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Abstract

In this thesis, we investigate relationships between the subregular W-algebra for
sln and the principal W-superalgebra for sl1|n in terms of their algebraic structure
and representation theory.

Firstly, we show that the Heisenberg cosets of these two (super)algebras are
isomorphic if the levels satisfy a certain“duality relation” and a “non-degenerate
condition”. This isomorphism for generic levels has been conjectured originally by
Feigin and Semikhatov [Nuclear Phys., 2004], where another construction of the

subregular W-algebra, which is denoted by W
(2)
n , was defined in terms of screening

operators.
Secondly, we enhance this duality: we prove a reconstruction type theorem,

which asserts that the Heisenberg coset of the tensor product of one of the above
W-(super)algebras and a certain lattice vertex superalgebra is isomorphic to the
other W-(super)algebra. In the case n = 2, this reconstruction theorem states that
the N = 2 superconformal algebra is constructed from the affine vertex algebra
for sl2 and a certain lattice vertex superalgebra, and vice versa. This coincides
with the Kazama–Suzuki coset construction [Nuclear Phys. B, 1989] of the N = 2
superconformal algebra and its inverse construction due to Feigin, Semikhatov and
Tipunin [J. Math. Phys., 1998].

Thirdly, by using this reconstruction theorem, we describe the simple principal
W-superalgebras for sl1|n at certain levels as simple current extensions of tensor
products of simple principal W-algebras and lattice vertex superalgebras, based on
the corresponding result for the subregular W-algebras obtained by Creutzig and
Linshaw [arXiv:2005.10234].

Finally, we use this extension description to show that the simple principal W-
superalgebra for sl1|n at those levels are rational and C2-cofinite, and then to derive
the classification of their irreducible modules and determine their fusion rules. In
the case of n = 2, this coincides with the unitary minimal series representations of
the N = 2 superconformal algebra.
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1. Introduction

This thesis consists of three parts. In the first part (§2), we reconstruct the
screening operators for the W-algebras [G1] from the (dual of) generalized Bernstein-
Gel’fand-Gel’fand resolutions of finite dimensional simple Lie algebras, and discuss
their relationship with quantum groups. This part is based on [N1]. The second
part (§3-5) deals with the duality of the subregular W-algebra Wk(sln, fsub) for
sln and the principal W-superalgebra W`(sl1|n) for sl1|n. This part is based on

[CGN]. The third part (§6-7) deals with the representation theory of Wk(sln, fsub)
and W`(sl1|n). This part is based on [CGNS]. In the below, we explain the detail.

1.1. Background. Let g be a basic classical simple Lie superalgebra, k a com-
plex number and f an even nilpotent element in g. Then one associates with the
universal affine vertex superalgebra V k(g) at level k the universal W-superalgebra
Wk(g, f) via the quantum Hamiltonian redcution [KRW, FFr2]. Especially, the W-
superalgebras associated with a principal nilpotent element fprin (which is unique
up to conjugations), are conventionally denoted by Wk(g). Affine vertex superal-
gebras and their W-superalgebras are most important families of vertex superal-
gebras due to their essential role in various aspects of representation theory, ge-
ometry, and physics. This traces back to constructions of knot invariants [W1],
extensions of the Virasoro symmetry in the 2 dimensional chiral conformal field
theories [FL1, FaZa, Za], and quantizations of the symmetries in soliton equations
[DS, FL2, FFr2, FFr7, GD]. Nowadays, their significance becomes larger, rang-
ing from the (quantum) geometric Langlands program [F2, FrGaits, AFO] and
invariants of low dimensional manifolds [CCFGH, FeGu] to invariants of 3 and 4
dimensional supersymmetric quantum field theories [AGT, BMR, CG, FrGaio, GR]
or symmetries of 6 dimensional conformal field theories [BRvR].

The celebrated Feigin–Frenkel duality [FFr4] of the principal W-algebras asso-
ciated with simple Lie algebras asserts that for all non-critical levels k one has an
isomorphism

Wk(g) 'W`(Lg), (1.1)

where Lg is the Langlands dual Lie algebra of g and the dual level ` is defined by

r(k + h∨)(`+ Lh∨) = 1 (1.2)

with r the lacity of g and h∨, (resp. Lh∨), the dual Coxeter numbers of g, (resp.
Lg). However, dualities for the general W-(super)algebras have been mysterious for
many years.

One of the differences between the principal W-algebras and the other types of
W-(super)algebras is that the former do not have affine vertex subalgebras, but the
latter do. Based on the study of S-dualities among 4 dimensional N = 4 super
Yang–Mills theories, a remarkable conjecture was proposed by Gaiotto and Rapčák
[GR], which asserts that the coset vertex algebras of W-superalgebras by the affine
vertex subalgebras admit dualities. According to [GR], even if we consider the affine
coset of a W-algebra associated with a simple Lie algebra g, the affine coset on the
other side in the duality is not of a W-algebra associated with the Langlands dual of
g, but of a W-superalgebra associated with a certain Lie superalgebra. Therefore,
we obtain a conjectural relationship of W-algebras associated with Lie algebras and
those associated with Lie superalgebras.

Actually, the most fundamental example of these new dualities has been well-
known in both mathematics and physics literature: the duality between the Heisen-
berg cosets of V k(sl2) and W`(sl1|2), (also known as the N = 2 superconformal
algebra, N = 2 SCA). In this case, the duality is an immediate consequence of the
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famous Kazama-Suzuki coset construction [KaSu] of the N = 2 SCA. A generaliza-
tion of this particular duality has already been suggested by an impressive work of
Feigin and Semikhatov [FS], which is the main objective of this thesis.

1.2. Feigin–Semikhatov Conjecture. In [FS], Feigin and Semikhatov introduced

a family of vertex algebras, called the W
(2)
n -algebras, which are proven to be iso-

morphic to the subregular W-algebras Wk(sln, fsub) [G1]. They constructed W
(2)
n

as subalgebras of the joint kernel of a set of screening operators acting on some
Heisenberg vertex algebras. These screening operators are associated not to the set
of simple positive roots of sln, but to the set of simple positive roots of sl1|n. Note
that in contrast to the case of simple Lie algebras, the Borel subalgebras of sl1|n
are not unique up to conjugations, and neither are the sets of simple positive roots.
In [FS], the authors constructed a set of screening operators for each set of simple
positive roots.

Recall that by the Wakimoto realization [FFr1, Wak1], the affine vertex algebra
V k(g) is also embedded into a Heisenberg vertex algebra whose image for a generic
level coincides with the joint kernel of certain screening operators. By [FFr7],
these screening operators can be seen as generators of the quantum group Uq(n+)
where n+ ⊂ g is the nilpotent Lie subalgebra in the positive part. In this sense,
Uq(n+) and V k(g) form a commuting pair in the Heisenberg vertex algebra where
the screening operators act. This relation holds for the general W-algebras and
their screening operators, which was first observed by Feigin and Frenkel [FFr7] for
the principal W-algebras, see Remark 2.8 for the general W-algebras. Therefore,

the construction of W
(2)
n implies a hidden connection between Wk(sln, fsub) and

an affine vertex superalgebra V `(sl1|n) at a certan level ` or its W-superalgebras.

They suggested an isomorphism between the Heisenberg cosets of Wk(sln, fsub) and
W`(sl1|n) whose levels (k, `) are related in a similar way as (1.2), see [FS, eqn 1.6].

To show that the W
(2)
n -algebras constructed from different screening operators

are all isomorphic, the authors related the Heiseberg cosets of W
(2)
n to the same

coset vertex algebra of V `
′
(sl1|n) at another level `′ by the affine vertex subalgebra

V `
′
(gln). Many impressive operator product computations then suggest that the

Heisenberg cosets of the W
(2)
n -algebras associated with different screening operators

are actually isomorphic to the latter coset algebras.

Conjecture. (Feigin and Semikhatov [FS]) Let πH1
, (resp. πH2

), be the Heisenberg
subalgebra of Wk1(sln, fsub), (resp. Wk2(sl1|n)). Then we have the following.

(1) For generic levels (k1, k2) ∈ C2 satisfying (k1 + n)(k2 + n− 1) = 1,

Com
(
πH1

,Wk1(sln, fsub)
)
' Com

(
πH2

,Wk2(sl1|n)
)
.

(2) For generic levels (k1, k2) ∈ C2 satisfying 1
k1+n + 1

k3+n = 1,

Com
(
πH1 ,W

k1(sln, fsub)
)
' Com

(
V k3(gln), V k3(sl1|n)

)
.

Several special cases have already proven in the literature by using explicit OPE
formulas. When n = 2, Wk1(sl2, fsub) = V k1(sl2) and Wk2(sl1|2) is the N = 2 su-
perconformal algebra. Then Conjecture (1) is essentially the well-known Kazama–
Suzuki coset construction of the N = 2 superconformal algebra [KaSu] and Conjec-
ture (2) follows from a some relation between V k(sl1|2) and L1(d(2, 1;−(k + 1))),
[BFST, CG]. When n = 3, Conjecture (2) is proven in [ACL1, Theorem 6.2].
This approach might not be applied in the higher rank cases since it is difficult to
determine explicit OPE formulas in general.

In this thesis, we prove Conjecture (1) in general by the same way as the Feigin–
Frenkel duality (1.1) was proved [FFr4]. We embed the Heisenberg cosets into
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certain Heisenberg vertex algebras and characterize them at generic levels as joint
kernels of screening operators acting on the Heisenberg vertex algebras. This is
based on the description of the W-superalgebras as joint kernel of certain screening
operator, which has been developed by Genra in terms of cohomological method
[G1]-[G2]. In §2, the screening operators for the W-algebras associated with g are
reconstructed in terms of the differentials of the (dual of) generalized Bernstein
-Gel’fand-Gel’fand resolution of the trivial representation C of g, which clarifies
their meaning.

This presentation of the Heisenberg cosets reduces the proof to a much simpler
problem, that is, identifying the Heisenberg vertex algebras and screening oper-
ators. The isomorphisms thus obtained at generic levels extend naturally to all
levels except for some “critical levels” when the Heisenberg subalgebras of the
W-superalgebras degenerate. In application to the representation theory of the
W-superalgebras Wk(g, f), the isomorphism in Conjecture (1) for their simple quo-
tients, which we denote by Wk(g, f) will be important. Motivated by this, we prove
the commutativity of taking coset and taking simple quotient (Corollary 5.6), which
gives the isomorphism between their simple quotients as well. To summarize, we
prove the following:

Theorem A. (Theorem 4.6 (i), Corollary 5.7 (i), [CGN]) For (k1, k2) ∈ C2 satis-
fying

(k1, k2) 6= (−n,−n+ 1),

(
−n+

n

n− 1
,

(n− 1)2

n

)
, (k1 + n)(k2 + n− 1) = 1,

we have isomorphisms of vertex algebras

(1) Com
(
πH1 ,W

k1(sln, fsub)
)
' Com

(
πH2 ,W

k2(sl1|n)
)
,

(2) Com (πH1
,Wk1

(sln, fsub)) ' Com
(
πH2

,Wk2
(sl1|n)

)
.

We note that Theorem A is proven independently by Creutzig and Linshaw
[CL4] where a large part of the conjecture of Gaiotto and Rapčák [GR] is proven.
Their proof relies on an analysis of strong generators of the affine cosets of the
W-superalgebras (of type A). This enables them to describe these coset algebras as
quotients of the universal two-parameter W∞-algebra W[c, λ] constructed by Lin-
shaw [Lin], and to obtain isomorphisms between them. Their approach is powerful
in the regular cases. In this case, they also identified the coset algebra in Theorem
A (2) with a certain principal W-algebra, which will be used in this thesis.

1.3. Relation to Yr1,r2,r3 and Wr1,r2,r3-algebras. In [GR], the family of vertex
algebras, called the vertex algebras at the corner or the Yr1,r2,r3-algebras (r1, r2, r3) ∈
Z3
≥0 are introduced and conjectured to enjoy a triality

Yr1,r2,r3 ' Yr2,r3,r1 ' Yr3,r1,r2 .
The Feigin–Semikhatov conjecture is equivalent to the case (r1, r2, r3) = (1, n, 0)
since Y0,n,1 = Com

(
πH1

,Wk1(sln, fsub)
)
, Y1,0,n = Com

(
πH2

,Wk2(sl1|n)
)
, and Yn,1,0

= Com
(
V k3(gln), V k3(sl1|n)

)
, respectively. Therefore, Theorem A is equivalent to

the isomorphism Y0,n,1 ' Y1,0,n. The proof in this thesis relates the Y0,n,1-algebra
to the Wr1,r2,r3-algebra introduced in [BFM] with (r1, r2, r3) = (0, n, 1), since the
latter algebra is defined as the joint kernel of the same screening operators that
we use for the Y0,n,1-algebra. Therefore, as a byproduct, we have proved an iso-
morphism Wr1,r2,r3 ' Yr1,r2,r3 for (r1, r2, r3) = (0, n, 1), which is conjectured by
Procházka and Rapčák [PR] in general. We expect that we can prove by the same
argument more general cases W0,r1,r2 ' Y0,r1,r2 , which are the coset vertex algebra
of certain W-algebra by the affine vertex subalgebra. This will be interesting since
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the Wr1,r2,r3-algebra is shown to act on the equivariant cohomology of the moduli
spaces of spiked instantons of Nekrasov [RSYZ], which generalizes a result of Schiff-
mann and Vasserot [SV] for the case Wn,0,0, which is isomorphic to the principal
W-algebra for gln.

1.4. Kazama–Suzuki cosets. The Kazama–Suzuki coset construction [KaSu],
appeared in the 1980’s as building blocks of sigma models in string theory. Mathe-
matically, it gives a family of vertex superalgeras which have the N = 2 superaonfor-
mal algebra (N = 2 SCA) as vertex subalgebras. This construction is very beneficial
since it avoids the difficulty of extending by hand the Virasoro symmetry (which
arbitrary vertex operator superalgebras possess) to the N = 2 SCA symmetry. The
idea lies in the same line as the celebrated Goddard–Kent–Olive construction of
the unitary minimal series representations of the Virasoro or N = 1 super-Virasoro
algebra [GKO1, GKO2].

For simplicity, let us consider the type A case. Then the idea of Kazama and
Suzuki is to use the tensor product of V k(sln+1) and n pairs of free fermions Gn.
Since the latter algebra carries an action of L1(gln), V k+1(gln) acts diagonally on
the tensor product, whose coset vertex superalgebra automatically has odd fields in
conformal weight 3

2 weakly generating the N = 2 SCA. The coset is conjecturally
isomorphic to the principal W-superalgebras of sln+1|n. The case n = 1 is the

relation between the N = 2 SCA and V k(sl2). We note that this relation has been
first used in [DVPYZ] to construct explicitly the unitary minimal representations
of the N = 2 SCA, which is followed later by Adamović [Ad1] in the mathematics
literature. However, in [Ad1, DVPYZ], the authors only used an embedding of the
N = 2 SCA into the coset and the honest isomorphism (surjectivity) seems to be
established quite recently [CL3]. See [GL] for the case n = 2 and [ACL2, Corollary
14.1] for the regularity of the type A cases in general.

The idea of Kazama and Suzuki is expected to be efficient in general to con-
struct regular vertex operator superalgebras. The regularity is equivalent to the
C2-cofiniteness of the superalgebra, which ensures the finiteness of the number of
the inequivalent simple modules, and the rationality, i.e., the semisimplicity of the
module category [ABD]. Let Ak be a vertex operator algebra (VOA) equipped
with a V k(g)-action where g is a reductive Lie algebra. Then take a tensor product
Ak ⊗G∗ of Ak and several pairs of free fermions G∗ generated by the natural rep-
resentation of g so that Ak ⊗G∗ has a diagonal V k+1(g)-action. The coset vertex
superalgebra Com(V k+1(g),Ak ⊗G∗) by the diagonal action is our new variant of
Kazama–Suzuki coset, see [Sa2] for a recent work. We expect that the regularity is
preserved under this construction.

In this thesis, we treat the case dim g = 1, when V k(g) is nothing but a rank
one Heisenberg vertex algebra. A remarkable observation was made by Feigin,
Semikhatov, and Tipunin [FST]: the coset construction of the N = 2 SCA from
the V k(sl2) can be reversed, i.e., V k(sl2) can be also obtained from the N = 2 SCA
by a coset construction. These two constructions serve as a dictionary between the
representation theories of the N = 2 SCA and V k(sl2). This was used efficiently by
Adamović to determine the fusion rules of the unitary minimal series representation
of the N = 2 SCA, and furthermore, to classify the irreducible modules of the
N = 2 SCA out of unitary minimal series [Ad2]. See [Sa1, KoSa, CLRW] for
recent developments in this direction and also [CR1, CR3, AP] for a similar relation
between the βγ-system and V k(gl1|1). By using lattice vertex superalgebras VZ and
VZ
√
−1, our second main theorem can be stated as the following Kazama–Suzuki

type coset theorem and its Feigin–Semikhatov–Tipunin type inverse:
4



Theorem B. (Theorem 4.6 (ii), (iii), Corollary 5.7 (ii), (iii), [CGN]) For (k1, k2) ∈
C2 satisfying (k1 +n)(k2 +n−1) = 1, we have isomorphisms of vertex superalgebras

(1) Wk2(sl1|n) ' Com
(
πH̃1

,Wk1(sln, fsub)⊗ VZ
)

,

(2) Wk1(sln, fsub) ' Com
(
πH̃2

,Wk2(sl1|n)⊗ VZ√−1

)
,

(3) Wk2(sl1|n) ' Com
(
πH̃1

,Wk1(sln, fsub)⊗ VZ
)

,

(4) Wk1
(sln, fsub) ' Com

(
πH̃2

,Wk2
(sl1|n)⊗ VZ√−1

)
,

where πH̃i , (i = 1, 2), is a certain Heisenberg vertex subalgebra.

This result enables us to determine the levels k ∈ C when the W-superalgebra
Wk(sl1|n) is regular. Moreover, we classify the irreducible modules and derive their
fusion rules explicitly at these levels.

1.5. Regularity of Wk(sln, fsub) and W`(sl1|n). Despite of its importance, the
representation theory of the W-superalgebras has not yet been understood very
much in contrast to that of the affine vertex algebras V k(g) or its simple quotient
Lk(g) [Kac2, DFMS]. The difference is that the W-superalgebras are defined as
cohomologies and the defining operator product expansions among the strong gen-
erators are not known explicitly, and even worse, are non-linear in general. The
non-linearity implies that the W-superalgebras are not induced from some infinite
dimensional Lie superalgebras, which makes it difficult even to determine the irre-
ducible ordinary (i.e., highest weight) representations. On the other hand, when
the W-superalgebras are induced from some infinite dimensional Lie superalgebras,
the representation theory has been developed. The prominent example is the case
of the Virasoro vertex algebra, that is, Wk(sl2), known as the Feigin-Fuchs theory
[FFu, IK2].

The case of the principal W-algebras Wk(g), which are non-linear, has been
studied intensively by Arakawa and the C2-cofiniteness and rationality of the simple
quotient Wk(g) at non-degenerate admissible levels are established in [Ar6] and
[Ar5], respectively. Beyond the principal cases, the C2-cofininteness is established
for exceptional W-algebras including Wk(sln, fsub) [Ar6] and the rationality in those
levels has been proven under a certain assumption [AvE1], see also [Ar4, CL2] for
earlier results and [Kaw, AM] for non-exceptional cases.

In contrast to this, the regularity of the principal W-superalgebras and W-
superalgebras in general is an open problem except for the rationality of Wk(g)
with g = osp1|2, sl1|2 [Ad1, Ad3]. We note that they are actually induced by in-
finite dimensional Lie superalgebras called the N = 1 and N = 2 super-Virasoro
algebras, respectively.

Our third result is the regularity of the simple W-superalgebra W`(sl1|n) at
certain levels. By Theorem B (3), this follows from the corresponding result of the
simple subregular W-algebra Wk(sln, fsub) [AvE2, CL4]. In [CL4], Creutzig and
Linshaw proved that the coset algebra of Wsub

(r) (sln) := W−n+n+r
n−1

(sln, fsub), (r ≥ 3)

by πH1
is isomorphic to the principal W-algebra W(n,1)(slr) := W−r+ r+n

r+1
(slr),

generalizing the level-rank duality for the parafermion algebra [ALY] for the case
n = 2 and [ACL1] for the case n = 3. Moreover, they proved that the coset
Com(W(n,1)(slr),W

sub
(r) (sln)) is isomorphic to a lattice vertex algebra V√nr Z and

Wsub
(r) (sln) '

⊕
i∈Zr

LW(n$i)⊗ V ni√
nr

+
√
nr Z, (1.3)
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as W(n,1)(slr)⊗V√nr Z-modules, see §7.2-7.3 for details. The modules of W(n,1)(slr)
and V√nr Z appearing in this decomposition are very special, called simple currents
(see §1.7 below) and the regularity of the subalgebra W(n,1)(slr)⊗ V√nr Z is equiv-

alent to that of Wsub
(r) (sln). By using Theorem B (4), we can derive a parallel

statement for the principal W-superalgebra W(r)(sl1|n) := W−(n−1)+n−1
n+r

(sl1|n).

Theorem C. (Theorem 7.4, [CGNS]) For r ≥ 3 and n ≥ 2, there exists an iso-
morphism of vertex superalgebras

Com
(
W(n,1)(slr),W(r)(sl1|n)

)
' V√(n+r)r Z.

In this case, we have

W(r)(sl1|n) '
⊕
i∈Zr

LW(n$i)⊗ V (n+r)i√
(n+r)r

+
√

(n+r)r Z (1.4)

as W(n,1)(slr) ⊗ V√(n+r)r Z-modules. In particular, W(r)(sl1|n) is a simple current
extension of W(n,1)(slr)⊗ V√(n+r)r Z and thus is regular.

We note that the conformal vector of W(r)(sl1|n) used for the regularity in Theorem
C is not the standard one in [KRW], but taken so that (1.4) gives a conformal
embedding of W(n,1)(slr)⊗ V√(n+r)r Z.

1.6. Simple Currents. Let V be a simple (self-dual) regular VOA. The theory
of the tensor product on the category V -mod of (ordinary) V -modules has been
developed by Huang and Lepowsky in a series of works [HL1]-[HL3] and subsequent
works of Huang [H2]-[H7]. In particular, V -mod has a natural structure of modular
tensor category. In this thesis, we call the tensor product of V -modules M and N
the fusion product of M and N and write M�N in order to distinguish it from ⊗C.
A V -module is called a simple current if the irreducibility of an arbitrary V -module
is preserved under the fusion product with M . A simple current extension (SCE)
of V is a VOA extension of V of the form

E =
⊕
g∈G

Sg (1.5)

where {Sg}G∈g is a set of simple current V -modules parametrized by a finite abelian
group G in the sense that the unit e ∈ G corresponds to Se = V and Sg�Sh ' Sgh.
Such extensions provide a realistic way of constructing new VOAs from known
ones [Ca, DLM1, DM2, La, Li1, Y], especially holomorphic VOAs [LS] or irrational
C2-cofinite VOAs [CKL]. A notable example is the moonshine VOA V \ (whose
automorphism group is the Monster group M) [H1, FLM]. Simple current exten-
sions can be used to show the regularity of the W-superalgebras, for example, the
W-algebras related to Deligne exceptional series [Kaw], the subregular W-algebras
for sln [ACL1, CL4] and the principal W-superalgebras in Theorem C in this thesis.

By [HKL, CKL, CKM1, KO], given a VOA V , VOA extensions or more gener-
ally vertex operator superalgebra (VOsA) extensions are essentially commutative
superalgebra objects in the category V -mod which admits a structure of braid ten-
sor category by [HLZ1]-[HLZ8]. As in Theorem B, we naturally encounter with
VOsA extensions of VOsAs. Unfortunately, to the best of our knowledge, there is
no reference in this setting, and even for the category V -mod of a vertex operator
superalgebra V . In the super setting, the category V -mod is no longer a braided
tensor category, but is a C-linear braided monoidal supercategory whose underlying
category V -mod (whose morphisms are even) is abelian, see §6.1 for details. This
is due to the fact that parity-inhomogeneous morphisms usually do not admit ker-
nel or cokernel objects. Therefore, we begin with proving some basics like Schur’s
lemma (Lemma B.2) in this abstract super settng. (In the literature, it is proven
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for finite dimensional simple C-superalgebras [CW].) This implies that the center
of a simple vertex superalgebra is trivial (Lemma 5.1), which is also well-known for
a vertex algebra [LLi].

Then we study in Appendix B, simple currents in a C-linear braided monoidal
supercategory C whose underlying category C is abelian. In this generality, simple
currents are invertible objects with respect to the tensor product. Each simple cur-
rent generates an abelian group by the tensor product, (more precisely a groupoid),
and gives rise to some filtration and decomposition of C by tensor product and
monodromy. This point of view is efficiently used to analyze the (super)category
Rep(E) of (super)module objects for a simple current extension E. For example,
see Proposition B.19 for the equivalence of the semisimplicity of C and Rep(E) and
Corollary B.20 and B.21 for the classification of simple objects in Rep(E) and the
description of the Grothendieck ring K(Rep(E)) of Rep(E), respectively. We note
that these results are already obtained within the theory of simple regular VOAs.
The above equivalence of the semisimplicity of two categories is due to Carnahan
and Miyamoto [CaMi]. The objects in Rep(E) are called twisted modules and sim-
ple objects in Rep(E) are constructed by Yamauchi [Y]. The description of the
Grothendieck ring K(Rep(E)) in general is due to Creutzig, Kanade and McRae
[CKM1].

1.7. Fusion Rules of Simple Current Extensions by Lattice Theory. Let V
be a simple C2-cofinite 1

2Z-graded vertex superalgebra of CFT type and E a simple
current extension of V . Then the representation theory of E is controlled by that
of V . We can not expect the converse in general. However, if we replace V with
a tensor product V ⊗ VL where VL is the lattice vertex superalgebra associated
with a positive-definite integral lattice L, then we may recover the representation
theory of E from that of V . More precisely, take a sublattice N of the dual lattice
L′ = {a ∈ Q ⊗Z L | (a, L) ⊂ Z} containing L. This defines a group of simple
currents {Va+L}a∈N/L in VL-mod. Take a group of simple currents {Sa}a∈N/L of
V -modules satisfying Sa�Sb ' Sa+b. Let E be a simple C2-cofinite vertex operator
superalgebra of CFT type of the form

E =
⊕

a∈N/L

Sa ⊗ Va+L.

Then the set of simple E-modules Irr(E) and the fusion ring K(E) are determined
as follows:

Theorem D. (Theorem 6.3, [CGNS])

(1) The set of simple E-modules is in one-to-one correspondence

Irr(E) ' {(M,a) ∈ Irr(V )× (L′/L) | φMφVa+L
= 1}

/
(N/L)

by (M,a) 7→ F(M ⊗ Va+L) = E�V⊗VL (M ⊗ Va+L). In particular,

| Irr(E)| = | Irr(V )||N ′/L|
|N/L|

and

Pic(E) ' {(M,a) ∈ Pic(V )× (L′/L) | φMφVa+L
= 1}

/
(N/L).

(2) Suppose that the fusion products � on V -mod and Rep(E) are exact. Then
we have an isomorphism of rings

K(E) '

K(V )
⊗

Z[N/L]

Z[L′/L]

N/L

(1.6)
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where the tensor product over Z[N/L] is given by [M � Sa] ⊗ b = [M ] ⊗
(−a+ b) for a ∈ N/L

Conversely, we may recover the fusion data of V -mod in terms of E-mod as follows:

Theorem E. (Theorem 6.5, [CGNS])

(1) The set of simple V -modules Irr(V ) is in one-to-one correspondence to

{(M,a) ∈ Irr(E)× (L′/L) |MVb+L,M�EVa+L
= id, (∀b ∈ N ′/L)}/(N ′/L)

by (M,a) 7→ N so that F(N ⊗ VL) 'M �E Va+L holds. In particular,

| Irr(V )| = | Irr(E)||N/L|
|N ′/L|

and the group Pic(V ) is naturally isomorphic to

{(M,a) ∈ Pic(E)× (L′/L) |MVb+L,M�EVa+L
= id, (∀b ∈ N ′/L)}/(N ′/L)

(2) Suppose that the fusion products � on V -mod and Rep(E) are exact. Then
we have an isomorphism of rings

K(V ) '

K(E)
⊗

Z[N ′/L]

Z[L′/L]

N ′/L

(1.7)

where the tensor product over Z[N ′/L] is given by [M �E Va+L] ⊗ b =
[M ]⊗ (a+ b) for a ∈ N ′/L.

These theorems are established by Yamada and Yamauchi [YY] in the regular, non-
super cases and also essentially by Creutzig, Kanade, and McRae [CKM1] in the
regular, super cases. But the description of the fusion rings in (2) of this form seems
new. (We note that the duality between K(V ) and K(E) is also discussed in [YY].)
The exactness of the fusion product follows not only from the semisimplicity of the
the module category, but also the rigidity, i.e., the property that every module has
a left and right dual. By [CMY], if V is self-dual and every irreducible V -module
is rigid, then V -mod is rigid. In this case, Rep(E) and E-mod are also rigid, and
thus the assumption of (2) in Theorem D and E is satisfied.

The later theorem can be applied to the parafermion vertex algebra Kk(g), which
is the coset vertex algebra of the simple affine VOA Lk(g) by a Heisenberg vertex al-
gbera (or a certain lattice vertex algebra VL) and Lk(g) is a simple current extension
of Kk(g)⊗ VL. Then we recover the fusion rules of Kk(g), see [ADJR, DR, DW].

We note that the description of the whole fusion rings in Theorem D and E in
this form are very useful to comparing fusion rings of other VOsAs. We will see its
efficiency in the next subsection.

1.8. Fusion rules of Wsub
(r) (sln) and W(r)(sl1|n). By [Ar2], the set of (inequivalent)

simple W(n,1)(slr)-modules is in one-to-one correspondence with that of Ln(slr),
that is, Irr(Ln(λ)) = {Ln(λ) | λ ∈ Pn+(r)}. Here Pn+(r) is the set of dominant
integral weights of slr at level n. Let LW(λ) denote the simple W(n,1)(slr)-module
corresponding to λ ∈ Pn+(r). Then by [AvE1, Cr, FKW], it satisfies the same fusion
rules as that of Ln(slr) i.e.,

LW(λ) � LW(µ) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)LW(ν),

where the coefficient Nν
λ,µ(ŝlr,n) is given by

Ln(λ) � Ln(µ) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)Ln(ν).
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Now, we can apply Theorem D to the SCEs in (1.3) and (1.4), respectively, and
obtain the classification of irreducible modules and the fusion rings:

Theorem F. (Theorem 7.2, Theorem 7.5, [CGNS]) Let r ≥ 3 and n ≥ 2.

(1) There exists a one-to-one correspondence

Irr(Wsub
(r) (sln)) '

{
(λ, a) ∈ Pn+(r)× Znr | πP/Q(λ) = a ∈ Zr

} /
Zr,

where Zr acts on Pn+(r)× Znr by m · (λ, a) = (σm(λ), a+mn), (m ∈ Zr).

The Wsub
(r) (sln)-module Lsub(λ, a) corresponding to (λ, a) decomposes into

Lsub(λ, a) '
⊕
i∈Zr

LW(σi(λ))⊗ V a+ni√
nr

+
√
nr Z (1.8)

as a W(n,1)(slr)⊗ V√nr Z-module and satisfies the fusion rules

Lsub(λ, a) � Lsub(µ, b) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)Lsub(ν, a+ b).

The fusion ring is isomorphic to

K(Wsub
(r) (sln)) '

K(Ln(slr))
⊗
Z[Zr]

Z[Znr]

Zr

.

(2) There exists a one-to-one correspondence

Irr(W(r)(sl1|n)) '
{

(λ, a) ∈ Pn+(r)× Z(n+r)r | πP/Q(λ) = a ∈ Zr
} /

Zr,

where Zr acts on Pn+(r)×Z(n+r)r by m·(λ, a) =
(
σm(λ), a+m(n+r)

)
, (m ∈

Zr). The W(r)(sl1|n)-module Lsp(λ, a) corresponding to (λ, a) decomposes
into

Lsp(λ, a) '
⊕
i∈Zr

LW(σi(λ))⊗ V a+(n+r)i√
(n+r)r

+
√

(n+r)r Z (1.9)

as a W(n,1)(slr)⊗ V√(n+r)r Z-module and satisfies the fusion rules

Lsp(λ, a) � Lsp(µ, b) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)Lsp(ν, a+ b).

The fusion ring is isomorphic to

K(W(r)(sl1|n)) '

K(Ln(slr))
⊗
Z[Zr]

Z[Z(n+r)r]

Zr

.

See §7 for details. In the literature, the classification of the irreducible N = 2
SCA-modules and their fusion rules are already determined in [Ad2] and [Ad3],
respectively. The classification of the irreducible Wsub

(r) (sln)-modules for r ≥ 0 with

n even is established in [AvE2] based on Zhu’s theory [Zh] and their fusion rules
are determined for n even via the Verlinde formula [H5]. In [AvE2], the fusion ring
is determined to be

K(Wsub
(r) (sln)) ' K(Lr(sln)),

which is a priori different from Theorem F (1). It turns out that the compatibility
of these two expressions can be explained by the level-rank duality between affine
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vertex algebras [Fr, OS]. Namely, we have

K(Lm(sln)) '

K(Ln(slm))
⊗
Z[Zm]

Z[Znm]

Zm

, (n,m ≥ 2), (1.10)

see Proposition 7.1. We note that the isomorphism (1.10) restricted to certain
subalgebras K0(Lm(sln)) ' K0(Ln(slm)) where “0” means the grading πP/Q = 0
part is established in [Fr, OS]. But the results in [Fr, OS] together with Theorem
D improve their results to (1.10). Then Theorem F (1) implies

Corollary G. (Corollary 7.3, [CGNS]) For r ≥ 3, there exists an isomorphism

K(Wsub
(r) (sln)) ' K(Lr(sln)).

Now, we can use this isomorphism to obtain a similar description for the principal
W-superalgebras by Theorem B (4) and Theorem F (2):

Corollary H. (Theorem 7.7, [CGNS]) For r ≥ 3, there exists an isomorphism

K(W(r)(sl1|n)) '

K(Lr(sln))
⊗
Z[Zn]

Z[Zn(n+r)]

Zn

. (1.11)

This formula gives a correct formulation of Wakimoto’s observation in his unpub-
lished manuscript [Wak2] that the fusion rules of the N = 2 SCA may somehow

resemble that of the affine algebra ŝl2 twisted by certain cyclic groups.
Interestingly, the fusion rings K(Wk(g, f)) for rational and C2-cofinite W-algebras

Wk(g, f) are often described by the fusion rings K(L`(g)) of the affine vertex alge-
bra of the same g at nother levels `. This is the case for the principal W-algebras
[Cr] and the subregular W-algebras ([AvE2], Corollary G).

We expect that the right hand side in the isomorphism (1.11) is also related
to some fusion ring of Lr(sl1|n) at some level. (Note that the even part of sl1|n
is exactly sln ⊕ C, which is compatible of the right-hand side of (1.11).) But it is
known that the representation theory of Lr(sl1|n) at positive integer level r ∈ Z≥0 is
very different from the non-super cases. See [ERF, GS, KW1] for the classification
of suitable irreducible modules of Lr(sl1|n) and [GK], [KW3]-[KW5] for character
formulas. We hope to come back to this point in our future work.

1.9. Future perspective. There are several problems left for future study.
First of all, normalized q-characters of irreducible W(r)(sl1|n)-modules should be

interesting. In the case of n = 2, it is written in terms of theta functions [KW4, Mat]
and we expect it to hold in general. Beyond the levels considered in this thesis, the
classification of the (ordinary) irreducible Wk(sl1|n)-modules and their q-characters
when k is a principal admissible number for sl1|n will be very interesting. The case
n = 2, the classification is established in [Ad2] and there are uncountably many
inequivalent irreducible modules. Moreover, their q-characters are described by the
Appel-Lerch sums, which are special kind of mock modular forms [Sa2]. Therefore,
the usual Verlinde formula does not apply, but a variant of it is expected to hold,
see [AC, Sa2]. It is interesting to consider its relation to the modular completion
of the q-characters [KW5]. It is natural to explore the higher rank cases, which
will be difficult in general at this moment. We may study the case n = 3 via the
Kazama–Suzuki coset construction Theorem B since the subregular W-algebra in
this case is minimal, which has very special properties [Ar1] and whose relaxed
highest weight modules are classified very recently [AKR, FKR].

A certain interesting non-regular case can be found in the context of 4d-2d
correspondence which is under intensive investigation in the last decade. For the
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subregular W-algebra Wk(slp−1, fsub), this is the case when k = 2− p− p−1. The

subregular W-algebra at this level, also known as the B(p)-algebra [CRW] turns out
to be the chiral algebra for the Argyres–Douglas theory of type (A1, A2p−3) [ACGY]
and the representation theory has been studied [ACKR]. One can use these results
to also study the representation theory of W3−p+(p−1)−1(slp−1|1), which will be a
good example of the representation theory of non C2-cofinite simple vertex operator
superalgebras.

Secondly, we would like to point out that the representation theory of the W-
(super)algebras beyond the principal cases has a new feature from the beginning.
In contrast to the representation theory of well-studied vertex operator algebras
like the affine vertex algebras, the Virasoro vertex algebra, and their conformal
extensions including lattice vertex algebras, it does not have a natural choice of
conformal structure but a family of conformal structures parametrized by good
gradings. It leads us to study the effect of the choice of conformal structures
on the representation theory of VOAs. The classification of conformal vectors
for Z-graded simple self-dual VOA of (strong) CFT type is established in [Mo],
see also [MN] for an earlier result. The choice of conformal structures changes
the category of ordinary modules and the braided tensor category structure on it
in the sense of Huang–Lepowsky. We expect that in the C2-cofinite setting, for
conformal structures whose difference are derivations of Cartan subalgebra, the
braided tensor categories are equivalent. We expect this to happen for simple C2-
cofinite W-algebras. In this case, the most natural choice of good gradings should
be the Dynking grading, which makes the W-algebra self-dual, a necessary property
of the rigidity of the module category.

Thirdly, the dualities among the W-superlagebras conjectured by Gaiotto–Rapčák
[GR] give a clue to understand the representation theory of the W-superalgebras,
which is widely open. As is exemplified in this work, the duality itself is not
sufficient for this purpose, but reconstruction theorems like Kazama–Suzuki coset
construction play a significant role. Since the Kazama–Suzuki coset construction
works only for Heisenberg cosets, we would like to establish a reconstruction theo-
rem for vertex superalgebras Vi (i = 1, 2) whose coset by affine vertex subalgebras
are isomorphic. For the W-superalgebras, we expect that the (quantum) geometric
Langlands kernel algebras [CG] or some variants play a role of “adhesive material”.
More precisely, the kernel algebra is a vertex (super)algebra, which is a conformal
extension of the affine vertex algebras used in the coset and the relative semi-infinite
cohomology of the diagonal action on the tensor product of V1 and the kernel al-
gebra gives the other algebra V2 and vise versa. We have checked this construction
for the pair (Wk(sln, fsub),W`(sl1|n)) studied in this thesis ([CGNS]). This con-
struction will give a certain equivalence of full subcategories of V1-modules and
V2-modules even beyond the rational cases. This equivalence will give us a large
enough class of modules to have resolutions of objects by universal objects, like
Verma modules. See [KoSa] for the case of the N = 2 SCA. These universal objects
are never modules of simple quotients of Vi, we would like to derive dualities for
the universal W-superlagebras. For this purpose, the screening kernel description
of the W-superalgebras, including affine vertex superalgebras (at generic levels) will
play an important role since some universal objects called generalized Wakimoto
representations [G2] are constructed similarly, see §2. The case of basic classi-
cal affine vertex superalgebras is already achieved and in preparation by a joint
work of the author and Genra, see [IK1, R, IMP1, IMP2] for earlier results. Such
a description is obtained as a direct generalization of the work [FFr8] and inter-
estingly, the classical limit (to a Poisson vertex superalgebra) gives a realization
of an affine Poisson vertex superalgebra as a coordinate ring of an open cell of a
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thick affine (super)Grassmanian, see also [FFr7, FFr8, BZF, N3]. This implies a
possible geometric realization of the W-superalgebras associated with thick affine
(super)Grassmanians.

Fourthly, the screening realization of the W-superalgebras does fail at some levels
in the sense that the screening kernels get larger than the W-superalgebras them-
selves. It already happens for the Virasoro vertex algebra and gives a construction
of the singlet algebras [Ad4], which is known as a building block of the famous
triplet W-algebra [TW], see also [Su]. The singlet algebra has several important
features. It is a simple, non C2-cofinite vertex algebra which admits a natural
module category equipped with a rigid braided tensor category structure in the
sense of Huang–Lepowsky [CMY]. Moreover, it has a class of modules whose q-
characters are expressed by false theta functions. This gives a clue for the study
of the relationship of a certain modularity of q-characters (more precisely, confor-
mal blocks) and the fusion rules beyond the case of the regular VOAs [Zh, H5], see
[CrMi] and references therein. Surprisingly, Z-linear combinations of the false theta
functions used in the q-characters appear in the so-called homological blocks in the
study of invariants of plumbed 3 manifolds, which are refinements of the Witten–
Reshetikhin–Turaev invariants [CCFGH]. We expect that we may associate at
least with Brieskorn spheres certain modules of order 4 conformal extensions of the
singlet algebras whose reduced characters coincides with homological blocks.

Finally, returning to the context of the trialities of Gaiotto–Rapčák, another
related direction worth further investigation is to show these type of trialities for
the corresponding Zhu’s algebras and associated varieties. Since these algebras and
varieties are well-known for the universal W-superalgebras (finite W-superalgeras
and Slodowy slices, respectively), the problems reduce to the relationship of taking
coset vertex algebras by affine vertex subalgebras and taking Zhu’s algebras (or
associated varieties). We expect that these two procedures commute under a suit-
able assumption. A nice corollary of this expectation is that C2-cofiniteness will
be inherited under taking Heisenberg cosets. To the best of our knowledge, it is
established when the Heisenberg vertex algebra extends to a lattice vertex algebra
(for example, when the vertex algebra is strongly rational and self-contragradient
[Mas]) and thus the cyclic orbifold theory may apply [Mi2].

1.10. Outline. In §2, we review realizations of the affine vertex algebras and W-
superalgebras at generic levels as joint kernels of screening operators and then in
the non-super case, we show that these constructions are induced by the generalized
BGG resolutions of relevant finite dimensional simple Lie algebras, and thus prove
their compatibility. In §3, we derive a free field realization of the subregular W-
algebras and the principal W-superalgebras with a screening kernel description at
generic levels from the result in §2 and a free field realization of the affine vertex
superalgebra V κ(gl1|1) developed in Appendix A. In §4, we relate the screening
operators of the principal W-superalgebra with those of the subregular W-algebra
by the Feigin–Frenkel duality for the Virasoro vertex algebra and prove Theorem
A and B at generic levels and then at all levels except for some prohibited levels
by an argument of continuity. In §5, we prove the commutativity of taking simple
quotient and taking Heisenberg cosets, and as an application,show the assertions
in Theorem A and B for the simple quotients. Based on a detailed analysis of
basic properties of simple currents in a C-linear braided monoidal supercategories
in Appendix B, we show Theorem D and E in §6. Thereafter, by using a result of
Creutzig and Linshaw, we prove Theorem C, E and F and then Corollary G and H
in the last section.
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2. Screening operators for W-superalgebras

Following [Kac3], throughout this paper, given a vertex superalgebra V , |0〉
denotes the vacuum vector, ∂ the translation operator, Y (a, z) =

∑
n∈Z a(n)z

−n−1

is the field corresponding to an element a ∈ V .

2.1. W-superalgebras. We review the definition of the (affine) W-algebras, fol-

lowing [KRW]. Let g = g0̄ ⊕ g1̄ be a finite dimensional basic classical simple Lie
superalgebra over C with a non-degenerate even supersymmetric invariant bilinear
form ( · | · ). f ∈ g0̄ a nilpotent element, and a good grading of g for f

Γ: g =
⊕
j∈ 1

2Z

gj , (2.1)

i.e., a 1
2 − Z-grading such that [gi, gj ] ⊂ gi+j , (i, j ∈ 1

2Z), f ∈ g−1 and ad f : gj →
gj−1 is injective (resp. surjective) for j ≥ 1

2 , (resp. j ≤ 1
2 ). Then there exists

a semisimple element h ∈ g such that the grading Γ of g is the eigenspace de-
composition of ad( 1

2h). By Jacobson–Morozov Theorem, we may extend {h, f}
to an sl2-triple (e, h, f) in g0̄. Choose a Cartan subalgebra h containing h so
that h ⊂ g0. Let ∆ be the set of roots, ∆+ the set of positive roots such that⊕

α∈∆+
gα ⊂ g≥0, where gα is the root space of α ∈ ∆. Let I be the set of simple

roots, ∆j = {α ∈ ∆ | gα ⊂ gj} and Ij = I ∩ ∆j , (j ∈ 1
2Z). Set ∆+

0 = ∆0 ∩ ∆+.
Then

∆ =
⊔
j∈ 1

2Z

∆j , ∆+ = ∆+
0 t

⊔
j>0

∆j , I = I0 t I 1
2
t I1,

see [EK]. Denote by degΓ α = j if α ∈ ∆j . Fix a basis {ei}i∈I of h, a root vector
eα ∈ g, (α ∈ ∆) so that {eα}α∈It∆ forms a (parity homogeneous) basis of g. We also
set hα := [eα, e−α] for α ∈ ∆. We denote by ᾱ the parity of eα, cγα,β the structure

constants [eα, eβ ] =
∑
γ∈It∆ cγα,βeγ extended to [u, v] =

∑
γ c

γ
u,veγ , (u, v ∈ g), and

normalize ( · | · ) so that (θ|θ) = 2 for the highest root θ of g0̄. Let χ : g → C be
a linear map defined by χ(u) = (f |u) for u ∈ g. Denote by n± =

⊕
α∈∆±

gα and

b± = h⊕ n±.
Let V k(g) be the universal affine vertex superalgebra associated with g at level

k ∈ C which is generated by the fields u(z), ( u ∈ g), satisfying the OPEs

u(z)v(w) ∼ [u, v](w)

z − w
+

k(u|v)

(z − w)2
, (u, v ∈ g),

Fch(g>0) the charged fermion vertex superalgebra associated with g>0, which is
generated by the fields ϕα(z), ϕα(z), (α ∈ ∆>0) of parity reversed to eα, satisfying
the OPEs

ϕα(z)ϕβ(w) ∼ δα,β
z − w

, ϕα(z)ϕβ(w) ∼ 0 ∼ ϕα(z)ϕβ(w), (α, β ∈ ∆>0).

By setting the degree degch(ϕα(z)) = −1 and degch(ϕα(z)) = 1, (α ∈ ∆>0), we
obtain a degree decomposition Fch(g>0) =

⊕
n∈Z F

n
ch, where F n

ch = {A ∈ Fch(g>0) |
degch(A) = n}. Let Φ(g 1

2
) be the neutral free superfermion vertex superalgebra

associated with g 1
2

which is generated by the fields Φα(z), (α ∈ ∆ 1
2
) satisfying the

OPEs

Φα(z)Φβ(w) ∼ χ([eα, eβ ])

z − w
, (α, β ∈ ∆ 1

2
).

The following is proven straightforwardly:

Lemma 2.1. The map fΦ : eα(z) 7→ δα∈∆1/2
Φα(z) +χ(eα), (α ∈ ∆>0), defines an

action of the loop algera Lg>0 := g>0((t)) on Φ(g 1
2
).
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Given a g>0[[t]]-integrable g>0((t))-module M , the semi-infinite cohomology of
Lg>0 with coefficients in M is defined by

H
∞
2 +•(Lg>0;M) := H•(M ⊗ Fch(g>0), dst)

where dst =
∫
dst(z)dz with

dst(z) =
∑

α∈∆>0

(−1)ᾱ : eα(z)ϕα(z) : −1

2

∑
α,β,γ∈∆>0

(−1)ᾱγ̄cγα,β : ϕγ(z)ϕα(z)ϕβ(z) :,

see [Fei]. Then the Drinfeld–Sokolov reduction cohomology functor associated with
f is defined by

H•f (M) := H
∞
2 +•(Lg>0;M ⊗ Φ(g 1

2
))

for a V k(g)-module M where Lg>0 acts on M ⊗ Φ(g 1
2
) diagonally. In particular,

Wk(g, f ; Γ) := H•f (V k(g)) is naturally a vertex superalgebra and called the W-

superalgebra Wk(g, f ; Γ) associated with (g, f,Γ) at level k. Equivalently, Wk(g, f ; Γ)
is the vertex superalgebra defined as the cohomology the d.g. vertex superalgebra,
called the BRST complex associated with (g, f,Γ) at level k:

C•k(g, f ; Γ) := V k(g)⊗ Φ(g 1
2
)⊗ Fch(g>0) =

⊕
n∈Z

V k(g)⊗ Φ(g 1
2
)⊗ Fnch

with differential d =
∫
d(z) dz, where d(z) = dst(z) + dne(z) + dχ(z) and

dne(z) =
∑

α∈∆1/2

: ϕα(z)Φα(z) :, dχ(z) =
∑
α∈∆1

χ(eα)ϕα(z).

By [KW2], Wk(g, f ; Γ) = H0(C•k(g, f ; Γ), d) and when g = g0̄, the vertex algebra
structure on Wk(g, f ; Γ) does not depend on Γ, which determines only the conformal
structure [BG, AKM]. For an arbitrary V k(g)-module M , Hn

f (M) is naturally a

Wk(g, f,Γ)-module. This defines a C-linear functor between the module categories

Hn
f (?) : V k(g) -mod→Wk(g, f ; Γ) -mod .

2.2. Miura maps and Screening operators. The calculation of the cohomology
H•(Ck(g, f ; Γ), d) in [KW2] via a certain spectral sequence implies an embedding
Wk(g, f ; Γ) ↪→ V τk(g≤0)⊗Φ(g 1

2
) where the level τk of the affine vertex superalgebra

V τk(g≤0) is given by

τk(u|v) = k(u|v) +
1

2
κg(u|v)− 1

2
κg0(u|v), u, v ∈ g0. (2.2)

By composing it with the natural projection V τk(g≤0) � V τk(g0), we obtain a
vertex superalgebra homomorphism

µΓ
k : Wk(g, f ; Γ)→ V τk(g0)⊗ Φ(g 1

2
), (2.3)

called the Miura map, which is injective by [Ar7, DKV, N2]. Following [F1, G1],
we describe the image of (2.3) at generic levels k ∈ C as the joint kernel of certain
screening operators. By [KW2], the complex Ck(g, f ; Γ) is quasi-isomorphic to a
subcomplex C+

k generated as a vertex subalgebra by the fields

J (u)(z) = u(z) +
∑

α,β∈∆>0

cαu,β : ϕα(z)ϕβ(z) :, (u ∈ g≤0),

ϕα(z), (α ∈ ∆>0), Φβ(z), (β ∈ ∆ 1
2
).

Note that the fields J (u)(z), (u ∈ g≤0) generate an affine vertex superalgebra
V τk(g≤0) and the fields Φβ(z), (β ∈ ∆ 1

2
), generate Φ(g 1

2
). Thus C+

k = V τk(g≤0)⊗
Φ(g 1

2
) ⊗ Fch,+ where Fch,+ ⊂ Fch(g>0) denotes the subalgebra generated by the

fields ϕα(z), (α ∈ ∆>0). Note that the complex C+
k = ⊕n≥0C

+,n
k has non-negative
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cohomological degrees and thus the zero-th cohomology Wk(g, f ; Γ) ' H0(C+
k , d)

is a vertex subalgebra of C+
k . Define a weight decomposition C+

k = ⊕n∈ZC+
k,n by

setting

wt(J (u)) = −2deg(u), wt(Φα) = 0, wt(ϕα) = 2deg(α) (2.4)

and wt(ab) = wt(a) + wt(b), wt(∂a) = wt(a) for a, b ∈ C+
k . Then the differential d

has the following weights:

wt(dst) = 0, wt(dne) = 1, wt(dχ) = 2.

Thus d preserves the decreasing filtration {FnC+
k = ⊕j≥nC+

k,j}n∈Z and a convergent

associated spectral sequence {E•r , dr}∞r=1 ⇒ grFH
•(C+

k , d) is obtained. For α ∈
I>0, set [α] = {β ∈ ∆ | β − α ∈ Z∆0} and define an irreducible g0-module C[α] by

C[α] =
⊕
β∈[α]

Cvβ , u · vβ =
∑
γ

cβγ,uvγ , (u ∈ g0), (2.5)

and an induced module Mα of the affine Lie algebra ĝ0,τk at level τk

Mα := U(ĝ0,τk)⊗U(g0[t]⊕CK) C[α]. (2.6)

Then E•1 contains

E0
1 ' V τk(g0)⊗ Φ(g 1

2
), E1

1 '
⊕
α∈I>0

M[α] ⊗ Φ(g 1
2
)

as V τk(g0)⊗Φ(g 1
2
)-modules. For generic k ∈ C, the Miura map µΓ

k appears as the

inclusion Wk(g, f ; Γ) ↪→ Ek1 and moreover, a linear map d̃ := dne + dχ induces a

differential [d̃] : E0
1 → E1

1 , which gives screening operators for Wk(g, f ; Γ). More
precisely, introduce an element Vα ∈Mα ⊗ Φ(g 1

2
) by

Vα :=
∑
β∈[α]

vβ ⊗ fΦ(eβ) (2.7)

Then the structure morphism of module Y (?, z) : (V τk(g0)⊗Φ(g 1
2
))⊗(Mα⊗Φ(g 1

2
))→

(Mα ⊗ Φ(g 1
2
))((z)) induces an intertwining operator

Y (Vα, z) : V τk(g0)⊗ Φ(g 1
2
)→ (Mα ⊗ Φ(g 1

2
))((z)),

for each Vα by the skew-symmetry e.g. [X, Theorem 3.4.10] and thus a linear map

SΓ
α :=

∫
Y (Vα, z)dz : V τk(g0)⊗ Φ(g 1

2
)→Mα ⊗ Φ(g 1

2
). (2.8)

For generic k ∈ C, we have [d̃] = ⊕α∈I>0
SΓ
α and the injective homomorphism (2.3)

is extended to a short exact sequence

0→Wk(g, f ; Γ)
µΓ
k−−→ V τk(g0)⊗ Φ(g 1

2
)

⊕
α SΓ

α−−−−→
⊕
α∈I>0

Mα ⊗ Φ(g 1
2
). (2.9)

and in particular an isomorphism of vertex superalgebras at generic k ∈ C

Wk(g, f ; Γ) '
⋂

α∈I>0

Ker
(
SΓ
α : V τk(g0)⊗ Φ(g 1

2
)→Mα ⊗ Φ(g 1

2
)
)
. (2.10)

2.3. Generalized Wakimoto representations for V k(g). In the case when g is

purely even, we introduce the generalized Wakimoto resolution DW,k
Γ,• for an affine

W-algebra Wk(g, f ; Γ) obtained in [N1]. For this purpose, we first review gener-
alized Wakimoto representations of an affine vertex algebra V k(g) at generic level
k ∈ C.
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Let g be a finite dimensional simple Lie algebra with a good grading (2.1) and G
a connected algebraic group with Lie algebra Lie(G) = g. By the correspondence of
Lie subalgebra of g and closed subgroups of G, there exist unique closed subgroups
N+, H, N−, B− corresponding to the Lie subalgebras n+, h, b− = h⊕ n−, respec-
tively. Since n− ⊂ b− is an ideal, we have the decomposition B− = N−.H and thus
the principal H-bundle π : P := N−\G � B−\G. Note that P is G-equivariant
with respect to the natural right G-action. The infinitesimal g-action on the open
subset N+ ⊂ B−\G gives rise to an algebra homomorphism

ρfin : U(g)→ DN+
⊗ U(h).

Remark 2.2. We remark that in the literature ρfin is derived from the right coset
construction G/N− � G/B−, cf., [ACL2, F2, G2]. In this approach, the naive
homomorphism ρfin is anti-algebra homomorphism since left group actions induce
right representations of groups on the coordinate rings, and a certain automorphism
of U(g) is used implicitly to obtain an algebra homomorphism. Therefore, it is more
natural to use the left coset constructions, which induce algebra homomorphisms
directly. Thus, our notation for left/right is switched from those in the literature.

Here DN+
is the algebra of differential operators and U(h) is regarded as the

left H-invariant differential operators on the fiber π−1(e) = H. The map ρfin is
injective by [F2, §7.1.1]. We may describe ρfin more explicitly as follows. Since N+

is unipotent, the exponential map exp: n+ ' N+ gives an isomorphism of affine
varieties. By taking the coordinates {xα}α∈∆+

of n+ with respect to the basis
{eα}α∈∆+

, we have C[N+] ' C[n+] = C[xα|α ∈ ∆+]. Then ρfin satisfies

ρfin(eα) =
∑
β∈∆+

P βα (x)∂β ,

ρfin(e−α) =
∑
β∈∆+

Qβα(x)∂β + xαhα,

ρfin(hα) = −
∑
β∈∆+

β(hα)xβ∂β + hα,

(2.11)

for certain polynomials P βα , Q
β
α ∈ C[N+], (α ∈ ∆+), [F2, §5.2.5]. The map ρfin

admits the following vertex algebra analogue. Let A∆+
denote the βγ-system gen-

erated by the fields aα(z), a∗α(z), (α ∈ ∆+), satisfying the OPEs

aα(z)a∗β(w) ∼ δα,β
z − w

, aα(z)aβ(w) ∼ 0 ∼ a∗α(z)a∗β(w)

and πk+h∨

h the Heisenberg vertex algebra generated by the fields u(z), (u ∈ h),
satisfying the OPEs

u(z)v(w) ∼ (k + h∨)(u|v)

(z − w)2
, (u, v ∈ h).

Lemma 2.3 ([FFr1, F1]). There exists an unique injective vertex algebra homo-

morphism ρ̂k : V k(g)→ A∆+
⊗ πk+h∨

h such that

ρ̂k(eα(z)) =
∑
β∈∆+

: P βα (a∗)(z)aβ(z) :,

ρ̂k(e−α(z)) =
∑
β∈∆+

: Qβα(a∗)(z)aβ(z) : + : hα(z)a∗α(z) : +((eα|fα)k + cα)∂a∗α(z),

ρ̂k(hα(z)) = −
∑
β∈∆+

β(hα) : a∗β(z)aβ(z) : +hα(z)

for some constant cα ∈ C, (α ∈ Π).
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The realization ρ̂k is called the Wakimoto realization of V k(g). Let πk+h∨

h,β ,

(β ∈ h∗), denote the Fock module of πk+h∨

h generated by a vector |β〉 satisfying

u(n)|β〉 = δn,0β(u)|α〉, (u ∈ h, n ≥ 0).

Then the A∆+
⊗ πk+h∨

h -module W k(β) := A∆+
⊗ πk+h∨

h,β admits a V k(g)-module
structure through ρ̂k. It is called the Wakimoto module of highest weight β at level
k ∈ C. For generic k ∈ C, the injective homomorphism ρ̂k is extended to an exact
sequence

0→ V k(g)
ρ̂k−→W k(0)

⊕
Qα−−−−→

⊕
α∈I

W k(−α) (2.12)

where

Qα =

∫
Y (ρ̂L(eα)| − α〉, z)dz, (α ∈ I). (2.13)

Here we have used a vertex superalgebra homomorphism

ρ̂L : V 0(n+)→ A∆+ , eα(z) 7→
∑
β∈∆+

: P β,Lα (a∗)(z)aβ(z) : (2.14)

induced from the left N+-action on the open dense subset N+ ⊂ B−\G
N+ ×N+ → N+, (g, h) 7→ g−1h,

which gives rise to an algebra homomorphism U(n+)→ DN+
.

The above construction is generalized to an arbitrary parabolic subalgebra of
g. In particular, we consider the case g≥0 ⊂ g with respect to the good grading
(2.1). In this case, let G> 0, G0, G≤0, G<0 denote the closed subgroups of G
corresponding to g>0, g0, g≤0, g<0, respectively. Then we consider the principal
G0-bundle πΓ : PΓ = G<0\G� G≤0\G, which induces an algebra homomorphism

ρfin,Γ : U(g)→ DG>0 ⊗ U(g0).

Following [G2], we embed G>0 ↪→ N+ by the decomposition N+ = N+,0.G>0 where
N+,0 ⊂ G is the closed subgroup with Lie(N+,0) = n+,0 := g0 ∩ n+ and consider
the isomorphism n+ = n+,0 ⊕ g>0 ' N+,0.G>0 = N+, ((a, b) 7→ exp(a) exp(b)).
Then in the above notation, we have C[N+,0] ' C[n+,0] = C[xα|α ∈ ∆0

+], C[G>0] '
C[g>0] = C[xα|α ∈ ∆>0], and C[N+] ' C[N+,0]⊗ C[G>0]. Moreover, the formulas
(2.11) and thus Lemma 2.3 does not change under this modification. By [F1], ρfin,Γ

satisfies

ρfin,Γ(eα) =
∑

β∈∆>0

P βΓ,α(x)∂β , (α ∈ ∆>0),

ρfin,Γ(u) = −
∑

β,γ∈∆>0

cαu,βxβ∂α + u, (u ∈ g0).
(2.15)

The projection πΓ factors through

G<0\G // //

πΓ

����

N−\G

π
����

G≤0\G B−\Goooo

in a right G-equivariant way and the the projection B−\G� G≤0\G is a principal
B−\G≤0(' B−,0\G0)-bundle. Here B−,0 = B− ∩ G0 is a Borel subgroup of G0.
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Then it follows that ρfin factors through

U(g)

ρfin
&&

ρfin,Γ // DG>0 ⊗ U(g0)

ρfin,0

��
DN+ ⊗ U(h)

.

Here ρfin,0 : U(g0) → DN+,0 ⊗ U(h) ⊂ DN+ ⊗ U(h) is an algebra homomorphism
defined in the same way as ρfin with g replaced by g0. The map ρfin,Γ admits the
following vertex algebra analogue.

Lemma 2.4 ([F1]). There exists an unique injective vertex algebra homomorphism
ρ̂k,Γ : V k(g)→ A∆>0

⊗ V τk(g0) such that the composition

ρ̂τk,0 ◦ ρ̂k,Γ : V k(g)→ A∆>0 ⊗ V τk(g0)→ A∆+ ⊗ πk+h∨

h

coincides with ρ̂k where ρ̂τk,0 : V τk(g0)→ A∆0
+
⊗πk+h∨

h is the Wakimoto realization

of V τk(g0). Moreover, ρ̂k,Γ satisfies

ρ̂k,Γ(eα(z)) =
∑

β∈∆>0

: P βΓ,α(a∗)(z)aβ(z) :, (α ∈ ∆>0),

ρ̂k,Γ(u(z)) = −
∑

α,β∈∆>0

cαu,β : a∗β(z)aα(z) : +u(z), (u ∈ g0).
(2.16)

The realization ρ̂k,Γ is called a generalized Wakimoto realization of V k(g). Let
P0,+ = {β ∈ h∗ | (β|α∨i ) ∈ Z≥0 (∀i ∈ I)}. For β ∈ P0,+, let L0(β) denote the
simple g0-module with highest weight β and Vτk0 (β) the Weyl module of ĝ0 at level
τk

Vτk0 (β) = U(ĝ0,τk) ⊗
U(g0[t]⊕CK)

L0(β),

where g0[t] acts on L0(β) through the projection g0[t] � g0 and K by k. Then
Vτk0 (β) is a V τ (g0)-module and thus W k

Γ (β) := A∆>0 ⊗ Vτk0 (β) admits a V k(g)-
module structure through ρ̂k,Γ. It is called the generalized Wakimoto representation
of V k(g) with highest weight β at level k ∈ C.

2.4. Resolutions for V k(g). Here we extend the injective homomorphisms ρ̂k and
ρ̂k,Γ to exact sequences, which give resolutions of V k(g) by generalized Wakimoto
representations at generic level k ∈ C. Let W (resp. W0) denote the Weyl group of
g (resp. g0), `(w) the length of w ∈ W , w◦ the longest element in W , λ 7→ w ◦ λ,
(λ ∈ h∗), the dot action of w ∈ W . We denote by M(λ) (resp. M0(λ)) the Verma
module of g (resp. g0) with highest weight λ ∈ h∗ and by L(λ) (resp. L0(λ)) be the
simple quotient of M(λ) (resp. M0(λ)). The generalized Verma module MΓ(λ) of
g with highest weight λ ∈ h∗ for the parabolic subalgebra g≥0 is defined by

MΓ(λ) = U(g)⊗U(g≥0) L0(λ),

where g≥0 acts on L0(λ) through the projection g≥0 � g0. Then we have canonical
projections M(λ) � MΓ(λ) � L(λ) of g-modules and thus canonical embeddings
of their dual g-modules L(λ)∨ ↪→MΓ(λ)∨ ↪→M(λ)∨. By [Ku, Theorem 9.2.18], we
have the (horizontally exact) commutative diagram

0 // C // C∨0 // C∨1 // · · · // C∨`(w′◦)
// · · · // C∨`(w◦)

// 0

0 // C // C∨Γ,0
//

?�

O

C∨Γ,1
//

?�

O

· · · // C∨Γ,`(w′◦)
//

?�

O

0,

(2.17)
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where

C∨i =
⊕
w∈W
`(w)=i

M(w−1 ◦ 0)∨, C∨Γ,i =
⊕
w∈W ′0
`(w)=i

MΓ(w−1 ◦ 0)∨,

W ′0 = {w ∈W | ∀u ∈W0, `(wu) ≥ `(w)},
with w′◦ ∈ W0 denotes the longest element. Here the first row is the dual of the
BGG resolution of the trivial g-module C and the second row is the dual of the
parabolic BGG resolution of C associated with a Levi subalgebra g0 embedded into
the first row by canonical embeddings.

Next, we apply Fiebig’s equivalence [Fie] to (2.17) in order to deduce the corre-
sponding resolution for V k(g) at generic level k ∈ C. For generic k ∈ C, the affine
vertex algebra V k(g) admits a conformal vector

L(z) =
∑
n∈Z

Lnz
−n−2 =

1

2(k + h∨)

∑
iα∈It∆

: eα(z)eα(z) :,

by Sugawara construction where {eα}α ⊂ g is the dual basis of {eα}α by ( · | · ).
Let Ôk denote the full subcategory of the category of V k(g)-modules consisting of
objects satisfying the following properties: (1) h and L0 acts on M semisimply,

(2) dimU(n̂+)m < ∞ for all m ∈ M where n̂+ = n+ ⊕ g[t]t. For M ∈ Ôk,
let M = ⊕∆∈CM∆ be the L0-grading decomposition and M top ⊂ M be the g-
submodule defined by the direct sum of Mr such that Mr+n = 0 for all n ∈ Z<0.
By Fiebig’s equivalence [Fie], the functor

(?)top :Ôk → Ofin, M 7→M top,

gives an equivalence of categories of Ôk and the BGG category Ofin of g-modules
(see e.g. [Hum]) and the inverse is give by the induction functor

Indĝk
g (?) : Ofin → Ôk, N 7→ U(ĝ) ⊗

U(g[t]⊕CK)
N,

where g[t]⊕ CK acts on N through g[t]⊕ CK � g⊕ CK and K acts by k ∈ C.

For M ∈ Ôk, let M = ⊕λ∈h∗Mλ be the h-weight decomposition, Mλ
∆ = M∆ ∩

Mλ and M∨ =
⊕

λ,∆ HomF

(
Mλ

∆, F
)

be the contragredient dual of M . Since

((IndĝF

g (N))∨)top = N∨, we have (Indĝk
g (N))∨ ' IndĝF

g (N∨) for N ∈ Ofin. Let

Mk(λ) = Indĝk
g (M(λ)) be the Verma module of ĝ with highest weight λ ∈ h∗ at

level k ∈ C, and Mk
Γ(λ) = Indĝk

g (MΓ(λ)). Then Mk(λ),Mk
Γ(λ) ∈ Ôk and their

contragradient duals are generalized Wakimoto representations

Mk(λ)∨ 'W k(λ), (λ ∈ h∗), Mk
Γ(λ)∨ 'W k

Γ (λ), (λ ∈ P+,0). (2.18)

by [ACL2, Proposition 3.3] and [G2, Lemma A.2] respectively, see also [FFr3]. Note
that under (2.18), the canonical embedding MΓ(λ)∨ ↪→M(λ)∨ induces a canonical
embedding

ρ̂τk,0,λ : W k
Γ (λ) ↪→W k(λ), (2.19)

which generalizes the Wakimoto realization ρ̂τk,0, : A∆>0 ⊗V τk(g0) ↪→ A∆+ ⊗πk+∨

h

corresponding to the case λ = 0. W apply IndĝF
g to (2.17) and obtain a horizontally

19



exact commutative diagram

0 // V k(g)
ε
// Dk

0

d0
// Dk

1
// · · · // Dk

`(w′◦)
// · · · // Dk

`(w◦)
// 0

0 // V k(g)
εΓ
// Dk

Γ,0

dΓ,0
//

?�
ι0

O

Dk
Γ,1

//

?�
ι1

O

· · · // Dk
Γ,`(w′0)

//

?�

O

0,

(2.20)

where

Dk
i =

⊕
w∈W
`(w)=i

W k(w−1 ◦ 0), Dk
Γ,i =

⊕
w∈W ′0
`(w)=i

W k
Γ

(
w−1 ◦ 0

)
,

and in particular, Dk
0 = W k(0) and Dk

Γ,0 = W k
Γ (0). Then by Fiebig’s equivalence,

dim Hom
Ôk

(V k(g), Dk
0 ) = dim HomOfin

(C, C∨0 ) = 1.

It follows that ε = ρ̂k and εΓ = ρ̂k,Γ by looking at the images of the vacuum vec-
tor |0〉. Similarly, we have d0 =

⊕
α∈I Qα, see (2.13). We note that the higher

differentials di : D
k
i → Dk

i+1 with i ≥ 1 are unique up to scalar by Fiebig’s equiva-
lence and [Ku, Lemma 9.2.16] and thus the exact sequence in the first row in (2.20)
coincides with the one considered in [FFr8] up to scalar for the choices of higher
differentials. Next, consider the column arrows ιi : D

k
Γ,i → Dk

i , (i ≥ 0). Again by
Fiebig’s equivalence,

dim
Ôk

(
W k

Γ (λ),W k(λ)
)

= dimOfin
(MΓ(λ)∨,M(λ)∨) = 1, λ ∈ P0,+.

Thus, we have ι0 = ρ̂τk,0, ι1 =
⊕

α∈Γ ρ̂τk,0,−α and

ιi =
⊕
w∈W ′0
`(w)=i

cwρ̂τk,0,w−1◦0, (i ≥ 2),

for some invertibles cw ∈ C. Finally, consider the second row. We already know
εΓ = ρ̂k,Γ. Since dΓ,0 is the restriction of d0 = ⊕α∈IQα to W k

Γ (0) through ι0, we
have the decomposition dΓ,0 = ⊕α∈I>0

QΓ
α so that the diagram

W k(0)
Qα
// W k(−α)

W k
Γ (0)

QΓ
α
//

?�
ι0
O

W k
Γ (−α)

?�
ι1
O

(2.21)

commutes for α ∈ I>0. Since W k(λ)top = C[a∗β |β ∈ ∆+] ⊗ C|λ〉 and W k
Γ (λ)top =

C[a∗β |β ∈ ∆>0]⊗ L0(λ), the top component (?)top of (2.21) is of the shape

C[a∗β |β ∈ ∆+]
Qtop
α
// C[a∗β |β ∈ ∆+]⊗ C| − α〉

C[a∗β |β ∈ ∆>0]
QΓ,top
α
//

?�
ι0
O

C[a∗β |β ∈ ∆>0]⊗ L0(−α)
?�
ι1
O

and by (2.13),

Qtop
α =

∑
β∈∆+

mult(v̄β)∂a∗β , v̄β = P β,Lα (a∗)| − α〉. (2.22)
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For α ∈ I>0 and β ∈ [α], it follows from a∗β ∈ W k
Γ (λ)top that v̄β = Qtop

α (a∗β) ∈
W k

Γ (−α)top. Note that L0(−α) is isomorphism to C[α] in (2.5) by

ηα : L0(−α) ' C[α] =
⊕
β∈[α]

Cvβ , | − α〉 7→ vα. (2.23)

Lemma 2.5. For β ∈ [α], we have v̄β ∈ L0(−α) and, moreover, Iα(v̄β) = vβ.

Proof. The first assertion is immediate from the weight consideration. For the
second assertion, note that the (−β)-weight space of C[α] is HomC(gβ ,C) and thus
1 dimensional. Since Iα(v̄β), vβ are of weight −β, it follows that Iα(v̄β) = cα,βvβ
for some element cα,β ∈ C. We have cα,α = 1 since Iα(v̄α) = Iα(| − α〉) = vα.
Since Qα is a residue of an V k(g)-intertwining operator, it follows that Qα is a g0-
homomorphism. Thus [u,Qtop

α ] = 0 for u ∈ g0. By (2.16), g0 acts on C[a∗β |β ∈ ∆>0]
by

u 7→ −
∑

p,q∈∆>0

cqu,pa
∗
q∂a∗p , (u ∈ g0)

Hence it follows from [u,Qtop
α ] = 0 that∑

β∈∆>0

u(v̄β)∂a∗β = −
∑

β∈∆>0

v̄β

[
u, ∂a∗β

]
= −

∑
β,γ∈∆>0

cβu,γ v̄β∂a∗γ ,

and thus u(v̄β) =
∑
γ∈∆>0

cγβ,uv̄γ . Therefore, by the simplicity of L0(−α), cα,β =
cα,α = 1. This completes the proof. �

Thus, by using a vertex superalgebra homomorphism ρ̂Lg>0
: V 0(g>0) → A∆>0

defined in the same way as (2.14), we have a decomposition QΓ
α = Q

Γ,(1)
α + Q

Γ,(2)
α

where

QΓ,(1)
α =

∑
β∈[α]

∫
Y (ρ̂Lg>0

(eβ)vβ , z) dz : W k
Γ →W k

Γ (−α),

QΓ,(2)
α =

∑
β∈∆>0\[α]

∫
Y (aβ v̄β , z) dz : W k

Γ →W k
Γ (−α).

(2.24)

In summary, (2.20) is of the shape

0 // V k(g)
ρ̂k
// Dk

0

⊕Qα
// Dk

1
// · · · // Dk

`(w′◦)
// · · ·

0 // V k(g)
ρ̂k,Γ
// Dk

Γ,0

⊕QΓ
α
//

?�
ρ̂τk,0

O

Dk
Γ,1

//

?�
⊕ρ̂τk,0,−α
O

· · · // Dk
Γ,`(w′0)

//

?�

O

0.

(2.25)

2.5. Resolutions for W-algebras. We apply H0
f (?) to (2.25).

Proposition 2.6.

(i) ([FFr5, ACL2, G2]) There exists an isomorphism H0
f (W k(0)) ' A∆+

0
⊗πk+h∨

h ⊗
Φ(g 1

2
) of vertex superalgebras. For λ ∈ h∗, we have an isomorphism

Hn
f (W k(λ)) ' δn,0A∆+

0
⊗ πk+h∨

h ⊗ Φ(g 1
2
)

as A∆+
0
⊗ πk+h∨

h ⊗ Φ(g 1
2
)-modules.

(ii) There exists an isomorphism H0
f (W k

Γ (0)) ' V τk(g0)⊗Φ(g 1
2
) of vertex superal-

gebras. For λ ∈ P+,0, we have an isomorphism

Hn
f (W k

Γ (λ)) ' δn,0Vτk0 (λ)⊗ Φ(g 1
2
)

as V τk(g0)⊗ Φ(g 1
2
)-modules.
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Proof. The proof of (i) in [ACL2, Lemma 3.1, Lemma 5.2] can also be applied for
(ii), but we include the proof of (ii) for the completeness of the paper. Recall that
the complex for H•f (W k

Γ (0)) is C := A∆>0 ⊗ V τk(g0) ⊗ Φ(g 1
2
) ⊗ Fch(g>0). Since

the Lg>0-action on V τk(g0) is trivial, H•f (W k
Γ (0)) ' H•f (A∆>0)⊗V τk(g0) as vertex

superalgebras. Since A∆>0
is a semi-regular bimodule of Lg>0 by the actions ρ̂Rk ,

ρ̂Lg>0
[V1, V2], we have a vertex superalgebra isomorphism

Ψ: A∆>0
⊗ Φ(g 1

2
)
∼−→ A∆>0

⊗ Φ(g 1
2
)

such that

Ψ ◦
(
ρ̂Rk (u(z))⊗ 1 + 1⊗ fΦ(u(z))

)
= ρ̂Rk (u(z)) ◦Ψ,

Ψ ◦ (ρ̂Lg>0
(u(z))⊗ 1) =

(
ρ̂Lg>0

(u(z))⊗ 1 + 1⊗ fΦ(u(z))
)
◦Ψ,

(2.26)

where fΨ denotes the action in Lemma 2.1 by [ACL2, Proposition 4.5]. Extending
Ψ to C by identity on V τk(g0)⊗ Fch(g>0), we obtain

Hn
f (W k

Γ (0))
∼−−→

[Ψ]
H
∞
2 +n(W k

Γ (0)⊗ Φ(g 1
2
))

= H
∞
2 +n(A∆>0

)⊗ V τk(g0)⊗ Φ(g 1
2
) ' δn,0V τk(g0)⊗ Φ(g 1

2
)

as vertex superalgebras since H
∞
2 +n(A∆>0

) ' δn,0C by [Fei]. For the second asser-
tion, note that we may take an isomorphism V τk(g0)⊗ Φ(g 1

2
) ' H0

f (W k
Γ ) as

V τk(g0)⊗ Φ(g 1
2
) ' H0

f (W k
Γ )

u(z)⊗ 1 7→ [u(z)⊗ 1]

1⊗Ψα(z) 7→
[
Φα(z)−

∑
β∈∆1/2

χ([eβ , eα])a∗β(z)
]
,

(2.27)

by the proof of [G2, Proposition 4.5]. Since the Lg>0-action on Vτk0 (λ) is trivial,
we have

[Ψ] : H•f (W k
Γ (λ)) ' H•f (A∆>0

)⊗ Vτk0 (λ) ' Φ(g 1
2
)⊗ Vτk0 (λ) (2.28)

as V τk(g0)-modules where V τk(g0) acts only on Vτk0 (λ). Now, the assertion is
obvious by (2.27). �

By Proposition 2.6, we obtain from (2.29) a horizontally exact commutative
diagram

0 // Wk(g, f ; Γ)
[ρ̂k]
// DW,k

0

⊕[Qα]
// DW,k

1
// · · · // DW,k

`(w′◦)
// · · ·

0 // Wk(g, f ; Γ)
[ρ̂k,Γ]
// DW,k

Γ,0

⊕[QΓ
α]
//

?�
ρ̂τk,0

O

DW,k
Γ,1

//

?�
⊕ρ̂τk,0,−α
O

· · · // DW,k
Γ,`(w′◦)

//

?�

O

0,

(2.29)
where

DW,k
i =

⊕
w∈W
`(w)=i

A∆0
+
⊗ πk+h∨

h ⊗ Φ(g 1
2
), DW,k

Γ,i =
⊕
w∈W ′0
`(w)=i

Vτk0 (w−1 ◦ 0)⊗ Φ(g 1
2
).

By construction, the resolution DW,k
• of Wk(g, f ; Γ) in the first row coincides with

the Wakimoto resolution [G2, §4.3]. We call the resolution DW,k
Γ,• in the second raw

the generalized Wakimoto resolution of W k(g, f,Γ). Note that the isomorphism
(2.23) induces an isomorphism

η̂α : Vτk0 (−α)⊗ Φ(g 1
2
) 'Mα ⊗ Φ(g 1

2
), (α ∈ I>0),

as V τk(g0)⊗ Φ(g 1
2
)-modules, see (2.6).
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Theorem 2.7. Under the isomorphisms η̂α, (α ∈ I>0), the exact sequence

0→Wk(g, f,Γ)
[ρ̂k,Γ]−−−→ DW,k

Γ,0

⊕[QΓ
α]−−−−→ DW,k

Γ,1

coincides with (2.9).

The rest of this subsection is devoted to prove the theorem. Since DW,k
Γ,0 =

V τk(g0) ⊗ Φ(g 1
2
) and ⊕η̂α : DW,k

Γ,1 '
⊕

α∈I>0
Mα ⊗ Φ(g 1

2
), it suffices to show (i)

[ρ̂k,Γ] = µΓ
k and (ii) [QΓ

α] = SΓ
α for α ∈ I>0 under η̂α.

Proof of (ii). Here, we show [QΓ
α] = SΓ

α, (α ∈ I>0). By weight consideration, we

have [QΓ
α] = [Q

Γ,(1)
α + Q

Γ,(2)
α ] = [Q

Γ,(1)
α ]. By (2.25) and (2.26), we have under the

isomorphism (2.28)∑
β∈[α]

ρ̂Lg>0
(eβ)vβ

 =

∑
β∈[α]

(ρ̂Lg>0
(eβ) + fΦ(eβ))vβ

 =

∑
β∈[α]

fΦ(eβ)vβ

 . (2.30)

We note that in the second equality ρ̂Lg>0
(eβ) goes to zero by H

∞
2 +0(A∆>0

) ' C
due to weight consideration. Now, we obtain the equality [ρ̂k,Γ] = µΓ

k since Q
Γ,(1)
α is

the residue of the intertwining operator associated with the left-hand side in (2.30)
and µΓ

k is the one associated with the right-hand side. �

To show (i), recall from §2.2 that the BRST complex Ck(g, f ; Γ) is quasi-isomorphic
to the subcomplex C+

k = V τk(g≤0) ⊗ Φ(g 1
2
) ⊗ F+

ch ⊂ Ck(g, f ; Γ). Thus the map

[ρ̂Rk,Γ] : Wk(g, f ; Γ)→ V τk(g0)⊗Φ(g 1
2
) is identical to the restriction [ρ̂Rk,Γ] : H0(C+

k , d)

→ H0(C̃+
k , d) where C̃+

k = A∆>0
⊗ V τk(g0)⊗ Φ(g 1

2
)⊗ Fch(g>0). Recall that µΓ

k is

constructed via a spectral sequence associated with a filtration of F•C
+
k induced

by weights (2.4). To relate [ρ̂Rk,Γ] to µΓ
k , we introduce a weight decomposition

C̃+
k = ⊕n∈ZC̃+

k,n by setting

wt(ϕα) = −2deg(α), wt(a∗α) = 2deg(α) = −wt(aα)

and (2.4). Then the map ρ̂k,Γ : C+
k → C̃+

k preserves the weights and the differential

d preserves the decreasing filtration {FnC̃+
k =

⊕
j≥n C̃

+
k,j}n∈Z as is the case of

C+
k . Note that the spectral sequence {Ẽ•q }∞q=1 associated with the filtration F•C̃

+
k

collapses at r = 1 since

Ẽn1 = H
∞
2 +n(Lg>0;A∆>0

⊗ V τk(g0)⊗ Φ(g 1
2
)) ' δn,0V τk(g0)⊗ Φ(g 1

2
).

Proof of (ii). The map ρ̂k,Γ : C+
k → CWk induces a map [ρ̂k,Γ]1 : E0

1 → Ẽ0
1 , which is

[ρ̂k,Γ]1 : V τk(g0)⊗ Φ(g 1
2
)→ V τk(g0)⊗ Φ(g 1

2
).

By (2.9) and the collapsing of the spectral sequences, it suffices to show [ρ̂k,Γ]1 = id.
By definition, ρ̂k,Γ on Φ(g 1

2
) is the identity, so is [ρ̂k,Γ]1 on Φ(g 1

2
). By (2.16), we

have

[ρ̂k,Γ]1([u(z)]) =

u(z)−
∑

α,β∈∆>0

cαu,β(: a∗β(z)aα(z) : − : ϕα(z)ϕβ(z) :)


= [u(z)]−

 ∑
α,β∈∆>0

cαu,β(: a∗β(z)aα(z) : − : ϕα(z)ϕβ(z) :)


for u ∈ g0. By weight consideration, the second term is equal to 0 by H

∞
2 +0(A∆>0

)
= C. Thus [ρ̂k,Γ]1 = id on V τk(g0). This completes the proof. �
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Remark 2.8. Recall that the first differentials in the first row in (2.17) are as-
sociated with the simple root vectors {ei}i∈I . By [Kos], {ei}i∈I is interpreted ge-
ometrically as the infinitesimal action of the nilpotent Lie subalgerba n+ on the
space of functions C∨0 ' C[N+]. Similarly, Feigin and Frenkel interpreted that
the screening operators {Qαi}i∈I in (2.25) are generators of the quantum group

Uq(n+) with q = e
π
√
−1

r(k+h∨) , which is deformation of the enveloping algebra U(n+)
[FFr6, FFr7, FFr8]. In this sense, V k(g) and Uq(n+) form a commuting pair in

the free field algebra Dk
0 = A∆+

⊗ πk+∨

h . After the Drinfeld-Sokolov reduction, this

implies that Wk(g, f ; Γ) and Uq(n+) form a commuting pair in the free field algebra

DW,k
0 = A∆0

+
⊗πk+∨

h ⊗Φ(g 1
2
). In the same way, recalling that the first differentials

in the second row in (2.17) are associated with the simple root vectors {ei}i∈I>0 ,
we find that Wk(g, f ; Γ) and Uq(g>0) form a commuting pair in the vertex algebra

DW,k
Γ,0 = V τk(g0)⊗ Φ(g 1

2
).

3. Free field realization of Wk(sln+1, fsub) and Wk(sl1|n+1, fprin)

Here we derive a free field realization of the subregular W-algebra Wk(sln+1, fsub)
and the principal W-superalgebra Wk(sl1|n+1, fprin).

3.1. Subregular W-algebras. We describe the isomorphism (2.10) more explicitly
in the case g = sln+1 with a subregular nilpotent element fsub. By using the natural
representation sln+1 ↪→ End(Cn+1) and the elementary matrices ei,j ∈ End(Cn+1),
the Cartan subalgebra h ⊂ sln+1 is spanned by hi = ei,i − ei+1,i+1, (i = 1, . . . , n).
The normalized invariant bilinear form (·|·) on sln+1 is given by (u|v) = tr(uv),

which induces an isomorphism ν : h
∼−→ h∗. Then the set of simple roots of sln+1 is

I = {αi}ni=1 where αi = ν(hi) ∈ h∗. Set

fsub =

n∑
i=2

ei+1,i, x =
1

2(n+ 1)

n∑
i=1

(n− i+ 1)(in+ i− 2)hi.

The element fsub is a subregular nilpotent element (which is unique up to con-
jugation) and the adjoint action adx of x gives a good Z-grading Γsub : sln+1 =
⊕n−1
d=−n+1sln+1,d whose weighted Dynkin diagram is

e0
α1

e1
α2

· · · e1
αn−2

e1
αn−1

e1
αn

.

The associated W-algebra Wk(sln+1, fsub) := Wk(sln+1, fsub; Γsub) is called the
subregular W-algebra of type sln+1.

The Lie subalgebra sln+1,0 decomposes as

sln+1,0 = slred
n+1,0 ⊕ z, slred

n+1,0 := Span{e1, h1, f1}, z := Span{h̃2, h3, . . . , hn},

where h̃2 = h2 + 1
2h1 and e1 = e1,2, f1 = e2,1. The Lie subalgebra z is commutative

and slred
n+1,0 is isomorphic to sl2 by

sl2
∼−→ slred

n+1,0, e, h, f 7→ e1, h1, f1.

The restriction of τk (2.2) on sln+1,0 is

τk(u|v) =


(k + n+ 1)(u|v), u, v ∈ z,

(k + n− 1)(u|v), u, v ∈ slred
n+1,0,

0, u ∈ z, v ∈ slred
n+1,0,
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since the dual Coxeter number of sln+1 is h∨ = n+ 1. Therefore, the affine vertex
algebra V τk(sln+1,0) decomposes as

V τk(sln+1,0) ' V k+n−1(sl2)⊗ πk+n+1
z , (3.1)

where πk+n+1
z is the Heisenberg vertex algebra associated with z at level k+n+ 1,

see §A.1. Since

[α2] = {α2, α1 + α2}, [αi] = {αi}, i = 3, . . . , n, (3.2)

the screening operators (2.8) for Wk(sln+1, fsub) are∫
Y (vαi , z)dz : V τk(sln+1,0)→Mαi , i = 2, . . . , n, (3.3)

First, consider (3.3) in the case i = 3, . . . , n. The orthogonal decomposition

z = z⊥i ⊕ zi, zi = Chi, z⊥i = {h ∈ z | αi(h) = 0}.
induces the decomposition of the Heisenberg vertex algebra

πk+n+1
z ' πk+n+1

z⊥i
⊗ πk+n+1

zi .

By (3.1) and (3.2), we have an isomorphism of V τκ(sln+1,0)-modules

Mαi ' M̃αi := V k+n−1(sl2)⊗ πk+n+1
z⊥i

⊗ πk+n+1
zi,−αi

vαi 7→ |0〉 ⊗ |0〉 ⊗ | − αi〉.
and thus ∫

Y (vαi , z) dz =

∫
: e−

1
k+n+1

∫
αi(z) : dz. (3.4)

Next, consider (3.3) in the case α = α2. By Lemma 2.3, we have an embedding

ρsl2 : V k+n−1(sl2) ↪→Msl2 ⊗ πk+n+1
a ,

e(z) 7→ β(z), h(z) 7→ −2 : γ(z)β(z) : +a(z),

f(z) 7→ − : γ(z)2β(z) : +(k + n− 1)∂γ(z) + γ(z)a(z),

which gives an isomorphism for generic k

V k+n−1(sl2) ' Ker

(∫
: β(z)e−

1
k+n+1

∫
a(z) : dz : Msl2 ⊗ πk+n+1

a →Msl2 ⊗ πk+n+1
a,−a

)
.

by (2.12). Here Msl2 is the βγ-system vertex algebra generated by the even fields
β(z), γ(z) with OPEs

β(z)γ(w) ∼ 1

z − w
, β(z)β(w) ∼ 0 ∼ γ(z)γ(w),

and πk+n+1
a is the Heisenberg vertex algebra generated by an even field a(z) with

an OPE

a(z)a(w) ∼ 2(k + n+ 1)

(z − w)2
.

Then it follows from (3.1) and the isomorphism of vertex algebras

πk+n+1
h

∼−→ πk+n+1
a ⊗ πk+n+1

z

α1(z) 7→ a(z), α2(z) 7→ h̃2(z)− 1

2
a(z), αi(z) 7→ hi(z), (i = 3, . . . , n),

that we have a vertex algebra embedding

ρsln+1,0
: V τk(sln+1,0) ↪→Msl2 ⊗ πk+n+1

h , (3.5)
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which gives an isomorphism for generic k

V τk(sln+1,0) ' Ker

(∫
: β(z)e−

1
k+n+1

∫
a(z) : dz : Msl2 ⊗ πk+n+1

h →Msl2 ⊗ πk+n+1
h,−α1

)
.

(3.6)

It gives a V τk(sln+1,0)-module structure onMsl2⊗πk+n+1
h,−α2

. Let M̃α2
be a V τk(sln+1,0)-

submodule generated by the subspace

C̃[α2] = C| − α2〉 ⊕ Cγ(−1)| − α2〉.

Lemma 3.1. For generic k, Mα2 ' M̃α2 as V τk(sln+1,0)-modules.

Proof. The linear map

C[α2] ∼−→ C̃[α2], vα2 7→ | − α2〉, vα1+α2 7→ −γ(−1)| − α2〉
gives an isomorphism as (sln+1,0-modules. By the universality of the induced mod-

ules, it induces a surjective V τk(sln+1,0)-module homomorphism Mα2
� M̃α2

. It

is an isomorphism for generic k since C[α2] is simple as a sln+1,0-module. �

Under the realization (3.6), Lemma 3.1 implies the identification∫
Y (vα2

, z) dz =

∫
: e−

1
k+n+1

∫
α2(z) : dz. (3.7)

By (2.10), (3.4) and (3.7), we conclude

Wk(sln+1, fsub) '
n⋂
i=2

Ker
(∫

Y (vαi , z)dz : V τk(sln+1,0)→Mαi

)
'

n⋂
i=2

Ker
(∫

: e−
1

k+n+1

∫
αi(z) : dz : Im(ρsln+1,0

)→ M̃αi

)
.

Therefore, the composition Υ1 of (2.10) and (3.5) gives the following free field
realization of the subregular W-algebra:

Theorem 3.2. We have an embedding Υ1 : Wk(sln+1, fsub) ↪→ Msl2 ⊗ πk+h∨

h

of vertex algebras for an arbitrary k ∈ C and moreover, for generic k the image
coincides with

Im(Υ1) =

n⋂
i=1

Ker

∫
Qi(z)dz

where

Q1(z) =: β(z)e−
1

k+n+1

∫
α1(z) :, Qi(z) =: e−

1
k+n+1

∫
αi(z) :, (i = 2, . . . , n).

3.2. Principal W-superalgebras. We describe the isomorphism (2.10) more ex-
plicitly in the case g = sl1|n+1 with a principal nilpotent element. We use the

natural representation sl1|n+1 ↪→ End(C1|n+1), (e.g. [Kac1, §2]). Let {ei}i∈J de-

note the standard basis of C1|n+1 with index sets

J = J0̄ t J1̄, J0̄ = {0}, J1̄ = {1, . . . , n+ 1},

where ei is even, (resp. odd), if i ∈ J0̄, (resp. i ∈ J1̄), and let ei,j ∈ gl(C1|n+1) be
the elementary matrix. Then the Cartan subalgebra h ⊂ sl1|n+1 is spanned by

h0 = −e0,0 − e1,1, hi = ei,i − ei+1,i+1, (i = 1, . . . , n).

The normalized invariant bilinear form (·|·) on sl1|n+1 is given by the supertrace

(u|v) = − str(uv). It induces an isomorphism ν : h
∼−→ h∗. Then the set of the
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simple roots is I = {αi}ni=0 where αi = ν(hi) ∈ h∗. Set

fprin =

n∑
i=1

ei+1,i, x =

n+1∑
i=0

(
n+ 1

2
− i+ 1

)
ei,i − e0,0.

The element fprin is an even principal nilpotent element (which is unique upt to
conjugation) and adx gives a good Z-grading Γprin : sl1|n+1 =

⊕n
d=n sl1|n+1,d whose

weighted Dynkin diagram is

e×0
α0

e1
α1

· · · e1
αn−2

e1
αn−1

e1
αn

.

The associated W-superalgebra Wk(sl1|n+1) := Wk(sl1|n+1, fprin; Γprin) is called the
principal W-superalgebra of type sl1|n+1.

The Lie subalgebra sl1|n+1,0 decomposes as

sl1|n+1,0 = slred
1|n+1,0 ⊕ z, slred

1|n+1,0 := Span{e0, h0, h1, f0}, z := Span{h̃2, h3, . . . , hn},

where e0 = e0,1, f0 = e1,0, and h̃2 = h2 − h0. The Lie subalgebra z is commutative

and slred
1|n+1,0 is isomorphic to the Lie superalgebra gl1|1 by

ι : gl1|1
∼−→ slred

1|n+1,0

E1,1, E2,2, E1,2, E2,1 7→ −(h0 + h1), rh1, e0, f0.

The restriction of τk on sl1|n+1,0 is

τk(u|v) =


(k + n)(u|v), u, v ∈ z,

(k1κ1 + k2κ2)(ι−1(u)|ι−1(v)), u, v ∈ slred
1|n+1,0,

0, u ∈ z, v ∈ slred
1|n+1,0,

where k1 = −(k + n), k2 = (k + n) + 1 since the dual Coxeter number of sl1|n+1 is
h∨ = n. Then the affine vertex superalgebra V τk(sl1|n+1,0) decomposes as

V τk(sl1|n+1,0) ' V κ(gl1|1)⊗ πk+n
z , (3.8)

where κ = k1κ1 + k2κ2 and πk+n
z is the Heisenberg vertex algebra associated with

z at level k + n, see also §A.2. Since

[α1] = {α1, α0 + α1}, [αi] = {αi}, i = 2, . . . , n, (3.9)

the screening operators (2.8) for Wk(sl1|n+1) are∫
Y (vαi , z)dz : V τk(sl1|n+1,0)→Mαi , i = 1, . . . , n. (3.10)

First, consider (3.10) in the case i = 2, . . . , n. The orthogonal decomposition

sl1|n+1,0 = h⊥i ⊕ hi, hi = Chi, h⊥i = Span{e0, f0, h | h ∈ h, αi(h) = 0}
induces the decomposition of the affine vertex superalgebra V τk(sl1|n+1,0)

V τk(sl1|n+1,0) ' V τk(h⊥i )⊗ πk+n
hi

.

By (3.8) and (3.9), we have an isomorphism of V τκ(sl1|n+1,0)-modules

Mαi ' M̃αi := V τk(h⊥i )⊗ πk+n
hi,−αi

vαi 7→ |0〉 ⊗ | − αi〉.
and thus∫

Y (vαi , z) dz =

∫
: e−

1
k+n

∫
αi(z) : dz : V τk(h⊥i )⊗ πk+n

hi
→ M̃αi . (3.11)
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Next, consider (3.10) in the case n = 1. By Proposition A.1, we have a homomor-
phism

ρgl1|1 : V κ(gl1|1) ↪→Mgl1|1 ⊗ π
κ−κ2
χ ,

which is injective by Lemma A.2 and gives an isomorphism

V κ(gl1|1)

' Ker

(∫
: b(z)e

1
k+n

∫
(χ1+χ2)(z) : dz : Mgl1|1 ⊗ π

κ−κ2
χ →Mgl1|1 ⊗ π

κ−κ2

χ,−(χ1+χ2)

)
.

(3.12)

for k 6= −n by Proposition A.5. Here Mgl1|1 is the bc-system vertex superalgebra

and πκ−κ2
χ is the Heisenberg vertex algebra generated by even fields χ1(z), χ2(z)

with OPEs (A.1). Then it follows from (3.8) and the isomorphism of vertex algebras

πk+n
h

∼−→ πκ−κ2
χ ⊗ πk+n

z

α0(z) 7→ −(χ1 + χ2)(z), α1(z) 7→ χ2(z), α2(z) 7→ h̃2(z) + (χ1 + χ2)(z)

αi(z) 7→ hi(z), (i = 3, . . . , n),

that we have a vertex superalgebra embedding

ρsl1|n+1,0
: V τk(sl1|n+1,0) ↪→Mgl1|1 ⊗ π

k+n
h , (3.13)

which gives an isomorphism for k 6= −n
V τk(sl1|n+1,0)

' Ker

(∫
: b(z)e−

1
k+n

∫
α0(z) : dz : Mgl1|1 ⊗ π

k+n
h →Mgl1|1 ⊗ π

k+n
h,−α0

)
.

(3.14)

Then it gives a V τk(sl1|n+1,0)-module structure on M̃α1 := Mgl1|1 ⊗ π
k+n
h,−α1

. We

have an isomorphism

M̃α1
' V̂ +,κ

3
2 ,−1
⊗ πk+n

z (3.15)

as V τk(sl1|n+1,0) ' V κ(gl1|1) ⊗ πk+n
z -module for k /∈ Q by Lemma A.3, (1) and

Proposition A.4. Note that as a V τk(sl1|n+1,0)-module, M̃α1 is generated by a
sl1|n+1,0-submodule

C̃[α1] = C| − α1〉 ⊕ Cc(−1)| − α1〉.

Lemma 3.3. For k /∈ Q, we have Mα1
' M̃α1

as V τk(sl1|n+1,0)-modules.

Proof. It follows from (3.15) and the sl1|n+1,0-module isomorphism

C[α1] ∼−→ C̃[α1], vα1
7→ | − α1〉, vα0+α1

7→ −c(−1)| − α1〉.
�

Under the realization (3.14), Lemma 3.3 implies the identification∫
Y (vα1 , z)dz =

∫
: e−

1
k+n

∫
α1(z) : dz. (3.16)

By (2.10), (3.11) and (3.16), we conclude

Wk(sl1|n+1) '
n⋂
i=1

Ker

(∫
Y (vαi , z) dz : V τk(sl1|n+1,0)→Mαi

)

'
n⋂
i=1

Ker

(∫
: e−

1
k+n

∫
αi(z) : dz : Im(ρsl1|n+1,0

)→ M̃αi

)
.
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The composition Ψ1 of (2.10) and (3.13) gives the following free field realization of
the principal W-superalgebra:

Theorem 3.4. We have an embedding Ψ1 : Wk(sl1|n+1) ↪→ Mgl1|1 ⊗ πk+n
h of

vertex superalgebras for an arbitrary k ∈ C and moreover, for generic k the image
coincides with

Im(Ψ1) =

n⋂
i=0

Ker

∫
Qi(z)dz

where

Q0(z) =: b(z)e−
1

k+n

∫
α0(z) :, Qi(z) =: e−

1
k+n

∫
αi(z) :, (i = 1, . . . , n).

4. Dualities in coset vertex algebras

4.1. Coset vertex algebras. Given a vertex superalgebra V and a subalgebra
W ⊂ V , the subspace

Com(W,V ) := {a ∈ V | ∀b ∈W, Y (b, z)Y (a,w) ∼ 0},
is a vertex subalgebra, called the coset vertex superalgebra of the pair (V,W ).

We consider the coset vertex algebra of the pair (Wk(sln+1, fsub), πH1
) where

πH1
is a Heisenberg vertex subalgebra generated by the field

H1(z) = ω∨1 (z)− : β(z)γ(z) :, ω∨1 =
1

n+ 1

n∑
i=1

(n− i+ 1)αi. (4.1)

on Msl2 ⊗ πk+h∨

h . Note that ω∨1 represents the first fundamental coweight of sln+1.

It defines a field on Wk(sln+1, fsub) by Theorem 3.2 since H1(z) lies in the kernels
of the screening operators

∫
Qi(z)dz, (1 ≤ i ≤ n).

We describe the coset vertex algebra Com
(
πH1

,Wk(sln+1, fsub)
)

in terms of
screening operators for generic k. Let L1 = Zx⊕Zy be a Z-lattice equipped with a
bilinear form (·|·) given by (ax+ by|cx+ dy) = ac− bd, πL1

the Heisenberg vertex
algebra associate with the commutative Lie algebra L1 ⊗Z C, (§A.1), and

VL1 :=
⊕

(m,n)∈Z2

πL1,mx+ny

the lattice vertex superalgebra associated with L1 and the vertex subalgera

Vx+y :=
⊕
n∈Z

πL1,n(x+y).

The Friedan–Martinec–Shenker bosonization [F2, Chapter 7] gives a vertex algebra
embedding

Υ2 : Msl2 ↪→ Vx+y

β(z) 7→: e
∫

(x+y)(z) :,

γ(z) 7→ − : x(z)e−
∫

(x+y)(z) :,

whose image is equal to the kernel of the screening operator
∫

: e
∫
x(z) : dz

Im(Υ2) = Ker

(∫
: e

∫
x(z) : dz : Vx+y →

⊕
n∈Z

πL1,(n+1)x+ny

)
.

By composing it with Υ1 in Theorem 3.2, we obtain a vertex algebra embedding

Υ := Υ2 ◦Υ1 : Wk(sln+1, fsub) ↪→ Vx+y ⊗ πk+n+1
h , (4.2)
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whose image for generic k coincides with

Im(Υ) = Ker

∫
: e

∫
x(z) : dz ∩ Ker

∫
: e−

1
k+n+1

∫
(α1−(k+n+1)(x+y))(z) : dz

∩
n⋂
i=2

Ker

∫
: e−

1
k+n+1

∫
αi(z) : dz

(4.3)

Let πk+n+1
α̃ ⊂ πL1 ⊗ πk+n+1

h be the Heisenberg vertex subalgebra generated by

α̃0(z) = x(z), α̃1(z) = (α1 − (k + n+ 1)(x+ y))(z),

α̃i(z) = αi(z), (i = 2, . . . , n).

Since Υ2 induces an isomorphism

πH1
⊗ πk+n+1

α̃

∼−→ πL1 ⊗ πk+n+1
h

1⊗ α̃i(z) 7→ 1⊗ α̃i(z), (i = 0, . . . , n),
H1(z)⊗ 1 7→ ω∨1 (z)− y(z),

we have Com
(
πH1

, Vx+y ⊗ πk+n+1
h

)
= πk+n+1

α̃ . Therefore, Υ restricts to

Υ: Com
(
πH1

,Wk(sln+1, fsub)
)
↪→ πk+n+1

α̃ , (4.4)

and thus we obtain the following proposition.

Proposition 4.1. For generic k ∈ C, we have an isomorphism of vertex algebras

Com
(
πH1

,Wk(sln+1, fsub)
)

' Kerπk+n+1
α̃

∫
: e

∫
α̃0(z) : dz ∩

n⋂
i=1

Kerπk+n+1
α̃

∫
: e−

1
k+n+1

∫
α̃i(z) : dz.

Similarly, we consider the coset vertex (super)algebra of the pair (Wk(sl1|n+1), πH2)
where πH2 is a Heisenberg vertex subalgebra generated by the field

H2(z) = ω∨0 (z)+ : b(z)c(z) :, ω∨0 = − 1

n

n∑
i=0

(n− i+ 1)αi. (4.5)

on Mgl1|1 ⊗ πk+h∨

h . Note that ω∨0 represents the 0-th fundamental coweight of

sl1|n+1. It defines a field on Wk(sl1|n+1) by Theorem 3.4 since H2(z) lies in the

kernels of the screening operators
∫
Qi(z)dz, (0 ≤ i ≤ n).

We describe the coset vertex (super)algebra Com
(
πH2

,Wk(sl1|n+1)
)

in terms
of screening operators for generic k. Let Z = Zφ a Z-lattice equipped with a
bilinear form (mφ|nφ) = mn, πZ the Heisenberg vertex algebra associate with the
commutative Lie algebra Z⊗Z C, (§A.1), and

VZ :=
⊕
m∈Z

πZ,mφ

the lattice vertex superalgebra associated with Z. By the boson-fermion correspon-
dence, e.g. [FBZ, Chapter 5], we have an isomorphism

Ψ2 : Mgl1|1

∼−→ VZ
b(z) 7→ : e

∫
φ(z) :,

c(z) 7→ : e
∫
−φ(z) : .

Composing it with Υ1 in Theorem 3.4, we obtain a vertex algebra embedding

Ψ := Ψ2 ◦Ψ1 : Wk(sl1|n+1) ↪→ VZ ⊗ πk+n
h , (4.6)
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whose image for generic k coincides with

Im(Ψ) = Ker

∫
: e−

1
k+n

∫
(α0−(k+n)φ)(z) : dz ∩

n⋂
i=1

Ker

∫
: e−

1
k+n

∫
αi(z) : dz.

(4.7)

Let πk+n

β̃
⊂ VZ ⊗ πk+n

h be the Heisenberg vertex subalgebra generated by

β̃0(z) = − 1

k + n
α0(z) + φ(z), β̃i(z) = − 1

k + n
αi(z), (i = 1, . . . , n).

Since Ψ2 induces an isomorphism

πH2 ⊗ πk+n

β̃

∼−→ πZ ⊗ πk+n
h

1⊗ β̃i(z) 7→ β̃i(z), (i = 0, . . . , n)
H2(z)⊗ 1 7→ ω∨0 (z) + φ(z),

we have Com
(
πH2 , VZ ⊗ πk+n

h

)
= πk+n

β̃
. Therefore, Ψ restricts to

Ψ: Com
(
πH2 ,W

k(sl1|n+1)
)
↪→ πk+n

β̃
, (4.8)

and thus we obtain the following proposition.

Proposition 4.2. For generic k, we have an isomorphism

Com
(
πH2

,Wk(sl1|n+1)
)
'

n⋂
i=0

Kerπk+n

β̃

∫
: e

∫
β̃i(z) : dz.

4.2. A conjecture of Feigin and Semikhatov.

Theorem 4.3. Let k1, k2 ∈ C be generic levels satisfying the relation

(k1 + n+ 1)(k2 + n) = 1. (4.9)

Then we have an isomorphism

Com
(
πH1

,Wk1(sln+1, fsub)
)
' Com

(
πH2

,Wk2(sl1|n+1)
)
.

Proof. For simplicity, set (h∨1 , h
∨
2 ) = (n+ 1, n). For k1, k2 ∈ C satisfying (4.9), we

have an isomorphism

π
k1+h∨1
α̃ → π

k2+h∨2
β̃

α̃i(z) 7→ β̃i(z), (i = 0, . . . , n),

since both of the Gram matrices for {α̃i}ni=0 and {β̃i}ni=0 are



0 1 2 · · · n− 1 n

0 1 −κ 0 · · · 0 0

1 −κ 2κ −κ · · · 0 0

2 0 −κ 2κ · · · 0 0
...

...
...

...
. . .

...
...

n− 1 0 0 0 · · · 2κ −κ
n 0 0 0 · · · −κ 2κ


,

where κ = k1 + h∨1 . By applying the Feigin–Frenkel duality for the Virasoro vertex
algebras (cf. [FBZ, Chapter 15]), we have

Ker
π
k1+h∨1
α̃

∫
: e
− 1
k1+h∨1

∫
α̃i(z)

: dz = Ker
π
k1+h∨1
α̃

∫
: e

∫
α̃i(z) : dz, (i = 1, . . . , n− 1),

Ker
π
k1+h∨1
α̃

∫
: e
− 1
r(k1+h∨1 )

∫
α̃n(z)

: dz = Ker
π
k1+h∨1
α̃

∫
: e

∫
α̃n(z) : dz,
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for generic k1. Hence, for generic k1, k2 ∈ C satisfying (4.9),

Com
(
πH1 ,W

k1(sln+1, fsub)
)
'

n⋂
i=0

Ker
π
k1+h∨1
α̃

∫
: e

∫
α̃i(z) : dz

'
n⋂
i=0

Ker
π
k2+h∨2
β̃

∫
: e

∫
β̃i(z) : dz ' Com

(
πH2 ,W

k2(sl1|n+1)
)

by Proposition 4.1 and Proposition 4.2. �

4.3. Reconstruction theorem. Let πH̃1
⊂ Wk(sln+1, fsub) ⊗VZ be the Heisen-

berg vertex subalgebra generated by the field

H̃1(z) := φ(z)−H1(z) = −ω∨1 (z) + y(z) + φ(z), (4.10)

see also (4.1). Next, consider the lattice Z
√
−1 ⊂ C, i.e., the lattice Zψ, spanned

by ψ, equipped with a bilinear form (·|·), which satisfies (mψ|nψ) = −mn. Let
π√−1Z be the Heisenberg vertex algebra associated with the abelian Lie algebra

C⊗Z Z
√
−1 and

VZ
√
−1 :=

⊕
n∈Z

πZ
√
−1,nψ.

the lattice vertex superalgebra associated with Z
√
−1. Let πH̃2

⊂ Wk(sl1|n+1) ⊗
VZ
√
−1, be the Heisenberg vertex subalgebra generated by the field

H̃2(z) := ψ(z) +H2(z) = ω∨0 (z) + φ(z) + ψ(z), (4.11)

see also (4.5).

Theorem 4.4. Let k1, k2 ∈ C be generic levels satisfying (4.9).

(i) Wk1(sln+1, fsub) ' Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

)
,

(ii) Wk2(sl1|n+1) ' Com
(
πH̃1

,Wk1(sln+1, fsub)⊗ VZ
)

.

Proof. For sln+1, (resp. sl1|n+1), let h1 (resp. h2), denote the Cartan subalgebra,
h∨1 , (resp. h∨2 ), its dual Coxeter number, {αi}ni=1, (resp. {βi}ni=0), the set of simple

roots and αi(z) the corresponding fields on π
k1+h∨1
h1

, (resp. βi(z) on π
k2+h∨2
h2

).

First, we show (1). By (4.6), we have a vertex superalgebra embedding

Ψ⊗ id : Wk2(sl1|n+1)⊗ VZ√−1 ↪→ VZ ⊗ π
k2+h∨2
h2

⊗ VZ√−1. (4.12)

Let VZ(φ+ψ) ⊂ VZ ⊗ VZ√−1 be the lattice vertex subalgebra corresponding to the

sublattice Z(φ+ ψ) ⊂ Z + Z
√
−1 and

VX+Y ⊂ VZ ⊗ π
k2+h∨2
h2

⊗ VZ√−1

the vertex subalgebra generated by VZ(φ+ψ) and the Heisenberg vertex subalgebra
πX,Y generated by the fields

X(z) = − 1

k2 + h∨2
β0(z) + φ(z), Y (z) =

1

k2 + h∨2
β0(z) + ψ(z).

Let πA ⊂ VZ ⊗ π
k2+h∨2
h2

⊗ VZ√−1 be the Heisenberg vertex subalgebra generated by
the fields

A1(z) = β1(z)− φ(z)− ψ(z), Ai(z) = βi(z), (i = 2, . . . , n).

It follows from

X(z)Ai(w) ∼ 0 ∼ Y (z)Ai(w), i = 1, . . . , n,
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that VX+Y ⊗ πA ⊂ VZ ⊗ π
k2+h∨2
h2

⊗ VZ√−1. By (4.11), we have

Com
(
πH̃2

, VZ ⊗ π
k2+h∨2
h2

⊗ VZ√−1

)
= VX+Y ⊗ πA,

and thus (4.12) implies

Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

)
↪→ VX+Y ⊗ πA,

whose image for generic k2 coincides with

Ψ⊗ id
(

Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

))
= Ker

∫
: e

∫
X(z) : dz ∩ Ker

∫
: e
− 1
k2+h∨2

∫
(A1+X+Y )(z)

: dz

∩
n⋂
i=2

Ker

∫
: e
− 1
k2+h∨2

∫
Ai(z)

: dz

by (4.7). Since (A1 +X + Y )(0)|n(φ+ ψ)〉 = 0, we have

Ker

∫
: e
− 1
k2+h∨2

∫
(A1+X+Y )(z)

: dz

=
⊕
n∈Z

(
KerπX,Y

∫
: e
− 1
k2+h∨2

∫
(A1+X+Y )(z)

: dz

)
(−1)

|n(φ+ ψ)〉

=
⊕
n∈Z

(
KerπX,Y

∫
: e

∫
(A1+X+Y )(z) : dz

)
(−1)

|n(φ+ ψ)〉

= Ker

∫
: e

∫
(A1+X+Y )(z) : dz.

by the Feigin–Frenkel duality for the Virasoro vertex algebras, (cf. [FBZ, Chapter
15]). Similarly, we have

Ker

∫
: e
− 1
k2+h∨2

∫
Ai(z)

: dz = Ker

∫
: e

∫
Ai(z) : dz, i = 1, . . . , n.

Therefore, we have

(Ψ⊗ id)
(

Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

))
= Ker

∫
: e

∫
X(z) : dz ∩ Ker

∫
: e

∫
(A1+X+Y )(z) : dz ∩

n⋂
i=2

Ker

∫
: e

∫
Ai(z) : dz.

Now (i) follows from the above equality, (4.3), and the isomorphism

VX+Y ⊗ πA
∼−→ Vx+y ⊗ π

k1+h∨1
h1

X(z) 7→ x(z), Y (z) 7→ y(z), Ai(z) 7→ −
1

k1 + h∨1
αi(z), (i = 1, . . . , n).

Next, we will show (ii) in the same way as the proof of (1). By (4.2), we have a
vertex superalgebra embedding

Υ⊗ id : Wk1(sln+1, fsub)⊗ VZ ↪→ Vx+y ⊗ π
k1+h∨1
h1

⊗ VZ.

Let VZ̃ be the vertex superalgebra generated by the fields : e
∫
±φ̃(z) : where

φ̃(z) = x(z) + y(z) + φ(z),
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and πB the Heisenberg vertex subalgebra generated by the fields

Bi(z) =


−y(z)− φ(z), i = 0,

α1(z)− (k1 + h∨1 )(x+ y)(z), i = 1,

αi(z), i = 2, . . . , n.

Then we have Com
(
πH̃1

, Vx+y ⊗ π
k1+h∨1
h1

⊗ VZ
)

= VZ̃ ⊗ πB and thus

Υ⊗ id : Com
(
πH̃1

,Wk1(sl1|n+1, fsub)⊗ VZ
)
↪→ VZ̃ ⊗ πB ,

whose image for generic k1 coincides with

Ker

∫
: e

∫
(B0+φ̃)(z) : dz ∩

n⋂
i=1

Ker

∫
: e
− 1
k1+h∨1

∫
Bi(z)

: dz

= Ker

∫
: e

∫
(B0+φ̃)(z) : dz ∩

n⋂
i=1

Ker

∫
: e

∫
Bi(z) : dz

by (4.3) and the Feigin–Frenkel duality for the Virasoro vertex algebras. Now (ii)
follows from the above equation, (4.7) and the isomorphism

VZ̃ ⊗ πB
∼−→ VZ ⊗ π

k2+h∨2
h2

: e
∫
±φ̃(z) : 7→ : e

∫
±φ(z) :, Bi(z) 7→ −

1

k2 + h∨2
βi(z), (i = 0, . . . , n).

�

4.4. Dualities for Non-critical levels. Let V be a finite dimensional vector space
over C. A family of vector subspaces {Wα}α∈C is called continuous if they are of the
same dimension d ∈ Z≥0 and the induced map C→ Gr(d, V ) to the Grassmannian
manifold is continuous [T]. For a Z-graded vector space V =

⊕
n∈Z Vn such that

dimVn < ∞, (n ∈ Z), a family of graded vector subspaces {Wα}α∈C, (Wα =⊕
n∈ZW

α
n ), is called continuous if the homogeneous subspaces {Wα

n }α∈C, (n ∈ Z),
are continuous families. The following principle is obvious, but useful to generalize
a result at generic levels to all levels, see [AFO].

Lemma 4.5. Let V =
⊕

n∈Z Vn be a Z-graded vertex superalgebra with dimVn <∞,

(n ∈ Z). Let {W 1
α}α∈C, {W 2

α}α∈C be Z-graded vertex (super)subalgebras which
form continuous families as vector spaces. If W 1

α = W 2
α on some open dense subset

U ⊂ C, then W 1
α = W 2

α for all α ∈ C as vertex superalgebras.

Define xi ∈ Q, (i = 1, 2), by

(x1, x2) =

(
−n+

1

n
,− n2

n+ 1

)
(4.13)

and, set Ki := {−h∨i }, Si := {−h∨i , xi}. Then we have the following.

Corollary 4.6. Let k1, k2 ∈ C satisfy (4.9)
(i) For k1 ∈ C \ S1 and k2 ∈ C \ S2,

Com
(
πH1

,Wk1(sln+1, fsub)
)
' Com

(
πH2

,Wk2(sl1|n+1)
)
,

(ii) For k1 ∈ C \K1 and k2 ∈ C \K2,

Wk1(sln+1, fsub) ' Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

)
,

(iii) For k1 ∈ C \K1 and k2 ∈ C \K2,

Wk2(sl1|n+1) ' Com
(
πH̃1

,Wk1(sln+1, fsub)⊗ VZ
)
.
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Proof. We show (i). First, note that the pair (x1, x2) in (4.13) satisfies (4.9). Recall
that non-degenerate Heisenberg vertex algebras are all isomorphic if and only if
their ranks are equal and that they have the conformal gradings by the Segal-
Sugawara conformal vector with finite dimension homogeneous subspaces. Next,
note that the excluded level (k1, k2) = (x1, x2) is exactly when the Heisenberg vertex
algebras πH1

πH2
degenerate. Therefore, {Com(πH1

,Wk1(sln+1, fsub))}k1∈C\S1
is

a continuous family of vertex algebras inside a non-degenerate Heisenberg vertex
algebra of rank n+ 1 by (4.4) and so is {Com(πH2

,Wk2(sl1|n+1)}k2∈C\S2
by (4.8).

They are isomorphic if a generic level (k1, k2) with (4.9), i.e., all values for k1 ∈
C \S1, (equivalently k2 ∈ C \S2 by (4.9)), except for countably many values. Thus
we may apply Lemma 4.5 with C replaced by C\S1. This completes the proof. (ii)
and (iii) are proved in the same way. �

5. Duality for the simple quotients

We show that the simplicity is inherited under taking coset vertex algebras.
We apply it to show the commutativity of taking Heisenberg cosets and taking
simple quotients, see [CKLR, Li2] for earlier literature. In this section, a vertex
superalgebra is always defined over C and of countable dimension.

We begin with Schur’s lemma for vertex superalgebras, see e.g. [LLi, Proposition
4.5.5] for the purely even case.

Lemma 5.1. For a simple vertex superalgebra V , the center is trivial, i.e.,

Com(V, V ) = C|0〉.

Proof. Take a nonzero parity homogeneous element a ∈ Com(V, V ). Since a(n) ∈
EndV (V ), we have a(n) ∈ C idV if a is even and a(n) ∈ CΠ if a is odd by Lemma B.2.
It follows from the identity a(−1)|0〉 = a, a ∈ C|0〉 if a is even. Suppose that a is odd.
By the same identity, a = a(−1)|0〉 ∈ CΠ|0〉 and thus we may assume a(−1) = Π

without loss of generality. Since a ∈ Com(V, V ), |0〉 = Π2|0〉 = 1
2 [a(−1), a(−1)] = 0,

a contradiction. Therefore, Com(V, V )1̄ = 0. This completes the proof. �

The following observation is straightforward to show, but very useful.

Proposition 5.2. (cf. [CL3, Theorem 8.1, Remark 8.3]) Let A be a vertex superal-
gebra, B ⊂ A a simple vertex subalgebra and C ⊂ A, an arbitrary vertex subalgebra
such that B ⊗ C ⊂ A. Suppose that A decomposes as

A '
⊕
λ∈Λ

Bλ ⊗ Cλ

as B⊗C-modules where Λ is a set with 0 ∈ Λ labeling a set of inequivalent simple
B-modules {Bλ}λ∈Λ with B0 = B and a set of C-modules {Cλ}λ∈Λ with C0 = C.
Let As be an arbitrary quotient As as vertex superalgebras.Then W ⊂ As and
D := Com(B,As) is a quotient of C. Moreover, As decomposes as

As '
⊕
λ∈I

Bλ ⊗Dλ

as B ⊗D-modules where Dλ, (λ ∈ Λ), is a quotient of Cλ as a C-module which is
naturally a D-module.

Next, we consider a criterion for the simplicity of the coset vertex superalgebra
of a pair of simple vertex superalgebras.

Lemma 5.3. Let V be a vertex superalgebra and M a V -module. Let m ∈M be a
vacuum-like vector, i.e., satisfies a(n)m = 0 for all a ∈ V , n ≥ 0. Then the C-linear
map

Fm : V →M, a 7→ a(−1)m
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is a V -module homomorphism.

Proof. We need to show (a(n)b)(−1)m = a(n)(b(−1)m) for all a, b ∈ V and n ∈ Z,
which are special cases of [LLi, Proposition 4.5.6]. �

Let W ⊂ V be simple vertex superalgebras such that V is semisimple as a
W -module:

V =
⊕
λ∈Λ

Ŵλ,

where Λ is an index set that labels the inequivalent simple W -modules Wλ appear-

ing in V , and Ŵλ is the W -submodule spanned by all the simple W -submodules
isomorphic to Wλ. We may assume 0 ∈ Λ and W0 = W .

Lemma 5.4. The subspace Ŵ0 is isomorphic to W ⊗Com(W,V ) as a W -module.

In particular, Ŵ0 has the structure of a vertex superalgebra.

Proof. Since Ŵ0 is semi-simple as a W -module, we have Ŵ0 =
⊕

α∈IMα for some
W -submodules Mα, (α ∈ Λ) all isomorphic to W as W -modules. By Lemma
5.1, Com(W,W ) = C|0〉 and thus the space of vacuum-like vectors in Mα is one
dimensional. Note that the vacuum-like vectors in V with respect to W is nothing
but Com(W,V ). Therefore, the linear map

W ⊗ Com(W,V )→ Ŵ0, w ⊗ u 7→ w(−1)u

is an isomorphism of W -modules by Lemma 5.3. �

Now we have a criterion for the simplicity of Com(W,V ).

Proposition 5.5. Let W ⊂ V be simple vertex superalgebras. Suppose that V is
semisimple as a W -module and W ⊗ Com(W,V ) has a conformal vector ω which
is also a conformal vector of V . Then Com(W,V ) is also simple.

Proof. Take a nonzero ideal I ⊂ Com(W,V ) and let Î ⊂ V denote the ideal of V
generated by I. We show

Î ∩ (W ⊗ Com(W,V )) = W ⊗ I. (5.1)

Indeed, by [LLi, Proposition 4.5.6], we have

Î = SpanC{a(n)u | a ∈ V, u ∈ I, n ∈ Z}. (5.2)

Then by using the conformal field Y (ω, z) =
∑
n∈Z Lnz

−n−2 and the skew-symmetry

Y (a, z)u = −(−1)āūezL−1Y (u,−z)a,
we have

Î = SpanC{u(n)a | u ∈ I, a ∈ V, n ∈ Z} =
∑
λ∈Λ

∑
n∈Z

I(n)Ŵλ.

Note that for u ∈ Com(W,V ), the linear map a(n) restrict to a W -homomorphism

Wλ → V . By Lemma B.2, we have I(n)Ŵλ ⊂ (W ⊗ Com(W,V ))(n)Ŵλ ⊂ Ŵλ and
thus

Î ∩ (W ⊗ Com(W,V )) = SpanC{u(n)a | u ∈ I, a ∈W ⊗ Com(W,V ), n ∈ Z}
= W ⊗ I.

Since V is simple, Î = V and thus I = Com(W,V ). This completes the proof. �

Corollary 5.6 ([CKLR, Proposition 3.2, Theorem 2.9]). Let V = ⊕n∈ZVn be
a conformal vertex operator superalgebra and π ⊂ V a simple Heisenberg vertex
subalgebra generated by a subspace H ⊂ V1 of primary fields. Suppose the following
conditions:
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(1) V = ⊕λ∈H∗Ωλ(V ), Ωλ(V ) := {a ∈ V | ∀h ∈ H, h(0)a = λ(h)a}.
(2) For each λ ∈ H∗, the conformal degrees of Ωλ(V )are bounded from below.

Then, we have
(i) π acts on V semisimply:

V '
⊕
λ∈H∗

πλ ⊗ Cλ, Cλ :=
{
a ∈ V | h(n)a = δn,0λ(h)a, ∀h ∈ H, n ≥ 0

}
(5.3)

(ii) For an arbitrary simple quotient V � Vs, π ⊂ Vs and π acts on Vs semisimply

Vs '
⊕
λ∈H∗

πλ ⊗ Csλ, Csλ :=
{
a ∈ Vs | h(n)a = δn,0λ(h)a, ∀h ∈ H, n ≥ 0

}
. (5.4)

Moreover, each Csλ is a simple quotient of Cλ as a C0 = Com(π, V )-module, which
is naturally a Cs0 = Com(π, Vs)-module.

Proof. The proof of (i) in [FLM, Theorem 1.7.3] when V is purely even applies in
this general setting. We show (ii). Let ω ∈ V denote the conformal vector of V
and ωπ ∈ π the conformal vector of π by the Segal-Sugawara construction. Since H

consist of primary vector with respect to ω, ωωπ lies in Com(π, V ) and is a conformal
vector. Therefore, we may apply Proposition 5.2. Then it remains to show that C0

λ

is a simple Com(π, V )-module. By Proposition 5.5, Cs0 is simple. The same proof
applies for Csλ, λ ∈ H∗. �

Let Wk(sln+1, fsub), (resp. Wk(sl1|n+1)), denote the (unique) simple quotient

of Wk(sln+1, fsub), (resp. Wk(sl1|n+1)). By [KRW, KW2], Wk(sln+1, fsub) (resp.

Wk(sl1|n+1)) is semisimple as a πH1
-module (resp. πH2

-module), so is the simple
quotient Wk(sln+1, fsub), (resp. Wk(sl1|n+1)⊗ VZ√−1). The following is immediate
from Corollary 4.6 and Corollary 5.6.

Corollary 5.7. Let k1, k2 ∈ C satisfy (4.9).
(i) For k1 ∈ C \ S1 and k2 ∈ C \ S2,

Com (πH1
,Wk1

(sln+1, fsub)) ' Com
(
πH2

,Wk2
(sl1|n+1)

)
(ii) For k1 ∈ C \K1 and k2 ∈ C \K2,

Wk1(sln+1, fsub) ' Com
(
πH̃2

,Wk2(sl1|n+1)⊗ VZ√−1

)
,

(iii) For k1 ∈ C \K1 and k2 ∈ C \K2,

Wk2
(sl1|n+1) ' Com

(
πH̃1

,Wk1
(sln+1, fsub)⊗ VZ

)
.

6. Fusion rules of lattice cosets

6.1. Vertex superalgebras and their modules. In this section, we consider a
1
2Z≥0-graded vertex operator superalgebra of CFT type, i.e., a vertex superalgebra

with a Virasoro field L(z) =
∑
n∈Z Lnz

−n−2 such that L0 acts on V semisimply

and gives the 1
2Z≥0-grading

V =
⊕

∆∈ 1
2Z≥0

V∆, Vī =
⊕

∆∈ 1
2Z≥0

Vī,∆, (Vī,∆ = Vī ∩ V∆),

for ī ∈ Z2(= Z/2Z) such that dim(V∆) < ∞ for all ∆ and V0 = C|0〉. Note that
the decomposition

V =
⊕
∆∈Z

V∆ ⊕
⊕

∆∈ 1
2 +Z

V∆ (6.1)
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does not necessarily give the parity decomposition. If the decomposition (6.1) agrees
with the parity decomposition V = V0̄ ⊕ V1̄, then we call V of correct statistics.
Otherwise, we call V of wrong statistics.

From now on, we always assume the 1
2Z≥0-graded vertex operator superalgebra

V to be simple and C2-cofinite. We start with clarifying what we mean by a category
of V -modules and what properties it has in general, following the works of Huang
[H2]-[H7], Huang–Lepowsky [HL1]-[HL3], Huang–Lepowsky–Zhang [HLZ1]-[HLZ8],
[HKL], and [CKM1]. For this purpose, we view V as a superalgebra object (see
Remark B.14) of a suitable module category of the subalgebra V0̄,Z :=

⊕
∆∈Z V0̄,∆.

Therefore, we make a short digression on V0̄,Z.
Note that V0̄,Z is a Z≥0-graded vertex operator algebra of CFT type, char-

acterized as the fixed-point subalgebra of V with respect to the finite abelian
group generated by the twist θV := e2πiL0 ∈ EndC(V )0̄ and the parity involution
PV = idV0̄

− idV1̄
∈ EndC(V )0̄. Hence, V0̄,Z is simple and C2-cofinite by [DM1] and

[Mi2], respectively. Let V0̄,Z-mod denote the category of grading-restricted general-
ized V0̄,Z-modules, see [CKM1, Definition 3.1], ([HLZ1] for the non-super case). By
[H7, Theorem 3.24, Proposition 4.1], V0̄,Z-mod is a C-linear finite abelian category.
In particular, V0̄,Z-mod satisfies Assumption 1 and 4 in Appendix B. Moreover,
V0̄,Z-mod has a structure of a braided tensor category by [H7, Theorem 4.13], see
also [CKM1, §3] for a detailed review. By [HLZ2, Proposition 4.26], the fusion
product � on V0̄,Z-mod is right exact. Let S(V0̄,Z-mod) denote the superization
of V0̄,Z-mod, see Remark B.14. Then S(V0̄,Z-mod) is a braided tensor supercate-
gory satisfying Assumption 1,2 and 4 and that the fusion product � is right exact.
Therefore, the vertex superalgebra V is an algebra object of S(V0̄,Z-mod), see also

Remark B.13. Then, by [CKM1, Theorem 3.65], the supercategory Rep0(V ) con-
sisting of (categorical) V -module objects in S(V0̄,Z-mod) coincides with the super-
category V -mod of grading-restricted generalized V -modules as C-linear additive
supercategories. Moreover, the braided monoidal supercategory structure thus in-
duced on V -mod coincides with the one in the sense of Huang–Lepowsky–Zhang,
whose existence is not a priori guaranteed by [H7]. Now, the following is clear (see
also Appendix B).

Lemma 6.1. The supercategory V -mod is C-linear monoidal supercategory whose
underlying category is an abelian category satisfying Assumption 1,2, and 4 in Ap-
pendix B and whose fusion product � is right exact. Moreover, if the supercategory
V -mod is rigid, then � is exact.

Remark 6.2. The exactness of � holds without rigidity if V -mod is semisimple.
Even if V -mod is semisimple, the rigidity of V -mod is important in the theory of
vertex algebras since it is necessary for V -mod to be a modular tensor category. In
the literature, the rigidity of V -mod is established for a Z≥0-graded simple vertex
operator algebra of CFT type equipped with a non-degenerate invariant bilinear form
by Huang [H6, Theorem 3.8].

6.2. Simple current extensions by Lattice. Here we study simple current ex-
tensions of tensor products of vertex superalgebras and lattice vertex superalgebras
under suitable conditions.

Let VL be the lattice vertex superalgebra associated with a positive-definite
integral lattice L of finite rank with a bilinear form (·|·) : L×L→ Z. It is a simple
1
2 -graded vertex operator superalgebra of CFT type. It is well-known that VL is
rational and C2-cofinite and that the set of irreducible VL-modules is Irr(VL-mod) =
{Va+L | a ∈ L′/L} with fusion product Va+L � Vb+L ' Va+b+L, where L′ = {a ∈
Q ⊗Z L | (a|L) ⊂ Z}, (see e.g. [DLM2]). In particular, we have Irr(VL-mod) =
Pic(VL-mod) ' L′/L (as groups) and thus VL-mod is rigid. The monodromy among
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them is given by MVa+L,Vb+L = e2πi(a|b), (see e.g. [CKL]). By abuse of notation,
an element a ∈ L′ also denotes the corresponding element in quotients L′/N by
subgroups N ⊂ L′

Let V be a simple, C2-cofinite, 1
2Z≥0-graded vertex operator superalgebra, then

so is the tensor product V ⊗ VL. The monoidal supercategory V ⊗ VL-mod is
naturally equivalent to the Deligne product (V -mod)⊗̂(VL-mod). Indeed, we have
a natural superfunctor (V -mod)⊗̂(VL-mod) → V ⊗ VL-mod such that M⊗̂N 7→
M ⊗N(= M ⊗C N). Since every weak VL-module is complete reducible, it admits
a quasi-inverse

(V ⊗ VL)-mod ' (V -mod)⊗̂(VL-mod)

M 7→
⊕

a∈L′/L

Ωa(M)⊗̂Va+L (6.2)

where

Ωa(M) := {m ∈M | h(n)m = δn,0(a|h)m, (∀h ∈ C⊗Z L)} ⊂M.

(In what follows, we will write ⊗ also for ⊗̂ by abuse of notation.) In particular,
Pic(V ) decomposes into the product

Pic(V )× Pic(VL) ' Pic(V ⊗ VL), (M,Va+L) 7→M ⊗ Va+L. (6.3)

Let N be a sublattice of L′ containing L and consider a categorical simple current
extension (E, µE) of V ⊗ VL of the form

E =
⊕

a∈N/L

Ea =
⊕

a∈N/L

Sa ⊗ Va+L (6.4)

for some finite subgroup {Sa}a∈N/L of Pic(V ) satisfying (S1) in §B.5 together with

θ2
E = id and θEaθEb = θEa+b

. Note that (S2) in §B.5 is automatically satisfied
since Irr(VL) = Pic(VL) forms a group. In this case, the categorical simple current
extension E is a simple, C2-cofinite, 1

2Z≥0-graded vertex operator superalgebra by

[CKM1, Theorem 3.42], and Rep0(E) is equivalent to E-mod as C-linear braided
monoidal supercategories, (see [Ca, HKL] for the purely even cases). We note that
the larger monoidal supercategory Rep(E) is equivalent to a supercategory of certain
twisted E-modules, see [YY]. We apply a general theory in §B.5. Recall that the
simple currents {Sa}a∈N/L in V -mod give a monodromy decomposition

V -mod =
⊕

φ∈(N/L)∨

V -modφ,

where (N/L)∨ = HomGrp(N/L,C∗) and V -modφ is the full subcategory of V -mod
consisting of objects M such that MSa,M = φ(a) idSa�M , (a ∈ N/L). Let φM
denote the character φ ∈ (N/L)∨ associated with M . Similarly, the simple currents
{Va+L}a∈N/L in VL-mod give a monodromy decomposition

VL-mod =
⊕

φ∈(N/L)∨

VL-modφ.

In this case, VL-modφ is semisimple and

Irr(VL-modφ) =
{
Vb+L

∣∣∣ b ∈ L′/L, e2π
√
−1(a|b) = φ(a), (∀a ∈ N/L)

}
.

The group homomorphism L′ → (N/L)∨ (a 7→ e2π
√
−1(a|•)) induces an isomorphism

L′/N ′ ' (N/L)∨. Then we have Irr(VL-modφ) = {Vb+L | b ∈ L′/L, b = φ ∈
L′/N ′}. By (6.2), the supercategory of E-local V ⊗ VL-modules is

(V ⊗ VL)-mod0 '
⊕

φ∈(N/L)∨

(V -mod)φ ⊗ (VL-mod)φ−1 . (6.5)
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Theorem 6.3. (cf. [CKM1, YY])
(i) The set of simple E-modules (in Rep0(E)) is in one-to-one correspondence

Irr(E) ' {(M,a) ∈ Irr(V )× (L′/L) | φMφVa+L
= 1}

/
(N/L)

by (M,a) 7→ F(M ⊗ Va+L) = E�V⊗VL (M ⊗ Va+L). In particular,

| Irr(E)| = | Irr(V )||N ′/L|
|N/L|

and
Pic(E) ' {(M,a) ∈ Pic(V )× (L′/L) | φMφVa+L

= 1}
/

(N/L).

(ii) Suppose that the fusion product � on V -mod and Rep(E) are exact. Then we
have an isomorphism of rings

K(E) '

K(V )
⊗

Z[N/L]

Z[L′/L]

N/L

(6.6)

where the tensor product over Z[N/L] is given by [M � Sa] ⊗ b = [M ] ⊗ (−a + b)
for a ∈ N/L

Proof. (i) follows from Corollary B.20. For (ii), note that K(VL) ' Z[L′/L],
([Va+L] 7→ a). Since K(E) and K(VL) are (N/L)∨-graded Z[N/L]-algebras by
Theroem B.12, the fusion algebra K

(
(V ⊗ VL)-mod0

)
is a diagonal N/L-invariant

subalgebra

K
(
(V ⊗ VL)-mod0

)
' (K(V )⊗K(VL))

N/L

' (K(V )⊗ Z[L′/L])
N/L

.

Hence, by Corollary B.21 the induction functor E�V⊗VL • induces an isomorphism

KE) ' K
(
(V ⊗ VL)-mod0

)
/J

where J is generated by

[M ]⊗ b− [M � Sa]⊗ (a+ b)

for M ∈ Ob(V -mod), a ∈ N/L, b ∈ L′/L. This implies (6.6). �

Therefore, we obtain a concrete description of the fusion data of E-modules in
terms of V . Let us consider a converse description. Note that by (S2), the monoidal
superfunctor F : (V -mod)⊗ (VL-mod)→ Rep(E) gives embeddings

V -mod→ Rep(E), N 7→ F(N ⊗ VL),

VL-mod→ Rep(E), N 7→ F(V ⊗N),

as C-linear monoidal supercategories and thus, we may consider V -mod and VL-mod
as subcategories of Rep(E). We use the abbreviation, e,g., M �E Va+L(= M �E

F(V � Va+L)) for M ∈ Ob(Rep(E)) and a ∈ L′/L.

Lemma 6.4. Every simple object N in Rep(E) is isomorphic to M �E Va+L for
some M ∈ Irr(E) and a ∈ L′/L. Moreover, the set of such pairs (M,a) forms an
N ′/L-torsor by

b.(M,a) = (M �E Vb+L, a− b), (b ∈ N ′/L).

Proof. By Proposition B.19 (ii), we have N ' F(M ⊗ Va+L) for some M ∈ Irr(V )
and a ∈ L′/L. Since F is mononoidal, we may decompose

F(M ⊗ Va+L) ' F(M ⊗ Vb+L) �E Va−b+L (6.7)

for any b ∈ L′/L. By using the isomorphism L′/N ′ ' (N/L)∨, we may take
b ∈ L′/L so that M ⊗ Vb+L is E-local and thusF(M ⊗ Vb+L) ∈ Irr(E). This proves
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the first part of the statement. The element b ∈ L′/L in th decomposition (6.7)
such that M ⊗ Vb+L is E-local are uniquely determined up to N ′/L. This implies
the second part of the statement. �

Since objects of Rep(E) are pairs (µM ,M) of M ∈ Ob(V -mod ⊗ VL-mod) and
a morphism µM : E �V⊗VL M → M of V -mod ⊗ VL-mod, we have two family of
monodromy actions

MN,• := MN⊗VL,•, (N ∈ Ob(V -mod)), MVa+L,• := MV⊗Va+L,•, (a ∈ L′/L).

Clearly, any object N in the subcategory V -mod ⊂ Rep(E) has trivial monodromy
with Va+L, (a ∈ N ′/L), i.e., MVa+L,F(N⊗VL) = id(V⊗Va+L)�V⊗VL (N⊗VL). Con-

versely, any simple object in Rep(E) satisfying this monodromy-free property lies
in V -mod. This implies the following theorem.

Theorem 6.5. (cf. [CKM1, YY])
(i) The set of simple V -modules Irr(V ) is in one-to-one correspondence to

{(M,a) ∈ Irr(E)× (L′/L) |MVb+L,M�EVa+L
= id, (∀b ∈ N ′/L)}/(N ′/L)

by (M,a) 7→ N so that F(N ⊗ VL) 'M �E Va+L holds. In particular,

| Irr(V )| = | Irr(E)||N/L|
|N ′/L|

and the group Pic(V ) is naturally isomorphic to

{(M,a) ∈ Pic(E)× (L′/L) |MVb+L,M�EVa+L
= id, (∀b ∈ N ′/L)}/(N ′/L)

(ii) Suppose that the fusion product � on V -mod and Rep(E) are exact. Then we
have an isomorphism of rings

K(V ) '

K(E)
⊗

Z[N ′/L]

Z[L′/L]

N ′/L

(6.8)

where the tensor product over Z[N ′/L] is given by [M �E Va+L]⊗ b = [M ]⊗ (a+ b)
for a ∈ N ′/L.

Proof. (i) is immediate from Lemma 6.4. We show (ii). By Lemma 6.1, every
object in Rep(E), (resp. E-mod), has finite length. Thus, we may take a basis of
K(Rep(E)), (resp. E-mod), by Irr(Rep(E), (resp. Irr(E)). Then by Lemma 6.4, we
have a natural isomorphism

K(Rep(E)) ' K(E)
⊗

Z[L′/N ]

K(VL) ' K(E)
⊗

Z[L′/N ]

Z[L′/L].

Note that K(Rep(E)) is an (N ′/L)∨-graded ring by the monodromy action of
{Va+L}a∈N ′/L whose trivial grading part is spanned by Irr(V ), we obtain the as-
sertion. �

We end up this subsection by giving two sufficient conditions for the exactness
of the fusion products of V -mod and Rep(E).

Lemma 6.6. The monoidal superfunctor � on Rep(E) is exact if one of the fol-
lowing conditions holds:
(i) V -mod is semisimple.
(ii) V is self-dual and V -mod is rigid.

Proof. (i) is obvious since Rep(E) is also semisimple by Proposition B.19. We
show (ii). By assumption V -mod is rigid and thus so is V ⊗ VL-mod. Since the
induction functor F maps rigid objects to rigid objects, simple objects in Rep(E)
(resp. Rep0(E)) is rigid by (i). Since V is self-dual, V ⊗ VL is self-dual. It implies
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that E is also self-dual since Sa ⊗ Va+L has a contragradient module S−a ⊗ V−a+L

inside E. The assertion follows from [CMY, Theorem 4.4.1] since every object
Rep(E) (resp. Rep0(E)) has finite length. �

7. Fusion rules of W-algebras at rational levels

Here we study the fusion rules of the subregular W-algebra Wk(sln, fsub) and
the principal W-superalgebra Wk(sl1|n) in the rational cases.

7.1. Fusion rules of Lm(sln) and level-rank duality. In this subsection, we
review the fusion rules of the simple affine vertex algebra associated with sln in
the rational cases. Let h denote the Cartan subalgebra of sln, {α∨i }

n−1
i=1 the set of

simple coroots, {αi}n−1
i=1 the set of simple roots, $i the i-th fundamental weight,

and ρ =
∑n−1
i=1 $i the Weyl vector of sln. Then {αi}n−1

i=1 (resp. {α∨i }
n−1
i=1 ) forms

a basis of h∗ (resp. h), which are naturally identified by the normalized invariant
bilinear form ( · | · ) on h (see also §3.1).

Let Q = Q(An−1) =
⊕n−1

i=1 Zαi denote the root lattice of sln, P = P (An−1) =⊕n−1
i=1 Z$i the weight lattice, P+ = P+(An−1) =

⊕n−1
i=1 Z≥0$i the set of integral

dominant weights. Then by setting $0 = 0, {$i}i∈Zn forms a set of representatives

of P/Q in P and P/Q
'−→ Zn, ($i 7→ i), gives an isomorphism of abelian groups.

Let Lm(sln) denote the simple affine vertex algebra of sln at level m ∈ C, which
is the unique simple quotient of the universal affine vertex algebra V k(sln). If
m ∈ Z≥0, then Lm(sln) is regular [DLM2], equivalent to say, rational and C2-
cofinite [ABD]. (See also [FrZh] for the rationality). By [FrZh], the set of irreducible
modules is one-to-one correspondence with the set

Pm+ (n) :=

{
λ =

n−1∑
i=1

ai$i ∈ P+(An−1)

∣∣∣∣∣
n−1∑
i=1

ai ≤ m

}
by

Pm+ (n) ' Irr(Lm(sln)), λ 7→ Lk(λ)

where Lk(λ) is the (unique) simple quotient of the Verma module Mm(λ) of V k(sln)
with highest weight λ at level m, see §2.4. Note that the group homomorphism

πP/Q : P � P/Q ' Zn, Λi 7→ i, (7.1)

induces the following decomposition

Pm+ (n) =
⊔
i∈Zn

Pm+ (n)i, Pm+ (n)i := π−1
P/Q(i).

Let Nν
λ,µ(ŝln,m) denote the fusion rule of Lm(sln), i.e., the non-negative integer

given by

Lm(λ) � Lm(µ) '
⊕

ν∈Pm+ (n)

Nν
λ,µ(ŝln,m)Lm(ν). (7.2)

The explicit formula for Nν
λ,µ(ŝln,m) is given by the Kac–Walton formula [DFMS,

§16.2], see also [Gep, W2] for the relations to Schubert calculus and quantum
cohomology ring of Grassmannians. By [Fu], the group of simple currents is
Pic(Lm(sln)) = {Lm(n$i)}i∈Zn and is isomorphic to Zn by Lm(n$i) 7→ i, which
induces a Zn-action on Irr(Lm(sln)) by fusion product. More explicitly,

Lm(n$i) � Lm(λ) ' Lm(σi(λ)), λ ∈ Pm+ (n), (7.3)

where σ is the cyclic permutation σ($i) = $i+1 for i ∈ Zn
For later purpose, we recall the level-rank duality between Lm(sln) and Ln(slm)

for n,m ≥ 0, [Fr, OS]. The isomorphism Cnm ' Cn ⊗ Cm induces an embedding
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of Lie algebras sln ⊕ slm ↪→ slnm and thus Lm(sln)⊗ Ln(slm) ↪→ L1(slnm). It is a
conformal embedding and gives a finite decomposition

L1(slnm) '
⊕

λ∈Pm+ (n)0

Lm(λ)⊗ Ln(λt)

as Lm(sln)⊗Ln(slm)-modules where λ→ λt denotes the transpose. More precisely,
let Cn,m denote the set of Young digrams lying in the n ×m rectangle. Then we

have an embedding Pm+ (n) ↪→ Cn,m, (λ =
∑
i∈Zn aiΛi 7→ t

n−1
i=1 aiRi) where Ri

denote the column of boxes of height i. (Rn is identified with the empty set.) Then
the transpose λ 7→ λt is just the transpose of Young diagrams, e.g.,

P 5
+(3) 3 Λ0 + Λ1 + 3Λ2 =

t−→ = Λ0 + Λ3 + Λ4 ∈ P 3
+(5)

.

Note that πP/Q(λ) = `(λ) ∈ Zn where `(λ) denotes the number of boxes of
the Young diagram of λ. By the Frenkel–Kac construction, we have an embed-
ding L1(slnm) ' VQ(Anm−1) ↪→ VZnm . Then Com(L1(slnm), VZnm) ' V√nmZ with√
nmZ ↪→ Znm, (a

√
nm 7→ (a, a, · · · , a)) and we have

VZnm '
⊕
a∈Znm

L1(Λa)⊗ V a√
nm

+
√
nmZ

as L1(slnm)⊗V√nmZ-modules. Now, by the branching law of L1(Λa) as an Lm(sln)⊗
Ln(slm)-module [OS, Theorem 4.1], we obtain

VZnm '
⊕
a∈Znm

 ⊕
λ∈Pm+ (n)a

Lm(λ)⊗ Ln(σ
a−`(λ)
n (λt))

⊗ V a√
nm

+
√
nmZ (7.4)

as Lm(sln) ⊗ Ln(slm) ⊗ V√nmZ-modules. Thus, Em,n := Com(Lm(sln), VZnm) is a
simple current extension of Ln(slm)⊗ V√nmZ

Com(Lm(sln), VZnm) '
⊕
a∈Zm

Ln(nΛa)⊗ V an√
nm

+
√
nmZ

of order m. Therefore, by Theorem 6.3, we have

Irr(Em,n) '
{

(λ, a) ∈ (Pn+(m)× Znm) | πP/Q(λ) = a ∈ Zm
}
/Zm,

where Zm acts on Pn+(m) × Znm by r · (λ, a) = (σr(λ), a + rn), (r ∈ Zm). Let
M(λ, a) denote the simple Em,n-module corresponding to (λ, a). Then we have an
isomorphism of C-algebras

K(Em,n) ' (K(Ln(slm))⊗Z[Zm] Z[Znm])Zm , M(λ, a) 7→ Ln(λ)⊗ [a].

Now, (7.4) implies the decomposition

VZnm '
⊕

λ∈Pm+ (n)

Lm(λ)⊗M(λt, `(λ))

as Lm(sln)⊗ Em,n-modules. This gives an one-to-one correspondence

Irr(Lm(sln))→ Irr(Em,n), Lm(λ) 7→M(λt, `(λ))

between irreducible modules, which implies a braided-reverse equivalence of braided
tensor categories between Lm(sln)-mod and Em,n-mod by [CKM2]. Thus we obtain
the following isomorphism between the fusion algebras.
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Proposition 7.1. We have an isomorphism of rings

K(Lm(sln)) '

K(Ln(slm))
⊗
Z[Zm]

Z[Znm]

Zm

, Lm(λ) 7→ Ln(λt)⊗ [`(λ)].

7.2. Fusion rules of principal W-algebras. The (simple) principal W-algebra
Wk(slr) is C2-cofinite if the level k ∈ C is a non-degenerate admissible number, i.e.,
of the form

kp,q = −r +
r + p

r + q
, p, q ∈ Z≥0, (r + p, r + q) = 1,

by [Ar4]. In this case, Wk(slr) is also denoted by W(p,q)(slr) and is rational by
[Ar5]. The set Irr(W(p,q)(slr)) of irreducible W(p,q)(slr) is determined by [Ar2] and
the fusion rules are determined by [AvE1, Cr, FKW]. In the case (p, q) = (n, 1),
Irr(W(n,1)(slr)) is in one-to-one correspondence to Pn+(r) by

Pn+(r) ' Irr(W(n,1)(slr)), λ 7→ LW(λ),

where LW(λ) = H0
−
(
Lkn,1(λ− (kn,1 + r)ρ)

)
and H0

−(?) denotes the “−”-reduction
functor introduced in [FKW]. The conformal dimension of LW(λ) is given by the
formula

hWλ :=
(λ|λ+ 2ρ)

2(kn,1 + r)
− (λ|ρ). (7.5)

The fusion rules are given by

LW(λ) � LW(µ) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)LW(ν),

Therefore, we have an isomorphism of fusion algebras

K(Ln(slr))
'−→ K(W(n,1)(slr)), Ln(λ) 7→ LW(λ). (7.6)

and the group of simple currents is

Pic(W(n,1)(slr)) = {LW(n$i)}i∈Zr ' Zr, LW(n$i) 7→ i.

7.3. Fusion rules of subregular W-algebras. The (simple) subregular W-algebra
Wk(sln, fsub) is C2-cofinite if the level k ∈ C is of the form

kr := −n+
n+ r

n− 1
, r ∈ Z≥0, (n+ r, n− 1) = 1.

by [Ar4]. In this case, we denote Wkr (sln, fsub) also by Wsub
(r) (sln) for simplicity. In

the rest of this subsection, we assume r ≥ 3. In this case, by [CL1, Theorem 9.4],
we have an isomorphism of vertex algebras

Com
(
πH1 ,W

sub
(r) (sln)

)
'W(n,1)(slr). (7.7)

and moreover,

Com
(
W(n,1)(slr),W

sub
(r) (sln)

)
' V√nr Z, (7.8)

Wsub
(r) (sln) '

⊕
i∈Zr

LW(n$i)⊗ V ni√
nr

+
√
nr Z. (7.9)

Since LW(n$i), (i ∈ Zr), is a simple current of W(n,1)(slr), (7.9) shows that

Wsub
(r) (sln) is a simple current extension of W(n,1)(slr) ⊗ V√nr Z of order r. Since

W(n,1)(slr) and V√nr Z are rational, so is Wsub
(r) (sln) by Proposition B.19. It is im-

mediate that every simple ordinary module of a simple C2-cofinite vertex operator
superalgebra of CFT type is also C2-cofinite. Since W(n,1)(slr) and V√nr Z are C2-

cofinite, so is Wsub
(r) (sln) as a W(n,1)(slr)⊗ V√nr Z-module and thus is C2-cofinite as
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a vertex algebra. We note that the rationality for r ≥ 0 is proven independently in
[AvE2] by the analysis of Zhu’s algebra.

By the results in §6.2, the decomposition (7.9) gives the following description of
the set of irreducible Wsub

(r) (sln)-modules.

Theorem 7.2. For r ≥ 3, there exists a one-to-one correspondence

Irr(Wsub
(r) (sln)) '

{
(λ, a) ∈ Pn+(r)× Znr | πP/Q(λ) = a ∈ Zr

} /
Zr,

where Zr acts on Pn+(r) × Znr by m · (λ, a) = (σm(λ), a + mn), (m ∈ Zr). The

Wsub
(r) (sln)-module Lsub(λ, a) corresponding to (λ, a) decomposes into

Lsub(λ, a) '
⊕
i∈Zr

LW(σi(λ))⊗ V a+ni√
nr

+
√
nr Z (7.10)

as a W(n,1)(slr)⊗ V√nr Z-module and satisfies the fusion rules

Lsub(λ, a) � Lsub(µ, b) '
⊕

ν∈Pn+(r)

Nν
λ,µ(ŝlr,n)Lsub(ν, a+ b).

Proof. By (7.5), we have hWnΛi
= in(r−i)/2r. Hence the monodromy MLW(n$i),LW(λ)

is

MLW(n$i),LW(λ) = ζ
−iπP/Q(λ)
r , ζr = e

2π
√

-1
r .

Thus LW(λ) ⊗ V an
rn+
√
nr Z is local for the simple currents LW(n$i) ⊗ V ni

nr+
√
nr Z

(i ∈ Zr) if and only if
πP/Q(λ) = a ∈ Zr

where a ∈ Znr is seen as an element of Zr by the natural projection Znr � Zr.
Therefore, the assertions follow from Theorem 6.3. �

By Proposition 7.1, Theorem 7.2 implies the following, cf. [AvE2].

Corollary 7.3. The one-to-one correspondence

Irr(Lr(sln)) ' Irr(Wsub
(r) (sln)), Lm(λ) 7→ Lsub(λ

t, `(λ)),

gives an isomorphism of fusion rings

K(Lr(sln)) ' K(Wsub
(r) (sln)).

7.4. Principal W-superalgebras. By the Kazama–Suzuki coset construction Corol-
lary 5.7 for the simple quotients, the decomposition (7.9) implies a description of
principal W-superalgebras as a simple current extension of the tensor product of a
principal W-algebra and a lattice vertex superalgera. For simplicity, we write

W(r)(sl1|n) = W−(n−1)+n−1
n+r

(sl1|n), r ∈ Z≥0, (n+ r, n− 1) = 1.

Theorem 7.4. For r ≥ 3, there exists an isomorphism of vertex superalgebras

Com
(
W(n,1)(slr),W(r)(sl1|n)

)
' V√(n+r)r Z.

In this case, we have as isomorphism

W(r)(sl1|n) '
⊕
i∈Zr

LW(n$i)⊗ V (n+r)i√
(n+r)r

+
√

(n+r)r Z (7.11)

as W(n,1)(slr) ⊗ V√(n+r)r Z-modules. In particular, W(r)(sl1|n) is a simple current
extension of W(n,1)(slr)⊗ V√(n+r)r Z and thus is C2-cofinite and rational.

Proof. Note that the element nH1 is identified with the element
√
nr, a generator

of
√
nrZ. Then we may write (7.9) as

Wsub
(r) (sln) '

⊕
i∈Zr

⊕
a∈Z

LW(n$i)⊗ πH1
ar+i.
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where πH1
a is the Fock module such that H1,(0) acts by a ∈ C. Let φ denote the

Heisenberg field in πZ ⊂ VZ corresponding to 1 ∈ Z. Then the Heienberg field
ψ(z) = 1

(n+r) (nH1(z) + rφ(z)) is orthogonal to H1(z). We have isomorphisms

Wsub
(r) (sln)⊗ VZ '

⊕
i∈Zr

⊕
a,b∈Z

LW(n$i)⊗ πH1
ar+i ⊗ π

φ
b

'
⊕
i∈Zr

⊕
a,b∈Z

LW(n$i)⊗ πH̃1

b−ar−i ⊗ π
(n+r)ψ
nra+in+rb

(7.12)

as W(n,1)(slr)⊗ πH̃1 ⊗ π(n+r)ψ-modules. Thus, by Corollary 5.7,

W(r)(sl1|n) ' Com
(
πH̃1 ,Wsub

(r) (sln)⊗ VZ
)

'
⊕
i∈Zr

⊕
a∈Z

LW(n$i)⊗ π(n+r)ψ
(n+r)(ra+i).

(7.13)

This implies the first assertion since Com(W(n,1)(slr),W(r)(sl1|n)) '
⊕

λ∈Z π
(n+r)ψ
(n+r)rλ

is a lattice vertex superalgebra V√(n+r)r Z. Now the second assertion follows from

rewriting the decomposition (7.13) as W(n,1)(slr) ⊗ π(n+r)ψ-modules into the one
as W(n,1)(slr) ⊗ V√(n+r)r Z-modules. The third assertion follows from the same
argument as in the case of the subregular W-algebra, see the argument just after
(7.9). �

We note that the W(n,1)(slr)⊗ V√(n+r)r Z-module⊕
i∈Zr

LW(n$i)⊗ V− (n+r)i√
(n+r)r

+
√

(n+r)r Z,

which looks like a “reversed gluing” has also a natural structure of vertex superalge-
bra. Indeed, it is also isomorphic to W(r)(sl1|n). In the case n = 2, the isomorphism
of these two extensions coincides with the famous automorphism of the N = 2 SCA,
which maps the strong generators to

L(z) 7→ L(z), J(z) 7→ −J(z), G±(z) 7→ G∓(z).

Here L(z) is the Virasoro field, J(z) the Heisenberg field, and G±(z) are primary
odd fields of conformal weight 3

2 weakly generating the N = 2 SCA, see e.g. [Sa1].
This isomorphism for W(r)(sl1|n) follows from a general theorem of Shimakura [Shi]
describing isomorphisms between simple current extensions of a vertex algebra and
automorphisms of lattice vertex algebra V√(n+r)r Z [DN] appearing in the decom-
position.

By the results in §6.2, Theorem 7.11 implies the following description of the set
of irreducible W(r)(sl1|n)-modules.

Theorem 7.5. There exists a one-to-one correspondence

Irr(W(r)(sl1|n)) '
{

(λ, a) ∈ Pn+(r)× Z(n+r)r | πP/Q(λ) = a ∈ Zr
} /

Zr,

where Zr acts on Pn+(r)×Z(n+r)r by m · (λ, a) =
(
σm(λ), a+m(n+ r)

)
, (m ∈ Zr).

The W(r)(sl1|n)-module Lsp(λ, a) corresponding to (λ, a) has a decomposition

Lsp(λ, a) '
⊕
i∈Zr

LW(σi(λ))⊗ V a+(n+r)i√
(n+r)r

+
√

(n+r)r Z (7.14)

as a W(n,1)(slr)⊗ V√(n+r)r Z-module and satisfies the fusion rules

Lsp(λ, a) � Lsp(µ, b) '
⊕

ν∈Pn+(r)

Nν
λµ(ŝlr,n)Lsp(ν, a+ b)

The proof is very similar to that of Theorem 7.2 and thus we omit it.
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Corollary 7.6.
(i) The fusion ring of W(r)(sl1|n) is isomorphic to

K(W(r)(sl1|n)) '

K(Ln(slr))
⊗
Z[Zr]

Z[Z(n+r)r]

Zr

.

(ii) The number of inequivalent simple W(r)(sl1|n)-modules is
(
n+r
n

)
.

(iii) The group of simple currents of W(r)(sl1|n)-modules is

Pic(W(r)(sl1|n)) = {Lsp(0, ar)}a∈Zn+r
' Zn+r, Lsp(0, ar) 7→ a.

We give another description of Irr(W(r)(sl1|n)) in terms of P r+(n). It follows from
(7.11) and (7.12) that

Com(W(r)(sl1|n),Wsub
(r) (sln)⊗ VZ) '

⊕
a∈Z

πH̃1

(n+r)a ' V√(n+r)nZ

as vertex algebras. Hence, we have

Wsub
(r) (sln)⊗ VZ '

⊕
i∈Zr

⊕
a∈Zn+r

LW(n$i)⊗ V i(n+r)+ra√
r(n+r)

+
√
r(n+r)Z ⊗ V na√

n(n+r)
+
√
n(n+r)Z

'
⊕

a∈Zn+r

Lsp(0, ar)⊗ V na√
n(n+r)

+
√
n(n+r)Z

as W(r)(sl1|n)⊗V√n(n+r)Z-modules. Thus, Wsub
(r) (sln)⊗VZ is an order n+ r simple

current extension of W(r)(sl1|n) ⊗ V√n(n+r)Z. Since VZ is a holomorphic vertex
operator superalgebra,

Wsub
(r) (sln)-mod 'Wsub

(r) (sln)-mod⊗ VZ-mod, M 7→M ⊗ VZ
is an equivalence of braided tensor categories. Then Theorem 6.5 implies the fol-
lowing.

Theorem 7.7. There exists a one-to-one correspondence

Irr(W(r)(sl1|n)) '
{

(λ, a) ∈ P r+(n)× Z(n+r)n | πP/Q(λ) = −a ∈ Zn
}
/Zn

where Zn acts on P r+(n)×Z(n+r)n by m · (λ, a) =
(
σm(λ), a−m(n+ r)

)
, (m ∈ Zn).

Let LSW(λ, a) denote the W(r)(sl1|n)-module corresponding to (λ, a). Then we have
an isomorphism of rings

K(W(r)(sl1|n)) '

K(Lr(sln))
⊗
Z[Zn]

Z[Zn(n+r)]

Zn

, LSW(λ, a) 7→ Lr(λ)⊗ [a].

Appendix A. Free field realization for V κ(gl1|1)

We study a free field realization of the universal affine vertex superalgebra
V κ(gl1|1). We also realize it as the kernel of a certain screening operator.

A.1. Heisenberg vertex algebra. We use the language of the λ-bracket for ver-
tex superalgebras, cf. [DK]. For a finite dimensional commutative Lie algebra h
over C with a symmetric bilinear form κ, the Heisenberg vertex algebra πκh asso-
ciated with h at level κ is defined by the vertex algebra generated by the fields
u(z) =

∑
n∈Z u(n)z

−n−1, (u ∈ h), satisfying the OPEs

u(z)v(w) ∼ κ(u, v)

(z − w)2
, u, v ∈ h.

If κ is non-degenerate, πκh is simple, called a non-degenerate Heisenberg vertex
algebra. The dimension dim h of h is equal to that of subspace of πκh with conformal
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degree 1, called the rank of πκh . For µ ∈ h∗, let πκh,µ denote the Fock module of πh
with highest weight µ, generated by a highest vector |µ〉 satisfying

u(n)|µ〉 = δn,0µ(u)|µ〉, n ≥ 0, u ∈ h.

If we have a non-degenerate bilinear form (·|·) on h, then h is identified with h∗ by
h 7→ (ν(h) : h′ 7→ (h|h′)). For κ = k(·|·), we write πkh , (resp. πkh,µ) instead of πκh ,

(resp. πκh,µ), and denote by α(z) =
∑
n∈Z α(n)z

−n−1 := ν−1(α)(z) for α ∈ h∗. We

call πkh the Heisenberg vertex algebra associated with h at level k.

A.2. Wakimoto representations of ĝl(1|1)κ. Let gl1|1 denote the Lie superal-

gebra End(C1|1) with Lie superbracket

[x, y] = xy − (−1)x̄ȳyx, x, y ∈ End(C1|1),

where x̄ ∈ Z2 = {0̄, 1̄} denotes the parity of x ∈ End(C1|1). Let {Ei,j}1≤i,j≤2 denote

the elementary matrices of gl1|1 = End(C1|1), h = CE1,1 ⊕ CE2,2, n+ = CE1,2 and

n− = CE2,1. Note that the parity of Ei,j is i+ j. For an even supersymmetric
invariant bilinear form κ on gl1|1, there exist unique k1, k2 ∈ C such that

κ = k1κ1 + k2κ2,

where κ1(x|y) = strC1|1(xy) and κ2(x|y) = − 1
2 strgl1|1 (ad(x) ad(y)), and strV (?)

denotes the supertrace over a vector superspace V . The non-zero parings of κ are:

κ(E1,1|E1,1) = k1 + k2, κ(E2,2|E2,2) = −k1 + k2,

κ(E1,1|E2,2) = −k2, κ(E1,2|E2,1) = k1.

Define χi ∈ h∗ by

χi(Ej,j) = (−1)i+1δi,j , i, j ∈ {1, 2}.
We identify h with h∗ by κ1, under which Ei,i is identified with χi, (i = 1, 2), since

κ1(Ei,i|Ej,j) = χi(Ej,j). Let πκ−κ2 := πκ−κ2

h be the Heisenberg vertex algebra

associated with h at level κ−κ2, which is freely generated by fields χi(z), (i = 1, 2),
with OPEs

χi(z)χj(w) ∼ (κ− κ2)(Ei,i|Ej,j)
(z − w)2

, i, j = 1, 2. (A.1)

Let V κ(gl1|1) denote the universal affine vertex superalgebra associated with sl1|1 at

level κ, which is freely generated by the fields x(z) =
∑
n∈Z x(n)z

−n−1, (x ∈ gl1|1)
with OPEs

x(z)y(w) ∼ [x, y]

z − w
+

κ(x, y)

(z − w)2
, x, y ∈ gl1|1.

If k1 6= 0, then it admits the Segal-Sugawara conformal field

T (z) :=
1

2k1

(1− k2

k1
: (E1,1(z) + E2,2(z))2 : + : E1,1(z)2 : − : E2,2(z)2 :)

− : E1,2(z)E2,1(z) : + : E2,1(z)E1,2(z) :
)
,

(A.2)

whose central charge is 0, i.e., the superdimension of gl1|1.
Let Mgl1|1 be the bc-system vertex superalgebra, which is generated by odd fields

b(z), c(z) satisfying the OPEs

b(z)c(w) ∼ 1

z − w
, b(z)b(w) ∼ 0 ∼ c(z)c(w).

The following proposition follows from direct calculations.
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Proposition A.1. There exists a homomorphism of vertex superalgebras
ρ : V κ

(
gl1|1

)
→Mgl1|1 ⊗ π

κ−κ2 , which satisfies

E1,2(z) 7→ b(z), E2,1(z) 7→: c(z) (χ1(z) + χ2(z)) : +k1∂c(z),

E1,1(z) 7→ − : c(z)b(z) : +χ1(z), E2,2(z) 7→: c(z)b(z) : +χ2(z).
(A.3)

We denote a V κ
(
gl1|1

)
-module Mgl1|1 ⊗ π

κ−κ2 by Wκ. Note that T (z) maps to

: ∂c(z) b(z) : +
1− k2

2k2
1

: (χ1 + χ2)(z)2 : +
1

2k1

(
: χ1(z)2 : − : χ2(z)2 : +∂(χ1 + χ2)(z)

)
.

Lemma A.2. ρ is injective for all κ.

Proof. Define conformal gradings ∆ on V κ
(
gl1|1

)
and Wκ by setting

∆(|0〉) = ∆(c(−1)|0〉) = 0,

∆(x(−1)|0〉) = ∆(b(−1)|0〉) = ∆(χi(−1)|0〉) = 1, x ∈ gl1|1, i = 1, 2
(A.4)

and ∆(A(n)B) = ∆(A)+∆(B)−n−1. We choose the set A of homogeneous strong
generators to be {X(−1)|0〉}X∈gl1|1 for V κ(gl1|1) and {b(−1)|0〉, c(−1)|0〉, χ1(−1)|0〉,
χ2(−1)|0〉} for Wκ. Then the associated standard filtrations are

FnV := Span

ai1(−n1) · · · a
ir
(−nr)|0〉; a

ij ∈ A,
∑
j

∆(aij ) ≤ n, r ≥ 0, ni ≥ 0


for V = V κ

(
gl1|1

)
, Wκ respectively and their associated graded superspaces

grFV :=

∞⊕
n=0

FnV

Fn−1V

admit a structure of Poisson vertex superalgebra [Ar3, Li3]. Since ρ preserves the
gradings ∆ by (A.3), ρ induces a homomorphism of Poisson vertex superalgebras

grF ρ : grFV
κ
(
gl1|1

)
→ grFW

κ.

We have

grFV
κ
(
gl1|1

)
= C[∂nEi,j | 1 ≤ i, j ≤ 2, n ∈ Z≥0],

grFW
κ = C[∂nb, ∂nc, ∂nχi | i = 1, 2, n ∈ Z≥0],

where ∂nA is the image of 1
n!A(−n−1)|0〉 ∈ F∆(A)+nV in F∆(A)+nV/F∆(A)+n−1V .

Next, define weight gradings wt on grFV
κ
(
gl1|1

)
and grFW

κ by setting

wt(∂nE1,2) = wt(∂nb) = wt(∂nc) = 0,

wt(∂nEi,i) = wt(∂nE2,1) = wt(∂nχi) = 1, i = 1, 2

and wt(AB) = wt(A)+wt(B). They yield filtrations GnV = Span{A ∈ V ; wt(A) ≤
n} on grF V̄ for V̄ = grFV

κ
(
gl1|1

)
, grFW

κ. Since {GmV λGnV } ⊂ Gm+nV [λ], the
associated graded superspace

grGV :=

∞⊕
n=0

GnV

Gn−1V

also has a structure of Poisson vertex superalgebra. Since grF ρ preserves the weight
gradings by (A.3), grF ρ induces a homomorphism of Poisson vertex superalgebras

grGgrF ρ : grGgrFV
κ
(
gl1|1

)
→ grGgrFW

κ,

E1,2 7→ b, E2,1 7→ c(χ1 + χ2),

Ei,i 7→ χi, i = 1, 2,

49



where A denotes the image of A ∈ Gwt(A)V in Gwt(A)V /Gwt(A)−1V by abuse of
notation. Since grGgrF ρ is injective, so is ρ. �

By using ρ in Proposition A.1, the Wκ-module

Wκ
µ := Mgl1|1 ⊗ π

κ−κ2
µ , µ ∈ h∗

becomes a V κ
(
gl1|1

)
-module, which we call the Wakimoto representation of ĝl(1|1)κ

with highest weight µ, (cf. [F1]).

A.3. Wakimoto representations at generic level. Here we study the Waki-
moto representations Wκ

µ for generic level κ. Let

µi := µ(Ei,i), i = 1, 2.

Consider the highest, (resp. lowest), Verma module of gl1|1

V ±n,e := U
(
gl1|1

)
⊗U(b±) Cvn,e, n, e ∈ C,

where b+ := Span{E1,2, N,E}, (resp. b− := Span{E2,1, N,E}), with

N :=
1

2
(E1,1 − E2,2), E := E1,1 + E2,2

and Cvn,e is the one dimensional b±-module such that E1,2, (resp. E2,1), acts by
0, N by n, and E by e. If e 6= 0, then they are irreducible and we have an
isomorphism V +

n,e ' V −n−1,e. If e = 0, then they are only indecomposable and we
have the following short exact sequences

0→ An±1 → V ±n,0 → An → 0 (A.5)

where Aq = Cwq, (q ∈ C), is the one dimensional gl1|1-module such that E1,2, E2,1,
E acts by 0, and N acts by q.

Define the V κ(gl1|1)-modules

V̂ ±,κn,e := U(ĝl(1|1)κ)⊗U(gl1|1,κ,+) V
±
n,e, Âκn := U(ĝl1|1,κ)⊗U(gl1|1,κ,+) An.

Lemma A.3 ([CR2]). (i) If e 6= 0, then V̂ ±,κn,e is irreducible for e
k1

/∈ Q, and there
exists an isomorpshim

V̂ +,κ
n,e ' V̂

−,κ
n−1,e.

(ii) If e = 0, then V̂ ±,κn,e admits the following short exact sequence for k1 6= 0

0→ Âκn±1 → V̂ ±,κn,0 → Âκn → 0. (A.6)

(iii) Âκn is irreducible for k1 6= 0.

Proof. We include the proof for the completeness of the paper, following the ar-
gument in [CR2, Sec. 3.2]. We may assume k1 6= 0. For (i), the isomorphism

V +
n,e ' V −n−1,e induces an isomorphism V̂ +,κ

n,e ' V̂
−,κ
n−1,e. The conformal dimension of

1⊗ vn,e ∈ V̂ ±,κn,e with respect to (A.2) is

∆n,e :=
1

2k1

(
1− k2

k1
e2 + 2en∓ 1

)
.

Suppose that V̂ −,κn,e is reducible. Then we have a nontrivial V κ(gl1|1)-module ho-
momorphism

V̂ −,κn′,e → V̂ −,κn,e , ∃n′ ∈ n+ Z,
and thus ∆n′,e = ∆n,e+j for some j ∈ Z>0, that is, e

k1
(n′−n) = j. Since n′−n ∈ Z,

it is impossible when e
k1

/∈ Q, in which case V̂ −,κn,e is irreducible. This completes

the proof of (i). For (iii), note that the conformal dimension of 1 ⊗ wn ∈ Âκn
with respect to (A.2) is always 0. Suppose that Âκn is reducible. Then we have a
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nontrivial V κ(gl1|1)-module homomorphism

V̂ +,κ
n′,0 → Âκn or V̂ −,κn′,0 → Âκn, ∃n′ ∈ Z

such that the image of 1⊗ vn,0 is not contained in Cwn. It is impossible since the

conformal dimension of 1⊗ vn,0 ∈ V̂ ±,κn,0 is 0. Thus Âκn is irreducible for k1 6= 0. For

(ii), (A.5) induces an exact sequence of V κ(gl1|1)-modules

Âκn±1 → V̂ ±,κn,0 → Âκn → 0

by the right exactness of the tensor functor U(ĝl(1|1)κ) ⊗U(gl1|1,κ,+) (?). The map

Âκn±1 → V̂ ±,κn,0 is also injective by (iii) for k1 6= 0. This completes the proof of

(ii). �

Proposition A.4. We have an isomorphism

Wκ
µ ' V̂

−,κ
n(µ),e(µ)

of V κ(gl1|1)-modules where n(µ) = µ1+µ2

2 − 1, e(µ) = µ1 − µ2 for e(µ)
k1
6∈ Q if

e(µ) 6= 0 and for k1 6= 0 if e(µ) = 0.

Proof. Define a conformal grading ∆ on Wκ
µ by ∆(|µ〉) = 0 and (A.4):

Wκ
µ =

⊕
d≥0

Wκ
µ,d. (A.7)

Then the subspace Wκ
µ,0 = C|µ〉 ⊕ Cc(−1)|µ〉 is a ĝl(1|1)κ,+-module, which is iso-

morphic to V −n(µ),e(µ) by

V −n(µ),e(µ) →Wκ
µ,0,

vn(µ),e(µ) 7→ c(−1)|µ〉, E1,2vn(µ),e(µ) 7→ |µ〉.
Thus, by the universality of the induced modules, we have a V κ(gl1|1)-module
homomorphism

V̂ −,κn(µ),e(µ) →Wκ
−nα. (A.8)

If µ1 6= µ2, then the map (A.8) is injective by Lemma A.3 (1). If µ1 = µ2, then

(n(µ), e(µ)) = (−n−1, 0). It follows from (A.6) that the singular vectors of V̂ −,κ−n−1,0

for k1 6= 0 belong to the subspace A−n ⊂ Âκ−n, which is clearly embedded by (A.8).
Thus the map (A.8) is injective by Lemma A.3 (2) also in this case. Therefore, the
map (A.8) is injective for generic κ for any highest weight µ ∈ h∗.

Define a conformal degree ∆ of V̂ −,κn(µ),e(µ) by ∆(V −n(µ),e(µ)) = 0, ∆(X(−1)) = 1,

(X ∈ gl1|1), and ∆(X(−n−1)Y ) = ∆(X) + ∆(Y ) + n + 1. Then the map (A.8)
preserves the conformal gradings by Proposition A.1. Now its surjectivity follows
from the equality of the characters:

ch
[
V̂ −n(µ),e(µ)

]
= 2

∞∏
n=1

(1 + qn)2(1 + qn)−2 = ch[Wκ
µ ].

Thus (A.8) is an isomorphism. �

A.4. Resolution. For α = χ1 + χ2 ∈ h∗, define an intertwining operator S(z) :

Wκ
−nα

S−→Wκ
−(n+1)α((z)), (k1 6= 0), by

S(z) = : b(z)e−
1
k1

∫
α(z) :,
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where

: e−
1
k1

∫
α(z) : = T−αexp

(
1

k1

∑
n<0

α(n)

n
z−n

)
exp

(
1

k1

∑
n>0

α(n)

n
z−n

)
, (A.9)

and T−α is the translation operator πκ−nα → πκ−(n+1)α sending the highest weight

vector to the highest weight vector and commuting with all χi(n), i = 1, 2, n 6= 0.
By direct calculation, one can show that the residue

S :=

∫
S(z)dz

satisfies S(u(−1)|0〉) = 0, u ∈ gl1|1. It follows that S is a V κ(gl1|1)-module homo-

morphism from Wκ
−nα to Wκ

−(n+1)α (cf. [F1]).

Using Wakimoto representations, we can extend the injective morphism ρ to a
long exact sequence as in the following proposition.

Proposition A.5. The sequence

0→ V κ(gl1|1)
ρ−→Wκ

0
S−→Wκ

−α → · · · →Wκ
−nα

S−→Wκ
−(n+1)α → · · · . (A.10)

is a complex of V κ(gl1|1)-modules and exact for k1 6= 0.

Proof. To show that (A.10) is a complex, we have to show (1) Im(ρ) ⊂ Ker(S) and
(2) S ◦ S = 0. (1) follows from S(x(−1)|0〉) = 0, x ∈ gl1|1. To show (2), notice
that we can extend the vertex superalgebra Wκ to the direct sum of Wκ-modules⊕

n≥0W
κ
−nα by setting

Y (| − nα〉, z) =: e−
n
k1

∫
α(z) :,

where | − nα〉 is a fixed non-zero highest weight vector of πκnα (see (A.9)). This is
due to κ(nα,mα) = 0 for n,m ≥ 0 (cf. [FBZ, Chap. 5]). Then S is the 0-th mode
Q(0) of the field corresponding to Q = b(−1)| − α〉. By the Jacobi identity of the
λ-bracket, we have

S ◦ S(a) = [Qλ[Qµa]]λ=µ=0 =
1

2
[[QλQ]λ+µa]]λ=µ=0 = 0, a ∈Wκ

−nα.

Thus S ◦ S = 0 follows.
It is clear that the complex (A.10) preserves the conformal gradings (A.7). In

particular, the subcomplex of conformal grading 0 is isomorphic to

0→ A0 → V −−1,0 → V −−2,0 → · · · → V −−n,0 → V −−n−1,0 → · · · ,
which is a complex of gl1|1-modules. Since S(| − nα〉) = 0 and S(c(−1)| − nα〉) =

|− (n+ 1)α〉, it is a successive composition of (A.5), and thus exact. Now it follows

that the complex (A.10) for k1 6= 0 is a successive composition of (A.6) since Âκ−n,
(n ≥ 0), are irreducible for k1 6= 0. Thus (A.10) is exact. �

Appendix B. Categorical aspects of simple currents

We study the theory of simple currents of vertex operator algebras purely in a
categorical manner, following [CKL, CKM1].

B.1. Preliminaries. A supercategory C is a category enriched by the category of
Z2-graded sets , [BE]. By definition, for objects M,N,L in C, the set of morphisms
HomC(M,N) carries a Z2-grading

HomC(M,N) =
⊕
i∈Z2

HomC(M,N)i

and the composition of morphisms preserves the Z2-grading by addition

◦ : HomC(M,N)i ×HomC(L,M)j → HomC(L,N)i+j , (f, g) 7→ f ◦ g.
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The underlying category C of C is defined as the category whose objects are the
same as C and whose morphisms are the even morphisms of C. For an additive
supercategory C such that C is an abelian category, by a subquotient object in C

we mean one in the underlying category C. We use the notion of simplicity as well.
We stress that we use this terminology even if C is an abelian supercategory, that
is, an additive supercategory such that every (parity-inhomogeneous) morphism in
C admits a kernel and cokernel.

Let C be an essentially small, C-linear, monoidal supercategory whose underlying
category is abelian. We denote by

� : C× C→ C, (M,N) 7→M �N

the monoidal product superfunctor with unit object 1C, by

l• : 1C � • '−→ •, (lM : 1C �M
'−→M),

r• : •� 1C
'−→ •, (rM : M � 1C

'−→M),

A•,•,• : •�(•� •) '−→ (•� •) � •,
(
AM,N,L : M � (N � L)

'−→ (M �N) � L
)
,

the structual natural isomorphisms of superfunctors satisfying the pentagon and tri-
angle axioms, see [BK, EGNO]. The last one is called the associativity isomorphism.
Here we use the convention that the parity of a parity-homogeneous morphism f is
denoted by f̄ and the composition of two parity-homogeneous morphisms (f1, f2),

(g1, g2) in C× C is given by (−1)f̄2ḡ1(f1g1, f2g2).
For an object M ∈ Ob(C), a right dual of M is a triple (M∗, eRM , i

R
M ) of M∗ ∈

Ob(C) and even morphisms

eRM : M∗ �M → 1C, iRM : 1C →M �M∗, (B.1)

satisfying the rigidity axioms. A left dual of M is similarly defined to be a triple
(∗M, eLM , i

L
M ) consisting of ∗M ∈ Ob(C) and even morphisms

eLM : M � ∗M → 1C, iLM : 1C → ∗M �M. (B.2)

By [EGNO, Proposition 2.10.15], right (left) duals are unique up to even isomor-
phisms if they exist. The category C is called rigid if every object in C has a right
and left dual. We call an object M of C an invertible object if it admits a left and
right dual such that the morphisms in (B.1) and (B.2) are isomorphisms.

Lemma B.1. For an invertible object S, the superfunctors

S � • : C→ C, M 7→ S �M,

•�S : C→ C, M 7→M � S,

are exact.

Proof. Since the proofs for S � • and • � S are similar, we prove only for S � •.
Note that any object lies in the image of S � • since for any object M ∈ Ob(C),

S � (S∗ �M) ' (S � S∗) �M ' 1C �M 'M.

Now, take a short exact sequence in C

0→M → N → L→ 0.

We show that the complex

0→ S �M → S �N → S � L→ 0 (B.3)

is exact. For the left exactness of (B.3), it suffices to show that for any object
A ∈ Ob(C), the induced complex

0→ HomC(A,S �M)→ HomC(A,S �N)→ HomC(A,S � L) (B.4)
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is exact. Indeed, by the left exactness of HomC(A, •), we have the exact sequence

0→ HomC(A,M)→ HomC(A,N)→ HomC(A,L). (B.5)

Then, by the functoriality of the following isomorphisms

HomC(A,M) ' HomC(A, 1C �M) ' HomC(A, (∗S � S) �M)

' HomC(A, ∗S � (S �M)) ' HomC(S �A,S �M),
(B.6)

(see [EGNO, Proposition 2.10.8]), the exactness of (B.5) implies that of

0→ HomC(S �A,S �M)→ HomC(S �A,S �N)→ HomC(S �A,S � L).

Replacing A by S∗ � A in S � A, we conclude that (B.4) is exact. We can prove
the right exactness of (B.3) in a similar way by showing the exactness of

0→ HomC(S � L,A)→ HomC(S �N,A)→ HomC(S �M,A)

for any object A ∈ Ob(C) and thus we omit it. This completes the proof. �

We call a simple invertible object a simple current following the terminology of
the theory of vertex algebra. By Lemma B.1, a simple current exists if and only if
the unit object 1C is simple.

Assumption 1. The unit object 1C is simple.

A braided monodial supercategory is a monoidal supercategory C equipped with
a natural isomorphism of superfunctors, called the braiding,

R•,• : (•� •) '−→ (•� •) ◦ σ, (RM,N : M �N
'−→ N �M),

where σ is the superfunctor

σ : C× C→ C× C, (M,N) 7→ (N,M),

under which every parity-homogeneous morphism (f, g) maps to (−1)f̄ ḡ(g, f). The
natural isomorphism R•,• is required to satisfy the hexagon identity. The natural
isomorphism

M•,• := R2
•,• : (•� •) '−→ (•� •), (MM,N : M �N

'−→M �N)

is called the monodromy. It is straightforward to check that, in a braided monoidal
supercategory, the existence of a right dual implies that of a left dual and vice
versa. Indeed, given a right dual (M∗, eRM , i

R
M ) of an object M , the triple (M∗, eRM ◦

R−1
M,M∗ ,RM,M∗ ◦ iRM ) defines a left dual of M and conversely, given a left dual

(∗M, eLM , i
L
M ), a triple (∗M, eLM ◦ RM,∗M ,R

−1
M,∗M ◦ iLM ) defines a right dual.

One of the simplest examples of braided monoidal supercategory is the supercat-
egory SVectC of vector superspaces over C of at most countable dimension equipped
with the tensor product M �N = M ⊗C N and the braiding

RM,N : M ⊗C N → N ⊗C M, m⊗ n 7→ (−1)n̄m̄n⊗m.
Obviously, the supercategory C is C-linear and its underlying category C is abelian.
Note that the supercategory SVectC admits a natural parity reversing endofunctor
Π, which exchanges the parity of objects.

In this paper, we make the following assumption on our monoidal supercategory
C in consideration:

Assumption 2. Every object in C has a structure of a C-vector superspace of at
most countable dimension, the forgetful functor C → SVectC is a C-linear exact
faithful superfunctor, and there exists an involutive autofunctor ΠC of C which
coincides with the parity reversing autofunctor Π of SVectC through the forgetful
functor. In addition, each C-vector superspace of morphisms in C has a finite
dimension.

54



Such a situation naturally appears when we consider module categories of suit-
able superalgebras over C like vertex operator superalgebras or Hopf superalgebras
consisting of modules of at most countable dimension. The existence of the forgetful
functor implies Diximir’s lemma (or Schur’s lemma) for C.

Lemma B.2.
(i) For non-isomorphic simple objects M,N ∈ Ob(C), HomC(M,N) = 0.
(ii) For a simple object M ∈ Ob(C), EndC(M)0̄ = C idM and EndC(M)1̄ = 0 or
CΠ for some odd isomorphism Π such that Π2 = idM .

Proof. It is easy to see that (i) and the first assertion in (ii) follow from the argu-
ment in the purely even case, see e.g. [Wal, §1.2]. For the second one in (ii), we
suppose EndC(M)1̄ 6= 0 and take a nonzero morphism f ∈ EndC(M)1̄. We prove
EndC(M)1̄ = Cf . Since f2 is an even isomorphism, we may assume that f2 = idC

by rescalling. Then it suffices to show g = ±f for g ∈ EndC(M)1̄ such that g2 = idC.
Let α ∈ C be the scalar such that fg = αidC. Since idC = f(fg)g = αfg = α2 idC,
we obtain α = ±1. Then, by fg = ±idC and (fg)(gf) = idC, we have fg = gf .
Now, we have (f + g)(f − g) = f2 − g2 = 0, which implies that f + g = 0 or
f − g = 0. This completes the proof. �

In practice, the case dimC EndC(M)1̄ = 1 occurs when C is a module category of
a C-superalgebra A = A0̄⊕A1̄ and an object M = M0̄⊕M1̄ satisfies f : M0̄ 'M1̄ as
A0̄-modules. In this case, an isomorphism (f, f−1) : M = M0̄⊕M1̄ 'M1̄⊕M0̄ = M
as A0̄-modules has odd parity and it might define an isomorphism as A-modules,
see [CW, §3.1].

B.2. Block decomposition and Monodromy filtration by Simple currents.
Let C be a monoidal supercategory as in §2.1 equipped with a braided monoidal
supercategory structure. Here we study decompositions and filtrations on C induced
by simple currents. Take a simple current S ∈ Ob(C). We set

Sn :=


S � (S � (· · · (S � S) · · · ), (n ≥ 1),

1C, (n = 0),

S∗ � (S∗ � (· · · (S∗ � S∗) · · · ), (n ≤ −1).

Since simple currents are closed under taking left, (right), dual and monoidal prod-
uct by [EGNO, Proposition 2.11.3], Sn, (n ∈ Z), are simple currents and satisfy

Sn � Sm ' Sn+m, (Sn)∗ ' S−n.
Then by (B.6), we have

EndC(M) ' EndC(Sn �M), (M ∈ Ob(C)).

Lemma B.3. The map

EndC(M)→ EndC(Sn �M), f 7→ idSn �f (B.7)

is an isomorphism of C-superalgebras.

Proof. It is straightforward to show that the map

EndC(Sn �M)→ EndC

(
S−n � (Sn �M)

)
, f 7→ idS−n �(idSn �f)

is an inverse of (B.7) under the natural isomorphisms

EndC

(
S−n � (Sn �M)

)
' EndC

(
(S−n � Sn) �M

)
' EndC(1C �M) ' EndC(M).

�
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By Lemma B.3, the monodromy

MSn,M = RM,Sn ◦ RSn,M ∈ EndC(Sn �M)

defines a unique element mS(n) ∈ EndC(M)0̄ satisfying

MSn,M = idSn � mS(n).

Proposition B.4. The endomorphism mS(n) is invertible and moreover

mS(n) = mS(1)n (n ∈ Z).

Proof. We show the assertion for n ≥ 1 by induction on n. By the hexagon identity,
the following diagram commutes.

(S � Sn−1) �M
RSn,M

//

' ��

M � (S � Sn−1)

'

��

RM,Sn
// (S � Sn−1) �M

S � (Sn−1 �M)

id�R ��

S � (Sn−1 �M)

'
OO

S � (M � Sn−1)

' ��

S � (M � Sn−1)

id�R

OO

(S �M) � Sn−1

R� id
// (M � S) � Sn−1

R� id
//

'

DD

(S �M) � Sn−1.

'
OO

Here all the isomorphisms without symbols are associativity isomorphisms. Then
the morphisms in the bottom are composed as

(RM,S � idSn−1) ◦ (RS,M � idSn−1) = MS,M � idSn−1

= (idS �mS(1)) � idSn−1 .

Now, we may use the naturality of the associativity A•,•,• and the braiding R•,• to
conclude MSn,M = idSn �mS(1)n since

MSn,M = RM,Sn ◦ RSn,M
= AS,Sn−1,M ◦ (idS �RSn−1,M ) ◦A−1

S,M,Sn−1

◦ (MS,M � idSn−1) ◦AS,M,Sn−1 ◦ (idS �RSn−1,M ) ◦A−1
S,Sn−1,M

= (idSn �mS(1)) ◦AS,Sn−1,M ◦ (idS �RSn−1,M ) ◦A−1
S,M,Sn−1

◦AS,M,Sn−1 ◦ (idS �RSn−1,M ) ◦A−1
S,Sn−1,M

= (idSn �mS(1)) ◦AS,Sn−1,M ◦ (idS �MSn−1,M ) ◦A−1
S,Sn−1,M

= (idSn �mS(1)) ◦AS,Sn−1,M ◦ (idS �(idSn−1 �mS(1)n−1)) ◦A−1
S,Sn−1,M

= idSn �mS(1)n.

Similarly, we can show mS(−n) = mS(−1)n for n ≥ 1. Thus it remains to prove

mS(1)mS(−1) = idM .

For this, note that by using the same argument as above, we obtain that

MS�S∗,M = idS�S∗ �(mS(1)mS(−1)).

Then S � S∗ ' 1C and M1C,M = id1C�M (see [Kas, Proposition XIII. 1.2]) implies
the assertion. This completes the proof. �

Proposition B.5. An object M ∈ Ob(C) admits the generalized eigenspace decom-
position of mS(1)

M =
⊕
α∈C∗

Mα,
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where
Mα =

⋃
n∈Z≥0

Mα[n], Mα[n] := Ker(mS(1)− α)n.

Proof. It is immediate that we have

M ⊃
∑
α∈C∗

Mα =
⊕
α∈C∗

Mα (B.8)

and that {Mα[n]}n∈Z≥0
defines a filtration Mα[p] ⊂ Mα[q], (p < q). Thus it re-

mains to prove the equality of (B.8). For this, we use the multiplication of mS(1)
on EndC(M). Since the C-vector superspace EndC(M) is finite dimensional by
Assumption 2, the multiplication of mS(1) gives a generalized eigenspace decom-
position

EndC(M) =
⊕
α∈C∗

EndC(M)α,

EndC(M)α := {f ∈ EndC(M)α | (mS(1)− α)nf = 0, (∀n� 0)} .
This gives the decomposition idM =

∑
α πα. Thus we obtain

M = idM M =
∑
α∈C∗

παM ⊂
∑
α∈C∗

Mα.

This completes the proof. �

We introduce full subcategories Cα[n] ⊂ C, (α ∈ C∗, n ∈ Z≥0) defined by

Cα[n] := {M ∈ Ob(C) | (mS(1)− α)n+1 idM = 0}.
For a fixed α ∈ C∗, they give a filtration

Cα[0] ⊂ Cα[1] ⊂ · · · ⊂ Cα :=
⋃
n≥0

Cα[n]. (B.9)

Then by Proposition B.5, we have the following block decomposition of C:

C =
⊕
α∈C∗

Cα. (B.10)

We call it the monodromy decomposition of C by S and (B.9) the monodromy
filtration of C by S.

Proposition B.6. (i) Any object M in Cα[m] is an extension

0→M1 →M →M2 → 0

for some M1 ∈ Ob(Cα[0]) and M2 ∈ Ob(Cα[m− 1]).
(ii) We have

� : Cα[m]× Cβ [n]→ Cαβ [m+ n].

Proof. (i) is immediate from the definition of Cα[m]. We prove (ii). Take M ∈
Ob(Cα[m]) and N ∈ Ob(Cβ [n]). Let us write the monodromy operator mS(1) for
M as mS,M (1) for clarity. By using the same diagram in the proof of Proposition
B.4, we obtain

MS,M�N = idS �(mS,M (1) �mS,N (1)),
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and thus mS,M�N (1) = mS,M (1) �mS,N (1). Now the assertion holds since

(mS,M�N (1)− αβ)m+n+1

= (mS,M (1) �mS,N (1)− αβ)m+n+1

= ((mS,M (1)− α) �mS,N (1) + α idM �(mS,N (1)− β))
m+n+1

=

m+n+1∑
k=0

(
m+ n+ 1

k

)
αk(mS,M (1)− α)m+n+1−k �mS,N (1)m+n+1−k(mS,N (1)− β)k

= 0.

Corollary B.7. The full subcategory

C[0] :=
⊕
α∈C∗

Cα[0]

is a braided monoidal supercategory.

Remark B.8. If the simple current S is of finite order Sn ' 1C, then the decom-
position (B.10) holds without Assumption 2. Indeed, by the complete reducibility of
representations of finite abelian groups, mS(1)n = 1 implies the block decomposition

C = C[0] =
⊕

α∈Z/nZ

Cα[0],

where Zn ↪→ C∗, [1] 7→ e2πi/n (cf. [CKL, Lemma 3.17]).

Next, we generalize (B.10) to a simultaneous decomposition by simple currents
{Sg}g∈G parametrized by a group G, i.e., Sg � Sh ' Sgh, (g, h ∈ G). Since C is
braided, we have

Sgh ' Sg � Sh
'−−−−−→

RSg,Sh

Sh � Sg ' Shg,

and G is necessarily abelian. As the functoriality of M•,• implies that each mon-
odromy operator mSg (1) on M ∈ Ob(C) lies in the center of EndC(M), the abelian
group G acts on M by g 7→ mSg (1), (g ∈ G). We denote by G∨ := HomGrp(G,C∗)
the dual of G and introduce full subcategories Cφ ⊂ C, (φ ∈ G∨), by

Cφ := {M ∈ Ob(M) | ∀g ∈ G, (mSg (1)− φ(g))N = 0, (∀N � 0)}.
Then Proposition B.5 and the proof of Proposition B.6 implies the following imme-
diately.

Theorem B.9. The supercategory C admits a decomposition

C =
⊕
φ∈G∨

Cφ

as additive supercategories and the monoidal product respects the decomposition,
i.e., � : Cφ × Cψ → Cφψ.

Finally, we consider the case that G is finitely generated. In this case, by the
fundamental theorem of finitely generated abelian group, we have G ' Gfin × Zn
for some finite abelian group Gfin and non-negative integer n ≥ 0. Then the dual
group G∨ is G∨ ' G∨fin × (C∗)n. Let Cφ,α[p] ⊂ C, (φ ∈ G∨fin, α ∈ (C∗)n, p ∈ Zn≥0),

denote the full subcategory whose objects consist of M ∈ Ob(C) such that

mSg (1) = φ(g), (∀g ∈ Gfin), (mS,1i − αi)pi |M = 0, (1 ≤ ∀i ≤ n),

where 1i, (1 ≤ i ≤ n), denotes the generator of the i-th component of Zn ⊂ G. For
each (φ, α) ∈ G∨, we have Cφ,α[p] ⊂ Cφ,α[q] if q − p ∈ Zn≥0 and define

Cφ,α :=
⋃

p∈Zn≥0

Cφ,α[p].
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Then we have the following:

Theorem B.10. Assume that the group G is finitely generated. Then,
(i) the supercategory C admits a decomposition

C =
⊕

(φ,α)∈G∨
Cφ,α. (B.11)

and the monoidal product respects the filtration, i.e.,

� : Cφ,α[p]× Cψ,β [q]→ Cφψ,αβ [p+ q],

(ii) the full subcategory

C[0] :=
⊕

(φ,α)∈G∨
Cφ,α[0]

is naturally a braided monoidal subsupercategory,
(iii) every object in Cφ,α[p] is expressed as an extension of certain objects in Cφ,α[0]
and objects in Cφ,α[(p1, · · · , pj − 1, · · · , pn)] for some j.

We call the decomposition (B.11) the monodromy decompositions by G and the
filtration {Cφ,α[p]} the monodromy filtration by G.

Remark B.11. By Theorem B.10 (iii), every simple object lies in C[0]. Thus C =
C[0] holds if C is semisimple. Equivalently, C 6= C[0] implies that the supercategory
C is not semisimple.

B.3. Fusion rings. Let C be a braided monoidal supercategory as in §2.2 with
Assumption 1 and 2. Let K(C) denote its Grothendieck group, which is generated
over Z by isomorphism classes [M ] of objects M in C. Note that, if every object in
C of finite length, then the set IrrC of simple objects of C gives a Z-basis of K(C).
From now on, we assume the following condition:

Assumption 3. The bifunctor � : C× C→ C is biexact.

Then K(C) is a commutative ring by

K(C)×K(C)→ K(C), ([M ], [N ])→ [M �N ]

and is called the fusion ring of C We remark that K(C) does not have a natural
Z2-graded structure. The set of simple currents in C, denoted by PicC, is naturally
an abelian group by � and we regard the group ring Z[PicC] as a subring of K(C).

Suppose that we have a set of simple currents {Sg}g∈G parametrized by a finitely
generated abelian group G as in §B.2. By Theorem B.10 (i), (ii), the fusion ring is
G∨-graded

K(C) =
⊕
ξ∈G∨

K(Cξ).

By Theorem B.10 (iii), the embedding C[0] ⊂ C induces an isomorphism K(C[0]) '
K(C). Finally, we note that K(C) is a Z[G]-algebra, where Z[G] denotes the group
ring of G, by

Z[G]×K(C)→ K(C), (g, [M ])→ [Sg �M ].

Before we remark a criterion for the Z[G]-freeness of K(C), we recall that Lemma
B.1 implies that G acts on IrrC by

G× IrrC→ IrrC, (g,M)→ Sg �M.

Then it is clear that if every object in C is of finite length, then K(C) is free over
Z[G] if and only if the G-action on IrrC is free. Thus we have proved the following
proposition:

Proposition B.12. For a set of simple currents {Sg}g∈G in C parametrized a
finitely generated abelian group G, the fusion rings K(C[0]) and K(C) are G∨-graded
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Z[G]-algebras. Moreover, the embedding C[0] ⊂ C gives an isomorphism K(C) '
K(C[0]) as G∨-graded Z[G]-algebras. If every object in C is of finite length, then
K(C) is free over Z[G] if and only if the G-action on IrrC is free.

B.4. Algebra objects and Induction functor. Following [CKM1], we review
the notion of (unital, associative, commutative) algebra objects and their module
objects in a braided monoidal supercategory, originally introduced by [KO] in the
purely even case. We note that the authors of [CKM1] deal with superizations of
non-super categories (see Remark B.14), but the proofs apply to our setting.

Let C be a braided monoidal supercategory as in §B.3.

Remark B.13. In this subsection, we may replace Assumption 3 by a weaker one,
that is, the bifunctor � is right exact.

An algebra object in C is a triple (E, µE, ι), (or E for simplicity), consisting of
E ∈ Ob(C) and even morphisms µE ∈ HomC(E,E)0̄ and ι ∈ HomC(1C,E)0̄ satisfying
the following commutative diagrams:

(A0) The morphism ι : 1C → E is injective.
(A1) Unity

1C � E
ι�idE //

lE ((

E� E

µE��

E.

(A2) Associativity

E� (E� E)
idE �µE //

AE,E,E

��

E� E
µE // E

(E� E) � E
µE�idE // E� E.

µE

88

(A3) Commutativity

E� E
RE,E

//

µE ((

E� E

µE��

E.

Remark B.14.
(1) A typical example of our braided monoidal supercategory is the superization SC

of a braided abelian monoidal category C, whose objects are pairs M = (M0̄,M1̄) of
Mī ∈ Ob(C). This induces a Z2-graded structure on the set of morphisms. In this
case, an algebra object in SC is called a superalgebra object in C, see [CKM1].
(2) For an application to extensions of vertex superalgebras, the condition

HomC(1C,E) ' EndC(1C)

is often assumed so that the extended vertex superalgebra is of CFT type.

An E-module is a pair (M,µM ), (or M for simplicity), consisting of M ∈ Ob(C)
and an even morphism µM ∈ HomC(E�M,M)0̄ satisfying the following commuta-
tive diagrams:

(M1) Unity

1C �M
ι�idM //

lM ((

E�M

µM
��

M.
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(M2) Associativity

E� (E�M)
idE �µM //

AE,E,M

��

E�M
µM // M

(E� E) �M
µE�idM // E�M.

µM

88

An E-module (M,µM ) is called local if it further satisfies the following commutative
diagram:

(M3) Locality

E�M
ME,M

//

µM ((

E�M
µM��

M.

A morphism of E-modules from (M,µM ) to (N,µN ) is a morphism f ∈ HomC(M,N)
satisfying the following commutative diagram:

E�M
idE �f

//

µM
��

E�N

µN��

M
f

// N.

Let Rep(E) denote the supercategory of E-modules with morphisms of E-modules,
and Rep0(E) the full subcategory of Rep(E) consisting of local E-modules.

Although Rep(E) is just a C-linear additive supercategory, the underlying cate-
gory Rep(E) is an abelian category. Furthermore, by the existence of the involutive

autofunctor ΠC, every parity-homogeneous morphism in Rep(E) admits kernel and
cokernel objects. The same is true for Rep0(E). Each Rep(E) and Rep0(E) admits
a natural monoidal structure in the following way [CKM1, §2]. Consider the two
compositions

ξ1 : E� (M �N)
AE,E,M−−−−−→ (E�M) �N

µM�idN−−−−−−→M �N,

ξ2 : E� (M �N)
AE,M,N−−−−−→ (E�M) �N

RE,M�idN−−−−−−−→ (M � E) �N

A−1
M,E,N−−−−−→M � (E�N)

idM �µN−−−−−−→M �N.

Then M �EN is defined by M �EN := Coker(ξ1−ξ2), which is an object of C. Let
ηM,N denote the canonical surjection M �N →M �EN . The E-module structure
µM�EN : E� (M �EN)→M �EN is the unique even morphism, which makes the
diagram

E� (M ⊗N)
ξi //

idE �ηM,N
��

M �N

ηM,N
��

E� (M �E N)
µM�N // M �E N.

commutes for i = 1, 2. The associativity AE
•,•,• : •�E(•�E•) ' (•�E•)�E• is given

by the family of unique even morphisms AE
M,N,L : M�E (N�EL) ' (M�EN)�EL
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for M,N,L ∈ Ob(Rep(E)), which make the following diagram commute:

M � (N ⊗ L)
AM,N,L

//

idM �ηN,L ��

(M �N) � L

ηM,N
��

M � (N �E L)
ηM,N�EL ��

(M �E N) � L
ηM�EN,L��

M �E (N �E L)
AE
M,N,L

// (M �E N) �E L.

The unit object of Rep(E) and Rep0(E) is E equipped with even natural morphisms

lE• : E�E • ' •, rE• : •�EE ' •
given by the family of unique even morphisms lEM : E�EM 'M and rEM : M�EE '
M , which make the following diagrams commute:

E�M
µM //

ηE,N
��

M M � E
R−1
M,E

//

ηM,E
��

E�M
µM // M

E�E M
lEM // M M �E E

rEM // M.

The braiding R•,• on C induces a braiding RE
•,• on Rep0(E), which is a family of

unique even morphisms RE
M,N : M �E N ' N �E M , which make the diagram

M �N
RM,N

//

ηM,N
��

N �M

ηN,M
��

M �E N
RE
M,N
// N �E M

commute. To summarize, we obtain the following.

Theorem B.15 ([CKM1, Theorem 2.53]). The supercatregory Rep(E) (resp. Rep0(E))
is naturally a C-linear additive (resp. braided) monoidal supercategory such that the
underlying categoty Rep(E), (resp. Rep0(E)) is an abelian category.

For M ∈ Ob(C), we define an E-module (F(M), µF(M)) by

F(M) := E�M,

µF(M) : E� (E�M) ' (E� E) �M
µE�idM−−−−−→ E�M.

We also define a superfunctor F : C→ Rep(E) by M 7→ (F(M), µF(M)) and F(f) :=
idE �f ∈ HomRep(E)(F(M),F(N)) for f ∈ HomC(M,N). The superfunctor F is
called the induction functor and enjoys the following property.

Theorem B.16 ([CKM1, Theorem 2.59]). The induction functor F : C→ Rep(E)
is a C-linear, additive, strong monoidal superfunctor.

Let C0 denote the full subcategory of C consisting of objects M ∈ Ob(C) such
that ME,M = idE,M . We call C0 the category of E-local objects.

Theorem B.17 ([CKM1]). We have the following.

(1) The supercategory C0 is a braided monoidal subsupercategory of C.
(2) For M ∈ Ob(C), the object F(M) lies in Rep0(E) if and only if M ∈ Ob(C0).
(3) The restriction of F to C0 gives a braided monoidal superfunctor

F : C0 → Rep0(E).

Proof. By [CKM1, Theorem 2.67], C0 is a C-linear additive braided monoidal su-
percategory, Thus to show (1), it remains to show that C0 is closed under kernel
and cokernel, which immediately follows from the exactness of E�• in Assumption
3. (2) is [CKM1, Proposition 2.65] and (3) is [CKM1, Theorem 2.67]. �
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At last, the induction functor F is related to the forgetful functor

G : Rep(E)→ C, (M,µM ) 7→M.

by the Frobenius reciprocity:

Proposition B.18 ([CKM1, Lemma 2.61]). The superfunctor G : Rep(E) → C

is right adjoint to the superfunctor F : C → Rep(E), that is, we have a natural
isomorphism

HomRep(E)(F(N),M) ' HomC(N,G(M)),

for M ∈ Ob(Rep(E)) and N ∈ Ob(C). More explicitly, for f ∈ HomC(N,G(M)),
the corresponding morphism of E-modules is given by

F(N) = E�N →M, a�m 7→ µM (a� f(m)).

B.5. Categorical simple current extensions. Let C be a braided monoidal su-
percategory as in §B.2, satisfying Assumption 1–3 and the following assumption.

Assumption 4. Every object in C has finite length.

Let E be an algebra object in C of the form

E =
⊕
g∈G

Sg,

where {Sg}g∈G ⊂ PicC is a set of simple currents parametrized by a finite abelian
gorup G with Se = 1C. Here e ∈ G denotes the unit of G. We call E a categorical
simple current extension of 1C. In the rest of this subsection, we assume

(S1) the product µE restricts to a non-zero morphism Sg�Sh → Sgh for g, h ∈ G,
(S2) the action of G on IrrC is fixed-point free.

Note that these assumptions imply Sg ' Sh if and only if g = h.

Proposition B.19. Suppose (S1) and (S2).

(1) If M is a simple object in C, so is F(M) in Rep(E).
(2) For a simple object M in Rep(E), there exists a simple object N in C such

that M ' F(N) in Rep(E).
(3) For simple objects M and N in C, we have F(M) ' F(N) in Rep(E) if and

only if we have M ' Sg �N for some g ∈ G.
(4) The supercategory C is semisimple if and only if Rep(E) is semisimple. In

this case, C0 ⊂ C and Rep0(E) ⊂ Rep(E) are also semisimple.

Proof. Although these statements are well-known in the theory of vertex algebras,
(see e.g., [CKM1, Proposition 4.5]), we include a proof for the completeness of
the paper. First we prove (1). Let M be a simple object in C. Then F(M) =
⊕g∈GSg �M and all summands are pairwise non-isomorphic by (S2). Let N be a
nonzero subobject of F(M) in Rep(E). Since N is a semisimple object in C, it has
a simple subobject which is isomorphic to Sg �M for some g ∈ G. By (S1), the

structure morpihsm µF(M) restricts to an isomorphism Sh� (Sg �M)
'−→ Shg �M

for any h ∈ G. Since N is closed under the E-action, it contains
∑
h∈G µF(M)(Sh �

(Sg�M)) = ⊕h∈GShg�M = F(M). This proves (1). Then (2) and (3) follow from
(1) and Proposition B.18. Finally, we show (4). Assume that Rep(E) is semisimple
and take N ∈ Ob(C). Since F(N) is semisimple, we have

F(N) '
⊕
i∈I

Ni
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for some simple objects Ni in Rep(E) indexed by a finite set I. Then by (2), we
may replace Ni by F(Ni) for some simple objects Ni in C. Thus,

M ⊂ F(N) '
⊕
i∈I

F(Ni) =
⊕
i∈I
g∈G

Sg �Ni.

Since Sg �Ni are all simple objects in C, N is semisimple. To prove the converse,
assume that C is semisimple. Since every object in C has finite length, so does every
object in Rep(E). Thus to show that Rep(E) is semisimple, it suffices to show the
splitting of any short exact sequence

0→ N1 → N→ N2 → 0 (B.12)

in Rep(E) where N1, N2 are simple. By (2), we may assume Ni = F(Ni) for some
simple object Ni ∈ Ob(C). If F(N1) 6' F(N2), then Sg � N1 6' Sh � N2 for all
g, h ∈ G in C. This implies the splitting of (B.12) in Rep(E). Thus we may assume
F(N1) ' F(N2) and moreover N := N1 = N2 from the beginning. Since G is a
finite abelian group, it is isomorphic to some direct product of cyclic groups

∏
i Zni .

Then it suffices to show the splitting in the case of G = Zn for some n ∈ Z>0. Let Sp
denote the simple current corresponding to p ∈ Zn. Since the space of intertwining

operators I
( Sp+1�N
S1 Sp�N

)
is one dimensional, we may take its basis by the intertwining

operator
S1 � (Sp �N) ' (S1 � Sp) �N ' Sp+1 �N

used in the definition of F(N). On the other hand, the restriction of the E-module
structure of N gives an intertwining operator S1 � N → N. Along with the de-
composition N ' F(N)⊕ F(N) in C, the intertwining operator is expressed by the
matrix:

K :=

(
E A
0 E

)
where E =

∑
i∈Zn Ei+1,i and A =

∑
i∈Zn aiEi+1,i for some ai ∈ C. Since Sn1 ' 1C,

we have
∑
i ai = 0. Then it is straightforward to check that K is conjugate to the

matrix K with ai = 0 for all i. This implies that we may take a decomposition
N = F(N) ⊕ F(N) in C which is preserved by the action of S1 ⊂ E. Since the
other action of Sp ⊂ E is obtained from the action of S1 via iteration, the above
decomposition of N is actually the decomposition as an E-module. The remaining
statements in (4) are now obvious. This completes the proof. �

In particular, we have the following.

Corollary B.20. The induction functor F : C → Rep(E) induces the following
natural identifications:

(1) Irr(Rep(E)) ' Irr(C)/G and Pic(Rep(E)) ' Pic(C)/G;
(2) Irr(Rep0(E)) ' Irr(C0)/G and Pic(Rep0(E)) ' Pic(C0)/G.

Since the induction functor is a monoidal superfunctor, we may write the fusion
ring of Rep(E) in terms of C.

Corollary B.21. Suppose (S1) and (S2). If the superfunctor �E is exact, then the
induction functor F : C→ Rep(E) induces the following isomorphisms of rings:

(1) K(Rep(E)) ' K(C)/I where I = 〈[M ]− [Sg �M ] | g ∈ G,M ∈ Ob(C)〉;
(2) K(Rep0(E)) ' K(C0)/I0 where I0 = 〈[M ]− [Sg�M ] | g ∈ G,M ∈ Ob(C0)〉.

Proof. (1) follow from Proposition B.19. (2) follows from (1) and Theorem B.17.
�
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[Ad3] D. Adamović, Vertex algebra approach to fusion rules for N = 2 superconformal min-

imal models, J. Algebra, 239, 2001, (2), 549–572.
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