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Chapter 1

Introduction

In this thesis, we propose a new statistical estimation method for stochastic differential equations
(SDEs) with jumps to obtain more stable estimation results by extending several previous studies. We
discuss both parametric and non-parametric estimation procedures.

In recent years, high-frequency data have become available in many fields, and one of the most
important research topics in mathematical statistics is to establish appropriate statistical inference
techniques for effective use of such data. There are various forms of high-frequency data, but, especially
in the fields of financial engineering and biology, models described by stochastic differential equations
(SDEs) play an important role, and statistical inference theory for SDEs is needed in order to apply
these models to real data.

A typical stochastic integral equation is written as

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdws + Jt, t ∈ [0, T ], (1.0.1)

where (bs)s∈[0,T ] and (σs)s∈[0,T ] are càdlàg adapted processes, (ws)s∈[0,T ] is a standard Brownian mo-
tion, and Jt =

∑
s∈[0,t]∆Ys the jump part of Y (∆Ys = Ys − Ys− = Ys − limr↑s Yr). The terminal of

the data (observations) is denoted by T . The theme of statistical inference for SDEs is to estimate
parameters, given the observation {Yt}t∈T , where T ⊂ [0, T ] is a set of points of observations, which
may be an uncountable set (though unrealistic). Typically, it is a sequence of (possibly random) pos-
itive numbers T = {tni ; i = 1, . . . , n}. This is the case of discrete sampling scheme, which is a main
focus in the recent research. The most typical example is an equidistant sampling scheme: ti = iT/n.

Studies on statistical inference for SDEs without jumps (Jt ≡ 0 in (1.0.1)) go back to Prakasa Rao
[17], and are then generalized by Yoshida [24] and Kessler [10]. These studies assume a parametric
representation of the model, namely, they assume that the drift and diffusion coefficients are given by
functions of the form bt = b(Yt, β) and σt = σ(Yt, θ), respectively. Their aim is to construct estimators
of β and θ under certain sampling schemes and discuss asymptotic properties of the estimators, such
as consistency and asymptotic normality.

For SDEs without jumps, there are also many studies in the context of nonparametric estimation.
One of the most active research topic in this field is the estimation of realized volatility. This is
an attempt to construct a consistent estimator of the integrated volatility Θ =

∫ T
0 σ2

t dt for models
described by SDEs. It is known that, in the absence of jumps, the sum of squared increments (called
the realized volatility; RV hereafter) is the consistent estimator of the integrated volatility (Protter
[18]):

RVn =
n∑

i=1

|∆iY |2 −→p Θ (n → ∞),
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where ∆iY = Ytni − Ytni−1
, and →p denotes convergence in probability. It is then generalized to

estimation of the covariation in the case of nonsynchronous observation (Hayashi and Yoshida [6], for
example). Volatility estimation is now applied to real data, especially in the field of financial time
series analysis.

While there has been such a large number of studies on SDEs without jumps, research on SDEs
with jumps (Jt ̸≡ 0) remains much less studied. One approach to tackle the existence of jumps is to
detect/eliminate them by a threshold method, proposed by Mancini [13]. This is based on the idea that
when the absolute value of an increment ∆iY within a time interval exceeds a certain threshold given
as a function of the length of interval tni − tni−1, the increment is regarded as a jump. This thresholding
is also applied to the parametric context by Shimizu and Yoshida [20]. They consider statistical
estimation of parameters in drift, diffusion, and jump terms of SDEs. The jump part is assumed to
be driven by a compound Poisson process. Their idea is that, if the absolute value of the increment
|∆iY | is below a threshold given by n−ρ, the increment is considered to come from the continuous
part (Brownian semimartingale) and is used to estimate the drift and diffusion parameters, while if
it exceeds the threshold, the increment is considered to come from the jump part (compound Poisson
process) and is used to estimate the jump parameters. Here ρ ∈ [0, 1/2) and C > 0 are parameters that
affects the precision of jump detection. Especially, the choice of ρ crucially determines the precision
of jump detection. Their estimator of diffusion parameter is defined as a maximizer of the following
function:

ℓn(θ) = −1

2

n∑
i=1

{
h−1
n Ȳi(β)

′Si−1(θ)
−1Ȳi(β)−

n∑
i=1

log detSi−1(θ)

}
1{|∆iY |≤hρ

n},

where Ȳi(β) = ∆iY − hnb(Ytni−1
, β), Si−1(θ) = σ(Ytni−1

, θ)⊗2 and hn = tni − tni−1. The indicator
1{|∆iY |≤hρ

n} is called the “filter,” which eliminates large increments from the likelihood function. This
estimator is shown to be consistent and asymptotically normal under some regularity conditions.

Another approach dealing with jumps is to mitigate the effects of jumps with the aid of information
about the nearest increment. The conventional RV, the sum of squared increments |∆iY |2, is known
to be extremely vulnerable to jumps, and mitigating the effects of jumps is an important theoretical
and practical topic. A seminal work in this direction is the bipower variation (BV) proposed by
Barndorff-Nielsen and Shephard [2] in the field of estimation of realized volatility. The idea of the
BV is to use an increment within a neighboring interval. It is defined as the sum of the products
of two absolute increments within adjacent intervals, |∆iY ||∆i+1Y |, making use of the fact that the
probability of occurrence of successive jumps in adjacent time intervals is small:

BVn = µ−2
1

n−1∑
i=1

|∆iY ||∆i+1Y |,

where µ1 is the first-order absolute moment of the standard normal distribution: µ1 = E[|Z|], Z ∼
N(0, 1). Similarly, Andersen et al. [1] propose the minimum realized volatility (minRV), defined as
the squares of smaller between two increments within adjacent intervals, min{|∆iY |2, |∆i+1Y |2}:

minRVn =
π

π − 2

n−1∑
i=1

min{|∆iY |2, |∆i+1Y |2}.

These estimators are shown to be consistent of the integrated volatility Θ even in the presence of
jumps.

The ideas of these previous studies can be summarized as “detecting, eliminating or mitigating the
effects of jumps by using a single or two neighboring increments.” In this sense, the approaches are
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“local.” Since these methods are shown to have theoretically desirable properties, it may be said that
problems of dealing with jumps has been solved to some extent.

However, it has been pointed out that these approaches may not always work well in practice, so
there are still issues to be solved in terms of application. For example, Shimizu [19] reported that
the estimation results by threshold method can vary greatly depending on the setting of a threshold.
Also, for BV and minRV, it would not be necessarily sufficient to mitigate the effects of jumps by just
using adjacent increments. Hence, a new method has been needed that overcomes such weakness of
previous methods.

In this dissertation, we propose a new method for eliminating jumps, called “global filtering,”
and show its theoretical properties. Moreover, with some numerical simulations, we demonstrate its
superiority over previous methods. The global filter compares the absolute increments of the data
with all other samples, and excludes increments that exceeds a threshold determined by the data. Our
filter is of the form {Vi < V(sn)}, where Vi is obtained by dividing |∆iY | by a normalizing random
variable. sn is a certain positive integer, and V(sn) denotes the sn-th order statistic of {Vi}ni=1. The
integer sn is determined by a tuning parameter (cut-off ratio) α ∈ (0, 1), which postulates how many
observations are trimmed (the larger α is, the more observations are trimmed). For example, the
maximum likelihood estimator of the diffusion parameter by global filtering is based on the following
function (here we use a slightly different notation from Chapter 2; a more general formulation is
presented there):

Hn(θ;α) = −1

2

n∑
j=1

{
q(α)−1h−1

n ∆jY
′Sj−1(θ)

−1∆jY Kn,j + p(α)−1 log detSj−1(θ)

}
1{Vj<V(sn(α))},

where p(α) and q(α) are coefficients that depend on the cut-off ratio α, and V(sn(α)) is the sn(α)-th
order statistic of {Vi}ni=1 with sn(α) = ⌊n(1− α)⌋. Kn,j is a certain truncation function. The point is
that the threshold V(sn(α)) appearing in the filter depends on all observations. On the other hand, the
filter proposed by Shimizu and Yoshida [20] is of the form {|∆iY | ≤ n−ρ} and thus it is independent
of the other observations. By comparing with all samples, the judgment of jumps and non-jumps by
the global filter becomes more accurate, and it succeeds in overcoming the weakness of the “local”
approach in previous studies. Also, the realized volatility by global filtering is defined by

Vn(α) =
n∑

j=1

q(α)−1|∆jY |2Kn,j1{Vj<V(sn(α))},

where V(sn(α)) is the same as above. It is obvious that this is a variant of the RV using global filtering.
The global filter is based on order statistics. The use of order statistic completely destroys the

time-series structure of a model (i.e., martingale properties of estimating functions). This makes the
proof of the theoretical validity of global filtering highly troublesome. We resolved this difficulty by
proving a series of “global filtering lemmas,” which help us create statistical inference theory based
on global filtering.

In this dissertation, we focus on inference theory regarding the diffusion term σt given discrete
observations {Ytni }

n
i=1, and discuss asymptotic properties of the estimators when the number of samples

tends to infinity: n → ∞ (and T is fixed). We assume equidistant sampling scheme: tni = iT/n.
Inference on drift and jump terms is beyond the scope of this paper. We assume nothing on its
distributional structure (we only assume that the number of jumps is finite almost surely). In this
sense, our method is highly versatile for estimation of diffusion parameter.

In Chapter 2, we deal with the parametric estimation of diffusion parameters, based on Inatsugu
and Yoshida [8]. In this paper, in (1.0.1), we assume that the diffusion coefficient is of the form
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σt = σ(Yt, θ), and construct the maximum likelihood estimator and the Bayes estimator based on the
global filtering method. As for the choice of cut-off ratio α, we discuss both the case where it is fixed
and where it is “moving” (or “shrinking”), i.e., dependent on the number n of samples. We prove
their moment convergence, which leads to their consistency and asymptotic mixed normality. To see
that the new estimators outperform previous ones, we report results of numerical simulations.

In Chapter 3, we deal with the estimation of the integrated volatility. We do not assume any
parametric structure of the diffusion coefficient in (1.0.1) and discuss the estimation of Θ. We intro-
duce the global realized volatility (GRV) and its variant, the winsorized GRV, and give their rate of
convergence. Similarly to Chapter 2, we discuss both the fixed-α and shrinking-α cases. Then we
conduct numerical simulation to show its accuracy and usefulness.
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Chapter 2

Parametric Estimation: Global Jump
Filters and Quasi-likelihood Analysis
for Volatility

2.1 Introduction

We consider an m-dimensional semimartingale Y = (Yt)t∈[0,T ] admitting a decomposition

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σ(Xs, θ)dws + Jt, t ∈ [0, T ] (2.1.1)

on a stochastic basis (Ω,F ,F, P ) with a filtration F = (Ft)t∈[0,T ]. Here b = (bt)t∈[0,T ] is an m-
dimensional càdlàg adapted process, X = (Xt)t∈[0,T ] is a d-dimensional càdlàg adapted process, w =
(wt)t∈[0,T ] is an r-dimensional standard F-Wiener process, θ is a parameter in the closure of an open set

Θ in Rp, and σ : Rd× Θ̄ → Rm⊗Rr is a continuous function. J = (Jt)t∈[0,T ] is the jump part of Y , i.e.,
Jt =

∑
s∈[0,t]∆Ys, where ∆Ys = Ys−Ys− and ∆Y0 = 0. We assume J0 = 0 and

∑
t∈[0,T ] 1{∆Jt ̸=0} < ∞

a.s. Model (2.1.1) is a stochastic regression model, but for example, it can express a diffusion type
process with jumps ∆JX contaminated by exogenous jump noise JY : Yt = Xt + JY

t ,

Xt = X0 +
∫ t
0 bsds+

∫ t
0 σ(Xs, θ)dws + JX

t ,

with J = JX + JY , and as a special case, a jump-diffusion process. We want to estimate the true
value θ∗ ∈ Θ of θ based on the data (Xtj , Ytj )j=0,1,...,n, where tj = tnj = jT/n. Asymptotic properties
of estimators will be discussed when n → ∞. That is, the observations are high frequency data. The
data of the processes b and J are not available since they are not directly observed.

Today a substantial amount of literature is available on parametric estimation of the diffusion
parameter θ of diffusion type processes with/without jumps. In the ergodic diffusion case of J = 0 and
T → ∞, the drift coefficient is parameterized as well as the diffusion coefficient. Certain asymptotic
properties of estimators are found in Prakasa Rao [17, 16]. The joint asymptotic normality of estimators
was given in Yoshida [24] and later generalized in Kessler [10]. The quasi-likelihood analysis (QLA,
Yoshida [25]) ensures not only limit theorems but also moment convergence of the QLA estimators,
i.e., the quasi-maximum likelihood estimator (QMLE) and the quasi-Bayesian estimator (QBE). The
adaptive estimators (Uchida and Yoshida [21, 23]) and the hybrid multi-step estimators (Kamatani and
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Uchida [9]) are of practical importance from computational aspects. Statistics becomes non-ergodic
under a finite time horizon T < ∞. Dohnal [4] discussed estimation of the diffusion parameter based
on high frequency data. Stable convergence of the quasi-maximum likelihood estimator was given
by Genon-Catalot and Jacod [5]. Uchida and Yoshida [22] showed stable convergence of the quasi-
Bayesian estimator and moment convergence of the QLA estimators. The methods of the QLA were
essential there and will be applied in this article. The non-synchronous case is addressed by Ogihara
and Yoshida [15] within QLA. As for inference for jump-diffusion processes, under ergodicity, Ogihara
and Yoshida [14] showed asymptotic normality of the QLA estimators and moment convergence of their
error. They used a type of optimal jump-filtered quasi-likelihood function in Shimizu and Yoshida
[20].

The filter in the quasi-likelihood functions of Shimizu and Yoshida [20] is based on the magnitude
of the absolute value of the increment: {|∆iY | > Chρn}, where ∆iY = Yti − Yti−1 , ρ ∈ [0, 1/2) and
C > 0. If an increment is sufficiently large relative to the threshold, then it is classified as a jump.
If, on the other hand, the size of the increment is “moderate”, it is regarded as coming from the
continuous part. Then the parameters in the continuous and jump parts can optimally be estimated
by respective data sets obtained by classification of increments. This threshold is natural and in fact,
historically, the idea goes back to studies of limit theorems for semimartingales, even further back to
Lévy processes.

However, this jump detection filter has a caveat. Though the efficiency of the estimators has been
established theoretically, it is known that their real performance strongly depends on a choice of tuning
parameters; see, e.g., Shimizu [19], Iacus and Yoshida [7]. The filter is each time based on only one
increment of the data. In this sense, this filter can be regarded as a local method. This localism would
cause misclassification of increments in practice, even though it should not occur mathematically by
the large deviation principle in the limit, and estimated values’ instability and strong dependency on
the tuning parameters. To overcome these problems, we introduce a global filtering method, which we
call the α-threshold method. It uses all of the data to more accurately detect increments having jumps,
based on the order statistics associated with all increments. Another advantage of the global filter is
that it does not need any restrictive condition on the distribution of small jumps. This paper provides
efficient parametric estimators for the model (2.1.1) under a finite time horizon T < ∞ by using
the α-threshold method, while applications of this method to the realized volatility and other related
problems are straightforward. Additionally, it should be remarked that though the α-threshold method
involves the tuning parameter α to determine a selection rule for increments, it is robust against the
choice of α as we will see later.

The organization of this paper is as follows. In Section 2.2.2, we introduce the α-quasi-log likelihood
function Hn(θ;α), that is a truncated version of the quasi-log likelihood function made from local
Gaussian approximation, based on the global filter for the tuning parameter α. The α-quasi-maximum
likelihood estimator (α-QMLE) θ̂M,α

n is defined with respect to Hn(θ;α). Since the truncation is
formulated by the order statistics of the increments, this filter destroys adaptivity and martingale
structure. However, the global filtering lemmas in Section 2.2.4 enable us to recover these properties.
Section 2.2.5 gives a rate of convergence of the α-QMLE θ̂M,α

n in Lp sense. In order to prove it, with
the help of the QLA theory (Yoshida [25]), the so-called polynomial type large deviation inequality

is derived in Theorem 2.2.13 for an annealed version of the quasi-log likelihood Hβ
n(θ;α) of (2.2.10),

where β is the annealing index. Moreover, the (α, β)-quasi-Bayesian estimator ((α, β)-QBE) θ̂B,α,β
n

can be defined as the Bayesian estimator with respect to Hβ
n(θ;α) as (2.2.11). Then the polynomial

type large deviation inequality makes it possible to prove Lp-boundedness of the error of the (α, β)-

QBE θ̂B,α,β
n (Proposition 2.2.15). The α-QMLE and (α, β)-QBE do not attain the optimal rate of

convergence when the parameter α is fixed though the fixed α-method surely removes jumps as a
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matter of fact. In Section 2.3, we introduce a quasi-likelihood function Hn(θ) depending on a moving
level αn. The random field Hn(θ) is more aggressive than Hn(θ;α) with a fixed α. Then a polynomial
type large deviation inequality is obtained in Theorem 2.3.3 but the scaling factor is n−1/2 in this case
so that we can prove

√
n-consistency in Lp sense for both QMLE θ̂M,αn

n and QBE θ̂B,αn
n associated

with the random field Hn(θ) (Proposition 2.3.4). Stable convergence of these estimators and moment
convergence are validated by Theorem 2.3.13. The moving threshold method attains the optimal rate
of convergence in contrast to the fixed-α method. However, the theory requires the sequence αn should
keep a certain balance: too large αn causes deficiency and too small αn may fail to filter out jumps.
To balance efficiency of estimation and precision in filtering by taking advantage of the stability of the
fixed-α scheme, in Section 2.4, we construct a one-step estimator θ̌M,α

n for a fixed α and the aggressive
Hn(θ) with the α-QMLE θ̂M,α

n as the initial estimator. Similarly, the one-step estimator θ̌B,α,β
n is

constructed for fixed (α, β) and Hn(θ) with the (α, β)-quasi-Bayesian estimator θ̂B,α,β
n for the initial

estimator. By combining the results in Sections 2.2 and 2.3, we show that these estimators enjoy
the same stable convergence and moment convergence as QMLE θ̂M,αn

n and QBE θ̂B,αn
n . It turns out

in Section 2.6 that the so-constructed estimators are accurate and quite stable against α, in practice.
In Section 2.5, we relax the conditions for stable convergence by a localization argument. Section 2.6
presents some simulation results and shows that the global filter can detect jumps more precisely than
the local threshold methods.

2.2 Global filter: α-threshold method

2.2.1 Model structure

We will work with the model (2.1.1). To structure the model suitably, we begin with an example.

Example 2.2.1. Consider a two-dimensional stochastic differential equation partly having jumps: dξt = bξtdt+ σξ(ξt, ηt, ζt, θ)dw
ξ
t + dJξ

t

dηt = bηt dt+ ση(ξt, ηt, ζt, θ)dw
η
t .

We can set Y = (ξ, η), X = (ξ, η, ζ) and J = (Jξ, 0). No jump filter is necessary for the component η.

This example suggests that different treatments should be given component-wise. We assume that

σ = diag[σ(1)(x, θ), . . . , σ(k)(x, θ)]

for some mk ×mk nonnegative symmetric matrices σ(k)(x, θ), k = 1, ..., k, and we further assume that
w = (w(k))k=1,...,k with r =

∑m
k=1mk = m. Let S = σ⊗2 = σσ⋆. Then S(x, θ) has the form of

S(x, θ) = diag
[
S(1)(x, θ), ..., S(k)(x, θ)

]
for mk ×mk matrices S(k)(x, θ)= σ(k)(σ(k))⋆(x, θ), k = 1, ..., k. According to the blocks of S, we write

Yt =

Y
(1)
t
...

Y
(k)
t

 , bt =

b
(1)
t
...

b
(k)
t

 , wt =

w
(1)
t
...

w
(k)
t

 , Jt =

J
(1)
t
...

J
(k)
t

 .

Let NX
t =

∑
s≤t 1{∆Xs ̸=0}. We will pose a condition that NX

T < ∞ a.s. The jump part JX of X

is defined by JX
t =

∑
s≤t∆Xs.
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2.2.2 Quasi likelihood function by order statistics

In this section, we will give a filter that removes ∆J . [20] and [14] used certain jump detecting filters
that cut large increments ∆jY by a threshold comparable to diffusion increments. It is a local filter
because the classification is done for each increment without using other increments. Contrarily, in
this paper, we propose a global filter that removes increments ∆jY when |∆jY | is in an upper class
among all data {|∆iY |}i=1,...,n.

We prepare statistics S̄
(k)
n,j−1 (k = 1, ..., k; j = 1, ..., n; n ∈ N) such that each S̄

(k)
n,j−1 is an initial

estimator of S(k)(Xtj−1 , θ
∗) up to a scaling constant, that is, there exists a (possibly unknown) positive

constant c(k) such that every S(k)(Xtj−1 , θ
∗) is approximated by c(k)S̄

(k)
n,j−1, as precisely stated later.

We do not assume that S̄
(k)
n,j−1 is Ftj−1-measurable.

Example 2.2.2. Let K be a positive integer. Let (̄in) be a diverging sequence of positive integers,
e.g., īn ∼ h−1/2. Let

Ŝ
(k)
n,j−1 =

∑īn
i=−īn

(
∆j−iY

(k)
)⊗2

1{
|∆j−i−K+1Y (k)|∧···∧|∆j−i−1Y (k)|≥|∆j−iY (k)|

}
hmax

{
1,
∑īn

i=−īn
1{

|∆j−i−K+1Y (k)|∧···∧|∆j−i−1Y (k)|≥|∆j−iY (k)|
}} .

Here ∆jY
(k) reads 0 when j ≤ 0 or j > n. An example of S̄

(k)
n,j−1 is

S̄
(k)
n,j−1 = Ŝ

(k)
n,j−11{λmin(Ŝ

(k)
n,j−1)>2−1ϵ0}

+ 2−1ϵ0Imk
1{λmin(Ŝ

(k)
n,j−1)≤2−1ϵ0}

, (2.2.1)

suppose that inf
x,θ

λmin(S
(k)(x, θ)) ≥ ϵ0 for some positive constant ϵ0, where λmin is the minimum

eigenvalue of the matrix.

Let α = (α(k))k∈{1,...,k} ∈ [0, 1)k. Our global jump filter is constructed as follows. Denote by

J (k)
n (α(k)) the set of j ∈ {1, ..., n} such that

#
{
j′ ∈ {1, ..., n}; |(S̄(k)

n,j′−1)
−1/2∆j′Y

(k)|>|(S̄(k)
n,j−1)

−1/2∆jY
(k)|
}

≥ α(k)n

for k = 1, ..., k and n ∈ N. If α(k) = 0, then J (k)
n (α(k)) = {1, ...., n}, that is, there is no filter for the

k-th component. The density function of the multi-dimensional normal distribution with mean vector
µ and covariance matrix C is denoted by ϕ(z;µ,C). Let

q(k)(α(k)) =

Tr

(∫
{|z|≤c(α(k))1/2} z

⊗2ϕ(z; 0, Imk
)dz

)
Tr

(∫
Rmk z

⊗2ϕ(z; 0, Imk
)dz

) ,

equivalently,

q(k)(α(k)) = (mk)
−1Tr

(∫
{|z|≤c(α(k))1/2}

z⊗2ϕ(z; 0, Imk
)dz

)
= (mk)

−1E[V 1{V≤c(α(k))}],
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for a random variable V ∼ χ2(mk), the chi-squared distribution with mk degrees of freedom, where
c(α(k)) is determined by

P [V ≤ c(α(k))] = 1− α(k).

Let p(α(k)) = 1− α(k). Now the α-quasi-log likelihood function Hn(θ;α) is defined by

Hn(θ;α) = −1

2

k∑
k=1

∑
j∈J (k)

n (α(k))

{
q(k)(α(k))−1h−1S(k)(Xtj−1 , θ)

−1
[(
∆jY

(k)
)⊗2]

K
(k)
n,j

+p(α(k))−1 log detS(k)(Xtj−1 , θ)

}
where

K
(k)
n,j = 1{

|∆jY (k)|<C
(k)
∗ n− 1

4

} (2.2.2)

and C
(k)
∗ are arbitrarily given positive constants. For a tensor T = (Ti1,...,ik)i1,...,ik , we write

T [x1, ..., xk] = T [x1 ⊗ · · · ⊗ xk] =
∑

i1,...,ik

Ti1,...,ikx
i1
1 · · ·xikk

for x1 = (xi11 )i1 , ..., xk = (xikk )ik . We denote u⊗r = u ⊗ · · · ⊗ u (r times). Brackets [ ] stand for a
multilinear mapping. This notation also applies to tensor-valued tensors.

If α(k) = 0, then J (k)
n (α(k)) = {1, ..., n}, c(α(k)) = +∞, p(k)(α(k)) = 1 and q(k)(α(k)) = 1, so the

k-th component of Hn(θ;α) essentially becomes the ordinary quasi-log likelihood function by local
Gaussian approximation.

Remark 2.2.3. (i) The cap K
(k)
n,j can be removed if a suitable condition is assumed for the big jump

sizes of J , e.g., supt∈[0,T ] |∆Jt| ∈ L∞–= ∩p>1L
p. It is also reasonable to use

K
(k)
n,j = 1{

|S̄−1/2
n,j−1∆jY (k)|<C

(k)
∗ n− 1

4

}
if S̄n,j−1 is uniformly L∞–-bounded. In any case, the factor K

(k)
n,j only serves for removing the effects

of too big jumps and the classification is practically never affected by it since the global filter puts

a threshold of the order less than n−1/2 log n. As a matter of fact, the threshold of K
(k)
n,j is of order

O(n−1/4), that is far looser than the ordinary local filters, and the truncation is exercised only with
exponentially small probability. On the other hand, the global filter puts no restrictive condition
on the distribution of the size of small jumps, like vanishing at the origin or boundedness of the
density of the jump sizes, as assumed for the local filters so far. It should be emphasized that the
difficulties in jump filtering are focused on the treatments of small jumps that look like the Brownian

increments. (ii) The symmetry of σ(k)(x, θ) is not restrictive because σ(k)(Xt, θ)dw
(k)
t = S(k)(Xt, θ)

1/2 ·(
S(k)(Xt, θ)

−1/2σ(k)(Xt, θ)dw
(k)
t

)
. On the other hand, we could introduce an mk ×mk random matrix

σ̄
(k)
n,j−1 approximating σ(k)(Xtj−1 , θ

∗) up to scaling, and use
(
σ̄
(k)
n,j−1

)−1
∆jY

(k) for
(
S̄
(k)
n,j−1

)−1/2
∆jY

(k),
in order to remove the assumption of symmetry.

The α-quasi-maximum likelihood estimator of θ (α-QMLE) is any measurable mapping θ̂M,α
n

characterized by

Hn(θ̂
M,α
n ;α) = max

θ∈Θ̄
Hn(θ;α).

We will identify an estimator of θ, that is a measurable mapping of the data, with the pull-back of it
to Ω since the aim of discussion here is to obtain asymptotic properties of the estimators’ distribution.
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2.2.3 Assumptions

We assume Sobolev’s embedding inequality

sup
θ∈Θ

∣∣f(θ)∣∣ ≤ CΘ,p

{ 1∑
i=0

∫
Θ

∣∣∂i
θf(θ)

∣∣pdθ}1/p

(f ∈ C1(Θ))

for a bounded open set Θ in Rp, where CΘ,p is a constant, p > p. This inequality is valid, e.g.,

if Θ has a Lipschitz boundary. Denote by Ca,b
↑ (Rd × Θ;Rm ⊗ Rr) the set of continuous functions

f : Rd×Θ → Rm⊗Rr that have continuous derivatives ∂s1 · · · ∂sℓf for all (s1, ..., sℓ) ∈ {θ, x}ℓ such that
#{i ∈ {1, ..., ℓ}; si = x} ≤ a and #{i ∈ {1, ..., ℓ}; si = θ} ≤ b, and each of these derivatives satisfies

sup
θ∈Θ

∣∣∂s1 · · · ∂sℓf(x, θ)∣∣ ≤ C(s1, ..., sℓ)
(
1 + |x|C(s1,...,sℓ)

)
(x ∈ Rd)

for some positive constant C(s1, ..., sℓ). Let ∥V ∥p =
(
E[|V |p])1/p for a vector-valued random variable

V and p > 0. Let N
(k)
t =

∑
s≤t 1{∆J

(k)
s ̸=0} and Nt =

∑
s≤t 1{∆Js ̸=0} We shall consider the following

conditions. Let X̃ = X − JX for JX =
∑

s∈[0,·]∆Xs.

[F1 ]κ (i) For every p > 1, supt∈[0,T ] ∥Xt∥p < ∞ and there exists a constant C(p) such that

∥X̃t − X̃s∥p ≤ C(p)|t− s|1/2 (t, s ∈ [0, T ]).

(ii) supt∈[0,T ] ∥bt∥p < ∞ for every p > 1.

(iii) σ ∈ C2,κ
↑ (Rd ×Θ;Rm ⊗ Rr), S(Xt, θ) is invertible a.s. for every θ ∈ Θ, and

supt∈[0,T ],θ∈Θ ∥S(Xt, θ)
−1∥p < ∞ for every p > 1.

(iv) NT ∈ L∞– and NX
T ∈ L∞–.

Let (κn)n∈N be a sequence of positive integers satisfying κn = O(n1/2) as n → ∞. For j ∈ {1, ..., n},
let In,j =

{
i ∈ {1, ..., n}; |i− j| ≤ κn

}
. Let In,j = ∪i∈In,j [ti−1, ti]. Define the index set L

(k)
n by

L(k)n =
{
j ∈ {1, ..., n}; N (k)(In,j) +NX(In,j) ̸= 0

}
.

[F2 ] (i) S̄
(k)
n,j−1 are symmetric, invertible and sup

n∈N
max

j=1,...,n

∥∥(S̄(k)
n,j−1)

−1
∥∥
p
< ∞ for every p > 1 and

k = 1, ..., k.

(ii) There exist positive constants γ0 and c(k) (k = 1, ..., k) such that

sup
n∈N

max
j=1,...,n

nγ0

∥∥∥∥(S(k)(Xtj−1 , θ
∗)− c(k)S̄

(k)
n,j−1

)
1{j∈(L(k)n )c}

∥∥∥∥
p

< ∞

for every p > 1 and k = 1, ..., k.

Remark 2.2.4. In [F2] (ii), we assumed that there exists a positive constant c(k) such that every

S(k)(Xtj−1 , θ
∗) is approximated by c(k)S̄

(k)
n,j−1. In estimation of θ, we only assume positivity of c(k) but

the values of them can be unknown since the function Hn does not involve c(k). When S(k)(Xtj−1 , θ
∗)

is a scalar matrix, Condition [F2] is satisfied simply by S̄
(k)
n,j−1 = Imk

.

Remark 2.2.5. The S̄
(k)
n,j−1 given by (2.2.1) in Example 2.2.2 satisfies Condition [F2] with γ0 = 1/4

if one takes īn ∼ h−1/2. The constant c(k) depends on the depth K of the threshold. It is possible to
give an explicit expression of c(k) but not required by the condition.
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2.2.4 Global filtering lemmas

The α-quasi-log likelihood function Hn(θ;α) involves the summation regarding the index set J (k)
n (α(k)).

The global jump filter J (k)
n (α(k)) avoids taking jumps but it completely destroys the martingale struc-

ture that the ordinary quasi-log likelihood function originally possessed, and without the martingale
structure, we cannot follow a standard way to validate desirable asymptotic properties the estimator
should have. However, it is possible to recover the martingale structure to some extent by deforming
the global jump filter to a suitable deterministic filter. In this section, we will give several lemmas
that enable such a deformation.

As before, α = (α(k))k=1,...,k is a fixed vector in [0, 1)k. We may assume that γ0 ∈ (0, 1/2] in [F2].
Let

U
(k)
j = (c(k))−1/2h−1/2(S̄

(k)
n,j−1)

−1/2∆jY
(k) and W

(k)
j = h−1/2∆jw

(k).

By [F1]0 and [F2], we have

sup
n∈N

sup
j=1,...,n

∥∥R(k)
j 1{j∈(L(k)n )c}

∥∥
p
= O(n−γ0)

for every p > 1, where

R
(k)
j = U

(k)
j −W

(k)
j − (c(k))−1/2h−1/2(S̄

(k)
n,j−1)

−1/2∆jJ
(k).

Remark that A1/2 = 1
π

∫∞
0 λ−1/2A(λ+A)−1dλ for a positive-definite matrix A.

Denote |W (k)
j | and |U (k)

j | by W
(k)
j and U

(k)
j , respectively. W

(k)
(j) denotes the j-th ordered statistic

of {W (k)
1 , ...,W

(k)
n }, and U

(k)
(j) denotes the j-th ordered statistic of {U (k)

1 , ..., U
(k)
n }. The rank of W

(k)
j is

denoted by r(W
(k)
j ). Denote by qα(k) the α(k)-quantile of the distribution of W

(k)
1 . The number qα(k)

depends on mk.

Let 0 < γ2 < γ1 < γ0. Let a
(k)
n = ⌊ᾱ(k)n − n1−γ2⌋, where ᾱ(k) = 1 − α(k) = p(α(k)). Define the

event N
(k)
n,j by

N
(k)
n,j =

{
r(W

(k)
j ) ≤ a(k)n − n1−γ2

}
∩
{
W

(k)

(a
(k)
n )

−W
(k)
j < n−γ1

}
.

Lemma 2.2.6. Suppose that α(k) ∈ (0, 1). Then P
[∪

j=1,..,,nN
(k)
n,j

]
= O(n−L) as n → ∞ for every

L > 0.

Proof. We have

P
[
W

(k)

(a
(k)
n )

> qᾱ(k) + n−γ1
]

= P

[ n∑
j=1

1
{W (k)

j ≤q
ᾱ(k)+n−γ1}

< a(k)n

]

= P

[
n−1/2

n∑
j=1

{
1
{W (k)

j ≤q
ᾱ(k)+n−γ1}

− P
[
W

(k)
j ≤ qᾱ(k) + n−γ1

]}
< −n

1
2
−γ1c(n)

]
= O(n−L)

for every L > 0, where (c(n))n∈N is a sequence of numbers such that infn∈N c(n) > 0 (the existence
of such c(n) can be proved by the mean value theorem). The last equality in the above estimates is
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obtained by the following argument. For Aj = {W (k)
j ≤ qᾱ(k) + n−γ1} and Zj = 1Aj − P [A1], by the

Burkholder-Davis-Gundy inequality, Jensen’s inequality and |Zj | ≤ 1, we obtain

P

[
n−1/2

n∑
j=1

Zj < −n
1
2
−γ1c(n)

]
<∼ n−2p( 1

2
−γ1)c(n)−2pE

[
n−1

n∑
j=1

|Zj |2p
]

= O(n−p(1−2γ1))

for every p > 1.
Let

B(k)
n =

{∣∣W (k)

(a
(k)
n )

− qᾱ(k)

∣∣ > n−γ1
}
.

We can estimate P
[
W

(k)

(a
(k)
n )

< qᾱ(k) − n−γ1
]
, and so we have

P
[
B(k)

n

]
= O(n−L) (2.2.3)

for every L > 0.

By definition, on the event N
(k)
n,j ∩ (B

(k)
n )c, the number of data W

(k)
j′ on the interval

[
qᾱ(k) −

2n−γ1 , qᾱ(k) + 2n−γ1
]
is not less than n1−γ2 . However,

P

[ n∑
j′=1

1{
W

(k)

j′ ∈
[
q
ᾱ(k)−2n−γ1 ,q

ᾱ(k)+2n−γ1

]} ≥ n1−γ2

]

= P

[
n−1+γ1

n∑
j′=1

1{
W

(k)

j′ ∈
[
q
ᾱ(k)−2n−γ1 ,q

ᾱ(k)+2n−γ1

]} ≥ nγ1−γ2

]
= O(n−L) (2.2.4)

for every L > 0. Indeed, the family{
n−1/2

n∑
j′=1

(
1{

W
(k)

j′ ∈
[
q
ᾱ(k)−2n−γ1 ,q

ᾱ(k)+2n−γ1

]} − E

[
1{

W
(k)

j′ ∈
[
q
ᾱ(k)−2n−γ1 ,q

ᾱ(k)+2n−γ1

]}])}
n∈N

is bounded in L∞– (this can be proved by the same argument as above). Since the estimate (2.2.4) is
independent of j ∈ {1, ..., n}, combining it with (2.2.3), we obtain

max
j=1,..,,n

P
[
N

(k)
n,j

]
= O(n−L)

as n → ∞ for every L > 0. Now the desired inequality of the lemma is obvious.

Let

Ĵ (k)
n (α(k)) =

{
j ∈ {1, ..., n}; r(W (k)

j ) ≤ â(k)n

}
,

where

â(k)n = ⌊a(k)n − n1−γ2⌋.

Let L(k)
n = {j; ∆jN

(k) +∆jN
X ̸= 0}. Let

Ωn =

{∑
k

#L(k)n < n1−γ2

}∩( ∩
k=1,...,k

∩
j=1,...,n

[{
|R(k)

j |1{j∈(L(k)n )c} < 2−1n−γ1
}
∩ (N

(k)
n,j )

c

])
.
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Lemma 2.2.7.

Ĵ (k)
n (α(k)) ∩ (L(k)n )c ⊂ J (k)

n (α(k)) (2.2.5)

on Ωn. In particular

#
[
J (k)
n (α(k))⊖ Ĵ (k)

n (α(k))
]

≤ c∗n
1−γ2 +# L(k)n (2.2.6)

on Ωn, where c∗ is a positive constant. Here ⊖ denotes the symmetric difference operator of sets.

Proof. On Ωn, if a pair (j1, j2) ∈ (L
(k)
n )c × (L

(k)
n )c satisfies r(W

(k)
j1 ) ≤ â

(k)
n and r(W

(k)
j2 ) ≥ a

(k)
n , then

U
(k)
j1 < W

(k)
j1 + 2−1n−γ1 ≤ W

(k)

(a
(k)
n )

− 2−1n−γ1 ≤ W
(k)
j2 − 2−1n−γ1 < U

(k)
j2 . Therefore, if j ∈ Ĵ (k)

n (α(k)) ∩

(L
(k)
n )c, then j ∈ J (k)

n (α(k)) since one can find at least ⌈α(k)n⌉(≤ (n− a
(k)
n + 1)− n1−γ2) variables

among U
(k)

(a
(k)
n )

, ....., U
(k)
(n) that are larger than U

(k)
j . Therefore (3.4.4) holds, and so does (3.4.5) as

follows. From (3.4.4), we have #
[
J (k)
n (α(k))⊖ Ĵ (k)

n (α(k))
]
≤ N+# L

(k)
n for

N = #
[
J (k)
n (α(k)) ∩ Ĵ (k)

n (α(k))c ∩ (L(k)n )c
]
.

Suppose that j ∈ J (k)
n (α(k))∩Ĵ (k)

n (α(k))c∩(L(k)n )c. In Case r(W
(k)
j ) < a

(k)
n , since â

(k)
n < r(W

(k)
j ) < a

(k)
n ,

we know the number of such j is less than or equal to n1−γ2 . In Case r(W
(k)
j ) ≥ a

(k)
n , as seen

above, U
(k)
j1 < U

(k)
j on Ωn for all j1 ∈ (L

(k)
n )c satisfying r(W

(k)
j1 ) ≤ â

(k)
n , since j ∈ (L

(k)
n )c and

r(W
(k)
j )≥ a

(k)
n . The number of such j1s is at least â

(k)
n − ⌊n1−γ2⌋. On the other hand, j ∈ J (k)

n (α(k))

gives #{j′ ∈ {1, ..., n}; U (k)
j < U

(k)
j′ } ≥ ⌈α(k)n⌉. Therefore

N ≤ n1−γ2+n−
(
â(k)n − ⌊n1−γ2⌋

)
− ⌈α(k)n⌉ ≤ 4n1−γ2 + 2

on Ωn. We obtain (3.4.5) on Ωn with c∗ = 6 if we use the inequality 4n1−γ2 + 2 ≤ 6n1−γ2 .

Let γ3 > 0. For random variables (Vj)j=1,...,n, let

D(k)
n = nγ3

∣∣∣∣∣ 1n ∑
j∈J (k)

n (α(k))

Vj −
1

n

∑
j∈Ĵ (k)

n (α(k))

Vj

∣∣∣∣∣.
Lemma 2.2.8. (i) Let p1 > 1. Then

∥D(k)
n ∥p ≤

(
c∗n

γ3−γ2 + n−1+γ3∥# L(k)n ∥p1
)∥∥∥∥ max

j=1,...,n

∣∣Vj

∣∣∥∥∥∥
pp1(p1−p)−1

+nγ3

∥∥∥∥ max
j=1,...,n

∣∣Vj

∣∣1Ωc
n

∥∥∥∥
p

for p ∈ (1, p1).

(ii) Let γ4 > 0 and p1 > 1. Then

∥D(k)
n ∥p ≤

(
c∗n

γ3−γ2 + n−1+γ3∥# L(k)n ∥p1
)

×
(
nγ4 + n max

j=1,...,n

∥∥∥∥∣∣Vj

∣∣1{|Vj |>nγ4}

∥∥∥∥
pp1(p1−p)−1

)
+nγ3

∥∥∥∥ max
j=1,...,n

∣∣Vj

∣∣1Ωc
n

∥∥∥∥
p

for p ∈ (1, p1).
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Proof. The estimate in (i) is obvious from (3.4.5). (ii) follows from (i).

Let J̃ (k)
n (α(k)) =

{
j; |h−1/2∆jw

(k)| ≤ qᾱ(k)

}
=
{
j; W

(k)
j ≤ qᾱ(k)

}
. Let

D̃(k)
n = nγ3

∣∣∣∣ 1n ∑
j∈Ĵ (k)

n (α(k))

Vj −
1

n

∑
j∈J̃ (k)

n (α(k))

Vj

∣∣∣∣.
Lemma 2.2.9. Let Ω̃n =

{∣∣W (k)

(â
(k)
n )

− qᾱ(k)

∣∣ < Č n−γ2
}
, where Č is a positive constant. Then

(i) For p ≥ 1,

∥D̃(k)
n ∥p ≤ nγ3

∥∥∥∥ max
j′=1,...,n

|Vj′ |
1

n

n∑
j=1

1{∣∣W (k)
j −q

ᾱ(k)

∣∣≤Č n−γ2

}∥∥∥∥
p

+ nγ3

∥∥∥∥1Ω̃c
n

max
j′=1,...,n

|Vj′ |
∥∥∥∥
p

.

(ii) For p1 > p ≥ 1,

∥D̃(k)
n ∥p ≤ nγ3

∥∥∥∥ max
j=1,...,n

|Vj |
∥∥∥∥
p

P

[∣∣W (k)
1 − qᾱ(k)

∣∣ ≤ Č n−γ2

]
+nγ3

∥∥∥∥ max
j=1,...,n

|Vj |
∥∥∥∥
pp1(p1−p)−1

×
∥∥∥∥ 1n

n∑
j=1

(
1{∣∣W (k)

j −q
ᾱ(k)

∣∣≤Č n−γ2

} − P

[∣∣W (k)
1 − qᾱ(k)

∣∣ ≤ Č n−γ2

])∥∥∥∥
p1

+nγ3P [Ω̃c
n]

1/p1

∥∥∥∥ max
j=1,...,n

|Vj |
∥∥∥∥
pp1(p1−p)−1

.

Proof. (i) follows from

1Ω̃n

∣∣∣∣1{W (k)
j ≤W

(k)

(â
(k)
n )

}
− 1

{W (k)
j ≤q

ᾱ(k)}

∣∣∣∣ ≤ 1{∣∣W (k)
j −q

ᾱ(k)

∣∣≤Č n−γ2

},
and (ii) follows from (i).

We take a sufficiently large Č. Then the term involving Ω̃c
n on the right-hand side of each inequality

in Lemma 2.2.9 can be estimated as the proof of Lemma 2.2.6. For example, P [Ω̃c
n] = O(n−L) for any

L > 0.

Lemma 2.2.10. Let k ∈ {1, ..., k} and let f ∈ C1,1
↑
(
Rd ×Θ;R). Suppose that [F1]0 is fulfilled. Then

sup
n∈N

∥∥∥∥∥∥∥ supθ∈Θ
nϵ

∣∣∣∣∣∣∣
1

n

∑
j∈J (k)

n (α(k))

p(α(k))−1f(Xtj−1 , θ)−
1

T

∫ T

0
f(Xt, θ)dt

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

< ∞

for every p ≥ 1 and ϵ < γ2 .
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Proof. Use Sobolev’s inequality and Burkholder’s inequality as well as Lemmas 2.2.6, 3.4.5 (ii) and
2.2.9 (ii). More precisely, we have the following decomposition

1

n

∑
j∈J (k)

n (α(k))

p(α(k))−1f(Xtj−1 , θ)−
1

T

∫ T

0
f(Xt, θ)dt

= p(α(k))−1

 1

n

∑
j∈J (k)

n (α(k))

f(Xtj−1 , θ)−
1

n

∑
j∈Ĵ (k)

n (α(k))

f(Xtj−1 , θ)


+p(α(k))−1

 1

n

∑
j∈Ĵ (k)

n (α(k))

f(Xtj−1 , θ)−
1

n

∑
j∈J̃ (k)

n (α(k))

f(Xtj−1 , θ)


+

1

np(α(k))

n∑
j=1

f(Xtj−1 , θ)

{
1{

W
(k)
j ≤q

ᾱ(k)

} − p(α(k))

}

+
1

nh

n∑
j=1

∫ tj

tj−1

[f(Xtj−1 , θ)− f(Xt, θ)]dt

=: I
(k)
1,n(θ) + I

(k)
2,n(θ) + I

(k)
3,n(θ) + I

(k)
4,n(θ).

We may assume α(k) > 0 since only I
(k)
4,n(θ) remains when α(k) = 0 and it will be estimated below.

As for I
(k)
1,n(θ), we apply Lemma 3.4.5 (ii) to obtain

∥∥∥∥∥ supθ∈Θ
nϵ
∣∣I(k)1,n(θ)

∣∣∥∥∥∥∥
p

<∼
∑
i=0,1

sup
θ∈Θ

∥∥∥∥∥∥∥nϵ

∣∣∣∣∣∣∣
1

n

∑
j∈J (k)

n (α(k))

∂i
θf(Xtj−1 , θ)−

1

n

∑
j∈Ĵ (k)

n (α(k))

∂i
θf(Xtj−1 , θ)

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

<∼
∑
i=0,1

sup
θ∈Θ

{(
c∗n

ϵ−γ2 + n−1+ϵ∥# L(k)n ∥p1
)

×

(
nγ4 + nmax

j

∥∥∥∥∥|∂i
θf(Xtj−1 , θ)|1{|∂i

θf(Xtj−1 ,θ)|≥nγ4}

∥∥∥∥∥ pp1
p1−p

)

+nϵ

∥∥∥∥∥max
j

|∂i
θf(Xtj−1 , θ)|1Ωc

n

∥∥∥∥∥
p

}
.

By taking γ4 > 0 small enough, we can verify that the right-hand side is o(1) since∥∥# L(k)n

∥∥
p
<∼ κn

∥∥NT +NX
T

∥∥
p
= O(n1/2).

Note that we have used the fact P [Ωc
n] = O(n−L) for any L > 0. A similar argument with Lemma

2.2.9 (ii) yields
∥∥ supθ∈Θ nϵ

∣∣I(k)2,n(θ)
∣∣∥∥

p
= o(1).

As for I
(k)
3,n(θ), applying the Burkholder-Davis-Gundy inequality for the discrete-time martingales
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as well as Jensen’s inequality, we have

sup
θ∈Θ

∥∥∥∥∥∥nϵ
n∑

j=1

1

n
∂i
θf(Xtj−1 , θ)

{
1{

W
(k)
j ≤q

ᾱ(k)

} − p(α(k))

}∥∥∥∥∥∥
p

p

<∼ sup
θ∈Θ

n−p
(

1
2
−ϵ
)
E

[∣∣∣∣∣ 1n
n∑

j=1

∣∣∂i
θf(Xtj−1 , θ)

∣∣2{1{
W

(k)
j ≤q

ᾱ(k)

} − p(α(k))

}2
∣∣∣∣∣
p
2
]

= O
(
n−( 1

2
−ϵ)p

)
for every p ≥ 2 and i = 0, 1. Hence, by Sobolev’s inequality, we conclude∥∥∥∥ sup

θ∈Θ
nϵ
∣∣I(k)3,n(θ)

∣∣∥∥∥∥
p

= O
(
n− 1

2
+ϵ
)

for every p ≥ 1.

Finally, we will estimate I
(k)
4,n(θ). Since f ∈ C1,1

↑ (Rd×Θ;R), there exists a positive constant C such
that

Cf (x, y) ≤ C(1 + |x|C + |y|C)

where Cf (x, y) =
∫ 1
0 supθ∈Θ

∣∣∂xf(x+ξ(y−x), θ)
∣∣dξ for x, y ∈ Rd. Then by [F1]0 (i) and (ii), we obtain∥∥∥∥nϵ sup

θ∈Θ

∣∣I(k)4,n(θ)
∣∣∥∥∥∥

p

≤ nϵ × 1

nh

n∑
j=1

∫ tj

tj−1

∥∥1{∆jNX=0}Cf (Xtj−1 , Xt)|Xt −Xtj−1 |
∥∥
p
dt

+nϵ

∥∥∥∥∥ 1

nh

n∑
j=1

1{∆jNX ̸=0}

∫ tj

tj−1

Cf (Xtj−1 , Xt)|Xt −Xtj−1 | dt

∥∥∥∥∥
p

<∼ n− 1
2
+ϵ + n− 1

2
+ϵ

∥∥∥∥∥(NX
T )

1
2

{
n−1

n∑
j=1

(
h−1

∫ tj

tj−1

Cf (Xtj−1 , Xt)|Xt −Xtj−1 | dt
)2} 1

2

∥∥∥∥∥
p

<∼ n− 1
2
+ϵ + n− 1

2
+ϵ
∥∥NX

T

∥∥ 1
2
p

= O(n− 1
2
+ϵ)

for every p ≥ 1. This completes the proof.

By Lp-estimate, we obtain the following lemma.

Lemma 2.2.11. Let k ∈ {1, ..., k} and let f ∈ C0,1
↑
(
Rd×Θ;Rmk ⊗ Rmk). Suppose that [F1]0 is fulfilled.

Then

sup
n∈N

∥∥∥∥∥∥∥ supθ∈Θ
n

1
2
−ϵ

∣∣∣∣∣∣∣
∑

j∈J (k)
n (α(k))

f(Xtj−1 , θ)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2
]∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

< ∞

for every p ≥ 1 and ϵ > 0.
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Proof. Let Ỹ (k) = Y (k) − J (k). Let Ň = N +NX . Let

Qj =
(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2

.

Then

sup
θ∈Θ

∥∥∥∥∥∥∥n
1
2
−ϵ

∣∣∣∣∣∣∣
∑

j∈J (k)
n (α(k))

1{∆jŇ>0}f(Xtj−1 , θ)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −Qj

]∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

≤ sup
θ∈Θ

∥∥∥∥n 1
2
−ϵ max

j=1,...,n

∣∣∣∣f(Xtj−1 , θ)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −Qj

]∣∣∣∣ ∥∥∥∥
2p

∥∥ŇT ∥2p

= o(1) (2.2.7)

as n → ∞ thanks to K
(k)
n,j .

Let η = 1− ϵ/2. Then, by the Burkholder-Davis-Gundy inequality, for any L≥ 2,

Pn := P

[
max

j=1,...,n

∣∣∣∣1{∆jŇ=0}

∫ tj

tj−1

{
σ(Xt, θ

∗)− σ(Xtj−1 , θ
∗)
}
dwt

∣∣∣∣ > n−η

]
≤ P

[
max

j=1,...,n

∣∣∣∣ ∫ tj

tj−1

{
σ(X̃t + JX

tj−1
, θ∗)− σ(Xtj−1 , θ

∗)
}
dwt

∣∣∣∣ > n−η

]
<∼

n∑
j=1

nLηE

[(∫ tj

tj−1

∣∣σ(X̃t + JX
tj−1

, θ∗)− σ(Xtj−1 , θ
∗)
∣∣2dt)L/2]

≤
n∑

j=1

nLηhL/2−1

∫ tj

tj−1

E
[∣∣σ(X̃t + JX

tj−1
, θ∗)− σ(X̃tj−1 + JX

tj−1
, θ∗)

∣∣L]dt
= O

(
n× nLη × n−L/2+1 × n−1 × n−L(1/2−ϵ/4)

)
= O(n1−Lϵ/4).

In the last part, we used Taylor’s formula and Hölder’s inequality. Therefore, Pn = O(n−L) for any
L > 0.

Expand ∆j Ỹ
(k) with the formula

∆j Ỹ
(k) = σ(k)(Xtj−1 , θ

∗)∆jw
(k) +

∫ tj

tj−1

{
σ(k)(Xt, θ

∗)− σ(k)(Xtj−1 , θ
∗)
}
dw

(k)
t +

∫ tj

tj−1

b
(k)
t dt

=: ξ1,j + ξ2,j + ξ3,j .

Then we have

sup
θ∈Θ

∥∥∥∥∥n 1
2
−ϵ

∣∣∣∣∣ ∑
j∈J (k)

n (α(k))

1{∆jŇ=0}f(Xtj−1 , θ)
[
ξ1,j ⊗ ξ2,j

]∣∣∣∣∣
∥∥∥∥∥
p

<∼ n
1
2
− ϵ

2 sup
j=1,...,n

θ∈Θ

∥∥|f(Xtj−1 , θ)||ξ1,j |
∥∥
p
+ n1−ϵP

1
2p
n

= o(1).

Thus, we can see

sup
θ∈Θ

∥∥∥∥∥n 1
2
−ϵ

∣∣∣∣∣ ∑
j∈J (k)

n (α(k))

1{∆jŇ=0}f(Xtj−1 , θ)
[
ξi1,j ⊗ ξi2,j

]∣∣∣∣∣
∥∥∥∥∥
p

= o(1)
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for (i1, i2) ∈ {1, 2, 3}2 \ {(1, 1)}. Consequently,

sup
θ∈Θ

∥∥∥∥∥∥∥n
1
2
−ϵ

∣∣∣∣∣∣∣
∑

j∈J (k)
n (α(k))

1{∆jŇ=0}f(Xtj−1 , θ)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −Qj

]∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

≤ sup
θ∈Θ

∥∥∥∥∥∥∥n
1
2
−ϵ

∣∣∣∣∣∣∣
∑

j∈J (k)
n (α(k))

1{∆jŇ=0}f(Xtj−1 , θ)

[(
∆j Ỹ

(k)
)⊗2 −Qj

]∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

+O(n−L)

= o(1) (2.2.8)

for every p > 1 and L > 0.
From (2.2.7) and (2.2.8), we obtain

sup
θ∈Θ

∥∥∥∥∥∥∥n
1
2
−ϵ

∣∣∣∣∣∣∣
∑

j∈J (k)
n (α(k))

f(Xtj−1 , θ)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −Qj

]∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
p

= o(1) (2.2.9)

for every p > 1. Applying the same estimate as (2.2.9) to ∂θf for f , we conclude the proof by Sobolev’s
inequality.

Lemmas 3.4.5, 2.2.9 and 2.2.11 suggest approximation of n−1Hn(θ;α) by

− 1

2n

k∑
k=1

∑
j∈J̃ (k)

n (α(k))

{
q(k)(α(k))−1S(k)(Xtj−1 , θ

∗)1/2S(k)(Xtj−1 , θ)
−1S(k)(Xtj−1 , θ

∗)1/2

·
[(
h−1/2∆jw

(k)
)⊗2]

+ p(α(k))−1 log detS(k)(Xtj−1 , θ)

}
,

as we will see its validity below.

2.2.5 Polynomial type large deviation inequality and the rate of convergence of
the α-QMLE and the (α,β)-QBE

We will show convergence of the α-QMLE. To this end, we will use a polynomial type large deviation
inequality given in Theorem 2.2.13 below for a random field associated with Hn(θ;α). Proof of Theorem
2.2.13 will be given in Section 2.2.6, based on the QLA theory ([25]) with the aid of the global filtering
lemmas in Section 2.2.4. Though the rate of convergence is less optimal, the global filter has the
advantage of eliminating jumps with high precision, and we can use it as a stable initial estimator to
obtain an efficient estimator later. We do not assume any restrictive condition of the distribution of
small jumps though the previous jump filters required such a condition for optimal estimation.

We introduce a middle resolution (or annealed) random field. A similar method was used in Uchida
and Yoshida [21] to relax the so-called balance condition between the number of observations and the
discretization step for an ergodic diffusion model. For β ∈ (0, γ0), let

Hβ
n(θ;α) = n−1+2βHn(θ;α). (2.2.10)

The random field Hβ
n(θ;α) mitigates the sharpness of the contrast Hn(θ;α). Let

Yn(θ;α) = n−2β
{
Hβ
n(θ;α)− Hβ

n(θ
∗;α)

}
= n−1

{
Hn(θ;α)− Hn(θ

∗;α)
}
.
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Let

Y(θ) = − 1

2T

k∑
k=1

∫ T

0

{
Tr

(
S(k)(Xt, θ)

−1S(k)(Xt, θ
∗)− Imk

)

+ log
detS(k)(Xt, θ)

detS(k)(Xt, θ∗)

}
dt.

The key index χ0 is defined by

χ0 = inf
θ ̸=θ∗

−Y(θ)
|θ − θ∗|2

.

Non-degeneracy of χ0 plays an essential role in the QLA.

[F3 ] For every positive number L, there exists a constant CL such that

P
[
χ0 < r−1

]
≤ CL r−L (r > 0).

Remark 2.2.12. An analytic criterion and a geometric criterion are known to insure Condition [F3]
when X is a non-degenerate diffusion process. See Uchida and Yoshida [22] for details. Since the proof
of this fact depends on short time asymptotic properties, we can modify it by taking the same approach
before the first jump even when X has finitely active jumps. Details will be provided elsewhere. On
the other hand, those criteria can apply to the jump diffusion X without remaking them if we work
under localization. See Section 2.5.

Let Uβ
n = {u ∈ Rp; θ∗ + n−βu ∈ Θ}. Let Vβ

n(r) = {u ∈ Uβ
n; |u| ≥ r}. The quasi-likelihood ratio

random field Zβ
n(·;α) of order β is defined by

Zβ
n(u;α) = exp

{
Hβ
n

(
θ∗ + n−βu;α

)
− Hβ

n

(
θ∗;α

)}
(u ∈ Uβ

n).

The random field Zβ
n(u;α) is “annealed” since the contrast function −Hβ

n(θ;α) becomes a milder
penalty than −Hn(θ;α) because β < 1/2.

The following theorem will be proved in Section 2.2.6.

Theorem 2.2.13. Suppose that [F1]4, [F2] and [F3] are fulfilled. Let c0 ∈ (1, 2). Then, for every
positive number L, there exists a constant C(α, β, c0, L) such that

P

[
sup

u∈Vn(r)
Zβ
n(u;α) ≥ e−rc0

]
≤ C(α, β, c0, L)

rL

for all r > 0 and n ∈ N.

Obviously, an α-QMLE θ̂M,α
n of θ with respect to Hn(·;α) is a QMLE with respect to Hβ

n(·;α). The
following rate of convergence is a consequence of Theorem 2.2.13, as usual in the QLA theory.

Proposition 2.2.14. Suppose that [F1]4, [F2] and [F3] are satisfied. Then sup
n∈N

∥∥nβ
(
θ̂M,α
n −θ∗

)∥∥
p
< ∞

for every p > 1 and every β < γ0.
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The (α,β)-quasi-Bayesian estimator ((α, β)-QBE) θ̂B,α,β
n of θ is defined by

θ̂B,α,β
n =

[ ∫
Θ
exp

(
Hβ
n(θ;α)

)
ϖ(θ)dθ

]−1 ∫
Θ
θ exp

(
Hβ
n(θ;α)

)
ϖ(θ)dθ, (2.2.11)

where ϖ is a continuous function on Θ satisfying 0 < infθ∈Θϖ(θ) ≤ supθ∈Θϖ(θ) < ∞. Once again
Theorem 2.2.13 ensures L∞–-boundedness of the error of the (α, β)-QBE:

Proposition 2.2.15. Suppose that [F1]4, [F2] and [F3] are satisfied. Let β ∈ (0, γ0). Then

sup
n∈N

∥∥nβ
(
θ̂B,α,β
n − θ∗

)∥∥
p
< ∞

for every p > 1.

Proof. Let ûB,α,β
n = nβ

(
θ̂B,α,β
n − θ∗

)
. Then

ûB,α,β
n =

(∫
Uβ

n

Zβ
n(u;α)ϖ(θ∗ + n−βu)du

)−1 ∫
Uβ

n

u Zβ
n(u;α)ϖ(θ∗ + n−βu)du;

recall Uβ
n = {u ∈ Rp; θ∗ + n−βu ∈ Θ}.

Let C1 > 0, p > 1, L > p+ 1 and D > p+ p. In what follows, we take a sufficiently large positive
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constant C ′
1. We have

E
[
|ûB,α,β

n |p]

≤ E

[(∫
Uβ

n

Zβ
n(u;α)ϖ(θ∗ + n−βu)du

)−1 ∫
Uβ

n

|u|pZβ
n(u;α)ϖ(θ∗ + n−βu)du

]
(Jensen’s inequality, p ≥ 1)

≤ C(ϖ)
∞∑
r=1

(r + 1)p
{{
E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1 ∫
{u;r<|u|≤r+1}∩Uβ

n

Zβ
n(u;α)du

× 1{ ∫
{u;r<|u|≤r+1}∩Uβ

n
Zβ
n(u;α)du>

C′
1

rD−p+1

}]

+E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1 ∫
{u;r<|u|≤r+1}∩Uβ

n

Zβ
n(u;α)du

× 1{ ∫
{u;r<|u|≤r+1}∩Uβ

n
Zβ
n(u;α)du≤

C′
1

rD−p+1

}]}}
+C(ϖ) (The last term is for r = 0. The integrand is not greater than one.)

≤ C(ϖ)
∞∑
r=1

(r + 1)p
{{
P

[ ∫
{u;r<|u|≤r+1}∩Uβ

n

Zβ
n(u;α)du >

C ′
1

rD−p+1

]

+
C ′
1

rD−p+1
E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1]}}
+ C(ϖ)

≤ C(ϖ)
∞∑
r=1

(r + 1)p
{{
P

[
sup

u∈Vβ
n(r)

Zβ
n(u;α)) >

C1

rD

]

+
C ′
1

rD−p+1
E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1]}}
+ C(ϖ)

<∼
∞∑
r=1

r−(L−p) +
∞∑
r=1

r−(D−p−p+1)E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1]
+ C(ϖ).

< ∞

by Theorem 2.2.13, suppose that

E

[(∫
Uβ

n

Zβ
n(u;α)du

)−1]
< ∞. (2.2.12)

However, one can show (2.2.12) by using Lemma 2 of Yoshida [25].

2.2.6 Proof of Theorem 2.2.13

We will prove Theorem 2.2.13 by Theorem 2 of Yoshida [25] with the aid of the global filtering lemmas
in Section 2.2.4. Choose parameters η, β1, ρ1, ρ2 and β2 satisfying the following inequalities:

0 < η < 1, 0 < β1 <
1

2
, 0 < ρ1 < min{1, η(1− η)−1, 2β1(1− η)−1},

2η < ρ2, β2 ≥ 0, 1− 2β2 − ρ2 > 0. (2.2.13)
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Let

∆n(α, β) = n−β∂θH
β
n(θ

∗;α) = n−1+β∂θHn(θ
∗;α).

Let

Γn(α) = −n−2β∂2
θH

β
n(θ

∗;α) = −n−1∂2
θHn(θ

∗;α).

The p× p symmetric matrix Γ(k) is defined by the following formula:

Γ(k)[u⊗2] =
1

2T

∫ T

0
Tr

(
(∂θS

(k)[u])(S(k))−1(∂θS
(k)[u])(S(k))−1(Xt, θ

∗)

)
dt,

where u ∈ Rp, and Γ by Γ =
∑k

k=1 Γ
(k). We will need several lemmas. We choose positive constants γi

(i = 1, 2) so that β < γ2 < γ1 < γ0. Then we can choose parameters β1(↓ 0), β2(↑ 1/2), ρ2(↓ 0), η(↓ 0)
and ρ1(↓ 0) so that max{2ββ1, β(1− 2β2)} < γ2. Then there is an ϵ ∈ (max{2ββ1, β(1− 2β2)}, γ2).

Lemma 2.2.16. For every p ≥ 1,

sup
n∈N

E

[(
n−2β sup

θ∈Θ

∣∣∂3
θH

β
n(θ;α)

∣∣)p]
< ∞.

Proof. We have Hn(θ;α) = H◦
n(θ;α) + M◦(θ;α) + R◦(θ;α), where

H◦
n(θ;α) = −1

2

k∑
k=1

∑
j∈J (k)

n (α(k))

p(α(k))−1

{
S(k)(Xtj−1 , θ)

−1
[
S(k)(Xtj−1 , θ

∗)
]

+ log detS(k)(Xtj−1 , θ)

}
,

M◦
n(θ;α) = −1

2

k∑
k=1

∑
j∈J (k)

n (α(k))

h−1S(k)(Xtj−1 , θ)
−1
[
q(k)(α(k))−1

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2

−hp(α(k))−1S(k)(Xtj−1 , θ
∗)
]

and

R◦
n(θ;α) = −1

2

k∑
k=1

∑
j∈J (k)

n (α(k))

q(k)(α(k))−1h−1S(k)(Xtj−1 , θ)
−1

·
[(
∆jY

(k)
)⊗2

K
(k)
n,j −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2]

.

Apply Lemma 2.2.11 to ∂i
θR

◦
n(θ;α) (i = 0, ..., 3) to obtain

3∑
i=0

∥∥∥∥ sup
θ∈Θ

∣∣∂i
θn

−1R◦
n(θ;α)

∣∣∥∥∥∥
p

< ∞

for every p > 1. Moreover, we apply Sobolev’s inequality, Lemma 3.4.5 (ii) and Lemma 2.2.9 (ii).
Then it is sufficient to show that

4∑
i=0

sup
θ∈Θ

{∥∥∂i
θn

−1H×
n (θ;α)

∥∥
p
+
∥∥∂i

θn
−1M×

n (θ;α)
∥∥
p

}
< ∞ (2.2.14)
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for proving the lemma, where H×
n (θ;α) and M×

n (θ;α) are defined by the same formula as H◦
n(θ;α) and

M◦
n(θ;α), respectively, but with J̃ (k)

n (α(k)) in place of J (k)
n (α(k)). However, (2.2.14) is obvious.

Lemma 2.2.17. For every p ≥ 1,

sup
n∈N

E

[(
n2ββ1

∣∣Γn(α)− Γ
∣∣)p]

< ∞.

Proof. Consider the decomposition Γn(α) = Γ∗
n +M∗

n +R∗
n with

Γ∗
n =

1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

p(α(k))−1

{
∂2
θ log detS

(k)(Xtj−1 , θ
∗)

+
(
∂2
θ (S

(k) −1)
)
(Xtj−1 , θ

∗)
[
S(Xtj−1 , θ

∗)
]}

,

M∗
n =

1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

(
∂2
θ (S

(k) −1)
)
(Xtj−1 , θ

∗)

[
q(k)(α(k))−1h−1

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2

−p(α(k))−1S(Xtj−1 , θ
∗)

]
and

R∗
n =

1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

q(k)(α(k))−1h−1
(
∂2
θ (S

(k) −1)
)
(Xtj−1 , θ

∗)

·
[(
∆jY

(k)
)⊗2

K
(k)
n,j −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2
]
.

Since 2ββ1 < γ2, we obtain

sup
n∈N

∥∥n2ββ1
∣∣Γ∗

n − Γ
∣∣∥∥

p
< ∞

by Lemma 2.2.10, and also obtain

sup
n∈N

∥∥n2ββ1
∣∣R∗

n

∣∣∥∥
p

< ∞

by Lemma 2.2.11 for every p > 1. Moreover, by Lemmas 3.4.5 (ii) and 2.2.9 (ii) applied to 2ββ1(< γ2)

for “γ3”, we replace J (k)
n (α(k)) in the expression of M∗

n by J̃ (k)
n (α(k)) and then apply the Burkholder-

Davis-Gundy inequality to show

sup
n∈N

∥∥n2ββ1
∣∣M∗

n

∣∣∥∥
p

< ∞

for every p > 1. This completes the proof.

The following two lemmas are obvious under [F3].

25



Lemma 2.2.18. For every p ≥ 1, there exists a constant Cp such that

P
[
λmin(Γ) < r−ρ1

]
≤ Cp

rp

for all r > 0, where λmin(Γ) denotes the minimum eigenvalue of Γ.

Lemma 2.2.19. For every p ≥ 1, there exists a constant Cp such that

P
[
χ0 < r−(ρ2−2η)

]
≤ Cp

rp

for all r > 0.

Lemma 2.2.20. For every p ≥ 1,

sup
n∈N

E
[∣∣∆n(α, β)

∣∣p] < ∞.

Proof. We consider the decomposition ∆n(α, β) = n−1+β∂θHn(θ
∗;α) = M∨

n +R∨
n with

M∨
n = −nβ

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

(
∂θ(S

(k) −1)
)
(Xtj−1 , θ

∗)

·
[
q(k)(α(k))−1h−1

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2 − p(α(k))−1S(Xtj−1 , θ

∗)

]
and

R∨
n = −nβ

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

q(k)(α(k))−1h−1

×
(
∂θ(S

(k) −1)
)
(Xtj−1 , θ

∗)

[(
∆jY

(k)
)⊗2

K
(k)
n,j −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2
]
.

We see supn∈N

∥∥R∨
n(α, β)

∥∥
p
< ∞ by Lemma 2.2.11. Moreover supn∈N

∥∥M∨
n (α, β)

∥∥
p
< ∞ by Lemmas

3.4.5 (ii) and 2.2.9 (ii) and the Burkholder-Davis-Gundy inequality. We note that symmetry between

the components of W
(k)
j is available.

As a matter of fact, ∆n(α, β) converges to 0, as seen in the proof of Lemma 2.2.20. The location shift

of the random field Zβ
n(·;α) asymptotically vanishes.

Lemma 2.2.21. For every p ≥ 1,

sup
n∈N

E

[(
sup
θ∈Θ

nβ(1−2β2)
∣∣Yn(θ;α)− Y(θ)

∣∣)p]
< ∞.

Proof. In this situation, we use the decomposition

Yn(θ;α) = Y+
n (θ;α) + M+

n (θ;α) + R+
n (θ;α)
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with

Y+
n (θ;α) = − 1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

p(α(k))−1

{
Tr

(
S(k)(Xtj−1 , θ)

−1S(k)(Xtj−1 , θ
∗)− Imk

)

+ log
detS(k)(Xtj−1 , θ)

detS(k)(Xtj−1 , θ
∗)

}
,

M+
n (θ;α) = − 1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

(
S(k)(Xtj−1 , θ)

−1 − S(k)(Xtj−1 , θ
∗)−1

)

·
[
q(k)(α(k))−1h−1

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2 − p(α(k))−1S(k)(Xtj−1 , θ

∗)

]
and

R+
n (θ;α) = − 1

2n

k∑
k=1

∑
j∈J (k)

n (α(k))

q(k)(α(k))−1h−1

(
S(k)(Xtj−1 , θ)

−1 − S(k)(Xtj−1 , θ
∗)−1

)

·
[(
∆jY

(k)
)⊗2

K
(k)
n,j −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2
]
.

As assumed, β(1− 2β2) < γ2 ≤ 1/2. Lemma 2.2.11 gives

sup
n∈N

E

[(
sup
θ∈Θ

nβ(1−2β2)
∣∣R+

n (θ;α)
∣∣)p]

< ∞

for every p > 1. Furthermore, Lemma 2.2.10 gives

sup
n∈N

E

[(
sup
θ∈Θ

nβ(1−2β2)
∣∣Y+

n (θ;α)− Y(θ)
∣∣)p]

< ∞.

On the other hand, Lemmas 3.4.5 (ii) and 2.2.9 (ii) and the Burkholder-Davis-Gundy inequality
together with Sobolev’s inequality deduce

sup
n∈N

E

[(
sup
θ∈Θ

nβ(1−2β2)
∣∣M+

n (θ;α)
∣∣)p]

< ∞

for every p > 1, which completes the proof.

Proof of Theorem 2.2.13. Now Theorem 2.2.13 follows from Theorem 2 of Yoshida [25] combined with
Lemmas 2.2.16, 2.2.17, 2.2.18, 2.2.19, 2.2.20 and 2.2.21.

2.3 Global filter with moving threshold

2.3.1 Quasi likelihood function with moving quantiles

Though the threshold method presented in the previous section removes jumps surely, it is conservative
and does not attain the optimal rate of convergence that is attained by the QLA estimators (i.e. QMLE
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and QBE) in the case without jumps. On the other hand, it is possible to give more efficient estimator
by aggressively taking bigger increments while it may cause miss-detection of certain portion of jumps.

Let δ0 ∈ (0, 1/4) and δ
(k)
1 ∈ (0, 1/2). For simplicity, let s

(k)
n = n − B(k)⌊nδ

(k)
1 ⌋ with positive

constants B(k). Let α
(k)
n = 1− s

(k)
n /n and αn = (α

(1)
n , ..., α

(k)
n ). Let

K(k)
n =

{
j ∈ {1, ..., n};V (k)

j < V
(k)

(s
(k)
n )

}
where

V
(k)
j = |(S(k)

n,j−1)
−1/2∆jY

(k)|

with some positive definite random matrix S
(k)
n,j−1, and V

(k)
(j) is the j-th order statistic of V

(k)
1 , ..., V

(k)
n .

We consider a random field by removing increments of Y including jumps from the full quasi-
likelihood function. Define Hn(θ) by

Hn(θ) = −1

2

k∑
k=1

∑
j∈K(k)

n

{
(q(k)n )−1h−1S(k)(Xtj−1 , θ)

−1
[(
∆jY

(k)
)⊗2]

K
(k)
n,j

+(p(k)n )−1 log detS(k)(Xtj−1 , θ)

}
. (2.3.1)

Remark 2.3.1. The truncation functional K
(k)
n,j is given by (2.2.2). It is also reasonable to set it as

K
(k)
n,j = 1{

V
(k)
j <C

(k)
∗ n− 1

4−δ0
},

where C
(k)
∗ is an arbitrarily given positive constant.

Remark 2.3.2. The threshold is larger than n− 1
2
+0. The truncation K

(k)
n,j is for stabilizing the

increments of Y , not for filtering. The factors S
(k)
n,j−1, q

(k)
n and p

(k)
n can freely be chosen if S

(k)
n,j−1 and

its inverse are uniformly bounded in L∞– and if q
(k)
n and p

(k)
n are sufficiently close to 1. S̄

(k)
n,j−1, q

(k)(α
(k)
n )

and p(α
(k)
n ) are natural choices for S

(k)
n,j−1, q

(k)
n and p

(k)
n , respectively. Asymptotic theoretically, the

factors (q
(k)
n )−1 and (p

(k)
n )−1 can be replaced by 1, and one can take S

(k)
n,j−1 = Imk

; see Condition [F2′]

below. Thus a modification of Hn(θ) is
◦
Hn(θ) defined by

◦
Hn(θ) = −1

2

k∑
k=1

∑
j∈K(k)

n

{
h−1S(k)(Xtj−1 , θ)

−1
[(
∆jY

(k)
)⊗2]

K
(k)
n,j

+ log detS(k)(Xtj−1 , θ)

}
with K(k)

n for V
(k)
j = |∆jY

(k)|. The quasi-log likelihood function
◦
Hn gives the same asymptotic results

as Hn.

We denote by θ̂M,αn
n a QMLE of θ with respect to Hn given by (2.3.1). We should remark that

θ̂M,αn
n defined by Hn(θ) can differ from θ̂M,α

n previously defined by Hn(θ;α). The quasi-Bayesian
estimator (QBE) θ̂B,αn

n of θ is defined by

θ̂B,αn
n =

[ ∫
Θ
exp

(
Hn(θ)

)
ϖ(θ)dθ

]−1 ∫
Θ
θ exp

(
Hn(θ)

)
ϖ(θ)dθ,

where ϖ is a continuous function on Θ satisfying 0 < infθ∈Θϖ(θ) ≤ supθ∈Θϖ(θ) < ∞.
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2.3.2 Polynomial type large deviation inequality

Let Un = {u ∈ Rp; θ∗ + n−1/2u ∈ Θ}. Let Vn(r) = {u ∈ Un; |u| ≥ r}. We define the quasi-likelihood
ratio random field Zn by

Zn(u) = exp

{
Hn(θ

∗ + n−1/2u)− Hn(θ
∗)

}
(u ∈ Un).

[F2′ ] (i) The positive-definite measurable random matricesS
(k)
n,j−1 (k ∈ {1, ..., k}, n ∈ N, j ∈ {1, ..., n})

satisfy

sup
k∈{1,...,k}

n∈N, j∈{1,...,n}

(
∥S(k)

n,j−1∥p + ∥(S(k)
n,j−1)

−1∥p
)

< ∞

for every p > 1.

(ii) Positive numbers q
(k)
n and p

(k)
n satisfy |q(k)n − 1| = o(n−1/2) and |1− p

(k)
n | = o(n−1/2).

A polynomial type large deviation inequality is given by the following theorem, a proof of which
is in Section 2.3.3.

Theorem 2.3.3. Suppose that [F1]4, [F2′] and [F3] are fulfilled. Let c0 ∈ (1, 2). Then, for every
positive number L, there exists a constant C(c0, L) such that

P

[
sup

u∈Vn(r)
Zn(u) ≥ e−rc0

]
≤ C(c0, L)

rL

for all r > 0 and n ∈ N.

The polynomial type large deviation inequality for Zn in Theorem 2.3.3 ensures L∞–-boundedness
of the QLA estimators.

Proposition 2.3.4. Suppose that [F1]4, [F2′] and [F3] are satisfied. Then

sup
n∈N

∥∥√n
(
θ̂A,αn
n − θ∗

)∥∥
p
< ∞ (A = M,B)

for every p > 1.

2.3.3 Proof of Theorem 2.3.3

Recall Ỹ (k) = Y (k) − J (k). Let

H̃n(θ) = −1

2

k∑
k=1

n∑
j=1

{
h−1S(k)(Xtj−1 , θ)

−1[
(
∆j Ỹ

(k)
)⊗2]

+ log detS(k)(Xtj−1 , θ)

}
.

Lemma 2.3.5. For every p ≥ 1,

4∑
i=0

sup
θ∈Θ

∥∥∥∥n−1/2∂i
θHn(θ)− n−1/2∂i

θH̃n(θ)

∥∥∥∥
p

→ 0 (2.3.2)

as n → ∞.
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Proof. Let

A(k)
n =

n∪
j=1

[{
j ∈ (K(k)

n )c
}
∩
{
∆jN

(k) = 0
}]

.

Let

B(k)
n =

n∩
j=1

[{
V

(k)
j ≥ V

(k)
(sn)

}
∪
{
|∆jJ

(k)| ≤ n− 1
4
−δ0
}]

.

For ω ∈ A
(k)
n ∩ (B

(k)
n )c, there exists j(ω) ∈ (K(k)

n )c such that ∆j(ω)N
(k)(ω) = 0, and also there exists

j′(ω) ∈ {1, ..., n} such that V
(k)
j′(ω)(ω) < V

(k)
(sn)

(ω) and |∆j′(ω)J
(k)(ω)| > n− 1

4
−δ0 . Then∣∣∣∣(S(k)

n,j′(ω)−1)
−1/2∆j′(ω)J

(k)(ω)

∣∣∣∣− ∣∣∣∣(S(k)
n,j′(ω)−1(ω))

−1/2∆j′(ω)Ỹ
(k)(ω)

∣∣∣∣
≤ V

(k)
j′(ω)(ω) < V

(k)
j(ω)(ω) =

∣∣∣∣(S(k)
n,j(ω)−1(ω))

−1/2∆j(ω)Ỹ
(k)(ω)

∣∣∣∣
and hence

n− 1
4
−δ0 ≤ 2

∣∣S(k)
n,j′(ω)−1

∣∣1/2 max
j=1,..,n

∣∣∣∣(S(k)
n,j−1(ω))

−1/2∆j Ỹ
(k)(ω)

∣∣∣∣
where

∣∣M ∣∣ = {Tr(MM⋆)}1/2 for a matrix M . Since
{
h−1/2

∣∣∆j Ỹ
(k)
∣∣; j = 1, ..., n, n ∈ N

}
is bounded

in L∞–, we obtain

P
[
A(k)
n ∩ (B(k)

n )c
]

= O(n−L)

as n → ∞ for every L > 0. Moreover, P [(A
(k)
n )c] = O(n−L) from the assumption for N (k) since(

A(k)
n

)c ⊂
{
#
{
j ∈ {1, ..., n}; ∆jN

(k) ̸= 0
}

≥ n− s(k)n + 1

}
⊂
{
N

(k)
T ≥ B(k)nδ

(k)
1
}
.

Thus

P

[ k∩
k=1

B(k)
n

]
= 1−O(n−L) (2.3.3)

as n → ∞ for every L > 0.
Define H†

n(θ) by

H†
n(θ) = −1

2

k∑
k=1

∑
j∈K(k)

n

{
(q(k)n )−1h−1S(k)(Xtj−1 , θ)

−1[
(
∆jY

(k) −∆jJ
(k)
)⊗2]

K
(k)
n,j1

{
|∆jJ(k)|≤1

}
+(p(k)n )−1 log detS(k)(Xtj−1 , θ)

}
,

where the indicator function controls the moment outside of ∩k
k=1B

(k)
n . Then by (2.3.3), the cap and

NT ∈ L∞–, we obtain

4∑
i=0

sup
θ∈Θ

∥∥∥∥n−1/2∂i
θHn(θ)− n−1/2∂i

θH
†
n(θ)

∥∥∥∥
p

→ 0
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as n → ∞ for every p ≥ 1. Indeed, we can estimate this difference of the two variables on the event

Cn := ∩k
k=1B

(k)
n and on Cc

n, as follows. On Cn, |∆jJ
(k)| ≤ n−1/4−δ01{∆jJ(k) ̸=0} whenever j ∈ K(k)

n . The

cap K
(k)
n,j also offers the estimate |∆jY

(k)| < C
(k)
∗ n−1/4. On Cn, after removing the factor 1{

|∆jJ(k)|≤1
}

from the expression of n−1/2∂i
θH

†
n(θ) with the help of NT ∈ L∞– and the Lp-estimate of h−1

∣∣∆j Ỹ |2,
we can estimate the cross term in the difference with

n−1/2
∑

j∈K(k)
n

∣∣∣∣h−1S(k)(Xtj−1 , θ)
−1[∆jY

(k) ⊗∆jJ
(k)
]
K

(k)
n,j

∣∣∣∣
≤ M(k)

n n−δ0

n∑
j=1

1{∆jJ(k) ̸=0} ≤
(
nδ0/2 +M(k)

n 1{Mn>nδ0/2}

)
n−δ0NT

for M(k)
n = maxj=1,...,n |S(k)(Xtj−1 , θ)

−1|, as well as the term involving
(
∆jJ

(k)
)⊗2

and admitting a
similar estimate. Estimation is much simpler on Cc

n thanks to (2.3.3). The cap 1{
|∆jJ(k)|≤1

} helps.

We know that #(K(k)
n )c ∼ B(k)nδ

(k)
1 , and have assumed that |q(k)n − 1| = o(n−1/2) and that |1 −

p
(k)
n | = o(n−1/2). Then, with (2.3.3), it is easy to show

4∑
i=0

sup
θ∈Θ

∥∥∥∥n−1/2∂i
θH

†
n(θ)− n−1/2∂i

θH̃n(θ)

∥∥∥∥
p

→ 0,

which implies (2.3.2) as n → ∞ for every p ≥ 1.

We choose parameters η, β1, ρ1, ρ2 and β2 satisfying (2.2.13) with β2 > 0. Let

∆n = n−1/2∂θHn(θ
∗) and Γn = −n−1∂2

θHn(θ
∗).

Let

Yn(θ) = n−1
{
Hn(θ)− Hn(θ

∗)
}
.

The following two estimates will play a basic role.

Lemma 2.3.6. Let f ∈ C0,1
↑
(
Rd ×Θ;Rmk ⊗ Rmk

)
. Then under [F1]0,

sup
n∈N

E

[(
sup
θ∈Θ

∣∣∣∣n 1
2
−ϵ

n∑
j=1

f(Xtj−1 , θ)

[(
∆j Ỹ

(k)
)⊗2 −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2
]∣∣∣∣)p]

< ∞

for every p > 1 and ϵ > 0.

Proof. One can validate this lemma in a quite similar way as Lemma 2.2.11.

Lemma 2.3.7. Let p > 1 and ϵ > 0. Let f ∈ C1,1
↑ (Rd ×Θ;R). Suppose that [F1]0 is satisfied. Then

sup
n∈N

E

[(
sup
θ∈Θ

n
1
2
−ϵ

∣∣∣∣ 1n
n∑

j=1

f(Xtj−1 , θ)−
1

T

∫ T

0
f(Xt, θ)dt

∣∣∣∣)p]
< ∞.
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Proof. Let p > 1. By taking an approach similar to the proof of Lemma 2.3.6, we obtain

sup
θ∈Θ

n
1
2
−ϵ

∥∥∥∥h n∑
j=1

f(Xtj−1 , θ)−
∫ T

0
f(Xt, θ)dt

∥∥∥∥
p

≤ sup
θ∈Θ

n
1
2
−ϵ

n∑
j=1

∥∥∥∥∣∣∣∣ ∫ tj

tj−1

{
f(Xt, θ)− f(Xtj−1 , θ)

}
dt

∣∣∣∣1{∆jNX=0}

∥∥∥∥
p

+sup
θ∈Θ

n
1
2
−ϵ

∥∥∥∥ max
j=1,...,n

∣∣∣∣ ∫ tj

tj−1

{
f(Xt, θ)− f(Xtj−1 , θ)

}
dt

∣∣∣∣∥∥∥∥
2p

∥∥E[NX
T

]∥∥
2p

≤ O(n
1
2
−ϵ × n× n−1.5) + o(n1/2−ϵ × n−1/2+ϵ × 1)

= o(1)

as n → ∞. We also have the same estimate for ∂θf in place of f . Then the Sobolev inequality implies
the result.

We have the following estimates.

Lemma 2.3.8. For every p ≥ 1,

sup
n∈N

E

[(
n−1 sup

θ∈Θ

∣∣∂3
θHn(θ)

∣∣)p]
< ∞.

Proof. Applying Lemma 2.3.5 and Sobolev’s inequality, one can prove the lemma in a fashion similar
to Lemma 2.2.16.

Lemma 2.3.9. For every p ≥ 1,

sup
n∈N

E
[(
nβ1
∣∣Γn − Γ

∣∣)p] < ∞.

Proof. Thanks to Lemma 2.3.5, it is sufficient to show that

sup
n∈N

E
[(
nβ1
∣∣Γ̃n − Γ

∣∣)p] < ∞ (2.3.4)

where

Γ̃n = −n−1∂2
θ H̃n(θ

∗)

Now taking a similar way as Lemma 2.2.17, one can prove the desired inequality by applying Lemmas
2.3.6 and 2.3.7 as well as the Burkholder-Davis-Gundy inequality.

Lemma 2.3.10. For every p ≥ 1, sup
n∈N

E
[∣∣∆n

∣∣p] < ∞.

Proof. By Lemma 2.3.5, it suffices to show

sup
n∈N

E
[∣∣∆̃n

∣∣p] < ∞ (2.3.5)

for

∆̃n = n−1/2∂θH̃n(θ
∗) =

1

2
√
n

k∑
k=1

n∑
j=1

ftj−1

[
D

(k)
j

]
(2.3.6)
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where

ftj−1 =
(
(S(k))−1(∂θS

(k))(S(k))−1
)
(Xtj−1 , θ

∗)

and

D
(k)
j = h−1

(
∆j Ỹ

(k)
)⊗2 − S(k)(Xtj−1 , θ

∗).

We have NX
T ∈ L∞– and ∥∥∥∥ max

j=1,...,n

∣∣ftj−1

[
D

(k)
j

]∣∣∥∥∥∥
p

= O(n1/4)

for every p > 1. Therefore∥∥∥∥n−1/2
n∑

j=1

ftj−1

[
D

(k)
j

]∥∥∥∥
p

=

∥∥∥∥n−1/2
n∑

j=1

1{∆jNX=0}ftj−1

[
D

(k)
j

]∥∥∥∥
p

+ o(1)

for every p > 1. In this situation, it suffices to show that∥∥∥∥n−1/2
n∑

j=1

1{∆jNX=0}ftj−1

[
D

(k)
j

]∥∥∥∥
p

= O(1) (2.3.7)

as n → ∞ for every p > 1.
Now, we have the equality

1{∆jNX=0}∆j Ỹ
(k) = 1{∆jNX=0}

(
Ξ1,j + Ξ2,j + Ξ3,j

)
,

where

Ξ1,j = σ(k)(Xtj−1 , θ
∗)∆jw

(k),

Ξ2,j =

∫ tj

tj−1

{
σ(k)(Xtj−1 + X̃t − X̃tj−1 , θ

∗)− σ(k)(Xtj−1 , θ
∗)
}
dw

(k)
t ,

Ξ3,j =

∫ tj

tj−1

b
(k)
t dt.

Define C(x, y) by

C(x, y) =

∣∣∣∣ ∫ 1

0
∂xσ

(k)(x+ r(y − x), θ∗)dr

∣∣∣∣.
Then, by the same reason as in (2.3.7), and by Itô’s formula and the Burkholder-Davis-Gundy in-
equality, ∥∥∥∥n−1/2

n∑
j=1

1{∆jNX=0}h
−1ftj−1

[
Ξ1,j ⊗ Ξ2,j

]∥∥∥∥
p

=

∥∥∥∥n−1/2
n∑

j=1

h−1ftj−1

[
Ξ1,j ⊗ Ξ2,j

]∥∥∥∥
p

+ o(1)

<∼

∥∥∥∥n−1/2
n∑

j=1

h−1|ftj−1 |
∣∣σ(k)(Xtj−1 , θ

∗)
∣∣

×
∫ tj

tj−1

∣∣σ(k)(Xtj−1 + X̃t − X̃tj−1 , θ
∗)− σ(k)(Xtj−1 , θ

∗)
∣∣dt∥∥∥∥

p

+O(1)
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and the last expression is not greater than∥∥∥∥n−1/2
n∑

j=1

h−1|ftj−1 |
∣∣σ(k)(Xtj−1 , θ

∗)
∣∣ ∫ tj

tj−1

C(Xtj−1 , X̃t − X̃tj−1)
∣∣X̃t − X̃tj−1

∣∣dt∥∥∥∥
p

+O(1)

<∼ n−1/2
n∑

j=1

h−1

∫ tj

tj−1

∥∥∥∥|ftj−1 |
∣∣σ(k)(Xtj−1 , θ

∗)
∣∣C(Xtj−1 , X̃t − X̃tj−1)

∣∣X̃t − X̃tj−1

∣∣∥∥∥∥
p

dt+O(1)

<∼ n−1/2
n∑

j=1

sup
t∈[tj−1,tj ]

∥∥X̃t − X̃tj−1

∥∥
2p

sup
t∈[tj−1,tj ]

j=1,...,n

∥∥∥∥|ftj−1 |
∣∣σ(k)(Xtj−1 , θ

∗)
∣∣C(Xtj−1 , X̃t − X̃tj−1)

∥∥∥∥
2p

+O(1)

= O(1)

for p > 1 since
∥∥X̃t−X̃tj−1

∥∥
2p

≤ C2pn
−1/2 and supt∈[0,T ] ∥Xt∥p+supt∈[0,T ] ∥X̃t∥p < ∞ by the continuity

of the mapping t 7→ X̃t ∈ Lp for every p > 1. In a similar manner, we obtain∥∥∥∥n−1/2
n∑

j=1

1{∆jNX=0}h
−1ftj−1

[
Ξi1,j ⊗ Ξi2,j

]∥∥∥∥
p

= O(1)

for every p > 1 and (i1, i2) ∈ {1, 2, 3}2 \ {(1, 1)}. Finally, for (i1, i2) = (1, 1),∥∥∥∥n−1/2
n∑

j=1

1{∆jNX=0}ftj−1

[
h−1Ξ1,j ⊗ Ξ1,j − S(k)(Xtj−1 , θ

∗)
]∥∥∥∥

p

=

∥∥∥∥n−1/2
n∑

j=1

ftj−1

[
h−1Ξ1,j ⊗ Ξ1,j − S(k)(Xtj−1 , θ

∗)
]∥∥∥∥

p

+ o(1)

= O(1)

by the Burkholder-Davis-Gundy inequality. Therefore we obtained (2.3.7) and hence (2.3.5).

Lemma 2.3.11. For every p ≥ 1,

sup
n∈N

E

[(
sup
θ∈Θ

n
1
2
−β2
∣∣Yn(θ)− Y(θ)

∣∣)p]
< ∞.

Proof. We use Lemmas 2.3.5, 2.3.6 and 2.3.7 besides the Burkholder-Davis-Gundy inequality and
Sobolev’s inequality. Then the proof is similar to Lemma 2.2.21 and also to Lemma 6 of Uchida and
Yoshida [22].

Proof of Theorem 2.3.3. The result follows from Theorem 2 of Yoshida [25] with the aid of Lemmas
2.2.18, 2.2.19, 2.3.8, 2.3.9, 2.3.10 and 2.3.11.

2.3.4 Limit theorem and convergence of moments

In this section, asymptotic mixed normality of the QMLE and QBE will be established.

[F1′ ]κ Conditions (ii), (iii) and (iv) of [F1]κ are satisfied in addition to
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(i) the process X has a representation

Xt = X0 +

∫ t

0
b̃sds+

∫ t

0
ãsdw̃s + JX

t (t ∈ [0, T ])

where JX = (JX
t )t∈[0,T ] is a càdlàg adapted pure jump process, w̃ = (w̃t)t∈[0,T ] is an r1-

dimensional F-Wiener process, b̃ = (b̃t)t∈[0,T ] is a d-dimensional càdlàg adapted process and

ã = (ãt)t∈[0,T ] is a progressively measurable processes taking values in Rd ⊗ Rr1 . Moreover,

∥X0∥p + sup
t∈[0,T ]

(
∥b̃t∥p + ∥ãt∥p+∥JX

t ∥p
)

< ∞

for every p > 1.

The Wiener process w̃ is possibly correlated with w.
Recall that θ̂B,αn

n denotes the quasi-Bayesian estimator (QBE) of θ with respect to Hn defined by
(2.3.1). We extend the probability space (Ω,F , P ) so that a p-dimensional standard Gaussian random
vector ζ independent of F is defined on the extension (Ω,F , P ). Define a random field Z on (Ω,F , P )
by

Z(u) = exp

(
∆[u]− 1

2
Γ[u⊗2]

)
(u ∈ Rp)

where ∆[u] = Γ1/2[ζ, u]. We write ûA,αn
n =

√
n
(
θ̂A,αn
n − θ∗

)
for A ∈ {M,B}.

Let B(R) = {u ∈ Rp; |u| ≤ R} for R > 0. Equip the space C(B(R)) of continuous functions on
B(R) with the sup-norm. Denote by ds(F) the F-stable convergence.

Lemma 2.3.12. Suppose that [F1′]4, [F2′] and [F3] are fulfilled. Then

Zn|B(R) →ds(F) Z|B(R) in C(B(R)) (2.3.8)

as n → ∞ for every R > 0.

Proof. Fix k ∈ {1, ..., k}. Let

D̃
(k)
j =

(
∆j Ỹ

(k)
)⊗2 −

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2

and let ftj−1 =
(
(S(k))−1(∂θS

(k))(S(k))−1
)
(Xtj−1 , θ

∗). We will show∥∥∥∥ n∑
j=1

n1/2ftj−1 [D̃
(k)
j ]

∥∥∥∥
p

→ 0 (2.3.9)

for every p > 1. Let

Bj =

∫ tj

tj−1

b(k)s ds, Cj = σ(k)(Xtj−1 , θ
∗)∆jw

(k),

Dj =

∫ tj

tj−1

(
σ(k)(Xs, θ

∗)− σ(k)(Xtj−1 , θ
∗)
)
dws, Ej =

∫ tj

tj−1

σ(k)(Xs, θ
∗)dws.

Then

D̃
(k)
j = (Bj)

⊗2 +
{
Bj ⊗ Ej + Ej ⊗ Bj

}
+
{
Cj ⊗ Dj + Dj ⊗ Cj + Dj ⊗ Dj

}
.
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It is easy to see ∥∥∥∥ n∑
j=1

n1/2ftj−1 [B
⊗2
j ]

∥∥∥∥
p

→ 0. (2.3.10)

For p > 2, we have∥∥∥∥ n∑
j=1

n1/2ftj−1 [Bj ⊗ Ej ]

∥∥∥∥
p

≤
∥∥∥∥ n∑

j=1

n1/2ftj−1 [hbtj−1 ⊗ Ej ]

∥∥∥∥
p

+

∥∥∥∥ n∑
j=1

n1/2ftj−1

[ ∫ tj

tj−1

(
bs − btj−1

)
ds⊗ Ej

]∥∥∥∥
p

<∼

∥∥∥∥ n∑
j=1

n−1|ftj−1 |2|btj−1 |2|Ej |2
∥∥∥∥1/2
p/2

+

∥∥∥∥ n∑
j=1

n1/2ftj−1

[ ∫ tj

tj−1

(
bs − btj−1

)
ds⊗ Ej

]∥∥∥∥
p

≤
{ n∑

j=1

n−1
∥∥|ftj−1 |

∥∥2
3p

∥∥|btj−1 |
∥∥2
3p

∥∥|Ej |
∥∥2
3p

}1/2

+

∥∥∥∥ n∑
j=1

n1/2
∣∣ftj−1

∣∣∣∣Ej

∣∣ ∫ tj

tj−1

∣∣bs − btj−1

∣∣ds∥∥∥∥
p

by the Burkholder-Davis-Gundy inequality and Hölder’s inequality. Therefore∥∥∥∥ n∑
j=1

n1/2ftj−1 [Bj ⊗ Ej ]

∥∥∥∥
p

→ 0 (2.3.11)

since

In :=

∥∥∥∥ n∑
j=1

n1/2
∣∣ftj−1

∣∣∣∣Ej

∣∣ ∫ tj

tj−1

∣∣bs − btj−1

∣∣ds∥∥∥∥
p

→ 0.

Indeed, for any ϵ > 0, there exists a number δ > 0 such that P
[
w′(b, δ) > ϵ

]
< ϵ, where w′(x, δ) is the

modulus of continuity defined by

w′(x, δ) = inf
(si)∈Sδ

max
i

sup
r1,r2∈[si−1,si)

|x(r1)− x(r2)|,

where Sδ is the set of sequences (si) such that 0 = s0 < s1 < · · · < sv = T and mini=1,...,v−1(si−si−1) >
δ. Then

In ≤
∥∥∥∥ n∑

j=1

n1/2
∣∣ftj−1

∣∣∣∣Ej

∣∣∥∥∥∥
p

ϵh+

∥∥∥∥ max
j=1,...,n

Vj

∥∥∥∥
p

T

δ
+

∥∥∥∥ n∑
j=1

Vj

∥∥∥∥
2p

P
[
w′(b, δ) > ϵ

] 1
2p

<∼ ϵ+

(
n−1/2 +

n∑
j=1

∥∥Vj1{Vj>n−1/2}
∥∥
p

)
T

δ
+ ϵ

1
2p
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for n > T/δ, where

Vj = n1/2
∣∣ftj−1

∣∣∣∣Ej

∣∣ ∫ tj

tj−1

(∣∣bs∣∣+ ∣∣btj−1

∣∣)|ds.
Thus we obtain limn→∞ In = 0 and hence (2.3.11).

Itô’s formula gives

σ(k)(Xt, θ
∗)− σ(k)(Xtj−1 , θ

∗) =

∫ t

tj−1

(
∂xσ

(k)(Xs, θ
∗)[b̃s] +

1

2
∂2
xσ

(k)(Xs, θ
∗)
[
ãsã

⋆
s

])
ds

+

∫ t

tj−1

∂xσ
(k)(Xs−, θ

∗)[ãsdw̃s]

+

∫
(tj−1,t]

(
σ(k)(Xs, θ

∗)− σ(k)(Xs−, θ
∗)
)
dNX

s

=: bj(t) + aj(t) + dj(t)

for t ∈ [tj−1, tj ]. With Itô’s formula, one can show∥∥∥∥ n∑
j=1

n1/2ftj−1

[
Cj ⊗

∫ tj

tj−1

aj(s)dws

]∥∥∥∥
p

→ 0.

Obviously ∥∥∥∥ n∑
j=1

n1/2ftj−1

[
Cj ⊗

∫ tj

tj−1

bj(s)dws

]∥∥∥∥
p

→ 0.

Moreover, for V̂j = n1/2
∣∣ftj−1

∣∣∣∣Cj

∣∣∣∣ ∫ tj
tj−1

dj(s)dws

∣∣, we have∥∥∥∥ n∑
j=1

n1/2ftj−1

[
Cj ⊗

∫ tj

tj−1

dj(s)dws

]∥∥∥∥
p

≤
∥∥∥∥ max
j=1,...,n

V̂jN
X
T

∥∥∥∥
p

≤ n−1/4
∥∥NX

T

∥∥
p
+ P

[
max

j=1,...,n
V̂j > n−1/4

] 1
2p∥∥NX

T

∥∥
2p

→ 0. (2.3.12)

Therefore ∥∥∥∥ n∑
j=1

n1/2ftj−1 [Cj ⊗ Dj ]

∥∥∥∥
p

→ 0. (2.3.13)

Similarly to (2.3.12), we know∥∥∥∥ n∑
j=1

n1/2ftj−1

[(∫ tj

tj−1

dj(s)dws

)⊗2]∥∥∥∥
p

→ 0

and also ∥∥∥∥ n∑
j=1

n1/2ftj−1 [Dj ⊗ Dj ]

∥∥∥∥
p

→ 0. (2.3.14)
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From (2.3.10), (2.3.11), (2.3.13), (2.3.14) and symmetry, we obtain (2.3.9). In particular, (2.3.9) and
(2.3.6) give the approximation

∆̃n ≡ n−1/2∂θH̃n(θ
∗)

=
1

2
√
n

k∑
k=1

n∑
j=1

ftj−1

[
h−1

(
σ(k)(Xtj−1 , θ

∗)∆jw
(k)
)⊗2 − S(k)(Xtj−1 , θ

∗)

]
+ op(1),

and so ∆̃n →ds(F) Γ
1
2 ζ as n → ∞. Furthermore, Lemma 2.3.5 ensures

∆n →ds(F) Γ
1
2 ζ (2.3.15)

as n → ∞.
Let R > 0. Then there exists n(R) such that for all n ≥ n(R) and all u ∈ B(R),

logZn(u) = ∆n[u] +
1

2n
∂2
θHn(θ

∗)[u⊗2] + rn(u), (2.3.16)

where

rn(u) =

∫ 1

0
(1− s)

{
n−1∂2

θHn(θ
†
n(su))[u

⊗2]− n−1∂2
θHn(θ

∗)[u⊗2]
}
ds

with θ†n(u) = θ∗ + n−1/2u. Combining (2.3.15), Lemmas 2.3.9 and 2.3.8 with the representation
(2.3.16), we conclude the finite-dimensional stable convergence

Zn →ds-f (F) Z (2.3.17)

as n → ∞. Since Lemma 2.3.8 validates the tightness of {Zn|B(R)}n≥n(R), we obtain the functional
stable convergence (2.3.8).

Theorem 2.3.13. Suppose that [F1′]4, [F2′] and [F3] are fulfilled. Then

E
[
f
(
ûA,αn
n

)
Φ
]

→ E
[
f
(
Γ−1/2ζ

)
Φ
]

as n → ∞ for A ∈ {M,B}, any continuous function f of at most polynomial growth, and any F-
measurable random variable Φ ∈ ∪p>1L

p.

Proof. To prove the result for A = M , we apply Theorem 5 of [25] with the help of Lemma 2.3.12 and
Proposition 2.3.4. For the case A = B, we obtain the convergence∫

Un

f(u)Zn(u)ϖ(θ∗ + n−1/2u)du →ds(F)

∫
Rp

f(u)Z(u)ϖ(θ∗)du

for any continuous function of at most polynomial growth, by applying Theorem 6 of [25]. For that,
we use Lemma 2.3.12 and Theorem 2.3.3. Estimate with Lemma 2 of [25] ensures Condition (i) of
Theorem 8 of [25], which proves the stable convergence as well as moment convergence.
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2.4 Efficient one-step estimators

In Section 2.3, the asymptotic optimality was established for the QMLE θ̂M,αn
n and the QBE θ̂B,αn

n

having a moving threshold specified by αn converging to 0. However, in practice for fixed n, these
estimators are essentially the same as the α-QMLE and α-QBE for a fixed α though they gained some

freedom of choice of S
(k)
n,j−1, p

(k)
n and q

(k)
n in the asymptotic theoretical context.

It was found in Section 2.2.5 that the α-QMLE θ̂M,α
n and the (α, β)-QBE θ̂B,α,β

n based on a fixed
α-threshold are consistent. However they have pros and cons. They are expected to remove jumps
completely but they are conservative and the rate of convergence is not optimal. In this section, as the
second approach to optimal estimation, we try to recover efficiency by combining these less optimal
estimators with the aggressive random field Hn given by (2.3.1), expecting to keep high precision of
jump detection by the fixed α filters.

Suppose that κ ∈ N satisfies κ > 1+(2γ0)
−1. We assume [F1′]κ∨4, [F2], [F2′] and [F3]. According

to Proposition 2.2.14, θ̂M,α
n attains n−β-consistency for any β ∈

(
2−1(κ−1)−1, γ0

)
, and then β(κ−1) >

1/2. For θ∗ ∈ Θ, there exists an open ball B(θ∗) ⊂ Θ around θ∗. If ∂2
θHn(θ0) is invertible, then

Taylor’s formula gives

θ1 − θ0 =
(
∂2
θHn(θ0)

)−1[
∂θHn(θ1)− ∂θHn(θ0)

]
+

κ−2∑
i=2

A1,i(θ0)
[
(θ1 − θ0)

⊗i
]

+A1,κ−1(θ1, θ0)
[
(θ1 − θ0)

⊗(κ−1)
]

for θ1, θ0 ∈ B(θ∗). The second term on the right-hand side reads 0 when κ = 3. Here A1,i (i =

2, ..., κ−2) are written by
(
∂2
θHn(θ0)

)−1
and ∂i

θHn(θ0) (i = 3, ..., κ−1), respectively, and A1,κ−1(θ0, θ1)

is by
(
∂2
θHn(θ0)

)−1
and ∂κ

θ Hn(θ) (θ ∈ B(θ∗)). Let

F (θ1, θ0) = ϵ(θ0) +
κ−2∑
i=2

A1,i(θ0)
[
(θ1 − θ0)

⊗i
]
, (2.4.1)

where

ϵ(θ0) = −
(
∂2
θHn(θ0)

)−1
[∂θHn(θ0)],

i.e., ϵ(θ0)[u] = −
(
∂2
θHn(θ0)

)−1
[∂θHn(θ0), u] for u ∈ Rp. We write

∑κ−2
i=2 A1,i(θ0)

[
F (θ1, θ0)

⊗i
]
in the

form

κ−2∑
i=2

A1,i(θ0)
[
F (θ1, θ0)

⊗i
]

= A2(θ0) +
∑

i1+i2≥3

A2,i1,i2(θ0)
[
ϵ(θ0)

⊗i1 , (θ1 − θ0)
⊗i2
]

with

A2(θ0) =

κ−2∑
i=2

A1,i(θ0)
[
ϵ(θ0)

⊗i
]
.

Next we write∑
i1+i2≥3

A2,i1,i2(θ0)
[
ϵ(θ0)

⊗i1 , F (θ1, θ0)
⊗i2
]

= A3(θ0) +
∑

i1+i2≥4

A3,i1,i2(θ0)
[
ϵ(θ0)

⊗i1 , (θ1 − θ0)
⊗i2
]
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with

A3(θ0) =
∑

i1+i2≥3

A2,i1,i2(θ0)
[
ϵ(θ0)

⊗(i1+i2)
]
.

Repeat this procedure up to∑
i1+i2≥κ−2

Aκ−3,i1,i2(θ0)
[
ϵ(θ0)

⊗i1 , F (θ1, θ0)
⊗i2
]

= Aκ−2(θ0) +
∑

i1+i2≥κ−1

Aκ−2,i1,i2(θ0)
[
ϵ(θ0)

⊗i1 , (θ1 − θ0)
⊗i2
]

with

Aκ−2(θ0) =
∑

i1+i2≥κ−2

Aκ−3,i1,i2(θ0)
[
ϵ(θ0)

⊗(i1+i2)
]
.

Let A1(θ0) = ϵ(θ0). Thus, the sequence of Rp-valued random functions

Ai(θ0) (i = 1, ..., κ− 2)

are defined on {θ0 ∈ Θ; ∂2
θHn(θ0) is invertible}. For example, when κ = 4,

A1(θ0) = −
(
∂2
θHn(θ0)

)−1
[∂θHn(θ0)],

A2(θ0) = −1

2

(
∂2
θHn(θ0)

)−1[
∂3
θHn(θ0)[A1(θ0)

⊗2]
]
.

Let

Mn =

{
θ̂M,α
n ∈ Θ, det ∂2

θHn(θ̂
M,α
n )̸= 0, θ̂M,α

n +

κ−2∑
i=1

Ai(θ̂
M,α
n ) ∈ Θ

}
.

Define θ̌M,α
n by

θ̌M,α
n =

 θ̂M,α
n +

∑κ−2
i=1 Ai(θ̂

M,α
n ) on Mn

θ∗ on Mc
n

where θ∗ is an arbitrary value in Θ.
On the event M0

n := {θ̂M,αn
n , θ̂M,α

n ∈ B(θ∗)} ∩Mn, the QMLE θ̂M,αn
n for Hn satisfies

θ̂M,αn
n − θ̂M,α

n = F (θ̂M,αn
n , θ̂M,α

n ) +A1,κ−1(θ̂
M,αn
n , θ̂M,α

n )
[
(θ̂M,αn

n − θ̂M,α
n )⊗(κ−1)

]
. (2.4.2)

Let

M′
n =

{
θ̂M,αn
n , θ̂M,α

n ∈ B(θ∗), |detn−1∂2
θHn(θ̂

M,α
n )| ≥ 2−1 det Γ, θ̂M,α

n +
κ−2∑
i=1

Ai(θ̂
M,α
n ) ∈ Θ

}
.

Then the estimate∥∥∥∥{θ̂M,αn
n − θ̂M,α

n −A1(θ̂
M,α
n )−

κ−2∑
i=2

A1,i(θ̂
M,α
n )

[
(θ̂M,αn

n − θ̂M,α
n )⊗i

]}
1M′

n

∥∥∥∥
p

= O(n−β(κ−1))

(2.4.3)
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for every p > 1 follows from the representation (2.4.2), Propositions 2.2.14 and 2.3.4 and Lemma
2.2.18. Moreover, Lemmas 2.2.18, 2.3.9 and 2.3.8 together with Lp-boundedness of the estimation
errors yield P [(M′

n)
c] = O(n−L) for every L > 0.

Now on the event M0
n, we have

κ−2∑
i=2

A1,i(θ̂
M,α
n )

[(
θ̂M,αn
n − θ̂M,α

n

)⊗i]
=

κ−2∑
i=2

A1,i(θ̂
M,α
n )

[(
F (θ̂M,αn

n , θ̂M,α
n ) +A1,κ−1(θ̂

M,αn
n , θ̂M,α

n )
[
(θ̂M,αn

n − θ̂M,α
n )⊗(κ−1)

])⊗i]
.

Therefore it follows from (2.4.3) that∥∥∥∥{θ̂M,αn
n − θ̂M,α

n −A1(θ̂
M,α
n )−A2(θ̂

M,α
n )

−
∑

i1+i2≥3

A2,i1,i2(θ̂
M,α
n )

[
ϵ(θ̂M,α

n )⊗i1 , (θ̂M,αn
n − θ̂M,α

n )⊗i2
]}

1M′
n

∥∥∥∥
p

= O(n−β(κ−1))

for every p > 1. Inductively,∥∥∥∥{θ̂M,αn
n − θ̂M,α

n −
κ−2∑
i=1

Ai(θ̂
M,α
n )

}
1M′

n

∥∥∥∥
p

= O(n−β(κ−1)).

Consequently, using boundedness of Θ on (M′
n)

c, we obtain∥∥θ̂M,αn
n − θ̌M,α

n

∥∥
p

= O(n−β(κ−1)) = o(n−1/2)

and this implies ∥∥θ̌M,α
n − θ∗

∥∥
p

= O(n−1/2)

for every p > 1. We note that β in the above argument is a working parameter chosen so that
β > 2−1(κ− 1)−1.

Next, we will consider a Bayesian estimator as the initial estimator. We are supposing that
κ > 1 + (2γ0)

−1, and furthermore we suppose β satisfies β ∈ (2−1(κ − 1)−1, γ0). Remark that this β

is the parameter involved in the estimator θ̂B,α,β
n , not a working parameter. Let

Bn =

{
θ̂B,α,β
n ∈ Θ, det ∂2

θHn(θ̂
B,α,β
n )̸= 0, θ̂B,α,β

n +
κ−2∑
i=1

Ai(θ̂
B,α,β
n ) ∈ Θ

}
.

Define θ̌B,α,β
n by

θ̌B,α,β
n =

 θ̂B,α,β
n +

∑κ−2
i=1 Ai(θ̂

B,α,β
n ) on Bn

θ∗ on Bc
n.

Then we obtain ∥∥θ̂M,αn
n − θ̌B,α,β

n

∥∥
p

= O(n−β(κ−1)) = o(n−1/2)
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and ∥∥θ̌B,α,β
n − θ∗

∥∥
p

= O(n−1/2)

for every p > 1.
Write ǔAn =

√
n
(
θ̌An −θ∗

)
for A =“M,α” and “B,α, β”. Thus, we have obtained the following result

from Theorem 2.3.13 for θ̂M,αn
n .

Theorem 2.4.1. Suppose that [F1′]κ∨4, [F2], [F2′] and [F3] are fulfilled. Let f be any continuous
function of at most polynomial growth, and let Φ be any F-measurable random variable in ∪p>1L

p.
Suppose that an integer κ satisfies κ > 1 + (2γ0)

−1. Then

(a) E
[
f
(
ǔM,α
n

)
Φ
]
→ E

[
f
(
Γ−1/2ζ

)
Φ
]
as n → ∞.

(b) E
[
f
(
ǔB,α,β
n

)
Φ
]
→ E

[
f
(
Γ−1/2ζ

)
Φ
]
as n → ∞, suppose that β ∈ (2−1(κ− 1)−1, γ0).

2.5 Localization

In the preceding sections, we established asymptotic properties of the estimators, in particular, Lp-
estimates for them. Though it was thanks to [F3], verifying it is not straightforward. An analytic
criterion and a geometric criterion are known to insure Condition [F3] when X is a non-degenerate
diffusion process (Uchida and Yoshida [22]). It is possible to give similar criteria even for jump-
diffusion processes but we do not pursue this problem here. Instead, it is also possible to relax [F3]
in order to only obtain stable convergences.

We will work with

[F3♭ ] χ0 > 0 a.s.

in place of [F3].
Let ϵ > 0. Then there exists a δ > 0 such that P [Aδ] ≥ 1− ϵ for Aδ = {χ0 > δ}. Define δHn(θ;α)

by

δHn(θ;α)ω =

{
Hn(θ;α)ω (ω ∈ Aδ)

−n|θ − θ∗|2 (ω ∈ Ac
δ).

The way of modification of Hn on Ac
δ is not essential in the following argument. Let

δZβ
n(u;α) = exp

{
δHβ

n

(
θ∗ + n−βu;α

)
− δHβ

n

(
θ∗;α

)}
(u ∈ Uβ

n)

for δHβ
n(θ;α) = n−1+2β δHn(θ;α). The random field δYn(θ;α) is defined by

δYn(θ;α) = n−2β
{

δHβ
n(θ;α)− δHβ

n(θ
∗;α)

}
= n−1

{
δHn(θ;α)− δHn(θ

∗;α)
}
.

The limit of δYn(θ;α) is now

δY(θ) = Y(θ)1Aδ
− |θ − θ∗|21Ac

δ
.

The corresponding key index is

δχ0 = inf
θ ̸=θ∗

− δY(θ)
|θ − θ∗|2

.
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Then Condition [F3] holds for δχ0 under the conditional probability given Aδ, that is,

P
[
δχ0 < r−1

∣∣Aδ

]
≤ CL,δ r

−L (r > 0)

for every L > 0. Now it is not difficult to follow the proof of Propositions 2.2.14 and 2.2.15 to obtain

sup
n∈N

{
E
[∣∣nβ

(
θ̂M,α
n − θ∗

)∣∣p1Aδ

]
+ E

[∣∣nβ
(
θ̂B,α,β
n − θ∗

)∣∣p1Aδ

]}
< ∞

for every p > 1 and every β < γ0, under [F1]4 and [F2] in addition to [F3♭]. Thus we obtained the
following results.

Proposition 2.5.1. Suppose that [F1]4, [F2] and [F3♭] are satisfied. Then nβ
(
θ̂M,α
n − θ∗

)
= Op(1)

and nβ
(
θ̂B,α,β
n − θ∗

)
= Op(1) as n → ∞ for every β < γ0.

In a similar way, we can obtain the stable convergence of the estimators with moving α, as a
counterpart to Theorem 2.3.13.

Theorem 2.5.2. Suppose that [F1′]4, [F2′] and [F3♭] are fulfilled. Then

ûA,αn
n →ds Γ−1/2ζ

as n → ∞ for A ∈ {M,B}.

Moreover, a modification of the argument in Section 2.4 gives the stable convergence of the one-step
estimators.

Theorem 2.5.3. Suppose that [F1′]κ∨4, [F2], [F2′] and [F3♭] are fulfilled. Suppose that an integer κ
satisfies κ > 1 + (2γ0)

−1. Then

(a) ǔM,α
n →ds Γ−1/2ζ as n → ∞.

(b) ǔB,α,β
n →ds Γ−1/2ζ as n → ∞, suppose that β ∈ (2−1(κ− 1)−1, γ0).

Suppose that the process X satisfies the stochastic integral equation

Xt = X0 +

∫ t

0
b̃(Xs)ds+

∫ t

0
ã(Xs)dw̃s + JX

t (t ∈ [0, T ])

with a finitely active jump part JX with ∆JX
0 = 0. The first jump time T1 of JX satisfies T1 > 0 a.s.

Suppose that X ′ is a solution to

X ′
t = X0 +

∫ t

0
b̃(X ′

s)ds+

∫ t

0
ã(X ′

s)dw̃s (t ∈ [0, T ])

and that X ′ = XT1 on [0, T1) for the stopped process XT1 of X at T1. This is the case where the
stochastic differential equation has a unique strong solution. Furthermore, suppose that the key index
χ0,ϵ defined for (X ′

t)t∈[0,ϵ] is non-degenerate for every ϵ > 0 in that supr>0 r
LP [χ0,ϵ < r−1] < ∞ for

every L > 0. Then on the event {T1 > ϵ}, we have positivity of χ0. This implies Condition [F3♭]. To
verify non-degeneracy of χ0,ϵ, we may apply a criterion in Uchida and Yoshida [22].
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2.6 Simulation Studies

2.6.1 Setting of simulation

In this section, we numerically investigate the performance of the global threshold estimator. We use
the following one-dimensional Ornstein-Uhlenbeck process with jumps

dXt = −ηXtdt+ σdwt + dJt (t ∈ [0, 1]) (2.6.1)

starting fromX0. Here w = (wt)t∈[0,1] is a one-dimensional Brownian motion and J is a one-dimensional
compound Poisson process defined by

Jt =

Nt∑
i=1

ξi, ξi ∼ N (0, ε2),

where ε > 0 and N = (Nt)t∈[0,1] is a Poisson process with intensity λ > 0. The parameters η, ε, and
λ are nuisance parameters, whereas σ is unknown to be estimated from the discretely observed data
(Xtni

)i=0,1,...,n.
There are already several parametric estimation methods for stochastic differential equations with

jumps. Among them, Shimizu and Yoshida [20] proposed a local threshold method for optimal para-
metric estimation. They used method of jump detection by comparing each increment |∆iX| with hρn,
where hn = tni − tni−1 is the time interval and ρ ∈ (0, 1/2). More precisely, an increment ∆iX satisfying
|∆iX| > hρn is regarded as being driven by the compound Poisson jump part, and is removed when
constructing the likelihood function of the continuous part. The likelihood function of the continuous
part is defined by

ln(σ) =
n∑

i=1

[
− 1

2σ2hn
|X̄n

i |2 −
1

2
log σ2

]
1{|∆Xi|≤hρ

n},

where X̄n
i = Xtni

− Xtni−1
+ ηXtni−1

hn. Obviously, the jump detection scheme is essentially different
from our approach in this paper. They do not use any other increments to determine whether an
increment has a jump or not. Our approach, however, uses all the increments.

Shimizu and Yoshida [20] proved that this estimator is consistent as the sample size n tends to
infinity; that is, asymptotic property of the local and the global threshold approaches are the same
from the viewpoint of consistency. However, precision of jump detection may be different in the case
of (large but) finite samples. Comparison of two approaches is the main purpose of this section.

In our setting, however, we assume that the jump size is normally distributed, the case of which is
not dealt with in Shimizu and Yoshida [20]. In their original paper, they assume that the jump size
must be bounded away from zero. Ogihara and Yoshida [14] accomodated a restrictive assumption on
the distribution of jump size. They proved that the local threshold estimator works well under this
assumption by using some elaborate arguments. Hence, the local estimator can be used in our setting
and thus we can compare its estimates with the global threshold estimator.

Note that, we do not impose too restrictive assumption about the distribution of jump sizes in our
paper: we only assume natural moment conditions on the number of jumps. Versatility in this sense
can be regarded as the advantage of our approach.

The setting of the simulation is as follows. The initial value is X0 = 1. The true value of the
unknown parameter σ is 0.1. Other parameters are all known and given by η = 0.1, ε = 0.05, and
λ = 20. The sample size is n = 1, 000 in Section 6.2 to see the accuracy of the jump detection of our
filter and n = 5, 000 in Section 2.6.3 and thereafter to compare the estimates of each estimator. We
assume the equidistant case, so that hn = 1/n = 0.001 and hn = 0.0002. Since the time horizon is
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(a) Sample path of X
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(b) Sample path of the jump part J of X

Figure 2.1: Sample paths of X and its jump part

now finite and η is not consistently estimable, we set η in ln(σ) at the true value 0.1, that is the most
preferable value for the estimator in Shimizu and Yoshida [20].

In applying the global estimator, we need to set several tuning parameters. we set C
(k)
∗ = 1 for the

truncation function K
(k)
n,j in (2.2.2), that is used for the definition of α-quasi-log likelihood function.

For the one-step global estimator, we use the parameter C
(k)
∗ = 1 and δ0 = 1/5 for the truncation

function K
(k)
n,j = 1{

V
(k)
j <C

(k)
∗ n− 1

4−δ0
}. Moreover, we set δ

(k)
1 = 4/9 so that p

(k)
n = (n− ⌊n4/9⌋)/n in the

definition of the moving threshold quasi-likelihood function in (2.3.1).
Figure 1 shows a sample path of (X, J). The left panel is the sample path of X and the right panel

is its jump part J . Note that the jump part is not observable and thus we need to discriminate the
jump from the sample path of X.

2.6.2 Accuracy of jump detection

Before comparing the results of parameter estimation, we check the accuracy of jump detection of
each estimation procedure. If there are too many misjudged increments, the estimated value can have
a significant bias. Hence it is important how accurately we can eliminate jumps from the observed
data X.

Local threshold method

First, we check the accuracy of jump detection of the local threshold method. Figure 2 shows the
results of jump detection by the local threshold method of Shimizu and Yoshida [20] for ρ = 1/3
in panel (a) and ρ = 1/2 in panel (b). The red vertical lines indicate the jump detected by each
estimator, whereas the triangles on the horizontal axis indicate the true jumps. As these figures show,
the accuracy of the jump detection heavily depend on a choice of the tuning parameter ρ. For relatively
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Figure 2.2: Results of jump detection by local threshold method

small ρ (say ρ = 1/3), we cannot completely detect jumps: the estimator detects only one jump for
ρ = 1/3. On the other hand, in the case of (theoretically banned) ρ = 1/2, the estimator detects the
jumps better than the case of ρ = 1/3. Note that the case of ρ = 1/2 is not dealt with in Shimizu and
Yoshida [20], but it is useful for us to compare the local threshold method with the global threshold
method later and so we show the result of the exceptional case.

Global threshold method

Next, we discuss the jump detection by global threshold method. The accuracy of jump detection
depends on the tuning parameter α ∈ (0, 1), so we here show results of four cases, namely, the case
α = 0.005, 0.010, 0.020, 0.050.

From the figures, we see that the too small α cannot detect jumps sufficiently, mistakenly judging
some genuine jumps as increments driven by the continuous part, which is similar to the case of small
ρ of the Shimizu-Yoshida estimator. By setting α a little larger, the accuracy of jump detection
increases, as shown in panels (b) and (c). On the other hand, too large α discriminate too many
increments as jumps, as panel (d) shows. In this case, there are many increments that are regarded as
jumps but are actually generated by the continuous part of the process only. These figures suggests
that one should choose the tuning parameter α carefully to detect jumps appropriately.

We show the false negative / positive ratio of jump detection in Table 2.1. Note that false negative
means that our method did not judge an increment as a jump, despite it was actually driven by the
compound Poisson jump part. The meaning of false positive is the opposite; that is, our method
judged an increment which was not driven by the jump part as a jump.

The false negative ratio for small α tends to be large because in this case the estimator judges only
big increments as jumps, and ignores some jumps of intermediate size. On the other hand, the false
positive ratio for large α is high, since the estimator judges small increments as jumps, but almost
increments are actually driven by the continous part. From this table as well, we can infer that there
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Figure 2.3: Results of jump detection by global threshold method
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Table 2.1: False Negative/Positive ratio of jump detection

alpha 0.005 0.01 0.015 0.02 0.025 0.05 0.1 0.25

False Negative 73.333 40.000 26.667 26.667 26.667 26.667 26.667 20.000
False Positive 0.000 0.000 0.305 0.812 1.320 3.858 8.934 24.061
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Figure 2.4: Comparison of estimators given a sample path

should be some optimal range of α for jump detection. In any case, a large value of false negative may
seriously bias the estimation, while a large value of false positive only decreases efficiency. Sensitivity
of the local filter is also essentially observed by this experiment since each value of α of the global
filter corresponds to a value of the threshold Lhρ of the local filter.

2.6.3 Comparison of the estimators

Next, we investigate the estimation results of the global threshold method. In this section, we
set the number of samples n = 5, 000 to let the biases of the estimators as small as possible. Since
the estimator depends on the parameter α, we check the stability of the estimator with respect to
the parameter α. Remember that too small α is not able to detect jumps effectively, but too large
α mistakenly eliminates small increments driven by the Brownian motion which should be used to
construct the likelihood function of the continuous part. So there would be a suitable level α.

Figure 3.4 compares the global QMLEs with the local QMLE with ρ = 2/5, as ρ = 1/2 is theo-
retically prohibited, and suggests that the global methods are superior to the local methods. Figure
3.4 also compares the performance of the global threshold estimator σ̂M,α

n and the one-step estimator
σ̌M,α
n with α ranging in (0, 1), as well as that of the local filters. Here we used κ = 3 to construct

the one-step estimator; that is, the one-step estimator is given by σ̌M,α
n = σ̂M,α

n + A1(σ̂
M,α
n ), where

the adjustment term A1 is defined in Section 2.4. As the figure shows, for suitably small α, both the
estimate σ̂M,α

n and σ̌M,α
n are well close to σ. However, as this figure indicates, the global threshold
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Figure 2.5: Results of jump detection by local threshold method: comparison of averaged results

estimator may be somewhat unstable with respect to the choice of α. Although the global estimator
with moving α and one-step global estimator are asymptotically equivalent, when we use the original
global estimator, it would be recommended to use the one-step estimator as well and to try estimation
for several α’s in order to check the stability of the estimates.

To compare statistical properties of the estimators, we used the 100 outcomes of Monte Carlo
simulation to calculate the average estimates, the root mean square error (RMSE), and the standard
deviation of this experiment. Looking at the average values of the estimators shown in the Figure 3.5
(a), we see the global threshold estimators outperform the local threshold estimator. It is concluded
that the accuracy of the global estimator is not dependent on a sample path. High average accuracy
can also be checked by RMSE. As shown in Figure 3.5 (b), RMSEs of the global estimators are smaller
than those of the local estimators, except for the extreme choices of α.

Figure 2.6 indicates the estimates for global QMLE estimator with standard error band. The
standard errors are calculated by using 100 Monte carlo trials. It shows that the global QMLE
estimator works very well with or without one-step adjustment. We can see, however, the one-step
adjusted estimator is robust against the choice of the tuning parameter α. For large α, the global
threshold tends to eliminate increments that are not driven by the jump part of the underlying process,
and this could result in the large standard deviation of the estimate. The one-step estimator works
well for such large α.

A suitably chosen α will yield a good estimate of the unknown parameter, although too small or
too large α might tends to bias the estimate. The global threshold estimator seems to generally be
robust to the choice of the tuning parameters. The optimal choice of α depends on the situation.
Hence, it is desirable to use several values of α and to compare the results to determine the preferable
value of α in using the global estimator. Moreover, it is worth considering of using one-step adjustment
to get more robust estimates.

The global filter sets a number for the critical value of the threshold though it is determined
after observing the data. In this sense, the global filter looks similar to the local filter, that has a
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Figure 2.6: Estimation results of global QMLE estimator with standard error band

predetermined number as its threshold. However, the critical values used by the two methods are
fairly different in practice. We consider the situation where, for some n, the local filter with threshold
Lhρ approximately performs as good as the global filter with α. For simplicity, let us consider a
one-dimensional case with σ(x, θ) = 1 constantly. Hence the critical value should approximately be
near to the upper α/2-quantile of ∆jw. Moreover, let n = 103, ρ = 2/5 and α = 0.1. Then the
constant L in the threshold of the local filter should satisfy (10−3)−1/2 × 1.64 = (10−3)−ρL, namely,
L ∼ 3.27 approximately. Since L is a predetermined common constant for different numbers n, the
critical value of the threshold of the local filter becomes 10−5ρL ∼ 0.0327 when n = 105, while the
threshold of the global filter is about (10−5)1/2 × 1.64 ∼ 0.00519. Some of jumps may not be detected
by the local filter, since its critical value is not so small, compared with ϵ = 0.05.

2.6.4 Asymmetric jumps

In the previous subsection, we assumed that the distribution of jump size was centered Gaussian and
thus symmetric. In a real situations, however, the distribution of the size of jumps might be not
symmetric. For example, stock prices have an asymmetric distribution with heavier tail in negative
price changes. In this subsection, we show that our global estimator performs well for jumps with
asymmetric distribution.

Although there are many asymmetric jumps in applications, we use just a normal distribution with
a negative average because heavier tails would make jump detection easier. More precisely, we assume
that the jump process J is given by

Jt =

Nt∑
i=1

ξt, ξi ∼ N (µ, ε2),

where µ = −0.01 and ε = 0.05. In this setting, as shown in Figure 2.7, negative jumps appear more
frequently than positive ones.

As Figure 2.8 shows, the global estimator performs well even in the case of asymmetric jumps. The
estimates are well similarly to those in the case of symmetric jumps in the previous subsection. This
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Figure 2.7: Sample paths of X and its jump part: in the case of asymmetric jump distribution

example implies that out estimator will work very well under realistic circumstances, like financial
time series where changes in asset prices have an symmetric distribution with heavy tail in negative
price changes.

2.6.5 Location-dependent diffusion coefficient

Here we assume that the diffusion coefficient is given by σ
√
1 + x2, where σ is an unknown positive

parameter to be estimated. Other settings are entirely the same as those given in the Section 2.6.1.
In particular, we assume that the distribution of jump size is centered, contrary to the previous
subsection.

In this example, we have to set an estimator S̄n,j−1 of the volatility matrix,
(
σ
√
1 +X2

tnj−1

)2
,

which satisfies the condition [F2](ii). It is obvious that we can choose S̄n,j−1 = 1 + X2
tnj−1

to satisfy

the condition. The results are shown in Figure 2.9. Like in the case of constant coefficient, the global
estimators perform well. Except for too small or large α for which the estimates are unstable and
different from those of the case of constant diffusion coefficient, our estimators yield a good estimate
even in the case of location-dependent diffusion coefficient.

2.7 Further topics and future work

In this paper, we payed main attention to removing jumps and to obtaining stable estimation of
the diffusion parameter. The removed data consist of relatively large Brownian increments and the
increments having jumps. Then it is possible to apply a suitable testing procedure to the removed
data, e.g., the goodness-of-fit test for the cut-off normal distribution, in order to test existence of
jumps.

It is also possible to consider asymptotics where the intensity of jumps goes to infinity at a moderate
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Figure 2.8: Results of jump detection: in the case of asymmetric jump disribution
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Figure 2.9: Results of jump detection: a location-dependent diffusion coefficient
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rate that does not essentially change the argument of removing jumps. In such a situation, estimation
of jumps becomes an issue. Probably, some central limit theorem holds for the error of the estimators
of the structure of jumps. Furthermore, a statistical test of the existence of jumps will be possible in
this framework. The ergodic case as T → ∞ will be another situation where the parameters of jumps
are estimable.

The global jump filter was motivated by data analysis. This scheme is to be implemented on
YUIMA, a comprehensive R package for statistical inference and simulation for stochastic processes.
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Chapter 3

Application of Global Jump Filters to
Estimation of Integrated Volatility

3.1 Model

Let (Ω,F , P ) be a probability space equipped with a filtration F = (Ft)t∈[0,T ]. We consider a one-
dimensional semimartingle X = (Xt)t∈[0,T ] having a decomposition

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdws + Jt (t ∈ [0, T ])

where X0 is an F0-measurable random variable, b = (bt)t∈[0,T ] and σ = (σt)t∈[0,T ] are càdlàg F-adapted
processes, and w = (wt)t∈[0,T ] is an F-standard Wiener process. J = (Jt)t∈[0,T ] is the jump part of
X. We will assumed that J is finitely active, that is, Jt =

∑
s∈(0,t]∆Xs for ∆Xs = Xs − Xs− and∑

t∈[0,T ] 1{∆Jt ̸=0} < ∞ a.s. In this paper, we are interested in the estimation of the integrated volatility

Θ =

∫ T

0
σ2
t dt (3.1.1)

based on the data (Xtj )j=0,1,...n, where tj = tj
n = jT/n.

The jump part J can be endogenous or exogenous, as well as b and σ, however, J is a nuisance in
any case. The simple realized volatility is heavily damaged when jumps exist. To avoid the effects of
the jumps, various methods have been proposed so far. For example, the bipower variation (Barndorff-
Nielsen and Shephard. [2], Barndorff-Nielsen et al. [3]) and the minimum realized volatility (Andersen
et al. [1]) are shown to be consistent estimators of the integrated volatility even in the presence of
jumps. The idea of these methods is that, to mitigate the effect of jumps, they employ adjacent
increments in constructing the estimator.

Another direction to handle jumps is to introduce a threshold to detect jumps. Threshold method
was investigated in Shimizu and Yoshida [20] in the context of the parametric inference for a stochastic
differential equation with jumps. The idea of thresholding goes back to the studies of limit theorems
for Lévy processes as latest. Mancini [12] introduced a nonparametric threshold that detect jumps by
observing the size of increments within each time interval. The threshold is defined as a function of
the length of a time inverval. If an increment is so large that exceeds a threshold, it is regarded as a
jump. Koike [11] applied the threshold method to covariance estimation for asynchronously observed
semimartingales with jumps.

However, examining each individual increment is not always effective in finding jumps. It sometimes
overlooks relatively small jumps. To tackle this problem, Inatsugu and Yoshida [8] introduced global
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filters that examine all increments simultaneously and regard an increment of high rank in order of
absolute size as a jump. Using the information about the size of other increments helps us detect
jumps more accurately than the previous method that ignores such information.

In this paper, we apply the global filtering method to nonparametric volatility estimation. Specifi-
cally, we construct the “global realized volatility (GRV) estimator” of the integrated volatility for the
a stochastic differential equation with jumps. We investigate the theoretical properties of GRV and
then conduct numerical simulations to study their performance compared with well-known methods,
that is, the bipower variation and the minimum realized volatility.

The organization of this chapter is as follows. In Section 3.2, we introduce the GRV and its variant,
the winsorized GRV (WGRV). In Section 3.3, we also introduce the –global realized volatility (LGRV)
and prove its convergence to spot volatilities. The LGRV is needed to normalize the increments and
construct the GRV. In Section 3.4, we prove the rate of convergence of the GRV and WGRV in the
situation where the intensity of jumps is high. In this case, need a high and fixed cut-off rate α. In
Section 3.5, we allow the cut-off rate to vary according to the sample size. This “moving threshold”
method is for the situation where the intensity of jumps is moderate and small cut-off rate is applicable.
In Section 3.6, we discuss the situation where true volatility is constant. In this case, we do not need
normalizing increments, so the estimator gets a little simpler. In Section 3.7, we show simulation
results to compare the performance of the GRV, WGRV, bipower varition, and the mininum realized
volatility.

3.2 Realized volatilities with a global jump filter

The global jump filter introduced by Inatsugu and Yoshida [8] uses the order statistics of the trans-
formed increments of the observations. Suppose that an estimator Sn,j−1 of the spot volatility
σ(Xtj−1)

2 (up to a common scaling factor) is given for each j ∈ In = {1, ..., n}. Denote ∆jU =

Utj − Utj−1 for a process U = (Ut)t∈[0,T ]. Then the distribution of the scaled increment S
−1/2
n,j−1∆jX is

expected to be well approximated by the standard normal distribution N(0, 1). Therefore, if the value

Vj =
∣∣(Sn,j−1)

−1/2∆jX
∣∣ (3.2.1)

is relatively very large among Vn = {Vk}k∈In , then plausibly we can infer that the Vj involves jumps
with high probability. The idea of the global jump filter is to eliminate the increment ∆jX from the
data if the corresponding Vj is ranked within the top 100α% in Vn. More precisely, let

Jn(α) =
{
j ∈ In; Vj < V(sn(α))

}
where

sn(α) = ⌊n(1− α)⌋

for α ∈ [0, 1), and we denote by rn(Uj) the rank of Uj among the variables {Ui}i∈In . Let

q(α) =

∫
{|z|≤c(α)1/2}

z2ϕ(z; 0, 1)dz

where ϕ(z; 0, 1) is the density function of N(0, 1) and c(α) defined by

P
[
ζ2 ≤ c(α)

]
= 1− α
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for ζ ∼ N(0, 1) and α ∈ [0, 1). Then the global realized volatility (globally truncated realized
volatility, GRV) with cut-off ratio α is defined by

Vn(α) =
∑

j∈Jn(α)

q(α)−1|∆jX|2Kn,j (3.2.2)

where Kn,j = 1{|∆jX|≤n−1/4}. As remarked in Inatsugu and Yoshida [8], the indicator function Kn,j is
set just for relaxing the conditions for validation. Generalization by using like 1{|∆jX|≤B1n−δ1} with

constants B1 > 0 and δ1 ∈ (0, 1/4] is straightforward, but we prefer simplicity in presentation of this
article. In practice, the probability that Kn,j executes the task is exponentially small by the large
deviation principle. However, the moments of ∆Jt are not controllable without assumption, and we
can simply avoid it by the cut-off function Kn,j .

Winsorization is a popular technique in robust statistics. In the present context, the Winsorized
global realized volatility (WGRV) is given by

Wn(α) =
n∑

j=1

w(α)−1
{
|∆jX| ∧

(
S
1/2
n,j−1V(sn(α))

)}2
Kn,j

where

w(α) =

∫
R

(
z2 ∧ c(α)

)
ϕ(z; 0, 1)dz.

The cut-off ratio α ∈ [0, 1) is a tuning parameter in estimation procedures. The bigger α provides
the more stable estimates even in high intensity of jumps. On the other hand, the smaller α gives the
more precise estimates if the intensity of jumps is low. Making trade-off between stability and precision
is necessary in practice. As a matter of fact, these cases require different theoretical treatments. We
will consider fixed α in Section 3.4, and shrinking α in Section 3.5.

3.3 Local-global filter

3.3.1 Glocal filtering lemmas

For each j ∈ In, let

j
n

=


1 (j ≤ κn)

j − κn (κn + 1 ≤ j ≤ n− κn)

n− 2κn (j ≥ n− κn + 1)

for κn ∈ Z+ satisfying 2κn + 1 ≤ n. Let In,j = {j
n
, j

n
+ 1, ..., j

n
+ 2κn}. Let

Ûj,k = h−1/2σ−1
tj

n
−1
∆kX and Wj = h−1/2∆jw

for j, k ∈ In. Both variables Ûj,k and Wj depend on n. Let

R̂j,k = Ûj,k −Wk − h−1/2σ−1
tj

n
−1
∆kJ

for j, k ∈ In. Denote L∞– = ∩p>1L
p.

Let N =
∑

s∈(0,·] 1{∆Js ̸=0}. Let σ̃ = σ − Jσ for Jσ =
∑

s∈(0,·]∆σs, and let Nσ =
∑

s∈(0,·] 1{∆Jσ
s ̸=0}.

We assume that Nσ
T < ∞ a.s. Moreover, let N = N +Nσ. Let X̃ = X − J . A counting process will

be identified with a random measure. Let In,j =
(
tj

n
−1, tj

n
+2κn

]
.
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[G1] (i) For every p > 1, supt∈[0,T ] ∥σt∥p < ∞ and∥∥σ̃t − σ̃s
∥∥
p

≤ C(p)|t− s|1/2 (t, s ∈ [0, T ])

for some constant C(p) for every p > 1.

(ii) supt∈[0,T ] ∥bt∥p < ∞ for every p > 1.

(iii) σt ̸= 0 a.s. for every t ∈ [0, T ], an supt∈[0,T ]

∥∥σ−1
t

∥∥
p
< ∞ for every p > 1.

Lemma 3.3.1. Under [G1],

sup
j∈In

sup
k∈In,j

∥∥R̂j,k1{Nσ(In,j)=0}
∥∥
p

= O

((κn
n

)1/2)
(3.3.1)

as n → ∞ for every p > 1.

Proof. For j ∈ In, let E(j) = {Nσ(In,j) = 0}. Then, for k ∈ In,j ,

R̂j,k1E(j) =
(
h−1/2σ−1

tj
n
−1
∆kX̃ − h−1/2∆kw

)
1E(j)

= h−1/2

∫ tk

tk−1

σ−1
tj

n
−1
(σ̃t − σ̃tj

n
−1)dwt1E(j)

+h−1/2σ−1
tj

n
−1

∫ tk

tk−1

btdt1E(j) (3.3.2)

We obtain (3.3.1) by applying the Burkholder-Davis-Gundy inequality to the martingale part of (3.3.2)
after the trivial estimate 1E(j) ≤ 1.

For j ∈ In, denote by rn,j(Uk) the rank of the element Uk among a collection of random variables
{Uℓ}k∈In,j

. Let

0 < η2 < η1, κn = 2κn + 1,

an = ⌊(1− α0)κn − κ 1−η2
n ⌋, ân = ⌊an − κ 1−η2

n ⌋

for α0 ∈ [0, 1). Let

Ln,j,k =
{
rn,j(|Wk|) ≤ an − κ 1−η2

n

}
∩
{
|W |(j,an) − |Wk| < κ−η1

n

}
(3.3.3)

where
(
|W |(j,k)

)
k∈In,j

are the ordered statistics made from {|Wk|}k∈In,j
. In the same way as Lemma

1 of Inatsugu and Yoshida [8], we obtain the following result.

Lemma 3.3.2. Let α0 ∈ (0, 1). Suppose that η1 < 1/2 and that n−ϵκn → ∞ as n → ∞ for some
ϵ ∈ (0, 1). Then

sup
j∈In

P

[ ∪
k∈In,j

Ln,j,k

]
= O(n−L)

as n → ∞ for every L > 0.
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Define Kn,j(α0) by

Kn,j(α0) =
{
k ∈ In,j ; rn,j(|∆kX|) ≤ (1− α0)κn

}
,

where rn,j(|∆kX|) is the rank of |∆kX| among {|∆k′X|}k′∈In,j
. Let

K̂n,j(α0) =
{
k ∈ In,j ; rn,j(|Wk|) ≤ ân

}
.

Let

Ωn,j =
∩

k∈In,j

[{
|R̂j,k|1{Nσ(In,j)=0} < 2−1κ−η1

n

}
∩ Lc

n,j,k

]
.

Let

Ln =
{
j ∈ In; N(In,j) ̸= 0

}
. (3.3.4)

Lemma 3.3.3. (a) K̂n,j(α0) ⊂ Kn,j(α0) on Ωn,j if j ∈ Lc
n.

(b) 1Ωn,j1{j∈Lc
n} #

(
Kn,j(α0) \ K̂n,j(α0)

)
≤ 4 κ 1−η2

n (j ∈ In.j , n ∈ N).

Proof. Let n ∈ N and suppose that j ∈ Lc
n. We will work on Ωn,j . For a pair (k1, k2) ∈ I2n,j , suppose

that

rn,j(|Wk1 |) ≤ ân and rn,j(|Wk2 |) ≥ an. (3.3.5)

Then |Ûj,k1 | < |Wk1 | + 2−1κ−η1
n , since ∆k1N = 0 and Nσ(In,j) = 0 when j ∈ Lc

n, and then |R̂j,k1 | <
2−1κ−η1

n on Ωn,j . By the first inequality of (3.3.5), rn,j(|Wk1 |) ≤ an − κ 1−η2
n , and hence on Ωn,j ⊂

Lc
n,j,k1

, we have |W |(j,an) − |Wk1 | ≥ κ−η1
n by the definition (3.3.3) of Ln,j,k. Therefore

|Ûj,k1 | < |W |(j,an) − 2−1κ−η1
n . (3.3.6)

The assumption j ∈ Lc
n entails |R̂j,k2 | < 2−1κ−η1

n on Ωn,j , and hence |Wk2 | − 2−1κ−η1
n < |Ûj,k2 | due to

∆k2J = 0. From (3.3.6), we have got

|Ûj,k1 | < |Ûj,k2 | (3.3.7)

on Ωn,j if j ∈ Lc
n and if a pair (k1, k2) ∈ I2n,j satisfies (3.3.5).

We are working on Ωn,j yet. Suppose that j ∈ Lc
n and k1 ∈ K̂n,j(α0). Then the inequality

(3.3.7) holds for any k2 ∈ In,j satisfying rn,j(|Wk2 |) ≥ an. So, there are at least ⌊α0κn + 1⌋
(
≤

α0κn+κ 1−η2
n + 1 ≤ κn − an + 1

)
variables Ûj,k2 that satisfy (3.3.7). Then rn,j(|Ûj,k1 |) ≤ (1 − α0)κn,

and hence k1 ∈ Kn,j(α0). Thus, we found

K̂n,j(α0) ⊂ Kn,j(α0)

on Ωn,j if j ∈ Lc
n, that is, (a).
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We still work on Ωn,j . Suppose that j ∈ Lc
n and k2 ∈ Kn,j(α0) \ K̂n,j(α0). When rn,j(|Wk2 |) < an,

since rn,j(|Wk2 |) > ân due to k2 ∈ K̂n,j(α0)
c, we see

1{j∈Lc
n} #

{
k2 ∈ Kn,j(α0) \ K̂n,j(α0); rn,j(|Wk2 |) < an

}
≤ κ 1−η2

n (3.3.8)

on Ωn,j . When rn,j(|Wk2 |) ≥ an, for any k1 satisfying rn,j(|Wk1 |) ≤ ân, we have (3.3.7). Therefore

#
{
k1 ∈ In,j ; |Ûj,k1 | < |Ûj,k2 |

}
≥ 1{j∈Lc

n}1{rn,j(|Wk2
|)≥an} ân,

in other words,

rn,j(|Ûj,k2 |) > ân (3.3.9)

on Ωn,j if j ∈ Lc
n and rn,j(|Wk2 |) ≥ an. Moreover, rn,j(|Ûj,k2 |) ≤ ⌊(1 − α0)κn⌋ since k2 ∈ Kn,j(α0).

Combining this estimate with (3.3.9), we obtain

1{j∈Lc
n} #

{
k2 ∈ Kn,j(α0) \ K̂n,j(α0); rn,j(|Wk2 |) ≥ an

}
≤ (1− α0)κn − ân

≤ 2 κ 1−η2
n + 1 (3.3.10)

From (3.3.8) and (3.3.10), we obtain (b).

For η3 ∈ R, j ∈ In and a sequence of random variables (Vj)j∈In , let

Dn,j = κη3n

∣∣∣∣ 1κn ∑
k∈Kn,j(α0)

Vk −
1

κn

∑
k∈K̂n,j(α0)

Vk

∣∣∣∣
The following lemma follows from Lemma 3.3.3 immediately.

Lemma 3.3.4. (i) Let p ≥ 1. Then∥∥Dn,j

∥∥
p

≤ 4 κη3−η2
n

∥∥∥∥ max
k∈In,j

|Vk|1Ωn,j∩{j∈Lc
n}

∥∥∥∥
p

+ κη3n

∥∥∥∥ max
k∈In,j

|Vk|1Ωc
n,j

∥∥∥∥
p

+ κη3n

∥∥∥∥ max
k∈In,j

|Vk|1{j∈Ln}

∥∥∥∥
p

for j ∈ In, n ∈ N.

(ii) Let p ≥ 1 and η4 > 0. Then∥∥Dn,j

∥∥
p

≤ 4 κη3−η2
n

(
κη4n + κn max

k∈In,j

∥∥∥∥|Vk|1{|Vk|>κ
η4
n }1Ωn,j∩{j∈Lc

n}

∥∥∥∥
p

)
+κη3n

∥∥∥∥ max
k∈In,j

|Vk|1Ωc
n,j

∥∥∥∥
p

+ κη3n

∥∥∥∥ max
k∈In,j

|Vk|1{j∈Ln}

∥∥∥∥
p

for j ∈ In, n ∈ N.

Let

K̃n,j(α0) =
{
k ∈ In,j ; |Wk| ≤ c(α0)

1/2
}

For η3 > 0, j ∈ In and a sequence of random variables (Vj)j∈In , let

D̃n,j = κη3n

∣∣∣∣ 1κn ∑
k∈K̂n,j(α0)

Vk −
1

κn

∑
k∈K̃n,j(α0)

Vk

∣∣∣∣
Let

Ω̃n,j =
{∣∣|W |(j,ân) − c(α0)

1/2
∣∣ < Čκ−η2

n

}
(3.3.11)

for j ∈ In, where Č is a positive constant.
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Lemma 3.3.5. Let η3 ∈ R. Then

(i) For p ≥ 1 and j ∈ In,∥∥D̃n,j

∥∥
p

≤ κη3n

∥∥∥∥ max
k′∈In,j

|Vk′ |
1

κn

∑
k∈In,j

1{∣∣|Wk|−c(α0)1/2
∣∣< Čκ

−η2
n

}∥∥∥∥
p

+ κη3n

∥∥∥∥1Ω̃c
n,j

max
k′∈In,j

|Vk′ |
∥∥∥∥
p

(ii) For p1 > p ≥ 1 and j ∈ In,∥∥D̃n,j

∥∥
p

≤ κη3n

∥∥∥∥ max
k∈In,j

|Vk|
∥∥∥∥
p

P

[∣∣|W1| − c(α0)
1/2
∣∣< Čκ−η2

n

]
+κη3n

∥∥∥∥ max
k∈In,j

|Vk|
∥∥∥∥
pp1(p1−p)−1

∥∥∥∥ 1

κn

∑
k∈In,j

(
1{∣∣|Wk|−c(α0)1/2

∣∣< Čκ
−η2
n

}
−P

[∣∣|Wk| − c(α0)
1/2
∣∣< Čκ−η2

n

])∥∥∥∥
p1

+κη3n P
[
Ω̃c
n,j

]1/p1∥∥∥∥ max
k∈In,j

|Vk|
∥∥∥∥
pp1(p1−p)−1

Proof. For k ∈ In,j ,

Ω̃n,j ∩
{
rn,j(|Wk|) ≤ ân

}c ∩ {|Wk| ≤ c(α0)
1/2
}

=
{∣∣|W |(j,ân) − c(α0)

1/2
∣∣ < Čκ−η2

n

}
∩
{
|Wk| > |W |(j,ân)

}
∩
{
|Wk| ≤ c(α0)

1/2
}

⊂
{∣∣|Wk| − c(α0)

1/2
∣∣ < Čκ−η2

n

}
and

Ω̃n,j ∩
{
rn,j(|Wk|) ≤ ân

}
∩
{
|Wk| ≤ c(α0)

1/2
}c

=
{∣∣|W |(j,ân) − c(α0)

1/2
∣∣ < Čκ−η2

n

}
∩
{
|Wk| ≤ |W |(j,ân)

}
∩
{
|Wk| > c(α0)

1/2
}

⊂
{∣∣|Wk| − c(α0)

1/2
∣∣ < Čκ−η2

n

}
.

Thus we obtain (i). Property (ii) follows from (i).

Lemma 3.3.6. If the constant Č in (3.4.7) is sufficiently large, then

sup
j∈In

P
[
Ω̃c
n,j

]
= O(n−L)

as n → ∞ for any L > 0.

Proof. We have

P
[
|W |(j,ân) − c(α0)

1/2 < −Čκ−η2
n

]
≤ P

[
|W |(

j,⌊an−κ
1−η2
n −1⌋

) < c(α0)
1/2 − Čκ−η2

n

]
≤ P

[ ∑
k∈In,j

1An,k
≥ ⌊an − κ 1−η2

n − 1⌋
]

= P

[
κ−1/2
n

∑
k∈In,j

{
1An,k

− P [An,k]
}
≥ Cn

]
(3.3.12)
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where

An,k =
{
|Wk| < c(α0)

1/2 − Čκ−η2
n

}
,

Cn = κ−1/2
n

(
an − κ 1−η2

n − 2− κnP [An,1]
)
.

By using the mean-value theorem, we obtain

Cn ∼ κ−1/2
n

[
(1− α0)κn − 2κ 1−η2

n − κn
{
1− α0 − 2ϕ

(
c(α0)

1/2; 0, 1
)
Čκ−η2

n

}]
≳ κ

1
2
−η2

n

as n → ∞ if we choose a sufficiently large Č. Therefore, the Lp-boundedness of the random variables
in (3.3.12) gives

sup
j∈In

P
[
|W |(j,ân) − c(α0)

1/2 < −Čκ−η2
n

]
= O(n−L) (3.3.13)

as n → ∞ for any L > 0. In a similar way, we know

P
[
|W |(j,ân) − c(α0)

1/2 > Čκ−η2
n

]
= O(n−L) (3.3.14)

as n → ∞ for any L > 0. Then we obtain the result from (3.3.13) and (3.3.14).

3.3.2 Local-global realized volatility

We introduce the local-global realized volatility (LGRV)

Ln,j(α0) =
n

κnT

∑
k∈Kn,j(α0)

q(α0)
−1|∆kX|2Kn,k. (3.3.15)

Theorem 3.3.7. Suppose that [G1] is fulfilled. For c0 ∈ (0, 1) and B > 0, suppose that κn ∼ Bnc0 as
n → ∞. Then

sup
n∈N

sup
j∈In

sup
k∈In,j

n γ∗
∥∥1{j∈Lc

n}
(
Ln,j(α0)− σ2

tk

)∥∥
p

< ∞ (3.3.16)

as n → ∞ for any constant γ∗ satisfying

γ∗ < min

{
1

2
(1− c0),

1

2
c0

}
.

Proof. (I) We have κn ∼ nc0 ∼ h−c0 and n/κn ∼ n1−c0 ∼ hc0−1. Let

D∗
n,j = κη3n

{
n

κn

∑
k∈Kn,j(α0)

|∆kX|2Kn,k −
n

κn

∑
k∈K̂n,j(α0)

|∆kX|2Kn,k

}
.

Applied to Vk = n|∆kX|2Kn,k1{j∈Lc
n}, Lemma 3.3.4 (ii) gives∥∥D∗

n,j1{j∈Lc
n}
∥∥
p

≤ Φ
(3.3.18)
n,j +Φ

(3.3.19)
n,j (3.3.17)
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for every p > 1, where

Φ
(3.3.18)
n,j = 4κη3−η2

n

(
κη4n + κn max

k∈In,j

∥∥∥∥n|∆kX|21{n|∆kX|2>κ
η4
n }1{j∈Lc

n}

∥∥∥∥
p

)
(3.3.18)

and

Φ
(3.3.19)
n,j = κη3n

∥∥∥∥ max
k∈In,j

n|∆kX|2Kn,k1Ωc
n,j

∥∥∥∥
p

. (3.3.19)

Since there is no jump of J on {j ∈ Lc
n}, we see

sup
j∈In

sup
k∈In,j

∥∥n|∆kX|21{j∈Lc
n}
∥∥
p
= O(1) (3.3.20)

for every p > 1, as a result, the Lp-norm on the right-hand side of (3.3.18) is of O(n−L) for arbitrary
L > 0, and hence

Φ
(3.3.18)
n,j = O

(
κη3−η2+η4
n

)
(3.3.21)

as n → ∞. Similarly to (3.3.20), we obtain

sup
j∈In

P
[
Ωc
n,j

]
= O(n−L) (3.3.22)

as n → ∞ for every L > 0, from Lemma 3.3.2 as well as Lemma 3.3.1 because (n/κn)
1/2κ−η1

n ≫ 1
when 2−1(c−1

0 − 1) > η1. Then

Φ
(3.3.19)
n,j ≤ κη3n n1/2P

[
Ωc
n,j

]1/p
= O(n−L) (3.3.23)

for every L > 0 and p > 1. From (3.3.17), (3.3.21) and (3.3.23),∥∥D∗
n,j1{j∈Lc

n}
∥∥
p

= O
(
κη3−η2+η4
n

)
= O

(
n−c0(η2−η3−η4)

)
(3.3.24)

as n → ∞ for every p > 1. We recall that the parameters should satisfy

0 < η2 < η1 < min

{
1

2
,
1

2

(
1

c0
− 1

)}
, η3 + η4 < η2.

[ In particular, if c0 = 1/2, then 0 < η2 < η1 < 1/2. The positive parameters η3 and η4 can be
sufficiently small at this stage. Remark that c0η2 < 1/4 when c0 ≤ 1/2. ]

(II) Let

D̃∗
n,j = κη3n

{
n

κn

∑
k∈K̂n,j(α0)

|∆kX|2Kn,k −
n

κn

∑
k∈K̃n,j(α0)

|∆kX|2Kn,k

}
.

Applying Lemma 3.3.5 (ii) to Vk = n|∆kX|2Kn,k1{j∈Lc
n}, we have∥∥D̃∗

n,j1{j∈Lc
n}
∥∥
p

≤ Φ
(3.3.26)
n,j +Φ

(3.3.27)
n,j +Φ

(3.3.28)
n,j , (3.3.25)

where

Φ
(3.3.26)
n,j = κη3n

∥∥∥∥ max
k∈In,j

n|∆kX|2Kn,k1{j∈Lc
n}

∥∥∥∥
p

P

[∣∣|W1| − c(α0)
1/2
∣∣ < Čκ−η2

n

]
, (3.3.26)
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Φ
(3.3.27)
n,j = κη3n

∥∥∥∥ max
k∈In,j

n|∆kX|2Kn,k1{j∈Lc
n}

∥∥∥∥
pp1(p1−p)−1

×
∥∥∥∥ 1

κn

∑
k∈In,j

(
1{∣∣|Wk|−c(α0)1/2

∣∣<Čκ
−η2
n

} − P

[∣∣|Wk| − c(α0)
1/2
∣∣ < Čκ−η2

n

])∥∥∥∥
p1

(3.3.27)

and

Φ
(3.3.28)
n,j = κη3n P

[
Ω̃c
n,j

]1/p1∥∥∥∥ max
k∈In,j

n|∆kX|2Kn,k1{j∈Lc
n}

∥∥∥∥
pp1(p1−p)−1

(3.3.28)

for j ∈ In, n ∈ N. Then, paying κη4n for the maximum, we have the following estimates for any
p1 > p ≥ 1:

sup
j∈In

Φ
(3.3.26)
n,j = O

(
κη3+η4−η2
n

)
= O

(
n−c0(η2−η3−η4)

)
, (3.3.29)

sup
j∈In

Φ
(3.3.27)
n,j = O

(
κη3n ×κη4n × κ−(1+η2)/2

n

)
= O

(
n−c0

(
1+η2

2
−η3−η4

))
, (3.3.30)

and

sup
j∈In

Φ
(3.3.28)
n,j = O(n−L) (3.3.31)

as n → ∞ for any L > 0 for a sufficiently large Č; the estimate (3.3.31) follows from Lemma 3.3.6. In
this way, ∥∥D̃∗

n,j1{j∈Lc
n}
∥∥
p

= O
(
n−c0(η2−η3−η4)

)
+O

(
n−c0

(
1+η2

2
−η3−η4

))
(3.3.32)

as n → ∞ for every p ≥ 1.

(III) On the event {j ∈ Lc
n}, we have

∑
k∈K̃n,j(α0)

|∆kX|2Kn,k =
∑

k∈K̃n,j(α0)

(∫ tk

tk−1

σtdwt +

∫ tk

tk−1

btdt

)2

Kn,k

= Φ
(3.3.34)
n,j +Φ

(3.3.35)
n,j +Φ

(3.3.36)
n,j +Φ

(3.3.37)
n,j +Φ

(3.3.38)
n,j (3.3.33)

where

Φ
(3.3.34)
n,j =

∑
k∈In,j

(
σtj

n

)2
hW 2

k 1{|Wk|≤c(α0)1/2}, (3.3.34)
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Φ
(3.3.35)
n,j =

∑
k∈In,j

(
σtj

n

)2
hW 2

k 1{|Wk|≤c(α0)1/2}
(
Kn,k − 1

)
+2

∑
k∈K̃n,j(α0)

∫ tk

tk−1

∫ t

tk−1

(
σ̃s − σ̃tj

n

)
dwsσtdwtKn,k

+2
∑

k∈K̃n,j(α0)

∫ tk

tk−1

∫ t

tk−1

σtj
n
dws

(
σ̃t − σ̃tj

n

)
dwtKn,k

+2
∑

k∈K̃n,j(α0)

∫ tk

tk−1

σ̃tj
n

(
σ̃t − σ̃tj

n

)
dtKn,k

+
∑

k∈K̃n,j(α0)

(∫ tk

tk−1

(
σ̃t − σ̃tj

n

)
dwt

)2

Kn,k, (3.3.35)

Φ
(3.3.36)
n,j = 2

∑
k∈K̃n,j(α0)

∫ tk

tk−1

∫ t

tk−1

bsdsσtdwtKn,k, (3.3.36)

Φ
(3.3.37)
n,j = 2

∑
k∈K̃n,j(α0)

∫ tk

tk−1

∫ t

tk−1

σsdwsbtdtKn,k, (3.3.37)

and

Φ
(3.3.38)
n,j = 2

∑
k∈K̃n,j(α0)

∫ tk

tk−1

∫ t

tk−1

bsdsbtdtKn,k. (3.3.38)

By assumption,

sup
j∈In

sup
s∈[tj

n
−1,tj

n
+κn ]

∥∥1{j∈Lc
n}
(
σ2
s − σ2

tj
n
−1

)∥∥
p

≤ sup
j∈In

sup
s∈[tj

n
−1,tj

n
+κn ]

∥∥σ̃2
s − σ̃2

tj
n
−1

∥∥
p

<∼ (κnh)
1/2 <∼ h

1
2
(1−c0) (3.3.39)

for every p > 1. First, a primitive estimate gives

sup
j∈In

n

κn

∥∥Φ(3.3.35)
n,j 1{j∈Lc

n}
∥∥
p

<∼
n

κn
× κ

3/2
n

n3/2
<∼ h

1
2
(1−c0) (3.3.40)

as n → ∞; we note that the orthogonality cannot apply due to K̃n,j(α0) even after Kn,k is decoupled.
We also have

sup
j∈In

n

κn

∥∥Φ(3.3.36)
n,j 1{j∈Lc

n}
∥∥
p

<∼ h1/2. (3.3.41)

For Φ
(3.3.37)
n,j and Φ

(3.3.38)
n,j , by the same way, we can get

sup
j∈In

n

κn

∥∥Φ(3.3.37)
n,j 1{j∈Lc

n}
∥∥
p

<∼ h1/2, (3.3.42)
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and

sup
j∈In

n

κn

∥∥Φ(3.3.38)
n,j 1{j∈Lc

n}
∥∥
p

<∼ h (3.3.43)

as n → ∞. Furthermore, we have

sup
j∈In

∥∥∥∥{ 1

κnh
Φ
(3.3.34)
n,j −

(
σtj

n

)2
q(α0)

}
1{j∈Lc

n}

∥∥∥∥
p

≤ sup
j∈In

∥∥∥∥ 1

κnh

{
Φ
(3.3.34)
n,j −

∑
k∈In,j

(
σtj

n

)2
q(α0)h

}
1{j∈Lc

n}

∥∥∥∥
p

≤ sup
j∈In

∥∥∥∥ 1

κn

∑
k∈In,j

(
σtj

n

)2(
W 2

k 1{|Wk|≤c(α0)1/2} − q(α0)
)∥∥∥∥

p

= O(κ−1/2
n ) = O(hc0/2) (3.3.44)

for every p > 1. Combining (3.3.33) and (3.3.39)-(3.3.44), we obtain

sup
j∈In

sup
k′∈In,j

∥∥∥∥1{j∈Lc
n}

(
n

κnT

∑
k∈K̃n,j(α0)

|∆kX|2Kn,k − σ2
tk′
q(α0)

)∥∥∥∥
p

= O
(
n−(1−c0)/2

)
+O(n−c0/2) (3.3.45)

as n → ∞ for every p > 1.
(IV) From (3.3.24), (3.3.32) and (3.3.45), we obtain the estimate

sup
j∈In

sup
k′∈In,j

κη3n

∥∥∥∥1{j∈Lc
n}

(
n

κnT

∑
k∈Kn,j(α0)

|∆kX|2Kn,k − σ2
tk′
q(α0)

)∥∥∥∥
p

= O
(
n−c0(η2−η3−η4)

)
+

{
O
(
n−c0(η2−η3−η4)

)
+O

(
n−c0

(
1+η2

2
−η3−η4

))}
+κη3n

{
O
(
n−(1−c0)/2

)
+O(n−c0/2)

}
= O(n−c0(η2−η3−η4)) +O

(
nc0(η3+η4)−(1−c0)/2

)
=: On (3.3.46)

as n → ∞ for every p > 1. Here we are assuming the parameters satisfy

c0 ∈ (0, 1), B > 0, η1 ∈
(
0,min

{
1
2

(
1
c0

− 1
)
, 12

})
,

η2 ∈ (0, η1), η3 > 0, η4 > 0, η3 + η4 < η2. (3.3.47)

To obtain the last error bound in (3.3.46), we used the inequalities

−c0

(
1 + η2

2
− η3 − η4

)
< −c0

(
η2 − η3 − η4

)
and

c0η3 −
c0
2

< c0η3 − c0η2 < −c0(η2 − η3 − η4).
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The LGRV Ln,j(α0) of (3.3.15) does not depend on ηi (i = 1, 2, 3, 4) within the ranges (3.3.47). When
c0 > 1/2, we make

1

2
>

1

2

(
1

c0
− 1

)
> η1 > η2 > η3 ↑

1

2

(
1

c0
− 1

)
, η4 ↓ 0

to obtain On = O(1). When c0 ≤ 1/2, we make

1

2
> η1 > η2 > η3 ↑

1

2
, η4 ↓ 0

to obtain On = O(1). Thus, the proof of Theorem 3.3.7 is concluded.

According to the error bound (3.3.16), we should in general take c0 = 1/2, i.e., κn ∼ Bn1/2 to
obtain an optimal error estimate. However, this is not always true. If the process σ is (unknown)
constant for example, then we do not need any spot volatility estimator to construct a global jump
filter, and the convergence of the resulting estimator for Θ becomes much faster than that in the
non-constant σ case.

3.3.3 Local minimum RV

Estimation of spot volatilities can be done by the minimum realized volatility method of Andersen et
al. [1]. It is defined as follows.

Mn,j =
π

π − 2

n

κ̄nT

∑
k∈In,j

{
|∆kX| ∧ |∆k+1X|}2.

Theorem 3.3.8. Suppose that [G1] is fulfilled. For c0 ∈ (0, 1) and B > 0, suppose that κn ∼ Bnc0 as
n → ∞. Then

sup
n∈N

sup
j∈In

sup
k∈In,j

nγ∗
∥∥1{j∈Lc

n}
(
Mn,j − σ2

tk

)∥∥
p

< ∞

as n → ∞ for any p > 1 and any constant γ∗ satisfying

γ∗ < min

{
1

2
(1− c0),

1

2
c0

}
.

The proof is essentially the same as that of Andersen et al. [1].

3.4 Rate of convergence of the global realized volatilities in high
intensity of jumps

When the frequency of the jumps is high, it is recommend that one should choose a value of α that is
not extremely small in order to cover the jumps by the index set Jn(α)

c.

[G2] (i) Sn,j−1 is positive a.s. and

sup
n∈N

sup
j∈In

∥∥S−1
n,j−1

∥∥
p

< ∞

for every p > 1.
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(ii) There exist positive constants γ0 and c such that

sup
n∈N

sup
j∈In

nγ0
∥∥1{j∈Lc

n}
(
σ2
tj−1

− c Sn,j−1

)∥∥
p

< ∞

for every p > 1.

In [G2], we do not assume that the value of constant c is known. We note that

sup
n∈N

sup
j∈In

∥∥1{j∈Lc
n}Sn,j−1

∥∥
p

< ∞

for every p > 1 under [G1] and [G2]. As shown in Theorem 3.3.7, the LGRV in (3.3.15) can serve as
Sn,j−1.

If σt is equal to a (possibly unknown) constant, then γ0 can be arbitrarily large since we can let
Sn,j−1 = 1. In other words, we do not need any pre-estimate of σ2

tj−1
. So, the constant volatility

case is very special and it will be discussed briefly in Section 3.6 separately. This section logically
includes the constant volatility case (hence a less efficient way for it) but we will consider a general
non-constant volatility and assume a given local estimator attains a limited rate of convergence.

Remark 3.4.1. When v = 2−1 infω∈Ω,t∈[0,T ] σ
2
t > 0 for a priori known constant v, given a local

estimator Lloc
n,j−1 of σ2

tj−1
, we can use Sn,j−1(v) = Lloc

n,j ∨ v for Sn,j−1. For example, it is the case
when X satisfies a stochastic differential equation with jumps and its diffusion coefficient is uniformly
elliptic. When v = 0, an appropriate modification of Lloc

n,j is necessary and possible. We only give an
idea without going into details here. Preset a positive constant v. Using Sn,j−1(v) for Sn,j−1, we obtain

an estimator Ṽn[v] of Θ(v) =
∫ T
0 σ2

t 1{σ2
t≥v}dt, and indeed, the rate of convergence Ṽn[v] is established

in this paper. Then it is natural to use Ṽn[vn] to estimate Θ =
∫ T
0 σ2

t dt with a sequence of numbers vn
tending to 0 as n → ∞. Consistency does not matter because the mappting v 7→ Θ(v) is continuous
and the operation vn ↓ 0 is stable. Some work is necessary to give an explicit rate of convergence since
the constant of the error bound for each vn depends on vn. However, the cause of the error by the
truncation at level vn is the difference

∫ T
0 σ2

t 1{σ2
t<vn}dt, and it is rather easy to control for small vn.

3.4.1 Rate of convergence of the GRV with a fixed α

We consider the GRV given by (3.2.2):

Vn(α) =
∑

j∈Jn(α)

q(α)−1|∆jX|2Kn,j .

Denote by rn(Uj) the rank of Uj among the variables {Ui}i∈In as before, and |U|(r) denotes the r-th
ordered statistic of {|Ui|}i∈In . Let 0 < γ2 < γ1 < γ0, and define numbers an and ân by

an = ⌊(1− α)n− n1−γ2⌋ and ân = ⌊an − n1−γ2⌋,

respectively. Define the event Nn,j by

Nn,j =
{
rn(|Wj |) ≤ an − n1−γ2

}
∩
{
|W |(an) − |Wj | < n−γ1

}
The following lemma is Lemma 2.6 of Inatsugu and Yoshida [8].
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Lemma 3.4.2.

P

[ ∪
j=1,..,,n

Nn,j

]
= O(n−L)

as n → ∞ for every L > 0.

We need some notation:

Ĵn(α) =
{
j ∈ In; rn(|Wj |) ≤ ân

}
,

Uj = c−1/2h−1/2(Sn,j−1)
−1/2∆jX

Rj = Uj −Wj − c−1/2h−1/2(Sn,j−1)
−1/2∆jJ,

as well

Ωn =

{
NT < n1−γ2

}∩( ∩
j=1,...,n

[{
|Rj |1{∆jNσ=0} < 2−1n−γ1

}
∩ (Nn,j)

c

])
.

We assume that the distribution of the variable NT depends on n. In particular, we consider the
case where NT may diverge as n → ∞.

[G3] There exists a constant ξ ≥ 0 such that ∥NT ∥p = O(nξ) as n → ∞ for every p > 1.

Lemma 3.4.3. Suppose that [G1] and [G2] are satisfied. Suppose that 0 < γ1 < γ0 < 1/2. Then

sup
j∈In

P
[
|Rj |1{∆jNσ=0} ≥ 2−1n−γ1

]
= O(n−L) (3.4.1)

as n → ∞ for every L > 0. In particular, if γ2 < 1− ξ and [G3] is additionally satisfied, then

P [Ωc
n] = O(n−L) (3.4.2)

as n → ∞ for every L > 0.

Proof. We have

sup
j∈In

∥∥Rj1{∆jNσ=0}
∥∥
p

= O(n−γ0)

for every p > 1. The Markov inequality implies (3.4.1). This estimate and Lemma 3.4.2 give (3.4.2).

Let

Ln =
{
j ∈ In; ∆jN ̸= 0

}
. (3.4.3)

Lemma 2.7 of Inatsugu and Yoshida [8] is rephrased as follows. We note that the definition of L(k)
n

therein is essentially the same as Ln, and different from Ln defined by (3.3.4).

Lemma 3.4.4.

Ĵn(α) ∩ Lc
n ⊂ Jn(α) (3.4.4)

on Ωn. In particular

#
[
Jn(α)⊖ Ĵn(α)

]
≤ c∗n

1−γ2 +NT (3.4.5)

on Ωn, where c∗ is a positive constant. Here ⊖ denotes the symmetric difference operator of sets.
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For γ3 > 0 and random variables (Uj)j=1,...,n, let

Dn = nγ3

∣∣∣∣∣ 1n ∑
j∈Jn(α)

Uj −
1

n

∑
j∈Ĵn(α)

Uj

∣∣∣∣∣.
We refer the reader to Inatsugu and Yoshida [8] (Lemmas 2.8 and 2.9) for proof of the following

two lemmas.

Lemma 3.4.5. (i) Let p1 > 1. Then

∥Dn∥p ≤
(
c∗n

γ3−γ2 + n−1+γ3∥NT ∥p1
)∥∥∥∥ max

j=1,...,n

∣∣Uj∣∣∥∥∥∥
pp1(p1−p)−1

+nγ3

∥∥∥∥ max
j=1,...,n

∣∣Uj∣∣1Ωc
n

∥∥∥∥
p

for p ∈ (1, p1).

(ii) Let γ4 > 0 and p1 > 1. Then

∥Dn∥p ≤
(
c∗n

γ3−γ2 + n−1+γ3∥NT ∥p1
)

×
(
nγ4 + n max

j=1,...,n

∥∥∥∥∣∣Uj∣∣1{|Uj |>nγ4}

∥∥∥∥
pp1(p1−p)−1

)
+nγ3

∥∥∥∥ max
j=1,...,n

∣∣Uj∣∣1Ωc
n

∥∥∥∥
p

for p ∈ (1, p1).

Let

D̃n = nγ3

∣∣∣∣ 1n ∑
j∈Ĵn(α)

Uj −
1

n

∑
j∈J̃n(α)

Uj

∣∣∣∣.
for a collection of random variables {Uj}j∈In and

J̃n(α) =
{
j ∈ In; |Wj | ≤ c(α)1/2

}
. (3.4.6)

Let

Ω̃n =
{∣∣|W |(ân) − c(α)1/2

∣∣ < Č n−γ2
}
, (3.4.7)

where Č is a positive constant. See Lemma 4 of Inatsugu and Yoshida [8] for a proof of the following
lemma.

Lemma 3.4.6. Let Č > 0 and γ3 > 0. Then

(i) For p ≥ 1,

∥D̃n∥p ≤ nγ3

∥∥∥∥ max
j′=1,...,n

|Uj′ |
1

n

n∑
j=1

1{∣∣|Wj |−c(α)1/2
∣∣<Č n−γ2

}∥∥∥∥
p

+ nγ3

∥∥∥∥1Ω̃c
n

max
j′=1,...,n

|Uj′ |
∥∥∥∥
p

.
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(ii) For p1 > p ≥ 1,

∥D̃(k)
n ∥p ≤ nγ3

∥∥∥∥ max
j=1,...,n

|Uj |
∥∥∥∥
p

P

[∣∣|W1| − c(α)1/2
∣∣ < Č n−γ2

]
+nγ3

∥∥∥∥ max
j=1,...,n

|Uj |
∥∥∥∥
pp1(p1−p)−1

×
∥∥∥∥ 1n

n∑
j=1

(
1{∣∣|Wj |−c(α)1/2

∣∣<Č n−γ2

} − P

[∣∣|W1| − c(α)1/2
∣∣ < Č n−γ2

])∥∥∥∥
p1

+nγ3P [Ω̃c
n]

1/p1

∥∥∥∥ max
j=1,...,n

|Uj |
∥∥∥∥
pp1(p1−p)−1

.

Lemma 3.4.7. If the constant Č in (3.3.11) is sufficiently large, then

P
[
Ω̃c
n

]
= O(n−L)

as n → ∞ for any L > 0.

Now we shall investigate the rate of convergence of Vn(α) for a constant α ∈ (0, 1). We note that,
under [G1] and [G3], ∥∥∥∥ ∑

j∈Ln

|∆jX|2Kn,j

∥∥∥∥
p

≤ n−1/2
∥∥NT

∥∥
p
= O(n−1/2+ξ). (3.4.8)

Let

V̂n(α) =
∑

j∈Ĵn(α)

q(α)−1|∆jX|2Kn,j .

Lemma 3.4.8. Suppose that [G1] [G2] and [G3] are fulfilled. Suppose that ξ < 1
2 . Let γ5 < min

{
γ0,

1
2−

ξ
}
. Then

sup
n∈N

nγ5
∥∥Vn(α)− V̂n(α)

∥∥
p

< ∞.

Proof. By (3.4.8), we obtain∥∥Vn(α)− V̂n(α)
∥∥
p

=

∥∥∥∥ ∑
j∈Jn(α)

q(α)−1|∆jX|21{∆jN=0}Kn,j

−
∑

j∈Ĵn(α)

q(α)−1|∆jX|21{∆jN=0}Kn,j

∥∥∥∥
p

+O(n−1/2+ξ).

By Lemmas 3.4.5 and 3.4.3,

nγ3
∥∥Vn(α)− V̂n(α)

∥∥
p

<∼
(
c∗n

γ3−γ2 + n−1+γ3∥NT ∥p1
)

×
(
nγ4 + n max

j=1,...,n

∥∥∥∥n|∆jX|21{∆jN=0}Kn,j1{n|∆jX|21{∆jN=0}Kn,j>nγ4}

∥∥∥∥
pp1(p1−p)−1

)
+nγ3

∥∥∥∥ max
j=1,...,n

(
n|∆jX|21{∆jN=0}Kn,j

)
1Ωc

n

∥∥∥∥
p

+O(n−1/2+γ3+ξ)

<∼ c∗n
γ3+γ4−γ2 + n−1+γ3+γ4+ξ + n−1/2+γ3+ξ,
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where 1 < p < p1. The parameters should satisfy

0 < γ3 < γ2 < γ1 < γ0 <
1

2
, γ2 <

1

2
− ξ, γ4 > 0.

We make

γ4 ↓ 0, γ5 < γ3 <↑ γ2 <↑ γ1 <↑ min

{
γ0,

1

2
− ξ

}
to obtain the desired exponent.

For J̃n(α) defined in (3.4.6), let

Ṽn(α) =
∑

j∈J̃n(α)

q(α)−1|∆jX|2Kn,j .

Lemma 3.4.9. Suppose that [G1] and [G3] are fulfilled. Suppose that ξ < 1
2 . Let γ6 <

1
2 − ξ. Then

sup
n∈N

nγ6
∥∥V̂n(α)− Ṽn(α)

∥∥
p

< ∞.

Proof. By (3.4.8), we obtain∥∥V̂n(α)− Ṽn(α)
∥∥
p

=

∥∥∥∥ ∑
j∈Ĵn(α)

q(α)−1|∆jX|21{∆jN=0}Kn,j

−
∑

j∈J̃n(α)

q(α)−1|∆jX|21{∆jN=0}Kn,j

∥∥∥∥
p

+O(n−1/2+ξ).

By Lemma 3.4.6, we obtain

nγ3
∥∥V̂n(α)− Ṽn(α)

∥∥
p

<∼ nγ3

∥∥∥∥ max
j=1,...,n

(
n|∆jX|21{∆jN=0}Kn,j

) ∥∥∥∥
p

P

[∣∣|W1| − c(α)1/2
∣∣ < Č n−γ2

]
+nγ3

∥∥∥∥ max
j=1,...,n

(
n|∆jX|21{∆jN=0}Kn,j

)∥∥∥∥
pp1(p1−p)−1

×
∥∥∥∥ 1n

n∑
j=1

(
1{∣∣|Wj |−c(α)1/2

∣∣<Č n−γ2

} − P

[∣∣|W1| − c(α)1/2
∣∣ < Č n−γ2

])∥∥∥∥
p1

+nγ3P [Ω̃c
n]

1/p1

∥∥∥∥ max
j=1,...,n

(
n|∆jX|21{∆jN=0}Kn,j

)∥∥∥∥
pp1(p1−p)−1

+O(nγ3−1/2+ξ)

<∼ nγ3−γ2 + nγ3− 1
2
− γ2

2 +nγ3−1/2+ξ <∼ nγ3+γ4−γ2 + nγ3+γ4−1/2+ξ,

where 1 ≤ p < p1 and γ4 is an arbitrary positive number. Lemma 3.4.7 was used in the above
derivation. Making

γ4 ↓ 0 and γ6 < γ3 <↑ γ2 <↑ 1

2
− ξ,

we conclude the proof.
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Lemma 3.4.10. Suppose that [G1] and [G3] are satisfied. Suppose that ξ < 1/2. Then∥∥∥∥Ṽn(α)−
∫ T

0
σ2
t dt

∥∥∥∥
p

= O
(
n− 1

2
+ξ
)

as n → ∞ for every p > 1.

Proof. Recall that Ln is defined by (3.4.3). We have

∑
j∈J̃n(α)

|∆jX|2Kn,j1{j∈Lc
n} =

∑
j∈J̃n(α)

(∫ tj

tj−1

σtdwt +

∫ tj

tj−1

btdt

)2

Kn,j1{j∈Lc
n}

= Φ(3.4.10)
n +Φ(3.4.11)

n +Φ(3.4.12)
n (3.4.9)

where

Φ(3.4.10)
n =

∑
j∈In

σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}, (3.4.10)

Φ(3.4.11)
n =

∑
j∈In

σ2
tj−1

hW 2
j 1{|Wj |≤c(α0)1/2}

(
Kn,j1{j∈Lc

n} − 1
)

+2
∑

j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

(
σ̃s − σ̃tj−1

)
dwsσtdwtKn,j1{j∈Lc

n}

+2
∑

j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

σtj−1dws

(
σ̃t − σ̃tj−1

)
dwtKn,j1{j∈Lc

n}

+2
∑

j∈J̃n(α)

∫ tj

tj−1

σ̃tj−1

(
σ̃t − σ̃tj−1

)
dtKn,j1{j∈Lc

n}

+
∑

j∈J̃n(α)

(∫ tj

tj−1

(
σ̃t − σ̃tj−1

)
dwt

)2

Kn,j1{j∈Lc
n} (3.4.11)

and

Φ(3.4.12)
n = 2

∑
j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

bsdsσtdwtKn,j1{j∈Lc
n}

+2
∑

j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

σsdwsbtdtKn,j1{j∈Lc
n}

+2
∑

j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

bsdsbtdtKn,j1{j∈Lc
n}. (3.4.12)
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Let ϵ > ξ. For p > 1 and ϵ′ > 0,∥∥∥∥∑
j∈In

σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}

(
Kn,j1{j∈Lc

n} − 1
)∥∥∥∥

p

≤
∥∥∥∥∑
j∈In

σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}Kn,j1{j∈Ln}

∥∥∥∥
p

(3.4.13)

+

∥∥∥∥∑
j∈In

σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}

(
Kn,j − 1

)∥∥∥∥
p

≤
∥∥∥∥max

j∈In

(
σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}Kn,j

)
NT

∥∥∥∥
p

+O(n−L)

≤
∥∥NT 1{NT>nϵ}

∥∥
2p

∥∥∥∥max
j∈In

(
σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}Kn,j

)∥∥∥∥
2p

+nϵ

∥∥∥∥max
j∈In

(
σ2
tj−1

hW 2
j 1{|Wj |≤c(α)1/2}Kn,j

)∥∥∥∥
p

+O(n−L)

<∼ n
−Lϵ

2p
∥∥NT

∥∥ 2p+L
2p

2p+L × n−1+ϵ′ + n−1+ϵ+ϵ′ +O(n−L)

<∼ n
−L(ϵ−ξ)

2p
+ξ−1+ϵ′

+ n−1+ϵ+ϵ′ +O(n−L)

<∼ n−1+ϵ+ϵ′

since ϵ > ξ, where L is a sufficiently large number chosen suitably depending on (ϵ, ξ, p, ϵ′).
From the estimate (3.4.13), we have∥∥Φ(3.4.11)

n

∥∥
p

<∼ h1/2 + h1−ϵ−ϵ′ <∼ h1/2 (3.4.14)

if letting ϵ ↓ ξ < 1/2 and ϵ′ ↓ 0.
By the Burkholder-Davis-Gundy inequality, we have∥∥∥∥∥ ∑

j∈J̃n(α)

∫ tj

tj−1

∫ t

tj−1

bsdsσtdwtKn,j1{j∈Lc
n}

∥∥∥∥∥
p

≤
∑
j∈In

∥∥∥∥∥
∫ tj

tj−1

∫ t

tj−1

bsdsσtdwt

∥∥∥∥∥
p

≲
∑
j∈In

√√√√∥∥∥∥∥
∫ tj

tj−1

(∫ t

tj−1

bsdsσt

)2

dt

∥∥∥∥∥
p/2

≤
∑
j∈In

√√√√∫ tj

tj−1

∥∥∥∥∥
∫ t

tj−1

bsdsσt

∥∥∥∥∥
2

p

dt

≲ h1/2.

From this and similar estimates, we have∥∥Φ(3.4.12)
n

∥∥
p

<∼ h1/2 (3.4.15)

as n → ∞ for every p > 1. Moreover,∥∥∥∥Φ(3.4.10)
j −

∑
j∈In

σ2
tj−1

q(α)h

∥∥∥∥
p

≤
∥∥∥∥h∑

j∈In

σ2
tj−1

(
W 2

j 1{|Wj |≤c(α)1/2} − q(α)
)∥∥∥∥

p

= O(h1/2) (3.4.16)
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for every p > 1.
Obviously,

sup
j∈In

∥∥1{j∈Lc
n}
(
σ2
tk
− σ2

tj−1

)∥∥
p

≤ sup
j∈In

∥∥σ̃2
tk
− σ̃2

tj−1

∥∥
p
<∼ h1/2 (3.4.17)

for every p > 1. In view of (3.4.17), we deduce that∥∥∥∥∑
j∈In

σ2
tj−1

h−
∫ T

0
σ2
t dt

∥∥∥∥
p

≤
∥∥∥∥∑
j∈In

∫ tj

tj−1

∣∣σ̃2
t − σ̃2

tj−1

∣∣dt∥∥∥∥
p

+

∥∥∥∥∑
j∈In

∫ tj

tj−1

(
σ2
t − σ2

tj−1

)
dt1{j∈Ln}

∥∥∥∥
p

≤ O(h1/2) +

∥∥∥∥max
j∈In

{∫ tj

tj−1

(
|σ2

t |+ |σ2
tj−1

|
)
dt

}
NT

∥∥∥∥
p

= O(h1/2), (3.4.18)

following the passage from (3.4.13) to (3.4.14).
Easily, ∥∥∥∥ ∑

j∈J̃n(α)

|∆jX|2Kn,j1{j∈Ln}

∥∥∥∥
p

≤
∥∥n−1/2NT

∥∥
p
<∼ n− 1

2
+ξ. (3.4.19)

Combining (3.4.19), (3.4.9), (3.4.14), (3.4.15) (3.4.16) and (3.4.18), we obtain∥∥∥∥Ṽn(α)−
∫ T

0
σ2
t dt

∥∥∥∥
p

= O
(
n− 1

2
+ξ
)

as n → ∞ for every p > 1.

Theorem 3.4.11. Suppose that [G1] [G2] and [G3] are fulfilled. Suppose that ξ < 1
2 . Let α ∈ (0, 1)

and β0 < min
{
γ0,

1
2 − ξ

}
. Then ∥∥Vn(α)−Θ

∥∥
p

= O(n−β0)

as n → ∞ for every p > 1.

Proof. Use Lemmas 3.4.8, 3.4.9 and 3.4.10.

3.4.2 Rate of convergence of the WGRV with a fixed α

Next, we discuss the convergence of the WGRV with a fixed α. Recall that the WGRV is defined as

Wn(α) =
∑
j∈In

w(α)−1
{
|∆jX| ∧ (S

1/2
n,j−1V(sn(α)))

}2
Kn,j .

The WGRV has entirely the same rate of convergence as the GRV.
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Theorem 3.4.12. Suppose that [G1], [G2], and [G3] are fulfilled. Suppose that ξ < 1
2 . Let α ∈ (0, 1)

and β0<min
{
γ0,

1
2 − ξ

}
. Moreover, assume that κn= O(n1/2). Then

∥Wn(α)−Θ∥p = O(n−β0)

as n → ∞ for every p > 1.

Proof. Decompose Wn(α) as

Wn(α) =
∑

j∈Jn(α)

w(α)−1|∆jX|2Kn,j +
∑

j∈Jn(α)c

w(α)−1Sn,j−1V
2
(sn(α))

Kn,j

=
q(α)

w(α)
Vn(α) +

∑
j∈Jn(α)c

w(α)−1Sn,j−1V
2
(sn(α))

Kn,j .

Note that w(α) = q(α) + αc(α). Hence, it suffices to show that∥∥∥∥∥∥
∑

j∈Jn(α)c

Sn,j−1V
2
(sn(α))

Kn,j − αc(α)Θ

∥∥∥∥∥∥
p

= O(n−β0)

as n → ∞ for every p > 1. Decompose the left-hand side as∑
j∈Jn(α)c

Sn,j−1V
2
(sn(α))

Kn,j − αc(α)Θ =
∑

j∈Jn(α)c

Sn,j−1V
2
(sn(α))

Kn,j1{j∈Lc
n} − αc(α)Θ

+
∑

j∈Jn(α)c

Sn,j−1V
2
(sn(α))

Kn,j1{j∈Ln∩Ln}

+
∑

j∈Jn(α)c

Sn,j−1V
2
(sn(α))

Kn,j1{j∈Lc
n∩Ln}

=:A1 +A2 +A3.

Since Sn,j−1V
2
(sn(α))

Kn,j ≤ |∆jX|2Kn,j ≤ n−1/2 for j ∈ Jn(α)
c, we have

∥∥A2

∥∥
p
≲ n−1/2+ξ. As for A3,

note that #Ln ≲ nξ × κ̄n= O(nξ+1/2) and that ∆jX = ∆jX̃ for j ∈ Lc
n. Hence we have

∥A3∥p ≤
∥∥∥∥max
j∈In

|∆jX̃|2#(Lc
n ∩ Ln)

∥∥∥∥
p

≲ n−1/2+ξ+ϵ,

where ϵ is an arbitrarily small positive number.
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As for A1, we can set c = 1 in the condition [G2](ii) without loss of generality.

∥A1 − αc(α)Θ∥p ≤

∥∥∥∥∥∥
(
h−1V 2

(sn(α))
− c(α)

)
h

∑
j∈Jn(α)c

Sn,j−1Kn,j1{j∈Lc
n}

∥∥∥∥∥∥
p

+ c(α)

∥∥∥∥∥∥h
∑

j∈Jn(α)c

(
Sn,j−1 − σ2

tj−1

)
1{j∈Lc

n}

∥∥∥∥∥∥
p

+ c(α)

∥∥∥∥∥∥h
∑

j∈Jn(α)c

Sn,j−1

(
1−Kn,j

)
1{j∈Lc

n}

∥∥∥∥∥∥
p

+ c(α)

∥∥∥∥∥∥h
∑

j∈Jn(α)c

σ2
tj−1

1{j∈Lc
n} − αΘ

∥∥∥∥∥∥
p

=:B1 +B2 +B3 +B4.

By condition [G2], B2 = O(n−γ0). As for B3, with the estimate
∥∥1{j∈Lc

n}(1−Kn,j)
∥∥
p
≤ P [|∆jX̃| >

n−1/4]1/p = O(n−L) (for all p > 1 and L > 0) and the Cauchy-Schwarz inequality, we have

∥B3∥p ≤ h
∑
j∈In

∥∥1{j∈Lc
n}Sn,j−1

∥∥
2p

∥∥1{j∈Lc
n}(1−Kn,j)

∥∥
2p

= O(n−L).

For B4, we use the following decomposition:

h
∑

j∈Jn(α)c

σ2
tj−1

1{j∈Lc
n} − αΘ

=

h
∑
j∈In

σ2
tj−1

−Θ

− h
∑
j∈In

σ2
tj−1

1{j∈Ln} + h
∑

j∈Jn(α)

σ2
tj−1

1{j∈Ln}

+

(1− α)Θ− h
∑

j∈J̃n(α)

σ2
tj−1

+

h
∑

j∈J̃n(α)

σ2
tj−1

− h
∑

j∈Jn(α)

σ2
tj−1

 .

Hence, with the aid of Lemmas 3.4.5, 3.4.6 and the estimate ∥Ln∥p <∼ nξ+1/2, we have∥∥∥∥∥h ∑
j∈Jn(α)c

σ2
tj−1

1{j∈Lc
n} − αΘ

∥∥∥∥∥
p

≲
∥∥∥∥∥h∑

j∈In

σ2
tj−1

−Θ

∥∥∥∥∥
p

+

∥∥∥∥∥(1− α)Θ− h
∑

j∈J̃n(α)

σ2
tj−1

∥∥∥∥∥
p

+O(n−β0) (3.4.20)

since β0 <
1
2 − ξ. The first term of the right-hand side of the above inequality is O(n−1/2) by (3.4.18).
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As for the second term on the right-hand side of (3.4.20),∥∥∥∥∥(1− α)Θ− h
∑

j∈J̃n(α)

σ2
tj−1

∥∥∥∥∥
p

=

∥∥∥∥∥(1− α)Θ− h
∑
j∈In

σ2
tj−1

1{|Wj |≤c(α)1/2}

∥∥∥∥∥
p

≤

∥∥∥∥∥h∑
j∈In

σ2
tj−1

(
1{|Wj |≤c(α)1/2} − P

[
|Wj | ≤ c(α)1/2

])∥∥∥∥∥
p

+ (1− α)

∥∥∥∥∥h∑
j∈In

σ2
tj−1

−Θ

∥∥∥∥∥
p

= O(n−1/2).

since Hence we have B4 = O(n− 1
2
+ξ).

Finally, for B1, it suffices to show that

P
[∣∣h−1/2V(sn(α)) − c(α)1/2

∣∣ > n−β0

]
= O(n−L) (3.4.21)

as n → ∞ for every L > 0 and for every β0 < min{γ0, 12 − ξ}. Let

An,j =
{
h−1/2Vj < c(α)1/2 − n−β0

}
Vn,j = 1{

|Wj |≤c(α)1/2−n−β0+2−1n−γ1

}
and

µn = (1− α)n− 1− n
1
2
+ξ+ϵ − nE[Vn,j ]

for ϵ > 0. Then

P
[
h−1/2V(sn(α)) − c(α)1/2 < −n−β0

]
≤ P

∑
j∈In

1An,j ≥ (1− α)n− 1


≤ P

∑
j∈In

1An,j∩{j∈Lc
n} +

∑
j∈In

1An,j∩{j∈Ln} ≥ (1− α)n− 1


≤ P

∑
j∈In

1An,j∩{j∈Lc
n} +#Ln ≥ (1− α)n− 1


≤ P

∑
j∈In

Vn,j ≥ (1− α)n− 1− n
1
2
+ξ+ϵ

+ P [#Ln > n
1
2
+ξ+ϵ] + P [Ωc

n]

≤ P

∑
j∈In

(
Vn,j − E[Vn,j ]

)
≥ µn

+ P [#Ln > n
1
2
+ξ+ϵ] + P [Ωc

n]

We see

µn ∼ (1− α)n− 1− n
1
2
+ξ+ϵ − n

{
(1− α)− c∗(n−β0 − 2−1n−γ1

)}
≥ 1

2
c∗n1−β0
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for large n, where c∗ is some positive constant, if we take a sufficiently small ϵ and γ1 ∈ (β0, γ0) thanks

to β0 <
1
2 − ξ. Since n−1/2µn ≥ 2−1c∗n

1
2
−β0 from β0 < 1/2, we obtain

P

n−1/2
∑
j∈In

(
Vn,j − E[Vn,j ]

)
≥ n−1/2µn

 = O(n−L)

for every L > 0. Therefore,

P
[
h−1/2V(sn(α)) − c(α)1/2 < −n−β0

]
= O(n−L)

as n → ∞ for every L > 0. Similarly, we can obtain the estimate P
[
h−1/2V(sn(α)) − c(α)1/2 > n−β0

]
=

O(n−L) to show (3.4.21), which concludes the proof.

3.5 Asymptotic mixed normality of the global realized volatilities
with a moving threshold

3.5.1 The GRV with a moving threshold

In this section, we will consider a situation where the intensity of jumps is moderate. Then it is
possible to keep the cut-off ratio of the data small, and to get a precise estimate for the integrated
volatility. Let

δ0 ∈
(
0,

1

4

)
and δ1 ∈

(
0,

1

2

)
. (3.5.1)

In what follows, we will only consider sufficiently large n. In the context of the global jump filtering,
given a collection (Sn,j−1)j∈In (n ∈ N) of positive random variables, we may use the index set Mn

given by

Mn =
{
j ∈ In; Vj < V(sn)

}
(3.5.2)

where

Vj =
∣∣(Sn,j−1)

−1/2 ∆jX
∣∣ (3.5.3)

and

sn = n− ⌊Bnδ1⌋

for a positive constant B. We note that the definition of Vj is different from that in (3.2.1). In the
terminology of the previous sections, the cut-off ratio is αn = ⌊Bnδ1⌋/n, Mn = Jn(αn) and αn goes
to 0 as n tends to ∞.

For estimation of Θ of (3.1.1), we consider the global realized volatility with a moving threshold

Vn =
∑

j∈Mn

q−1
n

∣∣∆jX
∣∣2Hn,j (3.5.4)

where (qn)n∈N is a sequence of positive numbers, and

Hn,j = 1
{|∆jX|<B0n

− 1
4−δ0}

(3.5.5)

for a positive constant B0.
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Remark 3.5.1. Sn,j−1 = 1 and qn = 1 satisfy Condition [G2′]. Asymptotically this choice is sufficient
and valid. However, in practice, a natural choice is the pair Sn,j−1 in [G2] and qn = q(αn).

We are about establishing asymptotic mixed normality of the integrated volatility estimator having
a moving threshold. We will solve this problem by showing a stability of estimation under elimination
of a certain portion of the data. In what follows, we will consider the variable Vn defined by (3.5.4)
with (3.5.5) for Mn, that is just a random index set in In. It is not necessary to specify it by (3.5.2)
and (3.5.3). We will assume (3.5.1) and

[G2′] (i) For every n ∈ N, Mn is a random set in In such that #
(
In \ Mn

)
≤ B1n

δ1 (n ∈ N) for
some positive constant B1.

(ii) qn > 0 (n ∈ N) and qn − 1 = o(n−1/2) as n → ∞.

Let

V†
n =

∑
j∈Mn

q−1
n

∣∣∆jX̃
∣∣2Hn,j

for X̃ = X − J .

Lemma 3.5.2. Suppose that [G1], [G2′] and [G3] are satisfied. Suppose that ξ < 2δ0. Then

n1/2
∥∥Vn −V†

n

∥∥
p

→ 0

as n → ∞ for every p > 1.

Proof. We have the estimate

n1/2
∥∥Vn −V†

n

∥∥
p

≤ 2q−1
n Φ(3.5.7)

n + q−1
n Φ(3.5.8)

n , (3.5.6)

where

Φ(3.5.7)
n = n1/2

∥∥∥∥ ∑
j∈Mn

∣∣∆jX̃∆jJ
∣∣Hn,j

∥∥∥∥
p

, (3.5.7)

and

Φ(3.5.8)
n = n1/2

∥∥∥∥ ∑
j∈Mn

∣∣∆jJ
∣∣2Hn,j

∥∥∥∥
p

(3.5.8)

for p > 1. By using the inequality

|∆jJ |Hn,j ≤
(
|∆jX̃|+B0 n

− 1
4
−δ0
)
1{∆jJ ̸=0},

we obtain

Φ(3.5.7)
n ≤ n1/2

∥∥∥∥max
j∈In

{∣∣∆jX̃
∣∣(|∆jX̃|+B0 n

− 1
4
−δ0
)}∥∥∥∥

2p

∥∥NT

∥∥
2p

<∼ n− 1
4
−δ0+ξ+ϵ

as n → ∞ for any ϵ > 0 and p > 1. Therefore,

Φ(3.5.7)
n → 0 (3.5.9)
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for every p > 1 since ξ < 2δ0 <
1
4 + δ0. Similarly,

Φ(3.5.8)
n

<∼ n1/2

∥∥∥∥max
j∈In

(|∆jX̃|2 + n− 1
2
−2δ0

)∥∥∥∥
2p

∥∥NT

∥∥
2p

<∼ n−2δ0+ξ+ϵ

as n → ∞ for any ϵ > 0 and p > 1 since 2δ0 > ξ. In particular,

Φ(3.5.8)
n → 0 (3.5.10)

as n → ∞ since ξ < 2δ0. Now the proof is completed with (3.5.6), (3.5.9) and (3.5.10).

Define Ṽn by

Ṽn =
∑
j∈In

∣∣∆jX̃
∣∣2.

Lemma 3.5.3. Suppose that ξ < 1/2. Then

n1/2
∥∥V†

n − Ṽn

∥∥
p

→ 0

as n → ∞ for every p > 1.

Proof. Recall that δ0 < 1/4 and δ1 < 1/2. Define V‡
n by

V‡
n =

∑
j∈Mn

q−1
n

∣∣∆jX̃
∣∣2.

Then

n1/2
∥∥V†

n −V‡
n

∥∥
p

<∼ n1/2

∥∥∥∥ ∑
j∈Mn

∣∣∆jX̃
∣∣2|Hn,j − 1|

∥∥∥∥
p

≤ n1/2

∥∥∥∥ ∑
j∈Mn

∣∣∆jX̃
∣∣2|Hn,j − 1|1{∆jN>0}

∥∥∥∥
p

+n1/2

∥∥∥∥ ∑
j∈Mn

∣∣∆jX̃
∣∣21

{|∆jX̃|>n− 1
4−δ0}

1{∆jN=0}

∥∥∥∥
p

≤ n1/2

∥∥∥∥max
j∈In

∣∣∆jX̃
∣∣2NT

∥∥∥∥
p

+O(n−L)

<∼ n− 1
2
+ϵ+ξ

for any positive number ϵ > 0. Here L is an arbitrary positive number greater than 1/2, and we used
the inequality δ0 < 1/4 to get O(n−L). Since ξ < 1/2, we obtain

n1/2
∥∥V†

n −V‡
n

∥∥
p

= o(1) (3.5.11)

as n → ∞ for every p > 1.
From the condition qn − 1 = o(n−1/2) of [G2′] (ii), obviously,

n1/2
∥∥V‡

n − Ṽn

∥∥
p

≤ n1/2

∥∥∥∥ ∑
j∈In\Mn

∣∣∆jX̃
∣∣2∥∥∥∥

p

+ o(1)

<∼ n− 1
2
+ϵ+δ1 + o(1) = o(1) (3.5.12)
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as n → ∞ for every p > 1 since #(In \Mn) <∼ nδ1 with δ1 < 1/2 thanks to [G2′] (i) and (3.5.1), and∥∥∥∥max
j∈In

∣∣∆jX̃
∣∣2∥∥∥∥

p

= O(n−1+ϵ)

for any p > 1 and any positive number ϵ. Proof ends with (3.5.11) and (3.5.12).

Define Γ by

Γ = 2T

∫ T

0
σ4
t dt.

Extend (Ω,F , P ) so that there is a standard normal random variable ζ independent of F on the
extension. The F-stable convergence is denoted by →ds .

Lemma 3.5.4. Suppose that [G1] is satisfied. Then

n1/2
(
Ṽn −Θ

)
→ds Γ1/2ζ

as n → ∞.

Proof. We have

Ṽn =
∑
j∈In

(∫ tk

tk−1

σtdwt +

∫ tk

tk−1

btdt

)2

= Φ(3.5.14)
n +Φ(3.5.15)

n + 2Φ(3.5.16)
n +Φ(3.5.17)

n (3.5.13)

where

Φ(3.5.14)
n =

∑
j∈In

2

∫ tj

tj−1

∫ t

tj−1

σsdwsσtdwt, (3.5.14)

Φ(3.5.15)
n =

∑
j∈In

∫ tj

tj−1

σ2
t dt, (3.5.15)

Φ(3.5.16)
n =

∑
j∈In

∫ tj

tj−1

σtdwt

∫ tj

tj−1

btdt, (3.5.16)

and

Φ(3.5.17)
n =

∑
j∈In

(∫ tj

tj−1

btdt

)2

. (3.5.17)

Since b is a càdlàg process, for any ϵ > 0, there exists a number δ > 0 such that P
[
w′(b, δ) ≥ ϵ

]
< ϵ.

Here w′(b, δ) is a modulus of continuity defined by

w′(b, δ) = inf
(si)∈Sδ

max
i

sup
r1,r2∈[si−1,si)

∣∣br1 − br2
∣∣,
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where Sδ is the set of sequences (si) such that 0 = s0 < s1 < · · · < sv = T and mini=1,...,v−1(si−si−1) >
δ. Let

Φ̇(3.5.16)
n =

∑
j∈In

∫ tk

tk−1

σtdwt

∫ tj

tj−1

(bt − btj−1)dt. (3.5.18)

Write

Ej =

∫ tj

tj−1

σtdwt,

Vj = n1/2

∣∣∣∣ ∫ tj

tj−1

σtdwt

∣∣∣∣ ∫ tj

tj−1

(
|bt|+ |btj−1 |

)
dt.

For ω ∈ Ω such that w′(b(ω), δ) < ϵ, there exists a (si) (depending on ω) such that

max
i

sup
r1,r2∈[si−1,si)

∣∣br1(ω)− br2(ω)
∣∣ < ϵ,

min
i=1,...,v−1

(si − si−1) > δ.

For n > T/δ, all intervals [tj−1, tj) (j ∈ In) includes at most one point among (si), therefore the
number of intervals [tj−1, tj) that include some one si is at most T/δ. The increment of b(ω) in
[tj−1, tj) is less than ϵ if [tj−1, tj) ∩ {si}. Thus, we have the inequality

∥∥n1/2Φ̇(3.5.16)
n

∥∥
p

≤
∥∥∥∥∑
j∈In

n1/2|Ej |
∥∥∥∥
p

ϵh+

∥∥∥∥max
j∈In

Vj

∥∥∥∥
p

T

δ
+

∥∥∥∥∑
j∈In

Vj

∥∥∥∥
2p

P
[
w′(b, δ) ≤ ϵ

] 1
2p

for every p > 1. Therefore,∥∥n1/2Φ̇(3.5.16)
n

∥∥
p

≤ C

[
ϵ+

(
n−1/2 +

∑
j∈In

∥∥Vj1{Vj>n−1/2}
∥∥
p

)
T

δ
+ ϵ

1
2p

]
≤ C ′(ϵ+ n−1/2 + ϵ

1
2p
)

for all n > T/δ, where C and C ′ are some constants independent of n. Consequently,

lim
n→∞

∥∥n1/2Φ̇(3.5.16)
n

∥∥
p

= 0 (3.5.19)

for every p > 1. Moreover, for

Φ̈(3.5.16)
n =

∑
j∈In

∫ tj

tj−1

σtdwt

∫ tk

tk−1

btj−1dt =
∑
j∈In

hbtj−1

∫ tj

tj−1

σtdwt,

we have

lim
n→∞

∥∥n1/2Φ̈(3.5.16)
n

∥∥
p

= 0 (3.5.20)

for every p > 1, by orthogonality. From (3.5.19) and (3.5.20),

lim
n→∞

∥∥n1/2Φ(3.5.16)
n

∥∥
p

= 0 (3.5.21)

for every p > 1.
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Obviously, ∥∥n1/2Φ(3.5.17)
n

∥∥
p

= 0 (3.5.22)

for every p > 1. Now, we can show the claim of the lemma by using (3.5.13), (3.5.21) and (3.5.22)

together with the mixture type of martingale central limit theorem applied to Φ
(3.5.14)
n .

Theorem 3.5.5. Suppose that [G1], [G2′] and [G3] are satisfied. Suppose that ξ < 2δ0. Then

n1/2
(
Vn −Θ

)
→ds Γ1/2ζ

as n → ∞.

Proof. Just combine Lemmas 3.5.2, 3.5.3 and 3.5.4.

3.5.2 The WGRV with a moving threshold

We consider the winsorized global realized volatility with a moving threshold. Differently from the
GRV without winsorization, we need an explicit description of Mn here. Let Mn and Vj be given by
(3.5.2) and (3.5.3), respectively. Set sn = n− ⌊Bnδ1⌋ with δ1 ∈ (0, 1/2). Define

Wn =
∑
j∈In

q−1
n

{
|∆jX| ∧S

1/2
n,j−1V(sn)

)}2
Hn,j ,

where (qn)n∈N is a sequence of positive numbers, We prove the rate of convergence of WGRV is the
same as that of Vn.

Theorem 3.5.6. Suppose that [G1], [G2′](ii) and [G3] are satisfied. Suppose that ξ < 2δ0. Then

n1/2
(
Wn −Θ

)
→ds Γ1/2ζ

as n → ∞, where Γ and ζ are the same random variables in Theorem 3.5.5.

Proof. It suffices to show that n1/2∥Wn−Vn∥p → 0 as n → ∞ for every p > 1. Rewrite the definition
of Wn as

Wn −Vn =
∑

j∈Mc
n

q−1
n Sn,j−1V

2
(sn)

Hn,j .

The first term obviously converges to zero in Lp with rate
√
n. As for the second term, we have∥∥∥∥∥∥

∑
j∈Mc

n

Sn,j−1V
2
(sn)

Hn,j

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

j∈Mc
n

|∆jX|21{j∈Ln}Hn,j

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

j∈Mc
n

|∆jX̃|21{j∈Lc
n}Hn,j

∥∥∥∥∥∥
p

≲ n−1/2−2δ0+ξ + n−1+ϵ+δ1 .

Since δ1 < 1/2 and ξ < 2δ0, we obtain the desired rate of convergence.
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3.6 Constant volatility

The case of constant σ is specific and theoretical treatments can be slightly different from those of
the previous sections. In this situation, we do not need to pre-estimate the local spot volatility, and
hence, we can take Sn,j = 1 constantly and no approximation error is caused. σt = θσ̃t is also the case
if σ̃tj−1 are observable. For example, the GRV with a fixed cut-off rate α is redefined as

V0
n(α) =

∑
j∈J 0

n (α)

q(α)−1|∆jX|2Kn,j ,

where
J 0
n (α) =

{
j ∈ In; |∆jX| < |∆X|(sn(α))

}
.

Then we have the following theorem. Note that we do not need the condition [G2], and γ0 in [G2](ii)
can be arbitrarily close to 1/2.

Theorem 3.6.1. Suppose that [G1] and [G3] are fulfilled. Suppose that ξ < 1
2 . Let α ∈ (0, 1) and

β0 <
1
2 − ξ. Then

∥V0
n(α)−Θ∥p = O(n−β0)

as n → ∞ for every p > 1.

The other global-threshold estimators are discussed similarly.

3.7 Simulation studies

In this section, we conduct several numerical simulations to see that our global realized volatility
estimators outperform those proposed in previous studies.

3.7.1 The case of compound Poisson jumps

Here we consider the following process:

dXt = θXtdt+ (σ + ηX2
t )

1
4dwt + dJt, t ∈ [0, 1], (3.7.1)

where Jt is the jump part of X.
We assume that J is a compound Poisson process of the form Jt =

∑Nt
i=1 ξi, where (Nt)t is a

Poisson process with intensity λ > 0 and (ξi)i are independently and normally distributed random
variable with mean µ and variance ν2. For the intensity parameter, we consider both cases where λ is
high and low. Our aim is to estimate the integrated volatility Θ =

∫ 1
0 (σ + ηY 2

t )
1
2dt.

We compare the estimation results of the bipower variation (BV), minimum realized volatility
(minRV), the GRV, and the WGRV.

The set-up of simulation is as follows. The number of samples is n = 2000. We repeat calculating
the estimators 500 times to obtain their average and quantile. The true parameters are θ = 0.2, σ =
1, η = 3, µ = 0.3, ν = 0.2. Throughout this subsection, we set the cut-off ratio α = 0.2 for GRV and
WGRV with local volatility. That is, we trim the upper 20% of absolute increments. While it may
seem that we eliminate too many observations and the estimator suffers from downside bias, GRV and
WGRV estimate the integrated volatility well thanks to the adjustment coefficient by q(α) and w(α).

Note that σt is not directly observable and depends on the Yt. Hence, we have to calculate the local
GRV first to normalize the increment ∆iY when constructing the GRV. In this simulation, we use
the LGRV (3.3.15) and local minRV (3.3.48) as estimators of spot volatilities. Moreover, we calculate
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GRV without normalization (defined in Section 3.6) for comparison. For the length of a subinterval
to calculate these local volatilities, we set κn = 10× n0.45.

We use the following labels as in Table 3.1 to describe the estimators.

Table 3.1: Definitions of estimators

Label Method Cut-off ratio α Local volatility

bv BV 0.2 -
mrv minRV 0.2 -
grv.lgrv GRV 0.2 GRV
grv.mrv GRV 0.2 minRV
wgrv.lgrv WGR 0.2 GRV
wgrv.mrv WGRV 0.2 minRV
grv[α] GRV 0.2, 0.1, 0.05 -
grv.lgrv.mov GRV with moving threshold (depends on n) GRV
wgrv.lgrv.mov WGRV with moving threshold (depends on n) GRV

The case of high intensity: GRV with fixed cut-off ratio

First, we deal with the case of high intensity. Here we set λ = 30 so that the data includes many
jumps. The example of a sample path and its increments are shown in Figure 3.1. Obviously, there
are many large spikes in the data, suggesting the existence of jumps.

Note that the volatility is non-constant here. In fact, in Panel (b) of Figure 3.1, the size of
increments tend to increase as time passes. Hence, to estimate the volatility, we have to use estimated
spot volatilities to normalize the increments.

Time

X

0.0 0.2 0.4 0.6 0.8 1.0
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(a) Sample path of X
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(b) Increment of X

Figure 3.1: Sample path of X and its increments (λ = 30)
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Figure 3.2 is the estimation results. In this case, both BV (bv) and minRV (mrv) seem to suffer from
upward bias due to jumps. In particular, the BV deviates from the true value considerably. On the
other hand, GRV with normalization perform well with errors concentrating around zero (grv.lgrv,
grv.mrv). Note that, although WGRV performs relatively well, it seems to have a small upward bias
(wgrv.lgrv, wgrv.mrv). This suggests that, if there are many large jumps, using an upper quantile
(V(sn(α))) may sometimes lead to biases rather than obtaining a robust estimate.

The three right barplots in this figure (grv[0.20], grv[0.10], grv[0.05]) are the results of
GRV without normalizing increments by local-global filters, with the cut-off ratio α = 0.2, 0.1, 0.05,
respectively. We see that they seem to be less precise (especially when α is large) than GRV or WGRV
with local volatility. This result suggests that, if we do not normalize increments by spot volatilities
in the case of non-constant volatility, we end up obtaining inappropriate estimates.

Intuitively, when we ignore normalization, we tend to eliminate increments where volatility is high
(because they are typically large), even if they come from the Brownian motion, while keeping relatively
small jumps which we should actually remove. In addition, theoretically, the adjusting constant q(α)
in the definition of GRV (3.2.2) comes from the standard normal distribution. Therefore, when the
volatility is non-constant, we should normalize the increments |∆iY | by local volatility to make them
approximately normally distributed.
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Figure 3.2: Estimation results for the case of high intensity: λ = 30

The case of moderate intensity: GRV with a shrinking cut-off ratio

Next, we consider the case of low intensity. In this case, we can use shrinking cut-off rate. Recall
that the shrinking cut-off rate is defined by αn = ⌊Bnδ1⌋/n. In this simulation, we set B = 10 and
δ1 = 0.45, so the cut-off rate is then αn = 0.1525.

The estimation results are shown in Figure 3.3. All global-filtering estimators perform well (for
GRVs with fixed cut-off ratio, we set α = 0.2 as before). These results suggest that if there are not so
many jumps in the data, it would be advisable to use as many data as possible by making the cut-off
ratio small.
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Figure 3.3: Estimation results for the case of low intensity: λ = 5

The case of constant volatility

Since we assumed that the volatility is location-dependent in the previous sections, the normalization
by estimated spot volatilities is needed to obtain an accurate estimator. However, if the true volatility
of data is constant, we may ignore normalization.

Here we set η = 0 so that the data is driven by a constant-volatility diffusion process. The intensity
is λ = 30. Figure 3.4 shows the estimation results of this case. The GRVs without normalization
(grv[0.20], grv[0.10] and grv[0.05]) perform as well as those with normalization. This suggests
that, if the true process can be thought as constant-volatility, we may skip normalization (calculation
of spot volatilities) procedure.

However, it would be more typical that the volatility is non-constant. Thus, basically, it would be
advisable to use normalization.
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Figure 3.4: Estimation results for the constant volatility: λ = 30

3.7.2 The case of Neyman-Scott type clustering jumps

As the previous examples show, the minRV performs relatively well in the case of compound Poisson
type jumps. However, even if the intensity of jumps is small, the minRV may suffer from an upward
bias depending on the structure of jumps. In particular, if there are consecutive jumps (which is quite
rare for compound Poisson processes), the minRV loses it advantage. Here we show an example of
such a situation.

We consider the case that the data-generating process is given by Y = X + J , where X is the
continuous part and J is the jump part. Here we assume that J follows a Neyman-Scott clustering
process (NS hereafter), instead of a compound Poisson process.

NS process is a typical point process representing consecutive jumps. That is, there may be jumps
within some consecutive intervals. This leads to upward bias of BV and minRV because the both of
two adjacent increments can consist of large jumps. The NS process is constructed as follows.

(1) Set “centers” on the time interval [0, T ] by a Poisson process (N0
t ) with intensity λ0. A center is
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defined as the point t ∈ [0, T ] which satisfies ∆Nt = 1.

(2) For each center c ∈ [0, T ], choose the number Nc of “children,” assuming Nc is Poisson-distributed
with mean λc.

(3) For each center c ∈ [0, T ], generate independently and exponentially distributed random variables(
v
(c)
i

)
1≤i≤Nc

with mean h. Then the location of child i derived from center c is defined as c−v
(c)
i .

This defines the location of a jump.

(4) For each child i, generate an independently and normally distributed random variable ξi ∼
N(0, ν2J). This determines the size and direction of a jump ∆Js.

(5) The NS process is defined as Jt =
∑

s∈[0,t]∆Js.

We set the data-generating Y = X + J , where X is the Brownian semimartingale satisfying the
following SDE: Here we consider the following process:

dXt = θXtdt+ (σ + ηX2
t )

1
4dwt, (3.7.2)

We set λ0 = λc = 5 and νJ = 0.5. For the continuous part X, we use θ = 0.2, σ = 1, η = 3.
Figure 3.5 show the estimation results in the case of NS jumps. Because of the possible consecutive

jumps, both bipower variation and minRV have upward bias, whereas GRV and WRGV are all robust
to such clustering jumps. This suggests that the GRV and WGRV perform very well for various
structures of jumps.
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Figure 3.5: Estimation results for the case of Neyman-Scott clustering jumps

3.8 Concluding remarks

In this paper, we construct the global realized volatility estimator in the nonparametric context.
We proved the consistency and the asymptotic normality of GRV and WGRV, and, by numerical
simulations, we show that these new approaches outperform previous studies which use increments
within a single or two intervals.

Our new approach for eliminating jumps is highly versatile. For example, by normalization, it
works well when the volatility of data is driven by a nonconstant-volatility process. Moreover, both
GRV and WGRV are accurate enough in the case of not only compound-Poisson sporadic jumps but
also Neyman-Scott consecutive jumps.

The global-filtering method could be extended to the covariance estimation even under the non-
synchronous sampling scheme. Furthermore, this approach could also be applied to construct a test
statistic for jump. Also, it is valuable to apply our approach to empirical research of high-frequency
time series data. These are important topics for future research.
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