary hyperbolic group is infinite-dimensional.

2.3 Diffeomorphism and homeomorphism groups

Let M be a connected, oriented smooth manifold without boundary. Let $\operatorname{Diff}^{c}(M)$ denote the group of compactly supported diffeomorphisms on M and $\operatorname{Diff}{ }_{0}^{c}(M)$ denote the subgroup of $\operatorname{Diff}^{c}(M)$ consisting of diffeomorphisms that are isotopic to the identity. If M is compact, groups $\operatorname{Diff}^{c}(M)$ and $\operatorname{Diff}_{0}^{c}(M)$ coincide with $\operatorname{Diff}(M)$ and $\operatorname{Diff}_{0}(M)$, respectively.

Let N be a compact, connected, oriented smooth manifold which might have boundary ∂N. Let $\operatorname{Diff}(N, \partial N)$ denotes the group of diffeomorphisms on N which is identity near the boundary and $\operatorname{Diff}_{0}(N, \partial N)$ denote the subgroup of $\operatorname{Diff}(N, \partial N)$ consisting of diffeomorphisms that are isotopic to the identity. Note that $\operatorname{Diff}(N, \partial N)=\operatorname{Diff}^{c}(\stackrel{\circ}{N})$ and $\operatorname{Diff}_{0}(N, \partial N)=\operatorname{Diff}_{0}^{c}(\stackrel{\circ}{N})$, where $\stackrel{N}{ }$ is the interior of N.

For a path-connected topological group G, let \widetilde{G} denotes the universal cover of G, i.e., the group of path homotopy equivalent classes in the path space of G. Note that $\pi_{1}(G)$ can be regarded as a subgroup of \widetilde{G}.

2.3.1 Volume-preserving diffeomorphism groups

Let M be a manifold with a volume form $\operatorname{vol} \in \Omega^{n}(M)$, where $n=\operatorname{dim}(M)$. Let $\operatorname{Diff}^{c}(M$, vol) denote the volume-preserving diffeomorphism group

$$
\operatorname{Diff}^{c}(M, \operatorname{vol})=\left\{f \in \operatorname{Diff}^{c}(M) \mid f^{*} \operatorname{vol}=\operatorname{vol}\right\}
$$

and $\operatorname{Diff}_{0}^{c}(M$, vol $)$ denote its identity component, i.e.,

$$
\operatorname{Diff}_{0}^{c}(M, \operatorname{vol})=\left\{g \in \operatorname{Diff}^{c}(M, \operatorname{vol}) \mid \exists\left\{g^{t}\right\}_{0 \leq t \leq 1} \subset \operatorname{Diff}^{c}(M, \operatorname{vol}), g^{0}=\mathrm{id}, g^{1}=g\right\} .
$$

Definition 2.3.1. We define the (volume) flux homomorphism

$$
\widetilde{\text { Flux }}: \widetilde{\text { Diff }}{ }_{0}^{c}(M, \text { vol }) \rightarrow H_{c}^{n-1}(M ; \mathbb{R})
$$

on the universal cover $\widetilde{\operatorname{Diff}_{0}^{c}}(M, \operatorname{vol})$ of $\operatorname{Diff}_{0}^{c}(M, \operatorname{vol})$ by

$$
\widetilde{\operatorname{Flux}}\left(\left[\left\{\psi^{t}\right\}_{0 \leq t \leq 1}\right]\right)=\int_{0}^{1}\left[\iota_{X_{t}} \operatorname{vol}\right] d t,
$$

where

- $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$ is a path in $\operatorname{Diff}_{0}^{c}(M$, vol $)$ with $\psi^{0}=\mathrm{id}$,
- $\left[\left\{\psi^{t}\right\}_{0 \leq t \leq 1}\right]$ is an element of $\widetilde{\operatorname{Diff}}{ }_{0}^{c}\left(M\right.$, vol) represented by the path $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$,
- X_{t} is the (time-dependent) vector field induced by the flow $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$,
- ι_{X} is the interior product with respect to a vector field X.

The group $\Gamma=\widetilde{\operatorname{Flux}}\left(\pi_{1}\left(\operatorname{Diff}_{0}^{c}(M\right.\right.$, vol $\left.\left.)\right)\right)$ is called the (volume) flux group. The flux homomorphism Flux induces the reduced flux homomorphism

$$
\text { Flux: } \operatorname{Diff}_{0}^{c}(M, \operatorname{vol}) \rightarrow H_{c}^{n-1}(M ; \mathbb{R}) / \Gamma
$$

2.3.2 Symplectomorphism groups

Let M be a manifold. A 2-form $\omega \in \Omega^{2}(M)$ is called a symplectic form if ω is non-degenerate and $d \omega=0$. A symplectic manifold (M, ω) is a manifold M with a symplectic form ω.

Let $\operatorname{Symp}^{c}(M, \omega)$ denote the symplectomorphism group

$$
\operatorname{Symp}^{c}(M, \omega)=\left\{f \in \operatorname{Diff}^{c}(M) \mid f^{*} \omega=\omega\right\}
$$

and $\operatorname{Symp}_{0}^{c}(M, \omega)$ denote its identity component, i.e.,
$\operatorname{Symp}_{0}^{c}(M, \omega)=\left\{g \in \operatorname{Symp}^{c}(M, \omega) \mid \exists\left\{g^{t}\right\}_{0 \leq t \leq 1} \subset \operatorname{Symp}^{c}(M, \omega), g^{0}=\mathrm{id}, g^{1}=g\right\}$.
Definition 2.3.2. We define the flux homomorphism

$$
\widetilde{\operatorname{Flux}}_{\omega}: \widetilde{\operatorname{Symp}}_{0}^{c}(M, \omega) \rightarrow H_{c}^{1}(M ; \mathbb{R})
$$

on the universal covering $\widetilde{\operatorname{Symp}}_{0}^{c}(M, \omega)$ of $\operatorname{Symp}_{0}^{c}(M, \omega)$ by

$$
\widetilde{\operatorname{Flux}}_{\omega}\left(\left[\left\{\psi^{t}\right\}_{0 \leq t \leq 1}\right]\right)=\int_{0}^{1}\left[\iota_{X_{t}} \omega\right] d t
$$

where

- $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$ is a path in $\operatorname{Symp}_{0}^{c}(M, \omega)$ with $\psi^{0}=\mathrm{id}$,
- $\left[\left\{\psi^{t}\right\}_{0 \leq t \leq 1}\right]$ is an element of $\widetilde{\operatorname{Symp}_{0}^{c}}(M, \omega)$ represented by the path $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$,
- X_{t} is the (time-dependent) vector field induced by the flow $\left\{\psi^{t}\right\}_{0 \leq t \leq 1}$,
- ι_{X} is the interior product with respect to a vector field X.

The group $\Gamma_{\omega}=\widetilde{\operatorname{Flux}}_{\omega}\left(\pi_{1}\left(\operatorname{Symp}_{0}^{c}(M, \mathrm{vol})\right)\right)$ is called the flux group. The flux homomorphism $\widetilde{\text { Flux }}_{\omega}$ induces the reduced flux homomorphism

$$
\operatorname{Flux}_{\omega}: \operatorname{Symp}_{0}^{c}(M, \omega) \rightarrow H_{c}^{1}(M ; \mathbb{R}) / \Gamma
$$

The kernel of the flux homomorphism Flux ${ }_{\omega}: \operatorname{Symp}_{0}^{c}(M, \omega) \rightarrow H_{c}^{1}(M ; \mathbb{R}) / \Gamma$ is called the Hamiltonian diffeomorphism group and denoted by $\operatorname{Ham}(M, \omega)$.

We give another description of Hamiltonian diffeomorphism groups. For a Hamiltonian function $H: M \rightarrow \mathbb{R}$ with compact support, we define the Hamiltonian vector field X_{H} associated with H by

$$
\omega\left(X_{H}, V\right)=-d H(V) \text { for any } V \in \mathfrak{X}(M)
$$

where $\mathfrak{X}(M)$ is the set of smooth vector fields on M.
Let S^{1} denote \mathbb{R} / \mathbb{Z}. For a (time-dependent) Hamiltonian function $H: S^{1} \times$ $M \rightarrow \mathbb{R}$ with compact support and for $t \in S^{1}$, we define a function $H_{t}: M \rightarrow$ \mathbb{R} by $H_{t}(x)=H(t, x)$. Let X_{H}^{t} denote the Hamiltonian vector field associated with H_{t} and let $\left\{\varphi_{H}^{t}\right\}_{t \in \mathbb{R}}$ denote the isotopy generated by X_{H}^{t} such that $\varphi^{0}=\mathrm{id}$. Let φ_{H} denote φ_{H}^{1} and φ_{H} is called the Hamiltonian diffeomorphism generated by H. For a symplectic manifold (M, ω), we define the group of Hamiltonian diffeomorphisms by

$$
\operatorname{Ham}(M, \omega)=\left\{\varphi \in \operatorname{Diff}(M) \mid \exists H \in C^{\infty}\left(S^{1} \times M\right) \text { such that } \varphi=\varphi_{H}\right\}
$$

2.3.3 Measure-preserving homeomorphism groups

Let M be a complete Riemannian manifold and μ the measure on M which is induced by the Riemannian structure. Let $\operatorname{Homeo}_{0}^{c}(M, \mu)$ denotes the group of compactly supported homeomorphisms that are isotopic to the identity and $\widehat{\operatorname{Homeo}}_{0}^{c}(M, \mu)$ denotes its universal covering. Fathi [27] defined the mass flow homomorphism $\tilde{\theta}: \widetilde{\operatorname{Homeo}_{0}^{c}}(M, \mu) \rightarrow H_{1}(M ; \mathbb{R})$. For the definition of the mass flow homomorphisms, see $[27,46]$. Set $\Gamma=\tilde{\theta}\left(\pi_{1}\left(\operatorname{Homeo}_{0}^{c}(M, \mu)\right)\right)$. The map $\tilde{\theta}$ induces the map $\theta: \operatorname{Homeo}_{0}^{c}(M, \mu) \rightarrow H_{1}(M ; \mathbb{R}) / \Gamma$.

2.4 Quasimorphisms

2.4.1 Definitions and Properties

Definition 2.4.1. A quasimorphism ϕ is a real-valued function on a group Γ such that there exists a constant $D \geq 0$ and

$$
|\phi(x y)-\phi(x)-\phi(y)| \leq D
$$

for any $x, y \in \Gamma$. Such a smallest D is called the defect of ϕ and denoted by $D(\phi)$. A quasimorphism ϕ is homogeneous if $\phi\left(x^{n}\right)=n \phi(x)$ for every $n \in \mathbb{Z}$ and $x \in \Gamma$.

Let $\widehat{Q}(\Gamma)$ and $Q(\Gamma)$ denote the set of quasimorphisms on Γ and the set of homogeneous quasimorphisms on Γ, respectively. The sets $\widehat{Q}(\Gamma)$ and $Q(\Gamma)$ are naturally regarded as \mathbb{R}-linear spaces.

Example 2.4.2. - A bounded function is a quasimorphism. Thus the set of bounded functions $\bar{C}_{b}^{1}(\Gamma)$ on Γ is a linear subspace of $\widehat{Q}(G)$.

- A homomorphism is a homogeneous quasimorphism with defect zero. Thus the set of homomorphisms $H^{1}(\Gamma)$ is a linear subspace of $Q(\Gamma)$.
We define a linear map $\widehat{Q}(\Gamma) \rightarrow Q(\Gamma), \phi \mapsto \bar{\phi}$, which is called the homogenization, by

$$
\bar{\phi}(x)=\lim _{n \rightarrow \infty} \frac{\phi\left(x^{n}\right)}{n} .
$$

The limit exists by Fekete's lemma. The kernel of the homogenization is the space of bounded functions. Thus the homogenization induces an isomorphism $\widehat{Q}(\Gamma) / \bar{C}_{b}^{1}(\Gamma) \cong Q(\Gamma)$.

Example 2.4.3. • (Poincaré's rotation number [48])
Let Homeo ${ }^{+}\left(S^{1}\right)$ be the group of orientation-preserving homeomorphisms on the circle and $\widetilde{\text { Homeo }^{+}}\left(S^{1}\right)$ the preimage of $\mathrm{Homeo}^{+}\left(S^{1}\right)$ in $\mathrm{Homeo}^{+}(\mathbb{R})$ under the covering projection $\mathbb{R} \rightarrow S^{1}=\mathbb{R} / \mathbb{Z}$, i.e.,

$$
{\widetilde{\operatorname{Homeo}^{+}}}^{+}\left(S^{1}\right)=\left\{\tilde{f} \in \operatorname{Homeo}^{+}(\mathbb{R}) \mid \forall x \in \mathbb{R}, n \in \mathbb{Z}, \tilde{f}(x+n)=\tilde{f}(x)+n\right\}
$$

$$
\widetilde{\operatorname{rot}}(\tilde{f})=\lim _{n \rightarrow \infty} \frac{\tilde{f}^{n}(x)-x}{n} .
$$

This definition does not depend on the choice of $x \in \mathbb{R}$. The rotation number rot is a quasimorphism and not a homomorphism.

- (Brooks' counting quasimorphism on free groups [10])

Let $F_{2}=\langle x, y\rangle$ be a free group of rank 2 and w a reduced word in $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$. A counting function $c_{w}: F_{2} \rightarrow \mathbb{Z}$ is defined as $c_{w}(g)$ being the maximal number of disjoint copies of w in the reduced representative of $g \in F_{2}$. A counting quasimorphism is a function of the form

$$
h_{w}(g)=c_{w}(g)-c_{w^{-1}}(g) .
$$

Let a and b be two generators of F_{2}. For $n \in \mathbb{Z}$, set $w_{n}=a b^{n}$. Then we can show that the set of quasimorphisms $\left\{\bar{h}_{w_{n}}\right\}_{n \in \mathbb{Z}}$ are linearly independent in $Q\left(F_{2}\right)$. Therefore, the space $Q\left(F_{2}\right)$ is infinite-dimensional.

These examples are fundamental in the sense that there are many generalizations of them. For example, Py's Calabi quasimorphisms we use later are constructed from the rotation number. The counting quasimorphisms are generalized to hyperbolic groups [21], mapping class groups [4], and surface diffeomorphism groups [6].

We will use the following commutator calculus several times.
Lemma 2.4.4. For $x, y \in \Gamma$ and $n \in \mathbb{N},(x y)^{2 n} y^{-2 n} x^{-2 n}$ can be written as a product of n commutators.
Proof. Since,

$$
(x y)^{2 n} y^{-2 n} x^{-2 n}=x \cdot(y x)^{2 n-1} y^{-(2 n-1)} x^{-(2 n-1)} \cdot x^{-1}
$$

it is sufficient to prove that $(y x)^{2 n-1} y^{-(2 n-1)} x^{-(2 n-1)}$ can be written as a product of n commutators. We prove it by the induction of n. It is clear if $n=1$. Set

$$
\alpha_{m}=(x y)^{2 m-1} x^{-(2 m-1)} y^{-(2 m-1)}
$$

and

$$
\beta_{m}=(y x)^{2 m-1} y^{-(2 m-1)} x^{-(2 m-1)}
$$

Assume that α_{m} and β_{m} can be written as a product of m commutators. Since

$$
\begin{aligned}
& y x y \alpha_{m}^{-1}(y x y)^{-1} \beta_{m+1} \\
= & y x y^{2 m} x^{2 m} y^{-(2 m+1)} x^{-(2 m+1)} \\
= & y x^{-1}\left[x^{2} y^{2 m} x^{2 m-1}, x y^{-1} x^{2 m-1}\right]\left(y x^{-1}\right)^{-1}
\end{aligned}
$$

β_{m+1} can be written as a product of $m+1$ commutators by the assumption.

It is known that the defect changes at most twice by homogenization.
Lemma 2.4.5. For every $\phi \in Q(\Gamma), D(\bar{\phi}) \leq 2 D(\phi)$.
Proof. For $a, b, D \in \mathbb{R}$, we write $a \sim_{D} b$ to mean $|a-b| \leq D$.
We define $\phi^{\prime}: \Gamma \rightarrow \mathbb{R}$ by

$$
\phi^{\prime}(x)=\frac{1}{2}\left(\phi(x)-\phi\left(x^{-1}\right)\right) .
$$

Then ϕ^{\prime} is anti-symmetric, i.e., $\phi^{\prime}\left(x^{-1}\right)=-\phi(x)$ for every $x \in \Gamma$. Since

$$
\begin{aligned}
& \phi^{\prime}(x y)-\phi^{\prime}(x)-\phi^{\prime}(y) \\
&= \frac{1}{2}(\phi(x y)-\phi(x)-\phi(y))-\frac{1}{2}\left(\phi\left(y^{-1} x^{-1}\right)-\phi\left(y^{-1}\right)-\phi\left(x^{-1}\right)\right), \\
& D\left(\phi^{\prime}\right)=\sup _{x, y \in \Gamma}\left|\phi^{\prime}(x y)-\phi^{\prime}(x)-\phi^{\prime}(y)\right| \leq \frac{1}{2} D(\phi)+\frac{1}{2} D(\phi)=D(\phi) .
\end{aligned}
$$

Thus ϕ^{\prime} is also a quasimorphism and $D\left(\phi^{\prime}\right) \leq D(\phi)$. Since

$$
\phi(x)-\phi^{\prime}(x)=\frac{1}{2}\left(\phi(x)+\phi\left(x^{-1}\right)\right) \sim_{\frac{1}{2} D(\phi)} \frac{1}{2} \phi(e)
$$

for every $x \in \Gamma, \phi-\phi^{\prime}$ is a bounded function. Especially, $\bar{\phi}=\overline{\phi^{\prime}}$.
For $x, y \in \Gamma$, and $n \in \mathbb{N}$,

$$
\phi^{\prime}\left((x y)^{2 n}\right)-\phi^{\prime}\left(x^{2 n}\right)-\phi^{\prime}\left(y^{2 n}\right) \sim_{2 D\left(\phi^{\prime}\right)} \phi^{\prime}\left((x y)^{2 n} y^{-2 n} x^{-2 n}\right) .
$$

Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi^{\prime}\left((x y)^{2 n} y^{-2 n} x^{-2 n}\right)}{2 n}=\lim _{n \rightarrow \infty} \frac{\phi^{\prime}\left((x y)^{2 n}\right)-\phi^{\prime}\left(x^{2 n}\right)-\phi^{\prime}\left(y^{2 n}\right)}{2 n} \tag{2.4.1}
\end{equation*}
$$

For an anti-symmetric quasimorphism ϕ^{\prime} and a commutator $c=[x, y]$,

$$
\phi^{\prime}(c) \sim_{3 D\left(\phi^{\prime}\right)} \phi(x)+\phi(y)+\phi\left(x^{-1}\right)+\phi\left(y^{-1}\right)=0 .
$$

By Lemma 2.4.4 that $(x y)^{2 n} y^{-2 n} x^{-2 n}$ can be written as a product of n commutators $c_{1} c_{2} \cdots c_{n}$. Since

$$
\phi^{\prime}\left(c_{1} c_{2} \cdots c_{n}\right) \sim_{(n-1) D\left(\phi^{\prime}\right)} \phi^{\prime}\left(c_{1}\right)+\phi^{\prime}\left(c_{2}\right)+\cdots+\phi^{\prime}\left(c_{n}\right) \sim_{3 n D\left(\phi^{\prime}\right)} 0
$$

we obtain

$$
\phi^{\prime}\left((x y)^{2 n} y^{-2 n} x^{-2 n}\right) \leq(4 n-1) D\left(\phi^{\prime}\right)
$$

Thus the left-hand side of (2.4.1) is less than or equal to $2 D\left(\phi^{\prime}\right)$. On the other hand, the right-hand side of (2.4.1) equals $\left|\bar{\phi}^{\prime}(x y)-\bar{\phi}^{\prime}(x)-\bar{\phi}^{\prime}(y)\right|=$ $|\bar{\phi}(x y)-\bar{\phi}(x)-\bar{\phi}(y)|$. Therefore,

$$
D(\bar{\phi})=\sup _{x, y \in \Gamma}|\bar{\phi}(x y)-\bar{\phi}(x)-\bar{\phi}(y)| \leq 2 D\left(\phi^{\prime}\right) \leq 2 D(\phi)
$$

An exact sequence of complexes

$$
0 \rightarrow C_{b}^{\bullet}(\Gamma) \rightarrow C^{\bullet}(\Gamma) \rightarrow C^{\bullet}(\Gamma) / C_{b}^{\bullet}(\Gamma) \rightarrow 0
$$

induces the exact sequence

$$
0 \rightarrow H^{1}(\Gamma) \rightarrow Q(\Gamma) \rightarrow H_{b}^{2}(\Gamma) \rightarrow H^{2}(\Gamma)
$$

since $H_{b}^{1}(\Gamma)=0$ and $H^{1}\left(C^{\bullet} / C_{b}^{\bullet}\right) \cong Q$. Hence, the second exact bounded cohomology $E H_{b}^{2}(\Gamma)=\operatorname{Ker}\left(H_{b}^{2}(\Gamma) \rightarrow H^{2}(\Gamma)\right)$ is isomorphic to $Q(\Gamma) / H^{1}(\Gamma)$.

The following lemma is well-known and fundamental.
Lemma 2.4.6. For every $\phi \in Q(\Gamma)$ and $x, y \in \Gamma$,
(1) $\phi\left(x y x^{-1}\right)=\phi(y)$,
(2) if $x y=y x$, then $\phi(x y)=\phi(x)+\phi(y)$.

Proof. For $a, b, D \in \mathbb{R}$, we write $a \sim_{D} b$ to mean $|a-b| \leq D$.
(1) For every $n \in \mathbb{N}$,

$$
n \phi\left(y x y^{-1}\right)=\phi\left(\left(y x y^{-1}\right)^{n}\right)=\phi\left(y x^{n} y^{-1}\right) \sim_{2 D(\phi)} \phi(y)+\phi\left(x^{n}\right)+\phi\left(y^{-1}\right)=n \phi(x)
$$

Thus we obtain

$$
\left|\phi\left(y x y^{-1}\right)-\phi(x)\right| \leq \frac{2 D}{n}
$$

Since n can be taken arbitrarily large, we obtain $\phi\left(x y x^{-1}\right)=\phi(y)$.
(2) For every $n \in \mathbb{N}$,

$$
n \phi(x y)=\phi\left((x y)^{n}\right)=\phi\left(x^{n} y^{n}\right) \sim_{D} \phi\left(x^{n}\right)+\phi\left(y^{n}\right)=n \phi(x)+n \phi(y) .
$$

Thus we obtain

$$
|\phi(x y)-\phi(x)-\phi(y)| \leq \frac{D}{n}
$$

Since n can be taken arbitrarily large, we obtain $\phi(x y)=\phi(x)+\phi(y)$.

2.4.2 Bavard's duality

Quasimorphisms are closely related to the commutator length. We define the stable commutator length $\mathrm{scl}:[\Gamma, \Gamma] \rightarrow[0, \infty)$ by

$$
\operatorname{scl}(x)=\lim _{n \rightarrow \infty} \frac{\operatorname{cl}\left(x^{n}\right)}{n}
$$

By Fekete's lemma, the limit exists.
Lemma 2.4.7. For any $x \in[\Gamma, \Gamma]$ and $\phi \in Q(\Gamma)$,

$$
\operatorname{scl}(x) \geq \frac{1}{2} \frac{|\phi(x)|}{D(\phi)}
$$

Proof. Note that $|\phi([x, y])|=\left|\phi([x, y])-\phi\left(x y x^{-1}\right)-\phi\left(y^{-1}\right)\right| \leq D(\phi)$ for any commutator $[x, y] \in[\Gamma, \Gamma]$. If x^{n} is a product of commutators c_{1}, \ldots, c_{m}, then we obtain an inequality

$$
n|\phi(x)|=\left|\phi\left(x^{n}\right)\right| \leq(m-1) D(\phi)+\sum_{k=1}^{k}\left|\phi\left(c_{k}\right)\right|<2 m D(\phi)
$$

and the lemma follows from it.
Moreover, following Bavard's duality theorem holds.
Theorem 2.4.8 ([3]). For $x \in[\Gamma, \Gamma]$

$$
\operatorname{scl}(x)=\frac{1}{2} \sup _{\phi \in Q(\Gamma)} \frac{|\phi(x)|}{D(\phi)}
$$

Remark that we regard the right-hand side as 0 if $Q(\Gamma)=H^{1}(\Gamma)$. As a corollary, we can see that scl on $[\Gamma, \Gamma]$ is identically zero if and only if $E H_{b}^{2}(\Gamma) \cong Q(\Gamma) / H^{1}(\Gamma)=0$ (i.e., the comparison map $H_{b}^{2}(\Gamma) \rightarrow H^{2}(\Gamma)$ is injective). There are several applications ([18, 15, 42] for example) and generalizations [16, 37] of Bavard's duality theorem.

Chapter 3

G-invariant quasimorphisms and their applications

3.1 G-invariant quasimorphisms

Throughout this section, let G be a group and H a normal subgroup of G.
Definition 3.1.1. A quasimorphism ϕ on H is G-quasi-invariant if there exist a constant $C \geq 0$ such that

$$
\left|\phi\left(g h g^{-1}\right)-\phi(h)\right| \leq C
$$

for any $g \in G$ and $h \in H$. If the constant C can be taken by $0, \phi$ is called G-invariant.

Let $\widehat{Q}(H)^{G}$ denote the set of G-quasi-invariant quasimorphisms on G and $Q(H)^{G}$ denote the set of G-(quasi-)invariant homogeneous quasimorphisms on H.
Remark 3.1.2. • Every G-quasi-invariant homogeneous quasimorphisms are G-invariant; if ϕ is G-quasi-invariant and homogeneous, then for every $n \in \mathbb{N}$,

$$
n\left|\phi\left(g h g^{-1}\right)-\phi(h)\right|=\left|\phi\left(\left(g h g^{-1}\right)^{n}\right)-\phi\left(h^{n}\right)\right|=\left|\phi\left(g h^{n} g^{-1}\right)-\phi\left(h^{n}\right)\right| \leq C .
$$

Hence $\left|\phi\left(g h g^{-1}\right)-\phi(h)\right| \leq C / n$ for arbitrarily large n and thus ϕ is G-invariant.

- If $G=H$, then $\widehat{Q}(G)^{G}=\widehat{Q}(G)$ and $Q(G)^{G}=Q(G)$.

As is the case of ordinary quasimorphism, the (G-invariant) homogenization $\widehat{Q}(H)^{G} \rightarrow Q(H)^{G}$ induces an isomorphism $\widehat{Q}(H)^{G} / \bar{C}_{b}^{1}(H) \cong Q(H)^{G}$.

We define the notion of a (G, H)-commutator (or a mixed commutator). A (G, H)-commutator is an element of the form $[g, h]$ with $g \in G$ and $h \in$ H. Note that $[h, g]=\left[h g, h^{-1}\right]$ is also a (G, H)-commutator. The (G, H) commutator subgroup $[G, H]$ is the group generated by (G, H)-commutators. We remark that $[G, H] \subset H$ since H is a normal subgroup of G. The (G, H) commutator length $\mathrm{cl}_{G, H}:[G, H] \rightarrow \mathbb{N}$ is defined by

$$
\operatorname{cl}_{G, H}(x)=\left\{k \left\lvert\, \begin{array}{c|c}
\exists g_{1}, \ldots, g_{k} \in G, \exists h_{1}, \ldots, h_{k} \in H, \\
x=\left[g_{1}, h_{1}\right] \cdots\left[g_{k}, h_{k}\right]
\end{array}\right.\right\} .
$$

We define the stable (G, H)-commutator length $\operatorname{scl}_{G, H}:[G, H] \rightarrow[0, \infty)$ by

$$
\operatorname{scl}_{G, H}(x)=\lim _{n \rightarrow \infty} \frac{\mathrm{cl}_{G, H}\left(x^{n}\right)}{n} .
$$

Lemma 3.1.3. For any $x \in[G, H]$ and $\phi \in Q(H)^{G}$,

$$
\operatorname{scl}_{G, H}(x) \geq \frac{1}{2} \frac{|\phi(x)|}{D(\phi)}
$$

Proof. Note that $|\phi([g, h])|=\left|\phi([g, h])-\phi\left(g h g^{-1}\right)-\phi\left(h^{-1}\right)\right| \leq D(\phi)$ for any (G, H)-commutator $[g, h] \in[G, H]$. If x^{n} is a product of (G, H)-commutators c_{1}, \ldots, c_{m}, then we obtain an inequality

$$
n|\phi(x)|=\left|\phi\left(x^{n}\right)\right| \leq(m-1) D(\phi)+\sum_{k=1}^{k}\left|\phi\left(c_{k}\right)\right|<2 m D(\phi) .
$$

and the lemma follows from it.
As is the ordinary case, we can prove the following Bavard-type duality theorem.

Theorem 3.1.4. Assume that $H=[G, H]$. For any $x \in[G, H]$,

$$
\operatorname{scl}_{G, H}(x)=\frac{1}{2} \sup _{\phi \in Q(H)^{G}} \frac{|\phi(x)|}{D(\phi)}
$$

Proof of Theorem 3.1.4 is given in the next subsection. We note that the assumption $H=[G, H]$ in Theorem 3.1.4 can be removed [38].

3.2 Proof of G-invariant Bavard duality

In this section, we give the proof of Theorem 3.1.4. We use the method of Kawasaki [36] and his idea came from [16].

For a group Γ, we define a set

$$
A_{\Gamma}=\bigsqcup_{k=0}^{\infty}(\Gamma \times \mathbb{R})^{k}
$$

We denote elements of A_{Γ} by $x_{1}^{s_{1}} \cdots x_{k}^{s_{k}}$, where $x_{1}, \ldots, x_{k} \in \Gamma$ and $s_{1}, \ldots, s_{k} \in$ \mathbb{R}. Set $\Gamma=[G, H]$. We define a function $\|\cdot\|_{\Gamma}: A_{\Gamma} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
\left\|x_{1}^{s_{1}} \cdots x_{k}^{n_{k}}\right\|_{\Gamma}=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1} n\right\rfloor} \cdots x_{k}^{\left\lfloor n_{k} n\right\rfloor}\right)
$$

where $\lfloor t\rfloor$ denotes the integer part of $t \in \mathbb{R}$.
Proposition 3.2.1. $\|\cdot\|_{\Gamma}: A_{\Gamma} \rightarrow \mathbb{R}_{\geq 0}$ is well-defined.
We prove Proposition 3.2.1 in Section 3.5.
We define some operations on A_{Γ}. For elements $\mathrm{x}=x_{1}^{s_{1}} \ldots x_{k}^{s_{k}}, \mathrm{y}=$ $y_{1}^{t_{1}} \ldots y_{l}^{t_{l}}$ in A_{Γ} and $\lambda \in \mathbb{R}$, we define $\mathrm{x} \star \mathrm{y}, \overline{\mathrm{x}}$ and $\mathrm{x}^{(\lambda)}$ by

$$
\begin{aligned}
\mathrm{x} \star \mathrm{y} & =x_{1}^{s_{1}} \ldots x_{k}^{s_{k}} y_{1}^{t_{1}} \ldots y_{l}^{t_{l}}, \\
\overline{\mathrm{x}} & =x_{k}^{-s_{k}} \ldots x_{1}^{-s_{1}} \\
\mathrm{x}^{(\lambda)} & =x_{1}^{\lambda s_{1}} \ldots x_{k}^{\lambda s_{k}} .
\end{aligned}
$$

Since $\mathrm{cl}_{G, H}$ is a conjugation-invariant norm, we can confirm that for any $\mathrm{x}, \mathrm{y} \in A_{\Gamma}$,

$$
\begin{aligned}
\|x y\|_{\Gamma} & \leq\|x\|_{\Gamma}+\|y\|_{\Gamma}, \\
\|\overline{\mathrm{y} x}\|_{\Gamma} & =\|x\|_{\Gamma}, \\
\|\bar{x}\|_{\Gamma} & =\|x\|_{\Gamma} .
\end{aligned}
$$

We define the equivalent relation \sim on A_{Γ} by $\mathrm{x} \sim \mathrm{y}$ if and only if $\|\mathrm{x} \overline{\mathrm{y}}\|_{\Gamma}=0$ for $\mathrm{x}, \mathrm{y} \in A_{\Gamma}$. We denote the set A_{Γ} / \sim by A, and the function $\|\cdot\|_{\Gamma}: A_{\Gamma} \rightarrow$ $\mathbb{R}_{\geq 0}$ on A_{Γ} induce the function $\|\cdot\|: A \rightarrow \mathbb{R}_{\geq 0}$ on A. Let $[\mathrm{x}] \in A$ denote the
equivalent class of $\mathrm{x} \in A_{\Gamma}$. For $\mathbf{x}=[\mathrm{x}]$ and $\mathbf{y}=[\mathrm{y}]$ in A and $\lambda \in \mathbb{R}$, we define $\mathbf{x}+\mathbf{y}$ and $\lambda \mathbf{x}$ by

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =[\mathrm{x} \star \mathrm{y}] \\
\lambda \mathbf{x} & =\left[\mathrm{x}^{(\lambda)}\right] .
\end{aligned}
$$

Proposition 3.2.2. The above operators are well-defined.
Proposition 3.2.3. $(A,\|\cdot\|)$ is a normed vector space.
We prove Proposition 3.2.2 and 3.2.3 in Section 3.5.
By the Hahn-Banach theorem, we obtain the following:
Proposition 3.2.4. For any $x \in A$,

$$
\|\mathrm{x}\|=\sup _{\hat{\phi} \in A^{*}} \frac{\hat{\phi}(\mathrm{x})}{\|\hat{\phi}\|^{*}}
$$

where A^{*} is the dual space of A and $\|\cdot\|^{*}$ is the dual norm on A^{*}.
For $\hat{\phi} \in A^{*}$, we define the function $\phi: \Gamma \rightarrow \mathbb{R}$ by $\phi(x)=\hat{\phi}\left(\left[x^{1}\right]\right)$.
Proposition 3.2.5. ϕ is a G-invariant homogeneous quasimorphism.
Proof. - (ϕ is a quasimorphism)
For $x, y \in \Gamma$,

$$
\begin{aligned}
& |\phi(x y)-\phi(x)-\phi(y)| \\
= & \left|\hat{\phi}\left(\left[(x y)^{1}\right]\right)-\hat{\phi}\left(\left[x^{1}\right]\right)-\hat{\phi}\left(\left[y^{1}\right]\right)\right| \\
= & \left|\hat{\phi}\left(\left[(x y)^{1}\right]+(-1)\left[x^{1}\right]+(-1)\left[x^{1}\right]\right)\right| \\
\leq & \|\hat{\phi}\|^{*}\left\|(x y)^{1} \star x^{-1} \star y^{-1}\right\| \\
= & \|\hat{\phi}\|^{*} \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{cl}_{G, H}\left((x y)^{n} x^{-n} y^{-n}\right) .
\end{aligned}
$$

Since $(x y)^{2 n} x^{-2 n} y^{-2 n}$ is a product of n commutators (see [14, Lemma2.24.] for example),

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{cl}_{G, H}\left((x y)^{n} x^{-n} y^{-n}\right) \leq \frac{1}{2} .
$$

Thus

$$
|\phi(x y)-\phi(x)-\phi(y)| \leq \frac{1}{2}\|\hat{\phi}\|^{*} .
$$

- (ϕ is homogeneous)

Since $\left(x^{n}\right)^{1} \sim x^{n}$ for $x \in \Gamma$ and $\hat{\phi}: A \rightarrow \mathbb{R}$ is a linear map,

$$
\phi\left(x^{n}\right)=\hat{\phi}\left(\left[\left(x^{n}\right)^{1}\right]\right)=\hat{\phi}\left(\left[x^{n}\right]\right)=\hat{\phi}\left(n\left[x^{1}\right]\right)=n \hat{\phi}\left(\left[x^{1}\right]\right)=n \phi(x)
$$

for $x \in \Gamma$ and $n \in \mathbb{Z}$.

- (ϕ is G-invariant)

For $g \in G, x \in \Gamma$,

$$
\begin{aligned}
& \left|\phi\left(g x g^{-1}\right)-\phi(x)\right| \\
= & \left|\hat{\phi}\left(\left[\left(g x g^{-1}\right)^{1}\right]\right)-\hat{\phi}\left(\left[x^{1}\right]\right)\right| \\
= & \left|\hat{\phi}\left(\left[\left(g x g^{-1}\right)^{1}\right]+(-1)\left[x^{1}\right]\right)\right| \\
\leq & \|\hat{\phi}\|^{*}\left\|\left(\left(g x g^{-1}\right)^{1}\right) \star x^{-1}\right\| \\
= & \|\hat{\phi}\|^{*} \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{cl}_{G, H}\left(\left(g x g^{-1}\right)^{n} \cdot x^{-n}\right) \\
= & \|\hat{\phi}\|^{*} \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{cl}_{G, H}\left(\left[g, x^{n}\right]\right) \\
= & 0
\end{aligned}
$$

Proof of Theorem 3.1.4. By Proposition 3.2.4 and 3.2.5, since $D(\phi) \leq \frac{1}{2}\|\phi\|^{*}$,

$$
\operatorname{scl}_{G, H}(x)=\left\|x^{1}\right\|=\sup _{\hat{\phi} \in A^{*}} \frac{\hat{\phi}\left(\left[x^{1}\right]\right)}{\|\hat{\phi}\|^{*}} \leq \sup _{\phi} \frac{\phi(x)}{2 D(\phi)}
$$

Lemma 3.1.3 states the opposite direction.

3.3 Extension problem

In this section, we consider the extension problem of quasimorphisms.
Definition 3.3.1. A G-invariant homogeneous quasimorphism $\phi: H \rightarrow \mathbb{R}$ is extendable to G if there exists a homogeneous quasimorphism $\psi: G \rightarrow \mathbb{R}$ such that $\left.\psi\right|_{H}=\phi$.

If a homogeneous quasimorphism ϕ is extendable, then ϕ is G-invariant. Hence, G-invariance is a necessary condition to extend. Shtern [53] studied the conditions under which a quasimorphism can be extended. By applying his result, we obtain the following sufficient conditions to extend.

Proposition 3.3.2 ([53, Theorem 3]). Suppose that one of the following conditions are satisfied:

- the group homomorphism $G \rightarrow G / H$ has a section homomorphism.
- H is a finite index subgroup of G.

Then any homogeneous G-invariant quasimorphism ϕ is extendable.
Later we will give another proof of Proposition 3.3.2, including the evaluation of defect (Proposition 3.4.6).

We provide a convenient lemma for proving non-extendability.
Lemma 3.3.3. Let ϕ be a G-invariant quasimorphism on H. Let f and g be elements of G satisfying

- $f\left(g f^{-1} g^{-1}\right)=\left(g f^{-1} g^{-1}\right) f$,
- $[f, g] \in H$,
- $\phi([f, g]) \neq 0$.

Then, ϕ is non-extendable to G.
Proof. Assume that ϕ is extendable to G. Let ψ be a homogeneous quasimorphism on G such that $\left.\psi\right|_{H}=\phi$. Then, by Lemma 2.4.6,

$$
\phi([f, g])=\psi([f, g])=\psi(f)+\psi\left(g f^{-1} g^{-1}\right)=0
$$

and this contradicts the assumption. Hence ϕ is non-extendable to G.
We give an example of non-extendable quasimorphism. Namely, we observe that Py's Calabi quasimorphism is non-extendable.

Theorem 3.3.4. Let Σ be an oriented closed surface whose genus is greater than one and ω a symplectic form on Σ_{g}. Py's Calabi quasimorphism μ_{P} : $\operatorname{Ham}(\Sigma, \omega) \rightarrow \mathbb{R}$ is non-extendable to $\operatorname{Symp}_{0}(\Sigma, \omega)$.

We review the notion of Calabi quasimorphism. A symplectic manifold (M, ω) is exact if there exists a 1 -form $\lambda \in \Omega^{1}(M)$ such that $\omega=-d \lambda$. A subset X of a symplectic manifold (M, ω) is displaceable if there exists $\phi \in \operatorname{Ham}(M, \omega)$ such that $\phi(X) \cap \bar{X}=\emptyset$, where \bar{X} is the topological closure
of X. For an exact symplectic manifold (M, ω), we recall that the Calabi homomorphism is a function $\mathrm{Cal}_{M}: \operatorname{Ham}(M, \omega) \rightarrow \mathbb{R}$ defined by

$$
\operatorname{Cal}_{M}\left(\varphi_{F}\right)=\int_{0}^{1} \int_{M} F_{t} \omega^{n} d t
$$

The Calabi homomorphism is known to be well-defined and a group homomorphism. (see [13, 1, 2, 41]).

Definition 3.3.5. Let $\mu: \operatorname{Ham}(M, \omega) \rightarrow \mathbb{R}$ be a homogeneous quasimorphism. An open subset U of M has the Calabi property with respect to μ if $\left.\omega\right|_{U}$ is exact and the restriction of μ to $\operatorname{Ham}(U, \omega)$ coincides with the Calabi homomorphism Cal_{U}.

Definition 3.3.6 ([19, 49]). A Calabi quasimorphism is a homogeneous quasimorphism $\mu: \operatorname{Ham}(M, \omega) \rightarrow \mathbb{R}$ such that any displaceable open subset of M has the Calabi property with respect to U.

The following properties of Py's Calabi quasimorphism is important to prove Theorem 3.3.4. See $[50,51]$ for the definition of Py's Calabi quasimorphism.

Proposition 3.3.7 ([50]). Let Σ be a closed orientable surface whose genus is larger than one, ω a symplectic form on Σ and U an open subset of Σ which is homeomorphic to an annulus. Then U has the Calabi property with respect to Py's Calabi quasimorphism μ_{P}.

Let Σ be a closed orientable surface of a positive genus and ω a symplectic form on Σ. We set $H=\operatorname{Ham}(\Sigma, \omega)$ and $G=\operatorname{Symp}_{0}(\Sigma, \omega)$. In order to prove Theorems 3.3.4, we prepare the following elements of $G=\operatorname{Symp}_{0}(\Sigma, \omega)$.

Since the genus of Σ is positive, we can take a non-separating simple closed curve C in Σ. Then, there are a positive number r and a symplectic embedding $\iota:(-1,1) \times \mathbb{R} / r \mathbb{Z} \rightarrow \Sigma$ such that $\iota(\{0\} \times \mathbb{R} / r \mathbb{Z})=C$. Here, the symplectic form on $(-1,1) \times \mathbb{R} / r \mathbb{Z}$ is defined by $d x \wedge d y$, where (x, y) is the coordinate on $(-1,1) \times \mathbb{R} / r \mathbb{Z}$.

Let $\epsilon \in(0,1)$ and let $\chi:(-1,1) \rightarrow[0,1]$ be a function satisfying the following conditions.

- $\chi(x)=0$ for any $x \in(-1,-1+\epsilon) \cup(1-\epsilon, 1)$,
- $\chi(x)+\chi(1+x)=1$ for any $x \in(-1,0)$.

By the above conditions, we see that $\chi(x)=1$ for any $x \in(-\epsilon, \epsilon)$. Define a function $F: \Sigma \rightarrow \mathbb{R}$ by

$$
F(z)= \begin{cases}\chi(x) & (\text { if } z=\iota(x, y) \text { for some }(x, y) \in(-1,1) \times \mathbb{R} / r \mathbb{Z}) \\ 0 & \text { (if } z \notin \operatorname{Im}(\iota))\end{cases}
$$

Since C is non-separating, $\Sigma \backslash \operatorname{Im}(\iota)$ is path-connected. Thus, there exists $g_{0} \in G=\operatorname{Symp}_{0}(\Sigma, \omega)$ such that $g_{0}(\iota(x, y))=\iota(x+1, y)$ for any $(x, y) \in$ $(-1,0) \times \mathbb{R} / r \mathbb{Z}$.

Define a map $f_{0}: \Sigma \rightarrow \Sigma$ by

$$
f_{0}(z)= \begin{cases}\varphi_{F}(z) & (\text { if } z \in \iota((-1,0) \times \mathbb{R} / r \mathbb{Z})) \\ z & \text { (otherwise) }\end{cases}
$$

Since $f_{0}(z)=z$ for any $\left.z \in \iota((-1,-1+\epsilon) \cup(-\epsilon, \epsilon)) \times \mathbb{R} / r \mathbb{Z}\right)$, f_{0} is well-defined and $f_{0} \in G=\operatorname{Symp}_{0}(\Sigma, \omega)$. Since $\chi(x)+\chi(1+x)=1$ for any $x \in(-1,0)$, by the definition of g_{0},

$$
g_{0} f_{0}^{-1} g_{0}^{-1}(z)= \begin{cases}\varphi_{F}(z) & (\text { if } z \in \iota((0,1) \times \mathbb{R} / r \mathbb{Z})) \\ z & \text { (otherwise) }\end{cases}
$$

Thus, we obtain $\varphi_{F}=f_{0} g_{0} f_{0}^{-1} g_{0}^{-1}$. Since $\operatorname{supp}\left(f_{0}\right) \subset \iota((-1,0) \times \mathbb{R} / r \mathbb{Z})$ and $\operatorname{supp}\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right) \subset \iota((0,1) \times \mathbb{R} / r \mathbb{Z}), f_{0}\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right)=\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right) f_{0}$.
Proof of Theorem 3.3.4. Since $f_{0}\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right)=\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right) f_{0}$ and $\varphi_{F}=\left[f_{0}, g_{0}\right] \in$ $\operatorname{Ham}(\Sigma, \omega)$, by Lemma 3.3.3, it is sufficient to prove that $\mu_{P}\left(\left[f_{0}, g_{0}\right]\right) \neq 0$.

By the definition of $F, \int_{\Sigma} F \omega>0$. By Proposition 3.3.7, $\operatorname{Im}(\iota)$ has the Calabi property with respect to μ_{P}. Since $\varphi_{F}=f_{0} g_{0} f_{0}^{-1} g_{0}^{-1}$ and $\operatorname{Supp}(F) \subset$ $\operatorname{Im}(\iota)$,

$$
\mu_{P}\left(\left[f_{0}, g_{0}\right]\right)=\mu_{P}\left(\varphi_{F}\right)=\int_{\Sigma} F \omega>0
$$

3.4 Comparison of commutator lengths

We compare the (G, H)-commutator length $\mathrm{cl}_{G, H}$ with the ordinary commutator lengths cl_{G} of G and cl_{H} of H. By definition, $\mathrm{cl}_{G} \leq \mathrm{cl}_{G, H}$ on $[G, H]$, and $\mathrm{cl}_{G, H} \leq \mathrm{cl}_{H}$ on $[H, H]$.

3.4.1 $\operatorname{scl}_{G, H}$ vs scl ${ }_{G}$

We consider a sufficient condition under which $\operatorname{scl}_{G, H}$ and scl_{G} are bi-Lipschitz.
Proposition 3.4.1. Suppose that $H=[G, H]$ and one of the following conditions are satisfied:

- The group homomorphism $G \rightarrow G / H$ has a section homomorphism.
- H is a finite index subgroup of G.

Then for every $x \in[G, H]$,

$$
\operatorname{scl}_{G}(x) \leq \operatorname{scl}_{G, H}(x) \leq 2 \operatorname{scl}_{G}(x)
$$

Remark 3.4.2. We can remove the assumption $H=[G, H]$ in Proposition 3.4.1 since the assumption $H=[G, H]$ in Theorem 3.1.4 is removed in [38].

Example 3.4.3. Let G be the braid group B_{n} of n strands and H its commutator subgroup $\left[B_{n}, B_{n}\right.$]. For any integer $n>4, H$ is a perfect group [32], especially $H=[G, H]$. It is known that $G / H \cong \mathbb{Z}$ and the abelianization $\operatorname{map} G \rightarrow G / H$ is given by the index sum homomorphism $G \rightarrow \mathbb{Z}$ defined by $\sigma_{i} \mapsto 1$ for $i=1,2, \ldots, n-1$, where σ_{i} is the i th Artin generator. Since there is a section homomorphism $s: \mathbb{Z} \rightarrow G$, the pair (G, H) satisfies the assumptions of Proposition 3.4.1 if $n>4$.

Example 3.4.4. Let (M, ω) be an exact symplectic manifold. Let G be the group $\operatorname{Ham}(M, \omega)$ of Hamiltonian diffeomorphisms and H the commutator subgroup of $\operatorname{Ham}(M, \omega)$. Let Cal: $\operatorname{Ham}(M, \omega) \rightarrow \mathbb{R}$ denote the Calabi homomorphism.

It is known that $G / H \cong \mathbb{R}$ and the abelianization $\operatorname{map} G \rightarrow G / H$ is given by the Calabi homomorphism [1]. We can take a time-independent Hamiltonian function $H: M \rightarrow \mathbb{R}$ such that $\operatorname{Cal}(H)=1$ (for instance, consider a function supported on a Darboux ball). Then, the map $s: \mathbb{R} \rightarrow \operatorname{Ham}(M, \omega)$ defined by $s(t)=\varphi_{t H}$ is a section homomorphism of Cal. Since it is known that H is a perfect group [1], the pair (G, H) satisfies the assumptions of Proposition 3.4.1.

Example 3.4.5. Let T^{2} be a 2-dimensional torus and ω a symplectic form on T^{2}. Let G be the identity component $\operatorname{Symp}_{0}\left(T^{2}, \omega\right)$ of the group of symplectomorphisms of $\left(T^{2}, \omega\right)$ and H the group $\operatorname{Ham}\left(T^{2}, \omega\right)$ of Hamiltonian diffeomorphisms of $\left(T^{2}, \omega\right)$. Let $\operatorname{Flux}_{\omega}: \operatorname{Symp}_{0}\left(T^{2}, \omega\right) \rightarrow H^{1}\left(T^{2} ; \mathbb{R}\right) / \Gamma_{\omega}$
be the (descended) flux homomorphism. Then, $\operatorname{Ker}\left(\operatorname{Flux}_{\omega}\right)=H$ and H is known to be perfect [1]. Thus, since there exists a section homomorphism of Flux $_{\omega}: \operatorname{Symp}_{0}\left(T^{2}, \omega\right) \rightarrow H^{1}\left(T^{2} ; \mathbb{R}\right) / \Gamma_{\omega}, G$ and H satisfy the assumption of Proposition 3.4.1.

To prove Proposition 3.4.1, we prove a precise version of Proposition 3.3.2.
Proposition 3.4.6. Suppose that one of the following conditions are satisfied:
(1) the group homomorphism $G \rightarrow G / H$ has a section homomorphism,
(2) H is a finite index subgroup of G.

Then, for every homogeneous G-invariant quasimorphism ϕ, there exists a homogeneous quasimorphism ψ on H such that $\left.\psi\right|_{H}=\phi$ and $D(\psi) \leq 2 D(\phi)$.

Proof of Proposition 3.3.2. Let $\pi: G \rightarrow G / H$ be the quotient map.
(1) Let $\sigma: G / H \rightarrow G$ be a section homomorphism. For $g \in G$, we set $q_{g}=\sigma(\pi(g))$ and $h_{g}=q_{g}^{-1} g \in H$. We define the function $\phi^{\prime}: G \rightarrow \mathbb{R}$ by $\phi^{\prime}(g)=\phi\left(h_{g}\right)$. Since $\sigma \circ \pi$ is a homomorphism, $q_{g_{1} g_{2}}=q_{g_{1}} q_{g_{2}}$ for $g_{1}, g_{2} \in G$. Thus

$$
\begin{aligned}
& \left|\phi^{\prime}\left(g_{1} g_{2}\right)-\phi^{\prime}\left(g_{1}\right)-\phi^{\prime}\left(g_{2}\right)\right| \\
& =\left|\phi\left(h_{g_{1} g_{2}}\right)-\phi\left(h_{g_{1}}\right)-\phi\left(h_{g_{2}}\right)\right| \\
& =\left|\phi\left(q_{g_{2}}^{-1} q_{g_{1}}^{-1} g_{1} g_{2}\right)-\phi\left(q_{g_{1}}^{-1} g_{1}\right)-\phi\left(q_{g_{2}}^{-1} g_{2}\right)\right| \\
& =\left|\phi\left(q_{g_{1}}^{-1} g_{1} g_{2} q_{g_{2}}^{-1}\right)-\phi\left(q_{g_{1}}^{-1} g_{1}\right)-\phi\left(g_{2} q_{g_{2}}^{-1}\right)\right| \\
& \leq D(\phi) .
\end{aligned}
$$

Hence, ϕ^{\prime} is a quasimorphism with $D\left(\phi^{\prime}\right) \leq D(\phi)$.
(2) We choose a representative $Q \subset G$ of the $\operatorname{coset} G / H$, i.e., $G=\bigsqcup_{q \in Q} q H$. Assume that $e \in Q$. For $g \in G$, we can represent uniquely as a form $g=q_{g} h_{g}$, where $q_{g} \in Q$ and $h_{g} \in H$. We define the function $\phi^{\prime}: G \rightarrow \mathbb{R}$ by

$$
\phi^{\prime}(g)=\frac{1}{\# Q} \sum_{q \in Q} \phi\left(h_{g q}\right) .
$$

Since $q_{g_{1} g_{2} q}^{-1} g_{1} g_{2} q=\left(q_{g_{1} g_{2} q}^{-1} g_{1} q_{g_{2} q}\right)\left(q_{g_{2} q}^{-1} g_{2} q\right)$,

$$
\begin{aligned}
& \left|\phi^{\prime}\left(g_{1} g_{2}\right)-\phi^{\prime}\left(g_{1}\right)-\phi^{\prime}\left(g_{2}\right)\right| \\
& =\frac{1}{\# Q}\left|\sum_{q \in Q} \phi\left(h_{g_{1} g_{2} q}\right)-\phi\left(h_{g_{1} q}\right)-\phi\left(h_{g_{2} q}\right)\right| \\
& =\frac{1}{\# Q}\left|\sum_{q \in Q} \phi\left(q_{g_{1} g_{2} q}^{-1} g_{1} g_{2} q\right)-\phi\left(q_{g_{1} q}^{-1} g_{1} q\right)-\phi\left(q_{g_{2} q}^{-1} g_{2} q\right)\right| \\
& =\frac{1}{\# Q}\left|\sum_{q \in Q} \phi\left(\left(q_{g_{1} g_{2} q}^{-1} g_{1} q_{g_{2} q}\right)\left(q_{g_{2} q}^{-1} g_{2} q\right)\right)-\phi\left(q_{g_{1} g_{2} q}^{-1} g_{1} q_{g_{2} q}\right)-\phi\left(q_{g_{2} q}^{-1} g_{2} q\right)\right| \\
& \leq D(\phi) .
\end{aligned}
$$

Proof of Proposition 3.4.1. The inequality $\operatorname{scl}_{G}(x) \leq \operatorname{scl}_{G, H}(x)$ immediately follows from the definitions of norms. Thus, we prove $\operatorname{scl}_{G, H}(x) \leq 2 \operatorname{scl}_{G}(x)$ below.

By Theorem 3.1.4, for any $\epsilon>0$, there exists a G-invariant homogeneous quasimorphism ϕ such that

$$
\operatorname{scl}_{G, H}(x)-\epsilon \leq \frac{1}{2} \frac{\phi(x)}{D(\phi)}
$$

By Proposition 3.3.2, there exists an extension $\hat{\phi}$ of ϕ which is homogeneous and $D(\hat{\phi}) \leq 2 D(\phi)$. Therefore,

$$
\frac{1}{2} \frac{\phi(x)}{D(\phi)} \leq \frac{\hat{\phi}(x)}{D(\hat{\phi})} \leq 2 \operatorname{scl}_{G}(x)
$$

Since ϵ can be taken arbitrarily small, we have finished the proof.
On the other hand, there exist an example of a pair (G, H) of groups such that $\operatorname{scl}_{G, H}$ and scl_{G} are not bi-Lipschitz.

Proposition 3.4.7. Let Σ be an oriented closed surface whose genus is greater than one and ω a symplectic form on Σ. Set $G=\operatorname{Symp}_{0}(\Sigma, \omega)$ and $H=\operatorname{Ham}(\Sigma, \omega)$. Then $\operatorname{scl}_{G, H}$ and scl_{G} are not bi-Lipschitz.

Proof. Take $f_{0}, g_{0} \in G$ as in Section 3.3. Let μ_{P} denote Py's Calabi quasimorphism. We observed that $\mu_{P}\left(\left[f_{0}, g_{0}\right]\right)>0$ in the proof of Theorem 3.3.4. Hence, by Lemma 3.1.3, $\operatorname{scl}_{G, H}\left(\left[f_{0}, g_{0}\right]\right)>0$. On the other hand,

$$
\left[f_{0}, g_{0}\right]^{n}=\left(f_{0}\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right)\right)^{n}=f_{0}^{n}\left(g_{0} f_{0}^{-1} g_{0}^{-1}\right)^{n}=f_{0}^{n}\left(g_{0} f_{0}^{-n} g_{0}^{-1}\right)=\left[f_{0}^{n}, g_{0}\right]
$$

for any integer n. Thus,

$$
\operatorname{cl}_{G}\left(\left[f_{0}, g_{0}\right]^{n}\right)=\operatorname{cl}_{G}\left(\left[f_{0}^{n}, g_{0}\right]\right)=1
$$

and hence $\operatorname{scl}_{G}\left(\left[f_{0}, g_{0}\right]\right)=0$.

3.4.2 $\operatorname{scl}_{G, H}$ vs scl ${ }_{H}$

We give an example of a pair (G, H) of groups such that $\operatorname{scl}_{G, H}$ and scl_{H} are not bi-Lipschitz even if the quotient group G / H finite.

Let B_{3} and P_{3} denote the braid group and the pure braid group on 3 strands, respectively. Set $\Delta=\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$, where σ_{1} and σ_{2} are the Artin generators. Note that Δ^{2} is the full twist. Set $x=\sigma_{1}^{2}, y=\sigma_{2}^{2}$, and $z=\Delta^{2}$. Then P_{3} has a presentation

$$
P_{3}=\langle x, y, z \mid x z=z x, y z=z y\rangle \cong F_{2} \times \mathbb{Z}
$$

Proposition 3.4.8. For $G=B_{3}$ and $H=P_{3}$, there exists an element $\alpha \in[H, H]$ such that $\operatorname{scl}_{G, H}(\alpha)=0$ and $\operatorname{scl}_{H}(\alpha)>0$.

Proof of Proposition 3.4.8. We set $\alpha=[x, y]=\left[\sigma_{1}^{2}, \sigma_{2}^{2}\right] \in[H, H]$. Since $\Delta \alpha \Delta^{-1}=\left[\sigma_{2}^{2}, \sigma_{1}^{2}\right]=\alpha^{-1}, \phi(\alpha)$ is equal to zero for every G-invariant homogeneous quasimorphism ϕ on $[G, H]$. Thus, by Theorem 3.1.4, $\operatorname{scl}_{G, H}(\alpha)=0$.

On the other hand, we can prove that $\operatorname{scl}_{H}(\alpha)>0$ as follows. Set $\phi=\bar{h}_{w} \circ$ pr_{1}, where \bar{h}_{w} is the homogenization of h_{w} for $w=x y x^{-1} y^{-1}$ and $\mathrm{pr}_{1}: P_{3} \cong$ $F_{2} \times \mathbb{Z} \rightarrow F_{2}$ is the first projection homomorphism. Since $c_{w}\left([x, y]^{n}\right)=n$ and $c_{w^{-1}}\left([x, y]^{n}\right)=0$,

$$
\bar{\phi}(\alpha)=\bar{h}_{w}([x, y])=1 .
$$

Therefore, by Theorem 2.4.8,

$$
\operatorname{scl}_{H}(\alpha) \geq \frac{1}{2} \frac{1}{D(\bar{\phi})}>0
$$

3.5 Appendix

In this subsection, we finish the proof of Proposition 3.2.1 and 3.2.3. For $x, y \in \Gamma$, let x^{y} denote the conjugation $y x y^{-1}$.

Lemma 3.5.1. For any $x_{1}, \ldots, x_{k} \in \Gamma$ and integers $n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{k} \in$ \mathbb{Z},

$$
\operatorname{cl}_{G, H}\left(\left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1} x_{1}^{m_{1}} \ldots x_{k}^{m_{k}}\right) \leq \sum_{i=1}^{k}\left|m_{i}-n_{i}\right| \operatorname{cl}_{G, H}\left(x_{i}\right)
$$

Proof. Since

$$
\begin{aligned}
& \left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1} x_{1}^{m_{1}} \ldots x_{k}^{m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}} x_{1}^{-n_{1}} x_{1}^{m_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}} x_{1}^{m_{1}-n_{1}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}} x_{2}^{m_{2}} \ldots x_{k}^{m_{k}}\left(x_{1}^{m_{1}-n_{1}}\right)^{y_{1}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{m_{2}-n_{2}} \ldots x_{k}^{m_{k}}\left(x_{1}^{m_{1}-n_{1}}\right)^{y_{1}} \\
= & \ldots \\
= & x_{k}^{m_{k}-n_{k}}\left(x_{k-1}^{m_{k-1}-n_{k-1}}\right)^{y_{k-1}} \ldots\left(x_{2}^{m_{2}-n_{2}}\right)^{y_{2}}\left(x_{1}^{m_{1}-n_{1}}\right)^{y_{1}},
\end{aligned}
$$

where $y_{i}=\left(x_{i+1}^{m_{i+1}} \ldots x_{k}^{m_{k}}\right)^{-1}$,
$\operatorname{cl}_{G, H}\left(\left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1} x_{1}^{m_{1}} \ldots x_{k}^{m_{k}}\right) \leq \sum_{i=1}^{k} \operatorname{cl}_{G, H}\left(x_{i}^{m_{i}-n_{i}}\right) \leq \sum_{i=1}^{k}\left|m_{i}-n_{i}\right| \mathrm{cl}_{G, H}\left(x_{i}\right)$.

Lemma 3.5.2. For $x_{1}, \ldots, x_{k} \in \Gamma$ and integers $n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{k} \in \mathbb{Z}$,

$$
\left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1}\left(x_{1}^{m_{1}} \ldots x_{k}^{m_{k}}\right)^{-1} x_{1}^{n_{1}+m_{1}} \ldots x_{k}^{n_{k}+m_{k}}
$$

is a product of k commutators.

Proof. There exists elements $y_{1}, \ldots y_{k} \in\left\langle x_{1}, \ldots, x_{k}\right\rangle$ such that

$$
\begin{aligned}
& \left(x_{1}^{n_{1}} \ldots x_{k}^{n_{k}}\right)^{-1}\left(x_{1}^{m_{1}} \ldots x_{k}^{m_{k}}\right)^{-1} x_{1}^{n_{1}+m_{1}} \ldots x_{k}^{n_{k}+m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}} x_{1}^{-n_{1}} x_{k}^{-m_{k}} \ldots x_{2}^{-m_{2}} x_{1}^{-m_{1}} x_{1}^{n_{1}+m_{1}} x_{2}^{n_{2}+m_{2}} \ldots x_{k}^{n_{k}+m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}} x_{1}^{-n_{1}} x_{k}^{-m_{k}} \ldots x_{2}^{-m_{2}} x_{1}^{n_{1}} x_{2}^{n_{2}+m_{2}} \ldots x_{k}^{n_{k}+m_{k}} \\
= & x_{k}^{-n_{k}} \ldots x_{2}^{-n_{2}}\left(x_{1}^{n_{1}}\right)^{y_{1}} x_{1}^{-n_{1}} x_{k}^{-m_{k}} \ldots x_{2}^{-m_{2}} x_{2}^{n_{2}+m_{2}} \ldots x_{k}^{n_{k}+m_{k}} \\
= & \ldots \\
= & \left(x_{k}^{n_{k}}\right)^{y_{k}} x_{k}^{-n_{k}} \ldots\left(x_{1}^{n_{1}}\right)^{y_{1}} x_{1}^{-n_{1}} \\
= & {\left[y_{k}, x_{k}^{n_{k}}\right] \ldots\left[y_{1}, x_{1}^{n_{1}}\right] . }
\end{aligned}
$$

Proof of Proposition 3.2.1. Fix an element $x_{1}^{s_{1}} \cdots x_{k}^{s_{k}} \in A_{\mathcal{G}}$. Define a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{n}=\operatorname{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k} n\right\rfloor}\right)$. By Fekete's lemma, it is sufficient to prove that there exist a constant C such that $a_{m+n} \leq a_{m}+a_{n}+C$ for all $m, n \in \mathbb{N}$. By Lemma 3.5.1,

$$
\begin{aligned}
a_{m+n}= & \operatorname{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1}(m+n)\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k}(m+n)\right\rfloor}\right) \\
\leq & \operatorname{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1} m\right\rfloor+\left\lfloor s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k} m\right\rfloor+\left\lfloor s_{k} n\right\rfloor}\right) \\
& +\operatorname{cl}_{G, H}\left(\left(x_{1}^{\left\lfloor s_{1} m\right\rfloor+\left\lfloor s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k} m\right\rfloor+\left\lfloor s_{k} n\right\rfloor}\right)^{-1} x_{1}^{\left\lfloor s_{1}(m+n)\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k}(m+n)\right\rfloor}\right) \\
\leq & \operatorname{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1} m\right\rfloor+\left\lfloor s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k} m\right\rfloor+\left\lfloor s_{k} n\right\rfloor}\right)+\sum_{i=1}^{k} \operatorname{cl}_{G, H}\left(x_{i}\right) .
\end{aligned}
$$

Set $M_{i}=\left\lfloor s_{i} m\right\rfloor$ and $N_{i}=\left\lfloor s_{i} n\right\rfloor$. Therefore, by Lemma 3.5.2,

$$
\begin{aligned}
& a_{m+n}-a_{m}-a_{n} \\
\leq & \operatorname{cl}_{G, H}\left(x_{1}^{M_{1}+N_{1}} \ldots x_{k}^{M_{k}+N_{k}}\right)+\sum_{i=1}^{k} \mathrm{cl}_{G, H}\left(x_{i}\right) \\
& -\operatorname{cl}_{G, H}\left(x_{1}^{M_{1}} \ldots x_{k}^{M_{k}}\right)-\mathrm{cl}_{G, H}\left(x_{1}^{N_{1}} \ldots x_{k}^{N_{k}}\right) \\
\leq & \operatorname{cl}_{G, H}\left(\left(x_{1}^{M_{1}} \ldots x_{k}^{M_{k}}\right)^{-1}\left(x_{1}^{N_{1}} \ldots x_{k}^{N_{k}}\right)^{-1}\left(x_{1}^{M_{1}+N_{1}} \ldots x_{k}^{M_{k}+N_{k}}\right)\right)+\sum_{i=1}^{k} \operatorname{cl}_{G, H}\left(x_{i}\right) \\
\leq & k+\sum_{i=1}^{k} \operatorname{cl}_{G, H}\left(x_{i}\right) .
\end{aligned}
$$

Lemma 3.5.3. For any $x \in A_{\Gamma}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$,

$$
\left\|x^{\left(\lambda_{1}+\lambda_{2}\right)} \star \overline{\mathrm{x}}^{\left(\lambda_{1}\right)} \star \overline{\mathrm{x}}^{\left(\lambda_{2}\right)}\right\|_{\Gamma}=0
$$

Proof. Assume that x is represented by $x_{1}^{s_{1}} x_{2}^{s_{2}} \ldots x_{k}^{s_{k}} \in A_{\mathcal{G}}$. Set $p_{i}=\left\lfloor n \lambda_{1} s_{i}\right\rfloor$, $q_{i}=\left\lfloor n \lambda_{2} s_{i}\right\rfloor$, and $r_{i}=\left\lfloor n \lambda_{1} s_{i}+n \lambda_{2} s_{i}\right\rfloor$. By Lemma 3.5.1 and 3.5.2,

$$
\begin{aligned}
& \operatorname{cl}_{G, H}\left(x_{1}^{r_{1}} \ldots x_{k}^{r_{k}}\left(x_{1}^{p_{1}} \ldots x_{k}^{p_{k}}\right)^{-1}\left(x_{1}^{q_{1}} \ldots x_{k}^{q_{k}}\right)^{-1}\right) \\
\leq & \operatorname{cl}_{G, H}\left(x_{1}^{r_{1}} \ldots x_{k}^{r_{k}}\left(x_{1}^{p_{1}+q_{1}} \ldots x_{k}^{p_{k}+q_{k}}\right)^{-1}\right) \\
& \quad+\mathrm{cl}_{G, H}\left(x_{1}^{p_{1}+q_{1}} \ldots x_{k}^{p_{k}+q_{k}}\left(x_{1}^{p_{1}} \ldots x_{k}^{p_{k}}\right)^{-1}\left(x_{1}^{q_{1}} \ldots x_{k}^{q_{k}}\right)^{-1}\right) \\
\leq & \sum_{i=1}^{k} \operatorname{cl}_{G, H}\left(x_{i}\right)+k<+\infty .
\end{aligned}
$$

Here, we used that $\left|\left(p_{i}+q_{i}\right)-r_{i}\right| \leq 1$. Therefore,

$$
\begin{aligned}
& \left\|\mathbf{x}^{\left(\lambda_{1}+\lambda_{2}\right)} \star \overline{\mathrm{x}}^{\left(\lambda_{1}\right)} \star \overline{\mathrm{x}}^{\left(\lambda_{2}\right)}\right\|_{\mathcal{G}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{cl}_{G, H}\left(x_{1}^{r_{1}} \ldots x_{k}^{r_{k}}\left(x_{1}^{p_{1}} \ldots x_{k}^{p_{k}}\right)^{-1}\left(x_{1}^{q_{1}} \ldots x_{k}^{q_{k}}\right)^{-1}\right) \\
= & 0
\end{aligned}
$$

Lemma 3.5.4. For $\mathrm{x} \in A_{\Gamma}$ and $\lambda \in \mathbb{R}$,

$$
\left\|x^{(\lambda)}\right\|_{\Gamma}=|\lambda|\|x\|_{\Gamma}
$$

Proof. We set $\mathrm{x}=x_{1}^{s_{1}} \ldots x_{k}^{s_{k}}$. If $\lambda=\frac{p}{q}$ is a positive rational number, where p, q are positive integers, then by considering subsequences,

$$
\begin{aligned}
\left\|\mathrm{x}^{(\lambda)}\right\|_{\Gamma} & =\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{cl}_{G, H}\left(x_{1}^{\left\lfloor\lambda s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor\lambda s_{k} n\right\rfloor}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{q n} \mathrm{cl}_{G, H}\left(x_{1}^{\left\lfloor p s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor p s_{k} n\right\rfloor}\right) \\
& =\lim _{n \rightarrow \infty} \frac{p}{q n} \mathrm{cl}_{G, H}\left(x_{1}^{\left\lfloor s_{1} n\right\rfloor} \ldots x_{k}^{\left\lfloor s_{k} n\right\rfloor}\right) \\
& =\lambda\|\mathrm{x}\|_{\Gamma} .
\end{aligned}
$$

We consider the case $\lambda=-1$. By Lemma 3.5.3 we obtain $\left\|\mathrm{x}^{(-1)} \mathrm{x}\right\|=$ $\left\|x^{(0)}\right\|=0$ and it means that $\left[x^{(-1)}\right]=[\bar{x}]$. Therefore $\left\|x^{(-1)}\right\|=\|\bar{x}\|=\|x\|$ and we complete the proof for the case when λ is a rational number.

Since Lemma 3.5.1 implies that the function $\lambda \mapsto\left\|\mathrm{x}^{(\lambda)}\right\|$ is continuous, we complete the proof.

Proof of Proposition 3.2.2. Assume that $\left[\mathrm{x}_{1}\right]=\left[\mathrm{x}_{2}\right]$ and $\left[\mathrm{y}_{1}\right]=\left[\mathrm{y}_{2}\right]$ for $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2} \in$ A_{Γ}.

$$
\begin{aligned}
& \left\|x_{1} \star \mathrm{y}_{1} \star \overline{\mathrm{x}_{2} \star \mathrm{y}_{2}}\right\|_{\Gamma} \\
& =\left\|\mathrm{x}_{1} \star \mathrm{y}_{1} \star \overline{\mathrm{y}}_{2} \star \overline{\mathrm{x}}_{2}\right\|_{\Gamma} \\
& \leq\left\|\mathrm{x}_{1} \star \mathrm{y}_{1} \star \overline{\mathrm{y}}_{2} \star \overline{\mathrm{x}}_{1}\right\|_{\Gamma}+\left\|\mathrm{x}_{1} \star \overline{\mathrm{x}}_{2}\right\|_{\Gamma} \\
& =\left\|\mathrm{y}_{1} \star \overline{\mathrm{y}}_{2}\right\|_{\Gamma}+\left\|\mathrm{x}_{1} \star \overline{\mathrm{x}}_{2}\right\|_{\Gamma}=0
\end{aligned}
$$

Thus $\left[\mathrm{x}_{1} \star \mathrm{y}_{1}\right]=\left[\mathrm{x}_{2} \star \mathrm{y}_{2}\right]$.
Assume that elements $\mathrm{x}_{1}, \mathrm{x}_{2} \in A_{\Gamma}$ satisfy $\left[\mathrm{x}_{1}\right]=\left[\mathrm{x}_{2}\right]$. For any $\lambda \in \mathbb{R}$, by Lemma 3.5.4,

$$
\left\|x_{1}^{(\lambda)} \star \bar{x}_{2}^{(\lambda)}\right\|_{\Gamma}=\left\|\left(x_{1} \star \bar{x}_{2}\right)^{(\lambda)}\right\|_{\Gamma}=|\lambda|\left\|x_{1} \star \bar{x}_{2}\right\|_{\Gamma}=0
$$

Thus $\left[\mathrm{x}_{1}^{(\lambda)}\right]=\left[\mathrm{x}_{2}^{(\lambda)}\right]$.
Proof of Proposition 3.2.3. By Lemma 3.5.3 and 3.5.4, for any $\lambda_{1}, \lambda_{2}, \lambda \in \mathbb{R}$ and $\mathbf{x} \in A$,

$$
\left(\lambda_{1}+\lambda_{2}\right) \mathbf{x}=\lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{x},\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|
$$

For any $\mathbf{x}=[\mathrm{x}]$ and $\mathbf{y}=[\mathrm{y}]$ in A, where $\mathrm{x}, \mathrm{y} \in A_{\Gamma}$,

$$
\mathbf{x}+\mathbf{y}=[x \star y]=[\bar{x} \star x \star y \star x]=[y \star x]=\mathbf{y}+\mathbf{x} .
$$

The other axioms of a normed space can be confirmed easily.

Chapter 4

Norm controlled cohomology of transformation groups

4.1 Norm controlled cohomology

4.1.1 Definition

We introduce the notion of norm controlled cohomology which is a generalization of bounded cohomology. Note that a similar generalization of bounded cohomology is studied for finitely generated groups and its word length, which is called the polynomially bounded cohomology (see [45] for example).

Definition 4.1.1. For a cochain $\bar{c} \in \bar{C}^{n}(G)$ and a function $\mu: G^{n} \rightarrow[0, \infty)$, we say that \bar{c} is Lipschitz with respect to μ if there exist constants $C, D \geq 0$ such that for every $g_{1}, \ldots, g_{n} \in G$

$$
\left|\bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| \leq C \cdot \mu\left(g_{1}, \ldots, g_{n}\right)+D .
$$

Definition 4.1.2. A normed group (G, ν) is a pair of a group G and a norm ν on G. For a normed group (G, ν) and non-negative integers n and d, we define $\bar{C}_{(d)}^{n}(G, \nu)$ as follows.

- If $n>d$, we define $\bar{C}_{(d)}^{n}(G, \nu)$ as the set of Lipschitz cochains $\bar{c} \in \bar{C}^{n}(G)$
with respect to $\nu_{(n, d)}$, where $\nu_{(n, d)}: G^{n} \rightarrow[0, \infty)$ is defined by

$$
\begin{aligned}
& \nu_{(n, d)}\left(g_{1}, \ldots, g_{n}\right)=\min _{\substack{I \subset\{1, \ldots, n\} \\
\# I=n-d}}\left\{\sum_{i \in I} \nu\left(g_{i}\right)\right\} \\
= & \min _{1 \leq i_{i}<\cdots<i_{d} \leq n}\left\{\nu\left(g_{1}\right)+\cdots+\widehat{\nu\left(g_{i_{1}}\right)}+\cdots+\widehat{\nu\left(g_{i_{d}}\right)}+\cdots+\nu\left(g_{n}\right)\right\} .
\end{aligned}
$$

- If $d \geq n$, we define $\bar{C}_{(d)}^{n}(G, \nu)=\bar{C}_{b}^{n}(G)$.

Note that $\bar{c} \in \bar{C}_{(0)}^{n}(G, \nu)$ implies

$$
\left|\bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| \leq C \cdot\left\{\nu\left(g_{1}\right)+\cdots+\nu\left(g_{n}\right)\right\}+D
$$

and $\bar{c} \in \bar{C}_{(n-1)}^{n}(G, \nu)$ implies

$$
\left|\bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| \leq C \cdot \min \left\{\nu\left(g_{1}\right), \ldots, \nu\left(g_{n}\right)\right\}+D
$$

Lemma 4.1.3. For any integer $d \geq 0$, $\left(\bar{C}_{(d)}^{n}(G, \nu), \bar{\delta}\right)$ is a subcomplex of $\left(\bar{C}^{n}(G), \bar{\delta}\right)$.

Proof. It is sufficient to prove that $\bar{\delta}\left(\bar{C}_{(d)}^{n-1}(G, \nu)\right) \subset \bar{C}_{(d)}^{n}(G, \nu)$ for the case $n-1>d$.

Let g_{1}, \ldots, g_{n} be elements in G. It is easy to see that

$$
\begin{aligned}
\nu_{(n-1, d)}\left(g_{2}, \ldots, g_{n}\right) & \leq \nu_{(n, d)}\left(g_{1} \ldots, g_{n}\right), \\
\nu_{(n-1, d)}\left(g_{1}, \ldots, g_{n-1}\right) & \leq \nu_{(n, d)}\left(g_{1}, \ldots, g_{n}\right) .
\end{aligned}
$$

Since $\nu\left(g_{i} g_{i+1}\right) \leq \nu\left(g_{i}\right)+\nu\left(g_{i+1}\right)$,

$$
\nu_{(n-1, d)}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right) \leq \nu_{(n, d)}\left(g_{1}, \ldots, g_{i}, g_{i+1}, \ldots, g_{n}\right)
$$

for $i=1,2, \ldots, n-1$.
Therefore, for $\bar{c} \in \bar{C}_{(d)}^{n-1}(G, \nu)$,

$$
\begin{aligned}
& \left|\bar{\delta} \bar{c}\left(g_{1}, \ldots, g_{n}\right)\right| \\
\leq & \left|\bar{c}\left(g_{2}, \ldots, g_{n}\right)\right|+\sum_{i=1}^{n-1}\left|\bar{c}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{n}\right)\right|+\left|\bar{c}\left(g_{1}, \ldots, g_{n-1}\right)\right| \\
\leq & (n+1)\left\{C \cdot \nu_{(n, d)}\left(g_{1}, \ldots, g_{n}\right)+D\right\} .
\end{aligned}
$$

Definition 4.1.4. For a normed group (G, ν) and an integer $d \geq 0$, we define the norm controlled cohomology $H_{(\underline{d})}^{\bullet}(G, \nu)$ of level d to be the cohomology of the cochain complex $\left(\bar{C}_{(d)}^{n}(G, \nu), \bar{\delta}\right)$.

Note that the complexes $\left\{\bar{C}_{(d)}^{n}(G, \nu)\right\}_{n, d}$ can be seen as a filtered complex, i.e., $\bar{C}_{(d)}^{n}(G, \nu) \subset \bar{C}_{\left(d^{\prime}\right)}^{n}(G, \nu)$ if $d \geq d^{\prime}$.

By the correspondence (2.2.2), we can define the homogeneous norm controlled cochain complex $C_{(d)}^{n}(G, \nu)$ as the set of cochain $c \in C^{n}(G)$ which satisfies the following: there exist constants $C, D \geq 0$ such that

$$
\left|c\left(g_{1}, \ldots, g_{n}\right)\right| \leq C \cdot \min _{\substack{I \subset\{1, \ldots, n\} \\ \# I=n-d}}\left\{\sum_{i \in I} \nu\left(g_{i-1}^{-1} g_{i}\right)\right\}+D
$$

We can also define the inhomogeneous (resp. homogeneous) alternating subcomplex $\bar{C}_{(d) \text {,alt }}^{\bullet}(G, \nu)\left(\right.$ resp. $\left.C_{(d) \text {,alt }}^{\bullet}(G, \nu)\right)$ and they also define the cohomology $H_{(d)}^{\bullet}(G, \nu)$.
Example 4.1.5. Let \mathbb{Z}^{n} be the free abelian group of rank n. For a positive integer $l \leq n$, define a (pseudo) norm ν_{l} on \mathbb{Z}^{n} by

$$
\nu_{l}\left(m_{1}, \ldots, m_{l}, \ldots, m_{n}\right)=\left|m_{1}\right|+\cdots+\left|m_{l}\right|
$$

for $m_{1}, \ldots, m_{n} \in \mathbb{Z}$. Now we compute $H_{\nu_{l}}^{1}\left(\mathbb{Z}^{n}\right)$. Note that $H_{\nu}^{1}(G)=H_{(0)}^{1}(G, \nu)=$ $\operatorname{Ker}\left(\bar{\delta}: \bar{C}_{(d)}^{1} \rightarrow \bar{C}_{(d)}^{2}\right)$ is the set of Lipschitz homomorphisms with respect to ν.

We define a homomorphism $\phi_{i}: \mathbb{Z}^{n} \rightarrow \mathbb{R}$ by $\phi_{i}\left(m_{1}, \ldots, m_{l}, \ldots, m_{n}\right)=m_{i}$. $\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{R}\right) \cong \mathbb{R}^{n}$ is generated by $\phi_{1}, \ldots, \phi_{n}$. It is easy to see that ϕ_{i} is Lipschitz with respect to ν_{l} for $i \leq l$ and not for $i>l$. Thus, $H_{\nu_{l}}^{1}\left(\mathbb{Z}^{n}\right)$ is generated by $\phi_{1}, \ldots, \phi_{l}$ and isomorphic to \mathbb{R}^{l}.

Norm controlled cohomology provides a framework for relative quasimorphisms (Figure 4.1). Let (G, ν) be a normed group. A relative quasimorphism with respect to ν is a real-valued function ϕ on G such that there exist constants $C, D \geq 0$ with

$$
|\phi(g h)-\phi(g)-\phi(h)| \leq C \cdot \min \{\nu(g), \nu(h)\}+D
$$

for all $g, h \in G$. Relative quasimorphisms appear in the context of symplectic topology (see [20] for example). Let $\widehat{Q}(G, \nu)$ denote the space of relative quasimorphisms on (G, ν). An exact sequence of complexes

$$
0 \rightarrow C_{(1)}^{\bullet}(G, \nu) \rightarrow C^{\bullet}(G) \rightarrow C^{\bullet}(\Gamma) / C_{(1)}^{\bullet}(G, \nu) \rightarrow 0
$$

Figure 4.1: Relationship between norm controlled cohomology and other notions
induces the exact sequence

$$
0 \rightarrow H^{1}(G) \rightarrow \widehat{Q}(G, \nu) / C_{b}^{1}(G) \rightarrow H_{(1)}^{2}(G, \nu) \rightarrow H^{2}(G)
$$

since $H_{(1)}^{1}(G, \nu)=H_{b}^{1}(G)=0$. Hence, $E H_{(1)}^{2}(G)=\operatorname{Ker}\left(H_{(1)}^{2}(G, \nu) \rightarrow\right.$ $\left.H^{2}(G)\right)$ is isomorphic to $\widehat{Q}(G, \nu) /\left(C_{b}^{1}(G)+H^{1}(G)\right)$.
Example 4.1.6. For the following cases, $E H_{b}^{2}(G)$ is trivial but $E H_{(1)}^{2}(G, \nu)$ is non-trivial for a certain norm ν.

- G is the identity component of the group of symplectomorphisms $\operatorname{Symp}_{0}^{c}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ of the standard symplectic space $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ with compact support [36].
- G is the infinite braid group B_{∞} [40].
- G is the Hamiltonian diffeomorphism group $\operatorname{Ham}\left(T^{*} \Sigma_{g} \times \mathbb{R}^{2 n}\right)$ of $T^{*} \Sigma_{g} \times$ $\mathbb{R}^{2 n}$, where Σ_{g} is a closed surface of genus $g>1[7]$.

4.1.2 Functoriality

We show that our cohomology is a functor for a certain category.
Definition 4.1.7. Let $\left(G, \nu_{G}\right)$ and $\left(H, \nu_{H}\right)$ be normed groups. A homomorphism $\phi: G \rightarrow H$ is said to be Lipschitz if there exist $C, D \geq 0$ such that for all $g \in G$,

$$
\nu_{H}(\phi(g)) \leq C \cdot \nu_{G}(g)+D .
$$

Definition 4.1.8. We define the category NGrp of normed groups as follows.

- The objects $O b$ (NGrp) are normed groups.
- The morphisms Mor (NGrp) are Lipschitz homomorphisms $\phi:\left(G, \nu_{G}\right) \rightarrow$ $\left(H, \nu_{H}\right)$ between normed groups $\left(G, \nu_{G}\right)$ and $\left(H, \nu_{H}\right)$.
The composition of morphisms is the composition of group homomorphisms, and hence the associativity holds. For every $(G, \nu) \in O b(\mathbf{N G r p})$, there exists the identity $\operatorname{id}_{G}:(G, \nu) \rightarrow(G, \nu)$ in $\operatorname{Mor}(\mathbf{N G r p})$. Hence NGrp is a category.

Let $H_{(d)}^{n}$ denote the correspondence from a norm group (G, ν) to $H_{(d)}^{n}(G, \nu)$.
Proposition 4.1.9. The correspondence $H_{(d)}^{n}$ is a contravariant functor from the category of normed groups NGrp to the category of real vector spaces Vect $_{\mathbb{R}}$.

Proof. Let $\phi:\left(G, \nu_{G}\right) \rightarrow\left(H, \nu_{H}\right)$ be a Lipschitz homomorphism. It induces the linear map $\phi^{*}: \bar{C}_{(d)}^{n}\left(H, \nu_{H}\right) \rightarrow \bar{C}_{(d)}^{n}\left(G, \nu_{G}\right)$ by

$$
\phi^{*} \bar{c}\left(g_{1}, \ldots, g_{n}\right)=\bar{c}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{n}\right)\right)
$$

since $\nu_{H(n, d)}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{n}\right)\right) \leq C \cdot \nu_{G(n, d)}\left(g_{1}, \ldots, g_{n}\right)+D$, where C and D are the Lipschitz constants of ϕ.

Let $\bar{B}_{(d)}^{n}(G)$ denote $\operatorname{Im}\left(\bar{\delta}: \bar{C}_{(d)}^{n-1}\left(G, \nu_{G}\right) \rightarrow \bar{C}_{(d)}^{n}\left(G, \nu_{G}\right)\right)$ and $\bar{Z}_{(d)}^{n}(G)$ denote $\operatorname{Ker}\left(\bar{\delta}: \bar{C}_{(d)}^{n}\left(G, \nu_{G}\right) \rightarrow \bar{C}_{(d)}^{n+1}\left(G, \nu_{G}\right)\right)$. Note that $H_{(d)}^{n}\left(G, \nu_{G}\right)=\bar{Z}_{(d)}^{n}(G) / \bar{B}_{(d)}^{n}(G)$.

We have to show that $\phi^{*}\left(\bar{Z}_{(d)}^{n}(H)\right) \subset \bar{Z}_{(d)}^{n}(G)$ and $\phi^{*}\left(\bar{B}_{(d)}^{n}(H)\right) \subset \bar{B}_{(d)}^{n}(G)$. The former follows immediately. The latter is proved as follows. For $\bar{c} \in$ $\bar{B}_{(d)}^{n}(H)$, there exists $\bar{c}^{\prime} \in \bar{C}_{(d)}^{n-1}\left(H, \nu_{H}\right)$ such that $\bar{\delta} \bar{c}^{\prime}=\bar{c}$. For $g_{1}, \ldots, g_{n} \in G$,

$$
\begin{aligned}
& \phi^{*} \bar{c}\left(g_{1}, \ldots, g_{n}\right) \\
= & \bar{c}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{n}\right)\right) \\
= & \bar{\delta} \bar{c}^{\prime}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{n}\right)\right) \\
= & \bar{c}^{\prime}\left(\phi\left(g_{2}\right), \ldots, \phi\left(g_{n}\right)\right)+\sum_{i=1}^{n-1} \bar{c}^{\prime}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{i}\right) \phi\left(g_{i+1}\right), \ldots, \phi\left(g_{n}\right)\right) \\
& \quad+(-1)^{n} \bar{c}^{\prime}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{n-1}\right)\right) \\
= & \bar{c}^{\prime}\left(\phi\left(g_{2}\right), \ldots, \phi\left(g_{n}\right)\right)+\sum_{i=1}^{n-1} \bar{c}^{\prime}\left(\phi\left(g_{1}\right), \ldots, \phi\left(g_{i} g_{i+1}\right), \ldots, \phi\left(g_{n}\right)\right) \\
= & \bar{\delta}\left(\phi^{*} \bar{c}^{\prime}\right)\left(g_{1}, \ldots, g_{n}\right) .
\end{aligned}
$$

Therefore, ϕ induces the linear map $\phi^{*}: H_{(d)}^{n}\left(H, \nu_{H}\right) \rightarrow H_{(d)}^{n}\left(G, \nu_{G}\right)$.
If two norms on the same group are bi-Lipschitz, then they defines the same norm controlled cohomology.

Corollary 4.1.10. Let G be a group with (pseudo) norms ν_{1} and ν_{2}. If both $\mathrm{id}_{G}:\left(G, \nu_{1}\right) \rightarrow\left(G, \nu_{2}\right)$ and $\mathrm{id}_{G}:\left(G, \nu_{2}\right) \rightarrow\left(G, \nu_{1}\right)$ are Lipschitz, then $\mathrm{id}_{G}^{*}: H_{(d)}^{n}\left(G, \nu_{2}\right) \rightarrow H_{(d)}^{n}\left(G, \nu_{1}\right)$ is an isomorphism.

Proof. Let ϕ denote $\mathrm{id}_{G}:\left(G, \nu_{1}\right) \rightarrow\left(G, \nu_{2}\right)$ and ψ denote $\operatorname{id}_{G}:\left(G, \nu_{2}\right) \rightarrow$ $\left(G, \nu_{1}\right)$. Note that $\psi \circ \phi$ is the identity morphism $\operatorname{id}_{\left(G, \nu_{1}\right)}$ for $\left(G, \nu_{1}\right) \in$ $O b(\mathbf{N G r p})$. Thus, $\phi^{*} \circ \psi^{*}: H_{(d)}^{n}\left(G, \nu_{1}\right) \rightarrow H_{(d)}^{n}\left(G, \nu_{1}\right)$ is the identity. Similarly, $\psi^{*} \circ \phi^{*}: H_{(d)}^{n}\left(G, \nu_{2}\right) \rightarrow H_{(d)}^{n}\left(G, \nu_{2}\right)$ is also the identity. Therefore, $\mathrm{id}_{G}^{*}=\phi^{*}: H_{(d)}^{n}\left(G, \nu_{2}\right) \rightarrow H_{(d)}^{n}\left(G, \nu_{1}\right)$ is an isomorphism.

4.2 Norm controlled cohomology of transformation groups

4.2.1 Brandenbursky-Marcinkowski's construction

We briefly review the construction of Brandenbursky and Marcinkowski [9]. Let M be a complete Riemannian manifold with a finite volume and μ the measure on M associate to the Riemannian structure. Fix a base point $z \in M$. Let $\operatorname{Homeo}_{0}^{c}(M, \mu)$ denotes the group of homeomorphisms of M with compact support that are isotopic to the identity and preserve the measure μ. Recall that π_{M} denotes the quotient group $\pi_{1}(M, z) / Z\left(\pi_{1}(M, z)\right)$, where $Z(G)$ denotes the center of a group G.

For a subgroup \mathcal{T}_{M} of $\operatorname{Homeo}_{0}^{c}(M, \mu)$, they constructed a map $\Gamma_{b}^{\bullet}: H_{b}^{\bullet}\left(\pi_{M}\right) \rightarrow$ $H_{b}^{\bullet}\left(\mathcal{T}_{M}\right)$ as follows. Let C denote the cut locus of z. For $x \in M$ and $g \in \mathcal{T}_{M}$ such that $x \notin C$ and $g(x) \notin C$, we define $\gamma(g, x) \in \pi_{1}(M, z)$ by the concatenation of the geodesic between z and x, the path defined by $\left\{g^{t}(x)\right\}_{0 \leq t \leq 1}$, where $\left\{g^{t}\right\}_{0 \leq t \leq 1}$ is an isotopy of g with $g^{0}=\mathrm{id}$ and $g^{1}=g$, and the geodesic between $g(x)$ and z. Then $\gamma(g, x)$ is defined uniquely up to center for any choice of isotopies. Thus it defines an element of π_{M}.

Since the measure $\mu(C)$ of the cut locus C is zero and the map $\gamma(f, \cdot): M \rightarrow$ π_{M} has essentially finite image for $f \in \mathcal{T}_{M}$, we can define the map $\Phi_{B M}: C^{n}\left(\pi_{M}\right) \rightarrow$
$C^{n}\left(\mathcal{T}_{M}\right)$ by

$$
\Phi_{B M}(c)\left(g_{0}, \ldots, g_{n}\right)=\int_{M} c\left(\gamma\left(g_{0}, x\right), \ldots, \gamma\left(g_{n}, x\right)\right) d \mu(x)
$$

for $c \in C^{n}\left(\pi_{M}\right)$ and $g_{0}, \ldots, g_{n} \in \mathcal{T}_{M}$. The map $\Gamma^{n}: H^{n}\left(\pi_{M}\right) \rightarrow H^{n}\left(\mathcal{T}_{M}\right)$ is defined as the induced map from $\Phi_{B M}$. If $c \in C_{b}^{n}\left(\pi_{M}\right)$ is a bounded cochain, then $\Phi_{B M}(c)$ is also a bounded cochain since

$$
\left|\Phi_{B M}(c)\left(g_{0}, \ldots, g_{n}\right)\right| \leq\|c\| \cdot \operatorname{vol}(M)<+\infty
$$

for any $g_{0}, \cdots, g_{n} \in \pi_{M}$. Hence $\Phi_{B M}$ induces the map $\Gamma_{b}^{n}: H_{b}^{n}\left(\pi_{M}\right) \rightarrow$ $H_{b}^{n}\left(\mathcal{T}_{M}\right)$. We also obtain the map of the exact part $E \Gamma_{b}^{n}: E H_{b}^{n}\left(\pi_{M}\right) \rightarrow$ $E H_{b}^{n}\left(\mathcal{T}_{M}\right)$.

4.2.2 Infinite volume case

We consider the above construction for the case that M has infinite volume. In this case, the map $\Phi_{B M}$ is well-defined on $C_{b, \text { alt }}\left(\pi_{M}\right)$ since we consider compactly supported homeomorphisms. On the other hand, the image $\Phi_{B M}(c)$ of a bounded cochain $c \in C_{b, \text { alt }}\left(\pi_{M}\right)$ might not be a bounded cochain. We prove that, however, the image is a norm controlled cochain with respect to a fragmentation norm (Proposition 4.2.5).

Let $H_{\nu}^{n}(G)$ denote the norm controlled cohomology of level zero $H_{(0)}^{n}(G, \nu)$. In this section, we prove the following theorem.

Theorem 4.2.1. Let \mathcal{T}_{M} be $\operatorname{Homeo}_{0}^{c}(M, \mu), \operatorname{Diff}_{0}^{c}\left(M\right.$, vol) or $\operatorname{Symp}_{0}^{c}(M, \omega)$. Assume that there exists an open subset U of M with finite volume such that ν_{U} is well-defined on \mathcal{T}_{M}. If either
(1) π_{M} surjects onto F_{2} or
(2) π_{M} is an acylindrically hyperbolic group,
then

$$
\operatorname{dim} E H_{\nu_{U}}^{n}\left(\mathcal{T}_{M}\right) \geq \operatorname{dim} \overline{E H}_{b}^{n}\left(F_{2}\right)
$$

We give the definition of fragmentation norm.

Definition 4.2.2. Let U be an open subset of M. Let \mathcal{S}_{U} denote the set of elements $h \in \mathcal{T}_{M}$ that satisfy the following condition: there exists an isotopy $\left\{h^{t}\right\}_{0 \leq t \leq 1}$ of h such that $\operatorname{supp}\left(h^{t}\right) \subset U$ for every $t \in[0,1]$. We define the fragmentation norm ν_{U} with respect to U on \mathcal{T}_{M} by

$$
\nu_{U}(g)=\min \left\{k \left\lvert\, \begin{array}{c}
\exists f_{i} \in \mathcal{T}_{M}, \exists h_{i} \in \mathcal{S}_{U},(i=1, \ldots, k) \\
g=\left(f_{1}^{-1} h_{1} f_{1}\right) \cdots\left(f_{k}^{-1} h_{k} f_{k}\right)
\end{array}\right.\right\}
$$

for $g \in \mathcal{T}_{M}$. If no such decomposition of g exists, we define $\nu_{U}(g)=+\infty$. We call that ν_{U} is well-defined on \mathcal{T}_{M} if $\nu_{U}(g)<+\infty$ for all $g \in \mathcal{T}_{M}$.
Example 4.2.3. Let M be a manifold, U a non-empty open subset of M, and $i: U \rightarrow M$ the inclusion.

- Let \mathcal{T}_{M} be $\operatorname{Homeo}_{0}^{c}(M, \mu)$ and $\widetilde{\mathcal{T}}_{M}$ its universal covering. In [27], Fathi defined the homomorphism $\tilde{\theta}: \widetilde{\mathcal{T}}_{M} \rightarrow H_{1}(M ; \mathbb{R})$ and $\tilde{\theta}$ induces the mass flow homomorphism $\theta: \mathcal{T}_{M} \rightarrow H_{1}(M ; \mathbb{R}) / \Gamma$, where $\Gamma=\tilde{\theta}\left(\pi_{1}\left(\mathcal{T}_{M}\right)\right)$. Since $\operatorname{Ker}(\theta)$ has the fragmentation property [27], ν_{U} is well-defined on $\operatorname{Ker}(\theta)$.
- Let \mathcal{T}_{M} be $\operatorname{Diff}_{0}^{c}(M, \operatorname{vol})$ and Flux: $\mathcal{T}_{M} \rightarrow H_{c}^{n-1}(M ; \mathbb{R}) / \Gamma$ denotes the volume flux homomorphism, where Γ is the volume flux group. Since Ker (Flux) has the fragmentation property (an unpublished result of W. Thurston, see Banyaga's book [2]), ν_{U} is well-defined on Ker(Flux).
- Let \mathcal{T}_{M} be $\operatorname{Symp}_{0}^{c}(M, \omega)$ and let $\operatorname{Flux}_{\omega}: \mathcal{T}_{M} \rightarrow H_{c}^{1}(M ; \mathbb{R}) / \Gamma_{\omega}$ denote the symplectic flux homomorphism, where Γ_{ω} is the symplectic flux group. Since $\operatorname{Ker}\left(\right.$ Flux $\left._{\omega}\right)$ has the fragmentation property [1], ν_{U} is well-defined on $\operatorname{Ker}\left(\right.$ Flux $\left._{\omega}\right)$.

Note that H_{c}^{\bullet} denotes the (de Rham) cohomology with compact support and H_{c}^{\bullet} defines a covariant functor.
Example 4.2.4. Let M, U, and $i: U \rightarrow M$ be as above.

- Let $\mathcal{T}_{M}=\operatorname{Homeo}_{0}^{c}(M, \mu)$. If $i_{*}: H_{1}(U ; \mathbb{R}) \rightarrow H_{1}(M ; \mathbb{R})$ is surjective, we can see that ν_{U} is well-defined on \mathcal{T}_{M} as follows. For $g \in \mathcal{T}_{M}$, there exists $h \in \operatorname{Homeo}_{0}^{c}(U, \mu)$ such that $\theta(g)=\theta(h)$. Thus $g=\left(g h^{-1}\right) h$ is written as a product of the conjugation of the elements of \mathcal{S}_{U} since $h \in \mathcal{S}_{U}$ and $g h^{-1} \in \operatorname{Ker}(\theta)$.
- Let $\mathcal{T}_{M}=\operatorname{Diff}{ }_{0}^{c}(M, \mathrm{vol})$. If $i^{*}: H_{c}^{n-1}(U ; \mathbb{R}) \rightarrow H_{c}^{n-1}(M ; \mathbb{R})$ is surjective, we can see that ν_{U} is well-defined on \mathcal{T}_{M} by the same argument.
- Let $\mathcal{T}_{M}=\operatorname{Symp}_{0}^{c}(M, \omega)$. If $i^{*}: H_{c}^{1}(U ; \mathbb{R}) \rightarrow H_{c}^{1}(M ; \mathbb{R})$ is surjective, we can see that ν_{U} is well-defined on \mathcal{T}_{M} by the same argument.

Now we prove that we obtain norm controlled cochains by BrandenburskyMarcinkowski's construction.

Proposition 4.2.5. For $c \in C_{b, \text { alt }}^{n}\left(\pi_{M}\right)$, there exists $C \geq 0$ such that

$$
\left|\Phi_{B M}(c)\left(g_{0}, \ldots, g_{n}\right)\right| \leq C \cdot \min _{0 \leq i<j \leq n}\left\{\nu_{U}\left(g_{i}^{-1} g_{j}\right)\right\} .
$$

for all $g_{0}, \ldots, g_{n} \in \mathcal{T}_{M}$. In particular, $\Phi_{B M}(c) \in C_{(n-1), \text { alt }}^{n}\left(\mathcal{T}_{M}, \nu_{U}\right)$.
Proof. We fix i and $j(0 \leq i<j \leq n)$. Assume that $\nu_{U}\left(g_{i}^{-1} g_{j}\right)=m$. Then we can write $g_{i}^{-1} g_{j}=\left(f_{1}^{-1} h_{1} f_{1}\right) \ldots\left(f_{m}^{-1} h_{m} f_{m}\right)$, where $h_{k} \in \mathcal{S}_{U}$ and $f_{k} \in \mathcal{T}_{M}$ for $k=1, \ldots, m$. Take an isotopy $\left\{g_{i}^{t}\right\}_{t}$ of g_{i} and isotopies $\left\{h_{1}^{t}\right\}_{t}, \ldots,\left\{h_{m}^{t}\right\}_{t}$ for h_{1}, \ldots, h_{m} such that $\operatorname{supp}\left(h_{k}^{t}\right) \subset U$ for every $t \in[0,1]$ and $k=1, \ldots, m$. We define $g_{j}^{t}=g_{i}^{t}\left(f_{1}^{-1} h_{1}^{t} f_{1}\right) \cdots\left(f_{m}^{-1} h_{m}^{t} f_{m}\right)$. Then $\left\{g_{j}^{t}\right\}_{t}$ is an isotopy of g_{j}. Set

$$
U_{i j}=\bigcup_{0 \leq t \leq 1} \operatorname{supp}\left(\left(g_{i}^{t}\right)^{-1} g_{j}^{t}\right)=\bigcup_{0 \leq t \leq 1} \operatorname{supp}\left(\left(f_{1}^{-1} h_{1}^{t} f_{1}\right) \cdots\left(f_{m}^{-1} h_{m}^{t} f_{m}\right)\right)
$$

Note that $U_{i j} \subset f_{1}(U) \cup \cdots \cup f_{m}(U)$. If $x \notin U_{i j}, g_{i}^{t}(x)=g_{j}^{t}(x)$ for every $t \in[0,1]$. Thus $\gamma\left(g_{i}, x\right)=\gamma\left(g_{j}, x\right) \in \pi_{M}$. Since c is alternating, $c\left(\gamma\left(g_{0}, x\right), \ldots, \gamma\left(g_{n}, x\right)\right)=0$. Therefore,

$$
\left|\Phi_{B M}(c)\left(g_{0}, \ldots, g_{n}\right)\right| \leq \operatorname{vol}\left(U_{i j}\right) \cdot\|c\| \leq m \cdot \operatorname{vol}(U) \cdot\|c\| .
$$

Since we can arbitrarily take i and j, the inequality holds for $C=\operatorname{vol}(U)$. $\|c\|$.

Remark 4.2.6. For $d \leq n-1$, the map $\Phi_{B M}: C_{b, \text { alt }}^{n}\left(\pi_{M}\right) \rightarrow C_{(d) \text {,alt }}^{n}\left(\mathcal{T}_{M}, \nu_{U}\right)$ is well-defined. However, if $d=n-1, \Phi_{B M}$ does not induce the map $H_{b}^{n}\left(\pi_{M}\right) \rightarrow$ $H_{(n-1)}^{n}\left(\mathcal{T}_{M}, \nu_{U}\right)$ because the image of $\bar{B}_{(n-1)}^{n}\left(\pi_{M}\right)$ might not be in $\bar{B}_{(n-1)}^{n}\left(\mathcal{T}_{M}\right)$. On the other hand, if $d<n-1, \Phi_{B M}$ induces $H_{b}^{n}\left(\pi_{M}\right) \rightarrow H_{(d)}^{n}\left(\mathcal{T}_{M}, \nu_{U}\right)$. Especially, if $d=0$, then $\Phi_{B M}: C_{b, \text { alt }}^{n}\left(\pi_{M}\right) \rightarrow C_{\nu_{U}, \text { alt }}^{n}\left(\mathcal{T}_{M}\right)$ induces $H_{b}^{n}\left(\pi_{M}\right) \rightarrow$ $H_{\nu_{U}}^{n}\left(\mathcal{T}_{M}\right)$ for any $n \geq 2$.

We prove the following key lemma which corresponds to [9, Lemma 3.3].
Lemma 4.2.7. Let $U \subset M$ be an open subset such that ν_{U} is well-defined on \mathcal{T}_{M}. Assume that there exists an injection $i: F_{2} \rightarrow \pi_{M}$. Let a and b be generators of F_{2}. Let α and β be two loops in M representing $i(a)$ and $i(b)$. Suppose that α and β are contained in U. Then there exists a family of Lipschitz homomorphisms $\rho_{\epsilon}:\left(F_{2}, \nu_{0}\right) \rightarrow\left(\mathcal{T}_{M}, \nu_{U}\right)$ for $\epsilon \in(0,1)$ such that there exists $\Lambda>0$, for every $c \in E H_{\nu_{U}}^{n}\left(\pi_{M}\right)$,

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(E \Gamma_{\nu_{U}}(c)\right)-\Lambda i^{*}(c)\right\|=0
$$

Here, $\nu_{0}: F_{2} \rightarrow[0, \infty)$ is the trivial norm defined by

$$
\nu_{0}(w)= \begin{cases}0 & \left(w=1_{F_{2}}\right) \\ 1 & \left(w \neq 1_{F_{2}}\right)\end{cases}
$$

The maps i^{*} and ρ_{ϵ}^{*} represent the induced maps $i^{*}: E H_{b}^{n}\left(\pi_{M}\right) \rightarrow E H_{b}^{n}\left(F_{2}\right)$ and $\rho_{\epsilon}^{*}: E H_{\nu_{U}}^{n}\left(\pi_{M}\right) \rightarrow E H_{\nu_{0}}^{n}\left(F_{2}\right)=E H_{b}^{n}\left(F_{2}\right)$.

Proof. We can prove in the same way as [9, Lemma 3.3]. Let $N(\alpha)$ denote a tubular neighborhood of α in U and take a diffeomorphism $n_{\alpha}: N(\alpha) \rightarrow$ $S^{1} \times B^{n-1}(1)$. Here $B^{n-1}(r)$ denotes the ($n-1$)-ball in \mathbb{R}^{n} with radius r. Let $A_{\epsilon}(\alpha)$ denote $n_{\alpha}^{-1}\left(S^{1} \times B^{n-1}(1-\epsilon)\right)$. We define an element $\rho_{\epsilon}(a) \in \mathcal{T}_{M}$ which "rotates" every point in A_{ϵ} one lap in the direction of S^{1} and fixes outside of $N(\alpha)$ (see [9] for more details). Similarly, we define $N(\beta) \subset U, B_{\epsilon}$ and $\rho_{\epsilon}(b) \in$ \mathcal{T}_{M}. Thus we obtain the representation $\rho_{\epsilon}: F_{2} \rightarrow \mathcal{T}_{M}$. Since $\operatorname{supp}\left(\rho_{\epsilon}(w)\right)$ is contained in U for any $w \in F_{2}$, the map $\rho_{\epsilon}:\left(F_{2}, \nu_{0}\right) \rightarrow\left(\mathcal{T}_{M}, \nu_{U}\right)$ is a Lipschitz homomorphism. By the functoriality of the correspondence $H_{(0)}^{n}$ (Proposition 4.1.9), the $\operatorname{map} \rho_{\epsilon}^{*}: E H_{\nu_{U}}^{n}\left(\mathcal{T}_{M}\right) \rightarrow E H_{b}^{n}\left(\pi_{M}\right)$ is induced.

For $w_{0}, \ldots, w_{n} \in F_{2}$, we have

$$
\rho_{\epsilon}^{*}\left(E \Gamma_{\nu_{U}}(c)\right)\left(w_{0}, \ldots, w_{n}\right)=\int_{M} c\left(\gamma\left(\rho_{\epsilon}\left(w_{0}\right), x\right), \ldots, \gamma\left(\rho_{\epsilon}\left(w_{n}\right), x\right)\right) d \mu(x)
$$

Let $B_{\epsilon}(\alpha)$ and $B_{\epsilon}(\beta)$ denote $N(\alpha)-A_{\epsilon}(\alpha)$ and $N(\beta)-A_{\epsilon}(\beta)$ respectively. We calculate this integral by decomposing M into 5 parts; $A_{\epsilon}:=A_{\epsilon}(\alpha) \cap A_{\epsilon}(\beta)$, $A_{\epsilon}^{a}:=A(\alpha)-N(\beta), A_{\epsilon}^{b}:=A_{\epsilon}(\beta)-N(\alpha), B_{\epsilon}:=B_{\epsilon}(\alpha) \cup B_{\epsilon}(\beta)$, and their exterior $M-(N(\alpha) \cup N(\beta))$.

The exterior part is 0 and it turns out that A_{ϵ}^{a} and A_{ϵ}^{b} part are also 0 . The A_{ϵ} part is calculated to be $\mu\left(A_{\epsilon}\right) i^{*}(c)$ and the B_{ϵ} is bounded by
$\mu\left(B_{\epsilon}\right)\|c\|$. Hence the claim follows from $\mu\left(A_{\epsilon}\right) \xrightarrow{\epsilon \rightarrow+0} \mu(N(\alpha) \cap N(\beta))>0$ and $\mu\left(B_{\epsilon}\right) \xrightarrow{\epsilon \rightarrow+0} 0$.

We give the proof of Theorem 4.2.1. The proof is inspired by [9].
Proof of Theorem 4.2.1. First, we prove for the case (1). Let $p: \pi_{M} \rightarrow F_{2}$ be a surjection. Assume that $\operatorname{dim}(M) \geq 3$. Then there exists an injection $i: F_{2} \rightarrow \pi_{M}$ such that $p \circ i=\operatorname{id}_{F_{2}}$. If $\operatorname{dim}(M)=2$, we can find an injection $i: F_{2} \rightarrow \pi_{M}$ and there exists a retraction $p: \pi_{M} \rightarrow F_{2}$, we use this p instead of the given p. If necessary we retake U to be containing α and β in Lemma 4.2.7.

Note that $E H_{\nu_{U}}^{n}\left(\mathcal{T}_{M}\right) \supset \operatorname{Im}\left(E \Gamma_{\nu_{U}} \circ p^{*}\right) \cong H_{b}^{n}\left(F_{2}\right) / \operatorname{Ker}\left(E \Gamma_{\nu_{U}} \circ p^{*}\right)$. For $d \in \operatorname{Ker}\left(E \Gamma_{\nu_{U}} \circ p^{*}\right)$, set $c=p^{*}(d) \in E H_{b}^{n}\left(\pi_{M}\right)$. Since $i^{*} \circ p^{*}=\mathrm{id}, i^{*}(c)=$ $i^{*} \circ p^{*}(d)=d$.

By Lemma 4.2.7, there exist $\Lambda>0$ and a family of representation $\left\{\rho_{\epsilon}\right\}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(E \Gamma_{\nu_{U}}(c)\right)-\Lambda i^{*}(c)\right\|=0
$$

Since $E \Gamma_{\nu_{U}}(c)=E \Gamma_{\nu_{U}} \circ p^{*}(d)=0,\left\|i^{*}(c)\right\|=\|d\|=0$. Hence $\operatorname{Ker}\left(E \Gamma_{\nu_{U}} \circ\right.$ $\left.p^{*}\right) \subset E N^{n}\left(F_{2}\right)$. Therefore,
$\operatorname{dim}_{\mathbb{R}}\left(H_{b}^{n}\left(F_{2}\right) / \operatorname{Ker}\left(E \Gamma_{\nu_{U}} \circ i^{*}\right)\right) \geq \operatorname{dim}_{\mathbb{R}}\left(E H_{b}^{n}\left(F_{2}\right) / E N^{n}\left(F_{2}\right)\right)=\operatorname{dim}_{\mathbb{R}} \overline{E H_{b}^{n}}\left(F_{2}\right)$
and we complete the proof for (1).
Next, we prove for case (2). If $\operatorname{dim}(M)=2$, we can use the argument in the proof of (1). Thus we can assume that $\operatorname{dim}(M) \geq 3$. Let $j: F_{2} \times K \rightarrow \pi_{M}$ be a hyperbolic embedding. We define $s: F_{2} \rightarrow F_{2} \times K$ by $r(x)=(x$, id $)$ for $x \in F_{2}$ and $i: F_{2} \rightarrow \pi_{M}$ by $i=j \circ s$. Since we assumed that $\operatorname{dim}(M) \geq 3$, i is injective. If necessary we retake U to be containing α and β in Lemma 4.2.7.

The induced map $j^{*}: E H_{b}^{n}\left(\pi_{M}\right) \rightarrow E H_{b}^{n}\left(F_{2} \times K\right)$ is surjective [28]. Since $s^{*}: E H_{b}^{n}\left(F_{2} \times K\right) \rightarrow E H_{b}^{n}\left(F_{2}\right)$ induces an isomorphism, $i^{*}=j^{*} \circ s^{*}$ is also surjective.

Note that $E H_{\nu_{U}}^{n}\left(\mathcal{T}_{M}\right) \supset \operatorname{Im}\left(E \Gamma_{\nu_{U}}\right) \cong H_{b}^{n}\left(\pi_{M}\right) / \operatorname{Ker}\left(E \Gamma_{\nu_{U}}\right)$. Let $c \in$ $E H_{b}^{n}\left(\pi_{M}\right)$. If $E \Gamma_{\nu_{U}}(c)=0$, then $\left\|i^{*}(c)\right\|=0$ by Lemma 4.2.7. Thus $\operatorname{Ker}\left(E \Gamma_{\nu_{U}}\right) \subset \operatorname{Ker}\left(q \circ i^{*}\right)$, where $q: E H_{b}^{n}\left(F_{2}\right) \rightarrow \overline{E H}_{b}^{n}\left(F_{2}\right)$ is the quotient map. Therefore,

$$
\operatorname{dim}_{\mathbb{R}}\left(H_{b}^{n}\left(\pi_{M}\right) / \operatorname{Ker}\left(E \Gamma_{\nu_{U}}\right)\right) \geq \operatorname{dim}_{\mathbb{R}}\left(E H_{b}^{n}\left(F_{2}\right) / \operatorname{Ker}\left(q \circ i^{*}\right)\right)
$$

Since $q \circ i^{*}$ is surjective, $E H_{b}^{n}\left(F_{2}\right) / \operatorname{Ker}\left(q \circ i^{*}\right) \cong \overline{E H}_{b}^{n}\left(F_{2}\right)$ and we complete the proof.

Corollary 4.2.8. Suppose M and U satisfy the assumption in Theorem 4.2.1. Then $E H_{(d)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$ is uncountably infinite-dimensional for $d=0,1,2$.

Proof. Since the dimension of $\overline{E H}_{b}^{3}\left(F_{2}\right)$ is uncountably infinite [54], by Theorem 4.2.1, $E H_{\nu_{U}}^{3}\left(\mathcal{T}_{M}\right)=E H_{(0)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$ is also uncountably infinite-dimensional. For $d=1,2$, There is the natural map $E H_{(d)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right) \rightarrow E H_{(0)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$ induced by the inclusion $C_{(d)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right) \rightarrow C_{(0)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$. Since $\Phi_{B M}(c) \in$ $C_{(d)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$ for $c \in C_{b}^{3}\left(\pi_{M}\right)$ by Proposition 4.2.5, this map surjects onto $\operatorname{Im}\left(E \Gamma_{\nu_{U}}\right) \subset E H_{\nu_{U}}^{3}\left(\mathcal{T}_{M}\right)$. We can see that the dimension of $\operatorname{Im}\left(E \Gamma_{\nu_{U}}\right)$ is uncountably infinite in the proof of Theorem 4.2.1, thus $E H_{(d)}^{3}\left(\mathcal{T}_{M}, \nu_{U}\right)$ is also uncountably infinite-dimensional.

Chapter 5

Bounded cohomology of area-preserving diffeomorphism groups

5.1 Gambaudo-Ghys' construction

In this section, we define a generalized Gambaudo-Ghys' construction. See [9, 30, 35] for more information about Gambaudo-Ghys' construction.

Let M be a manifold. Let $X_{m}(M)$ denote the configuration space of m points in M, i.e.,

$$
X_{n}(M)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in M^{m} \mid x_{i} \neq x_{j} \text { if } i \neq j\right\} .
$$

Note that $X_{m}(M)$ is a codimension 0 submanifold of M^{m}. The fundamental group of $X_{m}(M)$ is called the pure braid group on m strands on M and denoted by $P_{m}(M)$. Let \mathfrak{S}_{m} denote the symmetric group of m symbols. We consider the action of \mathfrak{S}_{m} on $X_{m}(M)$ by the permutation. The fundamental group of $X_{m}(M) / \mathfrak{S}_{m}$ is called the braid group on m strands on M and denoted by $B_{m}(M)$. There exists a short exact sequence

$$
1 \rightarrow P_{m}(M) \rightarrow B_{m}(M) \rightarrow \mathfrak{S}_{m} \rightarrow 1
$$

If $\operatorname{dim} M \geq 3$, it is known that the inclusion $X_{m}(M) \rightarrow M^{m}$ induces an isomorphism $P_{m}(M) \rightarrow \pi_{1}\left(M^{m}\right) \cong \pi_{1}(M) \times \cdots \times \pi_{1}(M)$ [5, Theorem 1.5]. Thus we are especially interested in the case of $\operatorname{dim} M=2$. Note that $B_{m}(\mathbb{D})$ is the ordinary Artin braid group B_{m} and $P_{m}(\mathbb{D})$ is the pure braid group P_{m}.

Set $\mathcal{G}=\operatorname{Diff}\left(\mathbb{D}, \partial \mathbb{D}\right.$, area) and fix a base point $\bar{z}=\left(z_{1}, \ldots, z_{n}\right) \in X_{n}(\mathbb{D})$. For simplicity, we assume that \mathbb{D} is equipped with the standard area form (i.e., geodesics are straight lines). For every $g \in \mathcal{G}$ and almost every $\bar{x}=$ $\left(x_{1}, \ldots, x_{m}\right) \in X_{m}(\mathbb{D})$, we define a pure braid $\gamma(g, \bar{x}) \in P_{n}$ as follows. We take an isotopy $\left\{g^{t}\right\}_{0 \leq t \leq 1}$ of g such that $g^{0}=\operatorname{id}_{\mathbb{D}}$ and $g^{1}=g$. We define a loop $l\left(\left\{g^{t}\right\}, \bar{x}\right):[0,1] \rightarrow X_{m}(\mathbb{D})$ in $X_{m}(\mathbb{D})$ as follows.

$$
l\left(\left\{g^{t}\right\}, \bar{x}\right)(t)= \begin{cases}\left\{(1-3 t) z_{i}+3 t x_{i}\right\}_{i=1, \ldots, m} & (0 \leq t \leq 1 / 3) \\ \left\{g^{3 t-1}\left(x_{i}\right)\right\}_{i=1, \ldots, m} & (1 / 3 \leq t \leq 2 / 3) \\ \left\{(3-3 t) g\left(x_{i}\right)+(3 t-2) z_{i}\right\}_{i=1, \ldots, m} & (2 / 3 \leq t \leq 1)\end{cases}
$$

We define $\gamma(g, \bar{x})$ as the element of $\pi_{1}\left(X_{m}(\mathbb{D}), \bar{z}\right)$ represented by the loop $l\left(\left\{g^{t}\right\}, \bar{x}\right)$. The above definition of $\gamma(g, \bar{x})$ does not depend on the choice of an isotopy $\left\{g^{t}\right\}_{0 \leq t \leq 1}$ since \mathcal{G} is contractible. If there exist i and $j(1 \leq i<$ $j \leq m$) such that

$$
(1-3 s) z_{i}+3 s x_{i}=(1-3 s) z_{j}+3 s x_{j}
$$

for some $s \in[0,1 / 3]$ or

$$
(3-3 s) g\left(x_{i}\right)+(3 s-2) z_{i}=(3-3 s) g\left(x_{j}\right)+(3 s-2) z_{j}
$$

for some $s \in[2 / 3,1]$, then $\gamma(g, \bar{x})$ is not defined. Although, for any $g \in \mathcal{G}$, such points $\bar{x} \in X_{m}(\mathbb{D})$ consist a measure zero subset in $X_{m}(\mathbb{D})$. Here, $X_{m}(\mathbb{D})$ is equipped with the volume form induced by \mathbb{D}^{m}.

For $c \in C_{b}^{n}\left(P_{m}\right)$, we define a map $\widehat{\Gamma}_{b}(c): \mathcal{G}^{n+1} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\widehat{\Gamma}_{b}(c)\left(g_{0}, \ldots, g_{n}\right)=\int_{\bar{x} \in X_{m}(\mathbb{D})} c\left(\gamma\left(g_{0}, \bar{x}\right), \ldots, \gamma\left(g_{n}, \bar{x}\right)\right) d \bar{x} \tag{5.1.1}
\end{equation*}
$$

for $g_{0}, \ldots, g_{n} \in \mathcal{G}$. Since c is bounded and the map $\bar{x} \mapsto c\left(\gamma\left(g_{0}, \bar{x}\right), \ldots, \gamma\left(g_{n}, \bar{x}\right)\right)$ is defined on a full measure subset in $X_{m}(\mathbb{D})$, a map $\widehat{\Gamma}_{b}(c)$ is well-defined.

Lemma 5.1.1. For every $c \in C_{b}^{n}\left(P_{m}\right), \widehat{\Gamma}_{b}(c)$ is a bounded homogeneous cochain. Moreover, the map $\widehat{\Gamma}_{b}: C_{b}^{n}\left(P_{m}\right) \rightarrow C_{b}^{n}(\mathcal{G})$ is a cochain map.

Proof. Since

$$
\left|\widehat{\Gamma}_{b}(c)\left(g_{0}, \ldots, g_{n}\right)\right| \leq \operatorname{vol}\left(X_{m}(\mathbb{D})\right) \cdot\|c\|_{\infty}
$$

for every $g_{0}, \ldots, g_{n} \in \mathcal{G}, \widehat{\Gamma}_{b}(c)$ is bounded. Since $\gamma(g h, \bar{x})=\gamma(g, h \cdot \bar{x}) \gamma(h, \bar{x})$ for $g, h \in \mathcal{G}$ (where \mathcal{G} acts on $X_{m}(\mathbb{D})$ by the diagonal action),

$$
\begin{aligned}
\widehat{\Gamma}_{b}(c)\left(g_{0} h, \ldots, g_{n} h\right) & =\int_{\bar{x} \in X_{m}(\mathbb{D})} c\left(\gamma\left(g_{0} h, \bar{x}\right), \ldots, \gamma\left(g_{n} h, \bar{x}\right)\right) d \bar{x} \\
& =\int_{\bar{x} \in X_{m}(\mathbb{D})} c\left(\gamma\left(g_{0}, h \cdot \bar{x}\right) \gamma(h, \bar{x}), \ldots, \gamma\left(g_{n}, h \cdot \bar{x}\right) \gamma(h, \bar{x})\right) d \bar{x} \\
& =\int_{\bar{x} \in X_{m}(\mathbb{D})} c\left(\gamma\left(g_{0}, h \cdot \bar{x}\right), \ldots, \gamma\left(g_{n}, h \cdot \bar{x}\right)\right) d \bar{x} .
\end{aligned}
$$

Since the action by h preserves the volume form, $\widehat{\Gamma}(c)\left(g_{0} h, \ldots, g_{n} h\right)=\widehat{\Gamma}(c)\left(g_{0}, \ldots, g_{n}\right)$ and hence $\widehat{\Gamma}(c)$ is homogeneous. By definition, the map $\widehat{\Gamma}$ and the coboundary map δ are commutative. Thus $\widehat{\Gamma}$ is a cochain map.

By Lemma 5.1.1, the map $\widehat{\Gamma}_{b}: C_{b}^{n}\left(P_{m}\right) \rightarrow C_{b}^{n}(\mathcal{G})$ induces the homomorphism

$$
\Gamma_{b}: H_{b}^{n}\left(P_{m}\right) \rightarrow H_{b}^{n}(\mathcal{G})
$$

We also define a map $\widehat{\Gamma}: C^{n}\left(P_{m}\right) \rightarrow C^{n}(\mathcal{G})$ on the ordinary cochain complex by the equation (5.1.1). In this case, the well-definedness of the map $\widehat{\Gamma}(c): \mathcal{G}^{n+1} \rightarrow \mathbb{R}$ is not trivial since $c \in C^{n}\left(P_{m}\right)$ is not necessarily bounded.

Lemma 5.1.2. For $c \in C^{n}\left(P_{m}\right)$, the map $\widehat{\Gamma}(c): \mathcal{G}^{n+1} \rightarrow \mathbb{R}$ is well-defined.
Proof. Fix $g \in \mathcal{G}$ and an isotopy $\left\{g^{t}\right\}_{0 \leq t \leq 1}$ of g. Let $g_{\Delta} \in \operatorname{Diff}\left(\mathbb{D}^{m}\right)$ denote the diffeomorphism on \mathbb{D}^{m} induced by the diagonal action of g on \mathbb{D}^{m}. The length $L(l)$ of the loop $l=l\left(\left\{g^{t}\right\}, \bar{x}\right)$ is represented as

$$
L(l)=d(\bar{x}, \bar{z})+d(g \cdot \bar{x}, \bar{z})+\int_{0}^{1}\left\|\left(\mathfrak{X}^{t}\right)_{g_{\Delta}^{t}(\bar{x})}\right\| d t
$$

where d is the metric on \mathbb{D}^{m} and \mathfrak{X}^{t} denotes the time-depended vector field on \mathbb{D}^{m} generated by the isotopy $\left\{g_{\Delta}^{t}\right\}_{0 \leq t \leq 1}$ of g_{Δ}. The continuous map $\mathbb{D}^{m} \times$ $[0,1] \rightarrow \mathbb{R}$ defined by $(\bar{x}, t) \mapsto\left\|\left(\mathfrak{X}^{t}\right)_{\bar{x}}\right\|$ has a maximum value M since $\mathbb{D}^{m} \times$ $[0,1]$ is compact. Thus we obtain

$$
\begin{equation*}
L(l) \leq 2 \operatorname{diam}\left(\mathbb{D}^{m}\right)+M \tag{5.1.2}
\end{equation*}
$$

and hence $L(l)$ has a uniform upper bound for a fixed isotopy $\left\{g^{t}\right\}$ (i.e., the function $\bar{x} \mapsto L\left(l\left(\left\{g^{t}\right\}, \bar{x}\right)\right)$ is bounded $)$.

Set $X=X_{m}(\mathbb{D})$ and $R=\operatorname{diam}(X)\left(=\operatorname{diam}\left(\mathbb{D}^{m}\right)\right)$. Let \widetilde{X} be the universal cover of X. The group $P_{m} \cong \pi_{1}(X, \bar{z})$ acts on \widetilde{X} by the deck transformation. Since the covering map $\widetilde{X} \rightarrow X$ is an immersion, \widetilde{X} inherits a Riemannian metric \tilde{d}. The metric space $(\widetilde{X}, \tilde{d})$ is a $(1, \epsilon)$-quasi-geodesic space for any $\epsilon>0$. Let $\tilde{z} \in \widetilde{X}$ be a base point and set

$$
B=\{\tilde{x} \in \tilde{X} \mid \tilde{d}(\tilde{x}, \tilde{z}) \leq R\}
$$

By definition, B has a finite diameter and $\widetilde{X}=\bigcup_{\gamma \in P_{m}} \gamma \cdot B$. Since the action of P_{m} on \widetilde{X} is discrete, the set $\left\{\gamma \in P_{m} \mid \gamma \cdot B^{\prime} \cap B^{\prime}\right\}$ is finite, where B^{\prime} is the 2ϵ-neighborhood of B. Hence, by Lemma 2.1 .2 , the space $(\widetilde{X}, \tilde{d})$ and the group P_{m} with the word length (with respect to a finite generating set S) are quasi-isometric. Thus there exist constants $K \geq 1$ and $C \geq 0$ such that

$$
\begin{equation*}
\|\gamma(g, \bar{x})\|_{S} \leq K \cdot L\left(l\left(\left\{g^{t}\right\}, \bar{x}\right)\right)+C \tag{5.1.3}
\end{equation*}
$$

where $\|\cdot\|_{S}$ denotes the word length with respect to S. By (5.1.2) and (5.1.3), the function $\bar{x} \mapsto\|\gamma(g, \bar{x})\|_{S}$ is bounded. This means that there are a finite number of possible patterns of elements that $\gamma(g, \bar{x})$ can take, i.e., the map $\gamma(g, \cdot): X_{m}(\mathbb{D}) \rightarrow P_{m}$ has a finite image. Therefore, the $\operatorname{map} c\left(\ldots, \gamma\left(g_{i}, \cdot\right), \ldots\right): X_{m}(\mathbb{D}) \rightarrow \mathbb{R}$ is integrable and the map $\widehat{\Gamma}(c)$ is welldefined.

The map $\widehat{\Gamma}: C^{n}\left(P_{m}\right) \rightarrow C^{n}(\mathcal{G})$ induce the map $\Gamma: H^{n}\left(P_{m}\right) \rightarrow H^{n}(\mathcal{G})$. The maps $E \Gamma_{b}: E H_{b}^{n}\left(P_{m}\right) \rightarrow E H_{b}^{n}(\mathcal{G})$ and $\overline{E \Gamma}_{b}: \overline{E H}_{b}^{n}\left(P_{m}\right) \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ are also induced.
Remark 5.1.3. Let \mathcal{H}_{M} denote the identity component of the group of measurepreserving homeomorphisms $\operatorname{Homeo}_{0}(M, \mu)$ on a complete Riemannian manifold M with the measure μ induced by the Riemannian metric. In [9], Brandenbursky and Marcinkowski also considered maps $\Gamma_{b}: H_{b}^{n}\left(\pi_{1} M\right) \rightarrow$ $H_{b}^{n}\left(\mathcal{H}_{M}\right)$ and $\Gamma: H^{n}\left(\pi_{1} M\right) \rightarrow H^{n}\left(\mathcal{H}_{M}\right)$ and proved that $\overline{E H_{b}^{3}}\left(\mathcal{H}_{M}\right)$ is infinitedimensional if $\pi_{1}(M)$ is complicated enough. In our setting, we cannot prove the well-definedness of $\Gamma: H^{n}\left(P_{m}\right) \rightarrow H^{n}\left(\mathcal{H}_{\mathbb{D}}\right)$ as Lemma 5.1.2. However, we can define the map $\Gamma_{b}: H_{b}^{n}\left(P_{m}\right) \rightarrow H_{b}^{n}\left(\mathcal{H}_{\mathbb{D}}\right)$ and prove that $\bar{H}_{b}^{3}\left(\mathcal{H}_{\mathbb{D}}\right)$ is infinite-dimensional, in the same way as in Corollary 5.2.3.

5.2 Generalized Ishida's theorem

In this section, we prove the following theorem which is a generalization of the result of Ishida [35].

Theorem 5.2.1. The composition map $\overline{E \Gamma}_{b} \circ i^{*}: \overline{E H}_{b}^{n}\left(B_{3}\right) \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ is injective. Equivalently, the restriction map $\overline{E \Gamma}_{b}: \overline{E H}_{b}^{n}\left(P_{3}\right)^{B_{3}} \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ is injective.

Here $\overline{E H}_{b}^{n}(G)$ denotes the reduced exact bounded cohomology of G and $\overline{E H}_{b}^{n}\left(P_{3}\right)^{B_{3}}$ denotes the subspace of $\overline{E H}_{b}^{n}\left(P_{3}\right)$ which is invariant under the conjugation of B_{3}. To prove this theorem, we use the following key lemma.

Lemma 5.2.2. There exist a constant $\Lambda>0$ and a family of homomorphisms $\left\{\rho_{\epsilon}: P_{3} \rightarrow \mathcal{G}\right\}_{0<\epsilon<1}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b} \circ i^{*}(u)\right)-\Lambda \cdot i^{*}(u)\right\|=0
$$

for any $u \in \overline{E H}_{b}^{n}\left(B_{3}\right)$.
Before we prove Lemma 5.2.2, we give the proof of Theorem 5.2.1 from Lemma 5.2.2.

Proof of Theorem 5.2.1. By Lemma 2.2.1, the inclusion $i: P_{3} \rightarrow B_{3}$ induces an isomorphism $i^{*}: \overline{E H}_{b}^{n}\left(B_{3}\right) \rightarrow \overline{E H}_{b}^{n}\left(P_{3}\right)^{B_{3}}$. In particular, $i^{*}: \overline{E H}_{b}^{n}\left(B_{3}\right) \rightarrow$ $\overline{E H}_{b}^{n}\left(P_{3}\right)$ is injective.

Let $u \in \overline{E H}_{b}^{n}\left(B_{3}\right)$ be a non-trivial class. It means that $\|u\|>0$ and $\left\|i^{*}(u)\right\|>0$ since i^{*} is injective. By Lemma 5.2.2, $\left\|\overline{E \Gamma}_{b} \circ i^{*}(u)\right\|>0$ and it means that $\overline{E \Gamma}_{b} \circ i^{*}$ is injective. This argument also implies that the restriction map $\Gamma_{b}: \overline{E H}_{b}^{n}\left(P_{3}\right)^{B_{3}} \rightarrow \overline{E H}_{b}^{n}(\mathcal{G})$ is also injective.

As a corollary of Theorem 5.2.1, we obtain the following result.
Corollary 5.2.3. The dimension of $\overline{E H}_{b}^{3}(\mathcal{G})$ is uncountably infinite.
Proof. By Theorem 2.2.3, the dimension of $\overline{E H}_{b}^{3}\left(B_{3} / Z\left(B_{3}\right)\right)$ is uncountably infinite since $B_{3} / Z\left(B_{3}\right) \cong P S L(2, \mathbb{Z})$ is non-elementary hyperbolic. The quotient map $B_{3} \rightarrow B_{3} / Z\left(B_{3}\right)$ induces isomorphism $H_{b}^{n}\left(B_{3}\right) \rightarrow H_{b}^{n}\left(B_{3} / Z\left(B_{3}\right)\right)$ by Theorem 2.2.2. Since $H^{3}\left(B_{3}\right)=0$ and $H^{3}(P S L(2, \mathbb{Z}))=0, E H_{b}^{3}\left(B_{3}\right)$ and $E H_{b}^{3}\left(B_{3} / Z\left(B_{3}\right)\right)$ are also isomorphic. Therefore, by Theorem 5.2.1, $\overline{E H}_{b}^{3}(\operatorname{Diff}(\mathbb{D}$, area $))$ is also uncountably infinite-dimensional.

Figure 5.1: Open subsets in \mathbb{D}

Now we prove the key lemma. The strategy of the proof comes from [9] and the method is inspired by [35].

Proof of Lemma 5.2.2. Recall that $\bar{z}=\left(z_{1}, z_{2}, z_{3}\right)$ denotes the base point of $X_{3}(\mathbb{D})$. For simplicity, we assume that area $(\mathbb{D})=1$. For each ϵ, we take open subsets $U_{i}^{\epsilon}(i=1,2,3)$ in \mathbb{D} such that

- $z_{i} \in U_{i}^{\epsilon}$,
- $U_{i}^{\epsilon} \cap U_{j}^{\epsilon}=\emptyset$ if $i \neq j$, and
- $\operatorname{area}\left(U^{\epsilon}\right)=1-\epsilon$, where $U^{\epsilon}=U_{1}^{\epsilon} \cup U_{2}^{\epsilon} \cup U_{3}^{\epsilon}$.

Moreover, we take open subsets W_{12}^{ϵ} and V_{12}^{ϵ} of \mathbb{D} which are diffeomorphic to a disk such that

- $U_{1}^{\epsilon} \cup U_{2}^{\epsilon} \subset W_{12}^{\epsilon} \subset V_{12}^{\epsilon}$ and
- $V_{12}^{\epsilon} \cap U_{3}^{\epsilon}=\emptyset$.

We also take W_{23}^{ϵ} and V_{23}^{ϵ} similarly (see Figure 5.1). Finally, we take open disks W_{123}^{ϵ} and V_{123}^{ϵ} to be $V_{12}^{\epsilon} \cup V_{23}^{\epsilon} \subset W_{123}^{\epsilon} \subset V_{123}^{\epsilon}$.

We define $\rho_{\epsilon}: P_{3} \rightarrow \mathcal{G}$ as follows. Set $a_{1}=\sigma_{1}{ }^{2}, a_{2}=\sigma_{2}{ }^{2}$ and $a_{3}=\Delta^{2}$. Then P_{3} has a presentation

$$
P_{3}=\left\langle a_{1}, a_{2}, a_{3} \mid a_{1} a_{3}=a_{3} a_{1}, a_{2} a_{2}=a_{3} a_{2}\right\rangle \cong F_{2} \times \mathbb{Z}
$$

For open disks V and W such that $W \subset V$, let $g_{V, W} \in \mathcal{G}$ denote a diffeomorphism which rotates W once such that $\operatorname{supp}\left(g_{V, W}\right) \subset V$. We define $\rho_{\epsilon}: P_{3} \rightarrow \mathcal{G}$ by $\rho_{\epsilon}\left(a_{1}\right)=g_{V_{12}^{\epsilon}, W_{12}^{\epsilon}}, \rho_{\epsilon}\left(a_{2}\right)=g_{V_{23}^{\epsilon}, W_{23}^{\epsilon}}$ and $\rho_{\epsilon}\left(a_{3}\right)=g_{V_{123}^{\epsilon}, W_{123}^{\epsilon}}$. Note that $\left.\rho_{\epsilon}\left(a_{3}\right)\right|_{W_{123}^{\epsilon}}=\operatorname{id}_{W_{123}}$. Since $\operatorname{supp}\left(\rho_{\epsilon}\left(a_{1}\right)\right) \subset V_{12}^{\epsilon} \subset W_{123}^{\epsilon}, \rho_{\epsilon}\left(a_{1}\right)$ and $\rho_{\epsilon}\left(a_{3}\right)$ are commutative. Similarly, $\rho_{\epsilon}\left(a_{2}\right)$ and $\rho_{\epsilon}\left(a_{3}\right)$ are also commutative. Thus ρ_{ϵ} is well-defined.

For $u=[c] \in \overline{E H}_{b}^{n}\left(B_{3}\right), \rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b} \circ i^{*}(u)\right) \in \overline{E H}_{b}^{n}\left(P_{3}\right)$ is the cohomology class of a cochain defined by

$$
\left(\alpha_{0}, \ldots, \alpha_{n}\right) \mapsto \int_{\bar{x} \in X_{3}(\mathbb{D})} c\left(\gamma\left(\rho_{\epsilon}\left(\alpha_{0}\right), \bar{x}\right), \ldots, \gamma\left(\rho_{\epsilon}\left(\alpha_{n}\right), \bar{x}\right)\right) d \bar{x}
$$

for $\alpha_{0}, \ldots, \alpha_{n} \in P_{3}$.
We calculate $\gamma\left(\rho_{\epsilon}(\alpha), \bar{x}\right) \in P_{3}$ for $\alpha \in P_{3}$ and $\bar{x}=\left(x_{1}, x_{2}, x_{3}\right) \in X_{3}(\mathbb{D})$. To describe it, we prepare several notions. We call that $x \in X_{3}(\mathbb{D})$ is an ϵ-good point if all of x_{1}, x_{2} and x_{3} are in U^{ϵ}. Otherwise, we call that \bar{x} is an ϵ-bad point. We say that an ϵ-good point \bar{x} is of type (p, q, r) if U_{1}^{ϵ} has p points, U_{2}^{ϵ} has q points and U_{3}^{ϵ} has r points out of x_{1}, x_{2} and x_{3}. For example, if $x_{1}, x_{2} \in U_{1}^{\epsilon}$ and $x_{3} \in U_{3}^{\epsilon}$, then \bar{x} is of type $(2,0,1)$.

We define homomorphisms $s_{i}: P_{3} \rightarrow \mathbb{Z}(i=1,2,3)$ by $s_{i}\left(a_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq 3$, where $\delta_{i j}$ is the Kronecker delta. For each type (p, q, r), we define a homomorphism $\phi_{p q r}: P_{3} \rightarrow P_{3}$ by

$$
\phi_{p q r}(\alpha)= \begin{cases}\alpha & \text { type }(1,1,1), \tag{5.2.1}\\ \left(\Delta^{2}\right)^{s_{1}(\alpha)+s_{3}(\alpha)} & \text { type }(3,0,0) \text { or }(2,1,0), \\ \left(\Delta^{2}\right)^{s_{2}(\alpha)+s_{3}(\alpha)} & \text { type }(0,0,3) \text { or }(0,1,2), \\ \left(\Delta^{2}\right)^{s_{1}(\alpha)+s_{2}(\alpha)+s_{3}(\alpha)} & \text { type }(0,3,0), \\ \left(\sigma^{2}\right)^{s_{1}(\alpha)}\left(\Delta^{2}\right)^{s_{3}(\alpha)} & \text { type }(2,0,1), \\ \left(\sigma^{2}\right)^{s_{2}(\alpha)}\left(\Delta^{2}\right)^{s_{3}(\alpha)} & \text { type }(1,0,2), \\ \left(\sigma^{2}\right)^{s_{1}(\alpha)}\left(\Delta^{2}\right)^{s_{2}(\alpha)+s_{3}(\alpha)} & \text { type }(0,2,1), \\ \left(\sigma^{2}\right)^{s_{2}(\alpha)}\left(\Delta^{2}\right)^{s_{1}(\alpha)+s_{3}(\alpha)} & \text { type }(1,2,0),\end{cases}
$$

where σ denotes σ_{1} or σ_{2} and Δ^{2} denotes the full twist.
Our main observation is the following. For any ϵ-good point $\bar{x} \in X_{m}(\mathbb{D})$ of type (p, q, r), there exists a braid $\beta(\bar{x}) \in B_{3}$ such that

$$
\gamma\left(\rho_{\epsilon}(\alpha, \bar{x})\right)=\beta(\bar{x}) \phi_{p q r}(\alpha) \beta(\bar{x})^{-1}
$$

Figure 5.2: A braid $\gamma\left(\rho_{\epsilon}\left(a_{1} a_{2}\right), \bar{x}\right)$ when \bar{x} is of type $(0,2,1)$
for every $\alpha \in P_{3}$. We can see this as follows. Let \bar{x} be of type (p, q, r). If $p+q \leq 1, \gamma\left(\rho_{\epsilon}\left(a_{1}\right), \bar{x}\right)$ is trivial. If $p+q=2, \gamma\left(\rho_{\epsilon}\left(a_{1}\right), \bar{x}\right)$ is a conjugate of σ^{2}. If $p+q=3, \gamma\left(\rho_{\epsilon}\left(a_{1}\right), \bar{x}\right)$ is a conjugate of Δ^{2}. We can apply the same argument for $\gamma\left(\rho_{\epsilon}\left(a_{2}\right), \bar{x}\right)$ by changing $p+q$ to $q+r$. For any type, $\gamma\left(\rho_{\epsilon}\left(a_{3}\right), \bar{x}\right)$ is a conjugate of Δ^{2}. By noting that Δ^{2} commutes with any braid, we obtain (5.3.1). See also Figure 5.2.

Let $X_{p q r}^{\epsilon}$ denote the set of ϵ-good points in $X_{3}(\mathbb{D})$ of type (p, q, r) and Y^{ϵ} denote the set of ϵ-bad points. We define cochains $c_{p q r}^{\epsilon}, c_{Y}^{\epsilon} \in C_{b}^{n}\left(P_{3}\right)$ by

$$
\begin{aligned}
c_{p q r}^{\epsilon}\left(\alpha_{0}, \ldots, \alpha_{n}\right) & =\int_{\bar{x} \in X_{p q r}^{\epsilon}} c\left(\gamma\left(\rho_{\epsilon}\left(\alpha_{0}\right), \bar{x}\right), \ldots, \gamma\left(\rho_{\epsilon}\left(\alpha_{n}\right), \bar{x}\right)\right) d \bar{x} \\
c_{Y}^{\epsilon}\left(\alpha_{0}, \ldots, \alpha_{n}\right) & =\int_{\bar{x} \in Y^{\epsilon}} c\left(\gamma\left(\rho_{\epsilon}\left(\alpha_{0}\right), \bar{x}\right), \ldots, \gamma\left(\rho_{\epsilon}\left(\alpha_{n}\right), \bar{x}\right)\right) d \bar{x}
\end{aligned}
$$

for $\alpha_{0}, \ldots, \alpha_{n} \in P_{3}$. Note that

$$
\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b} \circ i^{*}(u)\right)=\sum_{p, q, r}\left[c_{p q r}^{\epsilon}\right]+\left[c_{Y}^{\epsilon}\right] \in \overline{E H}_{b}^{n}\left(P_{3}\right)
$$

For $c \in C^{n}\left(B_{3}\right)$ and $\beta \in B_{3}$, let $\beta \cdot c \in C^{n}\left(B_{3}\right)$ denote the cochain defined by

$$
(\beta \cdot c)\left(\gamma_{0}, \ldots, \gamma_{n}\right)=c\left(\beta \gamma_{0} \beta^{-1}, \ldots, \beta \gamma_{n} \beta^{-1}\right)
$$

for $\gamma_{0}, \ldots, \gamma_{n} \in B_{3}$. For any type (p, q, r),

$$
\begin{aligned}
c_{p q r}^{\epsilon}\left(\alpha_{0}, \ldots, \alpha_{n}\right) & =\int_{X_{p q r}^{\epsilon}} c\left(\beta(\bar{x}) \phi_{p q r}\left(\alpha_{0}\right) \beta(\bar{x})^{-1}, \ldots, \beta(\bar{x}) \phi_{p q r}\left(\alpha_{n}\right) \beta(\bar{x})^{-1}\right) d \bar{x} \\
& =\sum_{\beta \in B_{3}} \operatorname{vol}\left(\left\{\bar{x} \in X_{3}(\mathbb{D}) \mid \beta(\bar{x})=\beta\right\}\right)(\beta \cdot c)\left(\phi_{p q r}\left(\alpha_{0}\right), \ldots, \phi_{p q r}\left(\alpha_{n}\right)\right)
\end{aligned}
$$

for $\alpha_{0}, \ldots, \alpha_{n} \in P_{3}$. Since $[\beta \cdot c]=[c]=u$ for any $\beta \in B_{3}$,

$$
\begin{equation*}
\left[c_{p q r}^{\epsilon}\right]=\operatorname{vol}\left(X_{p q r}^{\epsilon}\right) \cdot \phi_{p q r}^{*}\left(i^{*}(u)\right) . \tag{5.2.2}
\end{equation*}
$$

If $(p, q, r)=(1,1,1)$, since $\phi_{111}=\mathrm{id}$ and by (5.2.2),

$$
\left[c_{111}^{\epsilon}\right]=\operatorname{vol}\left(X_{111}^{\epsilon}\right) \cdot i^{*}(u)=3!\cdot \operatorname{area}\left(U_{1}^{\epsilon}\right) \operatorname{area}\left(U_{2}^{\epsilon}\right) \operatorname{area}\left(U_{3}^{\epsilon}\right) \cdot i^{*}(u)
$$

If $(p, q, r) \neq(1,1,1)$, by (5.3.1), the homomorphism $\phi_{p q r}$ factors through the abelian subgroup $\left\langle\sigma^{2}, \Delta^{2}\right\rangle \cong \mathbb{Z}^{2}$ of P_{3}. Since \mathbb{Z}^{2} is amenable, $\overline{E H}_{b}^{n}\left(\mathbb{Z}^{2}\right)=$ 0 . Thus $\phi_{p q r}^{*}=0$ and hence $\left[c_{p q r}^{\epsilon}\right]=0$ by (5.2.2).

By the definition of c_{Y}^{ϵ},

$$
\left|c_{Y}^{\epsilon}\left(\alpha_{0}, \ldots, \alpha_{n}\right)\right| \leq \operatorname{vol}\left(Y^{\epsilon}\right)\|c\|_{\infty}
$$

Since $\operatorname{vol}\left(Y^{\epsilon}\right)=\operatorname{vol}\left(X_{3}(\mathbb{D})\right)-\operatorname{vol}\left(U^{\epsilon} \times U^{\epsilon} \times U^{\epsilon}\right)=1-(1-\epsilon)^{3}, \lim _{\epsilon \rightarrow+0}\left\|\left[c_{Y}^{\epsilon}\right]\right\|=$ 0.

Therefore, by setting $\Lambda=\lim _{\epsilon \rightarrow+0} 3!\cdot \operatorname{area}\left(U_{1}^{\epsilon}\right) \operatorname{area}\left(U_{2}^{\epsilon}\right) \operatorname{area}\left(U_{3}^{\epsilon}\right)$,

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b} \circ i^{*}(u)\right)-\Lambda \cdot i^{*}(u)\right\|=0
$$

5.3 The case of other surfaces

In this section, we apply the argument in the previous section to the other surface cases.

Let Σ be a compact surface with an area form. For simplicity, we assume that area $(\Sigma)=1$. We set $\mathcal{G}_{\Sigma}=\operatorname{Diff}_{0}(\Sigma, \partial \Sigma$, area) and fix a base point $\bar{z} \in X_{m}(\Sigma)$. For an isotopy $\left\{g^{t}\right\}_{0 \leq t \leq 1}$ of $g \in \mathcal{G}_{\Sigma}$ and $\bar{x} \in X_{m}(\Sigma)$, we can define the loop $l\left(\left\{g^{t}\right\}, \bar{x}\right):[0,1] \rightarrow X_{m}(\Sigma)$ as in the case of the disk but we should use geodesics in Σ instead of straight lines in \mathbb{D}. Since the measure of the cut locus of \bar{z} is zero, the loop $l\left(\left\{g^{t}\right\}, \bar{x}\right)$ is defined for almost every $\bar{x} \in X_{m}(\Sigma)$. Let $\gamma\left(\left\{g^{t}\right\}, \bar{x}\right)$ denote an element of $\pi_{1}\left(X_{m}(\Sigma), \bar{z}\right) \cong P_{m}(\Sigma)$ represented by the loop $l\left(\left\{g^{t}\right\}, \bar{x}\right)$. In general, $\gamma\left(\left\{g^{t}\right\}, \bar{x}\right)$ depends on the choice of an isotopy $\left\{g^{t}\right\}$. However, $\gamma\left(\left\{g^{t}\right\}, \bar{x}\right)$ is determined up to center since the image of the map $e_{\bar{z}}^{*}: \pi_{1}\left(\mathcal{G}_{\Sigma}, \mathrm{id}_{\Sigma}\right) \rightarrow \pi_{1}\left(X_{m}(\Sigma), \bar{z}\right)$ induced by the evaluation map $e_{\bar{z}}: \mathcal{G} \rightarrow X_{m}(\Sigma), g \mapsto g \cdot \bar{z}$ is contained in the center $Z\left(P_{m}(\Sigma)\right)$. Thus it defines an element of $P_{m}(\Sigma)^{Z}$ and we write this element as $\gamma(g, \bar{x})$. Recall that G^{Z} denotes the central quotient $G / Z(G)$. In this way, we can define maps $\widehat{\Gamma}_{b}^{Z}: C_{b}^{n}\left(P_{m}(\Sigma)^{Z}\right) \rightarrow C_{b}^{n}\left(\mathcal{G}_{\Sigma}\right)$ and $\widehat{\Gamma}^{Z}: C^{n}\left(P_{m}(\Sigma)^{Z}\right) \rightarrow C^{n}\left(\mathcal{G}_{\Sigma}\right)$ as in the case of the disk since the arguments in Lemma 5.1.1 and 5.1.2 also go well for Σ instead of \mathbb{D}. Hence they induce the map $\overline{E \Gamma}_{b}^{Z}: \overline{E H}_{b}^{n}\left(P_{m}(\Sigma)^{Z}\right) \rightarrow \overline{E H}_{b}^{n}\left(\mathcal{G}_{\Sigma}\right)$.

In this setting, we can prove the following injectivity theorem.
Theorem 5.3.1. Let Σ be a compact oriented surface such that $\chi(\Sigma) \geq 0$. The maps $\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}: \overline{E H}_{b}^{n}\left(B_{m}(\Sigma)^{Z}\right) \rightarrow \overline{E H}_{b}^{n}\left(\mathcal{G}_{\Sigma}\right)$ is injective for $m=$ $2+\chi(\Sigma)$.

For the sphere case, Ishida [35] proved a similar result of Theorem 5.3.1 for $n=2$ not only for four strands but also for m strands ($m \geq 4$). For the torus case, Brandenbursky, Kȩdra, and Shelukhin [8] proved Theorem 5.3.1 for $n=2$. As in the case of the disk, we obtain the following.

Corollary 5.3.2. Let Σ be a compact oriented surface such that $\chi(\Sigma) \geq 0$. The dimension of $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is uncountably infinite.

By combining Corollary 5.3.2 and the result of Brandenbursky-Marcinkowski [9] (Theorem 1.1.3), we obtain the following.

Theorem 5.3.3. For any compact oriented surface Σ, the dimension of $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is uncountably infinite.

Proof. If $\chi(\Sigma) \geq 0$, by Corollary 5.3.2, $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is infinite-dimensional. If $\chi(\Sigma)<0, \pi_{1}(\Sigma)$ is a non-elementary hyperbolic group. Therefore, by Theorem 1.1.3, $\overline{E H}_{b}^{3}\left(\mathcal{G}_{\Sigma}\right)$ is infinite-dimensional.

5.3.1 For a disk

We prove the central quotient version of Lemma 5.2.2. We remark that $P_{3}^{Z}=\left\langle a_{1}, a_{2}\right\rangle \cong F_{2}$. We define $s_{i}: P_{3}^{Z} \rightarrow \mathbb{Z}(i=1,2)$ by $s_{i}\left(a_{j}\right)=\delta_{i j}$.

Lemma 5.3.4. There exist a constant $\Lambda>0$ and a family of homomorphisms $\left\{\rho_{\epsilon}: P_{3}^{Z} \rightarrow \mathcal{G}_{\mathbb{D}}\right\}_{0<\epsilon<1}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

for any $u \in \overline{E H}_{b}^{n}\left(B_{3}^{Z}\right)$.
Proof. We define open subsets $U_{\bullet}^{\epsilon}, V_{\bullet}^{\epsilon}$ and W_{\bullet}^{ϵ} as in Lemma 5.2.2. We define $\rho_{\epsilon}: P_{3}^{Z} \rightarrow \mathcal{G}_{\mathbb{D}}$ by $\rho_{\epsilon}\left(a_{1}\right)=g_{V_{12}, W_{12}}$ and $\rho_{\epsilon}\left(a_{2}\right)=g_{V_{23}, W_{23}}$. We define $s_{i}: P_{3}^{Z} \rightarrow$ $\mathbb{Z}(i=1,2)$ by $s_{1}\left(\sigma_{1}^{2}\right)=1, s_{1}\left(\sigma_{2}^{2}\right)=0, s_{2}\left(\sigma_{1}^{2}\right)=0$, and $s_{2}\left(\sigma_{1}{ }^{2}\right)=1$.

For any type (p, q, r), we define $\phi_{p q r}: P_{3}^{Z} \rightarrow P_{3}^{Z}$ by

$$
\phi_{p q r}(\alpha)= \begin{cases}\alpha & \text { type }(1,1,1) \tag{5.3.1}\\ \left(\sigma^{2}\right)^{s_{1}(\alpha)} & \text { type }(2,0,1) \text { or type }(0,2,1) \\ \left(\sigma^{2}\right)^{s_{2}(\alpha)} & \text { type }(1,0,2) \text { or type }(1,2,0) \\ e & \text { otherwise }\end{cases}
$$

for $\alpha \in P_{3}^{Z}$, where σ denotes σ_{1} or σ_{2}. The rest part of the proof the is the same with the proof of Lemma 5.2.2.

5.3.2 For a sphere

Let \mathbb{S} denote the 2 -sphere. We summarize some facts on the braid group on \mathbb{S} we use later. See $[5,22,30,44]$ for more details.

The inclusion $\mathbb{D} \rightarrow \mathbb{S}$ induces the projection $B_{m} \rightarrow B_{m}(\mathbb{S})$ and let δ_{i} denote the image of σ_{i} by this projection. It is known that the kernel of this projection is normally generated by $\sigma_{1} \sigma_{2} \cdots \sigma_{m-2} \sigma_{m-1}^{2} \sigma_{m-2} \cdots \sigma_{2} \sigma_{1}$. The natural map $X_{m-1}(\mathbb{D}) \rightarrow X_{m}(\mathbb{S})$ induces the map $P_{m-1} \rightarrow P_{m}(\mathbb{S})$ and it is
known to be surjective. The center $Z\left(P_{m}(\mathbb{S})\right)$ of $P_{m}(\mathbb{S})$ is generated by the full twist $\xi^{2}=\left(\delta_{1} \delta_{2} \cdots \delta_{m-1}\right)^{m}$ and ξ^{2} has order two.

We consider in particular the case $m=4$. Then $P_{4}(\mathbb{S}) \cong F_{2} \times \mathbb{Z} / 2 \mathbb{Z}$. In particular, $P_{4}(\mathbb{S})^{Z}$ is isomorphic to a free group of rank 2 and generated by $\delta_{1}{ }^{2}$ and $\delta_{2}{ }^{2}$. Note that full twists of three strands are also in the center, i.e., $\left(\delta_{1} \delta_{2}\right)^{3}=\left(\delta_{2} \delta_{3}\right)^{3}=\xi^{2} \in Z\left(P_{4}(\mathbb{S})\right)$.

Lemma 5.3.5. There exist a constant $\Lambda>0$ and a family of homomorphisms $\left\{\rho_{\epsilon}: P_{4}(\mathbb{S})^{Z} \rightarrow \mathcal{G}_{\mathbb{S}}\right\}_{0<\epsilon<1}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

for any $u \in \overline{E H}_{b}^{n}\left(B_{4}(\mathbb{S})^{Z}\right)$.
Proof. For each ϵ, we take open subsets $U_{i}^{\epsilon}(i=1,2,3,4)$ in \mathbb{S} so that

- $z_{i} \in U_{i}^{\epsilon}$,
- $U_{i}^{\epsilon} \cap U_{j}^{\epsilon}=\emptyset$ if $i \neq j$, and
- $\operatorname{area}\left(U^{\epsilon}\right)=1-\epsilon$, where $U^{\epsilon}=U_{1}^{\epsilon} \cup U_{2}^{\epsilon} \cup U_{3}^{\epsilon} \cup U_{4}^{\epsilon}$.

Moreover, we take open subsets W_{12}^{ϵ} and V_{12}^{ϵ} of \mathbb{S} which are diffeomorphic to a disk so that

- $U_{1}^{\epsilon} \cup U_{2}^{\epsilon} \subset W_{12}^{\epsilon} \subset V_{12}^{\epsilon}$,
- $V_{12}^{\epsilon} \cap U_{3}^{\epsilon}=\emptyset$, and
- $V_{12}^{\epsilon} \cap U_{4}^{\epsilon}=\emptyset$.

We also take W_{23}^{ϵ} and V_{23}^{ϵ} similarly (see Figure 5.3). We define $\rho_{\epsilon}: P_{4}(\mathbb{S})^{Z} \rightarrow$ \mathcal{G} as in the case of the disk for generators $\delta_{1}{ }^{2}$ and $\delta_{2}{ }^{2}$ of $P_{4}(\mathbb{S})^{Z}$. We define $s_{1}, s_{2}: P_{4}(\mathbb{S})^{Z} \rightarrow \mathbb{Z}$ by $s_{1}\left(\delta_{1}{ }^{2}\right)=1, s_{1}\left(\delta_{2}{ }^{2}\right)=0, s_{2}\left(\delta_{1}{ }^{2}\right)=0$ and $s_{2}\left(\delta_{2}{ }^{2}\right)=1$.

We calculate $\gamma\left(\rho_{\epsilon}(\alpha), \bar{x}\right) \in P_{4}(\mathbb{S})^{Z}$ for $\alpha \in P_{4}(\mathbb{S})^{Z}$ and $\bar{x} \in X_{4}(\mathbb{S})$. We call that $\bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in X_{4}(\mathbb{S})$ is an ϵ-good point if all of x_{1}, x_{2}, x_{3} and x_{4} are in U^{ϵ}. We say that an ϵ-good point \bar{x} is of type (p, q, r, s) if U_{1}^{ϵ} has p points, U_{2}^{ϵ} has q points, U_{3}^{ϵ} has r points and U_{4}^{ϵ} has s points out of x_{1}, x_{2}, x_{3}, and x_{4}.

Figure 5.3: Open subsets in \mathbb{S}
Let $X_{p q r s}^{\epsilon}$ denotes the set of ϵ-good points \bar{x} is of type (p, q, r, s). We define a cochain $c_{p q r s}^{\epsilon} \in C_{b}^{n}\left(P_{4}(\mathbb{S})^{Z}\right)$ by

$$
c_{p q r s}^{\epsilon}\left(\alpha_{0}, \ldots, \alpha_{n}\right)=\int_{X_{p q r s}^{\epsilon}} c\left(\gamma\left(\rho_{\epsilon}\left(\alpha_{0}\right), \bar{x}\right), \ldots, \gamma\left(\rho_{\epsilon}\left(\alpha_{n}\right), \bar{x}\right)\right) d \bar{x}
$$

for $\alpha_{0}, \ldots, \alpha_{n} \in P_{4}(\mathbb{S})^{Z}$. In order for $\left[c_{p q r s}^{\epsilon}\right]$ to be non-zero, by an argument similar to the proof of Lemma 5.2.2, both W_{12}^{ϵ} and W_{23}^{ϵ} must contain exactly two points since the full twist of three or four strands is in the center $Z\left(P_{4}(\mathbb{S})\right)$. Thus, if (p, q, r, s) is not $(1,1,1,1),(0,2,0,2)$ or $(2,0,2,0)$, then $\left[c_{p q r s}^{\epsilon}\right]=0$.

Let $\bar{x} \in X_{4}(\mathbb{S})$ be an ϵ-good point of type $(1,1,1,1),(0,2,0,2)$ or $(2,0,2,0)$. For $\gamma_{1}, \gamma_{2} \in P_{4}(\mathbb{S})^{Z}$ and $\beta \in B_{4}(\mathbb{S})^{Z}$, we write $\gamma_{1} \sim_{\beta} \gamma_{2}$ if $\gamma_{1}=\beta \gamma_{2} \beta^{-1}$. For $\alpha \in P_{4}(\mathbb{S})^{Z}$,

$$
\gamma\left(\rho_{\epsilon}(\alpha), \bar{x}\right) \sim_{\beta} \begin{cases}\alpha & \text { type }(1,1,1,1) \\ \left(\delta_{1}^{2}\right)^{s_{1}(\alpha)+s_{2}(\alpha)} & \text { type }(0,2,0,2) \\ \left(\delta_{1}^{2}\right)^{s_{1}(\alpha)}\left(\delta_{3}^{2}\right)^{s_{2}(\alpha)} & \text { type }(2,0,2,0)\end{cases}
$$

where $\beta=\beta(\bar{x}) \in B_{4}(\mathbb{S})^{Z}$ is a braid which depends only on \bar{x}. Hence, we can prove $\left[c_{0202}^{\epsilon}\right]=\left[c_{2020}^{\epsilon}\right]=0$ and

$$
\left[c_{1111}^{\epsilon}\right]=\operatorname{vol}\left(X_{1111}^{\epsilon}\right) \cdot\left(i^{Z}\right)^{*}(u)
$$

by an argument similar to the proof of Lemma 5.2.2. Therefore,

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

by setting

$$
\Lambda=\lim _{\epsilon \rightarrow+0} 4!\cdot \operatorname{area}\left(U_{1}^{\epsilon}\right) \operatorname{area}\left(U_{2}^{\epsilon}\right) \operatorname{area}\left(U_{3}^{\epsilon}\right) \operatorname{area}\left(U_{4}^{\epsilon}\right)
$$

5.3.3 For a torus

Let \mathbb{T} denote the 2 -torus. We only mention the case of two strands. See [8,44$]$ for more details. Recall that $\bar{z}=\left(z_{1}, z_{2}\right)$ denotes the base point of $X_{2}(\mathbb{T})$. We define a braid a_{1} so that it moves z_{1} to the meridian direction and rotates once and does not move z_{2}. We define a braid b_{1} so that it moves z_{1} to the longitude direction and rotates once and does not move z_{2}. We define a_{2} and b_{2} similarly by exchanging the role of z_{1} and z_{2}. It is known that $P_{2}(\mathbb{T}) \cong F_{2} \times \mathbb{Z}^{2}$ and $P_{2}(\mathbb{T})^{Z} \cong F_{2}$. Namely, the set $\left\{a_{1}, b_{1}\right\}$ generates $P_{2}(\mathbb{T})^{Z}$ and $\left\{a_{1} a_{2}, b_{1} b_{2}\right\}$ generates $Z\left(P_{2}(\mathbb{T})\right)$.

Lemma 5.3.6. There exist a constant $\Lambda>0$ and a family of homomorphisms $\left\{\rho_{\epsilon}: P_{2}(\mathbb{T})^{Z} \rightarrow \mathcal{G}_{\mathbb{T}}\right\}_{0<\epsilon<1}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

for any $u \in \overline{E H}_{b}^{n}\left(B_{2}(\mathbb{T})^{Z}\right)$.
Proof. For each ϵ, we take open subsets $U_{i}^{\epsilon}(i=1,2)$ in \mathbb{T} so that

- $z_{i} \in U_{i}^{\epsilon}$,
- $U_{1}^{\epsilon} \cap U_{2}^{\epsilon}=\emptyset$, and
- $\operatorname{area}\left(U^{\epsilon}\right)=1-\epsilon$, where $U^{\epsilon}=U_{1}^{\epsilon} \cup U_{2}^{\epsilon}$.

Moreover, we take open subsets W_{a}^{ϵ} and V_{b}^{ϵ} of \mathbb{T} which are diffeomorphic to an annulus so that

- $U_{1}^{\epsilon} \subset W_{a}^{\epsilon} \subset V_{a}^{\epsilon}$,
- $U_{2}^{\epsilon} \cap V_{a}^{\epsilon}=\emptyset$, and

Figure 5.4:

Figure 5.5: Open subsets in \mathbb{T}

- W_{a}^{ϵ} and V_{a}^{ϵ} contain a meridian.

We also take W_{b}^{ϵ} and V_{b}^{ϵ} similarly but to contain a longitude (see Figure 5.6 and 5.5).

We define $\rho_{\epsilon}: P_{2}(\mathbb{T})^{Z} \rightarrow \mathcal{G}_{\mathbb{T}}$ as follows. We take an isotopy $\left\{g_{a}^{t}\right\}$ which rotates W_{a}^{ϵ} once and whose support is contained in V_{a}^{ϵ}. For the generator $a_{1} \in P_{2}(\mathbb{T})^{Z}$, we define $\rho_{\epsilon}\left(a_{1}\right)=g_{a}^{1}$. We also define $\rho_{\epsilon}\left(b_{1}\right)$ similarly.

We call that $\bar{x}=\left(x_{1}, x_{2}\right) \in X_{2}(\mathbb{T})$ is an ϵ-good point if both x_{1} and x_{2} are in U^{ϵ}. We say that an ϵ-good point \bar{x} is of type (p, q) if U_{1}^{ϵ} has p points and U_{2}^{ϵ} has q points out of x_{1} and x_{2}.

Let $\bar{x} \in X_{2}(\mathbb{T})$ be an ϵ-good point of type (p, q). We take an isotopy $\left\{g_{a}^{t}\right\}$ defined above. For $\gamma_{1}, \gamma_{2} \in P_{2}(\mathbb{T})^{Z}$ and $\beta \in B_{2}(\mathbb{T})^{Z}$, we write $\gamma_{1} \sim_{\beta} \gamma_{2}$ if $\gamma_{1}=\beta \gamma_{2} \beta^{-1}$. Then $\gamma\left(\left\{g_{a}^{t}\right\}, \bar{x}\right) \in P_{2}(\mathbb{T})$ is calculated as follows.

$$
\gamma\left(\left\{g_{a}^{t}\right\}, \bar{x}\right) \sim_{\beta} \begin{cases}e & (p=0), \\ a_{1} & (p=1), \\ a_{1} a_{2} & (p=2),\end{cases}
$$

where $\beta=\beta(\bar{x}) \in B_{2}(\mathbb{T})$ is a braid which depends only on \bar{x}. Thus we can see that $\gamma\left(\rho_{\epsilon}\left(a_{1}\right), \bar{x}\right) \in P_{2}(\mathbb{T})^{Z}$ to be

$$
\gamma\left(\rho_{\epsilon}\left(a_{1}\right), \bar{x}\right) \sim_{\beta} \begin{cases}a_{1} & (p=1), \\ e & \text { (otherwise) } .\end{cases}
$$

Similarly, we can see that

$$
\gamma\left(\rho_{\epsilon}\left(b_{1}\right), \bar{x}\right) \sim_{\beta} \begin{cases}b_{1} & (q=1) \\ e & \text { (otherwise) }\end{cases}
$$

Hence, for $\alpha \in P_{2}(\mathbb{T})^{Z}, \gamma\left(\rho_{\epsilon}(\alpha), \bar{x}\right) \sim_{\beta} \alpha$ if \bar{x} is of type (1, 1). By an argument similar to the proof of Lemma 5.2.2, we can prove that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

by setting $\Lambda=\lim _{\epsilon \rightarrow+0} 2$! $\cdot \operatorname{area}\left(U_{1}^{\epsilon}\right) \operatorname{area}\left(U_{2}^{\epsilon}\right)$.

5.3.4 For an annulus

Let \mathbb{A} denote the annulus $S^{1} \times[0,1]$. The braid group $B_{m}(\mathbb{A})$ on \mathbb{A} is isomorphic to the inverse image $\pi^{-1}\left(\mathfrak{S}_{m}\right)$ of the subgroup $\mathfrak{S}_{m} \subset \mathfrak{S}_{m+1}$ of \mathfrak{S}_{m+1} by the projection $\pi: B_{m+1} \rightarrow \mathfrak{S}_{m+1}[39]$ since the "pillar" in $\mathbb{A} \times[0,1]$ can be seen as a "fixed" strand (Figure 5.3.4). Namely, the pure braid group $P_{m}(\mathbb{A})$ on \mathbb{A} is isomorphic to the ordinary pure braid group P_{m+1} thus we identity them.

Lemma 5.3.7. There exist a constant $\Lambda>0$ and a family of homomorphisms $\left\{\rho_{\epsilon}: P_{2}(\mathbb{A})^{Z} \rightarrow \mathcal{G}_{\mathbb{A}}\right\}_{0<\epsilon<1}$ such that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

for any $u \in \overline{E H}_{b}^{n}\left(B_{2}(\mathbb{A})^{Z}\right)$.
Proof. For each ϵ, we take open subsets $U_{i}^{\epsilon}(i=1,2)$ in \mathbb{A} so that

- $z_{i} \in U_{i}^{\epsilon}$,
- $U_{1}^{\epsilon} \cap U_{2}^{\epsilon}=\emptyset$ and
- area $\left(U^{\epsilon}\right)=1-\epsilon$, where $U^{\epsilon}=U_{1}^{\epsilon} \cup U_{2}^{\epsilon}$.

Moreover, we take open subsets W_{1}^{ϵ} and V_{1}^{ϵ} of \mathbb{A} which are diffeomorphic to an annulus so that

- $U_{1}^{\epsilon} \subset W_{a}^{\epsilon} \subset V_{a}^{\epsilon}$,

Figure 5.6: The 2-braid $\sigma_{1}{ }^{2}$ on \mathbb{A}

Figure 5.7: Open subsets in \mathbb{A}

- $U_{2}^{\epsilon} \cap V_{1}^{\epsilon}=\emptyset$ and
- the inclusion map $W_{1}^{\epsilon} \rightarrow \mathbb{A}$ induces an isomorphism $\pi_{1}\left(W_{1}^{\epsilon}\right) \rightarrow \pi_{1}(\mathbb{A})$.

We also take W_{2}^{ϵ} and V_{2}^{ϵ} similarly (Figure 5.7).
We define $\rho_{\epsilon}: P_{2}(\mathbb{A})^{Z} \rightarrow \mathcal{G}_{\mathbb{A}}$ as follows. Recall that $P_{2}(\mathbb{A})^{Z} \cong P_{3}^{Z}$ is freely generated by $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$. We take an isotopy $\left\{g_{1}^{t}\right\}$ which rotates W_{1}^{ϵ} once and whose support is contained in V_{1}^{ϵ}. For $\sigma_{1}{ }^{2} \in P_{2}(\mathbb{A})^{Z}$, we define $\rho_{\epsilon}\left(\sigma_{1}{ }^{2}\right)=g_{1}^{1}$. We also define $\rho_{\epsilon}\left(\sigma_{2}{ }^{2}\right)$ similarly.

We call that $\bar{x}=\left(x_{1}, x_{2}\right) \in X_{2}(\mathbb{A})$ is an ϵ-good point if both x_{1} and x_{2} are in U^{ϵ}. We say that an ϵ-good point \bar{x} is of type (p, q) if U_{1}^{ϵ} has p points and U_{2}^{ϵ} has q points out of x_{1} and x_{2}.

Let $x \in X_{2}(\mathbb{A})$ be an ϵ-good point pf type (p, q). If $(p, q) \neq(1,1)$, we can see that $\gamma\left(\rho_{\epsilon}(\alpha), \bar{x}\right)=e$ for any $\alpha \in P_{2}(\mathbb{A})^{Z}$. By an argument similar to the proof of Lemma 5.2.2, we can prove that

$$
\lim _{\epsilon \rightarrow+0}\left\|\rho_{\epsilon}^{*}\left(\overline{E \Gamma}_{b}^{Z} \circ\left(i^{Z}\right)^{*}(u)\right)-\Lambda \cdot\left(i^{Z}\right)^{*}(u)\right\|=0
$$

by setting $\Lambda=\lim _{\epsilon \rightarrow+0} 2$! $\cdot \operatorname{area}\left(U_{1}^{\epsilon}\right) \operatorname{area}\left(U_{2}^{\epsilon}\right)$.

5.3.5 Proof of the injectivity theorem

We complete the proof of Theorem 5.3.1 and Lemma 5.3.2.

Proof of Theorem 5.3.1. By Lemmas 5.3.4, 5.3.5, 5.3.6, and 5.3.7, we can prove Theorem 5.3.1 by the same argument in the proof of Theorem 5.2.1.

Proof of Corollary 5.3.2. As we saw in the proof of Corollary 5.2.3, $\overline{E H}_{b}^{3}\left(B_{3}^{Z}\right)$ is uncountably infinite-dimensional. Since $B_{2}(\mathbb{A})$ is a finite index subgroup of B_{3} and $Z\left(B_{2}(\mathbb{A})\right)=Z\left(B_{3}\right), \overline{E H}_{b}\left(B_{2}(\mathbb{A})^{Z}\right)$ is also uncountably infinitedimensional.

It is known that $B_{4}(\mathbb{S})^{Z}$ is isomorphic to the mapping class group $\operatorname{MCG}\left(\Sigma_{0,4}\right)$ of the four-punctured sphere $\Sigma_{0,4}$ (see [5]). It is also known that $\operatorname{MCG}\left(\Sigma_{0,4}\right)$ surjects onto $\operatorname{PSL}(2, \mathbb{Z})$ and its kernel is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (see [23]). Thus $\operatorname{MCG}\left(\Sigma_{0,4}\right)$ is quasi-isometric to $\operatorname{PSL}(2, \mathbb{Z})$. Since $\operatorname{PSL}(2, \mathbb{Z})$ is non-elementary hyperbolic, $\operatorname{MCG}\left(\Sigma_{0,4}\right)$ is also. Hence, by Theorem 2.2.3, $\overline{E H}_{b}^{3}\left(B_{4}(\mathbb{S})^{Z}\right) \cong$ $\overline{E H}_{b}^{3}\left(M C G\left(\Sigma_{0,4}\right)\right)$ is also uncountably infinite-dimensional.

Set $G=B_{2}(\mathbb{T})^{Z}$. Then G has a presentation

$$
G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1\right\rangle
$$

[44, Exercise 6.3]. Since the Cayley graph of G is quasi-isometric to a trivalent tree, G is a non-elementary hyperbolic group. Hence $\overline{E H}_{b}^{3}(G)$ is uncountably infinite-dimensional. Therefore, we can prove as with Corollary 5.2.3.

Bibliography

[1] Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174-227.
[2] , The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997.
[3] Christophe Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109-150.
[4] Mladen Bestvina and Koji Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002), 69-89.
[5] Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathematics Studies, No. 82.
[6] Jonathan Bowden, Sebastian Hensel, and Richard Webb, Quasimorphisms on surface diffeomorphism groups, arXiv preprint arXiv:1909.07164 (2019).
[7] Michael Brandenbursky and Jarek Kȩdra, Fragmentation norm and relative quasimorphisms, to appear in Proceedings of the American Mathematical Society.
[8] Michael Brandenbursky, Jarek Kȩdra, and Egor Shelukhin, On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus, Commun. Contemp. Math. 20 (2018), no. 2, 1750042, 27.
[9] Michael Brandenbursky and Michal Marcinkowski, Bounded cohomology of transformation groups, arXiv preprint arXiv:1902.11067 (2019).
[10] Robert Brooks, Some remarks on bounded cohomology, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 53-63.
[11] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original.
[12] Dmitri Burago, Sergei Ivanov, and Leonid Polterovich, Conjugationinvariant norms on groups of geometric origin, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 221-250.
[13] Eugenio Calabi, On the group of automorphisms of a symplectic manifold, Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), 1970, pp. 1-26.
[14] Danny Calegari, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009.
[15] Danny Calegari, Naoyuki Monden, and Masatoshi Sato, On stable commutator length in hyperelliptic mapping class groups, Pacific J. Math. 272 (2014), no. 2, 323-351.
[16] Danny Calegari and Dongping Zhuang, Stable W-length, Topology and geometry in dimension three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 145-169.
[17] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152.
[18] H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), no. 1, 169 175.
[19] Michael Entov and Leonid Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. (2003), no. 30, 1635-1676.
[20] \qquad , Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006), no. 1, 75-99.
[21] David B. A. Epstein and Koji Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997), no. 6, 1275-1289.
[22] Edward R. Fadell and Sufian Y. Husseini, Geometry and topology of configuration spaces, Springer Monographs in Mathematics, SpringerVerlag, Berlin, 2001.
[23] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.
[24] James Farre, Borel and volume classes for dense representations of discrete groups, arXiv preprint arXiv:1811.12761 (2018).
[25] , Bounded cohomology of finitely generated Kleinian groups, Geom. Funct. Anal. 28 (2018), no. 6, 1597-1640.
[26] , Relations in bounded cohomology, J. Topol. 13 (2020), no. 3, 1084-1118.
[27] A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 1, 45-93.
[28] R. Frigerio, M. B. Pozzetti, and A. Sisto, Extending higher-dimensional quasi-cocycles, J. Topol. 8 (2015), no. 4, 1123-1155.
[29] Roberto Frigerio, Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, vol. 227, American Mathematical Society, Providence, RI, 2017.
[30] Jean-Marc Gambaudo and Étienne Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591-1617.
[31] Étienne Ghys and Pierre de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988), Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990.
[32] E. A. Gorin and V. Ja. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Mat. Sb. (N.S.) 78 (120) (1969), 579-610.
[33] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263.
[34] Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982), no. 56, 5-99 (1983).
[35] Tomohiko Ishida, Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups, Proc. Amer. Math. Soc. Ser. B 1 (2014), 43-51.
[36] Morimichi Kawasaki, Relative quasimorphisms and stably unbounded norms on the group of symplectomorphisms of the Euclidean spaces, J. Symplectic Geom. 14 (2016), no. 1, 297-304.
[37] , Bavard's duality theorem on conjugation-invariant norms, Pacific J. Math. 288 (2017), no. 1, 157-170.
[38] Morimichi Kawasaki, Mitsuaki Kimura, Takahiro Matsushita, and Masato Mimura, Bavard's duality theorem for mixed commutator length, arXiv preprint arXiv:2007.02257v2 (2021).
[39] Richard P. Kent, IV and David Peifer, A geometric and algebraic description of annular braid groups, vol. 12, 2002, International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000), pp. 85-97.
[40] Mitsuaki Kimura, Conjugation-invariant norms on the commutator subgroup of the infinite braid group, J. Topol. Anal. 10 (2018), no. 2, 471476.
[41] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, third ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2017.
[42] Masato Mimura, On quasi-homomorphisms and commutators in the special linear group over a Euclidean ring, Int. Math. Res. Not. IMRN (2010), no. 18, 3519-3529.
[43] Ashot Minasyan and Denis Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015), no. 3-4, 1055-1105.
[44] Kunio Murasugi and Bohdan I. Kurpita, A study of braids, Mathematics and its Applications, vol. 484, Kluwer Academic Publishers, Dordrecht, 1999.
[45] C. Ogle, Polynomially bounded cohomology and discrete groups, J. Pure Appl. Algebra 195 (2005), no. 2, 173-209.
[46] Yong-Geun Oh and Stefan Müller, The group of Hamiltonian homeomorphisms and C^{0}-symplectic topology, J. Symplectic Geom. 5 (2007), no. 2, 167-219.
[47] D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 851-888.
[48] Henri Poincaré, Mémoire sur les courbes définies par une équation différentielle (i), J. Math. Pures Appl 7 (1881), 375-422.
[49] Leonid Polterovich and Daniel Rosen, Function theory on symplectic manifolds, CRM Monograph Series, vol. 34, American Mathematical Society, Providence, RI, 2014.
[50] Pierre Py, Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 1, 177-195.
[51] Maor Rosenberg, Py-Calabi quasi-morphisms and quasi-states on orientable surfaces of higher genus, Israel J. Math. 180 (2010), 163-188.
[52] G. P. Scott, Compact submanifolds of 3-manifolds, J. London Math. Soc. (2) 7 (1973), 246-250.
[53] A. I. Shtern, Extension of pseudocharacters from normal subgroups, Proc. Jangjeon Math. Soc. 18 (2015), no. 4, 427-433.
[54] Teruhiko Soma, Bounded cohomology and topologically tame Kleinian groups, Duke Math. J. 88 (1997), no. 2, 357-370.
[55] Takashi Tsuboi, On the uniform perfectness of diffeomorphism groups, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 505-524.
[56] , On the uniform simplicity of diffeomorphism groups, Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 43-55.
[57] John von Neumann, Zur allgemeinen theorie des maßes, Fundam. Math. 13 (1929), 73-111.
[58] Tomoyoshi Yoshida, On 3-dimensional bounded cohomology of surfaces, Homotopy theory and related topics (Kyoto, 1984), Adv. Stud. Pure Math., vol. 9, North-Holland, Amsterdam, 1987, pp. 173-176.

