Abstract

In this thesis we are concerned with asymptotic analysis for solutions to semilinear heat
equations. A nonlinear parabolic equation

w=Au+v’ in RVxR,, p>1, N>1I, (F)

is called Fujita’s equation and appears in various mathematical models, in particular, in
combustion theory as solid fuel ignition processes. The superlinear term u? arises from the
Arrhenius equation which is a formula for the temperature dependence of reaction rates.
Due to the balance between the diffusion term and the nonlinear term, the equation (F) has
rich mathematical structure and solutions exhibit various properties. One of characteristic
properties of the equation (F) is that the solution does not necessarily exist globally in time.
This phenomenon is peculiar to nonlinear problems and called the blow-up of the solution.
The equation (F) has been widely studied by many researchers since the pioneering work by
Fujita ’66. One of the major topics is to obtain the rate of blow-up. Let T' € (0, 00) be the
maximal existence time of a solution u to the equation (F). Then the solution wu satisfies

lul -, )| peomyy > C(T — )™ 0<t<T,

for some positive constant C'. The blow-up of u is said to be of type I if there exists a positive
constant K such that

(-, 1) peemry < K(T — HVe Y 0<t< T
Otherwise the blow-up is said to be of type II. For the Sobolev subcritical case, that is,

00, N=1,2,

p <ps:=

1+ N >3,

N -2

Gigs—Kohn 87 and Giga—Matsui-Sasayama ’04 proved that every blow-up for the equa-
tion (F) is of type I. Furthermore, Matano—Merle '04,’09 and Mizoguchi '11 showed that
only type I blow-up occurs for positive radial solutions in the Sobolev supercritical and
Joseph—Lundgren subcritical case. On the other hand, due to the well-known result by
Herrero—Velazquez 94, we see that if p is greater than Joseph—Lundgren exponent, that is,

00, N < 10,
D> piL = 4

1+ ,
N—-4-2yN -1

then there exist radial blow-up solutions u, gy (z,t), such that

N > 11,

e uv (-, 1)]|oe = (T — )~ F200/ =1 5g ¢ T
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where wy is a positive constant related to eigenvalues for a linearized equation of the equa-
tion (F). Mizoguchi 04 improved the proof by Herrero—Velazquez 94 under suitable addi-
tional assumptions. In addition, Matano 07 and Mizoguchi 11 assumed that every eigenvalue
for linearized operator of the equation (F) is not 0 and proved that actual blow-up rate of
a type II blow-up radial solution coincides with one of the blow-up rates of type II blow-up
solutions constructed by Herrero—Vedzquez 94. Thereafter Seki 18,19 constructed type 11
blow-up solutions in the Joseph-Lundgren critical case and the Lepin critical case, respec-
tively. The Lepin critical case corresponds to the case where an eigenvalue for linearized
operator of the equation (F) is 0.

Chapter 1 is concerned with a heat equation with space-dependent nonlinearity :
up = Au+ |z[*w” in (RV\{0}) xRy, a> -1, (PF)

and it is the main ingredient of this thesis. A similar argument to that of the equation (F)
implies that type I blow-up rate of a solution to the equation (PF) blowing up at the origin
should be (7" — ¢)1+)/(>=1)  However, in comparison to the case a = 0, there are not enough
results for type I blow-up solutions to the equation (PF) with a # 0. In addition, there are
no results for type II blow-up solutions.

We follow [1] to find type II blow-up solutions for the equation (PF) in the Joseph—
Lundgren supercritical case, that is, N > 10 + 8a and

41+ a)
N—-2a—4-2/(N+a—1)(a+1)

p>pila) =1+

Our construction of type II blow-up solutions gives basic and important informations to the
analysis of the equation (PF). In particular, the asymptotic behavior we obtained is new even
if @ = 0 because we bring the asymptotic behavior of solutions near the origin in detail. As
a corollary of our asymptotic analysis, we prove that the profiles of our solutions at blow-up
time is a singular stationary solution near the origin.

In Chapter 1, based on the idea of Herrero—Velazquez 94 and Seki '18, we apply the
matched asymptotic expansions to the semilinear parabolic equations in backward similarity
variables and obtain the precise description of the asymptotic behavior of type II blowing up
solution in a neighborhood of the origin. One of difficulties in our analysis is that unstable
modes appears in a Fourier expansion of solutions for a linearized equation. In order to
overcome the difficulty, we require to choose the parameter associated with the family of the
initial functions by using the degree of mappings.

In Chapter 2, based on [2], we consider the asymptotic behavior of a solution to the heat
equation with a inverse square potential :

uw = Au—V(|z))u in RY xRy, (P)

where V satisfies

Ar—2 — 0, N —2)2
V(r)w{ oo With A de > A, e V=2
Aot as r — 00, 4



Here — A\, is the best constant of Hardy’s inequality. The equation (P) often arises in a
linearized analysis for nonlinear diffusion equations such as equations (F) and (PF). Let
L := —A + V(|z|) be a nonnegative Schrodinger operator on L*(RY). The asymptotic
behavior of a solution to the equation (P) depends on a criticality for the operator L. The
criticality is classified as subcritical, null-critical, positive-critical, and supercritical. Ishige—
Kabeya—Ouhabaz 17 obtained the Gaussian estimate of the fundamental solution and the
asymptotic behavior of a positive harmonic function in the subcritical case and the null-
critical case. The purpose of this chapter is to establish a method for obtaining the precise
description of the large time behavior of solutions to the equation (P) in the subcritical case
and the null-critical case.

In Chapter 3, based on [3], we investigate the large time behavior of the hot spots
H(u(t)) ::{ZL‘ € RY; u(x,t) = sup u(y,t)}
yeRN

as an application of the precise description of the large time behavior of solutions. The
behavior of the hot spots for parabolic equations in unbounded domains has been studied
since the pioneering work by Chavel-Karp '90. In particular, for the heat equation on R
with nonnegative initial data ¢ € L2(RY), they proved:

1. H(e'¢p) is a subset of the closed convex hull of the support of the initial function ;

2. There exists T > 0 such that H(e'®¢) consists of only one point and moves along a
smooth curve for any ¢t > T';

3. tgrgoH(etAw) = /RN zo(x) dx/ /RN o(r) d.

Applying the arguments in Chapter 2, we study the following subjects when the hots spots
tend to the space infinity as t — oo

a. The rate and the direction for the hot spots to tend to the space infinity as t — oo;
b. The number of the hot spots for sufficiently large .

On the other hand, when the hots spots accumlate to a point z,, we characterize the limit
point z, by the positive harmonic function. Furthermore, we give a sufficient condition for
the hot spots to consist of only one point and to move along a smooth curve.
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Chapter 0

Notations

Throughout this thesis, we employ standard notations in asymptotic analysis. For positive
functions f and g defined in (0, R) for some R > 0, we write

f(r)y~g(r) as r—0 if l%%:l,
f(ry<g(r) as r—0 if }E%%:Q

Similarly, for positive functions f and g defined in (R, 00) for some R > 0, we write

oo S(0)

flr)y~g(r) as r—oo if lim —= =1,
(1) ~ g(r) tim
oo S(0)

firy<g(r) as r—oo if lim —= =0.
(r) < g(r) Jim

In additional, we write
1
f(r) =< g(r) if there exists ¢ > 0 such that - < % <ec.

for sufficiently small or large » > 0. By the letter C'; we denote generic positive constants
and they may have different values also within the same line.



Chapter 1

Refined construction of type 11
blow-up solutions for semilinear heat
equations with Joseph—Lundgren
exponent

1.1 Introduction and main results

In the present article we discuss blow-up behavior for a semilinear heat equation :

uy = Au+ [ufPru in RN xRy, (1.1.1)

and its variant
up=Au+|z[**v" in (RV\{0}) x Ry, (1.1.2)
where A denotes the Laplacian in RY, Ry := {t > 0}, p > 1 and a > —1 are constants.
Given an initial datum ul—g = uy € L*°(RY), we may uniquely obtain a local-in-time

classical solution of (1.1.1) (resp., (1.1.2)). They are “Cp-mild solutions” on RY x [0, 7,
where T stands for the maximal existence time, that is, bounded and continuous up to x = 0
and satisfy the integral equation corresponding to (1.1.2). See, for instance, [41,48].

1.1.1 Study of equation u; = Au + u?

The simple equation (1.1.1) has been widely studied by many researchers since the pioneering
work [12] by H. Fujita. In particular, describing possible blow-up behavior at the blow-up
time has attracted considerable attention in the past decades. We say that a solution u of
(1.1.1) blows up in a finite time 7T if

limsup [|u(-, t)|| Lo (mry = 00. (1.1.3)
t T



A number of sufficient conditions finite time blow-up has been obtained by many reseachers.
For example, if the nonnegative initial data ug satisfies

up(r) > AUy (|z]), =€ RN (1.1.4)

for some constants A > 1 and x > 1, then the solution of (1.1.1) blows up in finite time, where
Ua(|x|) denotes a regular stationary solution of (1.1.1) (see (1.1.9) below). In this article, we
study the blow-up rate of ||u(-,?)| p®~) as t approaches the blow-up time T". Local theory
implies that there is a constant C' > 0 such that

|u(-, )| peomy > C(T — HVeD o 0<t<T

if the maximal time of existence T = T'(uy) is finite (cf. [41, Chapter II]). On the other hand,
it is far from obvious whether the corresponding upper estimate holds. A blow-up is said to
be of type I if there exists a positive constant K such that

(-, )| poemvy < K(T — t)*l/(pfl)’ 0<t<T, (1.1.5)

whereas the blow-up is said to be of type II otherwise. In the Sobolev subcritical case
p < ps, where
0, N =1,2,
ps = 4 (1.1.6)
1+——, N>3
+ N -2 -
every blow-up for (1.1.1) is of type I even for non-radial or sign-changing solutions [13, 14]
(see also [7] for a related parabolic system). In the Sobolev supercitical case, the situation
drastically changes according to whether or not p is less or greater than the Joseph—Lundgren
exponent
0, N < 10,
= 4 1.1.7
P 1+ SN > 11 (1.1.7)
N —4—-2y/N -1
Indeed, if ps < p < py1, only type I blow-up occurs for radial solutions under mild assump-
tions on initial data [28,29,35], whereas type II blow-up does occur for p > py;, as we are
going to recall below. To this end, let us write

1
B = e (1.1.8a)
= w, (1.1.8b)
D = 163> — 8(N — 4)8 + (N — 2)(N — 10). (1.1.8c¢)

All the radial regular stationary solutions, denoted by Ug(r), are parametrized by their
values at the origin, i.e., k = U,(0) € R.. It is known (cf. Proposition 1.2.1 below) that, when

P > piL,
Ui(|z]) = Us(|z|) — hilz|7 + 0(J2]77) as |z| = oo, (1.1.9)
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where h,, > 0 is a constant depending on x and U (r) is the singular stationary solution :

Us(|z]) := c,]z|7?® with &1 :=28(N —2—20). (1.1.10)

*

Herrero and Veldzquez [23,24] proved that, as long as N > 11 and p;p, < p, type II blow-
up actually occurs. They constructed radial blow-up solutions {us nv }ece, £ C N, (which
we call HV solutions) satisfying ||ue uv (-, t)|lcc = ue,uv(0,t) and

O (T — )72 <y 1y (0, ) < Oy (T — t) P20 (1.1.11a)

7:\€2B >0 and A, :zﬁ—%—i—f (1.1.11b)
for some constants C7,C5 > 0. The proof requires a long argument. Though the main
article [23] containing the full proof remains unpublished yet, the result as well as the idea
of the proof is well explained in [24] without arguing the technical detail. A slightly shorter
proof was given by [32] under the additional assumption that ¢ is even. These blow-up
rates appear also for some non-radial solutions [4,6]. The method of [23,24] has become
one of the standard tools in the study of type II singularity. Indeed, it has been applied
to several nonlinear parabolic problems (cf. for instance, [1,19-21,43,49]). Based on the
results of [23,24], Matano [27] and Mizoguchi [34] independently proved that, if A, # 0
for every n € N and if a radial solution blows up in finite time with type II regime, then
its actual blow-up rate coincides with (1.1.11) for some ¢ € L, where ), is as in (1.1.11b).
As to this direction, an earlier result [35] includes the same conclusion for p > py, (so that
Ao < A <0< )\ <...), where py, stands for the Lepin exponent :

0, N <10,
L= 6 (1.1.12)
1+N—1O’ N > 11.
This was first found by [25] in the study of self-similar solutions. See [37,40] for recent results
on this topic.

For p = pr, it was proved in [46] that there exist type II blow-up solutions with exact
rates much different from (1.1.11a) (see also [1,2] for related results). Whether or not type
IT blow-up occurs for p = py, had been long remained open until it was affirmatively solved
in [44]. The analysis in [44,46] is much delicate than that of [23,24]. Our principal goal
is, using the techniques developed in [44,46] and elaborate estimates on the heat semigroup
in backward similarity variables, to construct refined solutions whose blow-up mechanism is
driven by a stable eigenvalue such as HV solutions. As we have already pointed out, the
method originated from [23,24] has been applied to several nonlinear parabolic problems.
We expect that the refined technique developed in this article would apply to other nonlinear
parabolic problems, thus obtaining completely new results or considerable improvements of
the previous results.

As for the case p = ps, the existence of type II blow-up solutions have been obtained
in [42] for N = 4 and in [8,22] for N = 5. An earlier result due to [10] formally indicates
that type I blow-up can occur for N = 3,4,5,6. It was proved in [5] that type II blow-up
solutions do not exist in some class of function spaces for N > 7.

with  w, :=

10



1.1.2 Study of equation u; = Au + |z|*%u?

In the early stage of the research on (1.1.2), one of the main topics was to investigate the
influence of decay rate of initial data at infinity for global-in-time existence of solutions.
For instance, Pinsky [39] showed that the critical exponent for existence of global solutions
depends on the behavior of weighted term |z|**u? as |z| — co. Wang [48] studied sufficient
conditions on initial data for global-in-time existence and the asymptotic behavior as ¢t — oco.
A comprehensive survey can be found in the introduction of [47]. In the case a > 0, on the
other hand, the weighted term can disturb blowing up at the origin. Some recent articles
discuss whether the zero point in the nonlinearity (i.e., z = 0) can be a blow-up point when
blow-up takes place. Several conditions which ensure non-blow-up at the zero point were
obtained in [15,16,18]. Examples of solutions blowing up at = 0, in contrast, were found
in [11,17]. Filippas and Tertikas [11] constructed self-similar solutions that blow up (in finite
time) at # = 0 in the cases p < ps(a) or ps(a) < p < py.(a), where

0, N =1,2,
ps(a) == 41+a (1.1.13)
PRI
and
00, N <10 + 8a,
pi(a) =9 14 41 +a) N> 104 8. (1.1.14)

N—-2a—4-2/(N+a—1)(a+1)

As a matter of fact, they agree with the previous notations (1.1.6), (1.1.7) when a = 0. Apart
from the explicit examples in [11], Guo and Shimojo [17] proved the existence of a solution
that blows up at the origin for N = 3 and p > ps(a). The proof of [17] is due to an argument
by contradiction. To the best of the authors’ knowledge, no other example of such a blow
up solution has not been obtained. Our method naturally extends to the case a > 0 and
p > py(a) with N > 10 + 8a (cf. §§1.1.3), thereby giving a new example of solutions that
blow up at the zero point. We note that our proof in fact works for a > —1 and thus covers
the three-dimensional case. The proof is totally different from the indirect construction due
to [17]. In addition, our blow-up solutions satisfy

i — )(+a)/(p=1) —
th/n%F(T t) u(0,t) = +o0. (1.1.15)

Phan [38] has recently established a Liouville-type theorem for (1.1.2) and applied it to show
the blow-up rate estimates of the form (in our notation) :

[u(t) || ooy < C(T — )" /D0 <t < T

for a > 0, p < ps(a) or for =1 < a <0, N > 2, p < ps(a) and radially nonincreasing initial
data. This estimate is in contrast to (1.1.15).

11



1.1.3 The statement of the main results

Given a number a > —1, we re-define the constants § and D as follows:

B3 = B(a) ::]197:‘{, (1.1.16)
D = D(a) := 163> — 8(N —4 —2a)3 + (N — 2)(N — 10 — 8a), (1.1.17)

We keep the notations v and ¢, as (1.1.8b) and (1.1.8¢), and (1.1.10) with  replaced by the
one above. In the following, let us abbreviate py,(a) to pyr,. The family of regular stationary
solutions U, .(r), k > 0, of (1.1.2) has the same structure as in the case a = 0. In particular,
the stationary solution U, ; satisfies

Us1(lz]) = Uss(|z|) — R|lz|77 +o(|2|77) as r — o0 (1.1.18)
for some constant A > 0 as long as p > pyr,, N > 10 + 8a. See Proposition 1.2.1 below.

Theorem 1.1.1. Assume that a > —1, p > py1,, and N > 10 + 8a, hold. Let { be a positive
integer such that A, in (1.1.11b) is positive and set wy := A\g/(y —28). Then for every T > 0
and o > 0, there exists a positive radially decreasing solution u, of (1.1.1), which blows up at
t="T, x =0, with the following properties:

(i) (Exact blow-up rate)

: _ \BH2weB _ 28
lin (T = )42 7u,(0,1) = I3 (1.1.19)

with Kr = (T/Ty)*t, where Ty € (0,1) is a fized small constant depending only on
N,p,a,t, and o;

(ii) (Estimates in a neighborhood of the inner layer) There holds

Kr 2 Krlz|
ug(w,t) — <m) Va1 (m

K 2 Krlz|
—0 Ow T T
< KT (T_t) ‘ <(T_t)1/2+wz) v ((T_t)l/Qere)

for || < K;%(T — t)V/24% 0 < t < T, where Ky is the constant as in (i), 6 € (0,1)
is a constant, and V() is a positive C®-function satisfying

O(l) as £—0,
‘1’(5):{ O(E-") s € oo: (1.1.21)

(1.1.20)

(ii) (Estimates in bounded regions) There holds

—(y-25) —— s S L
up(z,t) — Uso(|2]) + K7 Cu(T = t) || 7L, WT—19)
N (1.1.22)
< oK 7T — )| (1 + _Tlx_| t)
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with
_ hI'(VD/2+ 1)1

" T(WD/240+1)

for K78(T — V2400 < |g| < TV2)TY* ™ 0 < t < T, where w € (0,1/2), T is the

standard Gamma function, ng)(z) denotes the associated Laguerre polynomial of degree

l, and Ty, 0 are the constants as in (i), (ii);

(iv) (Number of intersections) There exist exactly £ simple zeros {r,(t)}o_, of ue(+,t) — Uso
for every t € (0,T), which satisfy r,(t) = O(VT —t) ast /T forn=1,.., (.

Remark 1.1.1. The constant Ty is related to o as Ty < /2%, In fact, estimate (1.1.22)
is further improved in the intersections with parabolic regions {|z| < R/T —t} with R > 1
being an arbitrary constant, so that constant ¢ may be replaced by function K. (T — t)20w
there. This can be checked by slight modifications of the proofs of Lemmas 1.4.9-1.4.11.

As the blow-up rate estimate (1.1.19) shows, the solution u, above is of essentially the same
class as of u, gy obtained by [23,24]. Theorem 1.1.1 includes, however, more information
about local-in-space estimates both near and away from the singularity even for a = 0.
Indeed, the proof of [23,24] ensures an estimate of the form

’.le B+2Bw ‘iL"
ClU,ﬂ (m S (T — t) + EU&H\/(ZL’,t) S CQU@ (T — t)1/2+wz

with k1 < 1 < ks for [z] = O((T —t)*/2***). The statement (ii) of Theorem 1.1.1 shows that
the leading term of u, in the region |z| < K%(T — t)Y/?*% is precisely determined as

Kr 2p Kr|z|
WW”N(m) Uavl(m as ¢t /T

as well as the estimates of error terms. The counterparts for their derivatives are given in
Corollary 1.1.2 below. Another novelty of Theorem 1.1.1 consists in the estimate (1.1.22)
for bounded regions, |z| < 1, which extends the region || < (T —)"/?277, o € (0,1/2), of
validity of the estimate guaranteed for u, yy. Since

_ 2|2 \° T—t ¢
(T — t)!|z|* (1 tr ) = Bl PE +1

for K;0(T — t)Y/2H0 < |g| < TY2/T)"*™ we deduce from (1.1.22) that

ue(x, T)

Cl 2y <
= < T D

- 1' < Cla|® (1.1.23)

13



for every 0 < |z| small enough, where u,(z,T) := lim; »pu¢(x,t) denotes the blow-up profile
defined outside the blow-up set. In particular, we have,

im U@(l', T)
lz|—0 Uso (|])

This was established in [29, Theorem 4.1] as one of the properties characterizing (possibly
sign-changing) type II blow-up (with the RHS of (1.1.24)replaced by +1) for p > ps, but no
concrete example directly verifying (1.1.24) has been obtained so far. Our particular solutions
do imply (1.1.24) and estimate (1.1.23) includes further information on the convergence. In
particular, it shows optimal estimates of the error depending on each eigenvalue.

Arguing as in [44,46], we obtain further properties on the solution.

—1. (1.1.24)

Corollary 1.1.2. Assume the same hypothesis as in Theorem 1.1.1 and a > 0. Let u = uy be
the type II blow-up solution as in Theorem 1.1.1. Then the diffusion term —Au(x,t) exhibits
the same growth rate as of the superlinear term |z|**u?(z,t):

— Au(z,t) = (Kfl(T _ t>1/2+w5)—2(ﬂ+1)

x ((%)2 U (ﬁ)pjto(l)), (1.1.25)

u(z,t) = o((T — t)~2PHIA/ 2wy, (1.1.26)
ast /T for every (z,t) € RN x (0,T) with |v| < K71 (T — t)Y/2+ee,

Remark 1.1.2. Set m(t) = ||u(-,?)||o. The following characterization of blow-up rates for
any blow-up solutions of (1.1.1) was proved in [28, Appendix B]:

TypeI:  m/'(t) =0(m(t)?) as t T,
Type IT:  m/(t,) = o(m(t,)?) for some sequence t,, N T. (1.1.27)
In particular, (1.1.27) represents the slow nature of type II blow-up. Corollary 1.1.2 shows the

quantitative information about these amounts (without choosing a particular time-sequence)
for the solutions. Thereby they become a prime example of this fact.

Corollary 1.1.3. Assume the same hypothesis as in Theorem 1.1.1. Let u = uy be the type
II blow-up solution as in Theorem 1.1.1. Then for every q > q.:= N(p — 1)/2(1 + a), there
exist constants Cy,Cy > 0 such that

Cy(T — t)*(1/2+wz)(2ﬁ*N/Q) < lu(- 7t>||Lq(RN) < Oy(T — t)*(1/2+We)(2ﬁ*N/CI) (1.1.28)
for 0 <t <T. More precisely,
KT 2Bq—N
u(z,t)'de =Dy [ ——t —— 1+0(1)), 1.1.29
/{M;e@_ﬂume} (2.1) (gpm=) (o), 1z
/ u(z, t)de = O ((T — t)~V/2H0en@i=N)) (1.1.30)
{KO(T—t)/ 340 < |2}
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ast NT, where
D, = / Ug 1 ()Nt dr < oco.
0

Corollary 1.1.4. Assume the same hypothesis as in Theorem 1.1.1. Let o be a constant
with o > 28. Then there exists an initial data ug satisfying

up(z) < C(L+|z))™° in RN (1.1.31)

for some constant C' > 0 such that the corresponding solution u = u, € C ([0, T); L% (RN))
satisfies the same estimates as in (i)—(iv) of Theorem 1.1.1 and

Callog(T = )] < lu-, )l seeny < Csllog(T 1) (112)
for 0 <t < T, where C3,Cy > 0 are some constants.

Remark 1.1.3. A recent result [36] shows that the critical L¢ norm blow-up does occur
for possibly non-radial solutions of (1.1.1) if the blow-up is of type I. The solution u, as in
Theorem 1.1.1 exhibits type II blow-up. Nevertheless, corollary 1.1.4 shows that the critical
norm ||ug(+,t)||Le blows up as well and that, moreover, the rate is logarithmic.

The solutions as in Theorem 1.1.1 certainly converge to the singular self-similar solution
Us, in the self-similar variables (cf. (1.2.1)), locally uniformly in R" \ {0}. In the Sobolev
subcritical case, the convergence holds with the U, replaced by the positive constant 37 with
a = 0 [13]. In this case, a small perturbation of some initial data yields the same blow-up
mechanism (see, for instance, [3,31]). To the best of the authors’ knowledge, no reasonable
statement on such stability results of Type II blow-up for equation (1.1.1) or (1.1.1) was
known even in the radially symmetric case.

Before closing this introduction, we just comment on relation to some previous results
on (1.1.1). As we have already pointed out, several methods to analyze type II singularity
have been recently developed. The approach of [42] relies on so called energy method coming
from dispersive equations and does not on tools particular for parabolic equations, such as
maximum principle. Our approach, on the other hand, does not require energetic structure
but uses thoroughly explicit formulas of a semigroup (cf. (1.4.18) below). At this stage, it
concerns parabolic problems (in the radial case) only, but can describe subtle local behavior,
especially in the region of order one |z| < 1 (cf. (1.1.23)) in addition to parabolic regions,
where more detailed estimates than [42] are obtained. The approaches of [8,22] seems to have
close relation to our matched asymptotics. The authors of [8] developed elegant linear theory
for a certain linearized problem applicable to determining the leading order profile in blow-
up regions. The construction of our sub- and supersolutions relies on “layer structure” of
stationary solutions U, (|z|), i.e., monotonicity with respect to s (their values at x = 0), which
is available only for p > pj,. We believe, however, that it directly justifies the asymptotic
series expansions in the formal construction. Except for this, we dispense with inessential
comparison techniques in [23,35]. We hope to develop new ideas without relying on the layer
structure, so that our approach will be further extended to analyze various nonlinear parabolic
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problems. As for the non-radial situation, the authors of [5,8] independently obtained very
interesting blow-up solutions on R¥™! by extending radial solutions on R". The author are
unaware if their analysis could be carried out for (1.1.2) with a # 0. Discussing the detail of
related results for all type of semilinear equations is beyond the scope of this Chapter. The
readers are referred to the above-mentioned articles and references cited therein.

The rest of this article is organized as follows. In §1.2 we first summarize some basic
properties of stationary solutions and the linearized operator around U,, in the backward
similarity variables. By means of matched asymptotic expansions, we then formally describe
the leading terms and investigate how large the error terms can be. The last argument
leads to a formulation of finite-dimensional reduction for the rigorous construction in §1.3.
Theorem 1.1.1 and Corollaries 1.1.2-1.1.4 are proved therein under the assumption that a
key a prior: estimate holds. §1.4-1.6 are devoted to proving the a priori estimate.

1.2 Preliminaries

In this section, we review some known facts essentially due to [23] and discuss the formal
construction. Introducing the backward similarity variables

Oy, 1) = (T — t)’u(x, 1) (1.2.1a)

\/% and 7 := —log(T — 1), (1.2.1b)

we convert equation (1.1.1) to the rescaled equation :
y .

v,®
2

with y:=

d, =A,0— — BO + [y[**®@” in  (RV\{0}) x (—logT,00), (1.2.2)

where V,, and A, are the gradient and the Laplacian with respect to y, respectively. Notice
that U (r) as in (1.1.10) with r = |y| is also an unbounded stationary solution of (1.2.2).
We shall henceforth abuse notations as well such as ®(r,7) = ®(y, 7) for simplicity.

1.2.1 Formal asymptotics in the inner region

Suppose that an inner layer near the origin appears in our sought-for solution ®(r,7) of
(1.2.2), where sharp changes in ® arise when 7 — co. Let ¢(7) denote the size of the inner
layer, which is a priori unknown. We assume

e(r), e(r) <1 as 17— 0. (1.2.3)

To see the dynamics near the origin, we introduce inner variables (U (&, 7),&) as follows:

U(E,7) = e(7)PD(y,7) with ¢:= % (1.2.4)
A direct computation then shows that
(U, = A+~ (o(r — 2012 (S5 4+ 0. (125)
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In view of (1.2.3), we infer that the leading term of U as 7 — oo would be given by a bounded
stationary solution of (1.1.2) for & = o(1/e(7)), which amounts to |y| < 1. The structure
of stationary solutions U, . (abbreviated in the sequel to U, for simplicity) of (1.1.2) is well
understood, which we just recall here.

Proposition 1.2.1. ([26, Lemma 4.3]) For any a > 0, there exists a unique solution U, of

d*U  N-—-1dU )
—3 . %—i—r Ur=0 in Ry,

U©) =x, U'(0)=0.

(1.2.6)

If p > py, and N > 10 + 8a, the family of the solutions {U,}«~0 has the ordered structure:

K1 < kg = Uy, (r) < U,,(r) forall r>0. (1.2.7)

Moreover,
Ur(r) = Uss(r) = hr™" + R(r), (1.2.8)
Uy(r) = Uk (r) + hyr = + R(r)O(r™), (1.2.8b)

as r — 0o, where h > 0 is a constant and R(r) = o(r~7). More precisely, there holds
O (r——minly=20.VDY) if /D # + — 28,
R(r) =
O(r=VPlogr) if VD =ry-28.
Due to (1.2.4) and (1.2.5), it is natural to construct a solution of the form:

i (7, 7) = (1)U, (8(7‘—7_)) with  r = |y|, (1.2.9)

which describes the dynamics in the inner region r = O(e(7)). The asymptotic behavior
(1.2.8a) of U, then implies

i (7, 7) ~ Uso(1) — he(1)7™ 2177 for e(1) < r < 1. (1.2.10)

Hence our sought-for solution ®(r,7) should behave, to the leading term, to U (r) in the
regions where £(7) < r as 7 — oo. It is therefore natural to linearize equation (1.2.2) around

Uso(T).
1.2.2 Formal asymptotics in the intermediate region

Let us set
v(r,7) = ®(r,7) — Ux (7). (1.2.11)

and p(r) := exp {—7r?/4}. Tt is readily seen that v solves equation

v, = —Av+ f(v) (1.2.12)
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with

1 d( x4, OV pcb!
— Av = L0 o (7“ p(r) 8r> — pu + o (1.2.13a)
f() =1 [(Usx +v)P — UL, — pUZ "0]. (1.2.13b)

Let us write

L2 a(RY) = {o € L2.00,00)  Iol? = oy gy = | 000 pta) i < +00
H g (RY) 1= {0 € HL(10,00)); [0l ) 1= [0+ /)12 < +o0}

The linearized operator Av = Av with v € D(A) = C{°(Ry) is realized as a symmetric
operator in L2 5 aa(RY). A version of Hardy type inequality as well as integration by parts
implies that, if v is smooth,

(Av,v)y = <A"U,U>Ll2)’ LR

=/ (@) N=Ly dr+ﬂ/ 2pN=1) T—pcf_l/ ?rN 3 p(r) dr
o \Or 0

4pcP1 ov|? pcPt
> (1 - m) ‘ - (N _B) HUH2

ar
Consequently, if p > pjr,, the operator A is lower bounded, i.e., (A¢, @) > —C||@||* for every
functions ¢ € D(A). We still denote by A its Friedrichs extension. The following spectral
result is proved by essentially the same argument as in [23, Lemma 2.3], [44, Proposition 2.2].

Proposition 1.2.2. Assume that p > py, and N > 10 + 8a be in force. Then the spectrum
of A consists only of simple eigenvalues {\,}°2,,

:5_%+n for n=0,1,2,... (1.2.14)

FEigenfunctions of A associated with eigenvalues \, are given by

_ N r?
On(r) = cyr M| —n, —y + 57 for n=0,1,2,...; (1.2.15a)
00 (CL) m—1
Ma,b;z) =1+ Z S L2 with  (a), H a+j), (1.2.15b)
= 7(b); i
where ¢, > 0 are constants such that ||¢,|| = 1. Moreover, the eigenfunctions satisfy
Pn(r) = car 7 (1 4+ O(r?)) as r—0; (1.2.16a)
Gn(r) = r 7M1+ 0(r™?)) as 1 — oo, (1.2.16b)



where ¢, € R are constants such that (—=1)"¢, > 0 for n = 0,1,2,... Furthermore, the
constants ¢, and ¢, in (1.2.16) are represented as

o I'(—y+ N/2+n)

Cp = \/2—27+N—1n!F(—7 T N/2)2 (1.2.17a)
S Gt D(—y + N/2+n)

T Py 1 Nj2), \/2_27+N—1nlf(—7 N2 (1.2.17b)

respectively, where I' stands for the standard Gamma function.

Remark 1.2.1. By classical results on orthogonal polynomials, the eigenfunctions are ex-
pressed by associated Laguerre polynomials Ly’ (2) = (n!)"te?z7<(d"/dz") (e 72"t :

!l : D N
Un(r) =1r7¢,(r) = %L; ( ) with ¢ = g =—y+ 5 1. (1.2.18)

Applying Stirling’s formula I'(2) ~ /27/2(z/e)? as z — oo to (1.2.17), we have

2 ne -2 1 ns
Cn ™ 22§+1F(g + 1)2 and Cn ™ 2471(1 + g)% 22g+1r(g 4 1>27 as mn — Q0. (1.2.19)

We recall the well-known estimate [45]

F<g+n+ 1) z/2

—_ 7 >0
- F(g—l—l)n!e » 220

whence:

[ (r)| < cne” /. (1.2.20)

In particular, the polynomials ¥, (r) /¢, are uniformly bounded in every compact set of [0, 00).

We shall recall the idea of [23,24] and then refine their argument. Due to Proposition 1.2.2,
the solution v € L2 4(R") of (1.2.13) may be expanded to a Fourier series: v(r,7) =
Yoo an(T)dy(r), where the Fourier coefficients a,,(7) = (v(7), ¢n) N satisty

Consider the situation where a stable mode eventually dominates :
v(r, ) ~ al(T)Pe(r) as T — oo, (1.2.22)

where ¢ is an integer such that A\, > 0. Suppose that the term (f(v(7)), ¢¢)n in (1.2.21)
would play no role to the leading order. We then expect that the leading term of a,(7) would
be determined by the homogeneous term of (1.2.21). Hence, as 7 — o0,

Uso(1) +0(r, 7) ~ Uso(r) — dpe ™ g (1) =: Prnea(r, 7) (1.2.23)
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with some constant d, > 0. The outer expansion as r — 0 then follows from (1.2.16a):
Proed (7, 7) ~ Uno (1) — codpe ™17, (1.2.24)

Matching the inner expansions (1.2.10) with the outer ones (1.2.24) in the intermediate region
{e(7) < |y| < 1} where both expansions make sense, we obtain

d
S(r) 7~ Coe T with Cpi= L (1.2.25)

Substituting (1.2.25) into (1.2.10) and returning to the original variables, we formally obtain
the asymptotic expansions of the HV solution {us nv}.

While the above argument simply tells us what determines the leading terms of the outer
expansions, it does not imply the possible effect of the nonlinear term f(v) to ay(7) nor how
large the next order corrections can be. We shall derive this result as well as expected error
estimates by more careful argument.

Hypothesis 1.2.3. The blow-up is driven by the stable eigenvalue Ay > 0
la,(7)| < |ag(T)] as 7 — o0 (1.2.26)

forn =0,1,...,0 —1 and (1.2.22) holds. Moreover, the controlling factor of a,(7) is e "
and the other factors are polynomially bounded as T — oo in the sense that

— < |eMap(r)| < Cor* (1.2.27)

for some constants C1,Cy > 0 and k > 0.

The rationale behind this hypothesis is the occurrence of possible behavior of a,(7), such
as ay(7) = Ce ™77 with some C' > 0 and v # 0, which actually arises in the critical case
p = pyL [44] or when X\, (> 0) is replaced by a neutral eigenvalue [46]. We will show that
such behaviors cannot arise in our situation. In order ®,,.q to be matched with the inner
expansions (1.2.10) in the intermediate region {e(7) < |y| < 1}, we must have

ap(T) = —%5(7)7_25 +o(e(T) ). (1.2.28)

It then follows from (1.2.27) and (1.2.28) that
() =0 (7)) as T . (1.2.29)
For the ease of presentation, we consider only the case where N is not too large so that

p—1
pey

xim [T U ey - Unler - B (Ui - Unl)] d < .
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Then, arguing as in §2.3 of [46], we obtain
<f(?)(7')), ¢n>N = chs(T)W_Qﬁ—H/E +o0 (5(7)7_264_@) as T — OQ. (1230)

We now integrate the ODE (1.2.21) over [r, 00). Since [ e**|(f(v(s)), ¢n)n|ds < co due to
(1.2.29) and (1.2.30), it then turns out that a finite limit A, := lim,, ,o, e’™a,(7;) exists,

on(7) = Ao = [T D). s, (1.231)
/00 D (F(u(s)), dn)n| ds = o(e™T) as T = 00 (1.2.32)

for n =0,1,...,¢. Notice that

A,=0 for n=0,1,...,0—1; (1.2.33a)
Ay #0. (1.2.33b)

Indeed, (1.2.33a) is a simple consequence of (1.2.26), (1.2.31), and (1.2.32). If (1.2.33b) is
false, we deduce from (1.2.29)—(1.2.31) that the controlling factor of a,(7) is not e=*7, a con-

tradiction. Arguing again as above, we obtain a,(7) = O(e(7)""2#*VP) for n = 0,1,...,0—1
and

on(r) — A = - O (u(s)), e ds = O () HP) as 7 oa

T

Then (1.2.25) follows from (1.2.28). In addition, we see that A, is negative due to the
matching condition (1.2.25). The matching condition (1.2.25) suggests that

a
dr
For n > ¢+ 1, we integrate the ODE (1.2.21) over [r, 7]. By (1.2.30) and (1.2.34), we get

(e(T)™27) = = Xe(1)" (1 + 0(1)) as T — oo. (1.2.34)

()~ A, = | ) B s e,

where A, := e*™a, () and & := v/D/(v—28) > 0. Due to this, we obtain the asymptotoics
of an () form =0+ 1,0+ 2,... as T — oo. It follows that

‘
R(r,7) i=v(r,7) = Y an(r)én(r) ~ xe(r) VP Ey(r)

n=0
with  Fy(r) = i Cadn s () and d = ! (1.2.35)
V4 .—n:€+1 n n n -— 1—(6—1—;@)\5)/71’ .
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where the convergence is understood in an appropriate weak sense (cf. [44,46]). We will show
that Fy(r) ~ w(r) := r7"VP/2(v/D+1) as r — 0. Recall the identity —2y—vD+N—1=1
and the exact formula (1.2.18) of ¢, (r). Then we have

= o IT(c+1) [ )
1 . N—-1 r/4d :Cnn / L(() z 4
6+ 1) [ o et = S [ e,

where ¢ = v/D/2 and where the change of variable z = r?/4 has been used as well. Since
nl fooo ng)(z)e_z dz=¢(c+1)...(¢+n—1), it turns out that

h ()N le A gy = f =0,1,2...
/0 w(r) g, (r)r™ e r —— or n 1, ,
l 0o
Cn Cn€n . 1
- () + ; th e, = — 1.2.36
v =3 )+ 3 A0 wih o= (1.2.36)

Comparing (1.2.35) with (1.2.36) and performing similar computations several times, we have

1
Fy(r) = 7“_7_\/5+0<r_7_\/5>,
whence: R(r,7) ~ xe(r)"24VDr=1=VD /(¢ 4+ 1) as r — 0. This is indeed much smaller
than a,(7)¢(r) aslong as e(7) <K r < 1, 7 — 0.

It is also possible to refine inner expansions by computing the next order correction to
(1.2.9). To this end, we set

U(,7) = Un(&) + E(T)Hu([E]) + - -,

where (1) = e(7)? — 2¢(7)é(7) and £ := y/e(7). A standard argument then reveals that
Hi(s) = Hy(]€]) is a solution of the inhomogeneous linear ODE :
N-—-1 sU{(s)

H" + TH’ +pU, (s)P T H = — BUL(s) in Ry,

satisfying H(0) = H'(0) = 0. The solution is expressed by means of variation of constants-
formula. Due to Proposition 1.2.1 and L’Hopital rule, we obtain

H1(5> = Cls*VH -+ O(Si’wrz) with Cl = M

42 ++/D)

as s — oo. Consequently, the two-term expansion for U(€, 7) has been obtained. In terms of
the self-similar variables, this expansion reads

Gy (1, 7) = Uso (1) — ha€(7')7_257“_7 4+t Clu(7)5(7)7_26_27“_7+2 + ..., (1.2.37)

which is valid in the intermediate region {e(7) < r < 1}.

We can observe the asymptotic matching of the outer and inner expansions even in the
higher order computed above if we carefully check their coefficients in detail, but they yield
no contribution to the leading terms. Hence we use them only to obtain information about
a guide for rigorous construction and estimate the error to the leading terms.
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1.2.3 Discussions toward the full construction

We have derived condition (1.2.33) from Hypothesis 1.2.3. The full proof proceeds to the
opposite direction. Namely, we will find a suitable small perturbation of initial data such
that (1.2.33a) holds and then show that Hypothesis 1.2.3 is true. Following [24], we shall
solve this finite-dimensional problem by a topological fixed-point theorem based on mapping
degree theory. To this end, we have to set an appropriate functional framework and to show
a priori estimates for ®(y,7) ensuring (1.2.10) and (1.2.23). We just mention the region
where (1.2.23) is expected to hold. Since v(r,7) = ®(r,7) — U (r) and

e M Py(r) = e MTpT TR = oM =20 g o0,

the maximal region of the quadratic approximation of f(v) holds is, in principle, (e(7) <)
ly] = O(e™/?) as 7 — oo. This last amount is not a technical upper bound, since e™/? is
a characteristic curve for the hyperbolic part of the differential operator v, + Av < vy +
y - Vyw/2+ Pu for |y| > 1. Nonetheless, the authors of [24] had to restrict their a priori
estimates to {|y| < e?"} with o0 < 1/2. In view of the original coordinate, the set corresponds
to a shrinking domain |z| < (T —¢)/2=7 t < T. In the following sections, we show that
it is possible to set a better functional framework than that of [24] and to prove an a priori
estimate of the form:

1D(r, 7) — Uso (1) — e M7 y(r)| < ve ™7 7F2 for 1< r < e™/?

for every v > 0. Consequently our solution u(z,t) has good estimates in the ball {|z| < 1}
uniformly in (0, 7).

1.3 Setting of initial data and functional framework

Let us set
A h h
— pweT ith — * — 2[ho| — _ % f/\gT.
eo(T) :=e wi Wy oL ay (1) 0660(7') Cee
Let w € (0,1/2), and 6 € (0, 1) be constants such that
in{ 2|\ D
- min{2)|, VD} (1.3.1)

162 \o| + VD)’

and let 79, 7, be numbers such that 1) < 7 < co. Let us write

| GZ(lTo) <8O(TO)_2B <U1 (50(To)> — <$>> R :i::an%(r))

=<
Qbf(r) (bﬁ(r) for €0<7.0>0 < r < e(1/2=0)m0
] -1
Uso(7)G (13 70) — O (T for e(1/2=9)0
\am)( 60 -3 ¢<>>



where 6 € (20,1), & € (0,w), and G(r; 1) is a continuous function satisfying
G(r;m) =0(r ") as r— oo (1.3.2)

where k > 0. We set the initial data &, as

o(r; @) = Uno(r) + @ (70) e (r +Zan¢n

where o = (g, a1, ..., 1) € R is a tuple of parameters, so that
( r ~
60(7’0)726[]1 ( ) for r S 80(7’0)9,
€o0(70)
o(r; @) = Uso(r) + a} (10)de(r) + Za”(b” for 50(7'0)5 <r < ell/2=0)m0, (1.3.3)
\ Uoo(r)(l + G(r; 7'0)), for e(1/2=@m0 < .
Concerning the parameter «, we impose
|Oé| < 80(7’0)2‘)\0‘4_30 (134)

(cf. (1.3.9)). In fact, we will convert our problem to a finite dimensional one which amounts to
finding a suitable o € R satisfying (1.3.4) such that the corresponding initial data ®o(r; )
yields a solution ®(r, 7; ) with required estimates. To clarify the estimates, we define a
functional framework for ® in the next subsection.

1.3.1 The functional framework

Let 70 < 7 < 7. Assume O € (0, 1) is sufficiently small constant and O is positive constant.
We say that a continuous function ® : R X [79, 7.] — R belongs to AY _ with v € (0,1] if
¢ fulfills the following conditions (1), (II)a, (II)g and (II) :

(1) For 7o < 7 < 7 and 7 < go(7)?,

T

B(r,7) — eo(7) U, <€07("T))

(I) For 79 < 7 < 7, and go(7)? <r < 1,

|O(r, 7) — Use(r) — a;(7)e(r)| < weo(r) 272077, (1.3.6)
(I)g For p < 7 < 71, and 1 < r < e™wme™/2,

|<I>(7’a 7) = Uso(r) — ag(7)de(r >| < weo(m0)*eo () 20r (1.3.7)
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(Il For 7o < 7 < 7, and e"“™e™/2 < r,
|®(r,7) — Uss(r)| < ve Om0p=28, (1.3.8)
We see that @y € An>, for o] < o(70)2P 3 (see §§1.3.1). We now define a subset
Ur,.. C R as

Ury, 7. = {oz eR'; &(r,7;0) € Al

TO,Tx

a| < gg(m)2 o301, (1.3.9)

where ®(r, 7; ), 7 = |y|, denotes the solution of (1.2.2) in (R™ \ {0}) x (79, 7] with initial
data ®g(r;a) at 7 = 79. A standard continuous dependence on initial data implies that
U,, - is open with respect to the standard topology of Rf. For 7 > 75, we define a map
Q. : R — R’ with domain U, ,, of definition as

Q- (q(r;a),...,q-1(T; @)
with  qx(m;0) = (v(-,7;a),¢k)y for k=0,1,...,0—1,

where v(r, 7; ) = O(r, 7; ) — Uso (7).

Lemma 1.3.1. Assume that Q. (o) =0 for some o € Uy, -, Then:

1
|Oé| < 550(7—0)2|>\0|+39 and & € ./41/2

T0,7T1 "
The proof of this lemma is postponed to §1.4.

Estimates of the initial data

Due to (1.3.3), the initial data ®o(r) = $o(r; ) satisfies following estimates.

Lemma 1.3.2. Let 0 € (0,1 — ). We then have

17| @o(r) — Uso(r) — a; (7o) de(r)]

[ Ceg(19)2Pol 4 Cr2iol, r < eo(mo)",
_ ] Ceolmopoltrr 4 Cag(mo)lr?, - eo(m)' = < < eo(m0)?, (1.3.10)
> 060(7_0)2|/\0\+39(1 + TZZ)’ 60(7‘0)9 <r< 6(1/2—5)70’
Cr2PolG(r; 19) + Ceg(ro)Holr2t, (/27070 < g

\

for sufficiently large 1o, where 6 € (20,1), & € (0,w), >0 and x > 0 are as in (1.4.7) and
(1.3.2), respectively. Moreover, the initial datum ®y belongs to A%?TO.
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Proof. Estimate for the region {r < 50(70)5}. We see from (1.2.15) and (1.3.3) that

|Po(r) — Usc(r) — aj(70)de(r)]

()~ [Ul (6 (’;0)) U (ﬁ)} + e ()20l (1 + i: hﬂ)

o () 0= () ()

- { Ceo(mo) (2 +n77), n < eo(r0)™?,
T Ceo(mo) P H + Ceg(mo) 2207742, g0(10) ™% < mp < go(mo) Y,

14

< e(rp) ™% + he (7o) ol " byl
j=1

(1.3.11)

where 1 := r/eo(7) and h; := (—¢);/2% j!(—v + N/2); which is appeared as the coefficients
of ¢g(7”).

Estimate for the region {eo(7)? < r < ¢(1/2-7}, Due to (1.3.3) and (1.3.4), we have

?\

@0 (1) — Use(r) — aj(70)de(r)| < Z|anl|¢n( )| < Ceolro)?Po 30 =7(1 4920, (1.3.12)

n=0
Estimate for the region {r > ¢(1/2=®7} [t readily follows from (1.3.2) and (1.3.3) that

|@0(r) — Uso(r) — a;(70)e(r)| < Uno(r)G (75 70) + hc_zee—wor—w% (1.3.13)
< C’T_QBG(r; To) + 050(7'0)2%‘7’_%%

Putting (1.3.11)—(1.3.13) together, we obtain (1.3.10).

We then verify that ®, belongs to Ax.%,. A similar argument to (1.3.11) with (1.3.1) and
(1.3.4) shows that

“%(7") - 50(70)_25[]1(77)}

i [ 0= )] s Bt

< Cleo(mo) 2Ry 1 iy ()2 Mlr =742 4 Cgo(m )2|>\0|+39T T < Ceg(ry) 2P0l

<

for 50(7'0)5 < r < go(7)? and sufficiently large 79. In addition, it follows from a similar
argument to (1.3.13), (1.3.2), and (1.3.4) that

|o(r) = Uso(r)] = Uso(r) G (15 70) <

for e(1/2=w)m < p < o(1/2=9)70 if 1 is sufficiently large. These together with (1.3.12) give
oy € ATO 7- The proof is complete. O
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1.3.2 Proofs of Theorem 1.1.1 and Corollaries 1.1.2-1.1.4

Once proving the key a priori estimate given in Lemma 1.3.1, we may conclude the proof of
Theorem 1.1.1 by the topological argument by means of mapping degree as in [23] (see also
[19,32,43,44,46]). Since the argument is purely topological and independent of particular
functional framework, we only write main points without discussing the detail.

Proof of Theorem 1.1.1. Lemma 1.3.1 guarantees that any root of (), in U, -, is contained in
the interior of U, -,. The mapping degree of (), is then preserved for 7y < 7 < 71 by homotopy
invariance. Hence there exists o € Uy, -, such that Q,(a) = 0 as long as Uy, -, # (0. This
last assumption is guaranteed for |7, — 79| small enough by standard continuous dependence
results. Then, by the method of continuity, we have

sup{m1 > 10 ; Ury -, # 0} = 0. (1.3.14)

Let {r;} C (70,00) be a sequence such that 7y < 74 < --- < 7; /" 0co. Due to (1.3.14),
there exists a; € Uy, ;, such that Q. (a;) = 0. Lemma 1.3.1 then implies ®(r, 7; ;) € A%QTJ
By taking a subsequence, we may assume that {a;} converges to some o* € Rf, which
completely determines the initial data ®y(r;*). The function u(x,t) obtained by scaling
back from ®(y,7;a*) via (1.2.1) is the desired solution of (1.1.2). The pointwise estimates
stated in the theorem are obtained by those for ®(y, 7; a*) guaranteed by its membership to
Aiom = ﬂﬁe(mm)Aio,Tl with 79 = —logTy. The result for arbitrary blow-up time 7" > 0 is
obtained by rescaling, i.e., uy(z,t) = APu(Az, A\*t) with A\ = \/T/Tp.

The statement (iv) is proved by standard zero number arguments. Indeed, as a function
of r = |z|, u(r,t) — Usx(r) has f-zeros in Ry at ¢ = 0 due to our choice of initial data
at the beginning of §1.3. As statements (ii) and (iii) show, every zero of function |y| —

O(|y|, 7) — Uso(|y|), whose total number is the same as of u(-,t) — Ux(+), is located in small

neighborhoods of the f-zeros of Laguerre polynomial Léﬁ/ 2 for every T > Tp. Since the

number of the zeros of function r — u(r,t) — Uy (r) is non-increasing in ¢ due to zero-number
theory (cf. [41, §§52.8]), the zeros {r.(t)}{_, are simple and lie in a parabolic region, i.e.,
there exist R > 0 and t; € (0,7) such that r.(t) < RvVT —t for all t; <t < T, whence the
claim. The proof is now complete. O

Proof of Corollary 1.1.2. Let us write V(&,7) := U(&,7) = U1 (€) and U(E, 1) := &(7)?P®(y, )
with  :=y/e(7) (cf. (1.5.4) below). Introducing new variables

we obtain

£ VW

Wy = AW + pUy ()P'W — g(s) ( 5

+ 6W> + f(&, ) (1.3.15)
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with
F(&s) = P [(U1(€) + W(E,5))" — Ur(€)" — pUL()" ' W(E, )]

-8 (S e

E(s) :=e(1)? — 2e(1)é(7).

Notice that the function f(f ,s) is Holder continuous since a > 0 by assumption.

We apply standard parabolic estimates for equation (1.3.15) in a space-time region 2 :=
Bpr x (s1 + 0',00), where Bg := {¢; |{] < R} and ¢’ > 0 is arbitrary. Due to (1.3.5) (with
@ = Ceo(7%)% holds for every o/ > 1, where 7

is the time corresponding to s; + ¢ and C' > 0 is a constant independent of si, ¢’. Let
Q" € O € Q be sub-cylinders and let W2'(Q) denote the Sobolev space based on L% ()
and defined by parabolic distance. Due to classical LP estimate for parabolic equations, we
obtain an estimate of the form ||W||W§;1(Q) < Ceo(7*)%. We now choose o large enough so

that W2'(€) is embedded in the Hélder space C**'/2(¥) of order ¢/ in ' (with respect
to parabolic distance) for some v/ € (0,1). Notice that the embedding constant does not

depend on sp, ¢’. Re-selecting a smaller v/ > 0, if necessary, we apply Schauder’s interior
estimate for (1.3.15), to get

71 = 00), it is readily seen that ||f||La

||W”c2+v’a1+v’/2(m) <K (”WHL‘X’(Q’) + Hchu',u'/a@)> < 0/5(7*)9
for some constant K > 0. Since 7 is arbitrary, the last estimate implies

ow

S 68| < =),

sup
§€BRr

Since O, W (€, s) = e(7)%0, ((7)*®(y, 7)) and |é(7)| < Ce(7), we have

aW ( ) —2(—-2+6

5. (&8)] =

for |y| < Re(1), T > 7p. Returning to the original variables, we get the estimate (1.1.26) on
u;. Estimate (1.1.25) is easily obtained by (1.1.26), equation (1.1.2), and (1.1.20). The proof
is now complete. Il

Proofs of Corollaries 1.1.3 and 1.1.4. We estimate the L? norm by splitting the region of
integration defining ||u(-,?)||am~y). Consider first the case of ¢ > g.. The local L? norm in
{|z| < K;%(T —t)"/?*%} may be readily estimated by (1.1.20) and the change of variable
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n = Kr|z|/(T — t)/>*¢. Indeed, we have

KT 2hq KT 7
e — ——— U -+ d
/{IxSK;Q(T—t)1/2+9W} u($’ ) ((T — t)1/2+wz> 1 (T _ t)1/2+we

— 1-6 _ 7(179)1;.1[
(T - t)ewe Kr 204N N-1 R 2T q—1 N-1
= Kg (T _ t)1/2+wé ‘S | o Ul(”) ‘I’(U)U dn

T

<C(T - 75)—(2f3q—N)(1/2+w)+9w/z / (1+ 77)—2B(q—1)—777N—1 dn < C(T — t)—(2ﬂq—N)(1/2+we)+9wz
0

and

KT 2Bq KT q KT 2B8q—N
- - - - ~ D - -
/{|z§K;9(T—t)1/2+9“’l} ((T _ t)1/2+wz> Ul ((T . t)1/2+wz) dz 1 ((T . t)1/2+wg)

which resulted in (1.1.29). On the other hand, (1.1.22) can be used in {K;(T — t)!/2+0w <
|z|} to get

u(z,t)?dx

\/{KTG(Tt)1/2+9wZ<|I}
< (e + M)q/

K;e (T—t)1/2+0w;

e}

Kg—, ) QﬂQ7N

—28¢+N—-1
r dr < C <(T — {)1/2+0w

Since 28g. = N, the last integral is finite for ¢ > ¢.. As for |z| > 1, we use simply the decay
estimate u < C|z|7%/. Hence the corresponding integral may be estimated as above, whence
(1.1.30). When ¢ = g, we need a faster decay u < C|z|~¢ for some d > 23. Under the
condition (1.1.31), the last estimate is guaranteed by [30, Proposition C.3] for a = 0, whose
proof essentially works for a > —1. The detail is left to the reader. [

1.4 A priori estimates in the intermediate region

In this section we prove Lemma 1.3.1. This task is done by showing several a priori estimates,
which we are going to establish in the following subsections. Let us write

v(-,7T) = Zan(T)ngn in L§7rad(RN), (1.4.1)

where a,(7) = (v(-,7), ¢n)n. We first estimates a,(7) for n =0,1,...,£ —11in (1.4.1). This
is accomplished in §§1.4.1 under the assumption @), (o) = 0. The reminder term R(y,T) =
vy, T) — Zizo a,(T)Pn(y) yields smaller contribution than the leading mode ay(7)¢,(y) in
the outer region {g0(7)? < |y| < e ™e™/2}. Those estimates of a,(7) and E(y,7) lead to
the estimates (II) and (II) with v < 1 in the requirement for AY2,. The last §1.5 is devoted
to showing the estimate (1) in the inner region. In the following, we denote by C' a generic
positive constant that may change from line to line.
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1.4.1 Estimates of Fourier coefficients

Lemma 1.4.1. Assume that ® € Al Then:

70,71 "
Cr—28-2, r< 50(7)§,
[f(0(r, 7)) < Cep(r)Polp=r=2Dol=2(1 4 p46)  go(7)0 < 1 < €57, (1.4.2)
Cr—26-2, 9T < T,

for 7o <7< 1, where 6 € (6,1), and & € (0,1/2).

Proof. Let ®;,,(r, 7) be the function as in (1.2.9) and set viy, (7, 7) := @i (r, 7) — Us (1),

[fw(r, )| < [f(wlr, 7)) = fina(r, 7))+ 1 f (W (r, 7)) =202 (Fy + F).

By the condition ® € Al _ . for r < &y(7)?, we know that

|D(r, 7') — Dy (1, 7)| < 0(7) Pian (1, 7) < i (7, 7).
Let 1 :=r/eo(7). For r < g¢(7)?, we then obtain that
F < |(I>(7“, TV — ®ipn (7, T)P — pPiyu (1, 7)P (P (7, T) — Py, 7'))’

+ ‘p(@mn(r, WP — Uy (r)P ) (®(r, 7) — Piyu(r, T )|

< O|Biun (1, 7)[P72|D(7, 7) — P (r, 7))
+ C’|(I>-mn(7’, D - Uoo(r)p_lHé(r, 7) = Qi (r, 7)|

< Ceo(r) 222200, ()P 2 (1 4 )™
+ Ceo(r) 222U ()™ = Uso ()"~ (1 + )™

< { Ceolr) 250U, <),

L Ceg(r) 22202 U (), eo(r) 7 <y < eo(r)

and
Fy = |(Uso(r) + vip(, 7‘)) — Uso(r)? = pUso (1) i (r, 7)|

= eo(7 ) 25 22U ()" = Uso(n)? = pUso ()"~ (Ur(0) — U ()|

- { Ceo(r) 22720 Uss ()", n< el

L Cao(m) P22 2 U ()2, eo(7)" 7! < < eo(7)"7,
whence : R < 5

PP €0

|f(v(r,7))] < { C€O<T)4|,\O|7,_7_2|Ao\_27 o7 ) (<)7, < eolr )9_ (1.4.3)

Since ® € Al _ . we obtain

o(r, 7)| < o(r, 7) = ag(T)de(r)] + lag (1) de(r)]
< Ceo(T)2Polr=7(1 4 12 < QUL (r) (o (1) 2P0l 2ol o= Aerp 220y 7 (1)
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for g9(7)? < r < € and
lo(r, )] < |U(T, T) — e_B(T_TO)G(Te_(T_TO)ﬂ; 7'0)| + }G_B(T_TO)G(TG_(T_TO)/Q; Tg)‘
< Ce BT (pe=T/ 222 (o= (=0)/2)=28 < Ci(pe=/2)Pep=28 & U (1)
for e=“e™/2 < 1 < €7, Tt then follows that
|f(v(r,7)| < Cr*v(r, 7)?Us(r)P2
< Cr2eg (1) ol (r= 4l 4 b (1P < Ceg(r) Polp28-21-2(1 4 40

for eo(7)? < r < €*7. Moreover, |v(r,7)| < CU(r) for r > " due to (II)g and (Il) with
v = 1. We then have

(1.4.4)

|f(v(r,7))] < Or** Uy (r)? < Cr—2F72, (1.4.5)
Due to (1.4.3)—(1.4.5), we obtain (1.4.2) and the proof is complete. O
Lemma 1.4.2. Assume that ® € A} . Then:
|<f(v(7')), qﬁn)N‘ < C’cneo(T)Q"\()H” (1.4.6)
form=0,1,... and 10 < 7 < 711, where ¢, > 0 is as in (1.2.17) and p is positive constant
such that . ol
p = 7 min {2\%\, VD, &Ol} > 0, (1.4.7)
¢

Proof. We set

4 ao(fr)§ 1 o 00
> Hy = ( [ Y Ay ) 7 )6l plr)
k—1 eo(T ewr

We shall use (1.4.2) with  =1—6 € (6,1) and N — 2y — 2 = v/D (cf. (1.1.8b), (1.1.16)) to
estimate |f(v(r,7))| in each subinterval.

Estimate for Hy.,. Since v — 28 = 2|)\¢|, we have
eo(r)t—?

co(r)? o
Hl;n S Ccn/ T_'Y—2/8+N—3 d,,,, S Ccn/ T,Zl)\o“f‘\/ﬁ—l dr
0 0

< Ccngo(r)(l’(’)@‘“'*‘@) < Ccngo(7_)2|)\o\+\/579(2|)\0|+\@)

(1.4.8)

Estimate for H, ,. We see from N — 2y —2 = VD that
1
Hy.,, < Ccn€0(7)4“0‘ / 27200+ N =3 1.
7 50(7)1—0
1

< Cepeg(r) Pl / p= 2ol +VD-1 gy,

EO(T)l—G
Ccn50(7)4|/\0‘ if 2|)\0| < \/57
< Cepeo(r) 1| log g (7)] it 2[Xo|=VD

Cleneo(F)IH-0C20VD) i 23| > VD
S C&To(T)g‘)\O' -+ C&To(T)Q‘)\OH\/E;

31



Estimate for Hj.,,. Due to |&,| < ¢, and —|\o| + ¢ = A, > 0, we obtain

e
C —2y— _a9 .2
Hs., < C’|cn]go(7-)4lko|/ 272Nl +20+N =3 ,—r2/4 ..
1

% (1.4.9)
< OCnEO(T)Mol/ pPAVD L=/ g < O go (7)ol
1
Estimate for H,,,. It follows from |é,| < ¢, that
00 r 20 /@
H4'n S C|6n|/ (T) T_’Y+2£_26+N—36—7’2/4 dr
N (1.4.10)

o
— o _ 2
S Ccne 2)\[7’/ TQ)\[/LU+2‘)\0|+2€+\/D 16 r /4d S Ccn60(7)4|>\0|.
1

The condition (1.3.1) and the estimates (1.4.8)—(1.4.10) yield (1.4.6). The proof is complete.
[
Lemma 1.4.3. Assume that Q. (o) =0 for some o € Uy, r,. Then:
|a,(7)| < Ceg(7)2PolFr (1.4.11)
formo <7 <71 andn=0,1,...,0—1, where p >0 is as in (1.4.7).
Proof. Due to Q., () = 0, we see that

an(r)| = ]— [ et o i

< 080(7')2“‘0‘*“ /OO e~ Umntuwe)(s=7) gg < 060(7)2"\0|+“,

T

<c /Oo e n(=9) o ()2l g

whence (1.4.11). The proof is complete. O

Lemma 1.4.4. Assume that Q. (a) =0 for some a € U, ,, and 0 € (20,1) as in (1.3.3) is
sufficiently small such that @ < ju/(2 + /D). Then:

la,| < 050(7'0)2|’\0|+§(2+‘/5) for n=0,1,...,0—1; (1.4.12a)
lau(70) — al(10)] < Cleg(mp)2RolH0@HVD) (1.4.12b)
lan(10)] < Ceneo(m )2|’\°|+0(2+‘F) for n=0+1,0+2.... (1.4.12¢)
Proof. Set vg(r) := v(r,79) = ®o(r) — Us(r). Notice that (1.3.3) implies that
e(1/2=@)mg
2
/ (P pa(r)rN e A ar
e0(70)?

e(1/2-3)7g

—/ _ ( (0)pe(r +Zozk¢k ) (r)yrN=te /A dr
o(70

80(7’0
(/ /1/2 w)m) ( (70)Pe(r +Zak¢k ) (r)rle A dr,
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where
Qs n=0,1,....,0—1,

a, =1 a;(n), n=24¢, (1.4.13)
0, n=0+1,0+2,....

Then, due to a, (1) = (vo(70), ®n) N, We have

co(r0)? e(1/2=®)7g oo No1 24
an(10) = + + vo(r)on(r)r™ e dr
60(’7’())9 (1/2 @)1
0(10)?
=a, + / / vo(r) — ag(70)e(r Zan¢n O (1)~ Le=r*/4 gy
(1/2-@)mg

=:a, + Hy,, + H,,. (1.4.14)

The same argument of Lemma 1.3.2 shows that

vo(r) — ag (7o) e(r Z O (r

080(7'0)2')\0'7’ v + CT’_z’B, T S 60(7’0)1_9/7
080(7'0)2')\0'7’_7, 50(7'0)1_0/ <r S 80(7'0)0,

Cr=28G (r, 19) + Ceo(ro)Holp=F26 (1/2=0)10 < .

IN

where ¢ € (0,1 — 6) as in Lemma 1.3.2.
Estimates for Hj ,. Due to this and identity —2y + N = VD + 2, we have

eo(70)
H, | < Ce, /
0

eo(70)' ="' eo(10)? 4.
- Ccn/ 0(70 T2|,\0\+\/5+1 dr + Ccn€0<7'0>2>‘0|/ 0l70 7,\/5+1 dr (1 4 15)
0 0

< CCHEO(7_0)2\)\0|+\/5+279’(2|>\0|+\/5+2) + Ccneo(ro)Q‘AoHa(‘/E”) ;

6

e0(70)
PN g C’cnso(m)w‘“' / 2N gy
0

10’

Estimate for H;. . We see from |¢,| < ¢, that

e(1/2-3)7g e(1/2=0)m0

~ L\ M0/2) 2
+ Clén|eo(mo)? ! / (—( 5 ) PPN =L =t/ g

e(1/2=3)m \ € 1/2=w)mo

0o . 22/ (1/2—@) ,
’Hé;n’ < C|é| ( ) p2B 2N —r2 /4

(1.4.16)
< CCn50(70)4|)\0|/ P2/ (1/2=B)+2ol+2n+VD+1 ,—12/4 g,
1

+C’cn60(7'0)4)‘°|/00 Ae/(1/2=3)+20+2n++/D+1 —r2/4 dr < Cec 60( ) |,\0|
1
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The claim (1.4.12) then follows from (1.4.11) and (1.4.14)—(1.4.16) with sufficiently small

0" such that
VD +2
2[\o| + VD +2
The proof is complete. [

0<0 < (1—6) € (0,1—0).

1.4.2 Estimates of remainder terms

Our next goal is to estimate the higher Fourier mode: v(r,7) — Zn 0n(T)Pn(r). To this
end, it is convenient to introduce a new dependent variable

W(r,m,a) :=r"v(r,7;a) and i, (r) := 17, (1),
where v(r, 7; ) := ®(r, 7; ) — Uso(r). Then:

Wo(r; ) .= W(r, 1o; a)

oo () o )] e

B 7 (10)Ye(r) + Zand}n 60(7'0)5 <r< 6(1/2_@707

7 U (1 )G(T,Tg), e(1/2=0)m0 < .

\

and function W satisfies W, = —LW + g(W) where
N —2v—1
LW =W+ (+ - g) W' =AW and (W)= f(v).

We set
m::N—27:2+\/5>2.

For a while, we consider the case where m is an integer (the general case is discussed at the
end of this section). Let us write

l 0o
W(r,m) = an(T)a(r) + R(r,7) with R(r,7) =Y a,(T)in(r), (1.4.17)
n=0 n=~(+1
<W, wn>m = N W(T)wn(r>rm_16_r2/4 dr = <Ua ¢n>N - an(T)'
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We denote by S(7) the semigroup for —£, which is expressed as

o0

[S(T)W](y) = Z e_AnT<Wa ¢n>m¢n(|y|) (1.4.18&)
eMT|y| T2 oo e~ /2y 2,7 | g2

= 1 —‘ye’T /0 L, {%} eXp {JZ’(l——e—i_T)} r™PW(r)dr  (1.4.18b)

o 6‘)\0|T o B |y677—/2 . 2‘2 N . )

T (r(1—e ) /m P{ A1) }W( )dz (m€N) (1.4.18¢)

with Ay := |Xo|+(m—2)/4 and Ay := v+ N/2—1=m/2—1, where I denotes the modified
Bessel function with order A. The bounds for the modified Bessel function

Czhe?

[a(2)] < W7

zeRy, (1.4.19)

yields the following estimate :

el S /2 _ p|?
HS(T)W](?J)‘ < ufew/o exp{—%} (W (r)|B,(r, )r™  dr. (1.4.20)

where

|y|e_7/2r —(m-1)/2
l—e7 ) '

B,(r,7) = (1 +

Remark 1.4.1. The series (1.4.18a) converges in the norm of L? | ,(R™) for every 7 > 0 and,
moreover, absolutely for every y € R™ and each 7 > 0. This is because eigenfunctions ,,(r)
are algebraically bounded with respect to n uniformly in every compact set of [0, 00) due to
Remark 1.2.1, which is much slower than e*”. Furthermore, it converges for |y| < /2, since
V(1) ~ ¢,r®™ as 7 — oo, which is canceled out there by the exponential factor of (1.4.18a),

and (1.2.19) involves adequate rate of decay.

The series expression (1.4.18) implies
h
ap(T)e(r) = —C—ZG_MW(T‘) = e T a (o)y(r) = [S(r — To){ag (o) e} ] (1),

whence :

W (r,7) = ag(1)3e(r)

. v (1.4.21)
— [S(r = ) {Wa — aj(m)n)] + | [S(r = s)g(W(s)] () ds.
70
We note some useful estimates for S(7). Let us set
Bi(y,0) == {r € Ry; r < 2lyle ""9/2} (1.4.22a)
By(y,0) = {r e Ry; 2lyle "2 <1}, (1.4.22b)
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and

s 1 i iy
T T fpy TP A e ey BT

2
1 |lyle==)/2 —¢| B
Sy = / exp 4 — B,(r,7 —o)rkFtmtar
(1 _ e—(T—(r))m/2 Ba(y,0) 4(1 _ e—(T—a)) )

with £ > 1, for y € R™ and 79 < 0 < 7 < 77. Due to

1B, (r, T — o) B < r? )(m_l)/z

(1 _ 6—(T—J))(m—1)/2 - 1 — e—(1—0) + |y|e—(7'—a)/27a <1

for r € Bi(y,0) and 79 < o0 < 7 < 71, we have

S< 1 / Hy|€ (T 0'/2_,r,|2 d <C
>~ —(r—o exXp P r < .
(L—e =)2 Jp (.0) 4(1 = e=(7=2))

On the other hand, because of

(r—0)/2

T—0 - r —(t—0
lyle™ =2 —r| =1 —|yle >§>!y|e( )2

for r € By(y,0) and 70 < 0 <7 <7 and By(r,7 — o) < 1, we obtain that

1 r2
S < _ k+m—1 d
F= 1= e ro)mp /Bz(y,a) °Xp { 16(1 — e (7)) } r r

<O —e N2 <

Furthermore, we see that

1 ex “y|€ TR _Tl2
(1= e nym2 Py T g1 = o)
1 (lyle”=72)°
< —
—(1—e—<f—a>>m/zeXp{ 16(1 — e (—2))

< C <Sume6 > (’y|€ (r—0 /2) m < C’y|fmem('rfcr)/2

L>0

for r € R satisfying ||yle "9/ —r| > |yle""9)/2/2 and 7y < 0 < T < 7.

A priori estimates in the short-time case
We first discuss the short-time case, that is, 7o < 7 < 79 + 1. Notice that

e l<e ™D <1 for m<o<7T<T7+1

For simplicity, we shall abuse some notation such as W(|y|,7) = W(y, 1), ¥n(ly|) =
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(1.4.25)

(1.4.26)

(1.4.27)

(1.4.28)
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Lemma 1.4.5. There holds

|S(7 = 10){Wo — a; (r0)¢e} (y)| < Cep(r)?XH¥ (1 + [y[*) (1.4.30)
for eo(1)? < |y| < e “™e™/? and 7o < T < 10 + 1 with sufficiently large .
Proof. Fori=1,2,3, we set

P gl — o
i (1 _ 6_(7——7—0))m/2 Ds(r0) p 4(1 — (1= 7'0))

x |Wo(r) — aj (o)t (r) | By (r, 7 — 7o)r™ " dr,

where
Dl(a) ={reRy;r< 60(0)5}, (1.4.31a)
Ds(0) :={r e Ry; 50(0)‘7 <r< 6(1/2_@0}, (1.4.31b)
Dy(o) :={r e Ry et/2=8)e < r} (1.4.31c)

for 7y < o < 7 < 7. Hereafter we always assume £o(7)? < |y| < e™“™e™? and 7y < 7 < 19+1.

Estimate for I;. Let us divide the region D;(0) in (1.4.31a) as the disjoint union of
D (o) —{T’ER+,T’<€0 19} (1.4.32a)
Dis(0) ={reR;; ()" <r< eo(a)g}, (1.4.32b)

for 7y < o < 7 < 71, where # € (0,1 — ) is as in (1.3.10). The corresponding integrals are
denoted as I, 1 and I} o, respectively. For y(7)? < |y| and r € D;(7y), there holds

(t—70)/2 _

7'O

|lyle™ T2 — 7| > |yle” |y|e (r=m)/2 (1.4.33)
if 79 > (2log2 + 1 + Owy) /20w, where wp = Ag/2|Xo|. Because of B, (r,7 — 15) < 1, (1.3.10),

(1.4.28), (1.4.29), and (1.4.33), we have

Iy < O‘?J|_mem(T_TO)/2/ \Wo(r) — aj(7o)e(r)|r™ " dr

Dy, 1(70)
eo(r0) 1=’ eo(o) L~

< Ce (To)“("|y|‘m/ rm‘ldr+0|y|‘m/ p2Roltm=t g (1.4.34)
0 0

< Ce 0(7_0>2\)\0|+ (1-0") 80( )79m + 080(7_0)(170’)(2\)\0|+m)€0<7_>70m

< Ce O(T) 2|Xo|+m—0'(2|Xo|+m)— Hm'

For r € Dy o(70), (1.3.11) implies that

< Ce ( )2\)\o|+0,u_|_C€ ( )2|)\o|+20

W) — a3 (ro)(r)] < Ceolro)?™ [(ﬁ) 2
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Then, due to (1.4.29), we obtain
]172 S C{‘:O(TO)Q‘/\Ol(g()(TO)Q,'u + 60(7‘0)25)“3(7 — TO)]_](y)l S 080(7)2‘>\0|+39. (1435)

for § € (26,1) and &' = 36/pu (< 1 — @ if 6 is sufficiently small).
Estimate for I,. We set

Dy 1(0) := Bi(y,0) N Dy(0) and Ds (o) := Ba(y,0) N Da(0) (1.4.36)

for 9 <o <7 <7, and split I as Iy = I + I5 o, accordingly. It then follows from (1.3.10),
(1.4.25), (1.4.27), and (1.4.29) that

— (T — T 2
.- O€0<7_0)2\)\0|+39 / exp ||y|€ (1—70)/2 _ Tl
2,1 = —(17—70)\m B — (77—
(1 — e 0)) /2 Do 1(70) 4(1 — e ( o))

1.4.37
x By (r,7 — 1) (1 +r*)r™ 1 dr ( )
< O8eq(r)?ol 30 (14 (2fyle™T™72)%) < Ceg (7)1 + [y[*)
and
Iy5 < C(8p + Sa0)e0(To) MM < Ceg(r)2Pol+9, (1.4.38)
where S and Sy, are as in (1.4.23) and (1.4.24), respectively ;
Estimate for /3. We see from (1.3.10) that
[Wo(r) = a; (ro)tbe(r)| < Ceo(mo)*Mlr*
for r € Ds(7p), and B
2yle™(TTT0)/2 < 2e(1/2=WT0 < p(1/2=0)T0 < e (1.4.39)

for |y| < e=@™e™/2 r € Ds(7y), and sufficiently large 7. It then follows from (1.4.27), (1.4.29),
and (1.4.39) that

080(7'0)2”\0‘ ||y|€7(777—0)/2 - T|2
13 — —(7—70)\m/2 €Xpy — —(7—70)
(I —e =) D (o) 4(1 — e~ lr=m))

( r )/\5/(1/2—@ (1.4.40)
X

o B, (r,T — 70)r2 ™ dr
e W )T

N

< CSoring(1/2-3)80(T0) 1 < Ceg ()41,

where S, is as in (1.4.24).

Due to (1.4.34), (1.4.35), (1.4.37), (1.4.38), and (1.4.40), we obtain (1.4.30) and the proof is
complete. Il
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Lemma 1.4.6. There hold

/ "S(r - $)g(W(s))] (y) ds

70

A [S<T —9) {Z<9<W<s>>,wn>m¢n}] (4) ds

n=0

< Ceo(r)?PolF (1 4 |y, (1.4.41)

< Ceo(r)? (L4 [y*),  (14.42)

for eo(7)? < |y| and 19 < 7 < 79 + 1 with sufficiently large 7o, where p > 0 is as in (1.4.7).
Proof. For v =1,2,3, we set

T [Xol(T—s) H |6—(T—S)/2 . ’I"|2
Ji = / / expq — lg(W (r,$))|B,(r,7)r™ " drds,
. (1 _ 67(775))m/2 Fi(s) 4(1 _ 67(7'75)) Y

where

Ei(o):={reR;;r< 50(a)§}, (1.4.43a)
Es(o) :={r e Ry; 50(0)5 <r<e®}, (1.4.43b)
Ey(0) :={z € Ry; P < r}. (1.4.43c)

for o <o <7<m7,0€ (0,1) and w € (0,1/2) are as in (1.4.2). We recall that m =
2+ VD > 2, (f(v), ¢u)x = (9(v), Yu)m , and 17 f(v) = g(W).

Estimate for J;. We see from (1.4.2) with 0=1-0, (1.4.29), and (1.4.33) that
ncly [ e [t ards
T Ei(s)

0
T peo(s)—?
< Ceo(r) ™" / / P28 e ds (1.4.44)
T 0

0

< 060(7_)—9m/ 60(8)(1—9)(2|A0|+\/5) drds < 060(T)2|>\o|+\/5—29(|>\o\+\/5+1);

70

Estimate for J,. We divide the region F5 in (1.4.43b) with 6 =1-0into

Ey1(0) :={r e Ry; (o) 7 <1 <eo(0)}, (1.4.45a)
Es5(y,0) == Bi(y,0) N {r e Ry; go(0)* <r < ea"}, (1.4.45b)
By 3(y,0) == Ba(y,0) N {r € Ry; go(0)” <r < e‘g"}, (1.4.45¢)

for y € R™ and 10 < 0 < 7 < 7, where By and B, are as in (1.4.22), and split J, as
Jo = Jo,1 + Ja 2 + Jo, 3 accordingly. Arguing as the estimate for I5, we see that

E272(y7 S) 7£ @ fOI' |y| > SO(T)ea

—(1/2—-®)s 7‘/2.

1
Es3(y,s) =0 for |yl > 3¢ e

39



Owing to |Ao| > 1, (1.4.2), (1.4.28), (1.4.29), and (1.4.33), we obtain

Ty <Ol [ e [l drds
0 E> 1(s)
$)20

T 50( )
< 050(7)9’”/ 50(8)4|)\0|/ T*Q\)\o|+\/ﬁfl drds
0 eo(s)1—?
go(s)PolH20(=20l+VD) g5 i 2|\| < VD,
< Ceg(r)tm / co(s)Pol=0-9) 4 it 2| = VD,
" o(s)2PolHVDO(=20+VD) g5 if 2| \o| > D
< 050<7-)2\>\0|+2M—9(2+\/5) < (]50(7)2IA0\+~_

(1.4.46)

Recall £ > 1 and Ay = —|Xg| +¢ > 0. By (1.4.2) with & = 1/2 — 1/4(\;+ 1) and (1.4.29), we
have

T 060(S>4\A0| “y|e—(7'—s)/2 . 7,,|2
Jay o < / / exp § —
0 (1 - 6_(7_8))m/2 Es 2(y, s) 4(1 - e_(T_S))
x By(r, 7 — s)r_Q‘)‘°|+m_3(1 + r4€) drds

T - T 60(8)4\)\0|749\)\571| ds if AK < 1’
< 0S| an(s)Pol=1002 D) 4o 1 S 25/ i
> /7-0 O(S) S |y| . €O(S>4\>\O|€2w|>\g—1|s ds if >\Z >1

eo(r) PRl 2 <1,
eo(T)PRIHPI e N > 1,

< Cleg(r)HPol=400Rl+D) { (1.4.47)

On the other hand, (1.4.2) with & =1/2 — 1/4(\, + 1), (1.4.26), and (1.4.29) imply that

T CEO(S>4\)\0| “y|67(7—fs)/2 —T|2
Jo,3 < / / exp{ —
0 (1 - 67(778))7”/2 E> 3(y, s) 4(1 - 67(778))

x By (r, T — s)r~2Polm=3(1 4 46y gpds (1.4.48)

S C(S{) +S4£)/ 80(8)4|>\0|—49(|>\0H—1) S 080(7_)4|>\0|—49(|)\0H—1);

70
Estimate for Js;. Let us divide the region Fj in (1.4.43c) with
Es1(y,0) == Bi(y,0) N E3(0) and  Ejs(y,0) := Ba(y,0) N E3(0), (1.4.49)

fory € R™ and 1) < o <7 <7, and split J; as J3 = J3 1 + J3 2, accordingly. We note that

1 _
Esq1(y,s) =0 for 60(5’)9 <yl < 567(1/27w)567/2'
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Due to (1.4.2) with @ = 1/2 — 1/4(\; + 1), (1.4.25), and (1.4.29), we obtain

2
T C Hyye—(r—s)/2_r‘
J31 < / / exp § —
0 (1 - 67(778))m/2 E3 1(y,s) 4<1 - 67(7—78))

x By (1, 7)r?Rol=24m=3,2¢ gp.q (1.4.50)

< C«S|y|26/ 6—2@(Ag+1)5 ds < 080(7_)2‘)\0|+‘)\0|/Ag|y|2£‘

70

It follows from |Ag| > 1, (1.4.2), (1.4.27), and (1.4.29) that

—(7—s 2
ya — o (]_ _ 67(775))171/2 s 2y, 5) 4(1 _ 67(775))
20 /@
y ( r ) B, (r, r)r2obm=s grgs  (LA51)
ews

< CSon/a+2in]-2 / e 2% ds < Ceo(r) M.

70

Because of (1.3.1), (1.4.44), (1.4.46)—(1.4.48), (1.4.50), and (1.4.51), we obtain (1.4.41) and
the proof is complete.
To show (1.4.42), we use Lemma 1.4.2, (1.4.25), (1.4.27), and (1.4.29), to get

|[S(m = $){{g(W(s)), ) mton}] ()]

2
T 050 S)2|>\0|+,M [ |y|€7(775)/2 —r o i
S/ (1—6(_(7_5))7"/2/0 - 4(1_6—@_3))‘ By (r,T)r" (14 ™) drds

70

< C(S+[yl™) + So + San) / co(s)2PHi ds < Ceg(r)2 (1 4 |y|*),

70

forn=0,1,...,¢. We obtain (1.4.42) and the proof is complete. ]
Lemma 1.4.7. There holds

(W (r,m) — a(T)¢be(r)| < Ceo(r)?P (1 + [y[*) (1.4.52)
for eo(7)? < |y| < e™wme™/?, 7y < 7 < 79+ 1 with sufficiently large 7.

Proof. To apply the estimates (1.4.30) and (1.4.41) for the representation of solution (1.4.21),
we have (1.4.52) in short time case and the proof is complete. ]

A priori estimate in the long-time case
Next, we show the estimate in the long-time 70 + 1 < 7 < 74. Notice that
l—e'<1—e™9<1 formy+1<oc<7<m. (1.4.53)

Let Ro(|y|) := R(|y|, 7o) where R is as in (1.4.17).
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Lemma 1.4.8. There holds
|[S(T — 70)Ro)(y)| < Ceo(m0)"CHPleg(7)20l(1 + [y[2), (1.4.54)

Jor eo(1)? < |y| < eV and 70+ 1 < 7 < 71 with sufficiently large 7o, where 6 € (26, 1)
is as in (1.3.3).

Proof. Since Ry is orthogonal to the eigenfunctions 4, for n = 0,1,...,¢ in L2(R™), the
series expansion (1.4.18a) with (1.2.16) and (1.4.12¢) (cf. Remark 1.4.1) implies

[S(r = 7o) Rol(y)| < D e ay (7o) [[ehn(|y])]
n=~+1
< 050(7—)2|/\0\+§(2+\5) Z Cie—()\n—M—g(Q-i-\/ﬁ))(T—To) (1.4.55)
n=~0+1

o0
< Cgo(T)z‘Ang(”‘/ﬁ) Z cie*(”*‘v’*g(?ﬂ@)) < 050(7-)2\)\0|+§(2+\/5)

n=¢+1

for eo(7)? < Jy| <land 7o +1 <7 <7 and

|[S(r =) Rol(®)] < DY e ™ ]an(ro)[[¢hn(ly])]
n=~(+1
< Ceg(rp) @ VP)gy ()20l |y |2 D enléglem OOy 0 (1.4.56)
n=/~(+1

o0
< 080(70)9(2+\/5)60(T)2l)‘0||y‘2e Z Cief(nfé) < Cgo(TO>9(2+\@)€O(T)2|/\o|’y|2€
n=~+1

for 1 < |y| < e=0"Y/2 and 7y + 1 < 7 < 7, where the exact formulas of ¢, and ¢, as in
(1.2.17a) and (1.2.17b) have been used as well. Because of

2 et nll(m/2+n+1)  m/2+n 1

= = -<1 1.4.57
e(n+1IT(m/2+n) en+1) e a8 nes ( )

2 ,—n
c,€

we see from the ratio test that the series in the last line of (1.4.55) and (1.4.56) converges.
We then obtain (1.4.54) and the proof is complete. O

Lemma 1.4.9. There holds
|[S(7 — 70){Wo — @} (10)ee ()| < Ceo(ro)*en(r)? ! y[*, (1.4.58)

forem==D/2 < |y| < e=wme™2 and 1o+1 < 7 < 71 with sufficiently large Ty, where 6 € (20,1)
is as in (1.3.3).
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Proof. Let elm=7071/2 < |y| < e7“0e™/2. We remark that
2yle= T2 € (1,2e(1/279)0) and  |y| > 1
for eT=0=D/2 < |yl < e “™e™/2 and 1y +1 < 7 < 74, and
1 <ele Ty 2 for |y > TN/, (1.4.59)

We use the same notation D;, D; ;, I;, and I; ; in Lemma 1.4.5.

Estimate for ;. Similarly to the proof of (1.4.34), it follows from (1.3.10) with 6" = 30/p,
(1.4.28), (1.4.33), and (1.4.59) that

Ly < CelolTm)(|y|em(mm)/z)=m / (c0(70) 2! + r2Polypm=t gy
D1, 1(70)

< Ce|)\o|(rf7'o)(80(7_0)2|)\0|+(1739/u)m + 80<7_0)(1730/u)(2|)\0|+m))<|y‘€7(7770)/2)25 (1460)
< C«efkg(rng)gO(To)m)\dgo(7_0)(1739/p)m‘y|24 < C&TO(TO)(lfSG/u)mgO(7_)2\)\0||y’2€'
A similar argument shows
T 5 < Celolr=m) (|y|e(—m)/2)2 (80(70)2|A0\+39 n 60(T0)2|Ao|+29)|[5(7 —70)1](y)] (1.4.61)

< Ce Mgy ()2l (10)% |y 2 < Ceg (7o) en ()2l y|*.

Estimate for ;. Because of (1.3.10), (1.4.25), (1.4.27), and (1.4.59), we have
12’1 S 0860(T0)2|)\0|+306|>\0‘(T_T0)(1 + <|y’6—(T_TO)/2)%) S 050(T0)3060<T>2‘)\0||y‘28 (1462)

and
I3 < C(Sy + Sap)eo (7o) #0830 Polm=m0) < O (7)) ¥ (1) 2P0l |y |2, (1.4.63)

Estimate for 3. Similar argument to (1.4.40) implies
[3 S 082“_)\[(1/2_@)80(T0)2|>\0|+396|)\0‘(T_70) S C€0<7-0)39€0(7—)2|>\0"y|25_ (1464)
Because of (1.3.1) and (1.4.60)-(1.4.64), we obtain (1.4.58) and the proof is complete. O
Lemma 1.4.10. Let o+ 1 <7 <71 and 19 < s < 7 — 1 with sufficiently large 79. Then:
|[S(r = 5)g(W(s)](y)] < Ceols)eolr)* |yl (1.4.65)

for |y| > e™="1/2 gnd

(y)| < Ceols)eo(7)? (1 + [y[*), (1.4.66)

[S(T — ) {g(W(S))—Z@(W(S)), %M%}

n=0

for |y| > eo(7)?, where > 0 is as in (1.4.7).

43



Proof. Recall that (f(v),¢n)n = (g(W),¢n)m. Arguing as in the proof of Lemma 1.4.8, we
obtain from (1.4.6) and (1.4.18a) that

lsu_s { z ) mw}] )

n=

< Y e GW(s)) dadmlen(ly])] < Co(s)eo(m)? (1 + |y*)

n=0+1

for |y| < e™*~1/2, The estimate (1.4.66) is archived for o(7)? < |y| < e(7=s=1/2,

We next prove (1.4.65) and (1.4.66) for |y| > e"=*=1/2. To this end, we assume |y| >
e(7=5=1/2 hereafter without stating explicitly. We use the same notations J; and E; in the
proof of Lemma 1.4.6. Remark that

Ayle "2 > 1, |y >1, and ele T |y? > 1,

for |y| > e V2 7y +1<7<7,and 79 < s <7 —1, and 77 f(v) = g(W).
Estimate for J;. By |[Ao| — ¢ = —), and (1.4.2) with § = 1 — 6, we sce that
Ji < Celr=9) / 2B rm=3 g
Ei(s)
()10
< C€\A0|(T_s)( —(r—s— 1/2|y|) /O 2ol +vVD-1 . (1.4.67)

0
< 060(8)\/5_9(2|>\0|+\5)6_>\N|y|%.

Estimate for J,. Let us divide further the region Fy with 0=1-10as

E2,1($) = {/r' c R+’ 50(8)1_6 <r S 1}’
By, s) = Bi(y,s) N {r e Ry; 1 <1 < ™},
Ez,:&(% s)=Ba(y,s)N{reR;1<r< ea’s},

and denote the corresponding integrals by :7; j for j =1,2,3, accordingly. We note that

Fony,8) #0 for |y > /2,

~ 1 A
E273(y>3) =0 for ly| > 56_(1/2_W)S€T/2,
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The estimate (1.4.2) of f(v(r,s)) in Ey1(s) and [Ag| > 1 implies that

Jo1 < Cao(s)4|’\0|e|/\0|(78)/ F—2ol+m=3 g.

E2 1(s)

1
< Cgg(s)P0lellT=9) (e~ T2y )2 / 2ol +VD-1 g,

eo(s) =0
1 it 2| < VD, (1.4.68)
< Cep(s)Mole™em |y 2 5 { g (s) 10 if 2|\| = VD,
£0(s)1-O2M+VD) i 9|\ )| > /D

Ceg(s)Mleg(m) MMy 26 if  2|Ao| < VD,
<
eo(s)YPeo(r)2l g2 if  2|Xg| > V/D.

Due to —|\g| + ¢ = A¢, (1.4.2) with © =1/2 — 1/4(\; + 1), and (1.4.25), we have

7. < Cleo(s)*Polelhol(m=9) / exp Hy|e T=9)/2 |2
2,2 = —(1—5)\m ~ T—5
(1 —€ ( )) /2 E3 2(y, s) 4(1 —€ = ))

x By (r, — s)pitAhlFm=3 g,

< CSeafs) Il 2y~ { P
B { Ceo(1)2Mlgg(7) 2l |y|2 i N, < 1,
T | Ceg(s)MPol/Aegy(r)2Pol)y 26 if N\ > 1.
To use a similar argument to (1.4.48), we have
j2,3 < CSypeo(s)tPolelhol =) (o=(r=s=1)/2)1)20 < Oz (5) 2P0l (1) 2ol |2, (1.4.70)

Estimate for J;. We note that
ES 1(y S) _ @ for 6(77571)/2 < |y’ < 167(1/276)567/2 _ 1675/4()\g+1)€‘r/2
T -2 2

with @ =1/2 —1/4(\; + 1). The fact of |A\o| > 1, (1.4.2), and (1.4.25) imply that

J31 < C’Sep‘ol(T_S)(2|y|6—(7—8)/2)2|>\0|—2 < C«eT—s|y|2\>\0|—2

< Cer—s|y|—2()\e+1)|y|2€ < 067—868/26—()\g+1)7|y|2é < 06_5/26_)\”|y|2€ (1471)
for |y| > e=3/4Ae*De7/2 /9 Similarly to the argument in (1.4.40), we see that
J3,2 < CSox, jmsang|-2e” eI (e s V2 1y )26 < CemAese T [y 2, (1.4.72)

Due to (1.3.1), (1.4.67)—(1.4.72), we have (1.4.65).
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To obtain the inequality (1.4.66) for |y| > e~("=571/2 it is sufficient to show

[S(T —s) {Z(g(W(S)),%M%H (y)

n=0

< Ceg(s)"eo () y[*

for |y| > e("=*=1/2, Notice that |y| > 1 and A\; — A\, = £ — n. Recalling Lemma 1.4.2 and the
series expression (1.4.18a) of S(7), we easily obtain

[S(r = $){{g(W (5)), ¥u)mtu})(y)| < Ceo(s)'e M oe ATy
< Ceo(s)e M [y|* (e T2 [y]) 72 < Oeg(s)e Ty *

for n =0,1,...,¢ and |y| > e~ ("=57V/2_ It then follows the estimate (1.4.66) and the proof
is complete. Il

Lemma 1.4.11. Let 19 + 1 < 7 < 11 with sufficiently large 79. Then:

< 080(7'0)“50(7)2%”3/’26 (1.4.73)

[ 15t = (s)l(w) ds

70

for |y| > el7=0=1/2 gnd

/ [s<r—s { Z ) mw}] (y) ds

v (1.4.74)
< 080(7'0)%0(7')2')‘0'(1 + \y|2 ),
for ly| > eo(7)?, where p > 0 is as in (1.4.7).
Proof. We first divide integral interval in time as [r9,7] = [r9,7 — 1] U [ — 1,7]. Clearly,

integration with the later interval (that is short time) may be estimated as in (1.4.41) and
(1.4.42). Tt thus suffices to consider the former integral interval. Because of e("=70~1)/2 >
e(T=s=D/2 for 7, < s < 7 — 1, we obtain from (1.4.65) that

7—1

/ " 1S(r — s)g(W(s))](y) ds| < Ceolr)™ollyf / cols)¥ ds < Ceo(m) ey ()20l |y

70 70

for |y| > e"=0=1/2_ Then, the estimate (1.4.73) is archived. The same calculation with
(1.4.66) implies the inequality (1.4.74). The proof is complete. O

Lemma 1.4.12. There holds
(W (r,7) = ag (T)ve(r)| < Ceo(mo)*eo(r)™ (1 + |y|*) (1.4.75)
for eo(7)? < |y| < e™wme™/2, 7y < 7 < 79 + 1 with sufficiently large 7.

Proof. We see (1.4.75) for o(7) < |y| < e™=7Y/2 to apply the estimates (1.4.11), (1.4.54),
and (1.4.74) to (1.4.21), In additional, combining (1.4.58), (1.4.73), and (1.4.21) give us the
estimate (1.4.75) for e=0=D/2 < |y| < e7“™¢e™/2. The proof is complete. O
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1.5 A priori estimates in the inner region

In this section, we will prove a priori estimates in the region where |y| < g¢(7)? using the

idea of [44,46]. This together with the lemmas in §1.4 complete the proof of Lemma 1.3.1.

Lemma 1.5.1. Assume that p > pyr,, N > 10 4+ 8a. Assume also that
‘(I)O(T) — Dea(r, 7'0)‘ < Ceg(m)V 2P+ (1.5.1)

forr < eo(m)?, where
q)med(n TO) = UOO(T) + GZ(T)QSK(T)‘
If there exists a constant M > 0 such that

O(r,7) — Us(r) + ﬁ50(7')”*’25@(7")

< Meg(r)Y 2020 (1.5.2)
&

forr =eo(7)? and 70 < 7 < T, then there exists a positive smooth function H(n) with

[ O(n™) as n— oo,
Hn) = { O(1) as 1 — 0,
such that
}(I)(Ta 7-) - <I>inn(r7 7_)| S 50(7)_2/8—'—29[{ (607(1—7')) (153)

forr < eo(7)? and 7o < 7 < 7 with 1y large enough.

Proof. We extend the idea of the proof of [44, Proposition 2.1] for the neutral eigenvalues to
that of stable ones. We shall recall equation (1.2.5):

ao(r U, = AU +1ePvr - et (S5 + 0,

where & = y/eo(7), U(E,7) = eo(17)®(y, 7), and E(7) := go(7)? — 2e¢(7)éo(7). Consider the
new dependent variable :

V(§77—) = U(é-v 7-) - Ul(£>
Equation (1.2.5) for U(, 7) is then converted to the one for V' (£, 7) as follows:

. _50(7)2(2—‘7/ RN [TI(@ N (5 : ng - ﬁv)}

+ €[22 [pUa )PV 4 (UL (€) + V)P — Uy (€)P (1.5.4)
= PULEP IV + p(UA (€)™ = U V]
where

sUL(€)
2

Ti(§) = + BUL(E). (1.5.5)
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Here and henceforth, we shall abuse the notation such as U;(§) = Uy(|¢|) for simplicity. Set
n = [¢]. The ordered structure of the family {U, }.~o implies that

0
Ti(n) = B%Uﬁ(n) >0 forany n>0; T1(0)=p.

k=1

Let us write

Hy(n) := -—Ux(n)

1
= U, (AY*5n) + %Al/wn[]{(/\l/wn) for A >0,
K=A

where we use Uy (1) = kU, (k'/?%n) for any x > 0. The function H, solves

-1
0=Hj + Hy +pp”Ux(n)?"Hy, 1 >0,

Hx(0)=1, H)(0)=0.
Taking advantage of the asymptotics of U; and U] as in Proposition 1.2.1, we obtain

() = py() = 020

Hy(n) =Con " +o(n™7) with Cj:=

n T +o(n7), (1.5.6)

h(y — 20)

TR (1.5.7)

as 1 — oo. Let H(n) be a solution of the inhomogeneous ODE:
" N—1 / 2a -1
H "’TH +pn*Ui(n)" H = Ti(n),

satisfying H(0) = H'(0) = 0. A standard computation then shows that

= Hi(n /H1 Nl/H1 (r)Ti(r)r™ "t drdp

h(y —26)
42+ VD)
as n — oo. Let & > 0 be a constant to be chosen later. We will construct sub- and
supersolutions of (1.5.4), using auxiliary functions

Zi(n,7) = Ex(T)H(n) % keo(1)* Hy(n) (1.5.9a)
with  E.(7) := E(1) F Vkeo(r)*%. (1.5.9b)

(1.5.8)
=Cin " 4 o(n?) with O =

The functions Z.. satisfy
NZs =1 (Ui(n) + Zo)? = Ua(n)” = pUs ()"~ Zs
(UMY = D)) Ze] + (Ex(7) = E(7) Tal)
—£(r)Ex(r) (L (n) + BH®)) — 2o(r) e (€x(r)) Hn)

¥ heolr)P£(7) (L) + BH0)) kol (o)) Halr).

(1.5.10)
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Notice that the last two terms in (1.5.10) are roughly of oder (7)™’ as 7 — oo, which is
the same as of (£4(7) — £(7))T1(€). To cancel out the terms proportional to

TH(n) + BHy(n) and  kHy(y)

Ty(n) = 5

n (1.5.10), respectively, we introduce the functions

N-1
H2 / H2 N 1/ H2 TQ( ) d?”dp,

2 N 1
HQ / H2 N 1/ H2 d?"dp,

Notice that they solve ODEs
U S U Ty = Tal)
)+ %jzl + e Us ()"~ T = Ha(n),
with boundary conditions J;(0) = J/(0) = 0, J2(0) = J5(0) = 0. We now set

240, 7) 1= HRE(T)eo(r) i n) & Keo(r ) (20(r)) o).

Using L’Hopital’s rule, we readily obtain

Ty(n) = (—% + 6) Con " +o(n™7), (1.5.11a)
Ji(n) = %Cm‘m +o(n 7, (1.5.11b)
T3(n) = gJ{(n) +BJ1(n) = (Z0/2 22&%; b+ 1)0071—7*2 +o(np %%,  (1.5.11c)

as 7 — oo. Notice that (—v/2+ 5)(—v/2 + B+ 1) = AgA1 > 0 for p > py,. The redefined
function

Zi(n,1):=Ze(n, )+ 22(n,T)

satisfies

NZs =0 | (Vi) + 22)" = Ui(n)" = pUs ()" 2

+p(Ui(n)~" — Uz(n)p’l)Zi} + (Ex(r) — E(1)) Tu(n) (1.5.12)
£ () (L () + BHO)) — o) (Ex(r) H(n) + R, 7).

49



where

As is readily seen, there is a constant C, > 0 such that
[R(n,7)] < Creo(r)" (14 )7+,

This is smaller than

(Ex(r) = E()Th(n) = FVkeo (1) Ty (n)

in its modulus. Due to (1.5.8), we have

‘_8(7)&(7) (5H () +5Hm) 50(7)2%@(7»}[(") (1.5.13)

< Ceo(r)! (1 +n) 772 < Ce(r)* ™ (1+)7

for n < eo(7)?"!. We now choose k large enough, so that the last quantity of (1.5.13) is
dominated by (€4(7) — (7)) T1(n) as well.

Consider the case where the plus sign of Z. is selected. Since T7(n) is positive, it follows
from (1.5.6), (1.5.9b), (1.5.12), and (1.5.13) that

NE, <o (Uin) + 24)" = Ui(n)” = pUi(n)" ' 2,
1
+p(Ui(n)' ™" — Uz(??)p_l)&} - §€0(7)2+20T1(77)
holds for n < go(7)"1. Moreover, it is easily seen that this last term dominates for
1 < n < eo(r)?7!, whereas the negative term p(U;(n)P~" — Ux(n)?~!)Z; dominates for
n = O(1). Therefore the function Z; is a supersolution. The case where the negative sign of
Z, is selected is similar. In this case the both (Uy(n) + 2_)" — Ui(n)? — pUs(n)P~'Z_ and
p(Ul(n)”_1 — Ug(n)p_l)Z, are positive. Consequently, the function Z_ is a subsolution.
Next, we verify

Z (n,7)<U,1)—U(n) < Z:(n,7) for n= 5(7’)9’1, To<T1T<T]. (1.5.14)

To this end, we recall

Bua(1,7) = Unr) + a3 (1)n(r) and ai(r) = — ().
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Due to (1.2.8a), we obtain, as 7 = go(7)?

(I)med (Ta 7—) - (I)inn (T, 7_)
_ CQ€<T>772BT77+2(1 + O(Tz)) + 6(7_)7725+min{2|)\0|,\/5}0(rfyfmin{2\)\0|,\/5})7

— 0,
(1.5.15)

where Cy := h{/2(2 + /D) = C1(1 + 2w,) (cf. (1.5.8)). Combining (1.5.2) with (1.5.15), we
get
|®(r, T) — @inn (7, 7) — Coe ()2 r 42| < 2Keg ()77 2+r (1.5.16)

forr = 50(7')9 and 79 < 7 < 77. Rewriting this estimate by the inner variables, we obtain
U, 7) = Ui(n) = E(r)H (n)| < 3Keo()*'n".
It then follows that
U(n,7) = Ui(n)| < E(r)H(n) + 3Keo(T)*n™" < Z1(n,7) + Ke(1)* Ho (€).

We thus obtain (1.5.14) with M; = 5M,C, " if 75 is large enough (cf. (1.5.7)). We finally
verify if the bound corresponding to (1.5.14) at 7 = 7 is true for |¢| < e(7)?"!, which
amounts to asking if there holds

‘@0(7‘) — By, 7o) — (70) " (o) H, <$) ‘ < Mye(ro) 2% 1, (%TO)) (1.5.17)

for r < (70)9. This is clearly satisfied for r < e(79)?, since ®o(r) = Py (r, 70) there and
e(10)2 VO H (&) < Hp(€) with & = 7/e(19) < 2e(79)%~. As for the region {(79)¥ < r <
e(10)?}, an estimate similar to (1.5.15) with 7 = 75 implies

Bout (r, 70) — Pinn(r, 7o) — Cre(70) ™2 r™7+2| < Ce(r) 2400

Combining this with the assumption (1.5.1), we readily obtain (1.5.17). Comparison principle
completes the proof. O]

1.6 Completion of the key a priori estimate

We now prove Lemma 1.3.1. Due to Lemmas 1.4.3 and 1.5.1 below, it suffices to show

1
W) - ai(on(n)] < Sea(m . @ <<, (1.6.12)
1
|W(T” 7_) _ aZ(T)Q/Jg(T)‘ < 550(7—0)2950(7_)7_2ﬁ742£, 1 S r S 6—(4)7'()67'/2, (161b)
1
W (r,7)| < 56_@”’7”_25, r>e e/, (1.6.1c)

as long as 79 < 7 < 7 with 7y large enough. When 79 < 7 < 79 + 1, the estimates (1.6.1a)
and (1.6.1b) follow from Lemma 1.4.7. When 75 + 1 < 7y, we obtain (1.6.1a) and (1.6.1Db)
from Lemma 1.4.12 as well as the estimate (1.4.11) of Fourier coefficients. We will prove the
estimate (1.6.1c) in Lemma 1.6.1 below. Then, the proof of Lemma 1.3.1 is now complete.
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1.6.1 A priori estimates in the outer region
Lemma 1.6.1. There ezists a constant © > 0 such that

W(y, )| < Ce On|y[2Rl (1.6.2)
for |y| > e=¥™e™/2 and 7o < T < 11 with sufficiently large 7.

Proof. Similarly to (1.3.10), there exists a positive constant C' such that

Cr2ol r < eo(0)?,
|WO(T>| S 06_2‘;)\@7-07’2“0‘ 80(7'0)9 <7 S 6(1/2—(7.))7’07
07,.2‘)\0|—R, 6(1/2—&))7’0 < ,,,.7

We define functions W; and W, as

Wy, 75 ) = [S(T — 70)Wol(y) + /T[S(T —5)g(W(s)](y) ds = Wy + Wy (1.6.3)

70

The estimate (1.4.20) implies that

C€|A0|(T—T0) o] ||y|€*(7'77'0)/2 _ T|2 -
Wy < (1= c—ymr2 /0 exp § — 11— ) \Wo(r)|B,(r, 7 — 7o)r™ " dr.

We split the integral region as Ry = Dy(79) U Do(79) U D3(10) and Wy = Wy 1 + Wi o+ W 3,
accordingly, where D; is as in (1.4.31).

Estimate for W; ;. We remark that

—\T—T( 1 —(T—T 1 —W )T ] 1 — T —T
llyle= =2 — 4| > Slule (r=m0)/2 | 56(1/2 ™ ey (rp)? > Slule (r—70)/2

for |y| > e=“™e™/? and r € D (7). Similar argument to (1.4.34), we have

W1 1 S Cie(|>\0|+m/2)(7'—7'0)|y|—2|>\0|—m|y|2|>\0|/ T?‘/\()H—m—l d'I"
, D1 (7o)
< Cem (/2 Eobtmim 2 (7 \1-0)(2Aol+m) |y 20l

Estimate for WLQ- We Split DQ(T()) = D271(7—0) U D272(7'0) and WLQ = W172,1 + W172727
accordingly, where D, ; is as in (1.4.36). It then follows from (1.4.25) that

—2%A 0 2 No|(1/2—% Xo|(T— —2|\ 2|\
W1,271 < O8e 29Mmo, Aol (1/2=&)70 o[ Aol (7 T0)|y| | °‘|y| Aol

< 062\)\0|(W—W)6—2w>\z7’0|y|2\)\0| < Ce—w/\em’y|2\>\o|

for sufficiently small w € (0,w). To use (1.4.27), we obtain

—2WA¢70 | Mo (T—T —2|\ 2|\ —(1=2w)|Xo|T0 ,—2WA 7 2|\
Wigq < CSZI/\o\e 270 o[ Aol ( 0)|y| | 0\|y| [Aol < Ce ( )AolT0 adm Aol
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Estimate for W; 5. We Set

D3,1(97To) = Ds(To) N Bl(?/, To) and D3,2(y7 To) = Da(To) N BQ(%TO)a

and split Wy 3 = Wy 51 + Wy 3.9, accordingly, where B; is as in (1.4.22). Due to (1.4.25), we
see that

Wy 51 < CSelolm=m0)(g]y|e=(7=70)/2)2R0l o =r(1/2=0)m0 < Cp=r(1/2=E)0 |y 1200l

In additional, (1.4.27) implies that
Wi 59 < CSQMO‘eIAo\(TfTo)efn(l/%o?)ro‘y,fmol|y|2le\ < Cef(|Ao|+m)(1/2fa)To‘ylzw.

It follows from similar argument to Lemmas 1.4.6 and 1.4.11 that |[Ws| < Ceo (7o) |y|*?!

for |y| > e=“™e™/2. The proof is complete. O
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Chapter 2

Large time behavior of solutions of
the heat equationwith inverse square
potential

2.1 Introduction and main results

Let L := —A +V be a nonnegative Schrodinger operator on L?(R"), where N > 2 and V is
a radially symmetric inverse square potential, that is

= Mr 2 +o(r ) as r—0,
V(r)=Xr?+o(r?7") as r— oo,

for some Aj, Ay € [\, 00) with A, := —(N —2)%/4 and 6 > 0. We are interested in the precise
description of the large time behavior of u = e~**¢, which is a solution of

u(z,0) = p(x) in RN (2:1.1)

{ uy=Au—V(lz))u in RN x Ry,
Nonnegative Schrodinger operators and their heat semigroups appear in various fields and
have been studied intensively by many authors since the pioneering work due to Simon [40]
(see e.g., [2], [4], [6], [8], [11], [12], [16]-[22], [26]-[30], [32], [33], [35]-[44] and references
therein). See also the monographs of Davies [7], Grigor'yan [9] and Ouhabaz [34]. The
inverse square potential is a typical one appearing in the study of the Schrodinger operators
and it arises in the linearized analysis for nonlinear diffusion equations and in the asymptotic
analysis for diffusion equations.
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Throughout this Chapter we assume the following condition on the potential V' :
(i) V=V(r)eC'(Ry);
(ii) lir%r_e‘rQV(r) — /\1‘ =0 and lim 7"9‘7‘2‘/(7’) — ,\2‘ =0,
r—

o (N —2)? (V)
4

for some A, A2 € [\, 00) with A\, := — and 6 > 0;

(i) sup|r®V'(r)| < occ.
r>1

We say that L := —A + V(|z|) is nonnegative on L*(RY) if

[ e+ Vel do 20, 6 € CRR (o))

When L is nonnegative, we say that

e [ is subcritical if, for any W € Cy(RY), L —eW is nonnegative for all sufficiently small
e>0:

e [ is critical if L is not subcritical.

On the other hand, L is said to be supercritical if L is not nonnegative.
Consider the ordinary differential equation

N -1
U'+=——=U'=V(OU =0 in R, (0)
under condition (V). Equation (O) has two linearly independent solutions U (a regular

solution) and U (a singular solution) such that

~ A7 (M) if A >\
U(r) ~r 200 and T(r)~{ " 17 2.1.2
(r)~r o (r) r~N=2201ogr| if A = A, ( )
as r — 0, where
—(N —2)+ N —2)2 +4)\
Aoy = N ZDEVINZ2PH N (2.1.3)

2
In particular, U € L2 _(RY). Assume that L is nonnegative on L*(RY). Then it follows from

loc

[22, Theorem 1.1] that U is positive in Ry and
U(r) ~co(r) as r— o0 (2.1.4)

for some positive constant c,, where

rAT(O2) if L is subcritical and Ay > A,
v(r) =< r~WN=22logr if L is subcritical and Ay = A,, (2.1.5)
rA”(02) if L is critical.
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(See also [33] for the case A\; = 0.) We often call U a positive harmonic function for the
operator L. When L is critical, following [38], we say that L is positive-critical if U € L*(R")
and that L is null-critical if U ¢ L?(R”). Generally, the behavior of the fundamental solution
p = p(z,y,t) corresponding to e X can be classified by whether L is either subcritical, null-
critical or positive-critical. Indeed, in the case of \; = 0, by [38, Theorem 1.2], we have:

(L1) If L is subcritical, then
lim p(z,y,t) =0 and / p(z,y,t)dt < oo,
t—o0 0
for z,y € RY with x # y;
(L2) If L is null-critical, that is A= (Ag) > —N/2, then
lim p(z,y,t) =0 and / p(z,y,t)dt = oo,
t—ro0 0

for z,y € RY with z # y;
(L3) If L is positive-critical, that is A~ (\y) < —N/2, then

: U(lz))U(Jy])
lim p(z,y,t) = ———p——,
t—o0 HU”%2(RN)

for z,y € RV.

See Corollary 2.1.5 for (L1) and (L2) in the case of A\; # 0.

On the other hand, under condition (V), Ishige, Kabeya, and Ouhabaz recently studied
in [22] the Gaussian estimate of the fundamental solution p = p(x,y,t) in the subcritical case
and in the critical case with A~ (\y) > —N/2. They proved that

ol VDU i VD) Lol
U0 UG

holds for all z,y € RY and ¢ > 0, where C' is a positive constant (see [22, Theorem 1.3]).
For related results, see e.g., [2], [6], [10], [26], [28], [29], [30], [43], [44] and references therein.

The precise description of the large time behavior of e *2p with p € L2(RY, el=*/4 dx) has
been studied in a series of papers [16]-[19] only in the subcritical case with some additional
restrictions such as V' € C*([0,00)), Ay > A, and the sign of the potential. See also [20].

The purpose of this Chapter is to establish a method for obtaining the precise description
of the large time behavior of e ¢ with p € L?(RY, ele?/4 dx) in the subcritical case and in
the null-critical case with A~ (A\y) > —N/2, under condition (V). In particular, we show that
the solution u of (2.1.1) behaves as a suitable multiple of

0 < p(z,y,t) < CtN? (2.1.6)

Ureg(2,t) if L is subcritical and A > A,
re, )t . . o .
Vreg (). if L is subcritical and A = \,,
log(1+t)
N
Using(®,t) if L is critical and A~ (\g) > 5
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as t — oo on all parabolic cones {az € RV Vt/R < lz] < R\/%} with R > 1. (See
Theorem 2.1.4.) Here

2
Ureg(xa t) = — 4~ N/2=AT(x2) |x|A+(/\2) exp {_ﬁ} 7

Using(‘ra t) = t_N/2_A7(/\2)|x|A7(>\2) €Xp {_x_} 3

which are self-similar solutions of
vy =Av—Xolz| v in [RV\ {0}] x Rs.

However, due to the fact that v (t) € H'(RY) for any ¢ > 0, the arguments in [16]-[19] are
not applicable to the critical case. In this Chapter we study the large time behavior of the
function |z|~4e~* ¢, instead of e~*Fyp, with

A= At(\y) if L is subcritical and A := A~ (\y) if L is critical, (2.1.7)

and overcome the difficulty arising from the fact that ve,e(t) € H'(RY).

2.1.1 Radial solutions

In this subsection we focus on radially symmetric solutions of (2.1.1). Divide the operator L
into the following three cases:

(S) : L is subcritical and Ay > A,; (S.) : L is subcritical and Ay = Ay;
(C) : L is critical and A~ (\g) > —N/2.
Set
2
di=N+24,  pa(€) = &1t e T

Sd_l 27Td/2 Sd 1 (218)
877 = r(d/2)’ 2d7rd/2 24— 1P (d/2)

where I is the Gamma function. Then ||¢q|| 2, p,de) = 1. If d is an integer such that d > 2,
then S| coincides with the volume of (d — 1)-dimensional unit sphere.

Let ¢ be radially symmetric and ¢ € L2(RY, elzl*/4 dz). Then e~y is radially symmetric
with respect to x and set

u(lz],¢) = [e7¢] (z) and  v(ja],t) = |2 u(la], 1),

for € RY and t > 0. Then v satisfies the Cauchy problem for a d-dimensional parabolic
equation

1
vy = mﬁr (Td_lﬁrv) —Vy(r)v in Ry xRy,
v(r,0) = r~49(r) in Ry,
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where V3, (1) := V(1) — Agr™2.

In the first and the second theorems we obtain the precise description of the large time
behavior of the radially symmetric solutions of (2.1.1) in either (S) or (C).

Theorem 2.1.1. Let N > 2 and assume condition (V). Let L satisfy either (S) or (C).
Let u = u(|z|,t) be a radially symmetric solution of (2.1.1) such that ¢ € L*(RN, el**/* dx).
Define w = w(&, s) by

w(g, s) = (1 4+ ) Mu(r,t)
with ¢ = " >0 and s= log(1+1t) > 0. (2.1.9)

vV1i+t o

Then there exists a positive constant C' such that

Sup [|w(s)llz2m, puae) < Clwl0)llzz e, o)

Furthermore,

lim w(E,s) = m(@)a€) in LRy, pad€) N C*(K) (2.1.10)

S§—00

for any compact set K in RN \ {0}, where

m(p) = C—d/ooo o(r)U(r)yrN " dr. (2.1.11)

Cx
In particular, if m(p) = 0, then
lw(s)|| 2., pgde) + |w(s)|lc2y = O(e™®) as s — oo. (2.1.12)
Theorem 2.1.2. Assume the same conditions as in Theorem 2.1.1. Set w.(r,t) := u(r,t)/U(r).
(a) For any j € {0,1,...}, du, € C([0,00) x Ry).

dCd
2¢,

(b) lim %20, (0,8) = “m(p)  and  Tim ¢4 (@,)(0,) = -
—00

t—o0 Cy

m(p).
(¢) Let T > 0 and e be a sufficiently small positive constant. Define
Ga(r,t) == u(r,t) — [u(0,8) + (Opus) (0, 8) Fy(r)] (2.1.13)

forr >0 and t > 0 with

T 1 S
=4 F, ::/ —/ 2pd-t .
Ug(s) :=r="U(r) and Fy(r) L Ta(T Ug(T)°7% " drds

Then there exists a positive constant C such that

(0:Ga)(r, )] < CE P2 0]l o elef? /4 o (2.1.14)

)
for0€{0,1,2}, 0<r<ey1+t, andt>T.
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In case (S.) we have:

Theorem 2.1.3. Let N > 2 and assume condition (V). Let L satisfy (S.). Let u = u(|z|,t)
be a radially symmetric solution of (2.1.1) such that p € LA(RN, el**/4 dz).

(1) Let w be as in Theorem 2.1.1 and K a compact set in RN \ {0}. Then there exists a
positive constant Cy such that

sup (1 + s)lw(s)|l2ry, ppae) < Crl|w(0)|[ 2R, s de)-

Furthermore,

lim sw(¢, s) = 2m(p)y2(§) in L*(Ry, ppd§) N C*(K),

§—00

where m(yp) is as in (2.1.11).
(II) Let uy, Uy, Fy and Go be as in Theorem 2.1.2 with d = 2. Then

8tju*€C([0,oo)><R+) for j€{0,1,...},
2v2

Cx

z‘/lim t(logt)*u.(0,t) = m(y) and tlim t*(logt)?(0pu,)(0,t) = — m(p).

Furthermore, for any T > 0 and any sufficiently small € > 0, there exists a positive
constant Cy such that

_ -2 4
|(0;G2) (r,t)| < Cat ™ (log(1+8)) ol oy ele /s aay (2.1.15)
for0€{0,1,2}, 0<r<ey1+t, andt>T.
The function w defined by (2.1.9) satisfies

wy = —Lqw — V(& s)w for € €[0,00), s> 0, (2.1.16)

where X ;
Law := —pd—(é)ag(pd(f)agw) —gw and V(g s) = eVy, (%),

For the proofs of Theorems 2.1.1-2.1.3, we regard the operator L, as a d-dimensional elliptic
operator with
d>2 in the case of (S),

d=2 in the case of Ay = A,
0 <d <2 in the case of (C) with \y > A,
and study the large time behavior of w = w(&, s) by developing the arguments in a series of

papers [13]-[19]. The function 14 defined by (2.1.8) is the first eigenfunction of the eigenvalue
problem

'qub = M¢ in R+7 §b S Hl (R-H pd(g) dg) (E>
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and the corresponding eigenvalue is 0 (see Lemma 2.2.7). We show that w behaves like a
suitable multiple of 14 as s — co. Furthermore, combining the radially symmetry of v with
the behavior of w, we prove Theorems 2.1.1-2.1.3.

The eigenfunction 14 corresponds to v,e, in the subcritical case and vgiyg in the null-critical
case, respectively. In the null-critical case, vy is transformed by (2.1.9) into

e (AT0)=AT0NS/20 with gy = ¢ATORAT () €4

Here @Zd is the first eigenfunction of the eigenvalue problem

‘Cd¢ = M¢ in R+, ¢ € H(%(R-H pd(g) df)

and the corresponding eigenvalue is (A*(Ay) — A7(X2))/2 > 0. In the null-critical case with
A2 > A, we see that 0 < d < 2 and HJ (R, pa(&) d€) # H' (R, pa(€)d€). This justifies
that the operator £, has two positive eigenfunctions ¢, and i/;d-

The case of d = 0 is on borderline where L is null-critical and it is not treated in this
Chapter. Indeed, it seems difficult to apply the arguments of this Chapter to the case of
d =0 since pg(§) ~ &1 as &€ — 0 and pg & L' (Ry).

2.1.2 Nonradial solutions

We discuss the large time behavior of solutions of (2.1.1) without the radially symmetry of
the solutions.
Let Agn-1 be the Laplace-Beltrami operator on S¥~1. Let {wy.}2°, be the eigenvalues of

—Agnv-1Q =w@ on SV Qe L*(SNT.

Then wy, = k(N + k —2) for k =0,1,.... Let {Qx;}*, and ¢4 be the orthonormal system
and the dimension of the eigenspace corresponding to wy, respectively. In particular, ¢ = 1
{1 = N, and

_1)-1/2 T .
Qo1 = ¢ = ‘SN 1| / , Q= qu with gy := V/Ng.. (2.1.17)

For any ¢ € L2(RY, el*I"/4 dzx), we can find radially symmetric functions {¢*} ¢ L2(RN, el*I"/4 dx)
such that

Po S i RS, ), i) i ¢“<|x|>@m(| |)

k=0 i=1

(see [14] and [16]). Define Ly := —A + Vi(|z|) and Vi(r) :== V(r) + wir—2. Then

[ (@) = e ] () Qs (, ).
(2.1.18)

oo A

e e Z Z _thCbk (@) Qs (%) in L?(RY) for any t > 0.

k=0 i=1
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Therefore the behavior of e~ * ¢ is described by a series of the radially symmetric solutions

e tErgk i Furthermore, Vj, satisfies condition (V) with A; and Ay replaced by A\; + wy and

A2 + wy, respectively. In particular, L is subcritical if £ > 1. Therefore, applying our results

in §§2.1.1, we can obtain the precise description of the large time behavior of e=**¢.

As an application of the above argument, we obtain the following result.
Theorem 2.1.4. Let N > 2 and ¢ € L*(RN, e*’/* dz). Assume condition (V). Let

M{p) = — /RN (@)U (al) d, e IS geaa g (N%M) /r (g) |

CxK c5

(a) In cases (S) and (C),

lim ¢V [ ] (Vi) = M () [yl e

t—o00

in LARN, eP/4 dy) and in L®°(K) for any compact set K C RN\ {0}. Furthermore,

lim #V/2+A [e_tLSO} (z) _ M(p)
t=o0 U(lz|) Ce

uniformly on B(0, R) for any R > 0.

(b) In case (S.),
lim tNF2(log t)[e o] (Viy) = 2M (@) |y| e P /4

t—o00

in LA(RN, eP/4 dy) and in L®(K) for any compact set K < RN\ {0}. Furthermore,

N2+ o leel(x)  4M(p)
Yim £55 H (log 1)* =g 5= = =

uniformly on B(0, R) for any R > 0.
As a corollary of Theorem 2.1.4, we have:

Corollary 2.1.5. Let N > 2 and assume condition (V). Let x, y € RY. Then

t 1
75N/2+AM — in cases (S) and (C),

lim
t—00 U(lz)U(lyl) 2w
t) 4
lim ¢(lo tQp(a:,—y,:_ in case (S,).
A Uos VG Do) ~ @ (5

Corollary 2.1.5 implies the same conclusion as in (L1) and (L2). For related results, see
e.g., [4], [28], [32], [36] and [38].

The above argument also enables us to obtain the higher order asymptotic expansions of
e . Furthermore, similarly to [13]-[19], it is useful for the study the large time behavior
of the hot spots of e7*Fp. (See Chapter 3.)
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The rest of this Chapter is organized as follows. In §2.2 we formulate the definition of the
solution of (2.1.1) and prove some preliminary lemmas. In §2.3 we obtain a priori estimates of
radially symmetric solutions of (2.1.1) by using the comparison principle. In §2.4 we obtain
the precise description of the large time behavior of radially symmetric solutions of (2.1.1)
and complete the proofs of Theorems 2.1.1-2.1.3. In §2.5, by the argument in §1.2 we apply
Theorems 2.1.1-2.1.3 to prove Theorem 2.1.4 and Corollary 2.1.5.

2.2 Preliminaries

We formulate the definition of the solution of (2.1.1) and obtain some properties related to
the operator L.

2.2.1 Definition of the solution

Assume condition (V) and let L := —A 4+ V' be nonnegative. In this subsection we consider
the Cauchy problem

Oy, = — L, u, in RY x Ry,
P
U (2,0) = o ()  in RV, (P)
where )
Lo, = ——div(vVu,), v:=U?€ L, (RY), ¢, LR, vdr).
v

Definition 2.2.1. Let o, € L*(R", vdz). We say that u, is a solution of (P) if
u, € C([0,00)) : L*(RY, vdz) N L*(Ry : H'(RY, vdz)),
/ / (—u*ht+Vu*Vh)dedT:0 for any heC’go(RN X R+),
0o JRN

Jim e (t) = ol 2w, v an) = 0-

Problem (P) possesses a unique solution w, such that

e 2@~ v aey < losllz@y,vany, ¢ >0, (2.2.1)

and we often denote by e~**, the unique solution u,. Since U € C*(RN \ {0}) and U > 0
in RV \ {0}, applying the parabolic regularity theorems (see e.g., [25, Chapter IV]) to (P),
we see that

Hu, € C*H(RV\{0}) xRy), j=0,1,.... (2.2.2)

Lemma 2.2.2. Assume condition (V) and that L is nonnegative. Let o, € L*(RY, vdx)
and u, = e ",
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(i) For any j € {1,2,...}, there exists C > 0 such that
H(agu*)(t)”LQ(RN,udx) < Ct il 2wy, vany, ¢ >0,
(i) If o. € LRV, el*/*y dx), then

Sup sl L2m cioi2rar0, ary < N9ell 2@ clei2/ay day-

Proof. Assertion (1) follows from the same argument as in the proof of [14, Lemma 2.1]. We
prove assertion (ii). It follows that

/ - (Opu ) (, T)us(z, )exp{4(lfﬂ}y(x)
== / (2, 1) exp {4 A"’"f 5 } v(x) da — % /R (w00 iy (2) da

' |z 2
o T T)Qu*(mﬂ') exp {m} v(z)dxdr

dxdr

and

/Ot Vo (z,7) V(u*(x ) exp{zl(lm—fﬂ}) () dudr
//RNWU*M exp{4(lf >} () dudr
+/ /RN u*(x,T)Vu*(x,T)-mexp{qr—fﬂ}y(l‘) ddr
__/ /RN 1'1’27 (@ T)Qexp{$}y(x)dxd7.

Then, multiplying (P) by w.(z,7)exp {|z]?/4(1 + 7)} and integrating it in R x R, we
obtain

/RN w (1) exp {z;(lx—ff)} v(z) de < /RN (@) exp {4(1@"_&)} J(2) da

for ¢ > 0. Thus assertion (ii) follows. (The proof of assertion (ii) is somewhat formal,
however it is justified by use of approximate solutions.) O]

Furthermore, we have:

Lemma 2.2.3. Assume condition (V) and that L is nonnegative. Let u, be a radially sym-
metric solution of (P). Then d]u, is continuous in RY x R, where j € {0,1,...}.
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Proof. Let j € {0,1,...} and set v; = du,. By (2.2.2), it suffices to prove the continuity of
v; at (0,t) € RY x Ry. Since v; is radially symmetric, v; satisfies

Owj = %&ﬂ (erlu(r)&,vj)
" ”(I ) (2.2.3)
— rN+k—1r—ky(r)ar (N () 0,;), >0, t>0,
for any k € R. Since A*(\;) > —N/2, we can find k € {1,2,...} such that
—N —k <2A%(\) —k < N+k. (2.2.4)

Set 0;(x, t) := v;(|x|,t) and #(x) := |x|*v(|x|) for x € R¥™* and ¢ > 0. By Definition 2.2.1,
Lemma 2.2.2 (1), and (2.2.3), we see that v, satisfies

1
at’ljj = 5diVN+k (D VN+]€@J) in RN+k X R+,

) |SN+k—1| y
105 (D) L2+, 5 ax) = W"vj(t>“L2(RN,udx) < Ct|@ullL2®mn, v )

where divy,yy is the (N + k)-dimensional divergence operator. Furthermore, it follows from
(2.1.2) that 7(x) ~ |[x[>4" M)~ as |x| — 0. This together with (2.2.4) implies that 7 is an
Ay weight in a neighborhood of 0 € R¥**%, By Lemma 2.2.2 (i), applying the regularity
theorems for parabolic equations with Ay weight (see e.g., [5] and [13]), we see that ©; is
continuous at (0,¢) € RN** x R,. This means that &/u, is continuous at (0,#) € RY x R..
Thus Lemma 2.2.3 follows. O]

We formulate the definition of the solution of (2.1.1). See also [29] and [30].
Definition 2.2.4. Let u be a measurable function in RY x R, and ¢ € L2(R"). Define

_ ulz,t) _ ple)
Uy (z, 1) := T and @, (z) = T

Then we say that u is a solution of (2.1.1) if u, is a solution of (P).

In the case where A, Ay > \,, we can deduce from (2.1.2) and (2.1.3) that U € H}(RY)
and that a solution u of (2.1.1) satisfies

u € C([0,00) : L*(R™)) N L*(R, : HY(RM)).

We remark that ¢ € L2(RY) if and only if ¢, € L*(RY, vdz). Furthermore, by (2.1.6), we
have the following lemma (see also [11, Theorem 1.2] and [12, Theorem 1.1]).

Lemma 2.2.5. Let u be a solution of (2.1.1) under condition (V). Assume either L is
subceritical or L is critical with A= (X\y) > —N/2. Then, for any T > 0, there exists C' > 0
such that

ue. 0l _ Clleleay

U(min{|z|,vt}) = tNAU(VE) '
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Proof. 1t follows from (2.1.6) that

uz, t)] 1 i ]
U(min{|x|,\/¥}) = U(min{|x|, \/i}) </{y|<\/i}+/{|y>\/z}> p(x,y,t)|e(y)| dy
<Ce VU [ ew)U(ul) dy

{lyl<vi}

_ 2
L orYPU (Ve / expd ~ZZ I o ay
(ly>vD) Ct

< CtNPUWVO U 2 gqy<vip 19 2@y + CEN UV o 2@y

for v € RY and ¢ > 0. On the other hand, by (2.1.4) and (2.1.5), we have
U1l 2 qy1<vay < CEVAU V)

for t > T (see also (2.3.7)). These imply (2.2.5) and Lemma 2.2.5 follows. O

2.2.2 Preliminary lemmas

We prove a lemma on the decay of U’ as r — oo.

Lemma 2.2.6. Let N > 2. Assume condition (V) and that L = —A+V (|x|) is nonnegative.

Let U and v be as in (2.1.2) and (2.1.5), respectively. In cases (S) and (C) there exists 6 > 0
such that

@(ﬂg)_mfbﬁaSTAW. (2.2.6)

Proof. Let Vy,(r) := V(r) — A\gr~2. Set

TA+()‘2)

) r~N=2/2]ogr if L is subcritical and X\ = \,,
v (r) =
otherwise,

It follows from (2.1.4) and (V) (ii) that

N ()WL (DU () = O(TN_3_6+A7(>\2)U(T))
O(r7179) if L is subcritical and Xy > \,,
= O(r~'179V@) if L is critical and \y > A,,
O(r7179) if L is critical and Ay = \,,

(2.2.7)

as T — 00, where Q = (N — 2)% + 4)\y. Then the function

G(r):=v(r) T—_ 12 ~1 OOU_(T)VAQ(T)U(T)TN_I drds
1 v (8) S s
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can be defined for any r» > 0 and satisfies
G"(r) + ?G’(r) — X7 2G(r) = Vo, (r)U(r) in Ry,
G(r) =o(vt(r)) as r— oo. (2.2.8)
Since N1
U'(r) + TU/(T’) — X 2U(r) = Vo, (r)U(r) in Ry,
the function o(r) := U(r) — G(r) satisfies
N -1

" (r) + T(r) —Ar20(r) =0 in Ry. (2.2.9)

On the other hand, v* satisfy (2.2.9) and are linearly independent. Therefore, applying
the standard theory for ordinary differential equations, we can find a, b € R such that
o(r) = avt(r) + bv~(r) in Ry, that is

U(r)=av*(r) +bv~(r) +G(r) in Ry, (2.2.10)
Assume that L is subcritical. By (2.1.4), (2.2.8), and (2.2.10), we have

Ul(r) _ " 1 R _
o(r) —c, +r V0 [b+/1 —v—(s)2sN—1/ v (Vo (DU (1)7N 1d7’d8} )
Since Q = (N —2)* +4X; > 0, by (2.2.7), we can find §’ > 0 such that

0, (%) = )fN_l / OV (U () dr
—/Qr Vet {b+ /1 W / h 0™ (T)Va, (1)U (1) 7N 1 des}

=00 ') as r— .

This implies (2.2.6) in the subcritical case.
Next we assume that L is critical. By (2.1.4) and (2.2.8), we see that a = 0 and

U(r) ' 1 - N—1
) b—i—/1 W/s v (T)Va, (MU (T)T drds.

u(r
This together with .7) implies that

(2.2
o, (U : / (VU drds = 0(r1)
o)) T e, 2
as r — 00, and (2.2.6) holds with § = 6. Thus Lemma 2.2.6 follows. O

At the end of this section we state the following lemma on eigenvalue problem (E).

Lemma 2.2.7. Let {u;}2, be the eigenvalues of (E) such that puo < py < .... Then, for
any © € {0,1,...}, pu; = i and p; is simple. Furthermore, 14 given in (2.1.8) is the first
eigenfunction of (E).

Proof. We leave the proof to the reader since it is proved by the same argument as in
[31, Lemma 2.1]. O
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2.3 A priori estimates of radial solutions

Let T'> 0 and € > 0. Define
D.(T) := {(x,t) e RY x (T,0) : |z| < 5\/%}.

In this section we prove the following proposition.

Proposition 2.3.1. Assume condition (V). Let L satisfy either (S), (S«) or (C). Let u, =
uy(|z|,t) be a radially symmetric solution of (P) such that ||p.||p2@m~,par) = 1. Assume that

D/
Stu]é) tD(log(Q + t)) s () || L2V, b dy < 00
>

(2.3.1)

for some D >0 and D' > 0. Let j € {0,1,...}. Then the following holds for any T > 0 and

any sufficiently small € > 0.
(1) There exists C1 > 0 such that
|(0/u.)(l2],1)] < CiTp,pr,5(2)
for (z,t) € D(T), where
P4/ (1og(2 + t))_D/ in the case of (9),
Up,prj(t) == t~P=417 (log(2 + t))fDLl in the case of (S,),

’

t~D=d4/1-3 (1og (2 + t))fD in the case of (C).

(ii) Let
F]{I(T’t) 3:/0 m/o v(T) (@ ) (r, )TV drds.

Then ‘ ' .
() (x|, 1) = (0]u.)(0,8) + Fi(|z[,t) in RY x Ry,

Furthermore, there exists Cy > 0 such that

|F (2], 0)] < Colp,pr @)z, [(0,F) (2], )] < CTp, v,y (1),

for (x,t) € D(T).
For the proof, we construct supersolutions of problem (P) in D.(T).

Lemma 2.3.2. Assume condition (V). Let v; > 0 and v > 0. Set

C(t) ==t (log(241)) ™.

(2.3.2)

Then, for any T > 0 and any sufficiently small € > 0, there ezists a function W, = W, (z,t)

such that

oW, + LW, >0 in RY xRy,
C(t) < Wiz, t) <2¢(t) in D(T).
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Proof. Let T'> 0 and € > 0. Let k be a positive constant such that
IC'(1)] < KtTI(1), t > 0. (2.3.5)

Let

|| 1 s
R N-1
F(ZE) —/(; WA V(T)T deS,
which satisfies —L,F =1 in R". Set

W, (z,t) == 2¢(t)(1 — st " F(x)). (2.3.6)
Since ( is monotone decreasing, by (2.3.5), we have

OW. + LW, > 20 (1) [1 = 5t™"F ()] + 26 (4)t72F () + 26t ™'((¢)
>2¢'(t) +26t71¢(t) >0 in RY xR,

This implies (2.3.3). On the other hand, by (2.1.2), (2.1.4), and (2.1.5), we have

/ Yw(r)dr < Cs 2ATODHEN for 0 < s < L,
0
§2AT () + in the case of (S),
/ ) dr < 2(log(2 + s ) in the case of (S,), for s> 1.
0
G2A™ (2)+ in the cases of (C),

These imply that
/ ) dr < CsNu(s), s>0. (2.3.7)

Then it follows that 0 < F(z) < Clx|? for x € RY. Taking a sufficiently small ¢ > 0 if
necessary, we obtain

1
0 <kt 'F(z) < Ce’k < 3 (z,t) € D(T).
This together with (2.3.6) implies (2.3.4). Thus Lemma 2.3.2 follows. O

Applying the same argument as in [19, Lemma 3.2], we have:

Lemma 2.3.3. Assume the same conditions as in Proposition 2.3.1. Furthermore, assume

(2.3.1) for some D > 0 and D' > 0. Let T > 0 and let € be a sufficiently small positive
constant. Then, for any j € {0,1,...}, there exists C' > 0 such that

|(&¢u.)(|z],t)] < CTp o ;(t) in D.(T). (2.3.8)

71



Proof. Let j € {0,1,...}. Set v; := &u, and u; := U(|z|)v;(x,t). Since
vi(-,t) = 85 (e_(t/z)L*u*(t/Q)), t>0,
Lemma 2.2.2 together with (2.3.1) implies that

. D/ . D/
sup " (log(2+ 1)) [luj ()| 2wy = sup P (log(2+ ) Nl ()l L2my v aw) < 00

Let T'> 0 and let € be a sufficiently small positive constant. Since w; satisfies
Oy = Auj — V(|z[)u; in RY x Ry,
by Lemma 2.2.5, we have
s (], )] < CE Ny (/2)] 2y < P~V (log(2 + 1) ™

for all z € RY and ¢t > T with |z| > ey/1+¢. This together with (2.1.4), (2.1.5), (2.1.7),
(2.1.8) and (2.3.2) implies that

Cuy(lz], 1)
U(ev1+1t)

for all (z,t) € RN x [T,00) with |#| = ey/1+¢. On the other hand, it follows from
Lemma 2.2.3 that

lv; (||, )] < < CT'p,p,5(t) (2.3.9)

lv;(|2],T)| < C (2.3.10)

for x € RN with |z| < ev/1+ T Let W, be as in Lemma 2.3.2 with ¢ replaced by I'p p ;.
Then, by Lemma 2.3.2, (2.3.9), and (2.3.10), we apply the comparison principle to obtain

lv;(|z],t)| < CWi(z,t) <2CTp pj(t) in D.(T).
This implies (2.3.8), and the proof is complete. O

Now we are ready to complete the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. By Lemma 2.3.3, it suffices to prove assertion (ii). Let 7" > 0
and let ¢ be a sufficiently small positive constant. By (2.3.7) and (2.3.8), we obtain

A |z 1 s
Bl 0] < CTo ) [ oy [ vln)r s < CTp a0l
0 0

(0, F%)(|z],1)| < CTp, pr, j+1()]2],
for (z,t) € D.(T'). Set

05(l2l,t) = (@fu) (ol ) = Fi(l«], 1) and  dy(Ja], ¢) == U(Ja])i; (|l 2).
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Since FY; satisfies

1 , ,
W& (v(r)rV 10, F%) = (& u,)(r,t) forr >0 and t > 0,
by Lemma 2.2.3 and (2.2.3), we have
1 “1q a
War(V(T)TN '9,0;) =0 for r>0,t>0, (2.3.11)
lim sup [0;(r, t)| < oo for any ¢ > 0. (2.3.12)
r—0

It follows from (2.3.11) that 4; satisfies (O) for any fixed ¢ > 0. On the other hand, since U

and U are linearly independent solutions of (O), for any ¢ > 0, we can find constants c;(t)
and ¢;(t) such that

a;(r,t) = ¢;()U(r) + &;(t)U(r) for r>0.
This implies that

X a;(r, 1) ¢ (U (r)

U]'(r7 t) = jU(T) = Cj(t) e
By (2.1.2) and (2.3.12), we then have ¢;(t) = 0 and see that v;(r,t) = ¢;(t) for r > 0.
Therefore we have

for > 0.

(Ofu)(lz],t) = ¢j(t) + Fi(lz].¢) in RY xRy and  ¢(t) = (8/u.)(0,1).

Thus assertion (ii) follows, and the proof of Proposition 2.3.1 is complete. O

2.4 Large time behavior of radially symmetric solu-
tions

In this section, under condition (V), we study the large time behavior of radially symmetric
solution v = u(|z|,t) of (2.1.1) and prove Theorems 2.1.1-2.1.3.

Let A, d and w be as in §§ 2.1.1. Set Uy(r) := r=AU(r) and vy := U2. By (2.1.2), (2.1.4),
and Lemma 2.2.6, we have:

1
m& ('rdflarUd) Vi, (r)Us=0 in Ry;
Ua(r) ~ FATOD-A _ AT as r—0;
Udr) ~ 6o Uglr) =067 as r oo incases () and (C). (24.1)

Here ¢, is as in (2.1.4), A := A\; — Ay and

A0 = —(d—2)+ 2(d —27r A
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Furthermore, similarly to Lemma 2.2.6, we see that
Uy(r) ~c.logr, Ujr)=0(r"") as r— oo in caseof (S,). (2.4.2)

Then the function F' z]v given in Proposition 2.3.1 satisfies

' ' . ' 1 ’ +1 d—
FX(r,t) = Fy(r,t) ':/o W/o va(T) (0w, (T, )T drds, (2.4.3)

)

where j € {0,1,...}. Furthermore, it follows from (2.3.7) that
/ 7 y(7) dr < Osyy(s), s> 0. (2.4.4)
0

Assume the same conditions as in Theorem 2.1.1. Let 6 be the constant given in condi-

tion (V) and set

0, = f <€
42+0) 8

Since V (€, s) = e*Vj, (e%/2€), it follows from (V) (ii) that

V(&) < CE?|e? 7 < Clexp {—gs +(2+ 9)6*5} = Cefs/t (2.4.5)

for ¢ € (e7%% 00) and s > 0. Let § be as in Lemma 2.2.6. Then, taking a sufficiently small
6 > 0 if necessary, we have

0<6<min{l,dd'}, o:= (% —0*) (1496) — % >0, > 0. (2.4.6)

We prepare some lemmas on estimates of w.

Lemma 2.4.1. Let HSO*HLz(RN velal2/a gy = 1. Assume the same conditions as in Theo-
rem 2.1.1. Then

—ds/4

(i) sup e” " Hw(s)|l2ry, pgae) < 003
s>0

(ii) Assume that

Sli%)) e lw(s)llz2mey, puagy < 00 (2.4.7)
for some v > —d/4. Then
w(e %, s) = O(e™), (2.4.8)
(Bew)(e*, 5) = O™, (2.4.9)
/ (w(g, s)*pag dé = O(e 275745, (2.4.10)
0

for all sufficiently large s > 0.
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Proof. Since

w(é,s)=(1+ t)d/2r_Au(r, t)

2.4.11
= (1 + Y27 AU (P u,(r, t) = (1 4+ )Y2Uy(r)u.(r, t) ( )
with £ =7/v/1+t and s = log(1 + t), it follows from Lemma 2.2.2 (ii) that
2
/2 2 N-1 r
0 s = 1407 [l Poe e { Es b ar
—11-1 d

- |SN 1‘ 1 +t) /ZHU*( )||L2(RN el z|2 /4(1+t)ydw) (2412)

< ST+
= |SY T A+ )22

L2(RN, el#/4y dz)

L2(Ro, elol?/4 dg) < X

for s > 0 and ¢t > 0 with s = log(1 4 ¢), where |[S¥~!| is the volume of (N — 1)-dimensional
unit sphere, that is [SV~!| = 27/ /T'(N/2). Thus assertion (i) follows.
We prove assertion (ii). It follows from (2.4.12) that

~1/2
leo() z2spade) = (L4 7SV el g i sty

i (2.4.13)
(1 +1 d/4‘SN ll |u*(t)||L2(RN,de)
for s > 0 and ¢t > 0 with s = log(1 + ¢). Assume (2.4.7) for some v > —d/4. Then
sup (1 + t>7+d/4”u*<t)||L2(RN,1/dr) < Q.
>0
Applying Proposition 2.3.1 with D = v 4 d/4 and D" = 0, we obtain
ue(|z],t) = u.(0,8) + F(|z|,t) in RN xR,. (2.4.14)

Furthermore, for any 7" > 0 and any sufficiently small € > 0,

Jus(Jz], )] < CE7=2,
|FY(|z), )] < Ct =42 g2 < 0t~ Y2, (2.4.15)
(0. F%) (||, )] < Ct7= 427 g < Cet 42712,

for (z,t) € D.(T). By (2.4.1), (2.4.11), and (2.4.15), we then have w(e=%*,s) = O(e™*) for

all sufficiently large s > 0. Furthermore,

(Ogw)(e™*, ) = (1 + )2 (Uh(r)ue(r,t) + Ua(r) (9rus ) (r.1))

(1+ )20 un(r,t) + (ex + 0(1)) (0 Fy)(r, 1))

(1+8)7 20010 + (1+ )7 20(r)

O<€ ys— O’S)+O(e ys— 0*5) :O(e ys— 0*5)
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for all sufficiently large s > 0, where r = e(1/270)s s = log(1 4 t) and o is as in (2.4.6). So
we have (2.4.8) and (2.4.9).
On the other hand, by (2.4.1), (2.4.4), (2.4.11), (2.4.14), and (2.4.15), we have

J

679*5

1/2—04
(e, pade = (14 0% [ U e {2V gy
’ 0 ’ 4(1+1)

(148)1/2=0x )
S Ct—Q'y—d/Q/ I/d(T)’f’d_l dr S Ct—Qw—dG*Ud((l + t>1/2_9*) — O(e—st—dG*s)
0
for all sufficiently large s > 0 and ¢ > 0 with s = log(1 + ¢). This implies (2.4.10). Thus
assertion (ii) follows, and the proof is complete. Il

Lemma 2.4.2. Assume the same conditions as in Lemma 2.4.1. Then

sup lw(s)l| 2Ry, pgde) < 00 (2.4.16)

Proof. Assume that (2.4.7) holds for some v > —d/4. Let I(s) := (e7%*, 00). It follows from
(2.1.16) that

4
ds I(s)

2 [ wdelpadew)de+d [ e o)Pods
I(s) I(s)

6_9*8 —0*5)

w(€.5)Ppads =2 [ w@awipads + 0.6 5)[Ppale

1(s)

w(

6_9*8 —9*5)

5)|*pale

- 2/ Vw?pqg d€ + 0,e7%%|w(
1(s)

= —2w(e %, $)pa(e ) (Ocw) (e %%, s) — 2
(" s)pule @ 0) =2 |

I(s

) [Ocwl*pa d§

wle ", 5)Ppale ")

+ d/ lw(€, s)|*pg dé — 2 Vw?pgdE + 0,e7%
I(s) )

I(s

for s > 0. This together with Lemma 2.4.1 and (2.4.5) implies that

d
i e sPrds < -2 [ (owPoidsa [ Jule.s)Poads
ds Jis) I(s) I(s)
(2.4.17)
+ € [ (e s)pade + O(e e )
I(s)
for all sufficiently large s > 0.
Set
_ w(g, s) if &>e %,
. 2.4.18
(&, s) { w(e %% s) if 0<E<e ¥ ( )
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It follows from Lemmas 2.2.7 and 2.4.1 that

_ 2 2
2[@K@W@ﬁﬂﬂﬂ€+%&g@@ﬁﬂﬂﬂf

=2 / (D) (&, )P padé +d / B, 5)[2padé + Ole ®w(e ™ 5)?)  (2.4.19)
0 0
< —2Mo/ (€, 5)[2pade + O(e~Psw(e®*, 5)2) = O(e=215-2)
0

for all sufficiently large s > 0. This together with (2.4.17) implies that

d

| Jw(&s)Ppads < 0698/4/ w(€, 5)PPpadé + O(e™*e™ ) (2.4.20)
I(s)

1(s)

for all sufficiently large s > 0.
On the other hand, by Lemma 2.4.1 (i), we see that (2.4.7) holds with v = —d/4.
Without loss of generality, we can find j € {0, 1,...} such that

1
jb. < 5 < (G + 1)6.. (2.4.21)
Since 0, < 1/4, applying (2.4.20) with v = —d/4, we have

/ |w(§7 S)de dg = O(edS/Q*dO*S)
I(s)

for all sufficiently large s > 0. This together with Lemma 2.4.1 implies that

>0 e M (s) | 2w, ey < 00 (2.4.22)

By (2.4.21), repeating this arguments, we obtain
sup e ds/4+idoes/?
s>0

Applying (2.4.20) with v = —d/4 — jdf./2 again, by (2.4.21), we have

()l 2y pade) < 00

sup [ fu(€.s)padé < oo

s21 JI(s)

Then, similarly to (2.4.22), we obtain (2.4.16). Thus Lemma 2.4.2 follows. O

Combining Lemma 2.4.2 with assertion (ii) of Lemma 2.4.1, we have:

Lemma 2.4.3. Assume the same conditions as in Lemma 2.4.1. Let W be as in (2.4.18).
Then

sup |w(e %% s)| < oo, sup €’ |(Ocw) (e %, 5)| < o0,
s>1 s>1
6_0*5
sup [|0(s)|[r2ry, pgae) < 00, sup €d9*8/ w(&, 5)*padé < 0.
s>1 s>1 0
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Next we study the large time behavior of @w and prove the following proposition

Proposition 2.4.4. Let ||90*||L2(RN veloi?/a gy = 1. Assume the same conditions as in Theo-
rem 2.1.1. Let W be as in (2.4.18). Set

al(s) = / Wihapq d€ = cq / w(&,5)e" " de.
0 0
Then || @ — a(s)all 12, pyde) = O(e7%%) as s — oo, where ' := min{d#, /2, 6/8}.

For the proof of Proposition 2.4.4, we prepare the following lemma

Lemma 2.4.5. Assume the same conditions as in Proposition 2.4.4. Then

sup |a(s)] < oo

, (2.4.23)
s>1

sup €29%|d’(s)| < oo, (2.4.24)
s>1

sup [—w(e %, s)| < oo. (2.4.25)
s>1 |ds

Proof. 1t follows from Lemma 2.4.3 that

sup [a(s)| < sup [ z2m. pedo)l[Vall 2w oy < 00
So we have (2.4.23).

We prove (2.4.25). By Proposition 2.3.1 (ii), and (2.4.11), we have

w(e—0*578) _ edS/QUd(r(s))u*(r(s),t(s)) _ edS/2Ud(7~(S)) [u*(O,t(s)) + F](\),(r(s),t(sm

for s > 0, where 7(s) = /7% and t(s) = ¢* — 1. Then
%w(e_&s’s) = gw(6_9*878) + ETEQ; /( )’LU(G_G*S,S)
+ 20, (r(5)) (Oyu) (0, 1(s))t (s) (2.4.26)

+e®2Ug(r(s))[(0: ) (r(s), 1())r" (5) + (O FR) (r(s), t(5))t'(5)]
for s > 0. It follows from (2.4.1) that

Ua(r(s)) ~ ¢, and  Ul(r(s))r'(s) = O(r(s) "1 7% (s)) = O(e01/270-)s), (2.4.27)

for all sufficiently large s > 0. On the other hand, by Lemma 2.4.2 and (2.4.13), we have

sup (L+ )% Ju ()| 2R, ) < 00
>

(2.4.28)
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Then we apply Proposition 2.3.1 with D = d/4 and D’ = 0 to obtain

(Oru) (0, 1(s)) = O(e™®/*7%)
(0, FY)(r(s),t(s)) = O(e‘ds/2_5r(s)), (2.4.29)
(O FN)(r(s),t(s))

= Fl(r(s).(s)) = O(e/0(s)).
(

for all sufficiently large s > 0. By Lemma 2.4.3, (2.4.26), (2.4.27), and (2.4.29), we have
(2.4.25). Furthermore, by Lemma 2.2.7, Lemma 2.4.3, (2.4.5), (2.4.16) and (2.4.25) we obtain

a(s) = %e’d(;*s(w(e’e*s, 3))/ — cqf e Sw(e 0 s)

+ cqfe” S w(e70% ) + Oswihgpq dé
I(s)

d _
= O(e™ ") + / Ot (paOew ) g d§ + 3 / wgpq d§ — / Vwipgpa d§
I(s) 1(s) I(s)

d
= O<€fd0*s) + /I( )w(?g(pd(?gwd) df + 5 /I( )wwdpd d£ —+ 0(6795/4)
— O<e—d9*s) + 0(6—05/4)
for all sufficiently large s > 0. This implies (2.4.24). Thus Lemma 2.4.5 follows. ]

Proof of Proposition 2.4.4. Set w(&,s) := W(,s) — a(s)vqa(€). It follows from Lemma 2.2.7
and (2.1.16) that

Oy = 8,1 — ' (s)1hg = — Ll — Vi — ' (s)1hg = —Lag@ — VD — a'(s)1hg
for £ € I(s) and s > 0. By Lemma 2.4.3, Lemma 2.4.5, and (2.4.5), we have

d

- [ (&, s)|*padé = 2/ w(0sw)pg d€ + 0,0 @(679*3, s)|2pd(e*9*s)
I(s) I(s)

ds
_ o d_ _ N
= / (waﬁ(Pdﬁgw) + §w2pd — Vwwpg — a’(3)¢dwpd) d¢ + O(e‘de*s)
I(s)
= —2@(e™"*, s)pale”"") (D) (7%, 5) =2 / |(0ew@) (€, 5)[* pa € (2.4.30)
I(s)
+d/ [w(&, ) > padé — 2/ Viwpg de — 2a’(3)/ Dbapa dé + O(e=+5)
1(s) I(s) I(s)

= —2/ |(8§{D)(§, S)|2pd d€ + d/ |7j(§’ S)|2,0d de + O(e_de*s) n 0(6_93/4)
I(s) 1(s)

for all sufficiently large s > 0. Furthermore, similarly to (2.4.19), by Lemmas 2.2.7, 2.4.3,

79



and 2.4.5, we obtain

~ d "
|10 pade~5 [ jate s e
1(s) I(s)
o0 d 00 e—0xs
Z / Q@) (€, 5)[*padt = 5 / [@(&, 5)[*padé — als)” / [0ctbal? pa d
o 2 oo 0 (2.4.31)
= / (D) (€, 5)[? pa d€ — 5/ W (&, 5)[>pa dE + O(e@120+)
0 0
> [ 1) Poads + O @200y = [ i€, 5)pade + Ofe20)
0 I(s)
for all sufficiently large s > 0. Therefore we deduce from (2.4.30) and (2.4.31) that
d% [@(E, )" pade < —2/ (@€, 5)[2pa dE + O(e™*) + O(e %)
v A (2.4.32)

=2 [ e )P + O )
for all sufficiently large s > 0. Since df, < df < 1 (see (2.4.6)), by (2.4.32), we have
[ 1€ fpads = 0 (2.4.33)
for all sufficiently large s > 0. Combining (2.4.33) with Lemmas 2.4.3 and 2.4.5, we obtain

AMW@$Ww%=meW3

for all sufficiently large s > 0. Thus Proposition 2.4.4 follows. O

Proposition 2.4.6. Let HSO*HLz(RN velel2/ gy = 1. Assume the same conditions as in Theo-
rem 2.1.1. Then

la(s) — m(p)| = O(e™"*), (2.4.34)
[@(s) — m(p)Vall 2R, pyae) = Oe™*), (2.4.35)

for all sufficiently large s > 0. Furthermore, if m(yp) =0, then
[0(s) | 22R., pade) = Oe™®),  [lw(s)llL2my, pyae) = Oe™), (2.4.36)
for all sufficiently large s > 0.

Proof. By (2.4.24), we can find a constant a., such that
la(s) — aos| = O(e72%) as s — oco. (2.4.37)
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On the other hand, by Lemma 2.4.3, we have

1/2 1/2
/ Q/ﬁgd_l df‘ S (/ U/}de dg) (/ {d_1€_§2/4 d§> — 0(6_d9*8> (2438)
I(s)° I(s)¢ I(s)¢

for all sufficiently large s > 0, where I(s)° := Ry \ I(s). By Lemma 2.4.3, (2.4.1), (2.4.11),
and (2.4.38), we obtain

a(s) = cq /I( )wfd_l dé + O(e™%)

= cy / o (r ) Ug(r)r = dr + O (e ™) (2.4.39)
(14+4)2 0

= e (r, )vg(r)r?=t dr 4 o(1)
Cy (1+t)l/279*
for all sufficiently large s > 0 and ¢ > 0 with s = log(1 + t).
On the other hand, by (2.4.28), we apply Proposition 2.3.1 with D = d/4 and D" = 0 to

obtain
sup |u, (r, t)] = O(t~Y?) (2.4.40)

0<r<(1+¢)1/2-0=

for all sufficiently large ¢t > 0. Combining (2.4.40) with (2.4.4), we see that

(1+t)1/279*
/ (7, )vg(r)r®=t dr
0

. (2.4.41)
(1+t)1/2 04
— O(t—d/Q)/ Vd(T’)Td_l dr = O(t_d/Q)O(td/Q_de*) — O(t—dO*)
0
for all sufficiently large ¢ > 0. Therefore, by (2.4.39) and (2.4.41), we obtain
s = lim a(s) = lim %/ w, (1, )vg(r)r®=t dr. (2.4.42)
S—00 t—00 Cy 0

On the other hand, since u, is a radial solution of problem (P), we have

/ (v, V)vg(r)rd=t dr :/ w (r, v (r)yrN "t dr :/ o (r)v(r)yrNtdr. (2.4.43)
0 0 0
We deduce from (2.4.42) and (2.4.43) that as = m(p). This together with (2.4.37) implies
(2.4.34). Furthermore, by Proposition 2.4.4 and (2.4.34), we have (2.4.35).

It remains to prove (2.4.36). Assume that m(p) = 0. Then it follows from (2.4.35) and
Lemma 2.4.3 that

D)2 pae) = O™%),  [lw(s)ll 2w, paae) = Oe™?), (2.4.44)
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for all sufficiently large s > 0. Applying the same argument as in the proof of (2.4.32), we
see that p

ds o \w(€,5)|?padé < —/ @(E, 8)|2pa dE + O(e™%)

I(s)
for all sufficiently large s > 0. Furthermore, similarly to (2.4.44), we have

Y

_29/5) —20’5)

H@<5)|‘L2(R+:pdd£) =O(e and Hw(5)|’L2(R+,pdd§) =0(e

for all sufficiently large s > 0. Repeating this argument, we can find § > 1 such that

d

g i w 2 —fs
& s < - /(S)\w(§,3)| padé +O(e)

I

for all sufficiently large s > 0, instead of (2.4.32). This implies that

[0($) | 2Ry padg) = O(e™*)  and  [Jw(s)[| 2wy, pgag) = O(e™),

for all sufficiently large s > 0. Thus (2.4.36) holds. Therefore the proof of Proposition 2.4.6
is complete. Il

We are ready to complete the proof of Theorems 2.1.1 and 2.1.2.

Proof of Theorem 2.1.1. By the linearity of the operator L it suffices to consider only the
case

_111/2
L= [0l p2mv ctera awy = 10l 2 et ragmy = [S™ [ Nw(O) |2 vy, pgaey-  (2:4.45)

Let R > 1. By Lemma 2.4.2, we apply the parabolic regularity theorems (see e.g., [25]) to
(2.1.16). Then we can find a € (0, 1) such that

lllce.aorsmxis.oan = D sup  |(910gw) (&, 5))|
0<tr2j<2 §€IR5€(0.5)

+ Y sup [(@306w) &, 51) — (@10w) (&, 5)] (2.4.46)

2
o (&1,51), (§2,52)€IRr%(0,5), |§1 - €2|a + |81 - 32|a/
+2j=2 (€1,51)#(&2, 52)

for any R > 1 and S > 0, where I := [R™!, R|. Therefore, for any sequence {s;} C R with
lim; o $; = 00, by Proposition 2.4.6 and (2.1.16), we apply the Ascoli-Arzela theorem and
the diagonal argument to find a subsequence {s}} C {s;} such that

lim () = m(@)alloagry =0 and L [[Gw)(s)lloa gy = 0,

1—00
for any R > 1. Since m(p)1y is independent of the choice of {s,}, we see that

tim [fu(s) = m(@)ull oy = 0 and i [|(@0)() loazyy = 0, (2.4.47)

S§—00
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for any R > 1. Furthermore, if as, = m(p) = 0, then, similarly to (2.4.47), by (2.4.36), we
have

sup {](9fw) €. 5

for any R > 1, where ¢ = 0,1,2. These together with Proposition 2.4.6 imply (2.1.10) and
(2.1.12). Thus Theorem 2.1.1 follows. O

;5611%,825}:0(675) as s — 00

Proof of Theorem 2.1.2. Similarly to the proof of Theorem 2.1.1, we can assume (2.4.45)
without loss of generality. Let 7" > 0 and let € be any sufficiently small positive constant. By
Lemma 2.4.2 and (2.4.3), applying Proposition 2.3.1 with D = d/4 and D’ = 0, we obtain

(0w (||, t) = (Ou.)(0,8) + Fi(|z|,t) in RN x Ry, (2.4.48)
where j € {0,1,...}. Furthermore,
|Fi(r,t)] < Ct~4273712 and  [(9,F3)(r,t)| < Ct= 4> 71y (2.4.49)
for 0 <r <ey/1+tandt>T. Then it follows from (2.4.48) and (2.4.49) that
|(Dpu) (r, )] < Cot=4* 1y (2.4.50)
for 0 <r <ey/1+tand t > T. Furthermore, by (2.4.3) and (2.4.48), we have

Falrt) = /oT m /Os va(7) (Ous ) (7, )74 drds

= /’“ W /S va(7) (0w ) (0, ) + Ej(7,t)) 74 drds (2.4.51)
= (Qyus)(0,t) Fy(r) + Gy(r, t)

for r > 0 and t > 0, where F} is given in Theorem 2.1.2 and

Galr, 1) = /0 m ( /0 () EL (1) dT> ds. (2.4.52)

Then (2.1.13) holds. In addition, by (2.4.4), (2.4.49) and (2.4.52) we have

T 1 S
|Gq(r,t)| < C )T, va(T)T Tds

1

. (2.4.53)
< Ct—d/2—2/ ( ) — -sd+2ud(s) ds < Cp—/2=2,4
o V(s)s

for 0 <r <eyl+tandt>T. A similar argument with (2.4.1) implies that
(0LGa) (r t)| < Ct 42722t
for 0 <r <ey1+tandt>T, where ¢ € {1,2}. Thus (2.1.14) holds for ¢ € {0, 1, 2}.
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It remains to prove assertion (b). By (2.4.11) and (2.4.48), we have
w(é, s) = (1+)72Us(r)ue(r,t) = (1 + )Y2Us(r) [ue(0,8) + F9(r,t)] (2.4.54)

for ¢ € Ry and s > 0 with £ = r//1+¢ and s = log(1 +¢). Let 0 < £ < e. By (2.4.1),
(2.4.49), and (2.4.54), we obtain

lw(&,s)— (1+ )42 (¢, + 0(1))u*(0,t)| < C¢? (2.4.55)

for all sufficiently large s > 0 and ¢t > 0 with s = log(1 4+ ¢) and 0 < £ < . On the other
hand, it follows from (2.4.47) that

lim w(€,s) = cam(p)e ¢/ (2.4.56)

§—00

Then we deduce from (2.4.55) and (2.4.56) that

/2 _ G
tllglot u.(0,t) = C*m(go). (2.4.57)
Furthermore, it follows from (2.4.11) that
d
(D) (€. ) = Sw(E, ) + DV S (e 1
+ 6(d+1)s/2Ud(68/2§)g(&«u*ﬂesﬂf,t) + e(d+2)s/2Ud(es/2§)(8tu*)(es/2§, e — 1>‘

This together with (2.4.1), (2.4.50) and (2.4.56) implies that

Oau)(ens) = Sule.s) + AT E e
+ O(€%) + e M252 (¢, 4 0(1)) (Dpu, ) (e3¢, e* — 1) (2.4.58)
= Im(p)ea/ 1 o(1) + O((%6) )
+O(E) + e (¢, + o(1)) (D) (%€, € — 1)
for all sufficiently large s > 0. On the other hand, by (2.4.48) and (2.4.49), we have
e D2 (9, ) (e3¢, €8 — 1) = e D3/2(9u,) (0, e — 1) + O(£2) (2.4.59)
for all sufficiently large s > 0. Therefore, by (2.4.47), (2.4.58), and (2.4.59), we obtain

lim sup
S5—00

(cx + 0(1))eHD/2(9,u,)(0, e — 1) + gcdm(go)’ < Cé.

Since 0 < ¢ < €, we deduce that

d
lim sup |e2%/2(9,u,)(0, e — 1) + Cdm(cp)‘ =0.
s—00 26*
This together with (2.4.57) implies assertion (b). Thus Theorem 2.1.2 follows. O
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Proof of Theorem 2.1.3. Similarly to the proof of Theorem 2.1.1, we can assume (2.4.45)
without loss of generality. Assume the same conditions as in Theorem 2.1.3. Then d = 2
and V), satisfies condition (V) with A\; and Ay replaced by A\ — Ay (> 0) and 0, respectively.
Applying a similar argument as in the proof of argument as in [18, Proposition 3.1], we have

lim sw(¢,s) = = [/OOO w(r, 0)Uy(r)r dr| e €7* = 2m(p)a(€) (2.4.60)

500 Cy
in L?(Ry, po d€) N C?*(K), for any compact set K in R?\ {0}. Furthermore,
2v2
—m
c

tlim t(logt)?u.(0,t) = (p) and tlim t*(logt)?(Oyu,)(0,1) = —
— 00 — 00

On the other hand, similarly to (2.4.48), we have
(0lu)(|z],8) = (8]u.)(0,8) + Fi(|«[,t) in RY x Ry,
where j € {0,1,...}. It follows from (2.4.60) that

sup(1 + 1)¥*log(2 + 1) [t (O] L2 meav, yelaiz/acis0) gy < 0

t>0

Let T > 0 and ¢ be a sufficiently small positive constant. By (2.4.3), we then apply Propo-
sition 2.3.1 with D = d/4 and D" =1 to obtain

|F(r,t)] < Ct 97 (log(2 + 1)) 1
for 0 <r <ey1+4tandt>T. Similarly to (2.4.51) and (2.4.52), we have
Fy(r,t) = (0us) (0, 8) Fa(r) + Ga(r, 1),

Go(r ) = /0 ﬁ /0 v (F)EL(r, )7 drds,

for r > 0 and ¢ > 0. Furthermore, similarly to (2.4.53), we obtain

Galr, )] < Ot (log(2+4)) ™ / T L)s /0 va(r)r drds < Ct~ (log(2 + 1)) r!

o V(s
for 0 <r <eyl+tandt>T. A similar argument with (2.4.2) implies that
(LG (r, 1) < 3 (log(2 + 1)) rtt, £=1,2,

for 0 < r <eyl+tandt > T. So we see that (2.1.15) holds for ¢ € {0,1,2}. Thus
Theorem 2.1.3 follows. [l
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2.5 Proof of Theorem 2.1.4

We use the same notation as in §§ 2.1.2. Let m € {1, 2, ... }. Then

Ly = —A+V(jz|) +

\!2

is subcritical and problem (O) corresponding to L,, possesses a positive solution U, satisfying

U () pAT Artwm) as 1 — 0, (25.1)
) ~ 5.
O 7T Q2tom) g9y 0,
for some positive constant c,,. Set
m—1 [k
u(z,t) == e o and  wy,(z,t) = u(z,t) ZZ —thght,
k=0 i=1
Lemma 2.5.1. Let m € {1,2,...}. Then there exists C; > 0 such that
Hum(t)“L2(RN,e|xI2/4(1+t) dry = Cltidm/ﬂ'umm)HL2(RN,e\w\2/4 de) (2.5.2)

fort >0, where d,, := N + 2AT(A\y + wy,). Furthermore, there exists Cy > 0 such that

(2.5.3)

L i PR
U (min{|z|, v}) U(W1) LARA, e/ S do)
for x € RN and t > 0.
Proof. Let m € {1,2,...}. The comparison principle implies that
46 ()] < [e 16 ) (@) < [ 16 (1) n RY xR,

for k€ {m,m+1,...} and i € {1,...,4;}. On the other hand, by Theorem 2.1.1 and (2.5.1)
(see also (2.4.28)), we have

||€7th|¢k’i’HLz(RN,e\m|2/4<1+t> i) S C(1+ t)fdmﬂ||¢k’iHL2(RN76‘w'2/4 awy £>0,

for k € {m,m+1,...} and i € {1,...,4;}. These together with (2.1.18) implies that

—tL kz N—1|"Y2 || —tLy ik,i
||e |S ‘ He ¢ HLz(RN,elxl2/4<1+t>dx)

< O(1 + 1)t/ b

|2, o0 g
< O(L+1) 70/ |gm

L2(RN el=2/4 da) ‘LZ(PUV,e\m\Q/4 dx)

for ¢ > 0. Therefore we deduce from the orthogonality of {Qy, ;} that

oo A
v (t )HLQ (RN, elel2/40+0) dz) Z Z ||€_tL§0k7ZHiz(vae\xP/zx(lﬂ) dz)
k=m 1=1
S C(]‘ +t ~dm/2 Z Z ||(20k Z||L2 RN |x|2/4d$ C(l + t) dm/QHum(O)Hi?(RN7e\z\2/4 da:)
k=m 1=1
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for t > 0. This implies (2.5.2). On the other hand, by Lemma 2.2.5, we have

~N/4
|um (2, 2t)] < Ct

U (min{jal,vi}) ~ U(D

This together with (2.5.2) implies (2.5.3). Thus Lemma 2.5.1 follows. O

[t ()] 2y, @ € RN, £ 0

Proof of Theorem 2.1.4. Let ¢ € L*(RN, el*’/4dz) and v := e 0%, Let K be any com-
pact set in RY \ {0} and R > 0. In cases (S) and (C), recalling that d = 2N + A, by
Theorems 2.1.1 and 2.1.2, we have

lim t(NJrA)zv(\/Ey, t) = cam(P®|y|re WP/4 in LAY, VP dy) N LP(K),  (2.5.4a)

t—o0

. t) Cq .

1 t(NJr?A)/Q—U(x’ = (0! L=(B(0, R)). 2.5.4b
Pt U(|z]) @m@ ) H (B, k) ( )

In case (S.), Theorem 2.1.3 implies that

lim tN+2(log t)v (Vi 1) = 2¢cam (! Ap—lyl?/4
P (logt)v(Vty,t) = 2cam(e™)ly| 2 (25.50)
in L2RN, eV /4 dy)n Le(K),

v(x,t)  2v/2

4Cd

lim Zf(N+2A)/2(10gt)2 m(SOO,l) _

A Ule) ~ o .. m(e®!) in  L*(B(0,R)). (2.5.5b)

Here

02 00
caml) = 4 [ S0 ar
0

Cx

& . &2 (2.5.6)
= T fo # U e e = e [ ete)U e dr = M)
Taking a sufficiently large integer m, by Lemma 2.5.1, we have
Tim ¢80, (Viy,t) =0 in L(RY, e/t dy) N L (K), (2.5.7a)
tlirgot<N+2A>/2% =0 in L®(B(0,R)), (2.5.7b)

for any compact set K C R™ \ {0} and R > 0. On the other hand, Lj is subcritical and
AT (Ay4wy) > Afork € {1,2,...,m—1}. Then, taking a sufficiently small € > 0 if necessary,
by Theorems 2.1.1 and 2.1.2, we obtain

T ¢NFO2 [t gh] (Vi t) =0 in LRV, P dy) N L= (K), (2.5.8a)
— 00

—thqbk’,’i} (.T)
lim (22 1€ —0  in L®(B(O,R 2.5.8h
Jim ) in - L=(B(0, R)), (2.5.8b)
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for any compact set K C RY \ {0} and R > 0. On the other hand, it follows from (2.1.2)
that (2.5.1) that Ug(r)/U(r) is bounded on (0, R) for any R > 0. This together with (2.5.8)
implies that
—tLyg 4k,
i e ) L®(B(0, R)) (2.5.9)

1500 U(ll)

for any R > 0. Since

e gl(z) = v, t) + 33 [ tHhgh] \x!)@k,@-(| ,)+um<x 0,

k=1 i=1
by (2.5.4)—(2.5.9), we obtain assertions (a) and (b). Thus the proof is complete. O

Proof of Corollary 2.1.5. Let p = p(z,y,t) be the fundamental solution corresponding to
et Let y € RY and 7 > 0. Set p(x) = p(x,y,7) for x € RY. Taking a sufficiently small
7 > 0 if necessary, by (2.1.6), we see that p € L*(R", elzl*/4 dx). On the other hand, since
p(z,y,t) = p(y, z,t), we have

| e@telde = [ ptepr)0el)de = [ a0l de = V(o)

for y € RY and 7 > 0. Then, applying Theorem 2.1.4 and letting 7 — 0, we obtain the
desired results. Thus Corollary 2.1.5 follows. [
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Chapter 3

Hot spots of solutions to the heat
equation with inverse square potential

3.1 Introduction

In this chapter, we investigate the large time behavior of the hot spots

H(u(t)) ::{x € RY : u(z,t) = sup u(y,t)}

yeRN

for the solution u of (2.1.1). The study of the large time behavior of the hot spots is delicate
and it is obtained by the higher order asymptotic expansion of the solutions. Combing the
arguments in [16]-[19], and [23] (Chapter 2), we study the large time behavior of H(u(t)) in
the cases (S), (S«), and (C) and reveal the relationship between the large time behavior of
H(u(t)) and the corresponding harmonic functions (see §§3.2.1). We remark that L is not
necessarily subcritical.

The behavior of the hot spots for parabolic equations in unbounded domains has been
studied since the pioneering work by Chavel and Karp [4], who studied the behavior of the
hot spots for the heat equations on some non-compact Riemannian manifolds. In particular,
for the heat equation on R" with nonnegative initial data ¢ € L°(RY), they proved :

(H1) H(e*?¢p) is a subset of the closed convex hull of the support of the initial function ¢ ;

(H2) There exists T' > 0 such that H(e'®y) consists of only one point and moves along a
smooth curve for any ¢t > T';

(H3) lim H(c"™p) = /R wpla)da / /R pla)dr.

(See also Remark 3.3.3.) The behavior of the hot spots for the heat equation on the half space
of RY and on the exterior domain of a ball was studied in [14], [15] and [24]. Subsequently,
in [16]-[19], Ishige-Kabeya developed the arguments in [14] and [15] and studied the large
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time behavior of the hot spots for the solution of (2.1.1) under condition (V) in the subcritical
case with some additional assumptions.

Our arguments in this chapter are based on [23] (Chapter 2), where the precise description
of the large time behavior of the solution of (2.1.1) was discussed under condition (V).
Applying the arguments in Chapter 2, we modify the arguments in [16]-[19] and study the
large time behavior of the hot spots. We study the following subjects when the hots spots
tend to the space infinity as t — oco:

(a) The rate and the direction for the hot spots to tend to the space infinity as t — oo}
(b) The number of the hot spots for sufficiently large t.

On the other hand, when the hots spots accumulate to a point x,, we characterize the limit
point z, by the positive harmonic function U. Furthermore, we give a sufficient condition
for the hot spots to consist of only one point and to move along a smooth curve.

The rest of this chapter is organized as follows. In §3.2 we recall some preliminary results
on the behavior of the solution of (2.1.1) and prove some lemmas. In §3.3 we study the large
time behavior of the hot spots for problem (2.1.1).

3.2 Preliminaries

Throughout this chapter, we use the notations Ly, Vi, ¢"* Q. ¢, and gy as in subsec-
tion 2.1.2. Let Uy be a (unique) solution of

N -1
r

Uy + U, —Vi(r)Upy =0 in RN, (3.2.1)

Then

A+()\1+wk)
r as r— 20 n
Ur(r) ~ ’ Ul(r) =0 Qeten)=1) g 1 5 00, (3.2.2
o s ST o ) 322
for some positive constant ¢;. By Theorems 2.1.1, 2.1.2, and 2.1.3, we then obtain the
precise description of the large time behavior of etk ®*? where k = 0,1,.... In particular,
for k=0,1,..., for any sufficiently small € > 0, we have

N/2+ A gt et ¢k 1](|])
" Uk(l2])

N +2A4,
2
= [My,; + o(1)]6or + Ot Hz>) as t— o0,

(3.2.3)

= [Mkﬂ‘ -+ 0(1)] (50@ — Mk,z’ + O(l) t71<8fiFk>(|l‘D + tiQO(’$|4ie)
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uniformly for z € RY with |z| < ey/1+ ¢, where £ = 0,1,2 and &y, ¢ is the Kronecker symbol.
Here

A for k=0 12
Ak - . or ’ Ca, = 2N+2Ak71F N+—2‘Ak ’
AT(Ny+wg) for k=1,2,..., 2

2
CAk / i (r rN-1ldr = % /RN Ui(ly|) @k, (%) o(y) dy, (3.2.4)

k

Fi(r) ::/ sN 1/ )2V drds.
0

Here we used

[ othees (L) ewan= [ @ura [ omd o a
RN

SN-1 0

~ [ et

0

which follows from the orthonormality of {Qy. ;} on L*(SV~1).

3.2.1 Gaussian estimates and the hot spots

Let p = p(z,y,t) be the fundamental solution generated by e~*L. The upper Gaussian esti-
mates of p = p(z,y,t) (see (2.1.6)) implies the following Lemma which ensures the existence
of hot spots.

Lemma 3.2.1. Let u be a solution of (2.1.1) under condition (V), where p € L*(RN | el#*/* dz).
Assume that

[ Ul ay>o.
RN
Then H(u(t)) # 0 for t > 0. Furthermore, there exist L > 0 and T > 0 such that
H(u(t)) € B(0,LVt) for t>T. (3.2.5)

Proof. Let t > 0. Since U is a harmonic function for L, we see that

Ulah = [ pantUubdy = [ s Ul ds. o€ RY.

Then the Fubini theorem implies that

[ utwaehas= [ | popovieewdsds = [ Uil ds>o

Therefore we can find z; € R" such that u(z,t) > 0. On the other hand, by (2.1.6), we can
find R > 0 such that

sup  u(z,t) < u(wg,t).
2€RN\B(0,R)
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This together with (2.2.1) implies that H (u(t)) # 0.
We show (3.2.5) in the cases of (S) and (C). Since

1
v —y|* > 5\:6!2 —|y|* for x,y€ R,

by (2.1.4) and (2.1.6), we have

ule, O] < G (/B(O:\/f) i /RN\B(o,ﬁ)> U(mi;]f%)ﬂ}) o {_ ’ ;ty‘Q} eyl ay

< Ct(N“)/ze'wz/QCt/ T (y)) e (y)| dy (3.2.6)
B(0,1/1)

4 O N2 lel2/20t / e o(y)| dy
RN\B(0,v7)

for z € RN and ¢t > 1 with |z| > v/t. Recalling that ¢ € L3R, el*I"/4 dz), by the Cauchy-
Schwarz inequality we see that

2
Lo )y
RV\B(0,vt)

, , 1/2 , 1/2
< (/ e2YI7/Ct o=yl /4 dy) (/ elyl /4‘¢(y)’2 dy) (3.2.7)
RN\ B(0,V/t) RN

1/2
<c ( / ol /8 dy) < CetlC
RN\B(0,v)

for all sufficiently large ¢. Then, for any ¢ > 0, by (2.1.4), (3.2.6), and (3.2.7), we can find
constants L > 1 such that

sup lu(z, t)]| < et~ N+A)/2 (3.2.8)
2ERN\B(0,Lv/E)

for all sufficiently large t. On the other hand, by Theorem 2.1.4 (a), we see that
lim inf t Y72 max  w(Vty, t) > CM(p) > 0. (3.2.9)

t—ro0 y€dB(0,1)

Taking a sufficiently small ¢ > 0 if necessary, we deduce from (3.2.8) and (3.2.9) that
H(u(t)) C B(0, L/t) for all sufficiently large . Thus (3.2.5) holds in the cases of (S) and
(C). Similarly, we can prove (3.2.5) in the case of (S.). Thus Lemma 3.2.1 follows. O

By Theorem 2.1.4 and Lemma 3.2.1, we have:

Theorem 3.2.2. Let N > 3 and L be a nonnegative Schrodinger operator under condi-
tion (V) with Ay < 0. Let u be a solution of (2.1.1) such that

o e LARYN, e/*dz) and / e(y)U(|y|) dy > 0. (3.2.10)
RN
Then H(u(t)) = {0} for all sufficiently large t > 0.

92



In the case of A\; < 0, Theorem 2.1.4 together with (3.2.1) implies that AT(\;) < 0,
U(r) ~ 72" M) as r — 0 and u(0,t) = oo for all sufficiently large ¢. Thus Theorem 3.2.2
follows.

3.3 Large time behavior of the hot spots

We study the large time behavior of the hot spots for problem (2.1.1) in the case of A; > 0.
Set

H::{ré[O,oo);U('r): sup U(T)} and  E(p) := /RNSO(le(wDﬁdy-

T€[0,00) |y|

For the reader’s convenience, we give a correspondence table of our theorems. We recall
A = AT ()g) in the cases of (S) and (S.) and A = A~ (\y) in the case of (C).

(I) A1 <0 (see Theorem 3.2.2);

(1) A, >0
(1) A> 0 (see Theorem 3.3.1);
(2) A=0

(a) I =0 and N = 2 (see Theorems 3.3.2 and 3.3.3) ;
(b) II = 0 and N > 3 (see Theorem 3.3.3 and Corollaries 3.3.4 and 3.3.5) ;
(c) IT # O (see Theorems 3.3.8 and 3.3.9) ;

(3) A <0 (see Theorems 3.3.6 and 3.3.7).

We consider the case of A > 0. Theorem 3.3.1 is proved by the same arguments as in [16, §4]
with the aid of the results in §3.2. See also Theorem 2.1.4 and [16, Theorem 1.2].

Theorem 3.3.1. Let L be a nonnegative Schridinger operator under condition (V) with
A1 >0 and A > 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then the following
holds

(a) lim sup
100 pe H (u(t))

|z] \/—‘
— —V2A|=0;
Vit

(b) Assume that =(¢) # 0. Then there exist a constant T > 0 and a curve v = z(t) €
CH([T',00) : RY) such that H(u(t)) = {(t)} for t > T and

2(t) _ ()
e o0~ B

Secondly, we consider the case where A = 0 and II = (). Theorems 3.3.2 and 3.3.3 are
obtained by the same arguments as in [18, §4] and [17, §4, §5], respectively, with the aid of
the results in §3.2. See also [18, Theorem 1.2] and [17, Theorem 1.2]. We remark that, in the
case of N =2, A = 0if and only if Ay = 0. Furthermore, if L is subcritical, then U(r) < logr
as r — oo and IT = ().
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Theorem 3.3.2. Let N = 2 and L be a subcritical Schrodinger operator under condition (V)
with Ay > 0 and A = 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then

logt

lim sup |——|z|*—2]|=0.

t—00 z€H (u(t))

Furthermore, assertion (b) of Theorem 3.3.1 holds.

Theorem 3.3.3. Let L be a nonnegative Schrédinger operator under condition (V) with
A >0, A=0 and 11 = 0. Assume that L is critical if N = 2. Assume (3.2.10) and let u be
a solution of (2.1.1). Then

tU'(Jz|) 1

oD 2o

i
im sup oolz] 5

£=00 e H (u(t))
Furthermore, assertion (b) of Theorem 3.3.1 holds.
Let Ay > 0 and

T 1 S
Hy(r) == rk/ —/ V() Up(r)7" ™t drds for k=0,1,....
0

0 sIV+2k—1

Since Wy, := Uy, — Hj, satisfies
" N—1 / Wk . AT (A1 +wy)
Wi+ ——W,—W,=0 in Ry and Wi(r)xr® "7 as r —0,
r r
by the uniqueness of the solution of (3.2.1) with V replaced by w72, we see that

’I"k—i-Hk(T) if )\120,
Uilr) — 3.3.1
(r) { Hi(r) it A\ >0, (33.1)

In particular, in the case of A =0, we have

H, 1 if M=0
C*ElimU(r):{ o(oo) +1 1 A =0,

r—00

As a corollary of Theorem 3.3.3, we have the following result, which revises [17, Corollary 1.1]
and [18, Remark 1.1].

Corollary 3.3.4. Assume the same conditions as in Theorem 3.3.3 with \y = 0. Further-
more, assume that V(r) ~ pur=% as r — oo for some u # 0 and d > 2.

(a) Let u>0. Then

( 1/d
<(Ho(oo) iult)(N — d)) (I+o0(1)) if 2<d<N,
o 1/N
= <(H02(i§)lfi)zv> (1+0(1)) if d=N,
1/N
%) (1+0(1)) if d>N, A>0,
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as t — oo uniformly for x € H(u(t)). Here A := / N W(r)U(7)dr.
0

(b) Let 1 <0 andd > N. Then

oAt N .
(EI_73> 1+ o(1)) it A >0,

00)
x| =
2|t

((Ho(OO) +1)

as t — oo uniformly for x € H(u(t)).

1/d '
(d_NQ (1+0(1)) if A=0,

Furthermore, we have:

Corollary 3.3.5. Assume the same conditions as in Theorem 3.3.3 with \y > 0. Then the
same assertions of Corollary 3.3.4 holds with Hy(co) + 1 replaced by Hy(c0).

Remark 3.3.1. Assume the same conditions as in Theorem 3.3.3. Let V(r) ~ ur~? as
r — oo for some p # 0 and d > 2.

(1) Consider the case where y > 0 and d > N. Since U(r) ~ ¢, > 0 as r — oo, A can be
defined. If A <0 and p > 0, then it follows from (3.3.1) that

U'(r)y =r=% /0 V(DU ()N tdr ==Y (A — /Too V(nU(r)r™! dT) <0

for all sufficiently large r > 0. This implies that IT # ().

(ii) Consider the case where p < 0. By (3.3.1), we see that r~1U'(r) — —oo as r — oo if
2 < d < N. Similarly, if d > N and A < 0, then U’(r) < 0 for all sufficiently large » > 0. In
the both cases, it follows that IT # ().

Next we study the large time behavior of the hot spots in the case where \; > 0 and
A < 0. Tt follows from A < 0 that U(r) — 0 as r — oo and II # .

Theorem 3.3.6. Let L be a nonnegative Schriodinger operator under condition (V) with
A1 >0 and A < 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then

lim sup ||z| — minII| = 0. (3.3.2)
t—=00 pe H(u(t))

Furthermore, if Z(p) # 0, then

lim sup |z — minll ﬂ = 0. (3.3.3)
100 pe H(u(t)) |:(90)‘
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Proof. For any € > 0, by Theorem 2.1.4 with A < 0 and Lemma 3.2.1, we see that
H(u(t)) € B(0,ev/) (3.3.4)

for all sufficiently large ¢.
We consider the cases of (S) and (C). In the case of Z(¢) # 0 we can assume, without
loss of generality, that Z(¢) = (|2(¢)|,0,...,0). By (3.2.4), we have

A A .
My, >0 and M;,; = QN%:,Z'(QD) =qn cél E(p)|0,; for i=1,...,N, (3.3.5)
1 1

where 6y ; is the Kronecker symbol. Let € > 0 be sufficiently small. By Lemma 2.5.1, (2.1.4),
(2.1.17), and (3.2.3), we take a sufficiently large m € {1,2,...} so that

N +2A

tN/“A—“O(x 2 = (Mo,1 +o(1)) — (

e Mo+ o(1)) £ (e + 2O(al

= My 1+ o(1) +t1O(|z]?),

w,i(2,8) = gy (Mai + o(1)t =24 Uy (Jaf) =+ 5240y (12O a)

2] (3.3.6)

= O (1 + fal) ),

m—1

Ly,
= Z Zu;w(x,t) + U (2, t) = O(t_N/Q_AQ(l + |x|)’42)7
k=2 i=1

as t — oo uniformly for z € RN with |z| < ey/1+1¢, where i = 1,...,N. Let v be a
sufficiently small positive constant. Since A < 0, we can find R > 0 such that

lug(z, )| < Ct=N2~AU(|z]) < wt=N/24,

|y (2, 1) < Ct=NHA/2 = Cp=N2=ALA=AN 2 A)2 )y =N/2=A (3.3.7)
< (N+A42)/2 _ —N/2-Ap(A-A2)/24A/2 ~ N/2—A

lug(z,t)] < Ct™ Ct t t= <wt™ :

for z € RN and all sufficiently large ¢t > 0 with R < |z| < ev/1+ ¢, wherei =1,...,N. On
the other hand, Theorem 2.1.4 implies that

lim inf V24 sup w(z,t) > 0. (3.3.8)

t—o0 zeRN

By (3.3.4), (3.3.7), and (3.3.8), we can find R > 0 such that
H(u(t)) C B(0,R) (3.3.9)

for all sufficiently large t.
It follows from (2.1.3) and Ay < 0 that
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By (3.3.6) and (3.3.10), we have

N2 Ay (1)

— ¢ (M1 + o) U(J2]) - 40 (M

5 Mo+ 0(1)) Uz F(|z) + o(t™")  (3.3.11)
= q.(Mo1 +o(1))U(|z]) + O(t™)

as t — oo uniformly for z € B(0,R). Since F' is strictly monotone increasing in R, by
(3.3.5), (3.3.9), and (3.3.11), we obtain (3.3.2) and (3.3.3). Therefore Theorem 3.3.6 follows
in the cases of (S) and (C). Similarly, Theorem 3.3.6 also follows in the case of (S.). Thus
the proof is complete. Il

We give sufficient conditions for the hot spots to consist of only one point and to move
along a smooth curve. We denote by V2f the Hessian matrix of a function f. For any real
symmetric N x N matrix M, by M > 0 and M < 0 we mean that M is positive semi-definite
and negative semi-definite, respectively.

Theorem 3.3.7. Let L be a nonnegative Schrédinger operator under condition (V) with
A >0 and A < 0. Assume (3.2.10) and let u be a solution of (2.1.1). Let z, € RN be such
that |z.| € II and

lim sup |z —x,]=0.

£=00 pe H (u(t))
Then there exist a constant T > 0 and a curve x = z(t) € CY([T,00) : RY) such that
H(u(t)) ={z(t)} fort > T in the following cases:

(a) |z, =0, V € C?([0,00)) for some v € (0,1) and V2U(|z|) < 0 in a neighborhood of

the origin;
(b) |x.| >0, U" <0 in a neighborhood of r = |x.| and =(¢) # 0.

Proof. We consider the cases of (S) and (C). Let r, := |z.| and € > 0. The proof is divided
into the following four cases:

(i) r.=0 and U”(0)<0; (i) n.=0 and U’(0)=0;
(lll) Ty > 0 and U”(’l"*) < 07 (1v) T, > 0 and U//(T*) —0.

In case (i). Since U’(0) = 0 and U”(0) < 0, by (2.1.17) and (3.2.3), we can find 7, > 0
such that
1

LA g) () = — (M -+o(1) VAU (Jaf) + O 2 1O

In—el 3.3.12
. 5 v—eln ( )

for z € B(0,m;) and all sufficiently large ¢, where Iy is the N-dimensional identity matrix.
On the other hand, by condition (a), (3.2.3) and (2.5.3) we apply the parabolic regularity
theorems to see that u; ;, Ry € C*71L7/2(RN x R, ) and

IV2uril| e oy + IV B2l e 0,y = O 24) (3.3.13)
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for all sufficiently large ¢, where i = 1,2,..., N. Since ¢ is arbitrary, by (3.3.12) and (3.3.13),
we see that —(V?2u)(x,t) is positive definite in B(0,1;) for all sufficiently large ¢t > 0. Then
Theorem 3.3.7 in case (i) follows from the implicit function theorem.

In case (ii). By condition (a), (2.1.17), and (3.2.3), we have
1

— Vg 1)

= —t(Mg}l + 0(1))V2U(|IL’|) + (

> <N+2A

N +2A

Mo,1 + 0(1)> VAUR)(|z]) + O(t™)  (3.3.14)

Mo + o<1>) VAUR)(a]) + O

in a neighborhood of x = 0 and all sufficiently large t. On the other hand, it follows from
(3.2.1) and (3.2.4) that

_ N-1 2U"(r) r . 1
" . . 2 _N-—1 _
l1_r)r(1)F (r) = 11—% ( T )ers U(r)3rN—1> /0 U(r)r" " dr+1 N (3.3.15)

This implies that (UFp)”(0) = 1/N. Therefore, by (3.3.14) and (3.3.15), we can find 7, > 0
such that . N 424
LN/ ATL o2 >
q*t (Vug)(z,t) > N
for x € B(0,7,) and all sufficiently large ¢. Similarly to case (i), since € is arbitrary, by
(3.3.10), (3.3.13), and (3.3.16), we see that —(V?u)(x,t) is positive definite in B(0,n,) for
all sufficiently large ¢ > 0. Similarly to case (i), Theorem 3.3.7 in case (ii) follows from the

implicit function theorem.

MO,l[N —EIN (3316)

In case (iii). By Theorem 3.3.6, we can assume, without loss of generality, that =, =
(r«,0,...,0). Then My, > 0 and M, ,; = 0 fori € {2,...,N}. Let 8, := x,/|z| for a =
1,2,...,N. Then (r,0s,...,0x) gives a local coordinate of RN in a nelghborhood of x,.. We
study the large time behav1or of V2u in a neighborhood of z,, where V := (8,,8p,, . .., 9p,).
Since U”(r,) < 0, similarly to (3.3.12), we can find 13 > 0 such that

— LA Que) 0, 6) = (Mo + 0(1)) (O20) ) + O ) > Mo

2Oy (3.3.17)

for x € B(x.,n3) and all sufficiently large ¢. Furthermore,
(0r0p,u0)(,t) = (0o, 0p,u0)(w,t) =0 (3.3.18)

for x € B(x.,n3) and all sufficiently large ¢, where o, § € {2,..., N}.
On the other hand, by (2.1.17), (3.2.3), and (3.3.6), we have

. (v up ) (2, 1) = (My; + o))t N2HAV2(Uy (|2])6;) + O NP4ty (3.3.19)
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for x € B(x.,n3) and all sufficiently large ¢. Since

00, b, PO bus  bubs

0, 6, 90,005 6, 6

(3.3.20)

for o, B € {2,..., N}, combining M; ; = qnc%,|E(p)]/c; > 0 and U'(r.) = 0, we can find
ns > 0 and C' > 0 such that

— NP2y 1) (2, 1) > —C,

— NIy By un 1) (2, t) > QN];41’1U1(T*)5a,5 -6, (3.3.21)
— tN2EN(D.0p ur 1) (2, 1) > —ClOL|U; (1) + O(t7Y) > —¢,

for z € B(x,,n4) and all sufficiently large ¢. Furthermore, for ¢ = 2,..., N, it follows that
M, ; = 0 and we have

(VZur,) (z,t) = o(t~N/24) (3.3.22)
for © € B(xz.,m4) and all sufficiently large ¢. Similarly to (3.3.13), by (3.3.6), we apply the
parabolic regularity theorems to obtain

(V2Ry) (z,t) = O(tN/*42) (3.3.23)

for x € B(x,n4) and all sufficiently large t. On the other hand, A; > A+ 1 holds by A < 0.
Then, by (3.3.17), (3.3.18), (3.3.19), (3.3.21), (3.3.22), and (3.3.23), we see that —(ﬁgu) (z,t)
is positive definite in a neighborhood of x, = (r,,0) for all sufficiently large ¢t > 0. Therefore
Theorem 3.3.7 in case (iii) follows from the implicit function theorem.

In case (iv). Similarly to the case (i), without loss of generality, we can assume that
E(p)/|2(p)| = (1,0,...,0). It follows from U’(r,) = U"(r.) = 0 and r, € II that

(UFY' (1) = U(r)E(r) = Ur) (—% /0 T U dr + 1)
> U(r,) (—% /0 Ulr )2V tdr + 1) = %U('r’*) > 0.

Then, by condition (b) we have

1
- q—tN/ A (O uo) (2, 1)

= (Vo + o)1) o) +

> (NJ;ZA

N +2A
2

Mo+ olD)) (UP) (e + 06™) (3321

N +2A
AN

Mo 1+ 0(1)) (2(UF))(Jz)) + O™ > My U(ry) >0
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in a neighborhood of z, = (r,,0,...,0). Furthermore, by the same argument as in case 3.3.7
in case (iii) we obtain (3.3.18), (3.3.21), (3.3.22) and (3.3.23). Therefore, since A; > A+1, we
see that — (ﬁzu) (x,t) is positive definite in a neighborhood of z, = (r.,0) for all sufficiently
large t > 0. Therefore Theorem 3.3.7 in case (iv) follows from the implicit function theorem.
Thus Theorem 3.3.7 follows in the cases of (S) and (C). Similarly, Theorem 3.3.7 also follows
in case (S.). Therefore the proof of Theorem 3.3.7 is complete. O]

Finally we study the large time behavior of the hot spots in the cases where A\; > 0,
A =0, and II # 0.

Theorem 3.3.8. Let L be a nonnegative Schriodinger operator under condition (V) with
A >0, A=0, and I # 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then there
exists R > 0 such that

H(u(t)) € B(0,R) (3.3.25)

for all sufficiently large t.
Let x, be an accumulating point of H(u(t)) as t — oo. If E(p) # 0, then x./|z.| =

=(@)/|=(@)|. Furthermore, r, := |x,| is a mazimum point of
kN I _
5) = X MUERE) + SE@I ) o L
* 1

Remark 3.3.2. Assume the same conditions as in Theorem 3.3.8. It follows from A = 0
that A\ = 0 and A; = 1. By (2.2.3) and (3.2.2), we see that

1
Fy(r) ~ ﬁﬁ, U(r) ~ ¢, Ui(r) ~ cir, (3.3.26)

as 7 — 00. Then S(|z|) = —o0 as |z| — oo and the maximum point of S on II exists.

Proof. Let ¢ be a sufficiently small positive constant. Similarly to (3.3.4), by Theorem 2.1.4
with A = 0, we see that

H(u(t)) C B(0,eV1) (3.3.27)
for all sufficiently large t. On the other hand, similarly to the proof of Theorem 3.3.6, we
have

PPl ) = 0. (Mo + o)V (el) ~ . (5 Mo + o)) (RN o)

+ 20 (| U(2])) + Y (Mui + o(1))t " Us(|2])Qu. (%) (3.3.28)

i=1

+ 172U, (|2))O (|2 [2) + o(t™Y)

as t — oo uniformly for z € RN with |z| < ev/t. Since A; = A*(w;) = 1, it follows from
(2.1.17), (3.2.4) and (3.2.10) that

2
gk

*M -
01 = oN-1.. T(N/2)

M(p),

100



and

- watam (=)

[1]

Then we have

N N
-5 MoaUlle) Pl + 3 M) ()

i=1

- risrs (- aro 4 & (=) )t

Then Theorem 3.3.8 follows from (3.3.26), (3.3.27), (3.3.28) and (3.3.29). O

(3.3.29)

Modifying Theorem 3.3.7, we give sufficient conditions for the hot spots to consist of only
one point and to move along a smooth curve in the case where A = 0 and II # (). We remark
that Ay =A+1if A=0.

Theorem 3.3.9. Let L be a nonnegative Schriodinger operator under condition (V) with
M >0, A=0 and 11 # (0. Assume (3.2.10) and let u be a solution of (2.1.1). Let z, € RY
be such that |z.| € II and

lim sup |z —x,]=0.

t=0 pe H(u(t))
Then there exist a constant T > 0 and a curve x = z(t) € C*([T,00) : RY) such that
H(u(t)) = {z(t)} fort > T in the following cases:

(a) || =0, V € C([0,00)) for some v € (0,1) and V?*U(|z|) < 0 in a neighborhood of
the origin;

(b) |z« >0, U"(ry) <0 and Z(p) #0;
(¢) |xs| >0, U"(r) <0 in a neighborhood of r = r., S"(r.) <0 and E(p) # 0.
Here S = S(r) is as Theorem 3.3.8.

Proof. The proofs in case (a) with U”(0) < 0 and case (b) are obtained by the same argument
as the proof of Theorem 3.3.7 in cases (i) and (iii), respectively. So it suffices to consider
case (a) with U”(0) = 0 and case (c).
Let us consider case (a) with U”(0) = 0. Let £ > 0. It follows from (3.3.1) that U;(0) =0
and N .
Ui(r) = ——1/ V() U(r)7 dr + V(r)Us(r) > 0 as r —0.
0

rN+1
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These imply that U; € C?([0,00)) and U{'(0) = 0. Then, similarly to (3.3.21), we have
—tN2HN D20y 1) (2, t) > —e

in a neighborhood of z = 0 for all sufficiently large ¢ > 0. Then, applying a similar argument
as in the proof of Theorem 3.3.7 in case (ii), we obtain Theorem 3.3.9 in case (a) with
U"(0) = 0.

Let us consider case (c). Similarly to the proof of Theorem 3.3.7 in case (iii), without loss
of generality, we can assume that Z(¢)/|Z2(¢)| = (1,0,...,0) and z, = (r,,0,...,0) and we
introduce the coordinate (7,0, ...,0y) in a neighborhood of x = x,. Then, by (2.1.17) and
(3.2.3), we have

= L oug) (a1
s

— — (Mo + o(1)) (22U)(Je]) + @M + o<1>) HGAUR))(l]) + Ot (33.30)

> (5 Mo o) 7 @UE) (o)) + O(2)

and
—qiNtN/QH(@ful,l)(x, t) == _(Ml,l + 0(1)) (anl)(|x|)01 + O(t_l), (3331)

in a neighborhood of x = z, for all sufficiently large ¢ > 0, where ¢ = 1,..., N. By condi-
tion (c), (3.3.29), and (3.3.30), we obtain

— YD) (2, 8) + (8Fun, 1) (2, 1))

in a neighborhood of x = z, for all sufficiently large ¢ > 0. Similarly, we have
— N2 (9,09, u11) (z, 1) = O(|0a]) + O(t™) (3.3.32)

in a neighborhood of x = z, for all sufficiently large t > 0, where o = 2, ..., N. Furthermore,
similarly to the proof of Theorem 3.3.7 in case (iii), we have (3.3.18), (3.3.22) and (3.3.23).
Then, combining (3.3.30), (3.3.31), and (3.3.32), we see that —(€2u) (x,t) is positive definite
in a neighborhood of x, = (r.,0) for all sufficiently large ¢ > 0. Thus Theorem 3.3.9 in
case (c) follows from the implicit function theorem. Therefore the proof of Theorem 3.3.9 is
complete. Il

Remark 3.3.3. Consider the case of the heat equation under condition (3.2.10). Then
V=0,c.=1,¢,=1U(r)=1,Ui(r) =7, Fy(r) =r*/2N, and IT = [0, o). Since

S'r) = =rM(g) +[2(0) = —r [

w(y)dy+‘/ ys@(y)dy’,
RN RN
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it follows from Theorem 3.3.8 that the hot spots converges to [gn y@(y) dy/ [an ©(y) dy.
Furthermore, if Z(¢) # 0, then, by Theorem 3.3.9 (c), we see that the hot spots consist of
only one point and move along a smooth curve. These coincide with statements (H2) and
(H3) in §3.1.
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