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Preface

This thesis studies the finite element method (FEM) applied to a semilinear parabolic equation with a
singular convection term,

N -1
ut:um—FTuac—Ff(u), xelI=(0,1), t>0, (1a)
uz(0,t) = u(l,t) =0, t>0, (1b)
u(z,0) = u’(z), zel (1c)

Therein, u = u(x,t), € I = [0,1],# > 0, denotes the function to be find, f a given locally Lipschitz
continuous function and u® a given continuous function. Throughout this paper, we assume that

N is an integer > 2. (2)

We first clarify the motivation of this study. In many engineering problems, the space dimension
of a mathematical model is at most three. Solving partial differential equations (PDEs) in more than
three spatial dimension is usually motivated by mathematical interests. Mathematicians understand that
solving the problem in a general setting can reveal hidden natures of PDEs. One successful result is the
discovery of Fujita’s blow-up exponent for the semilinear heat equation of U = U(x,t) given as

U =AU+ fU) (xeRY, t>0), (3)

where N and f(U) are defined above. Assuming f(U) = U|U|* with o > 0, Fujita showed that any
positive solution blows up in finite time if 1 + @ < 1 + 2/N, but a solution remains smooth at any time
if the initial value is small and 1 4+ a > 1+ 2/N. The quantity p. = 1+ 2/N is known as Fujita’s critical
exponent, and Eq.(3) is called Fujita’s equation.

Therefore, we found it is interesting to study the numerical methods for computing the solution
of nonlinear partial differential equations in an N-dimensional space. Non-stationary problems in four
dimensional space are difficult to solve by numerical methods, even on modern computers. Therefore,
the present paper investigates radially symmetric solutions of Eq.(3). Assuming radial symmetry of
the solution and the given data, the N-dimensional equation reduces to a one-dimensional equation.
More specifically, considering (3) in an N-dimensional unit ball B = {x € RY | |z|gy < 1} with the
homogeneous Dirichlet boundary condition on the boundary and assuming U is expressed as u(x) = U(x)
for x € B and = = |z|g~, we came to consider the problem (1).

The finite difference method was already studied in [8] and [15]. In particular, the error estimates
were established. Because their finite difference schemes use special approximations around the origin to
maintain some analytical properties of the solution, they should be performed on a uniform spatial mesh.
Conversely, when seeking the blow up solution, non-uniform partitions of the space variable are useful for
examining highly concentrated solutions at the origin. For this purpose, we developed the FEM scheme.

The solution of (1) maybe blow up in finite time. It is interesting to study the relationship between
the blow-up and the space dimension N. To this end, we try to apply the Nakagawa’s time-increment
control strategy (see [32]) which is a powerful technique for approximating the blow-up time.

In Chapter 1, the standard finite element methods are considered. FEM analyses of the linear case,
in which f(u) in Eq.(1) is replaced by a given function f(x,t), are not new. Eriksson and Thomée [18]
and Thomée [42] studied the convergence property of the elliptic equation, and proposed two schemes:
the symmetric scheme, in which the optimal-order error is estimated in the weighted L? norm, and the
nonsymmetric scheme, in which the L error is estimated. The main purpose of this chapter is to derive



various optimal order error estimates for the symmetric and nonsymmetric schemes of [18, 42] applied to
(1). These schemes are described below as (Sym) and (Non-Sym). In Section 1.2, we introduce standard
symmetric scheme (Sym) and standard nonsymmetric scheme (Non-Sym).

First, we derive two alternate weak formulations of (1). Letting y € H* = {v € H'(I) | v(1) = 0} be
arbitrary, then multiplying both sides of (1a) by 2V !y and using integration by parts over I, we obtain

/xN_lutX da:—f—/xN_luzXz dx = /xN_lf(u)X dzx. (4)
I I I

Otherwise, if we multiply both sides of (1a) by xx instead of ¥ =1y and integrate it over I, then we have

J e+ [fmue+ Q= Nyuod do = [ 2 d. (5)

We designate (4) the symmetric weak form because of the symmetric bilinear form associated with the

differential operator wu,, + %um. In contrast, (5) is the nonsymmetric weak form. Both forms are

identical at N = 2.
We now establish the finite element schemes based on these identities. For a positive integer m, we
introduce node points

O=zp <1 <+ <21 <25 < < Typ1 < Ty = 1,

and set I; = (xj_1,2;) and hj = x; —x;_1, where j = 1,...,m. The granularity parameter is defined as
h = maxi<j<m h;. Let P(J) be the set of all polynomials in an interval J of degree < k. We define the
P1 finite element space as

Sp={ve H'(I) |vePi(l;) (j=1,---,m), v(1) = 0}. (6)

Its standard basis function ¢; (j =0,1,---,m — 1) is defined as

¢j(:) = 45,
where 0;; denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

to =0, t,ﬁz@ (n>1),

where 7; > 0 denotes the time increment.
Generally, we write 9, uf ™' = (up ™ — ul)/7,,.

We are now in a position to state the finite element schemes to be considered in Chapter 1.
(Sym) Find u"‘"1 € S,, n=0,1,..., such that

/folaTnu"HX dac—l—/ ( "H)IXI dr = /folf(uZ)X dx (x € Sh), (7)
I I I

where u% € S}, is assumed to be given.

(Non-Sym) Find uZ“ €S, n=0,1,..., such that

/I:raTnu"HX dx—i—/I x(u "H)mxm dx—i—(?—N)/I( "H)mx dx = /xf(uﬁ)x de (x € Sp). (8)

I
In Section 1.3, we show the well-posedness for (Sym) and (Non-Sym), and positivity preserving for
(Sym) with a restriction of time increment.

In Section 1.4, we discuss the convergence property for (Sym) and (Non-Sym).
Given T > 0 and setting Q7 = [0,1] x [0, T], we assume that u is sufficiently smooth such that

2 24v 14+v
k() =Y [09ullpe@r) + D 10fullLoe(@r) + > 10F02ull oo (@) < 00, 9)
=0 =1 k=1



where v is either 0 or 1.
The partition {z;}7-, of I = [0,1] is assumed to be quasi-uniform, with a positive constant 8 inde-
pendent of h such that
h <B min h;. (10)

1<j<m

Finally, the approximate initial value u?L is chosen as
up — u®||poe (1) < Coh® (11)

for a positive constant Cj.
If f is locally Lipschitz continuous and N < 3, then there exists an hy = hq (T, ko(u), Co, N, 8) such
that, for any h < hy, we have (see Theorem 1.4.3 in Chapter 1)

N—1
sup lz77 (ujp — u(,tn))llL2(ny < Ci(h* +7), (12)
0<t, <T

where Cy = C1(T, ko(u), Co, N, B) and uj is the solution of (Sym).

Letting f(s) = s|s|* for s € R, where a > 1, then given T' > 0, we assume (9) with v = 1 and uniform
time increment. Then, there exists an hy = ho (T, k1(u), Co, N, 8) such that, for any h < hsy, we have (see
Theorem 1.4.6 in Chapter 1)

1\ 2
sup |up — u(-,tn)|| Loy < Ca (1og h) (h2 +7), (13)

0<t, <T

where Cy = C(T, k1(u), Co, N, ) and uj, is the solution of (Non-Sym).

In Section 1.5, we report some numerical examples to validate our theoretical results. Section 1.6
proves some inequalities for the proof of L> error estimate of (Non-Sym), and Section 1.7 proves the
decreasing property of energy functional for (Sym) that plays an important role in blow-up analysis.

In Chapter 1, we examined the standard finite element method. However, there are some obstacles
to apply their finite element schemes to the semilinear heat equation (1). As the non-symmetric scheme
seems to be incompatible with Nakagwa’s time-increment control strategy, we pose the following question:
Can the restriction NV < 3 be removed from the symmetric scheme? In fact, this restriction is imposed
by the inverse inequality Lemma 1.4.8 in Chapter 1 and the necessity of finding the boundedness of the
finite element solution (see the proof of Theorem 1.4.3 in Chapter 1). To surmount this difficulty, the
L estimates for the FEM can be directly derived using the discrete maximum principle (DMP). As the
DMP is based largely on the nonnegativity of the finite element solution, the time derivative term should
be approximated by the mass-lumping approximation. Unfortunately, we tried but failed to prove the
convergence property of the finite element solution by this approximation (see (14) below).

Therefore, we propose a special mass-lumping approximation (15) in Chapter 2. Using the special ap-
proximation, we prove the DMP and the convergence property of the finite element solution, and perform
the blow up analysis for any N > 2.

Section 2.2 presents our finite element schemes and the convergence theorems. Under the notation of

Chapter 1, the mass-lumping approximation of the weighted L? inner product can be naturally defined

as
Tit1/2

T2 m—1
/:cNflwv dx = w(zo)v(aso)/ N7 dr 4 Z w(x,)v(xz)/ N1 d, (14)
I 0 =1 T

i—1/2

where z;_1 /9 = (x; + x;—1)/2. As mentioned above, this standard formulation is useless for our purpose.
Instead, we define

m—1
/Ifolwv dx ~ ; w(:l?i)”(xi)/lx]vilgbi de = /zN?th(U’U) dx. (15)

I

=

m—

The Lagrange interpolation operator IT; of H' — Sy, is defined as ITw = Z w(xj)¢; for w e H.

J:
The mass lumping finite element schemes are then stated as follows.



(ML-1) Find UZ_H € S,,n=0,1,..., such that

/mNﬁlﬂh(aTnuZ*'lx) dx + /fol(uZ"'l)mxg,c do = /folf(uZ)X dx (x € Sh), (16)
T T I

where u(,)Z € S}, is assumed to be given.

(ML-2) Find UZ-H € Sp,n=0,1,..., such that

/xN*th(amu;iHX) dx+/1'N71(uZ)xXx de = /zN*th(f(UZ)X) dx (x € Sn). (17)
I I I

For (ML-1) and (ML-2), we can get the following positivity preserving properties.
In addition to the basic assumption on f, assume that f is a non-decreasing function with f(0) > 0.
If up > 0, then the solution UZH of (ML-1) satisfies uZH > 0. Under the assumptions above, further
assume that
ﬁ2

N+1

Then the solution u} "' of (ML-2) satisfies u} ™" > 0.
We assume

. (18)

Tn <

2 2 2
K(u) = Z 105 ull L (@) + Z 10pull Lo (@r) + Z 0.0 ull L (@) < 00, (19)
k=1

k=0 =1 =

where T' > 0 and Q7 = [0, 1] x [0, T]. Assume that (10) and (11) are satisfied. Then, for sufficiently small
h and 7, we have (see Theorem 2.2.4 and Theorem 2.2.5 in Chapter 2)

N-—1
sup [z 2 (uf —u(-tn)) |2y < C3(h* +7), (20)
0<t, <T
sup |lup _u(‘,tn)HLoc(I) <Cs(h+71), (21)
0<t, <T

where C5 = C3(T, f, k(u), Co, N, 8) and u}} is the solution of (ML-1).
For (ML-2), we get the following. For sufficiently small h and 7, we have (see Theorem 2.2.6 in
Chapter 2)

sup |up —u(-,tn)||poery < Ca(h+ 1), (22)
0<t, <T

where Cy = Cy(T, f, k(u),Co, N, B) and uj is the solution of (ML-2).

After having described some preliminary results in Section 2.3, we prove the convergence theorems
in Section 2.4. Blow-up analysis is reported in Section 2.5. We employ the finite element version of the
eigenvalue problem:

/xN_l(d}h)mxm dx = ﬂh/acN_ll'Ih(q[)hx) dz  (x € Sp). (23)

I I

Let dh € Sp be the eigenfunction associated with the smallest eigenvalue fi, > 0 of (23). For the
eigenvalue problem (23), we can obtain the following result (see Proposition 2.5.5 in Chapter 2).

(i) fin — pas h — 0.
(ii) The first eigenfunction iy, of (23) does not change sign.
(iii) [l™7 (n —¥)ellz2() — 0 as h — 0.

Here ¢ € H' denotes the eigenfunction associated with the first eigenvalue g > 0 of the eigenvalue
problem

/folqj)me de = /L/$N711Z)X dr (x € Hl). (24)
I I

Therefore, without loss of generality, we can assume that 1&}1 >01in [ and | 7 N _11/AJh (z) dz = 1.



For v € Hl, we set

1
a—+ 2

I(v) = /Ich_lv(x)l/)(x) dx.

N—-1

1
K@) = 5o

Uz||%2(1) -

/xN_l lv(z)|**? du,
I

For v € S}, we set
Kn(v) = 1||9EN2‘71%||%2 n- — Em o(x:)[**2 [ & e, da
2 ( ) Oé—|— 2 — T 9

I(v) = /1 NI, (v (2) da.

We introduce the approximate blow-up time Too (h) by setting

n—00

n—1
Too(h) = lim t, = lim_ > 7 (25)
j=0

Suppose that the solution u of (1) blows up at finite time T, in the sense that
N—-1
lu(-,t)||Loe(ry = o0 and [|z72 u(,t)|| g2y = 00 (t = Too —0). (26)

Assume that for any T' < T, u is sufficiently smooth that (19) holds. Assuming also that (10) is satisfied,
we set 52

N+1

for some ¢ € (0,1]. The time increment 7, is iteratively defined as

T=90 h? (27)

. 1
o {1’ (e () da}® } | )

where we have used the solution u} of (ML-2) with (11). Moreover, assume that (18) is satisfied and
that
VT < Ty, lim sup |K(u(-t,))— Kp(up) =0. (29)
h—0 0<t,, <T

We then have (see Theorem 2.5.6 in Chapter 2)
lim Too (h) = Tno. (30)
Suppose that the solution u of (1) blows up at finite time T, in the sense that
I(u(-,t)) = oo and |lu(-,t)||pery = 00 (t = To —0). (31)

Assume that, for any 7' < T, u is sufficiently smooth that (19) holds. Assuming also that (10) is
satisfied, we set 7 by (27) with some ¢ € (0,1]. The time increment 7, is iteratively defined as

Tn:Tn(h):Tmin{l,Ih(iZ)a}, (32)
where we have used the solution u} of (ML-2) with (11). We then obtain (30) (see Theorem 2.5.7 in
Chapter 2).

The above theorems differ in that the first theorem requires the convergence property (29) of the
discrete energy functional K} (u}), whereas no convergence property of Ij is necessary in the second
theorem.

Section 2.6 presents some numerical examples that validate our theoretical results. In Section 2.7, we
mention the proof of some auxiliary results on the eigenvalue problems.



In Chapter 3, we examine the time-increment control methods proposed by Cho-Okamoto [15], Chen
[8] and Groisman [23]. In particular, we study the numbers of the blow-up points and the blow-up rates
of the finite element solutions.

Chapter 4 is devoted to an application to the Keller-Segel system which describes the aggregation of
slime molds resulting from their chemotactic features. We consider the radially symmetric solutions for
the parabolic-parabolic and parabolic-elliptic systems and offer the finite element schemes that preserve
positivity and mass-conservation properties. The validity is verified by numerical examples.
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Chapter 1

The standard finite element method

1.1 Introduction

This chapter was conducted to investigate the convergence property of finite element method (FEM)
applied to a parabolic equation with singular coefficients for the function v = u(z,t), z € I = [0, 1], and
t > 0, as expressed in

N -1
Ut :um—i—Tuz—f—f(u), zel=(0,1),t>0, (1.1a)
uz(0,t) =u(l,t) =0, t>0, (1.1b)
u(z,0) = u’(z), xzel, (1.1c)

where f is a given locally Lipschitz continuous function, u®

is a given continuous function, and
N > 2 integer (1.2)

is a given parameter.
In the study of an N-dimensional semilinear heat equation, the following problem arises as

Ui = AU + f(U), xeQ, t>0 (1.3a)
U=0, xeco, t>0, (1.3b)
U0, z) = U%x), x€Q, (1.3¢c)

where  represents a bounded domain in RY. If one is concerned with the radially symmetric solution
u(]z]) = U(x) in the N-dimensional ball Q = {z € RV | |z| = |z|g~v <1}, then (1.3) implies (1.1), where
r = |z| and u’(z) = Up(z).

For a linear case in which f(u) = 0 is replaced by a given function f(z,t), the works [18, 42] studied
the convergence property of the FEM to (1.1) along with the corresponding steady-state problem, and
two proposed schemes: the symmetric scheme, wherein they established the optimal order error estimate
in the weighted L? norm; and the nonsymmetric scheme, wherein they proved the L> error estimate.
In this chapter, both schemes are applied to the semilinear heat equation (1.1) to derive various error
estimates. Moreover, this chapter includes a discussion of discrete positivity conservation properties,
which earlier studies [18, 42] failed to embrace, but which are actually important in the study of diffusion-
type equations.

Our emphasis is on FEM because we are able to use non-uniform partitions of the space variable.
Therefore, the method is deemed useful for examining highly concentrated solutions at the origin. On
this connection, we present our motivation for this chapter. The critical phenomenon appearing in the
semilinear heat equation of the form

U =AU+U"™, a>0

in a multidimensional space has attracted considerable attention since the pioneering work of Fujita [22].
According to him, the equation is in the whole N dimensional space. Any positive solution blows up in



a finite time if a < 2/N, whereas a solution is smooth at any time for a small initial value if o > 2/N.
Therefore, expression p. = 1+ 2/N is known as Fujita’s critical exponent ([31, 16] provides some critical
exponents of other equations). Generally, similar critical exponents can be found for an initial-boundary
value problem for the semilinear heat equation. Some examples are given in reports of earlier studies
[27, 31, 16]. However, the concrete values of those critical conditions are apparently unknown. Therefore,
we found it interesting to study the numerical methods for computing the solutions of nonlinear partial
differential equations in an N-dimensional space. However, computing the non-stationary four-space di-
mensional problem is difficult, even for modern computers. We consider the FEM to solve the one space
dimensional equation (1.1). However, we face another difficulty in dealing with the singular coefficient
(N —1)/z, which the FEM reasonably simplified, as explained later.

As described above, the main purpose of this chapter is to derive various optimal order error estimates
for the symmetric and nonsymmetric schemes of [18, 42] applied to (1.1). These schemes are described
below as (Sym) and (Non-Sym). To this end, we address mostly the general nonlinearity f(u). Moreover,
we study discrete positivity conservation properties. We summarize our typical results here.

e The solution of (Sym) is positive if f and the discretization parameters satisfy some conditions, as
shown by Theorem 1.3.2.

e If f is a globally Lipschitz continuous function, then the solution of (Sym) converges to the solution
of (1.1) in the weighted L? norm for the space and in the L norm for time. Moreover, the
convergence is at the optimal order, as shown by Theorem 1.4.1.

e If f is a locally Lipschitz continuous function and N < 3, then the solution of (Sym) converges to
the solution of (1.1) in the weighted L? norm for the space and in the L> norm for time. The
convergence is at the optimal order, as shown by Theorem 1.4.3.

o If f(u) = uju|® with a > 1 and if the time partition is uniform, then the solution of (Non-Sym)
converges to the solution of (1.1) in the L>°(0,T; L>°(I)) norm. The convergence is at the optimal
order up to the logarithm factor, as shown by Theorem 1.4.6.

However, we do not proceed to applications of our schemes to the blow-up computation in this work.
In fact, from the main results presented in this chapter, we infer that the standard schemes of [18, 42]
do not fit for the blow-up computation for large N. For the symmetric scheme, the restriction N < 3
reduces interest in considering radially symmetric problems. Moreover, for the nonsymmetric scheme,
the use of uniform time-partitions makes it difficult to apply Nakagawa’s time-partitions control strategy:
a powerful technique for computing the approximate blow-up time, as described in earlier reports [8, 32,
39, 14, 9, 40, 7]. Nevertheless, we believe that our results are of interest to researchers in this and related
fields. In fact, the validity issue of the symmetric scheme only for N < 3 was pointed out earlier in [2] for
a nonlinear Schrodinger equation with no mathematical evidence. The analysis reported herein reveals
weak points of the two standard schemes. As a sequel to this chapter, we propose a new finite element
scheme for (1.1). The scheme, which uses a nonstandard mass-lumping approximation, is shown to be
positivity-preserving and convergent for any N > 2. Details will be reported in the next chapter.

It is noteworthy that the finite difference method for (1.1) has been studied and that its optimal order
convergence was proved in an earlier report [8]. Its finite difference scheme uses a special approximation
around the origin to assume a uniform spatial mesh.

This chapter comprises seven sections. Section 1.2 presents our finite element schemes. Well-posedness
and positivity conservation are examined in Section 1.3. Section 1.4 presents the error estimates and their
proofs and Section 1.5 presents some numerical examples that validate our theoretical results. Section
1.6 proves the inequalities for the proof of L error estimate of (Non-Sym), and Section 1.7 proves the
decreasing property of energy functional for (Sym) that plays important role in blow-up analysis.

1.2 Finite element method

First, we derive two alternate weak formulations of (1.1). Unless otherwise stated explicitly, we assume
that f is a locally Lipschitz continuous function such that

V>0, IM, > 0: [f(s) = f(s")| < Muls —§'| (s,8" € R, s, |s'| < p). (f1)

10



Letting x € H' = {v € H'(I) | v(1) = 0} be arbitrary, then multiplying both sides of (1.1a) by
2N~y and using integration by parts over I, we obtain

/a:N_lutX dx—f—/xN_lume dr = /xN_lf(u)X dz. (1.4)
I I I

Otherwise, if we multiply both sides of (1.1a) by xx instead of 2V =1y and integrate it over I, then we
have

J e+ [fmun + = Nyuod do = [ 2 d. (1.5)

We designate (1.4) the symmetric weak form because of the symmetric bilinear form associated with the
differential operator g, + & x_luz. In contrast, (1.5) is the nonsymmetric weak form. Both forms are
identical at N = 2.

We now establish the finite element schemes based on these identities. For a positive integer m, we
introduce node points

O:$0<1‘1<"'<£Ej_1<Ij<"'<Im_1<Im:1,

and set I; = (xj_1,2;) and hj = x; —x;_1, where j = 1,...,m. The granularity parameter is defined as
h = maxi<j<m hj. Let P(J) be the set of all polynomials in an interval J of degree < k. We define the
P1 finite element space as

Sp={ve H'(I)|vePi(l;) (j=1,--,m), v(l) =0} (1.6)

Its standard basis function ¢;, j =0,1,--- ,m — 1, is defined as

¢j(wi) = bij,
where J;; denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

n—1
to=0, tpn=>» 7 (n>1),
§=0

where 7; > 0 denotes the time increment. Furthermore, we set
T = supTj.
Jj=0
Generally, we write 9, uf ™' = (up ™ —ul) /7.
We are now in a position to state the finite element schemes to be considered.

(Sym) Find uZ“ € Sp,n=0,1,..., such that

(Or,up ™, x) + A(uy ™ x) = (f(uh).x)  (x € Sh, n=0,1,...), (1.7)
where u% € S}, is assumed to be given. Hereinafter, we set
(w,v) = /folwv dz, w|? = (w,w) = /:valw2 dz, (1.8a)
I I
Alw,v) = /acN*lw:,;vz dx. (1.8b)
I
(Non-Sym) Find uZH €S, n=0,1,..., such that
(Or,upy ™ x) + Bluy ™, x) = (f(u),x) (X € Spy n=0,1,...), (1.9)
where
(w,v) = /xwv dz, [[w]]|? = (w,w) = /xw2 dz, (1.10a)
I I
B(w,v) = /xwzvz de + (2 — N)/wxv dx. (1.10b)
I I
It is noteworthy that B(-,-) is coercive in H! such that
N -2
Bw, w) = (we, ws) + (2 = N)/w*’”wdx = lhwsll + =5=w(0)* > [l I (1.11)
I
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1.3 Well-posedness and positivity conservation

In this section, we prove the following theorems.

Theorem 1.3.1 (Well-posedness of (Sym)). For a given u} € S}, with n > 0, the scheme (Sym) admits
a unique solution UZH € Sy.

Theorem 1.3.2 (Positivity of (Sym)). In addition to the basic assumption (f1), assume that
f is a non-decreasing function with f(0) > 0. (f2)

Letting n > 0 and u} > 0, and assuming that
1
7, (1.12)

then the solution u} ™' of (Sym) satisfies u} ™' > 0.

Theorem 1.3.3 (Comparison principle for (Sym)). We let n > 0 and assume that u}, 4} € S} satisfy
u! < @} in I. Furthermore, we assume that (f1) and (f2) are satisfied. Similarly, we let u} ™', @} € Sy,
be the solutions of (Sym) with u}, @}, respectively, using the same time increment 7,,. Moreover, we
assume that (1.12) is satisfied. Consequently, we obtain u*" < @™ in I. The equality holds true if
and only if uj = 4y in I.

Theorem 1.3.4 (Well-posedness of (Non-Sym)). For a given uj € Sj, with n > 0, the scheme (Non-Sym)
admits a unique solution uﬁ“ € Sy.

To prove these theorems, we conveniently rewrite (1.7) into a matrix form. That is, we introduce

M = (pij)o<ij<m—1 € R™™, pij = (95, i),

A = (aij)o<ij<m—1 € R™X™, a;j = A(oj, b)),
u" = (uj)o<j<m—1 € R™, ul = up(w;),

F" = (F]")o<j<m—1 € R™, Fi' = (f(uy), ¢5),

and express (1.7) as
M+ 71, ADu" ™ = Mu" + 7, F* (n=0,1,...), (1.13)

where u?, = u}(x,,) is understood as ul, = 0.
Lemma 1.3.5. M and A are both tri-diagonal and positive-definite matrices.

Theorem 1.3.1 is a direct consequence of this lemma. We proceed to proofs of other theorems.
Proof of Theorem 1.3.2. We use the representative matrix (1.13) instead of (1.7) and set
C=(cijlo<ijem—1=M+TA,  cij= pij+Tnai;.

If C~! > O, then we obtain
u"t =7t (Mu” +7,F") >0,
because M > O and F™ > 0 in view of (f2). The proof that C~! > O is true under (1.12) is divided into

three steps, each described as presented below.
Step 1. We show that

m—1
Cij >0 (OSZ Sm—l) (1.14)
=0
Letting 1 < i < m — 2, we calculate
m—1 i+l it+1
Z Cij = Z Hij + Tn Z i, j
3=0 j=i—1 j=i—1
i+1 Tit1
= > i+ Tn/ NN i1 + i+ Git1)a(di)e da
j=i—1 Ti—1
i+1
= Z wij >0,
j=i—1
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because ¢;—1 + ¢; + ¢ip1 =1 1in (x;-1,2;41). Cases i =0 and ¢ = m — 1 are verified similarly.
Step 2. We show that, if

1 S N e e A S T ) (1.15)

Qi i+1 @i i—1

then C~! > O. First, (1.15) implies that ¢;;—1,¢ii+1 < 0 for 0 < ¢ < m — 1 because a;;_1, aii+1 < 0.
Matrix C is decomposed as C = D(Z — &), where D = (d; ;)o<i j<m—1 and € = (e; j)o<i,j<m—1 are defined

as
few =i, [0 G=d)
d”_{o 623 {— (i #3),

and where I is the identity matrix. Apparently, Z — £ is non-singular and D > O. Using (1.14), we

deduce
e = s (1) o

0<i<m Cii Cii
Therefore, matrix Z — £ is non-singular and (Z — £)~! = ZE’“ > 0. Consequently, we have C~1 =
k=0
(Z-&7pt>0.
Step 3. Finally, we demonstrate that (1.12) implies (1.15). We calculate

T Ny 1 1 o BRI St}
i i1 :/ x hT(x — ) (@1 —x) de < ihiﬂ/ e dz,
T i+1 T i+1
Ti41
—Q 41 = alcN_lL dx
1,9+1 — h2 .
T4 i+1
Therefore, we deduce —?—ii < %hQ. O

Proof of Theorem 1.3.3. Because f(u}) — f(uj) > 0 in I, the proof follows exactly the same pattern as
that of the proof of Proposition 1.3.2. O

We proceed to the result for (Non-Sym):

M = (5 j)o<ij<m—1 € R™X™, i = (b, di)
B = (bij)o<ij<m—1 € R™*™, bi,; = B(¢;, ¢i),
G" = (G})o<j<m—1 €R™, G} = (f(up), ;) »

and express (1.9) as
(M +7,Bu"tt = Mu" +7,G" (n=0,1,...). (1.16)

In view of (1.11), M’ and B are both tri-diagonal and positive-definite matrices. Therefore, the proof
is completed.

1.4 Convergence and error analysis

1.4.1 Results

Our convergence results for (Sym) and (Non-Sym) are stated under a smoothness assumption of the
solution u of (1.1): given T > 0 and setting Q7 = [0, 1] x [0, T, we assume that u is sufficiently smooth
such that

2 24v 14+v
k() = Y1000l oo (@) + D 00l e @r) + D 10F O2ul| L= (@) < 00, (1.17)
7=0 =1 k=1

where v is either 0 or 1.
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The partition {z; oo of I = [0,1] is assumed to be quasi-uniform, with a positive constant 3 inde-
pendent of A such that
h<pB min h;. (1.18)

1<j<m

Finally, the approximate initial value u} is chosen as
lup = u®|| < Coh? (1.19)

for a positive constant Cj.

Moreover, for k = 1,2, ..., we express the positive constants Cy, = Cx(y1,72, - ..) and by, = hg(7y1,72,.-.)
according to the parameters 71,72, .... Particularly, Cy and hy are independent of h and 7.

Next we state the following theorems.

Theorem 1.4.1 (Convergence for (Sym) in || - ||, I). Assume that f is a globally Lipschitz continuous
function; assume (f1) and
M =sup M, < . (£3)
pu>0

Assume that, for T > 0, solution u of (1.1) is sufficiently smooth that (1.17) for v = 0 holds true.
Moreover, assume that (1.18) and (1.19) are satisfied. Then, there exists an hy = h1(V, 8) such that, for
any h < hy, we have

sup lup, — u(-,tn)[| < C1(h* +7),
0<t, <T

where C1 = C1(T, M, ko(u), Co, N, 8) and u}} is the solution of (Sym).
For L™ error estimates, we must further assume that u is chosen as

A(up, —u®,0n) =0 (vp € Sp). (1.20)

Theorem 1.4.2 (Convergence for (Sym) in || - ||s (1), I). In addition to the assumption of Theorem
1.4.1, assume that (1.20) is satisfied. Furthermore, let o € (0,1) be arbitrary. Then, there exists an
he = ha(N, B) such that, for any h < hgy, we have

1
sup |up — u(-,tn)|| Lo (o,1) < C2 <h2 log 7 + 7') ,
0<t, <T

where Cy = Co(T, M, ko(u), Co, N, 8,0) and u} is the solution of (Sym).

The restriction that f is a globally Lipschitz continuous function with (f3) can be removed in the
following manner.

Theorem 1.4.3 (Convergence of (Sym) in || - ||, II). Given that T > 0 and that only (f1) is satisfied,
we assume that (1.17) with v = 0, (1.18), and (1.19) are satisfied. Furthermore, assume that N < 3 and
that there exist positive constants ¢; and o such that

Th™N/2 < eh?. (1.21)
Then there exists an hg = h3(T, ko(u), Co, N, 8) such that, for any h < hz, we have

sup [Jupy — ul-,tn)|| < Co(h® +7),
0<t, <T

where C5 = C3(T, ko(u), Co, N, §) and u}, is the solution of (Sym).

Theorem 1.4.4 (Convergence for (Sym) in || - || o (4,1), II). Given that 7" > 0 and that (f1) is satisfied,
we assume that (1.17) with v = 0, (1.18), (1.19), (1.20) and (1.21) are satisfied. Consequently, there
exists an hy = hy(T, ko(u), Co, N, B) such that, for any h < hy, we have

1
sup_ 05~ uCta) ey < Ca (Whog . +7)
0<tn,<T

where Cy = Cy(T, ko(u), Co, N, B) and uj is the solution of (Sym).
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Subsequently, let us proceed to error estimates for (Non-Sym). For the approximate initial value u(,)L,
we choose

B(up —u’,v) =0 (vn € Sh). (1.22)

Quasi-uniformity is also required for the time partition. Therefore, there exists a positive constant v > 0
such that

T < YTmin, (1.23)
where Tyin = ming,>o 7,. Moreover, we set
d= sup |7k — Tkt (1.24)
tr+1€[0,7T]

Theorem 1.4.5 (Convergence for (Non-Sym), I). Let f be a C* function satisfying

’ I,
M, =sup|f'(s)] < oo, My= sup M < 0. (f4)
seR s#s'€R |5 — S ‘

Given T > 0, we assume that the solution uw of (1.1) is sufficiently smooth that (1.17) for v = 1
holds true. Furthermore, we assume that (1.18), (1.22) and (1.23) are satisfied. Then, there exists
an hs = hs(T, k1(u), M1, Ma,~, N, B) such that, for any h < hs, we have

1
1\2 0
sup |lup —u(-,tn) |l Loy < Cs (log h) <h2 + 74 ) ,
0<t, <T Tmin

where Cs = C5(T, k1(u), M1, Ma,v, N, 8) > 0 and u}} is the solution of (Non-Sym).

Finally, we state the error estimates for non-globally Lipschitz continuous function f. To avoid
unnecessary complexity, we deal only with the power nonlinearity f(s) = s|s|“.

Theorem 1.4.6 (Convergence for (Non-Sym), IT). Letting f(s) = s|s|® for s € R, where o > 1, then
given T > 0, we assume that (1.17) with v = 1, (1.18) and (1.22) are satisfied. We assume the uniform
time increment v = 1. Then, there exists an hg = hg(T, k1(u), N, 8) such that, for any h < hg, we have

1

s = ulet)=r) < Ci CHNGS!

where Cs = Cs(T, k1(u), N, 8) and u}} is the solution of (Non-Sym).
1.4.2 Proof of Theorems 1.4.1 and 1.4.2
We use the projection operator P4 of H' — S associated with A(+,-), defined for w € H' as

Pywe Sy, A(Paw—w,x)=0 (x € Sh). (1.25)

In [18] and [29], the following error estimates are proved.
Lemma 1.4.7. Letting w € C%(I) N H', and (1.18) be satisfied, then for h < hy = h7(N, ), we obtain
|Paw — wl] < CR |, (1.26)

1
|Paw — wl|poo 1y < C (log h) B2 || waa| oo (1) (1.27)

where C' is a positive constant depending only on N and S.
Proof of Theorem 1.4.1. Using Pau, we distribute the error in the form shown below.

up = ultn) = (uy = Pau(tn)) + (Pau(tn) — u(tn))

—gn =pn
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From (1.26), it is known that
™Il < Ch? |tz (ta) | < Ch?||tzal L= (@ur)- (1.28)

Next we derive an estimate for 8. By considering the symmetric weak form (1.4) at ¢t = ¢,,11, we obtain

(aTnu(tn-i-l)vX) + A(PAu(tn-l-l)vX) = (f(u(tn))a X)
+ (f(u(tnt1)) = f(u(tn)), x) + (Or, ultnr1) — we(tng), x)

which, together with (1.7), implies that
(07,0 x) + A0, x) = (f(ui) = f(u(ta)), x)
= (flultn1)) = Flultn))s x) = (O, ultnr1) = we(tn1)s x) — (9r p" o x) - (1.29)

Substituting this expression for x = §"*! yields the following:

1 77
— {10 — Nl - oY < Ml + p"| - [l
o+ Ml @y 10+ Crulwa @ 107411+ |07, - 071
Correspondingly, because

o, "t = P, <U(tn+1) - U(tn)> ~utngr) — u(ty)

Tn Tn

bl

we provide an estimate

Uz (tn+1) — Ugg (tn)
Tn

|‘8Tnpn+l|‘ < Ch2

‘ < Ch?||ugat| o= (Qr)- (1.30)

To sum up, we obtain

10" — |07 < 7 M||0™|| + Ch®> M7, + CM 72 + C12 + Ch*7,.

Therefore,
eMT _q
167 < M jup, — Pau|| + O+ h?)
eMT
< M () w0 + [l — Pal) + O (7 + 1)
< C'(1+h?), (1.31)

where C' = C'(T, ko(u), M, N, 8,Cy) > 0. By combining this expression with (1.28), one can deduce the
desired error estimate. O

Proof of Theorem 1.4.2. We use the same error decomposition process as that used in the previous proof
where up — u(t,) = 0" + p". Also, we apply (1.27) to estimate ||p" || (7). Because

16" | (o,1) < 102111 (0,1) < Clo, N)[021], (1.32)

we perform an estimation for ||67].
Substituting (1.29) for x = d,,,6""", we obtain the following.

107,072 |[* + A(0" 1, 0r,071) < M10™ | - [0, 07|
+ Ml || - [[0r, 6" | + Mrallucll = @) - |07, 0"
+ el e (@) T ([0, 6™ || 4 [|Or, o™ | - [0, 67
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Correspondingly, we apply the elementary identity shown below

1

A (0n+1, a‘rnenJrl) —_ 514 (0n+1 o 077, + 0n+1 + gn’ 8Tn0n+1)
> % [A (anJrl7 9n+1) —A (gn’ en)]

along with Young’s inequality to obtain

n n n gn 1 M2 n 1 n 2

E [A(@ +1,0 +1) _A(e ,9 )] < 5@”0 ||2+§5§ ||a—,—n0 +1||
e

275

1 1C? 1
"1+ 588 ll0n, 074"+ 5 572 + 508 0r,0m

+ 210+ L o8 P — o, 0m P,
where &g, d1, 02 > 0 are constants. After setting 62 + 67 + 63 = 1, we obtain
C2
@I

A 0n+1 0n+1 — A(O™. 9™ < g 2 22 n||2 ) n+11|2 Cj 2
(O74,0741) — A0,07) < 7 | S 107 + S o2+ ([0, m P+ 7
1 2

Therefore,

AO",0") < A", 0%) + C%, sup (05712 + 10517 + |0 o) + 7).
1<k<n

Consequently, using (1.20), (1.30), and (1.31), we deduce
1
10311 < Ot (7 + 1%).

This, together with (1.27) and (1.32), implies the desired estimate. O

1.4.3 Proof of Theorems 1.4.3 and 1.4.4
For the proof, we use the inverse inequality that follows.

Lemma 1.4.8 (Inverse inequality). Under condition (1.18),
N
lonllzoery < Cch™ = ol (vn € Sh),
where C, is a positive constant depending only on N and g.
Proof. Let vj, € Sy, be arbitrary. From the norm equivalence in R?, we know that
/ 2|

-1
thlle(Il) S C**hl |Uh||L2(h717h1)7

lvnll ;) < Coch P llonllizyy (GG =2,...,m),

where C,, denotes the positive constant. Given that ||vp||ze 1y = |[vn||Le=(1,), the expression is calculable
as
h1
2 2 -1 —(N-1)_,N—1_2
lonllZoe (1) < Cishy a” W=D N =12 gy
h1/2
h’l 7(N71) hl
< C2hy! () / N2 g
2 hy/2
o\ N M
< 2NN (> [F g
h h1/2

< C2h™N]Jvnlf*.

The case [|vp |z (1) = ||vnllLee(r;) With j = 2,...,m is examined similarly. O
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Proof of Theorem 1.4.3. Consider (1.1) and (Sym) with replacement f(s) in

fw)  (s=zn)
fs)=qf(s)  (mn<s<p)
f=p) (s < —p),
where p > 0 is determined later. Then, f satisfies condition (f3) in Theorem 1.4.1 such that
r (!
sup 1£(s) = F(sH] f/(s ) <M = sup M) < oo.
5,8'E€ER,s%#5s’ |S - S | IAI<p

Let @ and @} be the solutions of (1.1) and (Sym) with f, respectively, such that
ln loe 1y < 10" |Loo (1) + [[Pat(tn)llLoe (1)
where 0™ = 4}l — Pat(t,) and p" = Pat(t,) — u(t,). Applying Theorem 1.4.1 to & and @}, one obtains

sup ||@ — (-, t,)|| < Co(h?® +71), (1.33)
0<t, <T

where Cy = Co(T, ko(@), i, Co, N, ). Moreover, an estimate (1.31) for 6™ is available. In view of Lemmas
1.4.7 and 1.4.8, we determine those estimates as

16™ [ (ry < Coh™ % (07| < Csh™% (h? +7),
1\ -
||pn||L°°(I) <Cy (h2 log h) ||ua:a:(tn)||L°°(1)a

where C3 = C3(T, ko(@), t, Co, N, §) and Cy = C4(N, 8). Therefore, we have

_ - 1Y, .
| Pat(tn)ll Loy < lla(tn)llzoe(ry + Ca <h2 log h) |z (tn) | Lo (1)

and

n N N _ 1Y -
il < Calh>% 1) il + o (11087 ) lna(t) e,

At this stage, we set 1 = 1 + [[ul[ (@) to obtain u = @ in Q7 by uniqueness. Moreover, because
N < 4, we can take a very small i such that

N =

1 1
Y +n¥ny < g 0 (Wos ) lusstloan <

Consequently, ||a}||ze;y < p. Also, by uniqueness uj = aj. Therefore, (1.33) implies the desired
conclusion. |

Proof of Theorem 1.4.4. The proof follows the same pattern as that for Theorem 1.4.3, but using Theorem
1.4.2 instead of Theorem 1.4.1. O

1.4.4 Proof of Theorems 1.4.5 and 1.4.6

We use the projection operator Pg of H' — S), associated with B(-, -):
B(Ppw —w,x) =0 (x € Sh). (1.34)
In [18], the following error estimates are proved.
Lemma 1.4.9. Letting w € C*(I) N H' and (1.18) be satisfied, then for h < hy = hy(N, §) we obtain
|Ppw — wl| (1) < Crh?|lwa || o (1), (1.35)

where C7 = C7(N, ).
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We also use a version of Poincaré’s inequality (see [42, Lemma 18.1]).

Lemma 1.4.10. We have )
lwll| < flwell  (w € H(I)). (1.36)

We can now state the proof that follows.

Proof of Theorem 1.4.5. Using Ppu(t) € Sp, we decompose the error into

up, — u(tn) = (uﬁ - PBu(tn)) + (PBu(tn> - “(tn)) .

=om =pn
We know from (1.35) that
™Il < Nlp™ Ml 1) < CP?|[tall Loe (@) (1.37a)
107, 2" M < 1107, 2"l oo (1) < Ch?|[uatll o< (@1)- (1.37Db)

Therefore, we will specifically examine estimation of |||67]|| because we are aware that

1\ 2
Wl < el <€ (1087 ) lell (e S,
Furthermore, (1.5) and (1.9) give
(07, 0" + 07, " x) + B0™F1,X) = (f(upy) — flultn))s x)
— (f(u(tns1)) = fultn)), x) = (Or, ultns1) — ue(tni1), x)  (1.38)
for x € Sy. Substituting this for y = #”*!, we have

<8‘rn9n+17 9n+1> + ‘B(en—i-l7 en—i-l)

= (fup) = f(ultn), 0"F") = (Fultnir)) — flu(tn)), 0"F")
—(Or u(tps1) — w(tngr), 07T1) — (0, p" T 07T L (1.39)

This, together with (1.11), implies that

012 < Ml — ()] - 67
o Multna) = ulta) - 1+ 100, ultnrs) — el - 107
108 o™ - O™+ 110,071 - Tl

Therefore, using (1.36), we deduce that
62 < Mllluyy = ulta)lll + Mlllu(tnia) = ulta)l
+ 10r, ultns1) = we(tnen) [l + 10, 0" I+ 107,67l

< M0+ o™ D) + M7 [l Lo (@)
+ Tallusel| oo (@) + N10r, o™ I+ (107,07 (1.40)

These estimates actually hold. Nevertheless, their proof is postponed for Section 1.6:
™Il < C(h* + 1), (L41a)

)
105, 6" | < C (h2 +7+ T) . (1.41b)
Using (1.37a), (1.37b), (1.41a), and (1.41b), we deduce
n+1 2 5
which completes the proof of Theorem 1.4.5. O
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Finally, we state the following proof.

Proof of Theorem 1.4.6. Consider problems (1.1) and (1.9) with replacement f(s) = s|s|* by

. s|s|® (Is]
1 {[(1+a)uas—au1+"]sgﬂ(5) (I

where > 0 is determined later. Then, f is a C! function and the corresponding values of M, and M>
in (f4) are expressed as M; = (1 + a)u® and My = (14 a)ap®~'. )

Let % and @} respectively represent the solutions of (1.1) and (1.9) with f. If 4 > k1(u), then v = 4
holds true by uniqueness. Consequently, we can apply Theorem 1.4.5 to obtain

2

. 1
@y — u(ty)|| ooy < C <log h) (h? + 1), (1.42)

1
where C' = C(T, k1(u),7, N, 3). At this juncture, we apply small & and 7 such that C (log +)?* (h*+7) <
1, and set p = w1 (u) +1. As ||@|[ g (1) < w1(u) +1 = p, we obtain @} = uj by the uniqueness theorem.
Therefore, (1.42) implies the desired estimate. O

1.5 Numerical examples

This section presents some numerical examples to validate our theoretical results. For this purpose,
throughout this section, we set
f(s) =sls|¥, a>0.

If this were the case, then the solution of (1) might blow up in the finite time. Therefore, one must devote
particular attention to setting of the time increment 7,,. Particularly, following Nakagawa [32] (see also
Chen [8] and Cho-Hamada-Okamoto [14]), we use the time-increment control

. 1 m=1 N—
Tp = T MIN {1, W} (Hu’,’{II% = Z h$j+11“2($j)2> ) (1.43)
Rll2 Jj=0
where 7 = Ah? and A = 1/2.
heat equation - solution heat equation - solution
1 1
0.8 0.8
0.6 0.6
0.4 0.4

0.2 0.2

0.25 0.25

time 0 o

(a) (Sym) (b) (Non-Sym)

Figure 1.1: N =5, a = % and u(0,x) = cos 5.
First, we compared the shapes of both solutions of (Sym) and (Non-Sym), as shown in Fig. 1.1 for
N =5 a= % and u(0,7) = cos Fz. We used the uniform space mesh z; = jh (j = 0,...,m) and
h = 1/m with m = 50. For the choice of u!), we used the linear interpolation of u(0, z).
We computed them continuously until ¢,=7 = 0.2 or |[u||;' < ¢ = 1078, wherein both solutions exist
globally in time and approach 0 uniformly in I as ¢ — oco. No marked differences were observed in
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Figs. 1.1(a) and 1.1(b). Subsequently, we took Fig. 1.2 for the case in which the initial value was
u(0,z) = 13cos Fx. The rest of the parameters are the same. At this point, the solutions of (Sym) and
(Non-Sym) blew up after 2 = 0.06 with the distinct observation that the solution of the former blew up
earlier than that of the latter. Furthermore, the solution of (Non-Sym) had negative values whereas that

of (Sym) was always positive.

heat equation - solution heat equation — solution

06

002 04
02

(a) (Sym) (b) (Non-Sym)

Figure 1.2: N =5, a = 4 and u(0,z) = 13 cos .

We examined the error estimates of the solutions for the same uniform space mesh z; = jh (j =
0,...,m) and h = 1/m. Also, we regarded the numerical solution with h’ = 1/480 as the exact solution.
The following quantities were compared:

Liers o = il
N-1

Leerr gy —whll = |25 e =),

L>err llup: — wy |l oo (1)

Fig. 1.3 presents results for N =3, o = % and u(0,z) = cos Fz. We used the uniform time increment
T =7 = M2 (n =0,1,...) with A = 1/2 and computed until ¢+ < 7" = 0.005. We took the linear

interpolation of u(0,z) as u) (z) in (Sym), and we took Pgu(0, ) as ul)(z) in (Non-Sym). For (Sym), we
observed the theoretical convergence rate h + 7 in the || - || norm (see Theorem 1.4.3), whereas the rate

in the L norm deteriorated slightly. For (Non-Sym), we observed second-order convergence in the L*°
norm, which supports the results presented in Theorem 1.4.5.

Moreover, we considered the case for N = 4, which is not supported in Theorem 1.4.3 for (Sym). Also,
we chose a = 4 and u(0,x) = 3 cos Jx for this case. Fig. 1.4(d) displays the shape of the solution, which
blew up at approximately 7' = 0.0035. Furthermore, we computed errors until 7" = 0.0011,0.0022, and
0.0033 using the uniform meshes x; and 7, with A = 0.11. From Fig. 1.4, we observed the second-order
convergence in the || - || norm, suggesting the possibility of removing assumption N < 3.

Finally, we observed the non-increasing property of the energy functional. The energy functional
associated with (1) is given as

1
T = 5 llusll* -

1
7/xN71|u\°‘+2 dz.
Oé+2 I

We can use the standard method to prove that J(t) is non-increasing in t.

This non-increasing property plays an important role in the blow-up analysis of the solution of (1), as
presented by Nakagawa [32]. Therefore, it is of interest whether a discrete version of this non-increasing
property holds true. Actually, introducing the discrete energy functional associated with (Sym) as

1

7/xN_1|u’,ff|a+2 dz,
I

1
Tnlm) = SRl = ——

we prove the following. Section 1.7 presents the proof.
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Figure 1.3: Errors. N =3, a = 3 and u(0,z) = cos Jz.

Proposition 1.5.1. Ji(n) is a non-increase sequence of n.

Now let N = 3, a = %, and u(0,x) = cos Gz, 13cos Fx. We determined the time increment 7,

through (1.43) for the uniform space mesh z; = jh with h = 1/m and m = 50. We took the linear
interpolation of u(0,z) as u). Fig. 1.5 presents the results, which support that of Proposition 1.5.1.

1.6 Proofs of (1.41a) and (1.41b)

Proofs of (1.41a) and (1.41b) are stated in this section using the same notation as that used in Section
1.4.

Proof of (1.41a). By application of (1.39), (1.37a), and (1.37b), we derived the expression

1 n n n 3 n
— (IO = o™ - ™) < M (6™ [ + Ch*lluaall s @) - 167

n

+ My llugl| oo (@r) - O™+ Talleee ]l oo (@) - 167
+ Ch?'luwthLw(QT) ! “‘9n+1|”

Consequently, we have
0" < @+ 7 MG ] + CTa(B? + 7).

Therefore, similarly to the derivation of (1.31), we obtain from (1.22) the expression of
o™l < € (h* +7)
to complete the proof. O

Proof of (1.41b). First, we prove the case of n = 0. Substituting (1.38) for n = 0 and y = §*, we obtain

70

<91 - 90791> +B(0",0") < (f(up) = F(u"),0%)

— (fu(tr)) = F(u0),0") = (Drults) — us(tr),0") — <”1 - p0,91> .

70
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Because §° = 0, we apply (1.37b) to get

1
;0|||91|||2 < MIIP°N- 10+ Mrolfuel 2 @ 16

+ 70l wee || oo (@) IOl + 1O £ - 167
< C(ro + h?)[|6*]]-
Repeatedly using #° = 0, we obtain
107,6*ll < C(70 + 1?).

Next we assume n > 0 and t,42 < T. Consequently, from (1.38), we derive

(Or 1 0772 = 07, 0", x) + B(O"F2 — 0" )
= (fp™) = F(ultnra)) = F(uh) + f(ultn)) X)
= (f (ultnt2)) — f(u?ti;l)) — flultas1)) + f(u(ta)), x)
= (Oraultnta) - ut(tm;f Or, u(tn1) + e(tn+1), X)
—(0r, 1P = 070", X:>J3

=Jys

for any x € Sj,. Substituting this expression for y = 9., ,,0"2, we obtain

n+1

10~

n+1
J=1

Here, we accept the following estimates:
[[J1]ll < Crn(1 + Tn)H|arn9n+1”| + CTn(h2 + T + TnhQ)a
20l sl < CTnga (Tgs + 7o) + Clrnga = 7al,
I Tlll < C(rnsr + )b
In view of the quasi-uniformity of time partition (1.23), we have

Tn+1

Tn+1 = Tn S YTn-

n

Summing up, we deduce

5
bnt1 — by < C1iby, + Cry <h2+T+T : )

where b, = ||0,,, 0" |||. Therefore,

by < €Ty + C(T — 1) (h2+r+ g ) ;
Tmin

which, together with (1.44), implies the desired inequality (1.41b).
We now prove (1.46a)—(1.46¢).
Estimation for J;. We apply Taylor’s theorem to obtain
Ji = f(s)(up™ = upy) = f'(s2) (w(tnr) — ults))

= o0l 4 ) — (07 4 )+ LD 2T

S1 — S2
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4
02N — 105, 6™ |- 1107, 282 < M40 6721 D 1511

(81 = s2)(ultnt1) —u(tn)),

(1.44)

(1.45)

(1.46a)
(1.46b)
(1.46¢)

(1.47)



where s1 = u} ™' — gy (u} T — ) and so = u(tni1) — po[u(tni1) — u(ts)] for some i, p2 € [0,1]. In view

of (1.37a), (1.37b), and (1.41a), we find the following estimates

!
S
L N e O

LEIEFC

S1 — 52

H Talluel = (@n)-

< T M0, 0" || + CT M2 |tge || oo (@) +

SM|0™F 4 p™ = g (07T 4 p™ T — 0™ — o) + (2 — 1) (u(tng1) — u(ty))||
<M {0" I+ o™ I + 7lll O, 0" THI + TalllOr, 2™ I+ T lluell oo (@) }
SMo{C(h* 4 7) + Ch? |uge|l Lo (@r) + TallOr, 0" Il + CTuh?|[ttaa || Lo (Qr) + Talltell Lo (@)}

_ 82)

H Tl o,
and

51— S2)

[

S1 — S2

Estimation for Jo. We begin with

Jo = f'(s3)(Wltns2) = ultni1)) = f'(sa)(ultni1) — u(tn))

= M(Sg = sa)Tnr1ue(m) + f'(sa) (Tnrawe(m) — Tnue(n2))

83 — S4
_ M(s3 — S4)Tny1ue(n)
83 — 84

+ f'(84)Tny1 (ue () — we(n2)) + £/ (54) (Tng1 — Tn)ue (12),

where s3 = u(tn1)+ps(u(tnt2) —u(tny1)) and s4 = w(tp1)+pa(w(tn) —u(tns1)) for some ps, pg € [0,1],
M € [tnt1,tnrz2], and 12 € [y, thr1]. Next, we obtain the following estimate:

f'(s3) = f'(54)

20l < Tt
S3 — S4

(83— 54)

\ el =(om)

+ Mi7Tp1 (T + Tn)HUtt||L°°(QT) + Mi|Tpy1 — Tnl - ||Ut||L°°(QT)§

(83 — 54)

e

83 = 54

‘ < OMa(Tpy1 + ) Jue]| Loo (r)-

Estimation for J3. We express J3 as

Tt (tni2) — 570 (55)

J3 = P — Ut(tn+2)
n
n tn — 172
- (T tnst) — yrated(so) ut(tn+1)>
Tn
1
= _§Tn+1utt(35) + §Tnutt( 6)
1 1
= §Tn+1(utt(36) - utt(85)) §(Tn+1 - Tn)utt(SG)
1

1
= §Tn+1uttt(57)(55 - 56) - §(Tn+1 - Tn)utt(SG)

for some s5 € [tp+1,tnta], S6 € [tn, tnt1] and s7 € [sg, S5] C [tn, tnte]. Therefore,

1
I3l < §Tn+1(7n+1 +Tn)HUttt||L°C(QT) +5 \Tn+1 T - HuttHLw(QT)
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Estimation for Jy. For some sg € [tn+1,tnta], So € [tn,tnr1], and s19 € [sg, ss], we obtain the expression

pn+2 _ anrl anrl _ pn

- = pi(ss) — pi(s9) = (88 — 89)pee(s10)
Tn—i—l Tn

Therefore, using (1.35),
1 4lll < C(Tn41 + Tn)h2HUttxz||L°°(QT)'

1.7 Proof of Proposition 1.5.1

Proof. Substituting x = 9, ujt" for (1.7), we have
u’l’L+1 _ un ) u7l+1 _ un
Jor P = = (), P = ) o (e, M=),
Therefore, for the conditions

((UZ“)I»M> > 1 ((UZ)x + (uﬁ“)z,m), (1.48a)

Tn Tn
n+1 n
n| nja & —u 1 - n a n|o
(uh|uh , L . h) < ) UI:UN Yo — Jupt?) dx}, (1.48b)
we obtain 1
n 2
|07, up ™™ < —T—(Jh(n +1) — Ju(n)), (1.49)

which implies that Jp,(n + 1) < Jp(n).
We can validate (1.48a) and (1.48b). Also, (1.48a) is derived readily. To prove (1.48b), we set
g(s) = a%rz|s|a+2, and apply the mean value theorem to deduce

(™) guf) = wlul (™ — uf).
where w = w(z) = ul + o(u)t' —u}) and o = o(z) € (0,1). Consequently,
1 uTLJrl —un
7= e | [ e e de - [ gt o
(o +2) I Tn

1
= = [Nl R o) d
Tn JI
Then we repeat the mean value theorem to resolve
wlw]® = uplup|* = (a+ )][@]* (w —up) = (a+ 1)]@]*6 (up ™ —upy),

where @ = u}l + 6(w —u}) and ¢ = &(x) € (0,1). Therefore,
1
g=1 /fol(a D)@ (P — k) de > 0,
Tn I

which gives (1.48Db). ]

1.8 Note

This chapter was taken directly from our previous paper, Nakanishi-Saito [34].
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Chapter 2

A mass-lumping finite element method

2.1 Introduction

This chapter applies the finite element method (FEM) to a semilinear parabolic equation with a singular
convection term:

N-—-1
Ut :um—l—Tum—i—f(u), xelI=(0,1), t>0, (2.1a)
ug(0,t) = u(1,t) =0, t>0, (2.1b)
u(z,0) = u’(z), x el (2.1c)

Here, u = u(x,t), x € I = [0,1],£ > 0 denotes the function to be found, f is a given locally Lipschitz
continuous function, and u° is a given continuous function. Throughout this chapter, we assume that

N is an integer > 2. (2.2)

To compute the blow-up solution of (2.1), we apply Nakagawa’s time-increment control strategy (see
[32] and Section 2.6 of the present chapter), a powerful technique for approximating blow-up times. As
recalled below, the standard finite element approximation is unuseful for achieving this purpose. We thus
propose a special mass-lumping finite element approximation, prove its convergence, and apply it to a
blow-up analysis.

We first clarify the motivation of this chapter. In many engineering problems, the spatial dimension
of a mathematical model is at most three. Solving partial differential equations (PDEs) in more than
three spatial dimensions is usually motivated by mathematical interests. Mathematicians understand
that solving problems in a general setting can reveal the hidden natures of PDEs. One successful result
is the discovery of Fujita’s blow-up exponent for the semilinear heat equation of U = U(x,t) given as

U =AU+ f(U) (xRN, t>0), (2.3)

where N and f(U) are defined above. Assuming f(U) = U|U|* with o > 0, Fujita showed that any
positive solution blows up in finite time if 1 + @ < 1 + 2/N, but a solution remains smooth at any time
if the initial value is small and 1+ « > 1+ 2/N. The quantity p. = 1 + 2/N is known as Fujita’s
critical exponent, and Eq.(2.3) is called Fujita’s equation. Since Fujita’s work, a huge number of studies
have been devoted to critical phenomena in nonlinear PDEs of several kinds (see [16, 31, 38] for details).
The knowledge gained by these studies has been applied to problems with spatial dimensions of three
or fewer. However, many problems related to stochastic analysis are formulated as higher-dimensional
PDEs. These problems have attracted much interest, but are beyond the scope of the present chapter.
Non-stationary problems in four dimensional space are difficult to solve by numerical methods, even
on modern computers. Consequently, numerical analyses of the blow-up solutions of nonlinear PDEs have
been restricted to two-dimensional space (see for example [1, 4, 5, 6, 10, 12, 13, 19, 23, 25, 24, 26, 28, 33, 36]
). Although Nakagawa’s time-increment control strategy is applied to various nonlinear PDEs including
the nonlinear heat, wave and Schrodinger equations, these equations are considered only in the one-space
dimension; see [7, 9, 10, 14, 26, 39, 40]. We know two notably exceptions; the one is [33] where the finite
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element method to a semilinear heat equation in a two dimensional polygonal domain was considered,
and the other is [8] where the finite difference method to the radially symmetric solution of the semilinear
heat equation in an N dimensional ball was studied.

Following [8], the present chapter investigates radially symmetric solutions to Eq.(2.3). Assuming
radial symmetry of the solution and the given data, the N-dimensional equation reduces to a one-
dimensional equation. More specifically, considering (2.3) in an N-dimensional unit ball B = {z € RY |
|z|gy < 1} with the homogeneous Dirichlet boundary condition on the boundary and assuming U is
expressed as u(z) = U(x) for ¢ € B and x = |x|g~, we came to consider the problem (2.1).

After completing the present chapter, we learned that Cho and Okamoto [15] extended the work in [8].
The time dimension was discretized by the semi-implicit Euler method in [8], but Cho and Okamoto [15]
explored the explicit scheme, then proved optimal-order convergence with Nakagawa'’s strategy. Because
their schemes use special approximations around the origin to maintain some analytical properties of
the solution, they should be performed on a uniform spatial mesh. Conversely, when seeking the blow
up solution, non-uniform partitions of the space variable are useful for examining highly concentrated
solutions at the origin. For this purpose, we developed the FEM scheme.

FEM analyses of the linear case, in which f(u) = 0 in Eq.(2.1) is replaced by a given function f(z,t),
are not new. Eriksson and Thomée [18] and Thomée [42] studied the convergence property of the elliptic
equation, and proposed two schemes: the symmetric scheme, in which the optimal-order error is estimated
in the weighted L? norm, and the nonsymmetric scheme, in which the L> error is estimated. However,
their finite element schemes are not easily adaptable to the semilinear heat equation (2.1), as reported in
our earlier study [34]. Our earlier results are briefly summarized below:

e If f is globally Lipschitz continuous, the solution of the symmetric scheme converges to the solution
of (2.1) in the weighted L? norm in space and in the L° norm in time. Moreover, the convergence
is at the optimal order (see Theorem 4.1 in [34]).

e If f is locally Lipschitz continuous and N < 3, the same conclusion holds (see Theorem 4.3 in [34]).
However, if N > 4, the convergence properties are not guaranteed. For this reason, interest in
radially symmetric problems has diminished.

o If f(u) = ulu|* with @ > 1 and the time partition is uniform, the solution of the non-symmetric
scheme converges to the solution of (2.1) in the L>°(0,7T; L°°(I)) norm. Optimal-order convergence
holds up to the logarithmic factor (see Theorem 4.6 in [34]). Nakagawa’s time-increment control
strategy is difficult to apply in such cases.

As the non-symmetric scheme seems to be incompatible with Nakagwa’s time-increment control strat-
egy, we pose the following question: Can the restriction N < 3 be removed from the symmetric scheme?
In fact, this restriction is imposed by the inverse inequality Lemma 4.8 in [34] and the necessity of finding
the boundedness of the finite element solution (see the proof of Theorem 4.3 in [34]). To surmount this
difficulty, the L°° estimates for the FEM can be directly derived using the discrete maximum principle
(DMP). As the DMP is based largely on the nonnegativity of the finite element solution, the time deriva-
tive term should be approximated by the mass-lumping approximation. Unfortunately, we tried but
failed to prove the convergence property of the finite element solution by this approximation (see (2.8)
below). Therefore, we propose a special mass-lumping approximation (2.9) in this chapter. Using the
special approximation, we prove the DMP and the convergence property of the finite element solution,
and perform the blow up analysis for any N > 2.

Our typical results are summarized below. Here, our schemes are denoted as (ML-1) and (ML-2).

e The solution of (ML-1) is non-negative if f and u° satisfy some conditions (Theorem 2.2.2). Fur-
thermore, if the time increment satisfies condition (2.12), the solution of (ML-2) is also non-negative
(Theorem 2.2.2). Theorem 2.2.3 gives a useful sufficient condition of (2.12).

e The solution of (ML-1) converges to the solution of (2.1) in the weighted L? norm in space and
in the L*° norm in time. Moreover, the convergence is at the optimal order (Theorem 2.2.4). The
proof is based on a sub-optimal estimate in the L>°(0,T; L>°(I)) norm (Theorem 2.2.5).

e If condition (2.12) is satisfied, then the solution of (ML—-2) converges to the solution of (2.1) in the
L*>°(0,T; L>°(I)) norm (Theorem 2.2.6). Unfortunately, the order of the convergence is sub-optimal.
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e The solution of (ML-2) reproduces the blow up property of the solution of (2.1) (Theorems 2.5.6
and 2.5.7).

This chapter comprises seven sections. Section 2.2 presents our finite element schemes and the con-
vergence theorems (Theorems 2.2.4-2.2.6). After describing our preliminary results in Section 2.3, we
prove our convergence theorems in Section 2.4. Section 2.5 reports the results of our blow-up analysis,
and Section 2.6 validates our theoretical results with numerical examples. Section 2.7 presents the proofs
of some auxiliary results on the eigenvalue problems.

2.2 The schemes and their convergence results

Throughout this chapter, f is assumed as a locally Lipschitz continuous function of R — R.
For some arbitrary x € H' = {v € H'(I) | v(1) = 0}, we multiply both sides of (2.1a) by z¥~1x and
integrate by parts over I. We thus obtain

/xN_lutX dx + /xN_luzxw dx = /xN_lf(u)X dx. (2.4)
I I I
Therefore a weak formulation of (2.1) is stated as follows. For ¢ > 0, find u(-,t) € H' such that
(ue, x) + Alu,x) = (f(u),x)  (Vx € HY), (2.5)
where
(w,v) = /folwv de, A(w,v)= /folwxvx dx. (2.6)
I I

We now introduce the finite element method. For a positive integer m, we introduce node points
0=2¢ <21 << xj <2 < < Tl < xpy =1,

and set Ij = (zj_1,2;) and h; = x; — x;j_1, where j = 1,...,m. The granularity parameter is defined as
h = maxi<j<m h;. Let Pi(J) be the set of all polynomials in an interval J of degree < k. The P; finite
element space is defined as

Sp={ve H'(I)|vePi(l;) j=1,---,m), v(l) =0}. (2.7)
The standard basis function ¢; € Sy, j =0,1,--- ,m — 1 is defined as
¢j(:) = 45,

where d;; denotes Kronecker’s delta. We note that S) C H' and that any function of H' is identified

with a continuous function. The Lagrange interpolation operator I of H' — S} is defined as I w =
m—1

Z w(z;)¢p; for w e H
§=0
The mass-lumping approximation of the weighted L? norm (-,-) can be naturally defined as

Z1 LTit1/2

/2 m—1
N dr + Z w(xl)v(xl)/ 2Nt da, (2.8)
i=1 x

i—1/2

(w,0) = w(ao)olao) |

where z;_1/2 = (z; +;-1)/2. As mentioned in the Introduction, this standard formulation is useless for
our purpose. Instead, we define

—

m—

(w,v) = Z w(x;)v(x;)(1, ¢;) (w,v € HY). (2.9)

i=

This definition leads to the following result, which can be verified by direct calculation.

Lemma 2.2.1. We have (1,w) = (1,I,w) for any w € H'.
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In [37], the formulation similar to (2.9) was introduced. [37] considered two-spatial dimensional
parabolic problems with degenerate coefficients.
The associated norms with (-,-) and (-, ) are respectively given by

o]l = (v,0)Y2 and ]| = (v,0)"/>.

These norms are equivalent in S, as mentioned in Lemma 2.3.4.
The time discretization is non-uniformly partitioned as

n—1
tOZO, tn:ZTj (nZl),
j=0

where 7; > 0 denotes the time increment. Furthermore, we set

T =supTj.
Jj=0

In general, we write 0., ujt = (uf Tt —ul) /7.
The finite element schemes are then stated as follows.

(ML-1) Find u}fl € S,, n=0,1,..., such that

(O, up ™ x) + A(up ™ x) = (F(uh),x) - (x € Sn), (2.10)
where u) € S, is assumed to be given.

ML—2) Find «?™ € S),, n=0,1,..., such that
h

(O, up ™1 x) + Alugt, x) = (f(ui), x) (X € Sh)- (2.11)

Below, we will show the optimal order error estimate in the weighted L? norm for the solution of
(ML-1). On the other hand, we are able to show only a sub-optimal order error estimate in the L
norm for the solution of (ML-2). Nevertheless, we consider (ML—2) because it is suitable for the blow-up
analysis (see Section 2.5).

We also summarize the well-posedness of our schemes. The proof is omitted because it is identical to
Theorems 3.1 and 3.2 in [34].

Theorem 2.2.2. Suppose that n > 0 and u}} € S}, are given.
(i) Schemes (ML-1) and (ML-2) admit unique solutions u}** € Sj,.

(ii) In addition to the basic assumption on f, assume that f is a non-decreasing function with f(0) > 0.
If u}} > 0, then the solution uZ‘H of (ML-1) satisfies uZ‘H > 0.

(iii) Under the assumptions of (ii) above, further assume that

: (17¢Z)
T= o<igm—1 A(di, di) (2.12)

Then the solution u} "' of (ML-2) satisfies u} ™' > 0.
To provide a useful sufficient condition under which (2.12) holds, we assume that the partition {;}}J_,
of I =10,1] is quasi-uniform, that is,
< i ; 21
h<p min hy, (2.13)

where 3 is a positive constant independent of h.

Theorem 2.2.3. Inequality (2.12) holds if

(2.14)



Proof. A direct calculation gives

(17¢i) > 1 h2 > 62

. h2
A(di, ;) " N+1 "~ N+1

for any i. Therefore, (2.14) implies (2.12). O

We now proceed to the convergence analysis. Our results for (ML-1) and (ML-2) assume a smooth
solution u of (2.1): given T > 0 and setting Q7 = [0, 1] x [0, 7], we assume that u is sufficiently smooth
such that

2 2 2
K(w) =Y 108l L@ + O 100l L @r) + Y 10050l Lo (@) < o0 (2.15)
k=0 =1 k=1

Here, we have used the conventional ||v[ () = maxz |v] for a continuous function v defined in a bounded
set w in RP, p > 1.
Moreover, the approximate initial value u?L is chosen as

l[upy — u|| oo (1) < Coh? (2.16)

for a positive constant Cj.
We now express positive constants C' = C(7y1,72,...) depending only on the parameters 1,72, .. ..
Particularly, C is independent of i and 7.

Theorem 2.2.4 (Optimal L? error estimate for (ML-1)). Assume that, for T' > 0, the solution u of (2.1)
is sufficiently smooth that (2.15) holds. Moreover, assume that (2.13) and (2.16) are satisfied. Then, for
sufficiently small h and 7, we have

sup lup — u(-,tn)| < C(h* +7), (2.17)
0<t, <T

where C' = C(T, f, k(u), Co, N, 5) and uj is the solution of (ML-1).

The following result, which is worth a separate mention, gives only a sub-optimal error estimate but
is useful for proving Theorem 2.2.4.

Theorem 2.2.5 (Sub-optimal L* error estimate for (ML-1)). Under the assumptions of Theorem 2.2.4
and for sufficiently small A and 7, we have

sup |y, —u(-stn)l[zey < C(h+7), (2.18)
0<t, <T

where C' = C(T, f, k(u),Co, N, 5) and uj is the solution of (ML-1).

Theorem 2.2.6 (Sub-optimal L™ error estimate for (ML-2)). Also under the assumptions of Theorem
2.2.4, assume that (2.12) is satisfied. Then, for sufficiently small h and 7, we have

sup lup —u(- tn)|l ey < C(h+7), (2.19)
0<t, <T

where C' = C(T, f, k(u), Co, N, 8) and uj is the solution of (ML-2).

Remark 2.2.7. Other schemes based on the mass-lumping (-, ) are possible. For example, the scheme

(Or,upy ™) + Alup ™)) = (f(up) X)) (x € Sh) (2.20)

and
(O up ™ x) + Alup, x) = (F(u),x)  (x € Sn) (2.21)

have very similar properties to those of (ML-1) and (ML-2). We omit the details because the modifica-
tions are easily performed.
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2.3 Preliminaries

This section gives some preliminary results of the theorem proofs. The quasi-uniformity condition (2.13)
is always assumed.. )
For some w € H!, the projection operator P4 of H' — S;, associated with A(-,-) is defined as

Pywe Sy, A(Paw—w,x) =0 (x € Sh)- (2.22)
The following error estimates are proved in [18] and [29].
Lemma 2.3.1. Letting w € C*(I) N H', and h be sufficient small, we obtain
|Paw — wl|| < Ch?||wae|l, (2.23a)

1
1Paw = e < € (tou g ) ¥ uaalian, (223h)

where C'= (8, N) > 0.
Lemma 2.3.2 (Inverse estimate). There exists a constant C' = C(8, N) > 0 such that
lwa| < Ch7Hlwl|  (w € Sh).
Proof. The proof is identical to that of the standard inverse estimate. O

Lemma 2.3.3. Let w € C(I) be a piecewise quadratic function in 7, that is, w|;, € P2(I;) (j = 1,--- ,m).
Then, we have

/mN_1|th —w| dz < Ch2||xN_1meL1(1), (2.24)
I

where C' = C(8,N) > 0.

Proof. To prove (2.24), it suffices to replace I = I; with j = 1,...,m. First, let j > 2. By Taylor’s
theorem, we can write

M(a) — w(@)] < O [ funt@)l &5 ey, (2.25)
Referring to (2.13), we see that
S T h; <148 (zel). (2.26)
Tj—1 Tj—1 hj—l ’

Combining (2.25) and (2.26), we deduce that

o Mynla) = w(a) < CO+ Ay [ o @)l s (@€ 1),

Integrating both sides, we obtain (2.24) for I = I; and j > 2. We now proceed to the case m = 1. Setting
w(x) = az? + br + ¢ for x € I, where a, b and c are constants, we express [I,w(z) — w(z) = azx(hy — z)
for x € I. Therefore, we directly obtain

- _ lal
/Il Z‘N |Hh’lU($) — ’LU(.’I})‘ dx = mh{v+2,

_ 2
BN ey = ol *?,
which implies (2.24) for I = I. O
Lemma 2.3.4. There exist constants C' = C(8, N) and C' = C’(8, N) such that

Cllwll < flwll < Clilwll - (w € Sh).

32



Proof. Let w € Sy,. To prove the first inequality, we note that w? is a piecewise quadratic function and
(w?) 22 = 2(w,)?. By Lemmas 2.3.3 and 2.3.2, we get
| (w, w) — (w,w)] < Ch® |2 (w?)au || L1(r)
< Oh?|lwg |
< Ollwl,

which implies the first inequality.
To prove the second inequality, we estimate ||w|| as

[|w||? <Z[ (xj-1) / folderw(xj)z/
i1

j Tji-1

Lj

ledI]

Tj+1

1 m—1
= w(xo)Q/ N ldr + Z w(:z:j)Z/ eNdz.

0 j—1
We also express [|w]]| as

Tjt+1

Ty m—1
leolI? = wiao)? / N lpo(w) dr+ Y w(ay)? / N 1g5(x) da.
=1 @

xo j—1

Therefore, it suffices to show that

T 1
/ Ny < C’l/ N g da, (2.27a)

0 0

Tjt1 Tj41
/ R Cg/ N de (j=1,...,m—1), (2.27b)

Tj—1 -Tj—l

where Cy = C1(N) > 0 and Cp = C3(N) > 0.
Equation (2.27b) is directly verified using (2.26). Equation (2.27a) is obtained by the change-of-
variables technique, setting & = x/h;. O

We here introduce two auxiliary problems. Given n > 0, gi € S, and uj € Sh, we seek u"+1 € Sy
such that

(O up ™ )+ AWt o) = (g x) (X € Sw), (2.28)

and
(O up ™ x) + Au, x) = (g1, X) (X € Sh). (2.29)

Lemma 2.3.5. Suppose that n > 0 and u}}, gj € Sp, are given. Then, problem (2.28) admits a unique
solution uZ“ € Sy, and it satisfies

gy oo () < Nuillzoe oy + Tllgh o ) - (2.30)
Problem (2.29) also admits a unique solution u} ™" € Sj, that satisfies (2.30) under condition (2.12).

Proof. The unique existence of the solution of (2.28) can be verified by a standard approach (see Theorems
3.1, 3.2 in [34]). Substituting x = ¢;, 4 =0,...,m — 1, in (2.28), we have

Tnaz 1—1 n+1 TnQ 1,1 n4+1 TnQj e O
7@61 ]. + /Uzi + 71‘%_’_1 - U + T’ngz )

i i %

where ul = ul(z;), 97 = 95 (i), aij = A(¢;,¢i) and m; = (1, ¢;). Therein, we should understand that
ag,—1 =0, mg =1 and uﬁTl = 1. Moreover, substituting x = ¢; in (2.29), we get

n+1 TnQii—1 p TnQi n TnQi i+1 ul
Uy =y 1+<1_ Ui — =iy + gy -
’ i m; m;
From these expressions, (2.30) is deduced by a standard argument. O

33



2.4 Proofs of Theorems 2.2.4, 2.2.5 and 2.2.6

Proof of Theorem 2.2.4 using Theorem 2.2.5. This proof is divided into the following two steps:
Step 1. We prove Theorem 2.2.4 under an additional assumption: f is a globally Lipschitz function. That

is, we assume
|f(s) = f(s)]

M = sup ——————— < oQ0. (231)
s,8'€R |S - |
s#£s’
Using P4u, we divide the error into the form
upp = tn) = (up — Pau(-,tn)) + (Pau(, tn) — u(-, tn)) - (2.32)
=op —n
From (2.23a), we know that
Hw”” < ChQ”“M(tn)H < Ch2||UMHL°°(QT) (2.33)

and that 9., Pyv = PAGT,LU for v e C(I).
We now estimate v}'. Using the weak form (2.5) at t = ¢,,+1, scheme (ML-1), and the property of Py,
we obtain

(Or 0P )+ AP ) = T+ T+ T+ IV +V)(x) (x € Sh), (2.34)

where

I(x) = (f(up), x) = (f(ul-tn)), X),

I(x) = (ut(tn+1)s X) — (Or, ul-s tns1), X)s

HI(x) = (f (u(-tn)), x) = (f(ul- tat1)), X),

IV(x) = (0r,u(-s tnt1), x) — (Palr, ul, tat1), x) = (a‘rnwnJrlaX)a
) = (0r, Pau(-stni1), X) — (On, Pau(-, tni1), X) -

=

V(x

The estimations of I-IV are straightforward. That is, we have

OO < M([lw™ || + llog ) - lIxll
HIOO)] < T llweell oo (@ X5
IO | < 7o M [uel| Lo (@ X1
V()| < Ch?|Jtrgall Lo (@ lIXII-

To estimate V, we use Lemmas 2.2.1 and 2.3.3. Lemma 2.3.3 is applicable because 9, Pau(-, tn11)X
is a piecewise quadratic function. That is,

VOO = (1, Ip(9r, Pau(-s tny1)X) — Or, Pau(, tn+1)X)
< CR*||zN " 10r, Pau(-, tyns1) X ool L1 (n)
< CR? |2~ (Padr, ul, tns1))a - XallLr (1)
< Ch2(|(Pady, (s tng1))all - IXal|
< CP?||(0r, ul-s tngr))ell - Xl
< Ch?||ute || Lo (@) X -

Substituting y = v} in (2.34) gives

27, (lon P = Mo li) + Iewn ™ )ell* < ClloRlll- 1wzl + C(h% + ) s(u) [ (v e -

Herein, we have used Lemma 2.3.4 and the Poincaré inequality (Lemma 18.1 in [42]). By Young’s
inequality, we then deduce that

1 n n
— (W2 = R 112) < ClRIIZ + COR? + 7a)m(w)?.
n
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Therefore,
o ll? < e“Tloplli* + C e = 1)(h? + 70)*w(w)?,

which completes the proof.
Step 2. Let r = 1+ ||u = (@,). Consider (2.1) and (ML-1) with replacement f(s) in

fr)  (s=r)
fls)=qf(s) (sl <)
f=r) (s <—r)
The function f is a locally Lipschitz function satisfying
M FO=FOI ) = £
5,5’ €R |s — sl Isl,|s'|<r |s — &'l
s#s’ s#s’

Let @ and 4} be the solutions of (2.1) and (ML-1) with f, respectively. Applying Step 1 and Theorem
2.2.5 to @ and @}, we obtain

sup ||lap —a(-,tn)|| < C(h* +7), (2.35a)
0<t,<T
1
sup |ay, — @(-,tn)| Loy < C (h + h?log — + 7') . (2.35b)
0<t,, <T h

By the definition of r and the uniqueness of the solution of (2.1), we know that v = @ in Qp. For
sufficiently small h and 7, we have

1
C(h+h210gh—|-7> <1.

Consequently, ||@}||ze )y < 7 for 0 < t, <T and, by the uniqueness of the solution of (ML-1), we have
ull = u}. Therefore, (2.35a) implies the desired result. O

We now proceed to the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5. The notation is that of the previous proof. It suffices to prove Theorem 2.2.5
under assumption (2.31), which is generalizable to an arbitrary f as demonstrated in the previous proof.
By (2.23b), we have |[v])|| L) < Ch?log(1/h)k(u) and ||w" | pery < Ch?log(1/h)k(u) for 0 < t, < T.
Therefore, it remains to estimate v; when 0 < ¢, <T'. Setting
m—1
" n n I+II4TIII+IV+V)(¢;)
h:ZGi¢i7 G} = (1¢) Z’
i=0 e

we rewrite (2.34) as
(0mop T x) + A ™) = (G x) (X € Sn).
Showing that
1GhllL= ) < M[opllze) + C (h+7) K(w), (2.36)

we can apply Lemma 2.3.5 to obtain
[oh Loy < (L4 Mr)[[op |y + 7 - C(h+ 7)k(u),

and consequently
eMtn -1

v | Lee () < eMt"HU?LHLm(I) + TC’(h + 1)k (u).

Thereby, we deduce the desired estimate.
Below we prove the truth of (2.36). Recall that we assumed global Lipschitz continuity (2.31) on f.
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I(¢:)-IV(¢;) are straightforwardly estimated as follows:

[1(:)| < M[[|v} |l Lo (1) + Ch* log(1/R)k(u)] - (1, ¢5),
T(¢a)| < Tnki(u) (1, ¢4),
(¢i)| < Mrpri(u)(1, di),
[IV(¢:)| < Ch*log(1/h)k(u)(1, ¢:).

To estimate V(¢;), we write

V(¢i) = Vi(i) + Va(¢i) + Vi(¢i),

where
Vi(¢i) = (0r, Pau(- tny1), ¢i) — (Or, ul-s tnt1), d4),
V2(¢z) = (8Tnu( n—i—l) (bz) <arnu( n+1) ¢z>7
Va(¢i) = (Or, u(", tni1), ¢i) — (Or, Paul(- tni1), i) -

The above terms are respectively estimated as:

IVi(#)] < |1Pa(0r, uls tny1)) = Or u(s tngr) oo (1, 0i)
< Ch?log(1/h)r(u)(1, 6:);

V(0| < [ 0100, 0(e 1) = On, 0w, )] 64(a) d
< Chr(u)(1, ¢;);
[Vs(9i)| < 107, (i, tngr) — Padr, u(@s, tni1)[(1, ¢5)
< Ch?log(1/h)r(u)(1, ).
We thereby deduce that
G L1y < Mllvall<(ry + C (b + h?log(1/h) + 7) i(u),
which implies (2.36). This step completes the proof.
Proof of Theorem 2.2.6. The proof is identical to that of Theorem 2.2.5.

2.5 Blow-up analysis
2.5.1 Results

This section considers the special nonlinearlity
f(s) =s|s|¥, a>0.
As we are interested in non-negative solutions, we assume that

u’ >0,#0, u) >0,%0.

(2.37)

Therefore, the solution u of (2.1) is non-negative and the solution u} of (ML-2) is also non-negative under
condition (2.12). Generally, the solution of (2.1) blows up when the initial data ug are sufficiently large,
and the blow up is controlled by the energy functional associated with (2.1). Herein, we study whether
or not the numerical solution behaves similarly by initially defining some properties of the solution u of

(2.1). In particular, we see that (ML-2) is suitable for this purpose.
The energy functionals associated with (2.1) are defined as

1
/SUN*IW(?U)\‘”‘+2 dr,
I

K@) = 3l — —
I(v) = /Ifolv(m)w(x) dz,
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where ¢ € H! denotes the eigenfunction associated with the first eigenvalue u > 0 of the eigenvalue
problem

A(,x) = p(,x)  (x € HY). (2.38)

Without loss of generality, we assume that ¢ > 0in I and [, 2N~ 1(z) do = 1.
The following propositions 2.5.1, 2.5.2, and 2.5.3 are often applied to the semilinear heat equation in
a bounded domain. They are easily extended to the radially symmetric case.

Proposition 2.5.1. K(u(t)) is a non-increasing function of ¢, where w is the solution of (2.1).

Proposition 2.5.2. Suppose that u® > 0,# 0 and u is the solution of (2.1). Then, the following
statements are equivalent:

(i) There exists T, > 0 such that u blows up at ¢ = T, in the sense that lim |lu(-, )] = oo.

t—Too
(ii) There exists to > 0 such that K (u(-,tg)) < 0.

Proposition 2.5.3. Suppose that «® > 0,% 0 and that u is the solution of (2.1). Then, the following
statements are equivalent:

(i) There exists Too > 0 such that u blows up at ¢t = T in the sense that lim I(u(-,%)) = oo.

t—Too
(ii) There exists to > 0 such that I(u(-,g)) > pa.
Remark 2.5.4. In Propositions 2.5.2 and 2.5.3, the blow up time T, is estimated respectively as

a+2
o2

Too < to + N5 Jul-, o) 7%,

and
i ds

Ty < to+ / %
I(u(-to)) —HS 81T

We now proceed to the discrete energy functionals. To this end, we employ the finite element version
of the eigenvalue problem:

A, xn) = fin <1;h>Xh> (Xn € Sh). (2.39)

Let zﬁh € Sp be the eigenfunction associated with the smallest eigenvalue fi, > 0 of (2.39). For the
eigenvalue problem (2.39), we state the following result, postponing the proof to Section 2.7.

Proposition 2.5.5. If the partition {a:j}gn:() is quasi-uniform, that is, satisfies (2.13), we have the
following:

(i) fin — pas h — 0.
(ii) The first eigenfunction ¢, of (2.39) does not change sign.
(i) [|(4n = ¥)all = 0 as b — 0.

Therefore, without loss of generality, we can assume that ﬁh >0 and || I v _11%(1‘) dr =1.
For v € S}, we set

1 1 « N
Kn(v) = §||’Um||2 P Z o) |“F2(1, ¢4),
i=0

I (v) = <v,1ﬁh> = /Ifolﬂh(mﬁh)(x) dz.

We introduce the approximate blow-up time TOO (h) by setting

n—1
Two(h) = lim t, = lim_ > 7 (2.40)
7=0

n—00

We are now in a position to mention the main theorems in this section:
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Theorem 2.5.6. Let (2.37) be satisfied. Suppose that the solution u of (2.1) blows up at finite time T,
in the sense that
lu(-,t)|| ooy = 00 and |lu(-,t)|| = 0o (t = T —0). (2.41)

Assume that for any T < T, u is sufficiently smooth that (2.15) holds. Assuming also that (2.13) is
satisfied, we set

52
N+1
for some ¢ € (0,1]. The time increment 7, is iteratively defined as

=34 h? (2.42)

S P 213

1, 5
el
where we have used the solution u} of (ML-2). Moreover, assume that (2.12) is satisfied and that

VT < Tw, lim sup |K(u(-,t,))— Kp(uy)| =0. (2.44)

1

h—0 0<t,<T

We then have A

lim Too (h) = Too. (2.45)

Theorem 2.5.7. Let (2.37) be satisfied. Suppose that the solution « of (2.1) blows up at finite time T,
in the sense that
I(u(-,t)) = oo and ||u(-,t)||gee(ry =00 (t = Too —0). (2.46)

Assume that, for any T' < T, u is sufficiently smooth that (2.15) holds. Assuming also that (2.13) is
satisfied, we set 7 by (2.42) with some § € (0,1]. The time increment 7, is iteratively defined as

Tn = 7o (h) :Tmin{l,j,h(ulz)a}, (2.47)

where we have used the solution u} of (ML-2) with (2.16). We then obtain (2.45).

Remark 2.5.8. The above theorems differ in that Theorem 2.5.6 requires the convergence property
(2.44) of the discrete energy functional Kj(u}), whereas no convergence property of I, is necessary in
Theorem 2.5.7.

Remark 2.5.9. Unfortunately, we could not prove Theorems 2.5.6 and 2.5.7 using the solution of (ML-1).
In particular, the proof of the difference inequalities (2.48) and (2.51) failed in scheme (ML-1).

2.5.2 Proof of Theorem 2.5.6

To prove Theorem 2.5.6, we follow Nakagawa’s blow-up analysis [32]. For this purpose, we must derive
the difference inequality (2.48) and the boundedness (2.49) of T, (see Lemmas 2.5.11 and 2.5.12). The
original proof in [32] immediately follows from these results; see also [7], [8], and [14]. Therefore, we
concentrate our efforts on proving Lemmas 2.5.11 and 2.5.12.

Throughout this subsection, we take the same assumptions of Theorem 2.5.6; in particular, the time-
increment control (2.43). Note that condition (2.12) is satisfied by the definition of 7,,. Consequently,
the solution w of (2.1) and the solution u} of (ML-2) are non-negative.

Lemma 2.5.10. Kj(u}) is a non-increasing sequence of n.
Proof. Fixing some n > 0, we write w = UZ'+1, u = u}, w; = w(z;), and u; = u(z;). To show that

Kp(w) — Kp(u) <0, we perform the following division:
Kh(w) — Kh(u) =X+4Y,

where
1 1
X = Slhwell? = 5 lluall?,
2 2
1 m—1 1 m—1
Y=——— 21, ¢) + —— 9F2(1, 45).
Oé+2j:0w] (7¢])+a+2j§u] (a¢])
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X is expressed as
1
X=A(u,w—u)+ §A(w—u,w —u).

By the mean value theorem, there exists 6; € [0, 1] such that

Wit =t = (0 + 2)a0 (- ),

where @; = u+ 0;(w — u). Therefore,

m—1
(wj = uj)
7=0
m—1 m—1
== D[ w1, 65) (s — ) = D L 65)(w; — ) = Y1+ Y.
7=0 J=0
We calculate .
A=)+ Yo == ("= 0 ) = =Ll
Tn T
and
m—1
Yi=—) (a+1)0;(1,¢;)if (w; —u;)* <0,
§=0
where @i; = u 4 0;(@i; — u;) with some 6, € [0,1].
Meanwhile, for vy, € Sp(I), we write
A(vp,vp) <2Z/ N-1, 2 dgc (0]2-—&—1)]2-71)
DO
vj-
§=0
Using (2.12), we have
m—l 9 9
A(vp,vp) <2 Z - ]2 - — (Un,vp) = ;|||Uh|||2 (vn € Sh).

We thereby deduce that

1 1
X+Y= ff|||w—u|||2+§A(w—u,wfu)+Y1 <0,
Tn

O

which implies that K}, (u}) is non-increasing in n.
Lemma 2.5.11. If there exists a non-negative integer n’ such that Kj (u}) <0 for all n > n’, we have

L (2.48)

(07 a
B Or, [y P > ponstil llup|**2 (0 >n').

Proof. Substituting x;, = u} in (ML-2), we obtain
-y
() A o) = () )

n

We note that

1
(=) < (o =+ ) = ORGP = 1)
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By the decreasing property of Kjp(u}), we have

n 2 ny«
i)l < —5 (@)™ 1) (=),

Combining these results, we get

1 n+1p2 ny|2 o
J— — >
Tn(H\uh Il Mlunll®) = o+ 9

((up)**2,1).

N | =

Using Holder’s inequality, we calculate
llupll® < (1/N)=2 - ((up)*2,1) " .
We thereby deduce (2.48). O

Lemma 2.5.12. If Kp(u;°) <0 and |[|u,°[| > 1 for some integer ny > 0, then we have

N +2 o 2
Too(h) < tp, + {aa2 N~ 2 +1 <1 + a>} upo |~ (2.49)

Proof. From Lemma 2.5.11,
i ¥HIZ = (1 4+ 27 Gl 1) lup 1 = (1 4+ 27C) luf I,

where C'= 55N % . Therefore,

. ——_—
Jimfup || = oo
and, for n > ng,

n—1 n—1 r
o =ty + 3 T =tag + D e
m=ngo h

m=ng

The remainder is identical to that of Corollary 2.1 in [14], so the details are omitted here. O

2.5.3 Proof of Theorem 2.5.7

To prove Theorem 2.5.7, we apply abstract theory by (Propositions 4.2 and 4.3) in [40]. In this subsection,
we take the same assumptions of Theorem 2.5.7, in particular, the time-increment control (2.47).

Lemma 2.5.13. We have T\, < liiniélf Too(h).
L—

Proof. The proof is shown by contradiction. Setting S, = lizn igf Too(h), we assume that Soo < Tao.
—

Then, there exists hg > 0 such that infp/<p, Too(h’) < M for all h < hg, where M = % < Tw. That

is, for some fixed h < hg, we have t,, < Th,(h) < M and In(up) — oo as n — co. This implies that for
some 0 < j(n) < m — 1, we have uj(zj(,,)) — 00, and consequently [|u}||z(y — oo. However, from
Theorem 2.2.6, we observe that

lim su up —u(-,t () = 0.
,HOOS%EMH = ulstn)llLeo ()

If this expression is true, then Tt cannot be the blow-up time of the solution u of (2.1). This contradiction
completes the proof. O

Lemma 2.5.14. For any T' < T, we have

lim sup |[In(up) — I(u(-,tn))] = 0.
h—0 0<t,<T
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Proof. We derive separate estimations for I, (u}?) — I, (uf)| and |, (u}) — I (u(-, t,))|, where Ij,(v) denotes
the auxiliary functional

In(w) = /xN_lv(x)iﬂh(x) dx.

I
From Theorem 2.2.6, Lemma 2.3.3 and Proposition 2.5.5 (iii), we first derive

[ n(upy) = In(up)| < CR2 ™~ (uhibn)ae | o1 r)
< CR?||(up)a |l - 14
< Chllup || poe 144
< Ch(lluls tn)ll ey + DU + 1),
where we have used the elemental inequality [|¢,| < Ch™!||¢)||po(p) for ¢ € S,. This implies that

[T (u}) — In(u})| — 0 as h — 0.
On the other hand, as h — 0, we have

[ In(upy) = I(u(-stn))| = /IxN‘l(uZ — () de| + /IxN‘1U(-,tn)(¢h —¢) da
< Ny = uyta) |- dnll + G, ta) - 16n = Il = 0.

This expression concludes the proof. O

The following is a readily obtainable consequence of Lemma 2.5.14.
Lemma 2.5.15. For any sg, there exists a nonnegative integer ng = ng(h) such that I, (uy,®) > so.
The following lemma is elementary and was originally stated as Lemma 3.1 in [14].

Lemma 2.5.16. There exists so > 1 satisfying

%f(s) + (1 +p)s < f(s) (s> s0),

where f(s) = stto.
We can now prove Theorem 2.5.7.

Proof of Theorem 2.5.7. It remains to verify that

Too > limsup Tho(h). (2.50)
h—0

To this end, we apply abstract theory (Propositions 4.2 and 4.3) in [40]. Adopting the notation of [40],
we respectively set X, X, G, H, J and J}, in [40] as

X=H |v|x= lvllze(r)y, Xn = Sh,

Gls) = 37(s) = 55", H(s)=s" (s>0),

J(t,v):/Ifolu(a:)w(x) dz, (tv) € (0,00) x X,

Tn(t,on) = In(on) = > vithn(e;)(1, ), (t,on) € (0,00) X Xp,  v; = va(ay).
j=0

Here, G and H are functions of class (G) and class (H), respectively.

To avoid unnecessary complexity, we assume that ng = 0 (see Lemma 2.5.15). Our problem setting
matches problem settings (I)—(VIII) in §4 of [40].

It is readily verified that conditions (H1), (H3), (H4) and (H5) in §4 of [40] hold. We need only check
that condition (H2)

O, In(up ™) = S f(In(ufy))  (n20) (2.51)

DN | =
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also holds. R
Substituting xp, = ¥n € Sp, in (ML-2) and using the relation (2.39), we have

Or, In () + i (07 ) = (F (03 )
From Proposition 2.5.5 (i), we know that fi5, < p+ 1. Moreover, because <1, ¢h> = 1, we can apply
Jensen’s inequality to get
O, In(uy ™) = = (1) - In(uf) + f(In(w7)-

By Lemma 2.5.16, —(u + 1)s + f(s) > 2 f(s) for s > so. Because I;(u)) > sy by Lemma 2.5.15, we
deduce that

Ory In(u}) > 3 F(IA(u)

We thus obtain Ij,(v}) > so. By this process, we finally obtain

O, (™) > S F(IL (), Tn(uf) > s0 (n > 0).

N

Remark 2.5.17. Theorem 2.5.7 remains true after replacing (2.47) by

1
Tn:Tn(h):Tmin 1’? .
||uh||Loo(1)

However, this definition increases the computational cost over that based on (2.47). Therefore, in the
following numerical evaluation, we adopt (2.47).

2.6 Numerical examples

This section validates our theoretical results with numerical examples.

We first examine the error estimates of the solutions on a uniform spatial mesh z; = jh (j =0, ...,m)
with h = 1/m, regarding the numerical solution with A’ = 1/480 as the exact solution. The following
quantities were compared:

E1(h) = llugy = upllLr ),

N-1
Ea(h) = lups = will = ||= ™7 (uf — )

L2y’
Eoo(h) = [lup — upllLo(n).-

Fig. 2.1 shows the results for N = 3, a = 4 and u(0,z) = cos . The time increment was uniform
(th =7=Mh%,n=0,1,..., A\ = 1/2) and the iterations were continued until ¢ < 7' = 0.005. Hereinafter,
we set ul) = I,u’. In scheme (ML-1), the numerical convergence rate was h? + 7 in the || - | norm (see
Theorem 2.2.4), but was slightly deteriorated in the L* norm.

In the case N = 4, which is not supported in the convergence property of the standard symmetric
FEM [34], we chose a = 3 and u(0,2) = 3cos Fz. The errors were computed up to 7' = 0.0033 on the

non-uniform meshes with z; = sin% and 7, with A\ = 0.11. As shown in Fig. 2.2, the || - || norm
showed second-order convergence in both (ML-1) and standard FEM, but the || - ||z (;) norm showed

first-order convergence in the standard FEM.

Secondly, we confirmed the non-increasing property of the energy functional K (u}) in scheme (ML—
2) with N =5, a = %, and u(0,z) = cos 5z, 13cos F2. The time increment 7, was determined through
Theorem 5.6 with 8 = 1 and ¢ = 1. Simulations were performed on a uniform spatial mesh x; = jh with
h =1/m and m = 50. The results (see Fig. 2.3) support Lemma 5.9. As shown in Fig. 2.4, the energy
functional I (u}) increased exponentially after ¢ = 0.04 when the initial data was large, but vanishes

when the initial data was small. For Ij(u}!), we used the time increment in Theorem 5.7 with 6 = 1.
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Figure 2.1: Error convergences versus granularity: N =3, o =4 and u(0, ) = cos 5z
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Figure 2.2: Error convergences in the (ML-1) schemes (left) and the standard finite element method
(right): N =4, a =3 and u(0,2) = 3cos Jx
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Finally, we calculated the numerical blow-up time in scheme (ML-2). Here, we set h = 1/m (m =
16,32,64). The time increments were defined as

1 1
(K) 7 = N1l min {1, |||n|||} (see Theorem 2.5.6),
up |14

1 1
I = Vil min {1, W} (see Theorem 2.5.7).

For a comparison evaluation, we executed the FDM of Chen [8] and the FDM of Cho and Okamoto [15].
Specifically, set 7,, = 2h? - min {17 %} in Chen’s FDM and 7,, = =%-h? - min {1, %} , 0= 5 in
2 Munls 3N MTunls 2N
Cho and Okamoto’s FDM. R
We then introduced the truncated numerical blow-up time Tar(h):

Tyr(h) = min {tn | lJuplloo > M = 10%}.
Evaluations were performed with three parameter sets:
Case 1 N =5, a =0.39, and u(0,z) = 8000 cos 5 z;
Case 2 N =4, a = 0.49, and u(0,z) = 800(1 — z?);

Case 3 N =3, a = 0.66, and u(0,z) = 1000(e~*" — e~ 1).

Note that if 1 > %% holds true and u® > 0 is decreasing in z, then I(u(t)), |lu(t)| and |[u(t)| L)

blow up simultaneously; see [21]. We chose these settings so that the assumptions in Theorem 2.5.6 and
Theorem 2.5.7 hold true.

Fig. 2.5 compares the truncated numerical blow-up times 7 (h) as functions of h in the four schemes.
The solution of Chen’s FDM blew up later than the other schemes, whereas that of (ML-2) with I, (u})
blew up sooner than the other schemes.
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0146 0.129
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® o 0128 °
£ 0.144 k= £ 0.0246
- = E=]
= g 0.1275 =
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T 0142 F S E
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2 0.141 2 2 0.0245
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0.14
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o+ Chen 0.02445
L[ e (ORE C&O
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0.138 - L . 0.1245 - - - 0.0244 : . .
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Figure 2.5: Truncated numerical blow-up times TM(h) in the four schemes with three parameter settings

2.7 Approximate eigenvalue problems
This chapter establishes the proof of Proposition 2.5.5. Recall that p and /i, are the smallest eigenvalues

of (2.38) and (2.39), respectively. Functions ¢ and ¥, are the eigenfunctions associated with woand fip,
respectively.
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We introduce the following linear operators T : H! > Hl, Ty : S, — Sy, and Th : Sy — S by

A(T’U,X):(’U,X) (X€H17U€H1),
A(Thon, xn) = (v, Xn) (Xn € Sh,vn € Sy),
A(Thvh,Xh) = (Vn, Xn) (Xn € Sh,vp € Sp).

We also write v’ = v, for some function v = v(x).

Lemma 2.7.1 (Lemma 2.2 in [41], Theorems 13 and 14 in [20]). For any f, € S, C H,

Tfn e HXI), [(Tf)"ll < Cllfall-

For a linear operator B : X ¢ H — H, we define

1B

|1,X = sup
veX, v#0 HU H

Lemma 2.7.2 (Lemma 3.3 in [3]). ||T — Th|l1.s, — 0 as h — 0.

Remark 2.7.3. Lemma 2.7.2 does not exactly agree with Lemma 3.3 in [3], but its proof is identical to
that of Lemma 3.3 in [3].

The resolvent operator R, (7},) for z € C is defined as
RZ(Th) = (ZI — Th)71 1 SE — Sh,

where T}, : S, = S, and z € p(T},). Let I be the identity operator and p(B) be the resolvent set of a
linear operator B.

Lemma 2.7.4 ([17, Lemma 1]). For any closed set F' C p(T'), there exists hg > 0 such that for any
h < hg, R.(T}) exists and R
[R-(Th)ll1s, <C (Vz€F),

where C' is independent of h.

We now define spectral projections of 7" and T). Let T C C be a circle centered at i enclosing no

other points of o(7T) which stands for the spectral set of T. Let F = E(%) : H' - H' and E), =
Eh(i) : Sy, — Sh, be the spectral projection operators associated with 7" and T, and the parts of the
corresponding spectrum enclosed by I', respectively:
[ R.(T)dz, E - R.(Ty) dz
a 2mi r z ’ h— 27 T = h '
Remark 2.7.5. By Lemma 2.7.4, when h is sufficiently small, T C p(7}) holds and ||R,(T.)
bounded for all z € I'. Thus the integral of Ej, exists.

1,85 is

To examine the convergence property of Eh, we use the following lemma.
Lemma 2.7.6 (Lemma 2 in [17)). ||E — Eyl1.s, — 0 as h — 0.
We use the following symbols.
o dist(w, A) = ;gg |w' =] (weH ', Ac H"),
o 5(En(Sh), E(H')) = sup dist (v, E(H")),
VR €ER(SK), |lv, =1

e J(E(HY), EWn(Sy)) = sup dist (v, B, (Sh)),
veB(HY), [[v']|=1

o S(E(HY), En(Sh)) = max{6(EL(Sh), E(HY)), §(E(H"), E,(SK))}.
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The next result follows from the property of the spectral projection operator.
Corollary 2.7.7. §(E},(Sy), E(H')) — 0 as h — 0.
Lemma 2.7.8 (Theorem 2 in [17]).

lim inf ||(u—xa)|| = HY).
hlf%xilésh”(“ xn)'l=0 (ueH)

Corollary 2.7.9 (Theorem 3 in [17]). §(E(H"), E,(Sp)) — 0 as b — 0.
Lemma 2.7.10 (Corollary 2.6 in [30]). If §(E(H"), E,(Sk)) < 1, then dim E(H") = dim E},(S)).

For sufficiently small h, we observe that <§(E(Hl)7 En(Sy)) < 1, that is, dim E(H') = dim E},(S},).

Therefore, dim E(H') = 1, because E(H') is the eigenspace of the smallest eigenvalue of (2.38).
Then, the unique eigenvalue of T}, (denoted by i) is located inside I'. Then, there exists &,(# 0) € Sp,
such that

A(Eh, Xn) = o <£haXh> s Xn € Sh.
Corollary 2.7.11. 0, — p as h — 0.

Proof. For some arbitrary ¢ > 0, we set I'« = Bi(e) = {z € C | |z — i| = €}. As stated above, there
m
exists he > 0 such that the eigenvalue % of T}, is inside I'¢ for all A < h.. Therefore,

Because p is positive, the proof is complete. O

Remark 2.7.12. Similarly, we find that a unique eigenvalue % of T}, exists inside I', and that v, — pu
as h — 0.

Let pp > 0 be the smallest eigenvalue of

A(tbn, xn) = pa(¥n, Xn); X € Sh, (2.52)
where ¥, € Sp,.
Lemma 2.7.13. For sufficiently small h > 0, we have v, = up. In particular, up, — @ as h — 0.
Proof. We know that dim E(H 1Y = 1. By variational characterization, we obtain

'] : [vAll?

in .
vert w0 |[V[|2 T vneShon#0 |lunll?

M:

Here py, is the smallest eigenvalue of (2.52), that is,

Al

Hh = o €S un£0 thHz.

All eigenvalues of (2.52) are greater than or equal to u. As the eigenvalue of T}, enclosed by T is unique, we
obtain vy, = py, for sufficiently small & > 0, and pp — p as h — 0. O

We now state the following proof.

Proof of Proposition 2.5.5 (1). By variational characterization, we get

~ -1
R ||vz2_< A(Thvh,m)

= = sup
vn€Sh,on0 [[[vp|? wneSnon#0 V),

-1
= (A ( A(Thvh»vh)>

= sup
vneSnon0 [[vnl[? \wesnomz0 VRl
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Then,

. A(Tpop,vn) A(Typon,vn) | A((Th — Th)vn, vn)
Somro  AIZ wesi AR AR
vy €Sh,vn#0 h vp €Sh,vp#0 h h
A Thvh Uh ~
< sup ( i )4 1T — Thll1,s,,-
vp €Sh,vp#0 thH
Similarly,
A(Thvn, v A(Tyvp, vn -
sup (/72) < sup (/72) + Tk — Thll1,s,-

vy €S, VR F#0 thll vp €Sh,vp#0 thH

Applying Lemma 2.7.2, we obtain fi, = p as h — 0. O

Remark 2.7.14. As the eigenvalue of T}, enclosed by T is unique, we conclude that y, = fi;, for sufficiently
small A > 0.

Proof of Proposition 2.5.5 (ii). We write (2.39) in matrix form:
AY = i, Map,

where M = diag(pi)o<i<m—1 and A = (a; j)o<i,j<m—1 are defined as m; = (1,¢;) and a; ; = A(¢;, ¢;),
respectively. Moreover, ¥ = (¥;)o<i<m—1 € R™, 9; = ﬁh(ﬂcl) We thus express (2.39) as

M AY = fipep.

Because M is a diagonal matrix, the diagonal components a;;/p;; of M1 A are all positive and the
non-diagonal components are all non-positive.
Writing

(MIA +  Jnax %ii I) P = <ﬂh + max b > P, (2.53)

<i<m-—1 mi i 0<i<m-—1 m; i

where Z € R™*™ is the identity matrix, then we can see that all components of the matrix on the
left-hand side are non-negative. We now consider the following eigenvalue problem:

(—MlA + max a“’z) i = 7. (2.54)

0<i<m—1 mi

By the Perron—Frobenius theorem, we can take a positive eigenvector for the largest eigenvalue of (2.54).

—[ip + max Qi i the largest eigenvalue of (2.54), because fij, is the smallest eigenvalue of (2.39).

0<i<m-—1 miq
Consequently, the sign of the first eigenfunction of (2.39) is unchanged. O
Proof of Proposition 2.5.5 (iii). We assume that
lf;h >0 and /:L'Nflz/;h(x) dr = 1.

I

Setting ¢ = /||v'|| and ¢, = 9n /|||, applying Corollary 2.7.7 and Proposition 2.5.5 (i), and setting
vy = ¢p, we obtain . )
dist(on, E(H')) -0 as h—0.

Because dim E(H') = 1 and E(H") is a closed subspace in H', we find that
E(HY) ={2¢c H' | z € C}

and R ' R
dist(¢n, E(H")) = |19}, — cnd'l,

where ¢, € C.
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Therefore, |cn| — 1 as h — 0. Using én, ¢ > 0 and [|én — cnd| < ||}, — cnd’||, we find that ¢, — 1
as h — 0. That is, as h — 0,

165, — &'l < 165, — end’ | + llend’ — &'
=I5, = end'll + len = 1] - [ ¢']] = ©.
On the other hand,

1 1

14 = ¥n)'ll < SN 1o(z) de [ aN-14,(x) da|

1 l "
WW — ol +

This, together with

<(5) Mo-dl=(5) 10 -dl =0 as noo

/xN_qu(x) dz — /SCN_léh(x) dx

I I

implies that ||() —14)’|| = 0 as h — 0, which completes the proof. O

2.8 Note

This chapter was taken directly from Nakanishi-Saito [35].
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Chapter 3

Asymptotic behavior of the finite element
blow-up solutions

3.1 The schemes

This chapter is a supplement to Chapter 2; we follow the same notation and consider the same problem
as Chapter 2. Then, we further introduce the following schemes.

(ML-2) Find UZ-H €Sy, n=0,1,..., such that
(Oryup ™ x) + Alug, x) = (f(up), x) (X € Sh). (3.1)
(ML-3) Find uZH €S, n=0,1,..., such that

(O up ™ x) + A(up ™ x) = (f(ui), x)  (x € Sp)- (3.2)
For (ML-3), we obtain the following positivity preserving.

Theorem 3.1.1 (Well-posedness and positivity preserving property). Suppose that n > 0 and u} € S},
are given.

1. The scheme (ML-3) admits a unique solution u} ™" € 5.

2. In addition to the basic assumption on f, assume that f is a non-decreasing function with f(0) > 0.
If u}} > 0, then the solution uzﬂ of (ML-3) satisfies uZ‘H > 0.

Since we can prove this similarly as Theorem 1.3.1 and Theorem 1.3.2 in Chapter 1, we omit the
proof. For (ML-2), see Theorem 2.2.2 in Chapter 2.
For the monotonicity of the numerical solution, we get the following results.

Theorem 3.1.2 (Order preserving property). Suppose that n > 0 and u} € S, are given. In addition
to the basic assumption on f, assume that f is a non-decreasing function with f(0) > 0.

1. Assume that

(1, ¢i) . —Alpi, div1) | —Aldis1,60)\
(s =) } 33

7, < min min ————, min
"= {O<i<m1 A, ;) 0<i<m—2

If u? is a positive and decreasing function, then u} "' of (ML-2) is decreasing in .

2. Assume that

- : —(1, ¢1) <_A(¢i17¢i) _A(¢i+27¢i+1))1
"t { A(pa, ¢1)’ (1, :) - (1, di+1) ' (34)

If uy is a positive and decreasing function, then uZH of (ML-3) is decreasing in z.
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Their proofs are postponed for Section 3.6.

Remark 3.1.3. From a direct calculation, the sufficient condition for (3.3) and (3.4) is

Tn < i — = __n?
= 2(N +1)
where S is defined by (2.13).
We will prove this in Section 3.6.
We proceed to the convergence analysis for (ML-3).
Theorem 3.1.4 (Convergence for (ML-3) in || - || (7). We assume the same condition as Theorem

2.2.5. For sufficient small h and 7, we get

1
sup u — u(-, tn)l Lo (n) <’ (h+h210g+7') ,
0<t, <T h

where C" = C'(T, f, k(u), Co, N, B) and uj’ is the solution of (ML-3).

Since we can prove this similarly as Theorem 2.2.5 in Chapter 2, we omit the proof. For (ML-2), see
Theorem 2.2.6 in Chapter 2.

3.2 Adaptive time step control (Chen and Cho-Okamoto)

We set f(s) = s 7. For blow-up analysis, we now apply [8, 15] to (ML-2) and (ML-3).
We state a sufficient condition for the blow-up of (ML-2).

Assumption 3.2.1 (Assumption (H) in [15]). There exists a positive constant a such that

WJQ = 527"'(]) + (]‘ - a)(u(;)lJra Z Oa ] = 07 ]-a e, M — 13 (35)
where
m—1
52’“’ A ¢j7¢k ulm
L ;) k=0

and ug is a strictly decreasing function in x.

Remark 3.2.2. We assume u° > 0, u
(2.1) blows up in finite time if (u )” +
discrete version of this condition.

in I and u°(1) = 0. It is well-known that the solution u of
—L (1) + ul|u®]* > 0 in I (see [21]). Assumption 3.2.1 is the

01
-1

Lemma 3.2.3 (Sufficient condition for blow-up, Lemma 4.3 in [15]). We assume Assumption 3.2.1 and
(3.3). Then the solution of (ML-2) satisfies

Wi >0, forj=0,1,--- ,m—1, and n > 0,
where W} = 6%u + (1 — a)(u})'**. In particular,
3Tn|\u2'+1\|Loc(I) = 8Tnug+1 > a(ug)Ha, n > 0.
We will prove this in Section 3.6.

Theorem 3.2.4 (Convergence for numerical blow-up time, Theorem 4. 4 in [15]). In addition to the

assumption of Theorem 2.2.6, we assume Assumption 3.2.1 and 7 = §5-—h?, where § € (0,1]. We

2(N+1)

indl, 1 (3.6)
Tp =7 -minq 1, 7 , .
HuhHPYoe(j)
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where 0 < v < 1+ a+ 771, Then for the solution of (ML-2) we get

o0
Th = 7 < o0, lim T, = T,

n=0
where T, denotes the blow-up time for L> norm of (2.1).
For the proof, see Section 3.6.

Remark 3.2.5. Theorem 3.2.4 does not impose the assumption that [u(t)|[ze(r), |u(t)]| and I(u(t))
blow up simultaneously, but assumes Assumption 3.2.1. Below we set v = a.

We now study the asymptotic behavior of the finite element solutions.

Theorem 3.2.6 (Asymptotic behavior for (ML-2), I, Theorem 4.9 in [15] and Theorem 4.1 in [14]). We
assume Assumption 3.2.1 and 7 < 2(1@711)#‘ We adopt the time increment (3.6) with v = «. For the
solution of (ML-2), uj(x1) is bounded if & > 1. On the other hand, if & <1, then lim uj(z;) = oo.

n— oo

For the proof, see Section 3.6.

Theorem 3.2.7 (Asymptotic behavior of (ML-2), II, Theorem 4.12 in [15] and Theorem 4.2 in [14]).
Under the same assumption and time increment as Theorem 3.2.6, we let a number k£ € N be

1

Then the solution of (ML-2) blows up exactly at k + 1 points and it is bounded at all other points.
Namely
lim uj(z;) = oo if and only if 0 < j < k.

n—oo

For the proof, see Section 3.6.

Theorem 3.2.8 (Asymptotic behavior of (ML-3), Theorem 3.2 in [8]). We assume that u} is positive

ﬁQ
2(N+1)

solution of (ML-3), we assume that lim u}(zo)* 'uf (1) = oo for & > 1. Then u}(z;) is bounded if
n— oo

and decreasing in z, and 7 < h?. We adopt the time increment (3.6) with v = .. For the blow-up

a > 1. On the other hand, if o < 1, then le up(z1) = 0o. If a =1, then u}(x2) is bounded.

For the proof, see Section 3.6.

Remark 3.2.9. It is well-known that if u° is decreasing in z, then the blow-up solution u of (2.1) blows
up only at the origin (see [21]). Thus if o > 1, then (ML-2) reproduces one-point blow-up.

3.3 Uniform time step control (Cho-Okamoto)

We shall apply the uniform time increment to (ML-2). Recall that we are considering f(s) = s'*.

Theorem 3.3.1 (Convergence of the numerical blow-up time, Theorem 4.13 in [15] and Theorem 3.4 in
[11]). We define a strictly increasing function H : R — R such that

1
lim H(s) = oo, lim 7log (H_l ()) =0.
5—00 T7—0 T
In addition to the assumption Theorem 2.2.6, we assume Assumption 3.2.1 and 7 = ¢ 2(16711)}’2 where § €
(0,1]. We adopt the uniform time step control
T =T. (3.7)
We then define the numerical blow-up time 7T}, by

Th = npT,
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where nj;, € N satisfies
TH(|Jup" Hloo) <1, TH([[up"[loo) > 1.

Then for the solution of (ML-2) we get
hm Tj, = T,
h—0

where T, denotes the exact blow-up time for L* norm of (2.1).
Since we can prove this similarly as Theorem 3.2 in [11], we omit the proof.

Remark 3.3.2. Theorem 3.2.4 does not impose the assumption that [|u(t)||re(r), [|u(t)|| and I(u(t))
blow up simultaneously, but assumes Assumption 3.2.1.

By uniform time increment, we can find the boundedness of LP norm of the exact solution.

Theorem 3.3.3 (Boundedness of LP norm, Theorem 4.16 in [15]). For 1 < p < co, we assume that

li =M <
imsup max [lur |l 00,

where 7, ny are defined in Theorem 3.3.1 and

ol ={ [+ ot o}

Under the assumption of Theorem 3.3.1, we get

lim sup [|u(t, )|, < oo,
t—Too

where T, denotes the blow-up time for L> norm of (2.1).
Since we can prove this similarly as Theorem 4.16 in [15], we omit the proof.

Remark 3.3.4. It is known that

Na
lim inf M, = e
iminf{lu(t, )|, =00, p>—-,
. Na
limsup ||u(t, )|, <00, p<—,
t—Ts 2

(see [21]). For the case of p = &2 see [43].
Without the knowledge, we can predict the boundedness of LP norm of the exact solution from numerical
experiments.

In numerical experiments, we set H(s) = s*.

3.4 Adaptive time step control (Groisman)

We still assume f(s) = s' 7. We shall adopt the time step control in Groisman [23]. Setting my = (¢, dx)
and a;j; = A(¢;, ¢x) in Groisman’s explicit scheme (cf. (1.4) in [23]), we can obtain the following results.

Assumption 3.4.1 (Assumption (H1)-(H2) in [23]). We consider the semi-discrete problem for (2.1).
Find up(t) € Sk, t > 0 such that

(up (), x) + Alun(t), x) = (f(un(t)); x), X € Sh,
where up(0) € Sy, is given. We assume that for any 0 < T < T,

= | e (rx 0.y — 0 (b — 0) and ||(u — up)o||(T) = 0 (b — 0).
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Theorem 3.4.2 (Convergence of blow-up time, Corollary 2.1 in [23]). Under the assumption of Theorem
2.2.6 and Assumption 3.4.1, we suppose that the solution u of (2.1) blows up at finite time T, in the
sense that

lu(-,t)| ooy = 00 and |lu(-,t)|| = 00 (t = T —0). (3.8)

The time increment 7, is iteratively defined as

1
Tn = Tp(h,7) =7minq 1, ———— 5| 3.9
(7) { <1,u2>1+a} 39

where we have used the solution u} of (ML-2). Moreover, assume that

Tn < min i (3.10)
0<i<m—1 a; ;
and
VI < Tw, limlim sup |K(u(-,tn)) — Kn(up)| =0. (3.11)
h—0T7—0 0<t, <T ’
For small h and 7, we then have
(oo}

Thr = Z%rn < oo, lim lim T, = Tow. (3.12)

Remark 3.4.3. Theorem 3.4.2 means the convergence of an iterated limit.

Remark 3.4.4. For the same time increment and the solution u} of (ML-2), Lemma 2.3 and Lemma 2.4
of [23] show that
lupllpo(ry ~ (Lup) ~n, if luy|lLe 1) > &,

where f ~ g is defined by
cg < f <Cg, (cand C are independent of f and g)

and
p—2

=1
min  my
0<k<m—1
m—1 p—1
k=1

Theorem 3.4.5 (Blow-up rate for numerical solution, Theorem 2.2 in [23]). Under the same increment
T, as (3.9) and (3.10), we can get

Q=

i=1 k=1

im [[ul|| o 1y (Thyr — ta) Y/ = Cy = (1/a)V/°,
n—o0

where we have used the blow-up solution u} of (ML-2).

Remark 3.4.6. We assume u® > 0, u2 < 0 in I and «°(1) = 0. It is well-known that

lim  u(0,t)(Ta — )/ = C,,

t—Toe —0
if (u%)zz + 2 (10, +ul|ul|* > 0in T and N =1, 2 or a+ 1 < F£2 when N > 3 (see [21]).

Theorem 3.4.7 (Numerical blow up set, Theorem 2.3 in [23]). For the time increment (3.9)—(3.10) and
the blow-up solution of (ML-2), we define the set B by

B = {.] : nh_?olo u?(Th,‘r - tn)l/a = Oa} .

We assume that if d(j') < d(j), then

up (z5) < up(z;) for any n > 0,
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where
d(j) = min |7 — j|.
(4) = min | - j|

Then uf (x;) — oo (n — 00) holds true if and only if d(j) < K holds, where
1 .
K= {J and |-| denotes the floor function.
a

If d(k) < K, then we can get

)

n ~ (Th,T_tn)_%+d(k)v d(k)?é
i) {logmﬁ—tn)? d(k) =

Q=R =

For (ML-3), see §3 in [23].

3.5 Numerical examples

In this section, we introduce some numerical examples about the asymptotic behavior and numerical
blow-up time of (ML-2).

First, we observe asymptotic behaviors of (ML-2) with adaptive time increment (3.6). We calculate
the following quantities:
u™t —u?
izl il

ratioi = 1=1,---,4.

n
Ui q

with uniform spatial mesh m = 20, 7 = th7 u?l =II,u’, and v = a.

Evaluations were performed with three parameter sets:
Case 1 N =3, a =2, and u(0,z) = 6cos Fx;
Case 2 N =4, a =1, and u(0,7) = 100(1 — z?);
Case 3 N =5, a =1, and u(0,z) = 8000(e~" — e 1).

We compute them until [[u}}|| o) > 105. Note that by Theorem 3.2.6-3.2.7, Case 1 blows up only at
the origin, Case 2 blows up at two points, and Case 3 blows up at three points. From Fig. 3.1, we
see that ratio_1 converges to a positive constant in Case 1 and Case 2, which means that uj increases
exponentially. On the other hand, ratio_2-ratio_4 converges to 0 in Case 1 and Case 2, which means that
rates of increase in u?,--- ,u} are decreasing. In Case 3, convergences of ratio_1-ratio_4 are slow.

Secondly, we compute the numerical blow-up time of (ML-2) with uniform time increment in Theorem
3.3.1. We adopt the increasing function H(s) = s in Theorem 3.3.1, 7 = m%ﬂ with uniform spatial
mesh, and u) = I,u’. Here, we set h = 1/m (m = 16,32,64,128). For a comparison evaluation, we
executed FDM of Chen [8] and the FDM of Cho and Okamoto [15].

Evaluations were performed with three parameter sets:

Cased N =5 a= %, and u(0,z) = 13 cos x;

Case 5 N =4, a =3, and u(0,r) = 3(1 — 22);

2

Case 6 N =3,a =3, and u(0,2) = 2(e™® —e71).

These settings correspond to critical, super-critical, and sub-critical cases, respectively; see [27] for ex-
ample. The solution of Chen’s FDM blew up later than the other schemes, whereas that of (ML—2) blew
up sooner than the other schemes (see Fig. 3.2).
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Figure 3.1: Asymptotic behaviors of (ML-2) with three parameter settings
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£ £ S 0.029 F
o o o
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Figure 3.2: Numerical blow-up times with three parameter settings
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3.6 Proof of Theorems

We introduce a lemma to prove boundedness of sequence.

Lemma 3.6.1 (p.461-462 in [8], Lemma 4.7 in [14] and Lemma 4.10 in [15]). We define a sequence {z,, }
of non-negative numbers by

Tna1 < ApZp + Bp, 2o is given.

IfA,>0, B, >0, H A,, < oo and Z B,, < oo, then {z,} is bounded sequence.
n=1 n=0
First we show Theorem 3.1.2.
Proof of Theorem 8.1.2. We rewrite (ML-2) into

n+1

U081, o) + uf Ao, 60) +u A6, 60) = () - (1, 60),
nt+l . n
1%7_71%(1’ ¢i) +ui 1 A(pi-1, ¢i) + ui' A(bi, ¢i) + uil 1 A(divr, @) = f(uwi') - (1,04), 1 <i<m—1,

where uf = u}(x;). We set m; = (1, ;) and a; ; = A(¢;, #;). Then we can obtain

a a

n+1 0,0 n 1,0 n n

ug T = (1—Tn >u0—7'n uf + 7o f (ug).
m mo

0

For 1 <i<m — 1, we can get

n+l _ Ai—1,i pn Qi n Ai+1,5 ul
u; __Tnim, u +(1—7, U; — Tn m Uy q +7'nf( )

0 7 0

We estimate

n+1 n+1l _ Q0,0 n a1,0 n n
Uy ' — — Uy = (1_Tn Uy — Tn uy + 7 f(ug)
mo mo

+1 _ u711+1'

ap,1 1.1 az 1
+ 71 —uy —(1—7, ul + 7y uy — 7o f (ul)
my mi mi

ao,0 ao,1 a1 a1,0 a2 1
>(1l—-7m— 47— |ul —|(1—-—7—— +1—— —Tpn—— | U + T uy) — f(u?
> (1m0 g5, 200 ) DL, B0 B ) () - S(u))

We note that f is increasing function and

ay a1,0 az1 a1,0 ao,1
1—7, Tn =1+, ,
mi mo mi mo mq
Q0,0 ao,1 a1,0 ao,1
1—1, T, =1+, + T .
mo my mo my
Therefore
a1,0 ao,1
ud ™t — > (147, T, (ug —uf’) > 0.
mo my
For 1 <i < m — 2, we calculate u?“ - ufj_rll
n+1 n+1 Ai—1,i pn Qii n Ait1,i p n
u, T —u = -y —ul 4+ |1 - uy — T, ul g + T f(u;
7 i+1 n m; i—1 n m; 7 n m; 7+1 n ( 7 )

@, i+1 u” Qi41,i41 n Ai42,i4+1 u”
+ T u — (1 =Tp——— | ui}y "‘Tn‘mi o — T (uiyy)

M1 mi41 i4+1
1 Q541
< Gi—1 +1-— + Tp— Lk ) uy
mz mi+1
Ait1,4 Q41,641 A2 441
( . — W+ LS (2) — ()}
mi41 mi41
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We note that f is increasing function and

Ai—1,5 Qi 41 Ai41,4

Q541

(0737
+
m;

Aj41,i+1
r

—Th +1-m, =147,

m;

Gitli g

mi+1 m;

=14

+ T

Ai41,5

b
mit+1

Q42 i+1
n — Tn
m;

n
mi4+1

n
mi4+1

Therefore
i+1,i

a Qi i1
u;’b-‘rl n+1 > (1 + 7 a0+
m

- uz+1

+ 7

n
i Mi+1
Fori=m
Secondly we consider (ML-3). We can rewrite into

n+1

n
Ug

(1, ¢o) + ug ™ Ao, ¢o) + uy T A(gr, do) =

’I’L

S(1, ) + uft A(gior, b)) +

— Ug

fug)(1; ¢o),

Tn
n+1l _

u.
s ul T A(dy, i) +ul A

Tn

Then

n+1

n
Ug

) A(¢1a ®0) n+1
(1, ¢0) '

(

(1,

( n+l

) = f(ug),

A(d2,¢1)
(1’¢1)

Tn

n+l
Uy

A

_|_ ¢0)¢1)

¢1)

n+1
1

py (ug ot — ) — (uy

For1<i<m-—1,

n+1 n
Uy Uu;

A(¢1 1, ¢z)
(1,69

) A(dit1, ¢i)
(1, ¢i)

A(¢i, biv1) ( A(Pir2, div1)

(1, ¢it1) (1, ¢it1)

uiy (0 <i <m—1). From positivity preserving, w

o (A(¢1,¢0) A(¢07¢1)> w A(¢2a¢l)
For1 <i<m-—2,

Loo) | (Lo (Lo1)
A(pi-1, i) n+1_< A(¢i, ¢iv1)
(1,94) ot (1, ¢it1)

We assume that w?t! min We divide into two cases;

J 0<i<m—2
of 1<j<m-—2.
(i) The case of j = 0.
We can obtain

n+1l
i—1

n+1

i

+ (u

Tn

n+1
Uipr —
Tn

n
Uig1 ntl _
K2

n+1
i+1

) - (u

We set w]* =

n+1
0

+

n

w?+1— 7
+

A(Piy1, Ps)

n+1
w; .

+

Tn

n+1 n
w — Wy

A(91, ¢o)
(17 9250)

A(¢Oa ¢1)

n+1 A(¢
(L 1) *

)i

A(pa, ¢1)
(la ¢1)

3

Tn
{1 _ (A(¢1,¢0)
(17¢0)
Thus if 7, < _A((;j,;?l)’ then wg”rl > 0.
(ii) The case of 1 < j <m — 2.

(1
By wg > 0,
Ao, 1)

T e

We can obtain

n+l
wj

n

A(¢j—17 (rb]) n+l
(17¢]) J

A(pjs1,05)
(17 ¢J)

A(dj, dji1)
(17 ¢j+1)

+

w -
Tn > J
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(i1, ¢i) = f(u

n+l

(u

(Biv2; Pit1) ni1

) wnﬂ—i—A

Qi i+1
+ Tn .

i mi41

)t =) 20

— 1, we can obtain u;fr_ll >yl = 0 by positivity preserving.

i),

n+1y _
2

n+l

n+1ly
; =

i+1

n+1l _  n+l
1+1 uz+2

) = flu

7+l > (. Then

Wyn—1

1= fug) — flup).

i+1

(1, ¢it1)

the case of j = 0 and the case

25 ¢1) wg-i—l Z 0

7¢1)

R

n+1 + A(¢j+27¢j+1)wn+l > 0.

J

(17 ¢j+1)

= f(u)—



By wi >0,

A ADi—1,05) | Alj+1, ;) A(¢jv¢j+1)_A(¢)j+2,¢j+1)> }Hl
{1 ( o) (o) (Lop) | (o) )M =

-1
: A(gj—1,05)  A(djt2,$j+1) n+1
Thus if 7, < (— o)) o) ) , then w?™" > 0.

From (i) and (ii), we can get w)™ >0 (0 <4 < m — 1). O
We shall show Remark 3.6.
Proof of Remark 3.6. First we show that if (3.6) holds, then (3.3) holds. We know that

( 7¢Z) 62 2 62 2
o<i<m—1 A(ey, b7) 2Nyt 2(N+1)h '

For 0 <i <m — 2, we get

—1

_ Tit1  ,N—1_1 Tit1 ,N—1_1
<_A(¢7,¢7+1) A(¢1+1,¢1)> 1 > frl r h12+1 dm f’tl x h/12+1 dw

Lon)  (Lo) [N g (@) da | T N g (a) da

From direct calculation, we can obtain

o gNTlg(x) de g
Ti—1
[ aNlei(x) da 1
= 1<i<m-—1). 14
[TEEN-T gy >Ny sism-l) (3.14)
From (3.13),
f;j“ N1 dg 1 _
T N1 (2) da 12, (N+1)B2h2,(1gz§m—1).
T, ? 7
For i = 0, we can get
aNldr 1 1
v igazm - VT < (W Dap.

Combining the above inequalities, we can get

[ittaN"tdr N+1

< 0<i<m-—2.
S Ny da Wy~ R S

From (3.14),
[t e da 1 2 N+1
[ aN g (@) do b,y © PRE S R

0<i<m—2.

Therefore

<A(¢u¢i+1) B A(¢i+17¢i))1 S B*n?
(1, @it1) (L, ¢i) 2(N +1)

We show that if (3.6) holds, then (3.4) holds.

(1,01) 502 aN g (a 512 Ny (x) do

) dx
- - x2 > x2 _ .
A(¢2, ¢1) J.laN- 1% dz [l aN=1da 2

By (3.14), we can obtain
*22N=1g) (7) dx 1

] >
[T aN=1 dg N+1

1
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Thus

(1,¢1) 1 272 1 212
— > h® > ——B“h°.
Absior) - N+10 7 AN’
For1 <i<m—2,
_ T N—1 1 Ti+2  N-—1 1 -1
<A(¢zla¢l) B A(¢i+27¢i+1)) ! > fmf1 z h? dx + fzi+1 x h?+2 dx
(1, 04) (1, piy1) f;fl eN=1¢p;(x) dx f;:f eN=1p; 1 (x) da

From (3.13) and (3.14),

€T —
[T N dy
Ti—1

f;ﬂ_l eN-1¢;(x) dz

[FerzgN=1 dy

Ti41 .

s <N+1,1<t1<m-—2.
f;:f N1, 11 (z) dx

<2< N+1, 1<i<m-2,

Thus

B2h2, 1<i<m-—2.

(_A(¢i17¢i) A(¢i+27¢i+1))1 5 1
x

1,¢) (1, ¢i11) N+1)

We shall show Lemma 3.2.3.

Proof of Lemma 3.2.3. We show W]” >0(0<j<m-=1, n>0) by induction. We assume that
Wi>0 (0 <j <m—1) holds true. Then we show W;“Ll >0 (0 <j<m-—1). From definition of wi,
we get

wrtt _wr 52 — 52 uV e (g1t
J i _ j J+(1_a)(ﬂ ) () 0<j<m-—1).
Tn Tn, Tn
’LLT-L+1—u7~L
We set Vj": +——=. Then
WnJrl o W-n u’(t+1 14+a _ u™ 1+a
Q:ﬁvjmru_a)(f ) (w5) 0<ji<m-1).
Tn Tn
From (ML-2),
u T —
JTinj — (52u? + (u?)l"'a (0<j<m-1).

Thus W7 = V" —a(u})' > (0 <j <m—1).
We can obtain

+1 n +1\1+o n\l+a
Wit — W —62W”:52V”+(1—a)(u? Y — (u)tt
J J

Tn Tn -0 (an - a(u?)l—i_a)
(urp-i-l)l—i—a _ (un)1+a

=(1—a)—2 J

2 1
- + ad {(u;) toy,

ntlyita (o nyl+a
First, we estimate i) ()

. From mean value theorem and Wj” >0for0<j<m-—1, we

Tn

get
n+1\14+a n\l4+a
u" — (u"
LT DT Sy e
Tn
Secondly, we estimate 6*{(u})'T*}. We set m; = (1,¢;), aij = A(¢s, ¢;). For the case of 1 < j <m—1,
1 1 1
2 n\l+a n 1+a n\1l4+o n 1+a
4 {(Uj) o) = _7777/]‘ aj—l,j(ujq) o 7mj aj,j(uj) o *mj aj+1,j(“j+1) *
1 e
= — {0515 (W) = (W) + g () = () )}
J
1

= {=a; 10+ a)(@])* (ufy —uf) 4+ aj_1;(1+ ) (@] )" (uf —uf 1)},
J
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n n .
where 47, and 4}, satisty

Thus
n « 1 ny«x n n nyo n n
52{(“;‘ )H b > m; {*aﬂ-l,j(l + a)(“j) (“j+1 - “j) +aj1;(1+ a)(uj) (Uj —U;_
= (14 a)(u})* o (u]).
For the case of j =0,
1
62 n\l+a — _ n\l+a _ n\l+a
{(ug) } 7m0 ao,0(ug) 7m0 aio(uy)
1 n « n «
== 0‘10,0{(%)1+ (up)'* }
1 ~T « n n
= ——apo(l + 0‘)(“0,1) (ug —uy),

where ug | satisfies

Thus

From the above estim

n+1
W =W ewr > (- )1+ @) @)V + a1+ ) ()6 (ul)
J — J J J J

Tn

Here, we can see that

(1—-a)V]"+ a52(u?) =(1- a){52(u?) + (u
— () + (- )

8 {(ug) 0} > —mioﬂbo,o(1 + ) (ug)*(uf — ul)

= (1 + o) (ug) 6% (up).-

ations,

n

= (1+a)(u)*{(1 = a)V}" + ad®(uf)}.

= Wf.
Therefore
wrtt—wre
J n
p =W > (14 a)(u
We can obtain o
Wit — W a
2o 70 4 ﬂWO” 4
Tn mo mo
Thus
W(’;l+1 Z Won _ a070
mo
a,0
> (1 — —=1,)W}.
> (1= 20w
For1 <j<m-—1,
n+1
Wi =W Gt Gdgyn
Tn mj J—1 ’I”I’Lj J
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n

R

aj+1,5 n

J

Jj+1

)Y + ad® (uf)
)1+0¢

J

BOWr > (14 a)(ug) W'

TaWo' + (1 + @) (ug)* W'

> (1+a)(uf)”

wi.
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Thus
n+1 n n n\« n
Wit 2 W= SR W (14 ) ()W

J
J

z<1n>wm
mj

From the time step condition, we can get W;L“ >0(0<j<m-—1). Since uy
ot = llup oo,

*1is a decreasing

function, we get uj where || - ||oo denotes the L® norm. Thus

+1 1
o e = Wloe _ 5 i

Tn Tn

We will prove Lemma 3.2.4.

Proof of Lemma 3.2.4. First, we show Ty, < liin igf Ty, = T, by contradiction. We assume that Tp, > T.
—

Then we can take a sequence {h;}?; such that h; — 0 (i — o0), and
Thi ST*+6<TOO;

where § = (T — T%)/2. Thus [Ju |[Le~ () — 00 (n — 00). Since T is the blow-up time of u(t, z), we
can see

max ||u(t)|lee < o0,
0<t<T,+5

where [[v][oc = [[v]| Lo (7). However uj; satisfies
: n
nlgr;o g, [|oo = 0.

This contradicts the convergence property of (ML-2).
Secondly, we take t € (0,Tw) such that ||u(t)||cc > 2. Then there exists hy > 0 such that ¢t < T}, for
all h < h;. From the convergence property of (ML-2), there exists ng(h) € N such that
HUZO(h)”OO >1,0< tno(h) < £7
|t~— tng(h)' <T.

We set vh = uzo(h) , v(t) = u(t +t). Then we define the blow-up time T2 of v by

T =Ty —t.
Similarly we can define the numerical blow-up time 7}/ of v}’ by
Ty, =Th — tpy(n)-
Then we prove

lim T30 = T, (3.15)

If we can show (3.15), then
|Th - TOO| = ‘(Th - tno(h)) - (Too - f) + (tno(h) - £)|
< T = T2+ [tng(n) — 1]
<T@ —T2|4+7—0(h—0).

Therefore we check 14 conditions of Saito-Sasaki’s paper to prove (3.15). In their paper, we set X
L>(I), J(t,v) = ||[vllze(r), and a = 1. Moreover, we define G(s) = as'™®, H(s) = s7 and f(s)

s+ TG(( )) Then we can see that f(s) is increasing function in s € [1,00). In fact,

f(s) = s+ ars*to7,
fls)=1+ar(l+a—7y)s*7.

If @ > 7, then f/(s) > 0. If a < 7, then we can see that f'(s) > 1+ ar(—7"1)1 =1 —a > 0 since
—771 <1+ a—v<1+a. Inboth cases, f is a increasing function. Thus we complete the proof. O
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We prove Theorem 3.2.6. We use || - || as L norm.

Proof of Theorem 3.2.6. (Step 1) First, we can see that lim |lu}||cc = lim u{ = oo from Lemma 3.2.3.
n—0o0 n— oo

Actually, from Lemma 3.2.3, we get

gl

_ n
ke > gz
Tn

Thus |[u}||e is increasing sequence. If |[u}||oo > 1, then 7, = 7 and |Ju} ™|l > (1 + a7)||u}||co. Thus
lim ||uf oo = 00. If ||u}|loc < 1, then
n— oo

n+1 1+«
lloo — oo

[y luilloo > aTllupllod™ = arllup 15 ]lup o,

g oo > (1 ar|Jup]|%) [[uf o

Thus there exists N € N such that ||u}) || > 1. In both cases, we can see lim |juj|l = o0.
n— oo

(Step 2) Secondly, we can see

N ([P
lim —*——=1+47. (3.16)
n=oo luj |l
In fact, from (ML-2), Lemma 3.1.2,
s () ) e
||Uh||<x> (0 " mo mo ug
=147 (n— o0).
. out
(Step 3) Next, we prove lim —- = 0. From (ML-2),
n—00 U
W S (1= el — 1 Sl + ()
ug (T 70 2V~ 70 B2+ 70 ()
We set a,, = Z—i Then
0
uptt (211 +(1- Tnirlll )an = Tn irzlll Zz + ay o (ug)®
a. =
ntl = un (1= 70 52) = Tn e + o (ug)®
Since % < % = G,

(1= 70 222 — 7 )0 — 7 282 + a7 ()"

(1 f'rnifL—’;) *Tni,lloan + 7 (ug)™

an+l S

We assume that there does not exist lim a,. Then from Lemma 3.1.2, we get

n—oo

0 <ga:=liminfa, <limsupa, =:a < 1.

n—co n— 00 o
For any k € (a,@), there exists a subsequence {a,, } C {a,} such that
Qny < Ky Qpyy1 = K.

Then

_ ai1 az 1 aop,1 14+« nE\o
1 Tny, m1 ~ Tngm, mi )a’”k Tny, my + ank Try, (UO )

k <limsup ay,, +1 < limsup

k—00 k—00 (1 — Tny, szoo) — Tny, 2; Oy, + Tny, (UO )a
k4 riter 14 ko7
< = k<K
1+7 1+7
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Thus we can see that there exists a = lim a, € [0,1]. We can get the similar inequality for a:
n—oo

a+alter 14 7a®
a < = a
1+7 1+7

Thus a = 0 or 1. We will prove a # 1.

s (1700, 7 52 4 gl ()

an, ~ ap{(l+7, ‘::lg)) — T (;1100 an + 7o (uf)}
G — Tn%(l —ap) +ay o, (uy)*  C,

G + Tn%an(l — ayp) + Toan(ud)® D,

where
a
C, =a, — Tn£(1 —an) + af}f‘”Tn(u()’)a7
my
aio nyo
Dy, = an + m——an(1 — an) + an7n(ug)".
mo
Then
ao,1 a1,0
Cn— D, = (a, — o (1—ay)+ a,lfarn(ug)a) — (an + T an(1 —an) + an7n(ug)®)
1
1+«
ap,1 ai,o Gnp —a
—(1— _%o1 %, _In T % el
(1 —an)m { oy . an 1—a, (ug) }

We divide two cases: the case of 0 < o < 1 and the case of o > 1.
(i) The case of 0 < v < 1
For z € [0, 1], we can see that

1
1—2< —(1—-2°
r<(1-a%),
<1—x°‘
« .
- 1—x

Thus

ap,1 @10 1—a&
Cp— Dy =(1—ap)m {_m1 — o an — anl — a: (ug)a}

ao,1 a1,0
S (]. — an)’rn {_’rnl — mio - aan(ug)a} .

If a = 1, then a,(uf)* — 0o as n — co. Thus {a,} is a decreasing sequence. This contradicts a = 1.
(ii) The case of o > 1

From1—-a, <1—a?,

o1 A1, ,
Co=Da < (a9 910 g ]
my mo
Similarly we can see that {a,} is decreasing sequence if we assume that ¢ = 1. In both cases, we can
obtain a = 0.

(Step 4) Next we prove
lim w7 = oo when 0 < o < 1. (3.17)

n—o0

From the positivity preserving, we can get

ap,1 a1,1 as 1
Wt =, 2w+ (1= 7, uy — 7, ul + 7 (uf)tre
1 0 1 2 1

my m m

ap,1

)

a1
ug+(1—7, uf.
mi my
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Thus

ao,1 a1,
uttt — > 7 —ug + —=ul ).
1 12 " Tn 0 1
my m
n

u
Here since lim —il =0, for all € > 0 there exists N € N such that ~+ <€, for n > N. Thus u} < euf,
n—00 U

for n > N. In this case, we set € < —Z‘;—’i. Then

ao,1 ap,1
R T +e—= | ug.
my my

Since o < 1, we can get Tyuj = Wu{} > 7 for sufficient large n. Thus
(0]

ap,1 a1,1
uttt > [ e )
my my

We can obtain lim u} = oo.
n—oo
n

/L[/ n
T = (14+7)* 1 for 0 < a < 1. Weset w, = —dr. Then we can

(Step 5) We shall show lim

n+1
n—o0 1
see that 0 < w, < 1 for sufﬁ(nent large n. We assume that liminf w,, < limsupw,. Then there exists
n—oo n—oo
r € [0,1] such that liminfw, < r < limsupw,. Thus there exists a subsequence {wy, } C {w,} such
n—oo n—00
that
e ST T < Whyg1-
We can get
upt < ru’f’“"'l, ru?"+2 < u""'H

mi1

We shall estimate u]*** — {1 — Top 2L 7, (u?’“)“} ut*. Then

+1 a1,1 +1 a1,1 +1
uf {“wm e () P > T T SR ()
1 1

a1
— (1 — 7+ 7rTh, - — 7Ty, (uf*)® ) ’1’”1

On the other hand, we will estimate u}* ™ — {1 — Ty 2L+ 1, (U }u;”“ Then

nkm

ne+2 +1\« ne+1
ulk _{1_Tnk+1m +Tnk+1( 1 ) }ulk
ai1 X
< unk+2 (1 — T+l m ) ru ?kJr - Tnk+1(u?k+1)a+l
1

ai,i
<|1—7r+rmm,41 ulkt?,
my

Therefore
ni+1 a1 nk 1 ng ng+1
Uy {1 - "k mi + Tny, (ul )a}ul {1 —r+ rTnk mi — I'Tpy, (ul ) }u
ng+2 np+1yaq,, ne+1 ng+2
Uy —{1- Tnk+1 + Tog+1(uf* ) buy (1-r+ TTnk‘Fli)ul
We define
nE+1 _{1_ ﬁ—F ( nk)a} nk
. Uy T"k mi Ty (U U1
A= lim W T oy g e L
U™ = {1 = Ty 1 5+ Tager (™) g
Then
ao,1 a2 1
A— I “Tnkm, UG" = Ty o ma us"
- ki)m ag,1 . nEp+1 as1 mnp+1
X =Tne+17"0 uO — Tng+17,, m1 Uy
a0, ug® a2 uy ¥
li Tny, mi un"Jrl mi un"Jrl
1m Y
k—oc0 The+1 _ao,1 G2 u2
mi my ugk‘H
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Tk

Since lim OH = (1+7)7}, we can get
k—00 ug"‘"
nr+1lya
-
m = W) e koo
Tnp+1 (U’O )
Since - -
Ua Uy
0< =5 < e =0 (k — 00),
we can get
N
2 —
k1—>oo unk—’_l 0.
Similarly since
gk-‘rl u"l’bk"l‘l
0< < (k — o0)
ugk-i-l u’ﬂk"rl
we can get
ng+1
2 —
k:l—>ngo unk+1 =0
Thus
A=(1+7)t
We can get

1—r+rrn, 2L —pr (ul*) u”’““
(14 7)*"1 > limsup { e o ln)é
o P TR W T

= limsup wy,+1 > 7.
k— o0

On the other hand, there exists a subsequence {wg,} C {wy} such that
Wy, > 7T, Wrq1 ST
Similarly we can get r < (14 7)*~ 1. Thus r = (14 7)*~!. This contradicts the arbitrariness of r. Thus
there exists lim w, € [0,1].
n—oo
We can obtain

0T 0 ()

m =(1+7)t
L T¥ S o T e B

By setting v, = —7, 53t 4 7 (uf)®, we can get

i (e U o S T
u?+2

+1 — + 'H.+1
(14 Yny1)uf (Gl (14 Y1) W

1- (1 + ’Yn)
L= (1+Yn41)wWni1

= Wnp+1

We set w = lim w,. From hm Yn = 0, if w # 1, then hm wy, = (1 +7)*" We will show w < 1 by

n— o0
contradiction. We assume that w = 1. Then
$n
lim =1+t <1,
n—so00 fn-i—l

where &, =1 — (1 + v, )w,. There exists p < 1 such that
&n

£ < p, that is, p~1&, < &,41, for sufficiently large n.
n+1

66



On the other hand, from w = 1, we get lim &, = 0. This contradicts p~'&, < &,41. Thus we can get
n—oo

=+t (0<a<]).

lim
n— oo u?

n

(Step 6) For o > 1, we will prove nli_}rn u—ll = 1. From (ML-2), we can get

oo u;‘JV
n n
ap,1 ug aii U a1 U
1= —7, n(j_l +(1-7, + Tay nil —Tn nil.
mi uy my Uy m1 uq
We estimate the right hand side of the above equation.
. ap1 vy Q1 T Uy
7, 2t - _
my u my (uf)® ul
—ap,1T 1 1
my (ug)(y—l u711+1
Here we can get inf u} > 0. In fact,
neN
a
n+1 n __ 0,1 n 1,1 n 2,1 1+«
up T — U] = — Ty Uy — Tn Uy —Tn 2 + Tn(uf)
my 1 1

\%
|
3
Y
3 §
= )_.
2
+
>_.
v

n

uy .
From lim —” = 0, for any € > 0, there exists N € N such that —}l < € for n > N, that is, u} < eug.
n—00 U

Thus

ap,1 ai,1
u?"'l ul > 7 [——= —¢€ ug -
mi my

Since we can take € < —%,

ap,1 a1,1
u > 71N | — —e—= ué\'
mi mi

for n > N. In particular, imlf\I uf’ > 0. Therefore
ne

ao,1 Ug —ap1T 1 1
~Tn ni1— 7 — 0 (n—00).
my uf mi1 (uf)*~ ! inf uf

neN

Since uy < uf, we can obtain

. a1 Uy
lim | —7, nil =0.
n—oo ml ul

un
Therefore lim 711 =1.
n—o00 U{H_

(Step 7) Next we prove lim =1 for « = 1. Since

uy
n—00 u?"'l

n n

a) M1 021 U
n n K
u?f—&-l m u111+1

. . a ug
we will estimate —7, 72—
1

ap,1 ul ap1 T
— T —= n3—1:7 -1 — 0 (n = 00).
mq Uq mq Uy
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Here we used nl;ngo ul = oo for 0 < o < 1. From order preserving property,

@21 ug

n+1
1

Tn — 0 (n — 00).
mi1 u
n

. U
Therefore lim n—lﬂ =1.
n—00

We shall summarize the above results: For a > 0,

. Uy min(1,0)—1
HILH;O W =(14n71) , (3.18)
1
li 9L gy 8
n—oo @ B nlaoo u”""l u"
n 0 1
n+1 n
= lim ! Yo
T nSoo ul utl
1 0
= (1 + 7))~ min(La), (3.19)

(Step 8) Finally we prove the boundedness of {uf'} for & > 1. We can get

n+1 _ ao,1 ar, o n a1 n
uy = —mp—=uy+(1—-7, +Tay, | uy — T, —uq
my my my
ag,1 a2 1
< —Tp——ug — To——ug + (14 Tag )uy
my my

a
= P00 (1t ra)ug = Ay + By,
1

o0 o0
where A, = 1 +7a2 and B,, = T%(ug)l—“. If we can prove H A, < oo and Z B,, < oo, then we can
n=0 n=0

see that {u]} is bounded from Lemma 3.6.1. Thus we shall show H A, < oo and Z B,, < co. Since
n=0 n=0
n+lyl—a
lim (uon 1)_
n— 00 <u0> @

=(1+nt><1,

o0
we can get Z B,, < oo from d’Alembert’s ratio test. On the other hand, since

n=0

log (ﬁ An> = log <ﬁ(l + TG%)) = i log(1+ 7ag) < iﬂzﬁ,
n=0 n=0

n=0 n=0

(o)
it suffices to show Z Ta, < 0o. Since

n=0

lim 2L — i (a”+1> = (1 +47)"ominte) o1

n—oo a% n— oo ap
oo
we can get Z Ta; < oo from d’Alembert’s ratio test. Thus we can obtain the boundedness of {u}'}. O
n=0

‘We shall show Theorem 3.2.7.

Proof. (Step 1) First we show for 0 < a < 1,

) (un)lfa (1 + T)fohtl -1
nhj;o Oun = — o (< 00). (3.20)
1

ma
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From (ML-2),

n+1 1
uy aoa (ug) 11 2,1 Uy o
n T n +{1- n —in on +Tan
Uy mq Uy 1 my uq
Since
n+1
1 o a+1
lim ——— = (1+7) ,

we can obtain

n\l—a
(147t = 7221 1im (UO)n +1.
ml n—oo ’U,l
For 0 < a <1,
()~ _ (L)t 1
nhanclo uf o —r201 (< 00)
my
(Step 2) Secondly, for 0 < o < 1, we show
un
lim —2 =0. (3.21)
n—oo U
We set ¢, = Z—% Then
1
ai2 Uj 1,2 Ua mya U3
Cn+1 < —Tn ) un+1 + {1+ n ) nt1 + Tn(UQ) nt1
1 1 1
ai,2 /u’?l’b nya ’U’Tll
S —Tnm72u?+1 + (]. + Tn(UQ) )ch

n n\ &
Since 7, — 0, —tr — (1 + 7)1 (n — 00) and 0 < 7, (uh)® < (%) — 0 (n — 00), we get
0

uy
limsup 1 <0+ (14 7)* Hlimsup c,,.
n— o0 n—00
Therefore lim ¢, = 0.
n—oo
(Step 3) Next we shall show the following four equations by induction: Letting o < % and k € N,

o forj=1,--- k,

nh—>Holo uf = oo, (3.22)
Jim —a = (14 g)minie) (3.23)
U;
. foroz<%andj:k,
( n) 171(j7_1)a
u” —Jo
lim ————— € (0, 0), (3.24)
n— 00 ujfl
um”
lim 1 = (3.25)
n—oo U’

j
Before we prove these properties, we show that if (3.22)—(3.25) hold true, then Theorem 3.2.7 holds
true. We assume that (3.22)—(3.25) hold true. Then for k%rl <a<4,if j <k, then lim uj = oo by
n—oo
(3.22). On the other hand, for j =k + 1,

n [e3
ntl Ak k+1 Ak, k+1 Up41
U < =Ty up + (147, Up 1+ T - Up 1

Me+1 me+1 0

A k+1 Ak k+1

< —Tn UZ+<1+Tn Uy TanUE

+ +
M1 ME41
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u
where a,, = o Thus
0

Ak k+1 p

ntl up 4+ (14 7ap)up, -

Uy

S —Tn
Mg+4+1

To show the boundedness of UZle we show

o0 oo
Ak k+1 a
E — u < 0 | I 1+7a)) < oo.
< Tn Mkt k> ) ( T n)

n=0 n=0
Since
Tn+luk+1 . ug * ’LLZ+1
1 lim P} —
n—oo Tnuk n—o0 UU uk
= (1+7)"%(1 4 7)” minhka)F1 (.. (3 16) and (3.23).)

oo
a
we can obtain Z (—Tnk"kﬂuz < 00 by d’Alembert’s ratio test.

"0 Mg+1

Since

log ﬁ(l +7al) = i log(1 4 7a%) < i Tay,
n=0 n=0

n=0

o0
it suffices to show Z Tag < co. From (3.19), we can get

n=0
ap .
lim —42 = (1 4 7)7min(be)e <,
n— oo a%
oo
Thus we can get H (14 7ay) < co. From the boundedness of {uy, }, we can see that if lim u] = oo,

n— oo

n=0
then j < k. Hence if (3.22)—(3.25) holds true for all £ € N, then Theorem 3.2.7 holds true.
(Step 4) Hereinafter we prove (3.22)—(3.25).
First, we see that (3.22)—(3.25) hold true for k = 1.

ForO0<a<1,
nh_>ngo uf = o0, (" (3.17))
lim ’Uil _ (1 n T)min(l,a)—l ( . (3 18))
n— 00 u?+1 R ’

Thus (3.22)—(3.23) hold true for k = 1.
ForO0<a<1landj=1,

1

n\i—a n T—a
T s DR Py (R
n—00 ug n—o00 (ug)l—oz

_ (W) <o (- (3.20).

Thus (3.24) holds true for k = 1. Moreover, from (3.21), we can get (3.25) for k = 1.
Secondly we assume that (3.22)—(3.25) hold true for all number less than k + 1. Then we show

3.22)—(3.25) hold true for k + 1. We show lim u?,,; = oo for o < —. From (ML-2 ,
k+1 F+1
n—o0

Ak, k+1 41,k+1 e .
UZI% > 7, (1 — Tn++> upq (. Positivity preserving.)
ME4+1 ME+4+1

- Fr —(k—Do —i—Da
ki1 [ (up)TF i (ug) 5 | " (uﬁ)1 =l py A=t Da
= —7 = - 771 (uk) 1—ka
Mik41 U uy up_

Af41,k+1
+ (1 _ Tn++> up, ;.
MEk+1
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Then from (3.24),

« 2 1—(k—1)a m

1 d1—a T—a
n\i—a n\i—2a n I—Fko
L oy Mkt (uf )n (Ug)n % (= M) < .
n—o0 Mi+1 Ug Uy uk,1
Moreover by (3.22),
lim (u}) SR 0

Since lim inf qu_ll > M +liminfuy , we can get liminfuy,; = co. Thus (3.22) holds true for £ + 1.
n—oo n— oo n— oo

Secondly, we show (3.23) for k + 1.

_ Ok,k+41 Ak+2,k+1 , n )

n+l o Ak41,k+1 n n\o n n __
Ykt {(1 L=y ) Upyy + Tn(uk) }uk n ( s Uk s Ck+2

n+2 _ Ap41,k+1 n+1 n+1\q n+1 o _ Gkk+1, n+1 _ Gk42.k+1, N+l
Uky1 {(1 Tn+1 Mk41 ) Ukt + Tt (uk ) }uk Tn+1 ( Mk41 U Mk41 uk+2>

— (14 7)1l (5 5 o0).

Here we used the following equations:

lim —" = lim (“g:1>a:(1+7)a, (- (3.16))

n—00 Tpiq n—o0 Uq
UTL b
lim —%— = (1+7)*= 1 (- (3.23
Jm = (e (2 3.29)
Moreover,
uyy uy
. k+2 . k41
0 < lim sup | < lim sup P
n— o0 Uk n—oo Uk
uy u
. k+1 Ug
= lim =0. (" (3.23) and (3.25
Jim S = 0. (2 (329) and (325))
u” un+1
Thus we have lim k+? = 0. Similarly, we can get lim k+21 =0
n—oo UZ+ n— oo UZ+

Now, we set w,, = &£ Then we shall prove the existence of lim w,. From (ML-2), we can get

s =300

Ak k+1 Qk41,k+1
uZI%—uZH > -1, * uZ—TniJr + Upyq-

MEe+1 Me+1
n
L U .
From lim ——= =0, for sufficiently large n,
n— 00 u}’g
Ak, k+1 Ak+1,k+1
—Tp———Up — Tp—————up 1 > 0.

k n
MEg41 ME4+1

Thus 0 < w,, < 1 for sufficiently large n. To show the existence of lim w,,, we assume that
n—oo

lim inf w,, < lim sup w,,.
n—oo n— oo

Then there exists € (0,1) such that liminfw,, < r < limsupw,. There exists a subsequence {w,,} C
n—oo n— 00
{wy} such that
Wn, 7y 7 < Wpjyt1-

Thus
nj < n;+1 n;+2
uk-‘,—l ~ Tuk+1 5 ’I"Uk+1 < Uk+1 .
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3 : nj+1 Ak+1,k+1 nj \« nj
We will estimate u,% ;" — (1 =Ty T Ty (W)Y ) gy

ni+1 Ak41,k+1 nj \a n; nj+1 - Al+1,k+1 n; \« njt1
Upyy — (1 — Tn, — 4 Toy (U ) ) Wty = uy —r (1= T, —— + 7o, (5 )" ) ey

’ Mp41 ME+1
Af41,k+1 i i+1
= {1 —r (1 — Th, “kALkAl Tn, (quH)O‘> } quH .
ME+4+1

. n;i+2 Ap41,k+1 ni+1\q n;+1
On the other hand, we estimate ;% ;" — (1 = T e T T ()Y ) wd

n;j+2 Af41,k+1 nj+1\ nj+1
T — <17'nj+1 + Ty (upy )™ ) wl

mE4+1
Qk41,k+1 n;+1 n;+2
- {1 - (1 = o1 ——— + Ty () ) pugdy
MmE4+1

Here we can see that

W (1, e o))

k41 Mt
A:= lim
j—o0 nj+2 o 1 _r Ak41,k+1 + T (unj-'rl)a unj-‘rl
Urt1 i+l T i1\ k+1
_ Ak, k41, 5 Ak42,k+1 , T
= i i g Yk T T ey k2
e . Gerr, nytL S A
n;+1 mp11 k n;j+1 Mhi1 k42
We can obtain
uy’ ka—1
1 — a— ..
Jim ke = (L) (o (3.28))
T n;+1
. n
lim — = lim = =(147) (. (3.16)).
J=00 Tp,+1 j—o0 uoj
Since
UWlho Uy uy’
T 7 4T 0 (j = 00), ("7 (3.23) and (3.25))
Uk uk
we can get
uy’
lim —*2 =
Jj—oo unﬂ
Similarly, we can get
’I’LJ‘+1
lim k+i1 =0
Jj—oo ZJ

Thus
A= (1 + T)ka—l(l + T)a — (1 + T)(k-i—l)a—l.

. 41
(1 4 7)EDe1 > i {1 (1o m i + )% it
T > lim sup

j Ok+1,k+1 nj+1 n;+2
j—roo {1 - (1 = Tnjt1 =+ T (u )a) } uphy

MEk+41

= llm SUP W, +1 = T-
‘]*)OO

Similarly, we can take a subsequence {wg,} C {wy} such that
Wy, > 7T, Wrq1 ST
Using this subsequence, we can obtain

(1 +T)(k+1)a—1 <r.
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Therefore
(1 + T)(k-i-l)a—l -

This contradicts the arbitrariness of . Thus we can see the existence of lim w, € [0,1].
n—oo

Next we prove

lim w, = (1 + 7)(k+1)a—1.
n— oo

From above argument, we can get

n+1 Ap+1,k+1 n o n
: Ykt1 T (1 ~ T (i) ) Y41 (k+1)a—1
lim . ; T = (1+7) .
n—oo . n+ Ak+1,k+1 n+ n+
k+1 — (1 T Tl T, Tn+1(uk+1)a) Uy
_ Akl k41 n \a
We set ~,, = T T Tn(uj1)®. Then we can get
n+1 n
ukJrl - (1 + 'Yn)uk+1 _ i 1- (1 + fYn>wn
T2 +1 n :
upyy = (L + Yng)ug I — (14 Yng1)Wns1

We set w = lim w,. From lim =, = 0, we can see that if w # 1, then w = (1 4+ 7)F+De=1 Tf ¢y = 1,
n—oo

n— oo
then

. n (k+1)a—1
lim =147 T
n—00 §nyq ( )

where &, =1 — (1 4 v,)w,. We assume that o < f}-l Then

(14 7)FFba—l g

There exists p < 1 such that
&n

£n+1

< p, for sufficiently large n.
Hence
p_lfn <&n+t1-

This contradicts lim &, = 0. Thus lim w, # 1. For a < 15, we can get

lim w, = (14 7)F+De-1,

n— oo

On the other hand, we assume that & = +=. Then from (ML-2),

E+1-
Ak k+1 Uy Ak41,k+1 (o A2 k1 Ufto
) k ; )
1=-7, n+1 + <1 — Tn + Tn(uerl)a) ntl Tn ntic
Mme+1 Up g Mmig+1 Up1q Mme+1 Up
Since
uy T uy T uy
Tn =0T = e ntl IR
k+1 (ug) Up11 (wl) ™7 Upiq
we consider the limit of —“—. We can obtain
(ug) FHT
Uy, B Uy, k—1 (uy)
T o NI 1 1
(ug) ™1 (up_q)? (up_y)3 (ug) ™1
171(Jf1)a
. . U, I . .
and by (3.24), there exists lim,, % € (0,00) for j=1,--- k. Since o = %_‘_17 we can get

1*(j*1)k++,j

(u;z) - (u?)kﬁ—j k+1—(j—-1)
(u '

n = 1
uj—l ;L )k+1*(1*1)

-1
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o (u) FFI=7 . .
Thus there exists lim,, o 1 € (0,00), j=1,---,k. Since

1
(up_,)FF1=G=D

un
lim —2*— € (0,00),
S )

we can get
n
lim ——— 2
oo gy
(ug) *FT Upiq

o1
Thus if @ = 477, then

n—o00 U‘Z—Jﬁ
For a < ﬁ, we can get
lim k——:j _ (1 +7_)(k:+1)a71.
n
n—oo uk+1

Thus (3.23) holds true. Next we prove (3.24) for a < k—}rl From (ML-2),

n n
ak k41 Up Qft-1,k+1 Up 1 q Oft2, k41 Yo
Zold Tk 1— 71—+ 7n(ug)® + T,

1=-r - .
n+1 mk:+1 n+1

n m n+1 n m
k+1 Upyq Upyq k41 Up g

Here we can get

up 1 up 1 up
k+2 k42 k+1
Tn =il = T(un)a Ee < T(un)a ol =0 (n — ),
k+1 0 k+1 0 k+1
un [e3 un [e3
n a k+1 k+1
To(ug ) =7(— ] <7(—7] —0(n—o00).
U Uy,

Combining these equations, we can get

lim 7, (—a’”““> L

n—o00 ME+1 UZI%

We can get
uy 1 g
Tn =1 = T7 a n+1
Upt1 (ug)® Uy
«@ (3
1 « 1—a T—a 1—(k—Do T—(k—Da 1—(k+)a
_ ) ()T (uy) =22 (ug) 1% e
- n n n n n+1"°
ug uf up_, Upy g up
There exists
1—(k+1Da
N
lim ———— € (0, 00).
Thus (3.24) holds true.
Finally, we prove (3.25) for a < k%_l
un+1 un u™ ul
k+2 Ak+1,k+2 Yg41 Ak+2,k+2 n A\« k+2 Ok43,k+2 “r+3
=7, + (1 —7—= + 7 (up,s) — Th
n+1 m n+1 m + un-i—l m un+1
Uk+1 k42 Uiy k+2 k+1 k42 Ut
n n
Qk+1,k+2 n ey Yk+2 | YE+1
< {_Tn + (14 7 (ujpg0)®) — el
M2 U1 ) Upyq
Thus .
. UZIQ (k+1)a—1 1; Up 4
limsup —=5 < (1+7) lim sup ——=.
n—oo U g n—oo Up4q
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Since a < ﬁ, we can see (14 7)*+De=1 < 1. We can get

uj,
lim sup TJFQ = 0.
n—oo Upyy

Thus (3.25) holds true. Therefore we can obtain (3.22)—(3.25) by induction.

We prove Theorem 3.2.8.
Proof of Theorem 3.2.8. (Step 1) First we show

n+1
lim 2 — =1+
n—o00 ug

From (ML-3), we can get

mo
n+1 n
ap,0 \ U a0 U
<l—|— " ) On n 1n =147, for large n,
mo Uqg 0 0
n+1 n+1
0,0 aioU U
<1+Tn+ i+1) O =1+7
0 mO uo UO
Thus
n+1
lim On =1+
n—o00 Uy

(Step 2) Next we will prove
lim v} = oo,
n— oo

for 0 < a < 1. We shall estimate ug‘H and u}”‘l.

—Tn 22 uf + (1 + 7 (ug)* )ug

mo
ao,o
1+7, -

o (4 () )ug

— @0,0
L+ T

n+1l _
U =

From (ML-3),

20,1 1 01,1 1 a2,1 1 1
T——ug ™+ 1+ 7, uf ™t o = w4 T (e
m mia ma

Thus

ap,1, n+1 az1, n+1l n\a n
Ty % T Ty U2t (1 + 7 (uf)*)uy

147,81

mi1
S (1 ()
- 147,481

mi

ao,1 n a0,0 7
~Tp s (L4 T (uf) ¥ )ug + (14 7 520 ) (1 + T () uff

mo
ai,1 @o0,0
(14 7 (14 7 %0)
ao,1, n n
_TRHUO + ul

(17 nst) (1 2a)
mi mo

Y

for n > 0.

(0]



Thus

+1 0,1 4. . T(Ug)lia ..
liminf «f™" > ——=lim inf + lim inf uf.
T () ()T
Here,
nyl-a 0<a<l
lim inf 7(ug) — % @
a a, —
n—ro0 ( + nﬂ{bll) (1_|_ T 00) T, a=1.
Therefore

lim v =00, 0 << 1.
n—oo

(Step 3) Next we will show

uy

lim a, =0, a, = —.
o

n—oo

We can see that

W1 4, %)
nt1 = ntl ai,o, n+l
U T, W1 + (1 + Tn(ug)a)ug
a
147,22

mo

_Tn(:TO (1+Tn(u0)a)uzi§;1.
1

To get lower and upper bound of a,41, we calculate lower and upper bound of 7

ao,1, n+1 az,1 n+1 n\a\, n
“Tn mi U ~Tn o, my Uy (1 + Tn(ul) )ul

u?“ =
1+ 7,2 —
ao 1 a 1
_ T = Tt 4 (L () )uf
— ai 1
1+ Tnmil
a, a +1
~ Ty STt A (L T (ug)u)
- ao,0 a1
(1722 (14 mt2)
az,1, n+1 nya\,,n
—Tn o uy ™ 4 (L4 7 (uf))ud
+ 14 7,2 '
nm,
Thus
200,1 31,0 a2,1
1 n mi Mo " my n+1

_ u
(1+%§) (1+“m1—j> L+ 7,5

—Tnanill( + T (U ) ) uld —l—(l—i—Tna”)(l—l-Tn(u’f)o‘)u’f

m

(o) (o)

<

We compute left-hand side.

n+1

a0,0 ai, 2a0,0 31,1 21101a10 az,1 20,0 32,1
(LHS) = 1+Tnm +Tnm T Tnmo my n o +T”m1 +7 T me ma
147,82 (147,200
< + n 1 + ’,’Lmo
ao,o aop,1 2a0,0 a1,1 2 40,1 @0,0 200,0 32,1
f1+Tnm T"m1+”mo m1+”m1 m0+nm0 mi,,ntl

ai,1 40,0
<1+ ”ml mo)
1 ao,o ao,1 2 40,0
T Ty~ Ty T Tasy (@11 + a0 +a21) 5 0y
= ul
aii ao,0
(e masd) (rmoe)
1+Tna0’0 — T ag,1

_ mo " omy n+1
= ul .

(o) (145
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Thus we can get

L TR T () + (1 ) (L 7 () ud
n < .

Uy — ao,0 ao,1
L s = Ty

(3.26)

n+1

For the lower bound of u]™ ", we can get

wrt > —Tn L ug 4 (14 7 (uf)*)uf

- 147,481

mi

7922 (—r R+ (L (W)E) (1 4 ()
= a1

(1+Tnm1)(1+ niﬁf) L+ Tnmy

Thus
r20 (=, Sou o (14 7 (uf) )

n miy
(1—|—Tnm ) (1+T”a¢30”)

T et (14 7o (uf ) g + (L4 7 500 ) (1 + 7 () Juf
. (1) (14 mse) |

Here we calculate the left-hand side.

n+1
Uy

ai,1i ao,0 200,1 1,0

1+Tna11 +Tnaoo+ 2
’ﬂ n
(LHS) — mi mo mi1 Mo mi1 Mo u111+1
ai,1 @0,0
<1+Tn "Ll) (1+ ” mo)
ai,1 @0,0 201,1 20,0 2a01a00
1+Tnm +Tnm +, ”m1 m0+ nmi mo , n+l

(rn) (14mte)

ao,0 2 a0,0 2,1

a1
1+Tnm1+nm0 nme ma mtl

1
(1—}—7'”‘21) (1+ ”(ngoo)

Therefore " "
—Tan—f(lJrTn(ug) Juy +(1+anzo)(1+7’n(u1) Yutt

ut Tt > (3.27)

= ai,1 a0,0 _ -220,0 @2,1
1+Tnm1 —l—Tan n omgo my

From (3.26), we can get
<1+ ao, 0) ?+1
Apt+1 = e
T ST (U ) ug
(1+ "m ){ Tn‘:gll ]_—|—Tn(u6l) ) (]_—‘,—Tna;go)(l_i_,rn(uvll)a)u?}
10 {2 (1 () + (14 7082 ) (1 () | + (L + 7 (u)Juf (1 + 7 S0 — 922
a ao,1 a0,0 n
(1 720 ) {m et (1 m () + (14 70222 ) (1 7 () g }

(14 m s - ry 902 4 290200 ) (1 (u) Yy — 70 (147,222 ) (14 7 (uf) )}

<

mo my n mo mi
Since
@0,0 ao,1 2 01,0 G0,1 @0,0 ao,1 2 00,0 0,1
1+7, —Tp——F T, ———— =147, —Tp—— — T ————
mo mi mo MMy mo my mo 1y

_ (1+Tnao,0) (1_’_7_71(11,1)7
mo ma

7



we can obtain

aop

T S (L4 7 () )+ (14 7 222 ) (1 7 ()l

m

Up41 =
(1= 22} (1 7)) — 7o 2 (14 7 ()

nmo

—Tn et (14 7T)ug + (1+Tn - )(1+Ta Yul

(1_Tnm )(1+T)u0 Tnmo

, for large n.

(14 Tag)uy
Therefore we can obtain the upper bound of a1,

S (1 4 7) 4 (1+Tn“°°) (14 7a%)a,

mi

(nt1 < (1 o ) 027 — 7 m2 (1 1 rat)an ) (3.28)
m1 mo
For the lower bound of a1,
ul ! (1 + Tn iz(f) uftt
fnt1 = uf ™t - —Tn i;o(’u?ﬂ (1 + 7 (uf)*)up
_ L Ty > é (. (3.26)),

T (1 7 () ) e

X = (1 —|—Tna0’0> {—Tnao’l
mo 1

where

(1 + 7 () )ud (1 + T ﬂio) (1+ Tn(uf;)a)u?} :

0
a1.,0 ag,1 0,0
Y::_n ) —Tn ) 1 " ny« n 1 " ) 1 " nyo n
20 L B0, 1)) + (14720 ) (14 () |

a ag.o @
(1 ()Yl <1+Tn 47, 200 _ 2900 2,1)'
ma mo mo MMy

We calculate X.

aip ao,1 aio ao,o
X = TS—mO g (14 70 (ug)*)ugy — 7 o (1 + o ) (14 7 (uf)*)uy
a1 ao,o ag,0 42,1
+ 1+, p— + T”mio - T’%miomil)(l + T (ug)™)ug-

Here, we can see that

ai1 0,0 ap,0 a2,1 a1,0 @o,1
1+7, T 7—7'277 7'377
mi mo mo My mo ™My
a1,1 0,0 2@0,0 @21 2 00,0 @0,1
=147, + T, T, T —=
miq mo mop ma mo MMy

a1 ao 0 240,0 41,1

=1+ T—= 47—+,
mq mo mo mi

= (1—|—Tna0’0> (1+Tn 1’1> .
mo mi

1,1 ao,0 nyay. n ai,0 0,0 nyay, n
X = <1+Tnm > <1+7-nm> (1+Tn(u0) )uO _Tnmio <1+Tn m )(1+Tn(u1) )ul'

1 0 0

Thus
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Therefore

(1 728 ) {=m 82 (U () ) + (1470982 ) (L () )t |
Gn41 Z
(1+Tnn111> <1+ néo)(1+7n(u0) Jug — T T (1+ n,ﬁo)(lJan( me)ul
m%wummm%%+@+m%ﬂa+mwﬁ%ﬁ
(1—|—Tn — ) (14 70 (up)*)ull — 7,2 —
~Ta S (14 r)uf + (14 Tn%o) (1 +Tag)uy

= for large n.
L+ 7,5 ) (1 + 1)ul — 7 22 (1 + Ta2)ul
m1 0 m 1

22 (L4 7 () >)ulf

Thus we get the lower bound for a,41,

~n S (14 7) + (147,22 (1+ 7a3)ay

Gntl 2 : (3.29)
(1 + Tt 1) (1+7) — 722 (1 + 7a%)ay
m mo

Next we check the decreasing property of a,,.

Ty (147) + (1 +Tn‘j;;°)(1 +7al)an
Ap4+1 — Qp > —ap

ao 1 <l1,0 o
(1 - ) (1+7) =ty (1 +7ay)an
_Tn,,n (1+T) (1+Tn(:1010)(1+7'a ) — {(1— ‘;’21)(1_’_7—)_7_”0;10(1_'_7_01 ) }

(1 — %) (L+7) = 152 (1 + 7ag)an
Then we calculate the numerator of right-hand side, where we define it by Z.

Z=-7 (1+71a%)a?

ao,1 (1+7)+ (147 6:2’0)(1 +ra%)ay — (1 . ao,1
0

mi mi

) (1 + 7)an + 722
mo

— {_Tnao,1 _ (1 _ Tnao,1> an} (1+7)+ {(1 + Thao,0mo) — Tnao 0} (1+7ad)an
m mo

mi

= —an(147) = 702 (1 — a,) (1 +7) + (1 4+ 7a%)an + antn 22 (1 — an)(1 + 7a2)
mq mo
ao,1 ao a a
=—7——1—ay)(1+ )+an7'n (1fan)(1+7'an)+7'an(an —1).
mq mo

Then we can get

—Tp 2l (1—a,)(1+7)+ anTnjflo (1 —ap)(1+7a%) + Tan(a® — 1)
Ap41 — Ap < L .

B (1_Tnm )(1+T>—Tnm (14 7a%)ay,

From 0 < a,, <1, for large n,

a1 = an) {222 + 220} (14 7) + 7 () (0 — Da

(1— a01)(1+T) (14 Tag)ay,

nml

Ap4+1 — Ap S

Here we can see that
0<ap <a,<1,

for « > 1, and
0<a,<aj; <1,
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for 0 < < 1. We set K = | 1], where || denotes the floor function. For 0 < o < 1,

1—a, <1—ay+al-Ke (1 - aﬁf“”a—l)

K K
_ 1_|_§ aifzoz _ E a}L (-1
i=1

Jj=1

(Y0 ag)
<(K+1)(1—ap).

Thus
l—a, < (K+1D)(1—-ay), 0<a<l.

For a > 1, we can see that
(1= an) { (—222 + 222 (14 7) - (uf)"an }
Gp41 — An < .
(1— &1)(1+T)—Tng°(1+ma)an

Tnm

Since (uf)®a, = (uB)*tuf, if « = 1, then from nhﬂn;(} u} = 00, we can get ant1 — an, < 0. If @ > 1, then

from the assumption lim (uf)® 'ul = oo, we can get a, ;1 — a, < 0. Thus for a > 1, from 0 < a,, < 1
n—oo
and the decreasing property of {a,}, we can see that

a= lim a, €[0,1).
n—oo

From (3.28), we can get
«
0 < (1+a T)a-
- 14T

On the other hand, from (3.29), we can see that

[e3%
0> (1+a%7)a
- 1+

Thus a = a' ™, so we get a = 0 since a € [0, 1). Therefore we can obtain lim a, =0 for a > 1.
n—oo

Next for 0 < o < 1, we shall prove lim a, = 0. For 0 < oo < 1, we can see that
n—oo

r(—a {(—5 + ) 1+ D — ) an )
an+1 — Qp S
(1—7’ m) (1+7) anirlLO(lJrTao‘)

n mq

(1 - a%) {( %01 | —) (K+1)(1+7)— (ug)“an}
(1—Tna01)(1+T)—Tn%(l+7'a%)an .

m

(3.30)

If {a,} is a convergent sequence, then from the same argument as the case of a > 1, we can get

3 ny«x —
nl;rrgo(uo) ap = 00.

Thus

lim a, = 0.
n—oo

If {a,} is not a convergent sequence, there exist a, = liminf a,, and ¢* = limsup a,, such that
n—0o0 n—o00

0<a,<a" <1.
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Then we fix v € (a.,a*). We define subsequences A, B, and A such that

A ={aulan <7},
B = {anla, > 7},
A={an,|an, € A,an,+1 € B}.

We can take a subsequence {a,,} € A. Then from (3.28),

— Ty B (14 7) 4 (14 70, 522) (1 + 703, )an,

mo

)
(17 anl)(]_+7')—7'nla;lo0(1+’ra0‘ )Cln7
)

Qpy41 S

T”Iifil( +7)+ (147 m‘;ol: (I+7y%)y
S0, @01 +7) - 7'»,“(:;(?(14-7'& Nan,

i my

Thus from « € (0,1),
. (T4 7y*)y
] < T
el ml =T,
This contradicts ay,4+1 € B. Thus we can get

lim a, =0, 1.
n—oo

If lim a, = 1 holds true, then

n—oo X
nlL)H;o an (ug)® = oo.
However, from (3.30), a,+1 — a,, < 0 for large n. Therefore

a= lim a, <1.
n—oo

This contradicts a = 1. Thus we can obtain lim a, =0 for 0 < a < 1.

n—oo
(Step 4) Next for @ > 1, we shall show
lim nt1 _ L .
n—oo 1+7

We can see that

. nyl—a/, n\—1 __
nlggo(uo) (uf)” =0.

Thus from (3.29),

| Tt (14 7) + (147 %2 ) (1+ 7ad)an

. . a 1 . . mo
lim inf > liminf —
nTe Gn  meo n (1+ nm) (1+7) = mg (L4 Tai)an
() + (14750 ) (14 7ag)
= lim
oo <1+Tn n;)( +T)—Tnm (14 7a%ay,
1
14T
On the other hand, from (3.28),
1 —Tp 2 (1+T)+<1+Tna°°>(1+7'ag)an
. ’I’TL1 m
lim sup < limsup —
n—oo  dn n—oo Qn (1—Tn(igl>(1"‘!‘7’)—7'“(20(1—‘!‘7'(10‘)0/
—In ‘211 (1+7)+ (1 +7’n(20> (1+7a%)
= lim -
Hw@—mﬁj(+ﬂ—mm(+4ww
1
T
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Therefore 1
lim Intl _

n—oo  ay 147

(Step 5) Next we shall prove that {u}} is bounded above. From (3.26),

a a
WS = S ) + (147 20 ) (L )l

a a
< —Tnﬂ(l + 7)%ugy + (1 4+ Tn WOL’O> (1 + 7 (u?)*)ul.

mq 0
Thus
n+1 n < ao,1 o, n n\a ao,0 2@0,0 / nya n
up Tt —ul < -7y (147 + | o (u]) + 70— + 75 (uf)® | uf.
mq mo mo
Hence
n—1
n __ k k—1 0
uy = (uf —uy™") +u3
k=0
oo
ag,1 ap,0 ag,0
< S {-n o (e e )k f 4t
mq mo mo
k=0
Here since i
n
lim — =147, a>0,
n—00 g
we can get . -
11—«
. Tk+1U . U _
lim +72: lim %:(14—7’)1 > < 1.
k— o0 Tk Ug k— o0 (uo) -«
. Qpyt 1
Also, from lim —+ = for a > 1, we can get
n—oo  Qp, 1+
k4131 a+1, k+1
lim Tey1(ug )M lim Op+1%
k E\l4+a 7 g atl, k
—00 Tk(ul) —oo ap”ug
=(1+7)" 7 1 +7)
=(1+7)"*<1,
and
Uttt ' (uk-ﬁ-l)fauk-&-l
lim 2171 iy 20 L
koo TRul ok ky—aq k
kUL —oo  (ug)”up
k4+1\—a+1
Y (ug") “agy
= lim S v —
k—o0 (uo)*aJr ag
=1+7)"*<1.

We can see that
o0 o0
2/, k\1 Ey1
ZTk(%) te < ZTk(%) e
k=0 k=0
From the above inequalities and d’Alembert’s ratio test, we can get
ul < oo.

(Step 6) Finally, we show {u%} is a bounded for a = 1. From (ML-3), we can get

ai,2 1 a2,2 1, @32 1 s 1
—rul T (17— Jup ™ s = a4 7 (uy)
mo mao mo
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Thus

ai,2 n+1 as 2 n+1 nya\,,n
ntl . mo U1 T Ty Tnlig + (1 + 7o (uh)*)uy
Up 1 T az,2
n mo
ai,2 n+1 as,2 n+1
< Tma TaUl T — 2 Tus T+ (14 7 (ud)*)ub
> a2 2
1+ Tnm,

Solving for uy ™, we can sce that

az2 as,2 ai,2
L4 7 —2 a4 =2t < — =2t 4 (14 7, (uh) ),
mao ma ma

a2 a1,2
(1= 722 g < = B2 (1 (),

ma 2
Thus
a2 n+1 nya\,,n
ntl o mo Taul "+ (14 7 (ug)*)ub
Uy — 1— ai,z
n mo

<~ T2 (L (1))
2

Moreover, from (3.26),

a a
u{”‘l < -7, 0.1 (14 7 (ul)®)ug + (1 4+ Tn 0’0) (1 + 70 (u?)*)ut.
mi mo

Hence

I
8
A
\

a a a
ot g 02 Lo S0 )+ (147200 ) (L))l |+ (L )0

meo mi 0
a1,2 aop,1 ai,2 0,0
= 2 (U ()l — 2 (1 e ) (L4 7o )Y+ (14 7 (3) s

a2 ap,1 o n @12 40,0 ay, n ay, n
< —= 71+ 71)uy — T | 1+ T 1+ 7a)u 1+ 7a)us,.
< BBy - D2, (14, 20 (1t + (L4 e

We set
A, =1+ rTay,
a1,2 40,1 o ai2 ao,0
B, = ——77(1 uy — — 1 : 1 as\u?.
2000 204 - 22, (147,200 ) (1 e

Then we can get uj ™ < A,uy + B,. Here

log (f[oAn) = ilogAn = ilog(l +7ay) < 27@%.

Since
ay.q Ap+1 *
lim 2 = lim (2= ) =(147)7%<1, a>1,
n—o00 a% n—o00 anp
we can get
o0
H A, < oo.
n=0
Also, we can obtain
2 n+1 n\2a,,n+1
lim Tnt1t lim 7@0) Yo
n—00 7‘72111,61 n—00 (ug“)%‘u’g
(un+1)1—2a



and

oy Tt (U T () (L ag e ()
n—00 Tnt1 (1 + 7 (u])®)uf n—o0 (1+ag)u’f(ug+1)a

iy AF GG (ug)
n—00 (1 =+ a%)anug(ug"—l)o‘

-1
i L+al yansr [ ud \*
n—oo 14ad ay, ug'H
=(1+7)"*<1.
Therefore we can get
o0
Z B, < 0.
n=0

From Lemma 3.6.1, we can get
uy < 0o, n>0.

Thus we complete the proof.
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Chapter 4

Application to the Keller-Segel systems

4.1 The schemes

The purpose of this chapter is to study the finite element method (FEM) applied to the parabolic-elliptic
system,

up = 2 N @V (uy — wvy)) e, xel=1(0,1), t >0, (4.1a)
0=a'" NN, —v+u, rel, t>0, (4.1b)
Uug(0,8) = uz(1,t) = v5:(0,¢) = v, (1,8) =0, t>0, (4.1c)
u(z,0) = u’(x), zel, (4.1d)
and the parabolic-parabolic system
up = 2N (@ uy — uvg))es zelI=(0,1), t>0, (4.2a)
v =2 V@V ), —v 4 u, xel, t>0, (4.2b)
ug(0,8) = uy(1,t) = v5(0,8) = v, (1,8) =0, t>0, (4.2¢)
u(z,0) = u’(x), v(z,0) =v"(z), zel. (4.2d)

Therein, u = u(x,t),v = v(x,t), x € I = [0,1],¢ > 0, denote the functions to be find and u°,v° > 0 (£ 0)
given continuous functions. In [44], they consider the finite volume method for (4.1).
We should recall parabolic-elliptic and parabolic-parabolic Keller-Segel systems:

U =V-(VU-U-VV), FeqQ, t>0, (4.3a)
-AV+V =10, £eQ, t>0, (4.3b)
ou oV
J = jeT =00 4.
5, Wht) = 5. (5,1 =0, yeT =09, t>0, (4.3¢)
U(%,0) = U%(2), T eQ, (4.3d)
and
U=V -(VU-U-VV), Fe t>0, (4.4a)
Vi=AV -V +U, Z2eQ, t>0, (4.4b)
ou v, .. Lo
U(#,0) = U%x), V(7,0) =V (&), FeqQ, (4.4d)

where U = U(#,t),V = V(Z,t), # € Q, t > 0, Q C RY is a bounded domain with the boundary
I', v is the outer unit normal vector to I', 2Z = VU - v, and U°,V® > 0 (& 0) are given continuous
functions. In particular, the systems (4.3) and (4.4) denote the aggregation of slime molds resulting
from their chemotactic features. Then U and V express the density of the cellular slime molds and the
concentration of the chemical substance.
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We can see that the solutions of (4.1) and (4.2) correspond to the radially symmetric solutions of
(4.3) and (4.4). It is well-known that the solutions of (4.3) and (4.4) satisfy conservation of positivity,
conservation of mass and conservation of L' norm:

U(Z,t) >0, T€Q, t>0, (4.5)
/U(f,t) df:/UO(f) dz, t >0, (4.6)
Q Q

UG )|z = 10, t20. (4.7)

We first mention the weak formulation of (4.1). By multiplying 2V !y and integrating in I, we can
get

/folutX dx = —/fol(ux — uvy)x' d,
I I

0= —/xN_lvxxl dx—i—/acN_l(—v—f—u)x dx (x € HY(I)).
I I
We set

(u,v) = /:rN_luv dr, A(u,v) = /xN_lu’v’ dz, and B(u,v,w) = —/xN_luv’w’ d.
I I I

Therefore we can rewrite this to

(utaX) +A(U7X) + B(“’v”vX) =0,
A(u,x) = (u—v,x) =0 (x € H'(I)).

Similarly, we can get the weak formulation of (4.2):

(ut’X) +A<U’X) + B(uv'l)vX) =0,
(ve, x) + Au, x) — (u—v,x) =0 (x € H'(I)).

For a positive integer m, we introduce node points
O=z0<21 <+ <Tj_1 <xj < < Tpype1 < Ty = 1,

and set I; = (xj_1,2;) and hj = x; —x;_1, where j = 1,...,m. The granularity parameter is defined as
h = maxi<j<m hj. Let P(J) be the set of all polynomials in an interval J of degree < k. We define the
P1 finite element space as

Sh:{veHl(IHvePl(Ij) G=1,---,m)}. (4.8)
Its standard basis function ¢;, j = 0,1,--- ,m, is defined as
¢j(i) = 45,

where J;; denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

n—1
tOZO, tn:ZTj (TLZ].),
7=0

where 7; > 0 denotes the time increment.
Generally, we write 9, uf ™' = (up ™ —u}) /7.

We define

m

(w,v) = Zw(mi)v(xi)(l,qbi) (w,v € HY(I)). (4.9)

=0

86



We introduce the finite element schemes (KS-1) for (4.1) and (KS-2) for (4.2).

(KS-1) Find u*!, vl € S, n =0,1,..., such that

(Or, ul ™ X)) + A(u) T X) + Br(u v, x) =0,
A(UZ7X) - <UZ - UZaX) = 07 (X € Sh)

where u(,)l € S}, is assumed to be given.

(KS-2) Find UZ+1, UZH € S,, n=0,1,..., such that

(Or up ™ x) + A(up ™ x) + B (up o, x) =0,
<aTn“ZHv X> + A(”Z’ X) - <u;7,l - UZ? X> = 07 (X € Sh)

where u?L, vg € Sy, are assumed to be given.

Here,
By (u,v,w) = Zw(azi) Z {u(xz)ﬁfj(v) - u(xj)ﬂ;j(v)} ,
i=0 JEN;
where
{1} 1=0
Ai={{i—1i+1} i#0,m
{m -1} i =m,
and .
BE (v) = / mN_lmaX{O,ﬂ:v(:Uj)_v(xi)} (¢i)a dzx|.
J ., |z — ;]

The solutions of (KS-1) and (KS-2) reproduce (4.5), (4.6), as stated below.

Proposition 4.1.1 (Positivity preserving and conservation of the mass, (KS-1)). For (KS-1), if u) >0

in I, then the solution (u},v}’) satisfies positivity preserving and conservation law:

up, vy >0in I, n >0,
(up, 1) = (up, 1) = (v, 1) = (v, 1).

For the proof, see Section 4.3.

Proposition 4.1.2 (Positivity preserving and conservation of the mass, (KS-2)). For (KS-2), if u), v} >

0 in I, then the solution (u},v}) satisfies positivity preserving and conservation law:

up, vy >0in I, n >0,
(up,1) = (up,1).

For the proof, see Section 4.3.

4.2 Numerical examples

We calculate the radially symmetric solutions of Keller-Segel systems (4.1)—(4.2). We set m = 200, T =

02, 7, =7= 5—10h, ud) = Tul, v = 11,00,

u®(x) = p {10672962 + 206’2(“0'3)2} , and v%(x) = pcos gas,
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where IIjv denotes the linear interpolation for v € H'(I). We adopt N = 2 for (KS-1), and N = 3 for
(KS-2). Fig. 4.1 shows the graphs of (KS-1) and the amounts of change of the following quantities:

mass = /a:N_luZ dz, (4.14)
I

chemical = /xN_lvﬁ dz. (4.15)
I

Fig. 4.2 shows the graphs of (KS-2) and the amounts of change of (4.14) and (4.15). We observe that
Fig. 4.1 (a) and Fig. 4.2 concentrate on the origin and Fig. 4.1 (b) distributes uniformly. Fig. 4.1 (¢),
(d) and Fig. 4.2 show that (KS-1) conserves both (4.14) and (4.15) numerically, while (KS-2) conserves
(4.14) numerically.

graph of u (density) graph of u (density)

(a) (KS-1), = 1, graph of u (up) (b) (KS-1), = 15, graph of u (up)
and graph of v (down) and graph of v (down)
§ 21070 ‘ ‘ total mass = 93117 ‘ ‘ 42107 ‘ ‘ total mass = 93117

difference of mass
difference of mass
|

I L L L L L I I L L I L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02
time time

axm"“ ‘ ‘ ‘ total chemical =9.3117 ‘ ‘ ‘ axm"“ ‘ ‘ ‘ total chemical =0.3117

g g

£ £ 1
3 2o

sf

P9 om0 oo oo o1 o1z o4 o ol 02 P om om oo oo o1 o1z o1 ol o 02

time time
(c¢) (KS-1), pp =1, change of mass (up) (d) (KS-1), = 5, change of mass (up)
and change of chemical (down) and change of chemical (down)

Figure 4.1: Graphs and mass conservation law, (KS-1)

4.3 Proof of Propositions
We shall prove Proposition 4.1.1.

Proof of Proposition 4.1.1. We shall prove the positivity preserving. We set ul = uj(x;), v] = vj(x;).

K2
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%107 total mass = 54.6736

4
3k
Graph of u (Density) 8 ol
£
S 1t
8
2o W«dmﬂ\ 4
o
g1t 1
£
b 4
| 3 . . . . . . I . .
4 002 004 006 008 0.1 012 014 016 018 02
0 o 02 : time
time x
%10 total chemical =1.2059
Graph of v (Chemical) 11 T T T T
<10* =
9
E
3
2
5
%
°
8
g
5
&£
5

(a) 0 0.02 0.04 0.06 0.08 t?r;’:e 0.12 0.14 0.16 0.18 02
graph of u (up) and graph of v (down) (b) change of mass (up)

and change of chemical (down)

Figure 4.2: Graphs and mass conservation law, (KS-2) with N =3 and p = 10

Substituting x = ¢; in (4.10), we get
un+1 —ur 1
Ul A(Gi1, 0i) + uP A, di) + uitp 1 A(digr, 6i)

Tn
+ Unﬂﬂz (o) —ult! o1 (on) + U?“BLH(“Z) ulh By, ir(vp) =0,

where we understand that u”, = uy, ., = A(¢_1,90) = A(Pms1,dm) = ﬂgfil(v,’;) = 5$,m+1(”}?) = 0.

Then we set m; = (1, ¢;), a;; = A(¢;, ¢;), and @ij = ﬁfj(vg) Thus

1
+1 +1 +1
—my(uy ul) + a1 ul T + el ai
n
n+1 n+1 n+1 n+1p— _
—|—U Bzzf - ﬁzzfl_‘_u Bzz+1_ui+1 Bi,i+1 _O’
— n+1 n+ — n+1
(a’i—Li _67;,1'7 ) Ui + ( +a11+ﬁz i—1 +67, z+1) + (aH‘ll _ﬁi,H»l) i+1
1
= —mjuy.
Tn
Here we set
Al =a;_14— B;
ii—1 = Ai—1, ii—1>
1
1 _ + +
Am‘ = Tmi +ag; + 52’,1‘71 + Bi,i+17
n
1 -
Ai,iJrl = Qi+1,4 ﬁi,i-s-l-
We define

1 1 1
A = (A jo<ijm € R

My = diag ( ) e RmLmL
T’I’L

a»(n) _ ( Rm+l ,

n
u; )o<i<m €

where A%’j =0 (]¢ — j| > 1) and diag(z;) denotes the diagonal matrix whose (i, 7)th entry is z;.
Substituting x = ¢; in (4.11), we get
ai—1,ivq + (aii +m)v + ai+1,iv?+1 = mu;.
We set
A2

2747

2 2
1= i1, A7 =aii+mi, A7 = Gigie
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We define

a2 +1metl
Az = (Ajj)o<i,jm € RTTHTTY

M, = diag(m;) € R

7" = (v} )ogism € R™,
where A7, =0 (|i — j[ > 1).
We can rewrite (KS-1) as follows:
Ayttt = Myan, (4.16)
At™ = Moud™. (4.17)

It suffices to prove that Al_l, A2_1 > 0, that is, all components in A1_1 and A2_1 are nonnegative. We can
get
Al >0, Aj; <0, A7, >0, A7, <0, (i #)). (4.18)

By a direct calculation, we can see that

Qi i—1+ Qi+ a; 41 =0,
+ - _
ii—1 Bz 1,i =0, Bz Ji+1 ﬁi—&-l,i =0.

Therefore
m;
Azl 17,4_141 +A7,+1'L: T >07
Az 17,+A +Az+11_m2>0
Thus
|A1 = Al = T Azl 1,2 A'Ll-‘rlz
> > 1Al
0<j<m, j#i
|142 = A2 =m; — A?ﬂ,i A12+1 i

> ) 43l

0<j<m, j#i

We then see that AT and AT are diagonally dominant. From (4.18) and the above results, we can get

(AP~ (43) 7' >0

Thus we can see the positivity of u} and vy.
Secondly we prove the conservation law. Summing all components of (4.16) and (4.17), we get

m m

mj pia ms o,
—U . = —U s
Z_;) T 7 -z_;, T’
j= j=
m m
> myof =3 myuf
i=0 i=0
Thus
(upth 1) = (up, 1), (v, 1) = (uf, 1)
We complete the proof. O

Finally we prove Proposition 4.1.2.
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Proof of Proposition 4.1.2. We use the same notations as the previous proof. First we show the positivity.
Substituting x = ¢; in (4.13), we can get

m; m;
n+1 7 n+1 n+1 1.n n
ai—1,Y;_{ + ( + a;; +mi> U G410, = — U +mguy .
n n

We define m
3 _ 3 _ My 3 _
Az‘,ifl = Qi—1,is Ai,i - +a;; +mg, Az‘,i+1 = Qj41,4-
n

We can rewrite (KS-2) into

Ayttt = Myan, (4.19)
A"t = My o™ + Mot (4.20)

From the proof of Proposition 4.1.1, we can see Afl > 0. Thus it suffices to show that Agl > 0. Similarly
as Proposition 4.1.1, we can see that

A2 >0, A} <0 (i # j),

and
A+ A AR = e,
i—1,i it A1 = = +m;.

n

Thus

A%

m;

_ A3 _ 1 . __ A3 _ A3

= Ai,i = ? +m,; Aifl,i A’L 1,i
n

> ) 4

0<j<m, j#i

By making the same argument as Proposition 4.1.1, we can obtain

Al >o.

Secondly, we show the conservation law. Summing all components in (4.19)—(4.20), we can see that

= m; n+1 _ G m; o,
> T = > P
j=0 " g=0 "
S (2 v, ) =3 g S
i=0 n j=0 " =0
Thus
(upth 1) = (uj. 1), (4.21)
1 1
(& +1) R = 2 6l + ), (4.22)
Thus we complete the proof. O

Remark 4.3.1. If we choose the uniform time increment 7,, = 7, then from (4.22) we get

1 n
(vp, 1) = <u2,1> + <1+7> <v2 —u271>.
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