
Abstract

In this thesis we are concerned with asymptotic analysis for solutions to semilinear heat
equations. A nonlinear parabolic equation

ut = ∆u+ up in RN ×R+, p > 1, N ≥ 1, (F)

is called Fujita’s equation and appears in various mathematical models, in particular, in
combustion theory as solid fuel ignition processes. The superlinear term up arises from the
Arrhenius equation which is a formula for the temperature dependence of reaction rates.
Due to the balance between the diffusion term and the nonlinear term, the equation (F) has
rich mathematical structure and solutions exhibit various properties. One of characteristic
properties of the equation (F) is that the solution does not necessarily exist globally in time.
This phenomenon is peculiar to nonlinear problems and called the blow-up of the solution.
The equation (F) has been widely studied by many researchers since the pioneering work by
Fujita ’66. One of the major topics is to obtain the rate of blow-up. Let T ∈ (0,∞) be the
maximal existence time of a solution u to the equation (F). Then the solution u satisfies

∥u( · , t)∥L∞(RN ) ≥ C(T − t)−1/(p−1), 0 < t < T,

for some positive constant C. The blow-up of u is said to be of type I if there exists a positive
constant K such that

∥u( · , t)∥L∞(RN ) ≤ K(T − t)−1/(p−1), 0 < t < T.

Otherwise the blow-up is said to be of type II. For the Sobolev subcritical case, that is,

p < pS :=


∞, N = 1, 2,

1 +
4

N − 2
, N ≥ 3,

Gigs–Kohn ’87 and Giga–Matsui–Sasayama ’04 proved that every blow-up for the equa-
tion (F) is of type I. Furthermore, Matano–Merle ’04,’09 and Mizoguchi ’11 showed that
only type I blow-up occurs for positive radial solutions in the Sobolev supercritical and
Joseph–Lundgren subcritical case. On the other hand, due to the well-known result by
Herrero–Velázquez ’94, we see that if p is greater than Joseph–Lundgren exponent, that is,

p > pJL :=


∞, N ≤ 10,

1 +
4

N − 4− 2
√
N − 1

, N ≥ 11,

then there exist radial blow-up solutions uℓ,HV(x, t), such that

∥uℓ,HV( · , t)∥∞ ≍ (T − t)−(1+2ωℓ)/(p−1) as t→ T
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where ωℓ is a positive constant related to eigenvalues for a linearized equation of the equa-
tion (F). Mizoguchi ’04 improved the proof by Herrero–Velázquez ’94 under suitable addi-
tional assumptions. In addition, Matano ’07 and Mizoguchi ’11 assumed that every eigenvalue
for linearized operator of the equation (F) is not 0 and proved that actual blow-up rate of
a type II blow-up radial solution coincides with one of the blow-up rates of type II blow-up
solutions constructed by Herrero–Veázquez ’94. Thereafter Seki ’18,’19 constructed type II
blow-up solutions in the Joseph–Lundgren critical case and the Lepin critical case, respec-
tively. The Lepin critical case corresponds to the case where an eigenvalue for linearized
operator of the equation (F) is 0.

Chapter 1 is concerned with a heat equation with space-dependent nonlinearity :

ut = ∆u+ |x|2aup in
(
RN \ {0}

)
×R+, a > −1, (PF)

and it is the main ingredient of this thesis. A similar argument to that of the equation (F)
implies that type I blow-up rate of a solution to the equation (PF) blowing up at the origin
should be (T − t)(1+a)/(p−1). However, in comparison to the case a = 0, there are not enough
results for type I blow-up solutions to the equation (PF) with a ̸= 0. In addition, there are
no results for type II blow-up solutions.

We follow [1] to find type II blow-up solutions for the equation (PF) in the Joseph–
Lundgren supercritical case, that is, N > 10 + 8a and

p > pJL(a) := 1 +
4(1 + a)

N − 2a− 4− 2
√
(N + a− 1)(a+ 1)

.

Our construction of type II blow-up solutions gives basic and important informations to the
analysis of the equation (PF). In particular, the asymptotic behavior we obtained is new even
if a = 0 because we bring the asymptotic behavior of solutions near the origin in detail. As
a corollary of our asymptotic analysis, we prove that the profiles of our solutions at blow-up
time is a singular stationary solution near the origin.

In Chapter 1, based on the idea of Herrero–Velázquez ’94 and Seki ’18, we apply the
matched asymptotic expansions to the semilinear parabolic equations in backward similarity
variables and obtain the precise description of the asymptotic behavior of type II blowing up
solution in a neighborhood of the origin. One of difficulties in our analysis is that unstable
modes appears in a Fourier expansion of solutions for a linearized equation. In order to
overcome the difficulty, we require to choose the parameter associated with the family of the
initial functions by using the degree of mappings.

In Chapter 2, based on [2], we consider the asymptotic behavior of a solution to the heat
equation with a inverse square potential :

ut = ∆u− V (|x|)u in RN ×R+, (P)

where V satisfies

V (r) ∼

{
λ1r

−2 as r → 0,

λ2r
−2 as r → ∞,

with λ1, λ2 ≥ λ∗ := −(N − 2)2

4
.
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Here −λ∗ is the best constant of Hardy’s inequality. The equation (P) often arises in a
linearized analysis for nonlinear diffusion equations such as equations (F) and (PF). Let
L := −∆ + V (|x|) be a nonnegative Schrödinger operator on L2(RN). The asymptotic
behavior of a solution to the equation (P) depends on a criticality for the operator L. The
criticality is classified as subcritical, null-critical, positive-critical, and supercritical. Ishige–
Kabeya–Ouhabaz ’17 obtained the Gaussian estimate of the fundamental solution and the
asymptotic behavior of a positive harmonic function in the subcritical case and the null-
critical case. The purpose of this chapter is to establish a method for obtaining the precise
description of the large time behavior of solutions to the equation (P) in the subcritical case
and the null-critical case.

In Chapter 3, based on [3], we investigate the large time behavior of the hot spots

H(u(t)) :=

{
x ∈ RN ; u(x, t) = sup

y∈RN

u(y, t)

}
as an application of the precise description of the large time behavior of solutions. The
behavior of the hot spots for parabolic equations in unbounded domains has been studied
since the pioneering work by Chavel–Karp ’90. In particular, for the heat equation on RN

with nonnegative initial data φ ∈ L∞
c (RN), they proved :

1. H(et∆φ) is a subset of the closed convex hull of the support of the initial function φ ;

2. There exists T > 0 such that H(et∆φ) consists of only one point and moves along a
smooth curve for any t ≥ T ;

3. lim
t→∞

H(et∆φ) =

∫
RN

xφ(x) dx

/∫
RN

φ(x) dx.

Applying the arguments in Chapter 2, we study the following subjects when the hots spots
tend to the space infinity as t→ ∞ :

a. The rate and the direction for the hot spots to tend to the space infinity as t→ ∞ ;

b. The number of the hot spots for sufficiently large t.

On the other hand, when the hots spots accumlate to a point x∗, we characterize the limit
point x∗ by the positive harmonic function. Furthermore, we give a sufficient condition for
the hot spots to consist of only one point and to move along a smooth curve.
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Chapter 0

Notations

Throughout this thesis, we employ standard notations in asymptotic analysis. For positive
functions f and g defined in (0, R) for some R > 0, we write

f(r) ∼ g(r) as r → 0 if lim
r→0

f(r)

g(r)
= 1,

f(r) ≪ g(r) as r → 0 if lim
r→0

f(r)

g(r)
= 0.

Similarly, for positive functions f and g defined in (R,∞) for some R > 0, we write

f(r) ∼ g(r) as r → ∞ if lim
r→∞

f(r)

g(r)
= 1,

f(r) ≪ g(r) as r → ∞ if lim
r→∞

f(r)

g(r)
= 0.

In additional, we write

f(r) ≍ g(r) if there exists c > 0 such that
1

c
≤ f(r)

g(r)
≤ c.

for sufficiently small or large r > 0. By the letter C, we denote generic positive constants
and they may have different values also within the same line.
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Chapter 1

Refined construction of type II
blow-up solutions for semilinear heat
equations with Joseph–Lundgren
exponent

1.1 Introduction and main results

In the present article we discuss blow-up behavior for a semilinear heat equation :

ut = ∆u+ |u|p−1u in RN ×R+, (1.1.1)

and its variant
ut = ∆u+ |x|2aup in

(
RN \ {0}

)
×R+, (1.1.2)

where ∆ denotes the Laplacian in RN , R+ := {t > 0}, p > 1 and a > −1 are constants.
Given an initial datum u|t=0 = u0 ∈ L∞(RN), we may uniquely obtain a local-in-time
classical solution of (1.1.1) (resp., (1.1.2)). They are “CB-mild solutions” on RN × [0, T ),
where T stands for the maximal existence time, that is, bounded and continuous up to x = 0
and satisfy the integral equation corresponding to (1.1.2). See, for instance, [41,48].

1.1.1 Study of equation ut = ∆u+ up

The simple equation (1.1.1) has been widely studied by many researchers since the pioneering
work [12] by H. Fujita. In particular, describing possible blow-up behavior at the blow-up
time has attracted considerable attention in the past decades. We say that a solution u of
(1.1.1) blows up in a finite time T if

lim sup
t↗T

∥u(·, t)∥L∞(RN ) = ∞. (1.1.3)

8



A number of sufficient conditions finite time blow-up has been obtained by many reseachers.
For example, if the nonnegative initial data u0 satisfies

u0(x) ≥ λUκ(|x|), x ∈ RN (1.1.4)

for some constants λ > 1 and κ > 1, then the solution of (1.1.1) blows up in finite time, where
Uα(|x|) denotes a regular stationary solution of (1.1.1) (see (1.1.9) below). In this article, we
study the blow-up rate of ∥u(·, t)∥L∞(RN ) as t approaches the blow-up time T . Local theory
implies that there is a constant C > 0 such that

∥u(·, t)∥L∞(RN ) ≥ C(T − t)−1/(p−1), 0 < t < T

if the maximal time of existence T = T (u0) is finite (cf. [41, Chapter II]). On the other hand,
it is far from obvious whether the corresponding upper estimate holds. A blow-up is said to
be of type I if there exists a positive constant K such that

∥u(·, t)∥L∞(RN ) ≤ K(T − t)−1/(p−1), 0 < t < T ; (1.1.5)

whereas the blow-up is said to be of type II otherwise. In the Sobolev subcritical case
p < pS, where

pS :=

 ∞, N = 1, 2,

1 +
4

N − 2
, N ≥ 3,

(1.1.6)

every blow-up for (1.1.1) is of type I even for non-radial or sign-changing solutions [13, 14]
(see also [7] for a related parabolic system). In the Sobolev supercitical case, the situation
drastically changes according to whether or not p is less or greater than the Joseph–Lundgren
exponent

pJL :=


∞, N ≤ 10,

1 +
4

N − 4− 2
√
N − 1

, N ≥ 11.
(1.1.7)

Indeed, if pS < p < pJL, only type I blow-up occurs for radial solutions under mild assump-
tions on initial data [28, 29, 35], whereas type II blow-up does occur for p > pJL as we are
going to recall below. To this end, let us write

β :=
1

p− 1
, (1.1.8a)

γ :=
N − 2−

√
D

2
, (1.1.8b)

D := 16β2 − 8(N − 4)β + (N − 2)(N − 10). (1.1.8c)

All the radial regular stationary solutions, denoted by Uκ(r), are parametrized by their
values at the origin, i.e., κ = Uκ(0) ∈ R. It is known (cf. Proposition 1.2.1 below) that, when
p > pJL,

Uκ(|x|) = U∞(|x|)− hκ|x|−γ + o(|x|−γ) as |x| → ∞, (1.1.9)
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where hκ > 0 is a constant depending on κ and U∞(r) is the singular stationary solution :

U∞(|x|) := c∗|x|−2β with cp−1
∗ := 2β(N − 2− 2β). (1.1.10)

Herrero and Velázquez [23,24] proved that, as long as N ≥ 11 and pJL < p, type II blow-
up actually occurs. They constructed radial blow-up solutions {uℓ,HV}ℓ∈L, L ⊂ N, (which
we call HV solutions) satisfying ∥uℓ,HV(·, t)∥∞ = uℓ,HV(0, t) and

C1(T − t)−β−2βωℓ ≤ uℓ,HV(0, t) ≤ C2(T − t)−β−2βωℓ (1.1.11a)

with ωℓ :=
λℓ

γ − 2β
> 0 and λℓ := β − γ

2
+ ℓ (1.1.11b)

for some constants C1, C2 > 0. The proof requires a long argument. Though the main
article [23] containing the full proof remains unpublished yet, the result as well as the idea
of the proof is well explained in [24] without arguing the technical detail. A slightly shorter
proof was given by [32] under the additional assumption that ℓ is even. These blow-up
rates appear also for some non-radial solutions [4, 6]. The method of [23, 24] has become
one of the standard tools in the study of type II singularity. Indeed, it has been applied
to several nonlinear parabolic problems (cf. for instance, [1, 19–21, 43, 49]). Based on the
results of [23, 24], Matano [27] and Mizoguchi [34] independently proved that, if λn ̸= 0
for every n ∈ N and if a radial solution blows up in finite time with type II regime, then
its actual blow-up rate coincides with (1.1.11) for some ℓ ∈ L, where λℓ is as in (1.1.11b).
As to this direction, an earlier result [35] includes the same conclusion for p > pL (so that
λ0 < λ1 < 0 < λ2 < . . . ), where pL stands for the Lepin exponent :

pL :=


∞, N ≤ 10,

1 +
6

N − 10
, N ≥ 11.

(1.1.12)

This was first found by [25] in the study of self-similar solutions. See [37,40] for recent results
on this topic.

For p = pL, it was proved in [46] that there exist type II blow-up solutions with exact
rates much different from (1.1.11a) (see also [1, 2] for related results). Whether or not type
II blow-up occurs for p = pJL had been long remained open until it was affirmatively solved
in [44]. The analysis in [44, 46] is much delicate than that of [23, 24]. Our principal goal
is, using the techniques developed in [44, 46] and elaborate estimates on the heat semigroup
in backward similarity variables, to construct refined solutions whose blow-up mechanism is
driven by a stable eigenvalue such as HV solutions. As we have already pointed out, the
method originated from [23, 24] has been applied to several nonlinear parabolic problems.
We expect that the refined technique developed in this article would apply to other nonlinear
parabolic problems, thus obtaining completely new results or considerable improvements of
the previous results.

As for the case p = pS, the existence of type II blow-up solutions have been obtained
in [42] for N = 4 and in [8, 22] for N = 5. An earlier result due to [10] formally indicates
that type II blow-up can occur for N = 3, 4, 5, 6. It was proved in [5] that type II blow-up
solutions do not exist in some class of function spaces for N ≥ 7.
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1.1.2 Study of equation ut = ∆u+ |x|2aup

In the early stage of the research on (1.1.2), one of the main topics was to investigate the
influence of decay rate of initial data at infinity for global-in-time existence of solutions.
For instance, Pinsky [39] showed that the critical exponent for existence of global solutions
depends on the behavior of weighted term |x|2aup as |x| → ∞. Wang [48] studied sufficient
conditions on initial data for global-in-time existence and the asymptotic behavior as t→ ∞.
A comprehensive survey can be found in the introduction of [47]. In the case a > 0, on the
other hand, the weighted term can disturb blowing up at the origin. Some recent articles
discuss whether the zero point in the nonlinearity (i.e., x = 0) can be a blow-up point when
blow-up takes place. Several conditions which ensure non-blow-up at the zero point were
obtained in [15, 16, 18]. Examples of solutions blowing up at x = 0, in contrast, were found
in [11,17]. Filippas and Tertikas [11] constructed self-similar solutions that blow up (in finite
time) at x = 0 in the cases p < pS(a) or pS(a) < p < pJL(a), where

pS(a) :=


∞, N = 1, 2,

1 +
4(1 + a)

N − 2
, N ≥ 3

(1.1.13)

and

pJL(a) :=


∞, N ≤ 10 + 8a,

1 +
4(1 + a)

N − 2a− 4− 2
√

(N + a− 1)(a+ 1)
, N > 10 + 8a.

(1.1.14)

As a matter of fact, they agree with the previous notations (1.1.6), (1.1.7) when a = 0. Apart
from the explicit examples in [11], Guo and Shimojo [17] proved the existence of a solution
that blows up at the origin for N = 3 and p > pS(a). The proof of [17] is due to an argument
by contradiction. To the best of the authors’ knowledge, no other example of such a blow
up solution has not been obtained. Our method naturally extends to the case a > 0 and
p > pJL(a) with N > 10 + 8a (cf. §§1.1.3), thereby giving a new example of solutions that
blow up at the zero point. We note that our proof in fact works for a > −1 and thus covers
the three-dimensional case. The proof is totally different from the indirect construction due
to [17]. In addition, our blow-up solutions satisfy

lim
t↗T

(T − t)(1+a)/(p−1)u(0, t) = +∞. (1.1.15)

Phan [38] has recently established a Liouville-type theorem for (1.1.2) and applied it to show
the blow-up rate estimates of the form (in our notation) :

∥u(t)∥L∞(RN ) ≤ C(T − t)−(1+a)/(p−1), 0 < t < T

for a > 0, p < pS(a) or for −1 < a < 0, N ≥ 2, p < pS(a) and radially nonincreasing initial
data. This estimate is in contrast to (1.1.15).
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1.1.3 The statement of the main results

Given a number a > −1, we re-define the constants β and D as follows :

β = β(a) :=
1 + a

p− 1
, (1.1.16)

D = D(a) := 16β2 − 8(N − 4− 2a)β + (N − 2)(N − 10− 8a), (1.1.17)

We keep the notations γ and c∗ as (1.1.8b) and (1.1.8c), and (1.1.10) with β replaced by the
one above. In the following, let us abbreviate pJL(a) to pJL. The family of regular stationary
solutions Ua, κ(r), κ > 0, of (1.1.2) has the same structure as in the case a = 0. In particular,
the stationary solution Ua, 1 satisfies

Ua, 1(|x|) = U∞(|x|)− h|x|−γ + o(|x|−γ) as r → ∞ (1.1.18)

for some constant h > 0 as long as p > pJL, N > 10 + 8a. See Proposition 1.2.1 below.

Theorem 1.1.1. Assume that a > −1, p > pJL, and N > 10 + 8a, hold. Let ℓ be a positive
integer such that λℓ in (1.1.11b) is positive and set ωℓ := λℓ/(γ − 2β). Then for every T > 0
and ϱ > 0, there exists a positive radially decreasing solution uℓ of (1.1.1), which blows up at
t = T , x = 0, with the following properties :

( i ) (Exact blow-up rate)
lim
t↗T

(T − t)β+2ωℓβuℓ(0, t) = K2β
T (1.1.19)

with KT := (T/T0)
ωℓ, where T0 ∈ (0, 1) is a fixed small constant depending only on

N, p, a, ℓ, and ϱ ;

(ii) (Estimates in a neighborhood of the inner layer) There holds∣∣∣∣∣uℓ(x, t)−
(

KT

(T − t)1/2+ωℓ

)2β

Ua, 1

(
KT |x|

(T − t)1/2+ωℓ

)∣∣∣∣∣
< K−θ

T (T − t)θωℓ

(
KT

(T − t)1/2+ωℓ

)2β

Ψ

(
KT |x|

(T − t)1/2+ωℓ

) (1.1.20)

for |x| ≤ K−θ
T (T − t)1/2+θωℓ, 0 < t < T , where KT is the constant as in ( i ), θ ∈ (0, 1)

is a constant, and Ψ(ξ) is a positive C∞-function satisfying

Ψ(ξ) =

{
O(1) as ξ → 0,

O(ξ−γ) as ξ → ∞ ;
(1.1.21)

(iii) (Estimates in bounded regions) There holds∣∣∣∣uℓ(x, t)− U∞(|x|) +K
−(γ−2β)
T C∗(T − t)ℓ|x|−γL

(
√
D/2)

ℓ

(
|x|2

4(T − t)

)∣∣∣∣
< ϱK

−(γ−2β)
T (T − t)ℓ|x|−γ

(
1 +

|x|2

T − t

)ℓ (1.1.22)
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with

C∗ :=
hΓ(

√
D/2 + 1)ℓ!

Γ(
√
D/2 + ℓ+ 1)

for K−θ
T (T − t)1/2+θωℓ < |x| ≤ T 1/2/T

1/2−ω
0 , 0 < t < T , where ω ∈ (0, 1/2), Γ is the

standard Gamma function, L
(ς)
ℓ (z) denotes the associated Laguerre polynomial of degree

ℓ, and T0, θ are the constants as in ( i ), (ii) ;

(iv) (Number of intersections) There exist exactly ℓ simple zeros {rn(t)}ℓn=1 of uℓ(·, t)−U∞
for every t ∈ (0, T ), which satisfy rn(t) = O(

√
T − t) as t↗ T for n = 1, ..., ℓ.

Remark 1.1.1. The constant T0 is related to ϱ as T0 ≤ ϱ1/2θωℓ . In fact, estimate (1.1.22)
is further improved in the intersections with parabolic regions {|x| ≤ R

√
T − t} with R > 1

being an arbitrary constant, so that constant ϱ may be replaced by function K−2θ
T (T − t)2θωℓ

there. This can be checked by slight modifications of the proofs of Lemmas 1.4.9–1.4.11.

As the blow-up rate estimate (1.1.19) shows, the solution uℓ above is of essentially the same
class as of uℓ,HV obtained by [23, 24]. Theorem 1.1.1 includes, however, more information
about local-in-space estimates both near and away from the singularity even for a = 0.
Indeed, the proof of [23, 24] ensures an estimate of the form

C1Uκ1

(
|x|

(T − t)1/2+ωℓ

)
≤ (T − t)β+2βωℓuℓ,HV(x, t) ≤ C2Uκ2

(
|x|

(T − t)1/2+ωℓ

)
with κ1 < 1 < κ2 for |x| = O

(
(T − t)1/2+ωℓ

)
. The statement (ii) of Theorem 1.1.1 shows that

the leading term of uℓ in the region |x| ≤ K−θ
T (T − t)1/2+θωℓ is precisely determined as

uℓ(x, t) ∼
(

KT

(T − t)1/2+ωℓ

)2β

Ua, 1

(
KT |x|

(T − t)1/2+ωℓ

)
as t↗ T

as well as the estimates of error terms. The counterparts for their derivatives are given in
Corollary 1.1.2 below. Another novelty of Theorem 1.1.1 consists in the estimate (1.1.22)
for bounded regions, |x| ≍ 1, which extends the region |x| ≤ (T − t)1/2−σ, σ ∈ (0, 1/2), of
validity of the estimate guaranteed for uℓ,HV. Since

(T − t)ℓ|x|2β−γ

(
1 +

|x|2

T − t

)ℓ

= |x|2λℓ

(
T − t

|x|2
+ 1

)ℓ

for K−θ
T (T − t)1/2+θωℓ < |x| ≤ T 1/2/T

1/2−ω
0 , we deduce from (1.1.22) that

C ′|x|2λℓ ≤
∣∣∣∣uℓ(x, T )U∞(|x|)

− 1

∣∣∣∣ ≤ C|x|2λℓ (1.1.23)
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for every 0 < |x| small enough, where uℓ(x, T ) := limt↗T uℓ(x, t) denotes the blow-up profile
defined outside the blow-up set. In particular, we have,

lim
|x|→0

uℓ(x, T )

U∞(|x|)
= 1. (1.1.24)

This was established in [29, Theorem 4.1] as one of the properties characterizing (possibly
sign-changing) type II blow-up (with the RHS of (1.1.24)replaced by ±1) for p > pS, but no
concrete example directly verifying (1.1.24) has been obtained so far. Our particular solutions
do imply (1.1.24) and estimate (1.1.23) includes further information on the convergence. In
particular, it shows optimal estimates of the error depending on each eigenvalue.

Arguing as in [44,46], we obtain further properties on the solution.

Corollary 1.1.2. Assume the same hypothesis as in Theorem 1.1.1 and a ≥ 0. Let u = uℓ be
the type II blow-up solution as in Theorem 1.1.1. Then the diffusion term −∆u(x, t) exhibits
the same growth rate as of the superlinear term |x|2aup(x, t) :

−∆u(x, t) =
(
K−1

T (T − t)1/2+ωℓ
)−2(β+1)

×

((
|x|

ε(τ)
√
T − t

)2a

U1

(
|x|

ε(τ)
√
T − t

)p

+ o(1)

)
, (1.1.25)

ut(x, t) = o
(
(T − t)−2(β+1)(1/2+ωℓ)

)
, (1.1.26)

as t↗ T for every (x, t) ∈ RN × (0, T ) with |x| ≤ K−1
T (T − t)1/2+ωℓ.

Remark 1.1.2. Set m(t) = ∥u(·, t)∥∞. The following characterization of blow-up rates for
any blow-up solutions of (1.1.1) was proved in [28, Appendix B] :

Type I : m′(t) = O(m(t)p) as t↗ T,

Type II : m′(tn) = o(m(tn)
p) for some sequence tn ↗ T. (1.1.27)

In particular, (1.1.27) represents the slow nature of type II blow-up. Corollary 1.1.2 shows the
quantitative information about these amounts (without choosing a particular time-sequence)
for the solutions. Thereby they become a prime example of this fact.

Corollary 1.1.3. Assume the same hypothesis as in Theorem 1.1.1. Let u = uℓ be the type
II blow-up solution as in Theorem 1.1.1. Then for every q > qc := N(p− 1)/2(1 + a), there
exist constants C1, C2 > 0 such that

C1(T − t)−(1/2+ωℓ)(2β−N/q) ≤ ∥u( · , t)∥Lq(RN ) ≤ C2(T − t)−(1/2+ωℓ)(2β−N/q) (1.1.28)

for 0 < t < T . More precisely,∫
{|x|≤K−θ

T (T−t)1/2+θωℓ}
u(x, t)q dx = D1

(
KT

(T − t)1/2+ωℓ

)2βq−N (
1 + o(1)

)
, (1.1.29)∫

{K−θ
T (T−t)1/2+θωℓ≤|x|}

u(x, t)q dx = O
(
(T − t)−(1/2+θωℓ)(2βq−N)

)
, (1.1.30)
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as t↗ T , where

D1 :=

∫ ∞

0

Ua, 1(r)
qrN−1 dr <∞.

Corollary 1.1.4. Assume the same hypothesis as in Theorem 1.1.1. Let σ be a constant
with σ > 2β. Then there exists an initial data u0 satisfying

u0(x) ≤ C(1 + |x|)−σ in RN (1.1.31)

for some constant C > 0 such that the corresponding solution u = uℓ ∈ C
(
[0, T );Lqc(RN)

)
satisfies the same estimates as in ( i )–(iv) of Theorem 1.1.1 and

C3| log(T − t)| ≤ ∥u(·, t)∥Lqc (RN ) ≤ C4| log(T − t)| (1.1.32)

for 0 < t < T , where C3, C4 > 0 are some constants.

Remark 1.1.3. A recent result [36] shows that the critical Lq norm blow-up does occur
for possibly non-radial solutions of (1.1.1) if the blow-up is of type I. The solution uℓ as in
Theorem 1.1.1 exhibits type II blow-up. Nevertheless, corollary 1.1.4 shows that the critical
norm ∥uℓ(·, t)∥Lqc blows up as well and that, moreover, the rate is logarithmic.

The solutions as in Theorem 1.1.1 certainly converge to the singular self-similar solution
U∞, in the self-similar variables (cf. (1.2.1)), locally uniformly in RN \ {0}. In the Sobolev
subcritical case, the convergence holds with the U∞ replaced by the positive constant ββ with
a = 0 [13]. In this case, a small perturbation of some initial data yields the same blow-up
mechanism (see, for instance, [3, 31]). To the best of the authors’ knowledge, no reasonable
statement on such stability results of Type II blow-up for equation (1.1.1) or (1.1.1) was
known even in the radially symmetric case.

Before closing this introduction, we just comment on relation to some previous results
on (1.1.1). As we have already pointed out, several methods to analyze type II singularity
have been recently developed. The approach of [42] relies on so called energy method coming
from dispersive equations and does not on tools particular for parabolic equations, such as
maximum principle. Our approach, on the other hand, does not require energetic structure
but uses thoroughly explicit formulas of a semigroup (cf. (1.4.18) below). At this stage, it
concerns parabolic problems (in the radial case) only, but can describe subtle local behavior,
especially in the region of order one |x| ≍ 1 (cf. (1.1.23)) in addition to parabolic regions,
where more detailed estimates than [42] are obtained. The approaches of [8,22] seems to have
close relation to our matched asymptotics. The authors of [8] developed elegant linear theory
for a certain linearized problem applicable to determining the leading order profile in blow-
up regions. The construction of our sub- and supersolutions relies on “layer structure” of
stationary solutions Uκ(|x|), i.e., monotonicity with respect to κ (their values at x = 0), which
is available only for p ≥ pJL. We believe, however, that it directly justifies the asymptotic
series expansions in the formal construction. Except for this, we dispense with inessential
comparison techniques in [23,35]. We hope to develop new ideas without relying on the layer
structure, so that our approach will be further extended to analyze various nonlinear parabolic
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problems. As for the non-radial situation, the authors of [5, 8] independently obtained very
interesting blow-up solutions on RN+1 by extending radial solutions on RN . The author are
unaware if their analysis could be carried out for (1.1.2) with a ̸= 0. Discussing the detail of
related results for all type of semilinear equations is beyond the scope of this Chapter. The
readers are referred to the above-mentioned articles and references cited therein.

The rest of this article is organized as follows. In §1.2 we first summarize some basic
properties of stationary solutions and the linearized operator around U∞ in the backward
similarity variables. By means of matched asymptotic expansions, we then formally describe
the leading terms and investigate how large the error terms can be. The last argument
leads to a formulation of finite-dimensional reduction for the rigorous construction in §1.3.
Theorem 1.1.1 and Corollaries 1.1.2–1.1.4 are proved therein under the assumption that a
key a priori estimate holds. §1.4–1.6 are devoted to proving the a priori estimate.

1.2 Preliminaries

In this section, we review some known facts essentially due to [23] and discuss the formal
construction. Introducing the backward similarity variables

Φ(y, τ) := (T − t)βu(x, t) (1.2.1a)

with y :=
x√
T − t

and τ := − log(T − t), (1.2.1b)

we convert equation (1.1.1) to the rescaled equation :

Φτ = ∆yΦ− y · ∇yΦ

2
− βΦ + |y|2aΦp in

(
RN \ {0}

)
× (− log T,∞), (1.2.2)

where ∇y and ∆y are the gradient and the Laplacian with respect to y, respectively. Notice
that U∞(r) as in (1.1.10) with r = |y| is also an unbounded stationary solution of (1.2.2).
We shall henceforth abuse notations as well such as Φ(r, τ) = Φ(y, τ) for simplicity.

1.2.1 Formal asymptotics in the inner region

Suppose that an inner layer near the origin appears in our sought-for solution Φ(r, τ) of
(1.2.2), where sharp changes in Φ arise when τ → ∞. Let ε(τ) denote the size of the inner
layer, which is a priori unknown. We assume

ε(τ), ε̇(τ) ≪ 1 as τ → ∞. (1.2.3)

To see the dynamics near the origin, we introduce inner variables (U(ξ, τ), ξ) as follows :

U(ξ, τ) := ε(τ)2βΦ(y, τ) with ξ :=
y

ε(τ)
. (1.2.4)

A direct computation then shows that

ε(τ)2Uτ = ∆ξU + |ξ|2aUp −
(
ε(τ)2 − 2ε(τ)ε̇(τ)

)(ξ · ∇ξU

2
+ βU

)
. (1.2.5)
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In view of (1.2.3), we infer that the leading term of U as τ → ∞ would be given by a bounded
stationary solution of (1.1.2) for ξ = o(1/ε(τ)), which amounts to |y| ≪ 1. The structure
of stationary solutions Ua, κ (abbreviated in the sequel to Uκ for simplicity) of (1.1.2) is well
understood, which we just recall here.

Proposition 1.2.1. ([26, Lemma 4.3]) For any α > 0, there exists a unique solution Uκ of
d2U

dr2
+
N − 1

r

dU

dr
+ r2aUp = 0 in R+,

U(0) = κ, U ′(0) = 0.

(1.2.6)

If p > pJL and N > 10 + 8a, the family of the solutions {Uκ}κ>0 has the ordered structure :

κ1 < κ2 =⇒ Uκ1(r) < Uκ2(r) for all r > 0. (1.2.7)

Moreover,

U1(r) = U∞(r)− hr−γ +R(r), (1.2.8a)

U ′
1(r) = U ′

∞(r) + hγr−γ−1 +R(r)O(r−1), (1.2.8b)

as r → ∞, where h > 0 is a constant and R(r) = o(r−γ). More precisely, there holds

R(r) =

{
O
(
r−γ−min{γ−2β,

√
D}) if

√
D ̸= γ − 2β,

O
(
r−γ−

√
D log r

)
if

√
D = γ − 2β.

Due to (1.2.4) and (1.2.5), it is natural to construct a solution of the form :

Φinn(r, τ) := ε(τ)−2βU1

(
r

ε(τ)

)
with r = |y|, (1.2.9)

which describes the dynamics in the inner region r = O(ε(τ)). The asymptotic behavior
(1.2.8a) of Uκ then implies

Φinn(r, τ) ∼ U∞(r)− hε(τ)γ−2βr−γ for ε(τ) ≪ r ≪ 1. (1.2.10)

Hence our sought-for solution Φ(r, τ) should behave, to the leading term, to U∞(r) in the
regions where ε(τ) ≪ r as τ → ∞. It is therefore natural to linearize equation (1.2.2) around
U∞(r).

1.2.2 Formal asymptotics in the intermediate region

Let us set
v(r, τ) := Φ(r, τ)− U∞(r). (1.2.11)

and ρ(r) := exp {−r2/4}. It is readily seen that v solves equation

vτ = −Av + f(v) (1.2.12)

17



with

−Av :=
1

rN−1ρ(r)

∂

∂r

(
rN−1ρ(r)

∂v

∂r

)
− βv +

pcp−1
∗
r2

v (1.2.13a)

f(v) := r2a
[
(U∞ + v)p − Up

∞ − pUp−1
∞ v

]
. (1.2.13b)

Let us write

L2
ρ, rad(R

N) :=

{
v ∈ L2

loc([0,∞)) ; ∥v∥2 ≡ ∥v∥2L2
ρ, rad(R

N ) :=

∫ ∞

0

v(η)2ηN+3ρ(η) dη < +∞
}
,

H1
ρ, rad(R

N) :=
{
v ∈ H1

loc([0,∞)) ; ∥v∥2H1
ρ, rad(R

N ) := ∥v∥2 + ∥v′∥2 < +∞
}
.

The linearized operator Av ≡ Av with v ∈ D(A) = C∞
0 (R+) is realized as a symmetric

operator in L2
ρ, rad(R

N). A version of Hardy type inequality as well as integration by parts
implies that, if v is smooth,

⟨Av, v⟩N := ⟨Av, v⟩L2
ρ, rad(R

N )

=

∫ ∞

0

(
∂v

∂r

)2

rN−1ρ(r) dr + β

∫ ∞

0

v2rN−1ρ(r) dr − pcp−1
∗

∫ ∞

0

v2rN−3ρ(r) dr

≥
(
1− 4pcp−1

∗
(N − 2)2

)∥∥∥∥∂v∂r
∥∥∥∥2 − ( pcp−1

∗
N − 2

− β

)
∥v∥2.

Consequently, if p ≥ pJL, the operator A is lower bounded, i.e., ⟨Aϕ, ϕ⟩ ≥ −C∥ϕ∥2 for every
functions ϕ ∈ D(A). We still denote by A its Friedrichs extension. The following spectral
result is proved by essentially the same argument as in [23, Lemma 2.3], [44, Proposition 2.2].

Proposition 1.2.2. Assume that p ≥ pJL and N > 10 + 8a be in force. Then the spectrum
of A consists only of simple eigenvalues {λn}∞n=0,

λn := β − γ

2
+ n for n = 0, 1, 2, . . . (1.2.14)

Eigenfunctions of A associated with eigenvalues λn are given by

ϕn(r) := cnr
−γM

(
−n,−γ +

N

2
;
r2

4

)
for n = 0, 1, 2, . . . ; (1.2.15a)

M(a, b ; z) := 1 +
∞∑
j=1

(a)j
j!(b)j

zj with (a)m =
m−1∏
j=0

(a+ j), (1.2.15b)

where cn > 0 are constants such that ∥ϕn∥ = 1. Moreover, the eigenfunctions satisfy

ϕn(r) = cnr
−γ
(
1 +O(r2)

)
as r → 0 ; (1.2.16a)

ϕn(r) = c̃nr
−γ+2n

(
1 +O(r−2)

)
as r → ∞, (1.2.16b)
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where c̃n ∈ R are constants such that (−1)nc̃n > 0 for n = 0, 1, 2, . . . Furthermore, the
constants cn and c̃n in (1.2.16) are represented as

cn :=

√
Γ(−γ +N/2 + n)

2−2γ+N−1n!Γ(−γ +N/2)2
, (1.2.17a)

c̃n :=
(−1)n

22n(−γ +N/2)n

√
Γ(−γ +N/2 + n)

2−2γ+N−1n!Γ(−γ +N/2)2
, (1.2.17b)

respectively, where Γ stands for the standard Gamma function.

Remark 1.2.1. By classical results on orthogonal polynomials, the eigenfunctions are ex-
pressed by associated Laguerre polynomials L

(ς)
n (z) = (n!)−1ezz−ς(dn/dzn)(e−zzn+ς) :

ψn(r) := rγϕn(r) =
cnn!Γ(ς + 1)

Γ(ς + n+ 1)
L(ς)
n

(
r2

4

)
with ς =

√
D

2
= −γ +

N

2
− 1. (1.2.18)

Applying Stirling’s formula Γ(z) ∼
√

2π/z(z/e)z as z → ∞ to (1.2.17), we have

c2n ∼ nς

22ς+1Γ(ς + 1)2
and c̃2n ∼ 1

24n(1 + ς)2n

nς

22ς+1Γ(ς + 1)2
, as n→ ∞. (1.2.19)

We recall the well-known estimate [45]∣∣L(ς)
n (z)

∣∣ ≤ Γ(ς + n+ 1)

Γ(ς + 1)n!
ez/2, z ≥ 0,

whence:
|ψn(r)| ≤ cne

r2/8. (1.2.20)

In particular, the polynomials ψn(r)/cn are uniformly bounded in every compact set of [0,∞).

We shall recall the idea of [23,24] and then refine their argument. Due to Proposition 1.2.2,
the solution v ∈ L2

ρ, rad(R
N) of (1.2.13) may be expanded to a Fourier series : v(r, τ) =∑∞

n=0 an(τ)ϕn(r), where the Fourier coefficients an(τ) = ⟨v(τ), ϕn⟩N satisfy

ȧn(τ) = −λnan(τ) + ⟨f(v(τ)), ϕn⟩N . (1.2.21)

Consider the situation where a stable mode eventually dominates :

v(r, τ) ∼ aℓ(τ)ϕℓ(r) as τ → ∞, (1.2.22)

where ℓ is an integer such that λℓ > 0. Suppose that the term ⟨f(v(τ)), ϕℓ⟩N in (1.2.21)
would play no role to the leading order. We then expect that the leading term of aℓ(τ) would
be determined by the homogeneous term of (1.2.21). Hence, as τ → ∞,

U∞(r) + v(r, τ) ∼ U∞(r)− dℓe
−λℓτϕℓ(r) =: Φmed(r, τ) (1.2.23)
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with some constant dℓ > 0. The outer expansion as r → 0 then follows from (1.2.16a) :

Φmed(r, τ) ∼ U∞(r)− cℓdℓe
−λℓτr−γ. (1.2.24)

Matching the inner expansions (1.2.10) with the outer ones (1.2.24) in the intermediate region
{ε(τ) ≪ |y| ≪ 1} where both expansions make sense, we obtain

ε(τ)γ−2β ∼ Cℓe
−λℓτ with Cℓ :=

cℓdℓ
h
. (1.2.25)

Substituting (1.2.25) into (1.2.10) and returning to the original variables, we formally obtain
the asymptotic expansions of the HV solution {uℓ,HV}.

While the above argument simply tells us what determines the leading terms of the outer
expansions, it does not imply the possible effect of the nonlinear term f(v) to aℓ(τ) nor how
large the next order corrections can be. We shall derive this result as well as expected error
estimates by more careful argument.

Hypothesis 1.2.3. The blow-up is driven by the stable eigenvalue λℓ > 0 :

|an(τ)| ≪ |aℓ(τ)| as τ → ∞ (1.2.26)

for n = 0, 1, . . . , ℓ − 1 and (1.2.22) holds. Moreover, the controlling factor of aℓ(τ) is e−λℓτ

and the other factors are polynomially bounded as τ → ∞ in the sense that

C1

τ k
≤
∣∣eλℓτaℓ(τ)

∣∣ ≤ C2τ
k (1.2.27)

for some constants C1, C2 > 0 and k > 0.

The rationale behind this hypothesis is the occurrence of possible behavior of aℓ(τ), such
as aℓ(τ) = Ce−λℓττ ν with some C > 0 and ν ̸= 0, which actually arises in the critical case
p = pJL [44] or when λℓ (> 0) is replaced by a neutral eigenvalue [46]. We will show that
such behaviors cannot arise in our situation. In order Φmed to be matched with the inner
expansions (1.2.10) in the intermediate region {ε(τ) ≪ |y| ≪ 1}, we must have

aℓ(τ) = − h

cℓ
ε(τ)γ−2β + o(ε(τ)γ−2β). (1.2.28)

It then follows from (1.2.27) and (1.2.28) that

ε(τ)γ−2β = O
(
e−λℓττ k

)
as τ → ∞. (1.2.29)

For the ease of presentation, we consider only the case where N is not too large so that

χ :=

∫ ∞

0

ξ2a−γ+N−1

[
U1(ξ)

p − U∞(ξ)p − pcp−1
∗

ξ2a+2
(U1(ξ)− U∞(ξ))

]
dξ <∞.
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Then, arguing as in §2.3 of [46], we obtain

⟨f(v(τ)), ϕn⟩N = χcnε(τ)
γ−2β+

√
D + o

(
ε(τ)γ−2β+

√
D
)

as τ → ∞. (1.2.30)

We now integrate the ODE (1.2.21) over [τ,∞). Since
∫∞
1
eλℓs|⟨f(v(s)), ϕn⟩N | ds <∞ due to

(1.2.29) and (1.2.30), it then turns out that a finite limit An := limτ1→∞ eλnτ1an(τ1) exists,

an(τ) = Ane
−λnτ −

∫ ∞

τ

eλn(s−τ)⟨f(v(s)), ϕn⟩N ds, (1.2.31)∫ ∞

τ

eλn(s−τ)|⟨f(v(s)), ϕn⟩N | ds = o(e−λℓτ ) as τ → ∞ (1.2.32)

for n = 0, 1, . . . , ℓ. Notice that

An = 0 for n = 0, 1, . . . , ℓ− 1 ; (1.2.33a)

Aℓ ̸= 0. (1.2.33b)

Indeed, (1.2.33a) is a simple consequence of (1.2.26), (1.2.31), and (1.2.32). If (1.2.33b) is
false, we deduce from (1.2.29)–(1.2.31) that the controlling factor of aℓ(τ) is not e

−λℓτ , a con-

tradiction. Arguing again as above, we obtain an(τ) = O(ε(τ)γ−2β+
√
D) for n = 0, 1, . . . , ℓ−1

and

aℓ(τ)− Aℓe
−λℓτ = −

∫ ∞

τ

eλℓ(s−τ)⟨f(v(s)), ϕℓ⟩N ds = O
(
ε(τ)γ−2β+

√
D
)

as τ → ∞.

Then (1.2.25) follows from (1.2.28). In addition, we see that Aℓ is negative due to the
matching condition (1.2.25). The matching condition (1.2.25) suggests that

d

dτ
(ε(τ)γ−2β) = −λℓε(τ)γ−2β(1 + o(1)) as τ → ∞. (1.2.34)

For n ≥ ℓ+ 1, we integrate the ODE (1.2.21) over [τ0, τ ]. By (1.2.30) and (1.2.34), we get

eλnτan(τ)− Ãn =

∫ τ

τ0

eλns⟨f(v(s)), ϕn⟩N ds ∼
χcn

λn − (1 + κ)λℓ
eλnτε(τ)γ−2β+

√
D,

where Ãn := eλnτ0an(τ0) and κ :=
√
D/(γ−2β) > 0. Due to this, we obtain the asymptotoics

of an(τ) for n = ℓ+ 1, ℓ+ 2, . . . as τ → ∞. It follows that

R(r, τ) := v(r, τ)−
ℓ∑

n=0

an(τ)ϕn(r) ∼ χε(τ)γ−2β+
√
DFℓ(r)

with Fℓ(r) :=
∞∑

n=ℓ+1

cndn
n

ϕn(r) and dn :=
1

1− (ℓ+ κλℓ)/n
, (1.2.35)
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where the convergence is understood in an appropriate weak sense (cf. [44,46]). We will show

that Fℓ(r) ∼ w(r) := r−γ−
√
D/2(

√
D+1) as r → 0. Recall the identity −2γ−

√
D+N−1 = 1

and the exact formula (1.2.18) of ϕn(r). Then we have

(ς + 1)

∫ ∞

0

w(r)ϕn(r)r
N−1e−r2/4 dr =

cnn!Γ(ς + 1)

Γ(ς + n+ 1)

∫ ∞

0

L(ς)
n (z)e−z dz,

where ς =
√
D/2 and where the change of variable z = r2/4 has been used as well. Since

n!
∫∞
0
L
(ς)
n (z)e−z dz = ς(ς + 1) . . . (ς + n− 1), it turns out that∫ ∞

0

w(r)ϕn(r)r
N−1e−r2/4 dr =

cn
ς + n

for n = 0, 1, 2 . . . ,

w(r) =
ℓ∑

n=0

cn
ς + n

ϕn(r) +
∞∑

n=ℓ+1

cnen
n

ϕn(r) with en :=
1

1 + ς/n
. (1.2.36)

Comparing (1.2.35) with (1.2.36) and performing similar computations several times, we have

Fℓ(r) =
1

2(ς + 1)
r−γ−

√
D + o

(
r−γ−

√
D
)
,

whence : R(r, τ) ∼ χε(τ)γ−2β+
√
Dr−γ−

√
D/2(ς + 1) as r → 0. This is indeed much smaller

than aℓ(τ)ϕℓ(r) as long as ε(τ) ≪ r ≪ 1, τ → ∞.
It is also possible to refine inner expansions by computing the next order correction to

(1.2.9). To this end, we set

U(ξ, τ) := U1(ξ) + E(τ)H1(|ξ|) + . . . ,

where E(τ) := ε(τ)2 − 2ε(τ)ε̇(τ) and ξ := y/ε(τ). A standard argument then reveals that
H1(s) = H1(|ξ|) is a solution of the inhomogeneous linear ODE :

H ′′ +
N − 1

s
H ′ + pU1(s)

p−1H =
sU ′

1(s)

2
+ βU1(s) in R+,

satisfying H(0) = H ′(0) = 0. The solution is expressed by means of variation of constants-
formula. Due to Proposition 1.2.1 and L’Hôpital rule, we obtain

H1(s) = C1s
−γ+2 + o(s−γ+2) with C1 =

h(γ − 2β)

4(2 +
√
D)

as s→ ∞. Consequently, the two-term expansion for U(ξ, τ) has been obtained. In terms of
the self-similar variables, this expansion reads

Φinn(r, τ) = U∞(r)− hε(τ)γ−2βr−γ + · · ·+ C1µ(τ)ε(τ)
γ−2β−2r−γ+2 + . . . , (1.2.37)

which is valid in the intermediate region {ε(τ) ≪ r ≪ 1}.
We can observe the asymptotic matching of the outer and inner expansions even in the

higher order computed above if we carefully check their coefficients in detail, but they yield
no contribution to the leading terms. Hence we use them only to obtain information about
a guide for rigorous construction and estimate the error to the leading terms.
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1.2.3 Discussions toward the full construction

We have derived condition (1.2.33) from Hypothesis 1.2.3. The full proof proceeds to the
opposite direction. Namely, we will find a suitable small perturbation of initial data such
that (1.2.33a) holds and then show that Hypothesis 1.2.3 is true. Following [24], we shall
solve this finite-dimensional problem by a topological fixed-point theorem based on mapping
degree theory. To this end, we have to set an appropriate functional framework and to show
a priori estimates for Φ(y, τ) ensuring (1.2.10) and (1.2.23). We just mention the region
where (1.2.23) is expected to hold. Since v(r, τ) = Φ(r, τ)− U∞(r) and

e−λℓτϕℓ(r) ≍ e−λℓτr−γ+2ℓ = e−λℓτr2λℓr−2β as r → ∞,

the maximal region of the quadratic approximation of f(v) holds is, in principle, (ε(τ) ≪)
|y| = O(eτ/2) as τ → ∞. This last amount is not a technical upper bound, since eτ/2 is
a characteristic curve for the hyperbolic part of the differential operator vs + Av ≍ vs +
y · ∇yv/2 + βv for |y| ≫ 1. Nonetheless, the authors of [24] had to restrict their a priori
estimates to {|y| ≤ eστ} with σ < 1/2. In view of the original coordinate, the set corresponds
to a shrinking domain |x| ≤ (T − t)(1/2)−σ, t < T . In the following sections, we show that
it is possible to set a better functional framework than that of [24] and to prove an a priori
estimate of the form :

|Φ(r, τ)− U∞(r)− e−λℓτϕℓ(r)| < νe−λℓτr−γ+2ℓ for 1 ≤ r ≤ eτ/2

for every ν > 0. Consequently our solution u(x, t) has good estimates in the ball {|x| < 1}
uniformly in (0, T ).

1.3 Setting of initial data and functional framework

Let us set

ε0(τ) := e−ωℓτ with ωℓ :=
λℓ

γ − 2β
, a∗ℓ(τ) := − h

cℓ
ε0(τ)

2|λ0| = − h

cℓ
e−λℓτ .

Let ω ∈ (0, 1/2), and θ ∈ (0, 1) be constants such that

0 < θ <
min{2|λ0|,

√
D}

16(2|λ0|+
√
D)

, (1.3.1)

and let τ0, τ1 be numbers such that τ0 ≤ τ1 <∞. Let us write

ϕ̃ℓ(r) :=



1

a∗ℓ(τ0)

(
ε0(τ0)

−2β

(
U1

(
r

ε0(τ0)

)
− U∞

(
r

ε0(τ0)

))
−

ℓ−1∑
n=0

αnϕn(r)

)
for r ≤ ε0(τ0)

θ̃,

ϕℓ(r) for ε0(τ0)
θ̃ < r ≤ e(1/2−ω̃)τ0 ,

1

a∗ℓ(τ0)

(
U∞(r)G(r; τ0)−

ℓ−1∑
n=0

αnϕn(r)

)
for e(1/2−ω̃)τ0 < r,
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where θ̃ ∈ (2θ, 1), ω̃ ∈ (0, ω), and G(r; τ0) is a continuous function satisfying

G(r; τ0) = O(r−κ) as r → ∞ (1.3.2)

where κ > 0. We set the initial data Φ0 as

Φ0(r;α) := U∞(r) + a∗ℓ(τ0)ϕ̃ℓ(r) +
ℓ−1∑
n=0

αnϕn(r),

where α = (α0, α1, . . . , αℓ−1) ∈ Rℓ is a tuple of parameters, so that

Φ0(r;α) =



ε0(τ0)
−2βU1

(
r

ε0(τ0)

)
for r ≤ ε0(τ0)

θ̃,

U∞(r) + a∗ℓ(τ0)ϕℓ(r) +
ℓ−1∑
n=0

αnϕn(r) for ε0(τ0)
θ̃ < r ≤ e(1/2−ω̃)τ0 ,

U∞(r)
(
1 +G(r; τ0)

)
, for e(1/2−ω̃)τ0 < r.

(1.3.3)

Concerning the parameter α, we impose

|α| < ε0(τ0)
2|λ0|+3θ (1.3.4)

(cf. (1.3.9)). In fact, we will convert our problem to a finite dimensional one which amounts to
finding a suitable α ∈ Rℓ satisfying (1.3.4) such that the corresponding initial data Φ0(r;α)
yields a solution Φ(r, τ ;α) with required estimates. To clarify the estimates, we define a
functional framework for Φ in the next subsection.

1.3.1 The functional framework

Let τ0 ≤ τ∗ ≤ τ1. Assume Θ ∈ (0, 1) is sufficiently small constant and Θ is positive constant.
We say that a continuous function Φ : R+ × [τ0, τ∗] → R belongs to Aν

τ0,τ∗ with ν ∈ (0, 1] if
Φ fulfills the following conditions ( I ), (II)A, (II)B and (III) :

( I ) For τ0 ≤ τ ≤ τ∗ and r ≤ ε0(τ)
θ,∣∣∣∣Φ(r, τ)− ε0(τ)

−2βU1

(
r

ε0(τ)

)∣∣∣∣ < νε0(τ)
−2β+θ

(
1 +

r

ε0(τ)

)−γ

; (1.3.5)

(II)A For τ0 ≤ τ ≤ τ∗ and ε0(τ)
θ < r ≤ 1,∣∣Φ(r, τ)− U∞(r)− a∗ℓ(τ)ϕℓ(r)

∣∣ < νε0(τ)
γ−2β+2θr−γ ; (1.3.6)

(II)B For τ0 ≤ τ ≤ τ∗ and 1 < r ≤ e−ωτ0eτ/2,∣∣Φ(r, τ)− U∞(r)− a∗ℓ(τ)ϕℓ(r)
∣∣ < νε0(τ0)

2θε0(τ)
γ−2βr−γ+2ℓ ; (1.3.7)
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(III) For τ0 ≤ τ ≤ τ∗ and e−ωτ0eτ/2 < r,∣∣Φ(r, τ)− U∞(r)
∣∣ < νe−Θτ0r−2β. (1.3.8)

We see that Φ0 ∈ A1/2
τ0,τ0 for |α| < ε0(τ0)

2|λ0|+3θ (see §§1.3.1). We now define a subset
Uτ0, τ∗ ⊂ Rℓ as

Uτ0, τ∗ :=
{
α ∈ Rℓ ; Φ(r, τ ;α) ∈ A1

τ0,τ∗ , |α| < ε0(τ0)
2|λ0|+3θ

}
, (1.3.9)

where Φ(r, τ ;α), r = |y|, denotes the solution of (1.2.2) in
(
RN \ {0}

)
× (τ0, τ1] with initial

data Φ0(r;α) at τ = τ0. A standard continuous dependence on initial data implies that
Uτ0,τ is open with respect to the standard topology of Rℓ. For τ ≥ τ0, we define a map
Qτ : Rℓ → Rℓ with domain Uτ0,τ1 of definition as

Qτ : α 7→ (q0(τ ;α), . . . , qℓ−1(τ ;α))

with qk(τ ;α) := ⟨v( · , τ ;α), ϕk⟩N for k = 0, 1, . . . , ℓ− 1,

where v(r, τ ;α) = Φ(r, τ ;α)− U∞(r).

Lemma 1.3.1. Assume that Qτ1(α) = 0 for some α ∈ Uτ0,τ1. Then:

|α| < 1

2
ε0(τ0)

2|λ0|+3θ and Φ ∈ A1/2
τ0,τ1

.

The proof of this lemma is postponed to §1.4.

Estimates of the initial data

Due to (1.3.3), the initial data Φ0(r) = Φ0(r;α) satisfies following estimates.

Lemma 1.3.2. Let θ′ ∈ (0, 1− θ̃). We then have

rγ
∣∣Φ0(r)− U∞(r)− a∗ℓ(τ0)ϕℓ(r)

∣∣
≤



Cε0(τ0)
2|λ0| + Cr2|λ0|, r ≤ ε0(τ0)

1−θ′ ,

Cε0(τ0)
2|λ0|+µr−µ + Cε0(τ0)

2|λ0|r2, ε0(τ0)
1−θ′ < r ≤ ε0(τ0)

θ̃,

Cε0(τ0)
2|λ0|+3θ(1 + r2ℓ), ε0(τ0)

θ̃ < r ≤ e(1/2−ω̃)τ0 ,

Cr2|λ0|G(r; τ0) + Cε0(τ0)
2|λ0|r2ℓ, e(1/2−ω̃)τ0 < r,

(1.3.10)

for sufficiently large τ0, where θ̃ ∈ (2θ, 1), ω̃ ∈ (0, ω), µ > 0 and κ > 0 are as in (1.4.7) and

(1.3.2), respectively. Moreover, the initial datum Φ0 belongs to A1/2
τ0,τ0.
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Proof. Estimate for the region
{
r ≤ ε0(τ0)

θ̃
}
. We see from (1.2.15) and (1.3.3) that∣∣Φ0(r)− U∞(r)− a∗ℓ(τ0)ϕℓ(r)

∣∣
=

∣∣∣∣∣ε(τ0)−2β

[
U1

(
r

ε(τ0)

)
− U∞

(
r

ε(τ0)

)]
+ hε(τ0)

2|λ0|r−γ

(
1 +

ℓ∑
j=1

hjr
2j

)∣∣∣∣∣
≤ ε(τ0)

−2β

∣∣∣∣∣U1

(
r

ε(τ0)

)
− U∞

(
r

ε(τ0)

)
+ h

(
r

ε(τ0)

)−γ
∣∣∣∣∣+ hε(τ0)

2|λ0|r−γ

ℓ∑
j=1

|hj|r2j

≤

{
Cε0(τ0)

−2β(η−2β + η−γ), η ≤ ε0(τ0)
−θ′ ,

Cε0(τ0)
−2βη−γ−µ + Cε0(τ0)

−2β+2η−γ+2, ε0(τ0)
−θ′ ≤ η ≤ ε0(τ0)

−1+θ̃,
(1.3.11)

where η := r/ε0(τ) and hj := (−ℓ)j/22jj!(−γ + N/2)j which is appeared as the coefficients
of ϕℓ(r).

Estimate for the region {ε0(τ)θ̃ < r ≤ e(1/2−ω̃)τ0}. Due to (1.3.3) and (1.3.4), we have

∣∣Φ0(r)− U∞(r)− a∗ℓ(τ0)ϕℓ(r)
∣∣ ≤ ℓ−1∑

n=0

|αn||ϕn(r)| ≤ Cε0(τ0)
2|λ0|+3θr−γ(1 + r2ℓ). (1.3.12)

Estimate for the region {r > e(1/2−ω̃)τ0}. It readily follows from (1.3.2) and (1.3.3) that

∣∣Φ0(r)− U∞(r)− a∗ℓ(τ0)ϕℓ(r)
∣∣ ≤ U∞(r)G(r; τ0) +

hc̃ℓ
cℓ
e−λℓτ0r−γ+2ℓ

≤ Cr−2βG(r; τ0) + Cε0(τ0)
2|λ0|r−γ+2ℓ

(1.3.13)

Putting (1.3.11)–(1.3.13) together, we obtain (1.3.10).

We then verify that Φ0 belongs to A1/2
τ0,τ0 . A similar argument to (1.3.11) with (1.3.1) and

(1.3.4) shows that∣∣Φ0(r)− ε0(τ0)
−2βU1(η)

∣∣
≤
∣∣∣∣ε0(τ0)−2β

[
U1

(
r

ε(τ0)

)
− U∞

(
r

ε(τ0)

)]
− a∗ℓ(τ0)ϕℓ(r)

∣∣∣∣+ ℓ−1∑
n=0

|αn||ϕn(r)|

≤ Cε0(τ0)
2|λ0|+µr−γ−µ + Cε0(τ0)

2|λ0|r−γ+2 + Cε0(τ0)
2|λ0|+3θr−γ ≤ Cε0(τ0)

2|λ0|+2θr−γ

for ε0(τ0)
θ̃ ≤ r < ε0(τ0)

θ and sufficiently large τ0. In addition, it follows from a similar
argument to (1.3.13), (1.3.2), and (1.3.4) that∣∣Φ0(r)− U∞(r)

∣∣ = U∞(r)G(r; τ0) ≪ r−2β

for e(1/2−ω)τ0 < r ≤ e(1/2−ω̃)τ0 if τ0 is sufficiently large. These together with (1.3.12) give

Φ0 ∈ A1/2
τ0,τ0 . The proof is complete.
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1.3.2 Proofs of Theorem 1.1.1 and Corollaries 1.1.2–1.1.4

Once proving the key a priori estimate given in Lemma 1.3.1, we may conclude the proof of
Theorem 1.1.1 by the topological argument by means of mapping degree as in [23] (see also
[19, 32, 43, 44, 46]). Since the argument is purely topological and independent of particular
functional framework, we only write main points without discussing the detail.

Proof of Theorem 1.1.1. Lemma 1.3.1 guarantees that any root of Qτ1 in Uτ0,τ1 is contained in
the interior of Uτ0,τ1 . The mapping degree ofQτ is then preserved for τ0 ≤ τ ≤ τ1 by homotopy
invariance. Hence there exists α ∈ Uτ0,τ1 such that Qτ (α) = 0 as long as Uτ0,τ1 ̸= ∅. This
last assumption is guaranteed for |τ1 − τ0| small enough by standard continuous dependence
results. Then, by the method of continuity, we have

sup{τ1 > τ0 ; Uτ0,τ1 ̸= ∅} = ∞. (1.3.14)

Let {τj} ⊂ (τ0,∞) be a sequence such that τ0 < τ1 < · · · < τj ↗ ∞. Due to (1.3.14),

there exists αj ∈ Uτ0,τj such that Qτj(αj) = 0. Lemma 1.3.1 then implies Φ(r, τ ;αj) ∈ A1/2
τ0,τj .

By taking a subsequence, we may assume that {αj} converges to some α∗ ∈ Rℓ, which
completely determines the initial data Φ0(r;α

∗). The function u(x, t) obtained by scaling
back from Φ(y, τ ;α∗) via (1.2.1) is the desired solution of (1.1.2). The pointwise estimates
stated in the theorem are obtained by those for Φ(y, τ ;α∗) guaranteed by its membership to
A1

τ0,∞ := ∩τ1∈(τ0,∞)A1
τ0,τ1

with τ0 = − log T0. The result for arbitrary blow-up time T > 0 is

obtained by rescaling, i.e., uλ(x, t) = λ2βu(λx, λ2t) with λ =
√
T/T0.

The statement (iv) is proved by standard zero number arguments. Indeed, as a function
of r = |x|, u(r, t) − U∞(r) has ℓ-zeros in R+ at t = 0 due to our choice of initial data
at the beginning of §1.3. As statements (ii) and (iii) show, every zero of function |y| 7→
Φ(|y|, τ)− U∞(|y|), whose total number is the same as of u(·, t)− U∞(·), is located in small

neighborhoods of the ℓ-zeros of Laguerre polynomial L
(
√
D/2)

ℓ for every τ ≥ τ0. Since the
number of the zeros of function r 7→ u(r, t)−U∞(r) is non-increasing in t due to zero-number
theory (cf. [41, §§52.8]), the zeros {rk(t)}ℓk=1 are simple and lie in a parabolic region, i.e.,
there exist R > 0 and t1 ∈ (0, T ) such that rk(t) ≤ R

√
T − t for all t1 < t < T , whence the

claim. The proof is now complete.

Proof of Corollary 1.1.2. Let us write V (ξ, τ) := U(ξ, τ)−U1(ξ) and U(ξ, τ) := ε(τ)2βΦ(y, τ)
with ξ := y/ε(τ) (cf. (1.5.4) below). Introducing new variables

s :=

∫ τ

τ0

1

ε(τ ′)2
dτ ′ and W (ξ, s) := V (ξ, τ),

we obtain

Ws = ∆ξW + pU1(ξ)
p−1W − Ẽ(s)

(
ξ · ∇ξW

2
+ βW

)
+ f̃(ξ, s) (1.3.15)
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with

f̃(ξ, s) := |ξ|2a
[
(U1(ξ) +W (ξ, s))p − U1(ξ)

p − pU1(ξ)
p−1W (ξ, s)

]
− Ẽ(s)

(
ξ · ∇ξU1(ξ)

2
+ βU1(ξ)

)
,

Ẽ(s) := ε(τ)2 − 2ε(τ)ε̇(τ).

Notice that the function f̃(ξ, s) is Hölder continuous since a ≥ 0 by assumption.
We apply standard parabolic estimates for equation (1.3.15) in a space-time region Ω :=

BR × (s1 + δ′,∞), where BR := {ξ ; |ξ| < R} and δ′ > 0 is arbitrary. Due to (1.3.5) (with

τ1 = ∞), it is readily seen that
∥∥f̃∥∥

Lα′ (Ω)
≤ Cε0(τ

∗)2θ holds for every α′ > 1, where τ ∗

is the time corresponding to s1 + δ′ and C > 0 is a constant independent of s1, δ
′. Let

Ω′′ ⋐ Ω′ ⋐ Ω be sub-cylinders and let W 2,1
α′ (Ω) denote the Sobolev space based on Lα′

(Ω)
and defined by parabolic distance. Due to classical Lp estimate for parabolic equations, we
obtain an estimate of the form ∥W∥W 2,1

α′ (Ω) ≤ Cε0(τ
∗)θ. We now choose α′ large enough so

that W 2,1
α′ (Ω′) is embedded in the Hölder space Cν′, ν′/2(Ω′) of order ν ′ in Ω′ (with respect

to parabolic distance) for some ν ′ ∈ (0, 1). Notice that the embedding constant does not
depend on s1, δ

′. Re-selecting a smaller ν ′ > 0, if necessary, we apply Schauder’s interior
estimate for (1.3.15), to get

∥W∥C2+ν′, 1+ν′/2(Ω′′) ≤ K
(
∥W∥L∞(Ω′) + ∥f̃∥Cν′, ν′/2(Ω′)

)
≤ C ′ε(τ ∗)θ

for some constant K > 0. Since τ ∗ is arbitrary, the last estimate implies

sup
ξ∈BR

∣∣∣∣∂W∂s (ξ, s)

∣∣∣∣ ≤ Cε(τ)θ,

Since ∂sW (ξ, s) = ε(τ)2∂τ
(
ε(τ)2βΦ(y, τ)

)
and |ε̇(τ)| ≤ Cε(τ), we have

|Φτ (y, τ)| ≤ Cε(τ)−2βU1

(
|y|
ε(τ)

)
+ Cε(τ)−2β−2

∣∣∣∣∂W∂s (ξ, s)

∣∣∣∣ ≤ Cε(τ)−2β−2+θ

for |y| ≤ Rε(τ), τ ≥ τ0. Returning to the original variables, we get the estimate (1.1.26) on
ut. Estimate (1.1.25) is easily obtained by (1.1.26), equation (1.1.2), and (1.1.20). The proof
is now complete.

Proofs of Corollaries 1.1.3 and 1.1.4. We estimate the Lq norm by splitting the region of
integration defining ∥u(·, t)∥Lq(RN ). Consider first the case of q > qc. The local Lq norm in{
|x| ≤ K−θ

T (T − t)1/2+θωℓ
}
may be readily estimated by (1.1.20) and the change of variable
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η = KT |x|/(T − t)1/2+ωℓ . Indeed, we have∫
{|x|≤K−θ

T (T−t)1/2+θωℓ}

∣∣∣∣∣u(x, t)q −
(

KT

(T − t)1/2+ωℓ

)2βq

U1

(
KT

(T − t)1/2+ωℓ

)q
∣∣∣∣∣ dx

≤ (T − t)θωℓ

Kθ
T

(
KT

(T − t)1/2+ωℓ

)2βq−N ∣∣SN−1
∣∣ ∫ K1−θ

T (T−t)−(1−θ)ωℓ

0

U1(η)
q−1Ψ(η)ηN−1 dη

≤ C(T − t)−(2βq−N)(1/2+ωℓ)+θωℓ

∫ ∞

0

(1 + η)−2β(q−1)−γηN−1 dη ≤ C(T − t)−(2βq−N)(1/2+ωℓ)+θωℓ

and∫
{|x|≤K−θ

T (T−t)1/2+θωℓ}

(
KT

(T − t)1/2+ωℓ

)2βq

U1

(
KT

(T − t)1/2+ωℓ

)q

dx ∼ D1

(
KT

(T − t)1/2+ωℓ

)2βq−N

which resulted in (1.1.29). On the other hand, (1.1.22) can be used in
{
K−θ

T (T − t)1/2+θωℓ ≤
|x|
}
to get ∫

{K−θ
T (T−t)1/2+θωℓ≤|x|}

u(x, t)q dx

≤ (c∗ +M)q
∫ ∞

K−θ
T (T−t)1/2+θωℓ

r−2βq+N−1 dr ≤ C

(
Kθ

T

(T − t)1/2+θωℓ

)2βq−N

.

Since 2βqc = N , the last integral is finite for q > qc. As for |x| ≥ 1, we use simply the decay
estimate u ≤ C|x|−2β. Hence the corresponding integral may be estimated as above, whence
(1.1.30). When q = qc, we need a faster decay u ≤ C|x|−d for some d > 2β. Under the
condition (1.1.31), the last estimate is guaranteed by [30, Proposition C.3] for a = 0, whose
proof essentially works for a > −1. The detail is left to the reader.

1.4 A priori estimates in the intermediate region

In this section we prove Lemma 1.3.1. This task is done by showing several a priori estimates,
which we are going to establish in the following subsections. Let us write

v( · , τ) =
∞∑
n=0

an(τ)ϕn in L2
ρ, rad(R

N), (1.4.1)

where an(τ) = ⟨v( · , τ), ϕn⟩N . We first estimates an(τ) for n = 0, 1, . . . , ℓ− 1 in (1.4.1). This
is accomplished in §§1.4.1 under the assumption Qτ1(α) = 0. The reminder term R(y, τ) =
v(y, τ) −

∑ℓ
n=0 an(τ)ϕn(y) yields smaller contribution than the leading mode aℓ(τ)ϕℓ(y) in

the outer region {ε0(τ)θ < |y| ≤ e−ωτ0eτ/2}. Those estimates of an(τ) and E(y, τ) lead to

the estimates (II) and (III) with ν ≪ 1 in the requirement for A1/2
τ0,τ1 . The last §1.5 is devoted

to showing the estimate ( I ) in the inner region. In the following, we denote by C a generic
positive constant that may change from line to line.
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1.4.1 Estimates of Fourier coefficients

Lemma 1.4.1. Assume that Φ ∈ A1
τ0,τ1

. Then :

|f(v(r, τ))| ≤


Cr−2β−2, r ≤ ε0(τ)

θ̂,

Cε0(τ)
4|λ0|r−γ−2|λ0|−2(1 + r4ℓ), ε0(τ)

θ̂ < r ≤ eω̂τ ,

Cr−2β−2, eω̂τ < r,

(1.4.2)

for τ0 ≤ τ ≤ τ1, where θ̂ ∈ (θ, 1), and ω̂ ∈ (0, 1/2).

Proof. Let Φinn(r, τ) be the function as in (1.2.9) and set vinn(r, τ) := Φinn(r, τ)− U∞(r),

|f(v(r, τ))| ≤ |f(v(r, τ))− f(vinn(r, τ))|+ |f(vinn(r, τ))| =: r2a(F1 + F2).

By the condition Φ ∈ A1
τ0,τ1

, for r ≤ ε0(τ)
θ, we know that

|Φ(r, τ)− Φinn(r, τ)| ≤ ε0(τ)
θΦinn(r, τ) ≪ Φinn(r, τ).

Let η := r/ε0(τ). For r ≤ ε0(τ)
θ, we then obtain that

F1 ≤
∣∣Φ(r, τ)p − Φinn(r, τ)

p − pΦinn(r, τ)
p−1(Φ(r, τ)− Φinn(r, τ))

∣∣
+
∣∣p(Φinn(r, τ)

p−1 − U∞(r)p−1)(Φ(r, τ)− Φinn(r, τ))
∣∣

≤ C|Φinn(r, τ)|p−2
∣∣Φ(r, τ)− Φinn(r, τ)

∣∣2
+ C

∣∣Φinn(r, τ)
p−1 − U∞(r)p−1

∣∣∣∣Φ(r, τ)− Φinn(r, τ)
∣∣

≤ Cε0(τ)
−2β−2−2a+2θU1(η)

p−2(1 + η)−2γ

+ Cε0(τ)
−2β−2−2a+θ

∣∣U1(η)
p−1 − U∞(η)p−1

∣∣(1 + η)−γ

≤

{
Cε0(τ)

−2β−2−2a+θU∞(η)p, η ≤ ε0(τ)
θ̂−1,

Cε0(τ)
−2β−2−2a+θη−2γU∞(η)p−2, ε0(τ)

θ̂−1 < η ≤ ε0(τ)
θ−1,

and

F2 =
∣∣(U∞(r) + vinn(r, τ))

p − U∞(r)p − pU∞(r)p−1vinn(r, τ)
∣∣

= ε0(τ)
−2β−2−2a

∣∣U1(η)
p − U∞(η)p − pU∞(η)p−1(U1(η)− U∞(η))

∣∣
≤

{
Cε0(τ)

−2β−2−2aU∞(η)p, η ≤ ε0(τ)
θ̂−1,

Cε0(τ)
−2β−2−2aη−2γU∞(η)p−2, ε0(τ)

θ̂−1 < η ≤ ε0(τ)
θ−1,

whence :

|f(v(r, τ))| ≤

{
Cr−2β−2, r ≤ ε0(τ)

θ̂,

Cε0(τ)
4|λ0|r−γ−2|λ0|−2, ε0(τ)

θ̂ < r ≤ ε0(τ)
θ.

(1.4.3)

Since Φ ∈ A1
τ0,τ1

, we obtain

|v(r, τ)| ≤
∣∣v(r, τ)− a∗ℓ(τ)ϕℓ(r)

∣∣+ |a∗ℓ(τ)ϕℓ(r)|
≤ Cε0(τ)

2|λ0|r−γ(1 + r2ℓ) ≤ CU∞(r)(ε0(τ)
2|λ0|r−2|λ0| + e−λℓτr2λℓ) ≪ U∞(r)
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for ε0(τ)
θ < r ≤ eω̂τ and

|v(r, τ)| ≤
∣∣v(r, τ)− e−β(τ−τ0)G(re−(τ−τ0)/2; τ0)

∣∣+ ∣∣e−β(τ−τ0)G(re−(τ−τ0)/2; τ0)
∣∣

≤ Ce−β(τ−τ0)(re−τ/2)2λℓ(re−(τ−τ0)/2)−2β ≤ C(re−τ/2)2λℓr−2β ≪ U∞(r)

for e−ωτ0eτ/2 < r ≤ eω̂τ . It then follows that

|f(v(r, τ))| ≤ Cr2av(r, τ)2U∞(r)p−2

≤ Cr2aε0(τ)
4|λ0|(r−4|λ0| + r4λℓ)U∞(r)p ≤ Cε0(τ)

4|λ0|r2β−2γ−2(1 + r4ℓ)
(1.4.4)

for ε0(τ)
θ < r ≤ eω̂τ . Moreover, |v(r, τ)| ≤ CU∞(r) for r > eω̂τ due to (II)B and (III) with

ν = 1. We then have
|f(v(r, τ))| ≤ Cr2aU∞(r)p ≤ Cr−2β−2. (1.4.5)

Due to (1.4.3)–(1.4.5), we obtain (1.4.2) and the proof is complete.

Lemma 1.4.2. Assume that Φ ∈ A1
τ0,τ1

. Then :∣∣⟨f(v(τ)), ϕn⟩N
∣∣ ≤ Ccnε0(τ)

2|λ0|+µ (1.4.6)

for n = 0, 1, . . . and τ0 ≤ τ ≤ τ1, where cn > 0 is as in (1.2.17) and µ is positive constant
such that

µ :=
1

4
min

{
2|λ0|,

√
D,

2|λ0|
λℓ

}
> 0, (1.4.7)

Proof. We set

4∑
k=1

Hk;n :=

(∫ ε0(τ)θ̂

0

+

∫ 1

ε0(τ)θ̂
+

∫ eω̂τ

1

+

∫ ∞

eω̂τ

)
|f(v(r, s))||ϕn(r)|rN−1ρ(r) dr.

We shall use (1.4.2) with θ̂ = 1− θ ∈ (θ, 1) and N − 2γ − 2 =
√
D (cf. (1.1.8b), (1.1.16)) to

estimate |f(v(r, τ))| in each subinterval.

Estimate for H1;n. Since γ − 2β = 2|λ0|, we have

H1;n ≤ Ccn

∫ ε0(τ)θ̂

0

r−γ−2β+N−3 dr ≤ Ccn

∫ ε0(τ)1−θ

0

r2|λ0|+
√
D−1 dr

≤ Ccnε0(τ)
(1−θ)(2|λ0|+

√
D) ≤ Ccnε0(τ)

2|λ0|+
√
D−θ(2|λ0|+

√
D) ;

(1.4.8)

Estimate for H2;n. We see from N − 2γ − 2 =
√
D that

H2;n ≤ Ccnε0(τ)
4|λ0|

∫ 1

ε0(τ)1−θ

r−2γ−2|λ0|+N−3 dr

≤ Ccnε0(τ)
4|λ0|

∫ 1

ε0(τ)1−θ

r−2|λ0|+
√
D−1 dr

≤


Ccnε0(τ)

4|λ0| if 2|λ0| <
√
D,

Ccnε0(τ)
4|λ0|
∣∣ log ε0(τ)∣∣ if 2|λ0| =

√
D,

Ccnε0(τ)
4|λ0|+(1−θ)(−2|λ0|+

√
D) if 2|λ0| >

√
D

≤ Cε0(τ)
3|λ0| + Cε0(τ)

2|λ0|+
√
D ;
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Estimate for H3;n. Due to |c̃n| ≤ cn and −|λ0|+ ℓ = λℓ > 0, we obtain

H3;n ≤ C|c̃n|ε0(τ)4|λ0|
∫ eω̂τ

1

r−2γ−2|λ0|+2ℓ+N−3e−r2/4 dr

≤ Ccnε0(τ)
4|λ0|

∫ ∞

1

r2λℓ+
√
D−1e−r2/4 dr ≤ Ccnε0(τ)

4|λ0| ;

(1.4.9)

Estimate for H4;n. It follows from |c̃n| ≤ cn that

H4;n ≤ C|c̃n|
∫ ∞

eω̂τ

(
r

eω̂τ

)2λℓ/ω̂

r−γ+2ℓ−2β+N−3e−r2/4 dr

≤ Ccne
−2λℓτ

∫ ∞

1

r2λℓ/ω̂+2|λ0|+2ℓ+
√
D−1e−r2/4 d ≤ Ccnε0(τ)

4|λ0|.

(1.4.10)

The condition (1.3.1) and the estimates (1.4.8)–(1.4.10) yield (1.4.6). The proof is complete.

Lemma 1.4.3. Assume that Qτ1(α) = 0 for some α ∈ Uτ0,τ1. Then :

|an(τ)| ≤ Cε0(τ)
2|λ0|+µ (1.4.11)

for τ0 ≤ τ ≤ τ1 and n = 0, 1, . . . , ℓ− 1, where µ > 0 is as in (1.4.7).

Proof. Due to Qτ1(α) = 0, we see that

|an(τ)| =
∣∣∣∣−∫ τ1

τ

e−λn(τ−s)⟨f(v(s)), ϕn⟩N ds
∣∣∣∣ ≤ C

∫ ∞

τ

e−λn(τ−s)ε0(s)
2|λ0|+µ ds

≤ Cε0(τ)
2|λ0|+µ

∫ ∞

τ

e−(ℓ−n+µωℓ)(s−τ) ds ≤ Cε0(τ)
2|λ0|+µ,

whence (1.4.11). The proof is complete.

Lemma 1.4.4. Assume that Qτ1(α) = 0 for some α ∈ Uτ0,τ1 and θ̃ ∈ (2θ, 1) as in (1.3.3) is

sufficiently small such that θ̃ ≤ µ/(2 +
√
D). Then :

|αn| ≤ Cε0(τ0)
2|λ0|+θ̃(2+

√
D) for n = 0, 1, . . . , ℓ− 1 ; (1.4.12a)

|aℓ(τ0)− a∗ℓ(τ0)| ≤ Cε0(τ0)
2|λ0|+θ̃(2+

√
D) ; (1.4.12b)

|an(τ0)| ≤ Ccnε0(τ0)
2|λ0|+θ̃(2+

√
D) for n = ℓ+ 1, ℓ+ 2 . . . . (1.4.12c)

Proof. Set v0(r) := v(r, τ0) = Φ0(r)− U∞(r). Notice that (1.3.3) implies that∫ e(1/2−ω̃)τ0

ε0(τ0)θ̃
v0(r)ϕn(r)r

N−1e−r2/4 dr

=

∫ e(1/2−ω̃)τ0

ε0(τ0)θ̃

(
a∗ℓ(τ0)ϕℓ(r) +

ℓ−1∑
k=0

αkϕk(r)

)
ϕn(r)r

N−1e−r2/4 dr

= an −

(∫ ε0(τ0)θ̃

0

+

∫ ∞

e(1/2−ω̃)τ0

)(
a∗ℓ(τ0)ϕℓ(r) +

ℓ−1∑
k=0

αkϕk(r)

)
ϕn(r)r

N−1e−r2/4 dr,
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where

an :=


αn, n = 0, 1, . . . , ℓ− 1,

a∗ℓ(τ0), n = ℓ,

0, n = ℓ+ 1, ℓ+ 2, . . . .

(1.4.13)

Then, due to an(τ0) = ⟨v0(τ0), ϕn⟩N , we have

an(τ0) =

(∫ ε0(τ0)θ̃

0

+

∫ e(1/2−ω̃)τ0

ε0(τ0)θ̃
+

∫ ∞

e(1/2−ω̃)τ0

)
v0(r)ϕn(r)r

N−1e−r2/4 dr

= an +

(∫ ε0(τ0)θ̃

0

+

∫ ∞

e(1/2−ω̃)τ0

)(
v0(r)− a∗ℓ(τ0)ϕℓ(r)−

ℓ−1∑
n=0

αnϕn(r)

)
ϕn(r)r

N−1e−r2/4 dr

=: an +H ′
1;n +H ′

2;n. (1.4.14)

The same argument of Lemma 1.3.2 shows that∣∣∣∣∣v0(r)− a∗ℓ(τ0)ϕℓ(r)−
ℓ−1∑
n=0

αnϕn(r)

∣∣∣∣∣
≤


Cε0(τ0)

2|λ0|r−γ + Cr−2β, r ≤ ε0(τ0)
1−θ′ ,

Cε0(τ0)
2|λ0|r−γ, ε0(τ0)

1−θ′ < r ≤ ε0(τ0)
θ̃,

Cr−2βG(r, τ0) + Cε0(τ0)
2|λ0|r−γ+2ℓ, e(1/2−ω̃)τ0 < r,

where θ′ ∈ (0, 1− θ̃) as in Lemma 1.3.2.

Estimates for H ′
1;n. Due to this and identity −2γ +N =

√
D + 2, we have

|H ′
1, n| ≤ Ccn

∫ ε0(τ0)1−θ′

0

r−γ−2β+N−1 dr + Ccnε0(τ0)
2|λ0|

∫ ε0(τ0)θ̃

0

r−2γ+N−1 dr

≤ Ccn

∫ ε0(τ0)1−θ′

0

r2|λ0|+
√
D+1 dr + Ccnε0(τ0)

2|λ0|
∫ ε0(τ0)θ̃

0

r
√
D+1 dr

≤ Ccnε0(τ0)
2|λ0|+

√
D+2−θ′(2|λ0|+

√
D+2) + Ccnε0(τ0)

2|λ0|+θ̃(
√
D+2) ;

(1.4.15)

Estimate for H ′
2;n. We see from |c̃n| ≤ cn that

|H ′
2;n| ≤ C|c̃n|

∫ ∞

e(1/2−ω̃)τ0

(
r

e(1/2−ω̃)τ0

)2λℓ/(1/2−ω̃)

r−2β−γ+2ℓ+2n+N−1e−r2/4 dr

+ C|c̃n|ε0(τ0)2|λ0|
∫ ∞

e(1/2−ω̃)τ0

(
r

e(1/2−ω̃)τ0

)λℓ/(1/2−ω̃)

r−2γ+2ℓ+2n+N−1e−r2/4 dr

≤ Ccnε0(τ0)
4|λ0|

∫ ∞

1

r2λℓ/(1/2−ω̃)+2|λ0|+2n+
√
D+1e−r2/4 dr

+ Ccnε0(τ0)
4|λ0|

∫ ∞

1

rλℓ/(1/2−ω̃)+2ℓ+2n+
√
D+1e−r2/4 dr ≤ Ccnε0(τ0)

4|λ0|.

(1.4.16)
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The claim (1.4.12) then follows from (1.4.11) and (1.4.14)–(1.4.16) with sufficiently small
θ′ such that

0 < θ′ <

√
D + 2

2|λ0|+
√
D + 2

(1− θ̃) ∈ (0, 1− θ̃).

The proof is complete.

1.4.2 Estimates of remainder terms

Our next goal is to estimate the higher Fourier mode : v(r, τ) −
∑ℓ

n=0 an(τ)ϕn(r). To this
end, it is convenient to introduce a new dependent variable

W (r, τ ;α) := rγv(r, τ ;α) and ψn(r) := rγϕn(r),

where v(r, τ ;α) := Φ(r, τ ;α)− U∞(r). Then :

W0(r;α) := W (r, τ0;α)

=



ε0(τ0)
−2βrγ

[
U1

(
r

ε0(τ0)

)
− U∞

(
r

ε0(τ0)

)]
, r ≤ ε0(τ0)

θ̃,

a∗ℓ(τ0)ψℓ(r) +
ℓ−1∑
n=0

αnψn(r), ε0(τ0)
θ̃ < r ≤ e(1/2−ω̃)τ0 ,

rγU∞(r)G(r; τ0), e(1/2−ω̃)τ0 < r,

and function W satisfies Wτ = −LW + g(W ) where

−LW := W ′′ +

(
N − 2γ − 1

r
− r

2

)
W ′ − λ0W and g(W ) := rγf(v).

We set
m := N − 2γ = 2 +

√
D > 2.

For a while, we consider the case where m is an integer (the general case is discussed at the
end of this section). Let us write

W (r, τ) =
ℓ∑

n=0

an(τ)ψn(r) +R(r, τ) with R(r, τ) :=
∞∑

n=ℓ+1

an(τ)ψn(r), (1.4.17)

⟨W,ψn⟩m :=

∫ ∞

0

W (r)ψn(r)r
m−1e−r2/4 dr = ⟨v, ϕn⟩N = an(τ).

Function R satisfies

⟨R( · , τ), ψn⟩m = 0 for n = 0, 1, . . . , ℓ,

Rτ = −LR + g(W )−
ℓ∑

n=0

⟨g(W ), ψn⟩mψn.
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We denote by S(τ) the semigroup for −L, which is expressed as

[S(τ)W ](y) =
∞∑
n=0

e−λnτ ⟨W,ψn⟩mψn(|y|) (1.4.18a)

=
Cme

Λ1τ |y|−m/2+1

1− e−τ

∫ ∞

0

IΛ2

{
|y|e−τ/2r

2(1− e−τ )

}
exp

{
−|y|2e−τ + r2

4(1− e−τ )

}
rm/2W (r) dr (1.4.18b)

=
e|λ0|τ

(4π(1− e−τ ))m/2

∫
Rm

exp

{
−|ye−τ/2 − z|2

4(1− e−τ )

}
W (z) dz (m ∈ N) (1.4.18c)

with Λ1 := |λ0|+(m−2)/4 and Λ2 := γ+N/2−1 = m/2−1, where IΛ denotes the modified
Bessel function with order Λ. The bounds for the modified Bessel function

|IΛ(z)| ≤
CzΛez

(1 + z)Λ+1/2
, z ∈ R+, (1.4.19)

yields the following estimate :

∣∣[S(τ)W ](y)
∣∣ ≤ Ce|λ0|τ

(1− e−τ )m/2

∫ ∞

0

exp

{
−
∣∣|y|e−τ/2 − r

∣∣2
4(1− e−τ )

}
|W (r)|By(r, τ)r

m−1 dr. (1.4.20)

where

By(r, τ) :=

(
1 +

|y|e−τ/2r

1− e−τ

)−(m−1)/2

.

Remark 1.4.1. The series (1.4.18a) converges in the norm of L2
ρ, rad(R

m) for every τ ≥ 0 and,
moreover, absolutely for every y ∈ Rm and each τ > 0. This is because eigenfunctions ψn(r)
are algebraically bounded with respect to n uniformly in every compact set of [0,∞) due to
Remark 1.2.1, which is much slower than eλnτ . Furthermore, it converges for |y| ≤ eτ/2, since
ψn(r) ∼ c̃nr

2n as r → ∞, which is canceled out there by the exponential factor of (1.4.18a),
and (1.2.19) involves adequate rate of decay.

The series expression (1.4.18) implies

a∗ℓ(τ)ψℓ(r) = − h

cℓ
e−λℓτψℓ(r) = e−λℓ(τ−τ0)a∗ℓ(τ0)ψℓ(r) =

[
S(τ − τ0){a∗ℓ(τ0)ψℓ}

]
(r),

whence :

W (r, τ)− a∗ℓ(τ)ψℓ(r)

=
[
S(τ − τ0){W0 − a∗ℓ(τ0)ψℓ}

]
+

∫ τ

τ0

[
S(τ − s)g(W (s))

]
(r) ds.

(1.4.21)

We note some useful estimates for S(τ). Let us set

B1(y, σ) := {r ∈ R+ ; r ≤ 2|y|e−(τ−σ)/2}, (1.4.22a)

B2(y, σ) := {r ∈ R+ ; 2|y|e−(τ−σ)/2 < r}, (1.4.22b)
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and

S :=
1

(1− e−(τ−σ))m/2

∫
B1(y, σ)

exp

{
−
∣∣|y|e−(τ−σ)/2 − r

∣∣2
4(1− e−(τ−σ))

}
By(r, τ − σ)rm−1 dr, (1.4.23)

Sk :=
1

(1− e−(τ−σ))m/2

∫
B2(y, σ)

exp

{
−
∣∣|y|e−(τ−σ)/2 − r

∣∣2
4(1− e−(τ−σ))

}
By(r, τ − σ)rk+m−1 dr (1.4.24)

with k ≥ 1, for y ∈ Rm and τ0 ≤ σ ≤ τ ≤ τ1. Due to

rm−1By(r, τ − σ)

(1− e−(τ−σ))(m−1)/2
=

(
r2

1− e−(τ−σ) + |y|e−(τ−σ)/2r

)(m−1)/2

≤ 1

for r ∈ B1(y, σ) and τ0 ≤ σ ≤ τ ≤ τ1, we have

S ≤ 1

(1− e−(τ−σ))1/2

∫
B1(y, σ)

exp

{
−
∣∣|y|e−(τ−σ)/2 − r

∣∣2
4(1− e−(τ−σ))

}
dr ≤ C. (1.4.25)

On the other hand, because of

||y|e−(τ−σ)/2 − r| = r − |y|e−(τ−σ)/2 >
r

2
> |y|e−(τ−σ)/2 (1.4.26)

for r ∈ B2(y, σ) and τ0 ≤ σ ≤ τ ≤ τ1 and By(r, τ − σ) ≤ 1, we obtain that

Sk ≤
1

(1− e−(τ−σ))m/2

∫
B2(y, σ)

exp

{
− r2

16(1− e−(τ−σ))

}
rk+m−1 dr

≤ C(1− e−(τ−σ))k/2 ≤ C.

(1.4.27)

Furthermore, we see that

1

(1− e−(τ−σ))m/2
exp

{
−
∣∣|y|e−(τ−σ)/2 − r

∣∣2
4(1− e−(τ−σ))

}

≤ 1

(1− e−(τ−σ))m/2
exp

{
− (|y|e−(τ−σ)/2)2

16(1− e−(τ−σ))

}
≤ C

(
sup
L≥0

Lme−L2

)
(|y|e−(τ−σ)/2)−m ≤ C|y|−mem(τ−σ)/2

(1.4.28)

for r ∈ R+ satisfying ||y|e−(τ−σ)/2 − r| > |y|e−(τ−σ)/2/2 and τ0 ≤ σ ≤ τ ≤ τ1.

A priori estimates in the short-time case

We first discuss the short-time case, that is, τ0 ≤ τ ≤ τ0 + 1. Notice that

e−1 ≤ e−(τ−σ) ≤ 1 for τ0 ≤ σ ≤ τ ≤ τ0 + 1. (1.4.29)

For simplicity, we shall abuse some notation such as W (|y|, τ) = W (y, τ), ψn(|y|) = ψn(y).
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Lemma 1.4.5. There holds∣∣S(τ − τ0){W0 − a∗ℓ(τ0)ψℓ}(y)
∣∣ ≤ Cε0(τ)

2|λ0|+3θ(1 + |y|2ℓ) (1.4.30)

for ε0(τ)
θ < |y| ≤ e−ωτ0eτ/2 and τ0 ≤ τ ≤ τ0 + 1 with sufficiently large τ0.

Proof. For i = 1, 2, 3, we set

Ii :=
e|λ0|(τ−τ0)

(1− e−(τ−τ0))m/2

∫
Di(τ0)

exp

{
−
∣∣|y|e−(τ−τ0)/2 − r

∣∣2
4(1− e−(τ−τ0))

}
×
∣∣W0(r)− a∗ℓ(τ0)ψℓ(r)

∣∣By(r, τ − τ0)r
m−1 dr,

where

D1(σ) :=
{
r ∈ R+ ; r ≤ ε0(σ)

θ̃
}
, (1.4.31a)

D2(σ) :=
{
r ∈ R+ ; ε0(σ)

θ̃ < r ≤ e(1/2−ω̃)σ
}
, (1.4.31b)

D3(σ) :=
{
r ∈ R+ ; e(1/2−ω̃)σ < r

}
(1.4.31c)

for τ0 ≤ σ ≤ τ ≤ τ1. Hereafter we always assume ε0(τ)
θ < |y| ≤ e−ωτ0eτ/2 and τ0 ≤ τ ≤ τ0+1.

Estimate for I1. Let us divide the region D1(σ) in (1.4.31a) as the disjoint union of

D1, 1(σ) :=
{
r ∈ R+ ; r ≤ ε0(σ)

1−θ′
}
, (1.4.32a)

D1, 2(σ) :=
{
r ∈ R+ ; ε0(σ)

1−θ′ < r ≤ ε0(σ)
θ̃
}
, (1.4.32b)

for τ0 ≤ σ ≤ τ ≤ τ1, where θ
′ ∈ (0, 1 − θ̃) is as in (1.3.10). The corresponding integrals are

denoted as I1, 1 and I1, 2, respectively. For ε0(τ)
θ < |y| and r ∈ D1(τ0), there holds∣∣|y|e−(τ−τ0)/2 − r

∣∣ ≥ |y|e−(τ−τ0)/2 − r ≥ 1

2
|y|e−(τ−τ0)/2 (1.4.33)

if τ0 ≥ (2 log 2 + 1 + θωℓ)/2θωℓ, where ωℓ = λℓ/2|λ0|. Because of By(r, τ − τ0) ≤ 1, (1.3.10),
(1.4.28), (1.4.29), and (1.4.33), we have

I1, 1 ≤ C|y|−mem(τ−τ0)/2

∫
D1, 1(τ0)

∣∣W0(r)− a∗ℓ(τ0)ψℓ(r)
∣∣rm−1 dr

≤ Cε0(τ0)
2|λ0||y|−m

∫ ε0(τ0)1−θ′

0

rm−1 dr + C|y|−m

∫ ε0(τ0)1−θ′

0

r2|λ0|+m−1 dr

≤ Cε0(τ0)
2|λ0|+(1−θ′)mε0(τ)

−θm + Cε0(τ0)
(1−θ′)(2|λ0|+m)ε0(τ)

−θm

≤ Cε0(τ)
2|λ0|+m−θ′(2|λ0|+m)−θm.

(1.4.34)

For r ∈ D1, 2(τ0), (1.3.11) implies that

|W0(r)− a∗ℓ(τ0)ψℓ(r)| ≤ Cε0(τ0)
2|λ0|

[(
r

ε0(τ0)

)−µ

+ r2

]
≤ Cε0(τ0)

2|λ0|+θ′µ + Cε0(τ0)
2|λ0|+2θ̃.
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Then, due to (1.4.29), we obtain

I1, 2 ≤ Cε0(τ0)
2|λ0|(ε0(τ0)

θ′µ + ε0(τ0)
2θ̃)
∣∣[S(τ − τ0)1](y)

∣∣ ≤ Cε0(τ)
2|λ0|+3θ. (1.4.35)

for θ̃ ∈ (2θ, 1) and θ′ = 3θ/µ (< 1− θ̃ if θ is sufficiently small).

Estimate for I2. We set

D2, 1(σ) := B1(y, σ) ∩D2(σ) and D2, 2(σ) := B2(y, σ) ∩D2(σ) (1.4.36)

for τ0 ≤ σ ≤ τ ≤ τ1, and split I2 as I2 = I2, 1+I2, 2, accordingly. It then follows from (1.3.10),
(1.4.25), (1.4.27), and (1.4.29) that

I2, 1 ≤
Cε0(τ0)

2|λ0|+3θ

(1− e−(τ−τ0))m/2

∫
D2, 1(τ0)

exp

{
−
∣∣|y|e−(τ−τ0)/2 − r

∣∣2
4(1− e−(τ−τ0))

}
× By(r, τ − τ0)(1 + r2ℓ)rm−1 dr

≤ CSε0(τ)2|λ0|+3θ
(
1 + (2|y|e−(τ−τ0)/2)2ℓ

)
≤ Cε0(τ)

2|λ0|+3θ(1 + |y|2ℓ)

(1.4.37)

and
I2, 2 ≤ C(S0 + S2ℓ)ε0(τ0)

2|λ0|+3θ ≤ Cε0(τ)
2|λ0|+3θ, (1.4.38)

where S and Sk are as in (1.4.23) and (1.4.24), respectively ;

Estimate for I3. We see from (1.3.10) that∣∣W0(r)− a∗ℓ(τ0)ψℓ(r)
∣∣ ≤ Cε0(τ0)

2|λℓ|r2ℓ

for r ∈ D3(τ0), and
2|y|e−(τ−τ0)/2 ≤ 2e(1/2−ω)τ0 < e(1/2−ω̃)τ0 ≤ r (1.4.39)

for |y| ≤ e−ωτ0eτ/2, r ∈ D3(τ0), and sufficiently large τ0. It then follows from (1.4.27), (1.4.29),
and (1.4.39) that

I3 ≤
Cε0(τ0)

2|λ0|

(1− e−(τ−τ0))m/2

∫
D3(τ0)

exp

{
−
∣∣|y|e−(τ−τ0)/2 − r

∣∣2
4(1− e−(τ−τ0))

}

×
(

r

e(1/2−ω̃)τ0

)λℓ/(1/2−ω̃)

By(r, τ − τ0)r
2ℓ+m−1 dr

≤ CS2ℓ+λℓ/(1/2−ω̃)ε0(τ0)
4|λ0| ≤ Cε0(τ)

4|λ0|,

(1.4.40)

where Sk is as in (1.4.24).

Due to (1.4.34), (1.4.35), (1.4.37), (1.4.38), and (1.4.40), we obtain (1.4.30) and the proof is
complete.
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Lemma 1.4.6. There hold∣∣∣∣∫ τ

τ0

[
S(τ − s)g(W (s))

]
(y) ds

∣∣∣∣ ≤ Cε0(τ)
2|λ0|+µ(1 + |y|2ℓ), (1.4.41)∣∣∣∣∣

∫ τ

τ0

[
S(τ − s)

{
ℓ∑

n=0

⟨g(W (s)), ψn⟩mψn

}]
(y) ds

∣∣∣∣∣ ≤ Cε0(τ)
2|λ0|+µ(1 + |y|2ℓ), (1.4.42)

for ε0(τ)
θ < |y| and τ0 ≤ τ ≤ τ0 + 1 with sufficiently large τ0, where µ > 0 is as in (1.4.7).

Proof. For i = 1, 2, 3, we set

Ji :=

∫ τ

τ0

e|λ0|(τ−s)

(1− e−(τ−s))m/2

∫
Ei(s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r

∣∣2
4(1− e−(τ−s))

}
|g(W (r, s))|By(r, τ)r

m−1 drds,

where

E1(σ) :=
{
r ∈ R+ ; r ≤ ε0(σ)

θ̂
}
, (1.4.43a)

E2(σ) :=
{
r ∈ R+ ; ε0(σ)

θ̂ < r ≤ e−ω̂σ
}
, (1.4.43b)

E3(σ) :=
{
z ∈ R+ ; eω̂σ < r

}
. (1.4.43c)

for τ0 ≤ σ ≤ τ ≤ τ1, θ̂ ∈ (θ, 1) and ω̂ ∈ (0, 1/2) are as in (1.4.2). We recall that m =
2 +

√
D > 2, ⟨f(v), ϕn⟩N = ⟨g(v), ψn⟩m , and rγf(v) = g(W ).

Estimate for J1. We see from (1.4.2) with θ̂ = 1− θ, (1.4.29), and (1.4.33) that

J1 ≤ C|y|−m

∫ τ

τ0

em(τ−s)/2

∫
E1(s)

|f(v(r, τ))|rγ+m−1 drds

≤ Cε0(τ)
−θm

∫ τ

τ0

∫ ε0(s)1−θ

0

rγ−2β+m−3 drds

≤ Cε0(τ)
−θm

∫ τ

τ0

ε0(s)
(1−θ)(2|λ0|+

√
D) drds ≤ Cε0(τ)

2|λ0|+
√
D−2θ(|λ0|+

√
D+1) ;

(1.4.44)

Estimate for J2. We divide the region E2 in (1.4.43b) with θ̂ = 1− θ into

E2, 1(σ) :=
{
r ∈ R+ ; ε0(σ)

1−θ < r ≤ ε0(σ)
2θ
}
, (1.4.45a)

E2, 2(y, σ) := B1(y, σ) ∩
{
r ∈ R+ ; ε0(σ)

2θ < r ≤ eω̂σ
}
, (1.4.45b)

E2, 3(y, σ) := B2(y, σ) ∩
{
r ∈ R+ ; ε0(σ)

2θ < r ≤ eω̂σ
}
, (1.4.45c)

for y ∈ Rm and τ0 ≤ σ ≤ τ ≤ τ1, where B1 and B2 are as in (1.4.22), and split J2 as
J2 = J2, 1 + J2, 2 + J2, 3 accordingly. Arguing as the estimate for I2, we see that

E2, 2(y, s) ̸= ∅ for |y| > ε0(τ)
θ,

E2, 3(y, s) = ∅ for |y| > 1

2
e−(1/2−ω̂)seτ/2.
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Owing to |λ0| > 1, (1.4.2), (1.4.28), (1.4.29), and (1.4.33), we obtain

J2, 1 ≤ C|y|−m

∫ τ

τ0

em(τ−s)/2

∫
E2, 1(s)

|f(v(r, s))|rγ+m−1 drds

≤ Cε0(τ)
−θm

∫ τ

τ0

ε0(s)
4|λ0|

∫ ε0(s)2θ

ε0(s)1−θ

r−2|λ0|+
√
D−1 drds

≤ Cε0(τ)
−θm

∫ τ

τ0


ε0(s)

4|λ0|+2θ(−2|λ0|+
√
D) ds if 2|λ0| <

√
D,

ε0(s)
4|λ0|−(1−θ) ds if 2|λ0| =

√
D,

ε0(s)
2|λ0|+

√
D−θ(−2|λ0|+

√
D) ds if 2|λ0| >

√
D

≤ Cε0(τ)
2|λ0|+2µ−θ(2+

√
D) ≤ Cε0(τ)

2|λ0|+µ.

(1.4.46)

Recall ℓ > 1 and λℓ = −|λ0|+ ℓ > 0. By (1.4.2) with ω̂ = 1/2− 1/4(λℓ + 1) and (1.4.29), we
have

J2, 2 ≤
∫ τ

τ0

Cε0(s)
4|λ0|

(1− e−(τ−s))m/2

∫
E2, 2(y, s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r|2

4(1− e−(τ−s))

}
× By(r, τ − s)r−2|λ0|+m−3(1 + r4ℓ) drds

≤ CS
∫ τ

τ0

ε0(s)
4|λ0|−4θ(|λ0|+1) ds+ CS|y|2ℓ

∫ τ

τ0

{
ε0(s)

4|λ0|−4θ|λℓ−1| ds if λℓ ≤ 1,

ε0(s)
4|λ0|e2ω̂|λℓ−1|s ds if λℓ > 1

≤ Cε0(τ)
4|λ0|−4θ(|λ0|+1) +

{
ε0(τ)

4|λ0|−4θ|λℓ−1||y|2ℓ if λℓ ≤ 1,

ε0(τ)
2|λ0|(1+1/λℓ)|y|2ℓ if λℓ > 1.

(1.4.47)

On the other hand, (1.4.2) with ω̂ = 1/2− 1/4(λℓ + 1), (1.4.26), and (1.4.29) imply that

J2, 3 ≤
∫ τ

τ0

Cε0(s)
4|λ0|

(1− e−(τ−s))m/2

∫
E2, 3(y, s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r|2

4(1− e−(τ−s))

}
× By(r, τ − s)r−2|λ0|+m−3(1 + r4ℓ) drds

≤ C(S0 + S4ℓ)

∫ τ

τ0

ε0(s)
4|λ0|−4θ(|λ0|+1) ≤ Cε0(τ)

4|λ0|−4θ(|λ0|+1) ;

(1.4.48)

Estimate for J3. Let us divide the region E3 in (1.4.43c) with

E3, 1(y, σ) := B1(y, σ) ∩ E3(σ) and E3, 2(y, σ) := B2(y, σ) ∩ E3(σ), (1.4.49)

for y ∈ Rm and τ0 ≤ σ ≤ τ ≤ τ1, and split J3 as J3 = J3, 1 + J3, 2, accordingly. We note that

E3, 1(y, s) = ∅ for ε0(s)
θ < |y| ≤ 1

2
e−(1/2−ω̂)seτ/2.
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Due to (1.4.2) with ω̂ = 1/2− 1/4(λℓ + 1), (1.4.25), and (1.4.29), we obtain

J3, 1 ≤
∫ τ

τ0

C

(1− e−(τ−s))m/2

∫
E3, 1(y, s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r

∣∣2
4(1− e−(τ−s))

}
× By(r, τ)r

2|λ0|−2ℓ+m−3r2ℓ drds

≤ CS|y|2ℓ
∫ τ

τ0

e−2ω̂(λℓ+1)s ds ≤ Cε0(τ)
2|λ0|+|λ0|/λℓ |y|2ℓ.

(1.4.50)

It follows from |λ0| > 1, (1.4.2), (1.4.27), and (1.4.29) that

J3, 2 ≤
∫ τ

τ0

C

(1− e−(τ−s))m/2

∫
E3, 2(y, s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r

∣∣2
4(1− e−(τ−s))

}

×
(
r

eω̂s

)2λℓ/ω̂

By(r, τ)r
2|λ0|+m−3 drds

≤ CS2λℓ/ω̂+2|λ0|−2

∫ τ

τ0

e−2λℓs ds ≤ Cε0(τ)
4|λℓ|.

(1.4.51)

Because of (1.3.1), (1.4.44), (1.4.46)–(1.4.48), (1.4.50), and (1.4.51), we obtain (1.4.41) and
the proof is complete.

To show (1.4.42), we use Lemma 1.4.2, (1.4.25), (1.4.27), and (1.4.29), to get∣∣[S(τ − s){⟨g(W (s)), ψn⟩mψn}](y)
∣∣

≤
∫ τ

τ0

Cε0(s)
2|λ0|+µ

(1− e−(τ−s))m/2

∫ ∞

0

exp

{
−
∣∣|y|e−(τ−s)/2 − r

∣∣2
4(1− e−(τ−s))

}
By(r, τ)r

m−1(1 + r2n) drds

≤ C
(
S(1 + |y|2n) + S0 + S2n

) ∫ τ

τ0

ε0(s)
2|λ0|+µ ds ≤ Cε0(τ)

2|λ0|+µ(1 + |y|2ℓ),

for n = 0, 1, . . . , ℓ. We obtain (1.4.42) and the proof is complete.

Lemma 1.4.7. There holds∣∣W (r, τ)− a∗ℓ(τ)ψℓ(r)
∣∣ ≤ Cε0(τ)

2|λ0|+3θ(1 + |y|2ℓ) (1.4.52)

for ε0(τ)
θ < |y| ≤ e−ωτ0eτ/2, τ0 ≤ τ ≤ τ0 + 1 with sufficiently large τ0.

Proof. To apply the estimates (1.4.30) and (1.4.41) for the representation of solution (1.4.21),
we have (1.4.52) in short time case and the proof is complete.

A priori estimate in the long-time case

Next, we show the estimate in the long-time τ0 + 1 ≤ τ ≤ τ1. Notice that

1− e−1 ≤ 1− e−(τ−σ) ≤ 1 for τ0 + 1 ≤ σ ≤ τ ≤ τ1. (1.4.53)

Let R0(|y|) := R(|y|, τ0) where R is as in (1.4.17).
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Lemma 1.4.8. There holds∣∣[S(τ − τ0)R0](y)
∣∣ ≤ Cε0(τ0)

θ̃(2+
√
D)ε0(τ)

2|λ0|(1 + |y|2ℓ), (1.4.54)

for ε0(τ)
θ < |y| ≤ e(τ−τ0−1)/2 and τ0 + 1 ≤ τ ≤ τ1 with sufficiently large τ0, where θ̃ ∈ (2θ, 1)

is as in (1.3.3).

Proof. Since R0 is orthogonal to the eigenfunctions ψn for n = 0, 1, . . . , ℓ in L2
ρ(R

m), the
series expansion (1.4.18a) with (1.2.16) and (1.4.12c) (cf. Remark 1.4.1) implies

∣∣[S(τ − τ0)R0](y)
∣∣ ≤ ∞∑

n=ℓ+1

e−λn(τ−τ0)|an(τ0)||ψn(|y|)|

≤ Cε0(τ)
2|λ0|+θ̃(2+

√
D)

∞∑
n=ℓ+1

c2ne
−(λn−λℓ−θ̃(2+

√
D))(τ−τ0)

≤ Cε0(τ)
2|λ0|+θ̃(2+

√
D)

∞∑
n=ℓ+1

c2ne
−(n−ℓ−θ̃(2+

√
D)) ≤ Cε0(τ)

2|λ0|+θ̃(2+
√
D)

(1.4.55)

for ε0(τ)
θ < |y| ≤ 1 and τ0 + 1 ≤ τ ≤ τ1 and

∣∣[S(τ − τ0)R0](y)
∣∣ ≤ ∞∑

n=ℓ+1

e−λn(τ−τ0)|an(τ0)||ψn(|y|)|

≤ Cε0(τ0)
θ̃(2+

√
D)ε0(τ)

2|λ0||y|2ℓ
∞∑

n=ℓ+1

cn|c̃n|e−(n−ℓ)(τ−τ0)|y|2(n−ℓ)

≤ Cε0(τ0)
θ̃(2+

√
D)ε0(τ)

2|λ0||y|2ℓ
∞∑

n=ℓ+1

c2ne
−(n−ℓ) ≤ Cε0(τ0)

θ̃(2+
√
D)ε0(τ)

2|λ0||y|2ℓ

(1.4.56)

for 1 < |y| ≤ e(τ−τ0−1)/2 and τ0 + 1 ≤ τ ≤ τ1, where the exact formulas of cn and c̃n as in
(1.2.17a) and (1.2.17b) have been used as well. Because of∣∣∣∣c2n+1e

−(n+1)

c2ne
−n

∣∣∣∣ = n!Γ(m/2 + n+ 1)

e(n+ 1)!Γ(m/2 + n)
=
m/2 + n

e(n+ 1)
→ 1

e
< 1 as n→ ∞, (1.4.57)

we see from the ratio test that the series in the last line of (1.4.55) and (1.4.56) converges.
We then obtain (1.4.54) and the proof is complete.

Lemma 1.4.9. There holds∣∣[S(τ − τ0){W0 − a∗ℓ(τ0)ψℓ}](y)
∣∣ ≤ Cε0(τ0)

3θε0(τ)
2|λ0||y|2ℓ, (1.4.58)

for e(τ−τ0−1)/2 < |y| ≤ e−ωτ0eτ/2 and τ0+1 ≤ τ ≤ τ1 with sufficiently large τ0, where θ̃ ∈ (2θ, 1)
is as in (1.3.3).
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Proof. Let e(τ−τ0−1)/2 < |y| ≤ e−ωτ0eτ/2. We remark that

2|y|e−(τ−τ0)/2 ∈ (1, 2e(1/2−ω)τ0) and |y| ≥ 1

for e(τ−τ0−1)/2 < |y| ≤ e−ωτ0eτ/2 and τ0 + 1 ≤ τ ≤ τ1, and

1 ≤ eℓe−ℓ(τ−τ0)|y|2ℓ for |y| ≥ e(τ−τ0−1)/2. (1.4.59)

We use the same notation Di, Di, j, Ii, and Ii, j in Lemma 1.4.5.

Estimate for I1. Similarly to the proof of (1.4.34), it follows from (1.3.10) with θ′ = 3θ/µ,
(1.4.28), (1.4.33), and (1.4.59) that

I1, 1 ≤ Ce|λ0|(τ−τ0)(|y|e−(τ−τ0)/2)−m

∫
D1, 1(τ0)

(ε0(τ0)
2|λ0| + r2|λ0|)rm−1 dr

≤ Ce|λ0|(τ−τ0)(ε0(τ0)
2|λ0|+(1−3θ/µ)m + ε0(τ0)

(1−3θ/µ)(2|λ0|+m))(|y|e−(τ−τ0)/2)2ℓ

≤ Ce−λℓ(τ−τ0)ε0(τ0)
2|λ0|ε0(τ0)

(1−3θ/µ)m|y|2ℓ ≤ Cε0(τ0)
(1−3θ/µ)mε0(τ)

2|λ0||y|2ℓ.

(1.4.60)

A similar argument shows

I1, 2 ≤ Ce|λ0|(τ−τ0)(|y|e−(τ−τ0)/2)2ℓ
(
ε0(τ0)

2|λ0|+3θ + ε0(τ0)
2|λ0|+2θ̃

)
|[S(τ − τ0)1](y)|

≤ Ce−λℓ(τ−τ0)ε0(τ0)
2|λ0|ε0(τ0)

3θ|y|2ℓ ≤ Cε0(τ0)
3θε0(τ)

2|λ0||y|2ℓ.
(1.4.61)

Estimate for I2. Because of (1.3.10), (1.4.25), (1.4.27), and (1.4.59), we have

I2, 1 ≤ CSε0(τ0)2|λ0|+3θe|λ0|(τ−τ0)
(
1 + (|y|e−(τ−τ0)/2)2ℓ

)
≤ Cε0(τ0)

3θε0(τ)
2|λ0||y|2ℓ (1.4.62)

and
I2, 2 ≤ C(S0 + S2ℓ)ε0(τ0)

2|λ0|+3θe|λ0|(τ−τ0) ≤ Cε0(τ0)
3θε0(τ)

2|λ0||y|2ℓ. (1.4.63)

Estimate for I3. Similar argument to (1.4.40) implies

I3 ≤ CS2ℓ+λℓ(1/2−ω̃)ε0(τ0)
2|λ0|+3θe|λ0|(τ−τ0) ≤ Cε0(τ0)

3θε0(τ)
2|λ0||y|2ℓ. (1.4.64)

Because of (1.3.1) and (1.4.60)-(1.4.64), we obtain (1.4.58) and the proof is complete.

Lemma 1.4.10. Let τ0 + 1 ≤ τ ≤ τ1 and τ0 ≤ s ≤ τ − 1 with sufficiently large τ0. Then :∣∣[S(τ − s)g(W (s))](y)
∣∣ ≤ Cε0(s)

µε0(τ)
2|λ0||y|2ℓ (1.4.65)

for |y| ≥ e(τ−s−1)/2 and∣∣∣∣∣
[
S(τ − s)

{
g(W (s))−

ℓ∑
n=0

⟨g(W (s)), ψn⟩mψn

}]
(y)

∣∣∣∣∣ ≤ Cε0(s)
µε0(τ)

2|λ0|(1 + |y|2ℓ), (1.4.66)

for |y| ≥ ε0(τ)
θ, where µ > 0 is as in (1.4.7).

43



Proof. Recall that ⟨f(v), ϕn⟩N = ⟨g(W ), ψn⟩m. Arguing as in the proof of Lemma 1.4.8, we
obtain from (1.4.6) and (1.4.18a) that∣∣∣∣∣

[
S(τ − s)

{
g(W (s))−

ℓ∑
n=0

⟨g(W (s)), ψn⟩mψn

}]
(y)

∣∣∣∣∣
≤

∞∑
n=ℓ+1

e−λn(τ−s)|⟨g(W (s)), ψn⟩m||ψn(|y|)| ≤ Cε0(s)
µε0(τ)

2|λ0|(1 + |y|2ℓ)

for |y| < e(τ−s−1)/2. The estimate (1.4.66) is archived for ε0(τ)
θ ≤ |y| < e(τ−s−1)/2.

We next prove (1.4.65) and (1.4.66) for |y| ≥ e(τ−s−1)/2. To this end, we assume |y| ≥
e(τ−s−1)/2 hereafter without stating explicitly. We use the same notations Ji and Ei in the
proof of Lemma 1.4.6. Remark that

2|y|e−(τ−s)/2 > 1, |y| ≥ 1, and eℓe−ℓ(τ−s)|y|2ℓ ≥ 1,

for |y| > e(τ−s−1)/2, τ0 + 1 ≤ τ ≤ τ1, and τ0 ≤ s ≤ τ − 1, and rγf(v) = g(W ).

Estimate for J1. By |λ0| − ℓ = −λℓ and (1.4.2) with θ̂ = 1− θ, we see that

J1 ≤ Ce|λ0|(τ−s)

∫
E1(s)

rγ−2β+m−3 dr

≤ Ce|λ0|(τ−s)(e−(τ−s−1)/2|y|)2ℓ
∫ ε0(s)1−θ

0

r2|λ0|+
√
D−1 dr

≤ Cε0(s)
√
D−θ(2|λ0|+

√
D)e−λℓτ |y|2ℓ.

(1.4.67)

Estimate for J2. Let us divide further the region E2 with θ̂ = 1− θ as

Ẽ2, 1(s) := {r ∈ R+ ; ε0(s)
1−θ < r ≤ 1},

Ẽ2, 2(y, s) := B1(y, s) ∩ {r ∈ R+ ; 1 < r ≤ eω̂s},
Ẽ2, 3(y, s) := B2(y, s) ∩ {r ∈ R+ ; 1 < r ≤ eω̂s},

and denote the corresponding integrals by J̃2, j for j = 1, 2, 3, accordingly. We note that

Ẽ2, 2(y, s) ̸= ∅ for |y| > e(τ−s−1)/2,

Ẽ2, 3(y, s) = ∅ for |y| > 1

2
e−(1/2−ω̂)seτ/2.
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The estimate (1.4.2) of f(v(r, s)) in Ẽ2, 1(s) and |λ0| > 1 implies that

J̃2, 1 ≤ Cε0(s)
4|λ0|e|λ0|(τ−s)

∫
Ẽ2, 1(s)

r−2|λ0|+m−3 dr

≤ Cε0(s)
4|λ0|e|λ0|(τ−s)(e−(τ−s−1)/2|y|)2ℓ

∫ 1

ε0(s)1−θ

r−2|λ0|+
√
D−1 dr

≤ Cε0(s)
2|λ0|e−λℓτ |y|2ℓ ×


1 if 2|λ0| <

√
D,

ε0(s)
−1+θ if 2|λ0| =

√
D,

ε0(s)
(1−θ)(−2|λ0|+

√
D) if 2|λ0| >

√
D

≤

{
Cε0(s)

|λ0|ε0(τ)
2|λ0||y|2ℓ if 2|λ0| ≤

√
D,

ε0(s)
√
Dε0(τ)

2|λ0||y|2ℓ if 2|λ0| >
√
D.

(1.4.68)

Due to −|λ0|+ ℓ = λℓ, (1.4.2) with ω̂ = 1/2− 1/4(λℓ + 1), and (1.4.25), we have

J̃2, 2 ≤
Cε0(s)

4|λ0|e|λ0|(τ−s)

(1− e−(τ−s))m/2

∫
Ẽ2, 2(y, s)

exp

{
−
∣∣|y|e−(τ−s)/2 − r|2

4(1− e−(τ−s))

}
× By(r, τ − s)r4ℓ−2|λ0|+m−3 dr

≤ CSε0(s)4|λ0|e|λ0|(τ−s)(2|y|e−(τ−s)/2)2ℓ ×

{
1 if λℓ ≤ 1,

e2ω̂|λℓ−1|s if λℓ > 1

≤

{
Cε0(τ)

2|λ0|ε0(τ)
2|λ0||y|2ℓ if λℓ ≤ 1,

Cε0(s)
2|λ0|/λℓε0(τ)

2|λ0||y|2ℓ if λℓ > 1.

(1.4.69)

To use a similar argument to (1.4.48), we have

J̃2, 3 ≤ CS4ℓε0(s)
4|λ0|e|λ0|(τ−s)(e−(τ−s−1)/2|y|)2ℓ ≤ Cε0(s)

2|λ0|ε0(τ)
2|λ0||y|2ℓ. (1.4.70)

Estimate for J3. We note that

E3, 1(y, s) = ∅ for e(τ−s−1)/2 < |y| ≤ 1

2
e−(1/2−ω̂)seτ/2 =

1

2
e−s/4(λℓ+1)eτ/2

with ω̂ = 1/2− 1/4(λℓ + 1). The fact of |λ0| > 1, (1.4.2), and (1.4.25) imply that

J3, 1 ≤ CSe|λ0|(τ−s)(2|y|e−(τ−s)/2)2|λ0|−2 ≤ Ceτ−s|y|2|λ0|−2

≤ Ceτ−s|y|−2(λℓ+1)|y|2ℓ ≤ Ceτ−ses/2e−(λℓ+1)τ |y|2ℓ ≤ Ce−s/2e−λℓτ |y|2ℓ
(1.4.71)

for |y| > e−s/4(λℓ+1)eτ/2/2. Similarly to the argument in (1.4.40), we see that

J3, 2 ≤ CS2λℓ/ω̂+2|λ0|−2e
−2λℓse|λ0|(τ−s)(e−(τ−s−1)/2|y|)2ℓ ≤ Ce−λℓse−λℓτ |y|2ℓ. (1.4.72)

Due to (1.3.1), (1.4.67)–(1.4.72), we have (1.4.65).
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To obtain the inequality (1.4.66) for |y| ≥ e−(τ−s−1)/2, it is sufficient to show∣∣∣∣∣
[
S(τ − s)

{
ℓ∑

n=0

⟨g(W (s)), ψn⟩mψn

}]
(y)

∣∣∣∣∣ ≤ Cε0(s)
µε0(τ)

2|λ0||y|2ℓ

for |y| ≥ e(τ−s−1)/2. Notice that |y| ≥ 1 and λℓ − λn = ℓ− n. Recalling Lemma 1.4.2 and the
series expression (1.4.18a) of S(τ), we easily obtain∣∣[S(τ − s){⟨g(W (s)), ψn⟩mψn}](y)

∣∣ ≤ Cε0(s)
µe−λℓse−λn(τ−s)|y|2n

≤ Cε0(s)
µe−λℓτ |y|2ℓ(e−(τ−s)/2|y|)−2(ℓ−n) ≤ Cε0(s)

µe−λℓτ |y|2ℓ

for n = 0, 1, . . . , ℓ and |y| ≥ e−(τ−s−1)/2. It then follows the estimate (1.4.66) and the proof
is complete.

Lemma 1.4.11. Let τ0 + 1 < τ ≤ τ1 with sufficiently large τ0. Then :∣∣∣∣∫ τ

τ0

[S(τ − s)g(W (s))](y) ds

∣∣∣∣ ≤ Cε0(τ0)
µε0(τ)

2|λ0||y|2ℓ (1.4.73)

for |y| > e(τ−τ0−1)/2 and∣∣∣∣∣
∫ τ

τ0

[
S(τ − s)

{
g(W (s))−

ℓ∑
n=0

⟨g(W (s)), ψn⟩mψn

}]
(y) ds

∣∣∣∣∣
≤ Cε0(τ0)

µε0(τ)
2|λ0|(1 + |y|2ℓ),

(1.4.74)

for |y| > ε0(τ)
θ, where µ > 0 is as in (1.4.7).

Proof. We first divide integral interval in time as [τ0, τ ] = [τ0, τ − 1] ∪ [τ − 1, τ ]. Clearly,
integration with the later interval (that is short time) may be estimated as in (1.4.41) and
(1.4.42). It thus suffices to consider the former integral interval. Because of e(τ−τ0−1)/2 ≥
e(τ−s−1)/2 for τ0 ≤ s ≤ τ − 1, we obtain from (1.4.65) that∣∣∣∣∫ τ−1

τ0

[S(τ − s)g(W (s))](y) ds

∣∣∣∣ ≤ Cε0(τ)
2|λ0||y|2ℓ

∫ τ−1

τ0

ε0(s)
µ ds ≤ Cε0(τ0)

µε0(τ)
2|λ0||y|2ℓ

for |y| ≥ e(τ−τ0−1)/2. Then, the estimate (1.4.73) is archived. The same calculation with
(1.4.66) implies the inequality (1.4.74). The proof is complete.

Lemma 1.4.12. There holds∣∣W (r, τ)− a∗ℓ(τ)ψℓ(r)
∣∣ ≤ Cε0(τ0)

3θε0(τ)
2|λ0|(1 + |y|2ℓ) (1.4.75)

for ε0(τ)
θ < |y| ≤ e−ωτ0eτ/2, τ0 ≤ τ ≤ τ0 + 1 with sufficiently large τ0.

Proof. We see (1.4.75) for ε0(τ) < |y| ≤ e(τ−τ0−1)/2 to apply the estimates (1.4.11), (1.4.54),
and (1.4.74) to (1.4.21), In additional, combining (1.4.58), (1.4.73), and (1.4.21) give us the
estimate (1.4.75) for e(τ−τ0−1)/2 < |y| ≤ e−ωτ0eτ/2. The proof is complete.
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1.5 A priori estimates in the inner region

In this section, we will prove a priori estimates in the region where |y| ≤ ε0(τ)
θ using the

idea of [44, 46]. This together with the lemmas in §1.4 complete the proof of Lemma 1.3.1.

Lemma 1.5.1. Assume that p > pJL, N > 10 + 8a. Assume also that∣∣Φ0(r)− Φmed(r, τ0)
∣∣ ≤ Cε0(τ0)

γ−2β+2θr−γ (1.5.1)

for r ≤ ε0(τ0)
θ, where

Φmed(r, τ0) = U∞(r) + a∗ℓ(τ)ϕℓ(r).

If there exists a constant M > 0 such that∣∣∣∣Φ(r, τ)− U∞(r) +
h

cℓ
ε0(τ)

γ−2βϕℓ(r)

∣∣∣∣ ≤Mε0(τ)
γ−2β+2θr−γ (1.5.2)

for r = ε0(τ)
θ and τ0 ≤ τ ≤ τ1, then there exists a positive smooth function H(η) with

H(η) =

{
O(η−γ) as η → ∞,

O(1) as η → 0,

such that ∣∣Φ(r, τ)− Φinn(r, τ)
∣∣ ≤ ε0(τ)

−2β+2θH

(
r

ε0(τ)

)
(1.5.3)

for r ≤ ε0(τ)
θ and τ0 ≤ τ ≤ τ1 with τ0 large enough.

Proof. We extend the idea of the proof of [44, Proposition 2.1] for the neutral eigenvalues to
that of stable ones. We shall recall equation (1.2.5) :

ε0(τ)
2Uτ = ∆ξU + |ξ|2aUp − E(τ)

(
ξ · ∇ξU

2
+ βU

)
,

where ξ = y/ε0(τ), U(ξ, τ) = ε0(τ)
2βΦ(y, τ), and E(τ) := ε0(τ)

2 − 2ε0(τ)ε̇0(τ). Consider the
new dependent variable :

V (ξ, τ) := U(ξ, τ)− U1(ξ).

Equation (1.2.5) for U(ξ, τ) is then converted to the one for V (ξ, τ) as follows :

NV := −ε0(τ)2
∂V

∂τ
+∆ξV − E(τ)

[
T1(ξ) +

(
ξ · ∇ξV

2
+ βV

)]
+ |ξ|2a

[
pU2(ξ)

p−1V + (U1(ξ) + V )p − U1(ξ)
p

− pU1(ξ)
p−1V + p

(
U1(ξ)

p−1 − U2(ξ)
p−1
)
V
] (1.5.4)

where

T1(ξ) :=
sU ′

1(ξ)

2
+ βU1(ξ). (1.5.5)
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Here and henceforth, we shall abuse the notation such as U1(ξ) = U1(|ξ|) for simplicity. Set
η := |ξ|. The ordered structure of the family {Uκ}κ>0 implies that

T1(η) = β
∂

∂κ
Uκ(η)

∣∣∣∣
κ=1

> 0 for any η > 0 ; T1(0) = β.

Let us write

HΛ(η) :=
∂

∂κ
Uκ(η)

∣∣∣∣
κ=Λ

= U1(Λ
1/2βη) +

1

2β
Λ1/2βηU ′

1(Λ
1/2βη) for Λ > 0,

where we use Uκ(η) = κU1(κ
1/2βη) for any κ > 0. The function HΛ solves 0 = H ′′
Λ +

N − 1

η
H ′

Λ + pη2aUΛ(η)
p−1HΛ, η > 0,

HΛ(0) = 1, H ′
Λ(0) = 0.

Taking advantage of the asymptotics of U1 and U ′
1 as in Proposition 1.2.1, we obtain

H1(η) = βT1(η) =
h(γ − 2β)

2
η−γ + o(η−γ), (1.5.6)

H2(η) = C0η
−γ + o(η−γ) with C0 :=

h(γ − 2β)

2γ/2β+1β
, (1.5.7)

as η → ∞. Let H(η) be a solution of the inhomogeneous ODE :

H ′′ +
N − 1

η
H ′ + pη2aU1(η)

p−1H = T1(η),

satisfying H(0) = H ′(0) = 0. A standard computation then shows that

H(η) = H1(η)

∫ η

0

1

H1(ρ)2ρN−1

∫ ρ

0

H1(r)T1(r)r
N−1 drdρ

= C1η
−γ+2 + o(η−γ+2) with C1 :=

h(γ − 2β)

4(2 +
√
D)

(1.5.8)

as η → ∞. Let k > 0 be a constant to be chosen later. We will construct sub- and
supersolutions of (1.5.4), using auxiliary functions

Z±(η, τ) := E±(τ)H(η)± kε0(τ)
2θH2(η) (1.5.9a)

with E±(τ) := E(τ)∓
√
kε0(τ)

2+2θ. (1.5.9b)

The functions Z± satisfy

NZ± = η2a
[
(U1(η) + Z±)

p − U1(η)
p − pU1(η)

p−1Z±

+ p
(
U1(η)

p−1 − U2(η)
p−1
)
Z±

]
+
(
E±(τ)− E(τ)

)
T1(η)

− E(τ)E±(τ)
(η
2
H ′(η) + βH(η)

)
− ε0(τ)

2 d

dτ

(
E±(τ)

)
H(η)

∓ kε0(τ)
2θE(τ)

(η
2
H ′

2(η) + βH2(η)
)
∓ kε0(τ)

2 d

dτ

(
ε0(τ)

2θ
)
H2(η).

(1.5.10)
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Notice that the last two terms in (1.5.10) are roughly of oder ε(τ)2+2θ as τ → ∞, which is
the same as of

(
E±(τ)− E(τ)

)
T1(ξ). To cancel out the terms proportional to

T2(η) :=
η

2
H ′

2(η) + βH2(η) and kH2(η)

in (1.5.10), respectively, we introduce the functions

J1(η) := H2(η)

∫ η

0

1

H2(ρ)2ρN−1

∫ r

0

H2(r)T2(r)r
N−1 drdρ,

J2(η) := H2(η)

∫ η

0

1

H2(ρ)2ρN−1

∫ r

0

H2(r)
2rN−1 drdρ,

Notice that they solve ODEs

J ′′
1 +

N − 1

η
J ′

1 + pη2aU2(η)
p−1J1 = T2(η),

J ′′
2 +

N − 1

η
J ′

2 + pη2aU2(η)
p−1J2 = H2(η),

with boundary conditions J1(0) = J ′
1(0) = 0, J2(0) = J ′

2(0) = 0. We now set

z±(η, τ) := ±kE(τ)ε0(τ)2θJ1(η)± kε0(τ)
2 d

dτ

(
ε0(τ)

2θ
)
J2(η).

Using L’Hôpital’s rule, we readily obtain

T2(η) =
(
−γ
2
+ β

)
C0η

−γ + o(η−γ), (1.5.11a)

J1(η) =
(−γ/2 + β)

2(2 +
√
D)

C0η
−γ+2 + o(η−γ+2), (1.5.11b)

T3(η) :=
η

2
J ′

1(η) + βJ1(η) =
(−γ/2 + β)(−γ/2 + β + 1)

2(2 +
√
D)

C0η
−γ+2 + o(η−γ+2), (1.5.11c)

as η → ∞. Notice that (−γ/2 + β)(−γ/2 + β + 1) = λ0λ1 > 0 for p > pJL. The redefined
function

Z±(η, τ) := Z±(η, τ) + z±(η, τ)

satisfies

NZ± = η2a
[(
U1(η) + Z±

)p − U1(η)
p − pU1(η)

p−1Z±

+ p
(
U1(η)

p−1 − U2(η)
p−1
)
Z±

]
+
(
E±(τ)− E(τ)

)
T1(η)

− E(τ)E±(τ)
(η
2
H ′(η) + βH(η)

)
− ε0(τ)

2 d

dτ
(E±(τ))H(η) +R±(η, τ),

(1.5.12)
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where

R±(η, τ) = ±kE(τ)2ε0(τ)2θT3(η)∓ kε0(τ)
2 d

dτ
(E(τ)ε0(τ)2θ)J1(η)

± kE(τ)ε0(τ)2
d

dτ
(ε0(τ)

2θ)
(η
2
J ′

2(η) + βJ2(η)
)

∓ kε0(τ)
2 d

dτ

(
ε0(τ)

2 d

dτ

(
ε0(τ)

2θ
))

J2(η).

As is readily seen, there is a constant C̃k > 0 such that

|R(η, τ)| ≤ C̃kε0(τ)
4+2θ(1 + η)−γ+2.

This is smaller than (
E±(τ)− E(τ)

)
T1(η) = ∓

√
kε0(τ)

2+2θT1(η)

in its modulus. Due to (1.5.8), we have∣∣∣∣−E(τ)E±(τ)
(η
2
H ′(η) + βH(η)

)
− ε0(τ)

2 d

dτ
(E±(τ))H(η)

∣∣∣∣
≤ Cε0(τ)

4(1 + η)−γ+2 ≤ Cε(τ)2+2θ(1 + η)−γ

(1.5.13)

for η ≤ ε0(τ)
θ−1. We now choose k large enough, so that the last quantity of (1.5.13) is

dominated by
(
E±(τ)− E(τ)

)
T1(η) as well.

Consider the case where the plus sign of Z± is selected. Since T1(η) is positive, it follows
from (1.5.6), (1.5.9b), (1.5.12), and (1.5.13) that

NZ+ ≤ η2a
[(
U1(η) + Z+

)p − U1(η)
p − pU1(η)

p−1Z+

+ p
(
U1(η)

p−1 − U2(η)
p−1
)
Z+

]
− 1

3
ε0(τ)

2+2θT1(η)

holds for η ≤ ε0(τ)
θ−1. Moreover, it is easily seen that this last term dominates for

1 ≪ η ≤ ε0(τ)
θ−1, whereas the negative term p

(
U1(η)

p−1 − U2(η)
p−1
)
Z+ dominates for

η = O(1). Therefore the function Z+ is a supersolution. The case where the negative sign of
Z± is selected is similar. In this case the both

(
U1(η) + Z−

)p − U1(η)
p − pU1(η)

p−1Z− and
p
(
U1(η)

p−1 − U2(η)
p−1
)
Z− are positive. Consequently, the function Z− is a subsolution.

Next, we verify

Z−(η, τ) ≤ U(η, τ)− U1(η) ≤ Z+(η, τ) for η = ε(τ)θ−1, τ0 ≤ τ ≤ τ1. (1.5.14)

To this end, we recall

Φmed(r, τ) = U∞(r) + a∗ℓ(τ)ϕℓ(r) and a∗ℓ(τ) = − h

cℓ
ε(τ)γ−2β.
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Due to (1.2.8a), we obtain, as r = ε0(τ)
θ → 0,

Φmed(r, τ)− Φinn(r, τ)

= C2ε(τ)
γ−2βr−γ+2

(
1 +O(r2)

)
+ ε(τ)γ−2β+min{2|λ0|,

√
D}O

(
r−γ−min{2|λ0|,

√
D}), (1.5.15)

where C2 := hℓ/2(2 +
√
D) = C1(1 + 2ωℓ) (cf. (1.5.8)). Combining (1.5.2) with (1.5.15), we

get ∣∣Φ(r, τ)− Φinn(r, τ)− C2ε(τ)
γ−2βr−γ+2

∣∣ ≤ 2Kε0(τ)
γ−2β+2θr−γ (1.5.16)

for r = ε0(τ)
θ and τ0 ≤ τ ≤ τ1. Rewriting this estimate by the inner variables, we obtain∣∣U(η, τ)− U1(η)− E(τ)H(η)

∣∣ ≤ 3Kε0(τ)
2θη−γ.

It then follows that∣∣U(η, τ)− U1(η)
∣∣ ≤ E(τ)H(η) + 3Kε0(τ)

2θη−γ ≤ Z±(η, τ) +Kε(τ)2θH0(ξ).

We thus obtain (1.5.14) with M1 = 5M0C
−γ
0 if τ0 is large enough (cf. (1.5.7)). We finally

verify if the bound corresponding to (1.5.14) at τ = τ0 is true for |ξ| ≤ ε(τ0)
θ−1, which

amounts to asking if there holds∣∣∣∣Φ0(r)− Φinn(r, τ0)− ε(τ0)
−2βµ(τ0)H1

(
r

ε(τ0)

)∣∣∣∣ ≤M1ε(τ0)
−2β+2θH0

(
r

ε(τ0)

)
(1.5.17)

for r ≤ ε(τ0)
θ. This is clearly satisfied for r ≤ ε(τ0)

2θ, since Φ0(r) = Φinn(r, τ0) there and
ε(τ0)

2(1−θ)H1(ξ) ≪ H0(ξ) with ξ = r/ε(τ0) ≤ 2ε(τ0)
2θ−1. As for the region {ε(τ0)2θ < r ≤

ε(τ0)
θ}, an estimate similar to (1.5.15) with τ = τ0 implies∣∣∣Φout(r, τ0)− Φinn(r, τ0)− C̃1ε(τ0)

γ−2βr−γ+2
∣∣∣ ≤ Cε(τ0)

γ−2β+4θr−γ.

Combining this with the assumption (1.5.1), we readily obtain (1.5.17). Comparison principle
completes the proof.

1.6 Completion of the key a priori estimate

We now prove Lemma 1.3.1. Due to Lemmas 1.4.3 and 1.5.1 below, it suffices to show

|W (r, τ)− a∗ℓ(τ)ψℓ(r)| <
1

2
ε0(τ)

γ−2β+2θ, ε(τ)θ ≤ r ≤ 1, (1.6.1a)

|W (r, τ)− a∗ℓ(τ)ψℓ(r)| <
1

2
ε0(τ0)

2θε0(τ)
γ−2βr2ℓ, 1 ≤ r ≤ e−ωτ0eτ/2, (1.6.1b)

|W (r, τ)| < 1

2
e−Θτ0rγ−2β, r > e−ωτ0eτ/2, (1.6.1c)

as long as τ0 ≤ τ ≤ τ1 with τ0 large enough. When τ0 ≤ τ1 ≤ τ0 + 1, the estimates (1.6.1a)
and (1.6.1b) follow from Lemma 1.4.7. When τ0 + 1 < τ1, we obtain (1.6.1a) and (1.6.1b)
from Lemma 1.4.12 as well as the estimate (1.4.11) of Fourier coefficients. We will prove the
estimate (1.6.1c) in Lemma 1.6.1 below. Then, the proof of Lemma 1.3.1 is now complete.
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1.6.1 A priori estimates in the outer region

Lemma 1.6.1. There exists a constant Θ̃ > 0 such that

|W (y, τ)| ≤ Ce−Θ̃τ0|y|2|λ0| (1.6.2)

for |y| > e−ω̃τ0eτ/2 and τ0 ≤ τ ≤ τ1 with sufficiently large τ0.

Proof. Similarly to (1.3.10), there exists a positive constant C such that

|W0(r)| ≤


Cr2|λ0| r ≤ ε0(τ0)

θ̃,

Ce−2ω̃λℓτ0r2|λ0| ε0(τ0)
θ̃ < r ≤ e(1/2−ω̃)τ0 ,

Cr2|λ0|−κ, e(1/2−ω̃)τ0 < r,

We define functions W1 and W2 as

W (y, τ ;α) = [S(τ − τ0)W0](y) +

∫ τ

τ0

[S(τ − s)g(W (s))](y) ds =: W1 +W2. (1.6.3)

The estimate (1.4.20) implies that

W1 ≤
Ce|λ0|(τ−τ0)

(1− e−(τ−τ0))m/2

∫ ∞

0

exp

{
−
∣∣|y|e−(τ−τ0)/2 − r

∣∣2
4(1− e−(τ−τ0))

}
|W0(r)|By(r, τ − τ0)r

m−1 dr.

We split the integral region as R+ = D1(τ0)∪D2(τ0)∪D3(τ0) and W1 = W1, 1+W1, 2+W1, 3,
accordingly, where Di is as in (1.4.31).

Estimate for W1, 1. We remark that∣∣|y|e−(τ−τ0)/2 − r
∣∣ ≥ 1

2
|y|e−(τ−τ0)/2 +

1

2
e(1/2−ω)τ0 − ε0(τ0)

θ̃ ≥ 1

2
|y|e−(τ−τ0)/2

for |y| > e−ωτ0eτ/2 and r ∈ D1(τ0). Similar argument to (1.4.34), we have

W1, 1 ≤ Ce(|λ0|+m/2)(τ−τ0)|y|−2|λ0|−m|y|2|λ0|
∫
D1(τ0)

r2|λ0|+m−1 dr

≤ Ce−(1/2−ω)(2|λ0|+m)τ0ε0(τ0)
(1−θ)(2|λ0|+m)|y|2|λ0|.

Estimate for W1, 2. We split D2(τ0) = D2, 1(τ0) ∪ D2, 2(τ0) and W1, 2 = W1, 2, 1 + W1, 2, 2,
accordingly, where D2, j is as in (1.4.36). It then follows from (1.4.25) that

W1, 2, 1 ≤ CSe−2ω̃λℓτ0e2|λ0|(1/2−ω̃)τ0e|λ0|(τ−τ0)|y|−2|λ0||y|2|λ0|

≤ Ce2|λ0|(ω−ω̃)e−2ω̃λℓτ0|y|2|λ0| ≤ Ce−ω̃λℓτ0|y|2|λ0|

for sufficiently small ω̃ ∈ (0, ω). To use (1.4.27), we obtain

W1, 2, 1 ≤ CS2|λ0|e
−2ω̃λℓτ0e|λ0|(τ−τ0)|y|−2|λ0||y|2|λ0| ≤ Ce−(1−2ω)|λ0|τ0e−2ω̃λℓτ0|y|2|λ0|.
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Estimate for W1, 3. We Set

D3, 1(y, τ0) := D3(τ0) ∩B1(y, τ0) and D3, 2(y, τ0) := D3(τ0) ∩B2(y, τ0),

and split W1, 3 = W1, 3, 1 +W1, 3, 2, accordingly, where Bi is as in (1.4.22). Due to (1.4.25), we
see that

W1, 3, 1 ≤ CSe|λ0|(τ−τ0)(2|y|e−(τ−τ0)/2)2|λ0|e−κ(1/2−ω̃)τ0 ≤ Ce−κ(1/2−ω̃)τ0|y|2|λ0|.

In additional, (1.4.27) implies that

W1, 3, 2 ≤ CS2|λ0|e
|λ0|(τ−τ0)e−κ(1/2−ω̃)τ0 |y|−2|λ0||y|2|λ0| ≤ Ce−(|λ0|+κ)(1/2−ω̃)τ0|y|2|λ0|.

It follows from similar argument to Lemmas 1.4.6 and 1.4.11 that |W2| ≤ Cε0(τ0)
µ|y|2|λ0|

for |y| > e−ω̃τ0eτ/2. The proof is complete.
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Chapter 2

Large time behavior of solutions of
the heat equationwith inverse square
potential

2.1 Introduction and main results

Let L := −∆+ V be a nonnegative Schrödinger operator on L2(RN), where N ≥ 2 and V is
a radially symmetric inverse square potential, that is

V (r) = λ1r
−2 + o

(
r−2+θ

)
as r → 0,

V (r) = λ2r
−2 + o

(
r−2−θ

)
as r → ∞,

for some λ1, λ2 ∈ [λ∗,∞) with λ∗ := −(N −2)2/4 and θ > 0. We are interested in the precise
description of the large time behavior of u = e−tLφ, which is a solution of{

ut = ∆u− V (|x|)u in RN ×R+,

u(x, 0) = φ(x) in RN
(2.1.1)

Nonnegative Schrödinger operators and their heat semigroups appear in various fields and
have been studied intensively by many authors since the pioneering work due to Simon [40]
(see e.g., [2], [4], [6], [8], [11], [12], [16]–[22], [26]–[30], [32], [33], [35]–[44] and references
therein). See also the monographs of Davies [7], Grigor’yan [9] and Ouhabaz [34]. The
inverse square potential is a typical one appearing in the study of the Schrödinger operators
and it arises in the linearized analysis for nonlinear diffusion equations and in the asymptotic
analysis for diffusion equations.
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Throughout this Chapter we assume the following condition on the potential V :

( i ) V = V (r) ∈ C1(R+) ;

(ii) lim
r→0

r−θ
∣∣r2V (r)− λ1

∣∣ = 0 and lim
r→∞

rθ
∣∣r2V (r)− λ2

∣∣ = 0,

for some λ1, λ2 ∈ [λ∗,∞) with λ∗ := −(N − 2)2

4
and θ > 0 ;

(iii) sup
r≥1

∣∣r3V ′(r)
∣∣ <∞.

(V)

We say that L := −∆+ V (|x|) is nonnegative on L2(RN) if∫
RN

[
|∇ϕ|2 + V (|x|)ϕ2

]
dx ≥ 0, ϕ ∈ C∞

0

(
RN \ {0}

)
.

When L is nonnegative, we say that

• L is subcritical if, for any W ∈ C0(R
N), L−εW is nonnegative for all sufficiently small

ε > 0 :

• L is critical if L is not subcritical.

On the other hand, L is said to be supercritical if L is not nonnegative.
Consider the ordinary differential equation

U ′′ +
N − 1

r
U ′ − V (r)U = 0 in R+ (O)

under condition (V). Equation (O) has two linearly independent solutions U (a regular

solution) and Ũ (a singular solution) such that

U(r) ∼ rA
+(λ1) and Ũ(r) ∼

{
rA

−(λ1) if λ1 > λ∗,

r−(N−2)/2| log r| if λ1 = λ∗,
(2.1.2)

as r → 0, where

A±(λ) :=
−(N − 2)±

√
(N − 2)2 + 4λ

2
for λ ≥ λ∗. (2.1.3)

In particular, U ∈ L2
loc(R

N). Assume that L is nonnegative on L2(RN). Then it follows from
[22, Theorem 1.1] that U is positive in R+ and

U(r) ∼ c∗v(r) as r → ∞ (2.1.4)

for some positive constant c∗, where

v(r) :=


rA

+(λ2) if L is subcritical and λ2 > λ∗,

r−(N−2)2 log r if L is subcritical and λ2 = λ∗,

rA
−(λ2) if L is critical.

(2.1.5)
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(See also [33] for the case λ1 = 0.) We often call U a positive harmonic function for the
operator L. When L is critical, following [38], we say that L is positive-critical if U ∈ L2(RN)
and that L is null-critical if U ̸∈ L2(RN). Generally, the behavior of the fundamental solution
p = p(x, y, t) corresponding to e−tL can be classified by whether L is either subcritical, null-
critical or positive-critical. Indeed, in the case of λ1 = 0, by [38, Theorem 1.2], we have :

(L1) If L is subcritical, then

lim
t→∞

p(x, y, t) = 0 and

∫ ∞

0

p(x, y, t) dt <∞,

for x, y ∈ RN with x ̸= y ;

(L2) If L is null-critical, that is A−(λ2) ≥ −N/2, then

lim
t→∞

p(x, y, t) = 0 and

∫ ∞

0

p(x, y, t) dt = ∞,

for x, y ∈ RN with x ̸= y ;

(L3) If L is positive-critical, that is A−(λ2) < −N/2, then

lim
t→∞

p(x, y, t) =
U(|x|)U(|y|)
∥U∥2

L2(RN )

,

for x, y ∈ RN .

See Corollary 2.1.5 for (L1) and (L2) in the case of λ1 ̸= 0.
On the other hand, under condition (V), Ishige, Kabeya, and Ouhabaz recently studied

in [22] the Gaussian estimate of the fundamental solution p = p(x, y, t) in the subcritical case
and in the critical case with A−(λ2) > −N/2. They proved that

0 < p(x, y, t) ≤ Ct−N/2U
(
min{|x|,

√
t}
)
U
(
min{|y|,

√
t}
)

U(
√
t)2

exp

{
−|x− y|2

Ct

}
(2.1.6)

holds for all x, y ∈ RN and t > 0, where C is a positive constant (see [22, Theorem 1.3]).
For related results, see e.g., [2], [6], [10], [26], [28], [29], [30], [43], [44] and references therein.

The precise description of the large time behavior of e−tLφ with φ ∈ L2(RN , e|x|
2/4 dx) has

been studied in a series of papers [16]–[19] only in the subcritical case with some additional
restrictions such as V ∈ C1([0,∞)), λ2 > λ∗ and the sign of the potential. See also [20].

The purpose of this Chapter is to establish a method for obtaining the precise description
of the large time behavior of e−tLφ with φ ∈ L2(RN , e|x|

2/4 dx) in the subcritical case and in
the null-critical case with A−(λ2) > −N/2, under condition (V). In particular, we show that
the solution u of (2.1.1) behaves as a suitable multiple of

vreg(x, t) if L is subcritical and λ > λ∗,

vreg(x, t)

log(1 + t)
if L is subcritical and λ = λ∗,

vsing(x, t) if L is critical and A−(λ2) > −N
2
,
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as t → ∞ on all parabolic cones
{
x ∈ RN ;

√
t/R ≤ |x| ≤ R

√
t
}

with R > 1. (See
Theorem 2.1.4.) Here

vreg(x, t) := t−N/2−A+(λ2)|x|A+(λ2) exp

{
−|x|2

4t

}
,

vsing(x, t) := t−N/2−A−(λ2)|x|A−(λ2) exp

{
−|x|2

4t

}
,

which are self-similar solutions of

vt = ∆v − λ2|x|−2v in
[
RN \ {0}

]
×R+.

However, due to the fact that vsing(t) ̸∈ H1(RN) for any t > 0, the arguments in [16]–[19] are
not applicable to the critical case. In this Chapter we study the large time behavior of the
function |x|−Ae−tLφ, instead of e−tLφ, with

A := A+(λ2) if L is subcritical and A := A−(λ2) if L is critical, (2.1.7)

and overcome the difficulty arising from the fact that vsing(t) ̸∈ H1(RN).

2.1.1 Radial solutions

In this subsection we focus on radially symmetric solutions of (2.1.1). Divide the operator L
into the following three cases:

(S) : L is subcritical and λ2 > λ∗; (S∗) : L is subcritical and λ2 = λ∗;

(C) : L is critical and A−(λ2) > −N/2.

Set

d := N + 2A, ρd(ξ) := ξd−1eξ
2/4, ψd(ξ) := cde

− ξ2

4 ,

∣∣Sd−1
∣∣ := 2πd/2

Γ(d/2)
, cd =

√∣∣Sd−1
∣∣

2dπd/2
=

√
1

2d−1Γ(d/2)

(2.1.8)

where Γ is the Gamma function. Then ∥ψd∥L2(R+, ρd dξ) = 1. If d is an integer such that d ≥ 2,
then

∣∣Sd−1
∣∣ coincides with the volume of (d− 1)-dimensional unit sphere.

Let φ be radially symmetric and φ ∈ L2(RN , e|x|
2/4 dx). Then e−tLφ is radially symmetric

with respect to x and set

u(|x|, t) =
[
e−tLφ

]
(x) and v(|x|, t) := |x|−Au(|x|, t),

for x ∈ RN and t > 0. Then v satisfies the Cauchy problem for a d-dimensional parabolic
equation  vt =

1

rd−1
∂r
(
rd−1∂rv

)
− Vλ2(r)v in R+ ×R+,

v(r, 0) = r−Aφ(r) in R+,
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where Vλ2(r) := V (r)− λ2r
−2.

In the first and the second theorems we obtain the precise description of the large time
behavior of the radially symmetric solutions of (2.1.1) in either (S) or (C).

Theorem 2.1.1. Let N ≥ 2 and assume condition (V). Let L satisfy either (S) or (C).
Let u = u(|x|, t) be a radially symmetric solution of (2.1.1) such that φ ∈ L2(RN , e|x|

2/4 dx).
Define w = w(ξ, s) by

w(ξ, s) := (1 + t)d/2r−Au(r, t)

with ξ =
r√
1 + t

≥ 0 and s = log(1 + t) ≥ 0.
(2.1.9)

Then there exists a positive constant C such that

sup
s>0

∥w(s)∥L2(R+, ρd dξ) ≤ C∥w(0)∥L2(R+, ρd dξ).

Furthermore,
lim
s→∞

w(ξ, s) = m(φ)ψd(ξ) in L2(R+, ρd dξ) ∩ C2(K) (2.1.10)

for any compact set K in RN \ {0}, where

m(φ) :=
cd
c∗

∫ ∞

0

φ(r)U(r)rN−1 dr. (2.1.11)

In particular, if m(φ) = 0, then

∥w(s)∥L2(R+, ρd dξ) + ∥w(s)∥C2(K) = O(e−s) as s→ ∞. (2.1.12)

Theorem 2.1.2. Assume the same conditions as in Theorem 2.1.1. Set u∗(r, t) := u(r, t)/U(r).

(a) For any j ∈ {0, 1, . . . }, ∂jtu∗ ∈ C
(
[0,∞)×R+

)
.

(b) lim
t→∞

td/2u∗(0, t) =
cd
c∗
m(φ) and lim

t→∞
td/2+1(∂tu∗)(0, t) = −dcd

2c∗
m(φ).

(c) Let T > 0 and ε be a sufficiently small positive constant. Define

Gd(r, t) := u∗(r, t)−
[
u∗(0, t) + (∂tu∗)(0, t)Fd(r)

]
(2.1.13)

for r ≥ 0 and t > 0 with

Ud(s) := r−AU(r) and Fd(r) :=

∫ r

0

1

Ud(s)2sd−1

∫ s

0

Ud(τ)
2τ d−1 dτds.

Then there exists a positive constant C such that∣∣(∂ℓrGd)(r, t)
∣∣ ≤ Ct−d/2−2r4−ℓ∥φ∥L2(RN , e|x|2/4 dx) (2.1.14)

for ℓ ∈ {0, 1, 2}, 0 ≤ r ≤ ε
√
1 + t, and t ≥ T .
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In case (S∗) we have :

Theorem 2.1.3. Let N ≥ 2 and assume condition (V). Let L satisfy (S∗). Let u = u(|x|, t)
be a radially symmetric solution of (2.1.1) such that φ ∈ L2(RN , e|x|

2/4 dx).

( I ) Let w be as in Theorem 2.1.1 and K a compact set in RN \ {0}. Then there exists a
positive constant C1 such that

sup
s>0

(1 + s)∥w(s)∥L2(R+, ρ2 dξ) ≤ C1∥w(0)∥L2(R+, ρ2 dξ).

Furthermore,

lim
s→∞

sw(ξ, s) = 2m(φ)ψ2(ξ) in L2(R+, ρ2 dξ) ∩ C2(K),

where m(φ) is as in (2.1.11).

(II) Let u∗, U2, F2 and G2 be as in Theorem 2.1.2 with d = 2. Then

∂jtu∗ ∈ C
(
[0,∞)×R+

)
for j ∈ {0, 1, . . . },

lim
t→∞

t(log t)2u∗(0, t) =
2
√
2

c∗
m(φ) and lim

t→∞
t2(log t)2(∂tu∗)(0, t) = −2

√
2

c∗
m(φ).

Furthermore, for any T > 0 and any sufficiently small ε > 0, there exists a positive
constant C2 such that∣∣(∂ℓrG2)(r, t)

∣∣ ≤ C2t
−3
(
log(1 + t)

)−2
r4−ℓ∥φ∥L2(RN , e|x|2/4 dx) (2.1.15)

for ℓ ∈ {0, 1, 2}, 0 ≤ r ≤ ε
√
1 + t, and t ≥ T .

The function w defined by (2.1.9) satisfies

ws = −Ldw − Ṽ (ξ, s)w for ξ ∈ [0,∞), s > 0, (2.1.16)

where

Ldw := − 1

ρd(ξ)
∂ξ
(
ρd(ξ)∂ξw

)
− d

2
w and Ṽ (ξ, s) := esVλ2(e

s/2ξ).

For the proofs of Theorems 2.1.1–2.1.3, we regard the operator Ld as a d-dimensional elliptic
operator with 

d > 2 in the case of (S),

d = 2 in the case of λ2 = λ∗,

0 < d < 2 in the case of (C) with λ2 > λ∗,

and study the large time behavior of w = w(ξ, s) by developing the arguments in a series of
papers [13]–[19]. The function ψd defined by (2.1.8) is the first eigenfunction of the eigenvalue
problem

Ldϕ = µϕ in R+, ϕ ∈ H1(R+, ρd(ξ) dξ) (E)

62



and the corresponding eigenvalue is 0 (see Lemma 2.2.7). We show that w behaves like a
suitable multiple of ψd as s→ ∞. Furthermore, combining the radially symmetry of u with
the behavior of w, we prove Theorems 2.1.1–2.1.3.

The eigenfunction ψd corresponds to vreg in the subcritical case and vsing in the null-critical
case, respectively. In the null-critical case, vreg is transformed by (2.1.9) into

e−(A+(λ2)−A−(λ2))s/2ψ̃d with ψ̃d := ξA
+(λ2)−A−(λ2)e−ξ2/4.

Here ψ̃d is the first eigenfunction of the eigenvalue problem

Ldϕ = µϕ in R+, ϕ ∈ H1
0 (R+, ρd(ξ) dξ)

and the corresponding eigenvalue is
(
A+(λ2)−A−(λ2)

)
/2 > 0. In the null-critical case with

λ2 > λ∗, we see that 0 < d < 2 and H1
0 (R+, ρd(ξ) dξ) ̸= H1(R+, ρd(ξ) dξ). This justifies

that the operator Ld has two positive eigenfunctions ψd and ψ̃d.
The case of d = 0 is on borderline where L is null-critical and it is not treated in this

Chapter. Indeed, it seems difficult to apply the arguments of this Chapter to the case of
d = 0 since ρd(ξ) ∼ ξ−1 as ξ → 0 and ρd ̸∈ L1(R+).

2.1.2 Nonradial solutions

We discuss the large time behavior of solutions of (2.1.1) without the radially symmetry of
the solutions.

Let ∆SN−1 be the Laplace-Beltrami operator on SN−1. Let {ωk}∞k=0 be the eigenvalues of

−∆SN−1Q = ωQ on SN−1, Q ∈ L2(SN−1).

Then ωk = k(N + k − 2) for k = 0, 1, . . . . Let {Qk, i}ℓki=1 and ℓk be the orthonormal system
and the dimension of the eigenspace corresponding to ωk, respectively. In particular, ℓ0 = 1,
ℓ1 = N , and

Q0, 1 = q∗ :=
∣∣SN−1

∣∣−1/2
, Q1, i = qN

xi
|x|

with qN :=
√
Nq∗. (2.1.17)

For any φ ∈ L2(RN , e|x|
2/4 dx), we can find radially symmetric functions {ϕk, i} ⊂ L2(RN , e|x|

2/4 dx)
such that

φ =
∞∑
k=0

ℓk∑
i=1

φk, i in L2(RN , e|x|
2/4 dx), φk, i(x) := ϕk, i(|x|)Qk ,i

(
x

|x|

)
(see [14] and [16]). Define Lk := −∆+ Vk(|x|) and Vk(r) := V (r) + ωkr

−2. Then[
e−tLφk, i

]
(x) =

[
e−tLkϕk, i

]
(x)Qk, i

(
x

|x|

)
,

[
e−tLφ

]
(x) =

∞∑
k=0

ℓk∑
i=1

[
e−tLkϕk, i

]
(x)Qk, i

(
x

|x|

)
in L2(RN) for any t > 0.

(2.1.18)
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Therefore the behavior of e−tLφ is described by a series of the radially symmetric solutions
e−tLkϕk, i. Furthermore, Vk satisfies condition (V) with λ1 and λ2 replaced by λ1 + ωk and
λ2+ωk, respectively. In particular, Lk is subcritical if k ≥ 1. Therefore, applying our results
in §§2.1.1, we can obtain the precise description of the large time behavior of e−tLφ.

As an application of the above argument, we obtain the following result.

Theorem 2.1.4. Let N ≥ 2 and φ ∈ L2(RN , e|x|
2/4 dx). Assume condition (V). Let

M(φ) :=
1

c∗κ

∫
RN

φ(x)U(|x|) dx, κ :=

∣∣SN−1
∣∣

c2d
= 2N+2AπN/2Γ

(
N + 2A

2

)/
Γ

(
N

2

)
.

(a) In cases (S) and (C),

lim
t→∞

t(N+A)/2[e−tLφ](
√
ty) =M(φ)|y|Ae−|y|2/4

in L2(RN , e|y|
2/4 dy) and in L∞(K) for any compact set K ⊂ RN \ {0}. Furthermore,

lim
t→∞

tN/2+A

[
e−tLφ

]
(x)

U(|x|)
=
M(φ)

c∗

uniformly on B(0, R) for any R > 0.

(b) In case (S∗),

lim
t→∞

t(N+A)2(log t)[e−tLφ](
√
ty) = 2M(φ)|y|Ae−|y|2/4

in L2(RN , e|y|
2/4 dy) and in L∞(K) for any compact set K ⊂ RN \ {0}. Furthermore,

lim
t→∞

tN/2+A(log t)2
[
e−tLφ

]
(x)

U(|x|)
=

4M(φ)

c∗

uniformly on B(0, R) for any R > 0.

As a corollary of Theorem 2.1.4, we have :

Corollary 2.1.5. Let N ≥ 2 and assume condition (V). Let x, y ∈ RN . Then

lim
t→∞

tN/2+A p(x, y, t)

U(|x|)U(|y|)
=

1

c2∗κ
in cases (S) and (C),

lim
t→∞

t(log t)2
p(x, y, t)

U(|x|)U(|y|)
=

4

c2∗κ
in case (S∗).

Corollary 2.1.5 implies the same conclusion as in (L1) and (L2). For related results, see
e.g., [4], [28], [32], [36] and [38].

The above argument also enables us to obtain the higher order asymptotic expansions of
e−tLφ. Furthermore, similarly to [13]–[19], it is useful for the study the large time behavior
of the hot spots of e−tLφ. (See Chapter 3.)
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The rest of this Chapter is organized as follows. In §2.2 we formulate the definition of the
solution of (2.1.1) and prove some preliminary lemmas. In §2.3 we obtain a priori estimates of
radially symmetric solutions of (2.1.1) by using the comparison principle. In §2.4 we obtain
the precise description of the large time behavior of radially symmetric solutions of (2.1.1)
and complete the proofs of Theorems 2.1.1–2.1.3. In §2.5, by the argument in §1.2 we apply
Theorems 2.1.1–2.1.3 to prove Theorem 2.1.4 and Corollary 2.1.5.

2.2 Preliminaries

We formulate the definition of the solution of (2.1.1) and obtain some properties related to
the operator L.

2.2.1 Definition of the solution

Assume condition (V) and let L := −∆+ V be nonnegative. In this subsection we consider
the Cauchy problem {

∂tu∗ = −L∗u∗ in RN ×R+,

u∗(x, 0) = φ∗(x) in RN ,
(P)

where

L∗u∗ := −1

ν
div (ν∇u∗), ν := U2 ∈ L1

loc(R
N), φ∗ ∈ L2(RN , ν dx).

Definition 2.2.1. Let φ∗ ∈ L2(RN , ν dx). We say that u∗ is a solution of (P) if

u∗ ∈ C([0,∞)) : L2(RN , ν dx) ∩ L2
(
R+ : H1(RN , ν dx)

)
,∫ ∞

0

∫
RN

(
− u∗ht +∇u∗∇h

)
ν dx dτ = 0 for any h ∈ C∞

0 (RN ×R+

)
,

lim
t→+0

∥u∗(t)− φ∗∥L2(RN , ν dx) = 0.

Problem (P) possesses a unique solution u∗ such that

∥u∗(t)∥L2(RN , ν dx) ≤ ∥φ∗∥L2(RN , ν dx), t > 0, (2.2.1)

and we often denote by e−tL∗φ∗ the unique solution u∗. Since U ∈ C2(RN \ {0}) and U > 0
in RN \ {0}, applying the parabolic regularity theorems (see e.g., [25, Chapter IV]) to (P),
we see that

∂jtu∗ ∈ C2, 1
(
(RN \ {0})×R+

)
, j = 0, 1, . . . . (2.2.2)

Lemma 2.2.2. Assume condition (V) and that L is nonnegative. Let φ∗ ∈ L2(RN , ν dx)
and u∗ := e−tL∗φ∗.
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( i ) For any j ∈ {1, 2, . . . }, there exists C > 0 such that

∥(∂jtu∗)(t)∥L2(RN , ν dx) ≤ Ct−j∥φ∗∥L2(RN , ν dx), t > 0.

(ii) If φ∗ ∈ L2(RN , e|x|
2/4ν dx), then

sup
t>0

∥u∗(t)∥L2(RN , e|x|2/4(1+t)ν dx) ≤ ∥φ∗∥L2(RN , e|x|2/4ν dx).

Proof. Assertion ( i ) follows from the same argument as in the proof of [14, Lemma 2.1]. We
prove assertion (ii). It follows that∫ t

0

∫
RN

(∂tu∗)(x, τ)u∗(x, τ) exp

{
|x|2

4(1 + τ)

}
ν(x) dxdτ

=
1

2

∫
RN

u∗(x, t)
2 exp

{
|x|2

4(1 + t)

}
ν(x) dx− 1

2

∫
RN

u∗(x, 0)
2e|x|

2/4ν(x) dx

+
1

8

∫ t

0

∫
RN

|x|2

(1 + τ)2
u∗(x, τ)

2 exp

{
|x|2

4(1 + τ)

}
ν(x) dxdτ

and ∫ t

0

∫
RN

∇u∗(x, τ) · ∇
(
u∗(x, τ) exp

{
|x|2

4(1 + τ)

})
ν(x) dxdτ

=

∫ t

0

∫
RN

|∇u∗(x, τ)|2 exp
{

|x|2

4(1 + τ)

}
ν(x) dxdτ

+

∫ t

0

∫
RN

u∗(x, τ)∇u∗(x, τ) ·
x

2(1 + τ)
exp

{
|x|2

4(1 + τ)

}
ν(x) dxdτ

≥ −1

8

∫ t

0

∫
RN

|x|2

(1 + τ)2
u∗(x, τ)

2 exp

{
|x|2

4(1 + τ)

}
ν(x) dxdτ.

Then, multiplying (P) by u∗(x, τ) exp
{
|x|2/4(1 + τ)

}
and integrating it in RN × R+, we

obtain ∫
RN

u∗(x, t)
2 exp

{
|x|2

4(1 + τ)

}
ν(x) dx ≤

∫
RN

φ∗(x)
2 exp

{
|x|2

4(1 + τ)

}
ν(x) dx

for t > 0. Thus assertion (ii) follows. (The proof of assertion (ii) is somewhat formal,
however it is justified by use of approximate solutions.)

Furthermore, we have :

Lemma 2.2.3. Assume condition (V) and that L is nonnegative. Let u∗ be a radially sym-
metric solution of (P). Then ∂jtu∗ is continuous in RN ×R+, where j ∈ {0, 1, . . . }.
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Proof. Let j ∈ {0, 1, . . . } and set vj = ∂jtu∗. By (2.2.2), it suffices to prove the continuity of
vj at (0, t) ∈ RN ×R+. Since vj is radially symmetric, vj satisfies

∂tvj =
1

rN−1ν(r)
∂r
(
rN−1ν(r)∂rvj

)
=

1

rN+k−1r−kν(r)
∂r
(
rN+k−1r−kν(r)∂rvj

)
, r > 0, t > 0,

(2.2.3)

for any k ∈ R. Since A+(λ1) > −N/2, we can find k ∈ {1, 2, . . . } such that

−N − k < 2A+(λ1)− k < N + k. (2.2.4)

Set ṽj(x, t) := vj(|x|, t) and ν̃(x) := |x|−kν(|x|) for x ∈ RN+k and t > 0. By Definition 2.2.1,
Lemma 2.2.2 ( i ), and (2.2.3), we see that ṽj satisfies

∂tṽj =
1

ν̃
divN+k (ν̃∇N+kṽj) in RN+k ×R+,

∥ṽj(t)∥L2(RN+k, ν̃ dx) =

√
|SN+k−1|∣∣SN−1

∣∣ ∥vj(t)∥L2(RN , ν dx) ≤ Ct−j∥φ∗∥L2(RN , ν dx),

where divN+k is the (N + k)-dimensional divergence operator. Furthermore, it follows from
(2.1.2) that ν̃(x) ∼ |x|2A+(λ1)−k as |x| → 0. This together with (2.2.4) implies that ν̃ is an
A2 weight in a neighborhood of 0 ∈ RN+k. By Lemma 2.2.2 ( i ), applying the regularity
theorems for parabolic equations with A2 weight (see e.g., [5] and [13]), we see that ṽj is
continuous at (0, t) ∈ RN+k ×R+. This means that ∂jtu∗ is continuous at (0, t) ∈ RN ×R+.
Thus Lemma 2.2.3 follows.

We formulate the definition of the solution of (2.1.1). See also [29] and [30].

Definition 2.2.4. Let u be a measurable function in RN ×R+ and φ ∈ L2(RN). Define

u∗(x, t) :=
u(x, t)

U(|x|)
and φ∗(x) :=

φ(x)

U(|x|)
.

Then we say that u is a solution of (2.1.1) if u∗ is a solution of (P).

In the case where λ1, λ2 > λ∗, we can deduce from (2.1.2) and (2.1.3) that U ∈ H1(RN)
and that a solution u of (2.1.1) satisfies

u ∈ C([0,∞) : L2(RN)) ∩ L2(R+ : H1(RN)).

We remark that φ ∈ L2(RN) if and only if φ∗ ∈ L2(RN , ν dx). Furthermore, by (2.1.6), we
have the following lemma (see also [11, Theorem 1.2] and [12, Theorem 1.1]).

Lemma 2.2.5. Let u be a solution of (2.1.1) under condition (V). Assume either L is
subcritical or L is critical with A−(λ2) > −N/2. Then, for any T > 0, there exists C > 0
such that

|u(x, t)|
U
(
min{|x|,

√
t}
) ≤

C∥φ∥L2(RN )

tN/4U(
√
t)
, x ∈ RN , t ≥ T. (2.2.5)
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Proof. It follows from (2.1.6) that

|u(x, t)|
U
(
min{|x|,

√
t}
) ≤ 1

U
(
min{|x|,

√
t}
) (∫

{|y|≤
√
t}
+

∫
{|y|>

√
t}

)
p(x, y, t)|φ(y)| dy

≤ Ct−N/2U(
√
t)−2

∫
{|y|≤

√
t}
|φ(y)|U(|y|) dy

+ Ct−N/2U(
√
t)−1

∫
{|y|>

√
t}
exp

{
−|x− y|2

Ct

}
|φ(y)| dy

≤ Ct−N/2U(
√
t)−2∥U∥L2({|y|≤

√
t})∥φ∥L2(RN ) + Ct−N/4U(

√
t)−1∥φ∥L2(RN )

for x ∈ RN and t > 0. On the other hand, by (2.1.4) and (2.1.5), we have

∥U∥L2({|y|≤
√
t}) ≤ CtN/4U(

√
t)

for t ≥ T (see also (2.3.7)). These imply (2.2.5) and Lemma 2.2.5 follows.

2.2.2 Preliminary lemmas

We prove a lemma on the decay of U ′ as r → ∞.

Lemma 2.2.6. Let N ≥ 2. Assume condition (V) and that L = −∆+V (|x|) is nonnegative.
Let U and v be as in (2.1.2) and (2.1.5), respectively. In cases (S) and (C) there exists δ > 0
such that

∂r

(
U(r)

v(r)

)
= O(r−1−δ) as r → ∞. (2.2.6)

Proof. Let Vλ2(r) := V (r)− λ2r
−2. Set

v+(r) :=

{
r−(N−2)/2 log r if L is subcritical and λ = λ∗,

rA
+(λ2) otherwise,

v−(r) := rA
−(λ2).

It follows from (2.1.4) and (V) (ii) that

τN−1v−(τ)Vλ2(τ)U(τ) = O
(
τN−3−θ+A−(λ2)v(τ)

)
=


O(τ−1−θ) if L is subcritical and λ2 > λ∗,

O(τ−1−θ−
√
Q) if L is critical and λ2 > λ∗,

O(τ−1−θ) if L is critical and λ2 = λ∗,

(2.2.7)

as τ → ∞, where Q = (N − 2)2 + 4λ2. Then the function

G(r) := v−(r)

∫ r

1

1

v−(s)2sN−1

∫ ∞

s

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτds
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can be defined for any r > 0 and satisfies

G′′(r) +
N − 1

r
G′(r)− λ2r

−2G(r) = Vλ2(r)U(r) in R+,

G(r) = o(v+(r)) as r → ∞. (2.2.8)

Since

U ′′(r) +
N − 1

r
U ′(r)− λ2r

−2U(r) = Vλ2(r)U(r) in R+,

the function ṽ(r) := U(r)−G(r) satisfies

ṽ′′(r) +
N − 1

r
ṽ′(r)− λ2r

−2ṽ(r) = 0 in R+. (2.2.9)

On the other hand, v± satisfy (2.2.9) and are linearly independent. Therefore, applying
the standard theory for ordinary differential equations, we can find a, b ∈ R such that
ṽ(r) = av+(r) + bv−(r) in R+, that is

U(r) = av+(r) + bv−(r) +G(r) in R+. (2.2.10)

Assume that L is subcritical. By (2.1.4), (2.2.8), and (2.2.10), we have

U(r)

v(r)
= c∗ + r−

√
Q

[
b+

∫ r

1

1

v−(s)2sN−1

∫ ∞

s

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτds

]
.

Since Q = (N − 2)2 + 4λ2 > 0, by (2.2.7), we can find δ′ > 0 such that

∂r

(
U(r)

v(r)

)
=

r−
√
Q

v−(r)2rN−1

∫ ∞

r

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτ

−
√
Qr−

√
Q−1

[
b+

∫ r

1

1

v−(s)2sN−1

∫ ∞

s

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτds

]
= O(r−1−δ′) as r → ∞.

This implies (2.2.6) in the subcritical case.
Next we assume that L is critical. By (2.1.4) and (2.2.8), we see that a = 0 and

U(r)

v(r)
= b+

∫ r

1

1

v−(s)2sN−1

∫ ∞

s

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτds.

This together with (2.2.7) implies that

∂r

(
U(r)

v(r)

)
=

1

v−(r)2rN−1

∫ ∞

r

v−(τ)Vλ2(τ)U(τ)τ
N−1 dτds = O(r−1−θ)

as r → ∞, and (2.2.6) holds with δ = θ. Thus Lemma 2.2.6 follows.

At the end of this section we state the following lemma on eigenvalue problem (E).

Lemma 2.2.7. Let {µi}∞i=0 be the eigenvalues of (E) such that µ0 ≤ µ1 ≤ . . . . Then, for
any i ∈ {0, 1, . . . }, µi = i and µi is simple. Furthermore, ψd given in (2.1.8) is the first
eigenfunction of (E).

Proof. We leave the proof to the reader since it is proved by the same argument as in
[31, Lemma 2.1]. 2
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2.3 A priori estimates of radial solutions

Let T > 0 and ε > 0. Define

Dε(T ) :=
{
(x, t) ∈ RN × (T,∞) : |x| < ε

√
t
}
.

In this section we prove the following proposition.

Proposition 2.3.1. Assume condition (V). Let L satisfy either (S), (S∗) or (C). Let u∗ =
u∗(|x|, t) be a radially symmetric solution of (P) such that ∥φ∗∥L2(RN , ν dx) = 1. Assume that

sup
t>0

tD
(
log(2 + t)

)D′
∥u∗(t)∥L2(RN , ν dx) <∞ (2.3.1)

for some D ≥ 0 and D′ ≥ 0. Let j ∈ {0, 1, . . . }. Then the following holds for any T > 0 and
any sufficiently small ε > 0.

( i ) There exists C1 > 0 such that∣∣(∂jtu∗)(|x|, t)∣∣ ≤ C1ΓD,D′, j(t)

for (x, t) ∈ Dε(T ), where

ΓD,D′, j(t) :=


t−D−d/4−j

(
log(2 + t)

)−D′
in the case of (S),

t−D−d/4−j
(
log(2 + t)

)−D′−1
in the case of (S∗),

t−D−d/4−j
(
log(2 + t)

)−D′
in the case of (C).

(2.3.2)

(ii) Let

F j
N(r, t) :=

∫ r

0

1

ν(s)sN−1

∫ s

0

ν(τ)(∂j+1
t u∗)(τ, t)τ

N−1 dτds.

Then
(∂jtu∗)(|x|, t) = (∂jtu∗)(0, t) + F j

N(|x|, t) in RN ×R+.

Furthermore, there exists C2 > 0 such that∣∣F j
N(|x|, t)

∣∣ ≤ C2ΓD,D′, j+1(t)|x|2,
∣∣(∂rF j

N)(|x|, t)
∣∣ ≤ CΓD,D′, j+1(t)|x|,

for (x, t) ∈ Dε(T ).

For the proof, we construct supersolutions of problem (P) in Dε(T ).

Lemma 2.3.2. Assume condition (V). Let γ1 ≥ 0 and γ2 ≥ 0. Set

ζ(t) := t−γ1
(
log(2 + t)

)−γ2 .

Then, for any T > 0 and any sufficiently small ε > 0, there exists a function W∗ = W∗(x, t)
such that

∂tW∗ + L∗W∗ ≥ 0 in RN ×R+, (2.3.3)

ζ(t) ≤ W∗(x, t) ≤ 2ζ(t) in Dε(T ). (2.3.4)
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Proof. Let T > 0 and ε > 0. Let κ be a positive constant such that

|ζ ′(t)| ≤ κt−1ζ(t), t > 0. (2.3.5)

Let

F (x) :=

∫ |x|

0

1

ν(s)sN−1

∫ s

0

ν(τ)τN−1 dτds,

which satisfies −L∗F = 1 in RN . Set

W∗(x, t) := 2ζ(t)
(
1− κt−1F (x)

)
. (2.3.6)

Since ζ is monotone decreasing, by (2.3.5), we have

∂tW∗ + L∗W∗ ≥ 2ζ ′(t)
[
1− κt−1F (x)

]
+ 2κζ(t)t−2F (x) + 2κt−1ζ(t)

≥ 2ζ ′(t) + 2κt−1ζ(t) ≥ 0 in RN ×R+.

This implies (2.3.3). On the other hand, by (2.1.2), (2.1.4), and (2.1.5), we have∫ s

0

τN−1ν(τ) dτ ≤ Cs2A
+(λ1)+N for 0 < s ≤ 1,

∫ s

0

τN−1ν(τ) dτ ≤


s2A

+(λ2)+N in the case of (S),

s2
(
log(2 + s)

)2
in the case of (S∗),

s2A
−(λ2)+N in the cases of (C),

for s > 1.

These imply that ∫ s

0

τN−1ν(τ) dτ ≤ CsNν(s), s ≥ 0. (2.3.7)

Then it follows that 0 ≤ F (x) ≤ C|x|2 for x ∈ RN . Taking a sufficiently small ε > 0 if
necessary, we obtain

0 ≤ κt−1F (x) ≤ Cε2κ ≤ 1

2
, (x, t) ∈ Dε(T ).

This together with (2.3.6) implies (2.3.4). Thus Lemma 2.3.2 follows.

Applying the same argument as in [19, Lemma 3.2], we have:

Lemma 2.3.3. Assume the same conditions as in Proposition 2.3.1. Furthermore, assume
(2.3.1) for some D ≥ 0 and D′ ≥ 0. Let T > 0 and let ε be a sufficiently small positive
constant. Then, for any j ∈ {0, 1, . . . }, there exists C > 0 such that∣∣(∂jtu∗)(|x|, t)∣∣ ≤ CΓD,D′, j(t) in Dε(T ). (2.3.8)

71



Proof. Let j ∈ {0, 1, . . . }. Set vj := ∂jtu∗ and uj := U(|x|)vj(x, t). Since

vj( · , t) = ∂jt
(
e−(t/2)L∗u∗(t/2)

)
, t > 0,

Lemma 2.2.2 together with (2.3.1) implies that

sup
t>0

tD+j
(
log(2 + t)

)D′
∥uj(t)∥L2(RN ) = sup

t>0
tD+j

(
log(2 + t)

)D′
∥vj(t)∥L2(RN , ν dx) <∞.

Let T > 0 and let ε be a sufficiently small positive constant. Since uj satisfies

∂tuj = ∆uj − V (|x|)uj in RN ×R+,

by Lemma 2.2.5, we have

|uj(|x|, t)| ≤ Ct−N/4∥uj(t/2)∥L2(RN ) ≤ Ct−D−N/4−j
(
log(2 + t)

)−D′

for all x ∈ RN and t > T with |x| ≥ ε
√
1 + t. This together with (2.1.4), (2.1.5), (2.1.7),

(2.1.8) and (2.3.2) implies that

|vj(|x|, t)| ≤
Cuj(|x|, t)
U(ε

√
1 + t)

≤ CΓD,D′, j(t) (2.3.9)

for all (x, t) ∈ RN × [T,∞) with |x| = ε
√
1 + t. On the other hand, it follows from

Lemma 2.2.3 that
|vj(|x|, T )| ≤ C (2.3.10)

for x ∈ RN with |x| ≤ ε
√
1 + T Let W∗ be as in Lemma 2.3.2 with ζ replaced by ΓD,D′, j.

Then, by Lemma 2.3.2, (2.3.9), and (2.3.10), we apply the comparison principle to obtain

|vj(|x|, t)| ≤ CW∗(x, t) ≤ 2CΓD,D′, j(t) in Dε(T ).

This implies (2.3.8), and the proof is complete.

Now we are ready to complete the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. By Lemma 2.3.3, it suffices to prove assertion (ii). Let T > 0
and let ε be a sufficiently small positive constant. By (2.3.7) and (2.3.8), we obtain

|F j
N(|x|, t)| ≤ CΓD,D′, j+1(t)

∫ |x|

0

1

ν(s)sN−1

∫ s

0

ν(τ)τN−1 dτds ≤ CΓD,D′, j+1(t)|x|2,∣∣(∂rF j
N)(|x|, t)

∣∣ ≤ CΓD,D′, j+1(t)|x|,

for (x, t) ∈ Dε(T ). Set

v̂j(|x|, t) := (∂jtu∗)(|x|, t)− F j
N(|x|, t) and ûj(|x|, t) := U(|x|)v̂j(|x|, t).
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Since F j
N satisfies

1

ν(r)rN−1
∂r
(
ν(r)rN−1∂rF

j
N

)
= (∂j+1

t u∗)(r, t) for r > 0 and t > 0,

by Lemma 2.2.3 and (2.2.3), we have

1

ν(r)rN−1
∂r
(
ν(r)rN−1∂rv̂j

)
= 0 for r > 0, t > 0, (2.3.11)

lim sup
r→0

|v̂j(r, t)| <∞ for any t > 0. (2.3.12)

It follows from (2.3.11) that ûj satisfies (O) for any fixed t > 0. On the other hand, since U

and Ũ are linearly independent solutions of (O), for any t > 0, we can find constants cj(t)
and ĉj(t) such that

ûj(r, t) = cj(t)U(r) + ĉj(t)Ũ(r) for r > 0.

This implies that

v̂j(r, t) =
ûj(r, t)

U(r)
= cj(t) +

ĉj(t)Ũ(r)

U(r)
for r > 0.

By (2.1.2) and (2.3.12), we then have ĉj(t) = 0 and see that v̂j(r, t) ≡ cj(t) for r ≥ 0.
Therefore we have

(∂jtu∗)(|x|, t) = cj(t) + F j
N(|x|, t) in RN ×R+ and cj(t) = (∂jtu∗)(0, t).

Thus assertion (ii) follows, and the proof of Proposition 2.3.1 is complete.

2.4 Large time behavior of radially symmetric solu-

tions

In this section, under condition (V), we study the large time behavior of radially symmetric
solution u = u(|x|, t) of (2.1.1) and prove Theorems 2.1.1–2.1.3.

Let A, d and w be as in §§ 2.1.1. Set Ud(r) := r−AU(r) and νd := U2
d . By (2.1.2), (2.1.4),

and Lemma 2.2.6, we have:

1

rd−1
∂r
(
rd−1∂rUd

)
− Vλ2(r)Ud = 0 in R+ ;

Ud(r) ∼ rA
+(λ1)−A = rA

+
d (λ) as r → 0 ;

Ud(r) ∼ c∗, U ′
d(r) = O(r−1−δ) as r → ∞ in cases (S) and (C). (2.4.1)

Here c∗ is as in (2.1.4), λ := λ1 − λ2 and

A+
d (λ) :=

−(d− 2) +
√
(d− 2)2 + 4λ

2
.
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Furthermore, similarly to Lemma 2.2.6, we see that

Ud(r) ∼ c∗ log r, U ′
d(r) = O(r−1) as r → ∞ in case of (S∗). (2.4.2)

Then the function F j
N given in Proposition 2.3.1 satisfies

F j
N(r, t) = F j

d (r, t) :=

∫ r

0

1

νd(s)sd−1

∫ s

0

νd(τ)(∂
j+1
t u∗)(τ, t)τ

d−1 dτds, (2.4.3)

where j ∈ {0, 1, . . . }. Furthermore, it follows from (2.3.7) that∫ s

0

τ d−1νd(τ) dτ ≤ Csdνd(s), s ≥ 0. (2.4.4)

Assume the same conditions as in Theorem 2.1.1. Let θ be the constant given in condi-
tion (V) and set

θ∗ =
θ

4(2 + θ)
<
θ

8
.

Since Ṽ (ξ, s) = esVλ2(e
s/2ξ), it follows from (V) (ii) that

|Ṽ (ξ, s)| ≤ Cξ−2|es/2ξ|−θ ≤ C exp

{
−θ
2
s+ (2 + θ)θ∗s

}
= Ce−θs/4 (2.4.5)

for ξ ∈ (e−θ∗s,∞) and s > 0. Let δ be as in Lemma 2.2.6. Then, taking a sufficiently small
θ > 0 if necessary, we have

0 < θ < min
{
1, d, d−1

}
, σ :=

(
1

2
− θ∗

)
(1 + δ)− 1

2
> θ∗ > 0. (2.4.6)

We prepare some lemmas on estimates of w.

Lemma 2.4.1. Let ∥φ∗∥L2(RN , νe|x|2/4 dx) = 1. Assume the same conditions as in Theo-
rem 2.1.1. Then

( i ) sup
s>0

e−ds/4∥w(s)∥L2(R+, ρd dξ) <∞ ;

(ii) Assume that
sup
s>0

eγs∥w(s)∥L2(R+, ρd dξ) <∞ (2.4.7)

for some γ ≥ −d/4. Then

w(e−θ∗s, s) = O(e−γs), (2.4.8)

(∂ξw)(e
−θ∗s, s) = O(e−γs−θ∗s), (2.4.9)∫ e−θ∗s

0

|w(ξ, s)|2ρd dξ = O
(
e−2γs−dθ∗s

)
, (2.4.10)

for all sufficiently large s > 0.
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Proof. Since

w(ξ, s) = (1 + t)d/2r−Au(r, t)

= (1 + t)d/2r−AU(r)u∗(r, t) = (1 + t)d/2Ud(r)u∗(r, t)
(2.4.11)

with ξ = r/
√
1 + t and s = log(1 + t), it follows from Lemma 2.2.2 (ii) that

∥w(s)∥2L2(R+, ρd dξ) = (1 + t)d/2
∫ ∞

0

|u∗(r, t)|2U(r)2rN−1 exp

{
r2

4(1 + t)

}
dr

=
∣∣SN−1

∣∣−1
(1 + t)d/2∥u∗(t)∥2L2(RN , e|x|2/4(1+t)ν dx)

≤
∣∣SN−1

∣∣−1
(1 + t)d/2∥φ∗∥2L2(RN , e|x|2/4ν dx)

=
∣∣SN−1

∣∣−1
(1 + t)d/2∥φ∥2

L2(R+, e|x|2/4 dx)
<∞

(2.4.12)

for s > 0 and t > 0 with s = log(1 + t), where
∣∣SN−1

∣∣ is the volume of (N − 1)-dimensional

unit sphere, that is
∣∣SN−1

∣∣ = 2πN/2/Γ(N/2). Thus assertion ( i ) follows.

We prove assertion (ii). It follows from (2.4.12) that

∥w(s)∥L2(R+, ρd dξ) = (1 + t)d/4
∣∣SN−1

∣∣−1/2∥u∗(t)∥L2(RN , e|x|2/4(1+t)ν dx)

≥ (1 + t)d/4
∣∣SN−1

∣∣−1/2∥u∗(t)∥L2(RN , ν dx)

(2.4.13)

for s > 0 and t > 0 with s = log(1 + t). Assume (2.4.7) for some γ ≥ −d/4. Then

sup
t>0

(1 + t)γ+d/4∥u∗(t)∥L2(RN , ν dx) <∞.

Applying Proposition 2.3.1 with D = γ + d/4 and D′ = 0, we obtain

u∗(|x|, t) = u∗(0, t) + F 0
N(|x|, t) in RN ×R+. (2.4.14)

Furthermore, for any T > 0 and any sufficiently small ε > 0,

|u∗(|x|, t)| ≤ Ct−γ−d/2,

|F 0
N(|x|, t)| ≤ Ct−γ−d/2−1|x|2 ≤ Cε2t−γ−d/2,∣∣(∂rF 0

N)(|x|, t)
∣∣ ≤ Ct−γ−d/2−1|x| ≤ Cεt−γ−d/2−1/2,

(2.4.15)

for (x, t) ∈ Dε(T ). By (2.4.1), (2.4.11), and (2.4.15), we then have w(e−θ∗s, s) = O(e−γs) for
all sufficiently large s > 0. Furthermore,

(∂ξw)(e
−θ∗s, s) = (1 + t)(d+1)/2

(
U ′
d(r)u∗(r, t) + Ud(r)(∂ru∗)(r, t)

)
= (1 + t)(d+1)/2

(
O(r−1−δ)u∗(r, t) + (c∗ + o(1))(∂rF

0
N)(r, t)

)
= (1 + t)−γ+1/2O(r−1−δ) + (1 + t)−γ−1/2O(r)

= O(e−γs−σs) +O(e−γs−θ∗s) = O(e−γs−θ∗s)
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for all sufficiently large s > 0, where r = e(1/2−θ∗)s, s = log(1 + t) and σ is as in (2.4.6). So
we have (2.4.8) and (2.4.9).

On the other hand, by (2.4.1), (2.4.4), (2.4.11), (2.4.14), and (2.4.15), we have∫ e−θ∗s

0

|w(ξ, s)|2ρd dξ = (1 + t)d/2
∫ (1+t)1/2−θ∗

0

|u∗(r, t)|2Ud(r)
2rd−1 exp

{
r2

4(1 + t)

}
dr

≤ Ct−2γ−d/2

∫ (1+t)1/2−θ∗

0

νd(r)r
d−1 dr ≤ Ct−2γ−dθ∗Ud

(
(1 + t)1/2−θ∗

)2
= O(e−2γs−dθ∗s)

for all sufficiently large s > 0 and t > 0 with s = log(1 + t). This implies (2.4.10). Thus
assertion (ii) follows, and the proof is complete.

Lemma 2.4.2. Assume the same conditions as in Lemma 2.4.1. Then

sup
s>0

∥w(s)∥L2(R+, ρd dξ) <∞. (2.4.16)

Proof. Assume that (2.4.7) holds for some γ ≥ −d/4. Let I(s) := (e−θ∗s,∞). It follows from
(2.1.16) that

d

ds

∫
I(s)

|w(ξ, s)|2ρd dξ = 2

∫
I(s)

w(∂sw)ρd dξ + θ∗e
−θ∗s

∣∣w(e−θ∗s, s)
∣∣2ρd(e−θ∗s)

= 2

∫
I(s)

w∂ξ(ρd∂ξw) dξ + d

∫
I(s)

|w(ξ, s)|2ρd dξ

− 2

∫
I(s)

Ṽ w2ρd dξ + θ∗e
−θ∗s

∣∣w(e−θ∗s, s)
∣∣2ρd(e−θ∗s)

= −2w(e−θ∗s, s)ρd(e
−θ∗s)(∂ξw)(e

−θ∗s, s)− 2

∫
I(s)

|∂ξw|2ρd dξ

+ d

∫
I(s)

|w(ξ, s)|2ρd dξ − 2

∫
I(s)

Ṽ w2ρd dξ + θ∗e
−θ∗s|w(e−θ∗s, s)|2ρd(e−θ∗s)

for s > 0. This together with Lemma 2.4.1 and (2.4.5) implies that

d

ds

∫
I(s)

|w(ξ, s)|2ρd dξ ≤ −2

∫
I(s)

|∂ξw|2ρd dξ + d

∫
I(s)

|w(ξ, s)|2ρd dξ

+ Ce−θs/4

∫
I(s)

|w(ξ, s)|2ρd dξ +O(e−2γse−dθ∗s)

(2.4.17)

for all sufficiently large s > 0.
Set

ŵ(ξ, s) :=

{
w(ξ, s) if ξ ≥ e−θ∗s,

w(e−θ∗s, s) if 0 ≤ ξ < e−θ∗s.
(2.4.18)
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It follows from Lemmas 2.2.7 and 2.4.1 that

− 2

∫
I(s)

|(∂ξw)(ξ, s)|2ρd dξ + d

∫
I(s)

|w(ξ, s)|2ρd dξ

= −2

∫ ∞

0

|(∂ξŵ)(ξ, s)|2ρd dξ + d

∫ ∞

0

|ŵ(ξ, s)|2ρd dξ +O(e−dθ∗sw(e−θ∗s, s)2)

≤ −2µ0

∫ ∞

0

|ŵ(ξ, s)|2ρd dξ +O
(
e−dθ∗sw(e−θ∗s, s)2

)
= O

(
e−2γs−dθ∗s

)
(2.4.19)

for all sufficiently large s > 0. This together with (2.4.17) implies that

d

ds

∫
I(s)

|w(ξ, s)|2ρd dξ ≤ Ce−θs/4

∫
I(s)

|w(ξ, s)|2ρd dξ +O(e−2γse−dθ∗s) (2.4.20)

for all sufficiently large s > 0.
On the other hand, by Lemma 2.4.1 ( i ), we see that (2.4.7) holds with γ = −d/4.

Without loss of generality, we can find j ∈ {0, 1, . . . } such that

jθ∗ <
1

2
< (j + 1)θ∗. (2.4.21)

Since θ∗ < 1/4, applying (2.4.20) with γ = −d/4, we have∫
I(s)

|w(ξ, s)|2ρd dξ = O(eds/2−dθ∗s)

for all sufficiently large s > 0. This together with Lemma 2.4.1 implies that

sup
s>0

e−ds/4+dθ∗s/2∥w(s)∥L2(R+, ρd dξ) <∞. (2.4.22)

By (2.4.21), repeating this arguments, we obtain

sup
s>0

e−ds/4+jdθ∗s/2∥w(s)∥L2(R+, ρd dξ) <∞.

Applying (2.4.20) with γ = −d/4− jdθ∗/2 again, by (2.4.21), we have

sup
s≥1

∫
I(s)

|w(ξ, s)|2ρd dξ <∞.

Then, similarly to (2.4.22), we obtain (2.4.16). Thus Lemma 2.4.2 follows.

Combining Lemma 2.4.2 with assertion (ii) of Lemma 2.4.1, we have:

Lemma 2.4.3. Assume the same conditions as in Lemma 2.4.1. Let ŵ be as in (2.4.18).
Then

sup
s≥1

|w(e−θ∗s, s)| <∞, sup
s≥1

eθ∗s
∣∣(∂ξw)(e−θ∗s, s)

∣∣ <∞,

sup
s≥1

∥ŵ(s)∥L2(R+, ρd dξ) <∞, sup
s≥1

edθ∗s
∫ e−θ∗s

0

|w(ξ, s)|2ρd dξ <∞.
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Next we study the large time behavior of ŵ and prove the following proposition.

Proposition 2.4.4. Let ∥φ∗∥L2(RN , νe|x|2/4 dx) = 1. Assume the same conditions as in Theo-

rem 2.1.1. Let ŵ be as in (2.4.18). Set

a(s) :=

∫ ∞

0

ŵψdρd dξ = cd

∫ ∞

0

ŵ(ξ, s)ξd−1 dξ.

Then ∥ŵ − a(s)ψd∥L2(R+, ρd dξ) = O(e−θ′s) as s→ ∞, where θ′ := min{dθ∗/2, θ/8}.

For the proof of Proposition 2.4.4, we prepare the following lemma.

Lemma 2.4.5. Assume the same conditions as in Proposition 2.4.4. Then

sup
s≥1

|a(s)| <∞, (2.4.23)

sup
s≥1

e2θ
′s|a′(s)| <∞, (2.4.24)

sup
s≥1

∣∣∣∣ ddsw(e−θ∗s, s)

∣∣∣∣ <∞. (2.4.25)

Proof. It follows from Lemma 2.4.3 that

sup
s≥1

|a(s)| ≤ sup
s≥1

∥ŵ∥L2(R+, ρd dξ)∥ψd∥L2(R+, ρd dξ) <∞.

So we have (2.4.23).

We prove (2.4.25). By Proposition 2.3.1 (ii), and (2.4.11), we have

w(e−θ∗s, s) = eds/2Ud(r(s))u∗(r(s), t(s)) = eds/2Ud(r(s))
[
u∗(0, t(s)) + F 0

N(r(s), t(s))
]

for s > 0, where r(s) = es/2−θ∗s and t(s) = es − 1. Then

d

ds
w(e−θ∗s, s) =

d

2
w(e−θ∗s, s) +

U ′
d(r(s))

Ud(r(s))
r′(s)w(e−θ∗s, s)

+ eds/2Ud(r(s))(∂tu∗)(0, t(s))t
′(s)

+ eds/2Ud(r(s))
[
(∂rF

0
N)(r(s), t(s))r

′(s) + (∂tF
0
N)(r(s), t(s))t

′(s)
] (2.4.26)

for s > 0. It follows from (2.4.1) that

Ud(r(s)) ∼ c∗ and U ′
d(r(s))r

′(s) = O(r(s)−1−δr′(s)) = O(e−δ(1/2−θ∗)s), (2.4.27)

for all sufficiently large s > 0. On the other hand, by Lemma 2.4.2 and (2.4.13), we have

sup
t>0

(1 + t)d/4 ∥u∗(t)∥L2(RN , ν dx) <∞. (2.4.28)
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Then we apply Proposition 2.3.1 with D = d/4 and D′ = 0 to obtain

(∂tu∗)(0, t(s)) = O(e−ds/2−s),

(∂rF
0
N)(r(s), t(s)) = O

(
e−ds/2−sr(s)

)
,

(∂tF
0
N)(r(s), t(s)) = F 1

N(r(s), t(s)) = O
(
e−ds/2−2sr(s)2

)
,

(2.4.29)

for all sufficiently large s > 0. By Lemma 2.4.3, (2.4.26), (2.4.27), and (2.4.29), we have
(2.4.25). Furthermore, by Lemma 2.2.7, Lemma 2.4.3, (2.4.5), (2.4.16) and (2.4.25) we obtain

a′(s) =
cd
d
e−dθ∗s

(
w(e−θ∗s, s)

)′ − cdθ∗e
−dθ∗sw(e−θ∗s, s)

+ cdθ∗e
−dθ∗sw(e−θ∗s, s) +

∫
I(s)

∂swψdρd dξ

= O(e−dθ∗s) +

∫
I(s)

∂ξ(ρd∂ξw)ψd dξ +
d

2

∫
I(s)

wψdρd dξ −
∫
I(s)

Ṽ wψdρd dξ

= O(e−dθ∗s) +

∫
I(s)

w∂ξ(ρd∂ξψd) dξ +
d

2

∫
I(s)

wψdρd dξ +O(e−θs/4)

= O(e−dθ∗s) +O(e−θs/4)

for all sufficiently large s > 0. This implies (2.4.24). Thus Lemma 2.4.5 follows.

Proof of Proposition 2.4.4. Set w̃(ξ, s) := ŵ(ξ, s) − a(s)ψd(ξ). It follows from Lemma 2.2.7
and (2.1.16) that

∂sw̃ = ∂sŵ − a′(s)ψd = −Ldŵ − Ṽ ŵ − a′(s)ψd = −Ldw̃ − Ṽ ŵ − a′(s)ψd

for ξ ∈ I(s) and s > 0. By Lemma 2.4.3, Lemma 2.4.5, and (2.4.5), we have

d

ds

∫
I(s)

|w̃(ξ, s)|2ρd dξ = 2

∫
I(s)

w̃(∂sw̃)ρd dξ + θ∗e
−θ∗s|w̃(e−θ∗s, s)|2ρd(e−θ∗s)

= 2

∫
I(s)

(
w̃∂ξ(ρd∂ξw̃) +

d

2
w̃2ρd − Ṽ ŵw̃ρd − a′(s)ψdw̃ρd

)
dξ +O(e−dθ∗s)

= −2w̃(e−θ∗s, s)ρd(e
−θ∗s)(∂ξw̃)(e

−θ∗s, s)− 2

∫
I(s)

|(∂ξw̃)(ξ, s)|2ρd dξ

+ d

∫
I(s)

|w̃(ξ, s)|2ρd dξ − 2

∫
I(s)

Ṽ ŵw̃ρd dξ − 2a′(s)

∫
I(s)

w̃ψdρd dξ +O(e−dθ∗s)

= −2

∫
I(s)

|(∂ξw̃)(ξ, s)|2ρd dξ + d

∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−dθ∗s) +O(e−θs/4)

(2.4.30)

for all sufficiently large s > 0. Furthermore, similarly to (2.4.19), by Lemmas 2.2.7, 2.4.3,
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and 2.4.5, we obtain∫
I(s)

|(∂ξw̃)(ξ, s)|2ρd dξ −
d

2

∫
I(s)

|w̃(ξ, s)|2ρd dξ

≥
∫ ∞

0

|(∂ξw̃)(ξ, s)|2ρd dξ −
d

2

∫ ∞

0

|w̃(ξ, s)|2ρd dξ − a(s)2
∫ e−θ∗s

0

|∂ξψd|2ρd dξ

=

∫ ∞

0

|(∂ξw̃)(ξ, s)|2ρd dξ −
d

2

∫ ∞

0

|w̃(ξ, s)|2ρd dξ +O(e−(d+2)θ∗s)

≥
∫ ∞

0

|w̃(ξ, s)|2ρd dξ +O(e−(d+2)θ∗s) ≥
∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−(d+2)θ∗s)

(2.4.31)

for all sufficiently large s > 0. Therefore we deduce from (2.4.30) and (2.4.31) that

d

ds

∫
I(s)

|w̃(ξ, s)|2ρd dξ ≤ −2

∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−dθ∗s) +O(e−θs/4)

= −2

∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−2θ′s)

(2.4.32)

for all sufficiently large s > 0. Since dθ∗ < dθ < 1 (see (2.4.6)), by (2.4.32), we have∫
I(s)

|w̃(ξ, s)|2ρd dξ = O(e−2θ′s) (2.4.33)

for all sufficiently large s > 0. Combining (2.4.33) with Lemmas 2.4.3 and 2.4.5, we obtain∫ ∞

0

|w̃(ξ, s)|2ρd dξ = O(e−2θ′s)

for all sufficiently large s > 0. Thus Proposition 2.4.4 follows.

Proposition 2.4.6. Let ∥φ∗∥L2(RN , νe|x|2/4 dx) = 1. Assume the same conditions as in Theo-
rem 2.1.1. Then

|a(s)−m(φ)| = O(e−2θ′s), (2.4.34)

∥ŵ(s)−m(φ)ψd∥L2(R+, ρd dξ) = O(e−θ′s), (2.4.35)

for all sufficiently large s > 0. Furthermore, if m(φ) = 0, then

∥ŵ(s)∥L2(R+, ρd dξ) = O(e−s), ∥w(s)∥L2(R+, ρd dξ) = O(e−s), (2.4.36)

for all sufficiently large s > 0.

Proof. By (2.4.24), we can find a constant a∞ such that

|a(s)− a∞| = O(e−2θ′s) as s→ ∞. (2.4.37)
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On the other hand, by Lemma 2.4.3, we have∣∣∣∣∫
I(s)c

ŵξd−1 dξ

∣∣∣∣ ≤ (∫
I(s)c

ŵ2ρd dξ

)1/2(∫
I(s)c

ξd−1e−ξ2/4 dξ

)1/2

= O(e−dθ∗s) (2.4.38)

for all sufficiently large s > 0, where I(s)c := R+ \ I(s). By Lemma 2.4.3, (2.4.1), (2.4.11),
and (2.4.38), we obtain

a(s) = cd

∫
I(s)

wξd−1 dξ +O(e−dθ∗s)

= cd

∫ ∞

(1+t)
1
2−θ∗

u∗(r, t)Ud(r)r
d−1 dr +O(e−dθ∗s)

=
cd
c∗

∫ ∞

(1+t)1/2−θ∗
u∗(r, t)νd(r)r

d−1 dr + o(1)

(2.4.39)

for all sufficiently large s > 0 and t > 0 with s = log(1 + t).
On the other hand, by (2.4.28), we apply Proposition 2.3.1 with D = d/4 and D′ = 0 to

obtain
sup

0≤r≤(1+t)1/2−θ∗
|u∗(r, t)| = O(t−d/2) (2.4.40)

for all sufficiently large t > 0. Combining (2.4.40) with (2.4.4), we see that∫ (1+t)1/2−θ∗

0

u∗(r, t)νd(r)r
d−1 dr

= O(t−d/2)

∫ (1+t)1/2−θ∗

0

νd(r)r
d−1 dr = O(t−d/2)O(td/2−dθ∗) = O(t−dθ∗)

(2.4.41)

for all sufficiently large t > 0. Therefore, by (2.4.39) and (2.4.41), we obtain

a∞ = lim
s→∞

a(s) = lim
t→∞

cd
c∗

∫ ∞

0

u∗(r, t)νd(r)r
d−1 dr. (2.4.42)

On the other hand, since u∗ is a radial solution of problem (P), we have∫ ∞

0

u∗(r, t)νd(r)r
d−1 dr =

∫ ∞

0

u∗(r, t)ν(r)r
N−1 dr =

∫ ∞

0

φ∗(r)ν(r)r
N−1 dr. (2.4.43)

We deduce from (2.4.42) and (2.4.43) that a∞ = m(φ). This together with (2.4.37) implies
(2.4.34). Furthermore, by Proposition 2.4.4 and (2.4.34), we have (2.4.35).

It remains to prove (2.4.36). Assume that m(φ) = 0. Then it follows from (2.4.35) and
Lemma 2.4.3 that

∥ŵ(s)∥L2(R+, ρd dξ) = O(e−θ′s), ∥w(s)∥L2(R+, ρd dξ) = O(e−θ′s), (2.4.44)
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for all sufficiently large s > 0. Applying the same argument as in the proof of (2.4.32), we
see that

d

ds

∫
I(s)

|w̃(ξ, s)|2ρd dξ ≤ −
∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−4θ′s)

for all sufficiently large s > 0. Furthermore, similarly to (2.4.44), we have

∥ŵ(s)∥L2(R+, ρd dξ) = O(e−2θ′s) and ∥w(s)∥L2(R+, ρd dξ) = O(e−2θ′s),

for all sufficiently large s > 0. Repeating this argument, we can find θ̃ > 1 such that

d

ds

∫
I(s)

|w̃(ξ, s)|2ρd dξ ≤ −
∫
I(s)

|w̃(ξ, s)|2ρd dξ +O(e−θ̃s)

for all sufficiently large s > 0, instead of (2.4.32). This implies that

∥ŵ(s)∥L2(R+, ρd dξ) = O(e−s) and ∥w(s)∥L2(R+, ρd dξ) = O(e−s),

for all sufficiently large s > 0. Thus (2.4.36) holds. Therefore the proof of Proposition 2.4.6
is complete.

We are ready to complete the proof of Theorems 2.1.1 and 2.1.2.

Proof of Theorem 2.1.1. By the linearity of the operator L it suffices to consider only the
case

1 = ∥φ∥L2(RN , e|x|2/4 dx) = ∥φ∗∥L2(RN , νe|x|2/4 dx) =
∣∣SN−1

∣∣1/2∥w(0)∥L2(R+, ρd dξ). (2.4.45)

Let R > 1. By Lemma 2.4.2, we apply the parabolic regularity theorems (see e.g., [25]) to
(2.1.16). Then we can find α ∈ (0, 1) such that

∥w∥C2, α ;1, α/2(IR×(S,∞)) :=
∑

0≤ℓ+2j≤2

sup
ξ∈IR, s∈(0, S)

|(∂js∂ℓξw)(ξ, s)|

+
∑

ℓ+2j=2

sup
(ξ1, s1), (ξ2, s2)∈IR×(0, S),

(ξ1, s1 )̸=(ξ2, s2)

∣∣(∂js∂ℓξw)(ξ1, s1)− (∂js∂
ℓ
ξw)(ξ2, s2)

∣∣
|ξ1 − ξ2|α + |s1 − s2|α/2

<∞
(2.4.46)

for any R > 1 and S > 0, where IR := [R−1, R]. Therefore, for any sequence {si} ⊂ R+ with
limi→∞ si = ∞, by Proposition 2.4.6 and (2.1.16), we apply the Ascoli-Arzelà theorem and
the diagonal argument to find a subsequence {s′i} ⊂ {si} such that

lim
i→∞

∥w(s′i)−m(φ)ψd∥C2(IR) = 0 and lim
i→∞

∥(∂sw)(s′i)∥C2(IR) = 0,

for any R > 1. Since m(φ)ψd is independent of the choice of {s′i}, we see that

lim
s→∞

∥w(s)−m(φ)ψd∥C2(IR) = 0 and lim
s→∞

∥(∂sw)(s)∥C2(IR) = 0, (2.4.47)
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for any R > 1. Furthermore, if a∞ = m(φ) = 0, then, similarly to (2.4.47), by (2.4.36), we
have

sup
{∣∣(∂ℓξw)(ξ, s)∣∣ ; ξ ∈ IR, s ≥ S

}
= O(e−s) as s→ ∞

for any R > 1, where ℓ = 0, 1, 2. These together with Proposition 2.4.6 imply (2.1.10) and
(2.1.12). Thus Theorem 2.1.1 follows.

Proof of Theorem 2.1.2. Similarly to the proof of Theorem 2.1.1, we can assume (2.4.45)
without loss of generality. Let T > 0 and let ε be any sufficiently small positive constant. By
Lemma 2.4.2 and (2.4.3), applying Proposition 2.3.1 with D = d/4 and D′ = 0, we obtain

(∂jtu∗)(|x|, t) = (∂jtu∗)(0, t) + F j
d (|x|, t) in RN ×R+, (2.4.48)

where j ∈ {0, 1, . . . }. Furthermore,

|F j
d (r, t)| ≤ Ct−d/2−j−1r2 and |(∂rF j

d )(r, t)| ≤ Ct−d/2−j−1r (2.4.49)

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . Then it follows from (2.4.48) and (2.4.49) that

|(∂ru∗)(r, t)| ≤ C2t
−d/2−1r (2.4.50)

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . Furthermore, by (2.4.3) and (2.4.48), we have

F 0
d (r, t) =

∫ r

0

1

ν(s)sd−1

∫ s

0

νd(τ)(∂tu∗)(τ, t)τ
d−1 dτds

=

∫ r

0

1

ν(s)sd−1

∫ s

0

νd(τ)
(
(∂tu∗)(0, t) + F 1

d (τ, t)
)
τ d−1 dτds

= (∂tu∗)(0, t)Fd(r) +Gd(r, t)

(2.4.51)

for r ≥ 0 and t > 0, where Fd is given in Theorem 2.1.2 and

Gd(r, t) =

∫ r

0

1

ν(s)sd−1

(∫ s

0

τ d−1νd(τ)F
1
d (τ, t) dτ

)
ds. (2.4.52)

Then (2.1.13) holds. In addition, by (2.4.4), (2.4.49) and (2.4.52) we have

|Gd(r, t)| ≤ Ct−d/2−2

∫ r

0

1

ν(s)sd−1

∫ s

0

νd(τ)τ
d+1 dτds

≤ Ct−d/2−2

∫ r

0

1

ν(s)sd−1
· sd+2νd(s) ds ≤ Ct−d/2−2r4

(2.4.53)

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . A similar argument with (2.4.1) implies that∣∣(∂ℓrGd)(r, t)

∣∣ ≤ Ct−d/2−2r4−ℓ

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T , where ℓ ∈ {1, 2}. Thus (2.1.14) holds for ℓ ∈ {0, 1, 2}.
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It remains to prove assertion (b). By (2.4.11) and (2.4.48), we have

w(ξ, s) = (1 + t)d/2Ud(r)u∗(r, t) = (1 + t)d/2Ud(r)
[
u∗(0, t) + F 0

d (r, t)
]

(2.4.54)

for ξ ∈ R+ and s > 0 with ξ = r/
√
1 + t and s = log(1 + t). Let 0 < ξ < ε. By (2.4.1),

(2.4.49), and (2.4.54), we obtain∣∣w(ξ, s)− (1 + t)d/2(c∗ + o(1))u∗(0, t)
∣∣ ≤ Cξ2 (2.4.55)

for all sufficiently large s > 0 and t > 0 with s = log(1 + t) and 0 < ξ < ε. On the other
hand, it follows from (2.4.47) that

lim
s→∞

w(ξ, s) = cdm(φ)e−ξ2/4. (2.4.56)

Then we deduce from (2.4.55) and (2.4.56) that

lim
t→∞

td/2u∗(0, t) =
cd
c∗
m(φ). (2.4.57)

Furthermore, it follows from (2.4.11) that

(∂sw)(ξ, s) =
d

2
w(ξ, s) + e(d+1)s/2U ′

d(e
s/2ξ)

ξ

2
u∗(e

s/2ξ, t)

+ e(d+1)s/2Ud(e
s/2ξ)

ξ

2
(∂ru∗)(e

s/2ξ, t) + e(d+2)s/2Ud(e
s/2ξ)(∂tu∗)(e

s/2ξ, es − 1).

This together with (2.4.1), (2.4.50) and (2.4.56) implies that

(∂sw)(ξ, s) =
d

2
w(ξ, s) + es/2

U ′
d(e

s/2ξ)

Ud(es/2ξ)

ξ

2
w(ξ, s)

+O(ξ2) + e(d+2)s/2(c∗ + o(1))(∂tu∗)(e
s/2ξ, es − 1)

=
d

2
m(φ)cde

−ξ2/4 + o(1) +O
(
(es/2ξ)−δ

)
+O(ξ2) + e(d+2)s/2

(
c∗ + o(1)

)
(∂tu∗)(e

s/2ξ, es − 1)

(2.4.58)

for all sufficiently large s > 0. On the other hand, by (2.4.48) and (2.4.49), we have

e(d+2)s/2(∂tu∗)(e
s/2ξ, es − 1) = e(d+2)s/2(∂tu∗)(0, e

s − 1) +O(ξ2) (2.4.59)

for all sufficiently large s > 0. Therefore, by (2.4.47), (2.4.58), and (2.4.59), we obtain

lim sup
s→∞

∣∣∣∣(c∗ + o(1))e(d+2)s/2(∂tu∗)(0, e
s − 1) +

d

2
cdm(φ)

∣∣∣∣ ≤ Cξ2.

Since 0 < ξ < ε, we deduce that

lim sup
s→∞

∣∣∣∣e(d+2)s/2(∂tu∗)(0, e
s − 1) +

dcd
2c∗

m(φ)

∣∣∣∣ = 0.

This together with (2.4.57) implies assertion (b). Thus Theorem 2.1.2 follows.
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Proof of Theorem 2.1.3. Similarly to the proof of Theorem 2.1.1, we can assume (2.4.45)
without loss of generality. Assume the same conditions as in Theorem 2.1.3. Then d = 2
and Vλ2 satisfies condition (V) with λ1 and λ2 replaced by λ1 − λ2 (≥ 0) and 0, respectively.
Applying a similar argument as in the proof of argument as in [18, Proposition 3.1], we have

lim
s→∞

sw(ξ, s) =
1

c∗

[∫ ∞

0

w(r, 0)Ud(r)r dr

]
e−ξ2/4 = 2m(φ)ψd(ξ) (2.4.60)

in L2(R+, ρ2 dξ) ∩ C2(K), for any compact set K in R2 \ {0}. Furthermore,

lim
t→∞

t(log t)2u∗(0, t) =
2
√
2

c∗
m(φ) and lim

t→∞
t2(log t)2(∂tu∗)(0, t) = −2

√
2

c∗
m(φ)

On the other hand, similarly to (2.4.48), we have

(∂jtu∗)(|x|, t) = (∂jtu∗)(0, t) + F j
2 (|x|, t) in RN ×R+,

where j ∈ {0, 1, . . . }. It follows from (2.4.60) that

sup
t>0

(1 + t)d/4 log(2 + t) ∥u∗(t)∥L2(RN , νe|x|2/4(1+t) dx) <∞.

Let T > 0 and ε be a sufficiently small positive constant. By (2.4.3), we then apply Propo-
sition 2.3.1 with D = d/4 and D′ = 1 to obtain∣∣F j

2 (r, t)
∣∣ ≤ Ct−1−j−1

(
log(2 + t)

)−2
r2

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . Similarly to (2.4.51) and (2.4.52), we have

F 0
2 (r, t) = (∂tu∗)(0, t)F2(r) +G2(r, t),

G2(r, t) =

∫ r

0

1

ν2(s)s

∫ s

0

ν2(τ)F
1
2 (τ, t)τ dτds,

for r ≥ 0 and t > 0. Furthermore, similarly to (2.4.53), we obtain

|G2(r, t)| ≤ Ct−3
(
log(2 + t)

)−2
∫ r

0

1

ν2(s)s

∫ s

0

ν2(τ)τ
3 dτds ≤ Ct−3

(
log(2 + t)

)−2
r4

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . A similar argument with (2.4.2) implies that∣∣(∂ℓrG2)(r, t)

∣∣ ≤ Ct−3
(
log(2 + t)

)−2
r4−ℓ, ℓ = 1, 2,

for 0 ≤ r ≤ ε
√
1 + t and t ≥ T . So we see that (2.1.15) holds for ℓ ∈ {0, 1, 2}. Thus

Theorem 2.1.3 follows.
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2.5 Proof of Theorem 2.1.4

We use the same notation as in §§ 2.1.2. Let m ∈ {1, 2, . . . }. Then

Lm := −∆+ V (|x|) + ωm

|x|2

is subcritical and problem (O) corresponding to Lm possesses a positive solution Um satisfying

Um(r) ∼

{
rA

+(λ1+ωm) as r → 0,

cm r
A+(λ2+ωm) as r → ∞,

(2.5.1)

for some positive constant cm. Set

u(x, t) := e−tLφ and um(x, t) := u(x, t)−
m−1∑
k=0

ℓk∑
i=1

e−tLφk, i.

Lemma 2.5.1. Let m ∈ {1, 2, . . . }. Then there exists C1 > 0 such that

∥um(t)∥L2(RN , e|x|2/4(1+t) dx) ≤ C1t
−dm/4∥um(0)∥L2(RN , e|x|2/4 dx) (2.5.2)

for t > 0, where dm := N + 2A+(λ2 + ωm). Furthermore, there exists C2 > 0 such that∣∣∣∣∣ um(x, t)

U
(
min{|x|,

√
t}
)∣∣∣∣∣ ≤ C2t

−(N+dm)/4

U(
√
t)

∥um(0)∥L2(RN , e|x|2/4 dx) (2.5.3)

for x ∈ RN and t > 0.

Proof. Let m ∈ {1, 2, . . . }. The comparison principle implies that∣∣[e−tLkϕk, i
]
(x)
∣∣ ≤ [e−tLk |ϕk, i|

]
(x) ≤

[
e−tLm|ϕk, i|

]
(x) in RN ×R+

for k ∈ {m,m+1, . . . } and i ∈ {1, . . . , ℓk}. On the other hand, by Theorem 2.1.1 and (2.5.1)
(see also (2.4.28)), we have∥∥e−tLm|ϕk, i|

∥∥
L2(RN , e|x|2/4(1+t) dx)

≤ C(1 + t)−dm/4∥ϕk, i∥L2(RN , e|x|2/4 dx), t > 0,

for k ∈ {m,m+ 1, . . . } and i ∈ {1, . . . , ℓk}. These together with (2.1.18) implies that∥∥e−tLφk, i
∥∥
L2(RN , e|x|2/4(1+t) dx)

=
∣∣SN−1

∣∣−1/2 ∥∥e−tLkϕk, i
∥∥
L2(RN , e|x|2/4(1+t) dx)

≤ C(1 + t)−dm/4
∥∥ϕk, i

∥∥
L2(RN , e|x|2/4 dx)

≤ C(1 + t)−dm/4
∥∥φk, i

∥∥
L2(RN , e|x|2/4 dx)

for t > 0. Therefore we deduce from the orthogonality of {Qk, i} that

∥um(t)∥2L2(RN , e|x|2/4(1+t) dx)
=

∞∑
k=m

ℓk∑
i=1

∥∥e−tLφk,i
∥∥2
L2(RN , e|x|2/4(1+t) dx)

≤ C(1 + t)−dm/2

∞∑
k=m

ℓk∑
i=1

∥φk, i∥2
L2(RN , e|x|2/4 dx)

≤ C(1 + t)−dm/2
∥∥um(0)∥∥2L2(RN , e|x|2/4 dx)
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for t > 0. This implies (2.5.2). On the other hand, by Lemma 2.2.5, we have

|um(x, 2t)|
U
(
min{|x|,

√
t}
) ≤ Ct−N/4

U(
√
t)
∥um(t)∥L2(RN ), x ∈ RN , t > 0.

This together with (2.5.2) implies (2.5.3). Thus Lemma 2.5.1 follows.

Proof of Theorem 2.1.4. Let φ ∈ L2(RN , e|x|
2/4 dx) and v := e−tL0φ0, 1. Let K be any com-

pact set in RN \ {0} and R > 0. In cases (S) and (C), recalling that d = 2N + A, by
Theorems 2.1.1 and 2.1.2, we have

lim
t→∞

t(N+A)2v
(√

ty, t
)
= cdm(φ0, 1)|y|Ae−|y|2/4 in L2(RN , e|y|

2/4 dy) ∩ L∞(K), (2.5.4a)

lim
t→∞

t(N+2A)/2 v(x, t)

U(|x|)
=
cd
c∗
m(φ0, 1) in L∞(B(0, R)). (2.5.4b)

In case (S∗), Theorem 2.1.3 implies that

lim
t→∞

t(N+A)/2(log t)v
(√

ty, t
)
= 2cdm(φ0, 1)|y|Ae−|y|2/4

in L2(RN , e|y|
2/4 dy) ∩ L∞(K),

(2.5.5a)

lim
t→∞

t(N+2A)/2(log t)2
v(x, t)

U(|x|)
=

2
√
2

c∗
m(φ0, 1) =

4cd
c∗
m(φ0, 1) in L∞(B(0, R)). (2.5.5b)

Here

cdm(φ0, 1) =
c2d
c∗

∫ ∞

0

φ0, 1(r)U(r)rN−1 dr

=
c2d

c∗
∣∣SN−1

∣∣ ∫
RN

φ0, 1(|x|)U(|x|) dx =
c2d

c∗
∣∣SN−1

∣∣ ∫
RN

φ(x)U(|x|) dx =M(φ).

(2.5.6)

Taking a sufficiently large integer m, by Lemma 2.5.1, we have

lim
t→∞

t(N+A)/2um
(√

ty, t
)
= 0 in L2(RN , e|y|

2/4 dy) ∩ L∞(K), (2.5.7a)

lim
t→∞

t(N+2A)/2um(x, t)

U(|x|)
= 0 in L∞(B(0, R)), (2.5.7b)

for any compact set K ⊂ RN \ {0} and R > 0. On the other hand, Lk is subcritical and
A+(λ2+ωk) > A for k ∈ {1, 2, . . . ,m−1}. Then, taking a sufficiently small ε > 0 if necessary,
by Theorems 2.1.1 and 2.1.2, we obtain

lim
t→∞

t(N+A)/2
[
e−tLkϕk, i

] (√
ty, t

)
= 0 in L2(RN , e|y|

2/4 dy) ∩ L∞(K), (2.5.8a)

lim
t→∞

t(N+2A)/2

[
e−tLkϕk, i

]
(x)

Uk(|x|)
= 0 in L∞(B(0, R)), (2.5.8b)
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for any compact set K ⊂ RN \ {0} and R > 0. On the other hand, it follows from (2.1.2)
that (2.5.1) that Uk(r)/U(r) is bounded on (0, R) for any R > 0. This together with (2.5.8)
implies that

lim
t→∞

t(N+2A)/2

[
e−tLkϕk, i

]
(|x|)

U(|x|)
= 0 in L∞(B(0, R)) (2.5.9)

for any R > 0. Since

[e−tLφ](x) = v(x, t) +
m−1∑
k=1

ℓk∑
i=1

[
e−tLkϕk, i

]
(|x|)Qk, i

(
x

|x|

)
+ um(x, t),

by (2.5.4)–(2.5.9), we obtain assertions (a) and (b). Thus the proof is complete.

Proof of Corollary 2.1.5. Let p = p(x, y, t) be the fundamental solution corresponding to
e−tL. Let y ∈ RN and τ > 0. Set φ(x) = p(x, y, τ) for x ∈ RN . Taking a sufficiently small
τ > 0 if necessary, by (2.1.6), we see that φ ∈ L2(RN , e|x|

2/4 dx). On the other hand, since
p(x, y, t) = p(y, x, t), we have∫

RN

φ(x)U(|x|) dx =

∫
RN

p(x, y, τ)U(|x|) dx =

∫
RN

p(y, x, τ)U(|x|) dx = U(|y|)

for y ∈ RN and τ > 0. Then, applying Theorem 2.1.4 and letting τ → 0, we obtain the
desired results. Thus Corollary 2.1.5 follows.
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Chapter 3

Hot spots of solutions to the heat
equation with inverse square potential

3.1 Introduction

In this chapter, we investigate the large time behavior of the hot spots

H(u(t)) :=

{
x ∈ RN : u(x, t) = sup

y∈RN

u(y, t)

}
for the solution u of (2.1.1). The study of the large time behavior of the hot spots is delicate
and it is obtained by the higher order asymptotic expansion of the solutions. Combing the
arguments in [16]–[19], and [23] (Chapter 2), we study the large time behavior of H(u(t)) in
the cases (S), (S∗), and (C) and reveal the relationship between the large time behavior of
H(u(t)) and the corresponding harmonic functions (see §§3.2.1). We remark that L is not
necessarily subcritical.

The behavior of the hot spots for parabolic equations in unbounded domains has been
studied since the pioneering work by Chavel and Karp [4], who studied the behavior of the
hot spots for the heat equations on some non-compact Riemannian manifolds. In particular,
for the heat equation on RN with nonnegative initial data φ ∈ L∞

c (RN), they proved :

(H1) H(et∆φ) is a subset of the closed convex hull of the support of the initial function φ ;

(H2) There exists T > 0 such that H(et∆φ) consists of only one point and moves along a
smooth curve for any t ≥ T ;

(H3) lim
t→∞

H(et∆φ) =

∫
RN

xφ(x) dx

/∫
RN

φ(x) dx.

(See also Remark 3.3.3.) The behavior of the hot spots for the heat equation on the half space
of RN and on the exterior domain of a ball was studied in [14], [15] and [24]. Subsequently,
in [16]–[19], Ishige–Kabeya developed the arguments in [14] and [15] and studied the large
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time behavior of the hot spots for the solution of (2.1.1) under condition (V) in the subcritical
case with some additional assumptions.

Our arguments in this chapter are based on [23] (Chapter 2), where the precise description
of the large time behavior of the solution of (2.1.1) was discussed under condition (V).
Applying the arguments in Chapter 2, we modify the arguments in [16]–[19] and study the
large time behavior of the hot spots. We study the following subjects when the hots spots
tend to the space infinity as t→ ∞ :

(a) The rate and the direction for the hot spots to tend to the space infinity as t→ ∞ ;

(b) The number of the hot spots for sufficiently large t.

On the other hand, when the hots spots accumulate to a point x∗, we characterize the limit
point x∗ by the positive harmonic function U . Furthermore, we give a sufficient condition
for the hot spots to consist of only one point and to move along a smooth curve.

The rest of this chapter is organized as follows. In §3.2 we recall some preliminary results
on the behavior of the solution of (2.1.1) and prove some lemmas. In §3.3 we study the large
time behavior of the hot spots for problem (2.1.1).

3.2 Preliminaries

Throughout this chapter, we use the notations Lk, Vk, ϕ
k, i, Qk, i, q∗, and qN as in subsec-

tion 2.1.2. Let Uk be a (unique) solution of

U ′′
k +

N − 1

r
U ′
k − Vk(r)Uk = 0 in RN . (3.2.1)

Then

Uk(r) ∼

{
rA

+(λ1+ωk) as r → 0,

ck r
A+(λ2+ωk) as r → ∞,

U ′
k(r) = O

(
rA

+(λ2+ωk)−1
)

as r → ∞, (3.2.2)

for some positive constant ck. By Theorems 2.1.1, 2.1.2, and 2.1.3, we then obtain the
precise description of the large time behavior of e−tLk

ϕk, i, where k = 0, 1, . . . . In particular,
for k = 0, 1, . . . , for any sufficiently small ε > 0, we have

tN/2+Ak∂ℓr
[e−tLk

ϕk, i](|x|)
Uk(|x|)

=
[
Mk, i + o(1)

]
δ0ℓ −

[
N + 2Ak

2
Mk, i + o(1)

]
t−1(∂ℓrFk)(|x|) + t−2O(|x|4−ℓ)

=
[
Mk, i + o(1)

]
δ0ℓ +O(t−1|x|2−ℓ) as t→ ∞,

(3.2.3)
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uniformly for x ∈ RN with |x| ≤ ε
√
1 + t, where ℓ = 0, 1, 2 and δ0, ℓ is the Kronecker symbol.

Here

Ak :=

{
A for k = 0,

A+(λ2 + ωk) for k = 1, 2, . . . ,
cAk

:=

(
2N+2Ak−1Γ

(
N + 2Ak

2

))−1/2

,

Mk, i :=
c2Ak

c2k

∫ ∞

0

ϕk, i(r)Uk(r)r
N−1 dr =

c2Ak

c2k

∫
RN

Uk(|y|)Qk, i

(
y

|y|

)
φ(y) dy, (3.2.4)

Fk(r) :=

∫ r

0

1

Uk(s)2sN−1

∫ s

0

Uk(τ)
2τN−1 dτds.

Here we used∫
RN

Uk(|y|)Qk, i

(
y

|y|

)
φ(y) dy =

∫
SN−1

Qk, i(θ)
2 dθ

∫ ∞

0

Uk(r)ϕ
k, i(r)rN−1 dr

=

∫ ∞

0

Uk(r)ϕ
k, i(r)rN−1 dr,

which follows from the orthonormality of {Qk, i} on L2(SN−1).

3.2.1 Gaussian estimates and the hot spots

Let p = p(x, y, t) be the fundamental solution generated by e−tL. The upper Gaussian esti-
mates of p = p(x, y, t) (see (2.1.6)) implies the following Lemma which ensures the existence
of hot spots.

Lemma 3.2.1. Let u be a solution of (2.1.1) under condition (V), where φ ∈ L2(RN , e|x|
2/4 dx).

Assume that ∫
RN

φ(y)U(|y|) dy > 0.

Then H(u(t)) ̸= ∅ for t > 0. Furthermore, there exist L > 0 and T > 0 such that

H(u(t)) ⊂ B(0, L
√
t) for t ≥ T. (3.2.5)

Proof. Let t > 0. Since U is a harmonic function for L, we see that

U(|x|) =
∫
RN

p(x, y, t)U(|y|) dy =

∫
RN

p(y, x, t)U(|y|) dy, x ∈ RN .

Then the Fubini theorem implies that∫
RN

u(x, t)U(|x|) dx =

∫
RN

∫
RN

p(x, y, t)U(|x|)φ(y) dy dx =

∫
RN

φ(y)U(|y|) dy > 0.

Therefore we can find xt ∈ RN such that u(xt, t) > 0. On the other hand, by (2.1.6), we can
find R > 0 such that

sup
x∈RN\B(0,R)

u(x, t) < u(xt, t).
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This together with (2.2.1) implies that H(u(t)) ̸= ∅.
We show (3.2.5) in the cases of (S) and (C). Since

|x− y|2 ≥ 1

2
|x|2 − |y|2 for x, y ∈ RN ,

by (2.1.4) and (2.1.6), we have

|u(x, t)| ≤ Ct−N/2

(∫
B(0,

√
t)

+

∫
RN\B(0,

√
t)

)
U
(
min{|y|,

√
t}
)

U(
√
t)

exp

{
−|x− y|2

Ct

}
|φ(y)| dy

≤ Ct−(N+A)/2e−|x|2/2Ct

∫
B(0,

√
t)

e|y|
2/CtU(|y|)|φ(y)| dy (3.2.6)

+ Ct−N/2e−|x|2/2Ct

∫
RN\B(0,

√
t)

e|y|
2/Ct|φ(y)| dy

for x ∈ RN and t ≥ 1 with |x| ≥
√
t. Recalling that φ ∈ L2(RN , e|x|

2/4 dx), by the Cauchy-
Schwarz inequality we see that∫

RN\B(0,
√
t)

e|y|
2/Ct|φ(y)| dy

≤
(∫

RN\B(0,
√
t)

e2|y|
2/Cte−|y|2/4 dy

)1/2(∫
RN

e|y|
2/4|φ(y)|2 dy

)1/2

≤ C

(∫
RN\B(0,

√
t)

e−|y|2/8 dy

)1/2

≤ Ce−t/C

(3.2.7)

for all sufficiently large t. Then, for any ε > 0, by (2.1.4), (3.2.6), and (3.2.7), we can find
constants L ≥ 1 such that

sup
x∈RN\B(0,L

√
t)

|u(x, t)| ≤ εt−(N+A)/2 (3.2.8)

for all sufficiently large t. On the other hand, by Theorem 2.1.4 (a), we see that

lim inf
t→∞

t(N+A)/2 max
y∈∂B(0,1)

u(
√
ty, t) ≥ CM(φ) > 0. (3.2.9)

Taking a sufficiently small ε > 0 if necessary, we deduce from (3.2.8) and (3.2.9) that
H(u(t)) ⊂ B(0, L

√
t) for all sufficiently large t. Thus (3.2.5) holds in the cases of (S) and

(C). Similarly, we can prove (3.2.5) in the case of (S∗). Thus Lemma 3.2.1 follows.

By Theorem 2.1.4 and Lemma 3.2.1, we have :

Theorem 3.2.2. Let N ≥ 3 and L be a nonnegative Schrödinger operator under condi-
tion (V) with λ1 < 0. Let u be a solution of (2.1.1) such that

φ ∈ L2(RN , e|x|
2/4 dx) and

∫
RN

φ(y)U(|y|) dy > 0. (3.2.10)

Then H(u(t)) = {0} for all sufficiently large t > 0.
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In the case of λ1 < 0, Theorem 2.1.4 together with (3.2.1) implies that A+(λ1) < 0,
U(r) ∼ rA

+(λ1) as r → 0 and u(0, t) = ∞ for all sufficiently large t. Thus Theorem 3.2.2
follows.

3.3 Large time behavior of the hot spots

We study the large time behavior of the hot spots for problem (2.1.1) in the case of λ1 ≥ 0.
Set

Π :=

{
r ∈ [0,∞) ; U(r) = sup

τ∈[0,∞)

U(τ)

}
and Ξ(φ) :=

∫
RN

φ(y)U1(|y|)
y

|y|
dy.

For the reader’s convenience, we give a correspondence table of our theorems. We recall
A = A+(λ2) in the cases of (S) and (S∗) and A = A−(λ2) in the case of (C).

( I ) λ1 < 0 (see Theorem 3.2.2) ;

(II) λ1 ≥ 0

(1) A > 0 (see Theorem 3.3.1) ;

(2) A = 0

(a) Π = ∅ and N = 2 (see Theorems 3.3.2 and 3.3.3) ;

(b) Π = ∅ and N ≥ 3 (see Theorem 3.3.3 and Corollaries 3.3.4 and 3.3.5) ;

(c) Π ̸= ∅ (see Theorems 3.3.8 and 3.3.9) ;

(3) A < 0 (see Theorems 3.3.6 and 3.3.7).

We consider the case of A > 0. Theorem 3.3.1 is proved by the same arguments as in [16, §4]
with the aid of the results in §3.2. See also Theorem 2.1.4 and [16, Theorem 1.2].

Theorem 3.3.1. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0 and A > 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then the following
holds :

(a) lim
t→∞

sup
x∈H(u(t))

∣∣∣∣ |x|√
t
−

√
2A

∣∣∣∣ = 0 ;

(b) Assume that Ξ(φ) ̸= 0. Then there exist a constant T > 0 and a curve x = x(t) ∈
C1
(
[T,∞) : RN

)
such that H(u(t)) = {x(t)} for t ≥ T and

lim
t→∞

x(t)

|x(t)|
=

Ξ(φ)

|Ξ(φ)|
.

Secondly, we consider the case where A = 0 and Π = ∅. Theorems 3.3.2 and 3.3.3 are
obtained by the same arguments as in [18, §4] and [17, §4, §5], respectively, with the aid of
the results in §3.2. See also [18, Theorem 1.2] and [17, Theorem 1.2]. We remark that, in the
case of N = 2, A = 0 if and only if λ2 = 0. Furthermore, if L is subcritical, then U(r) ≍ log r
as r → ∞ and Π = ∅.
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Theorem 3.3.2. Let N = 2 and L be a subcritical Schrödinger operator under condition (V)
with λ1 ≥ 0 and A = 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then

lim
t→∞

sup
x∈H(u(t))

∣∣∣∣ log tt |x|2 − 2

∣∣∣∣ = 0.

Furthermore, assertion (b) of Theorem 3.3.1 holds.

Theorem 3.3.3. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0, A = 0 and Π = ∅. Assume that L is critical if N = 2. Assume (3.2.10) and let u be
a solution of (2.1.1). Then

lim
t→∞

sup
x∈H(u(t))

∣∣∣∣tU ′(|x|)
c∗|x|

− 1

2

∣∣∣∣ = 0.

Furthermore, assertion (b) of Theorem 3.3.1 holds.

Let λ1 ≥ 0 and

Hk(r) := rk
∫ r

0

1

sN+2k−1

∫ s

0

V (τ)Uk(τ)τ
N+k−1 dτds for k = 0, 1, . . . .

Since Wk := Uk −Hk satisfies

W ′′
k +

N − 1

r
W ′

k −
ωk

r2
Wk = 0 in R+ and Wk(r) ≍ rA

+(λ1+ωk) as r → 0,

by the uniqueness of the solution of (3.2.1) with V replaced by ωkr
−2, we see that

Uk(r) =

{
rk +Hk(r) if λ1 = 0,

Hk(r) if λ1 > 0.
(3.3.1)

In particular, in the case of A = 0, we have

c∗ ≡ lim
r→∞

U(r) =

{
H0(∞) + 1 if λ1 = 0,

H0(∞) if λ1 > 0.

As a corollary of Theorem 3.3.3, we have the following result, which revises [17, Corollary 1.1]
and [18, Remark 1.1].

Corollary 3.3.4. Assume the same conditions as in Theorem 3.3.3 with λ1 = 0. Further-
more, assume that V (r) ∼ µr−d as r → ∞ for some µ ̸= 0 and d > 2.

(a) Let µ > 0. Then

|x| =



(
2µt

(H0(∞) + 1)(N − d)

)1/d

(1 + o(1)) if 2 < d < N,

(
2µ t log t

(H0(∞) + 1)N

)1/N

(1 + o(1)) if d = N,

(
2Λt

H0(∞) + 1

)1/N

(1 + o(1)) if d > N, Λ > 0,
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as t→ ∞ uniformly for x ∈ H(u(t)). Here Λ :=

∫ ∞

0

τN−1V (τ)U(τ) dτ .

(b) Let µ < 0 and d > N . Then

|x| =



(
2Λt

H0(∞) + 1

)1/N

(1 + o(1)) if Λ > 0,

(
2|µ|t

(H0(∞) + 1)(d−N)

)1/d

(1 + o(1)) if Λ = 0,

as t→ ∞ uniformly for x ∈ H(u(t)).

Furthermore, we have :

Corollary 3.3.5. Assume the same conditions as in Theorem 3.3.3 with λ1 > 0. Then the
same assertions of Corollary 3.3.4 holds with H0(∞) + 1 replaced by H0(∞).

Remark 3.3.1. Assume the same conditions as in Theorem 3.3.3. Let V (r) ∼ µr−d as
r → ∞ for some µ ̸= 0 and d > 2.

( i ) Consider the case where µ > 0 and d > N . Since U(r) ∼ c∗ > 0 as r → ∞, Λ can be
defined. If Λ ≤ 0 and µ > 0, then it follows from (3.3.1) that

U ′(r) = r1−N

∫ r

0

V (τ)U(τ)τN−1 dτ = r1−N

(
Λ−

∫ ∞

r

V (τ)U(τ)τN−1 dτ

)
< 0

for all sufficiently large r > 0. This implies that Π ̸= ∅.
(ii) Consider the case where µ < 0. By (3.3.1), we see that rN−1U ′(r) → −∞ as r → ∞ if
2 < d ≤ N . Similarly, if d > N and Λ < 0, then U ′(r) < 0 for all sufficiently large r > 0. In
the both cases, it follows that Π ̸= ∅.

Next we study the large time behavior of the hot spots in the case where λ1 ≥ 0 and
A < 0. It follows from A < 0 that U(r) → 0 as r → ∞ and Π ̸= ∅.

Theorem 3.3.6. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0 and A < 0. Assume (3.2.10) and let u be a solution of (2.1.1). Then

lim
t→∞

sup
x∈H(u(t))

∣∣|x| −minΠ
∣∣ = 0. (3.3.2)

Furthermore, if Ξ(φ) ≠ 0, then

lim
t→∞

sup
x∈H(u(t))

∣∣∣∣x−minΠ
Ξ(φ)

|Ξ(φ)|

∣∣∣∣ = 0. (3.3.3)
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Proof. For any ε > 0, by Theorem 2.1.4 with A < 0 and Lemma 3.2.1, we see that

H(u(t)) ⊂ B(0, ε
√
t) (3.3.4)

for all sufficiently large t.
We consider the cases of (S) and (C). In the case of Ξ(φ) ̸= 0 we can assume, without

loss of generality, that Ξ(φ) =
(
|Ξ(φ)|, 0, . . . , 0

)
. By (3.2.4), we have

M0, 1 > 0 and M1, i = qN
c2A1

c21
Ξi(φ) = qN

c2A1

c21
|Ξ(φ)|δ1, i for i = 1, . . . , N, (3.3.5)

where δ1, i is the Kronecker symbol. Let ε > 0 be sufficiently small. By Lemma 2.5.1, (2.1.4),
(2.1.17), and (3.2.3), we take a sufficiently large m ∈ {1, 2, . . . } so that

tN/2+A u0(x, t)

q∗U(|x|)
=
(
M0, 1 + o(1)

)
−
(
N + 2A

2
M0, 1 + o(1)

)
t−1F (|x|) + t−2O(|x|4)

=M0, 1 + o(1) + t−1O(|x|2),

u1, i(x, t) = qN
(
M1, i + o(1)

)
t−N/2−A1U1(|x|)

xi
|x|

+ t−N/2−A1U1(|x|)O(t−1|x|2)

= O
(
t−N/2−A1(1 + |x|)A1

)
,

u2(x, t) =
m−1∑
k=2

ℓk∑
i=1

uk, i(x, t) + um(x, t) = O
(
t−N/2−A2(1 + |x|)A2

)
,

(3.3.6)

as t → ∞ uniformly for x ∈ RN with |x| ≤ ε
√
1 + t, where i = 1, . . . , N . Let ν be a

sufficiently small positive constant. Since A < 0, we can find R > 0 such that

|u0(x, t)| ≤ Ct−N/2−AU(|x|) ≤ νt−N/2−A,

|u1, i(x, t)| ≤ Ct−(N+A1)/2 = Ct−N/2−At(A−A1)/2tA/2 ≤ νt−N/2−A,

|u2(x, t)| ≤ Ct−(N+A2)/2 = Ct−N/2−At(A−A2)/2tA/2 ≤ νt−N/2−A,

(3.3.7)

for x ∈ RN and all sufficiently large t > 0 with R ≤ |x| ≤ ε
√
1 + t, where i = 1, . . . , N . On

the other hand, Theorem 2.1.4 implies that

lim inf
t→∞

tN/2+A sup
x∈RN

u(x, t) > 0. (3.3.8)

By (3.3.4), (3.3.7), and (3.3.8), we can find R > 0 such that

H(u(t)) ⊂ B(0, R) (3.3.9)

for all sufficiently large t.
It follows from (2.1.3) and λ2 < 0 that

A+ 1 ≤ A+(λ2) + 1 < A+(λ2 + ω1) = A1. (3.3.10)
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By (3.3.6) and (3.3.10), we have

tN/2+Au(x, t)

= q∗
(
M0, 1 + o(1)

)
U(|x|)− q∗

(
N + 2A

2
M0, 1 + o(1)

)
t−1U(|x|)F (|x|) + o(t−1)

= q∗
(
M0, 1 + o(1)

)
U(|x|) +O(t−1)

(3.3.11)

as t → ∞ uniformly for x ∈ B(0, R). Since F is strictly monotone increasing in R+, by
(3.3.5), (3.3.9), and (3.3.11), we obtain (3.3.2) and (3.3.3). Therefore Theorem 3.3.6 follows
in the cases of (S) and (C). Similarly, Theorem 3.3.6 also follows in the case of (S∗). Thus
the proof is complete.

We give sufficient conditions for the hot spots to consist of only one point and to move
along a smooth curve. We denote by ∇2f the Hessian matrix of a function f . For any real
symmetric N ×N matrixM , byM ≥ 0 andM ≤ 0 we mean thatM is positive semi-definite
and negative semi-definite, respectively.

Theorem 3.3.7. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0 and A < 0. Assume (3.2.10) and let u be a solution of (2.1.1). Let x∗ ∈ RN be such
that |x∗| ∈ Π and

lim
t→∞

sup
x∈H(u(t))

|x− x∗| = 0.

Then there exist a constant T > 0 and a curve x = x(t) ∈ C1([T,∞) : RN) such that
H(u(t)) = {x(t)} for t ≥ T in the following cases :

(a) |x∗| = 0, V ∈ Cγ([0,∞)) for some γ ∈ (0, 1) and ∇2U(|x|) ≤ 0 in a neighborhood of
the origin ;

(b) |x∗| > 0, U ′′ ≤ 0 in a neighborhood of r = |x∗| and Ξ(φ) ̸= 0.

Proof. We consider the cases of (S) and (C). Let r∗ := |x∗| and ε > 0. The proof is divided
into the following four cases:

( i ) r∗ = 0 and U ′′(0) < 0 ; (ii) r∗ = 0 and U ′′(0) = 0 ;

(iii) r∗ > 0 and U ′′(r∗) < 0 ; (iv) r∗ > 0 and U ′′(r∗) = 0.

In case ( i ). Since U ′(0) = 0 and U ′′(0) < 0, by (2.1.17) and (3.2.3), we can find η1 > 0
such that

− 1

q∗
tN/2+A(∇2u0)(x, t) = −

(
M0, 1+o(1)

)
∇2U(|x|)+O(t−1) ≥ −M0, 1U

′′(0)

2
IN−εIN (3.3.12)

for x ∈ B(0, η1) and all sufficiently large t, where IN is the N -dimensional identity matrix.
On the other hand, by condition (a), (3.2.3) and (2.5.3) we apply the parabolic regularity
theorems to see that u1, i, R2 ∈ C2, γ; 1, γ/2(RN ×R+) and∥∥∇2u1, i

∥∥
L∞(B(0, η1))

+
∥∥∇2R2

∥∥
L∞(B(0, η1))

= O(t−N/2−A1) (3.3.13)
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for all sufficiently large t, where i = 1, 2, . . . , N . Since ε is arbitrary, by (3.3.12) and (3.3.13),
we see that −(∇2u)(x, t) is positive definite in B(0, η1) for all sufficiently large t > 0. Then
Theorem 3.3.7 in case ( i ) follows from the implicit function theorem.

In case (ii). By condition (a), (2.1.17), and (3.2.3), we have

− 1

q∗
tN/2+A+1(∇2u0)(x, t)

= −t
(
M0, 1 + o(1)

)
∇2U(|x|) +

(
N + 2A

2
M0, 1 + o(1)

)
∇2(UF0)(|x|) +O(t−1)

≥
(
N + 2A

2
M0, 1 + o(1)

)
∇2(UF0)(|x|) +O(t−1)

(3.3.14)

in a neighborhood of x = 0 and all sufficiently large t. On the other hand, it follows from
(3.2.1) and (3.2.4) that

lim
r→0

F ′′
0 (r) = lim

r→0

(
− N − 1

U(r)2rN
− 2U ′(r)

U(r)3rN−1

)∫ r

0

U(τ)2τN−1 dτ + 1 =
1

N
. (3.3.15)

This implies that (UF0)
′′(0) = 1/N . Therefore, by (3.3.14) and (3.3.15), we can find η2 > 0

such that

− 1

q∗
tN/2+A+1(∇2u0)(x, t) ≥

N + 2A

4N
M0, 1IN − εIN (3.3.16)

for x ∈ B(0, η2) and all sufficiently large t. Similarly to case ( i ), since ε is arbitrary, by
(3.3.10), (3.3.13), and (3.3.16), we see that −(∇2u)(x, t) is positive definite in B(0, η2) for
all sufficiently large t > 0. Similarly to case ( i ), Theorem 3.3.7 in case (ii) follows from the
implicit function theorem.

In case (iii). By Theorem 3.3.6, we can assume, without loss of generality, that x∗ =
(r∗, 0, . . . , 0). Then M1, 1 > 0 and M1, i = 0 for i ∈ {2, . . . , N}. Let θα := xα/|x| for α =
1, 2, . . . , N . Then (r, θ2, . . . , θN) gives a local coordinate of RN in a neighborhood of x∗. We

study the large time behavior of ∇̃2u in a neighborhood of x∗, where ∇̃ := (∂r, ∂θ2 , . . . , ∂θN ).
Since U ′′(r∗) < 0, similarly to (3.3.12), we can find η3 > 0 such that

− 1

q∗
tN/2+A(∂2ru0)(x, t) = −

(
M0, 1 + o(1)

)
(∂2rU)(|x|) +O(t−1) ≥ −M0, 1

2
U ′′(r∗) (3.3.17)

for x ∈ B(x∗, η3) and all sufficiently large t. Furthermore,

(∂r∂θαu0)(x, t) = (∂θα∂θβu0)(x, t) = 0 (3.3.18)

for x ∈ B(x∗, η3) and all sufficiently large t, where α, β ∈ {2, . . . , N}.
On the other hand, by (2.1.17), (3.2.3), and (3.3.6), we have

1

qN
(∇̃2u1, i)(x, t) =

(
M1, i + o(1)

)
t−N/2+A1∇̃2(U1(|x|)θi) +O(t−N/2−A1−1) (3.3.19)
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for x ∈ B(x∗, η3) and all sufficiently large t. Since

θ1 =

√√√√1−
N∑

α=2

θ2α,
∂θ1
∂θα

= −θα
θ1
,

∂2θ1
∂θα∂θβ

= −δα, β
θ1

− θαθβ
θ31

, (3.3.20)

for α, β ∈ {2, . . . , N}, combining M1, 1 = qNc
2
A1
|Ξ(φ)|/c21 > 0 and U ′(r∗) = 0, we can find

η4 > 0 and C > 0 such that

− tN/2+A1(∂2ru1, 1)(x, t) ≥ −C,

− tN/2+A1(∂θα∂θβu1, 1)(x, t) ≥
qNM1, 1

2
U1(r∗)δα, β − ε,

− tN/2+A1(∂r∂θαu1, 1)(x, t) ≥ −C|θα|U ′
1(r) +O(t−1) ≥ −ε,

(3.3.21)

for x ∈ B(x∗, η4) and all sufficiently large t. Furthermore, for i = 2, . . . , N , it follows that
M1, i = 0 and we have (

∇̃2u1, i
)
(x, t) = o(t−N/2−A1) (3.3.22)

for x ∈ B(x∗, η4) and all sufficiently large t. Similarly to (3.3.13), by (3.3.6), we apply the
parabolic regularity theorems to obtain(

∇̃2R2

)
(x, t) = O(t−N/2−A2) (3.3.23)

for x ∈ B(x∗, η4) and all sufficiently large t. On the other hand, A1 > A+ 1 holds by A < 0.

Then, by (3.3.17), (3.3.18), (3.3.19), (3.3.21), (3.3.22), and (3.3.23), we see that −
(
∇̃2u

)
(x, t)

is positive definite in a neighborhood of x∗ = (r∗, 0) for all sufficiently large t > 0. Therefore
Theorem 3.3.7 in case (iii) follows from the implicit function theorem.

In case (iv). Similarly to the case (iii), without loss of generality, we can assume that
Ξ(φ)/|Ξ(φ)| = (1, 0, . . . , 0). It follows from U ′(r∗) = U ′′(r∗) = 0 and r∗ ∈ Π that

(UF0)
′′(r∗) = U(r∗)F

′′
0 (r∗) = U(r∗)

(
− N − 1

U(r∗)2rN∗

∫ r∗

0

U(τ)2τN−1 dτ + 1

)
≥ U(r∗)

(
− N − 1

U(r∗)2rN∗

∫ r∗

0

U(r∗)
2τN−1 dτ + 1

)
=

1

N
U(r∗) > 0.

Then, by condition (b) we have

− 1

q∗
tN/2+A+1(∂2ru0)(x, t)

= −
(
M0, 1 + o(1)

)
t(∂2rU)(|x|) +

(
N + 2A

2
M0, 1 + o(1)

)(
∂2r (UF )

)
(|x|) +O(t−1)

≥
(
N + 2A

2
M0, 1 + o(1)

)(
∂2r (UF )

)
(|x|) +O(t−1) ≥ N + 2A

4N
M0, 1U(r∗) > 0

(3.3.24)
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in a neighborhood of x∗ = (r∗, 0, . . . , 0). Furthermore, by the same argument as in case 3.3.7
in case (iii) we obtain (3.3.18), (3.3.21), (3.3.22) and (3.3.23). Therefore, since A1 > A+1, we

see that −
(
∇̃2u

)
(x, t) is positive definite in a neighborhood of x∗ = (r∗, 0) for all sufficiently

large t > 0. Therefore Theorem 3.3.7 in case (iv) follows from the implicit function theorem.
Thus Theorem 3.3.7 follows in the cases of (S) and (C). Similarly, Theorem 3.3.7 also follows
in case (S∗). Therefore the proof of Theorem 3.3.7 is complete.

Finally we study the large time behavior of the hot spots in the cases where λ1 ≥ 0,
A = 0, and Π ̸= ∅.

Theorem 3.3.8. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0, A = 0, and Π ̸= ∅. Assume (3.2.10) and let u be a solution of (2.1.1). Then there
exists R > 0 such that

H(u(t)) ⊂ B(0, R) (3.3.25)

for all sufficiently large t.
Let x∗ be an accumulating point of H(u(t)) as t → ∞. If Ξ(φ) ̸= 0, then x∗/|x∗| =

Ξ(φ)/|Ξ(φ)|. Furthermore, r∗ := |x∗| is a maximum point of

S(r) := −κN
c∗
M(φ)U(r)F0(r) +

1

c21
|Ξ(φ)|U1(r) on Π.

Remark 3.3.2. Assume the same conditions as in Theorem 3.3.8. It follows from A = 0
that λ2 = 0 and A1 = 1. By (2.2.3) and (3.2.2), we see that

F0(r) ∼
1

2N
r2, U(r) ∼ c∗, U1(r) ∼ c1r, (3.3.26)

as r → ∞. Then S(|x|) → −∞ as |x| → ∞ and the maximum point of S on Π exists.

Proof. Let ε be a sufficiently small positive constant. Similarly to (3.3.4), by Theorem 2.1.4
with A = 0, we see that

H(u(t)) ⊂ B(0, ε
√
t) (3.3.27)

for all sufficiently large t. On the other hand, similarly to the proof of Theorem 3.3.6, we
have

tN/2u(x, t) = q∗
(
M0, 1 + o(1)

)
U(|x|)− q∗

(
N

2
M0, 1 + o(1)

)
t−1(UF0)(|x|)

+ t−2O(|x|4U(|x|)) +
N∑
i=1

(
M1, i + o(1)

)
t−1U1(|x|)Q1, i

(
x

|x|

)
+ t−2U1(|x|)O(|x|2) + o(t−1)

(3.3.28)

as t → ∞ uniformly for x ∈ RN with |x| ≤ ε
√
t. Since A1 = A+(ω1) = 1, it follows from

(2.1.17), (3.2.4) and (3.2.10) that

q∗M0, 1 =
q2∗κ

2N−1c∗Γ(N/2)
M(φ),
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and

N∑
i=1

M1, iQ1, i

(
x

|x|

)
=

q2N
2N+1c21Γ

(
(N + 2)/2

)( x

|x|
·
∫
RN

φ(y)U1(|y|)
y

|y|
dy

)
=

q2N
2Nc21Γ(N/2)

(
x

|x|
· Ξ(φ)

)
.

Then we have

− q∗
N

2
M0, 1U(|x|)F0(|x|) +

N∑
i=1

M1,iU1(|x|)Q1, i

(
x

|x|

)
=

q2∗
2NΓ(N/2)

(
− κN

c∗
M(φ) +

1

c21

(
x

|x|
· Ξ(φ)

)
U1(|x|)

)
.

(3.3.29)

Then Theorem 3.3.8 follows from (3.3.26), (3.3.27), (3.3.28) and (3.3.29).

Modifying Theorem 3.3.7, we give sufficient conditions for the hot spots to consist of only
one point and to move along a smooth curve in the case where A = 0 and Π ̸= ∅. We remark
that A1 = A+ 1 if A = 0.

Theorem 3.3.9. Let L be a nonnegative Schrödinger operator under condition (V) with
λ1 ≥ 0, A = 0 and Π ̸= ∅. Assume (3.2.10) and let u be a solution of (2.1.1). Let x∗ ∈ RN

be such that |x∗| ∈ Π and
lim
t→∞

sup
x∈H(u(t))

|x− x∗| = 0.

Then there exist a constant T > 0 and a curve x = x(t) ∈ C1
(
[T,∞) : RN

)
such that

H(u(t)) = {x(t)} for t ≥ T in the following cases :

(a) |x∗| = 0, V ∈ Cγ([0,∞)) for some γ ∈ (0, 1) and ∇2U(|x|) ≤ 0 in a neighborhood of
the origin ;

(b) |x∗| > 0, U ′′(r∗) < 0 and Ξ(φ) ̸= 0 ;

(c) |x∗| > 0, U ′′(r) ≤ 0 in a neighborhood of r = r∗, S
′′(r∗) < 0 and Ξ(φ) ̸= 0.

Here S = S(r) is as Theorem 3.3.8.

Proof. The proofs in case (a) with U ′′(0) < 0 and case (b) are obtained by the same argument
as the proof of Theorem 3.3.7 in cases ( i ) and (iii), respectively. So it suffices to consider
case (a) with U ′′(0) = 0 and case (c).

Let us consider case (a) with U ′′(0) = 0. Let ε > 0. It follows from (3.3.1) that U ′
1(0) = 0

and

U ′′
1 (r) = −N − 1

rN+1

∫ r

0

V (τ)U1(τ)τ
N dτ + V (r)U1(r) → 0 as r → 0.
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These imply that U1 ∈ C2
(
[0,∞)

)
and U ′′

1 (0) = 0. Then, similarly to (3.3.21), we have

−tN/2+1(∂2ru1, 1)(x, t) ≥ −ε

in a neighborhood of x = 0 for all sufficiently large t > 0. Then, applying a similar argument
as in the proof of Theorem 3.3.7 in case (ii), we obtain Theorem 3.3.9 in case (a) with
U ′′(0) = 0.

Let us consider case (c). Similarly to the proof of Theorem 3.3.7 in case (iii), without loss
of generality, we can assume that Ξ(φ)/|Ξ(φ)| = (1, 0, . . . , 0) and x∗ = (r∗, 0, . . . , 0) and we
introduce the coordinate (r, θ2, . . . , θN) in a neighborhood of x = x∗. Then, by (2.1.17) and
(3.2.3), we have

− 1

q∗
tN/2(∂2ru0)(x, t)

= −
(
M1, 0 + o(1)

)
(∂2rU)(|x|) +

(
N

2
M0, 1 + o(1)

)
t−1
(
∂2r (UF0)

)
(|x|) +O(t−2)

≥
(
N

2
M0, 1 + o(1)

)
t−1
(
∂2r (UF0)

)
(|x|) +O(t−2)

(3.3.30)

and

− 1

qN
tN/2+1(∂2ru1, 1)(x, t) = −

(
M1, 1 + o(1)

)
(∂2rU1)(|x|)θi +O(t−1), (3.3.31)

in a neighborhood of x = x∗ for all sufficiently large t > 0, where i = 1, . . . , N . By condi-
tion (c), (3.3.29), and (3.3.30), we obtain

− tN/2+1[(∂2ru0)(x, t) + (∂2ru1, 1)(x, t)]

≥ − q2∗
2NΓ(N/2)

S ′′(r) + o(1) +O(t−1) ≥ − q2∗
2N+1Γ(N/2)

S ′′(r∗) > 0

in a neighborhood of x = x∗ for all sufficiently large t > 0. Similarly, we have

−tN/2+1(∂r∂θαu1,1)(x, t) = O(|θα|) +O(t−1) (3.3.32)

in a neighborhood of x = x∗ for all sufficiently large t > 0, where α = 2, . . . , N . Furthermore,
similarly to the proof of Theorem 3.3.7 in case (iii), we have (3.3.18), (3.3.22) and (3.3.23).

Then, combining (3.3.30), (3.3.31), and (3.3.32), we see that −
(
∇̃2u

)
(x, t) is positive definite

in a neighborhood of x∗ = (r∗, 0) for all sufficiently large t > 0. Thus Theorem 3.3.9 in
case (c) follows from the implicit function theorem. Therefore the proof of Theorem 3.3.9 is
complete.

Remark 3.3.3. Consider the case of the heat equation under condition (3.2.10). Then
V ≡ 0, c∗ = 1, c1 = 1, U(r) = 1, U1(r) = r, F0(r) = r2/2N , and Π = [0,∞). Since

S ′(r) = −rM(φ) + |Ξ(φ)| = −r
∫
RN

φ(y) dy +

∣∣∣∣ ∫
RN

yφ(y) dy

∣∣∣∣,
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it follows from Theorem 3.3.8 that the hot spots converges to
∫
RN yφ(y) dy/

∫
RN φ(y) dy.

Furthermore, if Ξ(φ) ̸= 0, then, by Theorem 3.3.9 (c), we see that the hot spots consist of
only one point and move along a smooth curve. These coincide with statements (H2) and
(H3) in §3.1.
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