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Let k be a finite field and X be a smooth variety over k. For an `-adic sheaf F on X
(where ` is a prime number invertible in k), Saito [7] constructs the characteristic cycle
CC(F) as a Z-linear combination of the irreducible components of the singular support
SS(F) defined by Beilinson [1]. The singular support is a closed subset of the cotangent
bundle T ∗X which controls the universal local acyclicity of morphisms. The cycle CC(F)
is characterized by a Milnor-type formula computing the total dimensions of the vanishing
cycles complexes. Furthermore, when X is projective, the intersection number with the
0-section T ∗XX ⊂ T ∗X equals to the Euler-Poincaré characteristic:

χ(Xk̄,F) = (CC(F), T ∗XX)T ∗X .

In this dissertation, we give a refinement, the epsilon cycle, of the characteristic cycle by
which we can treat the global epsilon factor

ε(X,F) =
∏
i

det(−Frobk, H i(Xk̄,F))(−1)
i+1

modulo roots of unity.
This dissertation consists of three parts (Parts I, II, III). In Part I, we prove a continuity

theorem of the local epsilon factors of vanishing cycles in a family, which is a key ingredient
of the following parts. In Part II, we construct the epsilon cycles of `-adic sheaves and study
various properties of them. In the final part, Part III, we treat the special case of constant
sheaves in Part II without taking modulo roots of unity. In this part, we compute the local
epsilon factors of the vanishing cycles (with constant coefficient) of isolated singularities in
terms of non-degenerate symmetric bilinear forms over k associated with the singularities.

Using the generalizations of local epsilon factors to general perfect field cases due to
Yasuda [8] and Guignard [4], the results in Parts I, III are generalized to any perfect base
field of positive characteristic. Also, Part II can be generalized to the case where the base
field is the perfection of a finitely generated field, but is allowed to be of characteristic 0.
For simplicity, in this summary, we only treat the case where the base field is finite.

In Part I, we consider a family of vanishing cycles complexes. To be precise, let S
be a scheme of finite type over Fp and consider the following commutative diagram of
S-schemes

(1) Z � � / X

π
��>

>>
>>

>>
>

f // A1
S

��~~
~~
~~
~~

S
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and a constructible complex of `-adic sheaves F ∈ Db
c(X,Zℓ) on which the following

conditions are imposed: π is of finite type and universally locally acyclic relatively to F ,
f is universally locally acyclic relatively to F outside a closed subscheme Z ⊂ X which is
assumed finite over S.

Let s ∈ |S| be a closed point. Taking the fibers of the diagram (1) and the sheaf F , we
get a morphism fs : Xs → A1

s which is universally locally acyclic relatively to Fs outside
the finite subset Zs. For each point z ∈ Zs, let us write A1

s,(f(z)) for the henselization of

A1
s at the image f(z) and A1

s,(z) for the unramified extension of A1
s,(f(z)) corresponding to

the residue extension k(z)/k(f(z)). The vanishing cycles complex RΦfs(Fs)z supported
at z gives a bounded complex of `-adic representations of the absolute Galois group of
the function field of A1

s,(z). As the completion of the function field is a local field, one can
associate the local epsilon factor

ε0(A1
s,(z), RΦfs(Fs)z, dt) ∈ Qℓ

×

in the sense of Langlands-Deligne [3].
For a family as in (1), we consider the function on |S| defined by

θep : |S| → Qℓ
×
, s 7→

∏
z∈Zs

(−1)azε0(A1
s,(z), RΦfs(Fs)z, dt).

Here we set az = [k(z) : k(s)] · dimtotz(RΦfs(Fs)z) = [k(z) : k(s)] · (dim(RΦfs(Fs)z) +
Swz(RΦfs(Fs)z)). The main result in Part I states that this function satisfies the reci-
procity law of the class field theory:

Theorem 1. Suppose that S is connected. Then, there exists a continuous character

ρF ,t : π
ab
1 (S)→ Qℓ

×
which makes the following diagram commutative

|S| θep //

""E
EE

EE
EE

EE
Qℓ
×

πab1 (S).

ρF,t

;;wwwwwwwww

Here the slant arrow |S| → πab1 (S) sends closed points of |S| to the geometric Frobeniuses
at the points.

Let us explain the proof of the theorem. In the proof, we use oriented products of
topoi, by which we can treat vanishing cycles complexes over general base schemes. More

precisely, we use the oriented products of the form S
←
×P1

S
A1
S. When S = Spec(k) is the

spectrum of a field k, this topos is canonically equivalent to the étale topos of the generic

point of the henselization P1
k,(∞) at the infinity. In our context, the topos S

←
×P1

S
A1
S is

treated as a family of such étale topoi parametrized by S. Using the oriented product, we
treat a family of the local Fourier transforms of the vanishing cycles and prove that they

glue to a complex of smooth `-adic sheaves on S
←
×P1

S
A1
S. Then, taking the determinant,

the theorem follows from Laumon’s cohomological interpretation of local epsilon factors
[6, (3.5.1.1)]. We note that, if one takes the rank of the complex, we obtain an alternative
proof of the local constancy of the total dimensions in [7, 2.16] in our setting.

As an application of Theorem 1, we construct epsilon cycles in Part II.
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Let X be a smooth variety over a finite field k. For an `-adic sheaf F ∈ Db
c(X,Zℓ),

Beilinson defines the singular support SS(F). This is a closed subset of the cotangent
bundle T ∗X stable under the Gm-action. If one writes its irreducible decomposition as

SS(F) = ∪aCa,

each irreducible component Ca has the same dimension as X. The epsilon cycle of F ,
denoted by E(F), is a cycle supported on SS(F)

E(F) =
∑
a

ξa ⊗ [Ca] ξa ∈ Qℓ
× ⊗Z Q

whose coefficients take values in the group Qℓ
× ⊗Z Q. This cycle is characterized by a

Milnor-type formula for local epsilon factors. To explain it precisely, take k-morphisms

(2) X
j←− U

f−→ A1
k

where j is étale. Suppose that an isolated SS(F)-characteristic point z ∈ U with respect
to f is given. Then f is universally locally acyclic relatively to F outside that point.
Therefore the local epsilon factor ε0(A1

k,(z), RΦf (F)z, dt) is defined. On the other hand,

since the differential df = f ∗dt (where t is the standard coordinate of A1) does not intersect
SS(F) away from z, the intersection number (Ca, df)z at z is defined for each Ca.

Theorem 2. For a diagram (2) with an isolated SS(F)-characteristic point z ∈ U , we
have

ε0(A1
k,(z), RΦf (F)z, dt)−1 = (E(F), df)[k(z):k]z :=

∏
a

ξ[k(z):k]·(Ca,df)z
a

in the quotient group Qℓ
× ⊗Z Q of Qℓ

×
.

In Part II, we study and prove various properties of epsilon cycles which are analogous
to characteristic cycles. Among them, we give a pull-back formula and a product formula,
both of which can be proven by the same methods given for characteristic cycles by
Beilinson and T. Saito:

Theorem 3. Let X be a smooth k-variety purely of dimension n and F be an `-adic sheaf
on it.

1. (compatibility with pull-backs) Let h : W → X be a separated morphism from a
smooth k-variety W . Suppose that h is properly SS(F)-transversal. We also suppose
that W is purely of dimension m. Then, we have

E(h∗F) = h!(E(F)(n−m
2

)).

Here h! denotes the pull-back of cycles defined for properly SS(F)-transversal mor-
phisms and (n−m

2
) denotes the Tate twist.

2. (product formula) When X is projective, we have the following equality in the group

Qℓ
× ⊗Z Q:∏

i

det(Frobk, H
i(Xk̄,F))(−1)

i

= (E(F), T ∗XX)T ∗X :=
∏
a

ξ
(Ca,T ∗

XX)T∗X
a
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Here T ∗XX ⊂ T ∗X in the right-hand side denotes the 0-section of T ∗X. The intersec-
tion number (Ca, T

∗
XX)T ∗X is defined as both of the Ca, T

∗
XX
∼= X are n dimensional

and T ∗X is 2n dimensional.

The proof of Theorem 2 goes as the corresponding Milnor-type formula for character-
istic cycles. Since the assertion is étale local, we may assume that X is quasi-projective.
EmbeddingX into a projective space, we apply the continuity of local epsilon factors (The-
orem 1) to the universal family of pencils constructed from the embedding. By Katz-Lang’s
finiteness theorem [5], for a normal connected scheme S of finite type over k, the compo-

sition of a continuous character ρ : πab1 (S)→ Qℓ
×
and the quotient map Qℓ

× → Qℓ
×⊗Z Q

factors through the structure map πab1 (S)→ πab1 (k). From this observation, we know that

the local epsilon factors behave as if they were locally constant in the group Qℓ
× ⊗Z Q,

from which the theorem follows.
In Part III, we consider a refinement of Theorem 2. Restricting ourselves to the case

where F = Zℓ, we compute the local epsilon factor ε0(A1
k,(z), RΦf (Zℓ)z, dt) without the

ambiguity on roots of unity. The result can be regarded as a refinement of the Milnor
formula in positive characteristic to the local epsilon factors.

When F is the constant sheaf Zℓ, the singular support SS(F) is equal to the 0-
section and the intersection number (T ∗XX, df)z appearing in Theorem 2 is the Milnor
number µ(f, z) of the isolated singularity z. As classically known, one can associate
a non-degenerate symmetric bilinear form (ϕf , Bf,dt) with an isolated singularity as a
linear-algebraic enhancement of the Milnor number.
　First, we explain the construction of the bilinear form (ϕf , Bf,dt). Consider a commu-

tative diagram of schemes as (1). In the sequel, S can be a general scheme (not necessarily
over Fp), and we suppose that X is a smooth S-scheme and that Z is the singular locus
of f (namely, the closed subscheme defined by the intersection of df and T ∗XX) which
is assumed finite over S. Let i : Z ↪→ X denote the closed immersion and g : Z → S,
π : X → S denote the structure maps respectively. By the compatibility of !-pull-backs
for coherent sheaves, we have a canonical isomorphism

g!OS ∼= i!π!OS.

As π is smooth, we have π!OS ∼= ωX/S[n] (ωX/S is the canonical bundle, n = dimX).
Since i is a closed immersion, we have a canonical quasi-isomorphism of complexes of
OX-modules

(3) i∗g
!OS ∼= i∗i

!π!OS ∼= RHomOX
(i∗OZ , ωX/S[n]).

By the assumption that Z → S is finite, the Koszul complex defined from the section df
on the locally free OX-module Ω1

X/S gives a locally free OX-resolution of i∗OZ . Computing

the right-hand side of (3) in terms of this resolution, we have a canonical isomorphism

g∗g
!OS ∼= g∗(i

∗ω⊗2X/S)

of OS-modules. Set ϕf = g∗i
∗ωX/S. This is a locally free OS-module. We define the

non-degenerate symmetric bilinear form Bf,dt on it to be the composition of

ϕf × ϕf → g∗(i
∗ω⊗2X/S)

∼= g∗g
!OS → OS.

Here the last arrow g∗g
!OS → OS comes from the adjunction of (g!, g∗).

　We explain the main result of Part III when k is of odd characteristic.
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Theorem 4. Let X be an n dimensional smooth k-variety and f : X → A1
k be a k-

morphism. Let z ∈ X be an isolated singularity of f . We write discBf,dt ∈ k×/(k×)2

for the discriminant of the bilinear form (ϕf , Bf,dt) defined above. When k is of odd
characteristic, we have the following equality:

(−1)[k(z):k]dimtotRΦf (Zℓ)z · ε0(A1
k,(z), RΦf (Zℓ)z, dt) =

((−2)nµ(f,z)discBf,dt

k

)
· τ (−1)

n+1nµ(f,z)
ψ .

Here µ(f, z) denotes the Milnor number, (
k
) denotes the Legendre symbol, and τψ =

−
∑

a∈k ψ(a
2) denotes the quadratic Gauss sum attached to the non-trivial additive char-

acter ψ : k → Qℓ
×
used for defining the local epsilon factor.

　We explain the results in characteristic 2. In characteristic 2, we consider a lift to
the Witt vectors. Let us write W3(k) for the ring of Witt vectors of length 3. We take a
W3(k)-morphism

f̃ : X̃ → A1
W3(k)

which is a lift of f : X → A1
k. Namely, X̃ is a smooth W3(k)-scheme and the reduction

f̃ ⊗W3(k) k is isomorphic to the initial one f . Setting (f, S) = (f̃ , Spec(W3(k))) in the
diagram (1), we obtain a bilinear form over W3(k), and taking its discriminant, we get an
element discBf̃ ,dt in W3(k)

×/(W3(k)
×)2. We note that the group k/℘(k) (where ℘ is the

map x 7→ x2 − x) is contained in W3(k)
×/(W3(k)

×)2 under the map

(4) α : k/℘(k) ↪→ W3(k)
×/(W3(k)

×)2, x 7→ 1 + 4[x].

Theorem 5. Suppose that k is of characteristic 2. Let N be the integer nµ(f, z). Then,
N is even. The signed discriminant

(−1)
N
2 discBf̃ ,dt ∈ W3(k)

×/(W3(k)
×)2

constructed from a W3(k)-lift f̃ : X̃ → A1
W3(k)

admits the following properties:

1. (−1)N
2 discBf̃ ,dt belongs to the image of α in (4).

2. (−1)N
2 discBf̃ ,dt is independent of the choice of the lift f̃ .

　 Accordingly, there exists a unique element a ∈ k/℘(k) by which the discriminant

discBf̃ ,dt is written as the form discBf̃ ,dt = (−1)N
2 (1 + 4[a]). We call this constant a the

Arf invariant of f and write Arf(f, z) for it. When the singularity of f is non-degenerate
quadratic, this constant coincides with the classical Arf invariant of quadratic forms (cf.
[2]).

Using this Arf invariant, we can state the formula of local epsilon factors in character-
istic 2 as follows.

Theorem 6. Let the notations be as in Theorem 4. We assume that the cardinality q of
k is a power of 2. Then, the ratio

(−1)[k(z):k]dimtotRΦf (Zℓ)z · ε0(A1
k,(z), RΦf (Zℓ)z, dt)/q

(−1)n+1nµ(f,z)
2

is equal to ±1. This sign is equal to 1 if and only if the Arf invariant Arf(f, z) ∈ k/℘(k)
is trivial.
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　 Theorems 4, 5, 6 are proven by induction on the Milnor number. We construct
a family (1) of isolated singularities parametrized by a smooth connected k-scheme S
with the following properties: the family generically contains quadratic singularities with
Milnor number 1 or 2 and the initial singularity (f, z) appears in the family. By Chebotarev
density and the induction hypothesis on the Milnor number, Theorem 1 reduces the proofs
to such quadratic singularities, which cases can be verified by direct computations.
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[3] Deligne, P.: Les constantes des équations fonctionnelles des fonctions L, Modular
functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp,
1972), pp. 501-597.

[4] Guignard, Q.: Geometric local epsilon factors, arXiv:1902.06523.

[5] Katz, N.-M., Lang, S.: Finiteness theorems in geometric classfield theory, Enseign.
Math. (2) 27 (1981), no. 3-4, 285-319 (1982).

[6] Laumon, G.: Transformation de Fourier, constantes d’équations fonctionnelles et con-
jecture de Weil, Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 131-210.

[7] Saito, T.: The characteristic cycle and the singular support of a constructible sheaf,
Inventiones Mathematicae, 207(2) (2017), 597-695.

[8] Yasuda, S.: Local ε0-characters in torsion rings, J. Théor. Nombres Bordeaux 19
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