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Preface

This thesis studies the finite element method (FEM) applied to a semilinear parabolic equation with a
singular convection term,

ut = uxx +
N − 1

x
ux + f(u), x ∈ I = (0, 1), t > 0, (1a)

ux(0, t) = u(1, t) = 0, t > 0, (1b)

u(x, 0) = u0(x), x ∈ I. (1c)

Therein, u = u(x, t), x ∈ I = [0, 1], t ≥ 0, denotes the function to be find, f a given locally Lipschitz
continuous function and u0 a given continuous function. Throughout this paper, we assume that

N is an integer ≥ 2. (2)

We first clarify the motivation of this study. In many engineering problems, the space dimension
of a mathematical model is at most three. Solving partial differential equations (PDEs) in more than
three spatial dimension is usually motivated by mathematical interests. Mathematicians understand that
solving the problem in a general setting can reveal hidden natures of PDEs. One successful result is the
discovery of Fujita’s blow-up exponent for the semilinear heat equation of U = U(x, t) given as

Ut = ∆U + f(U) (x ∈ RN , t > 0), (3)

where N and f(U) are defined above. Assuming f(U) = U |U |α with α > 0, Fujita showed that any
positive solution blows up in finite time if 1 + α < 1 + 2/N , but a solution remains smooth at any time
if the initial value is small and 1 + α > 1 + 2/N . The quantity pc = 1 + 2/N is known as Fujita’s critical
exponent, and Eq.(3) is called Fujita’s equation.

Therefore, we found it is interesting to study the numerical methods for computing the solution
of nonlinear partial differential equations in an N -dimensional space. Non-stationary problems in four
dimensional space are difficult to solve by numerical methods, even on modern computers. Therefore,
the present paper investigates radially symmetric solutions of Eq.(3). Assuming radial symmetry of
the solution and the given data, the N -dimensional equation reduces to a one-dimensional equation.
More specifically, considering (3) in an N -dimensional unit ball B = {x ∈ RN | |x|RN < 1} with the
homogeneous Dirichlet boundary condition on the boundary and assuming U is expressed as u(x) = U(x)
for x ∈ B and x = |x|RN , we came to consider the problem (1).

The finite difference method was already studied in [8] and [15]. In particular, the error estimates
were established. Because their finite difference schemes use special approximations around the origin to
maintain some analytical properties of the solution, they should be performed on a uniform spatial mesh.
Conversely, when seeking the blow up solution, non-uniform partitions of the space variable are useful for
examining highly concentrated solutions at the origin. For this purpose, we developed the FEM scheme.

The solution of (1) maybe blow up in finite time. It is interesting to study the relationship between
the blow-up and the space dimension N . To this end, we try to apply the Nakagawa’s time-increment
control strategy (see [32]) which is a powerful technique for approximating the blow-up time.

In Chapter 1, the standard finite element methods are considered. FEM analyses of the linear case,
in which f(u) in Eq.(1) is replaced by a given function f(x, t), are not new. Eriksson and Thomée [18]
and Thomée [42] studied the convergence property of the elliptic equation, and proposed two schemes:
the symmetric scheme, in which the optimal-order error is estimated in the weighted L2 norm, and the
nonsymmetric scheme, in which the L∞ error is estimated. The main purpose of this chapter is to derive
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various optimal order error estimates for the symmetric and nonsymmetric schemes of [18, 42] applied to
(1). These schemes are described below as (Sym) and (Non-Sym). In Section 1.2, we introduce standard
symmetric scheme (Sym) and standard nonsymmetric scheme (Non-Sym).

First, we derive two alternate weak formulations of (1). Letting χ ∈ Ḣ1 = {v ∈ H1(I) | v(1) = 0} be
arbitrary, then multiplying both sides of (1a) by xN−1χ and using integration by parts over I, we obtain∫

I

xN−1utχ dx+

∫
I

xN−1uxχx dx =

∫
I

xN−1f(u)χ dx. (4)

Otherwise, if we multiply both sides of (1a) by xχ instead of xN−1χ and integrate it over I, then we have∫
I

xutχ dx+

∫
I

[xuxχx + (2−N)uxχ] dx =

∫
I

xf(u)χ dx. (5)

We designate (4) the symmetric weak form because of the symmetric bilinear form associated with the
differential operator uxx + N−1

x ux. In contrast, (5) is the nonsymmetric weak form. Both forms are
identical at N = 2.

We now establish the finite element schemes based on these identities. For a positive integer m, we
introduce node points

0 = x0 < x1 < · · · < xj−1 < xj < · · · < xm−1 < xm = 1,

and set Ij = (xj−1, xj) and hj = xj − xj−1, where j = 1, . . . ,m. The granularity parameter is defined as
h = max1≤j≤m hj . Let Pk(J) be the set of all polynomials in an interval J of degree ≤ k. We define the
P1 finite element space as

Sh = {v ∈ H1(I) | v ∈ P1(Ij) (j = 1, · · · ,m), v(1) = 0}. (6)

Its standard basis function φj (j = 0, 1, · · · ,m− 1) is defined as

φj(xi) = δij ,

where δij denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

t0 = 0, tn =

n−1∑
j=0

τj (n ≥ 1),

where τj > 0 denotes the time increment.
Generally, we write ∂τnu

n+1
h = (un+1

h − unh)/τn.
We are now in a position to state the finite element schemes to be considered in Chapter 1.

(Sym) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that∫
I

xN−1∂τnu
n+1
h χ dx+

∫
I

xN−1(un+1
h )xχx dx =

∫
I

xN−1f(unh)χ dx (χ ∈ Sh), (7)

where u0
h ∈ Sh is assumed to be given.

(Non-Sym) Find un+1
h ∈ Sh, n = 0, 1, . . . , such that∫

I

x∂τnu
n+1
h χ dx+

∫
I

x(un+1
h )xχx dx+ (2−N)

∫
I

(un+1
h )xχ dx =

∫
I

xf(unh)χ dx (χ ∈ Sh). (8)

In Section 1.3, we show the well-posedness for (Sym) and (Non-Sym), and positivity preserving for
(Sym) with a restriction of time increment.
In Section 1.4, we discuss the convergence property for (Sym) and (Non-Sym).

Given T > 0 and setting QT = [0, 1]× [0, T ], we assume that u is sufficiently smooth such that

κν(u) =

2∑
j=0

‖∂jxu‖L∞(QT ) +

2+ν∑
l=1

‖∂ltu‖L∞(QT ) +

1+ν∑
k=1

‖∂kt ∂2
xu‖L∞(QT ) <∞, (9)
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where ν is either 0 or 1.
The partition {xi}mj=0 of Ī = [0, 1] is assumed to be quasi-uniform, with a positive constant β inde-

pendent of h such that
h ≤ β min

1≤j≤m
hj . (10)

Finally, the approximate initial value u0
h is chosen as

‖u0
h − u0‖L∞(I) ≤ C0h

2 (11)

for a positive constant C0.
If f is locally Lipschitz continuous and N ≤ 3, then there exists an h1 = h1(T, κ0(u), C0, N, β) such

that, for any h ≤ h1, we have (see Theorem 1.4.3 in Chapter 1)

sup
0≤tn≤T

‖x
N−1

2 (unh − u(·, tn))‖L2(I) ≤ C1(h2 + τ), (12)

where C1 = C1(T, κ0(u), C0, N, β) and unh is the solution of (Sym).
Letting f(s) = s|s|α for s ∈ R, where α ≥ 1, then given T > 0, we assume (9) with ν = 1 and uniform

time increment. Then, there exists an h2 = h2(T, κ1(u), C0, N, β) such that, for any h ≤ h2, we have (see
Theorem 1.4.6 in Chapter 1)

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C2

(
log

1

h

) 1
2

(h2 + τ), (13)

where C2 = C2(T, κ1(u), C0, N, β) and unh is the solution of (Non-Sym).
In Section 1.5, we report some numerical examples to validate our theoretical results. Section 1.6

proves some inequalities for the proof of L∞ error estimate of (Non-Sym), and Section 1.7 proves the
decreasing property of energy functional for (Sym) that plays an important role in blow-up analysis.

In Chapter 1, we examined the standard finite element method. However, there are some obstacles
to apply their finite element schemes to the semilinear heat equation (1). As the non-symmetric scheme
seems to be incompatible with Nakagwa’s time-increment control strategy, we pose the following question:
Can the restriction N ≤ 3 be removed from the symmetric scheme? In fact, this restriction is imposed
by the inverse inequality Lemma 1.4.8 in Chapter 1 and the necessity of finding the boundedness of the
finite element solution (see the proof of Theorem 1.4.3 in Chapter 1). To surmount this difficulty, the
L∞ estimates for the FEM can be directly derived using the discrete maximum principle (DMP). As the
DMP is based largely on the nonnegativity of the finite element solution, the time derivative term should
be approximated by the mass-lumping approximation. Unfortunately, we tried but failed to prove the
convergence property of the finite element solution by this approximation (see (14) below).
Therefore, we propose a special mass-lumping approximation (15) in Chapter 2. Using the special ap-
proximation, we prove the DMP and the convergence property of the finite element solution, and perform
the blow up analysis for any N ≥ 2.

Section 2.2 presents our finite element schemes and the convergence theorems. Under the notation of
Chapter 1, the mass-lumping approximation of the weighted L2 inner product can be naturally defined
as ∫

I

xN−1wv dx ≈ w(x0)v(x0)

∫ x1/2

0

xN−1 dx+

m−1∑
i=1

w(xi)v(xi)

∫ xi+1/2

xi−1/2

xN−1 dx, (14)

where xi−1/2 = (xi + xi−1)/2. As mentioned above, this standard formulation is useless for our purpose.
Instead, we define∫

I

xN−1wv dx ≈
m−1∑
i=0

w(xi)v(xi)

∫
I

xN−1φi dx =

∫
I

xN−1Πh(wv) dx. (15)

The Lagrange interpolation operator Πh of Ḣ1 → Sh is defined as Πhw =

m−1∑
j=0

w(xj)φj for w ∈ Ḣ1.

The mass lumping finite element schemes are then stated as follows.
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(ML–1) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that∫

I

xN−1Πh(∂τnu
n+1
h χ) dx+

∫
I

xN−1(un+1
h )xχx dx =

∫
I

xN−1f(unh)χ dx (χ ∈ Sh), (16)

where u0
h ∈ Sh is assumed to be given.

(ML–2) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that∫

I

xN−1Πh(∂τnu
n+1
h χ) dx+

∫
I

xN−1(unh)xχx dx =

∫
I

xN−1Πh(f(unh)χ) dx (χ ∈ Sh). (17)

For (ML-1) and (ML-2), we can get the following positivity preserving properties.
In addition to the basic assumption on f , assume that f is a non-decreasing function with f(0) ≥ 0.

If unh ≥ 0, then the solution un+1
h of (ML–1) satisfies un+1

h ≥ 0. Under the assumptions above, further
assume that

τn ≤
β2

N + 1
h2. (18)

Then the solution un+1
h of (ML–2) satisfies un+1

h ≥ 0.
We assume

κ(u) =

2∑
k=0

‖∂kxu‖L∞(QT ) +

2∑
l=1

‖∂ltu‖L∞(QT ) +

2∑
k=1

‖∂t∂kxu‖L∞(QT ) <∞, (19)

where T > 0 and QT = [0, 1]× [0, T ]. Assume that (10) and (11) are satisfied. Then, for sufficiently small
h and τ , we have (see Theorem 2.2.4 and Theorem 2.2.5 in Chapter 2)

sup
0≤tn≤T

‖x
N−1

2 (unh − u(·, tn))‖L2(I) ≤ C3(h2 + τ), (20)

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C3 (h+ τ) , (21)

where C3 = C3(T, f, κ(u), C0, N, β) and unh is the solution of (ML–1).
For (ML-2), we get the following. For sufficiently small h and τ , we have (see Theorem 2.2.6 in

Chapter 2)
sup

0≤tn≤T
‖unh − u(·, tn)‖L∞(I) ≤ C4 (h+ τ) , (22)

where C4 = C4(T, f, κ(u), C0, N, β) and unh is the solution of (ML–2).
After having described some preliminary results in Section 2.3, we prove the convergence theorems

in Section 2.4. Blow-up analysis is reported in Section 2.5. We employ the finite element version of the
eigenvalue problem: ∫

I

xN−1(ψ̂h)xχx dx = µ̂h

∫
I

xN−1Πh(ψ̂hχ) dx (χ ∈ Sh). (23)

Let ψ̂h ∈ Sh be the eigenfunction associated with the smallest eigenvalue µ̂h > 0 of (23). For the
eigenvalue problem (23), we can obtain the following result (see Proposition 2.5.5 in Chapter 2).

(i) µ̂h → µ as h→ 0.

(ii) The first eigenfunction ψ̂h of (23) does not change sign.

(iii) ‖xN−1
2 (ψ̂h − ψ)x‖L2(I) → 0 as h→ 0.

Here ψ ∈ Ḣ1 denotes the eigenfunction associated with the first eigenvalue µ > 0 of the eigenvalue
problem ∫

I

xN−1ψxχx dx = µ

∫
I

xN−1ψχ dx (χ ∈ Ḣ1). (24)

Therefore, without loss of generality, we can assume that ψ̂h ≥ 0 in I and
∫
I
xN−1ψ̂h(x) dx = 1.
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For v ∈ Ḣ1, we set

K(v) =
1

2
‖x

N−1
2 vx‖2L2(I) −

1

α+ 2

∫
I

xN−1|v(x)|α+2 dx,

I(v) =

∫
I

xN−1v(x)ψ(x) dx.

For v ∈ Sh, we set

Kh(v) =
1

2
‖x

N−1
2 vx‖2L2(I) −

1

α+ 2

m∑
i=0

|v(xi)|α+2

∫
I

xN−1φi dx,

Ih(v) =

∫
I

xN−1Πh(vψ̂h)(x) dx.

We introduce the approximate blow-up time T̂∞(h) by setting

T̂∞(h) = lim
n→∞

tn = lim
n→∞

n−1∑
j=0

τj . (25)

Suppose that the solution u of (1) blows up at finite time T∞ in the sense that

‖u(·, t)‖L∞(I) →∞ and ‖x
N−1

2 u(·, t)‖L2(I) →∞ (t→ T∞ − 0). (26)

Assume that for any T < T∞, u is sufficiently smooth that (19) holds. Assuming also that (10) is satisfied,
we set

τ = δ
β2

N + 1
h2 (27)

for some δ ∈ (0, 1]. The time increment τn is iteratively defined as

τn = τn(h) = τ min

{
1,

1{∫
I
xN−1Πh((unh)2) dx

}α
2

}
, (28)

where we have used the solution unh of (ML–2) with (11). Moreover, assume that (18) is satisfied and
that

∀T < T∞, lim
h→0

sup
0≤tn≤T

|K(u(·, tn))−Kh(unh)| = 0. (29)

We then have (see Theorem 2.5.6 in Chapter 2)

lim
h→0

T̂∞(h) = T∞. (30)

Suppose that the solution u of (1) blows up at finite time T∞ in the sense that

I(u(·, t))→∞ and ‖u(·, t)‖L∞(I) →∞ (t→ T∞ − 0). (31)

Assume that, for any T < T∞, u is sufficiently smooth that (19) holds. Assuming also that (10) is
satisfied, we set τ by (27) with some δ ∈ (0, 1]. The time increment τn is iteratively defined as

τn = τn(h) = τ min

{
1,

1

Ih(unh)α

}
, (32)

where we have used the solution unh of (ML–2) with (11). We then obtain (30) (see Theorem 2.5.7 in
Chapter 2).

The above theorems differ in that the first theorem requires the convergence property (29) of the
discrete energy functional Kh(unh), whereas no convergence property of Ih is necessary in the second
theorem.

Section 2.6 presents some numerical examples that validate our theoretical results. In Section 2.7, we
mention the proof of some auxiliary results on the eigenvalue problems.
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In Chapter 3, we examine the time-increment control methods proposed by Cho-Okamoto [15], Chen
[8] and Groisman [23]. In particular, we study the numbers of the blow-up points and the blow-up rates
of the finite element solutions.

Chapter 4 is devoted to an application to the Keller-Segel system which describes the aggregation of
slime molds resulting from their chemotactic features. We consider the radially symmetric solutions for
the parabolic-parabolic and parabolic-elliptic systems and offer the finite element schemes that preserve
positivity and mass-conservation properties. The validity is verified by numerical examples.

7



Acknowledgement

I would like to thank my supervisor, Professor Norikazu Saito, for his helpful advice and collaboration. I
also thank to the secondary supervisor in the Program for Leading Graduate Schools, Professor Yoshikazu
Giga. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

8



Chapter 1

The standard finite element method

1.1 Introduction

This chapter was conducted to investigate the convergence property of finite element method (FEM)
applied to a parabolic equation with singular coefficients for the function u = u(x, t), x ∈ I = [0, 1], and
t ≥ 0, as expressed in

ut = uxx +
N − 1

x
ux + f(u), x ∈ I = (0, 1), t > 0, (1.1a)

ux(0, t) = u(1, t) = 0, t > 0, (1.1b)

u(x, 0) = u0(x), x ∈ I, (1.1c)

where f is a given locally Lipschitz continuous function, u0 is a given continuous function, and

N ≥ 2 integer (1.2)

is a given parameter.
In the study of an N -dimensional semilinear heat equation, the following problem arises as

Ut = ∆U + f(U), x ∈ Ω, t > 0 (1.3a)

U = 0, x ∈ ∂Ω, t > 0, (1.3b)

U(0,x) = U0(x), x ∈ Ω, (1.3c)

where Ω represents a bounded domain in RN . If one is concerned with the radially symmetric solution
u(|x|) = U(x) in the N -dimensional ball Ω = {x ∈ RN | |x| = |x|RN<1}, then (1.3) implies (1.1), where
x = |x| and u0(x) = U0(x).

For a linear case in which f(u) = 0 is replaced by a given function f(x, t), the works [18, 42] studied
the convergence property of the FEM to (1.1) along with the corresponding steady-state problem, and
two proposed schemes: the symmetric scheme, wherein they established the optimal order error estimate
in the weighted L2 norm; and the nonsymmetric scheme, wherein they proved the L∞ error estimate.
In this chapter, both schemes are applied to the semilinear heat equation (1.1) to derive various error
estimates. Moreover, this chapter includes a discussion of discrete positivity conservation properties,
which earlier studies [18, 42] failed to embrace, but which are actually important in the study of diffusion-
type equations.

Our emphasis is on FEM because we are able to use non-uniform partitions of the space variable.
Therefore, the method is deemed useful for examining highly concentrated solutions at the origin. On
this connection, we present our motivation for this chapter. The critical phenomenon appearing in the
semilinear heat equation of the form

Ut = ∆U + U1+α, α > 0

in a multidimensional space has attracted considerable attention since the pioneering work of Fujita [22].
According to him, the equation is in the whole N dimensional space. Any positive solution blows up in
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a finite time if α ≤ 2/N , whereas a solution is smooth at any time for a small initial value if α > 2/N .
Therefore, expression pc = 1 + 2/N is known as Fujita’s critical exponent ([31, 16] provides some critical
exponents of other equations). Generally, similar critical exponents can be found for an initial-boundary
value problem for the semilinear heat equation. Some examples are given in reports of earlier studies
[27, 31, 16]. However, the concrete values of those critical conditions are apparently unknown. Therefore,
we found it interesting to study the numerical methods for computing the solutions of nonlinear partial
differential equations in an N -dimensional space. However, computing the non-stationary four-space di-
mensional problem is difficult, even for modern computers. We consider the FEM to solve the one space
dimensional equation (1.1). However, we face another difficulty in dealing with the singular coefficient
(N − 1)/x, which the FEM reasonably simplified, as explained later.

As described above, the main purpose of this chapter is to derive various optimal order error estimates
for the symmetric and nonsymmetric schemes of [18, 42] applied to (1.1). These schemes are described
below as (Sym) and (Non-Sym). To this end, we address mostly the general nonlinearity f(u). Moreover,
we study discrete positivity conservation properties. We summarize our typical results here.

• The solution of (Sym) is positive if f and the discretization parameters satisfy some conditions, as
shown by Theorem 1.3.2.

• If f is a globally Lipschitz continuous function, then the solution of (Sym) converges to the solution
of (1.1) in the weighted L2 norm for the space and in the L∞ norm for time. Moreover, the
convergence is at the optimal order, as shown by Theorem 1.4.1.

• If f is a locally Lipschitz continuous function and N ≤ 3, then the solution of (Sym) converges to
the solution of (1.1) in the weighted L2 norm for the space and in the L∞ norm for time. The
convergence is at the optimal order, as shown by Theorem 1.4.3.

• If f(u) = u|u|α with α ≥ 1 and if the time partition is uniform, then the solution of (Non-Sym)
converges to the solution of (1.1) in the L∞(0, T ;L∞(I)) norm. The convergence is at the optimal
order up to the logarithm factor, as shown by Theorem 1.4.6.

However, we do not proceed to applications of our schemes to the blow-up computation in this work.
In fact, from the main results presented in this chapter, we infer that the standard schemes of [18, 42]
do not fit for the blow-up computation for large N . For the symmetric scheme, the restriction N ≤ 3
reduces interest in considering radially symmetric problems. Moreover, for the nonsymmetric scheme,
the use of uniform time-partitions makes it difficult to apply Nakagawa’s time-partitions control strategy:
a powerful technique for computing the approximate blow-up time, as described in earlier reports [8, 32,
39, 14, 9, 40, 7]. Nevertheless, we believe that our results are of interest to researchers in this and related
fields. In fact, the validity issue of the symmetric scheme only for N ≤ 3 was pointed out earlier in [2] for
a nonlinear Schrödinger equation with no mathematical evidence. The analysis reported herein reveals
weak points of the two standard schemes. As a sequel to this chapter, we propose a new finite element
scheme for (1.1). The scheme, which uses a nonstandard mass-lumping approximation, is shown to be
positivity-preserving and convergent for any N ≥ 2. Details will be reported in the next chapter.

It is noteworthy that the finite difference method for (1.1) has been studied and that its optimal order
convergence was proved in an earlier report [8]. Its finite difference scheme uses a special approximation
around the origin to assume a uniform spatial mesh.

This chapter comprises seven sections. Section 1.2 presents our finite element schemes. Well-posedness
and positivity conservation are examined in Section 1.3. Section 1.4 presents the error estimates and their
proofs and Section 1.5 presents some numerical examples that validate our theoretical results. Section
1.6 proves the inequalities for the proof of L∞ error estimate of (Non-Sym), and Section 1.7 proves the
decreasing property of energy functional for (Sym) that plays important role in blow-up analysis.

1.2 Finite element method

First, we derive two alternate weak formulations of (1.1). Unless otherwise stated explicitly, we assume
that f is a locally Lipschitz continuous function such that

∀µ > 0, ∃Mµ > 0 : |f(s)− f(s′)| ≤Mµ|s− s′| (s, s′ ∈ R, |s|, |s′| ≤ µ). (f1)
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Letting χ ∈ Ḣ1 = {v ∈ H1(I) | v(1) = 0} be arbitrary, then multiplying both sides of (1.1a) by
xN−1χ and using integration by parts over I, we obtain∫

I

xN−1utχ dx+

∫
I

xN−1uxχx dx =

∫
I

xN−1f(u)χ dx. (1.4)

Otherwise, if we multiply both sides of (1.1a) by xχ instead of xN−1χ and integrate it over I, then we
have ∫

I

xutχ dx+

∫
I

[xuxχx + (2−N)uxχ] dx =

∫
I

xf(u)χ dx. (1.5)

We designate (1.4) the symmetric weak form because of the symmetric bilinear form associated with the
differential operator uxx + N−1

x ux. In contrast, (1.5) is the nonsymmetric weak form. Both forms are
identical at N = 2.

We now establish the finite element schemes based on these identities. For a positive integer m, we
introduce node points

0 = x0 < x1 < · · · < xj−1 < xj < · · · < xm−1 < xm = 1,

and set Ij = (xj−1, xj) and hj = xj − xj−1, where j = 1, . . . ,m. The granularity parameter is defined as
h = max1≤j≤m hj . Let Pk(J) be the set of all polynomials in an interval J of degree ≤ k. We define the
P1 finite element space as

Sh = {v ∈ H1(I) | v ∈ P1(Ij) (j = 1, · · · ,m), v(1) = 0}. (1.6)

Its standard basis function φj , j = 0, 1, · · · ,m− 1, is defined as

φj(xi) = δij ,

where δij denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

t0 = 0, tn =

n−1∑
j=0

τj (n ≥ 1),

where τj > 0 denotes the time increment. Furthermore, we set

τ = sup
j≥0

τj .

Generally, we write ∂τnu
n+1
h = (un+1

h − unh)/τn.
We are now in a position to state the finite element schemes to be considered.

(Sym) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that(

∂τnu
n+1
h , χ

)
+A(un+1

h , χ) = (f(unh), χ) (χ ∈ Sh, n = 0, 1, . . .), (1.7)

where u0
h ∈ Sh is assumed to be given. Hereinafter, we set

(w, v) =

∫
I

xN−1wv dx, ‖w‖2 = (w,w) =

∫
I

xN−1w2 dx, (1.8a)

A(w, v) =

∫
I

xN−1wxvx dx. (1.8b)

(Non-Sym) Find un+1
h ∈ Sh, n = 0, 1, . . . , such that〈
∂τnu

n+1
h , χ

〉
+B(un+1

h , χ) = 〈f(unh), χ〉 (χ ∈ Sh, n = 0, 1, . . .), (1.9)

where

〈w, v〉 =

∫
I

xwv dx, |||w|||2 = 〈w,w〉 =

∫
I

xw2 dx, (1.10a)

B(w, v) =

∫
I

xwxvx dx+ (2−N)

∫
I

wxv dx. (1.10b)

It is noteworthy that B(·, ·) is coercive in Ḣ1 such that

B(w,w) = 〈wx, wx〉+ (2−N)

∫
I

wxwdx = |||wx|||2 +
N − 2

2
w(0)2 ≥ |||wx|||2. (1.11)
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1.3 Well-posedness and positivity conservation

In this section, we prove the following theorems.

Theorem 1.3.1 (Well-posedness of (Sym)). For a given unh ∈ Sh with n ≥ 0, the scheme (Sym) admits
a unique solution un+1

h ∈ Sh.

Theorem 1.3.2 (Positivity of (Sym)). In addition to the basic assumption (f1), assume that

f is a non-decreasing function with f(0) ≥ 0. (f2)

Letting n ≥ 0 and unh ≥ 0, and assuming that

τn ≥
1

4
h2, (1.12)

then the solution un+1
h of (Sym) satisfies un+1

h ≥ 0.

Theorem 1.3.3 (Comparison principle for (Sym)). We let n ≥ 0 and assume that unh, ũ
n
h ∈ Sh satisfy

unh ≤ ũnh in I. Furthermore, we assume that (f1) and (f2) are satisfied. Similarly, we let un+1
h , ũn+1

h ∈ Sh
be the solutions of (Sym) with unh, ũ

n
h, respectively, using the same time increment τn. Moreover, we

assume that (1.12) is satisfied. Consequently, we obtain un+1
h ≤ ũn+1

h in I. The equality holds true if
and only if unh = ũnh in I.

Theorem 1.3.4 (Well-posedness of (Non-Sym)). For a given unh ∈ Sh with n ≥ 0, the scheme (Non-Sym)
admits a unique solution un+1

h ∈ Sh.

To prove these theorems, we conveniently rewrite (1.7) into a matrix form. That is, we introduce

M = (µi,j)0≤i,j≤m−1 ∈ Rm×m, µi,j = (φj , φi),

A = (ai,j)0≤i,j≤m−1 ∈ Rm×m, ai,j = A(φj , φi),

un = (unj )0≤j≤m−1 ∈ Rm, unj = unh(xj),

F n = (Fnj )0≤j≤m−1 ∈ Rm, Fnj = (f(unh), φj),

and express (1.7) as
(M+ τnA)un+1 =Mun + τnF

n (n = 0, 1, . . .), (1.13)

where unm = unh(xm) is understood as unm = 0.

Lemma 1.3.5. M and A are both tri-diagonal and positive-definite matrices.

Theorem 1.3.1 is a direct consequence of this lemma. We proceed to proofs of other theorems.

Proof of Theorem 1.3.2. We use the representative matrix (1.13) instead of (1.7) and set

C = (ci,j)0≤i,j≤m−1 =M+ τnA, ci,j = µi,j + τnai,j .

If C−1 ≥ O, then we obtain
un+1 = C−1 (Mun + τnF

n) ≥ 0,

becauseM≥ O and F n ≥ 0 in view of (f2). The proof that C−1 ≥ O is true under (1.12) is divided into
three steps, each described as presented below.
Step 1. We show that

m−1∑
j=0

ci,j > 0 (0 ≤ i ≤ m− 1). (1.14)

Letting 1 ≤ i ≤ m− 2, we calculate

m−1∑
j=0

ci,j =

i+1∑
j=i−1

µi,j + τn

i+1∑
j=i−1

ai,j

=

i+1∑
j=i−1

µi,j + τn

∫ xi+1

xi−1

xN−1(φi−1 + φi + φi+1)x(φi)x dx

=

i+1∑
j=i−1

µi,j > 0,
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because φi−1 + φi + φi+1 ≡ 1 in (xi−1, xi+1). Cases i = 0 and i = m− 1 are verified similarly.
Step 2. We show that, if

τn ≥ −
µi,i+1

ai,i+1
,−µi,i−1

ai,i−1
(i = 0, 1, · · · ,m− 1), (1.15)

then C−1 ≥ O. First, (1.15) implies that ci,i−1, ci,i+1 ≤ 0 for 0 ≤ i ≤ m − 1 because ai,i−1, ai,i+1 < 0.
Matrix C is decomposed as C = D(I −E), where D = (di,j)0≤i,j≤m−1 and E = (ei,j)0≤i,j≤m−1 are defined
as

di,j =

{
ci,i (i = j)

0 (i 6= j)
, ei,j =

{
0 (i = j)

− ci,jci,i
(i 6= j),

and where I is the identity matrix. Apparently, I − E is non-singular and D ≥ O. Using (1.14), we
deduce

‖E‖∞ = max
0≤i≤m−1

(
−ci,i−1

ci,i
− ci,i+1

ci,i

)
< 1.

Therefore, matrix I − E is non-singular and (I − E)−1 =

∞∑
k=0

Ek ≥ O. Consequently, we have C−1 =

(I − E)−1D−1 ≥ O.
Step 3. Finally, we demonstrate that (1.12) implies (1.15). We calculate

µi,i+1 =

∫ xi+1

xi

xN−1 1

h2
i+1

(x− xi)(xi+1 − x) dx ≤ 1

4
h2
i+1

∫ xi+1

xi

1

h2
i+1

xN−1 dx,

−ai,i+1 =

∫ xi+1

xi

xN−1 1

h2
i+1

dx.

Therefore, we deduce −µi,i+1

ai,i+1
≤ 1

4h
2.

Proof of Theorem 1.3.3. Because f(ũnh) − f(unh) ≥ 0 in I, the proof follows exactly the same pattern as
that of the proof of Proposition 1.3.2.

We proceed to the result for (Non-Sym):

M′ = (µ′i,j)0≤i,j≤m−1 ∈ Rm×m, µ′i,j = 〈φj , φi〉 ,
B = (bi,j)0≤i,j≤m−1 ∈ Rm×m, bi,j = B(φj , φi),

Gn = (Gnj )0≤j≤m−1 ∈ Rm, Gnj = 〈f(unh), φj〉 ,

and express (1.9) as
(M′ + τnB)un+1 =M′un + τnG

n (n = 0, 1, . . .). (1.16)

In view of (1.11),M′ and B are both tri-diagonal and positive-definite matrices. Therefore, the proof
is completed.

1.4 Convergence and error analysis

1.4.1 Results

Our convergence results for (Sym) and (Non-Sym) are stated under a smoothness assumption of the
solution u of (1.1): given T > 0 and setting QT = [0, 1]× [0, T ], we assume that u is sufficiently smooth
such that

κν(u) =

2∑
j=0

‖∂jxu‖L∞(QT ) +

2+ν∑
l=1

‖∂ltu‖L∞(QT ) +

1+ν∑
k=1

‖∂kt ∂2
xu‖L∞(QT ) <∞, (1.17)

where ν is either 0 or 1.
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The partition {xi}mj=0 of Ī = [0, 1] is assumed to be quasi-uniform, with a positive constant β inde-
pendent of h such that

h ≤ β min
1≤j≤m

hj . (1.18)

Finally, the approximate initial value u0
h is chosen as

‖u0
h − u0‖ ≤ C0h

2 (1.19)

for a positive constant C0.
Moreover, for k = 1, 2, . . ., we express the positive constants Ck = Ck(γ1, γ2, . . .) and hk = hk(γ1, γ2, . . .)

according to the parameters γ1, γ2, . . .. Particularly, Ck and hk are independent of h and τ .
Next we state the following theorems.

Theorem 1.4.1 (Convergence for (Sym) in ‖ · ‖, I). Assume that f is a globally Lipschitz continuous
function; assume (f1) and

M = sup
µ>0

Mµ <∞. (f3)

Assume that, for T > 0, solution u of (1.1) is sufficiently smooth that (1.17) for ν = 0 holds true.
Moreover, assume that (1.18) and (1.19) are satisfied. Then, there exists an h1 = h1(N, β) such that, for
any h ≤ h1, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖ ≤ C1(h2 + τ),

where C1 = C1(T,M, κ0(u), C0, N, β) and unh is the solution of (Sym).

For L∞ error estimates, we must further assume that u0
h is chosen as

A(u0
h − u0, vh) = 0 (vh ∈ Sh). (1.20)

Theorem 1.4.2 (Convergence for (Sym) in ‖ · ‖L∞(σ,1), I). In addition to the assumption of Theorem
1.4.1, assume that (1.20) is satisfied. Furthermore, let σ ∈ (0, 1) be arbitrary. Then, there exists an
h2 = h2(N, β) such that, for any h ≤ h2, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(σ,1) ≤ C2

(
h2 log

1

h
+ τ

)
,

where C2 = C2(T,M, κ0(u), C0, N, β, σ) and unh is the solution of (Sym).

The restriction that f is a globally Lipschitz continuous function with (f3) can be removed in the
following manner.

Theorem 1.4.3 (Convergence of (Sym) in ‖ · ‖, II). Given that T > 0 and that only (f1) is satisfied,
we assume that (1.17) with ν = 0, (1.18), and (1.19) are satisfied. Furthermore, assume that N ≤ 3 and
that there exist positive constants c1 and σ such that

τh−N/2 ≤ c1hσ. (1.21)

Then there exists an h3 = h3(T, κ0(u), C0, N, β) such that, for any h ≤ h3, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖ ≤ C2(h2 + τ),

where C3 = C3(T, κ0(u), C0, N, β) and unh is the solution of (Sym).

Theorem 1.4.4 (Convergence for (Sym) in ‖ · ‖L∞(σ,1), II). Given that T > 0 and that (f1) is satisfied,
we assume that (1.17) with ν = 0, (1.18), (1.19), (1.20) and (1.21) are satisfied. Consequently, there
exists an h4 = h4(T, κ0(u), C0, N, β) such that, for any h ≤ h4, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(σ,1) ≤ C4

(
h2 log

1

h
+ τ

)
,

where C4 = C4(T, κ0(u), C0, N, β) and unh is the solution of (Sym).
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Subsequently, let us proceed to error estimates for (Non-Sym). For the approximate initial value u0
h,

we choose
B(u0

h − u0, vh) = 0 (vh ∈ Sh). (1.22)

Quasi-uniformity is also required for the time partition. Therefore, there exists a positive constant γ > 0
such that

τ ≤ γτmin, (1.23)

where τmin = minn≥0 τn. Moreover, we set

δ = sup
tk+1∈[0,T ]

|τk − τk+1|. (1.24)

Theorem 1.4.5 (Convergence for (Non-Sym), I). Let f be a C1 function satisfying

M1 = sup
s∈R
|f ′(s)| <∞, M2 = sup

s 6=s′∈R

|f ′(s)− f ′(s′)|
|s− s′|

<∞. (f4)

Given T > 0, we assume that the solution u of (1.1) is sufficiently smooth that (1.17) for ν = 1
holds true. Furthermore, we assume that (1.18), (1.22) and (1.23) are satisfied. Then, there exists
an h5 = h5(T, κ1(u),M1,M2, γ,N, β) such that, for any h ≤ h5, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C5

(
log

1

h

) 1
2
(
h2 + τ +

δ

τmin

)
,

where C5 = C5(T, κ1(u),M1,M2, γ,N, β) > 0 and unh is the solution of (Non-Sym).

Finally, we state the error estimates for non-globally Lipschitz continuous function f . To avoid
unnecessary complexity, we deal only with the power nonlinearity f(s) = s|s|α.

Theorem 1.4.6 (Convergence for (Non-Sym), II). Letting f(s) = s|s|α for s ∈ R, where α ≥ 1, then
given T > 0, we assume that (1.17) with ν = 1, (1.18) and (1.22) are satisfied. We assume the uniform
time increment γ = 1. Then, there exists an h6 = h6(T, κ1(u), N, β) such that, for any h ≤ h6, we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C6

(
log

1

h

) 1
2

(h2 + τ),

where C6 = C6(T, κ1(u), N, β) and unh is the solution of (Non-Sym).

1.4.2 Proof of Theorems 1.4.1 and 1.4.2

We use the projection operator PA of Ḣ1 → Sh associated with A(·, ·), defined for w ∈ Ḣ1 as

PAw ∈ Sh, A(PAw − w,χ) = 0 (χ ∈ Sh). (1.25)

In [18] and [29], the following error estimates are proved.

Lemma 1.4.7. Letting w ∈ C2(Ī) ∩ Ḣ1, and (1.18) be satisfied, then for h ≤ h7 = h7(N, β), we obtain

‖PAw − w‖ ≤ Ch2‖wxx‖, (1.26)

‖PAw − w‖L∞(I) ≤ C
(

log
1

h

)
h2‖wxx‖L∞(I), (1.27)

where C is a positive constant depending only on N and β.

Proof of Theorem 1.4.1. Using PAu, we distribute the error in the form shown below.

unh − u(tn) = (unh − PAu(tn))︸ ︷︷ ︸
=θn

+ (PAu(tn)− u(tn))︸ ︷︷ ︸
=ρn
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From (1.26), it is known that

‖ρn‖ ≤ Ch2‖uxx(tn)‖ ≤ Ch2‖uxx‖L∞(QT ). (1.28)

Next we derive an estimate for θn. By considering the symmetric weak form (1.4) at t = tn+1, we obtain

(∂τnu(tn+1), χ) +A(PAu(tn+1), χ) = (f(u(tn)), χ)

+ (f(u(tn+1))− f(u(tn)), χ) + (∂τnu(tn+1)− ut(tn+1), χ)

which, together with (1.7), implies that(
∂τnθ

n+1, χ
)

+A(θn+1, χ) = (f(unh)− f(u(tn)), χ)

− (f(u(tn+1))− f(u(tn)), χ)− (∂τnu(tn+1)− ut(tn+1), χ)−
(
∂τnρ

n+1, χ
)
. (1.29)

Substituting this expression for χ = θn+1 yields the following:

1

τn

{
‖θn+1‖2 − ‖θn‖ · ‖θn+1‖

}
≤M‖θn + ρn‖ · ‖θn+1‖

+Mτn‖ut‖L∞(QT ) · ‖θn+1‖+ Cτn‖utt‖L∞(QT )‖θn+1‖+
∥∥∂τnρn+1

∥∥ · ‖θn+1‖.

Correspondingly, because

∂τnρ
n+1 = PA

(
u(tn+1)− u(tn)

τn

)
− u(tn+1)− u(tn)

τn
,

we provide an estimate

∥∥∂τnρn+1
∥∥ ≤ Ch2

∥∥∥∥uxx(tn+1)− uxx(tn)

τn

∥∥∥∥ ≤ Ch2‖uxxt‖L∞(QT ). (1.30)

To sum up, we obtain

‖θn+1‖ − ‖θn‖ ≤ τnM‖θn‖+ Ch2Mτn + CMτ2
n + Cτ2

n + Ch2τn.

Therefore,

‖θn‖ ≤ eMT ‖u0
h − PAu0‖+ C

eMT − 1

M
(τ + h2)

≤ eMT (‖u0
h − u0‖+ ‖u0 − PAu0‖) + C

eMT − 1

M
(τ + h2)

≤ C ′(τ + h2), (1.31)

where C ′ = C ′(T, κ0(u),M,N, β,C0) > 0. By combining this expression with (1.28), one can deduce the
desired error estimate.

Proof of Theorem 1.4.2. We use the same error decomposition process as that used in the previous proof
where unh − u(tn) = θn + ρn. Also, we apply (1.27) to estimate ‖ρn‖L∞(I). Because

‖θn‖L∞(σ,1) ≤ ‖θnx‖L1(σ,1) ≤ C(σ,N)‖θnx‖, (1.32)

we perform an estimation for ‖θnx‖.
Substituting (1.29) for χ = ∂τnθ

n+1, we obtain the following.

∥∥∂τnθn+1
∥∥2

+A(θn+1, ∂τnθ
n+1) ≤M‖θn‖ ·

∥∥∂τnθn+1
∥∥

+M‖ρn‖ ·
∥∥∂τnθn+1

∥∥+Mτn‖ut‖L∞(QT ) ·
∥∥∂τnθn+1

∥∥
+ ‖utt‖L∞(QT )τn

∥∥∂τnθn+1
∥∥+

∥∥∂τnρn+1
∥∥ · ∥∥∂τnθn+1

∥∥
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Correspondingly, we apply the elementary identity shown below

A
(
θn+1, ∂τnθ

n+1
)

=
1

2
A
(
θn+1 − θn + θn+1 + θn, ∂τnθ

n+1
)

≥ 1

2τn

[
A
(
θn+1, θn+1

)
−A (θn, θn)

]
along with Young’s inequality to obtain

1

2τn

[
A(θn+1, θn+1)−A(θn, θn)

]
≤ 1

2

M2

δ2
0

‖θn‖2 +
1

2
δ2
0

∥∥∂τnθn+1
∥∥2

+
1

2

M2

δ2
1

‖ρn‖2 +
1

2
δ2
1

∥∥∂τnθn+1
∥∥2

+
1

2

C2

δ2
2

τ2
n +

1

2
δ2
2

∥∥∂τnθn+1
∥∥2

+
1

2

∥∥∂τnρn+1
∥∥2

+
1

2

∥∥∂τnθn+1
∥∥2 −

∥∥∂τnθn+1
∥∥2
,

where δ0, δ1, δ2 > 0 are constants. After setting δ2
0 + δ2

1 + δ2
2 = 1, we obtain

A(θn+1, θn+1)−A(θn, θn) ≤ τn
[
C2

δ2
0

‖θn‖2 +
C2

δ2
1

‖ρn‖2 +
∥∥∂τnρn+1

∥∥2
+
C2

δ2
2

τ2

]
.

Therefore,

A(θn, θn) ≤ A(θ0, θ0) + C2tn sup
1≤k≤n

[
‖θk−1‖2 + ‖ρk−1‖2 +

∥∥∂τk−1
ρk
∥∥2

+ τ2
]
.

Consequently, using (1.20), (1.30), and (1.31), we deduce

‖θnx‖ ≤ Ct
1
2
n

(
τ + h2

)
.

This, together with (1.27) and (1.32), implies the desired estimate.

1.4.3 Proof of Theorems 1.4.3 and 1.4.4

For the proof, we use the inverse inequality that follows.

Lemma 1.4.8 (Inverse inequality). Under condition (1.18),

‖vh‖L∞(I) ≤ C?h−
N
2 ‖vh‖ (vh ∈ Sh),

where C? is a positive constant depending only on N and β.

Proof. Let vh ∈ Sh be arbitrary. From the norm equivalence in R2, we know that

‖vh‖L∞(I1) ≤ C??h
−1/2
1 ‖vh‖L2(

h1
2 ,h1)

,

‖vh‖L∞(Ij) ≤ C??h
−1/2
j ‖vh‖L2(Ij) (j = 2, . . . ,m),

where C?? denotes the positive constant. Given that ‖vh‖L∞(I) = ‖vh‖L∞(I1), the expression is calculable
as

‖vh‖2L∞(I1) ≤ C
2
??h
−1
1

∫ h1

h1/2

x−(N−1)xN−1v2
h dx

≤ C2
??h
−1
1

(
h1

2

)−(N−1) ∫ h1

h1/2

xN−1v2
h dx

≤ C2
??2

N−1h−N
(
h1

h

)−N ∫ h1

h1/2

xN−1v2
h dx

≤ C2
?h
−N‖vh‖2.

The case ‖vh‖L∞(I) = ‖vh‖L∞(Ij) with j = 2, . . . ,m is examined similarly.
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Proof of Theorem 1.4.3. Consider (1.1) and (Sym) with replacement f(s) in

f̃(s) =


f(µ) (s ≥ µ)

f(s) (−µ ≤ s ≤ µ)

f(−µ) (s ≤ −µ),

where µ > 0 is determined later. Then, f̃ satisfies condition (f3) in Theorem 1.4.1 such that

sup
s,s′∈R,s 6=s′

|f̃(s)− f̃(s′)|
|s− s′|

≤M ≡ sup
|λ|≤µ

Mλ <∞.

Let ũ and ũnh be the solutions of (1.1) and (Sym) with f̃ , respectively, such that

‖ũnh‖L∞(I) ≤ ‖θn‖L∞(I) + ‖PAũ(tn)‖L∞(I),

where θn = ũnh − PAũ(tn) and ρn = PAũ(tn)− ũ(tn). Applying Theorem 1.4.1 to ũ and ũnh, one obtains

sup
0≤tn≤T

‖ũnh − ũ(·, tn)‖ ≤ C2(h2 + τ), (1.33)

where C2 = C2(T, κ0(ũ), µ, C0, N, β). Moreover, an estimate (1.31) for θn is available. In view of Lemmas
1.4.7 and 1.4.8, we determine those estimates as

‖θn‖L∞(I) ≤ C?h−
N
2 ‖θn‖ ≤ C3h

−N2 (h2 + τ),

‖ρn‖L∞(I) ≤ C4

(
h2 log

1

h

)
‖ũxx(tn)‖L∞(I),

where C3 = C3(T, κ0(ũ), µ, C0, N, β) and C4 = C4(N, β). Therefore, we have

‖PAũ(tn)‖L∞(I) ≤ ‖ũ(tn)‖L∞(I) + C4

(
h2 log

1

h

)
‖ũxx(tn)‖L∞(I)

and

‖ũnh‖L∞(I) ≤ C3(h2−N2 + h−
N
2 τ) + ‖ũ(tn)‖L∞(I) + C4

(
h2 log

1

h

)
‖ũxx(tn)‖L∞(I).

At this stage, we set µ = 1 + ‖u‖L∞(QT ) to obtain u = ũ in QT by uniqueness. Moreover, because
N < 4, we can take a very small h such that

C3(h2−N2 + h−
N
2 τ) ≤ 1

2
, C4

(
h2 log

1

h

)
‖uxx(tn)‖L∞(I) ≤

1

2
.

Consequently, ‖ũnh‖L∞(I) ≤ µ. Also, by uniqueness unh = ũnh. Therefore, (1.33) implies the desired
conclusion.

Proof of Theorem 1.4.4. The proof follows the same pattern as that for Theorem 1.4.3, but using Theorem
1.4.2 instead of Theorem 1.4.1.

1.4.4 Proof of Theorems 1.4.5 and 1.4.6

We use the projection operator PB of Ḣ1 → Sh associated with B(·, ·):

B(PBw − w,χ) = 0 (χ ∈ Sh). (1.34)

In [18], the following error estimates are proved.

Lemma 1.4.9. Letting w ∈ C2(Ī) ∩ Ḣ1 and (1.18) be satisfied, then for h ≤ h7 = h7(N, β) we obtain

‖PBw − w‖L∞(I) ≤ C7h
2‖wxx‖L∞(I), (1.35)

where C7 = C7(N, β).
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We also use a version of Poincaré’s inequality (see [42, Lemma 18.1]).

Lemma 1.4.10. We have
|||w||| ≤ |||wx||| (w ∈ Ḣ(I)). (1.36)

We can now state the proof that follows.

Proof of Theorem 1.4.5. Using PBu(t) ∈ Sh, we decompose the error into

unh − u(tn) = (unh − PBu(tn))︸ ︷︷ ︸
=θn

+ (PBu(tn)− u(tn))︸ ︷︷ ︸
=ρn

.

We know from (1.35) that

|||ρn||| ≤ ‖ρn‖L∞(I) ≤ Ch2‖uxx‖L∞(QT ), (1.37a)

|||∂τnρn+1||| ≤ ‖∂τnρn+1‖L∞(I) ≤ Ch2‖uxxt‖L∞(QT ). (1.37b)

Therefore, we will specifically examine estimation of |||θnx ||| because we are aware that

‖χ‖L∞(I) ≤ ‖χx‖L1(I) ≤ C
(

log
1

h

) 1
2

|||χx||| (χ ∈ Sh).

Furthermore, (1.5) and (1.9) give〈
∂τnθ

n+1 + ∂τnρ
n+1, χ

〉
+B(θn+1, χ) = 〈f(unh)− f(u(tn)), χ〉

− 〈f(u(tn+1))− f(u(tn)), χ〉 − 〈∂τnu(tn+1)− ut(tn+1), χ〉 (1.38)

for χ ∈ Sh. Substituting this for χ = θn+1, we have〈
∂τnθ

n+1, θn+1
〉

+B(θn+1, θn+1)

=
〈
f(unh)− f(u(tn)), θn+1

〉
−
〈
f(u(tn+1))− f(u(tn)), θn+1

〉
−
〈
∂τnu(tn+1)− ut(tn+1), θn+1

〉
−
〈
∂τnρ

n+1, θn+1
〉
. (1.39)

This, together with (1.11), implies that

|||θn+1
x |||2 ≤M |||unh − u(tn)||| · |||θn+1|||

+M |||u(tn+1)− u(tn)||| · |||θn+1|||+ |||∂τnu(tn+1)− ut(tn+1)||| · |||θn+1|||
+ |||∂τnρn+1||| · |||θn+1|||+ |||∂τnθn+1||| · |||θn+1|||.

Therefore, using (1.36), we deduce that

|||θn+1
x ||| ≤M |||unh − u(tn)|||+M |||u(tn+1)− u(tn)|||

+ |||∂τnu(tn+1)− ut(tn+1)|||+ |||∂τnρn+1|||+ |||∂τnθn+1|||
≤M(|||θn|||+ |||ρn|||) +Mτn‖ut‖L∞(QT )

+ τn‖utt‖L∞(QT ) + |||∂τnρn+1|||+ |||∂τnθn+1|||. (1.40)

These estimates actually hold. Nevertheless, their proof is postponed for Section 1.6:

|||θn||| ≤ C(h2 + τ), (1.41a)

|||∂τnθn+1||| ≤ C
(
h2 + τ +

δ

τ

)
. (1.41b)

Using (1.37a), (1.37b), (1.41a), and (1.41b), we deduce

|||θn+1
x ||| ≤ C

(
h2 + τ +

δ

τ

)
,

which completes the proof of Theorem 1.4.5.
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Finally, we state the following proof.

Proof of Theorem 1.4.6. Consider problems (1.1) and (1.9) with replacement f(s) = s|s|α by

f̃(s) =

{
s|s|α (|s| ≤ µ)

[(1 + α)µαs− αµ1+α] sgn(s) (|s| ≥ µ),

where µ > 0 is determined later. Then, f̃ is a C1 function and the corresponding values of M̃1 and M̃2

in (f4) are expressed as M̃1 = (1 + α)µα and M̃2 = (1 + α)αµα−1.
Let ũ and ũnh respectively represent the solutions of (1.1) and (1.9) with f̃ . If µ ≥ κ1(u), then u = ũ

holds true by uniqueness. Consequently, we can apply Theorem 1.4.5 to obtain

‖ũnh − u(tn)‖L∞(I) ≤ C
(

log
1

h

) 1
2

(h2 + τ), (1.42)

where C = C(T, κ1(u), γ,N, β). At this juncture, we apply small h and τ such that C
(
log 1

h

) 1
2 (h2 +τ) <

1, and set µ = κ1(u) + 1. As ‖ũnh‖L∞(I) ≤ κ1(u) + 1 = µ, we obtain ũnh = unh by the uniqueness theorem.
Therefore, (1.42) implies the desired estimate.

1.5 Numerical examples

This section presents some numerical examples to validate our theoretical results. For this purpose,
throughout this section, we set

f(s) = s|s|α, α > 0.

If this were the case, then the solution of (1) might blow up in the finite time. Therefore, one must devote
particular attention to setting of the time increment τn. Particularly, following Nakagawa [32] (see also
Chen [8] and Cho–Hamada–Okamoto [14]), we use the time-increment control

τn = τ ·min

{
1,

1

‖unh‖α2

} (
‖unh‖22 =

m−1∑
j=0

hxN−1
j+1 u

n
h(xj)

2

)
, (1.43)

where τ = λh2 and λ = 1/2.
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(a) (Sym)
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(b) (Non-Sym)

Figure 1.1: N = 5, α = 4
3 and u(0, x) = cos π2x.

First, we compared the shapes of both solutions of (Sym) and (Non-Sym), as shown in Fig. 1.1 for
N = 5, α = 4

3 and u(0, x) = cos π2x. We used the uniform space mesh xj = jh (j = 0, . . . ,m) and
h = 1/m with m = 50. For the choice of u0

h, we used the linear interpolation of u(0, x).
We computed them continuously until tn=T = 0.2 or ‖unh‖

−1
2 < ε = 10−8, wherein both solutions exist

globally in time and approach 0 uniformly in I as t → ∞. No marked differences were observed in
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Figs. 1.1(a) and 1.1(b). Subsequently, we took Fig. 1.2 for the case in which the initial value was
u(0, x) = 13 cos π2x. The rest of the parameters are the same. At this point, the solutions of (Sym) and
(Non-Sym) blew up after x = 0.06 with the distinct observation that the solution of the former blew up
earlier than that of the latter. Furthermore, the solution of (Non-Sym) had negative values whereas that
of (Sym) was always positive.

(a) (Sym) (b) (Non-Sym)

Figure 1.2: N = 5, α = 4
3 and u(0, x) = 13 cos π2x.

We examined the error estimates of the solutions for the same uniform space mesh xj = jh (j =
0, . . . ,m) and h = 1/m. Also, we regarded the numerical solution with h′ = 1/480 as the exact solution.
The following quantities were compared:

L1err ‖unh′ − unh‖L1(I);

L2err ‖unh′ − unh‖ =
∥∥∥xN−1

2 (unh′ − unh)
∥∥∥
L2(I)

;

L∞err ‖unh′ − unh‖L∞(I).

Fig. 1.3 presents results for N = 3, α = 4
3 and u(0, x) = cos π2x. We used the uniform time increment

τn = τ = λh2 (n = 0, 1, . . .) with λ = 1/2 and computed until t ≤ T = 0.005. We took the linear
interpolation of u(0, x) as u0

h(x) in (Sym), and we took PBu(0, x) as u0
h(x) in (Non-Sym). For (Sym), we

observed the theoretical convergence rate h2 + τ in the ‖ · ‖ norm (see Theorem 1.4.3), whereas the rate
in the L∞ norm deteriorated slightly. For (Non-Sym), we observed second-order convergence in the L∞

norm, which supports the results presented in Theorem 1.4.5.
Moreover, we considered the case for N = 4, which is not supported in Theorem 1.4.3 for (Sym). Also,

we chose α = 4 and u(0, x) = 3 cos π2x for this case. Fig. 1.4(d) displays the shape of the solution, which
blew up at approximately T = 0.0035. Furthermore, we computed errors until T = 0.0011, 0.0022, and
0.0033 using the uniform meshes xj and τn with λ = 0.11. From Fig. 1.4, we observed the second-order
convergence in the ‖ · ‖ norm, suggesting the possibility of removing assumption N ≤ 3.

Finally, we observed the non-increasing property of the energy functional. The energy functional
associated with (1) is given as

J(t) =
1

2
‖ux‖2 −

1

α+ 2

∫
I

xN−1|u|α+2 dx.

We can use the standard method to prove that J(t) is non-increasing in t.
This non-increasing property plays an important role in the blow-up analysis of the solution of (1), as

presented by Nakagawa [32]. Therefore, it is of interest whether a discrete version of this non-increasing
property holds true. Actually, introducing the discrete energy functional associated with (Sym) as

Jh(n) =
1

2
‖(unh)x‖2 −

1

α+ 2

∫
I

xN−1|unh|α+2 dx,

we prove the following. Section 1.7 presents the proof.
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(a) (Sym) (b) (Non-Sym)

Figure 1.3: Errors. N = 3, α = 4
3 and u(0, x) = cos π2x.

Proposition 1.5.1. Jh(n) is a non-increase sequence of n.

Now let N = 3, α = 4
3 , and u(0, x) = cos π2x, 13 cos π2x. We determined the time increment τn

through (1.43) for the uniform space mesh xj = jh with h = 1/m and m = 50. We took the linear
interpolation of u(0, x) as u0

h. Fig. 1.5 presents the results, which support that of Proposition 1.5.1.

1.6 Proofs of (1.41a) and (1.41b)

Proofs of (1.41a) and (1.41b) are stated in this section using the same notation as that used in Section
1.4.

Proof of (1.41a). By application of (1.39), (1.37a), and (1.37b), we derived the expression

1

τn

(
|||θn+1|||2 − |||θn+1||| · |||θn|||

)
≤M(|||θn|||+ Ch2‖uxx‖L∞(QT )) · |||θn+1|||

+Mτn‖ut‖L∞(QT ) · |||θn+1|||+ τn‖utt‖L∞(QT ) · |||θn+1|||
+ Ch2‖uxxt‖L∞(QT ) · |||θn+1|||.

Consequently, we have
|||θn+1||| ≤ (1 + τnM)|||θn|||+ Cτn(h2 + τn).

Therefore, similarly to the derivation of (1.31), we obtain from (1.22) the expression of

|||θn||| ≤ C
(
h2 + τ

)
to complete the proof.

Proof of (1.41b). First, we prove the case of n = 0. Substituting (1.38) for n = 0 and χ = θ1, we obtain

〈
θ1 − θ0

τ0
, θ1

〉
+B(θ1, θ1) ≤

〈
f(u0

h)− f(u0), θ1
〉

−
〈
f(u(t1))− f(u0), θ1

〉
−
〈
∂τ0u(t1)− ut(t1), θ1

〉
−
〈
ρ1 − ρ0

τ0
, θ1

〉
.
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(d) solution shape

Figure 1.4: Errors. N = 4, α = 4 and u(0, x) = 3 cos π2x.

(Sym) & u(0, x) = cos π2x (Sym) & u(0, x) = 13 cos π2x

Figure 1.5: Energy functional.
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Because θ0 = 0, we apply (1.37b) to get

1

τ0
|||θ1|||2 ≤M |||ρ0||| · |||θ1|||+Mτ0‖ut‖L∞(QT )|||θ1|||

+ τ0‖utt‖L∞(QT )|||θ1|||+ |||∂τ0ρ1||| · |||θ1|||
≤ C(τ0 + h2)|||θ1|||.

Repeatedly using θ0 = 0, we obtain
|||∂τ0θ1||| ≤ C(τ0 + h2). (1.44)

Next we assume n ≥ 0 and tn+2 ≤ T . Consequently, from (1.38), we derive〈
∂τn+1

θn+2 − ∂τnθn+1, χ
〉

+B(θn+2 − θn+1, χ)

= 〈f(un+1
h )− f(u(tn+1))− f(unh) + f(u(tn))︸ ︷︷ ︸

=J1

, χ〉

− 〈f(u(tn+2))− f(u(tn+1))− f(u(tn+1)) + f(u(tn))︸ ︷︷ ︸
=J2

, χ〉

− 〈∂τn+1
u(tn+2)− ut(tn+2)− ∂τnu(tn+1) + ut(tn+1)︸ ︷︷ ︸

=J3

, χ〉

− 〈∂τn+1
ρn+2 − ∂τnρn+1︸ ︷︷ ︸

=J4

, χ〉 (1.45)

for any χ ∈ Sh. Substituting this expression for χ = ∂τn+1
θn+2, we obtain

|||∂τn+1θ
n+2|||2 − |||∂τnθn+1||| · |||∂τn+1θ

n+2||| ≤ |||∂τn+1θ
n+2|||

4∑
j=1

|||Jj |||.

Here, we accept the following estimates:

|||J1||| ≤ Cτn(1 + τn)|||∂τnθn+1|||+ Cτn(h2 + τn + τnh
2), (1.46a)

|||J2|||, |||J3||| ≤ Cτn+1(τn+1 + τn) + C|τn+1 − τn|, (1.46b)

|||J4||| ≤ C(τn+1 + τn)h2. (1.46c)

In view of the quasi-uniformity of time partition (1.23), we have

τn+1 = τn
τn+1

τn
≤ γτn.

Summing up, we deduce

bn+1 − bn ≤ Cτnbn + Cτn

(
h2 + τ +

δ

τmin

)
, (1.47)

where bn = |||∂τnθn+1|||. Therefore,

bn ≤ eCT b0 + C(eCT − 1)

(
h2 + τ +

δ

τmin

)
,

which, together with (1.44), implies the desired inequality (1.41b).

We now prove (1.46a)–(1.46c).

Estimation for J1. We apply Taylor’s theorem to obtain

J1 = f ′(s1)(un+1
h − unh)− f ′(s2)(u(tn+1)− u(tn))

= f ′(s1)[(θn+1 + ρn+1)− (θn + ρn)] +
f ′(s1)− f ′(s2)

s1 − s2
(s1 − s2)(u(tn+1)− u(tn)),
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where s1 = un+1
h −µ1(un+1

h −unh) and s2 = u(tn+1)−µ2[u(tn+1)−u(tn)] for some µ1, µ2 ∈ [0, 1]. In view
of (1.37a), (1.37b), and (1.41a), we find the following estimates

|||J1||| ≤ τnM |||∂τnθn+1|||+ τnM |||∂τnρn+1|||+
∣∣∣∣∣∣∣∣∣∣∣∣f ′(s1)− f ′(s2)

s1 − s2
(s1 − s2)

∣∣∣∣∣∣∣∣∣∣∣∣ · τn‖ut‖L∞(QT ),

≤ τnM |||∂τnθn+1|||+ CτnMh2‖utxx‖L∞(QT ) +

∣∣∣∣∣∣∣∣∣∣∣∣f ′(s1)− f ′(s2)

s1 − s2
(s1 − s2)

∣∣∣∣∣∣∣∣∣∣∣∣ · τn‖ut‖L∞(QT ),

and ∣∣∣∣∣∣∣∣∣∣∣∣f ′(s1)− f ′(s2)

s1 − s2
(s1 − s2)

∣∣∣∣∣∣∣∣∣∣∣∣
≤M2|||θn+1 + ρn+1 − µ1(θn+1 + ρn+1 − θn − ρn) + (µ2 − µ1)(u(tn+1)− u(tn))|||
≤M2{|||θn+1|||+ |||ρn+1|||+ τn|||∂τnθn+1|||+ τn|||∂τnρn+1|||+ τn‖ut‖L∞(QT )}
≤M2{C(h2 + τ) + Ch2‖uxx‖L∞(QT ) + τn|||∂τnθn+1|||+ Cτnh

2‖utxx‖L∞(QT ) + τn‖ut‖L∞(QT )}.

Estimation for J2. We begin with

J2 = f ′(s3)(u(tn+2)− u(tn+1))− f ′(s4)(u(tn+1)− u(tn))

=
f ′(s3)− f ′(s4)

s3 − s4
(s3 − s4)τn+1ut(η1) + f ′(s4)(τn+1ut(η1)− τnut(η2))

=
f ′(s3)− f ′(s4)

s3 − s4
(s3 − s4)τn+1ut(η1)

+ f ′(s4)τn+1(ut(η1)− ut(η2)) + f ′(s4)(τn+1 − τn)ut(η2),

where s3 = u(tn+1)+µ3(u(tn+2)−u(tn+1)) and s4 = u(tn+1)+µ4(u(tn)−u(tn+1)) for some µ3, µ4 ∈ [0, 1],
η1 ∈ [tn+1, tn+2], and η2 ∈ [tn, tn+1]. Next, we obtain the following estimate:

|||J2||| ≤ τn+1

∣∣∣∣∣∣∣∣∣∣∣∣f ′(s3)− f ′(s4)

s3 − s4
(s3 − s4)

∣∣∣∣∣∣∣∣∣∣∣∣ · ‖ut‖L∞(QT )

+M1τn+1(τn+1 + τn)‖utt‖L∞(QT ) +M1|τn+1 − τn| · ‖ut‖L∞(QT );

∣∣∣∣∣∣∣∣∣∣∣∣f ′(s3)− f ′(s4)

s3 − s4
(s3 − s4)

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ CM2(τn+1 + τn)‖ut‖L∞(QT ).

Estimation for J3. We express J3 as

J3 =
τn+1ut(tn+2)− 1

2τ
2
n+1utt(s5)

τn+1
− ut(tn+2)

−
(
τnut(tn+1)− 1

2τ
2
nutt(s6)

τn
− ut(tn+1)

)
= −1

2
τn+1utt(s5) +

1

2
τnutt(s6)

=
1

2
τn+1(utt(s6)− utt(s5))− 1

2
(τn+1 − τn)utt(s6)

=
1

2
τn+1uttt(s7)(s5 − s6)− 1

2
(τn+1 − τn)utt(s6)

for some s5 ∈ [tn+1, tn+2], s6 ∈ [tn, tn+1] and s7 ∈ [s6, s5] ⊂ [tn, tn+2]. Therefore,

|||J3||| ≤
1

2
τn+1(τn+1 + τn)‖uttt‖L∞(QT ) +

1

2
|τn+1 − τn| · ‖utt‖L∞(QT ).
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Estimation for J4. For some s8 ∈ [tn+1, tn+2], s9 ∈ [tn, tn+1], and s10 ∈ [s9, s8], we obtain the expression

ρn+2 − ρn+1

τn+1
− ρn+1 − ρn

τn
= ρt(s8)− ρt(s9) = (s8 − s9)ρtt(s10)

Therefore, using (1.35),
|||J4||| ≤ C(τn+1 + τn)h2‖uttxx‖L∞(QT ).

1.7 Proof of Proposition 1.5.1

Proof. Substituting χ = ∂τnu
n+1
h for (1.7), we have

‖∂τnun+1
h ‖2 = −

(
(un+1
h )x,

(un+1
h )x − (unh)x

τn

)
+

(
unh|unh|α,

un+1
h − unh
τn

)
.

Therefore, for the conditions(
(un+1
h )x,

(un+1
h )x − (unh)x

τn

)
≥ 1

2

(
(unh)x + (un+1

h )x,
(un+1
h )x − (unh)x

τn

)
, (1.48a)(

unh|unh|α,
un+1
h − unh
τn

)
≤ 1

τn(α+ 2)

[∫
I

xN−1(|un+1
h |α+2 − |unh|α+2) dx

]
, (1.48b)

we obtain ∥∥∂τnun+1
h

∥∥2 ≤ − 1

τn
(Jh(n+ 1)− Jh(n)), (1.49)

which implies that Jh(n+ 1) ≤ Jh(n).
We can validate (1.48a) and (1.48b). Also, (1.48a) is derived readily. To prove (1.48b), we set

g(s) = 1
α+2 |s|

α+2, and apply the mean value theorem to deduce

g(un+1
h )− g(unh) = w|w|α(un+1

h − unh),

where w = w(x) = unh + σ(un+1
h − unh) and σ = σ(x) ∈ (0, 1). Consequently,

J ≡ 1

τn(α+ 2)

[∫
I

xN−1(|un+1
h |α+2 − |unh|α+2) dx

]
−
∫
I

xN−1unh|unh|α
un+1
h − unh
τn

dx

=
1

τn

∫
I

xN−1 [w|w|α − unh|unh|α] (un+1
h − unh) dx.

Then we repeat the mean value theorem to resolve

w|w|α − unh|unh|α = (α+ 1)|w̃|α(w − unh) = (α+ 1)|w̃|ασ̃(un+1
h − unh),

where w̃ = unh + σ̃(w − unh) and σ̃ = σ̃(x) ∈ (0, 1). Therefore,

J =
1

τn

∫
I

xN−1(α+ 1)|w̃|ασ̃(un+1
h − unh)2 dx ≥ 0,

which gives (1.48b).

1.8 Note

This chapter was taken directly from our previous paper, Nakanishi-Saito [34].
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Chapter 2

A mass-lumping finite element method

2.1 Introduction

This chapter applies the finite element method (FEM) to a semilinear parabolic equation with a singular
convection term:

ut = uxx +
N − 1

x
ux + f(u), x ∈ I = (0, 1), t > 0, (2.1a)

ux(0, t) = u(1, t) = 0, t > 0, (2.1b)

u(x, 0) = u0(x), x ∈ I. (2.1c)

Here, u = u(x, t), x ∈ I = [0, 1], t ≥ 0 denotes the function to be found, f is a given locally Lipschitz
continuous function, and u0 is a given continuous function. Throughout this chapter, we assume that

N is an integer ≥ 2. (2.2)

To compute the blow-up solution of (2.1), we apply Nakagawa’s time-increment control strategy (see
[32] and Section 2.6 of the present chapter), a powerful technique for approximating blow-up times. As
recalled below, the standard finite element approximation is unuseful for achieving this purpose. We thus
propose a special mass-lumping finite element approximation, prove its convergence, and apply it to a
blow-up analysis.

We first clarify the motivation of this chapter. In many engineering problems, the spatial dimension
of a mathematical model is at most three. Solving partial differential equations (PDEs) in more than
three spatial dimensions is usually motivated by mathematical interests. Mathematicians understand
that solving problems in a general setting can reveal the hidden natures of PDEs. One successful result
is the discovery of Fujita’s blow-up exponent for the semilinear heat equation of U = U(x, t) given as

Ut = ∆U + f(U) (x ∈ RN , t > 0), (2.3)

where N and f(U) are defined above. Assuming f(U) = U |U |α with α > 0, Fujita showed that any
positive solution blows up in finite time if 1 + α < 1 + 2/N , but a solution remains smooth at any time
if the initial value is small and 1 + α > 1 + 2/N . The quantity pc = 1 + 2/N is known as Fujita’s
critical exponent, and Eq.(2.3) is called Fujita’s equation. Since Fujita’s work, a huge number of studies
have been devoted to critical phenomena in nonlinear PDEs of several kinds (see [16, 31, 38] for details).
The knowledge gained by these studies has been applied to problems with spatial dimensions of three
or fewer. However, many problems related to stochastic analysis are formulated as higher-dimensional
PDEs. These problems have attracted much interest, but are beyond the scope of the present chapter.

Non-stationary problems in four dimensional space are difficult to solve by numerical methods, even
on modern computers. Consequently, numerical analyses of the blow-up solutions of nonlinear PDEs have
been restricted to two-dimensional space (see for example [1, 4, 5, 6, 10, 12, 13, 19, 23, 25, 24, 26, 28, 33, 36]
). Although Nakagawa’s time-increment control strategy is applied to various nonlinear PDEs including
the nonlinear heat, wave and Schrödinger equations, these equations are considered only in the one-space
dimension; see [7, 9, 10, 14, 26, 39, 40]. We know two notably exceptions; the one is [33] where the finite
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element method to a semilinear heat equation in a two dimensional polygonal domain was considered,
and the other is [8] where the finite difference method to the radially symmetric solution of the semilinear
heat equation in an N dimensional ball was studied.

Following [8], the present chapter investigates radially symmetric solutions to Eq.(2.3). Assuming
radial symmetry of the solution and the given data, the N -dimensional equation reduces to a one-
dimensional equation. More specifically, considering (2.3) in an N -dimensional unit ball B = {x ∈ RN |
|x|RN < 1} with the homogeneous Dirichlet boundary condition on the boundary and assuming U is
expressed as u(x) = U(x) for x ∈ B and x = |x|RN , we came to consider the problem (2.1).

After completing the present chapter, we learned that Cho and Okamoto [15] extended the work in [8].
The time dimension was discretized by the semi-implicit Euler method in [8], but Cho and Okamoto [15]
explored the explicit scheme, then proved optimal-order convergence with Nakagawa’s strategy. Because
their schemes use special approximations around the origin to maintain some analytical properties of
the solution, they should be performed on a uniform spatial mesh. Conversely, when seeking the blow
up solution, non-uniform partitions of the space variable are useful for examining highly concentrated
solutions at the origin. For this purpose, we developed the FEM scheme.

FEM analyses of the linear case, in which f(u) = 0 in Eq.(2.1) is replaced by a given function f(x, t),
are not new. Eriksson and Thomée [18] and Thomée [42] studied the convergence property of the elliptic
equation, and proposed two schemes: the symmetric scheme, in which the optimal-order error is estimated
in the weighted L2 norm, and the nonsymmetric scheme, in which the L∞ error is estimated. However,
their finite element schemes are not easily adaptable to the semilinear heat equation (2.1), as reported in
our earlier study [34]. Our earlier results are briefly summarized below:

• If f is globally Lipschitz continuous, the solution of the symmetric scheme converges to the solution
of (2.1) in the weighted L2 norm in space and in the L∞ norm in time. Moreover, the convergence
is at the optimal order (see Theorem 4.1 in [34]).

• If f is locally Lipschitz continuous and N ≤ 3, the same conclusion holds (see Theorem 4.3 in [34]).
However, if N ≥ 4, the convergence properties are not guaranteed. For this reason, interest in
radially symmetric problems has diminished.

• If f(u) = u|u|α with α ≥ 1 and the time partition is uniform, the solution of the non-symmetric
scheme converges to the solution of (2.1) in the L∞(0, T ;L∞(I)) norm. Optimal-order convergence
holds up to the logarithmic factor (see Theorem 4.6 in [34]). Nakagawa’s time-increment control
strategy is difficult to apply in such cases.

As the non-symmetric scheme seems to be incompatible with Nakagwa’s time-increment control strat-
egy, we pose the following question: Can the restriction N ≤ 3 be removed from the symmetric scheme?
In fact, this restriction is imposed by the inverse inequality Lemma 4.8 in [34] and the necessity of finding
the boundedness of the finite element solution (see the proof of Theorem 4.3 in [34]). To surmount this
difficulty, the L∞ estimates for the FEM can be directly derived using the discrete maximum principle
(DMP). As the DMP is based largely on the nonnegativity of the finite element solution, the time deriva-
tive term should be approximated by the mass-lumping approximation. Unfortunately, we tried but
failed to prove the convergence property of the finite element solution by this approximation (see (2.8)
below). Therefore, we propose a special mass-lumping approximation (2.9) in this chapter. Using the
special approximation, we prove the DMP and the convergence property of the finite element solution,
and perform the blow up analysis for any N ≥ 2.

Our typical results are summarized below. Here, our schemes are denoted as (ML–1) and (ML–2).

• The solution of (ML–1) is non-negative if f and u0 satisfy some conditions (Theorem 2.2.2). Fur-
thermore, if the time increment satisfies condition (2.12), the solution of (ML–2) is also non-negative
(Theorem 2.2.2). Theorem 2.2.3 gives a useful sufficient condition of (2.12).

• The solution of (ML–1) converges to the solution of (2.1) in the weighted L2 norm in space and
in the L∞ norm in time. Moreover, the convergence is at the optimal order (Theorem 2.2.4). The
proof is based on a sub-optimal estimate in the L∞(0, T ;L∞(I)) norm (Theorem 2.2.5).

• If condition (2.12) is satisfied, then the solution of (ML–2) converges to the solution of (2.1) in the
L∞(0, T ;L∞(I)) norm (Theorem 2.2.6). Unfortunately, the order of the convergence is sub-optimal.
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• The solution of (ML–2) reproduces the blow up property of the solution of (2.1) (Theorems 2.5.6
and 2.5.7).

This chapter comprises seven sections. Section 2.2 presents our finite element schemes and the con-
vergence theorems (Theorems 2.2.4–2.2.6). After describing our preliminary results in Section 2.3, we
prove our convergence theorems in Section 2.4. Section 2.5 reports the results of our blow-up analysis,
and Section 2.6 validates our theoretical results with numerical examples. Section 2.7 presents the proofs
of some auxiliary results on the eigenvalue problems.

2.2 The schemes and their convergence results

Throughout this chapter, f is assumed as a locally Lipschitz continuous function of R→ R.
For some arbitrary χ ∈ Ḣ1 = {v ∈ H1(I) | v(1) = 0}, we multiply both sides of (2.1a) by xN−1χ and

integrate by parts over I. We thus obtain∫
I

xN−1utχ dx+

∫
I

xN−1uxχx dx =

∫
I

xN−1f(u)χ dx. (2.4)

Therefore a weak formulation of (2.1) is stated as follows. For t > 0, find u(·, t) ∈ Ḣ1 such that

(ut, χ) +A(u, χ) = (f(u), χ) (∀χ ∈ Ḣ1), (2.5)

where

(w, v) =

∫
I

xN−1wv dx, A(w, v) =

∫
I

xN−1wxvx dx. (2.6)

We now introduce the finite element method. For a positive integer m, we introduce node points

0 = x0 < x1 < · · · < xj−1 < xj < · · · < xm−1 < xm = 1,

and set Ij = (xj−1, xj) and hj = xj − xj−1, where j = 1, . . . ,m. The granularity parameter is defined as
h = max1≤j≤m hj . Let Pk(J) be the set of all polynomials in an interval J of degree ≤ k. The P1 finite
element space is defined as

Sh = {v ∈ H1(I) | v ∈ P1(Ij) (j = 1, · · · ,m), v(1) = 0}. (2.7)

The standard basis function φj ∈ Sh, j = 0, 1, · · · ,m− 1 is defined as

φj(xi) = δij ,

where δij denotes Kronecker’s delta. We note that Sh ⊂ Ḣ1 and that any function of Ḣ1 is identified

with a continuous function. The Lagrange interpolation operator Πh of Ḣ1 → Sh is defined as Πhw =
m−1∑
j=0

w(xj)φj for w ∈ Ḣ1.

The mass-lumping approximation of the weighted L2 norm (·, ·) can be naturally defined as

(w, v) ≈ w(x0)v(x0)

∫ x1/2

0

xN−1 dx+

m−1∑
i=1

w(xi)v(xi)

∫ xi+1/2

xi−1/2

xN−1 dx, (2.8)

where xi−1/2 = (xi + xi−1)/2. As mentioned in the Introduction, this standard formulation is useless for
our purpose. Instead, we define

〈w, v〉 =

m−1∑
i=0

w(xi)v(xi)(1, φi) (w, v ∈ Ḣ1). (2.9)

This definition leads to the following result, which can be verified by direct calculation.

Lemma 2.2.1. We have 〈1, w〉 = (1,Πhw) for any w ∈ Ḣ1.
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In [37], the formulation similar to (2.9) was introduced. [37] considered two-spatial dimensional
parabolic problems with degenerate coefficients.

The associated norms with (·, ·) and 〈·, ·〉 are respectively given by

‖v‖ = (v, v)1/2 and |||v||| = 〈v, v〉1/2 .

These norms are equivalent in Sh as mentioned in Lemma 2.3.4.
The time discretization is non-uniformly partitioned as

t0 = 0, tn =

n−1∑
j=0

τj (n ≥ 1),

where τj > 0 denotes the time increment. Furthermore, we set

τ = sup
j≥0

τj .

In general, we write ∂τnu
n+1
h = (un+1

h − unh)/τn.
The finite element schemes are then stated as follows.

(ML–1) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that〈

∂τnu
n+1
h , χ

〉
+A(un+1

h , χ) = (f(unh), χ) (χ ∈ Sh), (2.10)

where u0
h ∈ Sh is assumed to be given.

(ML–2) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that〈

∂τnu
n+1
h , χ

〉
+A(unh, χ) = 〈f(unh), χ〉 (χ ∈ Sh). (2.11)

Below, we will show the optimal order error estimate in the weighted L2 norm for the solution of
(ML–1). On the other hand, we are able to show only a sub-optimal order error estimate in the L∞

norm for the solution of (ML–2). Nevertheless, we consider (ML–2) because it is suitable for the blow-up
analysis (see Section 2.5).

We also summarize the well-posedness of our schemes. The proof is omitted because it is identical to
Theorems 3.1 and 3.2 in [34].

Theorem 2.2.2. Suppose that n ≥ 0 and unh ∈ Sh are given.

(i) Schemes (ML–1) and (ML–2) admit unique solutions un+1
h ∈ Sh.

(ii) In addition to the basic assumption on f , assume that f is a non-decreasing function with f(0) ≥ 0.
If unh ≥ 0, then the solution un+1

h of (ML–1) satisfies un+1
h ≥ 0.

(iii) Under the assumptions of (ii) above, further assume that

τ ≤ min
0≤i≤m−1

(1, φi)

A(φi, φi)
. (2.12)

Then the solution un+1
h of (ML–2) satisfies un+1

h ≥ 0.

To provide a useful sufficient condition under which (2.12) holds, we assume that the partition {xi}mj=0

of Ī = [0, 1] is quasi-uniform, that is,
h ≤ β min

1≤j≤m
hj , (2.13)

where β is a positive constant independent of h.

Theorem 2.2.3. Inequality (2.12) holds if

τ ≤ β2

N + 1
h2. (2.14)
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Proof. A direct calculation gives

(1, φi)

A(φi, φi)
≥ 1

N + 1
h2
i ≥

β2

N + 1
h2

for any i. Therefore, (2.14) implies (2.12).

We now proceed to the convergence analysis. Our results for (ML–1) and (ML–2) assume a smooth
solution u of (2.1): given T > 0 and setting QT = [0, 1]× [0, T ], we assume that u is sufficiently smooth
such that

κ(u) =

2∑
k=0

‖∂kxu‖L∞(QT ) +

2∑
l=1

‖∂ltu‖L∞(QT ) +

2∑
k=1

‖∂t∂kxu‖L∞(QT ) <∞. (2.15)

Here, we have used the conventional ‖v‖L∞(ω) = maxω |v| for a continuous function v defined in a bounded
set ω in Rp, p ≥ 1.

Moreover, the approximate initial value u0
h is chosen as

‖u0
h − u0‖L∞(I) ≤ C0h

2 (2.16)

for a positive constant C0.
We now express positive constants C = C(γ1, γ2, . . .) depending only on the parameters γ1, γ2, . . ..

Particularly, C is independent of h and τ .

Theorem 2.2.4 (Optimal L2 error estimate for (ML-1)). Assume that, for T > 0, the solution u of (2.1)
is sufficiently smooth that (2.15) holds. Moreover, assume that (2.13) and (2.16) are satisfied. Then, for
sufficiently small h and τ , we have

sup
0≤tn≤T

‖unh − u(·, tn)‖ ≤ C(h2 + τ), (2.17)

where C = C(T, f, κ(u), C0, N, β) and unh is the solution of (ML–1).

The following result, which is worth a separate mention, gives only a sub-optimal error estimate but
is useful for proving Theorem 2.2.4.

Theorem 2.2.5 (Sub-optimal L∞ error estimate for (ML–1)). Under the assumptions of Theorem 2.2.4
and for sufficiently small h and τ , we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C (h+ τ) , (2.18)

where C = C(T, f, κ(u), C0, N, β) and unh is the solution of (ML–1).

Theorem 2.2.6 (Sub-optimal L∞ error estimate for (ML–2)). Also under the assumptions of Theorem
2.2.4, assume that (2.12) is satisfied. Then, for sufficiently small h and τ , we have

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C (h+ τ) , (2.19)

where C = C(T, f, κ(u), C0, N, β) and unh is the solution of (ML–2).

Remark 2.2.7. Other schemes based on the mass-lumping 〈·, ·〉 are possible. For example, the scheme〈
∂τnu

n+1
h , χ

〉
+A(un+1

h , χ) = 〈f(unh), χ〉 (χ ∈ Sh) (2.20)

and 〈
∂τnu

n+1
h , χ

〉
+A(unh, χ) = (f(unh), χ) (χ ∈ Sh) (2.21)

have very similar properties to those of (ML–1) and (ML–2). We omit the details because the modifica-
tions are easily performed.
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2.3 Preliminaries

This section gives some preliminary results of the theorem proofs. The quasi-uniformity condition (2.13)
is always assumed.

For some w ∈ Ḣ1, the projection operator PA of Ḣ1 → Sh associated with A(·, ·) is defined as

PAw ∈ Sh, A(PAw − w,χ) = 0 (χ ∈ Sh). (2.22)

The following error estimates are proved in [18] and [29].

Lemma 2.3.1. Letting w ∈ C2(Ī) ∩ Ḣ1, and h be sufficient small, we obtain

‖PAw − w‖ ≤ Ch2‖wxx‖, (2.23a)

‖PAw − w‖L∞(I) ≤ C
(

log
1

h

)
h2‖wxx‖L∞(I), (2.23b)

where C = (β,N) > 0.

Lemma 2.3.2 (Inverse estimate). There exists a constant C = C(β,N) > 0 such that

‖wx‖ ≤ Ch−1‖w‖ (w ∈ Sh).

Proof. The proof is identical to that of the standard inverse estimate.

Lemma 2.3.3. Let w ∈ C(I) be a piecewise quadratic function in I, that is, w|Ij ∈ P2(Ij) (j = 1, · · · ,m).
Then, we have ∫

I

xN−1|Πhw − w| dx ≤ Ch2‖xN−1wxx‖L1(I), (2.24)

where C = C(β,N) > 0.

Proof. To prove (2.24), it suffices to replace I = Ij with j = 1, . . . ,m. First, let j ≥ 2. By Taylor’s
theorem, we can write

|Πhw(x)− w(x)| ≤ Chj
∫
Ij

|wxx(ξ)| dξ (x ∈ Ij). (2.25)

Referring to (2.13), we see that

x

xj−1
= 1 +

x− xj−1

xj−1
≤ 1 +

hj
hj−1

≤ 1 + β (x ∈ Īj). (2.26)

Combining (2.25) and (2.26), we deduce that

xN−1|Πhw(x)− w(x)| ≤ C(1 + β)N−1hj

∫
Ij

xN−1|wxx(ξ)| dξ (x ∈ Ij).

Integrating both sides, we obtain (2.24) for I = Ij and j ≥ 2. We now proceed to the case m = 1. Setting
w(x) = ax2 + bx+ c for x ∈ I1, where a, b and c are constants, we express Πhw(x)− w(x) = ax(h1 − x)
for x ∈ I1. Therefore, we directly obtain∫

I1

xN−1|Πhw(x)− w(x)| dx =
|a|

(N + 1)(N + 2)
hN+2

1 ,

h2
1‖xN−1wxx‖L1(I1) =

2

N
|a|hN+2

1 ,

which implies (2.24) for I = I1.

Lemma 2.3.4. There exist constants C = C(β,N) and C ′ = C ′(β,N) such that

C ′|||w||| ≤ ‖w‖ ≤ C|||w||| (w ∈ Sh).
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Proof. Let w ∈ Sh. To prove the first inequality, we note that w2 is a piecewise quadratic function and
(w2)xx = 2(wx)2. By Lemmas 2.3.3 and 2.3.2, we get

| 〈w,w〉 − (w,w)| ≤ Ch2‖xN−1(w2)xx‖L1(I)

≤ Ch2‖wx‖2

≤ C‖w‖2,

which implies the first inequality.
To prove the second inequality, we estimate ‖w‖ as

‖w‖2 ≤
m∑
j=1

[
w(xj−1)2

∫ xj

xj−1

xN−1dx+ w(xj)
2

∫ xj

xj−1

xN−1dx

]

= w(x0)2

∫ x1

x0

xN−1dx+

m−1∑
j=1

w(xj)
2

∫ xj+1

xj−1

xN−1dx.

We also express |||w||| as

|||w|||2 = w(x0)2

∫ x1

x0

xN−1φ0(x) dx+

m−1∑
j=1

w(xj)
2

∫ xj+1

xj−1

xN−1φj(x) dx.

Therefore, it suffices to show that∫ x1

x0

xN−1dx ≤ C1

∫ x1

x0

xN−1φ0 dx, (2.27a)∫ xj+1

xj−1

xN−1dx ≤ C2

∫ xj+1

xj−1

xN−1φj dx (j = 1, . . . ,m− 1), (2.27b)

where C1 = C1(N) > 0 and C2 = C2(N) > 0.
Equation (2.27b) is directly verified using (2.26). Equation (2.27a) is obtained by the change-of-

variables technique, setting ξ = x/h1.

We here introduce two auxiliary problems. Given n ≥ 0, gnh ∈ Sh and unh ∈ Sh, we seek un+1
h ∈ Sh

such that 〈
∂τnu

n+1
h , χ

〉
+A(un+1

h , χ) = 〈gnh , χ〉 (χ ∈ Sh), (2.28)

and 〈
∂τnu

n+1
h , χ

〉
+A(unh, χ) = 〈gnh , χ〉 (χ ∈ Sh). (2.29)

Lemma 2.3.5. Suppose that n ≥ 0 and unh, g
n
h ∈ Sh are given. Then, problem (2.28) admits a unique

solution un+1
h ∈ Sh and it satisfies

‖un+1
h ‖L∞(I) ≤ ‖unh‖L∞(I) + τn‖gnh‖L∞(I). (2.30)

Problem (2.29) also admits a unique solution un+1
h ∈ Sh that satisfies (2.30) under condition (2.12).

Proof. The unique existence of the solution of (2.28) can be verified by a standard approach (see Theorems
3.1, 3.2 in [34]). Substituting χ = φi, i = 0, . . . ,m− 1, in (2.28), we have

τnai,i−1

mi
un+1
i−1 +

(
1 +

τnai,i
mi

)
un+1
i +

τnai,i+1

mi
un+1
i+1 = uni + τng

n
i ,

where uni = unh(xi), g
n
i = gnh(xi), ai,j = A(φj , φi) and mi = (1, φi). Therein, we should understand that

a0,−1 = 0, m0 = 1 and un+1
−1 = 1. Moreover, substituting χ = φi in (2.29), we get

un+1
i = −τnai,i−1

mi
uni−1 +

(
1− τnai,i

mi

)
uni −

τnai,i+1

mi
uni+1 + τng

n
i .

From these expressions, (2.30) is deduced by a standard argument.
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2.4 Proofs of Theorems 2.2.4, 2.2.5 and 2.2.6

Proof of Theorem 2.2.4 using Theorem 2.2.5. This proof is divided into the following two steps:
Step 1. We prove Theorem 2.2.4 under an additional assumption: f is a globally Lipschitz function. That
is, we assume

M = sup
s,s′∈R
s6=s′

|f(s)− f(s′)|
|s− s′|

<∞. (2.31)

Using PAu, we divide the error into the form

unh − u(·, tn) = (unh − PAu(·, tn))︸ ︷︷ ︸
=vnh

+ (PAu(·, tn)− u(·, tn))︸ ︷︷ ︸
=wn

. (2.32)

From (2.23a), we know that

‖wn‖ ≤ Ch2‖uxx(tn)‖ ≤ Ch2‖uxx‖L∞(QT ) (2.33)

and that ∂τnPAv = PA∂τnv for v ∈ C(I).
We now estimate vnh . Using the weak form (2.5) at t = tn+1, scheme (ML–1), and the property of PA,

we obtain 〈
∂τnv

n+1
h , χ

〉
+A(vn+1

h , χ) = (I + II + III + IV + V)(χ) (χ ∈ Sh), (2.34)

where

I(χ) = (f(unh), χ)− (f(u(·, tn)), χ),

II(χ) = (ut(tn+1), χ)− (∂τnu(·, tn+1), χ),

III(χ) = (f(u(·, tn)), χ)− (f(u(·, tn+1)), χ),

IV(χ) = (∂τnu(·, tn+1), χ)− (PA∂τnu(·, tn+1), χ) = (∂τnw
n+1, χ),

V(χ) = (∂τnPAu(·, tn+1), χ)− 〈∂τnPAu(·, tn+1), χ〉 .

The estimations of I–IV are straightforward. That is, we have

|I(χ)| ≤M(‖wn‖+ ‖vnh‖) · ‖χ‖,
|II(χ)| ≤ τn‖utt‖L∞(QT )‖χ‖,
|III(χ)| ≤ τnM‖ut‖L∞(QT )‖χ‖,
|IV(χ)| ≤ Ch2‖utxx‖L∞(QT )‖χ‖.

To estimate V, we use Lemmas 2.2.1 and 2.3.3. Lemma 2.3.3 is applicable because ∂τnPAu(·, tn+1)χ
is a piecewise quadratic function. That is,

|V(χ)| = (1,Πh(∂τnPAu(·, tn+1)χ)− ∂τnPAu(·, tn+1)χ)

≤ Ch2‖xN−1{∂τnPAu(·, tn+1)χ}xx‖L1(I)

≤ Ch2‖xN−1(PA∂τnu(·, tn+1))x · χx‖L1(I)

≤ Ch2‖(PA∂τnu(·, tn+1))x‖ · ‖χx‖
≤ Ch2‖(∂τnu(·, tn+1))x‖ · ‖χx‖
≤ Ch2‖utx‖L∞(QT )‖χx‖.

Substituting χ = vn+1
h in (2.34) gives

1

2τn

(
|||vn+1

h |||2 − |||vnh |||2
)

+ ‖(vn+1
h )x‖2 ≤ C|||vnh ||| · ‖(vn+1

h )x‖+ C(h2 + τn)κ(u)‖(vn+1
h )x‖.

Herein, we have used Lemma 2.3.4 and the Poincaré inequality (Lemma 18.1 in [42]). By Young’s
inequality, we then deduce that

1

τn

(
|||vn+1

h |||2 − |||vnh |||2
)
≤ C|||vnh |||2 + C(h2 + τn)2κ(u)2.
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Therefore,
|||vnh |||2 ≤ eCT |||v0

h|||2 + C(eCT − 1)(h2 + τn)2κ(u)2,

which completes the proof.

Step 2. Let r = 1 + ‖u‖L∞(QT ). Consider (2.1) and (ML–1) with replacement f(s) in

f̃(s) =


f(r) (s ≥ r)
f(s) (|s| ≤ r)
f(−r) (s ≤ −r).

The function f̃ is a locally Lipschitz function satisfying

M = sup
s,s′∈R
s6=s′

|f̃(s)− f̃(s′)|
|s− s′|

= sup
|s|,|s′|≤r
s6=s′

|f(s)− f(s′)|
|s− s′|

.

Let ũ and ũnh be the solutions of (2.1) and (ML-1) with f̃ , respectively. Applying Step 1 and Theorem
2.2.5 to ũ and ũnh, we obtain

sup
0≤tn≤T

‖ũnh − ũ(·, tn)‖ ≤ C(h2 + τ), (2.35a)

sup
0≤tn≤T

‖ũnh − ũ(·, tn)‖L∞(I) ≤ C
(
h+ h2 log

1

h
+ τ

)
. (2.35b)

By the definition of r and the uniqueness of the solution of (2.1), we know that u = ũ in QT . For
sufficiently small h and τ , we have

C

(
h+ h2 log

1

h
+ τ

)
≤ 1.

Consequently, ‖ũnh‖L∞(I) ≤ r for 0 ≤ tn ≤ T and, by the uniqueness of the solution of (ML–1), we have
unh = ũnh. Therefore, (2.35a) implies the desired result.

We now proceed to the proof of Theorem 2.2.5.

Proof of Theorem 2.2.5. The notation is that of the previous proof. It suffices to prove Theorem 2.2.5
under assumption (2.31), which is generalizable to an arbitrary f as demonstrated in the previous proof.
By (2.23b), we have ‖v0

h‖L∞(I) ≤ Ch2 log(1/h)κ(u) and ‖wn‖L∞(I) ≤ Ch2 log(1/h)κ(u) for 0 ≤ tn ≤ T .
Therefore, it remains to estimate vnh when 0 < tn ≤ T . Setting

Gnh =

m−1∑
i=0

Gni φi, Gni =
(I + II + III + IV + V)(φi)

(1, φi)
,

we rewrite (2.34) as 〈
∂τnv

n+1
h , χ

〉
+A(vn+1

h , χ) = 〈Gnh, χ〉 (χ ∈ Sh).

Showing that
‖Gnh‖L∞(I) ≤M‖vnh‖L∞(I) + C (h+ τ)κ(u), (2.36)

we can apply Lemma 2.3.5 to obtain

‖vn+1
h ‖L∞(I) ≤ (1 +Mτn)‖vnh‖L∞(I) + τn · C(h+ τ)κ(u),

and consequently

‖vnh‖L∞(I) ≤ eMtn‖v0
h‖L∞(I) +

eMtn − 1

M
C(h+ τ)κ(u).

Thereby, we deduce the desired estimate.
Below we prove the truth of (2.36). Recall that we assumed global Lipschitz continuity (2.31) on f .
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I(φi)–IV(φi) are straightforwardly estimated as follows:

|I(φi)| ≤M [‖vnh‖L∞(I) + Ch2 log(1/h)κ(u)] · (1, φi),
|II(φi)| ≤ τnκ(u)(1, φi),

|III(φi)| ≤Mτnκ(u)(1, φi),

|IV(φi)| ≤ Ch2 log(1/h)κ(u)(1, φi).

To estimate V(φi), we write

V(φi) = V1(φi) + V2(φi) + V3(φi),

where

V1(φi) = (∂τnPAu(·, tn+1), φi)− (∂τnu(·, tn+1), φi),

V2(φi) = (∂τnu(·, tn+1), φi)− 〈∂τnu(·, tn+1), φi〉 ,
V3(φi) = 〈∂τnu(·, tn+1), φi〉 − 〈∂τnPAu(·, tn+1), φi〉 .

The above terms are respectively estimated as:

|V1(φi)| ≤ ‖PA(∂τnu(·, tn+1))− ∂τnu(·, tn+1)‖∞(1, φi)

≤ Ch2 log(1/h)κ(u)(1, φi);

|V2(φi)| ≤
∫
I

xN−1 |∂τnu(x, tn+1)− ∂τnu(xi, tn+1)|φi(x) dx

≤ Chκ(u)(1, φi);

|V3(φi)| ≤ |∂τnu(xi, tn+1)− PA∂τnu(xi, tn+1)|(1, φi)
≤ Ch2 log(1/h)κ(u)(1, φi).

We thereby deduce that

‖Gnh‖L∞(I) ≤M‖vh‖L∞(I) + C
(
h+ h2 log(1/h) + τ

)
κ(u),

which implies (2.36). This step completes the proof.

Proof of Theorem 2.2.6. The proof is identical to that of Theorem 2.2.5.

2.5 Blow-up analysis

2.5.1 Results

This section considers the special nonlinearlity

f(s) = s|s|α, α > 0.

As we are interested in non-negative solutions, we assume that

u0 ≥ 0, 6≡ 0, u0
h ≥ 0, 6≡ 0. (2.37)

Therefore, the solution u of (2.1) is non-negative and the solution unh of (ML–2) is also non-negative under
condition (2.12). Generally, the solution of (2.1) blows up when the initial data u0 are sufficiently large,
and the blow up is controlled by the energy functional associated with (2.1). Herein, we study whether
or not the numerical solution behaves similarly by initially defining some properties of the solution u of
(2.1). In particular, we see that (ML–2) is suitable for this purpose.

The energy functionals associated with (2.1) are defined as

K(v) =
1

2
‖vx‖2 −

1

α+ 2

∫
I

xN−1|v(x)|α+2 dx,

I(v) =

∫
I

xN−1v(x)ψ(x) dx,

36



where ψ ∈ Ḣ1 denotes the eigenfunction associated with the first eigenvalue µ > 0 of the eigenvalue
problem

A(ψ, χ) = µ(ψ, χ) (χ ∈ Ḣ1). (2.38)

Without loss of generality, we assume that ψ ≥ 0 in I and
∫
I
xN−1ψ(x) dx = 1.

The following propositions 2.5.1, 2.5.2, and 2.5.3 are often applied to the semilinear heat equation in
a bounded domain. They are easily extended to the radially symmetric case.

Proposition 2.5.1. K(u(t)) is a non-increasing function of t, where u is the solution of (2.1).

Proposition 2.5.2. Suppose that u0 ≥ 0, 6≡ 0 and u is the solution of (2.1). Then, the following
statements are equivalent:

(i) There exists T∞ > 0 such that u blows up at t = T∞ in the sense that lim
t→T∞

‖u(·, t)‖ =∞.

(ii) There exists t0 ≥ 0 such that K(u(·, t0)) < 0.

Proposition 2.5.3. Suppose that u0 ≥ 0, 6≡ 0 and that u is the solution of (2.1). Then, the following
statements are equivalent:

(i) There exists T∞ > 0 such that u blows up at t = T∞ in the sense that lim
t→T∞

I(u(·, t)) =∞.

(ii) There exists t0 ≥ 0 such that I(u(·, t0)) > µ
1
α .

Remark 2.5.4. In Propositions 2.5.2 and 2.5.3, the blow up time T∞ is estimated respectively as

T∞ ≤ t0 +
α+ 2

α2
N−

α
2 ‖u(·, t0)‖−α,

and

T∞ ≤ t0 +

∫ ∞
I(u(·,t0))

ds

−µs+ s1+α
.

We now proceed to the discrete energy functionals. To this end, we employ the finite element version
of the eigenvalue problem:

A(ψ̂h, χh) = µ̂h

〈
ψ̂h, χh

〉
(χh ∈ Sh). (2.39)

Let ψ̂h ∈ Sh be the eigenfunction associated with the smallest eigenvalue µ̂h > 0 of (2.39). For the
eigenvalue problem (2.39), we state the following result, postponing the proof to Section 2.7.

Proposition 2.5.5. If the partition {xj}mj=0 is quasi-uniform, that is, satisfies (2.13), we have the
following:

(i) µ̂h → µ as h→ 0.

(ii) The first eigenfunction ψ̂h of (2.39) does not change sign.

(iii) ‖(ψ̂h − ψ)x‖ → 0 as h→ 0.

Therefore, without loss of generality, we can assume that ψ̂h ≥ 0 and
∫
I
xN−1ψ̂h(x) dx = 1.

For v ∈ Sh, we set

Kh(v) =
1

2
‖vx‖2 −

1

α+ 2

m∑
i=0

|v(xi)|α+2(1, φi),

Ih(v) =
〈
v, ψ̂h

〉
=

∫
I

xN−1Πh(vψ̂h)(x) dx.

We introduce the approximate blow-up time T̂∞(h) by setting

T̂∞(h) = lim
n→∞

tn = lim
n→∞

n−1∑
j=0

τj . (2.40)

We are now in a position to mention the main theorems in this section:
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Theorem 2.5.6. Let (2.37) be satisfied. Suppose that the solution u of (2.1) blows up at finite time T∞
in the sense that

‖u(·, t)‖L∞(I) →∞ and ‖u(·, t)‖ → ∞ (t→ T∞ − 0). (2.41)

Assume that for any T < T∞, u is sufficiently smooth that (2.15) holds. Assuming also that (2.13) is
satisfied, we set

τ = δ
β2

N + 1
h2 (2.42)

for some δ ∈ (0, 1]. The time increment τn is iteratively defined as

τn = τn(h) = τ min

{
1,

1

|||unh|||α

}
, (2.43)

where we have used the solution unh of (ML–2). Moreover, assume that (2.12) is satisfied and that

∀T < T∞, lim
h→0

sup
0≤tn≤T

|K(u(·, tn))−Kh(unh)| = 0. (2.44)

We then have
lim
h→0

T̂∞(h) = T∞. (2.45)

Theorem 2.5.7. Let (2.37) be satisfied. Suppose that the solution u of (2.1) blows up at finite time T∞
in the sense that

I(u(·, t))→∞ and ‖u(·, t)‖L∞(I) →∞ (t→ T∞ − 0). (2.46)

Assume that, for any T < T∞, u is sufficiently smooth that (2.15) holds. Assuming also that (2.13) is
satisfied, we set τ by (2.42) with some δ ∈ (0, 1]. The time increment τn is iteratively defined as

τn = τn(h) = τ min

{
1,

1

Ih(unh)α

}
, (2.47)

where we have used the solution unh of (ML–2) with (2.16). We then obtain (2.45).

Remark 2.5.8. The above theorems differ in that Theorem 2.5.6 requires the convergence property
(2.44) of the discrete energy functional Kh(unh), whereas no convergence property of Ih is necessary in
Theorem 2.5.7.

Remark 2.5.9. Unfortunately, we could not prove Theorems 2.5.6 and 2.5.7 using the solution of (ML–1).
In particular, the proof of the difference inequalities (2.48) and (2.51) failed in scheme (ML–1).

2.5.2 Proof of Theorem 2.5.6

To prove Theorem 2.5.6, we follow Nakagawa’s blow-up analysis [32]. For this purpose, we must derive
the difference inequality (2.48) and the boundedness (2.49) of T̂∞ (see Lemmas 2.5.11 and 2.5.12). The
original proof in [32] immediately follows from these results; see also [7], [8], and [14]. Therefore, we
concentrate our efforts on proving Lemmas 2.5.11 and 2.5.12.

Throughout this subsection, we take the same assumptions of Theorem 2.5.6; in particular, the time-
increment control (2.43). Note that condition (2.12) is satisfied by the definition of τn. Consequently,
the solution u of (2.1) and the solution unh of (ML–2) are non-negative.

Lemma 2.5.10. Kh(unh) is a non-increasing sequence of n.

Proof. Fixing some n ≥ 0, we write w = un+1
h , u = unh, wj = w(xj), and uj = u(xj). To show that

Kh(w)−Kh(u) ≤ 0, we perform the following division:

Kh(w)−Kh(u) = X + Y,

where

X =
1

2
‖wx‖2 −

1

2
‖ux‖2,

Y = − 1

α+ 2

m−1∑
j=0

wα+2
j (1, φj) +

1

α+ 2

m−1∑
j=0

uα+2
j (1, φj).
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X is expressed as

X = A(u,w − u) +
1

2
A(w − u,w − u).

By the mean value theorem, there exists θj ∈ [0, 1] such that

wα+2
j − uα+2

j = (α+ 2)ũα+1
j (wj − uj),

where ũj = u+ θj(w − u). Therefore,

Y = −
m−1∑
j=0

ũα+1
j (1, φj)(wj − uj)

= −
m−1∑
j=0

[ũα+1
j − uα+1](1, φj)(wj − uj)−

m−1∑
j=0

uα+1
j (1, φj)(wj − uj) = Y1 + Y2.

We calculate

A(u,w − u) + Y2 = −
〈
w − u
τn

, w − u
〉

= −1

τ
|||w − u|||2

and

Y1 = −
m−1∑
j=0

(α+ 1)θj(1, φj)û
α
j (wj − uj)2 ≤ 0,

where ûj = u+ θ̂j(ũj − uj) with some θ̂j ∈ [0, 1].
Meanwhile, for vh ∈ Sh(I), we write

A(vh, vh) ≤ 2

m∑
j=1

∫
Ij

xN−1 · 1

h2
j

dx · (v2
j + v2

j−1)

= 2

m−1∑
j=0

ajjv
2
j .

Using (2.12), we have

A(vh, vh) ≤ 2

m−1∑
j=0

(1, φj)

τn
v2
j =

2

τn
〈vh, vh〉 =

2

τn
|||vh|||2 (vh ∈ Sh).

We thereby deduce that

X + Y = − 1

τn
|||w − u|||2 +

1

2
A(w − u,w − u) + Y1 ≤ 0,

which implies that Kh(unh) is non-increasing in n.

Lemma 2.5.11. If there exists a non-negative integer n′ such that Kh(unh) ≤ 0 for all n ≥ n′, we have

1

2
∂τn |||un+1

h |||2 ≥ α

α+ 2
N

α
2 |||unh|||α+2 (n ≥ n′). (2.48)

Proof. Substituting χh = unh in (ML–2), we obtain〈
un+1
h − unh
τn

, unh

〉
+A(unh, u

n
h) = 〈unh(unh)α, unh〉 .

We note that 〈
un+1
h − unh, unh

〉
≤
〈
un+1
h − unh,

1

2
(un+1
h + unh)

〉
=

1

2
(|||un+1

h |||2 − |||unh|||2).
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By the decreasing property of Kh(unh), we have

‖(unh)x‖2 ≤
2

α+ 2

〈
(unh)α+2, 1

〉
(n ≥ n′).

Combining these results, we get

1

2
· 1

τn
(|||un+1

h |||2 − |||unh|||2) ≥ α

α+ 2

〈
(unh)α+2, 1

〉
.

Using Hölder’s inequality, we calculate

|||unh|||2 ≤ (1/N)
α
α+2 ·

〈
(unh)α+2, 1

〉 2
α+2 .

We thereby deduce (2.48).

Lemma 2.5.12. If Kh(un0

h ) ≤ 0 and |||un0

h ||| ≥ 1 for some integer n0 ≥ 0, then we have

T̂∞(h) ≤ tn0
+

{
α+ 2

α2
N−

α
2 + τ

(
1 +

2

α

)}
|||un0

h |||
−α. (2.49)

Proof. From Lemma 2.5.11,

|||un+1
h |||2 ≥ (1 + 2τnC|||unh|||α)|||unh|||2 = (1 + 2τC)|||unh|||2,

where C = α
α+2N

α
2 . Therefore,

lim
n→∞

|||unh||| =∞

and, for n ≥ n0,

tn = tn0
+

n−1∑
m=n0

τm = tn0
+

n−1∑
m=n0

τ

|||umh |||α
.

The remainder is identical to that of Corollary 2.1 in [14], so the details are omitted here.

2.5.3 Proof of Theorem 2.5.7

To prove Theorem 2.5.7, we apply abstract theory by (Propositions 4.2 and 4.3) in [40]. In this subsection,
we take the same assumptions of Theorem 2.5.7, in particular, the time-increment control (2.47).

Lemma 2.5.13. We have T∞ ≤ lim inf
h→0

T̂∞(h).

Proof. The proof is shown by contradiction. Setting S∞ = lim inf
h→0

T̂∞(h), we assume that S∞ < T∞.

Then, there exists h0 > 0 such that infh′≤h T̂∞(h′) < M for all h ≤ h0, where M = T∞+S∞
2 < T∞. That

is, for some fixed h ≤ h0, we have tn ≤ T̂∞(h) < M and Ih(unh) → ∞ as n → ∞. This implies that for
some 0 ≤ j(n) ≤ m − 1, we have unh(xj(n)) → ∞, and consequently ‖unh‖L∞(I) → ∞. However, from
Theorem 2.2.6, we observe that

lim
h→0

sup
0≤tn≤M

‖unh − u(·, tn)‖L∞(I) = 0.

If this expression is true, then T∞ cannot be the blow-up time of the solution u of (2.1). This contradiction
completes the proof.

Lemma 2.5.14. For any T < T∞, we have

lim
h→0

sup
0≤tn≤T

|Ih(unh)− I(u(·, tn))| = 0.
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Proof. We derive separate estimations for |Ih(unh)− Ĩh(unh)| and |Ĩh(unh)−I(u(·, tn))|, where Ĩh(v) denotes
the auxiliary functional

Ĩh(v) =

∫
I

xN−1v(x)ψ̂h(x) dx.

From Theorem 2.2.6, Lemma 2.3.3 and Proposition 2.5.5 (iii), we first derive

|Ih(unh)− Ĩh(unh)| ≤ Ch2‖xN−1(unhψ̂h)xx‖L1(I)

≤ Ch2‖(unh)x‖ · ‖ψ̂′h‖

≤ Ch‖unh‖L∞(I)‖ψ̂′h‖
≤ Ch(‖u(·, tn)‖L∞(I) + 1)(‖ψ′‖+ 1),

where we have used the elemental inequality ‖ψx‖ ≤ Ch−1‖ψ‖L∞(I) for ψ ∈ Sh. This implies that

|Ih(unh)− Ĩh(unh)| → 0 as h→ 0.
On the other hand, as h→ 0, we have

|Ĩh(unh)− I(u(·, tn))| =
∣∣∣∣∫
I

xN−1(unh − u(·, tn))ψ̂h dx

∣∣∣∣+

∣∣∣∣∫
I

xN−1u(·, tn)(ψ̂h − ψ) dx

∣∣∣∣
≤ ‖unh − u(·, tn)‖ · ‖ψ̂h‖+ ‖u(·, tn)‖ · ‖ψ̂h − ψ‖ → 0.

This expression concludes the proof.

The following is a readily obtainable consequence of Lemma 2.5.14.

Lemma 2.5.15. For any s0, there exists a nonnegative integer n0 = n0(h) such that Ih(un0

h ) > s0.

The following lemma is elementary and was originally stated as Lemma 3.1 in [14].

Lemma 2.5.16. There exists s0 > 1 satisfying

1

2
f(s) + (1 + µ)s ≤ f(s) (s ≥ s0),

where f(s) = s1+α.

We can now prove Theorem 2.5.7.

Proof of Theorem 2.5.7. It remains to verify that

T∞ ≥ lim sup
h→0

T̂∞(h). (2.50)

To this end, we apply abstract theory (Propositions 4.2 and 4.3) in [40]. Adopting the notation of [40],
we respectively set X, Xh, G, H, J and Jh in [40] as

X = Ḣ1, ‖v‖X = ‖v‖L∞(I), Xh = Sh,

G(s) =
1

2
f(s) =

1

2
s1+α, H(s) = sα (s ≥ 0),

J(t, v) =

∫
I

xN−1v(x) · ψ(x) dx, (t, v) ∈ (0,∞)×X,

Jh(t, vh) = Ih(vh) =

m−1∑
j=0

vjψ̂h(xj)(1, φj), (t, vh) ∈ (0,∞)×Xh, vj = vh(xj).

Here, G and H are functions of class (G) and class (H), respectively.
To avoid unnecessary complexity, we assume that n0 = 0 (see Lemma 2.5.15). Our problem setting

matches problem settings (I)–(VIII) in §4 of [40].
It is readily verified that conditions (H1), (H3), (H4) and (H5) in §4 of [40] hold. We need only check

that condition (H2)

∂τnIh(un+1
h ) ≥ 1

2
f(Ih(unh)) (n ≥ 0) (2.51)
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also holds.
Substituting χh = ψ̂h ∈ Sh in (ML–2) and using the relation (2.39), we have

∂τnIh(vn+1
h ) + µ̂hIh(vn+1

h ) =
〈
f(vnh), ψ̂h

〉
.

From Proposition 2.5.5 (i), we know that µ̂h < µ+ 1. Moreover, because
〈

1, ψ̂h

〉
= 1, we can apply

Jensen’s inequality to get

∂τnIh(un+1
h ) ≥ −(µ+ 1) · Ih(unh) + f(Ih(unh)).

By Lemma 2.5.16, −(µ + 1)s + f(s) ≥ 1
2f(s) for s ≥ s0. Because Ih(u0

h) > s0 by Lemma 2.5.15, we
deduce that

∂τn0
Ih(u1

h) ≥ 1

2
f(Ih(u0

h)).

We thus obtain Ih(v1
h) > s0. By this process, we finally obtain

∂τnIh(un+1
h ) ≥ 1

2
f(Ih(unh)), Ih(unh) > s0 (n ≥ 0).

Remark 2.5.17. Theorem 2.5.7 remains true after replacing (2.47) by

τn = τn(h) = τ min

{
1,

1

‖unh‖αL∞(I)

}
.

However, this definition increases the computational cost over that based on (2.47). Therefore, in the
following numerical evaluation, we adopt (2.47).

2.6 Numerical examples

This section validates our theoretical results with numerical examples.
We first examine the error estimates of the solutions on a uniform spatial mesh xj = jh (j = 0, . . . ,m)

with h = 1/m, regarding the numerical solution with h′ = 1/480 as the exact solution. The following
quantities were compared:

E1(h) = ‖unh′ − unh‖L1(I),

E2(h) = ‖unh′ − unh‖ =
∥∥∥xN−1

2 (unh′ − unh)
∥∥∥
L2(I)

,

E∞(h) = ‖unh′ − unh‖L∞(I).

Fig. 2.1 shows the results for N = 3, α = 4 and u(0, x) = cos π2x. The time increment was uniform
(τn = τ = λh2, n = 0, 1, . . . , λ = 1/2) and the iterations were continued until t ≤ T = 0.005. Hereinafter,
we set u0

h = Πhu
0. In scheme (ML-1), the numerical convergence rate was h2 + τ in the ‖ · ‖ norm (see

Theorem 2.2.4), but was slightly deteriorated in the L∞ norm.
In the case N = 4, which is not supported in the convergence property of the standard symmetric

FEM [34], we chose α = 3 and u(0, x) = 3 cos π2x. The errors were computed up to T = 0.0033 on the

non-uniform meshes with xi = sin (i−1)π
2m and τn with λ = 0.11. As shown in Fig. 2.2, the ‖ · ‖ norm

showed second-order convergence in both (ML-1) and standard FEM, but the ‖ · ‖L∞(I) norm showed
first-order convergence in the standard FEM.

Secondly, we confirmed the non-increasing property of the energy functional Kh(unh) in scheme (ML–
2) with N = 5, α = 4

3 , and u(0, x) = cos π2x, 13 cos π2x. The time increment τn was determined through
Theorem 5.6 with β = 1 and δ = 1. Simulations were performed on a uniform spatial mesh xj = jh with
h = 1/m and m = 50. The results (see Fig. 2.3) support Lemma 5.9. As shown in Fig. 2.4, the energy
functional Ih(unh) increased exponentially after t = 0.04 when the initial data was large, but vanishes
when the initial data was small. For Ih(unh), we used the time increment in Theorem 5.7 with δ = 1.
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Figure 2.1: Error convergences versus granularity: N = 3, α = 4 and u(0, x) = cos π2x

(a) (ML-1) (b) Standard FEM

Figure 2.2: Error convergences in the (ML–1) schemes (left) and the standard finite element method
(right): N = 4, α = 3 and u(0, x) = 3 cos π2x
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(ML–2) & u(0, x) = cos π2x (ML–2) & u(0, x) = 13 cos π2x

Figure 2.3: Temporal dynamics of the energy functional Kh(unh) in scheme (ML–2) with different initial
conditions

(ML–2) & u(0, x) = cos π2x (ML–2) & u(0, x) = 13 cos π2x

Figure 2.4: Temporal dynamics of the energy functional Ih(unh) in scheme (ML–2) with small (left) and
large (right) data inputs
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Finally, we calculated the numerical blow-up time in scheme (ML–2). Here, we set h = 1/m (m =
16, 32, 64). The time increments were defined as

(K) τn =
1

N + 1
min

{
1,

1

|||unh|||α

}
(see Theorem 2.5.6),

(I) τn =
1

N + 1
min

{
1,

1

Ih(unh)α

}
(see Theorem 2.5.7).

For a comparison evaluation, we executed the FDM of Chen [8] and the FDM of Cho and Okamoto [15].

Specifically, set τn = 1
2h

2 ·min
{

1, 1
‖unh‖

α
2

}
in Chen’s FDM and τn = 1

3N h
2 ·min

{
1, 1
‖unh‖

α
2

}
, σ = 3

2N in

Cho and Okamoto’s FDM.
We then introduced the truncated numerical blow-up time T̂M (h):

T̂M (h) = min
{
tn | ‖unh‖∞ > M = 108

}
.

Evaluations were performed with three parameter sets:

Case 1 N = 5, α = 0.39, and u(0, x) = 8000 cos π2x;

Case 2 N = 4, α = 0.49, and u(0, x) = 800(1− x2);

Case 3 N = 3, α = 0.66, and u(0, x) = 1000(e−x
2 − e−1).

Note that if 1 > Nα
2 holds true and u0 ≥ 0 is decreasing in x, then I(u(t)), ‖u(t)‖ and ‖u(t)‖L∞(I)

blow up simultaneously; see [21]. We chose these settings so that the assumptions in Theorem 2.5.6 and
Theorem 2.5.7 hold true.

Fig. 2.5 compares the truncated numerical blow-up times T̂M (h) as functions of h in the four schemes.
The solution of Chen’s FDM blew up later than the other schemes, whereas that of (ML–2) with Ih(unh)
blew up sooner than the other schemes.

Case 1 Case 2 Case 3

Figure 2.5: Truncated numerical blow-up times T̂M (h) in the four schemes with three parameter settings

2.7 Approximate eigenvalue problems

This chapter establishes the proof of Proposition 2.5.5. Recall that µ and µ̂h are the smallest eigenvalues
of (2.38) and (2.39), respectively. Functions ψ and ψ̂h are the eigenfunctions associated with µ and µ̂h,
respectively.
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We introduce the following linear operators T : Ḣ1 → Ḣ1, Th : Sh → Sh and T̂h : Sh → Sh by

A(Tv, χ) = (v, χ) (χ ∈ Ḣ1, v ∈ Ḣ1),

A(Thvh, χh) = (vh, χh) (χh ∈ Sh, vh ∈ Sh),

A(T̂hvh, χh) = 〈vh, χh〉 (χh ∈ Sh, vh ∈ Sh).

We also write v′ = vx for some function v = v(x).

Lemma 2.7.1 (Lemma 2.2 in [41], Theorems 13 and 14 in [20]). For any fh ∈ Sh ⊂ Ḣ1,

Tfh ∈ H2(I), ‖(Tfh)′′‖ ≤ C‖fh‖.

For a linear operator B : X ⊂ Ḣ → Ḣ, we define

‖B‖1,X = sup
v∈X, v 6=0

‖(Bv)′‖
‖v′‖

.

Lemma 2.7.2 (Lemma 3.3 in [3]). ‖T − T̂h‖1,Sh → 0 as h→ 0.

Remark 2.7.3. Lemma 2.7.2 does not exactly agree with Lemma 3.3 in [3], but its proof is identical to
that of Lemma 3.3 in [3].

The resolvent operator Rz(T̂h) for z ∈ C is defined as

Rz(T̂h) = (zI − T̂h)−1 : Sh → Sh,

where T̂h : Sh → Sh and z ∈ ρ(T̂h). Let I be the identity operator and ρ(B) be the resolvent set of a
linear operator B.

Lemma 2.7.4 ([17, Lemma 1]). For any closed set F ⊂ ρ(T ), there exists h0 > 0 such that for any
h ≤ h0, Rz(T̂h) exists and

‖Rz(T̂h)‖1,Sh ≤ C (∀z ∈ F ),

where C is independent of h.

We now define spectral projections of T and T̂h. Let Γ ⊂ C be a circle centered at 1
µ enclosing no

other points of σ(T ) which stands for the spectral set of T . Let E = E( 1
µ ) : Ḣ1 → Ḣ1 and Êh =

Êh( 1
µ ) : Sh → Sh be the spectral projection operators associated with T and T̂h and the parts of the

corresponding spectrum enclosed by Γ, respectively:

E =
1

2πi

∫
Γ

Rz(T ) dz, Êh =
1

2πi

∫
Γ

Rz(T̂h) dz.

Remark 2.7.5. By Lemma 2.7.4, when h is sufficiently small, Γ ⊂ ρ(T̂h) holds and ‖Rz(T̂z)‖1,Sh is

bounded for all z ∈ Γ. Thus the integral of Êh exists.

To examine the convergence property of Êh, we use the following lemma.

Lemma 2.7.6 (Lemma 2 in [17]). ‖E − Êh‖1,Sh → 0 as h→ 0.

We use the following symbols.

• dist(w,A) = inf
y∈A
‖w′ − y′‖ (w ∈ Ḣ1, A ⊂ Ḣ1),

• δ(Êh(Sh), E(Ḣ1)) = sup
vh∈Êh(Sh), ‖v′h‖=1

dist(vh, E(Ḣ1)),

• δ(E(Ḣ1), Êh(Sh)) = sup
v∈E(Ḣ1), ‖v′‖=1

dist(v, Êh(Sh)),

• δ̂(E(Ḣ1), Êh(Sh)) = max{δ(Êh(Sh), E(Ḣ1)), δ(E(Ḣ1), Êh(Sh))}.
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The next result follows from the property of the spectral projection operator.

Corollary 2.7.7. δ(Êh(Sh), E(Ḣ1))→ 0 as h→ 0.

Lemma 2.7.8 (Theorem 2 in [17]).

lim
h→0

inf
χh∈Sh

‖(u− χh)′‖ = 0 (u ∈ Ḣ1).

Corollary 2.7.9 (Theorem 3 in [17]). δ(E(Ḣ1), Êh(Sh))→ 0 as h→ 0.

Lemma 2.7.10 (Corollary 2.6 in [30]). If δ̂(E(Ḣ1), Êh(Sh)) < 1, then dimE(Ḣ1) = dim Êh(Sh).

For sufficiently small h, we observe that δ̂(E(Ḣ1), Êh(Sh)) < 1, that is, dimE(Ḣ1) = dim Êh(Sh).
Therefore, dimE(Ḣ1) = 1, because E(Ḣ1) is the eigenspace of the smallest eigenvalue of (2.38).

Then, the unique eigenvalue of T̂h (denoted by 1
ν̂h

) is located inside Γ. Then, there exists ξ̂h( 6= 0) ∈ Sh
such that

A(ξ̂h, χh) = ν̂h

〈
ξ̂h, χh

〉
, χh ∈ Sh.

Corollary 2.7.11. ν̂h → µ as h→ 0.

Proof. For some arbitrary ε > 0, we set Γε = B 1
µ

(ε) = {z ∈ C | |z − 1
µ | = ε}. As stated above, there

exists hε > 0 such that the eigenvalue 1
ν̂h

of T̂h is inside Γε for all h < hε. Therefore,∣∣∣∣ 1

ν̂h
− 1

µ

∣∣∣∣ ≤ ε.
Because µ is positive, the proof is complete.

Remark 2.7.12. Similarly, we find that a unique eigenvalue 1
νh

of Th exists inside Γ, and that νh → µ
as h→ 0.

Let µh > 0 be the smallest eigenvalue of

A(ψh, χh) = µh(ψh, χh), χ ∈ Sh, (2.52)

where ψh ∈ Sh.

Lemma 2.7.13. For sufficiently small h > 0, we have νh = µh. In particular, µh → µ as h→ 0.

Proof. We know that dimE(Ḣ1) = 1. By variational characterization, we obtain

µ = inf
v∈Ḣ1,v 6=0

‖v′‖2

‖v‖2
≤ inf
vh∈Sh,vh 6=0

‖v′h‖2

‖vh‖2
.

Here µh is the smallest eigenvalue of (2.52), that is,

µh = inf
vh∈Sh,vh 6=0

‖v′h‖2

‖vh‖2
.

All eigenvalues of (2.52) are greater than or equal to µ. As the eigenvalue of Th enclosed by Γ is unique, we
obtain νh = µh for sufficiently small h > 0, and µh → µ as h→ 0.

We now state the following proof.

Proof of Proposition 2.5.5 (i). By variational characterization, we get

µ̂h = inf
vh∈Sh,vh 6=0

‖v′h‖2

|||vh|||2
=

(
sup

vh∈Sh,vh 6=0

A(T̂hvh, vh)

‖v′h‖2

)−1

,

µh = inf
vh∈Sh,vh 6=0

‖v′h‖2

‖vh‖2
=

(
sup

vh∈Sh,vh 6=0

A(Thvh, vh)

‖v′h‖2

)−1

.
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Then,

sup
vh∈Sh,vh 6=0

A(T̂hvh, vh)

‖v′h‖2
= sup
vh∈Sh,vh 6=0

(
A(Thvh, vh)

‖v′h‖2
+
A((T̂h − Th)vh, vh)

‖v′h‖2

)

≤ sup
vh∈Sh,vh 6=0

A(Thvh, vh)

‖v′h‖2
+ ‖T̂h − Th‖1,Sh .

Similarly,

sup
vh∈Sh,vh 6=0

A(Thvh, vh)

‖v′h‖2
≤ sup
vh∈Sh,vh 6=0

A(T̂hvh, vh)

‖v′h‖2
+ ‖T̂h − Th‖1,Sh .

Applying Lemma 2.7.2, we obtain µ̂h = µ as h→ 0.

Remark 2.7.14. As the eigenvalue of T̂h enclosed by Γ is unique, we conclude that ν̂h = µ̂h for sufficiently
small h > 0.

Proof of Proposition 2.5.5 (ii). We write (2.39) in matrix form:

Aψ = µ̂hMψ,

where M = diag(µi)0≤i≤m−1 and A = (ai,j)0≤i,j≤m−1 are defined as mi = (1, φi) and ai,j = A(φj , φi),

respectively. Moreover, ψ = (ψi)0≤i≤m−1 ∈ Rm, ψi = ψ̂h(xi). We thus express (2.39) as

M−1Aψ = µ̂hψ.

Because M is a diagonal matrix, the diagonal components ai,i/µi,i of M−1A are all positive and the
non-diagonal components are all non-positive.

Writing (
−M−1A+ max

0≤i≤m−1

ai,i
mi,i
I
)
ψ =

(
−µ̂h + max

0≤i≤m−1

ai,i
mi,i

)
ψ, (2.53)

where I ∈ Rm×m is the identity matrix, then we can see that all components of the matrix on the
left-hand side are non-negative. We now consider the following eigenvalue problem:(

−M−1A+ max
0≤i≤m−1

ai,i
mi,i
I
)
~x = µ̃h~x. (2.54)

By the Perron–Frobenius theorem, we can take a positive eigenvector for the largest eigenvalue of (2.54).

−µ̂h + max
0≤i≤m−1

ai,i
mi,i

is the largest eigenvalue of (2.54), because µ̂h is the smallest eigenvalue of (2.39).

Consequently, the sign of the first eigenfunction of (2.39) is unchanged.

Proof of Proposition 2.5.5 (iii). We assume that

ψ̂h ≥ 0 and

∫
I

xN−1ψ̂h(x) dx = 1.

Setting φ = ψ/‖ψ′‖ and φ̂h = ψ̂h/‖ψ̂′h‖, applying Corollary 2.7.7 and Proposition 2.5.5 (i), and setting

vh = φ̂h, we obtain
dist(φ̂h, E(Ḣ1))→ 0 as h→ 0.

Because dimE(Ḣ1) = 1 and E(Ḣ1) is a closed subspace in Ḣ1, we find that

E(Ḣ1) = {zφ ∈ Ḣ1 | z ∈ C}

and
dist(φ̂h, E(Ḣ1)) = ‖φ̂′h − chφ′‖,

where ch ∈ C.
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Therefore, |ch| → 1 as h → 0. Using φ̂h, φ ≥ 0 and ‖φ̂h − chφ‖ ≤ ‖φ̂′h − chφ′‖, we find that ch → 1
as h→ 0. That is, as h→ 0,

‖φ̂′h − φ′‖ ≤ ‖φ̂′h − chφ′‖+ ‖chφ′ − φ′‖

= ‖φ̂′h − chφ′‖+ |ch − 1| · ‖φ′‖ → 0.

On the other hand,

‖(ψ − ψ̂h)′‖ ≤ 1∫
I
xN−1φ(x) dx

‖φ′ − φ̂′h‖+

∣∣∣∣∣ 1∫
I
xN−1φ(x) dx

− 1∫
I
xN−1φ̂h(x) dx

∣∣∣∣∣ .
This, together with∣∣∣∣∫

I

xN−1φ(x) dx−
∫
I

xN−1φ̂h(x) dx

∣∣∣∣ ≤ ( 1

N

) 1
2

· ‖φ− φ̂h‖ ≤
(

1

N

) 1
2

· ‖φ′ − φ̂′h‖ → 0 as h→ 0

implies that ‖(ψ − ψ̂h)′‖ → 0 as h→ 0, which completes the proof.

2.8 Note

This chapter was taken directly from Nakanishi-Saito [35].
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Chapter 3

Asymptotic behavior of the finite element
blow-up solutions

3.1 The schemes

This chapter is a supplement to Chapter 2; we follow the same notation and consider the same problem
as Chapter 2. Then, we further introduce the following schemes.

(ML-2) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that〈

∂τnu
n+1
h , χ

〉
+A(unh, χ) = 〈f(unh), χ〉 (χ ∈ Sh). (3.1)

(ML-3) Find un+1
h ∈ Sh, n = 0, 1, . . ., such that〈

∂τnu
n+1
h , χ

〉
+A(un+1

h , χ) = 〈f(unh), χ〉 (χ ∈ Sh). (3.2)

For (ML-3), we obtain the following positivity preserving.

Theorem 3.1.1 (Well-posedness and positivity preserving property). Suppose that n ≥ 0 and unh ∈ Sh
are given.

1. The scheme (ML-3) admits a unique solution un+1
h ∈ Sh.

2. In addition to the basic assumption on f , assume that f is a non-decreasing function with f(0) ≥ 0.
If unh ≥ 0, then the solution un+1

h of (ML-3) satisfies un+1
h ≥ 0.

Since we can prove this similarly as Theorem 1.3.1 and Theorem 1.3.2 in Chapter 1, we omit the
proof. For (ML-2), see Theorem 2.2.2 in Chapter 2.

For the monotonicity of the numerical solution, we get the following results.

Theorem 3.1.2 (Order preserving property). Suppose that n ≥ 0 and unh ∈ Sh are given. In addition
to the basic assumption on f , assume that f is a non-decreasing function with f(0) ≥ 0.

1. Assume that

τn ≤ min

{
min

0≤i≤m−1

(1, φi)

A(φi, φi)
, min
0≤i≤m−2

(
−A(φi, φi+1)

(1, φi)
+
−A(φi+1, φi)

(1, φi+1)

)−1
}
. (3.3)

If unh is a positive and decreasing function, then un+1
h of (ML-2) is decreasing in x.

2. Assume that

τn < min
1≤i≤m−2

{
−(1, φ1)

A(φ2, φ1)
,

(
−A(φi−1, φi)

(1, φi)
+
−A(φi+2, φi+1)

(1, φi+1)

)−1
}
. (3.4)

If unh is a positive and decreasing function, then un+1
h of (ML-3) is decreasing in x.
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Their proofs are postponed for Section 3.6.

Remark 3.1.3. From a direct calculation, the sufficient condition for (3.3) and (3.4) is

τn ≤
β2

2(N + 1)
h2,

where β is defined by (2.13).

We will prove this in Section 3.6.
We proceed to the convergence analysis for (ML-3).

Theorem 3.1.4 (Convergence for (ML-3) in ‖ · ‖L∞(I)). We assume the same condition as Theorem
2.2.5. For sufficient small h and τ , we get

sup
0≤tn≤T

‖unh − u(·, tn)‖L∞(I) ≤ C ′
(
h+ h2 log

1

h
+ τ

)
,

where C ′ = C ′(T, f, κ(u), C0, N, β) and unh is the solution of (ML-3).

Since we can prove this similarly as Theorem 2.2.5 in Chapter 2, we omit the proof. For (ML-2), see
Theorem 2.2.6 in Chapter 2.

3.2 Adaptive time step control (Chen and Cho-Okamoto)

We set f(s) = s1+α. For blow-up analysis, we now apply [8, 15] to (ML-2) and (ML-3).
We state a sufficient condition for the blow-up of (ML-2).

Assumption 3.2.1 (Assumption (H) in [15]). There exists a positive constant a such that

W 0
j = δ2u0

j + (1− a)(u0
j )

1+α ≥ 0, j = 0, 1, · · · ,m− 1, (3.5)

where

δ2unj = − 1

(1, φj)

m−1∑
k=0

A(φj , φk)unk ,

unj = unh(xj),

and u0
h is a strictly decreasing function in x.

Remark 3.2.2. We assume u0 ≥ 0, u0
x ≤ 0 in I and u0(1) = 0. It is well-known that the solution u of

(2.1) blows up in finite time if (u0)xx + N−1
x (u0)x + u0|u0|α ≥ 0 in I (see [21]). Assumption 3.2.1 is the

discrete version of this condition.

Lemma 3.2.3 (Sufficient condition for blow-up, Lemma 4.3 in [15]). We assume Assumption 3.2.1 and
(3.3). Then the solution of (ML-2) satisfies

Wn
j ≥ 0, for j = 0, 1, · · · ,m− 1, and n ≥ 0,

where Wn
j = δ2unj + (1− a)(unj )1+α. In particular,

∂τn‖un+1
h ‖L∞(I) = ∂τnu

n+1
0 ≥ a(un0 )1+α, n ≥ 0.

We will prove this in Section 3.6.

Theorem 3.2.4 (Convergence for numerical blow-up time, Theorem 4.4 in [15]). In addition to the

assumption of Theorem 2.2.6, we assume Assumption 3.2.1 and τ = δ β2

2(N+1)h
2, where δ ∈ (0, 1]. We

adopt the time step control

τn = τ ·min

{
1,

1

‖unh‖
γ
L∞(I)

}
, (3.6)
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where 0 < γ < 1 + α+ τ−1. Then for the solution of (ML-2) we get

Th =

∞∑
n=0

τn <∞, lim
h→0

Th = T∞,

where T∞ denotes the blow-up time for L∞ norm of (2.1).

For the proof, see Section 3.6.

Remark 3.2.5. Theorem 3.2.4 does not impose the assumption that ‖u(t)‖L∞(I), ‖u(t)‖ and I(u(t))
blow up simultaneously, but assumes Assumption 3.2.1. Below we set γ = α.

We now study the asymptotic behavior of the finite element solutions.

Theorem 3.2.6 (Asymptotic behavior for (ML-2), I, Theorem 4.9 in [15] and Theorem 4.1 in [14]). We

assume Assumption 3.2.1 and τ ≤ β2

2(N+1)h
2. We adopt the time increment (3.6) with γ = α. For the

solution of (ML-2), unh(x1) is bounded if α > 1. On the other hand, if α ≤ 1, then lim
n→∞

unh(x1) =∞.

For the proof, see Section 3.6.

Theorem 3.2.7 (Asymptotic behavior of (ML-2), II, Theorem 4.12 in [15] and Theorem 4.2 in [14]).
Under the same assumption and time increment as Theorem 3.2.6, we let a number k ∈ N be

1

k + 1
< α ≤ 1

k
.

Then the solution of (ML-2) blows up exactly at k + 1 points and it is bounded at all other points.
Namely

lim
n→∞

unh(xj) =∞ if and only if 0 ≤ j ≤ k.

For the proof, see Section 3.6.

Theorem 3.2.8 (Asymptotic behavior of (ML-3), Theorem 3.2 in [8]). We assume that u0
h is positive

and decreasing in x, and τ ≤ β2

2(N+1)h
2. We adopt the time increment (3.6) with γ = α. For the blow-up

solution of (ML-3), we assume that lim
n→∞

unh(x0)α−1unh(x1) = ∞ for α > 1. Then unh(x1) is bounded if

α > 1. On the other hand, if α ≤ 1, then lim
n→∞

unh(x1) =∞. If α = 1, then unh(x2) is bounded.

For the proof, see Section 3.6.

Remark 3.2.9. It is well-known that if u0 is decreasing in x, then the blow-up solution u of (2.1) blows
up only at the origin (see [21]). Thus if α > 1, then (ML-2) reproduces one-point blow-up.

3.3 Uniform time step control (Cho-Okamoto)

We shall apply the uniform time increment to (ML-2). Recall that we are considering f(s) = s1+α.

Theorem 3.3.1 (Convergence of the numerical blow-up time, Theorem 4.13 in [15] and Theorem 3.4 in
[11]). We define a strictly increasing function H : R→ R such that

lim
s→∞

H(s) =∞, lim
τ→0

τ log

(
H−1

(
1

τ

))
= 0.

In addition to the assumption Theorem 2.2.6, we assume Assumption 3.2.1 and τ = δ β2

2(N+1)h
2 where δ ∈

(0, 1]. We adopt the uniform time step control

τn = τ. (3.7)

We then define the numerical blow-up time Th by

Th = nhτ,
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where nh ∈ N satisfies
τH(‖unh−1

h ‖∞) < 1, τH(‖unhh ‖∞) ≥ 1.

Then for the solution of (ML-2) we get
lim
h→0

Th = T∞,

where T∞ denotes the exact blow-up time for L∞ norm of (2.1).

Since we can prove this similarly as Theorem 3.2 in [11], we omit the proof.

Remark 3.3.2. Theorem 3.2.4 does not impose the assumption that ‖u(t)‖L∞(I), ‖u(t)‖ and I(u(t))
blow up simultaneously, but assumes Assumption 3.2.1.

By uniform time increment, we can find the boundedness of Lp norm of the exact solution.

Theorem 3.3.3 (Boundedness of Lp norm, Theorem 4.16 in [15]). For 1 ≤ p <∞, we assume that

lim sup
h→0

max
0≤n≤nh

‖unh‖p = M <∞,

where τ, nh are defined in Theorem 3.3.1 and

‖v‖p =

{∫
I

xN−1|v(x)|p dx
} 1
p

.

Under the assumption of Theorem 3.3.1, we get

lim sup
t→T∞

‖u(t, ·)‖p <∞,

where T∞ denotes the blow-up time for L∞ norm of (2.1).

Since we can prove this similarly as Theorem 4.16 in [15], we omit the proof.

Remark 3.3.4. It is known that

lim inf
t→T∞

‖u(t, ·)‖p =∞, p >
Nα

2
,

lim sup
t→T∞

‖u(t, ·)‖p <∞, p <
Nα

2
,

(see [21]). For the case of p = Nα
2 , see [43].

Without the knowledge, we can predict the boundedness of Lp norm of the exact solution from numerical
experiments.

In numerical experiments, we set H(s) = sα.

3.4 Adaptive time step control (Groisman)

We still assume f(s) = s1+α. We shall adopt the time step control in Groisman [23]. Settingmk = 〈φk, φk〉
and aj,k = A(φj , φk) in Groisman’s explicit scheme (cf. (1.4) in [23]), we can obtain the following results.

Assumption 3.4.1 (Assumption (H1)-(H2) in [23]). We consider the semi-discrete problem for (2.1).
Find uh(t) ∈ Sh, t > 0 such that

〈u′h(t), χ〉+A(uh(t), χ) = 〈f(uh(t)), χ〉 , χ ∈ Sh,

where uh(0) ∈ Sh is given. We assume that for any 0 ≤ T < T∞,

‖u− uh‖L∞(I×(0,T )) → 0 (h→ 0) and ‖(u− uh)x‖(T )→ 0 (h→ 0).
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Theorem 3.4.2 (Convergence of blow-up time, Corollary 2.1 in [23]). Under the assumption of Theorem
2.2.6 and Assumption 3.4.1, we suppose that the solution u of (2.1) blows up at finite time T∞ in the
sense that

‖u(·, t)‖L∞(I) →∞ and ‖u(·, t)‖ → ∞ (t→ T∞ − 0). (3.8)

The time increment τn is iteratively defined as

τn = τn(h, τ) = τ min

{
1,

1

〈1, unh〉
1+α

}
, (3.9)

where we have used the solution unh of (ML–2). Moreover, assume that

τn ≤ min
0≤i≤m−1

mi

ai,i
(3.10)

and
∀T < T∞, lim

h→0
lim
τ→0

sup
0≤tn≤T

|K(u(·, tn))−Kh(unh)| = 0. (3.11)

For small h and τ , we then have

Th,τ =

∞∑
n=0

τn <∞, lim
h→0

lim
τ→0

Th,τ = T∞. (3.12)

Remark 3.4.3. Theorem 3.4.2 means the convergence of an iterated limit.

Remark 3.4.4. For the same time increment and the solution unh of (ML–2), Lemma 2.3 and Lemma 2.4
of [23] show that

‖unh‖L∞(I) ∼ 〈1, unh〉 ∼ n, if ‖unh‖L∞(I) > κ,

where f ∼ g is defined by

cg ≤ f ≤ Cg, (c and C are independent of f and g)

and

κ =

(
2

m−1∑
i=1

m−1∑
k=1

ai,k

) 1
α (

min
0≤k≤m−1

mk

) p−2
p−1

(
m−1∑
k=1

mk

)p−1 .

Theorem 3.4.5 (Blow-up rate for numerical solution, Theorem 2.2 in [23]). Under the same increment
τn as (3.9) and (3.10), we can get

lim
n→∞

‖unh‖L∞(I)(Th,τ − tn)1/α = Cα = (1/α)1/α,

where we have used the blow-up solution unh of (ML–2).

Remark 3.4.6. We assume u0 ≥ 0, u0
x ≤ 0 in I and u0(1) = 0. It is well-known that

lim
t→T∞−0

u(0, t)(T∞ − t)1/α = Cα,

if (u0)xx + N−1
x (u0)x + u0|u0|α ≥ 0 in I and N = 1, 2 or α+ 1 ≤ N+2

N−2 when N ≥ 3 (see [21]).

Theorem 3.4.7 (Numerical blow up set, Theorem 2.3 in [23]). For the time increment (3.9)–(3.10) and
the blow-up solution of (ML-2), we define the set B by

B =
{
j : lim

n→∞
unj (Th,τ − tn)1/α = Cα

}
.

We assume that if d(j′) < d(j), then

unh(xj) < unh(xj′) for any n > 0,
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where
d(j) = min

i∈B
|i− j|.

Then unh(xj)→∞ (n→∞) holds true if and only if d(j) ≤ K holds, where

K =

⌊
1

α

⌋
and b·c denotes the floor function.

If d(k) ≤ K, then we can get

unh(xk) ∼

{
(Th,τ − tn)−

1
α+d(k), d(k) 6= 1

α ,

log(Th,τ − tn), d(k) = 1
α .

For (ML-3), see §3 in [23].

3.5 Numerical examples

In this section, we introduce some numerical examples about the asymptotic behavior and numerical
blow-up time of (ML-2).

First, we observe asymptotic behaviors of (ML-2) with adaptive time increment (3.6). We calculate
the following quantities:

ratio i =
un+1
i−1 − uni−1

uni−1

, i = 1, · · · , 4.

with uniform spatial mesh m = 20, τ = 1
2(N+1)h

2, u0
h = Πhu

0, and γ = α.

Evaluations were performed with three parameter sets:

Case 1 N = 3, α = 2, and u(0, x) = 6 cos π2x;

Case 2 N = 4, α = 1, and u(0, x) = 100(1− x2);

Case 3 N = 5, α = 1
2 , and u(0, x) = 8000(e−x

2 − e−1).

We compute them until ‖unh‖L∞(I) > 106. Note that by Theorem 3.2.6-3.2.7, Case 1 blows up only at
the origin, Case 2 blows up at two points, and Case 3 blows up at three points. From Fig. 3.1, we
see that ratio 1 converges to a positive constant in Case 1 and Case 2, which means that un0 increases
exponentially. On the other hand, ratio 2–ratio 4 converges to 0 in Case 1 and Case 2, which means that
rates of increase in un1 , · · · , un3 are decreasing. In Case 3, convergences of ratio 1–ratio 4 are slow.

Secondly, we compute the numerical blow-up time of (ML-2) with uniform time increment in Theorem
3.3.1. We adopt the increasing function H(s) = sα in Theorem 3.3.1, τ = 1

2(N+1)h
2 with uniform spatial

mesh, and u0
h = Πhu

0. Here, we set h = 1/m (m = 16, 32, 64, 128). For a comparison evaluation, we
executed FDM of Chen [8] and the FDM of Cho and Okamoto [15].

Evaluations were performed with three parameter sets:

Case 4 N = 5, α = 4
3 , and u(0, x) = 13 cos π2x;

Case 5 N = 4, α = 3, and u(0, x) = 3(1− x2);

Case 6 N = 3, α = 3, and u(0, x) = 9
2 (e−x

2 − e−1).

These settings correspond to critical, super-critical, and sub-critical cases, respectively; see [27] for ex-
ample. The solution of Chen’s FDM blew up later than the other schemes, whereas that of (ML–2) blew
up sooner than the other schemes (see Fig. 3.2).
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Case 1 Case 2 Case 3

Figure 3.1: Asymptotic behaviors of (ML-2) with three parameter settings

Case 4 Case 5 Case 6

Figure 3.2: Numerical blow-up times with three parameter settings
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3.6 Proof of Theorems

We introduce a lemma to prove boundedness of sequence.

Lemma 3.6.1 (p.461–462 in [8], Lemma 4.7 in [14] and Lemma 4.10 in [15]). We define a sequence {xn}
of non-negative numbers by

xn+1 ≤ Anxn +Bn, x0 is given.

If An ≥ 0, Bn ≥ 0,

∞∏
n=1

An <∞ and

∞∑
n=0

Bn <∞, then {xn} is bounded sequence.

First we show Theorem 3.1.2.

Proof of Theorem 3.1.2. We rewrite (ML-2) into

un+1
0 − un0
τn

(1, φ0) + un0A(φ0, φ0) + un1A(φ1, φ0) = f(un0 ) · (1, φ0),

un+1
i − uni
τn

(1, φi) + uni−1A(φi−1, φi) + uni A(φi, φi) + uni+1A(φi+1, φi) = f(uni ) · (1, φi), 1 ≤ i ≤ m− 1,

where uni = unh(xi). We set mi = (1, φi) and ai,j = A(φi, φj). Then we can obtain

un+1
0 =

(
1− τn

a0,0

m0

)
un0 − τn

a1,0

m0
un1 + τnf(un0 ).

For 1 ≤ i ≤ m− 1, we can get

un+1
i = −τn

ai−1,i

mi
uni−1 +

(
1− τn

ai,i
mi

)
uni − τn

ai+1,i

mi
uni+1 + τnf(uni ).

We estimate un+1
0 − un+1

1 .

un+1
0 − un+1

1 =

(
1− τn

a0,0

m0

)
un0 − τn

a1,0

m0
un1 + τnf(un0 )

+ τn
a0,1

m1
un0 −

(
1− τn

a1,1

m1

)
un1 + τn

a2,1

m1
un2 − τnf(un1 )

≥
(

1− τn
a0,0

m0
+ τn

a0,1

m1

)
un0 −

(
1− τn

a1,1

m1
+ τn

a1,0

m0
− τn

a2,1

m1

)
un1 + τn {f(un0 )− f(un1 )}

We note that f is increasing function and

1− τn
a1,1

m1
+ τn

a1,0

m0
− τn

a2,1

m1
= 1 + τn

a1,0

m0
+ τn

a0,1

m1
,

1− τn
a0,0

m0
+ τn

a0,1

m1
= 1 + τn

a1,0

m0
+ τn

a0,1

m1
.

Therefore

un+1
0 − un+1

1 ≥
(

1 + τn
a1,0

m0
+ τn

a0,1

m1

)
(un0 − un1 ) ≥ 0.

For 1 ≤ i ≤ m− 2, we calculate un+1
i − un+1

i+1 .

un+1
i − un+1

i+1 = −τn
ai−1,i

mi
uni−1 +

(
1− τn

ai,i
mi

)
uni − τn

ai+1,i

mi
uni+1 + τnf(uni )

+ τn
ai,i+1

mi+1
uni −

(
1− τn

ai+1,i+1

mi+1

)
uni+1 + τn

ai+2,i+1

mi+1
uni+2 − τnf(uni+1)

≥
(
−τn

ai−1,i

mi
+ 1− τn

ai,i
mi

+ τn
ai,i+1

mi+1

)
uni

−
(
τn
ai+1,i

mi
+ 1− τn

ai+1,i+1

mi+1
− τn

ai+2,i+1

mi+1

)
uni+1 + τn

{
f(uni )− f(uni+1)

}
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We note that f is increasing function and

− τn
ai−1,i

mi
+ 1− τn

ai,i
mi

+ τn
ai,i+1

mi+1
= 1 + τn

ai+1,i

mi
+ τn

ai,i+1

mi+1
,

τn
ai+1,i

mi
+ 1− τn

ai+1,i+1

mi+1
− τn

ai+2,i+1

mi+1
= 1 + τn

ai+1,i

mi
+ τn

ai,i+1

mi+1
.

Therefore

un+1
i − un+1

i+1 ≥
(

1 + τn
ai+1,i

mi
+ τn

ai,i+1

mi+1

)
(uni − uni+1) ≥ 0.

For i = m− 1, we can obtain un+1
m−1 ≥ un+1

m = 0 by positivity preserving.
Secondly we consider (ML-3). We can rewrite into

un+1
0 − un0
τn

(1, φ0) + un+1
0 A(φ0, φ0) + un+1

1 A(φ1, φ0) = f(un0 )(1, φ0),

un+1
i − uni
τn

(1, φi) + un+1
i−1 A(φi−1, φi) + un+1

i A(φi, φi) + un+1
i+1 A(φi+1, φi) = f(uni )(1, φi), 1 ≤ i ≤ m− 1.

Then

un+1
0 − un0
τn

− A(φ1, φ0)

(1, φ0)
(un+1

0 − un+1
1 ) = f(un0 ),

un+1
1 − un1
τn

+
A(φ0, φ1)

(1, φ1)
(un+1

0 − un+1
1 )− A(φ2, φ1)

(1, φ1)
(un+1

1 − un+1
2 ) = f(un1 ).

For 1 ≤ i ≤ m− 1,

un+1
i − uni
τn

+
A(φi−1, φi)

(1, φi)
(un+1
i−1 − u

n+1
i )− A(φi+1, φi)

(1, φi)
(un+1
i − un+1

i+1 ) = f(uni ),

un+1
i+1 − uni+1

τn
+
A(φi, φi+1)

(1, φi+1)
(un+1
i − un+1

i+1 )− A(φi+2, φi+1)

(1, φi+1)
(un+1
i+1 − u

n+1
i+2 ) = f(uni+1).

We set wni = uni − uni+1 (0 ≤ i ≤ m− 1). From positivity preserving, wn+1
m−1 ≥ 0. Then

wn+1
0 − wn0
τn

−
(
A(φ1, φ0)

(1, φ0)
+
A(φ0, φ1)

(1, φ1)

)
wn+1

0 +
A(φ2, φ1)

(1, φ1)
wn+1

1 = f(un0 )− f(un1 ).

For 1 ≤ i ≤ m− 2,

wn+1
i − wni
τn

+
A(φi−1, φi)

(1, φi)
wn+1
i−1 −

(
A(φi+1, φi)

(1, φi)
+
A(φi, φi+1)

(1, φi+1)

)
wn+1
i +

A(φi+2, φi+1)

(1, φi+1)
wn+1
i+1 = f(uni )−f(uni+1).

We assume that wn+1
j = min

0≤i≤m−2
wn+1
i . We divide into two cases; the case of j = 0 and the case

of 1 ≤ j ≤ m− 2.
(i) The case of j = 0.
We can obtain

wn+1
0 − wn0
τn

−
(
A(φ1, φ0)

(1, φ0)
+
A(φ0, φ1)

(1, φ1)

)
wn+1

0 +
A(φ2, φ1)

(1, φ1)
wn+1

0 ≥ 0.

By wn0 ≥ 0, {
1−

(
A(φ1, φ0)

(1, φ0)
+
A(φ0, φ1)

(1, φ1)
− A(φ2, φ1)

(1, φ1)

)
τn

}
wn+1

0 ≥ 0.

Thus if τn < − (1,φ1)
A(φ2,φ1) , then wn+1

0 ≥ 0.

(ii) The case of 1 ≤ j ≤ m− 2.
We can obtain

wn+1
j − wnj
τn

+
A(φj−1, φj)

(1, φj)
wn+1
j −

(
A(φj+1, φj)

(1, φj)
+
A(φj , φj+1)

(1, φj+1)

)
wn+1
j +

A(φj+2, φj+1)

(1, φj+1)
wn+1
j ≥ 0.
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By wnj ≥ 0,{
1−

(
−A(φj−1, φj)

(1, φj)
+
A(φj+1, φj)

(1, φj)
+
A(φj , φj+1)

(1, φj+1)
− A(φj+2, φj+1)

(1, φj+1)

)
τn

}
wn+1
j ≥ 0.

Thus if τn <
(
−A(φj−1,φj)

(1,φj)
− A(φj+2,φj+1)

(1,φj+1)

)−1

, then wn+1
j ≥ 0.

From (i) and (ii), we can get wn+1
i ≥ 0 (0 ≤ i ≤ m− 1).

We shall show Remark 3.6.

Proof of Remark 3.6. First we show that if (3.6) holds, then (3.3) holds. We know that

min
0≤i≤m−1

(1, φi)

A(φi, φi)
≥ β2

N + 1
h2 >

β2

2(N + 1)
h2.

For 0 ≤ i ≤ m− 2, we get

(
−A(φi, φi+1)

(1, φi+1)
− A(φi+1, φi)

(1, φi)

)−1

>

 ∫ xi+1

xi
xN−1 1

h2
i+1

dx∫ xi+1

xi
xN−1φi(x) dx

+

∫ xi+1

xi
xN−1 1

h2
i+1

dx∫ xi+1

xi
xN−1φi+1(x) dx

−1

.

From direct calculation, we can obtain∫ xi
xi−1

xN−1φi(x) dx∫ xi
xi−1

xN−1 dx
≥ 1

2
, (1 ≤ i ≤ m− 1) (3.13)∫ xi+1

xi
xN−1φi(x) dx∫ xi+1

xi
xN−1 dx

>
1

N + 1
, (1 ≤ i ≤ m− 1). (3.14)

From (3.13), ∫ xi+1

xi
xN−1 dx∫ xi+1

xi
xN−1φi(x) dx

1

h2
i+1

< (N + 1)
1

β2h2
, (1 ≤ i ≤ m− 1).

For i = 0, we can get ∫ x1

x0
xN−1 dx∫ xi

x0
xN−1φ0 dx

1

h2
1

= (N + 1)
1

h2
1

≤ (N + 1)
1

β2h2
.

Combining the above inequalities, we can get∫ xi+1

xi
xN−1 dx∫ xi+1

xi
xN−1φi(x) dx

1

h2
i+1

≤ N + 1

β2h2
, 0 ≤ i ≤ m− 2.

From (3.14), ∫ xi+1

xi
xN−1 dx∫ xi+1

xi
xN−1φi+1(x) dx

1

h2
i+1

≤ 2

β2h2
≤ N + 1

β2h2
, 0 ≤ i ≤ m− 2.

Therefore (
−A(φi, φi+1)

(1, φi+1)
− A(φi+1, φi)

(1, φi)

)−1

>
β2h2

2(N + 1)
.

We show that if (3.6) holds, then (3.4) holds.

− (1, φ1)

A(φ2, φ1)
=

∫ x2

x0
xN−1φ1(x) dx∫ x2

x1
xN−1 1

h2
2
dx

>

∫ x2

x1
xN−1φ1(x) dx∫ x2

x1
xN−1 dx

h2
2.

By (3.14), we can obtain ∫ x2

x1
xN−1φ1(x) dx∫ x2

x1
xN−1 dx

>
1

N + 1
.
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Thus

− (1, φ1)

A(φ2, φ1)
>

1

N + 1
β2h2 >

1

2(N + 1)
β2h2.

For 1 ≤ i ≤ m− 2,(
−A(φi−1, φi)

(1, φi)
− A(φi+2, φi+1)

(1, φi+1)

)−1

>

 ∫ xi
xi−1

xN−1 1
h2
i dx∫ xi

xi−1
xN−1φi(x) dx

+

∫ xi+2

xi+1
xN−1 1

h2
i+2 dx∫ xi+2

xi+1
xN−1φi+1(x) dx

−1

.

From (3.13) and (3.14), ∫ xi
xi−1

xN−1 dx∫ xi
xi−1

xN−1φi(x) dx
≤ 2 < N + 1, 1 ≤ i ≤ m− 2,∫ xi+2

xi+1
xN−1 dx∫ xi+2

xi+1
xN−1φi+1(x) dx

< N + 1, 1 ≤ i ≤ m− 2.

Thus (
−A(φi−1, φi)

(1, φi)
− A(φi+2, φi+1)

(1, φi+1)

)−1

>
1

2(N + 1)
β2h2, 1 ≤ i ≤ m− 2.

We shall show Lemma 3.2.3.

Proof of Lemma 3.2.3. We show Wn
j ≥ 0 (0 ≤ j ≤ m − 1, n ≥ 0) by induction. We assume that

Wn
j ≥ 0 (0 ≤ j ≤ m− 1) holds true. Then we show Wn+1

j ≥ 0 (0 ≤ j ≤ m− 1). From definition of Wn
j ,

we get
Wn+1
j −Wn

j

τn
=
δ2un+1

j − δ2unj
τn

+ (1− a)
(un+1
j )1+α − (unj )1+α

τn
(0 ≤ j ≤ m− 1).

We set V nj =
un+1
j −unj
τn

. Then

Wn+1
j −Wn

j

τn
= δ2V nj + (1− a)

(un+1
j )1+α − (unj )1+α

τn
(0 ≤ j ≤ m− 1).

From (ML-2),
un+1
j − unj
τn

= δ2unj + (unj )1+α (0 ≤ j ≤ m− 1).

Thus Wn
j = V nj − a(unj )1+α (0 ≤ j ≤ m− 1).

We can obtain

Wn+1
j −Wn

j

τn
− δ2Wn

j = δ2V nj + (1− a)
(un+1
j )1+α − (unj )1+α

τn
− δ2

(
V nj − a(unj )1+α

)
= (1− a)

(un+1
j )1+α − (unj )1+α

τn
+ aδ2{(unj )1+α}.

First, we estimate
(un+1
j )1+α−(unj )1+α

τn
. From mean value theorem and Wn

j ≥ 0 for 0 ≤ j ≤ m − 1, we
get

(un+1
j )1+α − (unj )1+α

τn
≥ (1 + α)(unj )αV nj .

Secondly, we estimate δ2{(unj )1+α}. We set mj = (1, φj), ai,j = A(φi, φj). For the case of 1 ≤ j ≤ m−1,

δ2{(unj )1+α} = − 1

mj
aj−1,j(u

n
j−1)1+α − 1

mj
aj,j(u

n
j )1+α − 1

mj
aj+1,j(u

n
j+1)1+α

=
1

mj

{
−aj+1,j((u

n
j+1)1+α − (unj )1+α) + aj−1,j((u

n
j )1+α − (unj−1)1+α)

}
=

1

mj

{
−aj+1,j(1 + α)(ũnj,1)α(unj+1 − unj ) + aj−1,j(1 + α)(ũnj,2)α(unj − unj−1)

}
,
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where ũnj,1 and ũnj,2 satisfy
unj+1 ≤ ũnj,1 ≤ unj ≤ ũnj,2 ≤ unj−1.

Thus

δ2{(unj )1+α} ≥ 1

mj

{
−aj+1,j(1 + α)(unj )α(unj+1 − unj ) + aj−1,j(1 + α)(unj )α(unj − unj−1)

}
= (1 + α)(unj )αδ2(unj ).

For the case of j = 0,

δ2{(un0 )1+α} = − 1

m0
a0,0(un0 )1+α − 1

m0
a1,0(un1 )1+α

= − 1

m0
a0,0

{
(un0 )1+α − (un1 )1+α

}
= − 1

m0
a0,0(1 + α)(ũn0,1)α(un0 − un1 ),

where ũn0,1 satisfies
un1 ≤ ũn0,1 ≤ un0 .

Thus

δ2{(un0 )1+α} ≥ − 1

m0
a0,0(1 + α)(un0 )α(un0 − un1 )

= (1 + α)(un0 )αδ2(un0 ).

From the above estimations,

Wn+1
j −Wn

j

τn
− δ2Wn

j ≥ (1− a)(1 + α)(unj )αV nj + a(1 + α)(unj )αδ2(unj )

= (1 + α)(unj )α{(1− a)V nj + aδ2(unj )}.

Here, we can see that

(1− a)V nj + aδ2(unj ) = (1− a){δ2(unj ) + (unj )1+α}+ aδ2(unj )

= δ2(unj ) + (1− a)(unj )1+α

= Wn
j .

Therefore
Wn+1
j −Wn

j

τn
− δ2Wn

j ≥ (1 + α)(unj )αWn
j .

We can obtain
Wn+1

0 −Wn
0

τn
+
a0,0

m0
Wn

0 +
a1,0

m0
Wn

1 ≥ (1 + α)(un0 )αWn
0 .

Thus

Wn+1
0 ≥Wn

0 −
a0,0

m0
τnW

n
0 + (1 + α)(un0 )αWn

0

≥ (1− a0,0

m0
τn)Wn

0 .

For 1 ≤ j ≤ m− 1,

Wn+1
j −Wn

j

τn
+
aj−1,j

mj
Wn
j−1 +

aj,j
mj

Wn
j +

aj+1,j

mj
Wn
j+1 ≥ (1 + α)(unj )αWn

j .
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Thus

Wn+1
j ≥Wn

j −
aj,j
mj

τnW
n
j + (1 + α)(unj )αWn

j

≥
(

1− aj,j
mj

τn

)
Wn
j .

From the time step condition, we can get Wn+1
j ≥ 0 (0 ≤ j ≤ m − 1). Since un+1

h is a decreasing

function, we get un+1
0 = ‖un+1

h ‖∞, where ‖ · ‖∞ denotes the L∞ norm. Thus

‖un+1
h ‖∞ − ‖unh‖∞

τn
=
un+1

0 − un0
τn

≥ a(un0 )1+α.

We will prove Lemma 3.2.4.

Proof of Lemma 3.2.4. First, we show T∞ ≤ lim inf
h→0

Th = T∗ by contradiction. We assume that T∞ > T∗.

Then we can take a sequence {hi}∞i=1 such that hi → 0 (i→∞), and

Thi ≤ T∗ + δ < T∞,

where δ = (T∞ − T∗)/2. Thus ‖unhi‖L∞(I) → ∞ (n → ∞). Since T∞ is the blow-up time of u(t, x), we
can see

max
0≤t≤T∗+δ

‖u(t)‖∞ <∞,

where ‖v‖∞ = ‖v‖L∞(I). However unhi satisfies

lim
n→∞

‖unhi‖∞ =∞.

This contradicts the convergence property of (ML-2).
Secondly, we take t̃ ∈ (0, T∞) such that ‖u(t̃)‖∞ > 2. Then there exists h1 > 0 such that t̃ < Th for

all h < h1. From the convergence property of (ML-2), there exists n0(h) ∈ N such that

‖un0(h)
h ‖∞ ≥ 1, 0 < tn0(h) ≤ t̃,

|t̃− tn0(h)| < τ.

We set vjh = u
n0(h)+j
h , v(t) = u(t+ t̃). Then we define the blow-up time T v∞ of v by

T v∞ = T∞ − t̃.

Similarly we can define the numerical blow-up time T vh of vnh by

T vh = Th − tn0(h).

Then we prove
lim
h→0

T vh = T v∞. (3.15)

If we can show (3.15), then

|Th − T∞| = |(Th − tn0(h))− (T∞ − t̃) + (tn0(h) − t̃)|
≤ |T vh − T v∞|+ |tn0(h) − t̃|
≤ |T vh − T v∞|+ τ → 0 (h→ 0).

Therefore we check 14 conditions of Saito-Sasaki’s paper to prove (3.15). In their paper, we set X =
L∞(I), J(t, v) = ‖v‖L∞(I), and α = 1. Moreover, we define G(s) = as1+α, H(s) = sγ and f(s) =

s+ τ G(s)
H(s) . Then we can see that f(s) is increasing function in s ∈ [1,∞). In fact,

f(s) = s+ aτs1+α−γ ,

f ′(s) = 1 + aτ(1 + α− γ)sα−γ .

If α ≥ γ, then f ′(s) ≥ 0. If α < γ, then we can see that f ′(s) ≥ 1 + aτ(−τ−1)1 = 1 − a > 0 since
−τ−1 < 1 + α− γ < 1 + α. In both cases, f is a increasing function. Thus we complete the proof.
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We prove Theorem 3.2.6. We use ‖ · ‖∞ as L∞ norm.

Proof of Theorem 3.2.6. (Step 1) First, we can see that lim
n→∞

‖unh‖∞ = lim
n→∞

un0 =∞ from Lemma 3.2.3.

Actually, from Lemma 3.2.3, we get

‖un+1
h ‖∞ − ‖unh‖∞

τn
≥ a‖unh‖1+α

∞ .

Thus ‖unh‖∞ is increasing sequence. If ‖unh‖∞ ≥ 1, then τn = τ and ‖un+1
h ‖∞ ≥ (1 + aτ)‖unh‖∞. Thus

lim
n→∞

‖unh‖∞ =∞. If ‖unh‖∞ < 1, then

‖un+1
h ‖∞ − ‖unh‖∞ ≥ aτ‖unh‖1+α

∞ ≥ aτ‖u0
h‖α∞‖unh‖∞,

‖un+1
h ‖∞ ≥ (1 + aτ‖u0

h‖α∞)‖unh‖∞.

Thus there exists N ∈ N such that ‖uNh ‖∞ > 1. In both cases, we can see lim
n→∞

‖unh‖∞ =∞.

(Step 2) Secondly, we can see

lim
n→∞

‖un+1
h ‖∞
‖unh‖∞

= 1 + τ. (3.16)

In fact, from (ML-2), Lemma 3.1.2,

‖un+1
h ‖∞
‖unh‖∞

=
un+1

0

un0
=

(
1− τn

a0,0

m0

)
− τn

a1,0

m0

un1
un0

+ τ

→ 1 + τ (n→∞).

(Step 3) Next, we prove lim
n→∞

un1
un0

= 0. From (ML-2),

un+1
1

un+1
0

=
−τn a0,1m1

un0 + (1− τn a1,1m1
)un1 − τn

a2,1
m1

un2 + τn(un1 )1+α

(1− τn a0,0m0
)un0 − τn

a1,0
m0

un1 + τn(un0 )1+α
.

We set an =
un1
un0

. Then

an+1 =
un+1

1

un+1
0

=
−τn a0,1m1

+ (1− τn a1,1m1
)an − τn a2,1m1

un2
un0

+ a1+α
n τn(un0 )α

(1− τn a0,0m0
)− τn a1,0m0

an + τn(un0 )α
.

Since
un2
un0
≤ un1

un0
= an,

an+1 ≤
(1− τn a1,1m1

− τn a2,1m1
)an − τn a0,1m1

+ a1+α
n τn(un0 )α

(1− τn a0,0m0
)− τn a1,0m0

an + τn(un0 )α
.

We assume that there does not exist lim
n→∞

an. Then from Lemma 3.1.2, we get

0 ≤ a := lim inf
n→∞

an < lim sup
n→∞

an =: a ≤ 1.

For any κ ∈ (a, a), there exists a subsequence {ank} ⊂ {an} such that

ank < κ, ank+1 ≥ κ.

Then

κ ≤ lim sup
k→∞

ank+1 ≤ lim sup
k→∞

(1− τnk
a1,1
m1
− τnk

a2,1
m1

)ank − τnk
a0,1
m1

+ a1+α
nk

τnk(unk0 )α

(1− τnk
a0,0
m0

)− τnk
a1,0
m0

ank + τnk(unk0 )α

≤ κ+ κ1+ατ

1 + τ
=

1 + κατ

1 + τ
κ < κ.
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Thus we can see that there exists a = lim
n→∞

an ∈ [0, 1]. We can get the similar inequality for a:

a ≤ a+ a1+ατ

1 + τ
=

1 + τaα

1 + τ
a.

Thus a = 0 or 1. We will prove a 6= 1.

an+1

an
≤

(1 + τn
a0,1
m1

)an − τn a0,1m1
+ a1+α

n τn(un0 )α

an{(1 + τn
a1,0
m0

)− τn a1,0m0
an + τn(un0 )α}

=
an − τn a0,1m1

(1− an) + a1+α
n τn(un0 )α

an + τn
a1,0
m0

an(1− an) + τnan(un0 )α
=
Cn
Dn

,

where

Cn := an − τn
a0,1

m1
(1− an) + a1+α

n τn(un0 )α,

Dn := an + τn
a1,0

m0
an(1− an) + anτn(un0 )α.

Then

Cn −Dn = (an − τn
a0,1

m1
(1− an) + a1+α

n τn(un0 )α)− (an + τn
a1,0

m0
an(1− an) + anτn(un0 )α)

= (1− an)τn

{
−a0,1

m1
− a1,0

m0
an −

an − a1+α
n

1− an
(un0 )α

}
.

We divide two cases: the case of 0 < α < 1 and the case of α ≥ 1.
(i) The case of 0 < α < 1
For x ∈ [0, 1], we can see that

1− x ≤ 1

α
(1− xα),

α ≤ 1− xα

1− x
.

Thus

Cn −Dn = (1− an)τn

{
−a0,1

m1
− a1,0

m0
an − an

1− aαn
1− an

(un0 )α
}

≤ (1− an)τn

{
−a0,1

m1
− a1,0

m0
− αan(un0 )α

}
.

If a = 1, then an(un0 )α →∞ as n→∞. Thus {an} is a decreasing sequence. This contradicts a = 1.
(ii) The case of α ≥ 1

From 1− an ≤ 1− aαn,

Cn −Dn ≤ (1− an)τn

{
−a0,1

m1
− a1,0

m0
− an(un0 )α

}
.

Similarly we can see that {an} is decreasing sequence if we assume that a = 1. In both cases, we can
obtain a = 0.

(Step 4) Next we prove
lim
n→∞

un1 =∞ when 0 < α ≤ 1. (3.17)

From the positivity preserving, we can get

un+1
1 = −τn

a0,1

m1
un0 +

(
1− τn

a1,1

m1

)
un1 − τn

a2,1

m1
un2 + τn(un1 )1+α

≥ −τn
a0,1

m1
un0 +

(
1− τn

a1,1

m1

)
un1 .
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Thus

un+1
1 − un1 ≥ −τn

(
a0,1

m1
un0 +

a1,1

m1
un1

)
.

Here since lim
n→∞

un1
un0

= 0, for all ε > 0 there exists N ∈ N such that
un1
un0

< ε, for n ≥ N . Thus un1 < εun0 ,

for n > N . In this case, we set ε < −a0,1a1,1
. Then

un+1
1 − un1 ≥ −τn

(
a0,1

m1
+ ε

a1,1

m1

)
un0 .

Since α ≤ 1, we can get τnu
n
0 = τ

(un0 )αu
n
0 ≥ τ for sufficient large n. Thus

un+1
1 − un1 ≥ τ

(
−a0,1

m1
− εa1,1

m1

)
.

We can obtain lim
n→∞

un1 =∞.

(Step 5) We shall show lim
n→∞

un1
un+1

1

= (1 + τ)α−1 for 0 < α < 1. We set wn =
un1
un+1
1

. Then we can

see that 0 < wn < 1 for sufficient large n. We assume that lim inf
n→∞

wn < lim sup
n→∞

wn. Then there exists

r ∈ [0, 1] such that lim inf
n→∞

wn < r < lim sup
n→∞

wn. Thus there exists a subsequence {wnk} ⊂ {wn} such

that
wnk ≤ r, r < wnk+1.

We can get
unk1 ≤ ru

nk+1
1 , runk+2

1 < unk+1
1 .

We shall estimate unk+1
1 −

{
1− τnk

a1,1
m1

+ τnk(unk1 )α
}
unk1 . Then

unk+1
1 −

{
1− τnk

a1,1

m1
+ τnk(unk1 )α

}
unk1 ≥ u

nk+1
1 − r

{
1− τnk

a1,1

m1
+ τnk(unk1 )α

}
unk+1

1

=

(
1− r + rτnk

a1,1

m1
− rτnk(unk1 )α

)
unk+1

1 .

On the other hand, we will estimate unk+1
1 −

{
1− τnk

a1,1
m1

+ τnk(un1 )α
}
unk1 . Then

unk+2
1 −

{
1− τnk+1

a1,1

m1
+ τnk+1(unk+1

1 )α
}
unk+1

1

< unk+2
1 −

(
1− τnk+1

a1,1

m1

)
runk+2

1 − τnk+1(unk+1
1 )α+1

<

(
1− r + rτnk+1

a1,1

m1

)
unk+2

1 .

Therefore

unk+1
1 − {1− τnk

a1,1
m1

+ τnk(unk1 )α}unk1

unk+2
1 − {1− τnk+1

a1,1
m1

+ τnk+1(unk+1
1 )α}unk+1

1

>
{1− r + rτnk

a1,1
m1
− rτnk(unk1 )α}unk+1

1

(1− r + rτnk+1
a1,1
m1

)unk+2
1

.

We define

A := lim
k→∞

unk+1
1 − {1− τnk

a1,1
m1

+ τnk(unk1 )α}unk1

unk+2
1 − {1− τnk+1

a1,1
m1

+ τnk+1(unk+1
1 )α}unk+1

1

.

Then

A = lim
k→∞

−τnk
a0,1
m1

unk0 − τnk
a2,1
m1

unk2

−τnk+1
a0,1
m1

unk+1
0 − τnk+1

a2,1
m1

unk+1
2

= lim
k→∞

τnk
τnk+1

−a0,1m1

u
nk
0

u
nk+1

0

− a2,1
m1

u
nk
2

u
nk+1

0

−a0,1m1
− a2,1

m1

u
nk+1

2

u
nk+1

0

.
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Since lim
k→∞

unk0

unk+1
0

= (1 + τ)−1, we can get

τnk
τnk+1

=
(unk+1

0 )α

(unk0 )α
→ (1 + τ)α, k →∞.

Since

0 ≤ unk2

unk+1
0

≤ unk1

unk0

→ 0 (k →∞),

we can get

lim
k→∞

unk2

unk+1
0

= 0.

Similarly since

0 ≤ unk+1
2

unk+1
0

≤ unk+1
1

unk+1
0

→ 0 (k →∞),

we can get

lim
k→∞

unk+1
2

unk+1
0

= 0.

Thus
A = (1 + τ)α−1.

We can get

(1 + τ)α−1 ≥ lim sup
k→∞

{1− r + rτnk
a1,1
m1
− rτnk(unk1 )α}unk+1

1

(1− r + rτnk+1
a1,1
m1

)unk+2
1

= lim sup
k→∞

wnk+1 ≥ r.

On the other hand, there exists a subsequence {wnj} ⊂ {wn} such that

wnj > r, wnj+1 ≤ r.

Similarly we can get r ≤ (1 + τ)α−1. Thus r = (1 + τ)α−1. This contradicts the arbitrariness of r. Thus
there exists lim

n→∞
wn ∈ [0, 1].

We can obtain

lim
n→∞

un+1
1 − (1− τn a1,1m1

+ τn(un1 )α)un1

un+2
1 − (1− τn+1

a1,1
m1

+ τn+1(un+1
1 )α)un+1

1

= (1 + τ)α−1.

By setting γn = −τn a1,1m1
+ τn(un1 )α, we can get

un+1
1 − (1 + γn)un1

un+2
1 − (1 + γn+1)un+1

1

=
un+1

1

un+2
1

1− (1 + γn)
un1
un+1
1

1− (1 + γn+1)
un+1
1

un+2
1

= wn+1
1− (1 + γn)wn

1− (1 + γn+1)wn+1
.

We set w = lim
n→∞

wn. From lim
n→∞

γn = 0, if w 6= 1, then lim
n→∞

wn = (1 + τ)α−1. We will show w < 1 by

contradiction. We assume that w = 1. Then

lim
n→∞

ξn
ξn+1

= (1 + τ)α−1 < 1,

where ξn = 1− (1 + γn)wn. There exists ρ < 1 such that

ξn
ξn+1

< ρ, that is, ρ−1ξn < ξn+1, for sufficiently large n.
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On the other hand, from w = 1, we get lim
n→∞

ξn = 0. This contradicts ρ−1ξn < ξn+1. Thus we can get

lim
n→∞

un1
un+1

1

= (1 + τ)α−1 (0 < α < 1).

(Step 6) For α > 1, we will prove lim
n→∞

un1
un+1

1

= 1. From (ML-2), we can get

1 = −τn
a0,1

m1

un0
un+1

1

+

(
1− τn

a1,1

m1
+ τaαn

)
un1
un+1

1

− τn
a2,1

m1

un2
un+1

1

.

We estimate the right hand side of the above equation.

−τn
a0,1

m1

un0
un+1

1

= −a0,1

m1

τ

(un0 )α
un0
un+1

1

=
−a0,1τ

m1

1

(un0 )α−1

1

un+1
1

.

Here we can get inf
n∈N

un1 > 0. In fact,

un+1
1 − un1 = −τn

a0,1

m1
un0 − τn

a1,1

m1
un1 − τn

a2,1

m1
un2 + τn(un1 )1+α

≥ −τn
(
a0,1

m1
un0 +

a1,1

m1
un1

)
.

From lim
n→∞

un1
un0

= 0, for any ε > 0, there exists N ∈ N such that
un1
un0

< ε for n ≥ N , that is, un1 < εun0 .

Thus

un+1
1 − un1 ≥ τn

(
−a0,1

m1
− εa1,1

m1

)
un0 .

Since we can take ε < −a0,1a1,1
,

un1 ≥ τN
(
−a0,1

m1
− εa1,1

m1

)
uN0

for n ≥ N . In particular, inf
n∈N

un1 > 0. Therefore

−τn
a0,1

m1

un0
un+1

1

≤ −a0,1τ

m1

1

(un0 )α−1

1

inf
n∈N

un1
→ 0 (n→∞).

Since un2 ≤ un0 , we can obtain

lim
n→∞

(
−τn

a2,1

m1

un2
un+1

1

)
= 0.

Therefore lim
n→∞

un1
un+1

1

= 1.

(Step 7) Next we prove lim
n→∞

un1
un+1

1

= 1 for α = 1. Since

1 = −τn
a0,1

m1

un0
un+1

1

+

(
1− τn

a1,1

m1
+ τaαn

)
un1
un+1

1

− τn
a2,1

m1

un2
un+1

1

,

we will estimate −τn a0,1m1

un0
un+1
1

.

−τn
a0,1

m1

un0
un+1

1

= −a0,1

m1

τ

un+1
1

→ 0 (n→∞).
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Here we used lim
n→∞

un1 =∞ for 0 < α ≤ 1. From order preserving property,

−τn
a2,1

m1

un2
un+1

1

→ 0 (n→∞).

Therefore lim
n→∞

un1
un+1

1

= 1.

We shall summarize the above results: For α > 0,

lim
n→∞

un1
un+1

1

= (1 + τ)min(1,α)−1, (3.18)

lim
n→∞

an+1

an
= lim
n→∞

un+1
1

un+1
0

un0
un1

= lim
n→∞

un+1
1

un1

un0
un+1

0

= (1 + τ)−min(1,α). (3.19)

(Step 8) Finally we prove the boundedness of {un1} for α > 1. We can get

un+1
1 = −τn

a0,1

m1
un0 +

(
1− τn

a1,1

m1
+ τaαn

)
un1 − τn

a2,1

m1
un2

≤ −τn
a0,1

m1
un0 − τn

a2,1

m1
un0 + (1 + τaαn)un1

= τ
a1,1

m1
(un0 )1−α + (1 + τaαn)un1 =: Anu

n
1 +Bn,

where An = 1 + τaαn and Bn = τ
a1,1
m1

(un0 )1−α. If we can prove

∞∏
n=0

An <∞ and

∞∑
n=0

Bn <∞, then we can

see that {un1} is bounded from Lemma 3.6.1. Thus we shall show

∞∏
n=0

An <∞ and

∞∑
n=0

Bn <∞. Since

lim
n→∞

(un+1
0 )1−α

(un0 )1−α = (1 + τ)1−α < 1,

we can get

∞∑
n=0

Bn <∞ from d’Alembert’s ratio test. On the other hand, since

log

( ∞∏
n=0

An

)
= log

( ∞∏
n=0

(1 + τaαn)

)
=

∞∑
n=0

log(1 + τaαn) ≤
∞∑
n=0

τaαn,

it suffices to show

∞∑
n=0

τaαn <∞. Since

lim
n→∞

aαn+1

aαn
= lim
n→∞

(
an+1

an

)α
= (1 + τ)−αmin(1,α) < 1,

we can get

∞∑
n=0

τaαn <∞ from d’Alembert’s ratio test. Thus we can obtain the boundedness of {un1}.

We shall show Theorem 3.2.7.

Proof. (Step 1) First we show for 0 < α < 1,

lim
n→∞

(un0 )1−α

un1
=

(1 + τ)−α+1 − 1

−τ a0,1m1

(<∞). (3.20)
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From (ML-2),
un+1

1

un1
= −τ a0,1

m1

(un0 )1−α

un1
+

(
1− τn

a1,1

m1

)
− τn

a2,1

m1

un2
un1

+ τaαn.

Since

lim
n→∞

un+1
1

un1
= (1 + τ)−α+1,

lim
n→∞

(
−τn

a2,1

m1

un2
un1

)
= lim
n→∞

(
−a2,1

m1

)
τ

1

(un0 )α
un2
un1

= 0, (∵ un2 ≤ un1 .)

we can obtain

(1 + τ)−α+1 = −τ a0,1

m1
lim
n→∞

(un0 )1−α

un1
+ 1.

For 0 < α < 1,

lim
n→∞

(un0 )1−α

un1
=

(1 + τ)−α+1 − 1

−τ a0,1m1

(<∞).

(Step 2) Secondly, for 0 < α < 1, we show

lim
n→∞

un2
un1

= 0. (3.21)

We set cn =
un2
un1

. Then

cn+1 ≤ −τn
a1,2

m2

un1
un+1

1

+

(
1 + τn

a1,2

m2

)
un2
un+1

1

+ τn(un2 )α
un2
un+1

1

≤ −τn
a1,2

m2

un1
un+1

1

+ (1 + τn(un2 )α)
un1
un+1

1

cn.

Since τn → 0,
un1
un+1
1

→ (1 + τ)α−1 (n→∞) and 0 ≤ τn(un2 )α ≤
(
un1
un0

)α
→ 0 (n→∞), we get

lim sup
n→∞

cn+1 ≤ 0 + (1 + τ)α−1 lim sup
n→∞

cn.

Therefore lim
n→∞

cn = 0.

(Step 3) Next we shall show the following four equations by induction: Letting α ≤ 1
k and k ∈ N,

• for j = 1, · · · , k,

lim
n→∞

unj =∞, (3.22)

lim
n→∞

unj

un+1
j

= (1 + τ)min(1,jα)−1, (3.23)

• for α < 1
k and j = k,

lim
n→∞

(unj )
1−(j−1)α

1−jα

unj−1

∈ (0,∞), (3.24)

lim
n→∞

unj+1

unj
= 0. (3.25)

Before we prove these properties, we show that if (3.22)–(3.25) hold true, then Theorem 3.2.7 holds
true. We assume that (3.22)–(3.25) hold true. Then for 1

k+1 < α ≤ 1
k , if j ≤ k, then lim

n→∞
unj = ∞ by

(3.22). On the other hand, for j = k + 1,

un+1
k+1 ≤ −τn

ak,k+1

mk+1
unk +

(
1 + τn

ak,k+1

mk+1

)
unk+1 + τ

(
unk+1

un0

)α
unk+1

≤ −τn
ak,k+1

mk+1
unk +

(
1 + τn

ak,k+1

mk+1

)
unk+1 + τaαnu

n
k+1,
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where an =
un1
un0

. Thus

un+1
k+1 ≤ −τn

ak,k+1

mk+1
unk + (1 + τaαn)unk+1.

To show the boundedness of un+1
k+1 , we show

∞∑
n=0

(
−τn

ak,k+1

mk+1
unk

)
<∞,

∞∏
n=0

(1 + τaαn) <∞.

Since

lim
n→∞

τn+1u
n+1
k

τnunk
= lim
n→∞

(
un0
un+1

0

)α
un+1
k

unk

= (1 + τ)−α(1 + τ)−min(1,kα)+1 (∵ (3.16) and (3.23).)

= (1 + τ)−(k+1)α < 1,

we can obtain

∞∑
n=0

(
−τn

ak,k+1

mk+1
unk

)
<∞ by d’Alembert’s ratio test.

Since

log

∞∏
n=0

(1 + τaαn) =

∞∑
n=0

log(1 + τaαn) ≤
∞∑
n=0

τaαn,

it suffices to show

∞∑
n=0

τaαn <∞. From (3.19), we can get

lim
n→∞

aαn+1

aαn
= (1 + τ)−min(1,α)α < 1.

Thus we can get

∞∏
n=0

(1 + τaαn) <∞. From the boundedness of {unk+1}, we can see that if lim
n→∞

unj =∞,

then j ≤ k. Hence if (3.22)–(3.25) holds true for all k ∈ N, then Theorem 3.2.7 holds true.
(Step 4) Hereinafter we prove (3.22)–(3.25).

First, we see that (3.22)–(3.25) hold true for k = 1.
For 0 < α ≤ 1,

lim
n→∞

un1 =∞, (∵ (3.17))

lim
n→∞

un1
un+1

1

= (1 + τ)min(1,α)−1. (∵ (3.18))

Thus (3.22)–(3.23) hold true for k = 1.
For 0 < α < 1 and j = 1,

lim
n→∞

(un1 )
1

1−α

un0
= lim
n→∞

(
un1

(un0 )1−α

) 1
1−α

=

(
−τ a0,1m1

(1 + τ)−α+1 − 1

) 1
1−α

<∞ (∵ (3.20)).

Thus (3.24) holds true for k = 1. Moreover, from (3.21), we can get (3.25) for k = 1.
Secondly we assume that (3.22)–(3.25) hold true for all number less than k + 1. Then we show

(3.22)–(3.25) hold true for k + 1. We show lim
n→∞

unk+1 =∞ for α ≤ 1
k+1 . From (ML-2),

un+1
k+1 ≥ −τn

ak,k+1

mk+1
unk +

(
1− τn

ak+1,k+1

mk+1

)
unk+1 (∵ Positivity preserving.)

= −τ ak,k+1

mk+1

{
(un1 )

1
1−α

un0

}α{
(un2 )

1−α
1−2α

un1

} α
1−α

· · ·

{
(unk )

1−(k−1)α
1−kα

unk−1

} α
1−(k−1)α

(unk )
1−(k+1)α

1−kα

+

(
1− τn

ak+1,k+1

mk+1

)
unk+1.
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Then from (3.24),

lim
n→∞

−τ ak,k+1

mk+1

{
(un1 )

1
1−α

un0

}α{
(un2 )

1−α
1−2α

un1

} α
1−α

· · ·

{
(unk )

1−(k−1)α
1−kα

unk−1

} α
1−(k−1)α

(=: M) <∞.

Moreover by (3.22),

lim
n→∞

(unk )
1−(k+1)α

1−kα =∞.

Since lim inf
n→∞

un+1
k+1 ≥M + lim inf

n→∞
unk+1, we can get lim inf

n→∞
unk+1 =∞. Thus (3.22) holds true for k + 1.

Secondly, we show (3.23) for k + 1.

un+1
k+1 −

{(
1− τn ak+1,k+1

mk+1

)
unk+1 + τn(unk )α

}
unk

un+2
k+1 −

{(
1− τn+1

ak+1,k+1

mk+1

)
un+1
k+1 + τn+1(un+1

k )α
}
un+1
k

=
τn

(
−ak,k+1

mk+1
unk −

ak+2,k+1

mk+1
unk+2

)
τn+1

(
−ak,k+1

mk+1
un+1
k − ak+2,k+1

mk+1
un+1
k+2

)
→ (1 + τ)(k+1)α−1 (n→∞).

Here we used the following equations:

lim
n→∞

τn
τn+1

= lim
n→∞

(
un+1

0

un0

)α
= (1 + τ)α, (∵ (3.16))

lim
n→∞

unk
un+1
k

= (1 + τ)kα−1. (∵ (3.23))

Moreover,

0 ≤ lim sup
n→∞

unk+2

un+1
k

≤ lim sup
n→∞

unk+1

un+1
k

= lim
n→∞

unk+1

unk

unk
un+1
k

= 0. (∵ (3.23) and (3.25))

Thus we have lim
n→∞

unk+2

un+1
k

= 0. Similarly, we can get lim
n→∞

un+1
k+2

un+1
k

= 0.

Now, we set wn =
unk+1

un+1
k+1

. Then we shall prove the existence of lim
n→∞

wn. From (ML-2), we can get

un+1
k+1 − u

n
k+1 ≥ −τn

ak,k+1

mk+1
unk − τn

ak+1,k+1

mk+1
unk+1.

From lim
n→∞

unk+1

unk
= 0, for sufficiently large n,

−τn
ak,k+1

mk+1
unk − τn

ak+1,k+1

mk+1
unk+1 > 0.

Thus 0 ≤ wn < 1 for sufficiently large n. To show the existence of lim
n→∞

wn, we assume that

lim inf
n→∞

wn < lim sup
n→∞

wn.

Then there exists r ∈ (0, 1) such that lim inf
n→∞

wn < r < lim sup
n→∞

wn. There exists a subsequence {wnj} ⊂

{wn} such that
wnj ≤ r, r < wnj+1.

Thus
u
nj
k+1 ≤ ru

nj+1
k+1 , ru

nj+2
k+1 < u

nj+1
k+1 .
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We will estimate u
nj+1
k+1 −

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)
u
nj
k+1.

u
nj+1
k+1 −

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)
u
nj
k+1 ≥ u

nj+1
k+1 − r

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)
u
nj+1

k+1

=

{
1− r

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)}
u
nj+1
k+1 .

On the other hand, we estimate u
nj+2
k+1 −

(
1− τnj+1

ak+1,k+1

mk+1
+ τnj+1(u

nj+1
k+1 )α

)
u
nj+1
k+1 .

u
nj+2
k+1 −

(
1− τnj+1

ak+1,k+1

mk+1
+ τnj+1(u

nj+1
k+1 )α

)
u
nj+1
k+1

<

{
1− r

(
1− τnj+1

ak+1,k+1

mk+1
+ τnj+1(u

nj+1
k+1 )α

)}
u
nj+2
k+1 .

Here we can see that

A := lim
j→∞

u
nj+1
k+1 −

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)
u
nj
k+1

u
nj+2
k+1 −

(
1− τnj+1

ak+1,k+1

mk+1
+ τnj+1(u

nj+1
k+1 )α

)
u
nj+1
k+1

= lim
j→∞

−τnj
ak,k+1

mk+1
u
nj
k − τnj

ak+2,k+1

mk+1
u
nj
k+2

−τnj+1
ak,k+1

mk+1
u
nj+1
k − τnj+1

ak+2,k+1

mk+1
u
nj+1
k+2

.

We can obtain

lim
j→∞

u
nj
k

u
nj+1
k

= (1 + τ)kα−1, (∵ (3.23))

lim
j→∞

τnj
τnj+1

= lim
j→∞

(
u
nj+1
0

u
nj
0

)α
= (1 + τ)α (∵ (3.16)).

Since
u
nj
k+2

u
nj+1
k

≤
u
nj
k+1

u
nj
k

u
nj
k

u
nj+1
k

→ 0 (j →∞), (∵ (3.23) and (3.25))

we can get

lim
j→∞

u
nj
k+2

u
nj+1
k

= 0.

Similarly, we can get

lim
j→∞

u
nj+1
k+2

u
nj+1
k

= 0.

Thus
A = (1 + τ)kα−1(1 + τ)α = (1 + τ)(k+1)α−1.

(1 + τ)(k+1)α−1 ≥ lim sup
j→∞

{
1− r

(
1− τnj

ak+1,k+1

mk+1
+ τnj (u

nj
k+1)α

)}
u
nj+1
k+1{

1− r
(

1− τnj+1
ak+1,k+1

mk+1
+ τnj+1(u

nj+1
k+1 )α

)}
u
nj+2
k+1

= lim sup
j→∞

wnj+1 = r.

Similarly, we can take a subsequence {wnj} ⊂ {wn} such that

wnj > r, wnj+1 ≤ r.

Using this subsequence, we can obtain

(1 + τ)(k+1)α−1 ≤ r.
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Therefore
(1 + τ)(k+1)α−1 = r.

This contradicts the arbitrariness of r. Thus we can see the existence of lim
n→∞

wn ∈ [0, 1].

Next we prove
lim
n→∞

wn = (1 + τ)(k+1)α−1.

From above argument, we can get

lim
n→∞

un+1
k+1 −

(
1− τn ak+1,k+1

mk+1
− τn(unk+1)α

)
unk+1

un+2
k+1 −

(
1− τn+1

ak+1,k+1

mk+1
− τn+1(un+1

k+1)α
)
un+1
k+1

= (1 + τ)(k+1)α−1.

We set γn = −τn ak+1,k+1

mk+1
− τn(unk+1)α. Then we can get

un+1
k+1 − (1 + γn)unk+1

un+2
k+1 − (1 + γn+1)un+1

k+1

= wn+1
1− (1 + γn)wn

1− (1 + γn+1)wn+1
.

We set w = lim
n→∞

wn. From lim
n→∞

γn = 0, we can see that if w 6= 1, then w = (1 + τ)(k+1)α−1. If w = 1,

then

lim
n→∞

ξn
ξn+1

= (1 + τ)(k+1)α−1,

where ξn = 1− (1 + γn)wn. We assume that α < 1
k+1 . Then

(1 + τ)(k+1)α−1 < 1.

There exists ρ < 1 such that
ξn
ξn+1

< ρ, for sufficiently large n.

Hence
ρ−1ξn < ξn+1.

This contradicts lim
n→∞

ξn = 0. Thus lim
n→∞

wn 6= 1. For α < 1
k+1 , we can get

lim
n→∞

wn = (1 + τ)(k+1)α−1.

On the other hand, we assume that α = 1
k+1 . Then from (ML-2),

1 = −τn
ak,k+1

mk+1

unk
un+1
k+1

+

(
1− τn

ak+1,k+1

mk+1
+ τn(unk+1)α

)
unk+1

un+1
k+1

− τn
ak+2,k+1

mk+1

unk+2

un+1
k+1

.

Since

τn
unk
un+1
k+1

=
τ

(un0 )α
unk
un+1
k+1

=
τ

(un0 )
1
k+1

unk
un+1
k+1

,

we consider the limit of
unk

(un0 )
1
k+1

. We can obtain

unk

(un0 )
1
k+1

=
unk

(unk−1)
1
2

(unk−1)
1
2

(unk−2)
1
3

· · · (un1 )
1
k

(un0 )
1
k+1

,

and by (3.24), there exists limn→∞
(unj )

1−(j−1)α
1−jα

unj−1
∈ (0,∞) for j = 1, · · · , k. Since α = 1

k+1 , we can get

(unj )

1−(j−1) 1
k+1−j

1−j 1
k+1

unj−1

=

(
(unj )

1
k+1−j

(unj−1)
1

k+1−(j−1)

)k+1−(j−1)

.
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Thus there exists limn→∞
(unj )

1
k+1−j

(unj−1)
1

k+1−(j−1)
∈ (0,∞), j = 1, · · · , k. Since

lim
n→∞

unk

(un0 )
1
k+1

∈ (0,∞),

we can get

lim
n→∞

τ

(un0 )
1
k+1

unk+2

un+1
k+1

= 0.

Thus if α = 1
k+1 , then

lim
n→∞

unk+1

un+1
k+1

= 1.

For α ≤ 1
k+1 , we can get

lim
n→∞

unk+1

un+1
k+1

= (1 + τ)(k+1)α−1.

Thus (3.23) holds true. Next we prove (3.24) for α < 1
k+1 . From (ML-2),

1 = −τn
ak,k+1

mk+1

unk
un+1
k+1

+

(
1− τn

ak+1,k+1

mk+1
+ τn(unk+1)α

)
unk+1

un+1
k+1

− τn
ak+2,k+1

mk+1

unk+2

un+1
k+1

.

Here we can get

τn
unk+2

un+1
k+1

= τ
1

(un0 )α
unk+2

un+1
k+1

≤ τ 1

(un0 )α
unk+1

un+1
k+1

→ 0 (n→∞),

τn(unk+1)α = τ

(
unk+1

un0

)α
≤ τ

(
unk+1

unk

)α
→ 0 (n→∞).

Combining these equations, we can get

lim
n→∞

τn

(
−ak,k+1

mk+1

)
unk
un+1
k+1

= 1− (1 + τ)(k+1)α−1.

We can get

τn
unk
un+1
k+1

= τ
1

(uα0 )α
unk
un+1
k+1

= τ

{
(un1 )

1
1−α

un0

}α{
(un2 )

1−α
1−2α

un1

} α
1−α

· · ·

{
(unk )

1−(k−1)α
1−kα

unk−1

} α
1−(k−1)α

(unk )
1−(k+1)α

1−kα

unk+1

unk+1

un+1
k+1

.

There exists

lim
n→∞

(unk )
1−(k+1)α

1−kα

unk+1

∈ (0,∞).

Thus (3.24) holds true.
Finally, we prove (3.25) for α < 1

k+1 .

un+1
k+2

un+1
k+1

= −τn
ak+1,k+2

mk+2

unk+1

un+1
k+1

+

(
1− τn

ak+2,k+2

mk+2
+ τn(unk+2)α

)
unk+2

un+1
k+1

− τn
ak+3,k+2

mk+2

unk+3

un+1
k+1

≤
{
−τn

ak+1,k+2

mk+2
+
(
1 + τn(unk+2)α

) unk+2

unk+1

}
unk+1

un+1
k+1

.

Thus

lim sup
n→∞

un+1
k+2

un+1
k+1

≤ (1 + τ)(k+1)α−1 lim sup
n→∞

unk+2

unk+1

.
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Since α < 1
k+1 , we can see (1 + τ)(k+1)α−1 < 1. We can get

lim sup
n→∞

unk+2

unk+1

= 0.

Thus (3.25) holds true. Therefore we can obtain (3.22)–(3.25) by induction.

We prove Theorem 3.2.8.

Proof of Theorem 3.2.8. (Step 1) First we show

lim
n→∞

un+1
0

un0
= 1 + τ.

From (ML-3), we can get(
1 + τn

a0,0

m0

)
un+1

0 + τn
a1,0

m0
un+1

1 = un0 + τn(un0 )1+α,(
1 + τn

a0,0

m0

)
un+1

0

un0
+ τn

a1,0

m0

un+1
1

un0
= 1 + τ, for large n,(

1 + τn
a0,0

m0
+ τn

a1,0

m0

un+1
1

un+1
0

)
un+1

0

un0
= 1 + τ.

Thus

lim
n→∞

un+1
0

un0
= 1 + τ.

(Step 2) Next we will prove
lim
n→∞

un1 =∞,

for 0 < α ≤ 1. We shall estimate un+1
0 and un+1

1 .

un+1
0 =

−τn a1,0m0
un1 + (1 + τn(un0 )α)un0

1 + τn
a0,0
m0

≥ (1 + τn(un0 )α)un0
1 + τn

a0,0
m0

.

From (ML-3),

τn
a0,1

m1
un+1

0 +

(
1 + τn

a1,1

m1

)
un+1

1 + τn
a2,1

m1
un+1

2 = un1 + τn(un1 )1+α.

Thus

un+1
1 =

−τn a0,1m1
un+1

0 − τn a2,1m1
un+1

2 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

≥
−τn a0,1m1

un+1
0 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

≥
−τn a0,1m1

(1 + τn(un0 )α)un0 + (1 + τn
a0,0
m0

)(1 + τn(un1 )α)un1(
1 + τn

a1,1
m1

)(
1 + τn

a0,0
m0

)
≥

−τn a0,1m1
un0 + un1(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) ,
for n ≥ 0.
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Thus

lim inf
n→∞

un+1
1 ≥ −a0,1

m1
lim inf
n→∞

τ(un0 )1−α(
1 + τn

a1,1
m1

)(
1 + τn

a0,0
m0

) + lim inf
n→∞

un1 .

Here,

lim inf
n→∞

τ(un0 )1−α(
1 + τn

a1,1
m1

)(
1 + τn

a0,0
m0

) =

{
∞, 0 < α < 1

τ, α = 1.

Therefore
lim
n→∞

un1 =∞, 0 < α ≤ 1.

(Step 3) Next we will show

lim
n→∞

an = 0, an =
un1
un0
.

We can see that

an+1 =
un+1

1

un+1
0

=
un+1

1 (1 + τn
a0,0
m0

)

−τn a1,0m0
un+1

1 + (1 + τn(un0 )α)un0

=
1 + τn

a0,0
m0

−τn a1,0m0
+ (1 + τn(un0 )α)

un0
un+1
1

.

To get lower and upper bound of an+1, we calculate lower and upper bound of un+1
1 .

un+1
1 =

−τn a0,1m1
un+1

0 − τn a2,1m1
un+1

2 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

≤
−τn a0,1m1

un+1
0 − τn a2,1m1

un+1
1 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

≤
−τn a0,1m1

(−τn a1,0m0
un+1

1 + (1 + τn(un0 )α)un0 )(
1 + τn

a0,0
m0

)(
1 + τn

a1,1
m1

)
+
−τn a2,1m1

un+1
1 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

.

Thus 1−
τ2
n
a0,1
m1

a1,0
m0(

1 +
a0,0
m0

)(
1 +

a1,1
m1

) +
τn

a2,1
m1

1 + τn
a1,1
m1

un+1
1

≤
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1(

1 + τn
a0,0
m0

)(
1 + τn

a1,1
m1

) .

We compute left-hand side.

(LHS) =
1 + τn

a0,0
m0

+ τn
a1,1
m1

+ τ2
n
a0,0
m0

a1,1
m1
− τ2

n
a0,1
m1

a1,0
m0

+ τn
a2,1
m1

+ τ2
n
a0,0
m0

a2,1
m1(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) un+1
1

=
1 + τn

a0,0
m0
− τn a0,1m1

+ τ2
n
a0,0
m0

a1,1
m1

+ τ2
n
a0,1
m1

a0,0
m0

+ τ2
n
a0,0
m0

a2,1
m1(

1 + τn
a1,1
m1

a0,0
m0

) un+1
1

=
1 + τn

a0,0
m0
− τn a0,1m1

+ τ2
n
a0,0
m0

(a1,1 + a0,1 + a2,1) 1
m1(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) un+1
1

=
1 + τn

a0,0
m0
− τn a0,1m1(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

)un+1
1 .
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Thus we can get

un+1
1 ≤

−τn a0,1m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0
m0

)
(1 + τn(un1 )α)un1

1 + τn
a0,0
m0
− τn a0,1m1

. (3.26)

For the lower bound of un+1
1 , we can get

un+1
1 ≥

−τn a0,1m1
un+1

0 + (1 + τn(un1 )α)un1

1 + τn
a1,1
m1

=
−τn a0,1m1

(
−τn a1,0m0

un+1
1 + (1 + τn(un0 )α)un0

)
(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) +
(1 + τn(un1 )α)un1

1 + τn
a1,1
m1

.

Thus 1−
τ2
n
a0,1
m1

(
−τn a1,0m0

un+1
1 + (1 + τn(un0 )α)un0

)
(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

)
un+1

1

≥
−τn a0,1m1

(1 + τn(un0 )α)un0 + (1 + τn
a0,0
m0

)(1 + τn(un1 )α)un1(
1 + τn

a1,1
m1

)(
1 + τn

a0,0
m0

) .

Here we calculate the left-hand side.

(LHS) =
1 + τn

a1,1
m1

+ τn
a0,0
m0

+ τ2
n
a1,1
m1

a0,0
m0
− τ2

n
a0,1
m1

a1,0
m0(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) un+1
1

=
1 + τn

a1,1
m1

+ τn
a0,0
m0

+ τ2
n
a1,1
m1

a0,0
m0

+ τ2
n
a0,1
m1

a0,0
m0(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) un+1
1

=
1 + τn

a1,1
m1

+ τn
a0,0
m0
− τ2

n
a0,0
m0

a2,1
m1(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

) un+1
1 .

Therefore

un+1
1 ≥

−τn a0,1m1
(1 + τn(un0 )α)un0 + (1 + τn

a0,0
m0

)(1 + τn(un1 )α)un1

1 + τn
a1,1
m1

+ τn
a0,0
m0
− τ2

n
a0,0
m0

a2,1
m1

. (3.27)

From (3.26), we can get

an+1 =

(
1 +

a0,0
m0

)
un+1

1

−τn a1,0m0
un+1

1 + (1 + τn(un0 )α)un0

≤

(
1 + τn

a0,0
m0

){
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1

}
−τn a1,0m0

{
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1

}
+ (1 + τn(un0 )α)un0 (1 + τn

a0,0
m0
− a0,1

m1
)

=

(
1 + τn

a0,0
m0

){
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1

}
(

1 + τn
a0,0
m0
− τn a0,1m1

+ τ2
n
a1,0
m0

a0,1
m1

)
(1 + τn(un0 )α)un0 − τn

a1,0
m0

(
1 + τn

a0,0
m0

)
(1 + τn(un1 )α)un1

.

Since

1 + τn
a0,0

m0
− τn

a0,1

m1
+ τ2

n

a1,0

m0

a0,1

m1
= 1 + τn

a0,0

m0
− τn

a0,1

m1
− τ2

n

a0,0

m0

a0,1

m1

=

(
1 + τn

a0,0

m0

)(
1 + τn

a1,1

m1

)
,
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we can obtain

an+1 =
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1(

1− τn a0,1m1

)
(1 + τn(un0 )α)un0 − τn

a1,0
m0

(1 + τn(un1 )α)un1

=
−τn a0,1m1

(1 + τ)un0 +
(

1 + τn
a0,0
m0

)
(1 + τaαn)un1(

1− τn a0,1m1

)
(1 + τ)un0 − τn

a1,0
m0

(1 + τaαn)un1

, for large n.

Therefore we can obtain the upper bound of an+1,

an+1 ≤
−τn a0,1m1

(1 + τ) +
(

1 + τn
a0,0
m0

)
(1 + τaαn)an(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
. (3.28)

For the lower bound of an+1,

an+1 =
un+1

1

un+1
0

=

(
1 + τn

a0,0
m0

)
un+1

1

−τn a1,0m0
un+1

1 + (1 + τn(un0 )α)un0

=
1 + τn

a0,0
m0

−τn a1,0m0
+ (1 + τn(un0 )α)

un0
un+1
1

≥ X

Y
(∵ (3.26)),

where

X :=

(
1 + τn

a0,0

m0

){
−τn

a0,1

m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1

}
,

Y := −τn
a1,0

m0

{
−τn

a0,1

m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1

}
+ (1 + τn(un0 )α)un0

(
1 + τn

a1,1

m1
+ τn

a0,0

m0
− τ2

n

a0,0

m0

a2,1

m1

)
.

We calculate X.

X = τ2
n

a1,0

m0

a0,1

m1
(1 + τn(un0 )α)un0 − τn

a1,0

m0

(
1 +

a0,0

m0

)
(1 + τn(un1 )α)un1

+ (1 + τn
a1,1

m1
+ τn

a0,0

m0
− τ2

n

a0,0

m0

a2,1

m1
)(1 + τn(un0 )α)un0 .

Here, we can see that

1 + τn
a1,1

m1
+ τn

a0,0

m0
− τ2

n

a0,0

m0

a2,1

m1
+ τ2

n

a1,0

m0

a0,1

m1

=1 + τn
a1,1

m1
+ τn

a0,0

m0
− τ2

n

a0,0

m0

a2,1

m1
− τ2

n

a0,0

m0

a0,1

m1

=1 + τn
a1,1

m1
+ τn

a0,0

m0
+ τ2

n

a0,0

m0

a1,1

m1

=

(
1 + τn

a0,0

m0

)(
1 + τn

a1,1

m1

)
.

Thus

X =

(
1 + τn

a1,1

m1

)(
1 + τn

a0,0

m0

)
(1 + τn(un0 )α)un0 − τn

a1,0

m0

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1 .
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Therefore

an+1 ≥

(
1 + τn

a0,0
m0

){
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1

}
(

1 + τn
a1,1
m1

)(
1 + τn

a0,0
m0

)
(1 + τn(un0 )α)un0 − τn

a1,0
m0

(
1 + τn

a0,0
m0

)
(1 + τn(un1 )α)un1

=
−τn a0,1m1

(1 + τn(un0 )α)un0 +
(

1 + τn
a0,0
m0

)
(1 + τn(un1 )α)un1(

1 + τn
a1,1
m1

)
(1 + τn(un0 )α)un0 − τn

a1,0
m0

(1 + τn(un1 )α)un1

=
−τn a0,1m1

(1 + τ)un0 +
(

1 + τn
a0,0
m0

)
(1 + τaαn)un1(

1 + τn
a1,1
m1

)
(1 + τ)un0 − τn

a1,0
m0

(1 + τaαn)un1

for large n.

Thus we get the lower bound for an+1,

an+1 ≥
−τn a0,1m1

(1 + τ) +
(

1 + τn
a0,0
m0

)
(1 + τaαn)an(

1 + τn
a1,1
m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
. (3.29)

Next we check the decreasing property of an.

an+1 − an ≤
−τn a0,1m1

(1 + τ) + (1 + τn
a0,0
m0

)(1 + τaαn)an(
1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
− an

=
−τn a0,1m1

(1 + τ) + (1 + τn
a0,0
m0

)(1 + τaαn)an − an
{(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

}
(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
.

Then we calculate the numerator of right-hand side, where we define it by Z.

Z = −τn
a0,1

m1
(1 + τ) + (1 + τn

a0,0

m0
)(1 + τaαn)an −

(
1− τn

a0,1

m1

)
(1 + τ)an + τn

a1,0

m0
(1 + τaαn)a2

n

=

{
−τn

a0,1

m1
−
(

1− τn
a0,1

m1

)
an

}
(1 + τ) +

{
(1 + τna0,0m0)− τn

a0,0

m0

}
(1 + τaαn)an

= −an(1 + τ)− τn
a0,1

m1
(1− an)(1 + τ) + (1 + τaαn)an + anτn

a0,0

m0
(1− an)(1 + τaαn)

= −τn
a0,1

m1
(1− an)(1 + τ) + anτn

a0,0

m0
(1− an)(1 + τaαn) + τan(aαn − 1).

Then we can get

an+1 − an ≤
−τn a0,1m1

(1− an)(1 + τ) + anτn
a0,0
m0

(1− an)(1 + τaαn) + τan(aαn − 1)(
1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
.

From 0 ≤ an ≤ 1, for large n,

an+1 − an ≤
τn(1− an)

{
−a0,1m1

+
a0,0
m0

}
(1 + τ) + τn(un0 )α(aαn − 1)an(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
.

Here we can see that
0 < aαn ≤ an < 1,

for α ≥ 1, and
0 < an ≤ aαn < 1,
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for 0 < α < 1. We set K = b 1
αc, where b·c denotes the floor function. For 0 < α < 1,

1− an ≤ 1− an + a1−Kα
n

(
1− a(K+1)α−1

n

)
= 1 +

K∑
i=1

a1−iα
n − aαn −

K∑
j=1

a1−(j−1)α
n

= (1 +

K∑
i=1

a1−iα
n )(1− aαn)

≤ (K + 1)(1− aαn).

Thus
1− an ≤ (K + 1)(1− aαn), 0 < α < 1.

For α ≥ 1, we can see that

an+1 − an ≤
τn(1− an)

{(
−a0,1m1

+
a0,0
m0

)
(1 + τ)− (un0 )αan

}
(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
.

Since (un0 )αan = (un0 )α−1un1 , if α = 1, then from lim
n→∞

un1 =∞, we can get an+1 − an ≤ 0. If α > 1, then

from the assumption lim
n→∞

(un0 )α−1un1 =∞, we can get an+1 − an ≤ 0. Thus for α ≥ 1, from 0 < an < 1

and the decreasing property of {an}, we can see that

a = lim
n→∞

an ∈ [0, 1).

From (3.28), we can get

a ≤ (1 + aατ)a

1 + τ
.

On the other hand, from (3.29), we can see that

a ≥ (1 + aατ)a

1 + τ
.

Thus a = a1+α, so we get a = 0 since a ∈ [0, 1). Therefore we can obtain lim
n→∞

an = 0 for α ≥ 1.

Next for 0 < α < 1, we shall prove lim
n→∞

an = 0. For 0 < α < 1, we can see that

an+1 − an ≤
τ(1− aαn)

{(
−a0,1m1

+
a0,0
m0

)
(1 + τ) 1−an

1−aαn
− (un0 )αan

}
(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

≤
τ(1− aαn)

{(
−a0,1m1

+
a0,0
m0

)
(K + 1)(1 + τ)− (un0 )αan

}
(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an
. (3.30)

If {an} is a convergent sequence, then from the same argument as the case of α ≥ 1, we can get

lim
n→∞

(un0 )αan =∞.

Thus
lim
n→∞

an = 0.

If {an} is not a convergent sequence, there exist a∗ = lim inf
n→∞

an and a∗ = lim sup
n→∞

an such that

0 ≤ a∗ < a∗ ≤ 1.
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Then we fix γ ∈ (a∗, a
∗). We define subsequences A,B, and Ã such that

A = {an|an ≤ γ},
B = {an|an > γ},
Ã = {ani |ani ∈ A, ani+1 ∈ B}.

We can take a subsequence {ani} ∈ Ã. Then from (3.28),

ani+1 ≤
−τni

a0,1
m1

(1 + τ) + (1 + τni
a0,0
m0

)(1 + τaαni)ani

(1− τni
a0,1
m1

)(1 + τ)− τni
a1,0
m0

(1 + τaαni)ani

≤
−τni

a0,1
m1

(1 + τ) + (1 + τni
a0,0
m0

)(1 + τγα)γ

(1− τni
a0,1
m1

)(1 + τ)− τni
a1,0
m0

(1 + τaαni)ani
.

Thus from γ ∈ (0, 1),

lim sup
i→∞

ani+1 ≤
(1 + τγα)γ

1 + τ
< γ.

This contradicts ani+1 ∈ B. Thus we can get

lim
n→∞

an = 0, 1.

If lim
n→∞

an = 1 holds true, then

lim
n→∞

an(un0 )α =∞.

However, from (3.30), an+1 − an < 0 for large n. Therefore

a = lim
n→∞

an < 1.

This contradicts a = 1. Thus we can obtain lim
n→∞

an = 0 for 0 < α < 1.

(Step 4) Next for α ≥ 1, we shall show

lim
n→∞

an+1

an
=

1

1 + τ
.

We can see that
lim
n→∞

(un0 )1−α(un1 )−1 = 0.

Thus from (3.29),

lim inf
n→∞

an+1

an
≥ lim inf

n→∞

1

an

−τn a0,1m1
(1 + τ) +

(
1 + τn

a0,0
m0

)
(1 + τaαn)an(

1 + τn
a1,1
m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

= lim
n→∞

− τn
an

a0,1
m1

(1 + τ) +
(

1 + τn
a0,0
m0

)
(1 + τaαn)(

1 + τn
a1,1
m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

=
1

1 + τ
.

On the other hand, from (3.28),

lim sup
n→∞

an+1

an
≤ lim sup

n→∞

1

an

−τn a0,1m1
(1 + τ) +

(
1 + τn

a0,0
m0

)
(1 + τaαn)an(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

= lim
n→∞

− τn
an

a0,1
m1

(1 + τ) +
(

1 + τn
a0,0
m0

)
(1 + τaαn)(

1− τn a0,1m1

)
(1 + τ)− τn a1,0m0

(1 + τaαn)an

=
1

1 + τ
.
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Therefore

lim
n→∞

an+1

an
=

1

1 + τ
.

(Step 5) Next we shall prove that {un1} is bounded above. From (3.26),

un+1
1 ≤ −τn

a0,1

m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1

≤ −τn
a0,1

m1
(1 + τ)αun0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1 .

Thus

un+1
1 − un1 ≤ −τn

a0,1

m1
(1 + τ)αun0 +

(
τn(un1 )α + τn

a0,0

m0
+ τ2

n

a0,0

m0
(un1 )α

)
un1 .

Hence

un1 =

n−1∑
k=0

(uk1 − uk−1
1 ) + u0

1

≤
∞∑
k=0

{
−τk

a0,1

m1
(1 + τ)uk0 +

(
τk(uk1)α + τk

a0,0

m0
+ τ2

k

a0,0

m0
(uk1)α

)
uk1

}
+ u0

1.

Here since

lim
n→∞

un+1
0

un0
= 1 + τ, α > 0,

we can get

lim
k→∞

τk+1u
k+1
0

τkuk0
= lim
k→∞

(uk+1
0 )1−α

(uk0)1−α = (1 + τ)1−α < 1.

Also, from lim
n→∞

an+1

an
=

1

1 + τ
for α ≥ 1, we can get

lim
k→∞

τk+1(uk+1
1 )1+α

τk(uk1)1+α
= lim
k→∞

aα+1
k+1u

k+1
0

aα+1
k uk0

= (1 + τ)−α−1(1 + τ)

= (1 + τ)−α < 1,

and

lim
k→∞

τk+1u
k+1
1

τkuk1
= lim
k→∞

(uk+1
0 )−αuk+1

1

(uk0)−αuk1

= lim
k→∞

(uk+1
0 )−α+1ak+1

(uk0)−α+1ak

= (1 + τ)−α < 1.

We can see that
∞∑
k=0

τ2
k (uk1)1+α ≤

∞∑
k=0

τk(uk1)1+α.

From the above inequalities and d’Alembert’s ratio test, we can get

un1 <∞.

(Step 6) Finally, we show {un2} is a bounded for α = 1. From (ML-3), we can get

a1,2

m2
τnu

n+1
1 +

(
1 + τn

a2,2

m2

)
un+1

2 +
a3,2

m2
τnu

n+1
3 = un2 + τn(un2 )1+α.
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Thus

un+1
2 =

−a1,2m2
τnu

n+1
1 − a3,2

m2
τnu

n+1
3 + (1 + τn(un2 )α)un2

1 + τn
a2,2
m2

≤
−a1,2m2

τnu
n+1
1 − a3,2

m2
τnu

n+1
2 + (1 + τn(un2 )α)un2

1 + τn
a2,2
m2

.

Solving for un+1
2 , we can see that(

1 + τn
a2,2

m2

)
un+1

2 +
a3,2

m2
τnu

n+1
2 ≤ −a1,2

m2
τnu

n+1
1 + (1 + τn(un2 )α)un2 ,(

1− τn
a1,2

m2

)
un+1

2 ≤ −a1,2

m2
τnu

n+1
1 + (1 + τn(un2 )α)un2 .

Thus

un+1
2 ≤

−a1,2m2
τnu

n+1
1 + (1 + τn(un2 )α)un2

1− τn a1,2m2

≤ −a1,2

m2
τnu

n+1
1 + (1 + τn(un2 )α)un2 .

Moreover, from (3.26),

un+1
1 ≤ −τn

a0,1

m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1 .

Hence

un+1
2 ≤ −a1,2

m2
τn

{
−τn

a0,1

m1
(1 + τn(un0 )α)un0 +

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1

}
+ (1 + τn(un2 )α)un2

=
a1,2

m2

a0,1

m1
τ2
n(1 + τn(un0 )α)un0 −

a1,2

m2
τn

(
1 + τn

a0,0

m0

)
(1 + τn(un1 )α)un1 + (1 + τn(un2 )α)un2

≤ a1,2

m2

a0,1

m1
τ2
n(1 + τ)un0 −

a1,2

m2
τn

(
1 + τn

a0,0

m0

)
(1 + τaαn)un1 + (1 + τaαn)un2 .

We set

An = 1 + τaαn,

Bn =
a1,2

m2

a0,1

m1
τ2
n(1 + τ)un0 −

a1,2

m2
τn

(
1 + τn

a0,0

m0

)
(1 + τaαn)un1 .

Then we can get un+1
2 ≤ Anun2 +Bn. Here

log

( ∞∏
n=0

An

)
=

∞∑
n=0

logAn =

∞∑
n=0

log(1 + τaαn) ≤
∞∑
n=0

τaαn.

Since

lim
n→∞

aαn+1

aαn
= lim
n→∞

(
an+1

an

)α
= (1 + τ)−α < 1, α ≥ 1,

we can get
∞∏
n=0

An <∞.

Also, we can obtain

lim
n→∞

τ2
n+1u

n+1
0

τ2
nu

n
0

= lim
n→∞

(un0 )2αun+1
0

(un+1
0 )2αun0

= lim
n→∞

(un+1
0 )1−2α

(un0 )1−2α

= (1 + τ)1−2α < 1,
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and

lim
n→∞

τn+1(1 + τn+1(un+1
1 )α)un+1

1

τn+1(1 + τn(un1 )α)un1
= lim
n→∞

(1 + aαn+1)un+1
1 (un0 )α

(1 + aαn)un1 (un+1
0 )α

= lim
n→∞

(1 + aαn+1)an+1u
n+1
0 (un0 )α

(1 + aαn)anun0 (un+1
0 )α

= lim
n→∞

1 + aαn+1

1 + aαn

an+1

an

(
un0
un+1

0

)α−1

= (1 + τ)−α < 1.

Therefore we can get
∞∑
n=0

Bn <∞.

From Lemma 3.6.1, we can get
un2 <∞, n ≥ 0.

Thus we complete the proof.
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Chapter 4

Application to the Keller-Segel systems

4.1 The schemes

The purpose of this chapter is to study the finite element method (FEM) applied to the parabolic-elliptic
system,

ut = x1−N (xN−1(ux − uvx))x, x ∈ I = (0, 1), t > 0, (4.1a)

0 = x1−N (xN−1vx)x − v + u, x ∈ I, t > 0, (4.1b)

ux(0, t) = ux(1, t) = vx(0, t) = vx(1, t) = 0, t > 0, (4.1c)

u(x, 0) = u0(x), x ∈ I, (4.1d)

and the parabolic-parabolic system

ut = x1−N (xN−1(ux − uvx))x, x ∈ I = (0, 1), t > 0, (4.2a)

vt = x1−N (xN−1vx)x − v + u, x ∈ I, t > 0, (4.2b)

ux(0, t) = ux(1, t) = vx(0, t) = vx(1, t) = 0, t > 0, (4.2c)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ I. (4.2d)

Therein, u = u(x, t), v = v(x, t), x ∈ I = [0, 1], t ≥ 0, denote the functions to be find and u0, v0 ≥ 0 (6≡ 0)
given continuous functions. In [44], they consider the finite volume method for (4.1).

We should recall parabolic-elliptic and parabolic-parabolic Keller-Segel systems:

Ut = ∇ · (∇U − U · ∇V ), ~x ∈ Ω, t > 0, (4.3a)

−∆V + V = U, ~x ∈ Ω, t > 0, (4.3b)

∂U

∂ν
(~y, t) =

∂V

∂ν
(~y, t) = 0, ~y ∈ Γ = ∂Ω, t > 0, (4.3c)

U(~x, 0) = U0(~x), ~x ∈ Ω, (4.3d)

and

Ut = ∇ · (∇U − U · ∇V ), ~x ∈ Ω, t > 0, (4.4a)

Vt = ∆V − V + U, ~x ∈ Ω, t > 0, (4.4b)

∂U

∂ν
(~y, t) =

∂V

∂ν
(~y, t) = 0, ~y ∈ Γ = ∂Ω, t > 0, (4.4c)

U(~x, 0) = U0(x), V (~x, 0) = V 0(~x), ~x ∈ Ω, (4.4d)

where U = U(~x, t), V = V (~x, t), ~x ∈ Ω, t ≥ 0, Ω ⊂ RN is a bounded domain with the boundary
Γ, ν is the outer unit normal vector to Γ, ∂U

∂ν = ∇U · ν, and U0, V 0 ≥ 0 ( 6≡ 0) are given continuous
functions. In particular, the systems (4.3) and (4.4) denote the aggregation of slime molds resulting
from their chemotactic features. Then U and V express the density of the cellular slime molds and the
concentration of the chemical substance.
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We can see that the solutions of (4.1) and (4.2) correspond to the radially symmetric solutions of
(4.3) and (4.4). It is well-known that the solutions of (4.3) and (4.4) satisfy conservation of positivity,
conservation of mass and conservation of L1 norm:

U(~x, t) ≥ 0, ~x ∈ Ω, t ≥ 0, (4.5)∫
Ω

U(~x, t) d~x =

∫
Ω

U0(~x) d~x, t ≥ 0, (4.6)

‖U(·, t)‖L1(Ω) = ‖U0‖L1(Ω), t ≥ 0. (4.7)

We first mention the weak formulation of (4.1). By multiplying xN−1χ and integrating in I, we can
get ∫

I

xN−1utχ dx = −
∫
I

xN−1(ux − uvx)χ′ dx,

0 = −
∫
I

xN−1vxχ
′ dx+

∫
I

xN−1(−v + u)χ dx (χ ∈ H1(I)).

We set

(u, v) =

∫
I

xN−1uv dx, A(u, v) =

∫
I

xN−1u′v′ dx, and B(u, v, w) = −
∫
I

xN−1uv′w′ dx.

Therefore we can rewrite this to

(ut, χ) +A(u, χ) +B(u, v, χ) = 0,

A(u, χ)− (u− v, χ) = 0 (χ ∈ H1(I)).

Similarly, we can get the weak formulation of (4.2):

(ut, χ) +A(u, χ) +B(u, v, χ) = 0,

(vt, χ) +A(u, χ)− (u− v, χ) = 0 (χ ∈ H1(I)).

For a positive integer m, we introduce node points

0 = x0 < x1 < · · · < xj−1 < xj < · · · < xm−1 < xm = 1,

and set Ij = (xj−1, xj) and hj = xj − xj−1, where j = 1, . . . ,m. The granularity parameter is defined as
h = max1≤j≤m hj . Let Pk(J) be the set of all polynomials in an interval J of degree ≤ k. We define the
P1 finite element space as

Sh = {v ∈ H1(I) | v ∈ P1(Ij) (j = 1, · · · ,m)}. (4.8)

Its standard basis function φj , j = 0, 1, · · · ,m, is defined as

φj(xi) = δij ,

where δij denotes Kronecker’s delta.
For time discretization, we introduce non-uniform partitions

t0 = 0, tn =

n−1∑
j=0

τj (n ≥ 1),

where τj > 0 denotes the time increment.
Generally, we write ∂τnu

n+1
h = (un+1

h − unh)/τn.
We define

〈w, v〉 =

m∑
i=0

w(xi)v(xi)(1, φi) (w, v ∈ H1(I)). (4.9)
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We introduce the finite element schemes (KS-1) for (4.1) and (KS-2) for (4.2).

(KS-1) Find un+1
h , vnh ∈ Sh, n = 0, 1, . . ., such that

〈
∂τnu

n+1
h , χ

〉
+A(un+1

h , χ) +Bh(un+1
h , vnh , χ) = 0, (4.10)

A(vnh , χ)− 〈unh − vnh , χ〉 = 0, (χ ∈ Sh) (4.11)

where u0
h ∈ Sh is assumed to be given.

(KS-2) Find un+1
h , vn+1

h ∈ Sh, n = 0, 1, . . ., such that

〈
∂τnu

n+1
h , χ

〉
+A(un+1

h , χ) +Bh(un+1
h , vnh , χ) = 0, (4.12)〈

∂τnv
n+1
h , χ

〉
+A(vnh , χ)− 〈unh − vnh , χ〉 = 0, (χ ∈ Sh) (4.13)

where u0
h, v

0
h ∈ Sh are assumed to be given.

Here,

Bh(u, v, w) =

m∑
i=0

w(xi)
∑
j∈Λi

{
u(xi)β

+
i,j(v)− u(xj)β

−
i,j(v)

}
,

where

Λi =


{1} i = 0

{i− 1, i+ 1} i 6= 0,m

{m− 1} i = m,

and

β±i,j(v) =

∣∣∣∣∫ xj

xi

xN−1 max

{
0,±v(xj)− v(xi)

|xj − xi|

}
(φi)x dx

∣∣∣∣ .
The solutions of (KS-1) and (KS-2) reproduce (4.5), (4.6), as stated below.

Proposition 4.1.1 (Positivity preserving and conservation of the mass, (KS-1)). For (KS-1), if u0
h ≥ 0

in I, then the solution (unh, v
n
h) satisfies positivity preserving and conservation law:

unh, v
n
h ≥ 0 in I, n ≥ 0,

〈unh, 1〉 =
〈
u0
h, 1
〉

=
〈
v0
h, 1
〉

= 〈vnh , 1〉 .

For the proof, see Section 4.3.

Proposition 4.1.2 (Positivity preserving and conservation of the mass, (KS-2)). For (KS-2), if u0
h, v

0
h ≥

0 in I, then the solution (unh, v
n
h) satisfies positivity preserving and conservation law:

unh, v
n
h ≥ 0 in I, n ≥ 0,

〈unh, 1〉 =
〈
u0
h, 1
〉
.

For the proof, see Section 4.3.

4.2 Numerical examples

We calculate the radially symmetric solutions of Keller-Segel systems (4.1)–(4.2). We set m = 200, T =
0.2, τn = τ = 1

50h, u
0
h = Πhu

0, v0
h = Πhv

0,

u0(x) = µ
{

10e−2x2

+ 20e−2(x−0.3)2
}
, and v0(x) = µ cos

π

2
x,
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where Πhv denotes the linear interpolation for v ∈ H1(I). We adopt N = 2 for (KS-1), and N = 3 for
(KS-2). Fig. 4.1 shows the graphs of (KS-1) and the amounts of change of the following quantities:

mass =

∫
I

xN−1unh dx, (4.14)

chemical =

∫
I

xN−1vnh dx. (4.15)

Fig. 4.2 shows the graphs of (KS-2) and the amounts of change of (4.14) and (4.15). We observe that
Fig. 4.1 (a) and Fig. 4.2 concentrate on the origin and Fig. 4.1 (b) distributes uniformly. Fig. 4.1 (c),
(d) and Fig. 4.2 show that (KS-1) conserves both (4.14) and (4.15) numerically, while (KS-2) conserves
(4.14) numerically.

(a) (KS-1), µ = 1, graph of u (up)
and graph of v (down)

(b) (KS-1), µ = 1
10 , graph of u (up)

and graph of v (down)

(c) (KS-1), µ = 1, change of mass (up)
and change of chemical (down)

(d) (KS-1), µ = 1
10 , change of mass (up)

and change of chemical (down)

Figure 4.1: Graphs and mass conservation law, (KS-1)

4.3 Proof of Propositions

We shall prove Proposition 4.1.1.

Proof of Proposition 4.1.1. We shall prove the positivity preserving. We set uni = unh(xi), v
n
i = vnh(xi).
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(a)
graph of u (up) and graph of v (down) (b) change of mass (up)

and change of chemical (down)

Figure 4.2: Graphs and mass conservation law, (KS-2) with N = 3 and µ = 10

Substituting χ = φi in (4.10), we get

un+1
i − uni
τn

+ un+1
i−1 A(φi−1, φi) + uni A(φi, φi) + uni+1A(φi+1, φi)

+ un+1
i β+

i,i−1(vnh)− un+1
i−1 β

−
i,i−1(vnh) + un+1

i β+
i,i+1(vnh)− un+1

i+1 β
−
i,i+1(vnh) = 0,

where we understand that un−1 = unm+1 = A(φ−1, φ0) = A(φm+1, φm) = β±0,−1(vnh) = β±m,m+1(vnh) = 0.

Then we set mi = (1, φi), ai,j = A(φi, φj), and β±i,j = β±i,j(v
n
h). Thus

1

τn
mi(u

n+1
i − uni ) + ai−1,iu

n+1
i−1 + ai,iu

n+1
i + ai+1,iu

n+1
i+1

+ un+1
i β+

i,i−1 − u
n+1
i−1 β

−
i,i−1 + un+1

i β+
i,i+1 − u

n+1
i+1 β

−
i,i+1 = 0,

(ai−1,i − β−i,i−1)un+1
i−1 +

(
1

τ
+ ai,i + β+

i,i−1 + β+
i,i+1

)
un+1
i + (ai+1,i − β−i,i+1)un+1

i+1

=
1

τn
miu

n
i .

Here we set

A1
i,i−1 = ai−1,i − β−i,i−1,

A1
i,i =

1

τn
mi + ai,i + β+

i,i−1 + β+
i,i+1,

A1
i,i+1 = ai+1,i − β−i,i+1.

We define

A1 = (A1
i,j)0≤i,j≤m ∈ Rm+1,m+1,

M1 = diag

(
mi

τn

)
∈ Rm+1,m+1,

~u(n) = (uni )0≤i≤m ∈ Rm+1,

where A1
i,j = 0 (|i− j| > 1) and diag(xi) denotes the diagonal matrix whose (i, i)th entry is xi.

Substituting χ = φi in (4.11), we get

ai−1,iv
n
i−1 + (ai,i +mi)v

n
i + ai+1,iv

n
i+1 = miu

n
i .

We set
A2
i,i−1 = ai−1,i, A

2
i,i = ai,i +mi, A

2
i,i+1 = ai+1,i.
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We define

A2 = (A2
ij)0≤i,j≤m ∈ Rm+1,m+1,

M2 = diag(mi) ∈ Rm+1,

~vn = (vni )0≤i≤m ∈ Rm+1,

where A2
i,j = 0 (|i− j| > 1).

We can rewrite (KS-1) as follows:

A1~u
n+1 = M1~u

n, (4.16)

A2~v
n = M2~u

n. (4.17)

It suffices to prove that A−1
1 , A−1

2 ≥ 0, that is, all components in A−1
1 and A−1

2 are nonnegative. We can
get

A1
i,i > 0, A1

i,j ≤ 0, A2
i,i > 0, A2

i,j ≤ 0, (i 6= j). (4.18)

By a direct calculation, we can see that

ai,i−1 + ai,i + ai,i+1 = 0,

β+
i,i−1 − β

−
i−1,i = 0, β+

i,i+1 − β
−
i+1,i = 0.

Therefore

A1
i−1,i +A1

i,i +A1
i+1,i =

mi

τn
> 0,

A2
i−1,i +A2

i,i +A2
i+1,i = mi > 0.

Thus

|A1
i,i| = A1

i,i =
mi

τn
−A1

i−1,i −A1
i+1,i

>
∑

0≤j≤m, j 6=i

|A1
j,i|,

|A2
i,i| = A2

i,i = mi −A2
i−1,i −A2

i+1,i

>
∑

0≤j≤m, j 6=i

|A2
j,i|.

We then see that AT1 and AT2 are diagonally dominant. From (4.18) and the above results, we can get

(AT1 )−1, (AT2 )−1 ≥ 0.

Thus we can see the positivity of unh and vnh .
Secondly we prove the conservation law. Summing all components of (4.16) and (4.17), we get

m∑
j=0

mj

τn
un+1
j =

m∑
j=0

mj

τn
unj ,

m∑
i=0

mjv
n
j =

m∑
i=0

mju
n
j .

Thus 〈
un+1
h , 1

〉
= 〈unh, 1〉 , 〈vnh , 1〉 = 〈unh, 1〉 .

We complete the proof.

Finally we prove Proposition 4.1.2.
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Proof of Proposition 4.1.2. We use the same notations as the previous proof. First we show the positivity.
Substituting χ = φi in (4.13), we can get

ai−1,iv
n+1
i−1 +

(
mi

τn
+ ai,i +mi

)
vn+1
i + ai+1,iv

n+1
i+1 =

mi

τn
vni +miu

n
i .

We define
A3
i,i−1 = ai−1,i, A

3
i,i =

mi

τn
+ ai,i +mi, A

3
i,i+1 = ai+1,i.

We can rewrite (KS-2) into

A1~u
n+1 = M1~u

n, (4.19)

A3~v
n+1 = M1~v

n +M2~u
n+1. (4.20)

From the proof of Proposition 4.1.1, we can see A−1
1 ≥ 0. Thus it suffices to show that A−1

3 ≥ 0. Similarly
as Proposition 4.1.1, we can see that

A3
i,i > 0, A3

i,j ≤ 0 (i 6= j),

and
A3
i−1,i +A3

i,i +A3
i+1,i =

mi

τn
+mi.

Thus

|A3
i,i| = A3

i,i =
mi

τn
+mi −A3

i−1,i −A3
i+1,i

>
∑

0≤j≤m, j 6=i

|A3
i,j |.

By making the same argument as Proposition 4.1.1, we can obtain

A−1
3 ≥ 0.

Secondly, we show the conservation law. Summing all components in (4.19)–(4.20), we can see that

m∑
j=0

mj

τn
un+1
j =

m∑
j=0

mj

τn
unj ,

m∑
i=0

(
mj

τn
+mj

)
vn+1
j =

m∑
j=0

mj

τn
vnj +

m∑
j=0

mju
n+1
j .

Thus 〈
un+1
h , 1

〉
= 〈unh, 1〉 , (4.21)(

1

τn
+ 1

)〈
vn+1
h , 1

〉
=

1

τn
〈vnh , 1〉+ 〈unh, 1〉 . (4.22)

Thus we complete the proof.

Remark 4.3.1. If we choose the uniform time increment τn = τ , then from (4.22) we get

〈vnh , 1〉 =
〈
u0
h, 1
〉

+

(
1

1 + τ

)n 〈
v0
h − u0

h, 1
〉
.
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