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1 Introduction
Let Γ be a discontinuous group for the three-dimensional anti-de Sitter space
AdS3 := SO0(2, 2)/SO0(2, 1). In this thesis, we study

• a growth rate of the counting of Γ-orbits at infinity;

• the discrete spectrum of the Laplacian of the complete anti-de Sitter man-
ifold Γ\AdS3.

The anti-de Sitter space AdS3 is a Lorentzian manifold with constant sectional
curvature −1 of which the identity component of the isometry group is the
Lie group SO0(2, 2). Discontinuous groups for AdS3 and their deformation
theory have been developed by renowned mathematicians, William Goldman,
Toshiyuki Kobayashi, and Fanny Kassel, among others.

1.1 Relationship between the sharpness of the Γ-action
and a growth rate of its counting at infinity

Traditionaly, the terminology “discontinuous groups” was used to denote the
same meaning of discrete subgroups. Indeed, the action of a discrete group of
isometries is automatically properly discontinuous in the Riemannian setting.
Kobayashi [17] advocated to distinguish two terminologies: discontinuous groups
for the property of actions, and discrete subgroups for the property of groups,
in his study of the action of discrete groups beyond the Riemannian setting.
Following this principle, we call a discrete subgroup Γ of a Lie group G is a
discontinuous group for a homogeneous manifold G/H if the natural Γ-action
on G/H from the left is properly discontinuous and free ([17, Def. 1.3]). Then
the Γ-orbit meets a compact subset of G/H in at most finitely many points,
and thus we may consider the cardinality of the intersection points. Kassel-
Kobayashi [11] introduced a compact subset B(R) called a pseudo-ball of radius
R > 0 in AdS3, more generally in any semisimple symmetric space G/H, and
studied a growth rate of the counting

NΓ(x,R) := #(Γx ∩B(R))

of the Γ-orbit through x ∈ G/H as R → ∞.
When the metric tensor is indefinite such as the anti-de Sitter space AdS3,

an isotropy subgroup of the isometry group is not necessarily compact and an
orbit of a discrete subgroup Γ of isometries may have accumulation points. In
particular, Γ may not act on G/H properly discontinuously. Generalizing a
pioneering work of Kobayashi [14] on the properness criterion by means of the
Cartan projection for homogeneous manifolds of reductive type, Kobayashi [15]
and Benoist [1] established a criterion for a general discrete subgroup Γ of a
reductive Lie group G to act properly discontinuously on G/H. As a slightly
stronger condition than this criterion, Kassel-Kobayashi [11] introduced the no-
tion of (c, C)-sharpness (c > 0, C ≥ 0) of a discontinuous group which quantifies
proper discontinuity. Loosely speaking, the parameter c > 0 indicates that the
“degree of proper discontinuity” of the Γ-action is weaker if c approaches to 0.
Then they gave an upper estimate of the counting for (c, C)-sharp discontinu-
ous groups for AdS3 (more generally, any semisimple symmetric space G/H) by
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means of the two constants c and C, and proved that the counting NΓ(x,R) is
of exponential growth uniformly with respect to x ∈ G/H as R → ∞:

Fact 1.1 (Kassel-Kobayashi [11, Lem. 4.6 (4)]). Let c > 0 and C ≥ 0. There
exists A0 > 0 independent of c and C such that for any torsion-free (c, C)-sharp
discontinuous group Γ for AdS3, one has

∀x ∈ AdS3, ∀R > 0, NΓ(x,R) ≤ A0 exp(4(R+ C)
c

).

On the other hand, there has been no existing literature about the counting
for a non-sharp discontinuous group (the case c = 0) to the best knowledge
of the author. In Chapter 2, generalizing a non-sharp example of Guéritaud-
Kassel [7], we construct a family of infinitely generated subgroups of SO0(2, 2).
Our subgroup has four sequences (a−(k), a+(k), r(k), R(k))k∈N as parameters.
We find a properness criterion and a sharpness criterion for the actions of our
subgroups on AdS3 as conditions of these parameters (Propositions 2.22 and
2.31, respectively). Then we investigate phenomena that may happen for the
counting of orbits of non-sharp discontinuous groups obtained by using these
criteria. In particular, we give constructive proofs of the following:

Theorem A (Theorem 2.1). There exists a non-sharp discontinuous group for
AdS3 such that

∀x ∈ AdS3, ∀R > 0, NΓ(x,R) ≤ 4R.

Theorem B (Theorem 2.2). For any monotone increasing function f : R →
R>0 and any x ∈ AdS3, there exists a discontinuous group Γ ≡ Γf,x for AdS3

satisfying

lim
R→∞

NΓ(x,R)
f(R)

= ∞.

For example, applying Theorem B to f(R) = exp(eR), we can construct a
discontinuous group Γ satisfying

lim
R→∞

#(Γx ∩B(R))
vol(B(R))

= ∞.

1.2 Discrete spectrum of non-sharp anti-de Sitter mani-
folds

In the second half of Chapter 2, we consider the discrete spectrum of the Lapla-
cian of the noncompact anti-de Sitter manifold Γ\AdS3 for a non-sharp discon-
tinuous group Γ.

Let us recall some basic notions. A pseudo-Riemannian manifold is a C∞-
manifold equipped with a smooth non-degenerate symmetric bilinear tensor of
signature (p, q). It is called Riemannian if q = 0 and Lorentzian if q = 1.
As in the Riemannian case, □ = div ◦ grad defines a second order differential
operator (the Laplacian) on a pseudo-Riemannian manifold. In contrast to the
Riemannian setting, the Laplacian on a Lorentzian manifold is not an elliptic
differential operator but a hyperbolic differential operator, and its eigenfunction
is not analytic in general.
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We write L2(M) for the Hilbert space of square integrable functions with
respect to the Radon measure induced by the pseudo-Riemannian structure of
M , and set

L2
λ(M) := {f ∈ L2(M) | □Mf = λf in the weak sense}

for λ ∈ C. Then the set of L2-eigenvalues

Specd(□M ) := {λ ∈ C | L2
λ(M) ̸= 0}

is called the discrete spectrum of the Laplacian of M .
Let us recall a known result by applying to AdS3 the theory of Kassel-

Kobayashi [11] on the discrete spectrum of “intrinsic” differential operators
on locally semisimple symmetric spaces. Let Γ be a discontinuous group for
AdS3. Then the quotient space Γ\AdS3 is a C∞-manifold and the quotient
map AdS3 → Γ\AdS3 is a covering map of C∞-class. The quotient manifold
Γ\AdS3 admits a Lorentzian structure with constant sectional curvature −1
via this covering map. Kassel-Kobayashi [11] initiated the study of the discrete
spectrum Specd(□) of the hyperbolic Laplacian □ on the anti-de Sitter manifold
Γ\AdS3.

They introduced “the Γ-averages of non-periodic eigenfunctions” as a gen-
eralization of Poincaré series to construct L2-eigenvalues. If an eigenfunction φ
of the Laplacian on AdS3 is integrable, then the generalized Poincaré series

φΓ(Γx) :=
∑
γ∈Γ

φ(γ−1x)

defines an integrable function on the anti-de Sitter manifold Γ\AdS3, and is an
eigenfunction of the Laplacian with same eigenvalue. It is known that there
exists an L2-eigenfunction of the Laplacian on AdS3 with eigenvalue

λm := 4m(m− 1) (m ∈ Z and m ≥ 2).

As an application of an upper estimate of the counting as in Fact 1.1, they proved
L2-convergence and non-vanishing of generalized Poincaré series of eigenfunc-
tions with sufficiently large eigenvalue λm, and obtained the following theorem:

Fact 1.2 ([11]). For any sharp discontinuous group Γ for AdS3, there exists a
constant m0(Γ) > 0 such that

Specd(□Γ\AdS3) ⊃ {λm | m ∈ Z, m > m0(Γ)}.

A natural question would be whether the Laplacian on the anti-de Sitter
manifold Γ\AdS3 still has an L2-eigenvalue if the discontinuous group Γ is non-
sharp. As an application of an upper estimate of the counting as Theorem A,
we prove the following by applying the machinery developed in [11]:

Theorem C (Theorem 2.5). There exist a non-sharp discontinuous group Γ
for AdS3 and a constant m′

0(Γ) > 0 such that

Specd(□Γ\AdS3) ⊃ {λm | m ∈ Z, m > m′
0(Γ)}.
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1.3 Multiplicity of the discrete spectrum
In Chapter 3, we study the multiplicity of the L2-eigenvalue λm of the Laplacian
of an anti-de Sitter manifold Γ\AdS3 constructed by generalized Poincaré series.
Here, for a pseudo-Riemannian manifold M ,

NM (λ) := dimC L
2
λ(M) ∈ N ∪ {∞}

is called the multiplicity of an L2-eigenvalue λ. The Laplacian on a Rieman-
nian manifold is an elliptic differential operator and the multiplicity of an L2-
eigenvalue is always finite if M is compact. However, in the Lorentzian setting,
the multiplicity may be finite or may not even if M is compact.

Kassel-Kobayashi [12] proved that NΓ\AdS3(λm) = ∞ for sufficiently large
m ∈ N if a discontinuous group Γ for AdS3 is torsion-free and standard ([11,
Def. 1.4]). On the other hand, there exists a non-standard discontinuous group
Γ, for example a finitely generated discontinuous group Γ which is Zariski-dense
in the Lie group SO(2, 2) ([16], [13]). However, it is not known whether the
multiplicity of the Laplacian is finite in this case. In this thesis, we prove that
the multiplicities of the Laplacian on the anti-de Sitter manifold Γ\AdS3 are
unbounded for such Γ:
Theorem D (Theorem 3.1). For any finitely generated discontinuous group Γ
for AdS3,

lim
m→∞

NΓ\AdS3(λm) = ∞.

In the proof, we find an explicit constant mΓ(k) ∈ R for any k ∈ N such that
NΓ\AdS3(λm) ≥ k if m > mΓ(k). To be more precise, we use SO(2) × SO(2)-
finite L2-eigenfunctions of the Laplacian on AdS3 with eigenvalue λm vanishing
at the origin. We note that such eigenfunctions decay more rapidly at infinity
than at the origin with respect to geodesic parameters. We choose an L2-
eigenfunction with eigenvalue λm for each j = 0, 1, . . . , k − 1 which decays at
the origin as rapidly as R3j when a “pseudo-distance” R from the origin tends
to zero, and show the linear independence of their generalized Poincaré series
when m ≥ mΓ(k) (Proposition 3.15).

In the second half of Chapter 3, we study how the multiplicities of L2-
eigenvalues behave under a small deformation of a discrete subgroup. The study
of local rigidity and stability of discontinuous groups for non-Riemannian homo-
geneous manifolds was initiated by Kobayashi [16] and Kobayashi-Nasrin [19].
In our AdS3 setting, any cocompact discontinuous group is not locally rigid and
its proper discontinuity is stable under any small deformation ([16], [13]). More-
over, Kassel-Kobayashi [11] constructed infinitely many stable L2-eigenvalues of
the Laplacian of any compact anti-de Sitter manifold Γ\AdS3 under any small
deformation of Γ. More specifically, for sufficiently large m ∈ N, one has

λm ∈
∩
Γ′

Specd(□Γ′\AdS3),

where Γ′ runs over a sufficiently small neighborhood of Γ in the compact-open
topology ([11, Cor. 9.10]). In this thesis, we introduce in Definition 3.3 the
multiplicities of stable eigenvalues denoted by

ÑΓ\AdS3 : C → N ∪ {∞}.

This function has the following properties:
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• ÑΓ\AdS3(λ) ̸= 0 if and only if λ is a stable L2-eigenvalue of □Γ\AdS3 ;

• NΓ′\AdS3(λ) ≥ ÑΓ\AdS3(λ) for any Γ′ sufficiently close to Γ.

Moreover, we prove the following:

Theorem E (Theorem 3.4). For any cocompact discontinuous group Γ for
AdS3,

lim
m→∞

ÑΓ\AdS3(λm) = ∞.

The explicit constant mΓ(k) also plays a crucial role in the proof of Theorem
E. Here, recall

NΓ\AdS3(λm) ≥ k for any integer m > mΓ(k).

The constant mΓ(k) is defined in the proof of Theorem D by using

• a growth rate of the counting NΓ(x,R) as R → ∞;

• the “injective radius” of the anti-de Sitter manifold Γ\AdS3.

We control these two quantities simultaneously using Lipschitz constants asso-
ciated to Γ introduced by Guéritaud-Kassel [7], and show that mΓ(k) depends
“continuously” on a small deformation of Γ. We prove that the larger m ∈ N
is, the more L2-eigenfunctions of the Laplacian of the compact anti-de Sitter
manifold Γ\AdS3 can be constructed and that their construction is stable under
any small deformation of Γ.
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2 Counting orbits of certain infinitely generated
non-sharp discontinuous groups for the anti-
de Sitter space

2.1 Introduction
2.1.1 Construction of Γν(a−, a+, r, R) and the counting

In this paper, we construct a family of discrete groups Γ of isometries of the
3-dimensional anti-de Sitter space AdS3 such that

• Γ act properly discontinuously on AdS3;

• the counting has an arbitrary growth rate at infinity,

generalizing an example of Guéritaud-Kassel [7]. By counting, we mean the
cardinality of a Γ-orbit contained in a compact set called a pseudo-ball B(R) of
radius R > 0.

In contrast to the Riemannian case, a discrete group of isometries of a
pseudo-Riemannian manifold such as AdS3 may act with non-closed orbits. We
recall some basic notions and facts. A pseudo-Riemannian manifold is a smooth
manifold X equipped with a smooth non-degenerate symmetric tensor of sig-
nature (p, q). It is Riemannian if q = 0 and Lorentzian if q = 1. A discrete
group Γ of isometries of a pseudo-Riemannian manifold X is called a discontin-
uous group for X if Γ acts on X properly discontinuously and freely (we include
freeness in the definition as in Kobayashi [17, Def. 1.3]). Then there are at
most finite elements in any orbit of a discontinuous group Γ contained in any
compact subset of X, hence we may think of its cardinality. A semisimple sym-
metric space X = G/H is a typical example of a pseudo-Riemannian manifold,
of which the isometry group is “large”. Kassel and Kobayashi proved in [11]
for a discontinuous group Γ(⊂ G) for an arbitrary semisimple symmetric space
G/H that the counting is at most of exponential growth if Γ is sharp (a notion
for “strong” proper discontinuity, see [11, Def. 4.2]).

The 3-dimensional anti-de Sitter space AdS3 is the simplest example of
a Lorentzian semisimple symmetric space that admits infinite discontinuous
groups. Let us recall the counting result of Kassel-Kobayashi [11] in this spe-
cific setting where X = AdS3 and G = SL(2,R) × SL(2,R). They considered a
compact subset B(R) of X called a pseudo-ball of radius R > 0, of which the
volume is of exponential growth as R → ∞, see Section 2.2.1. They proved that
if a discontinuous group Γ ⊂ G is sharp, then the counting

NΓ(x,R) := #(Γx ∩B(R)) for x ∈ X and R > 0

has an exponential growth uniformly on x ∈ X ([11, Lem. 4.6 (4)]):

∃A > 0, ∃a > 0, ∀x ∈ X, ∀R > 0, NΓ(x,R) ≤ AeaR. (2.1)

In particular, one has

∃a > 0, ∀x ∈ AdS3, lim sup
R→∞

NΓ(x,R)
eaR

< ∞. (2.2)
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Any finitely generated discontinuous group for AdS3 is sharp by the results
of Kassel [8] and Guéritaud-Kassel [7], hence its counting always satisfies the
exponential growth condition (2.1).

On the other hand, the counting for a non-sharp discontinuous group has
not been well-understood. In this paper, we investigate what can happen about
the asymptotic behavior for the counting NΓ(x,R) when Γ is non-sharp. For
this, we construct a family of subgroups Γν ≡ Γν(a−, a+, r, R) of SL(2,R) ×
SL(2,R) for sufficiently large ν ∈ N associated to quadruples (a−, a+, r, R) of
real-valued sequences in Section 2.3, and study how the properties of Γν depend
on the data (a−, a+, r, R). For instance, we find a necessary and sufficient
condition for the quadruple (a−, a+, r, R) that Γν is a discontinuous group for
AdS3 in Proposition 2.22. Moreover we determine when the Γν-action on AdS3

is sharp in Proposition 2.31. With these criteria, we present various non-sharp
discontinuous groups for which different phenomena happen about the counting
by choosing appropriate data (a−, a+, r, R):

Theorem 2.1. There exists a non-sharp discontinuous group Γ for AdS3 sat-
isfying

∀x ∈ AdS3, ∀R > 0, NΓ(x,R) ≤ 4R.

Theorem 2.2. Let x ∈ AdS3. For any increasing function f : R → R>0, there
exists a discontinuous group Γ ≡ Γf,x for AdS3 satisfying

lim
R→∞

NΓ(x,R)
f(R)

= ∞.

Remark 2.3. Theorem 2.2 applied to the function f(R) = exp(exp(R)) shows

lim
R→∞

NΓ(x,R)
vol(B(R+ c))

= ∞

for any c > 0 since the volume vol(B(R)) is of exponential growth as R → ∞.
Thus an analogue of the Riemannian case (2.3) below does not hold.

The above theorems deal with the setting where the metric tensor of X is
indefinite and Γ is a discontinuous group for X. Let us compare them with
some known results in the following different settings:

• Γ is a discontinuous group for X, but X is Riemannian (the metric tensor
of X is positive definite);

• the metric tensor of X is indefinite, but Γ is not a discontinuous group for
X (e.g. Γ is a lattice of the isometry group of X).

Suppose that X is a complete Riemannian manifold, and that Γ is a discrete
group of isometries of X. We write B(R) for the ball of radius R centered at a
fixed point in X. Then,

∀x ∈ X, ∃c > 0, lim sup
R→∞

#(Γx ∩B(R))
vol(B(R+ c))

< ∞. (2.3)

The estimate (2.3) does not require that Γ is finitely generated, but the Rie-
mannian assumption is crucial as shown in Remark 2.3.
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A semisimple symmetric space X = G/H admits a G-invariant pseudo-
Riemannian structure. Eskin-Mcmullen [4] studied the counting of an orbit of
a lattice Γ of G in X = G/H. Their result [4, Thm. 1.4] applied to the specific
case where X = AdS3 and G = SL(2,R) × SL(2,R) tells us that if Γ ∩ H is a
lattice in H, then at the base point o = eH ∈ X

lim
R→∞

NΓ(o,R)
vol(B(R))

= vol(Γ\G)
vol((Γ ∩H)\H)

. (2.4)

In the right-hand side, the Haar measures of G and H (and therefore, the
induced measures of Γ\G and Γ ∩ H\H) are normalized such that the Fubini
theorem for the fibration H → G → X = G/H is given by dg = dxdh, where dx
is the volume element of the anti-de Sitter space X = AdS3 (see Section 2.2).
We note that their setting is different from ours: Γ in [4] is a lattice of G, hence
does not act properly discontinuously on X.

We summarize these results about the asymptotic behaviors of NΓ(x,R) in
each setting in Table 2.1.1 below:

Table 2.1: The asymptotic behaviors of NΓ(x,R)
Γ x ∈ AdS3 NΓ(x,R)

Eskin-Mcmullen [4] ∀ lattice in G special x ∼ AeR

Kassel-Kobayashi [11] ∀ sharp discont. gp. general x ≤ AeaR

Theorem 2.1 ∃ non-sharp discont. gp. general x ≤ AeaR

Theorem 2.2 ∃ non-sharp discont. gp. general x ≫ exp(eR)

Remark 2.4. Kassel-Kobayashi [11] gave a uniform estimate of NΓ(x,R) with
respect to x ∈ AdS3. We prove such a uniform estimate for Theorem 2.1, but
not for Theorem 2.2.

2.1.2 Spectrum of the Laplacian on Γν\AdS3

Let Γ be a discontinuous group for the anti-de Sitter space X := AdS3. Then
the quotient space XΓ := Γ\X is a C∞-manifold and the quotient map X → XΓ
is a smooth covering. Thus XΓ inherits an anti-de Sitter structure from X, and
in particular, is a Lorentzian manifold. As in the Riemannian case, one defines
the Laplacian □XΓ := div ◦ grad, a second-order differential operator on XΓ.

Kassel-Kobayashi [11] initiated the study of global analysis on the anti-de
Sitter manifold XΓ (actually in a much more general setting). They studied the
discrete spectrum, namely the set of L2-eigenvalues of the Laplacian □XΓ on
XΓ, denoted by

Specd(□XΓ) := {λ ∈ C | ∃f ∈ L2(XΓ) \ {0}, □XΓf = λf in the weak sense}.

Here L2(XΓ) is the Hilbert space of square integrable functions on XΓ with
respect to the Radon measure induced by the Lorentzian structure. We note
that in contrast to the Riemannian case where the Laplacian is an elliptic dif-
ferential operator, the Laplacian for the Lorentzian manifold XΓ is a hyperbolic
operator, and thus eigenfunctions may and may not be smooth functions by
the failure of the elliptic regularity theorem (see [12, Sect. 3.1] for example).
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Kassel-Kobayashi [11] proved the following: if Γ is sharp, then there exists
m0 = m0(Γ) > 0 such that

Specd(□XΓ) ⊃ {4m(m− 1) | m ∈ Z and m > m0}.

In particular, they proved that the discrete spectrum Specd(□XΓ) is infinite in
the setting where Γ is sharp.

A natural question would be whether the Laplacian □XΓ still has an L2-
eigenvalue if the discontinuous group Γ is non-sharp. As an application of the
sharpness criterion (Proposition 2.31) and an upper estimate of the counting
as in Theorem 2.1, we can apply the machinery developed in [11] also to the
non-sharp setting, and prove:

Theorem 2.5 (see Theorem 2.39 and Example 2.40). There exist a non-sharp
discontinuous group Γ for AdS3 and m0 = m0(Γ) > 0 such that

Specd(□XΓ) ⊃ {4m(m− 1) | m ∈ Z and m > m0}.

2.1.3 Organization of the paper

In Section 2.2, we give preliminary results including a pseudo-ball B(R) and the
Kobayashi-Benoist properness criterion applied to our AdS3 setting. In Section
2.3, we construct a family of infinitely generated Schottky-like discontinuous
groups Γν ≡ Γν(a−, a+, r, R) for AdS3 associated to quadruples (a−, a+, r, R)
of real-valued sequences satisfying some conditions for sufficiently large ν ∈ N.
Moreover, we recall the notion of sharpness for discontinuous groups, and find a
necessary and sufficient condition on the quadruple (a−, a+, r, R) such that Γν

is sharp. In Section 2.4, we find a lower bound for the counting NΓν
(x,R), and

prove Theorem 2.2. In Section 2.5, we find a sufficient condition on the quadru-
ple (a−, a+, r, R) such that the counting NΓν (x,R) is at most of exponential
growth, and complete the proof of Theorem 2.1 with the sharpness criterion
given in Section 2.3. The proof of Theorem 2.5 is then given by applying the
method established by Kassel-Kobayashi [11].

Notation. N = {0, 1, 2, . . .} and N+ = {1, 2, 3, . . .}.

2.2 Preliminary results about AdS3

In this section, we collect some preliminary results about AdS3 that will be
needed for later sections.

Let V be a four-dimensional real vector space equipped with a quadratic
form Q of signature (2, 2) on V , and X the hypersurface given by X = {v ∈ V |
Q(v) = 1}. The tangent space TvX at v ∈ X is identified with the orthogonal
complement (Rv)⊥ in V with respect to Q. The restriction of −Q to the hyper-
plane (Rv)⊥ is a quadratic form of signature (2, 1), which induces a Lorentzian
structure on X with constant sectional curvature −1. The resulting Lorentzian
manifold is called the 3-dimensional anti-de Sitter space AdS3.

2.2.1 Pseudo-balls in AdS3

In this subsection, we consider pseudo-balls B(R) on the Lorentzian manifold
AdS3. We work with coordinates on AdS3 by choosing V = M(2,R) and Q =
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det. Then AdS3 is identified with SL(2,R). The direct product group SL(2,R)×
SL(2,R) acts on V = M(2,R) by left and right multiplication, which induces an
isometric and transitive action on AdS3. Thus

AdS3 ∼= (SL(2,R) × SL(2,R))/diag(SL(2,R)).

Let o be the base point in AdS3 corresponding to the identity matrix in
SL(2,R). The pseudo-distance ∥g∥(≥ 0) of g ∈ SL(2,R) from the base point o
is defined by the formula

2 cosh ∥g∥ = Tr(tgg). (2.5)

We give two equivalent definitions of the pseudo-distance ∥g∥ as below.

First, for θ ∈ [0, 2π] and t ≥ 0, we set k(θ) :=
(

cos θ − sin θ
sin θ cos θ

)
and

a(t) :=
(
et 0
0 e−t

)
. Any element g ∈ SL(2,R) can be expressed by the Car-

tan decomposition g = k(θ1)a(t)k(θ2) with θ1, θ2 ∈ [0, 2π] and unique t ≥ 0.
Then (2.5) implies

∥g∥ = 2t. (2.6)

This interpretation shows readily that the map ∥·∥ : SL(2,R) → [0,∞) is proper
and that for any R > 0,

B(R) := {g ∈ SL(2,R) | ∥g∥ ≤ R} (2.7)

is a compact subset of SL(2,R), to which we refer as the pseudo-ball of radius
R. The family {B(R)}R>0 is well-rounded (Eskin-Mcmullen [4, Thm. 6.1]).

Second, we realize the hyperbolic space H2 as the upper-half plane {x +√
−1y ∈ C | y > 0} endowed with the metric tensor ds2 = y−2(dx2 + dy2). We

write dH2 for the hyperbolic distance of H2. The group SL(2,R) acts isomet-
rically on H2 by linear fractional transformations. In this model, the pseudo-
distance ∥g∥ is computed by (2.6) as follows:

Lemma 2.6 (see e.g. [7, (A.1) and (A.2)]). For any g ∈ SL(2,R),

∥g∥ = dH2(g
√

−1,
√

−1).

In particular, for any point x+
√

−1y ∈ H2,

2 cosh dH2(x+
√

−1y,
√

−1) = x2 + y2 + 1
y

.

The following properties of the pseudo-distance follow from Lemma 2.6:

Lemma 2.7. For g, g′ ∈ SL(2,R),

(1) ∥g−1∥ = ∥g∥.

(2) |∥g∥ − ∥g′∥| ≤ ∥gg′∥ ≤ ∥g∥ + ∥g′∥.

12



The Jacobian of the Cartan decomposition (0, 2π) × (0,∞) × (0, 2π) →
SL(2,R) defined by (θ1, t, θ2) 7→ k(θ1)a(t)k(θ2) equals sinh(2t) with respect
to this Lorentzian structure on SL(2,R) ∼= AdS3 and the standard metrics of
the intervals (0, 2π) and (0,∞). Hence the following integral formula holds:∫

SL(2,R)
f(g)dg =

∫ 2π

0

∫ ∞

0

∫ 2π

0
f(k(θ1)a(t)k(θ2)) sinh(2t)dθ1dtdθ2. (2.8)

Therefore, the volume vol(B(R)) equals 2π2(cosh(R)−1) since k(θ1)a(t)k(θ2) ∈
B(R) if and only if 2t ≤ R.

2.2.2 Discontinuous groups for AdS3

Let G be a Lie group, H a closed subgroup of G, and Γ a discrete subgroup
of G, which acts naturally on X := G/H from the left. In this subsection,
we explain the Kobayashi-Benoist criterion for the proper discontinuity of the
Γ-action on X applied to our specific setting where G = SL(2,R) × SL(2,R),
H = diag(SL(2,R)), and X = AdS3.

Throughout this paper, we mean by a discontinuous group for X a discrete
subgroup Γ of G acting properly discontinuously and freely on X (Kobayashi
[17, Def. 1.3]). For torsion-free Γ, it is a discontinuous group for X if and only
if Γ acts properly discontinuously on X. Proper discontinuity is a serious condi-
tion when the isotropy subgroup of G on X is noncompact. Geometrically, one
should note that not every discrete subgroup of isometries can act properly dis-
continuously on a pseudo-Riemannian manifold X. Kobayashi [15] and Benoist
[1] established a properness criterion for reductive G generalizing the original
properness criterion of Kobayashi [14].

Applying the Kobayashi-Benoist properness criterion to our specific setting,
we can determine whether the Γ-action on AdS3 is properly discontinuous in
terms of the pseudo-distance defined in Section 2.2.1 as follows:

Fact 2.8 (Kobayashi [15] and Benoist [1]). Let Γ be a discrete subgroup of
SL(2,R) × SL(2,R). The following are equivalent:

(i) The action of Γ on AdS3 is properly discontinuous.

(ii) For any C > 0, the set {(α, β) ∈ Γ | |∥α∥ − ∥β∥| < C} is finite.

2.3 Discontinuous groups Γν(a−, a+, r, R) for AdS3

In this section, we introduce a family of Schottky-like subgroups Γν(a−, a+, r, R)
of G = SL(2,R) × SL(2,R) in Definition 2.15 associated to the following data:

• ν ∈ N;

• a−, a+ : N → R and r,R : N → R>0 satisfying Assumptions 2.9–2.11 below.

We find a properness criterion and a sharpness criterion for the action of Γν(a−, a+, r, R)
on AdS3. In particular, we use three constants

νdis ≤ νpro ≤ νsha

with νsha ≡ νsha(c) depending on c > 0 for sufficiency of discreteness, proper-
ness, and sharpness of Γν(a−, a+, r, R) as follows:
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• if ν ≥ νdis, then Γν(a−, a+, r, R) is an infinitely generated, free discrete
subgroup of G (Proposition 2.18);

• if ν ≥ νpro, then the action of Γν(a−, a+, r, R) on AdS3 is properly dis-
continuous (Proposition 2.21);

• if ν ≥ νsha(c), then Γν(a−, a+, r, R) is (c, 0)-sharp for AdS3 in the sense
of Kassel-Kobayashi [11] (Proposition 2.31).

2.3.1 Construction of discrete subgroups Γν(a−, a+, r, R)

In this subsection, we construct Γν(a−, a+, r, R) and see that it is an infinitely
generated, free discrete subgroup of G for any integer ν ≥ νdis.

We assume that a−, a+ : N → R and r,R : N → R>0 satisfy the following:

Assumption 2.9. There exists νdis ∈ R such that for any integer k ≥ νdis,

r(k) < R(k),
a−(k) +R(k) < a+(k) −R(k),
a+(k) +R(k) < a−(k + 1) −R(k + 1).

Assumption 2.10.

lim
k→∞

a+(k) = lim
k→∞

a−(k) = ∞.

For ν ∈ N, we set

η(ν) := sup
{∣∣∣∣ R(k)
aδ(k) − aϵ(ℓ)

∣∣∣∣∣∣∣∣ δ, ϵ ∈ {+,−}, k, ℓ ≥ ν, and k ̸= ℓ if δ = ϵ

}
.

(2.9)

Assumption 2.11.
lim

ν→∞
η(ν) = 0.

Such quadruples (a−, a+, r, R) may be obtained as follows:

Lemma 2.12. Given a real-valued monotone increasing C2-function p(x) de-
fined for sufficiently large x, say x ≥ ν0, such that limx→∞ p(x) = ∞ and that
the second derivative p′′(x) is nowhere vanishing, we set a−(k) := p(k) and
a+(k) := p(k + 1

2 ) for any integer k ≥ ν0. Take any sequence R(k) > 0 such
that the positive-valued sequence

pR(k) := R(k)
min{p′(k − 1), p′(k + 1)}

converges to 0 as k tends to infinity, and choose any sequence r(k) > 0 such
that r(k) < R(k). Take νdis ∈ R with νdis ≥ ν0 such that pR(k) < 1

4 for
any integer k ≥ νdis. Then the quadruple (a−, a+, r, R) satisfies Assumptions
2.9–2.11. Moreover,

η(ν) ≤ 2 max
k≥ν

pR(k) for ν ≥ νdis. (2.10)

14



Remark 2.13. The definition of pR(k) cannot be replaced by a simpler one
such as pR(k) := R(k)/p′(k), as the third condition of Assumption 2.9 does not
necessarily follow.

Proof of Lemma 2.12. Assumption 2.10 is obviously satisfied. We note that the
derivative p′(x) on any bounded interval attains its minimum at one of the ends
of the interval because the second derivative p′′(x) is nowhere vanishing. By the
mean value theorem, we have

p(y) − p(x) ≥ (y − x)R(k)
pR(k)

for k − 1 ≤ x < y ≤ k + 1, (2.11)

p(t) − p(s) ≥ (t− s)R(k + 1)
pR(k + 1)

for k ≤ s < t ≤ k + 1.

Hence, for any integer k ≥ νdis, we have

a+(k) − a−(k) = p(k + 1
2

) − p(k) ≥ R(k)
2pR(k)

> 2R(k),

a−(k+1)−a+(k) = p(k+1)−p(k+ 1
2

) ≥ R(k)
4pR(k)

+ R(k + 1)
4pR(k + 1)

> R(k)+R(k+1).

Thus Assumption 2.9 is verified.
Take any k, ℓ ≥ νdis and δ, ϵ ∈ {+,−}. We assume k ̸= ℓ if δ = ϵ. Since the

function p(x) is monotone increasing,

|aδ(k) − aϵ(ℓ)| ≥ min
{
p(k) − p(k − 1

2
), p(k + 1

2
) − p(k), p(k + 1) − p(k + 1

2
)
}

≥ R(k)
2pR(k)

,

where the second inequality follows from (2.11). Hence we get (2.10) and thus
Assumption 2.11 is verified since limk→∞ pR(k) = 0.

Example 2.14. The quadruples (a−, a+, r, R) in (1), (2), and (3) of Table 2.2
are obtained by applying Lemma 2.12 to p(x) = exp(ex), x2, and log x, respec-
tively. For the reader’s convenience, we list in Table 2.2 also the asymptotic
behaviors of the counting NΓ(x,R) as R tends to infinity where Γ are the dis-
continuous groups Γν(a−, a+, r, R) associated to the quadruples (a−, a+, r, R) in
(1) and (3). We refer to Example 2.40 (2) and Example 2.38 below for details
about the counting.

Table 2.2: Examples of (a−, a+, r, R) satisfying Assumptions 2.9-2.11

a−(k) a+(k) r(k) R(k) NΓ(x,R)
(1) exp(ek) exp(ek+ 1

2 ) 1 ek ≤ 4R

(2) k2 k2 + k + 1
4 1 log k

(3) log k log(k + 1
2 ) (k2 log k)−1 k−2 ≥ exp(eR

4 ) − ν
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a−(k)
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k

B−
k

R(k)

r(k)

a+(k)

r(k)
R(k)

A+
k

B+
k

R(k)

r(k)

a−(k + 1)

A−
k+1

B−
k+1

R(k + 1)

r(k + 1)

· · ·

Figure 2.1: A±
k and B±

k in H2

We introduce a coordinate map τ : R × R × R>0 → SL(2,R) by

τ = τ(x−, x+, u) := 1
u

(
x+ −(x−x+ + u2)
1 −x−

)
∈ SL(2,R). (2.12)

Then the quadruple (a−, a+, r, R) of functions defines a sequence of elements
(αk, βk) ∈ G by

αk := τ(a−(k), a+(k), r(k)), βk := τ(a−(k), a+(k), R(k)) ∈ SL(2,R). (2.13)

Definition 2.15. Let (a−, a+, r, R) be a quadruple of sequences satisfying As-
sumptions 2.9–2.11. For ν ∈ N, we define Γν(a−, a+, r, R) as the subgroup of G
generated by {(αk, βk) | k = ν, ν + 1, . . .}.

Notation 2.16. Let F∞ denote the free group generated by countably many
elements {γk}k∈N. Let (αk, βk) ∈ G be a sequence of elements associated to a
quadruple (a−, a+, r, R) satisfying Assumptions 2.9–2.11 by (2.13). Then there
exist group homomorphisms j : F∞ → SL(2,R) and ρ : F∞ → SL(2,R) such
that j(γk) = αk and ρ(γk) = βk for all k ∈ N. For ν ∈ N, let F∞

ν be the
subgroup of generated by {γk}∞

k=ν .

Then, by Definition 2.15,

Γν(a−, a+, r, R) = {(j(γ), ρ(γ)) | γ ∈ F∞
ν }.

Example 2.17. The subgroup Γν(a−, a+, r, R) for (a−(k), a+(k), r(k), R(k)) =
(k2, k2 + k, 1, log k) coincides with Γj,ρ

ν in Guéritaud-Kassel [7, Sect. 10.1].

Proposition 2.18. Let (a−, a+, r, R) be a quadruple of sequences satisfying
Assumptions 2.9–2.11, and νdis ∈ R as in Assumption 2.9. Then the subgroup
Γν(a−, a+, r, R) of G is discrete and free for any integer ν ≥ νdis.

The proof of Proposition 2.18 is based on a ping-pong lemma. For this, we
need some setups. Let | · | denote the Euclidean norm in the upper-half plane
H2. Associated to the quadruple (a−, a+, r, R), we set

Aϵ
k := {z ∈ H2 | |z − aϵ(k)| ≤ r(k)}, Bϵ

k := {z ∈ H2 | |z − aϵ(k)| ≤ R(k)}.
(2.14)

for k ∈ N and ϵ ∈ {+,−}, see Figure 2.1. Take any integer ν ≥ νdis. Then we
claim:

• A−
ν , A

+
ν , A

−
ν+1, A

+
ν+1, . . . are disjoint;
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• αk(H2 \A−
k ) ⊂ A+

k for k ≥ ν;

•
∪

k≥ν(A−
k ∪A+

k ) is a proper closed subset of H2.

The first claim is immediate from Assumption 2.9 and thus the third claim is
obvious from Assumption 2.10. To see the second claim, we use the following
key property of the map τ = τ(x−, x+, u) in (2.12):

|z − x−| > u if and only if |τ(z) − x+| < u for z ∈ H2, (2.15)

which is readily seen from the identity

τ(z) − x+ = −u2(z − x−)−1. (2.16)

Proposition 2.18 holds because the subgroup of SL(2,R) generated by {αk | k =
ν, ν + 1, . . .} is free and discrete by a standard ping-pong argument, namely, by
applying Lemma 2.19 below to H = SL(2,R), Y = H2, and Y ±

k = A±
k+ν .

Lemma 2.19 (Ping-pong lemma). Let H be a topological group acting continu-
ously on a topological space Y , and Γ the subgroup generated by h0, h1, . . . ∈ H.
Suppose that there exist disjoint closed subsets Y −

0 , Y +
0 , Y −

1 , Y +
1 , . . . of Y satis-

fying the following:

(i) hk(Y \ Y −
k ) ⊂ Y +

k for any k ∈ N.

(ii)
∪

k∈N(Y −
k ∪ Y +

k ) is a proper closed subset of Y .

Then, Γ is a free discrete subgroup of H.

Although the proof of Lemma 2.19 is standard, we give a proof for the sake
of completeness.

Proof. The conditions (i) and (ii) may be restated as h−1
k (Y \ Y +

k ) ⊂ Y −
k for

any k ∈ N and U := Y \
∪

i∈N(Y −
i ∪ Y +

i ) is a non-empty open subset of Y ,
respectively. Take any h = hs0

i0
· · ·hsn

in
∈ Γ. Suppose that this is a reduced

expression, namely, s0, . . . , sn ∈ {1,−1} and sk = sk+1 whenever ik = ik+1 for
0 ≤ k < n. Then we have h(U) ⊂ Y s0

i0
and thus h(U) ∩ U = ∅. Hence h ̸= e

and {h0, h1, . . .} is a free generator of Γ. Take a neighborhood V of e in H and
a non-empty open subset W of U such that V ·W ⊂ U . Then Γ ∩ V = {e} and
thus Γ is discrete in H.

2.3.2 Proper discontinuity of the action of Γν(a−, a+, r, R)

In this subsection, we find a necessary and sufficient condition for Γν(a−, a+, r, R)
to act properly discontinuously on AdS3.

We introduce a constant ε(ν) for this. Let (a−, a+, r, R) be a quadruple
satisfying Assumptions 2.9–2.11, and η(ν) as in (2.9). Let (αk, βk) ∈ G be the
sequence of the elements associated to the quadruple (a−, a+, r, R) by (2.13).
For ν ∈ N, we set

ε(ν) := max
k≥ν

{
24R(k)
a−(k)

,
6(R(k)2 + 1)

(a−(k) −R(k))2 , 8η(k)
}
. (2.17)
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The sequence ε(ν) is monotone decreasing. We claim limν→∞ ε(ν) = 0. To see
this, we note

lim
k→∞

R(k)
a+(k)

= 0, lim
k→∞

R(k)
a−(k)

= 0. (2.18)

In fact, for sufficiently large k ∈ N, the sequences a−(k), a+(k) are monotone
increasing by Assumption 2.9, and a−(k), a+(k) > 0 by Assumption 2.10. Hence
we get (2.18) by Assumption 2.11. Therefore, limν→∞ ε(ν) = 0 follows again
from Assumptions 2.9–2.11.

It is convenient to note the following:

Lemma 2.20. Let (a−, a+, r, R) be a quadruple of sequences satisfying Assump-
tions 2.9–2.11, νdis ∈ R as in Assumption 2.9, η(ν) as in (2.9), and B±

k as in
(2.14). Take any integer ν ≥ νdis satisfying ε(ν) < 1. Then,

ε(ν) ≥ max
k≥ν,

δ∈{1,−1}

{
12
∣∣∣∣log

(
1 + δR(k)

a−(k)

)∣∣∣∣ , 6 log
(

1 + e−2dH2 (Bδ
k,

√
−1)
)
,

6 log
(

1 + R(k)2 + 1
(a−(k) −R(k))2

)
, 4 |log(1 + δη(k))|

}
.

Here we have used the convention that B±1
k = B±

k .

Proof. For δ ∈ {1,−1}, we claim

e−2dH2 (Bδ
k,

√
−1) <

R(k)
a−(k)

. (2.19)

Then the assertion follows from the inequalities t ≥ log(1 + t) for t ≥ 0 and
2s ≥ | log(1 − s)| for 0 ≤ s ≤ 1

2 since ε(ν) < 1.
We now prove (2.19). Note 3R(k)(< 24R(k)) < a−(k) and a−(k) −R(k)(>√

6) > 2 for any integer k ≥ ν since ε(ν) < 1. Thus

(a−(k) −R(k))2 > 2(a−(k) −R(k)) > a−(k) +R(k). (2.20)

We write xδ(k)+
√

−1yδ(k) ∈ H2 for the closest point of Bδ
k to

√
−1 with respect

to the hyperbolic distance. Obviously, we have

xδ(k) ≥ aδ(k) −R(k), yδ(k) ≤ R(k).

Thus, by Lemma 2.6,

2 cosh dH2(Bδ
k,

√
−1) > xδ(k)2

yδ(k)
≥ (aδ(k) −R(k))2

R(k)
≥ (a−(k) −R(k))2

R(k)
,

where the last inequality follows from Assumption 2.9. Hence, since e−dH2 (Bδ
k,

√
−1) ≤

1, we have

edH2 (Bδ
k,

√
−1) >

(a−(k) −R(k))2

R(k)
− 1 > a−(k)

R(k)
where the second inequality follows from (2.20). Therefore,

e−2dH2 (Bδ
k,

√
−1) ≤ e−dH2 (Bδ

k,
√

−1) <
R(k)
a−(k)

.

This proves (2.19) and thus the lemma holds.
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The action of the Schottky-like discrete group Γν(a−, a+, r, R) on AdS3 is
not always properly discontinuous. We give a necessary and sufficient condition
for this action to be properly discontinuous:

Proposition 2.21. Let (a−, a+, r, R) be a quadruple of sequences satisfying
Assumptions 2.9–2.11, and νdis ∈ R as in Assumption 2.9. The action of
Γν(a−, a+, r, R) on AdS3 is properly discontinuous for sufficiently large ν ∈ N
if and only if

lim
k→∞

R(k)
r(k)

= ∞. (2.21)

In this case, take νpro ∈ R with νpro ≥ νdis such that ε(k) < 1 and log(R(k)/r(k)) >
1 for any integer k ≥ νpro. Then the action of Γν(a−, a+, r, R) is properly dis-
continuous for any ν ≥ νpro.

Postponing the proof of Proposition 2.21, we state its immediate conse-
quences in Proposition 2.22 and Lemma 2.24 as below. First, since the group
Γν(a−, a+, r, R) is torsion-free, any properly discontinuous action is free, hence
we obtain:

Proposition 2.22. In the setting of Proposition 2.21, assume the condition
(2.21). Then Γν(a−, a+, r, R) is a discontinuous group for AdS3 if ν ≥ νpro.

Example 2.23. All (a−, a+, r, R) in Table 2.2 apply to Proposition 2.22.

Second, we formulate the following lemma which is actually a special case
of Proposition 2.22. We will use Lemma 2.24 in Section 2.4 for a lower bound
of the counting NΓ(o,R) and in Section 2.5 for the proof of Theorem 2.1:

Lemma 2.24. Let p(t) be a monotone increasing C2-function defined for suf-
ficiently large t, say t ≥ ν0, such that the second derivative p′′(t) is nowhere
vanishing and limt→∞ p(t) = ∞, and q(t) a continuous function satisfying
limt→∞ q(t) = ∞. We set δ := sgn(p′′(t)) ∈ {±1}, which is independent of
t ≥ ν0. Let Γν(p, q) denote the group Γν(a−, a+.r, R) associated to the sequences

a−(k) := p(k), a+(k) := p(k + 1
2

), r(k) := p′(k − δ)
p(k)q(k)

, R(k) := p′(k − δ)
q(k)

(2.22)

for k ≥ ν0. Then Γν(p, q) is a discontinuous group for AdS3 if ν ≫ 0.

Proof of Lemma 2.24. The quadruple (a−, a+, r, R) applies to Lemma 2.12 and
satisfies the condition (2.21). Hence the assertion follows from Proposition 2.22.

Remark 2.25. We shall study some basic properties of the action of the group
Γν(p, q) on AdS3 in later sections: for instance, see Lemma 2.34 for a necessary
and sufficient condition on the pair (p, q) such that the discontinuous group
Γν(p, q) is sharp in the sense of Kassel-Kobayashi [11], and see Proposition 2.37
for the counting of the Γν(p, q)-orbit through the base point o. We then provide
an example of a non-sharp discontinuous group for which the counting is at most
of exponential growth by taking (p(t), q(t)) = (et, exp(et)) in Example 2.40 (1).

The following lemma for Proposition 2.21 will be used also to prove the
counting result (Theorem 2.39) in Section 2.5.
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Lemma 2.26. Given a quadruple (a−, a+, r, R) satisfying Assumptions 2.9–
2.11, let j, ρ, and F∞

ν be as in Notation 2.16. Suppose ν ≥ νdis and ε(ν) < 1.
Let γ ̸= e be an arbitrary element of F∞

ν and m := ℓ(γ) the word length of γ.
We write γ = γs1

k1
. . . γsm

km
for the reduced expression where s1, . . . , sm ∈ {1,−1}

and k1, . . . , km ≥ ν. Then,∣∣∣∣∣∣∥j(γ)∥ − ∥ρ(γ)∥ − 2
ℓ(γ)∑
i=1

log R(ki)
r(ki)

∣∣∣∣∣∣ ≤ ℓ(γ)ε(ν). (2.23)

We postpone the proof of Lemma 2.26 until the end of this subsection, and
first prove Proposition 2.21.

Proof of Proposition 2.21. Recall Γν(a−, a+, r, R) = {(j(γ), ρ(γ)) | γ ∈ F∞
ν }.

The Kobayashi-Benoist properness criterion (Fact 2.8) tells us that Γν(a−, a+, r, R)
acts properly discontinuously on AdS3 if and only if

∀C > 0, #{γ ∈ F∞
ν | |∥j(γ)∥ − ∥ρ(γ)∥| < C} < ∞.

We suppose that the action of Γν(a−, a+, r, R) on AdS3 is properly discon-
tinuous for any sufficiently large ν ∈ N. Then limk→∞ |∥j(γk)∥ − ∥ρ(γk)∥| = ∞
by Fact 2.8. By Lemma 2.26,

2 log R(k)
r(k)

≥ |∥j(γk)∥ − ∥ρ(γk)∥| − ε(ν)

for any k ≥ ν and thus limk→∞ R(k)/r(k) = ∞.
Conversely, we suppose limk→∞ R(k)/r(k) = ∞. Take any integer ν ≥

νpro. Then log(R(k)/r(k)) > 1 for any k ≥ ν and ε(ν) < 1. Hence note
∥j(γ)∥−∥ρ(γ)∥ ≥ 0 by Lemma 2.26 for any γ ∈ F∞

ν . Assume that γ ∈ F∞
ν \{e}

satisfies |∥j(γ)∥ − ∥ρ(γ)∥| < C. Let m := ℓ(γ) be the word length of γ and we
write γ = γs1

k1
· · · γsm

km
for the reduced expression where s1, . . . , sm ∈ {1,−1} and

k1, . . . , km ≥ ν. By Lemma 2.26,

ℓ(γ) > ℓ(γ)ε(ν) ≥ 2
ℓ(γ)∑
i=1

log
R(ki)
r(ki)

− (∥j(γ)∥ − ∥ρ(γ)∥) > 2ℓ(γ) − C.

Hence ℓ(γ) < C. Again by Lemma 2.26, we get

ℓ(γ)∑
i=1

log R(ki)
r(ki)

<
1
2

((∥j(γ)∥ − ∥ρ(γ)∥) + ℓ(γ)ε(ν)) < C

and there are only finitely many γ satisfying this inequality. By Fact 2.8, the
action of Γν(a−, a+, r, R) on AdS3 is properly discontinuous.

Guéritaud-Kassel [7, Sect. 10.1] gave an upper bound of∣∣∣∣∣∣∥j(γ)∥ − ∥ρ(γ)∥ − 2
ℓ(γ)∑
i=1

log R(ki)
r(ki)

∣∣∣∣∣∣
for the quadruple (a−(k), a+(k), r(k), R(k)) = (k2, k2 +k, 1, log k), see Table 2.2
(2). However, since the explanation given there was not clear to the author, we
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take an alternative approach to prove the inequality (2.23) in our general setting
where a quadruple (a−, a+, r, R) is arbitrary subject to Assumptions 2.9–2.11.

The rest of this subsection is devoted to the proof of Lemma 2.26. We need:

Lemma 2.27. In the setting of Lemma 2.26, the following hold for both φ = j
and φ = ρ:

(1) φ(γ)
√

−1 ∈ Bs1
k1

.

(2) ∥φ(γ)∥ ≥ dH2(Bs1
k1
,
√

−1).

(3) Re(φ(γ)
√

−1) ≥ a−(k1) −R(k1).

(4) Im(φ(γ)
√

−1) ≤ R(k1).

(5)
∣∣∣∣2 log Re(j(γ)

√
−1)

Re(ρ(γ)
√

−1)

∣∣∣∣ ≤ 1
3
ε(ν).

(6)

∣∣∣∣∣− log Im(j(γ)
√

−1)
Im(ρ(γ)

√
−1)

− 2
m∑

i=1
log R(ki)

r(ki)

∣∣∣∣∣ ≤ (ℓ(γ) − 1)ε(ν).

Here ℓ(γ) is the word length of γ, and we have used the convention that B±1
k =

B±
k and a±1 = a±.

Proof. The assertion (1) follows from Assumption 2.9 by a standard ping-pong
argument (see the proofs of Proposition 2.18 and Lemma 2.19), hence we get
(3) and (4). By Lemma 2.6, (2) follows from (1).

By (1), we get
∣∣Re(φ(γ)

√
−1) − as1(k1)

∣∣ ≤ R(k1). Thus noting as1(k1) >
R(k1) by ε(ν) < 1, we have∣∣∣∣log Re(φ(γ)

√
−1)

as1(k1)

∣∣∣∣ ≤ max
δ=±1

{∣∣∣∣log
(

1 + δR(k1)
as1(k1)

)∣∣∣∣ } ≤ 1
12
ε(ν) (2.24)

by Lemma 2.20. Hence (5) follows.
In the following, we set for k ∈ N

rφ(k) :=

{
r(k) for φ = j,

R(k) for φ = ρ.

Then, by (2.16),

Im(φ(γs
k)z) = rφ(k)2Imz

|z − a−s(k)|2
for z ∈ H2, k ∈ N, and s = ±1. (2.25)

Let us prove (6). Define σ0, . . . , σm ∈ F∞
ν by σi = γ

si+1
ki+1

. . . γsm

km
for 0 ≤ i < m

and σm = 1. We note σ0 = γ. For 0 ≤ i ≤ m, we set

Q(σi) := Im(j(σi)
√

−1)
Im(ρ(σi)

√
−1)

, D(φ(σi)) :=
∣∣φ(σi)

√
−1 − a−si

(ki)
∣∣ .

We claim:∣∣∣∣log Q(σi)
Q(σi+1)

+ 2 log R(ki+1)
r(ki+1)

∣∣∣∣ =
∣∣∣∣2 log D(j(σi+1))

D(ρ(σi+1))

∣∣∣∣ for 0 ≤ i < m, (Qi)
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∣∣∣∣2 log D(j(σi))
D(ρ(σi))

∣∣∣∣ ≤

{
ε(ν) if 0 < i < m,

0 if i = m.
(Di)

Then, we get (6) by summing up (Qi) and (Di) for all i because logQ(σm) = 0.
It remains to verify (Qi) and (Di). Because σi = γ

si+1
ki+1

σi+1, we have

Im(φ(σi)
√

−1) = rφ(ki+1)2Im(φ(σi+1)
√

−1)
D(φ(σi+1))2 (Ii)

for 0 ≤ i < m by (2.25). Thus (Qi) follows from the formula

Q(σi)
Q(σi+1)

=
(
D(ρ(σi+1))
D(j(σi+1))

)2(
r(ki+1)
R(ki+1)

)2

.

We observe that (Di) for i = m is obvious because D(φ(σm)) = |
√

−1 −
a−sm(km)| is independent of φ. For 0 < i < m, by the triangle inequality, we
have∣∣D(φ(σi)) −

∣∣asi+1(ki+1) − a−si
(ki)

∣∣∣∣ ≤
∣∣φ(σi)

√
−1 − asi+1(ki+1)

∣∣ ≤ R(ki+1)

since φ(σi)
√

−1 ∈ B
si+1
ki+1

by (1). Hence noting

|asi+1(ki+1) − a−si
(ki)| ≥ η(ν)−1R(ki+1) > R(ki+1)

by ε(ν) < 1, we obtain∣∣∣∣∣log D(φ(σi))∣∣asi+1(ki+1) − a−si
(ki)

∣∣
∣∣∣∣∣ ≤ max

δ=±1

{∣∣∣∣∣log

(
1 + δR(ki+1)∣∣asi+1(ki+1) − a−si

(ki)
∣∣
)∣∣∣∣∣
}

≤ max
δ=±1

{|log(1 + δη(ν))|} ≤ 1
4
ε(ν). (D′

i)

The second and third inequalities follow from the definition (2.9) of η(ν) and
Lemma 2.20, respectively. Hence

∣∣∣log D(j(σi))
D(ρ(σi))

∣∣∣ ≤ ε(ν)
2 . Thus (Di) holds for all i

and the proof of (6) is completed.

We are ready to prove Lemma 2.26.

Proof of Lemma 2.26. We have

|∥φ(γ)∥ − log(2 cosh ∥φ(γ)∥)| = log
(

1 + e−2∥φ(γ)∥
)

≤ log
(

1 + e
−2dH2 (B

s1
k1

,
√

−1)
)

≤ 1
6
ε(ν), (2.26)

where the second and third inequalities follow from Lemmas 2.27 (2) and 2.20,
respectively. Hence we get∣∣∣∣∥j(γ)∥ − ∥ρ(γ)∥ − log cosh ∥j(γ)∥

cosh ∥ρ(γ)∥

∣∣∣∣ ≤ 1
3
ε(ν). (2.27)

By Lemma 2.6,

2 cosh ∥φ(γ)∥ = Re(φ(γ)
√

−1)2 + Im(φ(γ)
√

−1)2 + 1
Im(φ(γ)

√
−1)

.
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Therefore, we have∣∣log(2 cosh ∥φ(γ)∥) − 2 log Re(φ(γ)
√

−1) + log Im(φ(γ)
√

−1)
∣∣

= log
(

1 + Im(φ(γ)
√

−1)2 + 1
Re(φ(γ)

√
−1)2

)
≤ log

(
1 + R(k)2 + 1

(a−(k) −R(k))2

)
≤ 1

6
ε(ν).

(2.28)

The second and third inequalities follow from Lemma 2.27 (3), (4) and Lemma
2.20, respectively. Hence∣∣∣∣log cosh ∥j(γ)∥

cosh ∥ρ(γ)∥
− 2 log Re(j(γ)

√
−1)

Re(ρ(γ)
√

−1)
+ log Im(j(γ)

√
−1)

Im(ρ(γ)
√

−1)

∣∣∣∣ ≤ 1
3
ε(ν). (2.29)

Summing up Lemma 2.27 (5), (6), (2.27), and (2.29), we obtain (2.23).

We shall use the following estimate of ∥j(γ)∥ in the next subsection, which
is obtained as a by-product of the proofs of Lemmas 2.26 and 2.27:

Lemma 2.28. We assume the same setting as Lemma 2.26. That is to say,
given a quadruple (a−, a+, r, R) satisfying Assumptions 2.9–2.11, let j, ρ, and
F∞

ν be as in Notation 2.16. Suppose ν ≥ νdis and ε(ν) < 1. Let γ ̸= e be
an arbitrary element of F∞

ν and m := ℓ(γ) the word length of γ. We write
γ = γs1

k1
. . . γsm

km
for the reduced expression where s1, . . . , sm ∈ {1,−1} and

k1, . . . , km ≥ ν. Then,

∥j(γ)∥ ≤

(
m∑

i=1
2 log a+(ki)a−(ki)

r(ki)

)
+mε(ν).

Proof. We have

∥j(γ)∥ ≤ 2 log Re(j(γ)
√

−1) − log Im(j(γ)
√

−1) + 1
3
ε(ν) (2.30)

by summing up (2.26) and (2.28) for φ = j. By (2.24), we have

2 log Re(j(γ)
√

−1) ≤ 2 log as1(k1) + 1
6
ε(ν). (2.31)

We claim:

− log Im(j(γ)
√

−1) + 2 log as1(k1) ≤

(
m∑

i=1
2 log a+(ki)a−(ki)

r(ki)

)
+ m

2
ε(ν).

(2.32)

Then Lemma 2.28 is proved by summing up (2.30), (2.31), and (2.32) since
m = ℓ(γ) ≥ 1.

It remains to verify (2.32). As in the proof of Lemma 2.27, γ = γs1
k1

· · · γsm

km
∈

F∞
ν defines a sequence of elements σ0, . . . , σm ∈ F∞

ν by σi = γ
si+1
ki+1

. . . γsm

km
for

0 ≤ i < m with σ0 = γ and σm = 1. We set D(j(σi)) :=
∣∣j(σi)

√
−1 − a−si

(ki)
∣∣.

Multiplying all (Ii) for 0 ≤ i < m, with φ = j, we get Im(j(γ)
√

−1) =∏m
i=1(r(ki)/D(j(σi)))2. Hence

− log Im(j(γ)
√

−1) = 2
m∑

i=1
(logD(j(σi)) − log r(ki)) . (2.33)
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Figure 2.2: Properly discontinuous actions and sharp actions

Since σm = 1, we have

2 (logD(j(σm)) − log a−sm
(km)) = log

(
1 + 1

a−sm(km)2

)
≤ 1
a−sm(km)2

≤ 3(R(km)2 + 1)
(a−(km) −R(km))2 ≤ 1

2
ε(ν), (2.34)

where the third and fourth inequalities follow from Assumption 2.9 and the
definition (2.17) of ε(ν), respectively.

Note |s − t| ≤ st for s, t > 1 and a+(k) > a−(k) > 1 for all k ≥ ν by
Assumption 2.9 and ε(ν) < 1. Thus, by (D′

i) for 1 ≤ i < m, we have

2 logD(j(σi)) ≤ 2 log |asi+1(ki+1) − a−si(ki)| + 1
2
ε(ν)

≤ 2(log asi+1(ki+1) + log a−si
(ki)) + 1

2
ε(ν). (2.35)

Now the inequality (2.32) follows from (2.33), (2.34), and (2.35). Thus the proof
of Lemma 2.28 is completed.

2.3.3 Sharpness of the Γν(a−, a+, r, R)-action

The notion of sharpness was introduced in Kassel-Kobayashi [11], although the
idea was already implicit in [16]. It is defined for a general homogeneous space
of reductive type, however, in this section, we explain it only for AdS3. More-
over, we find a necessary and sufficient condition that the discontinuous group
Γν(a−, a+, r, R) for AdS3 is sharp.

The Cartan projection µ for the direct product groupG = SL(2,R)×SL(2,R)
is given by µ(g) = (∥α∥, ∥β∥) for g = (α, β) ∈ G, where we recall that ∥ · ∥ is
the pseudo-distance in SL(2,R). By Fact 2.8, a discrete subgroup Γ of G acts
properly discontinuously on AdS3 if and only if µ(Γ) “goes away from the line
x = y at infinity”. The condition of sharpness is stronger than the condition of
proper discontinuity as Definition 2.29 below, and Γ is sharp for AdS3 if µ(Γ)
“goes away from the line x = y at infinity” with a speed that is at least linear
([11, p. 152]) as in Figure 2.2. See also [11, Ch. 4, Fig. 1] for the illustration of
sharp actions in the general setting.

24



Definition 2.29 (Kassel-Kobayashi [11, Def. 4.2]). Let c ∈ (0, 1] and C ≥ 0. A
discrete subgroup Γ ⊂ G is called (c, C)-sharp for AdS3 if for any γ = (α, β) ∈ Γ,

|∥α∥ − ∥β∥| ≥ c
√

∥α∥2 + ∥β∥2 − C. (2.36)

If Γ is (c, C)-sharp for some c and C, then Γ is called sharp for AdS3.

Remark 2.30. Our definition of (c, C)-sharpness is a little different from the
original definition of (c, C)-sharpness. In fact, the inequality (4.7) in [11, Def.
4.2] for (c, C)-sharpness (c ∈ (0, 1], C ≥ 0) is equivalent to the following in-
equality by the pseudo-distance ∥ · ∥ in our AdS3 setting:

|∥α∥ − ∥β∥| ≥
√

2(c
√

∥α∥2 + ∥β∥2 − C).

We have replaced (
√

2c,
√

2C) with (c, C) in this paper. However, we still sup-
pose c ∈ (0, 1] in Definition 2.29 since |∥α∥ − ∥β∥|/

√
∥α∥2 + ∥β∥2 ≤ 1.

Kassel [8] and Guériataud-Kassel [7] proved that any finitely generated dis-
continuous group Γ ⊂ G for AdS3 is sharp. However, our discontinuous group
Γν(a−, a+, r, R) is infinitely generated, and actually, Γν(a−, a+, r, R) may and
may not be sharp for AdS3. The next proposition gives a necessary and sufficient
condition on the quadruple (a−, a+, r, R) such that the action of Γν(a−, a+, r, R)
on AdS3 is sharp:

Proposition 2.31. Let (a−, a+, r, R) be a quadruple of sequences satisfying
Assumptions 2.9–2.11 and the condition (2.21), and νpro ∈ R as in Proposition
2.21. We set

A ≡ A(a−, a+, r, R) := lim inf
k→∞

log
(
R(k)
r(k)

)(
log a−(k)a+(k)

r(k)

)−1

. (2.37)

Then 0 ≤ A ≤ 1. Moreover, take any integer ν ≥ νpro. Then the following hold
for the discontinuous group Γν ≡ Γν(a−, a+, r, R) for AdS3:

(1) if c > A/
√

1 + (1 −A)2, then Γν is not (c, C)-sharp for any C ≥ 0;

(2) if 0 < c < A/
√

1 + (1 −A)2, then Γν is (c, 0)-sharp for any ν ≥ νsha(c).
Here νsha(c) is a real number ≥ νpro such that for all k ≥ νsha(c),

B + 1
A−B

< log a−(k)a+(k)
r(k)

<
2

A+B
log R(k)

r(k)
,

where B ∈ (0, A) is defined by c = B/
√

1 + (1 −B)2.

In particular, Γν is sharp for ν ≫ 0 if and only if A ̸= 0.

Proof. Take an arbitrary integer ν ≥ νpro(≥ νdis). Then R(k) > r(k) and
a+(k) > a−(k) for any integer k ≥ ν by Assumption 2.9 since k ≥ νdis. More-
over, a−(k) > max{R(k), 1} since ε(ν) < 1. Hence a−(k)a+(k) > R(k) > r(k)
and thus 0 ≤ A ≤ 1.

(1) Recall that Γν is generated by {(αk, βk) | k = ν, ν + 1, . . .}. We claim:

lim inf
k→∞

|∥αk∥ − ∥βk∥|√
∥αk∥2 + ∥βk∥2

≤ A√
1 + (1 −A)2

. (2.38)
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Then (1) is obvious. Note limk→∞
√

∥αk∥2 + ∥βk∥2 = ∞ since the Cartan
projection µ : G → R2 is proper and since {(αk, βk) | k = ν, ν + 1, . . .} is an
infinite discrete subset of G.
We now prove (2.38). By Lemma 2.26, for k ≥ ν,

|∥αk∥ − ∥βk∥| ≤ 2 log
(
R(k)
r(k)

)
+ ε(ν). (2.39)

Since αk = r(k)−1
(
a+(k) −(a−(k)a+(k) + r(k)2)

1 −a−(k)

)
by the definition (2.13),

∥αk∥ ≥ log(2 cosh ∥αk∥) − 1
6
ε(ν) ≥ 2 log

(
a−(k)a+(k)

r(k)

)
− 1

6
ε(ν), (2.40)

where the first and second inequalities follow from (2.26) and the definition
(2.5), respectively. Similarly,

∥βk∥ ≥ 2 log
(
a−(k)a+(k)

R(k)

)
− 1

6
ε(ν)

= 2
(

log
(
a−(k)a+(k)

r(k)

)
− log

(
R(k)
r(k)

))
− 1

6
ε(ν), (2.41)

The inequality (2.38) follows from (2.39), (2.40), and (2.41) since the func-
tion x/

√
1 + (1 − x)2 is monotone increasing on the interval [0, 1]. Hence

(1) holds.

(2) Suppose 0 < c < A/
√

1 + (1 −A)2 and ν ≥ νsha(c)(≥ νpro). Then ε(ν) <
1. Setting 2ξ := A−B(> 0), for any integer k ≥ ν, we have

(B + ξ) log a−(k)a+(k)
r(k)

< log R(k)
r(k)

, (2.42)

(B + 1)ε(ν) < 2ξ log a−(k)a+(k)
r(k)

. (2.43)

Let γ ̸= e be an arbitrary element of F∞
ν , and m := ℓ(γ) the word length of

γ. We write γ = γs1
k1

· · · γsm

km
for the reduced expression where s1, . . . , sm ∈

{1,−1} and k1, . . . , km ≥ ν. By Lemma 2.28, we have

B∥j(γ)∥ ≤
m∑

i=1

(
2B log

(
a−(ki)a+(ki)

r(ki)

)
+Bε(ν)

)

<

m∑
i=1

(
2 log

(
R(ki)
r(ki)

)
−
(

2ξ log
(
a−(k)a+(k)

r(k)

)
−Bε(ν)

))

<

m∑
i=1

(
2 log

(
R(ki)
r(ki)

)
− ε(ν)

)
≤ ∥j(γ)∥ − ∥ρ(γ)∥.

Here the second, third, and fourth inequalities follow from (2.42), (2.43),
and Lemma 2.26, respectively. Then ∥ρ(γ)∥ < (1 −B)∥j(γ)∥ and thus

∥j(γ)∥ − ∥ρ(γ)∥√
∥j(γ)∥2 + ∥ρ(γ)∥

>
B√

1 + (1 −B)2
= c.

Hence Γν is (c, 0)-sharp, which proves (2).
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Remark 2.32. In Proposition 2.31, we did not treat the case that c takes the
critical value c(a−, a+, r, R) := A(1 + (1 − A)2)− 1

2 . At this critical value, the
discontinuous group Γν(a−, a+, r, R) may be (c, C)-sharp for all C ≥ 0, and may
not be (c, C)-sharp for all C ≥ 0. We give such examples as below.

Let δ = ±1 and b ≥ 0. We define the following quadruple (a−, a+, r, Rδ):

a−(k) := e
b
2 (k− 1

4 )+1, a+(k) := e
b
2 (k+ 1

4 )+1, r(k) := e−k, Rδ(k) := (log k)δ

for k ≥ 2. This quadruple applies to Lemma 2.12 and satisfies the condition
(2.21). Then the critical value c ≡ c(a−, a+, r, Rδ) amounts to (b2 + (b+ 1)2)− 1

2

because

log Rδ(k)
r(k)

= k + δ log log k, log a−(k)a+(k)
r(k)

= (b+ 1)k + 2.

Suppose ν ≥ νpro. Let Γν,δ be the discontinuous group Γν(a−, a+, r, Rδ) for
AdS3 (see Proposition 2.22). Then, the following hold:

(1) if δ = 1, then Γν,δ is (c, 0)-sharp for ν ≫ 0, and thus (c, C)-sharp for all
C ≥ 0;

(2) if δ = −1, then Γν,δ is not (c, C)-sharp for all C ≥ 0.

Indeed, suppose δ = 1. Then we may and do take ν ≫ 0 such that for all k ≥ ν,

1
b+ 1

(
2 log

(
a−(k)a+(k)

r(k)

)
+ ε(ν)

)
≤ 2 log

(
Rδ(k)
r(k)

)
− ε(ν).

Then the inequality (b+ 1)−1∥j(γ)∥ ≤ ∥j(γ)∥ − ∥ρ(γ)∥ for any γ ∈ F∞
ν follows

from Lemmas 2.26 and 2.28 by an argument similar to the proof of Proposition
2.31 (2). Hence ∥ρ(γ)∥ ≤ b(1 + b)−1∥j(γ)∥ and thus (1) holds since then

∥j(γ)∥ − ∥ρ(γ)∥√
∥j(γ)∥2 + ∥ρ(γ)∥

≥ 1√
b2 + (1 + b)2

= c.

On the other hand, suppose δ = −1. Since ε(ν) < 1 by ν ≥ νpro, we have
|∥αk∥ − ∥βk∥| ≤ 2(k − log log k) + 1, ∥αk∥ ≥ 2(b + 1)k, and ∥βk∥ ≥ 2bk for
any integer k ≥ ν by (2.39), (2.40), and (2.41), respectively. Thus (2) follows
readily from

lim inf
k→∞

(
c
√

∥αk∥2 + ∥βk∥2 − |∥αk∥ − ∥βk∥|
)

≥ lim inf
k→∞

(2 log log k − 1) = ∞.

Example 2.33. The discontinuous groups Γν(a−, a+, r, R) associated to the
quadruples (a−, a+, r, R) in Table 2.2 are all non-sharp by Proposition 2.31.

As an application of Proposition 2.31, we obtain the following lemma, which
will be used for the proof of the counting result (Theorem 2.1) in Section 2.5:

Lemma 2.34. Suppose Γν(p, q) is the discontinuous group for AdS3 associated
to a pair of functions (p(t), q(t)) as in Lemma 2.24. We set δ := sgn(p′′(t)) ∈
{±1}, which is independent of t ≫ 0. Then Γν(p, q) is sharp for ν ≫ 0 if and
only if the following conditions hold:
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case (i) δ = 1: lim sup
k→∞

log p(k + 1
2 )

log p(k)
< ∞ and lim sup

k→∞

log q(k)
log p(k)

< ∞;

case (ii) δ = −1: lim sup
k→∞

− log p′(k + 1)
log p(k)

< ∞ and lim sup
k→∞

log q(k)
log p(k)

< ∞.

Proof. Note that

log a−(k)a+(k)
r(k)

= 2 log p(k) + log p(k + 1
2

) + log q(k) − log p′(k − δ), (2.44)

log R(k)
r(k)

= log p(k). (2.45)

Proposition 2.31 tells us that the discontinuous group Γν(p, q) for AdS3 is sharp
for ν ≫ 0 if and only if lim supk→∞(2.44)/(2.45) < ∞. Therefore the assertion
follows from elementary properties of C2-functions p(t) of one-variable, summa-
rized in Lemma 2.35 below.

Lemma 2.35. Let p(t) be a C2-function defined in t ≫ 0 such that the sec-
ond derivative p′′ is nowhere vanishing and limt→∞ p(t) = ∞. We set δ :=
sgn(p′′(t)) ∈ {±1}, which is independent of t ≫ 0. Then the following hold:

(1) if δ = 1 (resp. −1), then − log p′(t) is bounded from the above (resp. below);

(2) if δ = 1, then log p(t) − log p′(t− 1) is bounded from the below;

(3) if δ = −1, then p(t+ 1
2 ) < 2p(t) for t ≫ 0.

Proof. (1) If δ = 1 (resp. −1), then p′(t) is monotone increasing (resp. decreas-
ing). Hence (1) is obvious.

(2) Suppose δ = 1. Since then p is convex, we have p(t) ≥ p(t− 1) + p′(t− 1) >
p′(t− 1) for t ≫ 0 by limt→∞ p(t) = ∞. Hence (2) holds.

(3) Suppose δ = −1. Then p′(t) is monotone decreasing. Hence we have p′(t) <
2p(t) for t ≫ 0 by limt→∞ p(t) = ∞. Hence, since p is concave, we have
p(t+ 1

2 ) ≤ p(t) + 1
2p

′(t) < 2p(t), which proves (3).

2.4 Construction of Γ with large counting
In this section, we explain a construction of discontinuous groups Γ for which
the asymptotic growth of the counting NΓ(x,R) is as rapid as we wish, and thus
complete the proof of Theorem 2.2.

We begin with a lemma which reduces the estimate of NΓ(x,R) to the case
x = o.

Lemma 2.36. Let Γ be a discontinuous group for AdS3. Set ∥g∥ := ∥α∥ + ∥β∥
for g = (α, β) ∈ G = SL(2,R) × SL(2,R). Then, for x ∈ AdS3 and R > 0,

NΓ(gx,R− ∥g∥) ≤ Ng−1Γg(x,R) ≤ NΓ(gx,R+ ∥g∥).
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Proof. By Lemma 2.7, we have ∥gx∥ = ∥αxβ−1∥ ≤ ∥x∥+∥g∥ and thus gB(R) ⊂
B(R+ ∥g∥). Similarly, g−1B(R− ∥g∥) ⊂ B(R) and thus

B(R− ∥g∥) ⊂ gB(R) ⊂ B(R+ ∥g∥).

The assertion follows immediately from these inclusion relations.

The next proposition gives a lower bound of the counting NΓ(o,R) for the
discontinuous group Γ = Γν(p, q) introduced in Lemma 2.24.

Proposition 2.37. Let Γν ≡ Γν(p, q) be the discontinuous group for AdS3

associated to a pair of functions (p(t), q(t)) as in Lemma 2.24. Here we have
supposed ν ≥ νpro as in Proposition 2.21. Then

NΓν (o, 4 log p(t)) ≥ t− ν for all t ≥ ν.

Proof. We note p(k) ≥ 2 for any k ≥ ν since log p(k) = log(R(k)/r(k)) > 1
holds from k ≥ νpro. We also recall from Definition 2.15 that the group Γν is
generated by {(αk, βk) | k = ν, ν + 1, . . .}.

By the definitions (2.13) and (2.22), for k ≥ ν, we have

α−1
k βk =

(
p(k)−1 p(k)2 − 1

0 p(k)

)
,

whence the pseudo-distance of α−1
k βk ∈ SL(2,R) is computed by (2.5):

2 cosh ∥α−1
k βk∥ = p(k)4 − p(k)2 + 1 + p(k)−2 < p(k)4.

We then observe for any R > 0:

Γνo ∩B(R) ⊃ {α−1
k βk | ∥α−1

k βk∥ ≤ R} ⊃ {α−1
k βk | p(k)4 ≤ eR}

since 2 coshR > eR. Since Γν acts freely on AdS3, we deduce

NΓν (o,R) ≥ #{k ∈ N | ν ≤ k and 4 log p(k) ≤ R}.

Recall that p(t) is monotone increasing. Hence we conclude NΓν (o, 4 log p(t)) ≥
#{k ∈ N | ν ≤ k ≤ t} > t− ν for all t ≥ ν.

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Since the G-action on AdS3 is transitive, we may and do
assume x = o by Lemma 2.36. Moreover, it suffices to consider the case where
f(t) is a monotone increasing C2-function such that f ′′(t) > 0 for any t and
limt→∞ f(t) = ∞.

Let p(t) be the inverse function of sf(s) defined for t ≫ 0. Then p(t)
is a monotone increasing C2-function such that p′′(t) < 0 for t ≫ 0 and
that limt→∞ p(t) = ∞. Take an arbitrary continuous function q(t) satisfy-
ing limt→∞ q(t) = ∞. Then Γν(p, q) is a discontinuous group for AdS3 if
ν ≫ 0 by Lemma 2.24. Suppose ν ≥ νpro as in Proposition 2.21 and set
Γ ≡ Γf,o := Γν(p, q). By Proposition 2.37, NΓ(o,R) ≥ eR/4f(eR/4) − ν for
all R ≥ 4 log p(ν) since R = 4 log p(t) if and only if eR/4f(eR/4) = t. Thus
limR→∞ NΓ(o,R)/f(R) = ∞ and the proof of Theorem 2.2 is completed.
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Example 2.38. Let Γν ≡ Γν(a−, a+, r, R) be the discontinuous group for AdS3

associated to the quadruple (a−, a+, r, R) in Table 2.2 (3). Here we have sup-
posed ν ≥ νpro as in Proposition 2.21. By an argument similar to the proof of
Proposition 2.37, we have

NΓν
(o,R) ≥ exp(eR

4 ) − ν for all R ≥ 4 log log ν.

2.5 Application to the spectral analysis
In this section, we complete the proofs of Theorems 2.1 and 2.5.

Associated to a quadruple (a−, a+, r, R) of sequences, we have defined in
Section 2.3 the subgroup Γν ≡ Γν(a−, a+, r, R) of G = SL(2,R) × SL(2,R),
and proved that Γν is a discontinuous group for X = AdS3 when ν ≥ νpro if
Assumptions 2.9–2.11 and the condition (2.21) are satisfied. Then the quotient
space XΓν := Γν\X admits an anti-de Sitter structure via the covering X →
XΓν

. Let □XΓν
be the Laplacian on XΓν

, which is not an elliptic operator, but
a hyperbolic operator because XΓν

is a Lorentzian manifold. Our interest here
is the discrete spectrum Specd(□XΓν

) of the Laplacian □XΓν
.

In this section, we find a sufficient condition on (a−, a+, r, R) such that the
counting NΓν (x,R) grows at most 4R, in particular, satisfies the exponential
growth condition (2.1). By the criterion of sharpness in Section 2.3.3, we give
non-sharp Γν such that the counting NΓν

(x,R) grows at most 4R. Moreover,
we use this counting result to construct an infinite subset of Specd(□XΓν

) for
such Γν . We show:

Theorem 2.39. Let (a−, a+, r, R) be a quadruple of sequences satisfying As-
sumptions 2.9-2.11, and νpro ∈ N as in Proposition 2.21. Moreover, take an
arbitrary integer ν ≥ max{νpro, 2}. If R(k)/r(k) ≥ ek for any integer k ≥ ν,
then

(1) Γν ≡ Γν(a−, a+, r, R) is a discontinuous group for X;

(2) NΓν
(x,R) ≤ 4R for any x ∈ X and any R > 0;

(3) there exists m0 = m0(Γν) > 0 such that

Specd(□XΓν
) ⊃ {4m(m− 1) | m ∈ Z and m > m0}.

Example 2.40. The following quadruples (a−, a+, r, R) apply to Theorem 2.39:

(1) a−(k) = ek, a+(k) = ek+ 1
2 , r(k) = ek−1

exp(k + ek)
, R(k) = ek−1

exp(ek)
. This

quadruple is obtained by Lemma 2.24 with p(t) = et and q(t) = exp(et).

(2) a1(k) = exp(ek), a2(k) = exp(ek+ 1
2 ), r(k) = 1, R(k) = ek (Table 2.2 (1)).

Postponing the proof of Theorem 2.39, we give proofs of Theorems 2.1 and
2.5.

Proof of Theorems 2.1 and 2.5. The discontinuous groups Γν(a−, a+, r, R) as-
sociated to (1) and (2) of Example 2.40 are non-sharp by Lemma 2.34 and
Proposition 2.31, respectively. Applying (2) and (3) of Theorem 2.39, we get
Theorems 2.1 and 2.5, respectively.

30



To prove Theorem 2.39 (3), namely, to construct an infinite subset of the
discrete spectrum, we use the following fact established by Kassel-Kobayashi
[11]:

Fact 2.41 ([11]). Let Γ be a discontinuous group for X = AdS3 satisfying the
exponential growth condition (2.1). Then there exists m0(Γ) > 0 such that

Specd(□XΓ) ⊃ {4m(m− 1) | m ∈ Z and m > m0(Γ)}.

Remark 2.42. Kassel-Kobayashi constructed in [11, Cor. 9.10] an infinite sub-
set of the discrete spectrum which is stable under small deformations of Γ in
G.

We prepare some lemmas needed for the proof of Theorem 2.39 (2). The
following lemma was proved in [11] in the general setting where X is a reductive
symmetric space. Since it plays a crucial role in proving Theorem 2.39, we give
an elementary proof for X = AdS3 for the convenience of the reader.

Lemma 2.43 ([11, Lem. 4.4 and 4.17]). For (α, β) ∈ G and x ∈ X = AdS3,

∥(α, β)x∥ + ∥x∥ ≥ |∥α∥ − ∥β∥| .

Proof. By Lemma 2.7, we have

∥(α, β)x∥ = ∥αxβ−1∥ ≥ |∥αx∥ − ∥β∥| , (2.46)
∥x∥ = ∥α−1αx∥ ≥ |∥α∥ − ∥αx∥|. (2.47)

Summing up (2.46) and (2.47), we have ∥(α, β)x∥ + ∥x∥ ≥ |∥α∥ − ∥β∥|.

Fact 2.44 ([11, Def–Lem. 4.20]). Let Γ be a discontinuous group for X = AdS3.
Then, the set

DXΓ := {x ∈ X | ∀γ ∈ Γ, ∥γx∥ ≥ ∥x∥}.

is a fundamental domain of X for the action of Γ. In particular, ΓDXΓ = X.

Therefore, we may assume x ∈ DXΓ to study NΓ(x,R).

Lemma 2.45 (cf. [11, Lem. 4.21]). For any x ∈ DXΓ and any γ = (α, β) ∈ Γ,

∥γx∥ ≥ 1
2

|∥α∥ − ∥β∥| .

Proof. Let γ = (α, β) ∈ Γ and x ∈ DXΓ . Then we have

2∥γx∥ ≥ ∥γx∥ + ∥x∥ ≥ |∥α∥ − ∥β∥|

by the definition of DXΓ and Lemma 2.43, and thus Lemma 2.45 holds.

Lemma 2.46. We set S(R) :=
∞∪

m=1

{
(k1, . . . , km) ∈ Nm

+

∣∣∣∣∣
m∑

i=1
ki ≤ R

}
for any

R ∈ N. Then the cardinality of S(R) equals 2R − 1.

Proof. For (k1, . . . , km) ∈ S(R), we define the binary number 1 0 . . . 0︸ ︷︷ ︸
k1−1

. . . 1 0 . . . 0︸ ︷︷ ︸
km−1

,

which induces a bijection S(R) ∼−→ Z ∩ [1, 2R − 1]. Hence #S(R) = 2R − 1.
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We are ready to prove Theorem 2.39. In the following, let ⌊R⌋ denote the
largest integer less than or equal to R for R ∈ R.

Proof of Theorem 2.39. The assertion (1) is verified by Proposition 2.22. We
now prove (2). Let Γν ≡ Γν(a−, a+, r, R). Take any integer ν ≥ max{νpro, 2}.
Then recall ε(ν)(< 1) ≤ 2. Moreover, take γ ∈ F∞

ν \ {e}. Let m := ℓ(γ) be the
word length of γ, and we write γ = γs1

k1
· · · γsm

km
for the reduced expression where

s1, . . . , sm ∈ {1,−1} and k1, . . . , km ≥ ν(≥ 2). By Lemma 2.26,

1
2

(∥j(γ)∥ − ∥ρ(γ)∥) ≥
m∑

i=1

(
log
(
R(ki)
r(ki)

)
− 1

2
ε(ν)

)
≥

m∑
i=1

(ki − 1). (2.48)

To prove (2), we may and do assume x ∈ DXΓν
by Fact 2.44. Suppose

(j(γ), ρ(γ))x ∈ B(R). Then |∥j(γ)∥ − ∥ρ(γ)∥| /2 ≤ R by Lemma 2.45. Hence
(k1 −1, . . . , km −1) ∈ S(⌊R⌋) by the inequality (2.48) and in particular, m ≤ R.
The number of such (k1, . . . , km) is at most 2R − 1 by Lemma 2.46 and thus
the number of such γ = γs1

k1
· · · γsm

km
( ̸= e) with s1, . . . , sm ∈ {1,−1} is at most

(2R − 1)2R. Hence we obtain NΓν
(x,R) ≤ (2R − 1)2R + 1 ≤ 4R, which proves

(2). The assertion (3) follows from (2) and Fact 2.41.
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3 Linear independence of generalized Poincaré
series for anti-de Sitter 3-manifolds

3.1 Introduction
A pseudo-Riemannian manifold is a smooth manifoldM equipped with a smooth
non-degenerate symmetric bilinear tensor g of signature (p, q) on M . It is called
Riemannian if q = 0, and Lorentzian if q = 1. As in the Riemannian case, the
Laplacian □M := divM ◦ gradM is defined as a second-order differential operator
on M . We note that it is a hyperbolic differential operator if M is Lorentzian.
We write L2(M) for the Hilbert space of square-integrable functions on M with
respect to the Radon measure induced by the pseudo-Riemannian structure.
For λ ∈ C, we denote by

L2
λ(M) := {f ∈ L2(M) | □Mf = λf in the weak sense}.

The set of L2-eigenvalues Specd(□M ) := {λ ∈ C | L2
λ(M) ̸= 0} is called discrete

spectrum of □M .
Our interest is the multiplicity of L2-eigenvalues λ of □M , denoted by

NM (λ) := dimC L
2
λ(M) ∈ N ∪ {∞}.

In the Riemannian case, the Laplacian is an elliptic differential operator and
the distribution of its discrete spectrum has been investigated extensively, such
as the Weyl law for compact Riemannian manifolds. However, it is not the
case for non-Riemannian manifolds. Kobayashi [18], and later Fox-Strichartz
[5], investigated the distribution of discrete spectrum of the Laplacian □M of
some pseudo-Riemannian manifolds, i.e., when M is the flat pseudo-Riemannian
manifold Rp,q/Zp+q and is the Lorentzian manifold S1 × Sq, respectively.

Let us recall some basic notions. A discontinuous group for a homogeneous
manifoldX = G/H is a discrete subgroup Γ ofG acting properly discontinuously
and freely onX (Kobayashi [17, Def. 1.3]). In this case, the quotient spaceXΓ :=
Γ\X carries a C∞-manifold structure such that the quotient map pΓ : X → XΓ
is a covering of C∞ class, hence XΓ has a (G,X)-structure induced by pΓ. If
we drop the assumption of freeness, XΓ is not always a manifold but carries a
nice structure called an orbifold or V -manifold. Proper discontinuity is a more
serious assumption which assures XΓ to be Hausdorff in the quotient topology.
We remark that the Γ-action on X may fail to be properly discontinuous when H
is noncompact. In order to overcome this difficulty, Kobayashi [15] and Benoist
[1] established the properness criterion for reductive G generalizing the original
criterion by Kobayashi [14]. Whereas discontinuous groups for the de Sitter
space dSn := SO0(n, 1)/SO0(n − 1, 1) are always finite groups (the Calabi-
Markus phenomenon, see [3], [14]), there are a rich family of discontinuous
groups for the anti-de Sitter space, see e.g. [6], [16], [22]. We treat, in this
article, the three-dimensional anti-de Sitter space AdS3 := SO0(2, 2)/({±1} ×
SO0(2, 1)).

For m ∈ N, we set

λm := 4m(m− 1). (3.1)

We prove:
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Theorem 3.1. For any finitely generated discontinuous group Γ for AdS3,

lim
m→∞

NΓ\ AdS3(λm) = ∞.

Remark 3.2. (1) If the discontinuous group Γ is “standard” and torsion-free,
a stronger result holds: NΓ\AdS3(λm) = ∞ for sufficiently large m ∈ N
(Kassel-Kobayashi [10]), which is derived from the results in Kassel-Kobayashi
[12]. On the other hand, Theorem 3.1 is also applicable to “non-standard”
Γ, for example, in the case where Γ is Zariski dense in SO(2, 2).

(2) The assumption that Γ is finitely generated could be relaxed. In fact, the
exponential growth condition (see (3.9)) for Γ-orbits is essential in the proof
of Theorem 3.1, and there exist infinitely generated discontinuous groups Γ
satisfying (3.9) and the conclusion of Theorem 3.1 holds for such Γ (see
Theorem 3.14 which is proved without finitely generated assumption).

(3) An analogous statement to Theorem 3.1 also holds when Γ\AdS3 is an orb-
ifold. See Section 3.2.3 for the argument when we drop the assumption that
the Γ-action is free.

Now we consider a small deformation of a discrete subgroup. The study of
stability for properness was intiated by Kobayashi [16] and Kobayashi-Nasrin [19]
and has been developed by Kassel [9] and others. Moreover, Kassel-Kobayashi
[11] proved the existence of infinite stable L2-eigenvalues under any small defor-
mation of discontinuous groups. In this article, we also consider the multiplici-
ties of stable L2-eigenvalues (Definition 3.3) and prove that they are unbounded.

To be precise, let Xn be the n-fold covering of X1 := AdS3 for 1 ≤ n ≤ ∞,
and Gn the Lie group of its isometries. Every compact anti-de Sitter 3-manifold
M is of the form M ∼= Γ\Xn for some finite n where Γ(⊂ Gn) is a discontinuous
group for Xn by Kulkarni-Raymond [20, Thm. 7.2] and Klingler [13]. We take
n to be the smallest integer of this property.

Let Hom(Γ, Gn) be the set of group homomorphisms with the compact-open
topology, and UΓ the set of neighborhoods W in Hom(Γ, Gn) of the natural
inclusion Γ ⊂ Gn such that for any φ ∈ W , the map φ is injective and φ(Γ) acts
properly discontinuously on Xn. One knows UΓ ̸= ∅ ([16], [13]). By definition,
λ is a stable L2-eigenvalue if minφ∈W Nφ(Γ)\Xn

(λ) ̸= 0 for some W ∈ UΓ.
Moreover, for any λ ∈ C and any inclusion W ′ ⊂ W in UΓ, we have an obvious
inequality

min
φ∈W ′

Nφ(Γ)\Xn
(λ) ≥ min

φ∈W
Nφ(Γ)\Xn

(λ).

Definition 3.3. For a compact anti-de Sitter 3-manifold M , we say that

ÑM (λ) := sup
W ∈UΓ

min
φ∈W

Nφ(Γ)\Xn
(λ)

is the multiplicity of a stable L2-eigenvalue λ.

There exist infinitely many m ∈ N such that ÑM (λm) ≥ 1, namely λm is a
stable L2-eigenvalue for sufficiently large m ([11, Cor. 9.10]). However, to the
best knowledge of the author, it is not known whether ÑM (λ) is finite. We
prove:
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Theorem 3.4. For any compact anti-de Sitter 3-manifold M ,

lim
m→∞

ÑM (λm) = ∞.

The organization of this article is as follows. A key step to our proof is to find
a family of L2-eigenfunctions of □AdS3 with eigenvalue λm on AdS3 for which
the corresponding “generalized Poincaré series” are linearly independent, see
Proposition 3.15. In Section 3.2, we recall some facts about L2-eigenfunctions
of □AdS3 and their generalized Poincaré series which were introduced in [11]
as the Γ-average of these eigenfunctions. We then give a uniform estimate of
the “pseudo-distance” between the origin and the second closest point of each
Γ-orbit (see Section 3.2.4). In Section 3.3, we complete a proof of Proposition
3.15. In Section 3.4, we prove a generalization of Theorem 3.4 to the case of
convex cocompact groups (Definition 3.21).

3.2 Preliminaries about the anti-de Sitter space
In this section, we collect some preliminary results about AdS3. We refer to
[11, Sect. 9] where they illustrate their general theory for reductive symmetric
spaces X = G/H in details in the special setting where X = AdS3.

Let Q be a quadratic form on R4 defined by Q(x) = x2
1 + x2

2 − x2
3 − x2

4 for
x = (x1, x2, x3, x4) and we set

H2,1 := {x = (x1, x2, x3, x4) ∈ R4 | Q(x) = 1} ∼= SO0(2, 2)/SO0(2, 1).

The tangent space Tx(H2,1) at x ∈ H2,1 is isomorphic to the orthogonal comple-
ment (Rx)⊥ with respect to Q. Then −Q|(Rx)⊥ is a quadratic form of signature
(2, 1) on Tx(H2,1) ∼= (Rx)⊥ and thus −Q induces a Lorentzian structure on H2,1

with constant sectional curvature −1. The 3-dimensional anti-de Sitter space

AdS3 := H2,1/{±1} ∼= SO0(2, 2)/({±1} × SO0(2, 1)),

inherits a Lorentzian structure through the double covering π : H2,1 → AdS3.

3.2.1 Some coordinates and “pseudo-balls”

In this subsection, we work with coordinates on H2,1 and consider “pseudo-balls”
in AdS3. We identify H2,1 with SL(2,R) using the isomorphism

H2,1 ∼=−→ SL(2,R)

x = (x1, x2, x3, x4) 7−→
(
x1 + x4 −x2 + x3
x2 + x3 x1 − x4

)
.

(3.2)

For t ≥ 0 and θ ∈ R, we use the notations

k(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, a(t) =

(
et 0
0 e−t

)
. (3.3)

We embed H2,1 into C2 by

x 7→ (z1, z2) = (x1 +
√

−1x2, x3 +
√

−1x4). (3.4)

35



We note that z1 ̸= 0 if x ∈ H2,1. Via the identification (3.2), we have

(z1, z2) = ((cosh t)e
√

−1(θ1+θ2), (sinh t)e
√

−1(θ1−θ2)), (3.5)

if x = k(θ1)a(t)k(θ2) ∈ SL(2,R) (a “polar coordinate”). In particular, we have

cosh 2t = x2
1 + x2

2 + x2
3 + x2

4.

Next, we consider pseudo-balls on AdS3, as a special case of Kassel-Kobayashi
[11] for reductive symmetric spaces.

Definition 3.5. For x = (x1, x2, x3, x4) ∈ H2,1, ∥x∥ ∈ R≥0 is defined by

cosh ∥x∥ := x2
1 + x2

2 + x2
3 + x2

4(= cosh(2t)).

This function is invariant under x 7→ −x, hence defines a function on AdS3, to
be also denoted by ∥ · ∥ (a “pseudo-distance” from the origin). The compact set

B(R) := {y ∈ AdS3 | ∥y∥ ≤ R}

is called a pseudo-ball of radius R.

3.2.2 Square-integrable eigenfunctions of the Laplacian on the anti-
de Sitter space

In this subsection, we consider the square-integrable eigenfunctions ψm,k of
□AdS3 with eigenvalues λm = 4m(m−1). We use the decomposition of the open
subset {Q > 0} of the flat pseudo-Riemannian manifold R2,2 = (R4, Q(dx))

{Q > 0}
∼=−→ R>0 × H2,1

x 7−→ (
√
Q(x), x/

√
Q(x)).

Let r =
√
Q(x). As in [11, p. 215],

−r2□R2,2 = −
(
r
∂

∂r

)2

− 2r ∂
∂r

+ □H2,1 .

Let m be a positive integer and k be a non-negative integer. In the coordinates
(3.4), the function z

−(k+2m)
1 zk

2 is invariant under (z1, z2) 7→ (−z1,−z2), hence
defines a real analytic function on AdS3, to be denoted by ψm,k. Then we have

ψm,k ∈ L2(AdS3), □AdS3ψm,k = λmψm,k.

Discrete spectrum Specd(□AdS3) coincides with {λm | m ∈ N} and L2
λm

(AdS3)
is generated by ψm,0 and its complex conjugate ψm,0 as a representation of
SO0(2, 2). By (3.5), for x = k(θ1)a(t)k(θ2) ∈ H2,1, we have

ψm,k(π(x)) = e−2
√

−1(mθ1+(m+k)θ2) tanhk t cosh−2m t. (3.6)

We refer to ψm,k as a spherical function of type (−m,m+k) in accordance with
the action of SO(2) × SO(2).
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3.2.3 Convergence of generalized Poincaré series

In this subsection, we explain the fact about discrete spectrum of locally sym-
metric spaces by Kassel-Kobayashi [11] in our AdS3 setting. We use the following
notation.

Notation 3.6. • Let `G = PSL(2,R) = SL(2,R)/{±1} and G = `G× `G.

• Let `K = PSO(2) = SO(2)/{±1} and K = `K × `K.

• Let E and `E be respectively the identity elements of G and `G.

Remark 3.7. The double covering SO0(2, 2) → G induces an isomorphism
AdS3 ∼= G/diag`G(∼= `G). From now on, we consider only discontinuous groups
Γ for AdS3 which are discrete subgroups of G. This is enough for our purpose.

In order to study Specd(□Γ\AdS3), Kassel-Kobayashi [11] considered the con-
vergence and non-vanishing of generalized Poincaré series

φΓ(Γx) :=
∑
γ∈Γ

φ(γ−1x) (3.7)

for K-finite square-integrable eigenfunctions φ of □AdS3 . For this, they used an
analytic estimate of φ and a geometric estimate of the number of Γ-orbits

NΓ(x,R) := #{γ ∈ Γ | γx ∈ B(R)} (3.8)

in the pseudo-ball B(R) for R > 0. Since the Γ-action is properly discontinuous
and B(R) is compact, we have NΓ(x,R) < ∞.

The convergence of generalized Poincaré series is proved by [11] as follows.
For g ∈ G and a function f on AdS3, ℓ∗

gf is defined by ℓ∗
gf(x) = f(g−1x).

Fact 3.8 (Kassel-Kobayashi [11]). Let Γ ⊂ G be a discontinuous group for AdS3

satisfying the exponential growth condition

∃A, a > 0,∀x ∈ AdS3,∀R > 0, NΓ(x,R) < AeaR. (3.9)

Then, for any K-finite eigenfunction φ of □AdS3 with eigenvalue λm and any
g ∈ G, if m > a, then (ℓ∗

gφ)Γ (see (3.7)) is continuous and square-integrable on
Γ\AdS3 and an eigenfunction of □Γ\AdS3 with eigenvalue λm.

Remark 3.9. (1) Fact 3.8 does not assert the non-vanishing of the series (ℓ∗
gφ)Γ

which is more involved. Kassel-Kobayashi [11] proved that there exists g ∈ G
such that (ℓ∗

gψm,0)Γ ̸= 0 for sufficiently large m ∈ N.

(2) By [11, Lem. 4.6.4], if a discontinuous group Γ is sharp in the sense of [11,
Def. 4.2], then Γ satisfies the exponential growth condition (3.9). Moreover,
Kassel [8] and Guériataud-Kassel [7] proved that finitely generated discon-
tinuous groups for AdS3 are always sharp （see Fact 2.21 below）.

The conclusion of Fact 3.8 still holds if we drop the assumption that Γ acts
freely on X = AdS3. In this case, the quotient space XΓ = Γ\X is an orbifold.
To formulate more precisely in the orbifold case, we observe that the quotient
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space XΓ is Hausdorff, and carries a natural Radon measure (see e.g. [2, Chap.
VII, §2, No. 2, Prop. 4]). A continuous function g on XΓ is smooth if the pull-
back p∗

Γg is a smooth function on X where pΓ : X → XΓ is the natural quotient
map. We write C∞

c (XΓ) for the set of smooth functions on XΓ with compact
support. For g ∈ C∞

c (XΓ), we define □XΓg ∈ C∞
c (XΓ) by identifying it with

the Γ-invariant function □X(p∗
Γg). For λ ∈ C, we define

L2
λ(XΓ) := {f ∈ L2(XΓ) | ∀g ∈ C∞

c (XΓ), ⟨f,□XΓg⟩XΓ = λ⟨f, g⟩XΓ}.

Discrete spectrum Specd(□XΓ) and its multiplicity NXΓ are defined similarly to
the case where Γ acts also freely.

3.2.4 “Injectivity radii” of anti-de Sitter 3-manifolds

Let Γ be a discontinuous group for AdS3. In this subsection, we give a uniform
estimate of the pseudo-distance between the origin and the second closest point
of each Γ-orbit.

We recall that Γ(⊂ `G×`G) acts isometrically on AdS3(∼= `G) by (γ1, γ2)x =
γ1xγ

−1
2 for (γ1, γ2) ∈ Γ and x ∈ `G. We set

εΓ := inf
(γ1,γ2)∈Γ\{E}

1
3

|∥γ1∥ − ∥γ2∥| . (3.10)

By the inequality (see Lemma 2.43)

∥(g1, g2)x∥ ≥ |∥g1∥ − ∥g2∥| − ∥x∥ for (g1, g2) ∈ G and x ∈ AdS3,

we get:

Lemma 3.10. If εΓ > 0, then γB(εΓ) ∩B(εΓ) = ∅ for all γ ∈ Γ \ {E}.

Proposition 3.11. Let Γ be a discrete subgroup of G acting properly discon-
tinuously on AdS3. Then there exists g ∈ G satisfying εg−1Γg > 0.

Remark 3.12. One sees in the proof below that the set of such g is dense in
G.

Proposition 3.11 follows obviously from the proper discontinuity of the Γ-
action and the following lemma:

Lemma 3.13. For any countable subset Γ of G, there exists g ∈ G such that
∥γ1∥ ̸= ∥γ2∥ for all γ = (γ1, γ2) ∈ g−1Γg \ {E}.

Proof of Lemma 3.13. For γ ∈ Γ, the map fγ : G → G defined by g 7→ g−1γg
is real analytic. For the analytic subset F = {(g1, g2) ∈ G | ∥g1∥ = ∥g2∥} of
G, the set f−1

γ (F ) is a proper subset of G if γ ̸= E. Indeed, if ∥γ1∥ ̸= ∥γ2∥,
then obviously E /∈ f−1

γ (F ). If ∥γ1∥ = ∥γ2∥, then (γ1, γ2) ̸= (̀ E,`E). Without
loss of generality, we may assume γ1 ̸= `E. Then there exists g1 ∈ `G satisfying
∥g−1

1 γ1g1∥ ̸= ∥γ1∥ as one can find g1 depending on the three cases where γ1 is
hyperbolic, parabolic, or elliptic. Hence (g1,`E) /∈ f−1

γ (F ).
Therefore there is no interior point in the analytic set f−1

γ (F ), so is the
countable union

∪
γ∈Γ\{E} f

−1
γ (F ) by the Baire category theorem (see e.g. [21,

Thm. 2.2]). Hence there exists an element g of G \
∪

γ∈Γ\{E} f
−1
γ (F ) and we

have ∥γ1∥ ̸= ∥γ2∥ for all γ = (γ1, γ2) ∈ g−1Γg \ {E}.
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3.3 Proof of Theorem 3.1
In this section, we prove Theorem 3.1.

More generally, without finitely generated assumption of Γ, we study linear
independence of the generalized Poincaré series of the spherical functions ψm,k

of type (−m,m+k) defined in Section 3.2.2. By choosing k = 3j (j = 0, 1, 2, . . .),
we prove:

Theorem 3.14. If Γ is a discontinuous group for AdS3 satisfying the exponen-
tial growth condition (3.9), then

lim
m→∞

NΓ\AdS3(λm) = ∞.

Theorem 3.1 is a direct consequence of Theorem 3.14 by Remark 3.9 (2).

Proposition 3.15. Let Γ be a discrete subgroup of G acting properly discon-
tinuously on AdS3 and satisfying the exponential growth condition (3.9). If
εΓ > 0, then there exists a real number mΓ(k) (given explicitly by (3.13)) for
k ∈ N such that {(Re(ψm,3j ))Γ}k−1

j=0 ⊂ L2
λm

(Γ\AdS3) are linearly independent
for all integers m > mΓ(k).

Proof of Theorem 3.14. We have an obvious equality of the multiplicity of L2-
eigenvalues, NΓ\AdS3 = N(g−1Γg)\AdS3 for any g ∈ G through the natural iso-
morphism Γ\AdS3 ∼= (g−1Γg)\AdS3 as Lorentzian manifolds. By replacing
Γ with g−1Γg if necessary, we may and do assume εΓ > 0 by Proposition
3.11. Then Proposition 3.15 implies that L2

λm
(Γ\AdS3) contains at least k

linearly independent elements if m > mΓ(k) for any fixed k ∈ N, which means
dimC L

2
λm

(Γ\AdS3) ≥ k. Hence Theorem 3.14 follows.

Kassel-Kobayashi [11] proved the non-vanishing of the generalized Poincaré
series (ψm,0)Γ for sufficiently large m ∈ N by showing that the first term in the
generalized Poincaré series is larger at the origin than the sum of the remaining
terms. For this, they utilized the fact that ψm,0(̀ E) = 1. Our strategy for
the proof of Proposition 3.15 is along the same line, however, there are some
technical difficulties since ψm,k for k ≥ 1 vanishes at the origin. We then make
use of an observation that ψm,k decays more slowly at the origin than at infinity,
to be precise, by the following formula, see (3.6):

|ψm,k(x)| = cosh−2m(∥x∥/2) tanhk(∥x∥/2).

Actually, we use an analytic lemma (Lemma 3.16) to prove that the first term
in the generalized Poincaré series (ψm,k)Γ is larger at points sufficiently close
to the origin than the sum of the remaining terms if m ≫ 0. Moreover, we use
a combinatorial lemma (Lemma 3.17) to find points at which leading terms of
(Re(ψm,k))Γ do not cancel each other for any linear combination.

For C, a, ε > 0 and s ∈ N, we set

m(C, a, ε, s) := (log 2)s+ 2aε+ log(1 + 2sCe6aε)
log cosh ε

(3.11)

and

m̃(C, a, δ, s) := inf
0<ε<δ

m(C, a, ε, s).

Note that m̃(C, a, δ, s) = O(δ−2) as δ → 0 and = O(1) as δ → ∞.
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Lemma 3.16. For any integer m > m(C, a, ε, s) and any one-variable polyno-
mial f of degree ≤ s with non-negative coefficients,

C

∞∑
n=1

e4a(n+1)ε(cosh 2nε)−mf(tanh 2(n+ 1)ε) < (cosh ε)−mf(tanh ε).

Proof. We may assume that f(x) = xj for j = 0, 1, . . . , s. Since

1 ≤ tanhnx
tanh x

≤ n, (cosh x)n ≤ coshnx

for x ∈ R, we have

(LHS)/(RHS) = C

∞∑
n=1

e4a(n+1)ε

(
cosh 2nε
cosh ε

)−m( tanh 2(n+ 1)ε
tanh ε

)j

≤ Ce6aε
∞∑

n=1
(e2aε(cosh ε)−m)2n−1(2(n+ 1))s.

We set d := e2aε(cosh ε)−m. Then d < 1 by m > m(C, a, ε, s). Since n+ 1 ≤ 2n

for all n ∈ N, we have

(LHS)/(RHS) ≤ 2sCe6aε
∞∑

n=1
(2sd)n = 2sCe6aε 2sd

1 − 2sd
.

Again by m > m(C, a, ε, s), we have 2sd < (1+2sCe6aε)−1. Therefore we obtain
(LHS)/(RHS) < 1.

Let χ : {±1} → {0, 1} be the map defined by χ(1) = 0 and χ(−1) = 1. For
a = (aj)k−1

j=0 ∈ {±1}k and an odd integer N ≥ 3, we set

θa,N := π

k−1∑
i=0

(χ(ai) − χ(ai−1))N−i. (3.12)

Here we use the convention a−1 = 1.

Lemma 3.17. For any a = (a0, . . . , ak−1) ∈ {±1}k and any odd integer N , we
have

aj cos(N jθa,N ) > 0 for j = 0, 1, . . . , k − 1.

Proof. Since Nk−1θa,N ≡ πχ(ak−1) (mod 2π), we have cos(Nk−1θa,N ) = ak−1.
It is easy to check that |N jθa,N −N jθ(a0,··· ,aj),N | < π/2 for j = 0, 1, . . . , k − 1,
hence the signature of cos(N jθa,N ) is equal to that of cos(N jθ(a0,··· ,aj),N ) =
aj .

Remark 3.18. We have used the geometric progression (N j)k−1
j=0 in Lemma

3.17. On the other hand, an analogous statement does not hold if we use
arithmetic progressions. For example, there does not exist θ ∈ R satisfying
aj cosmjθ > 0 for all j = 0, 1, 2, 3, 4 if we choose (aj)4

j=0 = (1, 1, 1,−1, 1) and
an arithmetic progression (mj)4

j=0.
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For a discontinuous group Γ and k ∈ N, one can take mΓ(k) in Proposition
3.13 by

mΓ(k) = inf
(A,a)∈Cexp(Γ)

max{m̃(3k−1A, a, εΓ/4, 3k−1)/2, a}, (3.13)

where Cexp(Γ) := {(A, a) ∈ R2 | ∀x ∈ AdS3,∀R > 0, NΓ(x,R) < AeaR}. Here,
we adopt the convention that inf∅ f = ∞ for a real-valued function f . In
particular, mΓ(k) = ∞ when Cexp(Γ) = ∅ or εΓ = 0.

Proof of Proposition 3.15. By the exponential growth condition (3.9), Cexp(Γ) ̸=
∅ and thus mΓ(k) < ∞. We take an integer m > mΓ(k). Then there ex-
ist ε with 0 < ε < εΓ/4 and (A, a) ∈ Cexp(Γ) satisfying the inequality m >
max{m(3k−1A, a, ε, 3k−1)/2, a}.

To see C-linear independence of the real-valued functions {(Re(ψm,3j ))Γ}k−1
j=0 ,

it is enough to prove the non-vanishing of the real part Re(ψΓ
m,b) = (Re(ψm,b))Γ

of the generalized Poincaré series of a linear combination

ψm,b :=
k−1∑
j=0

bjψm,3j

for any b = (b0, b1, . . . , bk−1) ∈ Rk \ {0}. By Lemma 3.10, for x ∈ B(4ε), we
have

ψΓ
m,b(Γx) = ψm,b(x) +

∑
γ∈Γ

∥γ−1x∥>4ε

ψm,b(γ−1x). (3.14)

By (3.6), for any y ∈ AdS3, we get

|ψm,b(y)| ≤
(

cosh ∥y∥
2

)−2m k−1∑
j=0

|bj |
(

tanh ∥y∥
2

)3j

.

We define a = (aj)k−1
j=0 by aj = 1 for bj ≥ 0 and aj = −1 for bj < 0, and set

fb(u) :=
k−1∑
j=0

bj cos(3jθa,3)u3j

.

We note that all the coefficients of fb are non-negative by Lemma 3.17. More-
over, we get

∣∣cos(3jθa,3)
∣∣−1 ≤ 3k−1 for all j = 0, 1, . . . , k − 1 by using the

inequality sin(πx/2) ≥ x for 0 ≤ x ≤ 1. Thus

|ψm,b(y)| ≤ 3k−1
(

cosh ∥y∥
2

)−2m

fb

(
tanh ∥y∥

2

)
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and, for any x ∈ B(4ε), we have

|
∑
γ∈Γ

∥γ−1x∥>4ε

Re(ψm,b(γ−1x))| ≤
∞∑

n=1

∑
γ∈Γ

4εn<∥γ−1x∥≤4ε(n+1)

|ψm,b(γ−1x)|

≤ 3k−1
∞∑

n=1
NΓ(x, 4ε(n+ 1)) (cosh 2εn)−2m

fb (tanh 2ε(n+ 1))

≤ 3k−1A

∞∑
n=1

e4aε(n+1) (cosh 2εn)−2m
fb (tanh 2ε(n+ 1))

< (cosh ε)−2m
fb (tanh ε) . (3.15)

The third and forth inequalities respectively follow from the exponential growth
condition (3.9) and Lemma 3.16. On the other hand, we set

xa,ε := k(θa,3

2
)a(ε)k(θa,3

2
)−1 ∈ B(4ε).

Then it follows from (3.6) that

Reψm,b(xa,ε) = (cosh ε)−2m
fb (tanh ε) . (3.16)

By (3.14), (3.15), and (3.16), we obtain (Re(ψm,b))Γ(Γxa,ε) ̸= 0. Hence we
complete the proof by the continuity of ψΓ

m,b (Fact 3.8).

3.4 Proof of Theorem 3.4
In this section, we prove Theorem 3.4 by applying Proposition 3.15. We work
in the following setting. We allow ∆ to have torsion.

Setting 3.19. • ∆ is a discrete subgroup of `G = PSL(2,R).

• j, ρ : ∆ → `G are two group homomorphisms with j injective and discrete.

• ∆j,ρ is a discrete subgroup of G = `G×`G given by {(j(γ), ρ(γ)) | γ ∈ ∆}.

We use the following structural results of discontinuous groups for the proof
of Theorem 3.4.

Fact 3.20 ([11, Lem. 9.2]). Let Γ be a finitely generated discrete subgroup of G
acting properly discontinuously on AdS3. Then Γ is of either type (i) or (ii) as
follows:

type (i) Γ is of the form ∆j,ρ up to switching the two factors.

type (ii) Γ is contained in a conjugate of `G× `K or `K × `G.

A non-elementary discrete subgroup Γ of a connected linear real reductive
Lie group L of real rank 1 is called convex cocompact if Γ acts cocompactly on
the convex hull of its limit set in the Riemannian symmetric space associated
to L. For example, cocompact lattices and Schottky groups are convex cocom-
pact. More generally, one may think of the notion of convex cocompactness of
discontinuous groups for AdS3:
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Definition 3.21 ([11, Def. 9.1]). A discontinuous group Γ for AdS3 is called
convex cocompact if Γ is of the form ∆j,ρ up to finite index and switching the
two factors, where ∆ is torsion-free and j(∆) is convex cocompact in `G.

We note that a discontinuous group ∆j,ρ acts cocompactly on AdS3 if and
only if j(∆) is cocompact in `G because ∆j,ρ is isomorphic to j(∆) as abstract
groups. By Fact 3.20, discontinuous groups acting cocompactly on AdS3 are
convex cocompact.

3.4.1 Proof of Theorem 3.4 for Γ of type (i)

In this subsection, we prove Theorem 3.4 for Γ of type (i). For this, we use the
constant CLip(j, ρ) introduced by Kassel [8] and Guéritaud-Kassel [7], which
quantifies the properness of the action of ∆j,ρ on AdS3.

Definition 3.22. Let dH2 be the hyperbolic distance of the 2-dimensional hyper-
bolic space H2(∼= `G/`K). In Setting 3.19, we denote by CLip(j, ρ) the infimum
of Lipschitz constants

Lip(f) = sup
y ̸=y′

dH2(f(y), f(y′))
dH2(y, y′)

of maps f : H2 → H2 that are (j, ρ)-equivariant.

The map (j, ρ) 7→ CLip(j, ρ) is continuous over the set of (j, ρ) ∈ Hom(∆,`G)2

such that j is injective and j(∆) is convex cocompact in `G ([7, Prop. 1.5]).

Fact 3.23 ([8],[7]). Assume that ∆ is finitely generated. Then the action of ∆j,ρ

on AdS3 is properly discontinuous if and only if min{CLip(j, ρ), CLip(ρ, j)} < 1.

Remark 3.24. In the setting of Fact 3.23, if CLip(ρ, j) < 1, then ρ is injective
and discrete. Moreover, if j(∆) is convex cocompact, then so is ρ(∆).

Therefore, Theorem 3.4 for Γ of type (i) reduces to the following:

Theorem 3.25. In Setting 3.19, we assume that ∆ is finitely generated and
that CLip(j, ρ) < 1. Then there exists a constant µ1 > 0 independent of j, ρ and
∆ such that for any m, k ∈ N with m > 3kµ1(1 − CLip(j, ρ))−2,

N∆j,ρ\AdS3(λm) ≥ k.

For the proof of Theorem 3.25, we need two results from Kassel-Kobayashi
[11] applied to our setting G = `G×`G. If a discontinuous group Γ satisfies the
assumption of Fact 3.26 below, then it is ((1−α)/2, 0)-sharp in the sense of [11,
Def. 4.2]. Hence we get the following by applying [11, Lem. 4.6.4]:

Fact 3.26 ([11]). Let Γ ⊂ G be a discontinuous group for AdS3. We assume
that there exists 0 ≤ α < 1 such that ∥γ2∥ ≤ α∥γ1∥ or ∥γ1∥ ≤ α∥γ2∥ for any
(γ1, γ2) ∈ Γ. Then there exists c > 0 independent of α and Γ such that for any
x ∈ AdS3 and any R > 0,

NΓ(x,R) ≤ #(Γ ∩K)ce8R(1−α)−1
.

The following theorem traces back to the Kazhdan-Margulis theorem for
discrete subgroups of semisimple groups.
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Fact 3.27 ([11, Prop. 8.14]). There exists a constant r > 0 satisfying the fol-
lowing property: for any discrete subgroup `Γ of `G, there exists `g ∈ `G such
that ∥`γ∥ ≥ r for all `γ ∈ `g−1`Γ`g \ {`E}.

In the following, we use the upper half plane model {z = x +
√

−1y ∈ C |
Im z > 0} equipped with the metric tensor ds2 = (dx2 + dy2)/y2 for the hyper-
bolic space H2. Then ∥̀ g∥ is equal to the hyperbolic distance dH2 (̀ g

√
−1,

√
−1)

for g̀ ∈ AdS3 ∼= `G (see e.g. [7, (A.1)]).

Proof of Theorem 3.25. The idea of the proof is similar to [11, Thm. 9.9], how-
ever, we give a proof for the sake of completeness. By Fact 3.27, replacing j by
some conjugate under `G, we may assume ∥j(γ)∥ ≥ r for any γ ∈ ∆ \ {̀ E}. In
particular, Γ ∩K = {E} for such j and for any ρ. We fix δ > 0 such that

α := CLip(j, ρ) + δ < 1.

Then, replacing ρ by some conjugate under `G, we may assume

∥ρ(γ)∥ ≤ α∥j(γ)∥ for any γ ∈ ∆. (3.17)

Indeed, by Definition 3.22, there exists a (j, ρ)-equivariant map fδ : H2 → H2

satisfying Lip(fδ) < α. We take gδ ∈ `G such that gδ

√
−1 = fδ(

√
−1). Then,

for any γ ∈ ∆, we have

∥g−1
δ ρ(γ)gδ∥ = dH2(fδ(

√
−1), ρ(γ)fδ(

√
−1)) < αdH2(

√
−1, j(γ)

√
−1) = α∥j(γ)∥.

Hence (3.17) holds by replacing ρ with g−1
δ ρ(·)gδ, and therefore we get

NΓ(x,R) ≤ ce8R(1−(CLip(j,ρ)+δ))−1

by Fact 3.26. Then the constant εΓ in (3.10) has the following lower bound:

3εΓ = inf
γ∈∆\{`E}

|∥j(γ)∥ − ∥ρ(γ)∥| ≥ inf
γ∈∆\{`E}

(1 − α)∥j(γ)∥ ≥ r(1 − α).

Note that log cosh t = O(t2) as t → 0. By the explicit description (3.13) of
mΓ(k), Theorem 3.25 follows from Proposition 3.15.

3.4.2 Proof of Theorem 3.4 for Γ of type (ii)

In this subsection, we prove Theorem 3.4 for the case where Γ is standard.
For this, we use the following fact by Kobayashi [16] and Kassel [9] applied
to our AdS3 setting, which gives the stability for properness under any small
deformation of standard convex cocompact discontinuous groups.

Fact 3.28 ([9, Thm. 1.4]). Let Γ be a convex cocompact discrete subgroup of
`G × `K. Then for any α, β > 0, there exists a neighborhood W ⊂ Hom(Γ, G)
of the natural inclusion Γ ⊂ G such that for any φ ∈ W ,

|µ(φ(γ)) − µ(γ)| ≤

{
α |µ(γ)| if γ ∈ Γ \K,
β if γ ∈ Γ ∩K,

where µ(g1, g2) := (∥g1∥, ∥g2∥) ∈ R2 for (g1, g2) ∈ G, ∥ · ∥ is given in Definition
3.5, and |(x1, x2)| :=

√
x2

1 + x2
2 for (x1, x2) ∈ R2.
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We introduce the following terminology for the estimate of discrete spectrum
since Γ is not necessarily torsion-free. Let prj : G = `G × `G → `G be the j-th
projection (j = 1, 2).

Definition 3.29. A discrete subgroup Γ of G is said to be standard of class n
if pr2(Γ) is bounded and the cyclic group Γ1 := ker(pr1 |Γ) is of order n.

Remark 3.30. (1) If Γ is torsion-free, then it is of class 1.

(2) If pr2(Γ) is bounded for a discrete subgroup Γ of G, then the group pr1(Γ)
is discrete in `G. Moreover, if Γ is of class 1, then it is of the form ∆j,ρ

such that ∆ = pr1(Γ) and CLip(j, ρ) = 0.

Let r > 0 be the constant in Fact 3.27. For an integer n ≥ 2, we define a
positive number ηn by

cosh ηn := 1 + 2(sinh r
4

sin π
n

)2.

We get the following by easy computations:

Lemma 3.31. By an abuse of notation, we regard k(θ), a(t) in (3.3) as elements
of `G = PSL(2,R). Then

∥a(r
8

)−1k(jπ
n

)a(r
8

)∥ ≥ ηn for j = 1, . . . , n− 1.

We give a uniform estimate of εΓ in (3.10) and NΓ(x,R) in (3.8) for standard
discrete subgroups Γ of class n after taking a conjugation of Γ.

Lemma 3.32. Let Γ be a standard discrete subgroup of class n ≥ 2. There
exists g ∈ G such that εg−1Γg ≥ min{ηn/3, r/6} and Ng−1Γg(x,R) < ce16R for
any x ∈ AdS3 and any R > 0.

Proof. Let Γ1 = ker(pr1 |Γ) as in Definition 3.29. Since Γ is of class n, the group
pr2(Γ1) is generated by k(π/n) ∈ `G = PSL(2,R). We take g̀ ∈ `G in Fact 3.27
applied to `Γ = pr1(Γ) and set g := (̀ g, a(r/8)) ∈ G. Replacing Γ by g−1Γg, we
get ∥γ1∥ ≥ r for (γ1, γ2) ∈ Γ \ Γ1 by Fact 3.27 and ∥γ2∥ ≥ ηn for (γ1, γ2) ∈ Γ1 \
{E} by Lemma 3.31. Moreover, if (γ1, γ2) ∈ Γ, then ∥γ2∥ = ∥a(r/8)−1ka(r/8)∥
for some k ∈ `K, hence ∥γ2∥ ≤ r/2 because ∥g1g2∥ ≤ ∥g1∥+∥g2∥ for g1, g2 ∈ `G
and since ∥a(t)∥ = 2t for t ≥ 0 and ∥k∥ = 0 for k ∈ `K. To summarize,{

∥γ2∥ ≤ r
2 ≤ ∥γ1∥

2 if (γ1, γ2) ∈ Γ \ Γ1,

∥γ2∥ ≥ ηn if (γ1, γ2) ∈ Γ1 \ {E}.

Then εΓ ≥ min{ηn/3, r/6} and Γ ∩ K = {E}. Moreover, ∥γ1∥ ≤ ∥γ2∥/2 or
∥γ2∥ ≤ ∥γ1∥/2 for any (γ1, γ2) ∈ Γ and thus NΓ(x,R) < ce16R for any x ∈ AdS3

and any R > 0 by Fact 3.26.

Theorem 3.33. There exists a constant µn > 0 depending only on n such
that for any convex cocompact standard discrete subgroup Γ of class n and any
m, k ∈ N with m > 3kµn,

ÑΓ\AdS3(λm) ≥ k.
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Proof. If n = 1, then this follows from Theorem 3.25 since convex cocompact
discontinuous groups are finitely generated, hence we assume that n ≥ 2. In
this case, we shall prove that Γ and its small deformation are standard of class
n. When n ≥ 2, the group Γ1 = ker(pr1 |Γ) is a cyclic group of order n. By Fact
3.27, replacing Γ by some conjugate under `G × {̀ E}, we may and do assume
∥γ1∥ ≥ r for any (γ1, γ2) ∈ Γ \ Γ1. By Fact 3.28, there exists a neighborhood
W of the natural inclusion Γ ⊂ G such that for any φ ∈ W , the restriction of φ
to the finite subgroup Γ1 is injective and the inequalities{

∥φ1(γ)∥ ≥ 1
2r, ∥φ2(γ)∥ ≤ 1

2 ∥φ1(γ)∥ if γ ∈ Γ \ Γ1,

|µ(φ(γ))| < 1
2r if γ ∈ Γ1

(3.18)

hold where φi = pri ◦φ for i = 1, 2. Then φ is injective and discrete.
We claim φ1(Γ1) is trivial. Indeed, if there exists γ ∈ Γ1 \ {E} such that

φ1(γ) ̸= `E, then the normalizer of φ(Γ1) in G is contained in `K1 × `G where
`K1 is the maximal compact subgroup of `G containing φ1(Γ1). Hence φ(Γ) ⊂
`K1 × `G. By the inequalities (3.18), φ(Γ) is finite, hence Γ is also finite. This
contradicts the assumption that Γ is non-elementary. Thus φ1(Γ1) is trivial
and φ2(Γ1) is non-trivial. Hence the normalizer of φ(Γ1) in G is contained
in `G × `K2, where `K2 is the maximal compact subgroup of `G containing
φ2(Γ1). Therefore pr2(φ(Γ)) is bounded. Moreover φ(Γ)1 = φ(Γ1) by the
inequalities (3.18), hence the discrete subgroup φ(Γ) is standard of class n. By
the explicit description (3.13) of mΓ(k) and Lemma 3.32, Theorem 3.33 follows
from Proposition 3.15.

Remark 3.34. In the above proof, we have shown that a convex cocompact stan-
dard discrete subgroup Γ of class n ≥ 2 and its small deformation are standard
of class n. Therefore we obtain a stronger result that

ÑΓ\AdS3(λm) = ∞ (3.19)

for any convex cocompact standard discrete subgroup Γ of class n ≥ 2 and any
integer m > 3µn if the following statement holds: NΓ\AdS3(λm) = ∞ for any
standard discrete subgroup Γ and any m ∈ N such that NΓ\AdS3(λm) ≥ 1. The
latter statement is discussed in [10] by using discretely decomposable blanching
laws of unitary representations (cf. [12]).

Thus the proof of Theorem 3.4 is completed.
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Math. (2), 144(2):315–347, 1996.

[2] N. Bourbaki. Integration. II. Chapters 7–9. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 2004. Translated from the 1963 and 1969
French originals by Sterling K. Berberian.

[3] E. Calabi and L. Markus. Relativistic space forms. Ann. of Math. (2),
75:63–76, 1962.

[4] A. Eskin and C. McMullen. Mixing, counting, and equidistribution in Lie
groups. Duke Math. J., 71(1):181–209, 1993.

[5] J. Fox and R. S. Strichartz. Unexpected spectral asymptotics for wave
equations on certain compact spacetimes. J. Anal. Math., 136(1):209–251,
2018.

[6] W. M. Goldman. Nonstandard Lorentz space forms. J. Differential Geom.,
21(2):301–308, 1985.

[7] F. Guéritaud and F. Kassel. Maximally stretched laminations on geomet-
rically finite hyperbolic manifolds. Geom. Topol., 21(2):693–840, 2017.

[8] F. Kassel. Quotients compacts d’espaces homogènes réels ou p-adiques.
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