150

am > A E  Statistical Inference for
Stochastic Differential Equations with Jumps:
Global Filtering Approach

(Vv v 7 %GR RIS SR
K7 4 VR —IZ K5 F51R)

K & fR BE



Contents

1 Introduction 3

2 Parametric Estimation: Global Jump Filters and Quasi-likelihood Analysis for

Volatility 7
2.1 Introduction . . . . . . . . . L 7
2.2 Global filter: a-threshold method . . . . . . . . . ... ... ... ... ... .. 9
2.2.1 Model structure . . . . . ..o 9
2.2.2  Quasi likelihood function by order statistics . . . . . . ... .. ... ...... 10
2.2.3  Assumptions . . . ... e 12
2.2.4  Global filtering lemmas . . . . . . . ... L 13
2.2.5 Polynomial type large deviation inequality and the rate of convergence of the
a-QMLE and the (o, 8)-QBE . . . . . .. 20
2.2.6 Proof of Theorem 2.2.13 . . . . . . . . . . .. 23
2.3 Global filter with moving threshold . . . . . . . . ... ... .. .. . 27
2.3.1 Quasi likelihood function with moving quantiles. . . . . .. .. ... ... ... 27
2.3.2 Polynomial type large deviation inequality . . . . . . . .. ... ... ... ... 29
2.3.3 Proof of Theorem 2.3.3 . . . . . . . . ... . .. 29
2.3.4 Limit theorem and convergence of moments . . . . . . . .. .. ... .. .... 34
2.4 Efficient one-step estimators . . . . . . . . . .. ... e 39
2.5 Localization . . . . . . . . . . e 42
2.6 Simulation Studies . . . . . . .. L 44
2.6.1 Setting of simulation . . . . . . . ... L o 44
2.6.2 Accuracy of jump detection . . . . .. ... 45
2.6.3 Comparison of the estimators . . . . . .. .. .. .. L o L. 48
2.6.4 Asymmetric jJumps . . . . ... e 50
2.6.5 Location-dependent diffusion coefficient . . . . . .. .. .. ... 0 0. 51
2.7 Further topics and future work . . . . . . . ... ... L 51
3 Application of Global Jump Filters to Estimation of Integrated Volatility 54
3.1 Model . . .. e e 54
3.2 Realized volatilities with a global jump filter . . . . . . .. .. .. ... ... ... .. 55
3.3 Local-global filter . . . . . . . . . .. 56
3.3.1 Glocal filtering lemmas . . . . . . . ... Lo 56
3.3.2 Local-global realized volatility . . . . . .. .. ... .. . . . 61
3.3.3 Local minimum RV . . . . .. .. . 66
3.4 Rate of convergence of the global realized volatilities in high intensity of jumps . . . . 66
3.4.1 Rate of convergence of the GRV withafixeda . . . .. .. .. ... ... ... 67



3.5

3.6
3.7

3.8

3.4.2 Rate of convergence of the WGRV with afixedoa . . . . . . .. ... ... ... 74
Asymptotic mixed normality of the global realized volatilities with a moving threshold 78

3.5.1 The GRV with a moving threshold . . . . . . ... ... ... .. ... .... 78
3.5.2 The WGRV with a moving threshold . . . . . . . .. .. ... ... ....... 83
Constant volatility . . . . . . . . . . 84
Simulation studies . . . . . . . .. 84
3.7.1 The case of compound Poisson jumps . . . ... .. .. ... ... ... ... 84
3.7.2 The case of Neyman-Scott type clustering jumps . . . . . ... ... ... ... 89
Concluding remarks . . . . . . . Lo 91



Chapter 1

Introduction

In this thesis, we propose a new statistical estimation method for stochastic differential equations
(SDEs) with jumps to obtain more stable estimation results by extending several previous studies. We
discuss both parametric and non-parametric estimation procedures.

In recent years, high-frequency data have become available in many fields, and one of the most
important research topics in mathematical statistics is to establish appropriate statistical inference
techniques for effective use of such data. There are various forms of high-frequency data, but, especially
in the fields of financial engineering and biology, models described by stochastic differential equations
(SDEs) play an important role, and statistical inference theory for SDEs is needed in order to apply
these models to real data.

A typical stochastic integral equation is written as

t t
YthOJr/ bsds+/ osdws + Jy, t€10,T], (1.0.1)
0 0

where (bs)scjo,m) and (os)sepo,1) are cadlag adapted processes, (ws)geo,7] is a standard Brownian mo-
tion, and J; = Zse[o,t} AY the jump part of Y (AY, =Y, —Y,_ =Y, —lim;4,Y;). The terminal of
the data (observations) is denoted by 7. The theme of statistical inference for SDEs is to estimate
parameters, given the observation {Y;};c7, where 7 C [0,7] is a set of points of observations, which
may be an uncountable set (though unrealistic). Typically, it is a sequence of (possibly random) pos-
itive numbers 7 = {t'; i = 1,..., n}. This is the case of discrete sampling scheme, which is a main
focus in the recent research. The most typical example is an equidistant sampling scheme: ¢; = iT'/n.

Studies on statistical inference for SDEs without jumps (J; = 0 in (1.0.1)) go back to Prakasa Rao
[17], and are then generalized by Yoshida [24] and Kessler [10]. These studies assume a parametric
representation of the model, namely, they assume that the drift and diffusion coefficients are given by
functions of the form b; = b(Y:, 8) and o, = o(Yy, 0), respectively. Their aim is to construct estimators
of 8 and 6 under certain sampling schemes and discuss asymptotic properties of the estimators, such
as consistency and asymptotic normality.

For SDEs without jumps, there are also many studies in the context of nonparametric estimation.
One of the most active research topic in this field is the estimation of realized volatility. This is
an attempt to construct a consistent estimator of the integrated volatility © = fOT o2dt for models
described by SDEs. It is known that, in the absence of jumps, the sum of squared increments (called
the realized volatility; RV hereafter) is the consistent estimator of the integrated volatility (Protter
18]):

RV, =) |AY]?—P O  (n— ),

i=1



where A;Y = Yi» — Vi , and —P denotes convergence in probability. It is then generalized to
estimation of the covariation in the case of nonsynchronous observation (Hayashi and Yoshida [6], for
example). Volatility estimation is now applied to real data, especially in the field of financial time
series analysis.

While there has been such a large number of studies on SDEs without jumps, research on SDEs
with jumps (J; #Z 0) remains much less studied. One approach to tackle the existence of jumps is to
detect/eliminate them by a threshold method, proposed by Mancini [13]. This is based on the idea that
when the absolute value of an increment A;Y within a time interval exceeds a certain threshold given
as a function of the length of interval ¢}’ —¢7' |, the increment is regarded as a jump. This thresholding
is also applied to the parametric context by Shimizu and Yoshida [20]. They consider statistical
estimation of parameters in drift, diffusion, and jump terms of SDEs. The jump part is assumed to
be driven by a compound Poisson process. Their idea is that, if the absolute value of the increment
|A;Y| is below a threshold given by n™", the increment is considered to come from the continuous
part (Brownian semimartingale) and is used to estimate the drift and diffusion parameters, while if
it exceeds the threshold, the increment is considered to come from the jump part (compound Poisson
process) and is used to estimate the jump parameters. Here p € [0,1/2) and C' > 0 are parameters that
affects the precision of jump detection. Especially, the choice of p crucially determines the precision
of jump detection. Their estimator of diffusion parameter is defined as a maximizer of the following
function:

n n
ta(0) = —35 > {hfﬁ(ﬁ)’sm(@_lﬁ(ﬁ) — ) logdet Sil(e)}lm,-nghz}a
i=1 i=1
where Y;(B8) = A;Y — hnb(Yer |, B), Si—1(0) = U(n?71,0)®2 and h, = t —t",. The indicator
L{ia,v|<nzy 1s called the “filter,” which eliminates large increments from the likelihood function. This
estimator is shown to be consistent and asymptotically normal under some regularity conditions.
Another approach dealing with jumps is to mitigate the effects of jumps with the aid of information
about the nearest increment. The conventional RV, the sum of squared increments |A;Y|?, is known
to be extremely vulnerable to jumps, and mitigating the effects of jumps is an important theoretical
and practical topic. A seminal work in this direction is the bipower variation (BV) proposed by
Barndorff-Nielsen and Shephard [2] in the field of estimation of realized volatility. The idea of the
BV is to use an increment within a neighboring interval. It is defined as the sum of the products
of two absolute increments within adjacent intervals, |A;Y||A;4+1Y|, making use of the fact that the
probability of occurrence of successive jumps in adjacent time intervals is small:

n—1
BV, = pi? ) [AY][Ai Y],
i=1

where p; is the first-order absolute moment of the standard normal distribution: pu; = E[|Z|], Z ~
N(0,1). Similarly, Andersen et al. [1] propose the minimum realized volatility (minRV), defined as
the squares of smaller between two increments within adjacent intervals, min{|A;Y|?, |A;11Y|?}:

n—1
minRV,, = LQ 3 min{|AY [ A Y2
p—
=1

These estimators are shown to be consistent of the integrated volatility © even in the presence of
jumps.

The ideas of these previous studies can be summarized as “detecting, eliminating or mitigating the
effects of jumps by using a single or two neighboring increments.” In this sense, the approaches are



“local.” Since these methods are shown to have theoretically desirable properties, it may be said that
problems of dealing with jumps has been solved to some extent.

However, it has been pointed out that these approaches may not always work well in practice, so
there are still issues to be solved in terms of application. For example, Shimizu [19] reported that
the estimation results by threshold method can vary greatly depending on the setting of a threshold.
Also, for BV and minRV, it would not be necessarily sufficient to mitigate the effects of jumps by just
using adjacent increments. Hence, a new method has been needed that overcomes such weakness of
previous methods.

In this dissertation, we propose a new method for eliminating jumps, called “global filtering,”
and show its theoretical properties. Moreover, with some numerical simulations, we demonstrate its
superiority over previous methods. The global filter compares the absolute increments of the data
with all other samples, and excludes increments that exceeds a threshold determined by the data. Our
filter is of the form {V; < V/,,y}, where V; is obtained by dividing |A;Y| by a normalizing random
variable. sp is a certain positive integer, and V() denotes the s,-th order statistic of {Vi}i,. The
integer s,, is determined by a tuning parameter (cut-off ratio) a € (0, 1), which postulates how many
observations are trimmed (the larger « is, the more observations are trimmed). For example, the
maximum likelihood estimator of the diffusion parameter by global filtering is based on the following
function (here we use a slightly different notation from Chapter 2; a more general formulation is
presented there):

n

1 1, _ _
[Hn(ﬂ;oz):—zz:{q(oz) W lAY'S; 1(0) A Y K, 4 pla) 1logdetSj_l(ﬁ)}l{v].<v(8n(a))},
j=1

where p(a) and g(a) are coefficients that depend on the cut-off ratio a, and V(y, (4)) is the s, (a)-th
order statistic of {V;}I*; with s,(a) = [n(1 —a)|. K, is a certain truncation function. The point is
that the threshold V(;, (4)) appearing in the filter depends on all observations. On the other hand, the
filter proposed by Shimizu and Yoshida [20] is of the form {|A;Y| < n~?} and thus it is independent
of the other observations. By comparing with all samples, the judgment of jumps and non-jumps by
the global filter becomes more accurate, and it succeeds in overcoming the weakness of the “local”
approach in previous studies. Also, the realized volatility by global filtering is defined by

n

V() =Y (@) AY P KoLy <vie, o)
j=1

where V(,, (o)) 1s the same as above. It is obvious that this is a variant of the RV using global filtering.

The global filter is based on order statistics. The use of order statistic completely destroys the
time-series structure of a model (i.e., martingale properties of estimating functions). This makes the
proof of the theoretical validity of global filtering highly troublesome. We resolved this difficulty by
proving a series of “global filtering lemmas,” which help us create statistical inference theory based
on global filtering.

In this dissertation, we focus on inference theory regarding the diffusion term o; given discrete
observations {Yt? },, and discuss asymptotic properties of the estimators when the number of samples
tends to infinity: n — oo (and T is fixed). We assume equidistant sampling scheme: ¢ = iT'/n.
Inference on drift and jump terms is beyond the scope of this paper. We assume nothing on its
distributional structure (we only assume that the number of jumps is finite almost surely). In this
sense, our method is highly versatile for estimation of diffusion parameter.

In Chapter 2, we deal with the parametric estimation of diffusion parameters, based on Inatsugu
and Yoshida [8]. In this paper, in (1.0.1), we assume that the diffusion coefficient is of the form



o = 0(Y;,0), and construct the maximum likelihood estimator and the Bayes estimator based on the
global filtering method. As for the choice of cut-off ratio «, we discuss both the case where it is fixed
and where it is “moving” (or “shrinking”), i.e., dependent on the number n of samples. We prove
their moment convergence, which leads to their consistency and asymptotic mixed normality. To see
that the new estimators outperform previous ones, we report results of numerical simulations.

In Chapter 3, we deal with the estimation of the integrated volatility. We do not assume any
parametric structure of the diffusion coefficient in (1.0.1) and discuss the estimation of ©. We intro-
duce the global realized volatility (GRV) and its variant, the winsorized GRV, and give their rate of
convergence. Similarly to Chapter 2, we discuss both the fixed-a and shrinking-a cases. Then we
conduct numerical simulation to show its accuracy and usefulness.
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Chapter 2

Parametric Estimation: Global Jump
Filters and Quasi-likelihood Analysis
for Volatility

2.1 Introduction

We consider an m-dimensional semimartingale ¥ = (Y});c[o,7) admitting a decomposition

t t
Y, = YO—&—/ bsds—i—/ o0(Xs,0)dws + Jy, t€][0,T] (2.1.1)
0 0

on a stochastic basis (€2, F,F, P) with a filtration F = (F¢)cj0,r)- Here b = (bt)ejo,r) is an m-
dimensional cadlag adapted process, X = (Xt)te[O,T] is a d-dimensional cadlag adapted process, w =
(wt)te[o,T} is an r-dimensional standard F-Wiener process, 6 is a parameter in the closure of an open set
©inRP, and 0 : RY x © - R™ ®R" is a continuous function. J = (Jt)te[QT] is the jump part of Y, i.e.,
Jy = Zse[o,t} AY;, where AY, =Y, —Y,_ and AYy = 0. We assume Jy = 0 and Zte[o,T] Liag201 < o0
a.s. Model (2.1.1) is a stochastic regression model, but for example, it can express a diffusion type
process with jumps AJ¥ contaminated by exogenous jump noise JY :

Y; = Xt+JtY7

Xy = Xo+ [y beds+ [} o(Xs,0)dws + T,

with J = JX 4+ JY, and as a special case, a jump-diffusion process. We want to estimate the true
value §* € © of f based on the data (Xy;,Y;;)j=0,1,....n, Where t; = th = jT/n. Asymptotic properties
of estimators will be discussed when n — oco. That is, the observations are high frequency data. The
data of the processes b and J are not available since they are not directly observed.

Today a substantial amount of literature is available on parametric estimation of the diffusion
parameter 6 of diffusion type processes with/without jumps. In the ergodic diffusion case of J = 0 and
T — o0, the drift coefficient is parameterized as well as the diffusion coefficient. Certain asymptotic
properties of estimators are found in Prakasa Rao [17, 16]. The joint asymptotic normality of estimators
was given in Yoshida [24] and later generalized in Kessler [10]. The quasi-likelihood analysis (QLA,
Yoshida [25]) ensures not only limit theorems but also moment convergence of the QLA estimators,
i.e., the quasi-maximum likelihood estimator (QMLE) and the quasi-Bayesian estimator (QBE). The
adaptive estimators (Uchida and Yoshida [21, 23]) and the hybrid multi-step estimators (Kamatani and



Uchida [9]) are of practical importance from computational aspects. Statistics becomes non-ergodic
under a finite time horizon 7" < co. Dohnal [4] discussed estimation of the diffusion parameter based
on high frequency data. Stable convergence of the quasi-maximum likelihood estimator was given
by Genon-Catalot and Jacod [5]. Uchida and Yoshida [22] showed stable convergence of the quasi-
Bayesian estimator and moment convergence of the QLA estimators. The methods of the QLA were
essential there and will be applied in this article. The non-synchronous case is addressed by Ogihara
and Yoshida [15] within QLA. As for inference for jump-diffusion processes, under ergodicity, Ogihara
and Yoshida [14] showed asymptotic normality of the QLA estimators and moment convergence of their
error. They used a type of optimal jump-filtered quasi-likelihood function in Shimizu and Yoshida
[20].

The filter in the quasi-likelihood functions of Shimizu and Yoshida [20] is based on the magnitude
of the absolute value of the increment: {|A;Y| > Chh}, where A;Y =Y;, —Y;,_,, p € [0,1/2) and
C > 0. If an increment is sufficiently large relative to the threshold, then it is classified as a jump.
If, on the other hand, the size of the increment is “moderate”, it is regarded as coming from the
continuous part. Then the parameters in the continuous and jump parts can optimally be estimated
by respective data sets obtained by classification of increments. This threshold is natural and in fact,
historically, the idea goes back to studies of limit theorems for semimartingales, even further back to
Lévy processes.

However, this jump detection filter has a caveat. Though the efficiency of the estimators has been
established theoretically, it is known that their real performance strongly depends on a choice of tuning
parameters; see, e.g., Shimizu [19], Tacus and Yoshida [7]. The filter is each time based on only one
increment of the data. In this sense, this filter can be regarded as a local method. This localism would
cause misclassification of increments in practice, even though it should not occur mathematically by
the large deviation principle in the limit, and estimated values’ instability and strong dependency on
the tuning parameters. To overcome these problems, we introduce a global filtering method, which we
call the a-threshold method. It uses all of the data to more accurately detect increments having jumps,
based on the order statistics associated with all increments. Another advantage of the global filter is
that it does not need any restrictive condition on the distribution of small jumps. This paper provides
efficient parametric estimators for the model (2.1.1) under a finite time horizon T' < oo by using
the a-threshold method, while applications of this method to the realized volatility and other related
problems are straightforward. Additionally, it should be remarked that though the a-threshold method
involves the tuning parameter « to determine a selection rule for increments, it is robust against the
choice of o as we will see later.

The organization of this paper is as follows. In Section 2.2.2, we introduce the a-quasi-log likelihood
function H,(0;«), that is a truncated version of the quasi-log likelihood function made from local
Gaussian approximation, based on the global filter for the tuning parameter . The a-quasi-maximum
likelihood estimator (a-QMLE) 05" is defined with respect to H,(6;). Since the truncation is
formulated by the order statistics of the increments, this filter destroys adaptivity and martingale
structure. However, the global filtering lemmas in Section 2.2.4 enable us to recover these properties.
Section 2.2.5 gives a rate of convergence of the a-QMLE 622 in [P sense. In order to prove it, with
the help of the QLA theory (Yoshida [25]), the so-called polynomial type large deviation inequality
is derived in Theorem 2.2.13 for an annealed version of the quasi-log likelihood [Hg(@; a) of (2.2.10),
where 8 is the annealing index. Moreover, the (o, 3)-quasi-Bayesian estimator ((c, 8)-QBE) 65 o8
can be defined as the Bayesian estimator with respect to [HQ(H; a) as (2.2.11). Then the polynomial
type large deviation inequality makes it possible to prove LP-boundedness of the error of the («, 3)-
QBE G50 (Proposition 2.2.15). The a-QMLE and («, 5)-QBE do not attain the optimal rate of
convergence when the parameter « is fixed though the fixed a-method surely removes jumps as a



matter of fact. In Section 2.3, we introduce a quasi-likelihood function H,,(6) depending on a moving
level a,. The random field H,(0) is more aggressive than H, (6; «) with a fixed . Then a polynomial
type large deviation inequality is obtained in Theorem 2.3.3 but the scaling factor is n='/2 in this case
so that we can prove y/n-consistency in LP sense for both QMLE éﬁ/l “n and QBE éf “@n associated
with the random field H, () (Proposition 2.3.4). Stable convergence of these estimators and moment
convergence are validated by Theorem 2.3.13. The moving threshold method attains the optimal rate
of convergence in contrast to the fixed-a method. However, the theory requires the sequence «,, should
keep a certain balance: too large «,, causes deficiency and too small «,, may fail to filter out jumps.
To balance efficiency of estimation and precision in filtering by taking advantage of the stability of the
fixed-a scheme, in Section 2.4, we construct a one-step estimator 022 for a fixed o and the aggressive
H, () with the a-QMLE 627 as the initial estimator. Similarly, the one-step estimator 627 is
constructed for fixed (o, 3) and H, () with the («, 5)-quasi-Bayesian estimator 058 for the initial
estimator. By combining the results in Sections 2.2 and 2.3, we show that these estimators enjoy
the same stable convergence and moment convergence as QMLE 6210m and QBE 65 Tt turns out
in Section 2.6 that the so-constructed estimators are accurate and quite stable against «, in practice.
In Section 2.5, we relax the conditions for stable convergence by a localization argument. Section 2.6
presents some simulation results and shows that the global filter can detect jumps more precisely than
the local threshold methods.

2.2 Global filter: a-threshold method

2.2.1 Model structure
We will work with the model (2.1.1). To structure the model suitably, we begin with an example.
Example 2.2.1. Consider a two-dimensional stochastic differential equation partly having jumps:
dg, = bidt + o8 (&, m, G, 0)dw; + dJF
dne = bidt + 0" (&, G, 0)dwy-
We can set Y = (£,7), X = (£,1,¢) and J = (J¢,0). No jump filter is necessary for the component 7.
This example suggests that different treatments should be given component-wise. We assume that
o = diagleW(z,0),...,0%(z,0)]

for some my x mj nonnegative symmetric matrices o(*) (z,0), k=1,...,k, and we further assume that
w= (w1 with r =31 m =m. Let S = 0®2 = go*. Then S(z,0) has the form of

S(z,0) = diag[SV(x, 0),..., S® (z,0)]
for mj x my, matrices S*) (z,0)= O'(k)(O'(k))*(I,G), k=1,...,k. According to the blocks of .S, we write

y B0 e s
Y;ﬁ = ) bt = ) wr = ) Jt = .
0 a0 o e

Let NX = Esgt Liax,201- We will pose a condition that N%( < oo a.s. The jump part J¥X of X
is defined by J;X = > st AX.



2.2.2 Quasi likelihood function by order statistics

In this section, we will give a filter that removes AJ. [20] and [14] used certain jump detecting filters
that cut large increments A;Y by a threshold comparable to diffusion increments. It is a local filter
because the classification is done for each increment without using other increments. Contrarily, in
this paper, we propose a global filter that removes increments A;Y when |A;Y] is in an upper class
among all data {|A;Y |}z, n

We prepare statistics ST(LITJ).A (k=1,..,k; j =1,..,n; n € N) such that each 5’( ) _; is an initial
estimator of S(*) (Xt;_,,0") up to a scaling constant, that is, there exists a (possibly unknown) positive
constant ¢(®) such that every S (k) (X, ,,0%) is approximated by c(k)ggfj)»_l, as precisely stated later.

We do not assume that S (k)

n.j—1 18 Fi;_,-measurable.

Example 2.2.2. Let K be a positive integer. Let (i,) be a diverging sequence of positive integers,
/2.
e.g., in~h~ Let

in A Y (E) ®21
a(k) ZZ*_’"( I ) {|Ajfi7K+1Y(k)|/\"'/\|Aj—i—ly(k)|Z|Aj—iy(k)|}

in
hrmax {1’ 2, 1{|Aj_i_K+1Y<k>|A~-~A\AH71Y<'€>\zmHY(w} }
Here AjY(k) reads 0 when j < 0 or j > n. An example of 51(1’?])-_1 is

S(,]) 1 = S(k) (k)

€ol,
n,j— 11 {Amm(Sn,FI m

kl{)\ MEW) o1y (2.2.1)

)>27160} n,j—1

suppose that in(g )\mm(S(k) (x,0)) > € for some positive constant €y, where A\, is the minimum
I7

eigenvalue of the matrix.

Let o = (a(k))ke{lw,k} € [0,1)%. Our global jump filter is constructed as follows. Denote by
T (a®)) the set of j € {1,...,n} such that

. k)
#{ € (L enk 1SS )78 Y PI>SE) 28y W)} = aln
for k=1,....k and n € N. If o¥) = 0, then jék)(a(k)) = {1,....,n}, that is, there is no filter for the

k-th component. The density function of the multi-dimensional normal distribution with mean vector
w and covariance matrix C' is denoted by ¢(z; u, C'). Let

Tr ( Jiz<ctamyizy 220 (2 0, Imk)d2’>

(O (a®) =
Tr(f[Rm,c z®2q§(z;0,lmk)dz>

)

equivalently,

q(k)(a(k)) = (mk)lTl"</ 2®2¢(Z;0,Imk)dz)
{Iz[<c(alR)1/2}

= (i) E[VLycamyl;

10



for a random variable V' ~ x%(my), the chi-squared distribution with m; degrees of freedom, where
c(a®) is determined by

PV <c(@®)] = 1-a®,
Let p(a®) =1 — a®. Now the a-quasi-log likelihood function H, (6; ) is defined by

k
HBi) = —3 >0 0 Lg®a®) W, e (A ) KLY
k=1 je 7P (ath)
+p(a®)logdet S®) (X, ., 9)}
where
n.,j {ia;y®)<cFn-1} o

and Cﬂ(‘k) are arbitrarily given positive constants. For a tensor T' = (T3, . i, )i1,...ix, W€ Write

Txy, ez = T @ Qag] = Z T, kaﬁl xz’“

.....

for 21 = (z1)iy, oo, T = (:1:2’“)% We denote u®” = u® --- @ u (r times). Brackets [ ] stand for a
multilinear mapping. This notation also applies to tensor-valued tensors.

If a¥) = 0, then jék)(a(k)) = {1,...,n}, c(a®) = 400, p¥)(a®)) = 1 and ¢ (a®)) = 1, so the
k-th component of H,(6;«) essentially becomes the ordinary quasi-log likelihood function by local
Gaussian approximation.

Remark 2.2.3. (i) The cap K 7(113) can be removed if a suitable condition is assumed for the big jump
sizes of J, e.g., supycpo ) [AJi| € L = Np>1 LP. It is also reasonable to use

(k) _
Kn,j B 1{|§*1,/72A.y(k)\<cik)n*21{}

)

if S, j—1 is uniformly L*"-bounded. In any case, the factor K (k nj only serves for removing the effects
of too big jumps and the classification is practically never affected by it since the global filter puts
a threshold of the order less than n='/2logn. As a matter of fact, the threshold of KT(”) is of order

O(n~Y%), that is far looser than the ordinary local filters, and the truncation is exercised only with
exponentially small probability. On the other hand, the global filter puts no restrictive condition
on the distribution of the size of small jumps, like vanishing at the origin or boundedness of the
density of the jump sizes, as assumed for the local filters so far. It should be emphasized that the
difficulties in jump filtering are focused on the treatments of small jumps that look like the Brownian
increments. (ii) The symmetry of o(®)(z, 8) is not restrictive because o® (X, G)dw,gk) = S®)(X,,0)1/2.
(S(k) (Xt,0)" 126" (X3, H)dwgk)). On the other hand, we could introduce an myg x mg random matrix

5212_1 approximating o*) (Xt;_,,0%) up to scaling, and use (67(1?-_1)_1Ajy(k) for (ngj)_ ) 1/2A y®),

in order to remove the assumption of symmetry.

The a-quasi-maximum likelihood estimator of § (a-QMLE) is any measurable mapping éﬂ/[ “
characterized by

H,, (62 = Hy(0;c0).
(650) = maxii(@:a)

We will identify an estimator of @, that is a measurable mapping of the data, with the pull-back of it
to 2 since the aim of discussion here is to obtain asymptotic properties of the estimators’ distribution.

11



2.2.3 Assumptions

We assume Sobolev’s embedding inequality

: ; P e 1
sup | 10)] < c@,p{g | leiso) de} (f € C1(O))

for a bounded open set © in RP, where Cg ), is a constant, p > p. This inequality is valid, e.g.,
if ©® has a Lipschitz boundary. Denote by C?’b([Rd x O;R™ ® R") the set of continuous functions

f:R¥xO — R"®R" that have continuous derivatives Js, - - - O, f for all (s, ..., s¢) € {0, 2}¢ such that
#{ie{l,..,l}; si=x} <aand #{i € {1,....,0}; s;, = 0} < b, and each of these derivatives satisfies

Sug\asl"'asef(%@)\ < C(s15 e 50) (14 [2|CC%0) (2 € RY)
€

for some positive constant C(s, ..., s¢). Let ||V||, = (E[[V[P])}/? for a vector-valued random variable
) _

V and p > 0. Let N( ngt 1{AJ§“;&0}

conditions. Let X = X — JX for JX = Zse[o,~] AX,.

and Ny = >, 1yas,+0; We shall consider the following

[F1], (i) For every p > 1, supycpo. 7y [| Xt|lp < oo and there exists a constant C(p) such that
IX; = Xsllp < CO)E—s"> (1,5 €[0,T)).
(if) supyepon llbellp < oo for every p > 1.
1) o € ’ X 0, &® , t,0) 1s 1nvertible a.s. for every ¢ € ©, an
CY™(RY x ©;R™ @ R"), S(Xy,0) is invertibl f 0 € ©, and
supyepo,1,0co |15(Xt, 0)71||, < oo for every p > 1.
(iv) Ny € L and Ny € L°.

Let (kn)nen be a sequence of positive integers satisfying &, = O(n'/2) as n — oo. For j € {1,...,n},
let I, ; = {z e{l,...,n} |z —JjI < /{n} Let I,; = Uier, ;[ti—1,t;]. Define the index set Lng) by

{7 €l n}s NO(L,5) + N¥ (L) # 0}

[F2] (i) S ] , are symmetric, invertible and sup max H S(lC

1 nyj— 1) 1Hp < oo for every p > 1 and
neNi=1,
k=1, ..k

(ii) There exist positive constants vo and c¢*) (k =1, ..., k) such that

k
(S(k)(thl,G )=l )S(J) 1>1{je(L51k))c}
P

for every p > 1and k=1,..., k.

sup max n° < o0

neNI=L...n

Remark 2.2.4. In [F2] (ii), we assumed that there exists a positive constant c¢(*) such that every
S (k) (Xtr1 ,0%) is approximated by c(k)gy(f])-_l. In estimation of 6, we only assume positivity of %) but
the values of them can be unknown since the function H,, does not involve ¢(*). When S*) (th_1 ,0%)

is a scalar matrix, Condition [F'2] is satisfied simply by Sﬁbk}_l = Im,.-

Remark 2.2.5. The S( ) _, given by (2.2.1) in Example 2.2.2 satisfies Condition [F2] with 9 = 1/4

if one takes i, ~ h™1/2. The constant ¢(¥) depends on the depth K of the threshold. It is possible to
give an explicit expression of ¢®) but not required by the condition.
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2.2.4 Global filtering lemmas

The a-quasi-log likelihood function H,,(6; «) involves the summation regarding the index set Tk (k).
The global jump filter Jék)(oz(k)) avoids taking jumps but it completely destroys the martingale struc-
ture that the ordinary quasi-log likelihood function originally possessed, and without the martingale
structure, we cannot follow a standard way to validate desirable asymptotic properties the estimator
should have. However, it is possible to recover the martingale structure to some extent by deforming
the global jump filter to a suitable deterministic filter. In this section, we will give several lemmas
that enable such a deformation.

As before, o = (a(k))kzlw,k is a fixed vector in [0,1)k. We may assume that o € (0,1/2] in [F2].
Let

UP = (@) 2250 ) 2Ay W and WP = n2A 00,

By [F'1]p and [F2], we have

sup sup HR 1
neNj=1,...,n

— O(n™™)

jeye
for every p > 1, where

(k) _ 7r(k) (k) E)W—1/27-1/2/a(k) \=1/2 A . 7(k
RY =0 — W — ()72 2 (g ) TRA W),

Remark that A1/2 < foo )\_1/2A()\ + A)~Ld\ for a positive-definite matrix A.
Denote |W ] and \U | by W( ) and ng), respectively. WE;C)) denotes the j-th ordered statistic

of {W1 . k)} (])) denotes the j-th ordered statistic of {ng), ...,Uff)}. The rank of ng) is

denoted by 'r(W§ )). Denote by g, the a®)_quantile of the distribution of Wik)

depends on mg.
Let 0 < v2 < 71 < 70. Let o) = [a®)n —n!=72| where a® =1 — a® = p(a®). Define the
event N¥) 1
n,J y

. The number q,,x)

{r(W) <ol —nt- w}m{w o) — W <,

Lemma 2.2.6. Suppose that o'F) ¢ (0,1). Then P[Uj=1:~w"Nr(L?] = O(n_L) as n — oo for every
L>0.

Proof. We have

[—(k _
P WE zk)) > a1 71]

_ k
_ p 21{W<k><q ey < <>}
-

_ - k _ 1_
= Pin 1/2 Z {I{W(.k)<q (k)—i-n_‘/l} B P|W§ ) S qo_z(k) +n 71]} < —nz ’ch(n):|
L = i s
= o(n 1

for every L > 0, where (¢(n))nen is a sequence of numbers such that inf,cp c(n) > 0 (the existence
of such ¢(n) can be proved by the mean value theorem). The last equality in the above estimates is

13



obtained by the following argument. For A; = {Wﬁk) < Qg + 17} and Z; = 14, — P[Aq], by the
Burkholder-Davis-Gundy inequality, Jensen’s inequality and |Z;| < 1, we obtain
n 1 1 n
P [n_l/Q Z Z; < —n2en)| S nmPGTe(n) PR |0 Z |Z;)%P
j=1 j=1

— O(H—p(l—%n))

for every p > 1.
Let

B{ {\W( )~ datw| >0

We can estimate P[WEZ;@))

< ggk) — n_%], and so we have

PBF] = omnt) (2.2.3)

for every L > 0.

By definition, on the event ngk]) N (B,(Lk))c, the number of data ngf) on the interval [gx) —

1

2n" 7 qam) + 2n*'“] is not less than n'~72. However,

1—
P[Z {W( [q (k) =207 L,q_ (k) +2n~ Wl]} >n 'Yz:|

J'=1
n
— Plp~tm 1, > 172
" 2 el s ]} 2 }

for every L > 0. Indeed, the family

-1/2 _
{ Z ( {W<k) (k) =207 g (k) +2n7 ”1]} E[l{W}k)e[qa(m—%“vqa<k)+2”“]}]>}neN

is bounded in L°°~ (this can be proved by the same argument as above). Since the estimate (2.2.4) is
independent of j € {1,...,n}, combining it with (2.2.3), we obtain

Jmax P[NG] = 0"
as n — oo for every L > 0. Now the desired inequality of the lemma is obvious. O
Let
Ga®) = {ie Lol 7 <a® )
where

&7(1/6) — Lagf) _ nl_”J.

Let £ = {j; A;N® 4+ A;NX £0}. Let

Q, = {Z#Lgfknl%}ﬂ( N N [{IRk)\l Ly <270 Ufj)c]).

k k=1,...k j=1,...,n

14



Lemma 2.2.7.
TPy n L) < gP (M) (2.2.5)
on Q. In particular
#[TP () e FP(a*)] < et 4 # L (2.2.6)

on ., where ¢, is a positive constant. Here © denotes the symmetric difference operator of sets.

Proof. On Q,, if a pair (j1,J2) € (L%k))c X (L(k)) satisfies ’I“(W( )) al) and T(Wy;)) > o, then

ny) < ngf) +27Ip ™ < WEZ’C)) —27Ip™m < Wg’;) — N < U;Q). Therefore, if j € jék) (a(k)) N
(Lg{))c, then j € AR () since one can find at least [a(k)n](g (n— ot + 1) — n'=72) variables

that are larger than U(k). Therefore (3.4. 4) holds, and so does (3.4.5) as
follows. From (3.4.4), we have #[jn (@®) e FP (al ] <N+ # L for
N = #[7"@®)n P @) n (L)),

Suppose that j € Tk ( N nJk) (alk))e ﬂ(LSZk))C. In Case T(ng)) <alf ), since a\F) < T(W§-k)) < a&k),

we know the number of such j is less than or equal to n'=?2.  In Case T(ng)) > a,(lk), as seen
above, Ug-]f) < ﬁ;k) on Q, for all j; € (Lgf))c satisfying r(ngf)) < agg), since j € (L%k))C and
T(W§k)) > a{®. The number of such Jis is at least alf) — [n172]. On the other hand, j € Tk ( (k)

. ) k) F7(k) k
gives #{j’' € {1,...,n}; U;” <U;"} > [a®)n]. Therefore

o
=)
g
=
@
=
==
=z
Aq/-\

N < nl™24n— (&%k) _ Lnl—sz) _ (Oé(k)n] < dpl= 49
on €2,. We obtain (3.4.5) on €, with ¢, = 6 if we use the inequality 4n'=72 4+ 2 < 6n'=72, .
Let v3 > 0. For random variables (Vj)jzl,...,n, let

1
> Vimn 2 Vi)

JeTF) (a®) i€ (a®)

Dk — n%l

n

Lemma 2.2.8. (i) Let py > 1. Then

‘max
j=1,...n

IDP, < (en™ ™72 4 )2 L0),)
pp1(p1—p)~ "
+n| max |Vj|lae
ji=l,..n " »

forp e (1,p1).
(ii) Let v4 >0 and p1 > 1. Then

IDPNlp < (ean™ 772 4071 L)

X <n74 +n max
J=

'!V |14y, 5 ne)

pp1(p1—p)~ ! >

_‘_n’YS

max }V }1Qc
Jj=1,.. p

forpe (1,p1).
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Proof. The estimate in (i) is obvious from (3.4.5). (ii) follows from (i). O

Let 737 (a®) = {j; [h=Y28,0®)| < g )= {5; WV < gaw }. Let

~ 1 1
ngk) — n'Ys‘n Z Vj_ﬁ Z Vil.

7€) (a®) i€ (a®)

Lemma 2.2.9. Let Q,, = HWE?“ — q@(k)‘ < C’n_w}, where C'is a positive constant. Then

)
(i) Forp=>1,

- 1 <&
DH, < n» Vil =Y 1y i %3 1. Virl|| -
R e D R i ¥ e
(ii) FOT’p]_ >p21;
= =(k -
D < o s Wl | P - g < Cn]
AR p
+n7 | max |Vj]
I=Lom pp1(p1—p)~!
Ly (k)
X Ly < —P{|Wy’ —q- <Cn
e 2 (o fsenmy =P -l <o) )|
+n PSP | max |V
=Lom pp1(p1—p) !
Proof. (i) follows from
1o (1 k) -1 < 1y .
Qn {W(k)SWEzik))} {W§k)§qa(k)}‘ = AP g |con2}
and (ii) follows from (i). O

We take a sufficiently large C. Then the term involving Qfl on the right-hand side of each inequality
in Lemma 2.2.9 can be estimated as the proof of Lemma 2.2.6. For example, P[Q¢] = O(n~F) for any
L>0.

Lemma 2.2.10. Let k € {1,....,k} and let f € CHY(RY x O;R). Suppose that [F1]g is fulfilled. Then
.T

1 17
sup || supn® |— Z p(a(k))lf(th_l,Q)—T/O f(Xy,0)dt < 00

neN || 6e©
FeT) (k) »

for everyp>1 and e <y, .
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Proof. Use Sobolev’s inequality and Burkholder’s inequality as well as Lemmas 2.2.6, 3.4.5 (ii) and
2.2.9 (ii). More precisely, we have the following decomposition

% Z p(a™) T f (X, 0 / f(Xt,0)

i€ (a®)

— pa®)! Al SR, NH)—-% S A0

" jea®am) i€ (atk))
1
(Xt] 179)_5 Z f(Xt] 1?9)
Jej(k) alk)) jejrgk)(a(k))

Jéthj . {{W(k)<q o) Pl ())}
}:u/' Xi1,0) — F(X00)]dt

::ﬂ%@+ék@+§%@+dmm.

)T )TV

We may assume o¥) > 0 since only I ikg () remains when a*) = 0 and it will be estimated below.

As for Iﬁz (#), we apply Lemma 3.4.5 (ii) to obtain

1
Zugnﬂl @ = Zzugn E Yoo o 4o 0) = Yoo 0hf(Xe,_,.0)
) r =017 JET) (@) JEI) (@) ’
S S supd (e L0,
201069

X (nw4 + nmax
J

105 f( Xy, 9)‘1{|8§f(th71,6)\2n74}

J

By taking 74 > 0 small enough, we can verify that the right-hand side is o(1) since

ppP1 )
p

1—P

+nf max |8éf(th71 ,0)1ae

[# L0, < k|| Nz + N& ||, = O(n'/?).

Note that we have used the fact P[Q¢] = O(n~%) for any L > 0. A similar argument with Lemma
i ol 1k
2.2.9 (ii) yields || supgegn !Iéﬁz(@)mp =o(1).
As for I?Ekg (0), applying the Burkholder-Davis-Gundy inequality for the discrete-time martingales
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as well as Jensen’s inequality, we have
p

N
sup || Z Bpf (Xt; 1 ){1{W§k>§q&(k>} pla )}

p

- 2
% 2 |95 f (X, s, 9)|2{1 (79 < ) ™ p(aw))}
]:

sup n_p(%_g) E
0cO

- 0 (n—(%—E)p>

for every p > 2 and ¢ = 0, 1. Hence, by Sobolev’s inequality, we conclude

N

[Sl5s]
—_

sup ‘| 155)(0)|
9eo

p

for every p > 1.
Finally, we will estimate I i";z(e) Since f € C’Tl’l([Rd x 0;R), there exists a positive constant C' such
that

Cplz,y) < O+ |z +1yl)

where C¢(z,y) fo supgeo |0xf (z+&(y—x), 0)|dE for z,y € RY. Then by [F1]o (i) and (ii), we obtain

n‘sup ‘Iikrz (0) ‘
0O

P

1 < [l
< nfx nhZ/t | 1pa, vx 0y Cp(Xe; ys Xo)| Xi = Xi, 1|H dt
j=17ti-1

|| — > 1{AjNX¢O}/ Cr( Xy, X0)| Xe — Xy, | dt
j=1 tj-1 »
1 1 1 i t 2 %
< opete gt (Nr_,{()i {n—l Z (h—l / Cf(Xt]._l,Xt)\Xt — Xt]._1] dt) }
j=1 ti-1 p

< n 2+6+n 2+€HNXH3

= O(n"=")

for every p > 1. This completes the proof. O

By LP-estimate, we obtain the following lemma.

Lemma 2.2.11. Letk € {1,...,k} and let f € C?’l (RYx ©; R™ @ R™*). Suppose that [F1]o is fulfilled.
Then

sup supn%*6 Z f(Xe,_,0) {(AjY(k))mef} — (U(k)(th,l,9*)Ajw(k))®2 <
neN || 6€© ]Ejys,k)(a(k>) »

for every p > 1 and € > 0.
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Proof. Let YH) = y(®) — J®) Let N = N + N¥. Let
QR = (U(k)(th,p9*)Ajw(k))®2~
Then

1, 2 (k
sup |12 Z 1{AjN>0}f(th—1’9) [(Ajy(k))® Kfu) - Qj]

<o JET) (@) p
< sup nz—¢ ‘max f(thl,Q)[(AjY(k)) K(k QJ HNTHQP
0cO j=1,...n 2p
= o(1) (2.2.7)

as n — oo thanks to K( )
Let n=1—¢/2. T hen by the Burkholder-Davis-Gundy inequality, for any L > 2,

P, = P[jinax 1{AN 0}/ {U X, 0 )—O’(th .0 }dwt >n 77}
< [ max / {a( X; + J 0*) — o(Xy,_,,0") pdwy| > n‘"]
_ L/2
< ZnL”EK/ o (Xi+ J75 . 0%) — o(Xi,_,, 0 \dt) ]
] 1
< ZnL”hL/2 1/ Ello(X;+ Ji ,07) - o(Xy,_, +J§71,9*)\L]dt

] 1

= O(n x nIm x p L2 ol nfL(1/2*6/4))

— O(n17L6/4)'

In the last part, we used Taylor’s formula and Holder’s inequality. Therefore, P, = O(n~") for any

L>0. _
Expand AjY(k) with the formula

- t; t;
AT = oW, 0w 1 [T {o®(X,0%) o ® (X, .67 bu® + / " oPar

ti—1 tj—1
= &1+ &+ 8y

Then we have

beo || Z Lia;n=0y f(Xt;-1,0) 615 ® &2
0O ‘ ®
jeg (@) ,
1_ €
S n2 2 sup H|f th . |’§17]| H +n1 ePzp
s
= o1).
Thus, we can see
1
veo | Yo Yan—apf (X, 0)[6n ® &gl || = o)
P

jeTM (ak))
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for (i1,i2) € {1,2,3}2\ {(1,1)}. Consequently,

1
sup |[n?2 Z Lia, n=opf (X, 0)

sup (A7) PR — Qg}
© Fe€TE) (@)

p

1 i ~
< zup nz=¢ Z 1{A]-N:0}f(th7179) (AjY(k))®2 = Qj] +0(n k)
<© 7T (@) : ,
= o(1) (2.2.8)
for every p > 1 and L > 0.
From (2.2.7) and (2.2.8), we obtain
sup ngel ST f(X,0) [(AjY(k))@)ngg ~Q; = o(1) (2.2.9)
€

= 7(R) (k)
J€ETn (aM) »

for every p > 1. Applying the same estimate as (2.2.9) to g f for f, we conclude the proof by Sobolev’s
inequality. O

Lemmas 3.4.5, 2.2.9 and 2.2.11 suggest approximation of n~'H, (6; ) by

k

1 _ " - *

_%Z Z q(k)(a(k)) 15(’“)(th71,0 )1/2S(k)(th71’9) 15(16)(th71,9 )1/2
F=1je 7 (alk))

. [(h—l/QAjw(k))®2] + p(a(k))—l log det S(k’) (th_l 7 0)},
as we will see its validity below.

2.2.5 Polynomial type large deviation inequality and the rate of convergence of

the a-QMLE and the (a,3)-QBE

We will show convergence of the a-QMLE. To this end, we will use a polynomial type large deviation
inequality given in Theorem 2.2.13 below for a random field associated with H,,(#; ). Proof of Theorem
2.2.13 will be given in Section 2.2.6, based on the QLA theory ([25]) with the aid of the global filtering
lemmas in Section 2.2.4. Though the rate of convergence is less optimal, the global filter has the
advantage of eliminating jumps with high precision, and we can use it as a stable initial estimator to
obtain an efficient estimator later. We do not assume any restrictive condition of the distribution of
small jumps though the previous jump filters required such a condition for optimal estimation.

We introduce a middle resolution (or annealed) random field. A similar method was used in Uchida
and Yoshida [21] to relax the so-called balance condition between the number of observations and the
discretization step for an ergodic diffusion model. For 8 € (0,7), let

H3(0;0) = n~'*28H,(0; ). (2.2.10)
The random field H2 (6; o) mitigates the sharpness of the contrast H,(6; ). Let

Ya(B;0) = n P {H3(0;0) —H] (6% )} = n™' {Ha(6;0) — Ha(6%;0)}.
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Let

k T
1
_ 1 (k) ~1g(k) .y _
Y(0) 2Tk§—1:/0 {Tr<s (X,,0) 1™ (X, 0%) Imk>

. det S®)(X;,6) p
& det S® (X, 67) J

+1

The key index xq is defined by

= in 7_Y(0)
X = e 0 — 072

Non-degeneracy of xg plays an essential role in the QLA.

[F3] For every positive number L, there exists a constant C, such that

Plxo<r™'] < Cp rL (r>0).

Remark 2.2.12. An analytic criterion and a geometric criterion are known to insure Condition [F'3]
when X is a non-degenerate diffusion process. See Uchida and Yoshida [22] for details. Since the proof
of this fact depends on short time asymptotic properties, we can modify it by taking the same approach
before the first jump even when X has finitely active jumps. Details will be provided elsewhere. On
the other hand, those criteria can apply to the jump diffusion X without remaking them if we work
under localization. See Section 2.5.

Let U = {u € RP; 0* + nPu € ©}. Let Va(r) = {u € U3; |u| > r}. The quasi-likelihood ratio
random field Zg(g «) of order f is defined by

Z8(u;0) = exp {[Hﬁ(e* +n Puya) — HE (6% a)} (u € UD).

The random field Z)(u; ) is “annealed” since the contrast function —H.(6;a) becomes a milder
penalty than —H, (0; «) because f < 1/2.
The following theorem will be proved in Section 2.2.6.

Theorem 2.2.13. Suppose that [F1]4, [F2] and [F3] are fulfilled. Let ¢y € (1,2). Then, for every

positive number L, there exists a constant C(«, 3, co, L) such that

—r€0 < C(a’67007L)

P| sup ZP(u;a)>e < I

wu€Vn (1)

forallr >0 and n € N.

Obviously, an a-QMLE 05%of 6 with respect to Hy,(+; ) is a QMLE with respect to [HQ(-; «). The
following rate of convergence is a consequence of Theorem 2.2.13, as usual in the QLA theory.

Proposition 2.2.14. Suppose that [F1]4, [F'2] and [F3| are satisfied. Then sup Hnﬁ (é%a—ﬁ*) Hp < 00
neN

for every p > 1 and every 5 < 7.
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The (a, 8)-quasi-Bayesian estimator ((«, 5)-QBE) 05328 of 0 is defined by

-1
9B, — ex B9;a))w ex B9;a))w 2.
pes = | [ewmioa)=ow] [ oo Eoa)=0m @21

where w is a continuous function on © satisfying 0 < infypcg w(f) < supyce @w(#) < co. Once again
Theorem 2.2.13 ensures L -boundedness of the error of the («, §)-QBE:

Proposition 2.2.15. Suppose that [F'1]4, [F2] and [F3] are satisfied. Let B € (0,79). Then
sup Hnﬁ (éf’o"ﬁ — 6*)Hp < 00
neN

for every p > 1.

Proof. Let aBeh — nﬁ(éf’a’ﬁ —9*). Then

-1
a7 = (/5 7 (u; ) (0" + nﬂu)d“> /6 uZp)(u; @)@ (6" + n~Pu)du;
U Un

n

recall Ul = {u € RP; 0" + nPu € ©}.
Let C1 >0, p>1, L >p+1and D > p+ p. In what follows, we take a sufficiently large positive
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constant C. We have

IN

IN

IN

IN

S

<

“uB ,a,B|p

7]
EK /U ; 75 (u; ) w (0% + nﬁu)du> - /U ; [ulPZ8 (u; ) (0" 4+ n~Pu)du

(Jensen’s inequality, p > 1)
> -1
C(w) Z(r + l)p{E </ﬂ 78 (u; a)du) / , 7 (u; a)du
r=1 Un {u;r<|u|<r+1}NUy

X
7 Cl
{u r<|ul<r4 }ﬁu.)ﬁ ’Il(u a)du>ﬁ

-1
al( ) i
{ur<|u|<r+1}nUS
: )
{f{u r<|u\<r+1}ﬁlUﬁZ (U a)dU< D—%)-Q»l}

+C(w) (The last term is for 7 = 0. The integrand is not greater than one.)

o0

C/
w r—i—lp{P[/ Zﬁu;adu>1]
) Z( ) {wr<|u|<r+1}nUS n( ) rP=ptl

r=1
T.D%HE K/UB 28 (u; a)du> _1] } + C(w)

> C
@)Y+ 0P| s Ziwa) > G
uEVﬁ(r) r

+DC+E[< /U 2 a)du)l} } +C()

0o 00 -1
Z A Z r_(D_p_p“)E[(/ﬁ 7y (u; a)du) } + C(w).
r=1 r=1 v

o

_l’_

r=1

by Theorem 2.2.13, suppose that

E[(/ﬂ)gzg(u;a)du>_l} < oo

However, one can show (2.2.12) by using Lemma 2 of Yoshida [25].

2.2.6 Proof of Theorem 2.2.13

We will prove Theorem 2.2.13 by Theorem 2 of Yoshida [25] with the aid of the global filtering lemmas

in Section 2.2.4. Choose parameters 1, 51, p1, p2 and By satisfying the following inequalities:

1
0<n<l, 0<61<§, 0 < p1 <min{l,n(1—n)"1 26,(1 —n)~ 1},
2n < pa, B2 >0, 1—282 —p2 > 0.
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Let
An(e,B) = nPogH2(0%:a) = n~1HPOH,(0%; ).
Let
o) = —n P2H5(0% a) = —n~t92H,(0%; ).
The p x p symmetric matrix I'® is defined by the following formula:

1

o) = —
0

TTr((aes“f)[uD(s(’f))—l(aes(“ [uD(s(’f))—l(Xt,e*))dt,

where u € RP; and I' by I' = 22:1 I'®). We will need several lemmas. We choose positive constants ~;
(1 =1,2) so that 8 < 72 < 71 < . Then we can choose parameters 31({ 0), S2(1 1/2), p2({ 0), n({ 0)
and p1({ 0) so that max{2551, 8(1 —262)} < v2. Then there is an € € (max{2851, 5(1 — 252)},72).

Lemma 2.2.16. For everyp > 1,

P
SupE[(n_Zﬂ sup \83[&%5(9;@}) ] < oo.
neN 0cO

Proof. We have H,,(0; o) = Hy (0; ) + M°(0; a) + R°(0; ), where

k
o 1 _ B .
Hilia) = =53 > pla®) 1{5"“’(th_1,9) M, 67)]
—HogdetS(”“)(th1,0)}7
1k
M (0;a) = _52 Z h—ls(k‘)(thil’g)—l[q(k)(a(k))—l(U(k)(XtFl?6*)Ajw(k))®2
F=1je g™ ()
_hp(a(k))—ls(k) (th71 ’ 9*)]
and
1 &
Ro0:0) = 52 ¢ (a®) T h S0 (X, 0)7!

=1 e g9 ta)
LAY RS (6 (X, 0%)A;00) ).

Apply Lemma 2.2.11 to 93R2(6; ) (i =0, ...,3) to obtain

3
1=0

for every p > 1. Moreover, we apply Sobolev’s inequality, Lemma 3.4.5 (ii) and Lemma 2.2.9 (ii).
Then it is sufficient to show that

sup ‘6§n_1[R%(9; )|
0cO

< o0

p

4
ZSUP{Haén_l”*Z(@;a)}I +H8én‘1fr4§(9;a)H} < (2.2.14)
=5 0O P P
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for proving the lemma, where HX(0; «) and MX(0; «) are deﬁned by the same formula as HS (6; o) and
Me (0; o), respectively, but with jS’“)(M’ﬂ) in place of Tk ( (k)). However, (2.2.14) is obvious. O

Lemma 2.2.17. For everyp > 1,

p
supE[(nwﬁl‘Fn(a)—H)] < o0.
neN

Proof. Consider the decomposition I'y () =T + M + R’ with

k
Iy, = %Z > p<a<k>>1{azlogdets<’f><xtj_l,e*>

1]6J<k)( ()

+(a§(5(k) 71)) (thfl ’ '9*) [S(th71 ) 9*)] }v

k
- ny X (53(5(’“)‘1>)(th179*>[q(’“(a““))‘lh‘l(a(’”(xj 672w )

n k
k= 1]6..775 )(a(k))

p(0®)S(X,, 6" >]
and

k
1 11— - *
= a® (@)L (GRS ) (X, 0)

n k
k= leJT(L )(a(k))

.[(AjY(k))mK,(f} — (oM, ,,07)8500) 2.

Since 2881 < 79, we obtain
sup Hanl}FZ - Fal < o0
neN
by Lemma 2.2.10, and also obtain
sup [ Ry, < oc
neEN
by Lemma 2.2.11 for every p > 1. Moreover, by Lemmas 3.4.5 (ii) and 2.2.9 (ii) applied to 2531 (< v2)

for “~3”, we replace Jygk)(oz(k)) in the expression of M by ﬁ,ﬁ’“)(a(’“)) and then apply the Burkholder-
Davis-Gundy inequality to show

248
sup [ A, < oo

for every p > 1. This completes the proof. O

The following two lemmas are obvious under [F'3].
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Lemma 2.2.18. For every p > 1, there exists a constant C, such that

P[Amm(r‘) < 7"7'01] < %

for all v > 0, where Apin(I') denotes the minimum eigenvalue of I'.

Lemma 2.2.19. For every p > 1, there exists a constant C, such that

)
rp

Plxo < r_(p2_277)] <

for all r > 0.

Lemma 2.2.20. For every p > 1,

sup EHAn(a, B)m < oo.
neN

Proof. We consider the decomposition A, (a, 8) = n~'T89H,(0*;a) = MY + R with

nf &
My = ==y D>, (08X, 07)

=1 je g
. |:q(k) (a(k))flhfl (O'(k) (th71 , 9*)A]w(k))®2 - p(a(k))*ls(thil , 9*):|

and

k

B
n

k=1 jejTgk)(a(k))

% (89(S(k) —1))(Xt;1’9*) |:(AjY(k))®2K7(Lk; . (J(k) (thl’a*)Ajw(k))®2:| ‘

J R

We see sup,,¢ HRX(@,B)HP < 00 by Lemma 2.2.11. Moreover sup,,cy HMX(a,ﬁ)Hp < 00 by Lemmas
3.4.5 (ii) and 2.2.9 (ii) and the Burkholder-Davis-Gundy inequality. We note that symmetry between
the components of ij is available. ]

As a matter of fact, A, («, B) converges to 0, as seen in the proof of Lemma 2.2.20. The location shift
of the random field Z4(+; o) asymptotically vanishes.

Lemma 2.2.21. For every p > 1,

p
sup E Ksnp nf1-26) Y (0; ) — Y(G)‘) ] < oo0.
neN 0cO

Proof. In this situation, we use the decomposition

Ya(0i0) = Yi(0ia) +Mi(0;a) + R (0;0)
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with

1
Vi) = ——> ) p(a(k))1{Tr<5(k)(th_1,0)1S(k)(th_l,9*) —Imk>
k=1 jejr(bk)(a(k))
det S® (X, _,,0) }

1
T8 et 50 (X, ,.0%)

k
M;_LF(07O[) = —;Z (S(k)(th_17€)1 _S(k)(Xt]._l,H*)l)

n k
F=1jeg® (a®)

[‘—’“”(a“f))lh1(a<’f><Xtme*>Ajw<’“>>®2 —p(a““))ls““)(thl,@*J

and

k
1 1. _ fr—
RiG) = —5 > 3 ) (500, 0 - s
3 je )

. [(Ajwm)@?fgg; (oW (thl,e*mjw)@?] .

As assumed, (1 —282) < 72 < 1/2. Lemma 2.2.11 gives
P
supE[(Supnﬂ(l_%?)mj(@;a)’) } < o0
neN 0cO
for every p > 1. Furthermore, Lemma 2.2.10 gives
P
supE[(supnﬁ(l_w”wf{(ﬁ;a) —Y(H)‘) ] < 00.
neN 0O

On the other hand, Lemmas 3.4.5 (ii) and 2.2.9 (ii) and the Burkholder-Davis-Gundy inequality
together with Sobolev’s inequality deduce

P
supE[(supnﬁ(l2’32)’M7J{(9;a)|> ] < o0
neN 0cO

for every p > 1, which completes the proof. O

Proof of Theorem 2.2.13. Now Theorem 2.2.13 follows from Theorem 2 of Yoshida [25] combined with
Lemmas 2.2.16, 2.2.17, 2.2.18, 2.2.19, 2.2.20 and 2.2.21. O]

2.3 Global filter with moving threshold

2.3.1 Quasi likelihood function with moving quantiles

Though the threshold method presented in the previous section removes jumps surely, it is conservative
and does not attain the optimal rate of convergence that is attained by the QLA estimators (i.e. QMLE
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and QBE) in the case without jumps. On the other hand, it is possible to give more efficient estimator
by aggressively taking bigger increments while it may cause miss-detection of certain portion of jumps.

Let 09 € (0,1/4) and 5%1’3) € (0,1/2). For simplicity, let s = n— B® Ln5§k)J with positive
constants B®). Let a{¥ =1 — S%k)/n and ay, = (asll), iy al )) Let

. (K) _ 0k
k) — {] c {1,...,n};Vj ) < v! I)c))}

" (S’EL

where
k k _
VY = e )T Ay )
with some positive definite random matrix 6;3 1, and ng) is the j-th order statistic of V(k), e ,nfk).

We consider a random field by removing increments of Y including jumps from the full quasi-
likelihood function. Define H (9) by

Fin :Z S {5 O, 0 () )k

k=1 jerc®
+(p?) " log det S(’“)(th_l,e)}- (2.3.1)
Remark 2.3.1. The truncation functional KT(Lk]) is given by (2.2.2). It is also reasonable to set it as
(k) _
Knvj - 1{‘/](k) <C£k)n—%—60 } )

where Cik) is an arbitrarily given positive constant.

Remark 2.3.2. The threshold is larger than n~3%0. The truncation K, (k)- is for stabilizing the

increments of Y, not for filtering. The factors &' J) 15 q(k) and pg ) can freely be chosen if &' 3

its inverse are uniformly bounded in L*° and if q,(l ) and p,(f) are sufficiently close to 1. Sfly) q(k)( (k ))

and p(a,(lk)) are natural choices for 6513 1 q,(lk) and pg{), respectively. Asymptotic theoretically, the

factors (q,(L ))_ and (p% ))_1 can be replaced by 1, and one can take 6(]? | = Im, ; see Condition [F'2']

below. Thus a modification of H, (0) is [I(il (0) defined by

k
a0 = 330 3 (B0, 0 (a5 ) )KE)

]EIC(k)

+logdet S (X, |, 9)}

, and

with IC,(JC) for V(k 1A y ] The quasi-log likelihood function [Hn gives the same asymptotic results
as H,.

We denote by gaom g QMLE of 6 with respect to H,, given by (2.3.1). We should remark that

g3 defined by Hp(6) can differ from 65 previously defined by H,(0; ). The quasi-Bayesian
estimator (QBE) 62" of 0 is defined by

gBon = [/@exp (Hn(e))w(e)de} _1/996Xp (H,(0)) o (0)do,

where w is a continuous function on O satisfying 0 < infypcg @ (8) < supycg w(f) < oo.

28



2.3.2 Polynomial type large deviation inequality

Let U, = {u € RP; * + n='/2u € O}. Let V,o(r) = {u € Uy; |u| > r}. We define the quasi-likelihood
ratio random field Z,, by

Zn(u) = exp {[Hn(é* +n Y2y) — [Hn(O*)} (u e Uy,).

[F2'] (i) The positive-definite measurable random matrices 6,(5]);1 (ke{l,...k},neN,je{l,...n})
satisfy

_sup (185 1l + 1S5 M) < oo

for every p > 1.
(ii) Positive numbers qflk) and pglk) satisfy |q7(1k) —1|=o(n""?) and |1 — pglk)| = o(n~1/?).

A polynomial type large deviation inequality is given by the following theorem, a proof of which
is in Section 2.3.3.

Theorem 2.3.3. Suppose that [F1]y, [F2'] and [F3] are fulfilled. Let c¢o € (1,2). Then, for every
positive number L, there exists a constant C(co, L) such that

0(607 L)

P| sup Z,(u)> e < I

wEVy (1)

forallr >0 and n € N.

The polynomial type large deviation inequality for Z,, in Theorem 2.3.3 ensures L°° -boundedness
of the QLA estimators.

Proposition 2.3.4. Suppose that [F'1]4, [F2'] and [F'3] are satisfied. Then

ilelng GAQ” — *)Hp < 00 (A= M,B)

for every p > 1.

2.3.3 Proof of Theorem 2.3.3
Recall Y#) = y(®) — j(k) et
k n
~ 1 ~
Ha(0) = —ZZ{ htS®(Xy, L, 0) M (A Y ) E +logdet5(k)(th_1,9)}.

2
k=1 j=1

Lemma 2.3.5. For every p > 1,

Z sup

_p 9€©

n~Y205H,(0) — n~ 2OiH,(0)  — 0 (2.3.2)

p

as n — 0.
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Proof. Let

a9 = Uftrewrinian® <oy

j=1

Let

B = ﬂ[ v > VB 10 (a, Jk)\<n__5°}]

For w € AP (%%k))c, there exists j(w) € (ICq(zk))c such that Aj,)N N )(w) = 0, and also there exists

j'(w) € {1,...,n} such that V7(’2)(w) < V((Sli))(w) and Ay J ®) (W) >n~ 17%_ Then

k _
‘(6( Do) 2y TP (w)

—'(6““)- 1<w>>-1/2Aj/<w)?<k><w>\

n,j’ (w)

< V@) < VW = 6% 1) auT0w)

(w J(w n,jlw
and hence
1 k 1/2 k — v
i<l [ max ((6]5 () WA;-Y"“’(w)'

where | M| = {Tr(M M*)}'/2 for a matrix M. Since {h’lﬂ}Aj};(k)
in L°°", we obtain

;j=1,...,n,n€ D\l} is bounded

PRI N (B)] = o)
as n — oo for every L > 0. Moreover, P[(ngc))c] = O(n~F) from the assumption for N*) since

(AP {#{je{l ) AGN®) £ 0} > n - >+1} c {NW > p0psi™y.

Thus
k
P[ N %;ﬂ = 1-0(n b (2.3.3)
k=1

as n — oo for every L > 0.

Define H},(6) by

k
1 1, — _ 2 k
MO = 5> 5 @) S0, Lo Ay - AP K

+(p!F) ' log det S*) (thl,m},

where the indicator function controls the moment outside of ﬂ,‘;zl%%k). Then by (2.3.3), the cap and
N7 € L°°, we obtain

nY205H, (0) — n Y28 HE (0)]]  — 0

Z sup

— veo

p
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as n — oo for every p > 1. Indeed, we can estimate this difference of the two variables on the event
¢, = ﬁ,ﬁ:l%gﬁ) and on €, as follows. On &, |AjJ(k)| < n_1/4_501{AjJ(k>750} whenever j € qu(@k). The
k)

cap wa - also offers the estimate |AjY(k)| < Cik)n_l/‘l. On ¢, after removing the factor 1{

j INFOIESY
from the expression of n_l/zﬁé[HL(Q) with the help of N7 € L°°™ and the LP-estimate of h_l‘Ale/P,

we can estimate the cross term in the difference with

n-1/2 Z h_ls(k)(th_l,9)_1[AjY(k) & Ajj(k)]Kr(f}
jekt®
< Mf(zk)niaozl{AjJ(kHéO} < <n50/2 +M£Lk)1{Mn>n50/2}>n60NT
j=1

for Mgﬂ) = maxXj—1,.n |S(k)(th71,0)_1|, as well as the term involving (Aj,](’“))®2 and admitting a
similar estimate. Estimation is much simpler on €¢ thanks to (2.3.3). The cap 1{\A-J<k)|<1} helps.

J >
We know that #(IC,(f))c ~ B(k)n5§k), and have assumed that |q7(1k) — 1| = o(n~Y2) and that |1 —

p%k)] = o(n~1/2). Then, with (2.3.3), it is easy to show

4
Z sup

5 0eo

nY2opHE () — nTV20EH,(0)|  — O,

P
which implies (2.3.2) as n — oo for every p > 1. O

We choose parameters 7, 51, p1, p2 and [y satisfying (2.2.13) with 83 > 0. Let
A, = nV29H,(0*) and T, = —n"'9H,(0").
Let
Yo(0) = n H{Hu(0) — H,(6%)}.

The following two estimates will play a basic role.

Lemma 2.3.6. Let f € C’?’l ([Fid X ©;R™ @ R™*). Then under [F1]o,
P
> ] < o0

Proof. One can validate this lemma in a quite similar way as Lemma 2.2.11. O

sup [ ( sup
neN 6cO

néie Z f(th—l ) 9) [(A]?(k))(@z - (U(k)(th—l ) 9*)Ajw(k))®2]
j=1

for every p > 1 and € > 0.

Lemma 2.3.7. Let p > 1 and e > 0. Let f € CTl’l([Rd X ©;R). Suppose that [F'1]y is satisfied. Then

. 1 n . 1 T o\d p
E Pt Xp ,0)— — X, 0)dt .
sxol (e S o )] <

neN 0cO
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Proof. Let p > 1. By taking an approach similar to the proof of Lemma 2.3.6, we obtain

n T
supnd =S (0X1,100) ~ [ £ 0)d
0co = 0 »
tj
< spni || {f(Xt,m—f(th1,e>}dt|1{Aijzo}
0cO t'_ p
+supn%—f jmax_ / {f(X3,0) X, ., }dt‘ ||E[N7¥]H2p
0cO 2p

O(n%_e xnxn ') +o(n'/?7¢ x nT2e x 1)

o(1)

as n — 0o. We also have the same estimate for dy f in place of f. Then the Sobolev inequality implies
the result. n

We have the following estimates.
Lemma 2.3.8. For every p > 1,
P
supE[(n1 sup ‘ag[Hn(H)D } < oo.
neN 0cO

Proof. Applying Lemma 2.3.5 and Sobolev’s inequality, one can prove the lemma in a fashion similar
to Lemma 2.2.16. O

Lemma 2.3.9. For everyp > 1,

supE[(n’B1 ‘I‘n - I‘Dp] < 0.
neN

Proof. Thanks to Lemma 2.3.5, it is sufficient to show that

sup E[(n®|T, - T|)f] < o (2.3.4)
neN

where

I = —n'05H.(07)

Now taking a similar way as Lemma 2.2.17, one can prove the desired inequality by applying Lemmas
2.3.6 and 2.3.7 as well as the Burkholder-Davis-Gundy inequality. O

Lemma 2.3.10. For every p > 1, supEHAn‘p] < 00.
neN

Proof. By Lemma 2.3.5, it suffices to show

supEHﬁnm < 00 (2.3.5)
neN

for

— U2 x (k)
A, = n7V205H,(07) = QWZZ@ L [D}Y] (2.3.6)

k=1 j=1
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where

and

We have Nj)f € L°° and

for every p > 1. Therefore

7’1,_1/2 Z ftj,l [D](k)]
j=1

for every p > 1. In this situation, it suffices to show that

+o(1)
P

n~1/? Z 1{A]~NX=o}ftj—1 [Dﬂ(k)]
j=1

p

n
_ k
n1/? Z 1{A]—NX:o}ftj71 [DJ( )] = 0(1)
j=1 P
as n — oo for every p > 1.
Now, we have the equality
La,nx—op YW = 1a vx_oy (B1j + B2 + Esy),
where
Z1; = o®(Xy, 07800,

tj
EQ,j = / {O_(k)(th71 +Xt th 17‘9 ) - U(k)(Xg 1a }dwtk)a
ti_

tv
5 = /J b\t

Define C(z,y) by

(2.3.7)

1
C(z,y) = ’/ 0,0 ™ (z +1(y — x),0")dr
0
Then, by the same reason as in (2.3.7), and by It6’s formula and the Burkholder-Davis-Gundy in-
equality,
n~t? Z 1{AjNX:0}h_1ftj,1 [E1,; ® Ea5]
j=1 P
= n71/2 Z hilftjfl [51,]' ® EQJ‘] + 0(1)
jfl P
5 71/22}" 1’ft] 1HU th 170 )‘
7j=1
tj
></ 0@ (X, + K- K 07) — o™ (X, 07| +0(1)
ti—1 p
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and the last expression is not greater than

’1/22h1\ftj1]|a (Xy,_,,0 \/ C( X,y Xe — Xy, )| Xe — Xy, |dt
7j=1

+0(1)

t ~ ~ ~ ~
S n_l/QZh_l/ ‘ftj 1“0 Xt] 1 )‘C(th—let_th—l)‘Xt_th—l‘ dt +0(1)
i ti1 p
S Y s [ Rl s [l 0O K By
=1 tElti—1.t] tle 77777 5 2p
+0(1)
— 0(1)

for p > 1 since HXt X, < C9pn~ 2 and supyepo,7] | Xtllp+S5upseio,r H)Z'th < oo by the continuity

j—1 H2
of the mapping ¢ — X, € LP for every p > 1. In a similar manner, we obtain

= oW

p

n
~1/2 -1 = =
nt § 1{A]-NX:O}h ftj—l[':'ihj@':i%j]
J=1

for every p > 1 and (i1,i2) € {1,2,3}2\ {(1,1)}. Finally, for (i1,i2) = (1,1),

2 Z 1{AjNX:0}ftj—1 [hilELj ® 1,5 — S (th—ne*)]
j=1

p
= H”_W oSy [h By @By = SW(Xy, 07| +o(1)
j=1 P
= 0@1)
by the Burkholder-Davis-Gundy inequality. Therefore we obtained (2.3.7) and hence (2.3.5). O
Lemma 2.3.11. For everyp > 1,
P
supE[(suprm ﬁQW Y(@)‘) ] < oo.
neN 0cO

Proof. We use Lemmas 2.3.5, 2.3.6 and 2.3.7 besides the Burkholder-Davis-Gundy inequality and
Sobolev’s inequality. Then the proof is similar to Lemma 2.2.21 and also to Lemma 6 of Uchida and
Yoshida [22]. O

Proof of Theorem 2.3.3. The result follows from Theorem 2 of Yoshida [25] with the aid of Lemmas
2.2.18, 2.2.19, 2.3.8, 2.3.9, 2.3.10 and 2.3.11. U

2.3.4 Limit theorem and convergence of moments

In this section, asymptotic mixed normality of the QMLE and QBE will be established.

[F1'],; Conditions (ii), (3i) and (iv) of [F'1], are satisfied in addition to
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(i) the process X has a representation
t_ ¢
X, = X0+/ bsds+/ dodis + JX (¢ [0,T))
0 0

where JX = (JtX)te[O,T] is a cadlag adapted pure jump process, W = (wWt);c(o,7] is an ri-
dimensional F-Wiener process, b = (i?t)te[o,T] is a d-dimensional cadlag adapted process and
a = (dt)te[o,T] is a progressively measurable processes taking values in RY @ R". Moreover,

1 Xoll, + sup (I1bellp + el + 1177 M,) < oo
t€(0,7]

for every p > 1.

The Wiener process w is possibly correlated with w.

Recall that 62" denotes the quasi-Bayesian estimator (QBE) of 6 with respect to H,, defined by
(2.3.1). We extend the probability space (€2, F, P) so that a p-dimensional standard Gaussian random
vector ¢ independent of F is defined on the extension (£, F, P). Define a random field Z on (9, F, P)
by

Z(u) = exp <A[u] _ ;r[u@]) (u € RP)

where Afu] = TV2[¢, u]. We write 45" = \/n (65" — 6%) for A € {M, B}.
Let B(R) = {u € RP; |u| < R} for R > 0. Equip the space C(B(R)) of continuous functions on
B(R) with the sup-norm. Denote by ds(F) the F-stable convergence.

Lemma 2.3.12. Suppose that [F1'|y, [F2'] and [F3] are fulfilled. Then
Zolpmy =) Zlpmy  in C(B(R)) (2.3.8)
as n — oo for every R > 0.

Proof. Fix k € {1,...,k}. Let

~ nd 2 % 2
DY = (A, Y (60 (X, ,,0%)A;0®)®
and let fi,_, = ((S®)~1(9pS™)(SW)~1)(Xy,_,,0%). We will show
STat2p DM = 0 (2.3.9)
Jj=1 P

for every p > 1. Let
t.
B] == /J bgk)ds, C] — O-(k)(thflye*)Ajw(k%
tj_l

t; ty
Dj - /] (o‘(k)(XS’Q*)—O-(k)(thil,Q*»dws, Ej - /J J(k)(X879*>de‘
t

ti—1 j—1

Then

D = (B)® +{B;®E;+E ®B;}+{C;®D;+D;®C;+D; ®D;}.
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It is easy to see

> n'2f, B

— 0. (2.3.10)
Jj=1 p
For p > 2, we have
Zn1/2ftj—l[Bj ® Ej] < Zn1/2ftjfl[h’btj—l ® Ej]
j=1 P j=1 P
n s
+ Z n1/2ftj71 |:/ ’ (bs — btjf:[)ds & Ej:|
j=1 tj—1 p
< g —1 2 b 2 E. 2 1/2
~ Zn ‘ftj—l‘ ’ tj—1| ‘ J‘
j=1 p/2
n ts
+ Z n1/2ft]-_1 |:/ ’ (bs — btj_l)ds X Ej:|
j=1 tj-1 P
B n . ) ) ) c ) 1/2
> Z” H|ftj—1|H3pH| tj*1|H3pH| J'|H3p

J=1

n t;
| o B [ o=y as
j=1 tj-1 P
by the Burkholder-Davis-Gundy inequality and Hoélder’s inequality. Therefore
> n'?f, By ®E]| — 0 (2.3.11)
j=1 P

since

— 0.
p

I, =

n ts
SB[ b= by s
j=1 tj—1

Indeed, for any € > 0, there exists a number § > 0 such that P[w/(b,5) > €] < ¢, where w/(z, ) is the
modulus of continuity defined by

w'(x,8) = inf max sup j2(r1) = z(r2)],
(si)eSs ¢ r1,r2€[8i-1,8;)

where S; is the set of sequences (s;) such that 0 = sp < §1 < -+ < 8, =T and min;—; _,—1(5;—si-1) >
6. Then

n n
o< | S]] o | ma v 5w Pe.s g5
= P 7j=1,...n » 1) = 2p
< 6+<n_1/2—|—ZHle{Vj>n1/2}Hp>§+€zlp

j=1
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for n > T'/§, where
tj
v, = n1/2’ftj1||Ej‘/t (‘bs‘ + |btj,1D|d5-
j—1

Thus we obtain lim,, ,~ I, = 0 and hence (2.3.11).
1t6’s formula gives

-1
(axaﬁf)(xs, 0% [bs] + 503(;(“ (X5, 0%) [asar] ) ds
ti—1

t
1 0o ™) (X, 0 [asdibs]

tj—1

+ / (eW(X5,0%) — oW (X, 07))dNX
(tj—1.t]

t
O-(k)(Xtae*) - G(k)(th_ue*) = /

=t bj(t) +a;(t) +d;(t)

for t € [tj_1,t;]. With Itd’s formula, one can show

n t;
an/thj_1 [Cj ®/ aj(s)dws} — 0
j=1 tj-1 p
Obviously
22711/2ftj_1 {Cj ®/ bj(s)dws] — 0.
j=1 tj—1 P
Moreover, for VJ = nl/Q‘ftFl ’ ‘CjH j;i?;l dj(s)dwsl, we have
n & .
Z:nl/thf1 [Cj ®/ dj(s)dws} < max Vi Ny
j=1 tj—1 P J= et P
1
N 2p
< n_1/4HN7)~(Hp+P[j§11§.).(an > n /4 HN%(H%
— 0. (2.3.12)
Therefore
> nl?f, (@Dl = o (2.3.13)
j=1 P
Similarly to (2.3.12), we know
n t; ®2
anmftj,l [(/ dj(s)dws> ] — 0
j=1 tj—1 P
and also
— 0. (2.3.14)

p

> n'%f, [D; ®Dj]
j=1
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From (2.3.10), (2.3.11), (2.3.13), (2.3.14) and symmetry, we obtain (2.3.9). In particular, (2.3.9) and
(2.3.6) give the approximation

A, = n Y20H,(0%)

k n
1 3 - * 2 "
= ﬁ ftj_1 |:h l(a(k)(th_17‘9 )A]w(k))® _S(k)(th_ue) +0p(1)7
k=1 j=1

and so En —5ds(F) F%C as n — oo. Furthermore, Lemma 2.3.5 ensures
A, —%F) TI¢ (2.3.15)

as n — 00.
Let R > 0. Then there exists n(R) such that for all n > n(R) and all u € B(R),

logZ,(u) = Aplu]+ %Ggﬂ-ln(e*)[um] + (), (2.3.16)
where
ro(u) = /01(1 — s){nilagﬂ%n(ﬁl(su))[u@] —n O H, (0%)[u®?] }ds
with Qﬁ(u) = 0* + n~'/2u. Combining (2.3.15), Lemmas 2.3.9 and 2.3.8 with the representation
(2.3.16), we conclude the finite-dimensional stable convergence
7, —di(F) 7 (2.3.17)

as n — 00. Since Lemma 2.3.8 validates the tightness of {Z,|p(r)}n>n(r), We obtain the functional
stable convergence (2.3.8). O

Theorem 2.3.13. Suppose that [F1']4, [F2'] and [F3] are fulfilled. Then
E[f(iy*)®] — E[f(T72%()0]

as n — oo for A € {M,B}, any continuous function f of at most polynomial growth, and any F-
measurable random variable ® € Up~1LP.

Proof. To prove the result for A = M, we apply Theorem 5 of [25] with the help of Lemma 2.3.12 and

Proposition 2.3.4. For the case A = B, we obtain the convergence

FW)Zp(w)w (0" +n Y u)du -4 | fu)Z(w)w(0¥)du
Uy, RP

for any continuous function of at most polynomial growth, by applying Theorem 6 of [25]. For that,
we use Lemma 2.3.12 and Theorem 2.3.3. Estimate with Lemma 2 of [25] ensures Condition (i) of
Theorem 8 of [25], which proves the stable convergence as well as moment convergence. O
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2.4 Efficient one-step estimators

In Section 2.3, the asymptotic optimality was established for the QMLE 629 and the QBE o3.om
having a moving threshold specified by «, converging to 0. However, in practice for fixed n, these
estimators are essentially the same as the a-QMLE and a-QBE for a fixed o though they gained some

freedom of choice of 61(1]2_1, p%k) and qgk) in the asymptotic theoretical context.

It was found in Section 2.2.5 that the a-QMLE 6)"* and the (o, 8)-QBE 65" based on a fixed
a-threshold are consistent. However they have pros and cons. They are expected to remove jumps
completely but they are conservative and the rate of convergence is not optimal. In this section, as the
second approach to optimal estimation, we try to recover efficiency by combining these less optimal
estimators with the aggressive random field H,, given by (2.3.1), expecting to keep high precision of
jump detection by the fixed « filters.

Suppose that x € N satisfies k > 14 (279)~!. We assume [F1'],.v4, [F2], [F2'] and [F3]. According
to Proposition 2.2.14, 022 attains n~P-consistency for any 5 € (2_1(/-s— 1)L, fyo), and then f(k—1) >
1/2.  For 6* € O, there exists an open ball B(6*) C © around 6*. If 93H, () is invertible, then
Taylor’s formula gives

K—2
01— 0 = (9Ha(00)) " [pHn(61) — DoHn(Bo)] + > Ari(00) [(61 — 00)*]

i=2
+A1e-1(01,00) [(61 — 00)° Y]

for 61,00 € B(6*). The second term on the right-hand side reads 0 when x = 3. Here A;; (i =
2,...,k—2) are written by (892[Hn(90))71 and 94H,,(6p) (i = 3, ...,k — 1), respectively, and A; ,_1(6o,61)
is by (92H,(60)) " and 95H,(0) (0 € B(6*)). Let

K—2
F(01,00) = €(f0)+ Y A1i(00)[(61 — 00)%"], (2.4.1)
=2
where
€(Bo) = —(9Hn(60)) " [OoHn(00)],

€(6o)u] = —(agwn(eo))‘l[agwn(eo),u] for u € RP.  We write Z;:f Ay1,i(60) [F(61,60)®"] in the

form

ZA“GO (61,00)%"] = Az(60)+ D Azirin(60)[(60)®", (61 — 00)¥"]
i1+i9>3

with

ZAM 00) [€(60)*"].

Next we write

Z Az iy in(00) [€(00) ™, F (61, 00) %] Z As iy in(00) [€(00) ™, (61 — 0p)®"]
i1+i2>3 i1+i2>4
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with

As(B0) = D Aviria(00) [e(00)* ).

1141223

Repeat this procedure up to

Z An—3,i1,i2 (90) [6(00)®i1 ) F(Hla 90)®i2]

i1+io>Kk—2
= Aua(l0)+ D Axii(00) [e(60)®", (61 — 00)®"]
i1+ig>Kk—1
with
Aea(B) = > Axsiin(00)[e(60)®H )],
i1+io>Kk—2

Let A1(6y) = €(fp). Thus, the sequence of RP-valued random functions
A;(6o) (i=1,..,k—2)

are defined on {0y € ©; 95H,(6p) is invertible}. For example, when x = 4,

Ar(0y) = —(0fHa(600)) " [9pHn(60)),
Ax(00) = %(80 (60)) ™ [O5Ha (00) 41 60) 7]

Let
A A ~ K/72 ~
m, = {9,@4@ € ©, det OH, (037 0, )12+ A (0)) € @}.
=1
Define 9%’“ by
O+ 0 Ai(6R"Y) on My,
0. on IMC

where 0, is an arbitrary V&}lue in @ )
On the event MO := {G)1*" 93" € B(6*)} NM,,, the QMLE 63" for H,, satisfies

Galen —Gie = (@M GY2) + Ay g (O3, GMe) (@M1 — gMe)S D] (2.4.2)
Let
. . . . K—2 R
m = {9%%, 0} € B(0%), |detn™ 95 H, (007%)] = 27 det T, G0 + 3~ A;(050) € @}.
=1

Then the estimate

K—2

=2

p
(2.4.3)
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for every p > 1 follows from the representation (2.4.2), Propositions 2.2.14 and 2.3.4 and Lemma
2.2.18. Moreover, Lemmas 2.2.18, 2.3.9 and 2.3.8 together with LP-boundedness of the estimation
errors yield P[(9,)¢] = O(n~1) for every L > 0.

Now on the event 90, we have

K—2
S Ap () [(BAen — il )]
1=2

- § Ay (62 [(F(é%an, OM) 4 Ay g (20 gAY [(GMn — gMeyB(n=1)] ) ®i] :
=2
Therefore it follows from (2.4.3) that
H{é%a" — M — A (O)) — Ay (03
- Z Ag iy iy (OM) [f(éﬁ/[’a)@il? (6o — é%’a)@)b] }193%

114+12>3
= O(n P

p

for every p > 1. Inductively,

K—2
H{é%a" — O~ ZAi(é%a)}lzm;I = O(n 7).
i=1 P
Consequently, using boundedness of © on (9),)¢, we obtain
[ — g = O D) = o)

and this implies
l6z"e = 0%, = O™

for every p > 1. We note that 8 in the above argument is a working parameter chosen so that
B>2"Yw—-1)"1.
Next, we will consider a Bayesian estimator as the initial estimator. We are supposing that

k > 1+ (270)~!, and furthermore we suppose 3 satisfies 8 € (271(x — 1)7%,90). Remark that this 3

is the parameter involved in the estimator éf o , not a working parameter. Let

K—2
B, — {é,?’aﬁe@, det 92, (059)£ 0, éfv“vﬁjLZAi(éfvaﬂ)e@}.

i=1

s 077 + S AORT) on B,
! 0. on B
Then we obtain

|93ben —gBeB| = OmPED) = o(n12)
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and
62—, = ot

for every p > 1.
Write @2 = /n (9,’3‘ — 9*) for A=“M,a” and “B, a, 7. Thus, we have obtained the following result

from Theorem 2.3.13 for é%’a”.

Theorem 2.4.1. Suppose that [F1'],va, [F2], [F2'] and [F3] are fulfilled. Let f be any continuous
function of at most polynomial growth, and let ® be any F-measurable random variable in Ups1LP.
Suppose that an integer k satisfies k > 1+ (2v9)~t. Then

(a) E[f(aﬁ/[’a)q)] — [E[f(f‘flﬂ(:)(l)] as n — oo.

(b) E[f(ﬂf’a’ﬁ)q)] — [E[f(ljflmg)q)] as n — oo, suppose that B € (271 (k — 1)1, 7).

2.5 Localization

In the preceding sections, we established asymptotic properties of the estimators, in particular, LP-
estimates for them. Though it was thanks to [F'3], verifying it is not straightforward. An analytic
criterion and a geometric criterion are known to insure Condition [F'3] when X is a non-degenerate
diffusion process (Uchida and Yoshida [22]). It is possible to give similar criteria even for jump-
diffusion processes but we do not pursue this problem here. Instead, it is also possible to relax [F'3]
in order to only obtain stable convergences.

We will work with

[F3°] x0 > 0 a.s.

in place of [F'3].
Let € > 0. Then there exists a § > 0 such that P[As] > 1 — ¢ for As = {xo > 6}. Define °H,(0; )
by
Ho(0;0)  (w € Ajg)
5[Hn(0; a)w = {
—nlf — 0*]* (w € AS).

The way of modification of H,, on Af§ is not essential in the following argument. Let
07%(u;a) = exp { JEHQ(Q* +n Pus ) — E[Hg(ﬁ*; a)} (u € UB)

for OHZ(0; ) = n~ 1428 9H, (9; ). The random field °Y,,(6; a) is defined by
Wp(b;a) = n_w{ SHA(0; ) — 6[H£(9*;04)} = n_l{ SH,, (0; o) — 5[Hn(9*;oz)}.
The limit of °Y,,(6; @) is now
Y(0) = Y(0)lay— [0 — 6 [*1ac.
The corresponding key index is

5 . =Y(0)

= f ———5.
X0 020+ 10 — 072
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Then Condition [F'3] holds for 9y under the conditional probability given Ag, that is,
P[5X0 < r_l‘A(;] < CLs rL (r >0)

for every L > 0. Now it is not difficult to follow the proof of Propositions 2.2.14 and 2.2.15 to obtain

sup {E[ynﬁ(é%a %) [P1a,] + B[|nf (657 e*)\plAé]} <
neN

for every p > 1 and every 3 < g, under [F1]4 and [F2] in addition to [F3’]. Thus we obtained the
following results.

Proposition 2.5.1. Suppose that [F1]y, [F2] and [F3"] are satisfied. Then n® (éi\b/[’o‘ —6") = 0,(1)
and nﬁ(éf’a”g —6*) = Op(1) as n — oo for every B < Y.

In a similar way, we can obtain the stable convergence of the estimators with moving «, as a
counterpart to Theorem 2.3.13.

Theorem 2.5.2. Suppose that [F1')y, [F2'] and [F3°] are fulfilled. Then
amen s T2¢

asn — oo for A € {M, B}.

Moreover, a modification of the argument in Section 2.4 gives the stable convergence of the one-step
estimators.

Theorem 2.5.3. Suppose that [F1')xys, [F2], [F2'] and [F3°] are fulfilled. Suppose that an integer x
satisfies k > 14 (2v9) 1. Then

(a) @M =% T71V2¢ g5 n — co.
(b) uBP % T=Y2¢ 45 n — oo, suppose that B € (271 (k — 1)1, ).

Suppose that the process X satisfies the stochastic integral equation
¢ ¢
Xy = Xo +/ b(Xs)ds—F/ a(X)diws + J~X (t €[0,77)
0 0

with a finitely active jump part JX with AJgf = 0. The first jump time 7} of JX satisfies T} > 0 a.s.
Suppose that X’ is a solution to

X, = Xo+/0t5(X;)ds+/ot&(X;)dﬁ)s (t € [0,7))

and that X’ = X7 on [0,T1) for the stopped process X v of X at Ty. This is the case where the
stochastic differential equation has a unique strong solution. Furthermore, suppose that the key index
Xo,e defined for (X/);ejo¢ is non-degenerate for every € > 0 in that sup,qr=Plxo. < r7'] < oo for
every L > 0. Then on the event {1} > €}, we have positivity of xo. This implies Condition [F'3’]. To
verify non-degeneracy of xo ¢, we may apply a criterion in Uchida and Yoshida [22].
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2.6 Simulation Studies

2.6.1 Setting of simulation

In this section, we numerically investigate the performance of the global threshold estimator. We use
the following one-dimensional Ornstein-Uhlenbeck process with jumps

starting from Xo. Here w = (wy)4co,1) is @ one-dimensional Brownian motion and J is a one-dimensional
compound Poisson process defined by

Ny
o= &  &~N(,),
=1

where € > 0 and N = (Nt)te[[)’l] is a Poisson process with intensity A > 0. The parameters 7, €, and
A are nuisance parameters, whereas ¢ is unknown to be estimated from the discretely observed data
(Xtn)i=01,...n-

There are already several parametric estimation methods for stochastic differential equations with
jumps. Among them, Shimizu and Yoshida [20] proposed a local threshold method for optimal para-
metric estimation. They used method of jump detection by comparing each increment |A; X | with A%,
where h,, =t} —t' | is the time interval and p € (0,1/2). More precisely, an increment A; X satisfying
|A; X| > hf is regarded as being driven by the compound Poisson jump part, and is removed when
constructing the likelihood function of the continuous part. The likelihood function of the continuous
part is defined by

1, 1
In(o) =) [ 202hn|Xi > - 3 log 0? | 1yjax,|<ht}s

where X = Xy — Xyn .+ nXep  hy. Obviously, the jump detection scheme is essentially different
from our approach in this paper. They do not use any other increments to determine whether an
increment has a jump or not. Our approach, however, uses all the increments.

Shimizu and Yoshida [20] proved that this estimator is consistent as the sample size n tends to
infinity; that is, asymptotic property of the local and the global threshold approaches are the same
from the viewpoint of consistency. However, precision of jump detection may be different in the case
of (large but) finite samples. Comparison of two approaches is the main purpose of this section.

In our setting, however, we assume that the jump size is normally distributed, the case of which is
not dealt with in Shimizu and Yoshida [20]. In their original paper, they assume that the jump size
must be bounded away from zero. Ogihara and Yoshida [14] accomodated a restrictive assumption on
the distribution of jump size. They proved that the local threshold estimator works well under this
assumption by using some elaborate arguments. Hence, the local estimator can be used in our setting
and thus we can compare its estimates with the global threshold estimator.

Note that, we do not impose too restrictive assumption about the distribution of jump sizes in our
paper: we only assume natural moment conditions on the number of jumps. Versatility in this sense
can be regarded as the advantage of our approach.

The setting of the simulation is as follows. The initial value is Xg = 1. The true value of the
unknown parameter ¢ is 0.1. Other parameters are all known and given by n = 0.1, ¢ = 0.05, and
A = 20. The sample size is n = 1,000 in Section 6.2 to see the accuracy of the jump detection of our
filter and n = 5,000 in Section 2.6.3 and thereafter to compare the estimates of each estimator. We
assume the equidistant case, so that h, = 1/n = 0.001 and h,, = 0.0002. Since the time horizon is
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(a) Sample path of X (b) Sample path of the jump part J of X

Figure 2.1: Sample paths of X and its jump part

now finite and 7 is not consistently estimable, we set 7 in [,,(0) at the true value 0.1, that is the most
preferable value for the estimator in Shimizu and Yoshida [20].

In applying the global estimator, we need to set several tuning parameters. we set C’,Ek) =1 for the
(k)

truncation function K in (2.2.2), that is used for the definition of a-quasi-log likelihood function.

(k)

For the one-step global estimator, we use the parameter Cy’ = 1 and 9 = 1/5 for the truncation
: (k) _ (k) _ (k) _ 4/9 :
function K, ; = 1{\/j(’°><c,£’°)n—i—50}' Moreover, we set 6, = 4/9 so that py,” = (n — [n*/?])/n in the

definition of the moving threshold quasi-likelihood function in (2.3.1).

Figure 1 shows a sample path of (X, J). The left panel is the sample path of X and the right panel
is its jump part J. Note that the jump part is not observable and thus we need to discriminate the
jump from the sample path of X.

2.6.2 Accuracy of jump detection

Before comparing the results of parameter estimation, we check the accuracy of jump detection of
each estimation procedure. If there are too many misjudged increments, the estimated value can have
a significant bias. Hence it is important how accurately we can eliminate jumps from the observed
data X.

Local threshold method

First, we check the accuracy of jump detection of the local threshold method. Figure 2 shows the
results of jump detection by the local threshold method of Shimizu and Yoshida [20] for p = 1/3
in panel (a) and p = 1/2 in panel (b). The red vertical lines indicate the jump detected by each
estimator, whereas the triangles on the horizontal axis indicate the true jumps. As these figures show,
the accuracy of the jump detection heavily depend on a choice of the tuning parameter p. For relatively
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Figure 2.2: Results of jump detection by local threshold method

small p (say p = 1/3), we cannot completely detect jumps: the estimator detects only one jump for
p = 1/3. On the other hand, in the case of (theoretically banned) p = 1/2, the estimator detects the
jumps better than the case of p = 1/3. Note that the case of p = 1/2 is not dealt with in Shimizu and
Yoshida [20], but it is useful for us to compare the local threshold method with the global threshold
method later and so we show the result of the exceptional case.

Global threshold method

Next, we discuss the jump detection by global threshold method. The accuracy of jump detection
depends on the tuning parameter a € (0,1), so we here show results of four cases, namely, the case
a = 0.005,0.010, 0.020, 0.050.

From the figures, we see that the too small a cannot detect jumps sufficiently, mistakenly judging
some genuine jumps as increments driven by the continuous part, which is similar to the case of small
p of the Shimizu-Yoshida estimator. By setting a a little larger, the accuracy of jump detection
increases, as shown in panels (b) and (c). On the other hand, too large a discriminate too many
increments as jumps, as panel (d) shows. In this case, there are many increments that are regarded as
jumps but are actually generated by the continuous part of the process only. These figures suggests
that one should choose the tuning parameter o carefully to detect jumps appropriately.

We show the false negative / positive ratio of jump detection in Table 2.1. Note that false negative
means that our method did not judge an increment as a jump, despite it was actually driven by the
compound Poisson jump part. The meaning of false positive is the opposite; that is, our method
judged an increment which was not driven by the jump part as a jump.

The false negative ratio for small « tends to be large because in this case the estimator judges only
big increments as jumps, and ignores some jumps of intermediate size. On the other hand, the false
positive ratio for large « is high, since the estimator judges small increments as jumps, but almost
increments are actually driven by the continous part. From this table as well, we can infer that there
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Figure 2.3: Results of jump detection by global threshold method




Table 2.1: False Negative/Positive ratio of jump detection

alpha 0.005 0.01 0.015 0.02 0.025 0.05 0.1 0.25
False Negative 73.333 40.000 26.667 26.667 26.667 26.667 26.667 20.000
False Positive 0.000  0.000 0.305 0.812 1.320 3.858 8.934 24.061
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Figure 2.4: Comparison of estimators given a sample path

should be some optimal range of « for jump detection. In any case, a large value of false negative may
seriously bias the estimation, while a large value of false positive only decreases efficiency. Sensitivity
of the local filter is also essentially observed by this experiment since each value of « of the global
filter corresponds to a value of the threshold Lh” of the local filter.

2.6.3 Comparison of the estimators

Next, we investigate the estimation results of the global threshold method. In this section, we
set the number of samples n = 5,000 to let the biases of the estimators as small as possible. Since
the estimator depends on the parameter «, we check the stability of the estimator with respect to
the parameter a. Remember that too small « is not able to detect jumps effectively, but too large
« mistakenly eliminates small increments driven by the Brownian motion which should be used to
construct the likelihood function of the continuous part. So there would be a suitable level «.

Figure 3.4 compares the global QMLEs with the local QMLE with p = 2/5, as p = 1/2 is theo-
retically prohibited, and suggests that the global methods are superior to the local methods. Figure
3.4 also compares the performance of the global threshold estimator &M% and the one-step estimator
M with o ranging in (0,1), as well as that of the local filters. Here we used x = 3 to construct

the one-step estimator; that is, the one-step estimator is given by gabe = ghhe 4 Al(éy “), where
the adjustment term A; is defined in Section 2.4. As the figure shows, for suitably small «, both the

estimate 627 and 527 are well close to o. However, as this figure indicates, the global threshold
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Figure 2.5: Results of jump detection by local threshold method: comparison of averaged results

estimator may be somewhat unstable with respect to the choice of . Although the global estimator
with moving o and one-step global estimator are asymptotically equivalent, when we use the original
global estimator, it would be recommended to use the one-step estimator as well and to try estimation
for several a’s in order to check the stability of the estimates.

To compare statistical properties of the estimators, we used the 100 outcomes of Monte Carlo
simulation to calculate the average estimates, the root mean square error (RMSE), and the standard
deviation of this experiment. Looking at the average values of the estimators shown in the Figure 3.5
(a), we see the global threshold estimators outperform the local threshold estimator. It is concluded
that the accuracy of the global estimator is not dependent on a sample path. High average accuracy
can also be checked by RMSE. As shown in Figure 3.5 (b), RMSEs of the global estimators are smaller
than those of the local estimators, except for the extreme choices of a.

Figure 2.6 indicates the estimates for global QMLE estimator with standard error band. The
standard errors are calculated by using 100 Monte carlo trials. It shows that the global QMLE
estimator works very well with or without one-step adjustment. We can see, however, the one-step
adjusted estimator is robust against the choice of the tuning parameter «. For large «, the global
threshold tends to eliminate increments that are not driven by the jump part of the underlying process,
and this could result in the large standard deviation of the estimate. The one-step estimator works
well for such large a.

A suitably chosen « will yield a good estimate of the unknown parameter, although too small or
too large o might tends to bias the estimate. The global threshold estimator seems to generally be
robust to the choice of the tuning parameters. The optimal choice of o depends on the situation.
Hence, it is desirable to use several values of o and to compare the results to determine the preferable
value of « in using the global estimator. Moreover, it is worth considering of using one-step adjustment
to get more robust estimates.

The global filter sets a number for the critical value of the threshold though it is determined
after observing the data. In this sense, the global filter looks similar to the local filter, that has a
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Figure 2.6: Estimation results of global QMLE estimator with standard error band

predetermined number as its threshold. However, the critical values used by the two methods are
fairly different in practice. We consider the situation where, for some n, the local filter with threshold
Lh* approximately performs as good as the global filter with «. For simplicity, let us consider a
one-dimensional case with o(z,0) = 1 constantly. Hence the critical value should approximately be
near to the upper a/2-quantile of Ajw. Moreover, let n = 103, p = 2/5 and @ = 0.1. Then the
constant L in the threshold of the local filter should satisfy (1073)~1/2 x 1.64 = (10-3)"?L, namely,
L ~ 3.27 approximately. Since L is a predetermined common constant for different numbers n, the
critical value of the threshold of the local filter becomes 107°°L ~ 0.0327 when n = 10°, while the
threshold of the global filter is about (1075)%/2 x 1.64 ~ 0.00519. Some of jumps may not be detected
by the local filter, since its critical value is not so small, compared with ¢ = 0.05.

2.6.4 Asymmetric jumps

In the previous subsection, we assumed that the distribution of jump size was centered Gaussian and
thus symmetric. In a real situations, however, the distribution of the size of jumps might be not
symmetric. For example, stock prices have an asymmetric distribution with heavier tail in negative
price changes. In this subsection, we show that our global estimator performs well for jumps with
asymmetric distribution.

Although there are many asymmetric jumps in applications, we use just a normal distribution with
a negative average because heavier tails would make jump detection easier. More precisely, we assume
that the jump process J is given by

Nt
To=)Y & &G~N(pe?),
i=1
where 1 = —0.01 and € = 0.05. In this setting, as shown in Figure 2.7, negative jumps appear more

frequently than positive ones.
As Figure 2.8 shows, the global estimator performs well even in the case of asymmetric jumps. The
estimates are well similarly to those in the case of symmetric jumps in the previous subsection. This
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Figure 2.7: Sample paths of X and its jump part: in the case of asymmetric jump distribution

example implies that out estimator will work very well under realistic circumstances, like financial
time series where changes in asset prices have an symmetric distribution with heavy tail in negative
price changes.

2.6.5 Location-dependent diffusion coefficient

Here we assume that the diffusion coefficient is given by ov/1 + x2, where o is an unknown positive
parameter to be estimated. Other settings are entirely the same as those given in the Section 2.6.1.
In particular, we assume that the distribution of jump size is centered, contrary to the previous
subsection.

_ 2
In this example, we have to set an estimator S, ;1 of the volatility matrix, (o‘ /14 in 1) ,

which satisfies the condition [F2](ii). It is obvious that we can choose S, ;1 = 1 + X} n, to satlsfy
the condition. The results are shown in Figure 2.9. Like in the case of constant coefﬁment the global
estimators perform well. FExcept for too small or large a for which the estimates are unstable and
different from those of the case of constant diffusion coefficient, our estimators yield a good estimate
even in the case of location-dependent diffusion coefficient.

2.7 Further topics and future work

In this paper, we payed main attention to removing jumps and to obtaining stable estimation of
the diffusion parameter. The removed data consist of relatively large Brownian increments and the
increments having jumps. Then it is possible to apply a suitable testing procedure to the removed
data, e.g., the goodness-of-fit test for the cut-off normal distribution, in order to test existence of
jumps.

It is also possible to consider asymptotics where the intensity of jumps goes to infinity at a moderate
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rate that does not essentially change the argument of removing jumps. In such a situation, estimation
of jumps becomes an issue. Probably, some central limit theorem holds for the error of the estimators
of the structure of jumps. Furthermore, a statistical test of the existence of jumps will be possible in
this framework. The ergodic case as T" — oo will be another situation where the parameters of jumps
are estimable.

The global jump filter was motivated by data analysis. This scheme is to be implemented on
YUIMA, a comprehensive R package for statistical inference and simulation for stochastic processes.
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Chapter 3

Application of Global Jump Filters to
Estimation of Integrated Volatility

3.1 Model

Let (2, F, P) be a probability space equipped with a filtration F = (F)icjo,r)- We consider a one-
dimensional semimartingle X = (X);c(o,7] having a decomposition

t t
X, = X0+/ bsds—i-/ osdws + J;  (t €[0,TY))
0 0

where Xy is an Fop-measurable random variable, b = (bt ).c(o,7) and o = (0¢)s¢(o,) are cadlag F-adapted
processes, and w = (wy)yepo,r] is an F-standard Wiener process. J = (Ji)icpo,7] is the jump part of
X. We will assumed that J is finitely active, that is, J; = Zse(o,t] AX, for AX, = Xy — Xs_ and
Zte[O,T] 1{az0) < oo a.s. In this paper, we are interested in the estimation of the integrated volatility

T
0 = / oldt (3.1.1)
0

based on the data (Xi,);j=0,1,..n, Where t; =t;" = jT'/n.

The jump part J can be endogenous or exogenous, as well as b and o, however, J is a nuisance in
any case. The simple realized volatility is heavily damaged when jumps exist. To avoid the effects of
the jumps, various methods have been proposed so far. For example, the bipower variation (Barndorff-
Nielsen and Shephard. [2], Barndorff-Nielsen et al. [3]) and the minimum realized volatility (Andersen
et al. [1]) are shown to be consistent estimators of the integrated volatility even in the presence of
jumps. The idea of these methods is that, to mitigate the effect of jumps, they employ adjacent
increments in constructing the estimator.

Another direction to handle jumps is to introduce a threshold to detect jumps. Threshold method
was investigated in Shimizu and Yoshida [20] in the context of the parametric inference for a stochastic
differential equation with jumps. The idea of thresholding goes back to the studies of limit theorems
for Lévy processes as latest. Mancini [12] introduced a nonparametric threshold that detect jumps by
observing the size of increments within each time interval. The threshold is defined as a function of
the length of a time inverval. If an increment is so large that exceeds a threshold, it is regarded as a
jump. Koike [11] applied the threshold method to covariance estimation for asynchronously observed
semimartingales with jumps.

However, examining each individual increment is not always effective in finding jumps. It sometimes
overlooks relatively small jumps. To tackle this problem, Inatsugu and Yoshida [8] introduced global
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filters that examine all increments simultaneously and regard an increment of high rank in order of
absolute size as a jump. Using the information about the size of other increments helps us detect
jumps more accurately than the previous method that ignores such information.

In this paper, we apply the global filtering method to nonparametric volatility estimation. Specifi-
cally, we construct the “global realized volatility (GRV) estimator” of the integrated volatility for the
a stochastic differential equation with jumps. We investigate the theoretical properties of GRV and
then conduct numerical simulations to study their performance compared with well-known methods,
that is, the bipower variation and the minimum realized volatility.

The organization of this chapter is as follows. In Section 3.2, we introduce the GRV and its variant,
the winsorized GRV (WGRV). In Section 3.3, we also introduce the —global realized volatility (LGRV)
and prove its convergence to spot volatilities. The LGRV is needed to normalize the increments and
construct the GRV. In Section 3.4, we prove the rate of convergence of the GRV and WGRYV in the
situation where the intensity of jumps is high. In this case, need a high and fixed cut-off rate a. In
Section 3.5, we allow the cut-off rate to vary according to the sample size. This “moving threshold”
method is for the situation where the intensity of jumps is moderate and small cut-off rate is applicable.
In Section 3.6, we discuss the situation where true volatility is constant. In this case, we do not need
normalizing increments, so the estimator gets a little simpler. In Section 3.7, we show simulation
results to compare the performance of the GRV, WGRV, bipower varition, and the mininum realized
volatility.

3.2 Realized volatilities with a global jump filter

The global jump filter introduced by Inatsugu and Yoshida [8] uses the order statistics of the trans-
formed increments of the observations. Suppose that an estimator S, ;_1 of the spot volatility
U(th71)2 (up to a common scaling factor) is given for each j € I, = {1,...,n}. Denote A;U =

Ui, — Ui,_, for a process U = (Uy)sejo,r)- Then the distribution of the scaled increment S, ;/_ 21AjX is
expected to be well approximated by the standard normal distribution N (0,1). Therefore, if the value

Vi = [(Snjo1) 20X (3.2.1)

is relatively very large among V,, = {Vj}ker,, then plausibly we can infer that the V; involves jumps
with high probability. The idea of the global jump filter is to eliminate the increment A;X from the
data if the corresponding V; is ranked within the top 100a% in V,,. More precisely, let

jn(a) = {] € In; ‘/j < ‘/(sn(oz))}

where

su(@) = [n(l- )]

for a € [0,1), and we denote by r,(U;) the rank of U; among the variables {U;}icr,. Let

alo) = [ 22(2:0,1)dz
{|z|<c(e)?/2}

where ¢(z;0,1) is the density function of N(0,1) and ¢(«) defined by

P[(*<cla)] = 1-a
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for ¢ ~ N(0,1) and a € [0,1). Then the global realized volatility (globally truncated realized
volatility, GRV) with cut-off ratio « is defined by

Va(@) = > qle) A X]PK,, (3.2.2)
JE€In(a)
where Ky j = 115 x|<p-1/13- As remarked in Inatsugu and Yoshida [8], the indicator function K, ; is
set just for relaxing the conditions for validation. Generalization by using like 1 (1A, X|<Bin—51} with
constants By > 0 and d; € (0, 1/4] is straightforward, but we prefer simplicity in presentation of this
article. In practice, the probability that K, ; executes the task is exponentially small by the large
deviation principle. However, the moments of AJ; are not controllable without assumption, and we
can simply avoid it by the cut-off function K, ;.
Winsorization is a popular technique in robust statistics. In the present context, the Winsorized
global realized volatility (WGRV) is given by

n

wn(a) = Zw(a)il{‘AjX‘/\(Si,/jz—l‘/(sn(a)))}2Kn,j
j=1

where
w(a) = /[R(ZQ/\C(Q))gb(z;O,l)dz.

The cut-off ratio « € [0, 1) is a tuning parameter in estimation procedures. The bigger a provides
the more stable estimates even in high intensity of jumps. On the other hand, the smaller a gives the
more precise estimates if the intensity of jumps is low. Making trade-off between stability and precision
is necessary in practice. As a matter of fact, these cases require different theoretical treatments. We
will consider fixed « in Section 3.4, and shrinking « in Section 3.5.

3.3 Local-global filter

3.3.1 Glocal filtering lemmas
For each j € I, let
1 (J < kn)

j_"@n (/‘in‘i’lgjgn_ffn)

.
Il

n

n—2k, (j>n—~r,+1)
for ky, € Z satisfying 2k, +1 < n. Let I, ; = {ln’ln +1,., + 2kn}. Let
Uip = h_l/zatz_iflAkX and W; = h™'2Aw
for j,k € I,. Both variables ﬁj’k and W; depend on n. Let
Rig = Uppe= Wi =07 Popt AT

for j,k € I,. Denote L> = N,~1LP.

Let N = 256(07_] Liag,20y- Let 0 =0 — J7 for J7 = 286(07,] Ao, and let N7 = 286(07,] L{A g £0}-
We assume that N% < oo a.s. Moreover, let N = N + N°. Let X=X-J A counting process will
be identified with a random measure. Let I, ; = (t‘jn_17 tin+QK7L].
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[G1] (i) For every p > 1, sup;cjo7q [|ot][p < o0 and
|-, < Cwlt—s? (tseo.1)
for some constant C(p) for every p > 1.
(if) supsejo,r l0tllp < oo for every p > 1.

(iii) ot # 0 a.s. for every t € [0,71, an sup;c(o 7 Hat_al < oo for every p > 1.

Lemma 3.3.1. Under [G1],

sup sup |18kt ine gy=oll, = O (('Zl)l/j (3.3.1)
as n — oo for every p > 1.
Proof. For j € I, let E(j) = {N°(1, ) = 0}. Then, for k € I, j,
Rixlpg = (W70t MeX =072 00w) 15

ti
_ e / 0, (G0 =5, ) )dwilp

te—1

tx
+h‘1/20t]_1_1/ bedtl () (3.3.2)
th—1

We obtain (3.3.1) by applying the Burkholder-Davis-Gundy inequality to the martingale part of (3.3.2)
after the trivial estimate 1p(;) < 1. O

For j € I,,, denote by 7, ;(Uy) the rank of the element U} among a collection of random variables
{U@}ke[n’j. Let

0<me<m, Fn = 2Kn + 1,

an = |(1—ap)R, — &7, 3, = |lap — R’
for ap € [0,1). Let
Lpjk = {rnj(Wi]) an—Fy 20 {|W|ga, — Wil <E, ™} (3.3.3)

where (’W‘(J':k‘))ke[n,j are the ordered statistics made from {|Wy|}xey, ;- In the same way as Lemma

1 of Inatsugu and Yoshida [8], we obtain the following result.

Lemma 3.3.2. Let ag € (0,1). Suppose that 1 < 1/2 and that n™k, — o0 as n — oo for some
€€ (0,1). Then

supP[ U Ln,j,k:| = O(nF)

as n — oo for every L > 0.
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Define Ky, j(ag) by
K:n’j(ao) = {k S In,j; Tn7j(‘AkX‘) < (1 — Oé())En},

where 7, j(|AX|) is the rank of [Ap X | among {|Ap X |}rer, ;- Let

~

Kn,j(ao) = {k eIn,jS Tn,j(’Wk’) < én}

Let
Qnj = m H@j,kll{zvo(xn,j)o} < 2_1/%_7“} N L%,j,k:|'
k’eln,j
Let
Ly ={j€I,; N(In;) #0}. (3.3.4)

Lemma 3.3.3. (a) Ienvj(ao) C Ky (o) on Q5 if j € LS.

(b) Lo, lpjecs) #(Kny(ao) \ Kujlao) S4F™ (G € Loy n e ).

Proof. Let n € N and suppose that j € LS. We will work on €2, ;. For a pair (ki,k2) € I?

5.j» Suppose
that

(Wi ]) <3 and 7 ([Wiy]) > an. (3.3.5)

ns

27'%, ™ on Q, ;. By the first inequality of (3.3.5), 7 ;(|Wk,|) < an — Ea ™, and hence on Qj C

Then |(7j,k1\ < [Wi, | +27%, ™, since Ag, N =0 and N7(I, ;) = 0 when j € £¢, and then |]?ij7k1| <

Ly i py» we have [W]( oy — [Wy, | >, ™ by the definition (3.3.3) of Ly, ;. Therefore
il < IWlgGan =277 (3.3.6)

The assumption j € £ entails |Rj4,| < 27 1%, ™ on Q,;, and hence |[Wi,| —271%, ™ < |U;1,| due to
A,J = 0. From (3.3.6), we have got

[Ujker | < 1Ujko (3.3.7)

on §y, ; if j € LS and if a pair (ki, k2) € Iij satisfies (3.3.5).

We are working on Q,; yet. Suppose that j € Lf and ki € K, j(ap). Then the inequality
(3.3.7) holds for any ko € I, ; satisfying ry ;j(|Wk,|) > a,. So, there are at least |aok, + 1]( <
aFn+Fn "+ 1 <Fp—an+ 1) variables 6j,/€2 that satisfy (3.3.7). Then rnyj(\ﬁj’le < (1 — a)Fn,
and hence ki € KCp, j(ag). Thus, we found

’/C\n,j(ao) C /ij(a())

on (), ; if j € LS, that is, (a).
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We still work on €2, ;. Suppose that j € L5 and ko € K, j() \I%n,j (ag). When 7, ;(|Wh,|) < an,
since 7y, ;(|Wh,|) > @y, due to ko € Ky (o), we see

Ljecey #{k2 € Knj(a0) \ Knj(ao); rnj((Wiy|) < an} < RIT™ (3.3.8)
n ;. When 7, j(|Wh,|) > ap, for any ki satisfying 7, ;(|Wy,|) < an, we have (3.3.7). Therefore
#{k1 € Ings Ui | < Ujgol} = Ljeceylin, (Wi, h2an} 2ns

in other words,

Tni([Ujk,|) > an (3.3.9)
on Q,; if j € LS and ry, j(|Wk,|) > an. Moreover, rn7j(|l7j,k2|) < (1 — ag)Rp] since ky € ICp j(avg).
Combining this estimate with (3.3. 9) we obtain

1{]60’} #{kQ € K:nj( ) \]an(ao) T’m](’WkQ > an} S (1 — Cto) —Sn
< 2R, ™ +1 (3.3.10)
From (3.3.8) and (3.3.10), we obtain (b). O
For n3 € R, j € I,, and a sequence of random variables (V})jer,, let
| 1
Dpj = "Pl— >, Vei—— > Vk’

" k€K, ;(a0) " ke ;(a0)
The following lemma follows from Lemma 3.3.3 immediately.

Lemma 3.3.4. (i) Let p > 1. Then

Pul, < 47| e il ey | +72 | \vku%Hp i Prn |
forjel,, neN.
(ii) Letp>1 and nys > 0. Then
[Dngll, < 47" </~€”4 o x| [Vellg, ey Lo ntiecs) )
p
R kfgif\ kllag ’ + R kfggjfj’ kllgec) ,
forjel,, neN.
Let
Knjlao) = {k€ L [Wil < c(a)/?}
For 13 > 0, j € I,, and a sequence of random variables (V});er,, let
~ 1 1
S | _ =
By = Rz ¥ Viex X W
ke, (o) kekn,j(ao)
Let
Q’"«J = {HW‘(]';;;") - C(Cm)l/Q‘ < éﬁ;nQ} (3.3.11)

for j € I,,, where C is a positive constant.
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Lemma 3.3.5. Let n3 € R. Then
(i) Forp>1andj€ I,

D = | =1 ,
1Pnsl, < A o Vel 2 ,;1: {iwaietany 2] < om} | T [, e Wil
n,j
(i) Forpi >p>1andj€ I,,
~ —n4 1/2 <
19l < ] g ] P oo ] <
1
R3 Vi 1 .
o krgiXJ’ H pp1(pr—p) 1l Fon k; ( {“W’“‘_C(O‘O)l/2| <C“nn2}
n,J
~P {13 - cfao) 2| < G
p1
+EZ3P[?2%J]1/M max | V|
k€lns pp1(p1—p)~!
Proof. For k € I, ;,
Qg 0 { g (Wel) < 3} 0 {IW] < elan)?}
= {|Wlga,) — cla)?| < Cry™} 0 {IWil > Wiz} N {IWil < c(a0)'/?}
C {|IWi| = elao)?| < Cr™}
and
Qo N { g (W) < 3} 0 {IWi] < elao)?}°
= {[Wlga,) — cla)?| < Cry ™} 0 {IWil < [WlGan ) 0 {IWl > c(a0)/?}
C A{IWi| = clag)?| < Cr,™}.
Thus we obtain (i). Property (ii) follows from (i). O
Lemma 3.3.6. If the constant C in (3.4.7) is sufficiently large, then
sup P[(Zf”] = O(n_L)
j€ln ’
as n — oo for any L > 0.
Proof. We have
P[|W]an — c(a)/? < —Cry™]
/2 _ &ve—m
< PIWIG iy < cla0)/? = Cry }
< Pl Y s, >lan—F, - 1J]
'kJEIn’]'
= P|R,"? Y {1a,, — PlAnsl} > C’n] (3.3.12)

keln,;
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where

Anp = W] < elag)/? — Crp™},
Cn = Eil/Q (an - E’i%i?p -2- EnP[An?l])

n

By using the mean-value theorem, we obtain

Cp ~ By (1 - ao)n — 2R, ™ — Fp{l — ag — 2¢(c(a)'/?;0,1) Cr, ™}

n
1

— 5*772
2 Fn

as n — oo if we choose a sufficiently large C. Therefore, the LP-boundedness of the random variables
in (3.3.12) gives

sujp P[|W|(j7gn) —c(a)? < —Cr,™] = Oo(n™ %) (3.3.13)
J€In

as n — oo for any L > 0. In a similar way, we know
P|W|ga, — c(@o)/* > Cr,™] = O(n™t) (3.3.14)

as n — oo for any L > 0. Then we obtain the result from (3.3.13) and (3.3.14). O

3.3.2 Local-global realized volatility
We introduce the local-global realized volatility (LGRV)

n —1 2

Lnj(ao) = =T > qlao) T ARXP K (3.3.15)
ke’cn,j(ao)

Theorem 3.3.7. Suppose that [G1] is fulfilled. For co € (0,1) and B > 0, suppose that k, ~ Bn® as

n — oo. Then

sup sup sup n

Lricper (L — o2 < 3.3.16
neNjel, kel, {J€£"}( (@) Utk)Hp o0 ( )

as n — oo for any constant v, satisfying
1 1
« < minq =(1—cg),=cop-
. {30-a)ga
Proof. (I) We have k,, ~ n® ~ h=% and n/k, ~ nl=%® ~ h®~1 Let

* = n i
Dn,j = 523{% Z ’AkX’2Kn,k — a Z ’AkXPKn,k}
k€K n (o) k€K j(a0)

Applied to Vi = n|ApX|? K, 1gjeey, Lemma 3.3.4 (i) gives

(3318 | (I>7(13:.]§3-19) (3.3.17)

‘p - n,J

D7 jecs)
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for every p > 1, where

@51%']-3'18) = ARPT? (HZ4 + Rn krglaxj n|Ak‘X|21{n‘AkX‘2>H:IL4}l{jeﬁi} > (3.3.18)
™ p
and
S = g pmax n|AX K klo: (3.3.19)
™ P
Since there is no jump of J on {j € LS}, we see
sup sup Hn|AkX\21{jE£%} ‘p =0(1) (3.3.20)

jeln ke[’n,j

for every p > 1, as a result, the LP-norm on the right-hand side of (3.3.18) is of O(n~F) for arbitrary
L > 0, and hence

pB3318)  _ O (k=) (3.3.21)

n7j

as n — oo. Similarly to (3.3.20), we obtain

sup P[5, ;] = O(n™ %) (3.3.22)
J€In

as n — oo for every L > 0, from Lemma 3.3.2 as well as Lemma 3.3.1 because (n/rn)?k,™ > 1
when 27 (cy ' — 1) > n;. Then

3319 mZ%WP[Q%J]”p = O (3.3.23)

n7.]

for every L > 0 and p > 1. From (3.3.17), (3.3.21) and (3.3.23),

= 0(1423_772“74) _ O(n—CO(nz—ns—m)) (3.3.24)

D7 ecsy
as n — oo for every p > 1. We recall that the parameters should satisfy
0< < < mi L1/id
min<{ =, = [ —

M2 <m 279

—1>}, N3 + g < 1.
co

[ In particular, if ¢ = 1/2, then 0 < 12 < m1 < 1/2. The positive parameters n3 and 74 can be
sufficiently small at this stage. Remark that cone < 1/4 when ¢y < 1/2. |

(IT) Let

D o= mml L ApX 2Ky — - ApX 2K

nj — BnyZ Z | k | n,k = Z ’ k ’ nk (-
keﬁn,j(ao) " keﬁn,j(ao)

Applying Lemma 3.3.5 (i) to Vi = n|ApX|[* K, k1gjezey, we have

Nk 3.3.26 3.3.27 3.3.28
1D 1 gecsyl, < @850 4+ @520 4 97329, (3.3.25)
where
(83260 — gl max n|ApX[2K, kil P|[[Wi] = e(ag)V?| < Cryy™ (3.3.26)
n,j = noll . k nkt{jeLs} 1 Cl&g Ry, ) +J.
s P
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(3327

=13
n ’.] /in

2
max n|AkX| Kmkl{jeﬁc}
kGInJ n

pp1(p1—p) !

1 1/2 = —
X a Z <1{}|Wk|—c(ao)1/2‘<6’mn"2} _P|:|‘Wk‘ — c(ap) | < Cﬁnn2:|>
kEInﬂj p1
(3.3.27)
and
3.3.28 s ple 11
®£L,j ) = HZ&P[QNJ] o krg?X‘n‘AkX‘an,kl{jeL%} (3.3.28)
™7 pp1(p1—p)~*

for j € I,, n € N. Then, paying x;* for the maximum, we have the following estimates for any
pr>p=> 1L

sup @51333-26) — O(kprmm) = O(n—CO(m—ns—m)), (3.3.29)
j€I, ’
sup (1)7(13.]'3.27) — O(,{Z:& XK‘:? % H;(H—’]Q)/?) — O(n—co(l-gn2 —773—774))’ (3330)
j€ln
and
sup 4)2333'28) = O(n*L) (3.3.31)
j€ln 7

as n — oo for any L > 0 for a sufficiently large C; the estimate (3.3.31) follows from Lemma 3.3.6. In
this way,

1B 1 gecill, = O(neommn) 4 o(uma(*5-m-m)) (3.3.32)
as n — oo for every p > 1.
(ITI) On the event {5 € LS}, we have
t t 2
> IAXPEe = ) (/ ordwy +/ btdt> Kok
k€, j(a0) kel ;(ao) tr—1 th—1
= P 4 (B850 | (3350 | 83T | pBII (3333)
where
O = N (o1, VIR g <ean) 2y (3.3.34)

kEInyj
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e = 37 (o1, ) PR <oy (K = 1)
kel
tr gt
+2 Z / / (53 — 5tjn)d’u}30'td’wtKn7k
kel (o) lg—1 Jtk—1
tr gt
+2 Z / / Utln dws (gt — 5tln)dwtKn’k
keﬁn,j(ao) lg—1 Jtk—1
173
+2 ) / o1, (50— T, )dtKn,
keRn;(a0) !
th 2
+ Z </ (5t—5tjn)dwt> Kn,k7
keRn ;(a0) 7 F1

te gt
@51%;3.36) — 9 Z / / bsdsodwi Ky, 1,

= tp—1 Jte—1
kGKnyj (ao)

(3.3.37) et
o =2 Y / / osdwsbidt K, .,

KeRp j(ag) * hmt It
and
(3.3.38) et
o0 = 2 Z / / bsdsbydt K, .
kelzn,j(ao) tp—1 Jlg—1
By assumption,
2 2
sup sup [Lecgy (oy —op, )],
j€In Se[tlnfl’tln+fn In
~2  ~2
< sup sup Has — 0y, 71Hp

JE€In s€ [tln -1 ’tln +En]

< (kph)Y? < pze)

for every p > 1. First, a primitive estimate gives

3/2
sup EHCI)(S'?"%)l{.EﬁC} ‘ < n % Fn < h%(l—CO)

(3.3.35)

(3.3.36)

(3.3.37)

(3.3.38)

(3.3.39)

(3.3.40)

as n — o0o; we note that the orthogonality cannot apply due to Izmj(ag) even after K, . is decoupled.

We also have

T || 2 (3.3.36) 1/2
sup — || @77 1 pe N
jEIIZ . H n,j {ieLs} ‘p ~
For @51%53'37) and @51%53‘38), by the same way, we can get
N 5 (3:3:37) 1/2
sup — || @, ey, S A2

jEIL, Kn
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and

N | - (3.3.38)
— || P 1ris re < p
JSSII:L Kn | n,j tieLs} ‘p ~
as n — oo. Furthermore, we have
sup b P3334) (o4, )2q(a0) liicre
jeIn || LRnh ™7 n loeent P
1 3.34 2
< sup h{éfﬁf’?’)— > () Q<ao>h}1{jeca}
JEL || Fn kel, o p
1
< sup || — Z ) (W2 <e(anyrrzy — a(a0))
j€bn WV n e P

= 0(&51/% = 0<h00/2>

for every p > 1. Combining (3.3.33) and (3.3.39)-(3.3.44), we obtain

sup sup
jeln kKel,

n
1{je£a}(M ~Z( )|AkX| Kk — Ut,Q(a0)> .
k‘E/Cn’j (o))

- O(n*(lfco)/Q) + O(n*CO/Q)

as n — oo for every p > 1.
(IV) From (3.3.24), (3.3.32) and (3.3.45), we obtain the estimate

n
1{je£g} <” Z |AI<:X| Ky — o} ,Q(a0)>
n k’G’Cn,]'(OLQ)

- O(nico(mfns*m)) + {O(nCO(nznsm)) i O(n*CO(H;

sup sup k,°
jejn k/eln,j

p

o)) }

K8 {o(n—ﬂ—%)/?) + O(n—co/2)}

_ O(n—CO(le—ns—m)) + O(nCO(W3+774)—(1—Co)/2) =: O,

as n — oo for every p > 1. Here we are assuming the parameters satisfy

co€(0,1), B>0, n€ <o,min{;((}0 — 1),%}),
n2 € (0,m), n3>0, na>0, n3+ns<ne.

To obtain the last error bound in (3.3.46), we used the inequalities

1+m
—00< 277 —n3—774> < —co(n2 —m3 — na)

and

C

0
Ccon3 — o < con3 — conz < —co(n2 — N3 — na).
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The LGRV L, j(ag) of (3.3.15) does not depend on n; (i = 1,2, 3,4) within the ranges (3.3.47). When
co > 1/2, we make

1 1/1 1/1
> —=1)>m>m>mtz(——1), ml0
2 2 Co 2 (&)

to obtain O, = O(1). When ¢y < 1/2, we make

1 1
§>771>772>773T§, a0

to obtain O, = O(1). Thus, the proof of Theorem 3.3.7 is concluded. O

According to the error bound (3.3.16), we should in general take ¢y = 1/2, i.e., Kk, ~ Bn/? to
obtain an optimal error estimate. However, this is not always true. If the process o is (unknown)
constant for example, then we do not need any spot volatility estimator to construct a global jump
filter, and the convergence of the resulting estimator for ® becomes much faster than that in the
non-constant o case.

3.3.3 Local minimum RV
Estimation of spot volatilities can be done by the minimum realized volatility method of Andersen et

al. [1]. It is defined as follows.

T n
T — 2Rk, T

Mnj = D {IARX| A |Ag X}

€ln,j

Theorem 3.3.8. Suppose that [G1] is fulfilled. For ¢y € (0,1) and B > 0, suppose that k, ~ Bn® as
n — oo. Then

sup sup sup n’*
neN jely, kel, ;

2
Ljecsy (M — %)Hp < 00
as n — oo for any p > 1 and any constant . satisfying
(1 1
Y+« < min 5(1 — o), 5C0 (-

The proof is essentially the same as that of Andersen et al. [1].

3.4 Rate of convergence of the global realized volatilities in high
intensity of jumps

When the frequency of the jumps is high, it is recommend that one should choose a value of « that is
not extremely small in order to cover the jumps by the index set J,(«)c.

[G2] (i) Sp,j—1 is positive a.s. and

S—1
sup sup [|S; 54, < o0

for every p > 1.
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(ii) There exist positive constants vy and ¢ such that

ilelgjsél}z n’YO“l{]Eﬁc}(JE CS”vj_l)Hp < o0

for every p > 1.
In [G2], we do not assume that the value of constant ¢ is known. We note that

sup sup Hl{]eﬁc}S e 1H 00

neN j
for every p > 1 under [G1] and [G2]. As shown in Theorem 3.3.7, the LGRV in (3.3.15) can serve as
Sn,j—l‘

If 0, is equal to a (possibly unknown) constant, then 7y can be arbitrarily large since we can let
Snj—1 = 1. In other words, we do not need any pre-estimate of O't2j7 .- So, the constant volatility
case is very special and it will be discussed briefly in Section 3.6 separately. This section logically
includes the constant volatility case (hence a less efficient way for it) but we will consider a general
non-constant volatility and assume a given local estimator attains a limited rate of convergence.

Remark 3.4.1. When v = 2flinfweg,te[07T] 02 > 0 for a priori known constant v, given a local

estimator l]_l"; , of at > we can use Sy j-1(v) = ﬂ_ﬁfi Vv for S, ;_1. For example, it is the case

when X satisfies a stochastic differential equation with jumps and its diffusion coefficient is uniformly
elliptic. When v = 0, an appropriate modification of [Lif‘; is necessary and possible. We only give an
idea without going into details here. Preset a positive constant v. Using Sy, j—1(v) for S, j_1, we obtain
an estimator V,[v] of O(v) fo o2l {02>V}dt and indeed, the rate of convergence V,[v] is established

in this paper. Then it is natural to use V [Vn] to estimate © = fo o2dt with a sequence of numbers v,,
tending to 0 as n — oco. Consistency does not matter because the mappting v — O(v) is continuous
and the operation v, | 0 is stable. Some work is necessary to give an explicit rate of convergence since
the constant of the error bound for each v,, depends on v,. However, the cause of the error by the
truncation at level v,, is the difference fOT o1 {o2<v,}dt, and it is rather easy to control for small v,,.

3.4.1 Rate of convergence of the GRV with a fixed «
We consider the GRV given by (3.2.2):

Vale) = > qla) A XPKn,.
JEIn(a)

Denote by 7,(U;) the rank of U; among the variables {U; };cs, as before, and U,y denotes the r-th
ordered statistic of {|U;|}ier,. Let 0 < 2 < 71 < 70, and define numbers a,, and a,, by

ap = [(1—a)n— nlfwj and @, = |a, — n1*72J,
respectively. Define the event N, ; by
Noj = Ara(Wjl) < an —n' 2} 0 {[W],) — Wil <n7}

The following lemma is Lemma 2.6 of Inatsugu and Yoshida [8].
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Lemma 3.4.2.

as n — oo for every L > 0.

We need some notation:
Tal@) = {j € In; ru(IWj]) <@},

U] = C_l/2h_1/2(Sn,j—l)_l/QAjX

Rj = Uy= Wy = 028,507 28,0,
as well

Q, = {NT < nl—’Yz}m< ﬂ |:{‘Rj’1{AjN‘7_0} < 2—1n—»yl} A (Nn’j)cj| ) '
Jj=1,...,n

We assume that the distribution of the variable N7 depends on n. In particular, we consider the
case where N7 may diverge as n — oo.

[G3] There exists a constant & > 0 such that |[N7|, = O(nf) as n — oo for every p > 1.

Lemma 3.4.3. Suppose that [G1] and [G2| are satisfied. Suppose that 0 < v <~ < 1/2. Then

sulp P[]Rj|1{AjNo:0} >27Ip ] = ot (3.4.1)
J€ln

as n — oo for every L > 0. In particular, if v < 1 — & and [G3] is additionally satisfied, then
P[] = O 1) (3.4.2)
as n — oo for every L > 0.
Proof. We have
s || Bl s no=opll, = O(™)
for every p > 1. The Markov inequality implies (3.4.1). This estimate and Lemma 3.4.2 give (3.4.2).
O
Let
L, = {jely AjN #£0}. (3.4.3)

Lemma 2.7 of Inatsugu and Yoshida [8] is rephrased as follows. We note that the definition of E;k)

therein is essentially the same as £, and different from £,, defined by (3.3.4).
Lemma 3.4.4.

Tnla) N €S C Tnl) (3.4.4)
on Q. In particular
#[Tn(@) © Tn(@)] < en'™ 2+ Np (3.4.5)

on §,, where ¢, is a positive constant. Here © denotes the symmetric difference operator of sets.
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For v3 > 0 and random variables (Uj)j:l,...,m let

> U]—E >yl

JGJn(a) FE€Tn ()

D, = n%

We refer the reader to Inatsugu and Yoshida [8] (Lemmas 2.8 and 2.9) for proof of the following
two lemmas.

Lemma 3.4.5. (i) Let py > 1. Then

IDnlly < (exn? ™72 + 0= [N ]y, )

jImax [Uj]

goeey

pp1(p1—p)~*

+n73| max |U 1ae

7j=1,..

P
for p € (1, p1).
(ii) Let y4 > 0 and p1 > 1. Then

IPully < (en™ 2 + 07 %[Ny,

L (1w [>n00)

X <n74 +n max
j=

pp1(p1—p)~t )

+n73

jmax [Uj[lag

p

forpe (1,p1).

Let

Dn:n%’ ZU_ZU'

JE€EIn(a) JE€Tn(a)

for a collection of random variables {U;},cy, and
Tn(@) = {je @ |W,| <c(@)?). (3.4.6)
Let
On = {|Wla,) —c(@)'?| < Cnr}, (3.4.7)

where C'is a positive constant. See Lemma 4 of Inatsugu and Yoshida [8] for a proof of the following
lemma.

Lemma 3.4.6. Let C > 0 and v3 > 0. Then
(i) Forp=>1,

IDally < 2 +n”‘°’

Ige j/r_nlax U]

=1,...

jmaX / Zl{“W\ ca1/2‘<Cn 72
p
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(ii) Forpi >p>1,

Hﬁ,(lk)Hp < n”n jir%axn ]Uj‘ P[HWﬂ_c(a)l/Q‘ <én72]

s ,
+n”| max |Uj

=1,...n 01 (p1—p)-1

1 ) 1/2 T2
“ln Z (1{‘|WJI—C(0¢)1/Q}<0nwz} - P{HWH —c(@)?|<Cn
- p1
s PCY| max U]
j=1,..n o1 (p1—p)-1

Lemma 3.4.7. If the constant C in (3.3.11) is sufficiently large, then
P[] = omh)
as n — oo for any L > 0.

Now we shall investigate the rate of convergence of V,,(«) for a constant o € (0,1). We note that,
under [G1] and [G3],

Do IAXPE| < 0 VAN]], = O, (3.48)
JjELR p
Let
Vola) = > qle)|AX[PK, .
jEjn(a)

Lemma 3.4.8. Suppose that [G1] [G2] and [G3] are fulfilled. Suppose that & < % Let 5 < min {’yo, %—
5}. Then

sup n’® H\/n(a) — \A/n(a)Hp < o0.
neN
Proof. By (3.4.8), we obtain

V(@) = Vo), =

v Y al) AX L, wgy K

JEITn(a)

- > q(e) A XL ooy K
jEiL(O‘)

+O(n~Y2+8),
p

By Lemmas 3.4.5 and 3.4.3,
3|V (@) = Vo (a)

5 (C*nvs—w +n_1+73||WT||p1)

2

x| n"™ +n max
7j=1,...,n

pp1(p1—p) ! )

+n“{3

2
jmax (|8 X["Ls oy Kng) Lo

_’_O(n71/2+’ys+€)
p

N

cn 3 ta2 4 st +n*1/2+73+£7
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where 1 < p < p1. The parameters should satisfy

1 1
O<ms<m<mn<w<gzg 1<;-§ m>0
We make
) 1
740, s <3 <T2 <Py <Tmingqo, 5 —¢
to obtain the desired exponent. O

For J,(a) defined in (3.4.6), let

vn(a) = Z Q(a)_1|AjX|2Kn,j-
JETn (@)

Lemma 3.4.9. Suppose that [G1] and [G3] are fulfilled. Suppose that £ < % Let v < % —&. Then

supn%’Wn(a) —@L(Q)H < o0.

neN p
Proof. By (3.4.8), we obtain
o) = Talall, = | a0 1AXP 1 vy
JETn (@)

_ Z q(a)_l\AjX‘Ql{AjN:o}Kn,j + O(n—l/z-s-g).
jEjn(a) P
By Lemma 3.4.6, we obtain

3|V (@) = Va(a)|

N Iax (nIAjX|21{Aj—N:0}Kn’j) P[HWH 7C(a)1/2‘ - C’n‘w}
1=1,...,n ,
n™| max (nIAjX|21{AfN:0}Kn’j)
]:17...777/ i ppl(pl_p)71
1 Z” o
115 (1{‘Wj|c(a)l/2|<ény2} - P[HWH _ C(a)l/Q‘ <Cn WD )

J=1

+nV3P[§fl]l/p1 _max (n|AjX|21{AjN:0}KnJ)

J=1...,n

+ O(n~1/2HE)

1

pp1(p1—p)~
_ _1_7 _ _ _
S B2 L BT TS s 1/2+¢ S nY3TYva—72 +n73+’Y4 1/2+£7

where 1 < p < p; and 74 is an arbitrary positive number. Lemma 3.4.7 was used in the above
derivation. Making

1
Y440 and 5 <3 <T 2 <T§—fa

we conclude the proof. O
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Lemma 3.4.10. Suppose that [G1] and [G3] are satisfied. Suppose that & < 1/2. Then

_ T

V(@) / oldt
0

Proof. Recall that £, is defined by (3.4.3). We have

— O(n"77%)

p

as n — oo for every p > 1.

2 & ; 2
> IAXPK ey = Y / Utdthr/ budt | Knjlijess)
jeTula) jea(e) N7 i
_ (1)1(13'4'10)+¢$L3'4'11)+¢’%3'4'12) (3.4.9)
where
3.4.10 2 2
q)gz ) = Zatj_thj 1{|Wy‘|§0(a)l/2}’ (34.10)
J€l,
O = X of WL ctanyvy (Bnglgjegs) — 1)
j€In
+2 Z / US Utj l)dwso'tdwtKnjl{jEEC}
]Ejn
t]
+92 Z / / ot dws (0 —5tj,1)dwtKn,j1{je£g}
]Gjn
+2 ) 5tj,1(0t—0t7 )t K i1 jess)
§E€Ta(@)” 7
t; 2
4 Z </ (5t_&tj_1>dwt> Kn,jl{jeﬂg} (3411)
jEjL(OZ) tjil
and

(1)513.4.12) - 9 Z / bdsatdwtKngl{]esc}
1

]ejn(a) ti-
t;
+2 3 / T debdtE e
jejn tJ !
+2 ) / bydsbydt Ky j1jegey- (3.4.12)
]EJn()

72



Let € > & For p>1 and ¢ > 0,

2 2
> T WL <eayrzy (Bnglijess) — 1)

Jely P
2 2
< || Db bW 1{|W]~|<c(a>1/2}KnJl{jesn}‘
jel, P
2 2
> Tt W L <oty 2y (Bn g = 1)
jel, p
< EI}C_%X (O-tQj1hW]'21{|Wj|§c(a)1/2}Kn7j> Nr| + O(niL)
" P
2
< N s o, me}x< 1th1{Wj|<c(a)1/2}Kn7j>
4n||max [ 02 AW iy i coani/zr Knj +0(n k)
el G—11 T W <e(@) /2 )
_Le , — 2p+L ’ /
g n_ 2 NTHQp—i—L % n—l—‘re +n—1+e+e —i—O(n_L)
L(€ [3) ’
g n- +E&—1+¢€ +n—1+e+e —I—O(TL_L)
< n71+e+e

2p

since € > ¢, where L is a sufficiently large number chosen suitably depending on (¢, &, p, €).

From the estimate (3.4.13), we have

Hq)£L3.4.11)Hp < RU/2 4 plee—e < Bl

if letting e . € < 1/2 and € | 0.
By the Burkholder-Davis-Gundy inequality, we have

> / / bedsordw Kp jlijesey|| <Y b dsatdwt
§ETn (@) K p J€ln
tj t 2
S / / bsdsoy | dt
j€ln -t \ /i1
t; t 2
< / / bsdsoy|| dt
jel, \ 7ttt p
< h1/2
From this and similar estimates, we have
“@%3.4.12)“1) < pl2
as n — oo for every p > 1. Moreover,
(3.4.10) 2 2
‘ = > i aleh) < Hh > 7 Wi <etayrrzy — a(@)
Jj€ln J€In P
O(h1/2)
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(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)



for every p > 1.
Obviously,

Sup Hl{jeﬁg} (UtZk - O-tzj—l)Hp < sup |’Utk a752j—1”p S h/?
J

el, JEI,

for every p > 1. In view of (3.4.17), we deduce that

Ty
Zatj L / o dt

j€l, p
S DON R S TS Doy RRCEE T
J€ln JEIn
ty —
< OhM?) + max{/ (lof] + loF,_ ])dt} Nr
g€l Lty P
O(h'/?),
following the passage from (3.4.13) to (3.4.14).
Easily,
2 —1/2=%7 _1
H > IAXPKn ljes, [n~ 2N, S n72e

JETn (@) P

Combining (3.4.19), (3.4.9), (3.4.14), (3.4.15) (3.4.16) and (3.4.18), we obtain

T
gn(a)—/o oldt = O(n_%+£)

p

as n — oo for every p > 1.

Theorem 3.4.11. Suppose that [G1] [G2] and [G3] are fulfilled. Suppose that § <
and By < min {fyo, % — 5}. Then

[Va(@) =8|, = O ™)
as n — oo for every p > 1.

Proof. Use Lemmas 3.4.8, 3.4.9 and 3.4.10.

3.4.2 Rate of convergence of the WGRV with a fixed «

p

(3.4.17)

(3.4.18)

(3.4.19)

O]

3. Let o € (0,1)

Next, we discuss the convergence of the WGRV with a fixed a. Recall that the WGRYV is defined as

Wala) = Y wi@) " H{IAX| A (S22 Vigw(a) } Ky
jel,

The WGRYV has entirely the same rate of convergence as the GRV.
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Theorem 3.4.12. Suppose that [G1], [G2], and [G3] are fulfilled. Suppose that & < 5. Let o € (0,1)
and Bp< min {'yo, % — §}. Moreover, assume that k,= O(n1/2). Then

[Wa(a) = O], = O(n~)
as n — oo for every p > 1.

Proof. Decompose W, («) as

Wala)= 3 wlo) AXPE 4 S we) SV, oy K

JE€ETn () §€In(e)e
g o -
e ORI DR T R N
jEJn(a)C

Note that w(a) = g(a) + ac(a). Hence, it suffices to show that

> S0 Vi ey Eny — ac(@)®] = 0(n~®)

JE€ETn(a) P

as n — oo for every p > 1. Decompose the left-hand side as

> S i1V (o)) Kng — ac(@)© = > S i1V o Englijecsy — ac(@)©
JETn () JETn ()

+ Z Sn,j—1V(2Sn(a))Kn,j1{je£nmcn}
JETn(a)®

+ Z Sn,j—l‘/(in(a))Kn,jl{jE/‘J%ﬂﬁn}
JETn(a)°
=:A1 + Ay + As.

Since Smj,ﬂ/én(a))ij < \AjX\QKn,j <nY2forje TIn ()€, we have HAQHP < n~ /24 As for As,
note that #£, < nf x k= O(né+1/2) and that A; X = A; X for j € £¢. Hence we have

|Aslly < Hmf}x AR L <o
J€ln

p

where € is an arbitrarily small positive number.
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As for A, we can set ¢ = 1 in the condition [G2](ii) without loss of generality.

I|A; — ac(a)@”p < (h”‘fén(a)) — C(Oé))h Z Sn,j—lKn,jl{jGE%}
JETn()®

+e(@)|[h Y (Sug-1— 07 ) gecs)
JETn(a)¢

+e(a)|[h Y Sni (1= Kng)ljecs)
JEIn(a)¢

+ c(a) ||h Z L Lyjerey —a®©
JEIn ()¢

=:B1 + By + B3 + By.

By condition [G2], By = O(n~7). As for Bs, with the estimate Hl{jel:%}(l_Kn,j)Hp < P[A;X] >
n~ V4P = O(n=F) (for all p > 1 and L > 0) and the Cauchy-Schwarz inequality, we have

1Bsllp < b ) 1ggecsySni—illypl1gecs) (1 = Kn)lly, = O ™").
jeIn

For By, we use the following decomposition:

h Z Ugjfll{jel:%}_a@

JEIn(a)e
= h Z O-t2j71 -0 -h Z U?jfll{jEEn} +h Z Ul?jfll{jeﬁn}
j€ln J€ln J€In(a)
+|(1-a)O—-h Z 01%.71 +1h Z Utzj,l_h Z afjﬂ
GETn (@) GETn () JETn ()
Hence, with the aid of Lemmas 3.4.5, 3.4.6 and the estimate ||£, ||, < nT'/2, we have
h Z 01523'711{J€£%} —a®

JEIn(a)° p

N Z Ufj_l -0 (1-—a)®—nh Z O't2j_1 O(n="0) (3.4.20)
J€ln P €T () p

since By < 1 —&. The first term of the right-hand side of the above inequality is O(n~1/2) by (3.4.18).
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As for the second term on the right-hand side of (3.4.20),

(1 - Oé)@ —h Z UtjSl = (1 - a)@ —h Z Ut2j711{|Wj\§c(a)1/2}

j€Tn(a) P JEIn P
<|h)_ i ( (W, |<e(a)1/2} — P[!Wj\ < c(oa)l/QD
Jj€l, P
+(1-a) hZa?jil—@
jeln p
= O(n~Y?).
since Hence we have By = O(TF%H).
Finally, for By, it suffices to show that
P [V o) — (@) 2 > n ] = 0(nE) (3.4.21)
as n — oo for every L > 0 and for every Sy < min{~y, % — ¢}, Let
Anj = {7V < c(@)/? —nFo}
Vn,j = {‘Wj|Sc(a)1/2_n760+2—1n7v1}
and
pn = (1—an—1-— natete _ nEVy ;]

for € > 0. Then
P [h_lﬂV(s (@) — cl)? < —n_’go]

< P ZlAM >(1—-—an—1
| J€In
< P\Y Langessy + D Layngec,y = (L= ajn—1
LJ€ln J€In
< P Z La, ;n{jecsy + #Ln = (1-ap—1
Li€ln
< P> V= (- —1—n ) 4 PREL, > 02t + POS)]
_jeI’VL
1
< P Y Vug— EDugl) = pn| + P[#L, > 027 4 PO;]
Lj€ln

We see

1
n ~ (1—a)n—1- natete _ n{(l—a)— c*(nPo — 27 n)} > ic*nl_ﬁo
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for large n, where ¢* is some positive constant, if we take a sufficiently small € and 1 € (8o, 70) thanks
to Bp < % — ¢, Since n= Y2y, > 2-1e*n3 =50 from Bo < 1/2, we obtain

P |n1/? Z (Vg — EVnyl) = nu,| = omn™)
J€In

for every L > 0. Therefore,
P [V ) — (@) < 7% = O

as n — oo for every L > 0. Similarly, we can obtain the estimate P [h_l/QV(sn(a)) —c(a)/? > n‘ﬁo] =
O(n~1) to show (3.4.21), which concludes the proof. O

3.5 Asymptotic mixed normality of the global realized volatilities
with a moving threshold

3.5.1 The GRV with a moving threshold

In this section, we will consider a situation where the intensity of jumps is moderate. Then it is
possible to keep the cut-off ratio of the data small, and to get a precise estimate for the integrated

volatility. Let
1 1
dg € (0, 4) and 01 € <0, 2). (3.5.1)

In what follows, we will only consider sufficiently large n. In the context of the global jump filtering,
given a collection (&, j—1)jer, (n € N) of positive random variables, we may use the index set M,,
given by

My = {jeln; Vi <V} (3.5.2)
where
Vi = |(Gny-1)?AX] (3.5.3)
and
$n = n— |Bn%]

for a positive constant B. We note that the definition of Vj is different from that in (3.2.1). In the
terminology of the previous sections, the cut-off ratio is a,, = |Bn% |/n, M, = Jn(ay) and a, goes
to 0 as n tends to oo.

For estimation of © of (3.1.1), we consider the global realized volatility with a moving threshold

_ 2
Ve = Y ¢.'|AX[Hy, (3.5.4)
JEMnp
where (¢n)nen is a sequence of positive numbers, and

H,; (3.5.5)

1
{18, X|<Bon~ 1%}

for a positive constant By.
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Remark 3.5.1. &, j_1 = 1 and ¢, = 1 satisfy Condition [G2']. Asymptotically this choice is sufficient

and valid. However, in practice, a natural choice is the pair S, j_; in [G2] and ¢, = ¢q(o,).

We are about establishing asymptotic mixed normality of the integrated volatility estimator having
a moving threshold. We will solve this problem by showing a stability of estimation under elimination
of a certain portion of the data. In what follows, we will consider the variable V,, defined by (3.5.4)
with (3.5.5) for M,,, that is just a random index set in I,,. It is not necessary to specify it by (3.5.2)

and (3.5.3). We will assume (3.5.1) and

[G2'] (i) For every n € N, M,, is a random set in I,, such that #(I, \ M,) < Bin® (n € N) for

some positive constant Bj.
(ii) ¢n >0 (n € N) and ¢, — 1 = o(n"/?) as n — .
Let

Vi o= 3 gt AX [ Hay
JEM,

for X = X — J.

Lemma 3.5.2. Suppose that [G1], [G2'] and [G3] are satisfied. Suppose that & < 269. Then

n'2(|V, = V|l = 0
as n — oo for every p > 1.
Proof. We have the estimate

n1/2HVn o VLHP S 2q;1q)7(13.5.7) + qgl(bq(l3.5.8)’

where
(1)7(13.5.7) — n1/2 Z ‘A]XAJJ‘Hn,j )
JEM, P
and
2
JEMy, p

for p > 1. By using the inequality
~ 1
1A J|Hyy < (I1A;X|+ Bon™ 1) 1A, 70}
we obtain

N max{‘Aj)N(|(|Aj)~(|—I—Bon_i_‘so)}

[l

2p
< n—i—5o+5+e

as n — oo for any € > 0 and p > 1. Therefore,

@(3.5.7) - 0

n
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for every p > 1 since £ < 249 < i + dp. Similarly,

@7(13,5.8) < pl/2 maX(|Aij|2 —i—n_%_%(’) HNTHQ
J€In % P
< 20048+
as n — oo for any € > 0 and p > 1 since 269 > €. In particular,
B8 0 (3.5.10)
as n — oo since & < 2dp. Now the proof is completed with (3.5.6), (3.5.9) and (3.5.10). O
Define V,, by
S =2
Ve o= > AKX
J€In
Lemma 3.5.3. Suppose that £ < 1/2. Then
W2V V||, - 0
as n — oo for every p > 1.
Proof. Recall that g < 1/4 and §; < 1/2. Define Vi by
_ =2
Vio= D @]
JEMn
Then
12
n PV Vi, S et Y A, -1
JEMn P
12
< nlf? Z |8 X || Hnj — 1[1{a,n>0}
JEMn p
1/2 Y2
o Z ’A]X} 1{|Aj)~(|>n*%*50}1{AjN=0}
JEMy p
< nl/? max ‘Aj)N(IQNT +0(n 1)
_]E n P

1
—5tet
S noetet

for any positive number € > 0. Here L is an arbitrary positive number greater than 1/2; and we used
the inequality 6y < 1/4 to get O(n~F). Since ¢ < 1/2, we obtain
n'ZIIVE = Vi, = o() (3.5.11)

as n — oo for every p > 1.
From the condition ¢, — 1 = o(n~'/?) of [G2'] (ii), obviously,

WPIVE-Vall, < et 3T (AR o)
JEIN\Mn, p
< nmztetd g o(1) = o(1) (3.5.12)
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as n — oo for every p > 1 since #(I, \ M,) < n% with &, < 1/2 thanks to [G2] (i) and (3.5.1), and

max |A; X} O(n=17)
jeln »
for any p > 1 and any positive number e. Proof ends with (3.5.11) and (3.5.12). O

Define I' by

T
r = 27T / opdt.
0

Extend (€2, F, P) so that there is a standard normal random variable ¢ independent of F on the
extension. The F-stable convergence is denoted by —%

Lemma 3.5.4. Suppose that [G1] is satisfied. Then
n'/2(V, —0) —% 1Y%
as n — 0o.

Proof. We have

- tr 2% 2
Vn = Z / atdwt + / btdt
el te—1 tk—1

J€Ln
= PBSLY | G515 4 9p(3516) 4 p(35.17) (3.5.13)
where
P3-5-14) Z / / osdwgordwy, (3.5.14)
Jjel,
t.
p3515) Z/J oldt, (3.5.15)
jel, Vi1
t; J
(35:16) Z/ atdwt/ bedt, (3.5.16)
jel, ' ti-1 ti-1
and

t 2
BN Z (/J btdt> . (3.5.17)
tj—1

Jjeln

Since b is a cadlag process, for any € > 0, there exists a number § > 0 such that P[u/(b, J) > e] < €.
Here w'(b,d) is a modulus of continuity defined by

w'(b,0) = inf max sup |b7«1—br2‘,

(si)€Ss JT2€[8i—1,8;)
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where S; is the set of sequences (s;) such that 0 = so < s1 < -+ < 8, =T and min;—; _,—1(8;—si-1) >
0. Let

. tk 4
(3516 _ Z/ Utdwt/J (b — by, ). (3.5.18)

jel, tk—1 ti—1

Write

tj
E] = / O'tdwt,
ti—1

tj
/ O'td’u)t
ti_

j—1

\/‘7 — 7,L]./Q

tj
/ (be] + [be,_,|)dt

ti—1

For w € Q such that w'(b(w), d) < €, there exists a (s;) (depending on w) such that

max  sup by (@)~ by (W) <.

vor1ra€lsio1,8:)
~min  (8; — 8;-1) > 0.
1=1,...,v—1
For n > T/6, all intervals [t;_1,t;) (j € Ip) includes at most one point among (s;), therefore the
number of intervals [t;_1,t;) that include some one s; is at most 7'/6. The increment of b(w) in
[tj—1,t;) is less than € if [t;_1,t;) N {s;}. Thus, we have the inequality

Zn1/2|E | ZV

j€ln j€ln

Hn1/2(i)$l3.5.16)Hp Plw'(b,6) < €] £

2p

eh + H maxV

P
for every p > 1. Therefore,

a0, < Cler (n 4 3 Nt ) 5+

Jjeln

A

C'(e+n_1/2 ~l—e$)

IN

for all n > T'/5, where C and C’ are some constants independent of n. Consequently,

lim |[n*/2@519)| = 0 (3.5.19)

n—00 p
for every p > 1. Moreover, for
tr
35 16) _ Z / Utdwt/ bt]._ldt Z hbt] 1 / O'th)t,
Jj€ln -1 j€l, tj—1

we have

lim |[n*/2@519)| = 0 (3.5.20)

n— o0 p

for every p > 1, by orthogonality. From (3.5.19) and (3.5.20),

lim |[n'/203519)| = 0 (3.5.21)

n—o00 p

for every p > 1.
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Obviously,

Hnl/Qq)(&S.l?)

S [ 0 (3.5.22)

for every p > 1. Now, we can show the claim of the lemma by using (3.5.13), (3.5.21) and (3.5.22)

together with the mixture type of martingale central limit theorem applied to @%3'5'14). O

Theorem 3.5.5. Suppose that [G1], [G2'] and [G3] are satisfied. Suppose that & < 20y. Then
n'/2(V, —@) —% 1Y%
as n — oo.

Proof. Just combine Lemmas 3.5.2, 3.5.3 and 3.5.4. O

3.5.2 The WGRYV with a moving threshold

We consider the winsorized global realized volatility with a moving threshold. Differently from the
GRV without winsorization, we need an explicit description of M,, here. Let M,, and V; be given by
(3.5.2) and (3.5.3), respectively. Set s, = n — |Bn’ | with ¢; € (0,1/2). Define

W=, {180 XI A Y2 Vi) Y Hag
J€ln

where (g, )nen is a sequence of positive numbers, We prove the rate of convergence of WGRYV is the
same as that of V,,.

Theorem 3.5.6. Suppose that [G1], [G2'](i7) and [G3] are satisfied. Suppose that & < 20¢. Then
n'/2 (W, —0) —d TV
as n — oo, where I' and ¢ are the same random variables in Theorem 3.5.5.

Proof. Tt suffices to show that n'/2|W,, — V||, — 0 as n — oo for every p > 1. Rewrite the definition
of W,, as

W,=V,= > G Snj1VE  Hnj-
jEM,

The first term obviously converges to zero in LP with rate \/n. As for the second term, we have

> Gn Ve Hug| < || D0 18X PlGeey Hugl| + || D 18X 1jeee1 Hn,

JEMS b, lliems o liEMS ,
< p1/2-200+€ | —ldetdn
Since §; < 1/2 and £ < 260y, we obtain the desired rate of convergence. O
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3.6 Constant volatility

The case of constant o is specific and theoretical treatments can be slightly different from those of
the previous sections. In this situation, we do not need to pre-estimate the local spot volatility, and
hence, we can take S, ; = 1 constantly and no approximation error is caused. o; = 65; is also the case
if 4;_, are observable. For example, the GRV with a fixed cut-off rate « is redefined as

Vo) = > qla) M AX K,y
JETR()

where
TNa) = {j € In; |A;X| < |AX|(5,(a)) }-

Then we have the following theorem. Note that we do not need the condition [G2], and v in [G2](ii)
can be arbitrarily close to 1/2.

Theorem 3.6.1. Suppose that [G1] and [G3] are fulfilled. Suppose that £ < 1. Let o € (0,1) and
Bo < % —&. Then
IV (@) = O], = O(n~"*)

as n — oo for every p > 1.

The other global-threshold estimators are discussed similarly.

3.7 Simulation studies

In this section, we conduct several numerical simulations to see that our global realized volatility
estimators outperform those proposed in previous studies.

3.7.1 The case of compound Poisson jumps

Here we consider the following process:
dX, = 0X,dt + (0 +nX2)1dw, + dJy, t € [0,1], (3.7.1)

where J; is the jump part of X.

We assume that J is a compound Poisson process of the form J; = EzNztl &, where (Ny); is a
Poisson process with intensity A > 0 and (&;); are independently and normally distributed random
variable with mean y and variance v2. For the intensity parameter, we consider both cases where \ is
high and low. Our aim is to estimate the integrated volatility © = fol (o + T]Y}?)%dt.

We compare the estimation results of the bipower variation (BV), minimum realized volatility
(minRV), the GRV, and the WGRV.

The set-up of simulation is as follows. The number of samples is n = 2000. We repeat calculating
the estimators 500 times to obtain their average and quantile. The true parameters are § = 0.2, ¢ =
1, n=3, pn=0.3, v =0.2. Throughout this subsection, we set the cut-off ratio a = 0.2 for GRV and
WGRYV with local volatility. That is, we trim the upper 20% of absolute increments. While it may
seem that we eliminate too many observations and the estimator suffers from downside bias, GRV and
WGRYV estimate the integrated volatility well thanks to the adjustment coefficient by ¢(«) and w(a).

Note that oy is not directly observable and depends on the Y;. Hence, we have to calculate the local
GRYV first to normalize the increment A;Y when constructing the GRV. In this simulation, we use
the LGRV (3.3.15) and local minRV (3.3.48) as estimators of spot volatilities. Moreover, we calculate
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GRV without normalization (defined in Section 3.6) for comparison. For the length of a subinterval
to calculate these local volatilities, we set &, = 10 x n%45.
We use the following labels as in Table 3.1 to describe the estimators.

Table 3.1: Definitions of estimators

Label Method Cut-off ratio @  Local volatility
bv BV 0.2 -

mrv minRV 0.2 -

grv.lgrv GRV 0.2 GRV

grv.mrv GRV 0.2 minRV
wgrv.lgrv WGR 0.2 GRV

WgrV.mrv WGRV 0.2 minRV

grv(a] GRV 0.2, 0.1, 0.05 -

grv.lgrv.mov  GRV with moving threshold (depends on n) GRV
wgrv.lgrv.mov WGRV with moving threshold (depends on n) GRV

The case of high intensity: GRV with fixed cut-off ratio

First, we deal with the case of high intensity. Here we set A = 30 so that the data includes many
jumps. The example of a sample path and its increments are shown in Figure 3.1. Obviously, there
are many large spikes in the data, suggesting the existence of jumps.

Note that the volatility is non-constant here. In fact, in Panel (b) of Figure 3.1, the size of
increments tend to increase as time passes. Hence, to estimate the volatility, we have to use estimated
spot volatilities to normalize the increments.

ﬁ —
© _
o _| o
-
<
0 — S
X
5
£
X © - uga g -
g
g
< o
=
N o~
O' —
|
o
I T T T T I I T T T T I
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time
(a) Sample path of X (b) Increment of X

Figure 3.1: Sample path of X and its increments (A = 30)
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Figure 3.2 is the estimation results. In this case, both BV (bv) and minRV (mrv) seem to suffer from
upward bias due to jumps. In particular, the BV deviates from the true value considerably. On the
other hand, GRV with normalization perform well with errors concentrating around zero (grv.lgrv,
grv.mrv). Note that, although WGRV performs relatively well, it seems to have a small upward bias
(wgrv.lgrv, wgrv.mrv). This suggests that, if there are many large jumps, using an upper quantile
(V(Sn(a))) may sometimes lead to biases rather than obtaining a robust estimate.

The three right barplots in this figure (grv[0.20], grv[0.10], grv[0.05]) are the results of
GRV without normalizing increments by local-global filters, with the cut-off ratio « = 0.2, 0.1, 0.05,
respectively. We see that they seem to be less precise (especially when « is large) than GRV or WGRV
with local volatility. This result suggests that, if we do not normalize increments by spot volatilities
in the case of non-constant volatility, we end up obtaining inappropriate estimates.

Intuitively, when we ignore normalization, we tend to eliminate increments where volatility is high
(because they are typically large), even if they come from the Brownian motion, while keeping relatively
small jumps which we should actually remove. In addition, theoretically, the adjusting constant ¢(«)
in the definition of GRV (3.2.2) comes from the standard normal distribution. Therefore, when the
volatility is non-constant, we should normalize the increments |A;Y| by local volatility to make them
approximately normally distributed.
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grv[0.05] 4 ©

Figure 3.2: Estimation results for the case of high intensity: A = 30

The case of moderate intensity: GRV with a shrinking cut-off ratio

Next, we consider the case of low intensity. In this case, we can use shrinking cut-off rate. Recall
that the shrinking cut-off rate is defined by oy, = |Bn’'|/n. In this simulation, we set B = 10 and
61 = 0.45, so the cut-off rate is then «,, = 0.1525.

The estimation results are shown in Figure 3.3. All global-filtering estimators perform well (for
GRVs with fixed cut-off ratio, we set « = 0.2 as before). These results suggest that if there are not so
many jumps in the data, it would be advisable to use as many data as possible by making the cut-off
ratio small.
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Figure 3.3: Estimation results for the case of low intensity: A =5

The case of constant volatility

Since we assumed that the volatility is location-dependent in the previous sections, the normalization
by estimated spot volatilities is needed to obtain an accurate estimator. However, if the true volatility
of data is constant, we may ignore normalization.

Here we set 7 = 0 so that the data is driven by a constant-volatility diffusion process. The intensity
is A = 30. Figure 3.4 shows the estimation results of this case. The GRVs without normalization
(grv[0.20], grv[0.10] and grv[0.05]) perform as well as those with normalization. This suggests
that, if the true process can be thought as constant-volatility, we may skip normalization (calculation
of spot volatilities) procedure.

However, it would be more typical that the volatility is non-constant. Thus, basically, it would be
advisable to use normalization.
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Figure 3.4: Estimation results for the constant volatility: A = 30

3.7.2 The case of Neyman-Scott type clustering jumps

As the previous examples show, the minRV performs relatively well in the case of compound Poisson
type jumps. However, even if the intensity of jumps is small, the minRV may suffer from an upward
bias depending on the structure of jumps. In particular, if there are consecutive jumps (which is quite
rare for compound Poisson processes), the minRV loses it advantage. Here we show an example of
such a situation.

We consider the case that the data-generating process is given by ¥ = X 4 J, where X is the
continuous part and J is the jump part. Here we assume that J follows a Neyman-Scott clustering
process (NS hereafter), instead of a compound Poisson process.

NS process is a typical point process representing consecutive jumps. That is, there may be jumps
within some consecutive intervals. This leads to upward bias of BV and minRV because the both of
two adjacent increments can consist of large jumps. The NS process is constructed as follows.

(1) Set “centers” on the time interval [0, 7] by a Poisson process (N) with intensity A\g. A center is
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defined as the point ¢ € [0,T] which satisfies AN; = 1.

(2) For each center ¢ € [0,T7], choose the number N, of “children,” assuming N, is Poisson-distributed
with mean ..

(3) For each center ¢ € [0, 7], generate independently and exponentially distributed random variables
()

i

(vﬁ) Lien with mean h. Then the location of child ¢ derived from center c is defined as c—v
<i<Ne

This defines the location of a jump.

(4) For each child i, generate an independently and normally distributed random variable & ~
N(0,v%). This determines the size and direction of a jump AJ;.

(5) The NS process is defined as Jy =3 g 4 AJs.

We set the data-generating Y = X + J, where X is the Brownian semimartingale satisfying the
following SDE: Here we consider the following process:

dX, = 0X,dt + (o + nX2) 1dw,, (3.7.2)

We set \g = A\¢ = 5 and v; = 0.5. For the continuous part X, we use 8 =0.2, 0 =1, n = 3.

Figure 3.5 show the estimation results in the case of NS jumps. Because of the possible consecutive
jumps, both bipower variation and minRV have upward bias, whereas GRV and WRGYV are all robust
to such clustering jumps. This suggests that the GRV and WGRV perform very well for various
structures of jumps.
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Figure 3.5: Estimation results for the case of Neyman-Scott clustering jumps

3.8 Concluding remarks

In this paper, we construct the global realized volatility estimator in the nonparametric context.
We proved the consistency and the asymptotic normality of GRV and WGRYV, and, by numerical
simulations, we show that these new approaches outperform previous studies which use increments
within a single or two intervals.

Our new approach for eliminating jumps is highly versatile. For example, by normalization, it
works well when the volatility of data is driven by a nonconstant-volatility process. Moreover, both
GRV and WGRYV are accurate enough in the case of not only compound-Poisson sporadic jumps but
also Neyman-Scott consecutive jumps.

The global-filtering method could be extended to the covariance estimation even under the non-
synchronous sampling scheme. Furthermore, this approach could also be applied to construct a test
statistic for jump. Also, it is valuable to apply our approach to empirical research of high-frequency
time series data. These are important topics for future research.
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