THt 2w

am A H Ray-Singer torsion and the Laplacians
of the Rumin complex on lens spaces

(L > XZ2[ LD Ray-Singer JR % &
Rumin 8IKD 7 75> 7 V)

K & delE =






Contents

[Prefacd

Acknowledgement]

Chapter 1. IThe Rumin complex
Chapter 2. I'he eigenvalue of the hhumin Laplacian on the standard CH

SP g
21 Introducfion
g.2.  The Rumin complex on the Uk sphereg
g.0. lhe eigenvalues of the humin Laplacian

Chapter o.  Ray-dSinger lorsion and the humin Laplacian
pn _lens spaced
Bl Introduction

pb.2.  Contact analytic torsion ot fat vector bundleq
b.o.  hay-singer torsion of the trivial bundlgd
b.4. Ray-Singer torsion and the contact torsion

Chapter 4.  Analytic torsions associlated with

the Rkumin complex with parameterg

Ul Introduction
g.2.  The humin complex with parameterg
d.5.  Analytic torsion tunction associated with

the Rumin complex with parameterg
B.4. The analytic torsion on S9

K.5. The analytic torsion on S9

bi1bliography






Preface

Let (M, H) be a compact contact manifold of dimension 2n+ 1 and E be a flat
vector bundle with a unimodular holonomy on M. Rumin [4] introduced a complex
(E*(M, E),dy,), which is a subquotient of the de Rham complex of E. A specific fea-
ture of the complex is that the operator D = dp : £"(M, E) — £"*1(M, E) in ‘mid-
dle degree’ is second-order, while d¥: E¥(M, E) — EFTL(M, E) for k # n are first
order which are induced by the exterior derivatives. Let ar, = 1/ max{1,/|n — k|}.
Then, (£°(M, E),dg), where df = axdk, is also a complex. We call (£*(M, E),d?)
the Rumin complex. In virtue of the rescaling, dg satisfies Kéhler-type identities
on Sasakian manifolds [I&], which include the case of lens spaces.

The Rumin complex has two aspects. First, it is the Bernstein-Gelfand-Gelfand
complex (BGG complex) of the twisted de Rham complex of a flat vector bundle
with respect to contact manifolds (e.g. [T, §5.3], [@, §4]). The BGG complex
is defined for parabolic geometry [3] and on filtrated Riemannian manifolds with
some assumptions [d]. As a typical theorem, the cohomology of the BGG complex
coincides with the cohomology of the de Rham complex of a flat vector bundle [I5,
Theorem 1], [B, Theorem 4.13], [@, Corollary 4.20]. This claim is a generalization
of the result of the Rumin complex [I4].

Second, the Rumin complex arises when we take the sub-Riemannian limit. One
natural approach to sub-Riemannian geometry lies in the study of the behavior
of Riemannian objects in the sub-Riemannian limit. On fibrations of compact
manifolds Mazzeo and Melrose 1], and on Riemann foliations Forman [B] studied
spectral sequence using Hodge theoretic techniques and they showed that a part of
the spectral sequence can be written in terms of the BGG complex. On contact
manifolds, Rumin pointed out [TH] that the Rumin complex can be derived from a
spectral sequence induced by Heisenberg dilations.

Rumin and Seshadri defined the analytic torsion associated with the Rumin
complex dr, which we call the Rumin-Seshadri torsion [I8]. They showed that
Rumin-Seshadri torsion agrees with the Ray-Singer torsion for flat bundles with
unimodular holonomy on 3-dimensional Sasakian manifolds with S-action. With
this coincidence, they found a relation between the Ray-Singer torsion and holo-
nomy. It is natural to ask whether such a relation holds for higher dimensions.

In this thesis, we extend this coincidence to lens spaces of arbitrary dimension.
First, we determine explicitly eigenvalues of the Laplacian Ag of the Rumin complex
with parameters on the trivial bundle over the standard CR spheres $?7+! c C*t!,
Theorem 10, In particular, we show that the eigenvalues of Ag¢ are determined
by the highest weight of U(n + 1) which acts on S$?"*!. This phenomenon also
appears in the case of the Hodge-de Rham Laplacian Agr on symmetric spaces
G/K. Ikeda and Taniguchi [] showed that on the subspaces of k-forms of G/K
corresponding to the irreducible component which has the highest weight A, the
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eigenvalue of Agg is determined by A [@]. Also, this phenomenon does not appear
in the Laplacians of the Rumin complex with a; = 1, §82.

Next, on flat vector bundles with a unimodular holonomy over lens spaces, we
express explicitly the analytic torsion functions associated with the Rumin complex
in terms of the Hurwitz zeta function, Theorem BZI. In particular, we determine
the analytic torsions. Moreover, we give a formula between this torsion and the
Ray-Singer torsion. These were written in the papers [9,@I0].

Finally, on 3 and 5 dimensional CR spheres we calculate the analytic torsion
associated with the Rumin complex with arbitrary parameters {ay}. Here, let ggq
be the standard metric on the spheres. Weng and You [20] showed that on the
trivial bundle on the spheres (S?"*! 4g4q) the Ray-Singer torsion is (47)"*!/n!.
With the result of Rumin and Seshadri in dimensions, we expected that the Rumin-
Seshadri torsion agrees with this values on spheres of higher dimensions. However,
we showed that on the 5-dimensional CR standard sphere the Rumin-Seshadri tor-
sion is (47r)32*5/4+”2/18. The precise statement for general {a;} on S3 and S° are
given in Theorem E—T71.
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CHAPTER 1

The Rumin complex

We call (M, H) an orientable contact manifold of dimension 2n + 1 if H is a
subbundle of TM of codimension 1 and there exists a 1-form 6, called a contact
form, such that Ker(6: TM — R) = H and 6 A (df)™ # 0. The Reeb vector field
of 6 is the unique vector field T satisfying 6(T) = 1 and Inty df = 0, where Intp is
the interior product with respect to T

For H and 6, we call J € End(TM) an almost complex structure associated
with @ if J2 = —Id on H, JT = 0, and the Levi form df(—, .J—) is positive definite
on H. Given 6 and J, we define a Riemannian metric gy y on T'M by

90.7(X,Y) 1= dO(X, JY) + 0(X)0(Y) for X,Y € TM.

Let * be the Hodge star operator on A*T*M with respect to gg, ;.

Let M be the universal cover of M and m1(M) be the fundamental group.
For a unitary representation «: m (M) — U(r), we denote the flat vector bundle
associated with a by

E, =M x,C" — M.

Let V, be the flat connection on F, induced from the trivial connection on M x Cr,
and dVe be the exterior covariant derivative of V.

The Rumin complex [I4] is defined on contact manifolds as follows. We set
L := dAA and A := +~ ' Lx, which is the adjoint operator of L with respect to the
metric gg,; at each point. We set

Npuin " 1= {v € N'H* | Av = 0},
N = {v e N | Lo = 0} ,
ot o o (M, N H @ Ea) . k<n,

o> (M,@/\/\’Z”H* ®Ea) k> n4l
EF(M) == EF(M, C),

where C is the trivial vector bundle. We embed H* into T*M as the subbundle
{p € T*M | (T) = 0} so that we can regard

Ok (M, E,) = C (M, N H* ® Ea)

as a subspace of Q¥(M, E,), the space of k-forms. We define d,: Q% (M, E,) —
Q" (M, Ea) by
dyo := dVep — 0 A (Intp dV ),
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and then D: £"(M, E,) — E"TY(M, E,) by
D=0NA(Ly+dy L™ dy), (1.0.1)

where L1 is the Lie derivative with respect to T, and L~ is the inverse of the
isomorphism L: A" 'H* — A"+,
Let P: AVH* — /\grimH* be the fiberwise orthogonal projection with respect
to gg., which also defines a projection P: Q¥(M, E,) — E*(M, E,). We set

PodVe on&F(M,E,), k<n-—1,

d’ﬁ =< D on E"(M, E,),

dVe on EK(M,E,), k>n+1.
Then (£%(M, E,),d}) is a complex. Let df = apdl, where a, = 1/+/|n — k| for
k #n and a, =1. We call (£°(M, E,),dg) the Rumin complex.

We define the L%-inner product on Q*(M, E,) by

@0)i= [ ans(o.v)avol,

and the L2norm on Q*(M, E,) by ||¢|| := \/(¢, ¢). Since the Hodge star operator
* induces a bundle isomorphism from /\};rimH *to 0 ANT"FH* it also induces a
map E¥(M, E,) — EFT1=%(M, E,,). We note that

E8 (M, E,) = {¢ e EF(M,C) | t.p = a(t) ¢ for t € m(M)}

Let d? and D# denote the formal adjoint of dg and D, respectively, for the
L?-inner product. We define the forth-order Laplacian Ag on £¥(M, E,) by

(g™ g™ %) + (dE*dE)*, k#nn+1,
Ak = q (dg7dg™'#)? + DD, k=n,
DD# + (dgH#dpth)?, k=n+1.

We call it the Rumin Laplacian [T4]. Rumin showed that Ag have discrete eigenval-
ues with finite multiplicities. Since * and Ag commute, to determine the eigenvalue
on £*(M, E,), it is sufficient to compute them on £¥(M, E,,) for k < n.
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CHAPTER 2

The eigenvalue of the Rumin Laplacian on the
standard CR sphere

2.1. Introduction

In this chapter, we determine the eigenvalues of Ag¢ on the trivial bundle C
over the standard CR spheres S?"+! c C"*!. Here the standard CR sphere is the
triple (S?"*+1 0, .J), where 6 is given the contact form by § = \/—1(9 — 0)|z|? and J
is an almost complex structure J induced from the complex structure of C**+!. To
state our result we need to introduce notation for highest weight representations of
the unitary group U(n + 1) which acts on S$2"*!. The irreducible representations
of U(n + 1) are classified by the highest weights A = (A1, A, ..., Any1); the corre-
sponding representation will be denoted by V(A). Julg and Kasparov [8] showed
that the complexification of £¥(S2"*1), as a U(n + 1)-module, is decomposed into
the irreducible of the form

Vg jip i =V(g1,...,1,0,...,0,—1,..., =1, —p).
—— —_——
j times % times
See Proposition 220 below for the relations between k& and (q,i,7,p). Since Ag

commutes with the U(n + 1)-action, it acts as a scalar on each W(g ;; ).

THEOREM 2.1.1. Let S?"t! be the standard CR sphere with the contact from 6 =

V—=1(0—0)|z|?. Then, on the subspaces of the complexification of £* corresponding
to the representations W, ;i ), the eigenvalue of Ag is

(p+i)g+n—i)+(g+5)@+n—4)°
dn—1i—j)>2 '

This theorem claims that the eigenvalues of A¢ are determined by the highest
weight. This phenomenon also appears in the case of the Hodge-de Rham Lapla-
cian Agg on symmetric spaces G/K. Tkeda and Taniguchi [7] showed that on the
subspaces of k-forms of G/K corresponding to V(\), the eigenvalue of A4g is de-
termined by A. It is a natural question to ask whether the eigenvalues of Ag¢ on a
contact homogeneous space G/K are determined by the highest weight of G.

Theorem T unifies the following results on the eigenvalues of Rumin Lapla-
cians on the spheres. Julg and Kasparov [8] determined the eigenvalues of D# D.
Folland [5] calculated the eigenvalue of the sub-Laplacian Ay, which agrees with
Ag on EY. Seshadri [I9] determined the eigenvalues of dgd? on £ in the case 3.
Orsted and Zhang [T2] determined eigenvalues of the Laplacian of the holomorphic
and anti-holomorphic part of dr except for the ones containing D.

Note that Orsted and Zhang used dg in place of dg. As a result, the eigenvalues
of the Laplacian in their paper are not determined by the highest weights. This
also explains the importance the scaling factor ay.
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The chapter is organized as follows. In §Z3, we recall properties of the Rumin
complex on S§?"+1. In §2Z30, we construct highest weight vectors, and compute
the actions of dg and the Lie derivative L1 with respect to the Reeb vector field T
on these vectors. In §233, we calculate the L?-norm of them. Then, in §Z33, we
compute the eigenvalues of Ag for each irreducible component.

2.2. The Rumin complex on the CR spheres

Let S :={z € C"" | |22 = 1} and 6 := /—1(0 — 9)|z|?>. (We will omit the
dimension from S2"*1 for the simplicity of the notation.) Let gsq be the standard
metric on S. Then, gy ; coincides with 4gs;q. The Reeb vector filed of 6§ is

VAR 0 d

With respect to the standard almost complex structure J, we decompose the bun-
dles defined in the previous subsection as follows:

H*'Y .= {v e CH* | Jv=+v—1v},
H' = {v e CH* | Ju=—V—1v},
A H* = N0 @ N0

N H” = {qs e N7 | Ap = o} ,
g = 0 (5, /\i;jimH*) .

Then 07 € Q9 & Q7. We deine 0,2 0 - O and 0y: 0l > Ol
by -
dp = Op + Op.
Similarly, we decompose
dp = Op +0r, de =0+ Os.

In view of the Lefschetz primitive decomposition, we may rewrite () as
D=0A (CT — V=10 + ) (O — 5;?)) (2.2.1)

by using 9} = V—1[A,d,] and 8]* = —v/—1[A, ;). Note that this equation holds
on Sasakian manifolds.

We decompose £ into a direct sum of irreducible representations of the uni-
tary group U(n+1). Recall that irreducible representations of U(m) are parametrized
by the highest weight A = (A1,..., A\) € Z™ with Ay > Ao > -+ > A,; the rep-
resentation corresponding to A will be denoted by V(A). To simplify the notation,
we introduce the following abbreviation: for a1,..., a; € Z and kq,...,k; € Z,
(@kl AR ,@kl) denotes the k1 + - - - 4+ k;-tuple whose first k; entries are a;, whose
next ko entries are ao, etc. For example,

(13792’;12) = (1? 17 1a Oa 0; _17 _1)

We note that a; is @ and g, is the zero tuple.

In [8], it is shown that the multiplicity of V'(¢,1;,0,,_; ; ;, =1,,—p) in £>* is
at most one. Thus we may set
t ,
\IIEZJ?LP) =& V(q’lj Op—1—i—j> =L;; —p)-
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PROPOSITION 2.2.1. ([B, Section 4(b)]) The irreducible decomposition of the
U(n + 1)-module £ is given as follows:

Case1:
0,0 _ (0,0)
&= @ \I](qyo,O,p)
q20,p>0
CaseIl: Fori+j <n—1 withi,j >0,
ij (4,5) ()] (4,5) (4,5)
£ = P (‘I’(q,j,i,p) OV (i1 @ Yigj-1,ip) @ ‘I’(q,j—l,i—l,p)) :
g=1,p>1
CaseIll: For1<i<n-—1,
0 _ (2,0) (1,0)
e = >@> (‘I’<q,o7z’,p) @ ‘I’(q,o,i—l,p)) :
q>0,p>1
Case IV : For1<j<n-—1,
0, — (0,5) (0,5)
e = @ (‘Ij(q,jy(),p) & \Ij(q,jfl,Ovp)) ’
q=1,p>0
Case V : Fori+j=mn withi,j >0,
i _ (4,3) (4,3) (4,5)
&= >@> (\Ij(q,j’ifl,p) @ \I/(q,jfl,i,p) ® \Ij(q’jfl,ifl’p)> )
q>1,p>1
Case VI :
n,0 __ (n,0)
= D Yiou-m
qg>—1,p>1
Case VII :
0,n _ (0,n)
&= D Yl
q>1,p>—1

2.3. The eigenvalues of the Rumin Laplacian

2.3.1. The action o_f dr, and the Reeb vector field. Setting w; := dz; —
2;0|z|* and ; := dz; — z;0|z|?, we define differential forms

Jj+1
o) =Y (D) TIEE ATy AT,
v=1
0,1 _ _
O‘Ej,o)) =W A AW,
n+1
O‘Eg:?)) = Z (_1)M—("—1+1)2Mwn7i+1 A-- Q/J\H C A W1,
pu=n—i+1
1,0
O‘EO,&)) = Wh—it1 N AN Wpga.
Following [IZ], we see that \I!Eflj)l ) contains the following element w((;;)z ) for
p,q>1,4,7>0,i+j<n—1,a,b>0anda+b<1,
0,00  _
Y0000 = b
(i+a,j+b) . —q—1_p—1 (a,0) (0,b) n
agir) =7  Zne1%g Ao/ V2T,
(i+1,541) . _ p7(i+1,5+1)
Vgiin) = Plajin)
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where ¢t LITL 2‘11712”+1o¢(1 9 A (0 1)/\/ 2+l

(g,4,1,p) (0,i)
(0.5+b) . _ za-1, 0 b) e
ooe =21 e/ Ver
d’é&%fg) = n+1a(a 0)/ V2t

(0,n) 1-1, r——
w(q,n 1,0,-1) ‘= =7z (n 0)/ 2rm
(n,0) o /o—n
V1 0m—1p) Zn+1a 0 n)/ 2l

(i+1,j+1)

wiip) Let us calculate P

We have used the projection P in the definition of ¢(
explicitly (see also Remark 231 below). Since

2Mw, ANwy) = —V—12,Z, for p#v,

we have ©0.0) :
(1,0) 0,1\ _ i+1 (0,0 (0,0
QA( (0.4) /\O‘(go)) =v/—1(-1)"" Aoy NG
Thus » ) _ -
2, 7 (i+1,j+1 [ 1(_1)i+1 1,7
2Awqﬂp) 1(-1) Aw(qﬂp)_o
By using the Lefschetz primitive decomposition, we get
1
P|_i+1.5 Y =1— —LA. 2.3.1
|\Iqu+Jll :)UEBL\IIEQ 1)1 P) n—t—) ( )

PROOF OF (EZX). For k +2 < n, let ¢ = ¢o + Loy € Q¥F2(M), where ¢y €
Co°(M,AFF2 H*) and ¢ € C(M, A" H*). Then we have

s 'prim prim
Ap = ALo;.
Since [L,A] =k —n on Q’}{(M), we obtain
A¢ = 7[LaA]¢1 = 7(]{ - n)d)la

and hence
LAG = (n — k)Léy.
It means that LA/(n — k) is the projection from
C®(M,NE2 H*Y @ L - C°(M,AF,,,H*) to the second component. Therefore, we

prim prim

obtain (IZ:EH) O

LEmMMA 23.1. If S+j<n—1andp,g>1"0or “<n—-1,7=0,p>1 and
q=07,

(i.9) _ - (i41,7)
aRw(tm’-,i,ﬁo) =(p+ Z)w(q 4,i,p)° (2 3.9)
= ji Sl 0.
aRw((;),i),j,q) =(-1)(p+ 1)7/18, ,JS q)

If2+.7§n_2; p»QZ 17
o w(i,jJrl) _ (p+i)w(i+1,j+l)

(¢:4,%,p) (¢:4,4,p)
o o (2.3.3)
+1,¢ ; . +1,5+1
8R'(/}E1J)7i,j7q)) = (=17t (p+ ZWE;,i,j,q) g
Otherwise, 6ng2’;)i 0 = 0 and 5R¢§;’t,)j 0= 0.
REMARK 2.3.2. Since A@bw(qﬂp) 0 and Agb%é’,ﬁ,@ = 0, the operators

Or and Or in (Z232) coincide with O, and O,. But, since A@bwgé’?—:}p)) # 0 and
AO, 77/1(1+1’]) # 0, this is not the case for (E233).

(¢:4,3,p)
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The action of L7 on wg;’;)i ) is also easy to compute. Since

2Lrz =V -1z, 2Lrw; = V—1w;,
we obtain
2Lrv e = VLR i = = VT, (234)
2.3.2. L?-norms of highest weight vectors.
LEMMA 2.3.3. (|2, Lemma 3.2]) Let p,q > 1 and set
Clg,p) = 2" ™ (g = )p - 1Y/ (g +p+n),
D(q) = 2" " (g = 1)!/ (g + n)!.
Fitj<n—1,

‘W%ﬂm” wﬂ Q+ﬁ@+®- (2.3.5)
Ifj>0andi+j<n-—1,
2 o
(i+1,5) _ (j,i+1) .
de 4:35:p) H - Hw(m,j,q)H 23+z+1 q+])(‘]+”*2)- (2.3.6)
Ifi,j>0andi+j <n—2
i+1,541 Yg+n—i)p+n—j)n—1—i—j)
medm;“ J+H2 - : (2.3.7)
Ifo<j<n-1,
. 2 . 2 D( ) .
(0,5) _ (4,0) _ q
Hw(%]’vovo) H - Hw(é,o,j,q) H - 2] (q + .])a (238)
0+ |2 || G+10o) ||> _ D(a) ,
Hw(q,j,0,0)H - Hw(0,0,j,q) - 2i+1 (n - j) (239)

REMARK 2.3.4. These formulas are different from those in [T2] by factors in
powers of 2 due to the choice of the metric g.

PROOF. We only prove (E231) because others were proved in Lemma 3.2 in
[T2]; see also Remark EZ3H. Since P is the orthogonal projection and ¢E;§li7; J)rl) =

Pq/?éy;li’]gl), the formula (EZZ3) gives

st = o = e - ssii

(¢,3,%,p) q,J,%,p) (q J»4,D)

The first term of the right-hand side can be calculated by using the following facts:

the squared norm of agé’?)) in g (see [6, Lemma 5]) is Z";’l |2,]2/2+1 and

2n+1 n+1 |
/|z°‘| dvol, @
(o +n)t

For the second term, we can use
(i+1,5+1) _ V—1 i1, (5.5)
¢(q Jip) T 9 (=1) Viasi)
and
2 . . 2 7,7
ILfI"=(—i=7)IfI", fe&

to reduce it to
1 H(M) 2
4(n —i—j) " (@30p)
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This is given by (E233). O

REMARK 2.3.5. In [I2], the formula of the projection P, corresponding to our
(223), is not correct. This result in errors in the evaluation of the norm corre-
sponding to our (E2320) and the computations of the eigenvalues of the Laplacians
using that formula.

2.3.3. Calculation of eigenvalues. Given (q, j,,p), we list up all (s, t) such

that ‘1’8?1 ) # {0} and calculate the eigenvalues of Ag on them. In this subsection,

we omit the subscripts from ng?i o) \IIEZ?l ) and write w(svt% P (s:t)

Case:i=j=0andp=¢=0

The space is U9 and we have AgW(0:0) =,
CaseIl: i+j<n—-2,p>landg>1

The spaces are W) W(FLd) G5+ and YO+HLIHD Let ||0g|| and ||d¢|| be
the norm of bounded linear operators of ds and Jg. By using Propositions 2230
and 2233, we have

foelgon |t = 250 [0 g+
R P ==
elqeun | = L0 Jet 0 @+ i)pn—j)
M T =T )P Sn-i=7)
106 gen |2 = — 2D [ pti)g4n—i)
IR A e o-ii)
19elgnn | = (g+5)2  [pertaty)? _ @+ )ptn—i)
Wit n—i—j—1 Hi/J(”l’j)Hz 2(n—i—j)

Therefore we can calculate the eigenvalue of Ag on W3 and WO+Li+D) are

- - 2
Aelyn = (0¥ gi+1.0) Oy + 0| gei+n Ol wen)

(p+i)g+n—9)+(q+5)p+n—4)>
An—i—j)2 ’

= = 2
A5|\1;(i+1,j+1) = (85|q/<i,j+1)35#|qj<i+1,j+1> + 85|\1;(i+1,j)3£#|\1;(i+1,j+1>)

(p+i)g+n—9)+(q+5)p+n—4)*
4(n —i—j)? '

We consider (i+j+1)-form. Since Im d¢ and Im dg# are orthogonal, ¥(+1.7) @
Wi+ = dowld) @ de#W0+13+D) | Since Agds = dgAg and Agd# _ d?Ag, the
eigenvalue of Ag on WHLI) @ Wi+l ig

(p+i)(g+n—19)+(g+)p+n—17))°
In—i-7) |

CaseIII: i <n—-1,7=0,p>1land ¢g=0
The spaces are W10 and ¥0+10) We have

10l l* = (p+)/2.
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In the same way on Case II, the eigenvalue of Ag is
(p+i)?/4.
CaseIV:i=0,7<n—1,p=0and ¢ >1

The spaces are W(%9) and ®(0J+D  Taking the conjugate of Case III, the
eigenvalue of Ag is

(g+75)%/4.

Case Vii+j=n—1,p>landg>1
The spaces are U7 @li+1i) and ¢+ We have

10e] g I* = (0 + ) (g + 1 — ) /2,

(| Ol .0 H2 =(g+j)p+n—j)/2
Therefore, on W) the eigenvalue of Ag is

(p+i)(g+n—1i)+(g+7)(p+n—35)*/4
Next we consider W = ¥+1L7) @ Wi+ We set
Plo0 = 00 g0,
Let A = ||0¢|ge. || and B = ||de|g.n |- Then, we have
dep™) = ApUtD) 1 By (it ¢ I dg,
and
ded™ (AP L) 4 BylitDy = dg(A? 4 B2)p()
= (A2 4+ B?)(ApUt19) 4 Byt
Therefore, eigenvalue of Ag on Im dg ¥(+7) is
(A2 +B%)” = ((p+i)(a+n—i) + (¢+5)(p+n—j))*/4

Let us find the eigenvalue on dg W (%7 )J_, which is the orthogonal complement in
W. We note that

Bw(i-&-l»j) _ Aw(id-i-l) c dg\I;(i,j)L'
Let C = (p+i—j—q)/2, A =C —2A% and B’ = C + 2B?. By (221 and
(=33),
D(Bz/l(i"—l’j) _ A¢(i7j+1)) = /=16 A (A/B¢(i+1’j) _ B/Al/)(i’j+1)).
Since D(ApU D) 4 ByBIT)) = 0, we have
D#D(Bw(i—&-Lj) _ Aw(id-‘-l))
(4B + (B4

— O (Bg(i-i-lu’) _ A%(i,jﬂ-l)).

‘We note that
(A’B)2 + (B’A)2
A2 + BQ

= $la+G—i =)+ (p+i)a+n— i)+ )p+n )
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Under the condition i + j = n — 1, it agrees with
((p+i)(g+n—i)+(a+i)p+n—7)"/4
Therefore, we see that the eigenvalue on Im de WD T s
((p+i)(g+n—i)+ (a+i)p+n—)"/4
Case VI: i =n—-1,j=0,p>1and ¢ =—1
The space is U9 Since there is no subspaces of E"~1(S) corresponding to
the V(=1,,—p), we conclude 9,# ¥ (0 = 9,#¥ (0 = {0}. By (Z=21), we have
D0 = g A Lm0
Therefore, we have
Agw(n,o) — (dgdg#)%[}(nﬁo) + D#Dw(nﬁo) _ ﬁT#£T¢(n’O)7
where L7 is the formal adjoint of L7 for the L?-inner product. By (E234), we see
that the eigenvalue of Ag is
(p+n)?/4.
Case VII: i =0,j=n—1,p=—-land ¢ > 1
The space is U(%™) Taking the conjugate of Case VI, the eigenvalue of Ag is
(q+n)?/4.

REMARK 2.3.6. In Cases V-VII, the eigenvalues of D# D were determined by
[8]. Their choice of highest weight vectors in Ker D and Im D# are different from
ours.
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CHAPTER 3

Ray-Singer Torsion and the Rumin Laplacian
on lens spaces

3.1. Introduction

We next introduce the analytic torsion and metric of the Rumin complex
(E*(M,E),dy) by following [2,08]. We define the contact analytic torsion function
associated with (£°(M, E),dg) by

n

Re (M, E,go,s)(s) = S (=)} (n+ 1 — K)G(AE)(s), (3.1.1)
k=0

where ((A%)(s) is the spectral zeta function of A%, and the contact analytic torsion
Te by
21Og TE(M7 E799,J) = K/E(M7 E799,J)/(0)'

Let H*(E®,dg) be the cohomology of the Rumin complex. We define the contact
metric on det H*(£*,dg) by

I lle(M, B, go.5) = Te (M, E, go.1)|  |r2(e9),

where the metric | [12(g+) is induced by L? metric on £*(M, E) via identification
of the cohomology classes by the harmonic forms on £*(M, E).

Rumin and Seshadri [IR] defined another analytic torsion function kg from
(€*(M, E),dy,), which is different from kg except in dimension 3. In dimension 3,
they showed that kg (M, E, gg,7)(0) is a contact invariant, that is, independent of
the metric gp ;. Moreover, on 3-dimensional Sasakian manifolds with S'-action,
kr(M, E, go,s)(0) = 0. Furthermore they showed that the this analytic torsion and
the Ray-Singer torsion Tyr (M, E, go,s) equal for flat bundles with unimodular holo-
nomy on 3-dimensional Sasakian manifolds with S! action. With this coincidence,
they found a relation between the Ray-Singer torsion and holonomy.

To extend the coincidence, with dg¢ instead of dg, the author [9] showed that
Te(S*" 1 C,g0.7) = n!Tar(S*"*1,C, gg.s) on the standard CR spheres S?"*1(C
Cn*+1). Bisides, Albin and Quan [1] showed the difference between the Ray-Singer
torsion and the contact analytic torsion is given by some integrals of universal
polynomials in the local invariants of the metric on contact manifolds.

In this chapter, we extend this coincidence on lens spaces and determine ex-
plicitly the analytic torsion functions associated with the Rumin complex in terms
of the Hurwitz zeta function. Let gqq be the standard metric on S$?"+! and we
note that gg ;j = 4gsta. Let u, 11, ...,y 41 be integers such that the v; are coprime
to p. Let T be the subgroup of (S1)"*! generated by

Y= (P)/la s ,7n+1) = (exp<27r\/jll/1/:u‘)v e ,eXp(27T\/j11/n+1/ﬂ)) .

19



We denote the lens space by
K := S*" 1.
Let C be the trivial line bundle on K. Fix w € {1,...,u} and consider the
unitary representation o = ay,: 71 (K) =T' — U(1), defined by

o (7) = exp (2mv=Tu/p) .

Let E, be the flat vector bundle associated with «,, which is induced from the
trivial bundle on S27+1.
Our main result is

THEOREM 3.1.1. Let K be the lens space of which contact form and almost
complez structure is induced by the action T on the standard CR sphere S?"+1,
(1) The contact analytic torsion function of (K,C) is given by

ke(K,C,g0,5)(s) = —(n+1)(1+ 2% u72%¢(2s)), (3.1.2)
where C is the Riemann zeta function. In particular, we have
’%S(Ka Qa gQ,J)(O) = 07 (313)
A n+1
TS(K7Q, 90,.]) = </J/) . (314)

(2) The contact analytic torsion function of (K, E,) foru € {1,...,u— 1} is
given by

2s ntl
"{'5(Ka Euage,J)(s) = _328 Z(C(ZS?A#(UTJ)/N) + C(QS, A#(_UTj)/lu‘))7 (315)

Jj=1

where A, (w) and 7; are the integers between 1 and p such that A, (w) =w mod
and Tjv; = 1. In particular, we have

te (K, Eu,s go,7)(0) =0, (3.1.6)
n+1

Tf(Kv Euag9,J) = H )6271\/?17“'_7-/# —1]. (317)
j=1

The equations (B12) and (B1H) extend the following results of kg on the
spheres to the lens spaces. Rumin and Seshadri [IR, Theorem 5.4] showed (B12) in
the case (S2,C). The author [4] showed (BZI=2) in the case (S?"*1, C) for arbitrary
n.

From (BI13) and (BIM), we see that the metric | || on (K, E,,ge,s) is in-
variant under the constant rescaling 6 — C6. The argument is exactly same as the
one in [IR].

The fact that the representations determines the eigenvalues of A¢ causes sev-
eral cancellations in the linear combination (BI), which greatly simplifies the
computation of kg(s). We cannot get such a simple formula for the contact an-
alytic torsion function kg of (£°,d}) for dimensions higher than 3, see chapter
a.

Let us compare the contact analytic torsion with the Ray-Singer torsion on lens
spaces. Ray [T3] showed that for v € {1,...,pu— 1}

n+1
TdR(K’ Eu74gstd) = H ‘6277\/?1“‘”/“ - 1. (318)
j=1
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Weng and You [20] calculated the Ray-Singer torsion on spheres. We extend their
results to the case of the trivial bundle on lens spaces.

PROPOSITION 3.1.2. In the setting of Theorem BT, we have
(4m)nHt
TdR(Ka g; 4gstd) - W
The metric 4gstq agrees with the metric g ; defined from the contact from
0 = v/—=1(0 — 9)|2|>. Since the cohomology of (£*(M,E),ds) coincides with
that of (Q*(M,E),d) (e.g. [0, §5.3], [@, §4]), there is a natural isomorphism
det H*(E*(M, E),dg) = det H*(Q*(M, E),d), which turns out to be isometric for
the L? metrics. Therefore (B14) and (B211) give

COROLLARY 3.1.3. In the setting of Theorem B, for a unitary holonomy
a: m(K) — U(r), we have

. 0
Te(K, Ea, go.y) = n!Wm T EIT L (K B, g6.1),
—dim H°
| le(K, Ea,gp,y) = nl~ W H LD 4p (K, By, go,7).

The chapter is organized as follows. In §82, we calculate the contact analytic
torsion function kg of flat vector bundles on lens spaces. In §B23, we compute
the Ray-Singer torsion Tyr of the trivial vector bundle. In §83, we compare the
Ray-Singer torsion and the contact analytic torsion.

3.2. Contact analytic torsion of flat vector bundles

Let u,v1,...,Vn41 be integers such that the v; are coprime to u. Let I' be the
subgroup of (S1)"*! generated by

v = (s Ynr1) = (exp(2rV=1u/p), - exp(2mV = 1vng1 /1)) -
We denote the lens space by
K = §* 1T,
Fix u € {1,...,u} and consider the unitary representation a = a,,: m(K) =T —
U(1), defined by
o () = exp (2mv—1u/p) .
Let E, be the flat vector bundle associated with «,,, which is induced from the
trivial bundle on S27*1,

Let xv be the character of the representation (V,p) of U(n + 1). For a,, we
define V¥« by

ver ={veV]au(n) v =xv(v)v}.
We note that for (V, p),
dim Ve =" xv (£ (t) /#T.
ter
From Theorem PTI, we see that the terms of kg(K, Ey, go,7)(s) in Cases II
and V in Proposition 22271 cancel each other. Thus we get

Iig(K, Eu?.gf)J)(S) = Hl(K7 ETMga,J)(S) + ’42(K7 Eiwga,J)(S) + H3(K7 Eu?ga7{)(8),)
3.2.1
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where

(=D (n +1— k) dim H*(K, E,)

NE

K:l(Ka Eua g@,J)(S) =

k=0
= —(n+1)dim H°(K, E,),
—(n+1), u=0,
_ {o< . (3.2.2)

which is the sum of the terms of kg (K, Ey, gs,s)(s) in Case I, and

H2(K7Eu799,,])(s)
n . dimV*(q,1.,0,,_. dimV*(q,1._1,0,,_.
_Z(l)J+1(n+1j)Z< V@ L y) | Ve L0 0 ﬂ*”)
=0

S\ (a+5)/2)” ((a+7—1)/2)"
- j+1 . dimVO‘u(q,lA,an-)+dimV%(q+1,l-71,Qn, ’+1)
— (_l)j-i- (TL +1— ) J J - J J
j=0 ’ qzz:l ((Q+j)/2)2

(11— ) T )

+ 2s
1 (4/2)

J

y : (3.2.3)

which is the sum of the terms of kg (K, Ey, gg.s)(s) in Cases III and VI, and

53(K’ Euage,J)(S) = HQ(K7 E—u7997J)(8)7 (324)

which is the sum of the terms of kg (K, Ey, go,s)(s) in Cases IV and VIL.
By Richardson-Littlewood’s rule, we have

XV(1,,0,_,4)XV(2,0,) = XV(q,1,,0,_,) T XV(g+1,1,_,.0,_,,,)- (3.2.5)

22



From (B=Z3) and (BX3F),

'%Q(Kv Eu7 g@,])(s)

li)( 1)J+1 (n+1—3) Z
j=

q>1

S xv, 0,00 (xvige,) (e (?h)

= ((a+4)/2)*

& : S v, oD au(h)
(—1)J+1(7’L+1— ) jr2n—j+1 55

’ =0 (4/2)

= D (D1 )

/0 Xv, 0, 50XV 0, (N au(y)e U7 dp

Z/ xva 1,0, J+1)(’7l)au( )6 Jzp28—1 40

225 =1l e n .
- +1 I\, —jx
T ul(2s) Z/O (Z( D (n+1-j)xva o 1,0, .00
=0 7=0
> xvigo,) (e

g1

'Mz

+ ) (1 1= G)xva, o, .00 l)e‘”)ozu(vl)m%_ldx. (3.2.6)

j=1

We consider contents of integral for the last equation. It is known that for ¢t =
(tlv e 7tn+1) € (Sl)n+17

Bn
Xv(i,0, .00 = > et (3.2.7)
Bit-+Bnt1=j
0<B1,..,8n+1<1

Xvigo,) )= D> ettt (3.2.8)

ar+-tanp1=q
14y 4120

We set X :=e % and

n+1

it X) = Z( 1)/ Xv(1,.0,_ ) )X,
=0
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Then (B=Z1) gives
n+1

P=J]0-X), (3.2.9)
=0
8F n+1 n+1 n+1
1 i,
Xoy = ;)(_1)%‘,(%79”_.“1) = Zt X] 111&1 (1-t;X). (3.2.10)

From (BZM) and (B=Z1W), we have

n

S 0+ - v, (DX

3=0
o0F,
= N - X—. 3.2.11
(n+ )7 - X O (3:211)
We set
X) =D Xvigo,) (DX
q>1
From (BXR), we can rewrite F» as
n+1 1 1
Fy = -1= -1 3.2.12
2 J[[l 1—1;X Fi(t, X) ( )

From (BZ1M), (B=21) and (B=212), we can deduce that

n

Z(—l)jH(H +1- j)XV(;j,Q,L,j+1)(t)Xj Z Xv(g.0,)(t)X?
i=0 >1

+ (T 4+ 1= j)xva, o, 0 (OX
j=1

~(wrom x5 (L)
(s i - - x25)

n+1
_ X% (¢, X) _ _Z LX
Fy —1—t;X

(3.2.13)

From (B28) and (B2X13), we see
K‘Q(K7 Eu799,])(8)

225 p=lntl oo ,yl_e—z =
— _ J 2w/ —1ul/p 2371d
pl'(2s) ZZ/O e S
n+1 92s H=

— 2m/=1(quj+u)l/ T 2s 1
Mz/z (20 g

nAlp=l 0o o /=(qus+u)l/u

223NN —q*QS. (3.2.14)

j=11=0 q=1
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Let 7; be the integers in {1,...,p} such that 7,»; = 1 mod p. Since the mul-
tiplication of v; € (Z/uZ)™ induced the bijective map from Z/uZ to Z/uZ, we
have

p—1 p—1
Zcxp (2mv=1(qvj + w)l/p) = Zcxp (2mvV=1(q + ur;)v;l /1)
1=0 1=0
p—1
= Zexp (2mV=1(q + ur;)l/p)
1=0

~J0, q# —ur; mod p,
N i, q=—ur; mod p.

For w € Z, let A,(w) be the integer between 1 and p which is congruent to w
modulo y, then from (BZZ14), we can rewrite ko as

n+1
(K Ezu 9o, J 223 Z Z qus
q>0,

g=—ut; mod pu

n+1 oo L

22522 ap+ Au(—uy)) °

j=1q=0

n+1
= 22,72 Z ¢(2s, Ap(—utj)/p), (3.2.15)

j=1

where for 0 < a <1, {(s,a) := > 7 (¢ +a)~° is the Hurwitz zeta function.
Next, we calculate 3. As in the case of ko, from (B=24), we can rewrite k3 as

n+1

k3(K, By, go.7)(s) = =225 =2 Z (25, Ay (urj) /). (3.2.16)

From (B=Z1), (B222), (B21H) and (B=21H), we have

—(n+ 1) (14227 2 (29)),

u=0.
n+1

w6 B 90.0)(5) = _g2ey=20 37 ({25, Auum) ) + (251 — Aulumy) ) ).
j=1

’ u # 0.

It is known that ¢(0) = —1/2 and ¢’(0) = —log(27)/2 and for 0 < a < 1,
€(0,a) +¢(0,1—a) =0,
¢'(0,a) + ¢'(0,1 — a) = —log|e?™V~1e —1].
Using the above equations, we conclude for u =0
ke(K,C,go.7)(0) = —(n+1)(1+2¢(0))=0,

4
ke(K,C.go.1)'(0) = 2(n + 1) log f
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and for u # 0

re (K, Euagﬁ,J)(O) =0,
n+1
ke(K, Ey,99,5) (0) =2 Z log ‘62”ﬁ“77/u _1

j=1
as claimed.
REMARK 3.2.1. In the case S3, Rumin-Seshadri [I8, Theorem 5.4] gives
ke(s) = —2(1 4 2¢(29)).

This is different from (812) and (BZ3) by the factor of 2%%, which is caused by
the different choice of contact forms. With our 0 in Theorems 11 and EI1,
their contact form can be written as 0/2, whose Reeb vector field generates a flow
of period 2.

REMARK 3.2.2. For any other choice of {ay}, the analytic torsion function kK,
associated with {axdk} also vanishes at 0. This is clear from the observation that

Kq 1S, up to constant integers, given by the alternating sum of C(dg#dg), whose
value at 0 is independent of {ay}.

3.3. Ray-Singer torsion of the trivial bundle
We compute Tyr(K,C, gsta). Following the derivation of [I3, (3)], we have

p—1 2n

1 ; )
2log Tur (K, C, gsta) = L Z Z(*UJHC/(O;]WI),

1=0 j=0

where \,, is the m-th eigenvalue of d#d and

C(s:5.4") = ZOA;S (v, )

Xjm ={¢ € Q(K) | d¥dp = Amo}.
We recall from [T3, page 123]

2n
S (=171 (s1,4)

Jj=0

— (1)) /OOO [ =) olto) + A0 1/0) duds + O,

where for o € R"*1,

w , (n) (2 sinh tusinh ¢(1 — u) )J e~@ntltu o—(@nt+l)t(l-u)

tou) =S (~1)! -
folt,u) ;)( av sinh 9sinhtu  2sinht(l —u)’

At U)_nz% 1 sinh ¢
A cosht — cos2moy )

k
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We set

ho(s) := (T'(s)) 2 /00 tQS*l/ (u(1 - u))sflfo(t,u)dudt,
hi(s,7") / 25~ 1/ (1—u)) 1f1(t,ll//u)dudt.

From [IT3, page 125], it is seen that

1 )
hi(s,7') = =5 D Te(v") (C(25.5/m) + C(25.1 = /1)) = 2(n + D)~ *((25),
j=0
where
n+1
Tr(’yl) _ Z <627r\/jlll/j/p, + 6727r\/jlluj/,u,) )
j=1

Taking the average of hy(s,~!), we have

- Zhl (5,7") = =2(n + 1) 2¢(2s).

Using ¢'(0) = —log(27)/2, we get

—E:m —2n+ng<T> (3.3.1)

We recall the Ray-Singer torsion on spheres.

PROPOSITION 3.3.1. ([20])

2ﬂ_n+l
Tar(S,C, gsta) = .

Let p=1,v=(1,...,1). It follows from (B=3) that

p—1
1
ho(0) = 2log Tyr (S, C, gsta) — u E hi(0,9")
1=0

27t 2"
= 2log ' —2(n+1)log (2m) = 2log — ] (3.3.2)
n! n!

By (B33) and (B332), we conclude

p.—l
210g TdR(K (C ggtd Z h/ + 1 Z hll (vayl)
=0

27" 2 2l
—2log( )+2(n+1)log( 7T>:2log('ﬂ-+1>.
n! n niu"

3.4. Ray-Singer torsion and the contact torsion
Since a(7) € U(r) is diagonalizable by a unitary matrix, we have
Ea:Eul@...@Eur'
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From (BTR), Theorem BT, and Proposition BT2, we conclude

Tar(K, Ea,go.0) = | [ Tar(K, Eu,, g0.5)
j=1

- — dim H° .
Hn! d H(K’E“J)TS(KyEuj,go,J)

Jj=1

. 0
_ nlfdlmH (K’EQ)Tg(K7 Ea,g&‘])'
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CHAPTER 4

Analytic torsions associated with
the Rumin complex with parameters

4.1. Introduction

Let (M, H) be a compact contact manifold of dimension 2n + 1. Let 6 be a
contact form of H and J be an almost complex structure on H. Then we may
define a Riemann metric gp,y on TM by extending the Levi metric df(—, J—) on
H (see chapter M). Let {ax} be positive real numbers. Then, (£°(M), axdy) is also
a complex. We define the Laplacians Ag ¢,,} associated with (£*(M), ardy) and
the metric gq,; by

ap_ (drdr#)? + ai(dr#dr)?, (k#n,n+1),

AR far) = { @n-1(drdn®)® + an DD, (k =n),
ap DD# + aj, (dr#dg)?, (k=n+1).

We follow [2,0R] to formulate the analytic torsions and metrics of the Rumin
complex (€°(M), ardy). We define the contact analytic torsion function by

2n+1
1

AR {ar}(5) = 5 D D wR)CAR 1) (5),

k=0
where C(A’ﬁ’{ak})(s) is the spectral zeta function of Aﬁ,{ak} and w(k) = kfork <n
and w(k) = k + 1 for k > n + 1. We define the contact analytic torsion Tg {4, by
2log TR {a,} = /<;'R’{ak}(0).
To normalize parameters, we assume that a,, = 1.

THEOREM 4.1.1. On the 3 dimensional standard CR sphere S3 with the contact
from 6 = \/—1(0—0)|z|?, the contact analytic torsion associated with (£ (M), ardy,)
is given by

2
TR,{ak} = (471')2((10@2)372_1.
On the 5 dimensional standard CR sphere S° with the contact from 6 = \/—1(0 —
9)|z|%, the contact analytic torsion associated with (£*(M),ardy) is given by

2 : <2
Tr.far} = (47)%(2a0a4) " 5775 (ayaz) T4 + 3567

Recall that Weng-You calculated Tygr (5?1, C, g ) = (47)" 1 /nl. If we asu-
ume the symmeetry a; = as,—;, the contact torsion coincides with the Ray-Singer
torsion on the standard CR sphere if and only if when n =1,

a():].,
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when n = 2,

2
5 ™ 113 257
st =T

5 2
2_%+%a0 a12 115

)

=1.

Theorem B0 claims that if ap = 1, on 5 dimensional standard CR sphere, the
contact analytic torsion does not coincide with the Ray-Singer torsion.

This chapter is organized as follows. In §07, we calculate the eigenvalues of the
Rumin Laplacians A (,,} associated with (£°(S*"*1), ardy) for each irreducible
component. In §8=3, we prepare to calculate the analytic torsion associated with
the Rumin complex with parameters. In §84 and §83, we compute the analytic
torsion on the 3 and 5 dimensional CR standard spheres, respectively.

4.2. The Rumin complex with parameters

All irreducible components are calculated by Proposition 2221 It is shown that
the multiplicity of V(¢,1;,0,,_,_;_;,=1,,—p) in £5' is at most one. In the same
way as Theorem PZI1 in [9], we calculate the eigenvalues of A’f{){ak}.

Case I: On irreducible component V(q,0,,, —p) of £2(S?"*1) such that ¢ > 0 and

p > 0, the eigenvalue of AR (4, is

1
1(p(a+n) +qlp +n))*ag.
Case II: Let 1 <k <n-1. OnV(q,1;,0,_1_;_;,—1,,—p) of EF(S?7+1) such that
q>1,p>1and i+ j =k, the eigenvalue of Ag (,,) is
1 . . , .
1(+ilg+n—i)+(@+5)p+n—j) i,
OnV(q,1;,0, 1 ; ;,=1;,,—p) of EF(S?"*!) such that ¢ > 1, p > Land i+j = k—1

is multiplicity 2 and on each irreducible components the eigenvalues of Ag (,,} are

Y +iatn—i)+@+)p+n— i),

4
L/n—1—i—j\>
1 <n—z—j) (p+i)g+n—1i)+(g+)P+n—4) ai -
If k > 2, for V(q,1;,0, ,_; ;,—=1;,—p) of E¥(S?"*1) such that ¢ > 1, p > 1 and

i+ j = k — 2 the eigenvalue of Ag 4, is

. .\ 2
TS et n- 0+ i )l o

On V(0,_;,=1,,—p)and V(p, 1;,0,,_;) of EF (8?1 such that p > 1 and i = k—ky,
the eigenvalues of AR (4,3 is

1

N+ i)n i+ k))al,

Case III:
If n > 2, on V(qg,1;,0,—1,,—p) of E™(S8**+1) such that ¢ > 1, p > 1 and
i+ j =n — 2, the eigenvalue of Ag (,,} is

L+ iatn—i)+ (a4 D)o tn— ) a0
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OnV(0,—1

n—1’

of AR,{ak} is

—p)and V(p,1,_1,0) of £"(S?**1) such that p > 1, the eigenvalues

1
10 =1l

On V(q,1;,=1,,—p) of En(S*H1) such that ¢ > 1, p > 1land i+j =n—1is
multiplicity 2, and on each irreducible component, the eigenvalues of Ag y,, are
forl=0,1

o+t n— i)+ (@t D)0 ) a0

On V(=1,,p) and V(p,1,) of E"(S*"*1) such that p > 1, the eigenvalues of
ARﬁ{ak} is

1
Z(p + n)QQi.

4.3. Analytic torsion function associated with
the Rumin complex with parameters

In this section, we assume that 4,7 > 0 under additional restriction given in
the formulas. To calculate kg {q,}(5), we set

2R {a,} (8) = K1 (s) + 45( Z K,k (8) + 2 Z K k(S)

0<k<n—2 0<k<n—1
n+3<k<2n+1 n+2<k<2n+1

+ 5v,n—1(8) + Kv nr2(s) + 26vin(s) + 2:‘€v1,n+1(8)> )

where

k1(s) :== (=1)*"1(2n + 2) dim V(0,,,,) = —(2n + 2),
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dimV(q,1;,0,_4_;_;,—1,,—p)
(p+i)g+n—9)+(qg+)(p+n—j)*

(for 0<k<n-2),

ey (ak481 ak4§(m>_2s>

i+j=2n+1—k
p,q>1

dimV(q,1;,0 —1.,—p)

n—1—i—j> 37

(p+i)g+n—1i)+(g+7)p+n—j))*
(forn+3<k<2n+1),

K k(S)

k1 —4s dim V' (0,,_, =1,,—p)
T 2 TG b b
(for 0<k<n-1),
T (_1>ka;ili dimV(Qk—n—la;lszrlfkv -p) ,
(p+2n+1—k)(k—n—1))2

p>1
(forn+2<k<2n+1),

p>1

Kymoi1(s) = (=1)" Y (a,?} +na,*)

((p+i)g+n—19)+(g+5)(p+n—7))*

Ky onia(s) == (=1)" ! Z (—an i + (n+2)a,*)

dimV(q,1;,-1,, —p)

_ dlmV(—l 7_p)
Kvin(s) = (=1)"na,** Z — 5
= (+n)
B dim V(=1 ,—p)
Kving1(s) = (=1)" T (n +2)a 4 —
Vi (s) = (1) (n + 2)a, Z TERSE

We define for a > 0 the following holomorphic function:

dimV(q,1 —1.,—p)

=225 e e
izt R +i)(g+n—19)+2q+j)p+n—j)*
q>1

Then, we have the following Proposition:

32



PRrOPOSITION 4.3.1. We have

HORDS (?) (")i(_f) 1) (n— a2

i+j=a 1=0
( |2nlzen1k 2n—(%—l—n—a),-n,n/_\a’...7
—(n—a),+,—(2i+n—a)

(C(2, 425 +1—1—ky) — (n— a)28l+1+k1)>

'<n|2n12 Z}k n—(2j+n—a),---,n—a, -,
ko=0
_(n—a)7... ’_(2]+n_a))
(C(2,A;2s + 1 — ko) — (n — a)—2s—l+k2)> 7
where e;(Xo, ..., Xn) are the elementary symmetric polynomials of n — 1 variables

of degree l, for a >0 and 8 € R

=Y (ap+8)~°
p=1
and

A:{—l (if n — a is odd),

0 (if n — a is even).

PRrROOF OF PROPOSITION BZ31. First, in the same way as the calculation of
the Hurwitz zeta function at the origin, we have

1
Cr+i)g+n—1i)+2(q+j)p+n—7j)*
1
C(@ptnti-)2qtn—itj) - (n—i—j)?)*
1
- 2s
. . . A\ 28 ( —i—')2
((2]9 +n+1— j)(2q +n—z +.])) (1 - (2p+n+in;j)(2jq+n,i+j))

()

=0 (2p+n+i—j)(2q+n—i+]))
By Weyl’s dimensional formula, we obtain

dim V' (g, 1;,0 L —=1.,—p)

e e (1) (1) (017) (7).
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Therefore we see

Kq(s)

S (n—i—jlep2p+n+i—j)+(2¢+n—i+j))

G 2(q+j)p+i)(g+n—1i)(p+n—j)
P,q=1

GOC R me

-y (‘fs> (—1)!(n — a)+1

=0
pq(2p +n+i—j)
Z (p+i)g+i)p+n—j)g+n—1i)

z) (?> (p:n> <q:”) ((2p+n+i—j)(21q+n—i+j))25+l

-3 ()OS () o-om

'<n'2"126 (20— (2i4+n—a),- m—a,

3

k1=0
—(ﬁ—\a),---,—(2z’+n—a))§(2,n+i—j;2s+l—1—k1)>
<22 W= @ e ma
k2=0
—(n—a),-~-,—(2j+n—a))((?,n—i—i—j;Qs—i—l—k2)>.
Since
Zen L @n—2j+n—a),- n—a--,
ko=0
——a), -, —(2j+n—a)(2b+1)* =0
for 1 <2b+4+1<n—i+j except for 2b + 1 = n — a, we obtain the claim. O

We note that for [ > 1 and 8 € R,

-2 2(—1)!
( ZS) = ( / ) s+ O(Sl), ReSS:1 4(27ﬂ;8) -5
If n=1and a =0, then

Ro(s) = Z (‘fs) (=D (2, 1325 +1—1) — 1) (¢(2,-1;2s + 1) — 1).
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Substituting s = 0 gives
F(0) = (¢(2,-1;-1) = 1) (¢(2,-1;0) — 1)

1 (€2 ~10) = 1) S Resemy (((2.-151)
422 Resemn (C(2,-15) (C(2,~12) 1)
1 2
“itm

If n=2 and a = 0, then

B =g 2 () ue

=0

(4.3.1)

(4(2, 0, 2s+1 — 2) _ 2*257l+2) (C(Q7 0, 25 +1 — 1) o 27237l+1) )

Substituting s = 0 gives

0 =15 () Y @t (3

k1=0

(€2 —1:25+1—1— k1) — 1) (C(2,~1;25 + 1 — k1) — 1)

31 n 1772
144~ 256

4.4. The analytic torsion on S

We consider the case n = 1. We have

26R,{ar} (8) = K1(s) +4° (2(/{11170(5) + k111,3(8)) + kv ,0(8) + kv 3(s)

+ 2(kvr2(s) + HVL?,(S))) .
Let us calculate krr,0(s) + kir,3(s). We have

> dim V(0, —
rirno(s) + ki a(s) = —(ag +a4ﬂ§:JE4L4JQ

2s
p=1 p

8

’3

= —(ag* +a3*)(C (25—1)+C(25))~
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Let us calculate kvr,1(s) + kvi,2(s). We have

o= dim V (=1, —p)
kv (s) + kyia(s) = 2a7* —
VI,1 VI,2 1 pZ::l o+ 1)
oodsx~ D
= 2014 p§::1 (p+1)
=2a7*(¢(2s — 1) — ¢(25)). (4.4.2)

From (EZ) and (B272), it follows that

kim,o0(8) + ki3 (s) + kvi(s) + kvra(s)

= —(ag™ + a3 ) (¢(25 — 1) +((25)) + 2a7 ¥ (¢(25 — 1) — ((29))

= (—ag® 4+ 247" —a3*)((25 — 1) + (—ag ** — 2a7* — az*)¢(2s).
We differentiate the above function at the origin:

K111,0(0) + K111.3(0) + Ky1.1(0) + Ky 2(0)

—4 <log “3‘52) ¢(~1) + 4 (log apa2az) ¢(0) — 8¢/ (0). (4.4.3)

Let us calculate kv o(s) + kv 3(s). We have
kv,0($) + Ky 3(s) = 45(7(1545 +2a7 % — ay*)RY(s).
Derivating the above function at the origin and (E=3) give
Ky 0(0) + ky 3(0) = 4(logag — 2logay + log as)k$(0)

1 2
= 4(log ag — 2log a; + log as) (6 + 7;2) . (4.4.4)

From (EZ=3) and (E24), we obtain the value of the contact torsion on S3.
4.5. The analytic torsion on S°

We consider the case n = 2. We have

2KR, {ay}(8) = K1(s) +4° (KH,O(S) + Ki5(s) + 2 Z (K g (8)ki,5—k(8))
0<k<1

+ kv 1(8) + kyva(s) + 2(/@\/172(5)/1\/173(5))> )

Let us calculate sirk(s) + kims—x(s). We see
- dim V(Ov;lk7 7p)
= ((p+R)2=k)>’

4 > dimV(-1,,—p

kink(s) + ks—k(s) = (=1 (a** 4+ a %)

p=1
where




Thus

Z (ki (8) + krrs—k(8)) + Kvi2(s) + kyis(s)
k=0,1

—4s —4s
= Z (—1)’“Jrl ((\/2 - k;ak) + (\/ﬂazl—k) ) Rk ()
k=0,1
— 20,2_43/%11172(8).
Noting that

3

(P+2)(p+1p=> es1(2—k1—k —k)(p+k),
1=0
we have
N =12\ (p+2)(p+1p 1
/iHI,k(S) = ;; 2 (k) p+k (p+ k)25
2 oo
T 9 2s5+1—1
2\k) == (p+k)
1/2) <
=51, D esi(2— k1 -k, —k)((2s +1-1).
=1
Then we get
. 5 . 1 . 3
Fro(0) = Ty frr,1(0) = % Ri,2(0) = -3
Hence
(K111 %(0) + K1 5-£(0)) + Ky 2(0) + Ky 3(0)
k=0,1
2
= Z(_l)k+147@in,k(0)
k=0
—4 > (=1 (log(2 — k)aras_x) Furk(0)
k=0,1
+8 log as - 1%111,2(0)
5
= 6log2m — 3 log 2apas + 2logaias — 3logas. (4.5.1)

Let us calculate ki1,0(s) + ki1,5(s). We have
ki1,0(8) + Krr,5(s)
— 45 (_a0—4s + (\/50,1)_48 _ a245 + (\/5@3)_45> %3(8)

From (E372), it follows that

2apa4 \ T
Ki10(0) + sy (0) =4+ (1og 21024 ) T2 (152

Let us calculate kv, 1(s) + kv,a(s). We have

kv a(s) + rva(s) = 4° (a7 ™ — 23" + a3 ™) 7 (s).
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From (E=33), we see

aas 31 1772
a0+ 00 =~ (1os 230) (2 ) sy

From (E551), (B552) and (E553), we obtain the value of the contact torsion on S°.
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