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1 Introduction

Let T be a discontinuous group for the three-dimensional anti-de Sitter space
AdS? ;= S0¢(2,2)/S00(2,1). In this thesis, we study

e a growth rate of the counting of I'-orbits at infinity;

e the discrete spectrum of the Laplacian of the complete anti-de Sitter man-
ifold T\ AdS®.

The anti-de Sitter space AdS? is a Lorentzian manifold with constant sectional
curvature —1 of which the identity component of the isometry group is the
Lie group SOq(2,2). Discontinuous groups for AdS? and their deformation
theory have been developed by renowned mathematicians, William Goldman,
Toshiyuki Kobayashi, and Fanny Kassel, among others.

1.1 Relationship between the sharpness of the I'-action
and a growth rate of its counting at infinity

Traditionaly, the terminology “discontinuous groups” was used to denote the
same meaning of discrete subgroups. Indeed, the action of a discrete group of
isometries is automatically properly discontinuous in the Riemannian setting.
Kobayashi [17] advocated to distinguish two terminologies: discontinuous groups
for the property of actions, and discrete subgroups for the property of groups,
in his study of the action of discrete groups beyond the Riemannian setting.
Following this principle, we call a discrete subgroup I' of a Lie group G is a
discontinuous group for a homogeneous manifold G/H if the natural I'-action
on G/H from the left is properly discontinuous and free ([I7, Def. 1.3]). Then
the T-orbit meets a compact subset of G/H in at most finitely many points,
and thus we may consider the cardinality of the intersection points. Kassel-
Kobayashi [I1] introduced a compact subset B(R) called a pseudo-ball of radius
R > 0 in AdS®, more generally in any semisimple symmetric space G /H, and
studied a growth rate of the counting

Nr(z,R) := #(Tz N B(R))

of the T'-orbit through € G/H as R — oo.

When the metric tensor is indefinite such as the anti-de Sitter space AdS?,
an isotropy subgroup of the isometry group is not necessarily compact and an
orbit of a discrete subgroup I' of isometries may have accumulation points. In
particular, I" may not act on G/H properly discontinuously. Generalizing a
pioneering work of Kobayashi [I4] on the properness criterion by means of the
Cartan projection for homogeneous manifolds of reductive type, Kobayashi [15]
and Benoist [I] established a criterion for a general discrete subgroup I' of a
reductive Lie group G to act properly discontinuously on G/H. As a slightly
stronger condition than this criterion, Kassel-Kobayashi [11] introduced the no-
tion of (¢, C)-sharpness (¢ > 0, C' > 0) of a discontinuous group which quantifies
proper discontinuity. Loosely speaking, the parameter ¢ > 0 indicates that the
“degree of proper discontinuity” of the I'-action is weaker if ¢ approaches to 0.
Then they gave an upper estimate of the counting for (¢, C')-sharp discontinu-
ous groups for AdS® (more generally, any semisimple symmetric space G/H) by



means of the two constants ¢ and C, and proved that the counting Nr(z, R) is
of exponential growth uniformly with respect to z € G/H as R — oc:

Fact 1.1 (Kassel-Kobayashi [I1, Lem. 4.6 (4)]). Let ¢ > 0 and C > 0. There
exists Ap > 0 independent of ¢ and C such that for any torsion-free (¢, C)-sharp
discontinuous group T for AdS?, one has

4
Vx € AdS37 VR >0, Nr(x,R) < A exp(M

).

On the other hand, there has been no existing literature about the counting
for a non-sharp discontinuous group (the case ¢ = 0) to the best knowledge
of the author. In Chapter 2, generalizing a non-sharp example of Guéritaud-
Kassel [7], we construct a family of infinitely generated subgroups of SO¢(2, 2).
Our subgroup has four sequences (a—_(k), as(k),r(k), R(k))ren as parameters.
We find a properness criterion and a sharpness criterion for the actions of our
subgroups on AdS?® as conditions of these parameters (Propositions and
23T respectively). Then we investigate phenomena that may happen for the
counting of orbits of non-sharp discontinuous groups obtained by using these
criteria. In particular, we give constructive proofs of the following:

Theorem A (Theorem 21l). There exists a non-sharp discontinuous group for
AdS? such that
Vz € AdS®, VR >0, Nr(z,R) < 4.

Theorem B (Theorem 2Z2)). For any monotone increasing function f: R —
Rso and any x € AdS?, there exists a discontinuous group T' = Ly for AdS?
satisfying
lim Ne(z, ) =00
For example, applying Theorem [Bl to f(R) = exp(ef?), we can construct a
discontinuous group I' satisfying

lim #TzN B(R))
R—oo  vOl(B(R))

1.2 Discrete spectrum of non-sharp anti-de Sitter mani-
folds

In the second half of Chapter 2, we consider the discrete spectrum of the Lapla-
cian of the noncompact anti-de Sitter manifold 1"\AdS3 for a non-sharp discon-
tinuous group I'.

Let us recall some basic notions. A pseudo-Riemannian manifold is a C*°-
manifold equipped with a smooth non-degenerate symmetric bilinear tensor of
signature (p,q). It is called Riemannian if ¢ = 0 and Lorentzian if ¢ = 1.
As in the Riemannian case, [1 = div o grad defines a second order differential
operator (the Laplacian) on a pseudo-Riemannian manifold. In contrast to the
Riemannian setting, the Laplacian on a Lorentzian manifold is not an elliptic
differential operator but a hyperbolic differential operator, and its eigenfunction
is not analytic in general.



We write L?(M) for the Hilbert space of square integrable functions with
respect to the Radon measure induced by the pseudo-Riemannian structure of
M, and set

L3(M) :={f € L*(M) | Oy f = \f in the weak sense}
for A € C. Then the set of L2-eigenvalues
Spec,(Oar) := {\ € C | L3 (M) # 0}

is called the discrete spectrum of the Laplacian of M.

Let us recall a known result by applying to AdS® the theory of Kassel-
Kobayashi [II] on the discrete spectrum of “intrinsic” differential operators
on locally semisimple symmetric spaces. Let I' be a discontinuous group for
AdS®. Then the quotient space I‘\AdS3 is a C°°-manifold and the quotient
map AdS® — I‘\AdS3 is a covering map of C'*°-class. The quotient manifold
I'\AdS® admits a Lorentzian structure with constant sectional curvature —1
via this covering map. Kassel-Kobayashi [I1] initiated the study of the discrete
spectrum Spec,(0) of the hyperbolic Laplacian O on the anti-de Sitter manifold
I\ AdS?.

They introduced “the I'-averages of non-periodic eigenfunctions” as a gen-
eralization of Poincaré series to construct L2?-eigenvalues. If an eigenfunction ¢
of the Laplacian on AdS?® is integrable, then the generalized Poincaré series

P'(Ta) = (v 'a)

yerl

defines an integrable function on the anti-de Sitter manifold I'\AdS®, and is an
eigenfunction of the Laplacian with same eigenvalue. It is known that there
exists an L2-eigenfunction of the Laplacian on AdS® with eigenvalue

Am i =4dm(m —1) (m € Z and m > 2).

As an application of an upper estimate of the counting as in Fact[ILT] they proved
L?-convergence and non-vanishing of generalized Poincaré series of eigenfunc-
tions with sufficiently large eigenvalue A,,, and obtained the following theorem:

Fact 1.2 ([I1]). For any sharp discontinuous group T for AdS®, there exists a
constant mo(I') > 0 such that

Specy (O aas?) D {Am | m € Z, m > mg(L)}.

A natural question would be whether the Laplacian on the anti-de Sitter
manifold I\ AdS? still has an L2-eigenvalue if the discontinuous group I' is non-
sharp. As an application of an upper estimate of the counting as Theorem [A]
we prove the following by applying the machinery developed in [11]:

Theorem C (Theorem [Z3)). There exist a non-sharp discontinuous group T
for AdS® and a constant m{(T") > 0 such that

Specy(Opyaag?) D {Am | m € Z, m > mg(D)}.



1.3 Multiplicity of the discrete spectrum

In Chapter 3, we study the multiplicity of the L2-eigenvalue \,, of the Laplacian
of an anti-de Sitter manifold '\ AdS® constructed by generalized Poincaré series.
Here, for a pseudo-Riemannian manifold M,

Nar(N) == dime L3 (M) € NU {0}

is called the multiplicity of an L?-eigenvalue A\. The Laplacian on a Rieman-
nian manifold is an elliptic differential operator and the multiplicity of an L2-
eigenvalue is always finite if M is compact. However, in the Lorentzian setting,
the multiplicity may be finite or may not even if M is compact.

Kassel-Kobayashi [12] proved that Np aqgs(Am) = oo for sufficiently large
m € N if a discontinuous group I' for AdS® is torsion-free and standard ([,
Def. 1.4]). On the other hand, there exists a non-standard discontinuous group
T, for example a finitely generated discontinuous group I" which is Zariski-dense
in the Lie group SO(2,2) ([16], [13]). However, it is not known whether the
multiplicity of the Laplacian is finite in this case. In this thesis, we prove that
the multiplicities of the Laplacian on the anti-de Sitter manifold F\AdS3 are
unbounded for such I':

Theorem D (Theorem BI). For any finitely generated discontinuous group T
for AdS?,

lim NF\AdS3 (Am) = Q.

—00

m

In the proof, we find an explicit constant mrp(k) € R for any k € N such that
NF\AdS3 (Am) > k if m > mp(k). To be more precise, we use SO(2) x SO(2)-
finite L2-eigenfunctions of the Laplacian on AdS® with eigenvalue \,, vanishing
at the origin. We note that such eigenfunctions decay more rapidly at infinity
than at the origin with respect to geodesic parameters. We choose an L2-
eigenfunction with eigenvalue A, for each j = 0,1,...,k — 1 which decays at
the origin as rapidly as R*" when a “pseudo-distance” R from the origin tends
to zero, and show the linear independence of their generalized Poincaré series
when m > mr(k) (Proposition [3.15).

In the second half of Chapter 3, we study how the multiplicities of L2-
eigenvalues behave under a small deformation of a discrete subgroup. The study
of local rigidity and stability of discontinuous groups for non-Riemannian homo-
geneous manifolds was initiated by Kobayashi [16] and Kobayashi-Nasrin [19].
In our AdS?® setting, any cocompact discontinuous group is not locally rigid and
its proper discontinuity is stable under any small deformation ([I6], [13]). More-
over, Kassel-Kobayashi [IT] constructed infinitely many stable L?-eigenvalues of
the Laplacian of any compact anti-de Sitter manifold F\AdS3 under any small
deformation of I'. More specifically, for sufficiently large m € N, one has

Am € m Specy(Hr\ ads?),
F/

where I runs over a sufficiently small neighborhood of T" in the compact-open
topology ([I1, Cor. 9.10]). In this thesis, we introduce in Definition the
multiplicities of stable eigenvalues denoted by

ﬁF\AdS3 :C - NU{o0}.

This function has the following properties:



. /\N[F\AdSB (A) # 0 if and only if A is a stable L2-eigenvalue of Op\ pqss;
o Npnaass(A) > ~A7F\AdS3 (M) for any T sufficiently close to T
Moreover, we prove the following:

Theorem E (Theorem BA). For any cocompact discontinuous group T for
AdS?, ~

lim NF\Ad83 (Am) = Q.

m—o0

The explicit constant mr (k) also plays a crucial role in the proof of Theorem
[El Here, recall

Nr\aass (Am) > k for any integer m > mp(k).
The constant mr(k) is defined in the proof of Theorem [Dl by using
e a growth rate of the counting Nr(z, R) as R — oo;
e the “injective radius” of the anti-de Sitter manifold T\ AdS®.

We control these two quantities simultaneously using Lipschitz constants asso-
ciated to I' introduced by Guéritaud-Kassel [7], and show that mpr(k) depends
“continuously” on a small deformation of I'. We prove that the larger m € N
is, the more L’-eigenfunctions of the Laplacian of the compact anti-de Sitter
manifold I'\AdS® can be constructed and that their construction is stable under
any small deformation of T'.
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2 Counting orbits of certain infinitely generated
non-sharp discontinuous groups for the anti-
de Sitter space

2.1 Introduction
2.1.1 Construction of I',(a_, a4, r, R) and the counting

In this paper, we construct a family of discrete groups I' of isometries of the
3-dimensional anti-de Sitter space AdS® such that

e T act properly discontinuously on AdS®;
e the counting has an arbitrary growth rate at infinity,

generalizing an example of Guéritaud-Kassel [7]. By counting, we mean the
cardinality of a I’-orbit contained in a compact set called a pseudo-ball B(R) of
radius R > 0.

In contrast to the Riemannian case, a discrete group of isometries of a
pseudo-Riemannian manifold such as AdS® may act with non-closed orbits. We
recall some basic notions and facts. A pseudo-Riemannian manifold is a smooth
manifold X equipped with a smooth non-degenerate symmetric tensor of sig-
nature (p,q). It is Riemannian if ¢ = 0 and Lorentzian if ¢ = 1. A discrete
group I' of isometries of a pseudo-Riemannian manifold X is called a discontin-
uous group for X if I' acts on X properly discontinuously and freely (we include
freeness in the definition as in Kobayashi [I7, Def. 1.3]). Then there are at
most finite elements in any orbit of a discontinuous group I' contained in any
compact subset of X, hence we may think of its cardinality. A semisimple sym-
metric space X = G/H is a typical example of a pseudo-Riemannian manifold,
of which the isometry group is “large”. Kassel and Kobayashi proved in [I1]
for a discontinuous group I'(C G) for an arbitrary semisimple symmetric space
G/H that the counting is at most of exponential growth if " is sharp (a notion
for “strong” proper discontinuity, see [I1, Def. 4.2]).

The 3-dimensional anti-de Sitter space AdS® is the simplest example of
a Lorentzian semisimple symmetric space that admits infinite discontinuous
groups. Let us recall the counting result of Kassel-Kobayashi [I1] in this spe-
cific setting where X = AdS® and G = SL(2,R) x SL(2,R). They considered a
compact subset B(R) of X called a pseudo-ball of radius R > 0, of which the
volume is of exponential growth as R — oo, see Section 221l They proved that
if a discontinuous group I' C G is sharp, then the counting

Nr(z,R) .= #([TzN B(R)) forxz € X and R >0
has an exponential growth uniformly on z € X ([II], Lem. 4.6 (4)]):
3A >0, 3a >0, Vz € X, YR >0, Np(z, R) < Ae?®, (2.1)
In particular, one has

Y
Ja > 0, Yo € AdS?, limsup Nele, R) < 0. (2.2)
R—o0 eaR



Any finitely generated discontinuous group for AdS® is sharp by the results
of Kassel [8] and Guéritaud-Kassel [7], hence its counting always satisfies the
exponential growth condition (Z.1J).

On the other hand, the counting for a non-sharp discontinuous group has
not been well-understood. In this paper, we investigate what can happen about
the asymptotic behavior for the counting Np(z, R) when I' is non-sharp. For
this, we construct a family of subgroups I', = I',(a—,a4,r, R) of SL(2,R) x
SL(2,R) for sufficiently large v € N associated to quadruples (a—,ay,r, R) of
real-valued sequences in Section 23] and study how the properties of T', depend
on the data (a—,as,r,R). For instance, we find a necessary and sufficient
condition for the quadruple (a—_,a4,r, R) that I, is a discontinuous group for
AdS?® in Proposition Moreover we determine when the ' -action on AdS?
is sharp in Proposition 23311 With these criteria, we present various non-sharp
discontinuous groups for which different phenomena happen about the counting
by choosing appropriate data (a—,ay,r, R):

Theorem 2.1. There exists a non-sharp discontinuous group T for AdS® sat-
isfying
Vz € AdS®, VR >0, Nr(z,R) < 4.
Theorem 2.2. Let x € AdS®. For any increasing function f: R — Rsg, there
exists a discontinuous group I' = I'y , for AdS? satisfying
NF (.23, R)

W T F(R)
Remark 2.3. Theorem [Z.2 applied to the function f(R) = exp(exp(R)) shows

lim NF(£7 R) _
R—oo vol(B(R +¢))

for any ¢ > 0 since the volume vol(B(R)) is of exponential growth as R — occ.
Thus an analogue of the Riemannian case (Z3) below does not hold.

The above theorems deal with the setting where the metric tensor of X is
indefinite and I' is a discontinuous group for X. Let us compare them with
some known results in the following different settings:

e T is a discontinuous group for X, but X is Riemannian (the metric tensor
of X is positive definite);

e the metric tensor of X is indefinite, but I' is not a discontinuous group for
X (e.g. T is a lattice of the isometry group of X).

Suppose that X is a complete Riemannian manifold, and that I is a discrete
group of isometries of X. We write B(R) for the ball of radius R centered at a
fixed point in X. Then,

Ve € X, de > 0, limsup #(z N B(R))

WS OI(B(R + o)) 23)

The estimate (23] does not require that I' is finitely generated, but the Rie-
mannian assumption is crucial as shown in Remark 2.3]



A semisimple symmetric space X = G/H admits a G-invariant pseudo-
Riemannian structure. Eskin-Mcmullen [4] studied the counting of an orbit of
a lattice T of G in X = G/H. Their result [4, Thm. 1.4] applied to the specific
case where X = AdS® and G = SL(2,R) x SL(2,R) tells us that if ' N H is a
lattice in H, then at the base point o =eH € X

Nr(o, R) vol(I'\G)

A vol(B(R)) ~ vol(T N H)\H)’ (24)

In the right-hand side, the Haar measures of G and H (and therefore, the
induced measures of I'\G and T' N H\H) are normalized such that the Fubini
theorem for the fibration H — G — X = G/H is given by dg = dxdh, where dx
is the volume element of the anti-de Sitter space X = AdS® (see Section Z2).
We note that their setting is different from ours: T' in [4] is a lattice of G, hence
does not act properly discontinuously on X.

We summarize these results about the asymptotic behaviors of Np(z, R) in
each setting in Table EZT.1] below:

Table 2.1: The asymptotic behaviors of Nr(z, R)

r r € AdS® | Nr(z,R)
Eskin-Mcmullen [4] V lattice in G special x ~ AeF
Kassel-Kobayashi [11] V sharp discont. gp. general x < AeoF
Theorem 2.1] 3 non-sharp discont. gp. | general x < AeoF
Theorem 3 non-sharp discont. gp. | general z | > exp(eF)

Remark 2.4. Kassel-Kobayashi [T1] gave a uniform estimate of Np(z, R) with
respect to © € AdS®. We prove such a uniform estimate for Theorem 21, but
not for Theorem[Z.2.

2.1.2 Spectrum of the Laplacian on I‘l,\AdS3

Let I' be a discontinuous group for the anti-de Sitter space X := AdS®. Then
the quotient space Xr := I'\ X is a C*°-manifold and the quotient map X — Xp
is a smooth covering. Thus Xr inherits an anti-de Sitter structure from X, and
in particular, is a Lorentzian manifold. As in the Riemannian case, one defines
the Laplacian . := div o grad, a second-order differential operator on Xr.

Kassel-Kobayashi [I1] initiated the study of global analysis on the anti-de
Sitter manifold Xt (actually in a much more general setting). They studied the
discrete spectrum, namely the set of L2-eigenvalues of the Laplacian [x, on
Xr, denoted by

Specy(Ox;) :={\ € C | 3f € L*(Xr) \ {0}, Ox,.f = Af in the weak sense}.

Here L?(Xr) is the Hilbert space of square integrable functions on Xt with
respect to the Radon measure induced by the Lorentzian structure. We note
that in contrast to the Riemannian case where the Laplacian is an elliptic dif-
ferential operator, the Laplacian for the Lorentzian manifold Xt is a hyperbolic
operator, and thus eigenfunctions may and may not be smooth functions by
the failure of the elliptic regularity theorem (see [I2, Sect. 3.1] for example).
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Kassel-Kobayashi [IT] proved the following: if T' is sharp, then there exists
mo = mo(I') > 0 such that

Specy(Ox,) D {4m(m —1) | m € Z and m > my}.

In particular, they proved that the discrete spectrum Spec,(Ox,.) is infinite in
the setting where T' is sharp.

A natural question would be whether the Laplacian Oyx,. still has an L*-
eigenvalue if the discontinuous group I' is non-sharp. As an application of the
sharpness criterion (Proposition 231)) and an upper estimate of the counting
as in Theorem 2] we can apply the machinery developed in [I1] also to the
non-sharp setting, and prove:

Theorem 2.5 (see Theorem and Example [Z40). There exist a non-sharp
discontinuous group T' for AdS® and mg = mo(T) > 0 such that

Specy(Ox,) D {dm(m —1) | m € Z and m > myg}.

2.1.3 Organization of the paper

In Section 222 we give preliminary results including a pseudo-ball B(R) and the
Kobayashi-Benoist properness criterion applied to our AdS? setting. In Section
23l we construct a family of infinitely generated Schottky-like discontinuous
groups T, = T',(a_,a,,r, R) for AdS® associated to quadruples (a_,a,r, R)
of real-valued sequences satisfying some conditions for sufficiently large v € N.
Moreover, we recall the notion of sharpness for discontinuous groups, and find a
necessary and sufficient condition on the quadruple (a—,a,r, R) such that T,
is sharp. In Section [Z4] we find a lower bound for the counting Nr (z, R), and
prove Theorem 221 In Section 28] we find a sufficient condition on the quadru-
ple (a_,ay,r, R) such that the counting Nr, (z, R) is at most of exponential
growth, and complete the proof of Theorem 2] with the sharpness criterion
given in Section 2.3 The proof of Theorem is then given by applying the
method established by Kassel-Kobayashi [I1].

Notation. N={0,1,2,...} and N} ={1,2,3,...}.

2.2 Preliminary results about AdS®

In this section, we collect some preliminary results about AdS® that will be
needed for later sections.

Let V be a four-dimensional real vector space equipped with a quadratic
form @ of signature (2,2) on V, and X the hypersurface given by X = {v € V|
Q(v) = 1}. The tangent space T, X at v € X is identified with the orthogonal
complement (Rv)* in V with respect to . The restriction of —Q to the hyper-
plane (Rv)* is a quadratic form of signature (2,1), which induces a Lorentzian
structure on X with constant sectional curvature —1. The resulting Lorentzian
manifold is called the 3-dimensional anti-de Sitter space AdS?.

2.2.1 Pseudo-balls in AdS?

In this subsection, we consider pseudo-balls B(R) on the Lorentzian manifold
AdS®. We work with coordinates on AdS® by choosing V' = M(2,R) and Q =

11



det. Then AdS? is identified with SL(2,R). The direct product group SL(2, R) x
SL(2,R) acts on V = M(2,R) by left and right multiplication, which induces an
isometric and transitive action on AdS®. Thus

AdS? = (SL(2,R) x SL(2,R))/diag(SL(2, R)).

Let o be the base point in AdS? corresponding to the identity matrix in
SL(2,R). The pseudo-distance ||g||(> 0) of g € SL(2,R) from the base point o
is defined by the formula

2cosh gl = Tr('gg). (25)
We give two equivalent definitions of the pseudo-distance | g|| as below.
First, for § € [0,27] and ¢ > 0, we set k(f) := 0950 —sinf and
sinf cosf

t
a(t) = (% €9t>. Any element g € SL(2,R) can be expressed by the Car-

tan decomposition g = k(61)a(t)k(62) with 61,05 € [0,27] and unique ¢ > 0.
Then (Z3]) implies

lgll = 2t. (2.6)

This interpretation shows readily that the map ||-||: SL(2,R) — [0, 00) is proper
and that for any R > 0,

B(R) :={g € SL(2,R) | |lg]| < R} (2.7)

is a compact subset of SL(2,R), to which we refer as the pseudo-ball of radius
R. The family {B(R)}r>o is well-rounded (Eskin-Mcmullen [4] Thm. 6.1]).

Second, we realize the hyperbolic space H? as the upper-half plane {x +
V—1y € C | y > 0} endowed with the metric tensor ds? = y~2(dz? + dy?). We
write dyz for the hyperbolic distance of H2. The group SL(2,R) acts isomet-
rically on H? by linear fractional transformations. In this model, the pseudo-
distance ||g|| is computed by (ZG]) as follows:

Lemma 2.6 (see e.g. [7, (A.1) and (A.2)]). For any g € SL(2,R),
lgll = dez(gv =1,V —=1).

In particular, for any point © +/—1y € H?,
2 2
1
2coshdy:(z + vV—1y,v—1) = w
Y

The following properties of the pseudo-distance follow from Lemma
Lemma 2.7. For g,¢' € SL(2,R),
@) g1l = lgll-

@) gl = llg'l < llgg'll < llgll + llg"ll

12



The Jacobian of the Cartan decomposition (0,27) x (0,00) x (0,27) —
SL(2,R) defined by (0;,t,62) — k(61)a(t)k(62) equals sinh(2t) with respect
to this Lorentzian structure on SL(2,R) =2 AdS® and the standard metrics of
the intervals (0,27) and (0, 00). Hence the following integral formula holds:

/SL@,R) F(g)dg = /O /0 /O F(R(01)a(t)k(02)) sinh(26)d0ydtdds.  (2.8)

Therefore, the volume vol(B(R)) equals 272(cosh(R) — 1) since k(01)a(t)k(62) €
B(R) if and only if 2t < R.

2.2.2 Discontinuous groups for AdS®

Let G be a Lie group, H a closed subgroup of G, and I' a discrete subgroup
of G, which acts naturally on X := G/H from the left. In this subsection,
we explain the Kobayashi-Benoist criterion for the proper discontinuity of the
I-action on X applied to our specific setting where G = SL(2,R) x SL(2,R),
H = diag(SL(2,R)), and X = AdS®.

Throughout this paper, we mean by a discontinuous group for X a discrete
subgroup I' of G acting properly discontinuously and freely on X (Kobayashi
[I7, Def. 1.3]). For torsion-free I', it is a discontinuous group for X if and only
if I acts properly discontinuously on X. Proper discontinuity is a serious condi-
tion when the isotropy subgroup of G on X is noncompact. Geometrically, one
should note that not every discrete subgroup of isometries can act properly dis-
continuously on a pseudo-Riemannian manifold X. Kobayashi [I5] and Benoist
[1] established a properness criterion for reductive G generalizing the original
properness criterion of Kobayashi [14].

Applying the Kobayashi-Benoist properness criterion to our specific setting,
we can determine whether the I'-action on AdS® is properly discontinuous in
terms of the pseudo-distance defined in Section 2.2.1] as follows:

Fact 2.8 (Kobayashi [I5] and Benoist [I]). Let T' be a discrete subgroup of
SL(2,R) x SL(2,R). The following are equivalent:

(i) The action of T on AdS® is properly discontinuous.
(ii) For any C > 0, the set {(a, ) € T'| |||er]| = |1B|l| < C} is finite.

2.3 Discontinuous groups I',(a_,a.,r, R) for AdS®

In this section, we introduce a family of Schottky-like subgroups I',, (a—, a4, 7, R)
of G = SL(2,R) x SL(2,R) in Definition associated to the following data:

e vEN;
e a_,ar: N—Randr, R: N — Ry satisfying Assumptions2.9HZ.TT]below.

We find a properness criterion and a sharpness criterion for the action of T’ (a—, a4, 7, R)
on AdS®. In particular, we use three constants

Vdis < Vpro < Vsha
with Vspe = Vsha(c) depending on ¢ > 0 for sufficiency of discreteness, proper-

ness, and sharpness of I', (a_, a4, r, R) as follows:

13



o if v > vy, then I')(a_, a4, r, R) is an infinitely generated, free discrete
subgroup of G (Proposition [ZT8));

o if v > vy, then the action of I'y(a—,a4,r, R) on AdS? is properly dis-
continuous (Proposition 221]);

o if v > vga(c), then T'y(a_,ay,r R) is (c,0)-sharp for AdS® in the sense
of Kassel-Kobayashi [I1] (Proposition [Z3T]).
2.3.1 Construction of discrete subgroups I',(a_,a.,r, R)

In this subsection, we construct ', (a—, ay,r, R) and see that it is an infinitely
generated, free discrete subgroup of GG for any integer v > vg;s.
We assume that a_,a4: N — R and r, R: N — R satisfy the following:

Assumption 2.9. There exists v4;s € R such that for any integer k > vg;s,
r(k) < R(k)

a_(k) + R(k) < at+(k) — R(k),
ar(k)+ R(k)<a_(k+1)— R(k+1).

Assumption 2.10.

lim ay(k) = lim a_(k) = co.
k—o0 k— o0

For v € N, we set

R(k)

() = sup { a3 () — (D)

H doee{+,—}, k,{>v, andk#ﬁif&ze}.
(2.9)

Assumption 2.11.
lim n(v) =0.

v—00

Such quadruples (a_, a4, r, R) may be obtained as follows:

Lemma 2.12. Given a real-valued monotone increasing C?-function p(z) de-
fined for sufficiently large x, say x > vg, such that lim,_, . p(x) = co and that
the second derivative p”(x) is nowhere vanishing, we set a_(k) := p(k) and
at(k) := p(k+ 1) for any integer k > vo. Take any sequence R(k) > 0 such
that the positive-valued sequence

R(k)
min{p’(k —1),p'(k + 1)}

pR(k) =
converges to 0 as k tends to infinity, and choose any sequence r(k) > 0 such
that r(k) < R(k). Take vgis € R with vgis > vy such that pr(k) < i for
any integer k > vg;s. Then the quadruple (a—,ay,r, R) satisfies Assumptions

[ZZHZ 11 Moreover,

n(v) < 2maxpr(k) for v > vais. (2.10)

14



Remark 2.13. The definition of pr(k) cannot be replaced by a simpler one
such as pr(k) := R(k)/p'(k), as the third condition of Assumption[2Z9 does not
necessarily follow.

Proof of Lemma[Z13. Assumption [Z10]is obviously satisfied. We note that the
derivative p’(x) on any bounded interval attains its minimum at one of the ends
of the interval because the second derivative p”(x) is nowhere vanishing. By the
mean value theorem, we have

p(y) —p(x) > (y;x()g(k) fork—1<az<y<k+1, (2.11)
R
p(t) —p(s) > (t;;zlff;;l) fork<s<t<k+1.

Hence, for any integer k& > vy4;s, we have

a_(k+1)—ay (k) =p(k+1)—p<k+%) > 4513;,1) ;&;ji)

> 2R(k),

> R(k)+R(k+1).
Thus Assumption 2.9 is verified.

Take any k,¢ > vg4;s and d,e € {4+, —}. We assume k # ¢ if § = e. Since the
function p(x) is monotone increasing,

las(k) — ac(0)] > min {p<k> — plk = 3). plk + =) — p(k),p(k +1) — plk + ;}

2 2
R(k)
where the second inequality follows from (ZIT]). Hence we get (Z10) and thus
Assumption ZTT] is verified since limy_,oo pr(k) = 0. O

Example 2.14. The quadruples (a_,ay,r, R) in (1), (2), and (3) of Table[Z2
are obtained by applying Lemma 213 to p(x) = exp(e®), 2%, and logz, respec-
tively. For the reader’s convenience, we list in Table [2.2 also the asymptotic
behaviors of the counting Nr(x,R) as R tends to infinity where T' are the dis-
continuous groups I',(a_, a4, r, R) associated to the quadruples (a—,a4,r, R) in
(1) and (3). We refer to Example (2) and Example [Z.38 below for details
about the counting.

Table 2.2: Examples of (a_, a4, r, R) satisfying Assumptions Z.92.TT]

a—_(k) at (k) r(k) R(k) Nr(z,R)
(1) | exp(eF) | exp(eFt2) 1 ek < 4R
@ ¥ [F+k+3 1 log k
(3) | logk | log(k+3) | (K*logk)™ | k=2 | > exp(ed) —v

15



R(k) §+(k) R(k+1) /a_(k+1)

Figure 2.1: Af and Bki in H?

We introduce a coordinate map 7: R x R x Rso — SL(2,R) by

T=1(r_, 14 ,u) = % <x1+ _($*f+ + “2)) € SL(2,R). (2.12)

Then the quadruple (a_,a,r, R) of functions defines a sequence of elements
(Ozk, ﬂk) eqdG by

ay = T1(a_(k),ay(k),r(k)), Br :=71(a_(k),ay(k), R(k)) € SL(2,R). (2.13)

Definition 2.15. Let (a—,a4,r, R) be a quadruple of sequences satisfying As-
sumptions [ZZHZT1. For v € N, we define I',(a—,a4,r, R) as the subgroup of G
generated by {(ax, Br) | k=v,v+1,...}.

Notation 2.16. Let F*° denote the free group gemerated by countably many
elements {vi}ren. Let (ar, Br) € G be a sequence of elements associated to a
quadruple (a_, a4, r, R) satisfying Assumptions [Z2HZI1 by (213). Then there
exist group homomorphisms j: F*° — SL(2,R) and p: F* — SL(2,R) such
that j(vi) = ag and p(yx) = Br for all k € N. For v € N, let FS° be the
subgroup of generated by {vi}7, .

Then, by Definition 2.15]

Ly(a—,ay,m R) ={(j(7),p(v)) | v € F°}.

Example 2.17. The subgroup I'y(a—,a, 7, R) for (a—(k),at(k),r(k), R(k)) =
(k2 k? + k,1,1log k) coincides with T3 in Guéritaud-Kassel [7, Sect. 10.1].

Proposition 2.18. Let (a—,ay,r,R) be a quadruple of sequences satisfying
Assumptions [Z.HZ 1], and vg;s € R as in Assumption[2.9. Then the subgroup
Iy(a—,ay,m, R) of G is discrete and free for any integer v > vg;s.

The proof of Proposition 218 is based on a ping-pong lemma. For this, we
need some setups. Let | - | denote the Euclidean norm in the upper-half plane
H?. Associated to the quadruple (a_, a7, R), we set

fo= {2 € B2 |2 —a(k)] < r(R)), Bf = {z € H? ||z — ac(b)] < R(R)).
(2.14)

for k € N and € € {4, —}, see Figure 21l Take any integer v > v4;s. Then we
claim:

o A, AF AL LAY, ... are disjoint;
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o ai(H?\ A) C Af for k > v;
o Ups, (4, U A} is a proper closed subset of H2.

The first claim is immediate from Assumption and thus the third claim is
obvious from Assumption ZT0l To see the second claim, we use the following

key property of the map 7 = 7(z_, 24, u) in [ZI2):
|z — x_| > w if and only if |7(2) — x4 | < u for z € H?, (2.15)
which is readily seen from the identity
7(2) —xy = —u(z —2_)"h (2.16)

Proposition [ZI8 holds because the subgroup of SL(2,R) generated by {ay, | k =
v,v+1,...}is free and discrete by a standard ping-pong argument, namely, by

applying Lemma below to H = SL(2,R), Y = H2, and V,* = Afﬂl.

Lemma 2.19 (Ping-pong lemma). Let H be a topological group acting continu-
ously on a topological space Y, and I' the subgroup generated by hg, hy,... € H.
Suppose that there exist disjoint closed subsets Y(J_,YO"', Yl_,Y1+, ... of Y satis-
fying the following:

(i) he(Y\Y; ) C Y, for any k € N.
(i) Upen(Yy UY,H) is a proper closed subset of Y.
Then, T" is a free discrete subgroup of H.

Although the proof of Lemma 219 is standard, we give a proof for the sake
of completeness.

Proof. The conditions (i) and (ii) may be restated as h; (Y \ Y,") C Y, for
any k € Nand U := Y \ U;en(Y;” UY;") is a non-empty open subset of Y,
respectively. Take any h = hf(? e hf: € I'. Suppose that this is a reduced
expression, namely, sg, ..., S, € {1,—1} and s = sx+1 whenever ij, = i1 for
0 < k < n. Then we have h(U) C Y;3° and thus h(U) NU = . Hence h # e
and {hg, h1,...} is a free generator of I'. Take a neighborhood V of e in H and
a non-empty open subset W of U such that V-W C U. Then TNV = {e} and
thus T is discrete in H. O

2.3.2 Proper discontinuity of the action of I',(a_,a,r, R)

In this subsection, we find a necessary and sufficient condition for 'y (a—, ay,r, R)
to act properly discontinuously on AdS?.

We introduce a constant (v) for this. Let (a—,ay,r, R) be a quadruple
satisfying Assumptions [ZIHZTT] and n(v) as in Z9). Let (ax, Sr) € G be the
sequence of the elements associated to the quadruple (a_,a,r, R) by 2I3).
For v € N, we set

24R(k) _G6(R(k)* +1)
{ a_(k) " (a—(k) — R(k))’ 877(’“)} (2.17)
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The sequence (v) is monotone decreasing. We claim lim, o (v) = 0. To see
this, we note

R(k) . R(k)

fim =0, i

k—oo a4 (k’)

, —0. (2.18)
In fact, for sufficiently large k € N, the sequences a_(k), a4 (k) are monotone
increasing by Assumption29] and a_(k), ax (k) > 0 by Assumption[ZI0 Hence
we get (ZI8)) by Assumption ZIIl Therefore, lim, ,~ (r) = 0 follows again
from Assumptions

It is convenient to note the following:

Lemma 2.20. Let (a—,a,r, R) be a quadruple of sequences satisfying Assump-
tions ZZHETT, vais € R as in Assumption[Z3, n(v) as in (Z3), and BE as in
(Z14). Take any integer v > vg;s satisfying e(v) < 1. Then,

OR(k
log (1—|— ( )>'7 6 log (1—}—6_2(1“2(32’\/?1)) ,

e(v) > max {12 )

k>v,

se{1,—-1}

R(k)?+1
6log (1 + (a(k)—R(k))2> , 4log(1 + 577(k))|}

Here we have used the convention that B,fl = Bff.

Proof. For § € {1,—1}, we claim

k
e~ 2di2 (BL,V=T) f_((k))’ (2.19)

Then the assertion follows from the inequalities ¢ > log(1 + ¢) for ¢ > 0 and
2s > |log(1 — s)| for 0 < s < 1 since (v) < 1.

We now prove ([ZI9). Note 3R(k)(< 24R(k)) < a—(k) and a_(k) — R(k)(>
V/6) > 2 for any integer k > v since e(v) < 1. Thus

(a_(k) — R(K))® > 2(a_(k) — R(k)) > a_(k) + R(k). (2.20)

We write z;5(k)++/—1ys(k) € H? for the closest point of Bf to /—1 with respect
to the hyperbolic distance. Obviously, we have

z5(k) = as(k) — R(k), ys(k) < R(k).
Thus, by Lemma [2.0]

(a—(k) — R(K))*
R(k) ’

vs(k)* _ (as(k) — R(k))?
ys(k) — R(k)

where the last inequality follows from Assumption20l Hence, since e~ %2 (BL,v=T) <
1, we have

2 cosh dy2 (BE,vV/—1) > >

Bt L ()~ RED? | a (B)

R(k) R(k)
where the second inequality follows from (Z220]). Therefore,

22 (BLV=D) < omdia (BLVT) R((k))_
- a_(k

This proves ([2I9) and thus the lemma holds. O
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The action of the Schottky-like discrete group I'y(a—,ay,r, R) on AdS? is
not always properly discontinuous. We give a necessary and sufficient condition
for this action to be properly discontinuous:

Proposition 2.21. Let (a_,a4,r, R) be a quadruple of sequences satisfying
Assumptions [Z.HZ I, and vgs € R as in Assumption [2.9.  The action of
Ty(a_,ay,r, R) on AdS® is properly discontinuous for sufficiently large v € N
if and only if

R(k)
Koo 7(K)

= 0. (2.21)

In this case, take Vpro € R with vpro > vais such thate(k) < 1 and log(R(k)/r(k))
1 for any integer k > vpro. Then the action of T'y(a_,ay,r, R) is properly dis-
continuous for any v > Vpr,.

Postponing the proof of Proposition 221 we state its immediate conse-
quences in Proposition and Lemma as below. First, since the group
T',(a—,ay,r, R) is torsion-free, any properly discontinuous action is free, hence
we obtain:

Proposition 2.22. In the setting of Proposition [2.2]], assume the condition
(ZZ1). ThenT,(a_,ay,r, R) is a discontinuous group for AdS* if v > v,,.

Example 2.23. All (a_,a1,r, R) in Table[Z2 apply to Proposition [2.22.

Second, we formulate the following lemma which is actually a special case
of Proposition 2221 We will use Lemma 2.24] in Section 2.4] for a lower bound
of the counting Nr(o, R) and in Section 23] for the proof of Theorem [ZTt

Lemma 2.24. Let p(t) be a monotone increasing C?-function defined for suf-
ficiently large t, say t > vy, such that the second derivative p”(t) is mowhere
vanishing and lim;_,o p(t) = oo, and q(t) a continuous function satisfying
lims 00 q(t) = 00. We set § := sgn(p”(t)) € {£1}, which is independent of
t > vg. Let T, (p,q) denote the group T'y(a—,as.r, R) associated to the sequences

P N 1 L) I L)
a- (k) = p(k), s () 2= plh o+ 3, 7(8) 2= 2 8 RUR) = P

2.22
for k> wvy. Then T, (p,q) is a discontinuous group for AdS® if v > 0.

Proof of Lemma[2.24 The quadruple (a_, a4, r, R) applies to Lemma and
satisfies the condition (Z2T]). Hence the assertion follows from Proposition 2:22
O

Remark 2.25. We shall study some basic properties of the action of the group
I (p,q) on AdS? in later sections: for instance, see Lemma[2-3]) for a necessary
and sufficient condition on the pair (p,q) such that the discontinuous group
T (p,q) is sharp in the sense of Kassel-Kobayashi [I1]], and see Proposition[Z.57
for the counting of the T',(p, q)-orbit through the base point o. We then provide
an example of a non-sharp discontinuous group for which the counting is at most

of exponential growth by taking (p(t),q(t)) = (e',exp(e')) in Ezample[Z40 (1).

The following lemma for Proposition 2211 will be used also to prove the
counting result (Theorem 2:39)) in Section
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Lemma 2.26. Given a quadruple (a—,a4,r, R) satisfying Assumptions [Z.9-
(211 let j, p, and F2° be as in Notation[ZI0. Suppose v > vg;s and e(v) < 1.
Let v # e be an arbitrary element of FS° and m := £(v) the word length of ~.
We write v = ;> ... y;" for the reduced expression where s1,...,sm € {1,—1}
and ki,...,ky > v. Then,

£(v) (
13D = NI = 221

<L(y)e(v). (2.23)

We postpone the proof of Lemma [2.26] until the end of this subsection, and
first prove Proposition 2211

Proof of Proposition[ZZ1l Recall T',(a_,a4,r,R) = {(j(v),p(n)) | v € F°}.
The Kobayashi-Benoist properness criterion (Fact[Z8]) tells us that I', (a—, a4, 7, R)
acts properly discontinuously on AdS? if and only if

VO >0, #{y € B [ i = oMl < C} < 0.

We suppose that the action of I'y(a_,ay,r, R) on AdS? is properly discon-
tinuous for any sufficiently large v € N. Then limg_, oo |||7(v%)]| — |lo(v&)||| = o0
by Fact Z8 By Lemma 2.26]

R(k)
r(k)

for any k > v and thus limy_,oo R(k)/r(k) = o0

Conversely, we suppose limy_,oo R(k)/r(k) = oo. Take any integer v >
Vpro- Then log(R(k)/r(k)) > 1 for any £ > v and ¢(v) < 1. Hence note
17O = lle()]l = 0 by Lemma 226 for any v € F2°. Assume that v € F2°\ {e}
satisfies H|]( )|| — | p(Ml| < C. Let m := £() be the word length of v and we
write vy = ’yk -y, for the reduced expression where s1,...,s,, € {1,—1} and
ki,...,km > v. By Lemma

2log 2 i)l = llpCy) Il = ()

£(7) (
2(v) > ) > 2210g

= NI =le(I) > 2£(7) = C.

Hence ¢(v) < C. Again by Lemma we get
£(v)

Zl

and there are only finitely many ~ satisfying this inequality. By Fact [Z8] the
action of T, (a_,ay,r, R) on AdS? is properly discontinuous. O

%((Ilj(v)ll = eI +£(v)e)) < C

Guéritaud-Kassel [T, Sect. 10.1] gave an upper bound of

£()

5N = 0] ~23_og ’”

for the quadruple (a_(k),a, (k),r(k), R(k)) = (k* k®>+k,1,log k), see Table
(2). However, since the explanation given there was not clear to the author, we
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take an alternative approach to prove the inequality (2:23]) in our general setting
where a quadruple (a_, a4, r, R) is arbitrary subject to Assumptions 2ZZOHZTT]
The rest of this subsection is devoted to the proof of Lemma 22261 We need:

Lemma 2.27. In the setting of LemmalZ20, the following hold for both ¢ = j
and ¢ = p:

(1) p(y)V—1€ B!
2) el = dme(By}, vV=1).
(3) Re(e(v)

(4) Tm(p (v)ﬁ) < R(ky).

mGO)V=D) N~ Bk
Tm(o()v=D) 228 (k)

Here {(vy) is the word length of vy, and we have used the convention that Bffl =
BzE and a41 = a4 .

< (€(y) = De().

Proof. The assertion (1) follows from Assumption 20 by a standard ping-pong
argument (see the proofs of Proposition I8 and Lemma [ZT9), hence we get
(3) and (4). By Lemma [26] (2) follows from (1).

By (1), we get [Re(p(y)v/=T) — as, (k)| < R(kr). Thus noting ay, (k1) >

R(ky) by £(v) < 1, we have
logW’ < max { log <1 + 2%2;)‘ } < %5(1/) (2.24)

as, (k1) =41

by Lemma 2200 Hence (5) follows.
In the following, we set for k € N

k) fore =
ro(k) = {R(k) for ¢ = p.

Then, by (2.I6),
r,(k)*Imz
Im = T H? k€N, and s = +1. 2.25
(p(i)z) = Z—a (B or z € H*, k€N, and s (2.25)
Let us prove (6). Define 0y, ...,0, € F° by 0; = kai e for0<i<m
and o, = 1. We note o¢g = . For 0 <1i < m, we set
Im(j(o;)v/—1)
Qo) == —————", D(p(0:)) := |[p(oi) V-1 —a_s,(ki)]| .
Im(p(oi)v—1) | |
We claim:
Q(0i) R(kiy1) ’ D(j(oit1)) :
log +2log —————=| = |2log =——%| for 0 <i < m, (Q:)
Q(oit1) 7(kit1) D(p(oi+1))
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‘QIOg D(j(07)) ‘ - {g(y) if 0 <i<m, )

D(p(o;)) 0 if i =m.
Then, we get (6) by summing up (Q;) and (D;) for all i because log Q(oy,) = 0.
It remains to verify (Q;) and (D;). Because o; = ’yZZiio’iH, we have
7o (kiv1)*Im(p(0i41)V/ 1)
D(p(oit1))?
for 0 <i < m by ([Z25). Thus (Q;) follows from the formula
Qo) _ <D(P(Uz‘+1))>2 (T(kiH) >2
Q(oit1) D(j(oit1)) R(kit1)

We observe that (D;) for ¢ = m is obvious because D(¢p(0y,)) = [v/—1 —
a—s, (km)| is independent of ¢. For 0 < i < m, by the triangle inequality, we
have

‘D(@(Ui)) - ’aSi+1(ki+1) —A_g, (kz)H < ’@(0’1)\/?1 — Qs; 44 (ki+1)| < R(ki+1)

since ¢(0;)v/—1 € By'™* by (1). Hence noting

kit1

Im(p(0;)V—1) = (L;)

|a8i+1 (ki-i-l) —Q—g; (kz)‘ > W(V)_lR(ki-'rl) > R(ki—H)

by €(v) < 1, we obtain

o Dlelow) oo Lo R (Fi)
o |as,., (kiv1) — as, (i) = 2% { o (1 " |as,y, (Fig1) — a—si(kvz)|> ‘}
< ma {llog(1 + 5]} < () (D)

The second and third inequalities follow from the definition (Z3)) of n(v) and

Lemma [Z.20], respectively. Hence ‘log ggﬂpggtgg‘ < 62”), Thus (D;) holds for all

and the proof of (6) is completed. O

We are ready to prove Lemma [2.20]

Proof of Lemma[Z20. We have
()| ~ og(2 cosh [lp(7)])] = Tog (1 + 2%l
_ s1 1
< log (1 +e 2dH2(Bk1’ﬁ)) < és(y), (2.26)

where the second and third inequalities follow from Lemmas [Z27] (2) and 2220
respectively. Hence we get

M < 15(1/). (2'27)

150 = o) = og S 2 < 5

By Lemma 26]

| = Re(p(1)V=1)? + Im(p(7)v=1)* + 1
Im((7)v—1)

2 cosh [|p(7)
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Therefore, we have
|log(2 cosh [[o(7)]]) — 2log Re(p(7)v/=1) + log Im(p(7)vV—1)]

o Im(p(y)y/—1)% +1 o R(k)?+1 1
= log (1 T Re(p()vV 1) ) s log <1 T o) — B2 ) <=0k

(2.28)
The second and third inequalities follow from Lemma (3), (4) and Lemma

2200 respectively. Hence
‘10 coshliONI ., BeGOIV-D) Im(J(v)\/—l)‘<

Feosh o)l " Re(p(n)v=D) T Im(p()v=T)
Summing up Lemma 2271 (5), (6), (Z27)), and ([229]), we obtain ([Z23]). O

We shall use the following estimate of ||j(7)|| in the next subsection, which
is obtained as a by-product of the proofs of Lemmas 2.26] and 2.27]

1

< 55(1/). (2.29)

Lemma 2.28. We assume the same setting as Lemma [2226. That is to say,
given a quadruple (a—,ay,r, R) satisfying Assumptions [ZZ0HZ 1T, let j, p, and
Fg° be as in Notation [2168. Suppose v > vgs and e(v) < 1. Let v # e be
an arbitrary element of F2° and m := {(v) the word length of . We write

= ’y,‘: 712: for the reduced expression where s1,...,8,m € {1,—1} and
ki,...,kyn >v. Then,

ity ||<<Zzlog )<k)>+me<>

Proof. We have

. . . 1
171 < 2log Re(j(v)v~1) — log Im(j(v)V 1) + 3e(v) (2.30)
by summing up [226]) and [228) for ¢ = j. By ([Z24)), we have
1
2logRe(j(v)V—1) < 2logas, (k1) + EE(V). (2.31)
We claim:
. a—(k;) m
—logIm(j(v)v—1) + 2logas, (k1) < Z 210g ) + Ee(u).
(2.32)
Then Lemma is proved by summing up (230), 231), and Z32) since
m=1{(y) 21
It remains to verify (2.32)). As in the proof of LemmaR2T v = ;! ---™ €
F2° defines a sequence of elements oy, ...,0, € F° by 0; = 'yklﬂ Y for
0 < ¢ < m with g =~ and o, = 1. We set D( (07)) == ’j o)v—1— a_si(k;i)’.

Multiplying all (I;) for 0 < i < m, with ¢ = j, we get Im(j(y)v/—1) =
[T~ (r(k:i)/D(j(04)))*. Hence

—log Im(j (v Z log D(j —logr(ks)). (2.33)
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Figure 2.2: Properly discontinuous actions and sharp actions

Since o, = 1, we have

2 (log D(j(om)) — loga_s,, (km)) = log (1 n

3(R(km)* +1)
= (a—(km) — R(km))?

where the third and fourth inequalities follow from Assumption [Z9 and the
definition (ZI7) of e(v), respectively.

Note |s — t| < st for s,t > 1 and ay(k) > a_(k) > 1 for all &k > v by
Assumption 29 and e(v) < 1. Thus, by (D}) for 1 <4 < m, we have

. 1
2log D(j(04)) < 2log as,,, (Kiv1) — a—s, (ki)| + 5e(v)
1
< 208 s, (kivr) +logaoy (k) + 22(). (235)
Now the inequality (Z32]) follows from (Z33)), (Z34]), and ([2Z35]). Thus the proof
of Lemma is completed. O

2.3.3 Sharpness of the I',(a_,ay,r, R)-action

The notion of sharpness was introduced in Kassel-Kobayashi [IT], although the
idea was already implicit in [I6]. It is defined for a general homogeneous space
of reductive type, however, in this section, we explain it only for AdS®. More-
over, we find a necessary and sufficient condition that the discontinuous group
I,(a_,ay,r, R) for AdS? is sharp.

The Cartan projection u for the direct product group G = SL(2, R) xSL(2, R)
is given by p(g) = (||la],||18]]) for g = (o, B) € G, where we recall that || - || is
the pseudo-distance in SL(2,R). By Fact [Z8] a discrete subgroup I' of G acts
properly discontinuously on AdS? if and only if ;(I') “goes away from the line
x = y at infinity”. The condition of sharpness is stronger than the condition of
proper discontinuity as Definition below, and T is sharp for AdS? if ()
“goes away from the line x = y at infinity” with a speed that is at least linear
(11}, p. 152]) as in Figure See also |11} Ch. 4, Fig. 1] for the illustration of
sharp actions in the general setting.
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Definition 2.29 (Kassel-Kobayashi [11], Def. 4.2]). Let ¢ € (0,1] and C > 0. A
discrete subgroup T C G is called (c, C')-sharp for AdS® if for any v = (a, B) €T,

Hledl =18l = ev/llal® + 118]* = C. (2.36)

If T is (¢, C)-sharp for some ¢ and C, then T is called sharp for AdS3.

Remark 2.30. Our definition of (c,C)-sharpness is a little different from the
original definition of (c,C)-sharpness. In fact, the inequality (4.7) in [I1, Def.
4.2] for (¢,C)-sharpness (c € (0,1], C' > 0) is equivalent to the following in-
equality by the pseudo-distance || - || in our AdS® setting:

llledl = 1181l = v2(ev/llall? + [I8]2 — ©).

We have replaced (v/2¢,+/2C) with (¢,C) in this paper. However, we still sup-
pose c € (0,1] in Definition[Z.29 since ||| — [|B]I|/+/]le]|? + ||8]|2 < 1.

Kassel [8] and Guériataud-Kassel [7] proved that any finitely generated dis-
continuous group I' C G for AdS? is sharp. However, our discontinuous group
T',(a—,ay,r, R) is infinitely generated, and actually, T',(a—, a4, r, R) may and
may not be sharp for AdS®. The next proposition gives a necessary and sufficient
condition on the quadruple (a—, at,r, R) such that the action of I',, (a—, a4, r, R)
on AdS? is sharp:

Proposition 2.31. Let (a—,a4,r,R) be a quadruple of sequences satisfying
Assumptions [ZZHZ 1 and the condition (ZZ1), and vpr, € R as in Proposition
(221, We set

L R(k a_(kK)ay(k)\ "

A= A(a—,aq,m,R) := hkrglorgflog (r((k))> <log (7"zk;r()> . (2.37)
Then 0 < A < 1. Moreover, take any integer v > Vpro. Then the following hold
for the discontinuous group T, =T, (a—,ax,r, R) for AdS3:

(1) ifc>A/\/1+ (1= A)2, then T, is not (¢, C)-sharp for any C > 0;

(2) f0<c< A/\/1+(1—A)2, then T, is (c,0)-sharp for any v > vepe(c).

Here vspq(c) is a real number > vpro such that for all k > vspe(c),

B+1 a_(K)ar(k) 2 R(k)
T B <A B

where B € (0, A) is defined by c = B/+/1+ (1 — B)2.

In particular, T, is sharp for v > 0 if and only if A # 0.

Proof. Take an arbitrary integer v > Vpro(> vgis). Then R(k) > r(k) and
at+(k) > a_(k) for any integer k > v by Assumption [Z9]since k > v4;5. More-
over, a_(k) > max{R(k),1} since (v) < 1. Hence a_(k)ay(k) > R(k) > r(k)
and thus 0 < A < 1.

(1) Recall that T', is generated by {(ag,Bk) | k =v,v+1,...}. We claim:

R [ e - R S
o VTaE+ 5P -~ I+ (- AP

(2.38)
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Then (1) is obvious. Note limy_, 0 v/||a||? + || Bx]|> = oo since the Cartan
projection u: G — R? is proper and since {(ay, Bx) | k =v,v+1,...} is an
infinite discrete subset of G.

We now prove ([238)). By Lemma 2:26] for k > v,

ol — 18]l < 2log (R((,f))) Few). (2.30)

Since ay, = r(k)~! <a+1(k) —(a,(k)izgfl(c])ﬁ)—k T(k)2)> by the definition ([2.13),

o] > tog(2 cosh ) — c=(v) > 21og <a—<’f>a+(’f>) 1

~(F) — —¢£(v), (2.40)

6
where the first and second inequalities follow from (2:26]) and the definition
23, respectively. Similarly,

18]l > 21og (W> 1

o (RO iy (T)Y Ly

The inequality ([238) follows from (239), (Z40), and (Z4T]) since the func-
tion x/4/1 + (1 — x)2? is monotone increasing on the interval [0,1]. Hence
(1) holds.

(2) Suppose 0 < ¢ < A/y/14 (1 —A)? and v > vepa(c)(> Vpro). Then e(v) <

1. Setting 26 := A — B(> 0), for any integer k > v, we have

a_(K)as(k) . R(k)
B 1 1 2.42

(B +¢)log ) ey (2.42)

_(k k
(B +1)e(v) < 2 log =)+ (k). (2.43)

r(k)

Let v # e be an arbitrary element of F2°, and m := ¢(v) the word length of
~v. We write v = 721 .- ’7132 for the reduced expression where s1,..., S, €

{1,—1} and kq, ..., ky > v. By Lemma 228 we have

Bt < fj N )

1
T{Rq

< i <210g (fg;”;) - <2510g (‘I—(Tkz]‘g(’“)) _ Bg(y)>)
- in (21°g (R((;f; ) - €<v>) < 15N = el

Here the second, third, and fourth inequalities follow from , ,
and Lemma [Z26] respectively. Then ||p(7)]| < (1 — B)||7(7)|| and thus

O =le)l B _
VIO +Te0) ~ i+ 1= By

Hence T', is (¢, 0)-sharp, which proves (2).

K3

C.
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Remark 2.32. In Proposition [2Z.71, we did not treat the case that c takes the
critical value c(a_,ay,m R) := A(1 4 (1 — A)2)~=. At this critical value, the
discontinuous group I',(a—, a4, r, R) may be (¢, C)-sharp for all C > 0, and may
not be (c,C)-sharp for all C > 0. We give such examples as below.

Let § = £1 and b > 0. We define the following quadruple (a—,a4,r, Rs):

1

a_(k) = e3®=DH g (k) 1= e3FTDH p(k) i= e7F | Rg(k) := (log k)’

for k > 2. This quadruple applies to Lemma [Z12 and satisfies the condition

1
(ZZ1). Then the critical value ¢ = c(a_,ay,r, Rs) amounts to (b*>+ (b+1)%)"2
because

Rs(k)
r(k)

Suppose v > Vppo. Let Ty s be the discontinuous group I'y(a—,at,r, Rs) for
AdS? (see Proposition[Z.23). Then, the following hold:

=k + dloglogk, loga_(kzz;'(k)
r

log =(b+1k+2.

(1) if 6§ =1, then T, 5 is (c,0)-sharp for v >> 0, and thus (¢, C)-sharp for all
C>0;

(2) if 6 = —1, thenT', s is not (c,C)-sharp for all C > 0.

Indeed, suppose 6 = 1. Then we may and do take v > 0 such that for all k > v,

o (2 log (W) +s<v>> < 2log (ﬁi;’;)) ).

Then the inequality (b+ 1)~ [i(M] < li(DI = e for any v € F° follows
from Lemmas[Z28 and[Z.28 by an argument similar to the proof of Proposition
231 (2). Hence ||p(7)]| < b(1+b)7j ()| and thus (1) holds since then

[F1G01 el 71601 S 1
VIEOIZ + oW~ /02 + (1 + )
On the other hand, suppose § = —1. Since e(v) < 1 by v > Vppo, we have

ol = [1Bklll < 2(k —loglogk) + 1, |lax| = 2(b+ 1)k, and ||Bx|| = 2bk for
any integer k > v by (2.39), (240), and (2-71), respectively. Thus (2) follows

readily from

tim inf (ey/Jlaxl? + 18] = lllasll = 18 ]1) > lim inf (2loglogk — 1) = oc.
k—o0 k—o00

Example 2.33. The discontinuous groups I',(a—,a4,r, R) associated to the
quadruples (a—,ay,r, R) in Table[ZA are all non-sharp by Proposition [Z-31]

As an application of Proposition 2.31] we obtain the following lemma, which
will be used for the proof of the counting result (Theorem 21J) in Section

Lemma 2.34. Suppose T, (p, q) is the discontinuous group for AdS? associated

to a pair of functions (p(t),q(t)) as in Lemma[Z.2 We set ¢ := sgn(p”(t)) €
{£1}, which is independent of t > 0. Then I',(p,q) is sharp for v > 0 if and
only if the following conditions hold:
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logp(k + 3) log q(k)
case (i) § = 1: limsup —————2% < oo and limsu ;
@ i’ logp(k) ke log p(k)
N , —logp'(k+1) . log q(k)
case (ii) d = —1: limsup ——————= < 00 and limsup —————= < o0

Proof. Note that

log a(ﬁzz;( ) = 2log p(k) + log p(k + %) +logq(k) —logp'(k —6), (2.44)
log f((]l:)) = log p(k). (2.45)

Proposition 23T tells us that the discontinuous group I', (p, ¢) for AdS® is sharp
for v > 0 if and only if lim sup,,_, . (Z44)/([2.45) < co. Therefore the assertion
follows from elementary properties of C2-functions p(t) of one-variable, summa-
rized in Lemma below. O

Lemma 2.35. Let p(t) be a C?-function defined in t > 0 such that the sec-
ond derivative p’ is nowhere vanishing and lim;_,oo p(t) = oco. We set § :=
sgn(p”(t)) € {£1}, which is independent of t > 0. Then the following hold:

(1) ¢f6 =1 (resp. —1), then —logp'(t) is bounded from the above (resp. below);
(2) if 6 =1, then logp(t) — logp'(t — 1) is bounded from the below;
(3) if 6 = —1, then p(t + 1) < 2p(t) for t > 0.

Proof. (1) If § =1 (resp. —1), then p/(t) is monotone increasing (resp. decreas-
ing). Hence (1) is obvious.

(2) Suppose § = 1. Since then p is convex, we have p(t) > p(t—1)+p/'(t—1) >
p/(t —1) for t > 0 by lim;_, p(t) = co. Hence (2) holds.

(3) Suppose § = —1. Then p/(¢) is monotone decreasing. Hence we have p/(t) <
2p(t) for t > 0 by lim;—, o p(t) = co. Hence, since p is concave, we have
p(t+ %) < p(t) + 1p/(t) < 2p(t), which proves (3).

O

2.4 Construction of I" with large counting

In this section, we explain a construction of discontinuous groups I' for which
the asymptotic growth of the counting Nr(z, R) is as rapid as we wish, and thus
complete the proof of Theorem

We begin with a lemma which reduces the estimate of Ny (x, R) to the case
T =o.

Lemma 2.36. Let T be a discontinuous group for AdS®. Set ||g|| := ||| + || 3]l
for g = (a, ) € G = SL(2,R) x SL(2,R). Then, for x € AdS® and R > 0,

Nr(gz, R —|lgl]) < Ng-1rg(x, R) < Nr(gz, R+ |g])-
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Proof. By Lemmal[Z7 we have ||gz|| = |[azB7!|| < ||z||+]lg| and thus g B(R) C
B(R+ ||g|). Similarly, g~*B(R — ||g||) € B(R) and thus

B(R —|lgl) € gB(R) C B(R+ [|g]])-
The assertion follows immediately from these inclusion relations. O

The next proposition gives a lower bound of the counting Nr(o, R) for the
discontinuous group I' = T, (p, ¢) introduced in Lemma 224

Proposition 2.37. Let T, = T',(p,q) be the discontinuous group for AdS®
associated to a pair of functions (p(t),q(t)) as in Lemma [2.2]} Here we have
supposed V > Vpro as tn Proposition 221l Then

Nr,(o,4logp(t)) >t — v for all t > v.

Proof. We note p(k) > 2 for any k > v since logp(k) = log(R(k)/r(k)) > 1
holds from k > vp,,,. We also recall from Definition that the group I'), is
generated by {(ax,Bk) | k=v,v+1,...}.

By the definitions [ZI3) and ([Z22)), for k > v, we have

(PR pk)? -1
aim= (0 )

whence the pseudo-distance of ;'8 € SL(2,R) is computed by (Z3):
2cosh [l Bull = p(k)* — p(k)? + 1+ p(k) % < p(k)*.
We then observe for any R > 0:
LLon B(R) > {a7 B | lag Bl < R}  {ag B | p(k)* < e}
since 2cosh R > eft. Since T',, acts freely on AdS?, we deduce
Nr,(o,R) > #{k € N| v < k and 4logp(k) < R}.

Recall that p(t) is monotone increasing. Hence we conclude N, (0,41ogp(t)) >
#HrkeN|v<k<t}>t—vioralt>wv. O

We are ready to prove Theorem

Proof of Theorem[Z.2. Since the G-action on AdS?® is transitive, we may and do
assume x = o by Lemma Moreover, it suffices to consider the case where
f(t) is a monotone increasing C*-function such that f”(¢) > 0 for any ¢t and
lim; 00 f(t) = o0.

Let p(t) be the inverse function of sf(s) defined for ¢ > 0. Then p(t)
is a monotone increasing C?-function such that p”(t) < 0 for ¢t > 0 and
that limy_,o, p(t) = oo. Take an arbitrary continuous function ¢(t) satisfy-
ing lim_,.c ¢(t) = oo. Then I',(p,q) is a discontinuous group for AdS® if
v > 0 by Lemma Suppose v > vy, as in Proposition [Z2]] and set
I =Ty, :=Iy(p,q). By Proposition Z37 Nr(o,R) > eft/4f(ef/*) — v for
all R > 4logp(v) since R = 4logp(t) if and only if ef/4f(e®/4) = t. Thus
limpr 00 Nr(o, R)/f(R) = oo and the proof of Theorem is completed. O
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Example 2.38. Let ', =T, (a_,ay,r, R) be the discontinuous group for AdS?
associated to the quadruple (a_,ay,r, R) in Table 22 (3). Here we have sup-
posed v > Vpro as in Proposition [ZZ1l By an argument similar to the proof of
Proposition [2.37, we have

R
1

Nr,(0,R) > exp(e*) — v for all R > 4loglog v.

2.5 Application to the spectral analysis

In this section, we complete the proofs of Theorems 2.1] and

Associated to a quadruple (a_,a4,r, R) of sequences, we have defined in
Section [Z3] the subgroup I'y, = T'y(a—,a4,r, R) of G = SL(2,R) x SL(2,R),
and proved that I',, is a discontinuous group for X = AdS? when v > Vpro if
Assumptions and the condition ([227]) are satisfied. Then the quotient
space Xr, := I')\X admits an anti-de Sitter structure via the covering X —
Xr,. Let Ox,. be the Laplacian on Xr,, which is not an elliptic operator, but
a hyperbolic operator because X, is a Lorentzian manifold. Our interest here
is the discrete spectrum Spec,(Cx,. ) of the Laplacian Ox,. .

In this section, we find a sufficient condition on (a_,a4,r, R) such that the
counting Nr, (z, R) grows at most 4%, in particular, satisfies the exponential
growth condition (Z1I). By the criterion of sharpness in Section 2233 we give
non-sharp T', such that the counting Nr, (x, R) grows at most 4%. Moreover,
we use this counting result to construct an infinite subset of Spec,(Cx,. ) for
such I',. We show:

Theorem 2.39. Let (a_,ay,7, R) be a quadruple of sequences satisfying As-
sumptions [ZZHZI1, and vpro € N as in Proposition [2.Z1 Moreover, take an
arbitrary integer v > max{Vpro,2}. If R(k)/r(k) > €* for any integer k > v,
then

(1) T, =T,(a—,as,r, R) is a discontinuous group for X;
(2) Nr,(z,R) < 4% for any x € X and any R > 0;
(3) there exists mg = mo(T',) > 0 such that

Specy(Oxp, ) D {4m(m —1) | m € Z and m > mg}.

Example 2.40. The following quadruples (a—,ay,r, R) apply to Theorem[Z.39:

€k_1 ek—l

(1) a_(k) = €*, ay(k) = "2, r(k) = (kT )’ R(k) = p(eh)” This

quadruple is obtained by Lemma with p(t) = e' and q(t) = exp(e?).
(2) ai(k) = exp(er), as(k) = exp(ek"’%)7 r(k) =1, R(k) =" (Table[ZA (1)).

Postponing the proof of Theorem 239 we give proofs of Theorems 2.1l and

Proof of Theorems[Z1 and [28. The discontinuous groups I'y(a_,ay,r, R) as-
sociated to (1) and (2) of Example [Z40 are non-sharp by Lemma 234 and
Proposition 223T] respectively. Applying (2) and (3) of Theorem 239 we get
Theorems 2.1] and 23] respectively. O
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To prove Theorem 2391 (3), namely, to construct an infinite subset of the
discrete spectrum, we use the following fact established by Kassel-Kobayashi
[11]:

Fact 2.41 ([I1]). Let T be a discontinuous group for X = AdS?® satisfying the
exponential growth condition (Z1). Then there exists mo(I') > 0 such that

Specy(Ox) D {dm(m —1) | m € Z and m > mo(T)}.

Remark 2.42. Kassel-Kobayashi constructed in [I1), Cor. 9.10] an infinite sub-
set of the discrete spectrum which is stable under small deformations of T in

G.

We prepare some lemmas needed for the proof of Theorem (2). The
following lemma was proved in [IT] in the general setting where X is a reductive
symmetric space. Since it plays a crucial role in proving Theorem 239 we give
an elementary proof for X = AdS® for the convenience of the reader.

Lemma 2.43 ([IT, Lem. 4.4 and 4.17)). For (o, 8) € G and x € X = AdS?,

(e, B)z |l + llzl| = [lledll = 1BI]] -
Proof. By Lemma 271 we have

(v, B)z]| = llowB™ | = [lloll — 18Il (2.46)
lzll = fla™ ezl > [lled] = [lecz]l]- (2.47)
Summing up (2.46) and @2.47), we have |[(a, B)z|| + [[z]| = [l = [IB]]]- ]

Fact 2.44 ([IT, Def-Lem. 4.20]). Let T be a discontinuous group for X = AdS®.
Then, the set
Dxpi={z e X |Vyel, |zl =[]}

is a fundamental domain of X for the action of I'. In particular, I'Dx. = X.
Therefore, we may assume = € Dx,. to study Nr(z, R).

Lemma 2.45 (cf. [II, Lem. 4.21]). For any € Dx,. and any v = («, B) € T,

1
lvall = 5 el = 151
Proof. Let v = («, 5) € I" and = € Dx,.. Then we have

2|yl = llyell + [zl = Headl = 1121

by the definition of Dx,. and Lemma 243 and thus Lemma holds. O
Lemma 2.46. We set S(R) := U {(k‘l, ooy km) €N Zki < R} for any
m=1 i=1

R € N. Then the cardinality of S(R) equals 2% — 1.

Proof. For (ki,...,kn) € S(R), we define the binary number 10...0...10...0,
ki—1 Fem—1
which induces a bijection S(R) = Z N [1,2% —1]. Hence #S(R) =28 -1. O
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We are ready to prove Theorem In the following, let | R| denote the
largest integer less than or equal to R for R € R.

Proof of Theorem[2.39. The assertion (1) is verified by Proposition We
now prove (2). Let I', =T, (a—,a4,r, R). Take any integer v > max{vp,,2}.
Then recall e(v)(< 1) < 2. Moreover, take v € F2° \ {e}. Let m := £(y) be the
word length of 7, and we write v = 7! -+ -9, for the reduced expression where
S1y-+-y8m € {1,—1} and kq,..., ky > v(> 2). By Lemma [2:20]

S o0l 2 3= (108 () —5e0) 2301 29

i) i=1

To prove (2), we may and do assume x € Dx,. by Fact 244l Suppose
(7). p(1)z € BR). Then [l — llo()ll /2 < & by Lemma AR Hence
(k1—1,...,kyn—1) € S(|R]) by the inequality (Z48]) and in particular, m < R.
The number of such (ki,...,k,) is at most 2% — 1 by Lemma and thus
the number of such v = 73! --- 7,7 (# e) with s1,...,5, € {1,—1} is at most
(2 — 1)2F. Hence we obtain Nr, (z, R) < (2% —1)2F + 1 < 4% which proves
(2). The assertion (3) follows from (2) and Fact 2411 O
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3 Linear independence of generalized Poincaré
series for anti-de Sitter 3-manifolds

3.1 Introduction

A pseudo-Riemannian manifold is a smooth manifold M equipped with a smooth
non-degenerate symmetric bilinear tensor g of signature (p,q) on M. It is called
Riemannian if ¢ = 0, and Lorentzian if ¢ = 1. As in the Riemannian case, the
Laplacian Oy := divs o grad,, is defined as a second-order differential operator
on M. We note that it is a hyperbolic differential operator if M is Lorentzian.
We write L2(M) for the Hilbert space of square-integrable functions on M with
respect to the Radon measure induced by the pseudo-Riemannian structure.
For A\ € C, we denote by

L3(M):={f € L*(M) | Oy f = \f in the weak sense}.

The set of L?-eigenvalues Specy(Car) := {A € C | L3 (M) # 0} is called discrete
spectrum of [yy.
Our interest is the multiplicity of L?-eigenvalues \ of s, denoted by

Nar(\) := dime L3 (M) € NU {oo}.

In the Riemannian case, the Laplacian is an elliptic differential operator and
the distribution of its discrete spectrum has been investigated extensively, such
as the Weyl law for compact Riemannian manifolds. However, it is not the
case for non-Riemannian manifolds. Kobayashi [I8], and later Fox-Strichartz
[5], investigated the distribution of discrete spectrum of the Laplacian (s of
some pseudo-Riemannian manifolds, i.e., when M is the flat pseudo-Riemannian
manifold RP4/ZPT9 and is the Lorentzian manifold S' x S, respectively.

Let us recall some basic notions. A discontinuous group for a homogeneous
manifold X = G/H is a discrete subgroup I of G acting properly discontinuously
and freely on X (Kobayashi [I7), Def. 1.3]). In this case, the quotient space Xr :=
'\ X carries a C*°-manifold structure such that the quotient map pr: X — Xp
is a covering of C*° class, hence Xr has a (G, X)-structure induced by pr. If
we drop the assumption of freeness, Xr is not always a manifold but carries a
nice structure called an orbifold or V-manifold. Proper discontinuity is a more
serious assumption which assures Xr to be Hausdorff in the quotient topology.
We remark that the I'-action on X may fail to be properly discontinuous when H
is noncompact. In order to overcome this difficulty, Kobayashi [15] and Benoist
[1] established the properness criterion for reductive G' generalizing the original
criterion by Kobayashi [I4]. Whereas discontinuous groups for the de Sitter
space dS" := SO¢(n,1)/SO¢(n — 1,1) are always finite groups (the Calabi-
Markus phenomenon, see [3], [14]), there are a rich family of discontinuous
groups for the anti-de Sitter space, see e.g. [6], [16], [22]. We treat, in this
article, the three-dimensional anti-de Sitter space AdS® := SO(2,2)/({#1} x
SO0 (2,1)).

For m € N, we set
Am = 4m(m — 1). (3.1)

We prove:
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Theorem 3.1. For any finitely generated discontinuous group T for AdS®,
ALYHOONF\ Ads? (Am) = o0.

Remark 3.2. (1) If the discontinuous group T is “standard” and torsion-free,
a stronger result holds: Np\Adss (Am) = oo for sufficiently large m € N
(Kassel-Kobayashi [10)]), which is derived from the results in Kassel-Kobayashi
[12]. On the other hand, Theorem[31l is also applicable to “non-standard”
T, for example, in the case where T is Zariski dense in SO(2,2).

(2) The assumption that T' is finitely generated could be relazed. In fact, the
exponential growth condition (see (F9)) for T'-orbits is essential in the proof
of Theorem[3 ), and there exist infinitely generated discontinuous groups I
satisfying (F3) and the conclusion of Theorem [31 holds for such T' (see
Theorem which is proved without finitely generated assumption).

(3) An analogous statement to Theorem[3l also holds when T\AdS® is an orb-
ifold. See Section[3.2.3 for the argument when we drop the assumption that
the T'-action is free.

Now we consider a small deformation of a discrete subgroup. The study of
stability for properness was intiated by Kobayashi [16] and Kobayashi-Nasrin [19]
and has been developed by Kassel [9] and others. Moreover, Kassel-Kobayashi
[TT] proved the existence of infinite stable L?-eigenvalues under any small defor-
mation of discontinuous groups. In this article, we also consider the multiplici-
ties of stable L?-eigenvalues (Definition B.3]) and prove that they are unbounded.

To be precise, let X,, be the n-fold covering of X; := AdS? for 1 <n < oo,
and G,, the Lie group of its isometries. Every compact anti-de Sitter 3-manifold
M is of the form M = T'\ X,, for some finite n where I'(C Gy,) is a discontinuous
group for X,, by Kulkarni-Raymond [20, Thm. 7.2] and Klingler [I3]. We take
n to be the smallest integer of this property.

Let Hom(T', G,,) be the set of group homomorphisms with the compact-open
topology, and Ur the set of neighborhoods W in Hom(I', G,,) of the natural
inclusion I' C G,, such that for any ¢ € W, the map ¢ is injective and ¢(I") acts
properly discontinuously on X,,. One knows Ur # @ ([16], [13]). By definition,
A is a stable L?-eigenvalue if mingew Ny x, () # 0 for some W € Up.
Moreover, for any A € C and any inclusion W' C W in Ur, we have an obvious
inequality

Join, Nomy\x, (A) 2 min Ny x, (A)-

Definition 3.3. For a compact anti-de Sitter 3-manifold M, we say that

Nar(\) == sup min N, A
Mm(A) Wegrwew «p(F)\Xﬂ,( )

is the multiplicity of a stable L?-eigenvalue \.

There exist infinitely many m € N such that ANy (Ay) > 1, namely A, is a
stable L2-eigenvalue for sufficiently large m ([I1, Cor. 9.10]). However, to the
best knowledge of the author, it is not known whether AVjs()) is finite. We
prove:
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Theorem 3.4. For any compact anti-de Sitter 3-manifold M,

lim Ny (M) = oo.
m—r o0
The organization of this article is as follows. A key step to our proof is to find

a family of L2-eigenfunctions of [lyqgs with eigenvalue A,, on AdS® for which
the corresponding “generalized Poincaré series” are linearly independent, see
Proposition In Section [3.2] we recall some facts about L2-eigenfunctions
of Opqgs and their generalized Poincaré series which were introduced in [I1]
as the I'-average of these eigenfunctions. We then give a uniform estimate of
the “pseudo-distance” between the origin and the second closest point of each
T-orbit (see Section B24]). In Section B3] we complete a proof of Proposition
In Section B4l we prove a generalization of Theorem B4l to the case of
convex cocompact groups (Definition 3.21]).

3.2 Preliminaries about the anti-de Sitter space

In this section, we collect some preliminary results about AdS®. We refer to
[11, Sect. 9] where they illustrate their general theory for reductive symmetric
spaces X = G/H in details in the special setting where X = AdS®.

Let Q be a quadratic form on R* defined by Q(x) = 2% + 2% — 22 — 22 for
x = (z1,22,23,24) and we set

H?! = {z = (21,20, 23,24) € R* | Q(z) = 1} 2 S0((2,2)/S0¢(2,1).

The tangent space T, (H?1) at z € H*? is isomorphic to the orthogonal comple-
ment (Rz)+ with respect to . Then —Q|(ra)+ 1s a quadratic form of signature
(2,1) on T,,(H?!) = (Rz)* and thus —Q induces a Lorentzian structure on H?2!
with constant sectional curvature —1. The 3-dimensional anti-de Sitter space

AdS? := H>! /{+1} =2 S00(2,2)/({£1} x SOy(2,1)),
inherits a Lorentzian structure through the double covering 7: H*! — AdS®.

3.2.1 Some coordinates and “pseudo-balls”

In this subsection, we work with coordinates on H?! and consider “pseudo-balls”
in AdS®. We identify H>! with SL(2,R) using the isomorphism

H2-! N SL(2,R)
T+ —T9 + (3~2)
T = (21, T2,73,T4) (x; + m;l 112— x:’) .

For t > 0 and 6 € R, we use the notations

cosf —sinf et 0
k() = (Sin0 cosf ) , alt) = (0 et> : (3.3)
We embed H?! into C? by

z = (21, 20) = (21 + V=12, 23 + V/—124). (3.4)
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We note that z; # 0 if x € H*!. Via the identification ([3.2)), we have
(3.5)

(21, 22) = ((cosh t)e\/jl(91+92), (sinh 75)6‘/_71(01_(’72))7

if x = k(61)a(t)k(02) € SL(2,R) (a “polar coordinate”). In particular, we have
cosh 2t = 2% + 22 + 22 + 23.

Next, we consider pseudo-balls on AdS?, as a special case of Kassel-Kobayashi
[11] for reductive symmetric spaces.
Definition 3.5. For x = (z1,22,73,24) € H>!, |z|| € R>0 is defined by
cosh ||z|| := 3 + x5 + 23 + 23 (= cosh(2t)).

This function is invariant under © — —x, hence defines a function on AdS®, to
be also denoted by || - || (a “pseudo-distance” from the origin). The compact set

B(R) := {y € AdS” | [|y|| < R}

is called a pseudo-ball of radius R.
3.2.2 Square-integrable eigenfunctions of the Laplacian on the anti-

de Sitter space
In this subsection, we consider the square-integrable eigenfunctions 1, ; of
Oaass with eigenvalues A, = 4m(m—1). We use the decomposition of the open

subset {@Q > 0} of the flat pseudo-Riemannian manifold R??2 = (R*, Q(dz))

Q>0 = R.o x H2!
z — (VQ(2),2//Q()).

Let r = \/Q(z). As in [IT}, p. 215],
9\’ d
’I") — 27”5 + DHQ,l.

2
—1r20pe, —
r R2.2 ( 9
Let m be a positive integer and k be a non-negative integer. In the coordinates

B4, the function zl_(k+2m)25 is invariant under (z1,22) — (—21, —22), hence
efines a real analytic function on , to be denoted by %, . Then we have
defi | analytic functi AdS?, to be denoted by 1, . Th h

Vi € L2(AdS?), Oaass¥mk = A k-
Discrete spectrum Spec,(Caqgs) coincides with {A,, | m € N} and L3 (AdS?)

is generated by ., 0 and its complex conjugate v, o as a representation of
(3.6)

SO¢(2,2). By ([B3), for z = k(61)a(t)k(2) € H*!, we have
Y g (m(2)) = e~ 2V7HMOEMERIO) fan 1k ¢ cosh =2 ¢

We refer to ., 1, as a spherical function of type (—m, m+ k) in accordance with

the action of SO(2) x SO(2).
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3.2.3 Convergence of generalized Poincaré series

In this subsection, we explain the fact about discrete spectrum of locally sym-
metric spaces by Kassel-Kobayashi [IT] in our AdS® setting. We use the following
notation.

Notation 3.6. e Let "G =PSL(2,R) =SL(2,R)/{£1} and G ="G x 'G.
o Let "K =PSO(2) =S0O(2)/{£1} and K ="K x ‘K.
o Let E and " E be respectively the identity elements of G and "G.

Remark 3.7. The double covering SO¢(2,2) — G induces an isomorphism
AdS? = G/diag' G(= Q). From now on, we consider only discontinuous groups
T for AdS® which are discrete subgroups of G. This is enough for our purpose.

In order to study Spec, (O aqs2), Kassel-Kobayashi [11] considered the con-
vergence and non-vanishing of generalized Poincaré series

P'(Tw) = oy ') (3.7)

yel’

for K-finite square-integrable eigenfunctions ¢ of [Jy4qs. For this, they used an
analytic estimate of ¢ and a geometric estimate of the number of I'-orbits

Nr(z, R) := #{y € T | vz € B(R)} (3-8)

in the pseudo-ball B(R) for R > 0. Since the I'-action is properly discontinuous
and B(R) is compact, we have Np(z, R) < 0.

The convergence of generalized Poincaré series is proved by [I1] as follows.
For g € G and a function f on AdS?®, 3 f is defined by £; f(z) = flg~to).

Fact 3.8 (Kassel-Kobayashi [I1]). LetT' C G be a discontinuous group for AdS®
satisfying the exponential growth condition

3A,a > 0,Vz € AdS®, VR > 0, Np(z, R) < Ae®E, (3.9)

Then, for any K -finite eigenfunction ¢ of Uaqg3 with eigenvalue \,, and any
g € G, if m > a, then (£;0)" (see (37)) is continuous and square-integrable on

F\AdS?’ and an eigenfunction of Up\ aqgs with eigenvalue Ap, .

Remark 3.9. (1) Fact[38 does not assert the non-vanishing of the series (€;)"
which is more involved. Kassel-Kobayashi [11)] proved that there exists g € G
such that (£Z¢m,o)r # 0 for sufficiently large m € N.

(2) By [11, Lem. 4.6.4], if a discontinuous group I' is sharp in the sense of [11,
Def. 4.2], then T satisfies the exponential growth condition (3.9). Moreover,
Kassel [§] and Guériataud-Kassel [7] proved that finitely generated discon-
tinuous groups for AdS® are always sharp (see Fact[ZZ1 below) .

The conclusion of Fact B8 still holds if we drop the assumption that I" acts
freely on X = AdS®. In this case, the quotient space Xp = I\ X is an orbifold.
To formulate more precisely in the orbifold case, we observe that the quotient
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space Xt is Hausdorff, and carries a natural Radon measure (see e.g. [2, Chap.
VII, §2, No. 2, Prop. 4]). A continuous function g on Xr is smooth if the pull-
back pfg is a smooth function on X where pr: X — Xt is the natural quotient
map. We write C°(Xr) for the set of smooth functions on X1 with compact
support. For g € C°(Xr), we define Ox.g € C°(Xr) by identifying it with
the T-invariant function Ox (pfg). For A € C, we define

Li(XF) = {f € LQ(XF) ‘ vQ € CSO(XF)ﬂ <f7 DXFg>XF - >‘<fa g>Xr}

Discrete spectrum Spec,(Ux,.) and its multiplicity Mx,. are defined similarly to
the case where I' acts also freely.

3.2.4 “Injectivity radii” of anti-de Sitter 3-manifolds

Let I be a discontinuous group for AdS®. In this subsection, we give a uniform
estimate of the pseudo-distance between the origin and the second closest point
of each I'-orbit.

We recall that T'(C "G x @) acts isometrically on AdS*(= Q) by (71, 72)x =
T2y, for (v1,72) €T and z € *G. We set

1
er = inf - - . 3.10
B ye)en\ () 3 Hivall = Il (3.10)
By the inequality (see Lemma [2:43))
1(g1: g2)l| = [llgall = llg=l| = [lz|| for (g1,92) € G and = € AdS®,

we get:
Lemma 3.10. Ifer > 0, then yB(er) N B(er) =0 for all v € T'\ {E}.

Proposition 3.11. Let I' be a discrete subgroup of G acting properly discon-
tinuously on AdS®. Then there exists g € G satisfying €g-11g > 0.

Remark 3.12. One sees in the proof below that the set of such g is dense in
G.

Proposition BI1] follows obviously from the proper discontinuity of the I'-
action and the following lemma;:

Lemma 3.13. For any countable subset I' of G, there exists g € G such that
il # 12l for all v = (y1,72) € g~ ' Tg \ {E}.

Proof of Lemma[313. For v € T', the map f,: G — G defined by g — g 1vyg
is real analytic. For the analytic subset F' = {(g1,92) € G | |lg1]] = ||g2]|} of
G, the set f7'(F) is a proper subset of G if v # E. Indeed, if ||yl # [[72ll,
then obviously E ¢ f1(F). If |y1|| = [[72ll, then (y1,72) # (E,"E). Without
loss of generality, we may assume ~; # "E. Then there exists g1 € "G satisfying
llgr *v1g1ll # ||71]| as one can find g; depending on the three cases where 7, is
hyperbolic, parabolic, or elliptic. Hence (g1, E) ¢ f;l(F)

Therefore there is no interior point in the analytic set f L(F), so is the
countable union U'yEF\{E} fv_l(F) by the Baire category theorem (see e.g. [21],

Thm. 2.2]). Hence there exists an element g of G\ U, cp\ 5y f7H(F) and we
have [|y1| # [l72]] for all v = (31,72) € g~'Tg \ {E}. D
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3.3 Proof of Theorem [3.1]

In this section, we prove Theorem [B.11

More generally, without finitely generated assumption of I', we study linear
independence of the generalized Poincaré series of the spherical functions 9y,
of type (—m, m+k) defined in Section 322l By choosing k =37 (j =0,1,2,...),
we prove:

Theorem 3.14. If T is a discontinuous group for AdS® satisfying the exponen-
tial growth condition (39), then

Jim Nr\aas? (Am) = 0.

Theorem Bl is a direct consequence of Theorem B.14] by Remark @.

Proposition 3.15. Let I' be a discrete subgroup of G acting properly discon-
tinuously on AdS® and satisfying the exponential growth condition E3). If
er > 0, then there exists a real number mr(k) (given explicitly by (313)) for
k € N such that {(Re(t,, 3:))" ?;& c L3 (T\AdS?) are linearly independent
for all integers m > mp(k).

Proof of Theorem [3.17} We have an obvious equality of the multiplicity of L%-
eigenvalues, Np\aags = N(g-1rg)\aass for any g € G through the natural iso-
morphism 1"\AdS3 % (g_ll"g)\AdS3 as Lorentzian manifolds. By replacing
I' with ¢~ 'T'g if necessary, we may and do assume er > 0 by Proposition
BII Then Proposition implies that L3 (T\AdS?) contains at least k
linearly independent elements if m > mp(k) for any fixed k € N, which means
dime L3 (T\AdS®) > k. Hence Theorem B4 follows. O

Kassel-Kobayashi [I1] proved the non-vanishing of the generalized Poincaré
series (m,0)" for sufficiently large m € N by showing that the first term in the
generalized Poincaré series is larger at the origin than the sum of the remaining
terms. For this, they utilized the fact that ¢, o(E) = 1. Our strategy for
the proof of Proposition is along the same line, however, there are some
technical difficulties since )y, , for & > 1 vanishes at the origin. We then make
use of an observation that v, ;, decays more slowly at the origin than at infinity,
to be precise, by the following formula, see ([B.6]):

[ ()] = cosh™ ™ (||| /2) tanh® (]| ]| /2).

Actually, we use an analytic lemma (Lemma [B10) to prove that the first term
in the generalized Poincaré series (?/Jm,k)r is larger at points sufficiently close
to the origin than the sum of the remaining terms if m > 0. Moreover, we use
a combinatorial lemma (Lemma BIT) to find points at which leading terms of
(Re(¥y.1))! do not cancel each other for any linear combination.
For C,a,e > 0 and s € N, we set
(log 2)s + 2ae + log(1 + 2°Cebe¢)

= 11
m(C,a,¢,s) o cosh £ (3.11)

and

m(C,a,0,s) := 035126 m(C,a,e,s).

Note that m(C,a,d,s) = O(572) as § — 0 and = O(1) as § — oc.
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Lemma 3.16. For any integer m > m(C,a,¢e,s) and any one-variable polyno-
mial f of degree < s with non-negative coefficients,

C Z @M+ (cosh 2ne) "™ f (tanh 2(n + 1)e) < (coshe) ™™ f(tanhe).

n=1
Proof. We may assume that f(z) = 27 for j =0,1,...,s. Since

tanh nz
1< —— <n, (coshz)” < coshnx
tanh x

for x € R, we have

(LHS)/(RHS) = '3 cdotit e (h 2ne> o (tanh 2n + 1) >f’
n=1

coshe tanhe
< Ceboe Z(eQaE(COSh g)"™)* 1 (2(n 4+ 1))°.
n=1

We set d := e?*¢(coshe)™™. Then d < 1 by m > m(C,a,¢,s). Since n+1 < 2"
for all n € N, we have

(LHS)/(RHS) < 2°Ce® ) "(2°d)" = 2°Ce*

n=1

2°d
1—25d"

Again by m > m(C, a, ¢, s), we have 2°d < (1425Ce5%¢)~1. Therefore we obtain
(LHS)/(RHS) < 1. O

Let x: {£1} — {0,1} be the map defined by x(1) = 0 and x(—1) = 1. For
a= (aj);?;é € {#1}* and an odd integer N > 3, we set

OQ’N = FZ(X(ai) — X(al‘,l))N_i. (312)

Here we use the convention a_; = 1.

Lemma 3.17. For any a = (ag,...,ar_1) € {£1}¥ and any odd integer N, we
have 4
ajcos(N?0, n) >0 forj=0,1,....,k—1.

Proof. Since Nk_lﬁa’N = mx(ag—1) (mod 27), we have cos(Nk_IG(z’N) =ap_1.
It is easy to check that |[N76, y — Nj9(a0’___7a].),N| <m/2forj=0,1,....,k—1,
hence the signature of cos(N70,,n) is equal to that of cos(N70(a,... a;),N) =
Q. O

Remark 3.18. We have used the geometric progression (Nj)f;é in Lemma
[Z17.  On the other hand, an analogous statement does mot hold if we use
arithmetic progressions. For example, there does not exist 0 € R satisfying
a;jcosm;l > 0 for all 5 =0,1,2,3,4 if we choose (aj)?:o =(1,1,1,-1,1) and

. . . 4
an arithmetic progression (m;)j_o-
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For a discontinuous group I' and k € N; one can take mr(k) in Proposition
313 by

k) = inf (3" 1A, a,er /4,351 /2, a}, 3.13

meR) = it e Ao /43 2k (319

where Ceyp (') := {(4,a) € R? | Vo € AdS*,VR > 0, Nr(z, R) < Ae®™'}. Here,

we adopt the convention that infy f = oo for a real-valued function f. In
particular, mp(k) = 0o when Cexp(I') = 0 or ep = 0.

Proof of Proposition[3.13. By the exponential growth condition [B3)), Cexp(I") #
() and thus mr(k) < oco. We take an integer m > mr(k). Then there ex-
ist € with 0 < € < ep/4 and (4,a) € Cexp(T') satisfying the inequality m >
max{m(3*71A, a,e,3571)/2,a}.

To see C-linear independence of the real-valued functions {(Re(¢,, 3))" ?;&,
it is enough to prove the non-vanishing of the real part Re( glb) = (Re(¢mp))"
of the generalized Poincaré series of a linear combination

k-1
Ymp = Z bj¥m,3i
Jj=0

for any b = (bg,b1,...,br_1) € R¥\ {0}. By Lemma 10, for z € B(4e), we
have

Urp(T2) = Ymp(@) + D sy ). (3.14)
”'Y:¥§|1|—\>45

By [B8), for any y € AdS?, we get

Iyl " = Iyl
sl < (cosn 150) 57 ) (cann 131)
j=0

We define a = (aj)é?;é by a; =1 for b; > 0 and a; = —1 for b; < 0, and set

k=1
fo(u) := Z b; cos(370,.3)u’ .
i=o

We note that all the coefficients of f; are non-negative by Lemma B.I71 More-
over, we get ‘005(33'911,3)|_1 < 31 for all j = 0,1,...,k — 1 by using the
inequality sin(rz/2) > « for 0 < 2 < 1. Thus

—2m
[Vm,b(y)] < gkt <cosh ”g') fo <tanh Z”)
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and, for any = € B(4¢), we have

Y. Re(@map(r @)<Y > [Ymp (v )|

~ver ~yel
Iy~ tal>4e den<|ly 'z <de(n+1)

<3817 Np(e,de(n + 1)) (cosh 2en) =" fy (tanh 2¢(n + 1))

n=1

<3h-1g Z ="+ 1) (cosh 2en) "™ f, (tanh 2e(n + 1))

n=1

< (coshe) ™™ f, (tanhe) . (3.15)

The third and forth inequalities respectively follow from the exponential growth
condition ([B.3) and Lemma BI6 On the other hand, we set

0(1,3 9(1,3

Tae = k( 5 a(e)k( 5 )~ € B(4e).
Then it follows from (B4) that

Re U p(2q.c) = (coshe) ™™ f, (tanhe) . (3.16)
By BI4), BI5), and BI8), we obtain (Re(tm ) (T2ae) # 0. Hence we
complete the proof by the continuity of z/J,Fmb (Fact B3). O

3.4 Proof of Theorem [3.4]

In this section, we prove Theorem [B.4] by applying Proposition B.I5l We work
in the following setting. We allow A to have torsion.

Setting 3.19. e A is a discrete subgroup of G = PSL(2,R).
e j p: A— "G are two group homomorphisms with j injective and discrete.
o AJP s a discrete subgroup of G = G x G given by {(j(v), p(7)) | v € A}.

We use the following structural results of discontinuous groups for the proof
of Theorem B4

Fact 3.20 ([I1}, Lem. 9.2]). Let T' be a finitely generated discrete subgroup of G
acting properly discontinuously on AdS®. Then T is of either type (i) or (ii) as
follows:

type (i) T is of the form A% up to switching the two factors.
type (ii) T is contained in a conjugate of ‘G x K or "K x *G.

A non-elementary discrete subgroup I' of a connected linear real reductive
Lie group L of real rank 1 is called convex cocompact if I' acts cocompactly on
the convex hull of its limit set in the Riemannian symmetric space associated
to L. For example, cocompact lattices and Schottky groups are convex cocom-
pact. More generally, one may think of the notion of convex cocompactness of
discontinuous groups for AdS?:
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Definition 3.21 ([T, Def. 9.1]). A discontinuous group T for AdS® is called
convex cocompact if T' is of the form A3 up to finite index and switching the
two factors, where A is torsion-free and j(A) is convex cocompact in *G.

We note that a discontinuous group A acts cocompactly on AdS® if and
only if j(A) is cocompact in *G because A’ is isomorphic to j(A) as abstract
groups. By Fact B20] discontinuous groups acting cocompactly on AdS® are
convex cocompact.

3.4.1 Proof of Theorem [3.4] for T of type (i)

In this subsection, we prove Theorem B4l for T' of type (i). For this, we use the
constant Cr;p(j, p) introduced by Kassel [8] and Guéritaud-Kassel [7], which
quantifies the properness of the action of AJ* on AdS3.

Definition 3.22. Let dy2 be the hyperbolic distance of the 2-dimensional hyper-
bolic space H?(=2 "G/ K). In Setting[Z19, we denote by Crip(j, p) the infimum
of Lipschitz constants

of maps f: H? — H? that are (j, p)-equivariant.

The map (4, p) = CLip(j, p) is continuous over the set of (j, p) € Hom(A, G)?
such that j is injective and j(A) is convex cocompact in G ([7, Prop. 1.5]).

Fact 3.23 ([8],[7]). Assume that A is finitely generated. Then the action of AJ+*
on AdS? is properly discontinuous if and only if min{Cyr:,(j, p), Crip(p,j)} < 1.

Remark 3.24. In the setting of Fact[323, if Crip(p,j) <1, then p is injective
and discrete. Moreover, if j(A) is convex cocompact, then so is p(A).

Therefore, Theorem B4 for T of type (i) reduces to the following:

Theorem 3.25. In Setting [F19, we assume that A is finitely generated and
that Crip(j, p) < 1. Then there exists a constant pi > 0 independent of j, p and
A such that for any m,k € N with m > 3*uy (1 — Crip(4,p)) 2,

Naio\adas? (Am) > k.

For the proof of Theorem [B.25] we need two results from Kassel-Kobayashi
[11] applied to our setting G = "G x "G. If a discontinuous group I satisfies the
assumption of Fact below, then it is ((1 — «)/2,0)-sharp in the sense of [I1,
Def. 4.2]. Hence we get the following by applying [11, Lem. 4.6.4]:

Fact 3.26 ([I1]). Let T' C G be a discontinuous group for AdS*. We assume
that there exists 0 < a < 1 such that ||v2|| < a|lnll or |l < alye|l for any
(v1,72) € T. Then there exists ¢ > 0 independent of o and T such that for any
z € AdS® and any R > 0,

Nr(z, R) < #(T N K)ceSR1-7"

The following theorem traces back to the Kazhdan-Margulis theorem for
discrete subgroups of semisimple groups.
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Fact 3.27 ([I1, Prop. 8.14]). There exists a constant r > 0 satisfying the fol-
lowing property: for any discrete subgroup ‘T' of "G, there exists g € "G such
that *y|| > r for all*y € g~V T"g\ { E}.

In the following, we use the upper half plane model {z = z + /—1y € C |
Im z > 0} equipped with the metric tensor ds? = (dx? + dy?)/y? for the hyper-
bolic space H2. Then || g|| is equal to the hyperbolic distance dyz("gv/—1,v/—1)
for *g € AdS® 2 G (see e.g. [7, (A.1)]).

Proof of Theorem [3.23 The idea of the proof is similar to [IT, Thm. 9.9], how-
ever, we give a proof for the sake of completeness. By Fact B.27 replacing j by
some conjugate under ‘G, we may assume |[|j()|| > r for any v € A\ {'E}. In
particular, ' N K = {E} for such j and for any p. We fix § > 0 such that

o= CLip(j,p) +i< 1.
Then, replacing p by some conjugate under "G, we may assume
e < alli(y)]l for any v € A. (3.17)

Indeed, by Definition B22] there exists a (j, p)-equivariant map f5: H? — H?
satisfying Lip(f5) < a. We take gs € "G such that gsv/—1 = f5(+/—1). Then,
for any v € A, we have

g5 p(1)gsll = de (f5(V=1), p(7).f5(v=1)) < adse (V=1,j(v)V=1) = allj ()]l

Hence (BI7) holds by replacing p with g5 'p(-)gs, and therefore we get
Nr(z,R) < ce3B1=(CLip(3.p)+8)) 7"

by Fact Then the constant er in (B.I0) has the following lower bound:

3er =  inf ] — > inf (1-oa)|lj >7r(l—a).
e=__nt (SO = eIl = _inf (1= a)lit)] 2 (1 - a)
Note that logcosht = O(t?) as t — 0. By the explicit description (B.I3) of
mr(k), Theorem follows from Proposition O

3.4.2 Proof of Theorem 3.4 for T" of type (ii)

In this subsection, we prove Theorem [3.4] for the case where I' is standard.
For this, we use the following fact by Kobayashi [16] and Kassel [9] applied
to our AdS? setting, which gives the stability for properness under any small
deformation of standard convex cocompact discontinuous groups.

Fact 3.28 (]9, Thm. 1.4]). Let T be a convex cocompact discrete subgroup of
‘G x K. Then for any o, 8 > 0, there exists a neighborhood W C Hom(T, G)
of the natural inclusion I' C G such that for any p € W,

alu(y)] ify e\ K,
— <
[1(e(7)) NWN_{B ifreTNEK,
where (g1, 92) == ||gl|| ||gg||) € R? for (91,92) € G, || - || s given in Definition

| and |(z1,22)| == /2% + 22 for (z1,12) € R%
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We introduce the following terminology for the estimate of discrete spectrum
since I' is not necessarily torsion-free. Let pr;: G = G x "G — "G be the j-th
projection (j =1, 2).

Definition 3.29. A discrete subgroup I of G is said to be standard of class n
if pro(T) is bounded and the cyclic group Ty := ker(pry |r) is of order n.

Remark 3.30. (1) IfT is torsion-free, then it is of class 1.

(2) If pry(T) is bounded for a discrete subgroup I' of G, then the group prq(T)
is discrete in “G. Moreover, if T is of class 1, then it is of the form A

such that A = pr(T") and Crp(j,p) = 0.

Let » > 0 be the constant in Fact B27 For an integer n > 2, we define a
positive number n,, by

coshn, := 1+ 2(sinh % sin E)Q.
n

We get the following by easy computations:

Lemma 3.31. By an abuse of notation, we regard k(0), a(t) in (33) as elements
of "G = PSL(2,R). Then

r._1,,JT T .
= —a(=)|| = =1,...,n—1.
la(5) (N )a(D)l 2 forj=1,....n

We give a uniform estimate of er in (810 and Nr(x, R) in (B8] for standard
discrete subgroups I' of class n after taking a conjugation of T.

Lemma 3.32. Let I' be a standard discrete subgroup of class n > 2. There
exists g € G such that £,-1p, > min{n,,/3,7/6} and N,-1r,(z, R) < ce'5® for
any © € AdS® and any R > 0.

Proof. Let 'y = ker(pr, |r) as in Definition 32291 Since T" is of class n, the group
pry(I'y) is generated by k(m/n) € "G = PSL(2,R). We take ‘g € “G in Fact B21
applied to *T" = pr,(T') and set g := (‘g,a(r/8)) € G. Replacing I' by g~ 'T'g, we
get ||y1]] > r for (y1,72) € T\ T’y by Fact BZTand ||ve|| > 7 for (y1,72) € T1 \
{E} by Lemma 331l Moreover, if (y1,72) € T, then ||v2|| = ||a(r/8) tka(r/8)||
for some k € “K, hence ||y2|| < r/2 because ||g1gz2|| < |lg1]| + ||lg2]| for g1, 92 € G
and since ||a(t)|| = 2¢ for t > 0 and ||k|| = 0 for k € "K. To summarize,

%S H’QH if (’71772)61—‘\1—‘1)
T if (v1,72) € T1 \ {E}.

Then er > min{n,/3,7/6} and T N K = {E}. Moreover, ||y1]] < |72]|/2 or
V2]l < ||71]l/2 for any (v1,72) € T and thus Np(z, R) < ce'SF for any = € AdS?
and any R > 0 by Fact O

Theorem 3.33. There exists a constant p, > 0 depending only on n such
that for any convex cocompact standard discrete subgroup I' of class n and any
m, k € N with m > 3%, B

Nryaass (Am) > k.
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Proof. If n = 1, then this follows from Theorem since convex cocompact
discontinuous groups are finitely generated, hence we assume that n > 2. In
this case, we shall prove that I" and its small deformation are standard of class
n. When n > 2, the group I'y = ker(pry |r) is a cyclic group of order n. By Fact
B27 replacing T' by some conjugate under "G x {"E}, we may and do assume
[[v1]] > = for any (v1,72) € T'\ I';. By Fact there exists a neighborhood
W of the natural inclusion I' C G such that for any ¢ € W, the restriction of ¢
to the finite subgroup I'; is injective and the inequalities
?Wﬂﬂ”zéﬁHwﬂwﬂﬁéqnﬁm ifyeT'\ Ty, (3.18)

()| < 37 if y eIy

hold where ¢; = pr; op for i = 1,2. Then ¢ is injective and discrete.

We claim ¢;(I'y) is trivial. Indeed, if there exists v € I'y \ {E} such that
©1(y) # " F, then the normalizer of ¢(I'1) in G is contained in "K; X "G where
‘K7 is the maximal compact subgroup of *G containing ¢ (I';). Hence ¢(T') C
‘K1 X 'G. By the inequalities (BI8]), ¢(T") is finite, hence T" is also finite. This
contradicts the assumption that I' is non-elementary. Thus ¢;(I'1) is trivial
and ¢2(T'1) is non-trivial. Hence the normalizer of ¢(I'1) in G is contained
in "G x "Ky, where K is the maximal compact subgroup of "G containing
©2(T'1). Therefore pry(¢(T)) is bounded. Moreover p(I'); = ¢(T'1) by the
inequalities (BI8]), hence the discrete subgroup ¢(T") is standard of class n. By
the explicit description (BI3) of mr(k) and Lemma [B:32] Theorem B33 follows
from Proposition O

Remark 3.34. In the above proof, we have shown that a convex cocompact stan-
dard discrete subgroup I' of class n > 2 and its small deformation are standard
of class n. Therefore we obtain a stronger result that

~A7F\AdS3(>‘m) =00 (3.19)

for any conver cocompact standard discrete subgroup I' of class n > 2 and any
integer m > 3y, if the following statement holds: Np\aass (Am) = oo for any
standard discrete subgroup I' and any m € N such that NF\Ad83 (Am) > 1. The
latter statement is discussed in [I0)] by using discretely decomposable blanching
laws of unitary representations (cf. [12]).

Thus the proof of Theorem B4 is completed.
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