
博士論文

Reliable Machine Learning from Limited Data and
Supervision: A Risk Modification Approach

（限られたデータと教師からの高信頼機械学習：リスク修正アプローチ）

石石石田田田 隆隆隆

CONTENTS i

Contents

Contents i

Abstract v

List of Figures viii

List of Tables xii

1 Introduction 1
1.1 Machine Learning . 1

1.1.1 What is Machine Learning? . 1
1.1.2 Learning Paradigms . 3
1.1.3 Reliable Machine Learning . 5

1.2 Learning from Weak Supervision . 6
1.2.1 Binary Classification from Weak Supervision 6
1.2.2 Multi-Class Classification from Weak Supervision 8

1.3 Learning with Limited Data . 9
1.4 Contribution: A Risk Modification Approach 14

1.4.1 Risk Rewriting . 15
1.4.2 Risk Correction . 15

1.5 Proposed Methods . 16
1.5.1 Learning from Positive-Confidence Data 16
1.5.2 Learning from Complementary Labels 17
1.5.3 Flooding: A Novel Regularizer to Avoid Overfitting 18

1.6 Organization . 19
1.7 Publications Related to This Dissertation 19

2 Background and Preliminaries 21
2.1 Data and Distribution . 21

ii CONTENTS

2.2 Binary Classification . 22
2.2.1 Classification Risk . 22
2.2.2 Bayes Risk and Bayes Error . 23
2.2.3 Models . 24
2.2.4 Binary Loss Functions . 26
2.2.5 Regularization . 27

2.3 Multi-Class Classification . 27
2.3.1 Classification Risk . 27
2.3.2 Multi-Class Loss Functions . 28

3 Learning from Positive-Confidence Data 31
3.1 Introduction . 31
3.2 Problem Formulation . 34
3.3 Pconf Classification . 34

3.3.1 Empirical Risk Minimization (ERM) Framework 34
3.3.2 Theoretical Analysis . 37
3.3.3 Implementation . 40

3.4 Experiments . 40
3.4.1 Synthetic Experiments with Linear Models 40
3.4.2 Benchmark Experiments with Neural Network Models 43

3.5 Conclusion . 47
3.5.1 Summary . 47
3.5.2 Recent Advances . 47

4 Learning from Complementary Labels 49
4.1 Introduction . 50
4.2 Complementary-Label Learning with Symmetric Losses 51

4.2.1 Formulation . 51
4.2.2 Theoretical Analysis . 55
4.2.3 Incorporation of Ordinary Labels 57
4.2.4 Experiments . 57

4.3 Complementary-label Learning with Arbitrary Losses 62
4.3.1 Formulation . 63
4.3.2 Necessity of Risk Correction . 67
4.3.3 Non-Negative Risk Estimator 68
4.3.4 Approximate Non-Negative Risk Estimator 69
4.3.5 Experiments . 71

4.4 Conclusion . 72

CONTENTS iii

5 Flooding: A Novel Regularizer to Avoid Overfitting 75
5.1 Introduction . 75
5.2 Flooding: How to Avoid Zero Training Loss 80

5.2.1 Preliminaries . 80
5.2.2 Algorithm . 81
5.2.3 Implementation . 82

5.3 Does Flooding Generalize Better? . 82
5.3.1 Synthetic Datasets . 83
5.3.2 Benchmark Experiments . 87

5.4 Why Does Flooding Generalize Better? 89
5.4.1 Memorization . 89
5.4.2 Performance and Gradients . 91
5.4.3 Flatness . 91
5.4.4 Theoretical Insight . 94

5.5 Conclusion . 94

6 Conclusions and Future Work 95
6.1 Conclusions . 95
6.2 Short Term Future Work . 96

6.2.1 Future Work for Positive-Confidence Learning 97
6.2.2 Future Work for Complementary-Label Learning 97
6.2.3 Future Work for Flooding . 98

6.3 Future Directions . 99
6.3.1 Looking for Yet Another Type of Supervision 99
6.3.2 Shifting Our Focus to Lowering the Total Cost 99

Appendices 101
A Appendices for Chapter 3 . 101

A.1 CNN Architecture . 101
A.2 AutoEncoder Architecture . 101

B Appendices for Chapter 4 . 102
B.1 Proof of Lemma 4.3 . 102
B.2 Proof of Lemma 4.4 . 104
B.3 Proof of Lemma 4.5 . 105
B.4 Proof of Theorem 4.6 . 105
B.5 Benchmark Datasets . 105

C Appendices for Chapter 5 . 106
C.1 Benchmark Datasets . 106

iv CONTENTS

C.2 Proof of Theorem 5.1 . 107

Acknowledgments 109

Bibliography 110

ABSTRACT v

Abstract

We are surrounded by an immense number of automated and intelligent systems
empowered by machine learning in our daily lives. We are starting to take machine
learning applications such as object detection, handwriting recognition, speech recog-
nition, and text generation for granted, which were not easily available just a decade
ago.

Although machine learning seems to have been successfully applied in the real
world, building a practical machine learning system is still extremely difficult. For
example, collecting a correct class label can be difficult. In this case, we may instead
need to learn from weak supervision, where the supervision of the data can be given in
a weaker or alternative form than the usual supervision. Another example is learning
from limited data. This may cause overfitting issues, especially when models with
a large capacity is used. These examples are common real-world scenarios due to
high data collecting and data labeling costs, and various practical constraints. In
this dissertation, we focus on making machine learning more reliable under weak
supervision or limited data. We summarize our contributions as follows.

In Chapter 3, we introduce our novel problem setting of learning a binary classifier
from only positive data, without any negative data or unlabeled data. As an exam-
ple, this task is important in purchase prediction. We can easily collect customer
data from our own company (positive data), but not from rival companies (negative
data). However, even in this challenging scenario, we still want to perform binary
classification. Our finding is that if one can equip positive data with confidence
(positive-confidence), one can successfully learn a binary classifier with the optimal
convergence rate to solve this problem, which we call positive-confidence classification.
The key technique is to reformulate the classification risk into a formulation that only
requires the positive-confidence data, even though naively computing the classifica-
tion risk requires both positive and negative data. This leads to a simple empirical
risk minimization framework that is model-, loss-, and optimization-independent.
We also show the consistency and an estimation error bound for positive-confidence
classification, and experimental results showing the effectiveness of our method.

vi ABSTRACT

In Chapter 4, we discuss a new type of weak supervision called complementary la-
bels, which are helpful for multi-class classification. A complementary label specifies
a class that a pattern does not belong to. Collecting complementary labels would be
less laborious than collecting ordinary labels, since annotators/labelers do not have
to carefully choose the correct class from a long list of candidate classes. However,
complementary labels are less informative than ordinary labels and thus a suitable
approach is needed to better learn from them. For this challenging problem, we
show that an unbiased estimator to the classification risk can be obtained only from
complementarily labeled data, if a loss function satisfies a particular symmetric con-
dition. We then derive estimation error bounds for the proposed method and prove
that the learned classifier achieves the optimal convergence rate. We also show that
learning from complementary labels can be easily combined with learning from ordi-
nary labels, i.e., ordinary supervised learning, resulting in even better generalization
performance. We further extend the unbiased risk estimator to arbitrary losses and
models, and improve it by a non-negative correction and a gradient ascent trick. We
show experimental results demonstrating the usefulness of our approach.

In Chapter 5, we introduce a novel regularizer that can be used to avoid over-
fitting. Overparameterized deep networks have the capacity to make the empirical
risk go to zero, resulting in an overconfident model with degraded test performance.
While previous regularization methods indirectly cope with this problem, we propose
a direct solution called flooding that intentionally prevents further reduction of the
empirical risk when it reaches a reasonably small value, which we call the flood level.
Our approach makes the flooded empirical risk float around the flood level by per-
forming mini-batched gradient descent as usual but gradient ascent if the empirical
risk is below the flood level. This can be implemented with one line of code and is
compatible with any stochastic optimizer and other regularizers. With flooding, we
will have a “random walk” with the same non-zero empirical risk, and we expect the
model to go into an area with a flat loss landscape that leads to better generalization.
We experimentally show that flooding improves the generalization performance and
as a byproduct, induces a double descent curve of the test loss.

In Chapter 6, we summarize our contributions in this dissertation and conclude.
We discuss possible extensions for positive-confidence classification, complementary-
label classification, and flooding. Finally, we discuss future directions for reliable
machine learning.

In summary, this dissertation is devoted to making machine learning more reli-
able under limited data and supervision. A common approach in all of our methods
is risk modification. We start by observing the classification risk as the final target
which we want to minimize by training our classifier. Then, we take a modification

ABSTRACT vii

step by either rewriting or correcting the risk. Risk rewriting is used in positive-
confidence learning and complementary-label learning. Since we do not have access
to fully labeled data, we rewrite the classification risk in an alternative formulation
that utilizes weakly supervised data. This leads to a theoretically grounded algorithm
with an unbiased estimator of the classification risk and an estimation error bound
of the learned classifier achieving the optimal convergence rate. Another technique
is risk correction. In our regularization method, we employ this risk correction tech-
nique, by putting a lower-bound on the empirical risk. We also use a risk correction
technique in complementary-label learning to avoid severe overfitting. A notable ad-
vantage of the risk modification approach is that it usually produces a framework
that can be applied to a variety of domains, optimizers, and models. To conclude,
this dissertation demonstrates that risk rewriting and risk correction can be a pow-
erful approach in building practical and useful algorithms for learning from limited
data and supervision.

viii ABSTRACT

LIST OF FIGURES ix

List of Figures

1.1 Relationship between previous works (du Plessis et al., 2014, 2015;
Sakai et al., 2017; Kiryo et al., 2017; Lu et al., 2020) and this dis-
sertation. Blue is risk rewriting and red is risk correction. Arrows
(→) indicate how ideas in one paper were utilized in, extended in, or
inspired another paper (or chapter). The years in the right-hand side
show the years of publication in Ishida et al. (2017, 2018, 2019, 2020). 15

3.1 Comparisons of positive-negative (PN) classification, soft-label classi-
fication, one-class classification, positive-unlabeled (PU) classification,
and positive-confidence (Pconf) classification. 32

3.2 Illustrations based on a single trial of the four setups used in exper-
iments with various Gaussian distributions. The red and green lines
are decision boundaries obtained by Pconf and Weighted classification,
respectively, where only positive data with confidence are used (no neg-
ative data). The black boundary is obtained by O-SVM, which uses
only hard-labeled positive data. The blue boundary is obtained by the
fully-supervised method using data from both classes. Histograms of
confidence of positive data are shown below. 42

4.1 The mean accuracy and standard deviation for five trials. We per-
formed the experiments for varying proportions of ordinary and com-
plementary labels. 63

4.2 The left and middle graphs shows the total risk (4.61) (in black color)
and the risk decomposed into each ordinary class term (4.62) (in other
colors) for training data with linear and MLP models, respectively.
The right graph shows the corresponding test accuracy for both models. 67

4.3 Experimental results for various datasets and models. Dark colors
show the mean accuracy of 5 trials and light colors show standard
deviation. 73

x LIST OF FIGURES

5.1 (a) shows 3 different concepts related to overfitting. [A] shows the gen-
eralization gap increases, while the training and test losses decrease.
[B] also shows the increasing gap, but the test loss starts to rise. [C]
shows the training loss becoming (near-)zero. We avoid [C] by flood-
ing the bottom area, visualized in (b), which forces the training loss
to stay around a constant. This leads to a decreasing test loss once
again. We confirm these claims in experiments with CIFAR-10 shown
in (c)–(d). 76

5.2 A visual explanation of how flooding repeats gradient decent and gra-
dient ascent. b is the flooding level and J is the original learning
objective. Gradient descent happens when J > b but gradient ascent
happens when J < b. 77

5.3 Comparison of flooding with different mini-batch sizes. We report the
mean accuracy and standard deviation over four trials with different
mini-batch sizes (1, 10, and 50) and datasets (Two Gaussians, Spiral,
and Sinusoid). 86

5.4 Comparison of different implementations for flooding. We report the
mean accuracy and standard deviation of five trials with different
datasets (Two Gaussians, Spiral, and Sinusoid). We compare three
methods: Baseline (without flooding), flooding with (5.14) (sq), and
flooding with (5.6) (abs). 87

5.5 Learning curves of the test loss showing that adding flooding leads
to lower test loss. The black dotted line shows the baseline with-
out flooding. The colored lines show the learning curves with flood-
ing for different flooding levels. We show the learning curves for b ∈
{0.01, 0.02, . . . , 0.10}. KMNIST is Kuzushiji-MNIST, C10 is CIFAR-
10, and C100 is CIFAR-100. MLP, BN, DA, and LRD stand for multi-
layer perceptron, batch normalization, data augmentation and learning
rate decay, respectively. 88

5.6 Vertical axis is the training accuracy and the horizontal axis is the
flood level. Marks are placed on the flood level that was chosen based
on validation accuracy. 90

LIST OF FIGURES xi

5.7 Relationship between test loss and amplitude of gradient (with training
or test loss). Each point (“◦” or “+”) in the figures corresponds to a
single model at a certain epoch. We remove the first 10 epochs and
plot the rest. “◦” is used for the method with flooding and “+” is used
for the method without flooding. The large black “◦” and “+” show
the epochs with early stopping. The color becomes lighter (purple →
yellow) as the training proceeds. 92

5.8 One-dimensional visualization of flatness. We visualize the training/test
loss with respect to perturbation. We depict the results for 3 models:
the model when the empirical risk with respect to training data is be-
low the flooding level for the first time during training (dotted blue),
the model at the end of training with flooding (solid blue), and the
model at the end of training without flooding (solid red). 93

xii LIST OF FIGURES

LIST OF TABLES xiii

List of Tables

1.1 Conceptual comparisons of regularizers. X/× stands for yes/no. “Tar-
get training loss” indicates the ability to specify the amount of training
loss we want to have at the end of training. “Domain independent”
means it can be used for various domains, e.g., vision and language.
“Task independent” means it can be used for various tasks, e.g., clas-
sification and regression. “Model independent” means it can be used
for various models, e.g., linear, kernel, and neural network models. x
is the input and y is the class label. 10

3.1 Comparison of the proposed Pconf classification with other methods,
with varying degrees of overlap between the positive and negative dis-
tributions. We report the mean and standard deviation of the clas-
sification accuracy over 20 trials. We show the best and equivalent
methods based on the 5% t-test in bold, excluding the fully-supervised
method and O-SVM whose settings are different from the others. . . . 43

3.2 Mean and standard deviation of the classification accuracy with noisy
positive confidence. The experimental setup is the same as Table 3.1,
except that positive confidence scores for positive data are noisy. Std.
is the standard deviation of Gaussian noise. 44

3.3 Mean and standard deviation of the classification accuracy over 20 tri-
als for the Fashion-MNIST dataset with fully-connected three hidden-
layer neural networks. Pconf classification was compared with the
baseline Weighted classification method, Auto-Encoder method and
fully-supervised method, with T-shirt as the positive class and differ-
ent choices for the negative class. The best and equivalent methods
are shown in bold based on the 5% t-test, excluding the Auto-Encoder
method and fully-supervised method. 45

xiv LIST OF TABLES

3.4 Mean and standard deviation of the classification accuracy over 20
trials for the CIFAR-10 dataset with convolutional neural networks.
Pconf classification was compared with the baseline Weighted classi-
fication method, Auto-Encoder method and fully-supervised method,
with airplane as the positive class and different choices for the negative
class. The best and equivalent methods are shown in bold based on the
5% t-test, excluding the Auto-Encoder method and fully-supervised
method. 46

4.1 Mean and standard deviation of classification accuracy over five trials
in percentage, when the number of classes is changed. “PC” is (4.18),
“OVA” is (4.17), “sigmoid” is (4.32), and “ramp” is (4.33). Best and
equivalent methods (with 5% t-test) are bold. 58

4.2 Mean and standard deviation of classification accuracy over 20 trials
in percentage. “PC/S” is the proposed method for pairwise compari-
son formulation with sigmoid loss, “PL” is partial label with squared
hinge loss, “ML” is multi-label, and “OL” is classification from ordinary
labels. Best and equivalent methods (with 5% t-test excluding “OL”)
are bold. # train denotes the total number of training and validation
samples in each class. # test denotes the number of test samples in
each class. 60

4.3 Means and standard deviations of classification accuracy over 10 trials
in percentage. “OL” is the ordinary label method, “CL” is the com-
plementary label method, and “OL & CL” is a combination method
that uses both ordinarily and complementarily labeled data. Best and
equivalent methods are highlighted in boldface. “Class” denotes the
class labels used for the experiment and “Dim” denotes the dimension-
ality d of patterns to be classified. # train denotes the number of
ordinarily/complementarily labeled data for training and validation in
each class. # test denotes the number of test data in each class. 61

5.1 Experimental results for the synthetic data. The average and standard
deviation of the accuracy of each method over 10 trials. Sub-table (A)
shows the results without early stopping. Sub-table (B) shows the
results with early stopping. The boldface denotes the best and com-
parable method in terms of the average accuracy according to the t-test
at the significance level 1%. The average and standard deviation of
the chosen flood level is also shown. 85

LIST OF TABLES xv

5.2 Benchmark datasets. Reporting accuracy for all combinations of early
stopping and flooding. We compare “w/o flood” and “w/ flood” and
the better one is shown in boldface. The best setup for each dataset
is shown with underline. “–” means that flood level of zero was opti-
mal. “LRD” stands for learning rate decay and “DA” stands for data
augmentation. C10 is CIFAR-10 and C100 is CIFAR-100. 90

1 Summary statistics of benchmark datasets. Fashion is Fashion-MNIST
and Kuzushiji is Kuzushiji-MNIST. 106

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In this chapter, we explain the motivation of this dissertation by beginning with a
background of machine learning. We then explain the difficulty of deploying machine
learning systems in the real world, and motivate the necessity of reliable machine
learning research that can cope with many of the issues. Within reliable machine
learning, we explain learning from weak supervision and learning from limited data
in detail. Finally, we explain the contributions and organization of this dissertation.

1.1 Machine Learning

In this section, we explain the background of machine learning, benefits of the ma-
chine learning approach, learning paradigms, and the necessity of reliable machine
learning in the real world.

1.1.1 What is Machine Learning?

We are surrounded by an immense number of automated and intelligent machines in
our daily lives, which did not exist just one or two decades ago. We can immediately
list up a dozen of these by observing our smartphones in our pockets. The camera
function can detect positions of human faces when taking pictures of friends and
family. A large number of photos are tagged and categorized based on the person
that is in a photograph. Instead of finger tapping on the tiny QWERTY keyboards to
write text, we can swipe through the letters (Goodfellow, 2020), or even better, we can
simply “talk” to the smartphone, and the speech will be translated into text in real-
time. We also have the luxury of handwriting with our fingers or with stylus-pens, and
the smartphone will automatically recognize the characters. Mailing apps can provide
us with phrases to use for replying, video-sharing apps provide recommendation for

2 1.1. MACHINE LEARNING

the next video to watch, media apps provide machine-generated news, and health
apps provide an estimated number of steps taken per day. The battery lifespan is
optimized to last longer, based on our daily charging habits. Countless automated
and intelligent software is running on our smartphones and on our apps.

One of the fundamental technologies behind all of these examples is machine
learning (Bishop, 2006; Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014;
Sugiyama, 2015). Machine learning is the process of automatically extracting im-
portant patterns, trends, or knowledge from data or experience with a computer,
without the need of a human trying to encode domain specific knowledge into rules
through computer programs. For example, assume we have a dataset of many spam
emails and non-spam emails. A naive approach might be to make a list of known
spammers based on email addresses, domains, or IP addresses included in the emails
labeled as spam (Harker, 1997). Then it would be simple to write a program with
an if-then statement to detect future spam emails. This will not work so well since
spammers continue to make new entities. A slightly better approach would be to
write a computer program that calculates a spam score, by counting the number of
keywords that experts on spam have agreed to have a high chance of being included
in a spam email.

This might work to some extent, but many challenges will remain. What if spam
can be better characterized by combinations of keywords instead of single keywords?
What if the order of keywords that appear is important? This will require a much
more complex computer program and require more time with spam experts to get a
list of combinations or orders of keywords.

On the other hand, a supervised learning approach, one of the most successful
areas within machine learning that aims to predict the output based on input data,
can be a good alternative (Pantel and Lin, 1998). The computer would try to learn
the mapping between the email contents (and other available features such as sender
information) and email’s output label of spam and non-spam, in an automatic way
with a predictive power on previously unseen email examples. The same system can
be used for different languages as long as we prepare a set of spam and non-spam
emails for the target language. If spammers start sending out new types of spams,
we can swap the email collection to more recent examples and use the same machine
learning system again to learn the new patterns.

As we can see in the spam application, a machine learning approach can be
helpful to automate tasks that require extensive human supervision and complex
rule-based computer programs (Shalev-Shwartz and Ben-David, 2014). A key point
of this machine learning approach is that it shifts the burden of writing complex
programs to the process of collecting a labeled dataset, where the human domain

CHAPTER 1. INTRODUCTION 3

knowledge is indirectly used in preparing spam/non-spam labels. This approach
can be tremendously powerful for tasks that are beyond human capabilities (Shalev-
Shwartz and Ben-David, 2014). Difficult tasks can be too complex to break down
into rule-based programs, but it may be surprisingly easy to prepare a dataset with
human-supervised labels instead. Even in the relatively simple spam detection case,
Pantel and Lin (1998) discussed how experienced computational linguists were not
able to provide good keyword combinations. On the other hand, most people can
identify a spam email when they see one, even if they are neither a linguist, a security
engineer, a police officer, nor a researcher on criminology.

In the last decade, this usefulness of machine learning has been empowered by an
increasing amount of data, cheaper storage, better computing power, efficient human
labeling with crowdsourcing platforms (Howe, 2008), and better deep neural networks
(Goodfellow et al., 2016). Machine learning is used to further tackle even more
challenging tasks, and has been improving its performance, sometimes achieving a
human or superhuman level, in image classification (Russakovsky et al., 2015), natural
language processing (Devlin et al., 2019), speech recognition (Hinton et al., 2012a),
and games (Silver et al., 2016). This success has led to the adoption of machine
learning in various science areas such as bioinformatics (Olson et al., 2018), robotics
(Kober et al., 2013), and neuroscience (Vu et al., 2018), and has been transforming
industries such as agriculture (Liakos et al., 2018), transportation (Bojarski et al.,
2016), healthcare (Litjens et al., 2017), and finance (Heaton et al., 2017), just to
name a few.

1.1.2 Learning Paradigms

Traditionally, it is common to classify machine learning problems and algorithms into
supervised learning and unsupervised learning (Murphy, 2012).

Supervised Learning

In supervised learning, the learner is first given training data. Each data has its
corresponding target output. We have already seen spam detection as an example
of supervised learning (Pantel and Lin, 1998), where the data is a set of emails and
the output is spam/non-spam. Another famous example is the hand-written digit
image recognition. We are given pixel data in the form of matrices, which are the
patterns, and each image has an output value which represents the digits: {0, . . . , 9}.
Our goal is to learn a classifier from such a training dataset, and then correctly
classify test digit images (or test emails) into each digit class (or spam/non-spam)
with the classifier (Bishop, 2006). These examples with discrete output values are

4 1.1. MACHINE LEARNING

called classification. Spam detection is called binary classification because it has two
output labels, spam and non-spam, while digit image recognition is called multi-class
classification because it has more than two output labels. If the output is a continuous
value, for example the temperature or the housing price, the problem would be called
regression. If we want to predict the order of data, such as the order of websites for
search engine results, the problem is called ranking (Mohri et al., 2012).

Tasks related to predicting, detecting, filtering, classifying, scoring, and ordering
can often be formulated as a supervised learning problem, and hence it has many
real-world applications.

Unsupervised Learning

In unsupervised learning, the training dataset consists of only input data, and we
are not given any output values. Our goal is to find interesting patterns or discover
some kind of knowledge from only the input (Murphy, 2012).

An example is clustering, where our aim is to discover groups of similar input
from the data. A second example is density estimation, where our aim is to estimate
the probability density from the input data. A third example is dimension reduction,
where the aim is to reduce the dimension of the input data. This process is often used
as a pre-processing step for supervised learning. Dimension reduction is also used
for visualization, where the dimension is reduced to 2 or 3, so that we can visually
understand the input data (Maaten and Hinton, 2008).

Since output information is not required in unsupervised learning, we do not need
to additionally label our collected data. However, if our goal is supervised learning,
e.g., classification, unsupervised learning is not suitable.

In between Supervised and Unsupervised Learning

Although supervised and unsupervised learning are often introduced as the main
machine learning paradigms, there are other paradigms that do not necessarily fit
into these traditional classes.

Weakly supervised learning (Zhou, 2018) is located in the middle of supervised
and unsupervised learning. Unlike ordinary supervised learning, the output value or
label is not fully given and thus imperfect. Usually we still aim for the same goal as
supervised learning, which is to learn an input-output relationship and predict the
true output of test samples, regardless of the disadvantage of the weak supervision
in the training dataset. Depending on how the supervision is imperfect, there are
many directions of research. We will discuss weakly supervised learning in depth in
Section 1.2.

CHAPTER 1. INTRODUCTION 5

Reinforcement learning (Sutton and Barto, 2018) can also be regarded as a re-
search field in between supervised and unsupervised learning. In reinforcement learn-
ing, an agent must learn a mapping from a state to an action by trying to maximize a
reward. The agent does not receive explicit supervision for which action to take, but
receives a reward signal instead. Interactions between the agent and the environment
and the trade-off between exploration-exploitation are important aspects that do not
appear in supervised and unsupervised learning.

Self-supervised learning (Jing and Tian, 2020) tries to extract or invent super-
vision from the given unlabeled data. Take a language model as an example. The
language modelling task is to predict the next word given the past sequence of words
(Goldberg, 2017). Similarly, in next sentence prediction, which was used to train Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019),
two sentences are given, and the task is to predict whether the second sentence comes
after the first sentence in the original text or not. In computer vision, one example is
predicting the relationship between a rotated image and the original image (Gidaris
et al., 2018). Another is predicting the relative position of multiple patches within a
single image (Doersch et al., 2015). In these tasks, a human annotator does not have
to explicitly give labels, but instead, the task is designed so that the labels can be
attached automatically from the unlabeled data. Self-supervised learning tasks are
useful in learning representations and can be helpful for downstream tasks including
supervised learning tasks.

1.1.3 Reliable Machine Learning

Although machine learning seems to be successful in a wide variety of tasks, many
of the successful examples deal with easy and ideal situations. In order for machine
learning to be truly useful for various problems and tasks, we need to satisfy a
number of factors, and many real-world challenges have been hindering machine
learning to be adopted in various areas or have occasionally caused problems for
existing applications. Machine learning systems might be used in an environment
that may include outliers or that may differ largely from how the training data
has been collected (Sugiyama and Kawanabe, 2012; Ganin and Lempitsky, 2015;
du Plessis and Sugiyama, 2014b). There may be malicious entities that try to fool
the machine learning system, which can become a critical issue for internet security or
autonomous driving (Szegedy et al., 2014; Goodfellow et al., 2015). The supervision
in the training dataset may include incorrect labels, which is often the case when they
are collected through crowdsourcing platforms (Natarajan et al., 2013; Patrini et al.,
2017; Han et al., 2018; Ghosh et al., 2017). Business constraints constantly change,

6 1.2. LEARNING FROM WEAK SUPERVISION

with new regulations and more demand for privacy, leading to more difficulty for
machine learning systems (Dwork, 2008). Under these challenges, machine learning
systems can either fail with severe performance deterioration or machine learning
cannot be applied anymore due to lack of data resources and supervision. Thus it is
important for machine learning systems to be reliable in these various undependable
environments.

In the next sections, we will discuss two scenarios where reliability becomes im-
portant, which will be the focus of this dissertation: learning from weak supervision
and learning from limited data.

1.2 Learning from Weak Supervision

When using machine learning in the real world, it is important that it is possible to
collect training data in a cheap and easy way. Collecting data has become extremely
cheap in some applications. For example in web services, users usually upload data
such as photos or videos themselves. Even if users do not explicitly upload data,
they can still generate data by clicking, reading, watching, communicating, and many
other online activities. In most cases, the collected data is in the form of an unlabeled
data. Even if a user uploads a picture of a dog, a human labeler would need to
annotate this as a dog in order for this to become labeled data. Although we have
crowdsourcing platforms that allow us to label data in an efficient and cheap way,
the labeling cost can still become high when we want to label a larger amount of
data, and we may not be able to rely on crowdsourcing when class labels require
special knowledge of certain domains, e.g., labeling of medical images. This is one
of the bottlenecks of supervised learning, and various machine learning frameworks
have been developed in order to learn from an alternative type of supervision, called
limited or weak supervision. In Section 1.2.1, we will review the literature of weak
supervision in the binary classification setup. In Section 1.2.2, we will review the
literature of weak supervision in the multi-class classification setup.

1.2.1 Binary Classification from Weak Supervision

One of the early examples of weak supervision is semi-supervised learning (Chapelle
et al., 2006). Semi-supervised learning deals with the problem when we have some
labeled examples along with a large set of unlabeled examples. Early works on semi-
supervised learning such as Chapelle et al. (2003) and Belkin et al. (2006) assumed
that nearby samples have the same labels or input data can be placed on a low-
dimensional manifold. These ideas based on distributional assumptions have been

CHAPTER 1. INTRODUCTION 7

further refined to work under deep networks, and have shown to perform well re-
cently (Lee, 2013; Laine and Aila, 2017; Sajjadi et al., 2016; Miyato et al., 2018).
However, in problems when these assumptions do not hold, the performance can
become worse. Sakai et al. (2017) proposed a semi-supervised learning method for
binary classification based on empirical risk minimization that does not rely on distri-
butional assumptions. The empirical risk will be defined formally in the next chapter.
It can be informally regarded as a performance measure calculated with respect to
the finite training data sampled from the underlying distribution and is non-negative.
It is better for a smaller value.

Another line of work is positive-unlabeled (PU) learning (Elkan and Noto, 2008).
In PU learning, the training dataset includes only positive and unlabeled data, and
assumes no access to negative data. This can be useful when negative data is hard
to collect or expensive to label. For example, when we want to predict the relevance
of digital advertisements to an user in websites, it would be tempting to use the
“clicked” cases as positive (relevant) and “non-clicked” cases as negative (not relevant).
However, “non-clicked” cases includes cases where the user was potentially interested
in the advertisement but did not have time to click on it (positives), in addition
to cases where the user was truly not interested in the advertisement (negatives).
In this situation, it would be more natural to assume the “non-clicked” data as an
unlabeled dataset which includes both positive and negative samples. In du Plessis
et al. (2014, 2015), they used a rewriting trick, to transform the original classification
risk with positive and negative distributions to a risk with positive and unlabeled
distributions. In Kiryo et al. (2017), they used a risk correction trick, in order to
prevent the empirical risk from going to negative. This was effective in preventing
overfitting.

In similar-unlabeled learning (Bao et al., 2018), the training dataset will have
pairs including two samples, labeled as “similar”, meaning that the label is the same
among the two samples. In addition to that, unlabeled data will be available for
training. This can be useful when we cannot obtain explicit class labels, but may
be easier to obtain similarity pairs. An extension was proposed in Shimada et al.
(2019) to incorporate dissimilar pairs. A risk rewriting trick was used to utilize
similar/dissimilar pairs and unlabeled data.

In unlabeled-unlabeled learning (du Plessis et al., 2013; Lu et al., 2019, 2020), the
goal is to learn a binary classifier (or identify the classification boundary) from two
unlabeled sets of data. The two data is assumed to have different class proportions
but has the same class conditional distributions. In Lu et al. (2019), a risk rewriting
trick was used to learn from these unlabeled data.

In all of the weakly supervised learning problems introduced above, it is assumed

8 1.2. LEARNING FROM WEAK SUPERVISION

that unlabeled data is easy to prepare. In some real-world applications, however, even
unlabeled data may be difficult to obtain. Can we design new binary classification
algorithms based on the assumption that even unlabeled data is not available?

1.2.2 Multi-Class Classification from Weak Supervision

Most semi-supervised learning methods introduced in Section 1.2.1 were already pro-
posed for the multi-class classification scenario.

Multi-positive and unlabeled learning (Xu et al., 2017) is an extension of the binary
PU learning to the multi-class setup. Consider multi-class classification problem with
K classes. We have labeled samples from K − 1 classes, and unlabeled samples from
all K classes.

In partial-label learning (Cour et al., 2011), we have a few candidate classes for
each one of the samples. We do not know which one of the candidates is the true
class of that sample, but we know the true class is included in the candidates. Our
goal is to predict the true label of test samples. Consider a case where several people
are shown in a photo, and this is tagged with their names (Cour et al., 2011). If we
extract the faces in this photo, we can use the tags that were attached to this photo
as candidate names and use partial-label learning to learn a classifier.

Zero-shot learning (Akata et al., 2013) considers a multi-class classification prob-
lem with K+J classes. We have training data for only seen classes from {1, . . . ,K},
while test data will be coming from unseen classes from {K + 1, . . . ,K + J}. In
generalized zero-shot learning (Xian et al., 2017), the test data will include all classes
from {1, . . . ,K,K + 1, . . . ,K + J}. We are also given attributes or descriptions for
each of the seen and unseen classes, which characterize the properties or give seman-
tic information of each class. Zero-shot learning methods try to transfer knowledge
from the seen class to the unseen class through these additional information.

These advances on multi-class classification from weak supervision has been ex-
plored extensively and were shown to work well in experiments. However, labeling is
still a bottleneck. Even if unlabeled data can be additionally used, we still need to
collect precise labels or candidate labels. In zero-shot learning and multi-PU learn-
ing, we still require labels for the multi-positives or seen classes. This can become
especially costly for a multi-class problem with many classes, since annotators will
need to identify the correct class out of a huge number of candidates. Can we design
another weakly supervised problem setting that lowers this annotation cost?

CHAPTER 1. INTRODUCTION 9

1.3 Learning with Limited Data

The standard procedure of machine learning would be to first learn the model with
a training dataset, and then use or deploy that learned model in the real world.
Ideally, we would want to generalize to previously unseen examples, and correctly
predict the output of those examples. This is called generalization, and is one of
the central topics in machine learning. A challenge in designing algorithms that
generalize well is to avoid overfitting. Overfitting can easily happen with finite data,
and is generally explained as the phenomenon where the machine learning model
has a high performance on training data (fitting too much on training data), but
performs worse on test data which was not used for training. In order to prevent
overfitting from happening, various methods known as regularization, also known as
regularizers, have been proposed.

The name “regularization” dates back to at least Tikhonov regularization for the
ill-posed linear least-squares problem (Tikhonov, 1943; Tikhonov and Arsenin, 1977).
One example is to modify X>X (where X is the design matrix) to become “regular”
by adding a term to the objective function. There are many other regularization
methods that are based on the principle of adding an additional term to the learning
objective, and we will call these methods as “narrow regularizers”.

More recently, “regularization” has further evolved to a more general meaning
including various methods that alleviate overfitting but do not necessarily have a step
to regularize a singular matrix or add a regularization term to the objective function.
For example, Goodfellow et al. (2016) defines regularization as “any modification we
make to a learning algorithm that is intended to reduce its generalization error but
not its training error.” We refer to this type of regularization as “general regularizers”.
In the following, we will review both narrow and general regularizers. See Table 1.1
for a summary of the regularization methods in chronological order.

Narrow Regularizers

• `2 regularization is a generalization of Tikhonov regularization (Tikhonov, 1943)
and can be applied to non-linear models. It is also called ridge regression. These
methods implicitly assume that the optimal model parameters are close to zero.

• `1 regularization (Tibshirani, 1996) adds a term which is a sum of absolute
values of the parameters. This is based on the sparsity assumption that the
optimal model has only a few non-zero parameters. Many interesting extensions
have been proposed, including the elastic net (Zou and Hastie, 2005), group
lasso (Yuan and Lin, 2006) and fused lasso (Tibshirani et al., 2005).

10 1.3. LEARNING WITH LIMITED DATA

Table 1.1: Conceptual comparisons of regularizers. X/× stands for yes/no. “Target training loss”
indicates the ability to specify the amount of training loss we want to have at the end of training.
“Domain independent” means it can be used for various domains, e.g., vision and language. “Task
independent” means it can be used for various tasks, e.g., classification and regression. “Model
independent” means it can be used for various models, e.g., linear, kernel, and neural network
models. x is the input and y is the class label.

Regularization methods
in chronological order

ta
rg
et

tr
ai
ni
ng

lo
ss

do
m
ai
n
in
de

pe
nd

en
t

ta
sk

in
de

pe
nd

en
t

m
od

el
in
de

pe
nd

en
t

Main assumption

`2 regularization
(Tikhonov, 1943) × X X X Optimal model params are close to 0

Weight decay
(Hanson and Pratt, 1988) × X X X Optimal model params are close to 0

Early stopping
(Morgan and Bourlard, 1990) × X X X Overfitting occurs in later epochs

Double backprop
(Drucker and LeCun, 1992) × X X × Small change of x do not change output

`1 regularization
(Tibshirani, 1996) × X X X Optimal model has to be sparse

Image data augmentation
(Simard et al., 2003) × × X X Input is invariant to the translations

Multi-task regularization
(Evgeniou and Pontil, 2004) × X × X Different tasks have similar params

Manifold regularization
(Belkin et al., 2006) × X × X x is on manifold & output is smooth

Dropout
(Hinton et al., 2012b) × X X × Existence of complex co-adaptations

Knowledge distillation
(Hinton et al., 2014) × X × X Teacher gives “dark knowledge”

Adversarial training
(Goodfellow et al., 2015) × × × X Existence of local sensitivity

Batch normalization
(Ioffe and Szegedy, 2015) × X X × Existence of internal covariate shift

Label smoothing
(Szegedy et al., 2016) × X × X True posterior is not a one-hot vector

Confidence penalty
(Pereyra et al., 2017) × X × X True posterior’s entropy is not small

Focal loss
(Lin et al., 2017) × X × X Overconfidence with cross-entropy loss

Mixup
(Zhang et al., 2018) × × × X Linear relationship between x and y

Flooding (Chapter 5)
(Ishida et al., 2020) X X X X Learning until zero loss is harmful

CHAPTER 1. INTRODUCTION 11

• Double back-propagation (Drucker and LeCun, 1992) adds a gradient-based
term that penalizes large Jacobian. It explicitly pushes the input gradients
to zero, making the minimum broader. Recently, similar ideas have been ex-
plored (Sokolić et al., 2017) and has been used for contractive autoencoders
(Rifai et al., 2011).

• The confidence penalty (Pereyra et al., 2017) adds a confidence penalty term
that penalizes low entropy of the output distribution of the classifier. The
motivation is similar to label smoothing, which we will discuss shortly.

• Manifold regularization (Belkin et al., 2006) was proposed for the setting of
semi-supervised learning. It is based on the assumptions that inputs are on a
manifold and outputs are smooth. It adds an additional term that forces close
samples to have similar outputs.

• Multi-task regularization (Evgeniou and Pontil, 2004) is another problem-specific
method. It was proposed for the setting of multi-task learning and adds an ad-
ditional term that forces different tasks to have similar parameters.

• Knowledge distillation (Hinton et al., 2014) is a teacher-student framework,
where the knowledge of a large neural network (teacher) is distilled to a smaller
model (student). This is helpful in situations where we want to deal with edge
computing or when we have constraints for storage or inference time. Hinton
et al. (2014) proposed a method that first trains the teacher on the training data,
and then adds a regularization term that forces the student to have softmax
probabilities that are similar to the teacher’s softmax probabilities. This can be
regarded as a special case of label smoothing, where the softmax probabilities
are specified by the teacher.

• Adversarial training (Szegedy et al., 2014) was originally aiming to increase ad-
versarial robustness in the test stage with adversarial examples, but Goodfellow
et al. (2015) found that it was also helpful in generalizing better to the origi-
nal test dataset. They proposed to add a penalty term that trains adversarial
samples near original samples to have the same output as the original.

General Regularizers

• Dropout (Hinton et al., 2012b; Srivastava et al., 2014) is a regularization method
for training neural networks. During training, each unit is “dropped” according
to a drop probability and the remaining weights are trained by backpropaga-
tion. In Srivastava et al. (2014), they explained how this can be helpful to avoid

12 1.3. LEARNING WITH LIMITED DATA

co-adaptation between units. Dropout has been widely used in many neural
networks (Devlin et al., 2019), and many interesting extensions have been pro-
posed since then, including DropConnect (Wan et al., 2013), Spatial Dropout
(Tompson et al., 2015), Cutout (DeVries and Taylor, 2017), and DropBlock
(Ghiasi et al., 2018).

• Batch normalization (Ioffe and Szegedy, 2015), also known as batch norm, is
a helpful regularizer that normalizes the mean and standard deviation of units
in each layer based on a mini-batch. Ioffe and Szegedy (2015) assumed the
existence of internal covariate shift and explained that batch norm helps to fix
the shift. They also showed that batch normalization can sometimes eliminate
the need for dropout in experiments.

• Early stopping (Morgan and Bourlard, 1990) is a simple model selection tech-
nique that chooses the model after the best performing epoch based on perfor-
mance on validation data. Note that validation data is only used for hyper-
parameter selection, and is usually kept separated from training and test datasets.
A common phenomenon in experiments with large neural networks is that the
performance based on the validation dataset becomes better in the early stage
of training, but it starts to become worse in the latter stage of training. The
idea is to keep the model with the best performance based on validation data
so far. When training is finished, instead of using the model at the last point,
we use the model that we kept with the best performance. In practice, we can
stop training after the validation performance becomes worse for a few epochs
in a row (Goodfellow et al., 2016).

• Label smoothing (Szegedy et al., 2016) is a popular technique that modifies the
one-hot label of the training data with a smoothed version with 1− ε instead of
1 and ε

K−1 instead of 0, where K is the number of classes, and ε typically takes
a small positive constant value such as 0.1 or 0.2. This modification will prevent
the neural network from giving overconfident softmax probabilities. Instead of
using the same constant for all training samples, Li et al. (2020) proposed a
method where the smoothness is dependent on the data.

• The focal loss (Lin et al., 2017) is a modification of the softmax cross-entropy
loss which was orginally proposed for object detection. Mukhoti et al. (2020)
showed that the focal loss has implicit regularization effects by making the
gradient norms for confident samples to be lower. Charoenphakdee et al. (2020)
showed the focal loss is classification-calibrated (Bartlett et al., 2006) but is not
strictly proper.

CHAPTER 1. INTRODUCTION 13

• Data augmentation (Shorten and Khoshgoftaar, 2019) is a popular technique for
increasing training data artificially. Simard et al. (2003) proposed simple image
augmentation techniques such as rotating and skewing. Since then, various
ways of augmentation (Shorten and Khoshgoftaar, 2019) have been explored,
especially in the image domain. Recently, sophisticated automation strategies
(Cubuk et al., 2019; Lim et al., 2019; Hataya et al., 2020) have been proposed
in order to go beyond the labor-intensive procedures of designing augmentation
manually.

• Mixup (Zhang et al., 2018) is a method that trains with convex combinations
of pairs of input data and their labels. This regularization will enforce linear
behavior in-between training samples. It has been applied in Verma et al.
(2019), Berthelot et al. (2019), and Kolesnikov et al. (2020) and is becoming
an essential regularization tool for developing new systems.

So far, we have seen various regularization methods that add an additional penalty
term to the learning objective, modify the model architecture, modify the output
labels, or increase artificial data in order to alleviate overfitting. Although these
regularization methods—both the narrow and general ones—already work well in
practice and have become the de facto standard tools (Bishop, 2006; Goodfellow
et al., 2016), most of them are domain-, task-, loss-, or model-dependent, or have
additional assumptions on the optimal model parameters.

• Domain-specific methods: Data augmentation and methods such as mixup
(Zhang et al., 2018) are mostly designed for the vision domain. They may
require some efforts when applying to other domains (Guo et al., 2019; Thu-
lasidasan et al., 2019).

• Task-specific methods: Label smoothing (Szegedy et al., 2016), confidence penalty
(Pereyra et al., 2017), and knowledge distillation (Hinton et al., 2014) are used
for problems with class labels and harder to use with regression or ranking.
Manifold regularization (Belkin et al., 2006) and multi-task regularization (Ev-
geniou and Pontil, 2004) are proposed for certain tasks.

• Loss-specific methods: The focal loss (Lin et al., 2017) is a modification of a
specific loss function. Label smoothing (Szegedy et al., 2016), the confidence
penalty (Pereyra et al., 2017), and knowledge distillation (Hinton et al., 2014)
assume that trained models can be used as class-posterior probability estima-
tors, and use loss functions such as the softmax cross-entropy loss function.

14 1.4. CONTRIBUTION: A RISK MODIFICATION APPROACH

• Model-specific methods: Batch normalization (Ioffe and Szegedy, 2015) and
dropout (Srivastava et al., 2014) are designed for neural network architectures
with hidden layers.

• Additional assumptions: `2 and `1 regularization assume that the optimal model
parameters are close to zero or is sparse. Although dropout (Srivastava et al.,
2014), early stopping (Morgan and Bourlard, 1990), label smoothing (Szegedy
et al., 2016), and also weight decay (which shrinks the parameter weights during
gradient updates (Hanson and Pratt, 1988)) do not add a regularization term
to the learning objective explicitly, it is known that these four methods are
equivalent or similar to `2 regularization under certain conditions (Bishop, 1995;
Goodfellow et al., 2016; Wager et al., 2013; Lukasik et al., 2020; Loshchilov and
Hutter, 2019). This implies that they may have similar assumptions on the
optimal model parameters.

Modern machine learning tasks are applied to complex problems where the op-
timal model parameters are not necessarily close to zero or are not sparse, and it
would be ideal if we can properly add regularization effects to the optimization stage
without such assumptions. Is it possible to propose a regularization method that has
an alternative assumption? Is it also possible to have a domain-, task-, loss-, and
model-independent method?

1.4 Contribution: A Risk Modification Approach

In this dissertation, we will propose positive-confidence learning, complementary-
label learning, and flooding. Positive-confidence learning tries to learn a binary clas-
sifier when we have access to only positive data with confidence. Complementary-
label learning tries to learn a multi-class classifier when the class label in the training
dataset specifies the class that the sample does not belong to. Flooding is a regular-
izer that aims to avoid overfitting.

One important concept that underlies all of our proposed methods is “risk mod-
ification”. We start by observing the classification risk as the final target which we
want to minimize by training our classifier. Then, we take a modification step by
either rewriting or correcting the risk. In this section, we discuss benefits of taking
this approach and our main contributions of this dissertation from the viewpoint of
risk modification. We visualize the relationship between previous works in Fig. 1.1.

CHAPTER 1. INTRODUCTION 15

Figure 1.1: Relationship between previous works (du Plessis et al., 2014, 2015; Sakai
et al., 2017; Kiryo et al., 2017; Lu et al., 2020) and this dissertation. Blue is risk
rewriting and red is risk correction. Arrows (→) indicate how ideas in one paper
were utilized in, extended in, or inspired another paper (or chapter). The years in
the right-hand side show the years of publication in Ishida et al. (2017, 2018, 2019,
2020).

1.4.1 Risk Rewriting

In positive-confidence learning and complementary-label learning, we do not have
access to the data sampled from a clean joint distribution of input data and output
labels. We rewrite the classification risk in an alternative formulation that utilizes
weakly supervised data and prove that it is equivalent to the original classification
risk. This leads to a theoretically grounded algorithm with an unbiased estimator of
the classification risk and an estimation error bound of the learned classifier achieving
the optimal convergence rate. This usually produces a framework that can potentially
be applied to a variety of domains and various choices of optimizers and models.
A similar risk rewriting trick was used in previous works such as Natarajan et al.
(2013), du Plessis et al. (2014), and Sakai et al. (2017), to propose better algorithms
for existing problem settings. On the other hand, we propose novel problem settings
that can be useful in handling different types of supervision.

1.4.2 Risk Correction

Although the risk rewriting approach does not prohibit us from using any type of
models, using a large neural network model can lead to severe overfitting. This was
especially a serious issue for positive-unlabeled (PU) learning (Elkan and Noto, 2008;
du Plessis et al., 2014). The good news of the risk rewriting approach is that we

16 1.5. PROPOSED METHODS

can identify the issue easily. In Kiryo et al. (2017), a negative empirical risk was
observed after training for a while in PU learning, which cannot happen with the
empirical risk in the original formulation. Kiryo et al. (2017) proposed a way to force
the empirical risk to become non-negative, and showed that it was effective. We
found that a similar issue occurs in complementary-label learning, and we propose
correcting the risk to become non-negative.

Flooding can also be regarded as a risk correction method. In ordinary learning,
the training loss will never go below zero, but we go a step further by forcing the
training loss to not go below a positive flood level, under the assumption that learning
until zero training loss is harmful for generalization.

Many regularization methods also try to avoid learning too much, but with an
indirect approach, e.g., adding penalty terms, limiting the number of training epochs,
decaying the learning rate, and modifying the output labels to be smooth. Since they
are indirect, they cannot aim for a specific training loss value that they want to have
at the end of training. With overparametrized neural networks, the training loss can
often still go to zero even if these regularizers are used during training. On the other
hand, flooding is based on a risk correction approach, which allows us to directly aim
for a specific value of the training loss we want to keep till the end of training.

1.5 Proposed Methods

In this section, we will describe and summarize the contributions for the three pro-
posed methods: positive-confidence learning (Section 1.5.1), complementary-label
learning (Section 1.5.2), and flooding (Section 1.5.3).

1.5.1 Learning from Positive-Confidence Data

Can we learn a binary classifier from only positive data, without any negative data or
unlabeled data? As an example, this task can be important in purchase prediction.
We can easily collect customer data from our own company (positive data), but not
from rival companies (negative data). We still want to perform binary classification
in this challenging scenario.

We show that if one can equip positive data with confidence (positive-confidence),
one can successfully learn a binary classifier with the optimal convergence rate to
solve this problem, which we call positive-confidence classification. In the example of
purchase prediction, often times, our customers are asked to answer questionnaires/-
surveys on how strong their buying intention was over rival products. This may be
transformed into a probability between 0 and 1 by pre-processing, and then it can

CHAPTER 1. INTRODUCTION 17

be used as positive-confidence, which is all we need for positive-confidence learning.
This is related to one-class classification which is aimed at “describing” the positive

class by clustering-related methods, but one-class classification does not have the
ability to tune hyper-parameters and their aim is not on “discriminating” positive
and negative classes.

Positive-confidence classification is also related to PU classification (Elkan and
Noto, 2008; du Plessis et al., 2014), which uses hard-labeled positive data and ad-
ditional unlabeled data for constructing a binary classifier (see Section 1.2.1). A
practical advantage of our positive-confidence classification method over typical PU
classification methods is that, in addition to not requiring unlabeled data, our method
does not involve estimation of the class-prior probability (du Plessis and Sugiyama,
2014a), which is required in standard PU classification methods but is known to be
highly challenging in practice (Blanchard et al., 2010; Scott and Blanchard, 2009).
This is enabled by the additional confidence information which indirectly includes the
information of the class prior probability, bridging the class conditionals and class
posteriors.

A key technique in our proposed method was to reformulate the classification
risk into a formulation that only requires the positive-confidence data, even though
naively computing the classification risk requires both positive and negative data.
This leads to a simple empirical risk minimization framework that is model-, loss-,
and optimization-independent. We also showed the consistency and an estimation
error bound for positive-confidence classification.

In synthetic experiments, we investigate the behavior of the proposed method,
against various data distributions and when positive-confidence can be noisy. We
also show the effectiveness of our approach in benchmark datasets.

This problem and algorithm will be introduced in Chapter 3.

1.5.2 Learning from Complementary Labels

As we discussed in Section 1.2.2, collecting labeled data is costly and thus a critical
bottleneck in real-world multi-class classification tasks. To mitigate this problem,
we proposed a novel setting, namely learning from complementary labels for multi-
class classification. A complementary label specifies a class that a pattern does not
belong to. Collecting complementary labels would be less laborious than collecting
ordinary labels, since annotators/labelers do not have to carefully choose the correct
class from a long list of candidate classes. However, complementary labels are less
informative than ordinary labels and thus a suitable approach is needed to better
learn from them.

18 1.5. PROPOSED METHODS

We show that an unbiased estimator to the multi-class classification risk can
be obtained only from complementarily labeled data, if a loss function satisfies a
particular symmetric condition. We derive estimation error bounds for the proposed
method and prove that the optimal parametric convergence rate is achieved. We
propose an extension for complementary-label learning with an unbiased estimator
of the classification risk, for arbitrary losses and models. We further improved the
risk estimator by a non-negative correction and a gradient ascent trick.

We further show that learning from complementary labels can be easily combined
with learning from ordinary labels (i.e., ordinary supervised learning), providing a
highly practical implementation of the proposed method.

Note that even though unbiased estimators were actively explored for the binary
classification problem (Sakai et al., 2017; du Plessis et al., 2014, 2015; Natarajan
et al., 2013), it was not so common in multi-class classification until a few years ago.
In noisy-label learning, the work by Natarajan et al. (2013) was extended to the
multi-class case in Patrini et al. (2017). In PU learning, du Plessis et al. (2014) was
extended to the multi-class case in Xu et al. (2017).

This problem and algorithms of complementary labels will be introduced in Chap-
ter 4.

1.5.3 Flooding: A Novel Regularizer to Avoid Overfitting

Overparameterized deep networks have the capacity to memorize training data with
zero training error. Even after memorization, the training loss continues to approach
zero, making the model overconfident and the test performance degraded. Since
existing regularizers do not directly aim to avoid zero training loss, they often fail to
maintain a moderate level of the the training loss, ending up with a too small or too
large loss.

To cope with this problem, we propose a direct solution called flooding that inten-
tionally prevents further reduction of the training loss when it reaches a reasonably
small value, which we call the flood level. We simply modify the empirical risk as

R̃(g) = |R̂(g)− b|+ b, (1.1)

where R̂(g) is the empirical risk, g is the classifier, and b is the flood level. Our
approach makes the flooded empirical risk float around the flood level by performing
mini-batched gradient descent as usual but gradient ascent if the empirical risk is
below the flood level. This can be implemented with one line of code, and is compat-
ible with any stochastic optimizer and other regularizers. With flooding, the model
will continue to “random walk” with the same non-zero empirical risk, and we expect

CHAPTER 1. INTRODUCTION 19

it to drift into an area with a flat loss landscape that leads to better generalization.
We experimentally showed that flooding improves performance and as a byproduct,
induces a double descent curve of the test loss with respect to the training epochs.

This regularization method will be introduced in Chapter 5.

1.6 Organization

So far, we have discussed the background of machine learning, reliable machine learn-
ing, and contributions of this dissertation. The rest of this dissertation is organized
as follows.

In Chapter 2, we will review the basic problem setting of supervised learning,
especially binary and multi-class classification and introduce our notations. This will
be the background for reading the rest of the dissertation.

Chapter 3 and Chapter 4 deal with learning from weak supervision. In Chapter 3,
we introduce binary classification problem with positive-confidence data and propose
an algorithm for the problem setting. This is based on our publication in Ishida et al.
(2018).

In Chapter 4, we introduce multi-class classification with complementary labels
and propose an algorithm for this problem setting. This is based on our publications
in Ishida et al. (2017) and Ishida et al. (2019).

In Chapter 5, we shift our focus to the topic of learning from limited data. We
introduce our novel regularization method that aims to avoid overfitting which we
call flooding. This is based on our publication in Ishida et al. (2020).

Finally, we conclude and discuss future directions in Chapter 6.

1.7 Publications Related to This Dissertation

1. T. Ishida, G. Niu, W. Hu, M. Sugiyama. Learning from Complementary Labels.
In Advances in Neural Information Processing Systems 30 (NeurIPS2017).

2. T. Ishida, G. Niu, and M. Sugiyama. Binary Classification From Positive-
Confidence Data. In Advances in Neural Information Processing Systems 31
(NeurIPS2018).

3. T. Ishida, G. Niu, A. K. Menon, and M. Sugiyama. Complementary-Label
Learning for Arbitrary Losses and Models. In Proceedings of Thirty-sixth In-
ternational Conference on Machine Learning (ICML2019).

20 1.7. PUBLICATIONS RELATED TO THIS DISSERTATION

4. T. Ishida, I. Yamane, T. Sakai, G. Niu, M. Sugiyama. Do We Need Zero
Training Loss After Achieving Zero Training Error? In Proceedings of Thirty-
seventh International Conference on Machine Learning (ICML2020).

CHAPTER 2. BACKGROUND AND PRELIMINARIES 21

Chapter 2

Background and Preliminaries

In this chapter, we review the background and preliminaries for supervised learning,
with an emphasis on classification. We have already introduced the main concepts
and examples of supervised learning in the previous chapter, but now we will deal
with technical backgrounds that will be used from the next chapter.

2.1 Data and Distribution

Supervised learning is the task of learning a mapping between input and output.
Suppose X is the input space, and Y is the output space. x ∈ X ⊆ Rd is a d-
dimensional input, also known as a pattern, a sample, or an example. y ∈ Y is the
supervision. In classification, the output is discrete with Y = {1, 2, . . . ,K}, where K
is the number of classes. The classification problem can be categorized into binary
classification when there are two classes (K = 2) and multi-class classification when
there are more classes (K ≥ 3). Note that in binary classification, it is conventional
to use Y = {−1,+1} or Y = {0, 1} instead of Y = {1, 2}. This simplifies the
formulation in some cases, and we will adopt Y = {−1,+1} for binary classification.
In multi-class classification, we sometimes use a one-hot vector, ey, which takes 1 for
the yth element and 0 for others.

We regard x and y as random variables and assume the underlying distribution
has a joint probability density p(x, y). This is usually unknown, but our training
samples are independently and identically distributed (i.i.d.) from p(x, y):

{(xi, yi)}ni=1
i.i.d.∼ p(x, y), (2.1)

where n is the number of training samples.
We will also have a (smaller) validation dataset and a test dataset that are sam-

22 2.2. BINARY CLASSIFICATION

pled i.i.d. from p(x, y), that will be used for model/hyper-parameter selection and
performance evaluation, respectively.

2.2 Binary Classification

In this section, we consider binary classification with Y = {−1,+1}.

2.2.1 Classification Risk

If we are given an input x and a score function g : Rd → R, we can give a class
prediction by ŷ = sign(g(x)). sign(·) is 1 if the sign of the argument is non-negative
and −1 otherwise. Since the score function g is used to classify x into the positive
or negative class, it is also called a classifier. The classification risk is defined as

R(g) = Ep(x,y)[`(g(x), y)], (2.2)

where Ep(x,y) is the expectation over (x, y) ∼ p(x, y) and ` is a loss function ` : R×
{−1,+1} → R+. Note that R+ = {x ∈ R|x ≥ 0}. There are some cases where a loss
function that can become negative is considered, e.g., van Rooyen et al. (2015), but
in this dissertation, we only consider non-negative loss functions.

With a margin, which is defined as z = yg(x), we can also have a margin loss
function with a single argument: ` : R→ R+. For simplicity, we use the same notation
of `. Using a margin is helpful because when y and g(x) has the same (or a different)
sign, this means that the classifier’s output is correct (or incorrect). With the margin
loss, the classification risk is defined as

R(g) = Ep(x,y)[`(yg(x))]. (2.3)

It is sometimes helpful to rewrite the classification risk in the following ways:

R(g) = Ep(x)[p(y = +1|x) · `(g(x)) + p(y = −1|x) · `(−g(x))]

= π+Ep(x|y=+1)[`(g(x))] + π−Ep(x|y=−1)[`(−g(x))], (2.4)

where π+ = p(y = +1) and π− = p(y = −1). One of the most important loss
functions is the zero-one loss, which is defined as

`01(z) :=

0 if z > 0,

1 otherwise.
(2.5)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 23

This means that we have a loss of 0 when the margin is positive, but loss of 1
otherwise. This corresponds to having a penalty only when the classifier gives a
wrong prediction. The classification error is the classification risk for the zero-one
loss:

R01(g) := Ep(x,y)[`01(g(x), y)]. (2.6)

The goal of binary classification is to learn a score function g that minimizes the
classification error R01(g). In optimization, we consider the minimization of the risk
with an almost surely differentiable surrogate loss function `(z) (6= `01(z)) to make
the problem more tractable. A surrogate loss function typically takes a small value
for a large z. Furthermore, since p(x, y) is usually unknown and there is no way to
exactly evaluate R(g), we minimize its empirical version calculated from the training
data instead:

R̂(g) :=
1

n

n∑
i=1

`(g(xi), yi). (2.7)

We call R̂ the empirical risk. Since we are minimizing the empirical risk to learn g
with respect to our classifier set G, this approach is called empirical risk minimization
(ERM) (Vapnik, 1995). When we use the term “training/test loss”, this will mean
the empirical risk with respect to the surrogate loss function ` over the training/test
data, respectively. We refer to the “training/test error” as the empirical risk with
respect to `01 over the training/test data, respectively (which is equal to one minus
accuracy) (Zhang, 2004b).

2.2.2 Bayes Risk and Bayes Error

What is the best achievable classification risk? We can use the concept of the Bayes
risk, which is defined as

R∗ := inf
h
R(h), (2.8)

where the infimum is taken over all measurable functions h : Rd → R. The Bayes risk
is often referred to as the Bayes error if the zero-one loss is used:

R∗01 = inf
h
R01(h). (2.9)

A classifier that can achieve the Bayes error R∗01 is called the Bayes classifier or
Bayes optimal classifier. An alternative way to define the Bayes error is by looking
at the conditional probabilities (Mohri et al., 2012). The conditional Bayes error (or

24 2.2. BINARY CLASSIFICATION

noise) for any x ∈ X is

r(x) = min[p(y = +1|x), p(y = −1|x)]. (2.10)

This can be regarded as the average error of the Bayes classifier for x. Then, the
Bayes error can be regarded as the average of the conditional Bayes error:

R∗01 = Ep(x)[r(x)]. (2.11)

We have R∗01 = 0 only in the deterministic case where r(x) = 0 for all x ∈ X . In
classification, this is called a class-separable problem. In practice, it is more common
to encounter a stochastic case where R∗01 > 0.

2.2.3 Models

The term model is used interchangeably with a classifier, but a model is more likely
to be used when we are interested in the design or the architecture of the classifier.

Linear-in-Parameter Model

We first demonstrate a linear-in-parameter model for the binary classifier g(x). We
can consider the binary classifier of the form

g(x) = w>φ(x) + β, (2.12)

where > denotes the transpose, w ∈ Rb is the weight parameter, β ∈ R is a bias
parameter, and φ(x) : Rd → Rb is the basis functions. If we redefine w and φ(x) as

w :=

(
w

β

)
, φ(x) :=

(
φ(x)

1

)
, (2.13)

it can be rewritten in a simpler form as

g′(x) = w>φ(x). (2.14)

One example of the basis function that is often used in practice is the Gaussian kernel
model. If {xi}ni=1 is the set of n samples, Gaussian kernel model is defined as

φ(x) =

exp

(
− ‖x−x1‖2

2σ2

)
...

exp
(
− ‖x−xn‖

2

2σ2

)
 , (2.15)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 25

where σ > 0 is a bandwidth parameter and ‖ · ‖ is the Euclidean norm. Note that
b = n in this case.

Linear-in-Input Model

A linear-in-input model is a special case of the linear-in-parameter model, and can
be derived by using φ(x) = x as the basis function. Then we have

g(x) = w>x+ β, (2.16)

with w ∈ Rd.

Neural Network Model

Recently, neural network models are becoming popular in various areas, e.g., com-
puter vision and natural language processing. One of the simplest neural network is
the feedforward neural network with a single hidden layer. If the hidden layer has M
units, each unit m ∈ {1, . . . ,M} in the hidden layer is a linear combination of the
inputs:

a(1)
m =

d∑
i=1

w
(1)
mixi + b(1)

m , (2.17)

where w(1)
m ∈ Rd and b(1)

m ∈ R are the weight parameters and bias parameter for unit
m between the input and hidden layer. w(1)

mi is the i-th element of w(1)
m . Each unit is

followed by a non-linear activation function h(1)(·):

c(1)
m = h(1)(am). (2.18)

For example, we may use a rectified linear unit (ReLU) (Nair and Hinton, 2010):

h(1)(am) = max(0, am). (2.19)

These outputs go through another transformation with a linear combination and we
end up with a single output unit:

a(2) =
M∑
m=1

w(2)
m c(1)

m + b(2), (2.20)

where w(2) ∈ RM and b(2) ∈ R are the weight parameters and bias parameter for the
output unit. w(2)

m is the m-th element of w(2). Finally, we have another non-linear

26 2.2. BINARY CLASSIFICATION

activation function h(2)(·):
c(2) = h(2)(a(2)). (2.21)

In binary classification, the logistic sigmoid function may be used:

h(2)(a(2)) =
1

1 + exp(−a(2))
. (2.22)

This can easily be extended to multiple hidden layers and multiple output units for
multi-class classification (Bishop, 2006; Goodfellow et al., 2016).

Designing a good neural network architecture has been one of the central topics
in machine learning in the past few decades. Many specialized architectures have
been developed depending on the type of data, e.g., convolutional neural networks
for grid-structured data, recurrent neural networks for sequential data, and graph
neural networks for graph data, and innovative building blocks have been developed,
e.g., dropout (Srivastava et al., 2014), batch normalization (Ioffe and Szegedy, 2015),
residual connections (He et al., 2016), attention (Bahdanau et al., 2015), and self-
attention (Vaswani et al., 2017).

2.2.4 Binary Loss Functions

We have discussed that in practice, we can swap the zero-one loss function `(z) with
a surrogate loss function `(z) which typically takes a small value for a large z. Some
popular surrogate loss functions are the following.

• Logistic loss: `(z) = log(1 + exp(−z)).

• Squared loss: `(z) = (1− z)2.

• Hinge loss: `(z) = max(0, 1− z).

• Squared-hinge loss: `(z) =
(

max(0, 1− z)
)2.

• Exponential loss: `(z) = exp(−z).

• Ramp loss: 1
2 min

(
2,max(0, 1− z)

)
.

• Sigmoid loss: 1/
(
1 + exp(z)

)
.

Different loss functions are used for different purposes. For example, the logistic loss
is used when we want to train a probabilistic classifier (Sugiyama, 2015) and the
hinge loss is used for support vector machines (Vapnik, 1995).

The logistic, squared, hinge, squared-hinge, and exponential losses are convex
while the ramp and sigmoid losses are non-convex. Using a linear-in-parameter model

CHAPTER 2. BACKGROUND AND PRELIMINARIES 27

with a convex loss function can lead to convex optimization problems, and can be
solved efficiently. When we use a squared loss with a linear-in-parameter model,
we can derive an analytical solution. We may use gradient descent methods for
differentiable loss functions (the logistic, squared, exponential, squared-hinge, and
sigmoid loss), or sub-gradient descent methods for sub-differentiable loss functions
(the hinge and ramp loss).

2.2.5 Regularization

If we simply minimize the empirical risk, we may suffer from overfitting. The learned
classifier may achieve a small error on training data, but may have a higher error on
unseen test data. In practice, we often add regularizers to avoid overfitting. A simple
way would be to add an additional regularization term Ω(g) and minimize the total
of the two terms instead: ming∈G R̂(g) +λΩ(g). λ is a positive hyper-parameter that
controls the strength of the regularization term. For example, in `2 regularization,
we add the term λ

2‖w‖
2
2 when model parameters are w. See Section 1.3 for various

regularizers.

2.3 Multi-Class Classification

In this section, we consider multi-class classification with Y = {1, . . . ,K} withK ≥ 3.
We review the multi-class classification risk and multi-class loss functions. Note that
the discussions on the Bayes risk/error, classification model, and regularization can
be extended to the multi-class case in a straightforward way.

2.3.1 Classification Risk

The classification risk is defined as

R(g) = Ep(x,y)[L(g(x), y)], (2.23)

where a multi-class loss function is L : RK × [K]→ R+ and g : Rd → RK is a vector-
valued score function. Typically, our classifier f : Rd → [K] is constructed as

f(x) := arg max
k∈[K]

gk(x), (2.24)

where gz(·) is the k-th element of g(·). In case of a tie, arg max returns the smallest
argument. This is aligned with popular implementations, e.g., NumPy (Harris et al.,
2020).

28 2.3. MULTI-CLASS CLASSIFICATION

The zero-one loss is

L01(v, k′) :=

0 if arg maxk∈{1,...,K} vk = k′,

1 otherwise,
(2.25)

where v := (v1, . . . , vK)> ∈ RK . The classification error is the classification risk for
L = L01:

R01(g) := Ep(x,y)[L01(g(x), y)]. (2.26)

Similarly to binary classification, the goal of multi-class classification is to learn a
score function g that minimizes the classification error R01(g). Again, we consider
minimizing the empirical risk, an empirical version calculated from the training data:

R̂(g) :=
1

n

n∑
i=1

L(g(xi), yi), (2.27)

where {(xi, yi)}ni=1 are i.i.d. samples from p(x, y).

2.3.2 Multi-Class Loss Functions

In order to minimize the classification risk, we need to define the multi-class loss
function L(g(x), y). Here we review four multi-class loss functions: one-versus-all,
pairwise-comparison, multi-class SVM, and softmax cross-entropy. For the first three,
we will utilize binary surrogate loss functions `(z) : R→ R+ (that incurs a large loss
for small z) to design multi-class loss functions.

One-Versus-All Loss

We first introduce the one-versus-all (OVA) (Zhang, 2004a) loss function which is
defined as

LOVA′(g(x), y) = `
(
gy(x)

)
+
∑
y′ 6=y

`
(
− gy′(x)

)
. (2.28)

For a pattern x that belongs to class y, the one-versus-all loss encourages binary
classifier gy(x) to take a large value, and all other binary classifiers gy′(x) to take
small values.

It is also useful to normalize the “rest” loss by K − 1,

LOVA(g(x), y) = `
(
gy(x)

)
+

1

K − 1

∑
y′ 6=y

`
(
− gy′(x)

)
, (2.29)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 29

which will be used in Chapter 4.

Pairwise-Comparison Loss

The second example is the pairwise-comparison (PC) (Vapnik, 1998) loss function
which is defined as

LPC

(
g(x), y

)
=
∑
y′ 6=y

`
(
gy(x)− gy′(x)

)
. (2.30)

For a pattern x that belongs to class y, the pairwise-comparison loss encourages
binary classifier gy(x) to take a larger value than other binary classifiers gy′(x). In
other words, pairwise-comparison loss only pays attention to the sign of the difference
of classifiers, while the one-versus-all loss pays attention to the sign of each classifiers.

Multi-Class SVM Loss

The third example is the multi-class SVM (Crammer and Singer, 2001) loss function
which is defined as

LMS(g(x), y) = `
(
gy(x)−max

y′ 6=y
gy′(x)

)
. (2.31)

For a pattern x that belongs to class y, the multi-class SVM loss encourages bi-
nary classifier gy(x) to take a larger value than the largest value of all other binary
classifiers gy′(x). It can be regarded as a modification of the PC loss.

Softmax Cross-Entropy Loss

The final example is the softmax cross-entropy (CE) (Murphy, 2012) loss function
which is defined as

LCE(g(x), y) := − log
exp(gy(x))∑

k∈[K] exp(gk(x))
. (2.32)

It can be regarded as a multi-class extension of the logistic loss. A modification of
the softmax cross-entropy loss called the focal loss was proposed in Lin et al. (2017),
to put more focus on the harder examples:

LF(g(x), y) := −
(

1− exp(gy(x))∑
k∈[K] exp(gk(x))

)γ
log

exp(gy(x))∑
k∈[K] exp(gk(x))

, (2.33)

where γ>0 is a hyper-parameter.

30 2.3. MULTI-CLASS CLASSIFICATION

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 31

Chapter 3

Learning from Positive-Confidence
Data

Can we learn a binary classifier from only positive data, without any negative data or
unlabeled data? In this chapter, we show that if one can equip positive data with con-
fidence (positive-confidence), one can successfully learn a binary classifier, which we
name positive-confidence (Pconf) classification. Our work is related to one-class clas-
sification which is aimed at “describing” the positive class by clustering-related meth-
ods, but one-class classification does not have the ability to tune hyper-parameters
and their aim is not on “discriminating” positive and negative classes. For the Pconf
classification problem, we provide a simple empirical risk minimization framework
that is model-, loss-, and optimization-independent. We theoretically establish the
consistency and an estimation error bound, and demonstrate the usefulness of the
proposed method with synthetic and benchmark experiments.

3.1 Introduction

In this chapter, we deal with the binary classification problem from positive data
equipped with confidence. At a glance, being restricted from collecting negative or
even unlabeled data but having access to confidence information may seem pecu-
liar. However, such a positive-confidence (Pconf) classification scenario is conceiv-
able in various real-world problems. For example, in purchase prediction, we can
easily collect customer data from our own company (positive data), but not from
rival companies (negative data). Often times, our customers are asked to answer
questionnaires/surveys on how strong their buying intention was over rival products.
This may be transformed into a probability between 0 and 1 by pre-processing, and

32 3.1. INTRODUCTION

(a) PN classification (b) Soft-label classification

(c) One-class classification (d) PU classification (e) Pconf classification

Figure 3.1: Comparisons of positive-negative (PN) classification, soft-label classifi-
cation, one-class classification, positive-unlabeled (PU) classification, and positive-
confidence (Pconf) classification.

then it can be used as positive-confidence, which is all we need for Pconf classification
as we will see in this chapter.

Another example is a common task for app developers, where they need to predict
whether app users will continue using the app or unsubscribe in the future. The
critical issue is that depending on the privacy/opt-out policy or data regulation,
they need to fully discard the unsubscribed user’s data. Hence, developers will not
have access to users who quit using their services, but they can associate a positive-
confidence score with each remaining user by, e.g., how actively they use the app.

In these potential applications, as long as positive-confidence data can be col-
lected, Pconf classification allows us to obtain a classifier that discriminates between
positive and negative data.

Pconf classification is related to one-class classification, which is aimed at “de-
scribing” the positive class typically from hard-labeled positive data without con-
fidence. To the best of our knowledge, previous one-class methods are motivated
geometrically (Tax and Duin, 2004; Schölkopf and Smola, 2001), by information the-

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 33

ory (Sugiyama et al., 2014), or by density estimation (Breunig et al., 2000). However,
due to the descriptive nature of all previous methods, there is no systematic way to
tune hyper-parameters to “classify” positive and negative data. In the conceptual
example in Figure 3.1, one-class methods do not have any knowledge of the negative
distribution, such that the negative distribution is in the lower right of the positive
distribution. Therefore, even if we have an infinite number of training data, one-class
methods will still require regularization to have a tight boundary in all directions,
wherever the positive posterior becomes low. Note that even if we knew that the
negative distribution lies in the lower right of the positive distribution, it is still im-
possible to find the decision boundary, because we still need to know the degree of
overlap between the two distributions and the class prior. One-class methods are
designed for and work well for anomaly detection, but have critical limitations if the
problem of interest is “classification”.

On the other hand, Pconf classification is aimed at constructing a discriminative
classifier and thus hyper-parameters can be objectively chosen to discriminate be-
tween positive and negative data. We will later see that Pconf classification relies
on the key ingredient recurring throughout this dissertation, which is the empiri-
cal risk minimization (ERM; Vapnik (1995)) and this makes it suitable for binary
classification.

Pconf classification is also related to positive-unlabeled (PU) classification (Elkan
and Noto, 2008; du Plessis et al., 2014, 2015), which uses hard-labeled positive data
and additional unlabeled data for constructing a binary classifier. A practical ad-
vantage of our Pconf classification method over typical PU classification methods is
that our method does not involve estimation of the class-prior probability, which is
required in standard PU classification methods (du Plessis et al., 2014, 2015; Kiryo
et al., 2017), but is known to be challenging in practice (Scott and Blanchard, 2009;
Blanchard et al., 2010; Menon et al., 2015; du Plessis et al., 2017). This is enabled
by the additional confidence information which indirectly includes the information of
the class prior probability, bridging class conditionals and class posteriors.

Finally, Pconf classification has connections with soft-label learning (Nguyen
et al., 2011). In soft-label learning, in addition to the class labels, we have an aux-
iliary information that corresponds to how strong the labeler feels about his or her
labeling decision. Soft-label learning has access to data from all classes, while Pconf
classification only has access to positive data.

In this chapter, we propose a simple ERM framework for Pconf classification
and theoretically establish the consistency and an estimation error bound. We then
provide an example of implementation to Pconf classification by using linear-in-
parameter models (such as Gaussian kernel models), which can be implemented eas-

34 3.2. PROBLEM FORMULATION

ily and can be computationally efficient. Finally, we experimentally demonstrate the
practical usefulness of the proposed method for training linear-in-parameter models
and deep neural networks.

3.2 Problem Formulation

In this section, we formulate our Pconf classification problem. Suppose that a pair
of d-dimensional pattern x ∈ Rd and its class label y ∈ {+1,−1} follow an unknown
probability distribution with density p(x, y). Our goal is to train a binary classifier
g(x) : Rd → R so that the classification risk R(g) is minimized:

R(g) = Ep(x,y)[`(yg(x))], (3.1)

where Ep(x,y) denotes the expectation over p(x, y), and `(z) is a loss function. When
margin z is small, `(z) typically takes a large value. Since p(x, y) is unknown, the
ordinary ERM approach (Vapnik, 1995) replaces the expectation with the average
over training data drawn independently from p(x, y).

However, in the Pconf classification scenario, we are only given positive data
equipped with confidence X := {(xi, ri)}ni=1, where xi is a positive pattern drawn
independently from p(x|y = +1) and ri is the positive confidence given by ri =

p(y = +1|xi). Note that this equality does not have to strictly hold as later shown
in Section 3.4. Since we have no access to negative data in the Pconf classification
scenario, we cannot directly employ the standard ERM approach. In the next section,
we show how the classification risk can be estimated only from Pconf data.

3.3 Pconf Classification

In this section, we propose an ERM framework for Pconf classification and derive
an estimation error bound for the proposed method. Finally we give examples of
practical implementations.

3.3.1 Empirical Risk Minimization (ERM) Framework

Let π+ = p(y = +1) and r(x) = p(y = +1|x), and let E+ denote the expectation
over p(x|y = +1). Then the following theorem holds, which forms the basis of our
approach:

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 35

Theorem 3.1. The classification risk (3.1) can be expressed as

R(g) = π+E+

[
`
(
g(x)

)
+

1− r(x)

r(x)
`
(
− g(x)

)]
, (3.2)

if we have p(y = +1|x) 6= 0 for all x sampled from p(x).

Proof. The classification risk (3.1) can be expressed and decomposed as

R(g) =
∑
y=±1

∫
`
(
yg(x)

)
p(x|y)p(y)dx

=

∫
`
(
g(x)

)
p(x|y = +1)p(y = +1)dx+

∫
`
(
− g(x)

)
p(x|y = −1)p(y = −1)dx

=π+E+[`(g(x))] + π−E−[`(−g(x))], (3.3)

where π− = p(y = −1) and E− denotes the expectation over p(x|y = −1). Since

π+p(x|y = +1) + π−p(x|y = −1) = p(x, y = +1) + p(x, y = −1)

= p(x)

=
p(x, y = +1)

p(y = +1|x)

=
π+p(x|y = +1)

r(x)
, (3.4)

where the third equality requires the assumption of p(y = +1|x) 6= 0 stated in
Theorem 3.1. we have

π−p(x|y = −1) = π+p(x|y = +1)

(
1− r(x)

r(x)

)
. (3.5)

Then the second term in (3.3) can be expressed as

π−E−[`(−g(x))] =

∫
π−p(x|y = −1)`(−g(x))dx

=

∫
π+p(x|y = +1)

(
1− r(x)

r(x)

)
`(−g(x))dx

= π+E+

[
1− r(x)

r(x)
`(−g(x))

]
, (3.6)

which concludes the proof.

Equation (3.2) does not include the expectation over negative data, but only
includes the expectation over positive data and their confidence values. Furthermore,

36 3.3. PCONF CLASSIFICATION

when (3.2) is minimized with respect to g, unknown π+ is a proportional constant
and thus can be safely ignored. Conceptually, the assumption of p(y = +1|x) 6= 0 is
implying that the support of the negative distribution is the same or is included in
the support of the positive distribution.

Based on this, we propose the following ERM framework for Pconf classification:

min
g

n∑
i=1

[
`
(
g(xi)

)
+

1− ri
ri

`
(
− g(xi)

)]
. (3.7)

It might be tempting to consider a similar empirical formulation as follows:

min
g

n∑
i=1

[
ri`
(
g(xi)

)
+ (1− ri)`

(
− g(xi)

)]
. (3.8)

Equation (3.8) means that we weigh the positive loss with positive-confidence ri and
the negative loss with negative-confidence 1− ri. This is quite natural and may look
straightforward at a glance. However, if we simply consider the population version
of the objective function of (3.8), we have

E+

[
r(x)`

(
g(x)

)
+
(
1− r(x)

)
`
(
− g(x)

)]
= E+

[
p(y = +1|x)`

(
g(x)

)
+ p(y = −1|x)`

(
− g(x)

)]
= E+

[∑
y∈{±1}

p(y|x)`
(
yg(x)

)]
= E+

[
Ep(y|x)

[
`
(
yg(x)

)]]
, (3.9)

which is not equivalent to the classification risk R(g) defined by (3.1). If the outer
expectation was over p(x) instead of p(x|y = +1) in (3.9), then it would be equal
to (3.1). This implies that if we had a different problem setting of having positive
confidence equipped for x sampled from p(x), this would be trivially solved by a
naive weighting idea.

From this viewpoint, (3.7) can be regarded as an application of importance sam-
pling (Fishman, 1996; Sugiyama and Kawanabe, 2012) to (3.8) to cope with the
distribution difference between p(x) and p(x|y = +1), but with the advantage of not
requiring training data from the test distribution p(x).

In summary, our ERM formulation of (3.7) is different from naive confidence-
weighted classification of (3.8). We further show in Section 3.3.2 that the minimizer
of (3.7) converges to the true risk minimizer, while the minimizer of (3.8) converges
to a different quantity and hence learning based on (3.8) is inconsistent.

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 37

3.3.2 Theoretical Analysis

Here we derive an estimation error bound for the proposed method. To begin
with, let G be our function class for ERM. Assume there exists Cg > 0 such that
supg∈G ‖g‖∞ ≤ Cg as well as C` > 0 such that sup|z|≤Cg `(z) ≤ C`. The existence
of C` may be guaranteed for all reasonable ` given a reasonable G in the sense that
Cg exists. As usual (Mohri et al., 2012), assume `(z) is Lipschitz continuous for all
|z| ≤ Cg with a (not necessarily optimal) Lipschitz constant L`.

Denote by R̂(g) the objective function of (3.7) times π+, which is unbiased
in estimating R(g) in (3.1) according to Theorem 3.1. Subsequently, let g∗ =

arg ming∈G R(g) be the true risk minimizer, and ĝ = arg ming∈G R̂(g) be the em-
pirical risk minimizer, respectively. The estimation error is defined as R(ĝ)−R(g∗),
and we are going to bound it from above.

In Theorem 3.1, (1− r(x))/r(x) is playing a role inside the expectation, for the
fact that

r(x) = p(y = +1 | x) > 0 for x ∼ p(x | y = +1). (3.10)

In order to derive any error bound based on statistical learning theory, we should
ensure that r(x) could never be too close to zero. To this end, assume there is Cr > 0

such that r(x) ≥ Cr almost surely. We may trim r(x) and then analyze the bounded
but biased version of R̂(g) alternatively. For simplicity, only the unbiased version is
involved after assuming Cr exists.

Lemma 3.2. For any δ > 0, the following uniform deviation bound holds with prob-
ability at least 1− δ (over repeated sampling of data for evaluating R̂(g)):

supg∈G |R̂(g)−R(g)| ≤ 2π+

(
L` +

L`
Cr

)
Rn(G) + π+

(
C` +

C`
Cr

)√
ln(2/δ)

2n
, (3.11)

where Rn(G) is the Rademacher complexity of G for X of size n drawn from p(x |
y = +1).1

Proof. By assumption, it holds almost surely that

1− r(x)

r(x)
≤ 1

Cr
; (3.12)

due to the existence of C`, the change of R̂(g) will be no more than (C` +C`/Cr)/n

if some xi is replaced with x′i.

1Rn(G) = EXEσ1,...,σn [supg∈G 1
n

∑
xi∈X σig(xi)] where σ1, . . . , σn are n Rademacher variables

following Mohri et al. (2012).

38 3.3. PCONF CLASSIFICATION

Consider a single direction of the uniform deviation: supg∈G R̂(g) − R(g). Note
that the change of supg∈G R̂(g)−R(g) shares the same upper bound with the change
of R̂(g), and McDiarmid’s inequality (McDiarmid, 1989) implies that

Pr
{

supg∈G R̂(g)−R(g)− EX
[
supg∈G R̂(g)−R(g)

]
≥ ε
}

≤ exp

(
− 2ε2n

(C` + C`/Cr)2

)
, (3.13)

or equivalently, with probability at least 1− δ/2,

supg∈G R̂(g)−R(g) ≤ EX
[
supg∈G R̂(g)−R(g)

]
+

(
C` +

C`
Cr

)√
ln(2/δ)

2n
. (3.14)

Since R̂(g) is unbiased, it is routine to show that (Mohri et al., 2012)

EX
[
supg∈G R̂(g)−R(g)

]
≤ 2Rn

((
1 +

1− r
r

)
◦ ` ◦ G

)
≤ 2

(
1 +

1

Cr

)
Rn(` ◦ G)

≤ 2

(
L` +

L`
Cr

)
Rn(G), (3.15)

which proves this direction.
The other direction supg∈G R(g)− R̂(g) can be proven similarly.

Lemma 3.2 guarantees that with high probability R̂(g) concentrates around R(g)

for all g ∈ G, and the degree of such concentration is controlled by Rn(G). Based on
this lemma, we are able to establish an estimation error bound, as follows:

Theorem 3.3. For any δ > 0, with probability at least 1− δ (over repeated sampling
of data for training ĝ), we have

R(ĝ)−R(g∗) ≤ 4π+

(
L` +

L`
Cr

)
Rn(G) + 2π+

(
C` +

C`
Cr

)√
ln(2/δ)

2n
. (3.16)

Proof. Based on Lemma 3.2, the estimation error bound (3.16) is proven through

R(ĝ)−R(g∗) =
(
R̂(ĝ)− R̂(g∗)

)
+
(
R(ĝ)− R̂(ĝ)

)
+
(
R̂(g∗)−R(g∗)

)
≤ 0 + 2 supg∈G |R̂(g)−R(g)|

≤ 4π+

(
L` +

L`
Cr

)
Rn(G) + 2π+

(
C` +

C`
Cr

)√
ln(2/δ)

2n
, (3.17)

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 39

where R̂(ĝ) ≤ R̂(g∗) by the definition of R̂.

Theorem 3.3 guarantees learning with (3.7) is consistent (Ledoux and Talagrand,
1991): n → ∞ always means R(ĝ) → R(g∗). Consider linear-in-parameter models
defined by

G = {g(x) = 〈w, φ(x)〉H | ‖w‖H ≤ Cw, ‖φ(x)‖H ≤ Cφ}, (3.18)

where H is a Hilbert space, 〈·, ·〉H is the inner product in H, w ∈ H is the normal,
φ : Rd → H is a feature map, and Cw > 0 and Cφ > 0 are constants (Schölkopf and
Smola, 2001). It is known that Rn(G) ≤ CwCφ/

√
n (Mohri et al., 2012) and thus

R(ĝ) → R(g∗) in Op(1/
√
n), where Op denotes the order in probability. This order

is already the optimal parametric rate and cannot be improved without additional
strong assumptions on p(x, y), ` and G jointly (Mendelson, 2008). Additionally, if
` is strictly convex we have ĝ → g∗, and if the aforementioned G is used ĝ → g∗ in
Op(1/

√
n) (Boyd and Vandenberghe, 2004).

At first glance, learning with (3.8) is numerically more stable; however, it is
generally inconsistent, especially when g is linear in parameters and ` is strictly
convex. Denote by R̂′(g) the objective function of (3.8) times π+, which is unbiased
to

R′(g) = π+E+Ep(y|x)[`(yg(x))] (3.19)

rather than R(g). By the same technique for proving (3.11) and (3.16), it is not
difficult to show that with probability at least 1− δ,

supg∈G |R̂′(g)−R′(g)| ≤ 4π+L`Rn(G) + 2π+C`

√
ln(2/δ)

2n
, (3.20)

and hence

R′(ĝ′)−R′(g′∗) ≤ 8π+L`Rn(G) + 4π+C`

√
ln(2/δ)

2n
, (3.21)

where
g′∗ = arg ming∈G R

′(g) and ĝ′ = arg ming∈G R̂
′(g).

As a result, when the strict convexity of R′(g) and R̂′(g) is also met, we have ĝ′ → g′∗.
This demonstrates the inconsistency of learning with (3.8), since R′(g) 6= R(g) which
leads to g′∗ 6= g∗ given any reasonable G.

40 3.4. EXPERIMENTS

3.3.3 Implementation

Finally we give examples of implementations. As a classifier g, let us consider a
linear-in-parameter model g(x) = α>φ(x), where > denotes the transpose, φ(x)

is a vector of basis functions, and α is a parameter vector. Then from (3.7), the
`2-regularized ERM is formulated as

min
α

n∑
i=1

[
`
(
α>φ(xi)

)
+

1− ri
ri

`
(
−α>φ(xi)

)]
+
λ

2
α>Rα, (3.22)

where λ is a non-negative constant and R is a positive semi-definite matrix. In
practice, we can use any loss functions such as squared loss `S(z) = (z − 1)2, hinge
loss `H(z) = max(0, 1 − z), and ramp loss `R(z) = min(1,max(0, 1 − z)). In the
experiments in Section 3.4, we use the logistic loss `L(z) = log(1+e−z), which yields,

min
α

n∑
i=1

[
log
(
1 + e−α

>φ(xi)
)
+

1− ri
ri

log
(
1 + eα

>φ(xi)
)]

+
λ

2
α>Rα. (3.23)

The above objective function is continuous and differentiable, and therefore opti-
mization can be efficiently performed, for example, by quasi-Newton (Nocedal and
Wright, 2006) or stochastic gradient methods (Shalev-Shwartz and Ben-David, 2014).

3.4 Experiments

In this section, we numerically illustrate the behavior of the proposed method on
synthetic datasets for linear models. We further demonstrate the usefulness of the
proposed method on benchmark datasets for deep neural networks that are highly
nonlinear models. The implementation is based on PyTorch (Paszke et al., 2019) and
Sklearn (Pedregosa et al., 2011)2.

3.4.1 Synthetic Experiments with Linear Models

Setup

We used two-dimensional Gaussian distributions with means µ+ and µ− and covari-
ance matrices Σ+ and Σ−, for p(x|y = +1) and p(x|y = −1), respectively. For these
parameters, we tried various combinations visually shown in Figure 3.2. The specific
parameters used for each setup are:

2Our code is available online: http://github.com/takashiishida/pconf.

http://github.com/takashiishida/pconf

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 41

• Setup A: µ+ = [0, 0]>, µ− = [−2, 5]>, Σ+ =

[
7 −6

−6 7

]
, Σ− =

[
2 0

0 2

]
.

• Setup B: µ+ = [0, 0]>,µ− = [0, 4]>,Σ+ =

[
5 3

3 5

]
, Σ− =

[
5 −3

−3 5

]
.

• Setup C: µ+ = [0, 0]>,µ− = [0, 8]>,Σ+ =

[
7 −6

−6 7

]
, Σ− =

[
7 6

6 7

]
.

• Setup D: µ+ = [0, 0]>,µ− = [0, 4]>,Σ+ =

[
4 0

0 4

]
, Σ− =

[
1 0

0 1

]
.

In the case of using two Gaussian distributions, p(y = +1|x) > 0 is satisfied for
any x sampled from p(x), which is a necessary condition for applying Theorem 3.1.
500 positive data and 500 negative data were generated independently from each
distribution for training.3 Similarly, 1,000 positive and 1,000 negative data were
generated for testing. We compared our proposed method (3.7) with the weighted
classification method (3.8), a regression based method (predict the confidence value
itself and post-process output to a binary signal by comparing it to 0.5), one-class
support vector machine (O-SVM, Schölkopf et al. (2001)) with the Gaussian kernel,
and a fully-supervised method based on the empirical version of (3.1). Note that the
proposed method, weighted method, and regression based method only use Pconf
data, O-SVM only uses (hard-labeled) positive data, and the fully-supervised method
uses both positive and negative data.

In the proposed, weighted, fully-supervised methods, linear-in-input model g(x) =

α>x+ b and the logistic loss were commonly used and vanilla gradient descent with
5, 000 epochs (full-batch size) and learning rate 0.001 was used for optimization. For
the regression-based method, we used the squared loss and analytical solution (Hastie
et al., 2009). For the purpose of clear comparison of the risk, we did not use regular-
ization in this toy experiment. An exception was O-SVM, where the user is required
to subjectively pre-specify regularization parameter ν and Gaussian bandwidth γ.
We set them at ν = 0.05 and γ = 0.1.4

3Negative training data are used only in the fully-supervised method that is tested for perfor-
mance comparison.

4If we naively use default parameters in Sklearn (Pedregosa et al., 2011) instead, which is the
usual case in the real world without negative data for validation, the classification accuracy of
O-SVM is worse for all setups except D in Table 3.1, which demonstrates the difficulty of using
O-SVM.

42 3.4. EXPERIMENTS

Figure 3.2: Illustrations based on a single trial of the four setups used in experiments
with various Gaussian distributions. The red and green lines are decision boundaries
obtained by Pconf and Weighted classification, respectively, where only positive data
with confidence are used (no negative data). The black boundary is obtained by O-
SVM, which uses only hard-labeled positive data. The blue boundary is obtained by
the fully-supervised method using data from both classes. Histograms of confidence
of positive data are shown below.

Analysis with true positive-confidence

Our first experiments were conducted when true positive-confidence was known. The
positive-confidence r(x) was analytically computed from the two Gaussian densities
and given to each positive data. The results in Table 3.1 show that the proposed
Pconf method is significantly better than the baselines in all cases. In most cases, the
proposed Pconf method has similar accuracy compared with the fully supervised case,
excluding Setup C where there is a few percent loss. Note that the naive weighted
method is consistent if the model is correctly specified, but becomes inconsistent if
misspecified (Sugiyama and Kawanabe, 2012).

Analysis with noisy positive-confidence

In the above toy experiments, we assumed that true positive confidence r(x) = p(y =

+1|x) is exactly accessible, but this can be unrealistic in practice. To investigate
the influence of noise in positive-confidence, we conducted experiments with noisy
positive-confidence.

As noisy positive confidence, we added zero-mean Gaussian noise with standard

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 43

Table 3.1: Comparison of the proposed Pconf classification with other methods,
with varying degrees of overlap between the positive and negative distributions. We
report the mean and standard deviation of the classification accuracy over 20 trials.
We show the best and equivalent methods based on the 5% t-test in bold, excluding
the fully-supervised method and O-SVM whose settings are different from the others.

Setup Pconf Weighted Regression O-SVM Supervised

A 89.7± 0.6 88.7± 1.2 68.4± 6.5 76.0± 3.5 89.8± 0.7
B 81.2± 1.1 78.1± 1.8 73.2± 3.2 71.3± 2.3 81.4± 1.0
C 90.2± 9.1 82.7± 13.1 50.5± 1.7 90.8± 1.2 93.6± 0.5
D 91.5± 0.5 90.8± 0.7 64.6± 5.3 57.1± 4.8 91.4± 0.5

deviation chosen from {0.01, 0.05, 0.1, 0.2}. As the standard deviation gets larger,
more noise will be incorporated into positive-confidence. When the modified positive-
confidence was over 1 or below 0.01, we clipped it to 1 or rounded up to 0.01 respec-
tively.

The results are shown in Table 3.2. As expected, the performance starts to
deteriorate as the confidence becomes more noisy (i.e., as the standard deviation of
Gaussian noise is larger), but the proposed method still works reasonably well in
almost all cases.

3.4.2 Benchmark Experiments with Neural Network Models

Here, we use more realistic benchmark datasets and more flexible neural network
models for experiments.

Fashion-MNIST

The Fashion-MNIST dataset5 consists of 70,000 examples where each sample is a
28 × 28 gray-scale image (input dimension is 784), associated with a label from 10
fashion item classes. We standardized the data to have zero mean and unit variance.

First, we chose “T-shirt/top” as the positive class, and another item for the neg-
ative class. The binary dataset was then divided into four sub-datasets: a training
set, a validation set, a test set, and a dataset for learning a probabilistic classifier to
estimate positive-confidence. Note that we ask labelers for positive-confidence values
in real-world Pconf classification, but we obtained positive-confidence values through
a probabilistic classifier here.

5https://github.com/zalandoresearch/fashion-mnist

https://github.com/zalandoresearch/fashion-mnist

44 3.4. EXPERIMENTS

Table 3.2: Mean and standard deviation of the classification accuracy with noisy
positive confidence. The experimental setup is the same as Table 3.1, except that
positive confidence scores for positive data are noisy. Std. is the standard deviation
of Gaussian noise.

Setup A

Std. Pconf Weighted

0.01 89.8± 0.6 88.8± 0.9
0.05 89.7± 0.6 88.3± 1.1
0.10 89.2± 0.7 87.6± 1.4
0.20 85.9± 2.5 85.8± 2.5

Setup B

Std. Pconf Weighted

0.01 81.2± 0.9 78.2± 1.4
0.05 80.7± 2.3 78.1± 1.4
0.10 80.8± 1.2 77.8± 1.5
0.20 77.8± 1.4 77.2± 1.9

Setup C

Std. Pconf Weighted

0.01 92.4± 1.7 84.0± 8.2
0.05 92.2± 3.3 78.5± 11.3
0.10 90.8± 9.5 72.6± 12.9
0.20 88.0± 9.5 65.5± 13.1

Setup D

Std. Pconf Weighted

0.01 91.6± 0.5 90.6± 0.9
0.05 91.5± 0.5 89.9± 1.2
0.10 90.8± 0.7 88.7± 1.8
0.20 87.7± 0.8 85.5± 3.7

We used logistic regression with the same network architecture as a probabilistic
classifier to generate confidence.6 However, instead of weight decay, we used dropout
(Srivastava et al., 2014) with rate 50% after each fully-connected layer, and early-
stopping with 20 epochs, since softmax output of flexible neural networks tends to
be extremely close to 0 or 1 (Goodfellow et al., 2016), which is not suitable as a
representation of confidence. Furthermore, we rounded up positive confidence less
than 1% to 1% to stabilize the optimization process.

We compared Pconf classification (3.7) with weighted classification (3.8) and fully-
supervised classification based on the empirical version of (3.1). We used the logistic
loss for these methods. We also compared our method with Auto-Encoder (Hinton
and Salakhutdinov, 2006) as a one-class classification method.

Except Auto-Encoder, we used a fully-connected neural network of three hid-
den layers (d-100-100-100-1) with rectified linear units (ReLU) (Nair and Hinton,
2010) as the activation functions, and weight decay candidates were chosen from
{10−7, 10−4, 10−1}. Adam (Kingma and Ba, 2015) was again used for optimization
with 200 epochs and mini-batch size 100.

To select hyper-parameters with validation data, we used the zero-one loss ver-

6Both positive and negative data are used to train the probabilistic classifier to estimate confi-
dence, and this data is separated from any other process of experiments.

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 45

sions of (3.7) and (3.8) for Pconf classification and weighted classification, respec-
tively, since no negative data were available in the validation process and thus we
could not directly use the classification accuracy. On the other hand, the classifica-
tion accuracy was directly used for hyper-parameter tuning of the fully-supervised
method, which is extremely advantageous. We reported the test accuracy of the
model with the best validation score out of all epochs.

Auto-Encoder was trained with (hard-labeled) positive data, and we classified
test data into positive class if the mean squared error (MSE) is below a threshold of
70% quantile, and into negative class otherwise. Since we have no negative data for
validating hyper-parameters, we sort the MSEs of training positive data in ascending
order. We set the weight decay to 10−4. The architecture is d-100-100-100-100 for
encoding and the reversed version for decoding, with ReLU after hidden layers and
Tanh after the final layer.

Table 3.3: Mean and standard deviation of the classification accuracy over 20 trials for
the Fashion-MNIST dataset with fully-connected three hidden-layer neural networks.
Pconf classification was compared with the baseline Weighted classification method,
Auto-Encoder method and fully-supervised method, with T-shirt as the positive
class and different choices for the negative class. The best and equivalent methods
are shown in bold based on the 5% t-test, excluding the Auto-Encoder method and
fully-supervised method.

P / N Pconf Weighted Auto-Encoder Supervised

T-shirt / trouser 92.14± 4.06 85.30± 9.07 71.06± 1.00 98.98± 0.16

T-shirt / pullover 96.00± 0.29 96.08± 1.05 70.27± 1.22 96.17± 0.34

T-shirt / dress 91.52± 1.14 89.31± 1.08 53.82± 0.93 96.56± 0.34

T-shirt / coat 98.12± 0.33 98.13± 1.12 68.74± 0.98 98.44± 0.13

T-shirt / sandal 99.55± 0.22 87.83± 18.79 82.02± 0.49 99.93± 0.09

T-shirt / shirt 83.70± 0.46 83.60± 0.65 57.76± 0.55 85.57± 0.69

T-shirt / sneaker 89.86± 13.32 58.26± 14.27 83.70± 0.26 100.00± 0.00

T-shirt / bag 97.56± 0.99 95.34± 1.00 82.79± 0.70 99.02± 0.29

T-shirt / ankle boot 98.84± 1.43 88.87± 7.86 85.07± 0.37 99.76± 0.07

46 3.4. EXPERIMENTS

Table 3.4: Mean and standard deviation of the classification accuracy over 20 trials for
the CIFAR-10 dataset with convolutional neural networks. Pconf classification was
compared with the baseline Weighted classification method, Auto-Encoder method
and fully-supervised method, with airplane as the positive class and different choices
for the negative class. The best and equivalent methods are shown in bold based on
the 5% t-test, excluding the Auto-Encoder method and fully-supervised method.

P / N Pconf Weighted Auto-Encoder Supervised

airplane / auto 82.68± 1.89 76.21± 2.43 75.13± 0.42 93.96± 0.58

airplane / bird 82.23± 1.21 80.66± 1.60 54.83± 0.39 87.76± 4.97

airplane / cat 85.18± 1.35 89.60± 0.92 61.03± 0.59 92.90± 0.58

airplane / deer 87.68± 1.36 87.24± 1.58 55.60± 0.53 93.35± 0.77

airplane / dog 89.91± 0.85 89.08± 1.95 62.64± 0.63 94.61± 0.45

airplane / frog 90.80± 0.98 81.84± 3.92 62.52± 0.68 95.95± 0.40

airplane / horse 89.82± 1.07 85.10± 2.61 67.55± 0.73 95.65± 0.37

airplane / ship 69.71± 2.37 70.68± 1.45 52.09± 0.42 81.45± 8.87

airplane / truck 81.76± 2.09 86.74± 0.85 73.74± 0.38 92.10± 0.82

CIFAR-10

The CIFAR-10 dataset 7 consists of 10 classes, with 5,000 images in each class. Each
image is given in a 32× 32× 3 format. We chose “airplane” as the positive class and
one of the other classes as the negative class in order to construct a dataset for binary
classification. We used the neural network architecture specified in Appendix A.1.

For the probabilistic classifier, the same architecture as that for Fashion-MNIST
was used except dropout with rate 50% was added after the first two fully-connected
layers. For Auto-Encoder, the MSE threshold was set to 80% quantile, and we used
the architecture specified in Appendix A.2. Other details such as the loss function
and weight-decay follow the same setup as the Fashion-MNIST experiments.

Results

The results in Table 3.3 and Table 3.4 show that in most cases, Pconf classification
either outperforms or is comparable to the weighted classification baseline, outper-
forms Auto-Encoder, and is even comparable to the fully-supervised method in some
cases.

7https://www.cs.toronto.edu/˜kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html

CHAPTER 3. LEARNING FROM POSITIVE-CONFIDENCE DATA 47

3.5 Conclusion

In this section, we conclude by summarizing this chapter and discussing recent ad-
vances on positive-confidence learning.

3.5.1 Summary

We proposed a novel problem setting and algorithm for binary classification from
positive data equipped with confidence. Our key contribution was to show that an
unbiased estimator of the classification risk can be obtained for positive-confidence
data, without negative data or even unlabeled data. This was achieved by reformulat-
ing the classification risk based on both positive and negative data, to an equivalent
expression that only requires positive-confidence data. Theoretically, we established
an estimation error bound, and experimentally demonstrated the usefulness of our
algorithm.

3.5.2 Recent Advances

In this subsection, we will introduce recent advances on positive-confidence learning.

Skewed confidence In practice, the confidence given by the labeler may be skewed
due to bias arising in the labeling process. In Section 3.4.1, we demonstrated how
our method can be robust to some extent when adding a specific type of noise to the
confidence. If we know our confidence is skewed, can we take that into account to
aim for better generalization? Recently, a method to adjust the skewed confidence
and learn a better classifier was proposed (Shinoda et al., 2020). An exponential
model was used for the skewed confidence, and the knowledge of misclassification
rate of positive samples was assumed. Then, the model parameter was chosen so
that the squared error between the empirical classification error of the positive sam-
ples and the underlying misclassification rate of the positive class is minimized. In
synthetic and benchmark experiments, the proposed method in Shinoda et al. (2020)
was significantly better than the original method we discussed in this chapter, when
the confidence was skewed. Furthermore, an experiment with a dataset of driver
drowsiness prediction with real-world confidence annotation was shown.

Negative confidence There has been several extensions to utilize confidence of
negative data or unlabeled data. Yabe and Zempo (2020) proposed an extension that
utilize negative-confidence for negative samples, which is helpful when we only have
a limited number of negative training samples. In Wang et al. (2020), they proposed

48 3.5. CONCLUSION

an binary classification problem with positive and unlabeled samples, but assumed
that the unlabeled samples are equipped with negative confidence.

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 49

Chapter 4

Learning from Complementary
Labels

Collecting labeled data is costly and thus a critical bottleneck in real-world multi-
class classification tasks. In this chapter, we propose a novel setting, namely learning
from complementary labels for multi-class classification to mitigate this problem. A
complementary label specifies a class that a pattern does not belong to. Collecting
complementary labels would be less laborious than collecting ordinary labels, since
annotators/labelers do not have to carefully choose the correct class from a long
list of candidate classes. However, complementary labels are less informative than
ordinary labels and thus a suitable approach is needed to better learn from them.

We show that an unbiased estimator to the multi-class classification risk can be
obtained only from complementarily labeled data, if a loss function satisfies a par-
ticular symmetric condition. We derive estimation error bounds for the proposed
method and prove that the optimal convergence rate is achieved. We further show
that learning from complementary labels can be easily combined with learning from
ordinary labels (i.e., ordinary supervised learning), providing a highly practical im-
plementation of the proposed method.

We propose an extension for complementary-label learning with an unbiased es-
timator of the classification risk, for arbitrary losses. We further improved the risk
estimator by a non-negative correction and gradient ascent trick. We demonstrate the
usefulness of complementary-label learning in experiments with benchmark datasets.

50 4.1. INTRODUCTION

4.1 Introduction

In ordinary supervised classification problems, each training pattern is equipped with
a label which specifies the class the pattern belongs to. Although supervised classifier
training is effective, the cost of labeling training patterns is often expensive.

We consider a novel weakly supervised classification scenario: instead of ordinary
class labels, only a complementary label which specifies a class the pattern does not
belong to is available. If the number of classes is large, choosing a correct class label
from many candidate classes is laborious, while choosing one of the incorrect class
labels would be much easier and thus less costly. Classification with complementary
labels is essentially equivalent to classification with ordinary labels in the binary
classification setup, because complementary label 1 (i.e., not class 1) immediately
means ordinary label 2. On the other hand, complementary labels are less informative
than ordinary labels in K-class problems for K > 2, because complementary label 1

only means either of the ordinary labels 2, 3, . . . ,K.
The complementary classification problem may be solved by the method of learn-

ing from partial labels (Cour et al., 2011), where multiple candidate classes are pro-
vided to each training pattern — complementary label ȳ can be regarded as an
extreme case of a partial label given to all K − 1 classes other than class ȳ. Even
though the proposed method of Cour et al. (2011) shows statistical consistency, it
does not give an unbiased estimator of the classification risk. Furthermore, it has
different assumptions, e.g., dominance relation, compared to our assumption in our
problem. Another possibility to solve the complementary classification problem is to
consider a multi-label setup (Read et al., 2011), where each pattern can belong to
multiple classes — complementary label ȳ is translated into a negative label for class
ȳ and positive labels for the other K − 1 classes.

Our contribution is to give a direct risk minimization framework for the com-
plementary classification problem. We then show that the classification risk can be
rewritten with complementary labels with certain symmetric conditions for the loss
functions. Theoretically, we establish the estimation error bounds for the proposed
method, showing that learning from complementary labels is also consistent; the
order of these bounds is the optimal rate. We further show that learning from com-
plementary labels can be easily combined with learning from ordinary labels (i.e.,
ordinary supervised learning), providing a highly practical implementation of the
proposed method. This will be discussed in Section 4.2.

We propose an extension for complementary-label learning with an unbiased esti-
mator of the classification risk, for arbitrary losses and models. We further improved
the risk estimator by a non-negative correction and gradient ascent trick. This will

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 51

be discussed in Section 4.3.

4.2 Complementary-Label Learning with Symmetric Losses

In this section, we introduce our complementary-label learning framework with sym-
metric losses. We show the behavior of the proposed method theoretically and em-
pirically. Finally, we will show that we can learn from both ordinary labels and
complementary labels.

4.2.1 Formulation

Suppose that d-dimensional pattern x ∈ Rd and its class label y ∈ {1, . . . ,K}
are sampled independently from an unknown probability distribution with density
p(x, y). Recall that the goal of ordinary multi-class classification is to learn a score
function g(x) : Rd → RK that minimizes the classification risk with multi-class loss
L
(
g(x), y

)
:

R(g) = Ep(x,y)

[
L
(
g(x), y

)]
, (4.1)

where E denotes the expectation. The prediction for x with the score function g is

ŷ = arg max
y∈{1,...,K}

gy(x), (4.2)

where gy(x) : Rd → R is a binary classifier for class y versus the rest. Then, together
with a binary loss `(z) : R→ R that incurs a large loss for large z, the one-versus-all
(OVA) loss1 or the pairwise-comparison (PC) loss defined as follows are used as the
multi-class loss (Zhang, 2004a):

LOVA(g(x), y) = `
(
gy(x)

)
+

1

K − 1

∑
y′ 6=y

`
(
− gy′(x)

)
, (4.3)

LPC

(
g(x), y

)
=
∑
y′ 6=y

`
(
gy(x)− gy′(x)

)
. (4.4)

Finally, the expectation over unknown p(x, y) in Eq.(4.1) is approximated by the
empirical average over independent and identically distributed training samples to
obtain a practical classification formulation.

1We normalize the “rest” loss by K − 1 to be consistent with the discussion in the following
sections.

52 4.2. COMPLEMENTARY-LABEL LEARNING WITH SYMMETRIC LOSSES

However, our situation do not follow this standard setup. We consider the situa-
tion where, instead of ordinary class label y, we are given only complementary label
ȳ which specifies a class pattern x does not belong to. Our goal is to still learn a
classifier that minimizes the classification risk (4.1), but only from complementar-
ily labeled training samples {(xi, ȳi)}ni=1. We assume that {(xi, ȳi)}ni=1 are drawn
independently from an unknown probability distribution with density

p̄(x, ȳ) =
1

K − 1

∑
y 6=ȳ

p(x, y). (4.5)

The coefficient 1/(K − 1) is for the normalization purpose: it is natural to assume
p̄(x, ȳ) = (1/Z)

∑
y 6=ȳ p(x, y) since all p(x, y) for y 6= ȳ contribute to p̄(x, ȳ); in

order to ensure that p̄(x, ȳ) is a valid joint density such that Ep̄(x,ȳ)[1] = 1, we take
Z = K − 1.

Let us consider a complementary loss L̄(g(x), ȳ) for a complementary sample
(x, ȳ). Then we have the following theorem:

Theorem 4.1. The classification risk (4.1) can be expressed as

R(g) = (K − 1)Ep̄(x,ȳ)

[
L̄
(
g(x), ȳ

)]
−M1 +M2, (4.6)

if there exist constants M1,M2 ≥ 0 such that the complementary loss satisfies for all
x and y

K∑
ȳ=1

L̄
(
g(x), ȳ

)
= M1 and L̄

(
g(x), y

)
+ L

(
g(x), y

)
= M2. (4.7)

Proof. According to (4.5),

(K − 1)Ep̄(x,ȳ)[L̄(g(x), ȳ)] = (K − 1)

∫ K∑
ȳ=1

L̄(g(x), ȳ)p̄(x, ȳ)dx (4.8)

= (K − 1)

∫ K∑
ȳ=1

L̄(g(x), ȳ)

 1

K − 1

∑
y 6=ȳ

p(x, y)

 dx

(4.9)

=

∫ K∑
y=1

∑
ȳ 6=y
L̄(g(x), ȳ)p(x, y)dx (4.10)

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 53

= Ep(x,y)

∑
ȳ 6=y
L̄(g(x), ȳ)

 (4.11)

= M1 − Ep(x,y)[L̄(g(x), y)], (4.12)

where the fifth equality is due to the first equation in (4.7). Subsequently,

(K − 1)Ep̄(x,ȳ)[L̄(g(x), ȳ)]− Ep(x,y)[L(g(x), y)] (4.13)

= M1 − Ep(x,y)[L̄(g(x), y) + L(g(x), y)] (4.14)

= M1 −M2, (4.15)

where the second equality is due to the second equation in (4.7).

With the expression (4.6), the classification risk (4.1) can be naively approximated
in an unbiased fashion by the sample average as

R̂(g) =
K − 1

n

n∑
i=1

L̄
(
g(xi), ȳi

)
−M1 +M2. (4.16)

Let us define the complementary losses for the OVA loss LOVA(g(x), y) and the
PC loss LPC

(
g(x), y

)
as

L̄OVA(g(x), ȳ) =
1

K − 1

∑
y 6=ȳ

`
(
gy(x)

)
+ `
(
− gȳ(x)

)
, (4.17)

L̄PC

(
g(x), ȳ

)
=
∑
y 6=ȳ

`
(
gy(x)− gȳ(x)

)
. (4.18)

Then we have the following theorem:

Theorem 4.2. If binary loss `(z) satisfies

`(z) + `(−z) = 1, (4.19)

then L̄OVA satisfies conditions (4.7) with M1 = K and M2 = 2, and L̄PC satisfies
conditions (4.7) with M1 = K(K − 1)/2 and M2 = K − 1.

Proof. From Eq.(4.19), we have

K∑
ȳ=1

L̄OVA(g(x), ȳ) =
1

K − 1

K∑
ȳ=1

∑
y 6=ȳ

`
(
gy(x)

)
+

K∑
ȳ=1

`
(
− gȳ(x)

)
(4.20)

54 4.2. COMPLEMENTARY-LABEL LEARNING WITH SYMMETRIC LOSSES

=

K∑
ȳ=1

(
`
(
gȳ(x)

)
+ `
(
− gȳ(x)

))
(4.21)

= K, (4.22)

LOVA(g(x), y) + L̄OVA(g(x), y) = `
(
gy(x)

)
+

1

K − 1

∑
ȳ 6=y

`
(
− gȳ(x)

)
(4.23)

+
1

K − 1

∑
y′ 6=y

`
(
gy′(x)

)
+ `
(
− gy(x)

)
(4.24)

= 2, (4.25)

K∑
ȳ=1

L̄PC

(
g(x), ȳ

)
=

K∑
ȳ=1

∑
y 6=ȳ

`
(
gy(x)− gȳ(x)

)
(4.26)

=

K−1∑
ȳ=1

K∑
y=ȳ+1

(
`
(
gy(x)− gȳ(x)

)
+ `
(
gȳ(x)− gy(x)

))
(4.27)

=
K(K − 1)

2
, (4.28)

LPC(g(x), y) + L̄PC(g(x), y) =
∑
y′ 6=y

`
(
gy(x)− gy′(x)

)
+
∑
y′ 6=y

`
(
gy′(x)− gy(x)

)
(4.29)

= K − 1. (4.30)

For example, the following binary losses satisfy the symmetric condition (4.19):

Zero-one loss: `01(z
)

=

0 if z > 0,

1 if z ≤ 0,
(4.31)

Sigmoid loss: `S(z
)

=
1

1 + ez
, (4.32)

Ramp loss: `R
(
z
)

=
1

2
max

(
0,min

(
2, 1− z

))
. (4.33)

Note that these losses are non-convex (du Plessis et al., 2014). In practice, the
sigmoid loss or ramp loss may be used for training a classifier, while the zero-one loss

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 55

may be used for tuning hyper-parameters.

4.2.2 Theoretical Analysis

In the following, we establish the estimation error bounds for the proposed method.
Let G = {g(x)} be a function class for empirical risk minimization and σ1, . . . , σn

be n Rademacher variables. Then the Rademacher complexity of G for X of size n
drawn from p(x) is defined as follows (Mohri et al., 2012):

Rn(G) = EXEσ1,...,σn

sup
g∈G

1

n

∑
xi∈X

σig(xi)

 ; (4.34)

define the Rademacher complexity of G for X̄ of size n drawn from p̄(x) as

R̄n(G) = EX̄Eσ1,...,σn

sup
g∈G

1

n

∑
xi∈X̄

σig(xi)

 . (4.35)

Note that p̄(x) = p(x) and thus R̄n(G) = Rn(G), which enables us to express the
obtained theoretical results using the standard Rademacher complexity Rn(G).

To begin with, let ˜̀(z) = `(z) − `(0) be the shifted loss such that ˜̀(0) = 0, and
L̃OVA and L̃PC be losses defined following (4.17) and (4.18) but with ˜̀ instead of `; let
L` be any (not necessarily the best) Lipschitz constant of `. Define the corresponding
function classes as follows:

HOVA = {(x, ȳ) 7→ L̃OVA(g(x), ȳ) | g1, . . . , gK ∈ G}, (4.36)

HPC = {(x, ȳ) 7→ L̃PC(g(x), ȳ) | g1, . . . , gK ∈ G}. (4.37)

Then we can obtain the following lemmas.

Lemma 4.3. Let R̄n(HOVA) be the Rademacher complexity of HOVA for S of size n
drawn from p̄(x, ȳ) defined as

R̄n(HOVA) = ESEσ1,...,σn

 sup
h∈HOVA

1

n

∑
(xi,ȳi)∈S

σih(xi, ȳi)

 . (4.38)

Then, R̄n(HOVA) ≤ K(K+1)
K−1 L`Rn(G).

A proof is given in Section B.1.

56 4.2. COMPLEMENTARY-LABEL LEARNING WITH SYMMETRIC LOSSES

Lemma 4.4. Let R̄n(HPC) be the Rademacher complexity of HPC defined similarly
to R̄n(HOVA). Then, R̄n(HPC) ≤ 2K(K − 1)L`Rn(G).

A proof is given in Section B.2. Based on Lemmas 4.3 and 4.4, we can derive the
uniform deviation bounds of R̂(g).

Lemma 4.5. For any δ > 0, with probability at least 1− δ,

sup
g1,...,gK∈G

∣∣∣R̂(g)−R(g)
∣∣∣ ≤ 2K(K − 1)L`Rn(G) + (K − 1)

√
2 ln(2/δ)

n
, (4.39)

where R̂(g) is w.r.t. L̄OVA, and

sup
g1,...,gK∈G

∣∣∣R̂(g)−R(g)
∣∣∣ ≤ 4K(K − 1)2L`Rn(G) + (K − 1)2

√
ln(2/δ)

2n
, (4.40)

where R̂(g) is w.r.t. L̄PC.

A proof is given in Section B.3. Let (g∗1, . . . , g
∗
K) be the true risk minimizer and

(ĝ1, . . . , ĝK) be the empirical risk minimizer, i.e.,

(g∗1, . . . , g
∗
K) = arg min

g1,...,gK∈G
R(g) and (ĝ1, . . . , ĝK) = arg min

g1,...,gK∈G
R̂(g). (4.41)

Finally, based on Lemma 4.5, we can establish the estimation error bounds.

Theorem 4.6. For any δ > 0, with probability at least 1− δ,

R(ĝ)−R(g∗) ≤ 4K(K + 1)L`Rn(G) + (K − 1)

√
8 ln(2/δ)

n
, (4.42)

if (ĝ1, . . . , ĝK) is trained by minimizing R̂(g) is w.r.t. L̄OVA, and

R(ĝ)−R(g∗) ≤ 8K(K − 1)2L`Rn(G) + (K − 1)2

√
2 ln(2/δ)

n
, (4.43)

if (ĝ1, . . . , ĝK) is trained by minimizing R̂(g) is w.r.t. L̄PC.

A proof is given in Section B.4. Theorem 4.6 guarantees learning from comple-
mentary labels is also consistent: as n → ∞, R(ĝ) → R(g∗). Consider linear-in-
parameter models defined by

G = {g(x) = 〈w, φ(x)〉H | ‖w‖H ≤ Cw, ‖φ(x)‖H ≤ Cφ}, (4.44)

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 57

where here H is a Hilbert space with an inner product 〈·, ·〉H, w ∈ H is a normal,
φ : Rd → H is a feature map, and Cw > 0 and Cφ > 0 are constants (Schölkopf
and Smola, 2001). It is known that Rn(G) ≤ CwCφ/

√
n (Mohri et al., 2012) and

thus R(ĝ) → R(g∗) in Op(1/
√
n) if this G is used, where Op denotes the order in

probability. This order is already the optimal parametric rate and cannot be improved
without additional strong assumptions on p̄(x, ȳ), ` and G jointly.

4.2.3 Incorporation of Ordinary Labels

In many practical situations, we may also have ordinarily labeled data in addition
to complementarily labeled data. For example, in crowdsourcing (Howe, 2008), we
may choose one of the classes randomly by following the uniform distribution, with
probability 1

K−1 for each class, and ask crowdworkers whether a pattern belongs to
the chosen class or not. Then the pattern is treated as ordinarily labeled if the answer
is yes; otherwise, the pattern is regarded as complementarily labeled.

In such cases, we want to leverage both kinds of labeled data to obtain more
accurate classifiers. To this end, motivated by Sakai et al. (2017), let us consider
a convex combination of the classification risks derived from ordinarily labeled data
and complementarily labeled data:

R(g) = αEp(x,y)[L(g(x), y)] + (1− α)
[
(K − 1)Ep(x,y)[L(g(x), y)]−M1 +M2

]
,

(4.45)

where α ∈ [0, 1] is a hyper-parameter that interpolates between the two risks. The
combined risk (4.45) can be naively approximated by the sample averages as

R̂(g) =
α

m

m∑
j=1

L(g(xj), yj) +
(1− α)(K − 1)

n

n∑
i=1

L(g(xi), yi), (4.46)

where {(xj , yj)}mj=1 are ordinarily labeled data and {(xi, yi)}ni=1 are complementarily
labeled data. Our risk estimator (4.46) can utilize both kinds of labeled data to
obtain better classifiers2. We will experimentally demonstrate the usefulness of this
combination method in Section 4.2.4.

4.2.4 Experiments

We experimentally evaluate the performance of the proposed method.

2Note that when pattern x has already been equipped with ordinary label y, giving complemen-
tary label y does not bring us any additional information (unless the ordinary label is noisy).

58 4.2. COMPLEMENTARY-LABEL LEARNING WITH SYMMETRIC LOSSES

Table 4.1: Mean and standard deviation of classification accuracy over five trials in
percentage, when the number of classes is changed. “PC” is (4.18), “OVA” is (4.17),
“sigmoid” is (4.32), and “ramp” is (4.33). Best and equivalent methods (with 5%
t-test) are bold.

Method 3 cls 4 cls 5 cls 6 cls 7 cls 8 cls 9 cls 10 cls
OVA

Sigmoid
96.2
(0.4)

91.5
(1.2)

90.2
(0.9)

79.2
(4.2)

75.2
(2.7)

68.4
(2.5)

61.9
(5.2)

52.4
(5.4)

OVA
Ramp

95.9
(0.5)

90.5
(1.1)

89.9
(1.0)

77.0
(5.3)

73.2
(1.5)

62.9
(5.0)

54.1
(5.8)

48.9
(3.3)

PC
Sigmoid

95.9
(1.1)

90.8
(0.6)

89.3
(1.3)

80.8
(2.0)

76.9
(3.2)

72.2
(2.2)

66.4
(3.9)

60.4
(0.6)

PC
Ramp

95.9
(1.1)

90.6
(1.2)

88.2
(1.2)

80.1
(2.4)

74.7
(3.2)

70.0
(2.6)

62.3
(4.5)

55.1
(3.5)

Comparison between proposed methods

Here we first compare the performance between four variations of the proposed ap-
proach: The two formulations, OVA (4.17) and PC (4.18), each with the sigmoid loss
(4.32) and ramp loss (4.33). We used the MNIST hand-written digit dataset (with all
patterns standardized to have zero mean and unit variance), with different number of
classes: 3 classes (digits “1” to “3”) to 10 classes (digits “1” to “9” and “0”). From each
class, we selected 500 samples for training and 500 samples for testing, and generated
complementary labels by randomly selecting one of the complementary classes. From
the training dataset, we left out 25% for validation for hyper-parameter tuning based
on the zero-one loss objective version of (4.17) or (4.18).

For all the methods, we used a linear-in-input model gk(x) = w>k x + bk as the
binary classifier, where > denotes the transpose, wk ∈ Rd is the weight parameters,
and bk ∈ R is a bias parameter in class k ∈ {1, . . . ,K}. We added an `2-regularization
term, with hyper-parameter candidates λ ∈ {10−4, 10−3, . . . , 104}. Adam (Kingma
and Ba, 2015) was used for optimization with 5,000 iterations.

We reported the mean and standard deviation of the classification accuracy over
five trials in Table 4.1. From the results, we can see that PC tends to outperform
OVA. A possible explanation for this is that the PC formulation is a more direct
approach for classification (Vapnik, 1998) — it takes the sign of the difference of the
classifiers, instead of the sign of each classifier as in OVA. When we compare the
sigmoid loss and the ramp loss in PC, the sigmoid loss tends to outperform the ramp
loss and hence we use only PC with sigmoid loss for the following experiments.

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 59

Benchmark Experiments

Next, we compare our proposed method, PC with the sigmoid loss, with two baseline
methods. The first baseline is one of the state-of-the-art partial label (PL) methods
(Cour et al., 2011) with the squared hinge loss `

(
z
)

= (max(0, 1− z))2 . The second
baseline method is a multi-label (ML) formulation, where complementary label ȳ is
translated into a negative label for class ȳ and positive labels for the other K − 1

classes. This formulation yields the loss LML(g(x), ȳ) =
∑

y 6=ȳ `
(
gy(x)

)
+`
(
−gȳ(x)

)
,

where we used the squared loss `
(
z
)

= (z − 1)2 as the binary loss.

Another interesting comparison is between learning from complementary labels
and ordinary labels. For the ordinary-label (OL) method, we used the unnormalized
version of (4.3) with the squared loss. For better comparison of the two settings, we
gave only 1

K−1 times as many samples to OL since one ordinary label can be regarded
as K − 1 complementary labels. We used a one-hidden-layer neural network (d-3-1)
with rectified linear units (ReLU) (Nair and Hinton, 2010) as a activation function,
and weight decay candidates were chosen from {10−7, 10−4, 10−1}.

We evaluated the classification performance with the following benchmark datasets:
WAVEFORM1 (d = 21), WAVEFORM2 (d = 40), SATIMAGE (d = 36), SHUTTLE
(d = 9), SEGMENTATION (d = 19), PENDIGITS (d = 16), MNIST (d = 784),
DRIVE (d = 48), LETTER (d = 16), VOWEL (d = 12), and USPS (d = 256).
MNIST and USPS can be downloaded from the website of the late Sam Roweis3, and
all other datasets can be downloaded from UCI machine learning repository.4 For
datasets with 10 or more classes, we chose five classes with an equal number of sam-
ples. In Table 4.2, the specification of the datasets as well as the mean and standard
deviation of the classification accuracy over 20 trials is reported. From the results, we
can see that the proposed method is either competitive or outperforms the baseline
methods in many of the datasets. It is also interesting that the proposed classifica-
tion method from complementary labels can be competitive with classification from
ordinary labels in many of the datasets.

Combination of Ordinary and Complementary Labels

Finally, we demonstrate the usefulness of combining ordinarily and complementarily
labeled data. We used (4.46), with hyperparameter α fixed at 1/2 for simplicity.
We divided our training dataset by 1 : (K − 1) ratio, where one subset was labeled

3See http://cs.nyu.edu/~roweis/data.html.
4See http://archive.ics.uci.edu/ml/.

http://cs.nyu.edu/~roweis/data.html
http://archive.ics.uci.edu/ml/

60 4.2. COMPLEMENTARY-LABEL LEARNING WITH SYMMETRIC LOSSES

Table 4.2: Mean and standard deviation of classification accuracy over 20 trials in
percentage. “PC/S” is the proposed method for pairwise comparison formulation
with sigmoid loss, “PL” is partial label with squared hinge loss, “ML” is multi-label,
and “OL” is classification from ordinary labels. Best and equivalent methods (with
5% t-test excluding “OL”) are bold. # train denotes the total number of training and
validation samples in each class. # test denotes the number of test samples in each
class.

Dataset Class # train # test PC/S PL ML OL

WAVEFORM1 1 ∼ 3 1230 406 85.7(0.9) 84.1(1.5) 84.7(1.6) 85.8(0.9)

WAVEFORM2 1 ∼ 3 1221 400 84.4(1.3) 83.1(2.7) 81.8(2.3) 86.7(1.8)

SATIMAGE 1 ∼ 7 415 211 67.2(7.0) 54.8(6.8) 51.6(6.0) 67.9(4.2)

SHUTTLE 1, 4, 5 2458 809 94.9(9.7) 97.5(0.7) 90.4(11.8) 97.5(0.8)

SEGMENTATION 1 ∼ 7 29 299 36.1(6.8) 31.7(5.8) 26.6(5.4) 58.6(4.5)

PENDIGITS

1 ∼ 5 719 336 79.4(9.5) 73.2(6.4) 75.9(7.7) 78.8(2.9)
6 ∼ 10 719 335 77.7(3.8) 65.5(6.4) 72.0(8.6) 74.7(4.6)
even # 719 335 74.0(7.3) 58.5(9.9) 65.7(6.3) 74.8(5.5)
odd # 719 336 88.5(5.9) 74.6(4.4) 79.1(6.1) 84.0(8.8)

MNIST

1 ∼ 5 5842 980 88.4(4.2) 71.5(7.4) 56.6(12.4) 77.9(0.4)
6 ∼ 10 5421 892 83.4(2.6) 67.4(8.1) 50.5(13.7) 77.0(4.5)
even # 5421 892 85.3(2.2) 70.4(6.7) 61.7(11.1) 76.7(1.4)
odd # 5842 958 85.0(3.7) 67.3(8.6) 57.3(13.0) 76.5(0.7)

DRIVE

1 ∼ 5 3931 1280 87.6(5.9) 72.7(7.0) 64.2(12.6) 79.3(5.1)
6 ∼ 10 3958 1318 84.9(5.7) 73.1(5.8) 69.7(9.3) 81.6(2.9)
even # 3932 1295 82.4(5.6) 72.9(6.6) 63.2(12.8) 83.5(5.3)
odd # 3931 1310 76.9(8.0) 60.0(6.9) 51.6(9.3) 65.4(3.3)

LETTER

1 ∼ 5 565 171 79.6(5.5) 67.6(6.0) 71.0(9.3) 82.2(4.3)
6 ∼ 10 550 178 73.2(6.3) 63.9(6.1) 61.2(10.6) 75.9(5.6)
11 ∼ 15 556 177 73.3(5.9) 66.6(3.4) 59.0(10.1) 75.4(5.0)
16 ∼ 20 550 184 71.5(5.9) 64.9(5.2) 63.5(7.0) 73.9(5.3)
21 ∼ 25 585 167 76.2(6.0) 68.3(8.1) 63.1(11.2) 77.1(5.1)

VOWEL

1 ∼ 5 48 42 35.6(9.0) 37.0(9.3) 31.5(6.7) 54.9(6.7)
6 ∼ 10 48 42 32.6(7.5) 34.1(7.7) 30.0(9.8) 53.0(4.4)
even # 48 42 36.6(9.0) 39.9(10.5) 33.3(7.8) 62.1(5.6)
odd # 48 42 28.2(9.0) 28.8(7.2) 23.2(4.8) 54.0(5.5)

USPS

1 ∼ 5 652 166 70.1(5.2) 62.8(7.2) 45.8(5.9) 76.2(2.3)
6 ∼ 10 542 147 64.3(4.7) 61.4(5.9) 41.7(5.3) 76.9(5.1)
even # 556 147 70.6(5.4) 63.7(7.2) 48.4(5.3) 75.7(2.7)
odd # 542 166 63.1(4.3) 57.8(6.8) 37.8(5.7) 73.6(3.4)

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 61

Table 4.3: Means and standard deviations of classification accuracy over 10 trials
in percentage. “OL” is the ordinary label method, “CL” is the complementary label
method, and “OL & CL” is a combination method that uses both ordinarily and
complementarily labeled data. Best and equivalent methods are highlighted in bold-
face. “Class” denotes the class labels used for the experiment and “Dim” denotes the
dimensionality d of patterns to be classified. # train denotes the number of ordi-
narily/complementarily labeled data for training and validation in each class. # test
denotes the number of test data in each class.

Dataset Class Dim # train # test OL CL OL & CL
(α = 1) (α = 0) (α = 1

2)

WAVEFORM1 1 ∼ 3 21 413/826 408 85.3(0.8) 86.0(0.4) 86.9(0.5)

WAVEFORM2 1 ∼ 3 40 411/821 411 82.7(1.3) 82.0(1.7) 84.7(0.6)

SATIMAGE 1 ∼ 7 36 69/346 211 74.9(4.9) 70.1(5.6) 81.2(1.1)

PENDIGITS

1 ∼ 5

16

144/575 336 91.3(2.1) 84.7(3.2) 93.1(2.0)
6 ∼ 10 144/575 335 86.3(3.5) 78.3(6.2) 87.8(2.8)
even # 144/575 336 94.3(1.7) 91.0(4.3) 95.8(0.6)
odd # 144/575 335 85.6(2.0) 75.9(3.1) 86.9(1.1)
1 ∼ 10 72/647 335 61.7(4.3) 41.1(5.7) 66.9(2.0)

DRIVE

1 ∼ 5

48

780/3121 1305 92.1(2.6) 89.0(2.1) 94.2(1.0)
6 ∼ 10 795/3180 1290 87.0(3.0) 86.5(3.1) 89.5(2.1)
even # 657/3284 1314 91.4(2.9) 81.8(4.6) 91.8(3.3)
odd # 790/3161 1255 91.1(1.5) 86.7(2.9) 93.4(0.5)
1 ∼ 10 397/3570 1292 75.2(2.8) 40.5(7.2) 77.6(2.2)

LETTER

1 ∼ 5

16

113/452 171 85.2(1.3) 77.2(6.1) 89.5(1.6)
6 ∼ 10 110/440 178 81.0(1.7) 77.6(3.7) 84.6(1.0)
11 ∼ 15 111/445 177 81.1(2.7) 76.0(3.2) 87.3(1.6)
16 ∼ 20 110/440 184 81.3(1.8) 77.9(3.1) 84.7(2.0)
21 ∼ 25 117/468 167 86.8(2.7) 81.2(3.4) 91.1(1.0)
1 ∼ 25 22/528 167 11.9(1.7) 6.5(1.7) 31.0(1.7)

USPS

1 ∼ 5

256

130/522 166 83.8(1.7) 76.5(5.3) 89.5(1.3)
6 ∼ 10 108/434 147 79.2(2.1) 67.6(4.3) 85.5(2.4)
even # 108/434 166 79.6(2.7) 67.4(4.4) 84.8(1.4)
odd # 111/445 147 82.7(1.9) 72.9(6.2) 87.3(2.2)
1 ∼ 10 54/488 147 43.7(2.6) 28.5(3.6) 59.3(2.2)

62 4.3. COMPLEMENTARY-LABEL LEARNING WITH ARBITRARY LOSSES

ordinarily while the other was labeled complementarily5. From the training dataset,
we left out 25% of the data for validating hyperparameters based on the zero-one loss
version of (4.46). Other details such as standardization, the model and optimization,
and weight-decay candidates follow the previous experiments.

We compared three methods: the ordinary label (OL) method corresponding to
α = 1, the complementary label (CL) method corresponding to α = 0, and the
combination (OL & CL) method with α = 1/2. The PC and sigmoid losses were
commonly used for all methods.

We reported the means and standard deviations of the classification accuracy
over 10 trials in Table 4.3. From the results, we can see that OL & CL tends to
outperform OL and CL, demonstrating the usefulnesses of combining ordinarily and
complementarily labeled data.

We also performed experiments that fix the total number of training data, but
changed the proportion of ordinary and complementary labels. With the MNIST
dataset, we tried varying proportions of ordinary and complementary labels from
{0.0, 0.1, . . . , 1.0}, where a smaller proportion means less complementary labels. The
learning rate and weight decay were both fixed at 1e−4 and we trained for 100 epochs.
We used the pairwise comparison multi-class loss function with the binary sigmoid
loss function, for both ordinary labels and complementary labels. We combined the
two empirical risk shown in Eq.(4.45). We set α to be equivalent to the proportion
of ordinary labels in the training dataset.

The mean accuracy and standard deviation for five trials are shown in Fig. 4.1.
We can observe that when an ordinary label is given for all training data, it performs
the best. As we transform more and more of them into a complementary label, the
accuracy gradually decreases, which is intuitive since complementary labels are less
informative.

4.3 Complementary-label Learning with Arbitrary Losses

So far, we have shown complementary-label learning but required strong restrictions
on the loss functions, allowing only one-versus-all and pairwise comparison multi-
class loss functions (Zhang, 2004a), with certain non-convex binary losses. This is a
severe limitation since the softmax cross-entropy loss, which cannot be expressed by
the two losses above, is the most popular loss in deep learning nowadays.

Recently, Yu et al. (2018) proposed a different formulation for complementary
labels by employing the forward loss correction technique (Patrini et al., 2017) to

5We used K − 1 times more complementarily labeled data than ordinarily labeled data since a
single ordinary label corresponds to (K − 1) complementary labels.

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 63

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
proportion of complementary labels

70

75

80

85

90

95

100
ac

cu
ra

cy

Figure 4.1: The mean accuracy and standard deviation for five trials. We performed
the experiments for varying proportions of ordinary and complementary labels.

adjust the learning objective, but limiting the loss function to softmax cross-entropy
loss. Their proposed risk estimator is not necessarily unbiased but the minimizer is
theoretically guaranteed to be consistent with the minimizer of the risk for ordinary
labels (under an implicit assumption on the model for convergence analysis). They
also extended the problem setting to where complementary labels are chosen in an
uneven (biased) way.

In this section, we first derive an unbiased risk estimator with a general loss
function, making any loss functions available for use: not only the softmax cross-
entropy loss function but other convex/non-convex loss functions can also be applied.
We also do not have implicit assumptions on the classifier, allowing both linear and
non-linear models.

Finally, our proposed unbiased risk estimator has an issue that the classification
risk can attain negative values after learning, leading to overfitting. We further
propose a non-negative correction to the original unbiased risk estimator to improve
our estimator. The modified objective is no longer guaranteed to be an unbiased risk
estimator, but the unbiased risk estimator can still be used for validation procedures
for this modified learning objective. We experimentally show that our proposed
method is comparable to or better than other methods.

4.3.1 Formulation

First, we introduce a few notations. We use ηk(x) = p(y = k|x) for the class-
conditional probability for class k, η(x) = [η1(x), η2(x), . . . , ηK(x)]> for a vector of

64 4.3. COMPLEMENTARY-LABEL LEARNING WITH ARBITRARY LOSSES

class-conditional probabilities for each classes, and

L(g(x)) = [L(g(x), 1),L(g(x), 2), . . . ,L(g(x),K)]> (4.47)

for a vector of losses for each classes. We define the class prior for class k as πk =

p(y = k). We define similarly for the complementary label distribution, with ηk(x) =

p(y = k|x), η(x) = [η1(x), η2(x), . . . , ηK(x)]>, and πk = p(y = k). Two useful
equivalent expressions of classification risk (4.1) used later are

R(g) = EX [η(x)>L(g(x))] =

K∑
k=1

πkEp(x|y=k)

[
L(g(x), k)

]
, (4.48)

Since the marginal distribution is equivalent for ordinary distribution and comple-
mentary distribution, we can rewrite our assumption in (4.5) as

η(x) = Tη(x) (4.49)

where T ∈ RK×K is a matrix that takes 0 on diagonals and 1
K−1 on non-diagonals.

Next, we describe our general unbiased risk formulation. We give the following
theorem, which allows unbiased estimation of the classification risk from complemen-
tarily labeled patterns:

Theorem 4.7. For any ordinary distribution p(x, y) and complementary distribution
p(x, y) related by (4.49) with decision function g, and loss L, we have

R(g) = E(x,y)∼p(x,y)[L(g(x), y)], (4.50)

for the complementary loss

L
(
g(x)

)
:=
(
− (K − 1)IK + 11>

)
·L
(
g(x)

)
, (4.51)

or equivalently,

L
(
g(x), k

)
= −(K − 1) · L

(
g(x), k

)
+

K∑
j=1

L
(
g(x), j

)
, (4.52)

where IK is a K ×K identity matrix and 1 is a K-dimensional column vector with
1 in each element.

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 65

Proof. First of all,

p(x, y) =
1

K − 1

∑
y 6=y

p(x, y)

=
1

K − 1

(K∑
y=1

p(x, y)− p(x, y)
)

=
1

K − 1

(
p(x)− p(x, ȳ)

)
. (4.53)

The first equality holds since the marginal distribution is equivalent for p(x, y) and
p(x, y) and we assume (4.49). Consequently,

p(y|x) =
p(x, y)

p(x)

=
1

K − 1
·
(

1− p(x, y)

p(x)

)
=

1

K − 1
·
(
1− p(y|x)

)
= − 1

K − 1
p(y|x) +

1

K − 1
. (4.54)

More simply, we have η(x) = −(K − 1)η(x) + 1. Finally, we transform the classifi-
cation risk,

R(g) = Ep(x,y)[L(g(x), y)]

= Ex∼p(x)[η
>L(g(x))]

= Ex∼p(x)

[(
− (K − 1)η> + 1>

)
L
(
g(x)

)]
= Ex∼p(x)

[
− (K − 1)η>L

(
g(x)

)
+ 1>L

(
g(x)

)]
= E(x,Y)∼D

[
− (K − 1) · L

(
g(x), y

)]
+ 1>Ex∼p(x)

[
L
(
g(x)

)]
=

K∑
k=1

πk · Ex∼p(x|k)

[
− (K − 1) · L

(
g(x), k

)
+ 1>L

(
g(x)

)]
= R(g) (4.55)

for the complementary loss, L(k, g) := −(K − 1)L(g, k) + 1>L(g), which concludes
the proof.

It is worth noting that, in the above derivation, there are no constraints on the
loss function and classifier. Thus, we can use any loss (convex/non-convex) and any
model (linear/non-linear) for complementary learning.

66 4.3. COMPLEMENTARY-LABEL LEARNING WITH ARBITRARY LOSSES

Next, we show the relationship between our proposed framework and previous
complementary-label learning in Section 4.2.

Corollary 4.8. If one-versus-all loss (4.17) or pairwise comparison loss (4.18) is
used with binary loss function that satisfy `(z)+`(−z) = 1, the classification risk can
be written as

R(g) = (K − 1)Ep(x,y)

[
L
(
g(x), y

)]
−M1 +M2, (4.56)

where M1 and M2 are non-negative constants that satisfy

K∑
y=1

L
(
g(x), y

)
= M1 (4.57)

for all x and
L
(
g(x), y

)
+ L

(
g(x), y

)
= M2 (4.58)

for all x and y.

Proof.

R(g) = Ep(x,y)[L(g(x), y)]

= Ep(x,y)[−(K − 1)L(g(x), y) +
K∑
j=1

L(g(x), j)]

= Ep(x,y)

[
− (K − 1)[M2 − L(g(x), y)] +M1

]
= (K − 1)Ep(x,y)[L(g(x), y)] +M1 − (K − 1)M2

= (K − 1)Ep(x,y)[L(g(x), y)]−M1 +M2 (4.59)

The second equality holds because we use (4.52). The third equality holds because
we are using losses that satisfy

∑
j L(g(x), j) = M1 for all x and L(g(x), y) +

L(g(x), y) = M2 for all x and y. The 4th equality rearranges terms. The 5th
equality holds because M1 − (K − 1)M2 = −M1 +M2 for LOVA and LPC. This can
be easily shown by using M1 = K and M2 = 2 for LOVA, and M1 = K(K− 1)/2 and
M2 = K − 1 for LPC.

Since this is equivalent to the first two theorems in Section 4.2, this is a gener-
alization of the unbiased complementary-label learning framework with symmetric
conditions.

The key idea of the proof in Theorem 4.7 is to not rely on the condition that∑K
k=1 L

(
g(x), k

)
is a constant for all x, used previously, which is inspired by the

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 67

Figure 4.2: The left and middle graphs shows the total risk (4.61) (in black color)
and the risk decomposed into each ordinary class term (4.62) (in other colors) for
training data with linear and MLP models, respectively. The right graph shows the
corresponding test accuracy for both models.

property of binary 0-1 loss `01, where `01(z) is 1 if z < 0 and 0 otherwise. Such a
technique was also used when designing unbiased risk estimators for learning from
positive and unlabeled data in a binary classification setup (du Plessis et al., 2014),
but was later shown to be unnecessary (du Plessis et al., 2015). Note that Theorem
4.7 can be regarded as a special case of a framework proposed for learning from weak
labels (Cid-Sueiro et al., 2014).

By using (4.52), the classification risk can be written as

R(g) =

K∑
k=1

πkEp(x|y=k)

[
− (K − 1) · L

(
g(x), k

)
+

K∑
j=1

L
(
g(x), j

)]
. (4.60)

Here, we rearrange our complementarily labeled dataset as {Xk}Kk=1, where Xk de-
notes the samples complementarily labeled as class k. Then, this expression of the
classification risk can be approximated by,

R̂(g) =

K∑
k=1

π̂k
|Xk|

∑
xi∈Xk

[
− (K − 1) · L

(
g(xi), k

)
+

K∑
j=1

L
(
g
(
xi), j

)]
. (4.61)

4.3.2 Necessity of Risk Correction

The original expression of the classification risk (4.1) includes an expectation over
non-negative loss L : [K]×RK → R+, so the risk and its empirical approximator are
both lower-bounded by zero. On the other hand, the expression (4.60) derived above
contains a negative element. Although (4.60) is still non-negative by definition, due
to the negative term, its empirical estimator can go negative, leading to overfitting.

We elaborate on this issue with an illustrative numerical example. In the left

68 4.3. COMPLEMENTARY-LABEL LEARNING WITH ARBITRARY LOSSES

graph of Figure 4.2, we show an example of training a linear model trained on the
handwritten digits dataset MNIST6, with complementary labels generated to satisfy
(4.49). We used Adam (Kingma and Ba, 2015) for optimization with learning rate
5e − 5, mini-batch size of 100, and weight decay of 1e − 4 with 300 epochs. The
empirical classification risk (4.61) is shown in black. We can see that the empirical
classification risk continues decreasing and can go below zero at around 100 epochs.
The test accuracy on the right graph hits the peak also at around epoch 100 and
then the accuracy gradually deteriorates.

This issue stands out even more significantly when we use a flexible model. The
middle graph shows the empirical classification risk for a multilayer perceptron (MLP)
with one hidden layer (500 units), where ReLU (Nair and Hinton, 2010) was used
as the activation function. The optimization setup was the same as the case of the
linear model above. We can see the empirical risk decreasing much more quickly and
going negative. Correspondingly, as the right graph shows, the test accuracy drops
significantly after the empirical risk goes negative.

In fact, a similar issue is already implicit in the formulation with symmetric
losses: According to Corollary 4.8, the unbiased risk estimator includes subtraction
of a positive constant term which increases with respect to the number of classes.
This means that the learning objective of symmetric losses has a (negative) lower
bound.

4.3.3 Non-Negative Risk Estimator

As we saw in Section 4.3.2, our risk estimator can suffer from overfitting due to the
negative issue. Here, we propose a correction to the risk estimator to overcome this
problem.

Each term in the risk with ordinary labels (right-hand side of (4.48)), which
corresponds to each class, is non-negative. We can reformulate (4.60) in order to
show the counterpart for each non-negative term in the right-hand side of (4.48) for
complementarily labeled data as

R(g; `) =
K∑
k=1

[
− (K − 1)πk · Ep(x|y=k)

[
L
(
g(x), k

)]
+

K∑
j=1

πj · Ep(x|y=j)

[
L
(
g(x), k

)]]
.

(4.62)

These counterparts (4.62) were originally non-negative when ordinary labels were
used. In the left and middle graphs of Figure 4.2, we plot the decomposed risks

6See http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 69

with respect to each ordinary class (4.62) (shown in different colors). We can see
that the decomposed risks for all classes become negative eventually. Based on this
observation, our basic idea for correction is to enforce non-negativity for each ordinary
class, with the expression based on complementary labels. More specifically, we
propose a non-negative version by

K∑
k=1

max
{

0,
[
− (K − 1)πk · Ep(x|y=k)

[
L
(
g(x), k

)]
+

K∑
j=1

πj · Ep(x|y=j)

[
L
(
g(x), k

)]]}
.

(4.63)

(4.63) is equivalent to (4.62), since max{0, a} = a if a is non-negative. By using the
datasets used for (4.61), this non-negative risk can be naïvely approximated by the
sample average as

K∑
k=1

max
{

0,
[
− (K − 1) · πk

|Xk|
∑
xi∈Xk

L(g(xi), k) +

K∑
j=1

πj
|Xj |

∑
xi′∈Xj

L(g(xi′), k)
]}
.

(4.64)

The empirical version of (4.62) may suffer from a negative objective, but (4.64) is
non-negative (even though their population versions are equivalent.)

Enforcing the reformulated risk to become non-negative was previously explored
in Kiryo et al. (2017), in the context of binary classification from positive and un-
labeled data. The positive class risk is already bounded below by zero in their case
(because they have true positive labels), so there was a max operator only on the
negative class risk. We follow their footsteps, but since our setting is a multi-class
scenario and also differs by not having any true labels, we put a max operator on
each of the K classes.

4.3.4 Approximate Non-Negative Risk Estimator

Implementation with Max Operator

We now illustrate how to design a practical implementation under stochastic opti-
mization for our non-negative risk estimator. An unfortunate issue is that the min-
imization of (4.64) is not point-wise due to the max-operator, thus cannot be used
directly for stochastic optimization methods with mini-batch. However, an upper

70 4.3. COMPLEMENTARY-LABEL LEARNING WITH ARBITRARY LOSSES

Algorithm 1 Complementary-label learning with gradient ascent

Input: complementarily labeled training data {Xk}Kk=1, where Xk denotes the
samples complementarily labeled as class k;
Output: model parameter θ for g(x; θ)

1: Let A be an external SGD-like stochastic optimization algorithm such as Kingma
and Ba (2015)

2: while no stopping criterion has been met:
3: Shuffle {Xj}Kj into B mini-batches;
4: for b = 1 to B:
5: Denote {X bj } as the b-th mini-batch for complementary class j
6: Denote rbk(θ) = −(K − 1)πk · Êp(x|y=k)[L(g, k);X bk] +

∑K
j=1 πj ·

Êp(x|y=j)[L(g, k);X bj]

7: if mink[r
b
1(θ), . . . , rbk(θ), . . . , r

b
K(θ)] > −β:

8: Denote Lb(θ) =
∑K

k=1 r
b
k(θ)

9: Set gradient ∇θLb(θ);
10: Update θ by A with its current step size η;
11: else:
12: Denote L̃b(θ) =

∑K
k=1 min{−β, rbk(θ)}

13: Set gradient −∇θL̃b(θ);
14: Update θ by A with a discounted step size γη;

bound of the risk can be minimized in parallel by using mini-batch as the following,

1

B

N∑
b=1

K∑
k=1

max
{

0,−(K − 1)πk · ÊPk
[
L
(
g(x), k

)
;X bk

]
+

K∑
j=1

πj · ÊP j
[
L
(
g(x), k

)
;X bj

]}
,

(4.65)

where Ê is the empirical version of the expectation and B is the number of mini-
batches.

Implementation with Gradient Ascent

If the objective is negative for a certain mini-batch, the previous implementation
based on the max operator will prevent the objective to further decrease. However,
if the objective is already negative, that mini-batch has already started to overfit.
The max operator cannot contribute to decrease the degree of overfitting. From
this perspective, there is still room to improve the overfitting issue, and it would be
preferable to increase itself to make this mini-batch less overfitted.

Our idea is the following. We denote the risk that corresponds to the kth ordinary

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 71

class for the bth mini-batch as

rbk(θ) = −(K − 1)πk · Êp(x|y=k)[L
(
g(x), k

)
;X bk] +

K∑
j=1

πj · Êp(x|y=j)

[
L
(
g(x), k

)
;X bj

]
,

(4.66)

and the total risk as

Lb(θ) =
K∑
k=1

rbk(θ). (4.67)

When mink{rbk(θ)}Kk=1 ≥ −β, we conduct gradient descent as usual with gradient
∇θLb(θ). On the other hand, if mink{rbk(θ)}Kk=1 < −β, we first squash the class-
decomposed risks over −β to −β with a min operator, and then sum the results:

L̃b(θ) =

K∑
k=1

min{−β, rbk(θ)}. (4.68)

Next we set the gradient in the opposite direction with −∇θL̃b(θ). Conceptually, we
are going up the gradient ∇θL̃b(θ) for only the class-decomposed risks below −β,
to avoid the class-decomposed risks that are already large to further increase. Note
that β is a hyper-parameter that controls the tolerance of negativity. β = 0 would
mean there is zero tolerance, but in practice we can also have −β 6= 0 for a threshold
that allows some negative (−β < 0) or positive (−β > 0) amount. The procedure is
shown in detail in Algorithm 1.

4.3.5 Experiments

We compare the 3 methods that we have proposed in Section 4.3, which are Free
(Unbiased risk estimator that is loss assumption free, based on Eq. (4.61)), Max
Operator (based on Eq. (4.65)), and Gradient Ascent (based on Alg. 1). For Gradient
Ascent, we used β = 0 and γ = 1 for simplicity. Mini-batch size was set to 256. We
also compare with two baseline methods: Pairwise comparison (PC) with ramp loss
(from Section 4.2) and Forward correction from Yu et al. (2018). For training, we used
only complementarily labeled data, which was generated so that the assumption of
(4.49) is satisfied. This is straightforward when the dataset has a uniform (ordinarily-
labeled) class prior, because it reduces to just choosing a class randomly other than
the true class.

In Appendix B.5, we explain the details of the datasets used in the experiments:
MNIST, Fashion-MNIST, Kuzushiji-MNIST, and CIFAR-10. The implementation is

72 4.4. CONCLUSION

based on PyTorch (Paszke et al., 2019) and our demo code is available online7.

Comparison of All Epochs During Training

Setup For MNIST, Fashion-MNIST, and Kuzushiji-MNIST, a linear-in-input model
with a bias term and a MLP model (d − 500 − 1) was trained with softmax cross-
entropy loss function (except PC) for 300 epochs. Weight decay of 1e− 4 for weight
parameters and learning rate of 5e− 5 for Adam (Kingma and Ba, 2015) was used.

For CIFAR-10, DenseNet (Huang et al., 2017) and ResNet-34 (He et al., 2016)
were used with weight decay of 5e−4 and initial learning rate of 1e−2. For optimiza-
tion, stochastic gradient descent was used with the momentum set to 0.9. Learning
rate was halved every 30 epochs.

Results We show the accuracy for all 300 epochs on test data to demonstrate how
the issues discussed in Section 4.3.2 appear and how different implementations in
Section 4.3.4 are effective. In Figure 4.3, we show the mean and standard deviation
of test accuracy for 4 trials on test data evaluated with ordinary labels.

First we compare our 3 proposed methods with each other. For linear models in
MNIST, Fashion-MNIST, and Kuzushiji-MNIST, all proposed methods work simi-
larly. However in the case of using a more flexible MLP model or using DenseNet/Res-
Net in CIFAR-10, we can see that Free is the worst, Max Operator is better and Gra-
dient Ascent is the best out of the proposed three methods for most of the epochs
(Free < Max Operator < Gradient Ascent). These results are consistent with the
discussions of overfitting in Section 4.3.2 and the motivations for different implemen-
tations in Section 4.3.4.

Next, we compare with baseline methods. For linear models, the forward method
seem to work well. However for deep models (MLP, DenseNet, and ResNet), the
superiority stands out for Gradient Ascent for many datasets, but in some cases, the
forward method seems to be a good choice.

4.4 Conclusion

We proposed a novel problem setting and algorithm for multi-class classification
from complementary labels. We first showed a formulation with symmetric losses.
We also showed how our formulation can be combined with ordinary-label learning.
We established an estimation error bound, and experimentally demonstrated the
usefulness of our algorithm. Then, we showed a general formulation that can be

7https://github.com/takashiishida/comp

https://github.com/takashiishida/comp

CHAPTER 4. LEARNING FROM COMPLEMENTARY LABELS 73

(a) MNIST, linear (b) MNIST, MLP

(c) Fashion MNIST, linear (d) Fashion MNIST, MLP

(e) Kuzushi MNIST, linear (f) Kuzushi MNIST, MLP

(g) CIFAR-10, DenseNet (h) CIFAR-10, ResNet

Figure 4.3: Experimental results for various datasets and models. Dark colors show
the mean accuracy of 5 trials and light colors show standard deviation.

74 4.4. CONCLUSION

used with arbitrary losses. We further improved our risk estimator by a non-negative
correction and a gradient ascent trick.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 75

Chapter 5

Flooding: A Novel Regularizer to
Avoid Overfitting

Overparameterized deep networks have the capacity to memorize training data with
zero training error. Even after memorization, the training loss continues to approach
zero, making the model overconfident and the test performance degraded. While
existing regularizers indirectly try to cope with this issue we propose a direct solution
called flooding that intentionally prevents further reduction of the training loss when
it reaches a reasonably small value, which we call the flood level. Our approach
makes the loss float around the flood level by doing mini-batched gradient descent
as usual but gradient ascent if the training loss is below the flood level. This can be
implemented with one line of code and is compatible with any stochastic optimizer
and other regularizers. With flooding, the model will continue to “random walk” with
the same non-zero training loss, and we expect it to go into an area with a flat loss
landscape that leads to better generalization. We experimentally show that flooding
improves performance and, as a byproduct, induces a double descent curve of the
test loss.

5.1 Introduction

As we have discussed in Section 1.3, “overfitting” is one of the biggest interests and
concerns in the machine learning community (Ng, 1997; Caruana et al., 2000; Belkin
et al., 2018; Roelofs et al., 2019; Werpachowski et al., 2019). One way of identifying
overfitting is to see whether the generalization gap, the test minus the training loss, is
increasing or not (Goodfellow et al., 2016). We can further decompose the situation
of the generalization gap increasing into two stages: The first stage is when both the

76 5.1. INTRODUCTION

(a) w/o Flooding (b) w/ Flooding

[B]

[C]training loss

test loss

Epochs

[A]

(c) C10 w/o Flooding

training loss

test loss

flooded area
Epochs

(d) C10 w/ Flooding

Figure 5.1: (a) shows 3 different concepts related to overfitting. [A] shows the gener-
alization gap increases, while the training and test losses decrease. [B] also shows the
increasing gap, but the test loss starts to rise. [C] shows the training loss becoming
(near-)zero. We avoid [C] by flooding the bottom area, visualized in (b), which forces
the training loss to stay around a constant. This leads to a decreasing test loss once
again. We confirm these claims in experiments with CIFAR-10 shown in (c)–(d).

training and test losses are decreasing, but the training loss is decreasing faster than
the test loss ([A] in Fig. 5.1a.) The next stage is when the training loss is decreasing,
but the test loss is increasing.

Within stage [B], after learning for even more epochs, the training loss will con-
tinue to decrease and may become (near-)zero. This is shown as [C] in Fig. 5.1a. If
we continue training even after the model has memorized (Zhang et al., 2017; Arpit
et al., 2017; Belkin et al., 2018) the training data completely with zero error, the
training loss can easily become (near-)zero especially with overparametrized models.
Recent works on overparametrization and double descent curves (Belkin et al., 2019;
Nakkiran et al., 2020) have shown that learning until zero training error is mean-
ingful to achieve a lower generalization error. However, whether zero training loss is
necessary after achieving zero training error remains an open issue.

In this chapter, we propose a method to make the training loss float around a
small constant value, in order to prevent the training loss from approaching zero. This
is analogous to flooding the bottom area with water, and we refer to the constant

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 77

Figure 5.2: A visual explanation of how flooding repeats gradient decent and gradient
ascent. b is the flooding level and J is the original learning objective. Gradient
descent happens when J > b but gradient ascent happens when J < b.

value as the flood level. Note that even if we add flooding, we can still memorize the
training data. Our proposal only forces the training loss to become positive, which
does not necessarily mean the training error will become positive, as long as the
flood level is not too large. The idea of flooding is shown in Fig. 5.1b, and we show
learning curves before and after flooding with a benchmark dataset in Fig. 5.1c and
Fig. 5.1d. 1

Algorithm and implementation Our algorithm of flooding is surprisingly sim-
ple. If the original learning objective is J , the proposed modified learning objective
J̃ with flooding is

J̃(θ) = |J(θ)− b|+ b, (5.1)

where b > 0 is the flood level specified by the user, and θ is the model parameter.2

The gradient of J̃ w.r.t. θ will point in the same direction as that of J(θ) when
J(θ) > b but in the opposite direction when J(θ) < b. This means that when the
learning objective is above the flood level, there is a “gravity” effect with gradient
descent, but when the learning objective is below the flood level, there is a “buoyancy”
effect with gradient ascent (see Fig. 5.2). In practice, this will be performed with
a mini-batch and will be compatible with any stochastic optimizers. It can also be
used along with other regularization methods.

During flooding, the training loss will repeat going below and above the flood
level. The model will continue to “random walk” with the same non-zero training
loss, and we expect it to drift into an area with a flat loss landscape that leads to

1Note that Figure 5.1c shows the learning curves for the first 80 epochs for CIFAR-10 and ResNet-
18 (He et al., 2016) without flooding. Figure 5.1d shows the learning curves with flooding, when
the flooding level is 0.18.

2Adding back b will not affect the gradient but will ensure J̃(θ) = J(θ) when J(θ) > b.

78 5.1. INTRODUCTION

better generalization (Hochreiter and Schmidhuber, 1997; Chaudhari et al., 2017;
Keskar et al., 2017; Li et al., 2018). In experiments, we show that during this period
of random walk, there is an increase in flatness of the loss function (See Section 5.4.3).

This modification can be incorporated into existing machine learning code easily:
Add one line of code for Eq. (5.1) after evaluating the original objective function
J(θ). A minimal working example with a mini-batch in PyTorch (Paszke et al.,
2019) is demonstrated below to show the additional one line of code:

1 outputs = model(inputs)
2 loss = criterion(outputs , labels)
3 flood = (loss -b).abs()+b # This is it!
4 optimizer.zero_grad ()
5 flood.backward ()
6 optimizer.step()

It may be hard to set the flood level without expert knowledge on the domain
or task. We can circumvent this situation easily by treating the flood level as a
hyper-parameter. We may exhaustively evaluate the accuracy for the predefined
hyper-parameter candidates with a validation dataset, which can be performed in
parallel.

Previous regularization methods Many previous regularization methods (see
Section 1.3) also aim at avoiding training too much in various ways including re-
stricting the parameter norm to become small by decaying the parameter weights
(Hanson and Pratt, 1988), raising the difficulty of training by dropping activations of
neural networks (Srivastava et al., 2014), avoiding the model to output a hard label
by smoothing the training labels (Szegedy et al., 2016), and simply stopping training
at an earlier phase (Morgan and Bourlard, 1990). These methods can be considered
as indirect ways to control the training loss, by also introducing additional assump-
tions such as the optimal model parameters are close to zero. Although making the
regularization effect stronger would make it harder for the training loss to approach
zero, it is still hard to maintain the right level of training loss till the end of train-
ing. In fact, for overparametrized deep networks, applying small regularization would
not stop the training loss becoming (near-)zero, making it even harder to choose a
hyper-parameter that corresponds to a specific level of loss.

Flooding, on the other hand, is a direct solution to the issue that the training loss
becomes (near-)zero. Flooding intentionally prevents further reduction of the training
loss when it reaches a reasonably small value, and the flood level corresponds to the
level of training loss that the user wants to keep.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 79

Avoiding Over-Minimization of the Empirical Risk It is commonly observed
that the empirical risk goes below zero, and it causes overfitting (Kiryo et al., 2017)
in weakly supervised learning when an equivalent form of the risk expressed with the
given weak supervision is alternatively used (Natarajan et al., 2013; Cid-Sueiro et al.,
2014; du Plessis et al., 2014, 2015; Patrini et al., 2017; van Rooyen and Williamson,
2018). Kiryo et al. (2017) proposed a gradient ascent technique to keep the empirical
risk non-negative. This idea has been generalized and applied to other weakly su-
pervised settings (Han et al., 2020; Lu et al., 2020). We have also seen how a similar
idea was useful in Section 4.3 for complementary-label learning.

Although flooding also places a lower bound on the empirical risk, the motivation
is different: First, while Kiryo et al. (2017) and others aim to fix the negative empir-
ical risk to become non-negative, our original empirical risk is already non-negative.
Instead, we are aiming to sink the original empirical risk by modifying it with a
positive lower bound. Second, the problem settings are different. Weakly supervised
learning methods require certain loss corrections or sample corrections (Han et al.,
2020) before the non-negative correction, but we work on the original empirical risk
without any setting-specific modifications.

Early stopping (Morgan and Bourlard, 1990) may be a naive solution to this
problem where the empirical risk becomes too small. However, performance of early
stopping highly depends on the training dynamics and is sensitive to the randomness
in the optimization method and mini-batch sampling. This suggests that early stop-
ping at the optimal epoch in terms of a single training path does not necessarily per-
form well in another round of training. This makes it difficult to use hyper-parameter
selection techniques such as cross-validation that requires re-training a model more
than once. In our experiments, we will demonstrate how flooding performs even
better than early stopping.

Double Descent Curves with Overparametrization Recently, there has been
increasing attention on the phenomenon of “double descent,” named by Belkin et al.
(2019), to explain the two regimes of deep learning: The first one (underparametrized
regime) occurs where the model complexity is small compared to the number of
samples, and the test error as a function of model complexity decreases with low
model complexity but starts to increase after the model complexity is large enough.
This follows the classical view of machine learning that excessive complexity leads
to poor generalization. The second one (overparametrized regime) occurs when an
even larger model complexity is considered. Then increasing the complexity only
decreases test error, which leads to a double descent shape. The phase of decreasing
test error often occurs after the training error becomes zero. This follows the modern

80 5.2. FLOODING: HOW TO AVOID ZERO TRAINING LOSS

view of machine learning that bigger models lead to better generalization.3

As far as we know, the discovery of double descent curves dates back to at least
Krogh and Hertz (1991), where they theoretically showed the double descent phe-
nomenon under a linear regression setup. Recent works (Belkin et al., 2019; Nakkiran
et al., 2020) have shown empirically that a similar phenomenon can be observed with
deep learning methods. Nakkiran et al. (2020) observed that the double descent
curves for the test error can be shown not only as a function of model complexity,
but also as a function of the epoch number.

To the best of our knowledge, the epoch-wise double descent curve was not ob-
served for the test loss before but was observed in our experiments after using flooding
with only about 100 epochs. Investigating the connection between epoch-wise double
descent curves for the test loss and previous double descent curves (Krogh and Hertz,
1991; Belkin et al., 2019; Nakkiran et al., 2020) is out of the scope of this chapter
but is an important future direction.

Organization This chapter is organized as the following. In Section 5.2, we ex-
plain our proposed method. In Section 5.3, we show experiments with synthetic and
benchmark datasets. In Section 5.4, we investigate four properties of flooding. In
Section 5.5, we conclude.

5.2 Flooding: How to Avoid Zero Training Loss

In this section, we propose our regularization method, flooding. Note that this section
and the following sections only consider multi-class classification for simplicity.

5.2.1 Preliminaries

Consider input variable x ∈ Rd and output variable y ∈ [K] := {1, . . . ,K}, where K
is the number of classes. They follow an unknown joint probability distribution with
density p(x, y). We denote the score function by g : Rd → RK . For any test data
point x0, our prediction of the output label will be given by ŷ0 := arg maxz∈[K] gz(x0),
where gz(·) is the z-th element of g(·), and in case of a tie, arg max returns the smallest
argument. Let L : RK × [K]→ R denote a loss function. L can be the zero-one loss,

L01(v, z′) :=

0 if arg maxz∈{1,...,K} vz = z′,

1 otherwise,
(5.2)

3https://www.eff.org/ai/metrics

https://www.eff.org/ai/metrics

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 81

where v := (v1, . . . , vK)> ∈ RK , or a surrogate loss such as the softmax cross-entropy
loss,

LCE(v, z′) := − log
exp(vz′)∑
z∈[K] exp(vz)

. (5.3)

For a surrogate loss L, we denote the classification risk by

R(g) := Ep(x,y)[L(g(x), y)] (5.4)

where Ep(x,y)[·] is the expectation over (x, y) ∼ p(x, y). We use R01(g) to denote
Eq. (5.4) when L = L01 and call it the classification error.

The goal of multi-class classification is to learn g that minimizes the classification
error R01(g). In optimization, we consider the minimization of the risk with a almost
surely differentiable surrogate loss R(g) instead to make the problem more tractable.
Furthermore, since p(x, y) is usually unknown and there is no way to exactly evaluate
R(g), we minimize its empirical version calculated from the training data instead:

R̂(g) :=
1

n

n∑
i=1

L(g(xi), yi), (5.5)

where {(xi, yi)}ni=1 are i.i.d. sampled from p(x, y). We call R̂ the empirical risk.

We would like to clarify some of the undefined terms used so far in this chapter.
The “train/test loss” is the empirical risk with respect to the surrogate loss function
L over the training/test data, respectively. We refer to the “training/test error” as
the empirical risk with respect to L01 over the training/test data, respectively (which
is equal to one minus accuracy) (Zhang, 2004b). 4

5.2.2 Algorithm

With flexible models, R̂(g) w.r.t. a surrogate loss can easily become small if not zero,
as we mentioned in Section 5.1; see [C] in Fig. 5.1a. We propose a method that
“floods the bottom area and sinks the original empirical risk” as in Fig. 5.1b so that
the empirical risk cannot go below the flood level. More technically, if we denote the
flood level as b, our proposed training objective with flooding is a simple fix.

4Also see Guo et al. (2017) for a discussion of the empirical differences of loss and error with
neural networks.

82 5.3. DOES FLOODING GENERALIZE BETTER?

Definition 1. The flooded empirical risk is defined as5

R̃(g) = |R̂(g)− b|+ b. (5.6)

Note that when b = 0, then R̃(g) = R̂(g). The gradient of R̃(g) w.r.t. model
parameters will point to the same direction as that of R̂(g) when R̂(g) > b but in the
opposite direction when R̂(g) < b. This means that when the learning objective is
above the flood level, we perform gradient descent as usual (gravity zone), but when
the learning objective is below the flood level, we perform gradient ascent instead
(buoyancy zone).

The issue is that in general, we seldom know the optimal flood level in advance.
This issue can be mitigated by searching for the optimal flood level b∗ with a hyper-
parameter optimization technique. In practice, we can search for the optimal flood
level by performing the exhaustive search in parallel.

5.2.3 Implementation

For large scale problems, we can employ mini-batched stochastic optimization for
efficient computation. Suppose that we haveM disjoint mini-batch splits. We denote
the empirical risk (5.5) with respect to the m-th mini-batch by R̂m(g) for m ∈
{1, . . . ,M}. Our mini-batched optimization performs gradient descent updates in
the direction of the gradient of |R̂m(g) − b| + b. By the convexity of the absolute
value function and Jensen’s inequality, we have

R̃(g) ≤ 1

M

M∑
m=1

(
|R̂m(g)− b|+ b

)
. (5.7)

This indicates that mini-batched optimization will simply minimize an upper bound
of the full-batch case with R̃(g).

5.3 Does Flooding Generalize Better?

In this section, we show experimental results to demonstrate that adding flooding
leads to better generalization. The implementation in this section and the next is
based on PyTorch (Paszke et al., 2019) and demo code is available.6 Experiments
were carried out with NVIDIA GeForce GTX 1080 Ti, NVIDIA Quadro RTX 5000

5Strictly speaking, Eq. (5.1) is different from Eq. (5.6), since Eq. (5.1) can be a mini-batch version
of Eq. (5.6).

6https://github.com/takashiishida/flooding

https://github.com/takashiishida/flooding

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 83

and Intel Xeon Gold 6142.

5.3.1 Synthetic Datasets

The aim of synthetic experiments is to study the behavior of flooding with a controlled
setup.

Data We use three types of synthetic data: Two Gaussians, Sinusoid (Nakkiran
et al., 2019), and Spiral (Sugiyama, 2015). Below we explain how these data were
generated.

Two Gaussians Data: We used two 10-dimensional Gaussian distributions (one
for each class) with covariance matrix identity and means µP = [0, 0, . . . , 0]> and
µN = [m,m, . . . ,m]>, where m = 1.0. The training, validation, and test sample sizes
are 100, 100, and 20000, respectively.

Sinusoid Data: The sinusoid data (Nakkiran et al., 2019) are generated as follows.
We first draw input data points from the 2-dimensional standard Gaussian distribu-
tion, i.e., x ∼ N(02, I2), where 02 is the two-dimensional zero vector, and I2 2 × 2

identity matrix. Then put class labels based on

y = sign(x>w + sin(x>w′)), (5.8)

where w and w′ are any two 2-dimesional vectors such that w ⊥ w′. The training,
validation, and test sample sizes are 100, 100, and 20000, respectively.

Spiral Data: The spiral data (Sugiyama, 2015) is two-dimensional synthetic data.
Let

θ+
1 := 0, θ+

2 , . . . , θ
+
n+ := 4π (5.9)

be equally spaced n+ points in the interval [0, 4π], and

θ−1 := 0, θ−2 , . . . , θ
−
n− := 4π (5.10)

be equally spaced n− points in the interval [0, 4π]. Let positive and negative input
data points be

x+
i := θi[cos(θi), sin(θi)]

> + τν+
i , (5.11)

x−i := (θ + π)[cos(θ), sin(θ)]> + τν−i (5.12)

for i = 1, . . . , n, where τ controls the magnitude of the noise, ν+
i and ν−i are i.i.d.

distributed according to the two-dimensional standard normal distribution. Then,

84 5.3. DOES FLOODING GENERALIZE BETTER?

we make data for classification by

{(xi, yi)}ni=1 := {(x+
i ,+1)}n+

i+=1 ∪ {(x
−
i ,−1)}n−i−=1, (5.13)

where n := n+ + n−. The training, validation, and test sample sizes are 100, 100,
and 10000 per class respectively.

Settings

We perform three experiments with synthetic datasets. For the first experiment,
we aim to investigate whether flooding contributes to better generalization. We use
a five-hidden-layer feedforward neural network with 500 units in each hidden layer
with the ReLU activation function (Nair and Hinton, 2010). We train the network
for 500 epochs with the logistic loss and the Adam (Kingma and Ba, 2015) optimizer
with 100 mini-batch size and learning rate of 0.001. The flood level is chosen from
b ∈ {0, 0.01, 0.02, . . . , 0.50}. We tried adding label noise to our dataset, by flipping
1% (Low), 5% (Middle), or 10% (High) of the labels randomly. This label noise is
added to both the training and the test dataset, so it corresponds to varying the
Bayes risk, i.e., the difficulty of classification. Note that the training with b = 0 is
identical to the baseline method without flooding. We report the test accuracy of the
flood level with the best validation accuracy. We first conduct experiments without
early stopping, which means that the last epoch was chosen for all flood levels.

The second experiment aims to investigate the effect of mini-batch size. In this
experiment, we use the same model except that we have one hidden layer, the flood
level is chosen from b ∈ {0, 0.01, 0.02, . . . , 0.35}, we train for 450 epochs, and we fix
the noise rate to 5%. The mini-batch size is chosen from 1, 10, and 50. Early-stopping
was not used.

The last experiment compares a different implementation of flooding. Instead of
using the absolute operator in Eq. (5.6), we try the following version7:

R̃sq(g) = (R̂(g)− b)2 + b. (5.14)

The mini-batch size is 100, and other settings are same as the second experiment.

Results

The average and standard deviation of the accuracy of each method over 10 trials
are summarized in Table 5.1.

7We also tried R̃max(g) = max(R̂(g), b) + b but did not seem to have any improvement over the
baseline (w/o flooding) in preliminary experiments.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 85

T
ab

le
5.
1:

E
xp

er
im

en
ta
lr

es
ul
ts

fo
r
th
e
sy
nt
he

ti
c
da

ta
.
T
he

av
er
ag

e
an

d
st
an

da
rd

de
vi
at
io
n
of

th
e
ac
cu

ra
cy

of
ea
ch

m
et
ho

d
ov
er

10
tr
ia
ls
.
Su

b-
ta
bl
e
(A

)
sh
ow

s
th
e
re
su
lt
s
w
it
ho

ut
ea
rl
y
st
op

pi
ng

.
Su

b-
ta
bl
e
(B

)
sh
ow

s
th
e
re
su
lt
s
w
it
h
ea
rl
y
st
op

pi
ng

.
T
he

b
ol
d
fa
ce

de
no

te
s
th
e
be

st
an

d
co
m
pa

ra
bl
e
m
et
ho

d
in

te
rm

s
of

th
e
av
er
ag
e
ac
cu

ra
cy

ac
co
rd
in
g
to

th
e
t-
te
st

at
th
e

si
gn

ifi
ca
nc
e
le
ve
l1

%
.
T
he

av
er
ag

e
an

d
st
an

da
rd

de
vi
at
io
n
of

th
e
ch
os
en

flo
od

le
ve
li
s
al
so

sh
ow

n.

(A
)
W

it
ho

ut
E
ar
ly

St
op

pi
ng

(B
)
W

it
h
E
ar
ly

St
op

pi
ng

D
at
a

La
be

l
N
oi
se

W
it
ho

ut
F
lo
od

in
g

W
it
h

F
lo
od

in
g

C
ho

se
n

b
W

it
ho

ut
F
lo
od

in
g

W
it
h

F
lo
od

in
g

C
ho

se
n

b

T
w
o

G
au

ss
ia
ns

Lo
w

90
.5
2%

(0
.7
1)

92
.1
3%

(0
.4
8)

0.
17

(0
.1
0)

90
.4
1%

(0
.9
8)

92
.1
3%

(0
.5
2)

0.
16

(0
.1
2)

M
id
dl
e

84
.7
9%

(1
.2
3)

88
.0
3%

(1
.0
0)

0.
22

(0
.0
9)

85
.8
5%

(2
.0
7)

88
.1
5%

(0
.7
2)

0.
23

(0
.0
8)

H
ig
h

78
.4
4%

(0
.9
2)

83
.5
9%

(0
.9
2)

0.
32

(0
.0
8)

81
.0
9%

(2
.2
3)

83
.8
7%

(0
.6
5)

0.
32

(0
.1
1)

Sp
ir
al

Lo
w

97
.7
2%

(0
.2
6)

98
.7
2%

(0
.2
0)

0.
03

(0
.0
1)

97
.7
2%

(0
.6
8)

98
.2
6%

(0
.5
0)

0.
02

(0
.0
1)

M
id
dl
e

89
.9
4%

(0
.5
9)

93
.9
0%

(0
.9
0)

0.
12

(0
.0
3)

91
.3
7%

(1
.4
3)

93
.5
1%

(0
.8
4)

0.
10

(0
.0
4)

H
ig
h

82
.3
8%

(1
.8
0)

87
.6
4%

(1
.6
0)

0.
24

(0
.0
5)

84
.4
8%

(1
.5
2)

88
.0
1%

(0
.8
2)

0.
22

(0
.0
6)

Si
nu

so
id

Lo
w

94
.6
2%

(0
.8
9)

94
.6
6%

(1
.3
5)

0.
05

(0
.0
4)

94
.5
2%

(0
.8
5)

95
.4
2%

(1
.1
3)

0.
03

(0
.0
3)

M
id
dl
e

87
.8
5%

(1
.0
2)

90
.1
9%

(1
.4
1)

0.
11

(0
.0
7)

90
.5
6%

(1
.4
6)

91
.1
6%

(1
.3
8)

0.
13

(0
.0
7)

H
ig
h

78
.4
7%

(2
.3
9)

85
.7
8%

(1
.3
4)

0.
25

(0
.0
8)

83
.8
8%

(1
.4
9)

85
.1
0%

(1
.3
4)

0.
22

(0
.1
0)

86 5.3. DOES FLOODING GENERALIZE BETTER?

1 10 5075

80

85

90

95

100
w/o flood
w/ flood

(a) Two Gaussians

1 10 5075

80

85

90

95

100
w/o flood
w/ flood

(b) Spiral

1 10 5075

80

85

90

95

100
w/o flood
w/ flood

(c) Sinusoid

Figure 5.3: Comparison of flooding with different mini-batch sizes. We report the
mean accuracy and standard deviation over four trials with different mini-batch sizes
(1, 10, and 50) and datasets (Two Gaussians, Spiral, and Sinusoid).

From (A) in Table 5.1, we can see that the method with flooding often im-
proves test accuracy over the baseline method without flooding. As we mentioned in
the introduction, it can be harmful to keep training a model until the end without
flooding. However, with flooding, the model at the final epoch has good prediction
performance according to the results, which implies that flooding helps the late-stage
training improve test accuracy.

We also conducted experiments with early stopping, meaning that we chose the
model that recorded the best validation accuracy during training. The results are
reported in sub-table (B) of Table 5.1. Compared with sub-table (A), we see that
early stopping improves the baseline method without flooding in many cases. This
indicates that training longer without flooding was harmful in our experiments. On
the other hand, the accuracy for flooding combined with early stopping is often close
to that with early stopping, meaning that training until the end with flooding tends
to be already as good as doing so with early stopping. The table shows that flooding
often improves or retains the test accuracy of the baseline method without flooding
even after deploying early stopping. Flooding does not hurt performance but can be
beneficial for methods used with early stopping.

It is worth noting that the average of the chosen flood level b is larger for a larger
label noise. Since the increase of the label noise is expected to increase the Bayes
risk, the results imply a positive correlation for the Bayes risk and the optimal flood
level.

The experiments with different mini-batch sizes are shown in Figure 5.3. In
Section 4.3.4, we discussed how a mini-batch case is an upper bound of the full-batch
case with the flooded empirical risk R̃(g). However, we can see that practically
this is not an issue, since in Figure 5.3, we do not see a trend where smaller mini-
batch size lead to worse performance. The experiments when the mini-batch size is

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 87

w/o flood flood(sq) flood(abs)80

82

84

86

88

90

92

94

(a) Two Gaussians

w/o flood flood(sq) flood(abs)80

82

84

86

88

90

92

94

(b) Spiral

w/o flood flood(sq) flood(abs)80

82

84

86

88

90

92

94

(c) Sinusoid

Figure 5.4: Comparison of different implementations for flooding. We report the
mean accuracy and standard deviation of five trials with different datasets (Two
Gaussians, Spiral, and Sinusoid). We compare three methods: Baseline (without
flooding), flooding with (5.14) (sq), and flooding with (5.6) (abs).

1 corresponds to the case when we add flooding in a sample-wise fashion. Except
for Sinusoid, we did not observe a positive effect by adding flooding in a sample-wise
fashion.

Finally, the results of comparing flooding with the squared implementation is
shown in Figure 5.4. The squared implementation performs better than the base-
line (w/o flooding) in Two Gaussians and Sinusoid, but performs the same in Spiral.
The absolute implementation performs the best compared with the baseline (w/o
flooding) and the squared implementation.8 To conclude, we recommend using the
absolute implementation rather than the squared implementation in practice. The
experiments in the rest of this section will use the absolute implementation for flood-
ing.

5.3.2 Benchmark Experiments

We next perform experiments with benchmark datasets. Not only do we compare
with the baseline without flooding, we also compare or combine with other general
regularization methods, which are early stopping, weight decay, batch normalization,
data augmentation, and learning rate decay.

Settings

We use the following benchmark datasets: MNIST, Kuzushiji-MNIST, SVHN, CIFAR-
10, and CIFAR-100. The details of the benchmark datasets can be found in Ap-

8We also compared with a max implementation with max(R̂(g), b)+b, but did not perform better
than the baseline in our preliminary experiments.

88 5.3. DOES FLOODING GENERALIZE BETTER?

0 100 200 300 400 500
epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

te
st

 lo
ss

(a) MNIST, MLP

0 100 200 300 400 500
epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

te
st

 lo
ss

(b) MNIST, MLP&BN

0 100 200 300 400 500
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 lo
ss

(c) KMNIST, MLP

0 100 200 300 400 500
epoch

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 lo
ss

(d) KMNIST, MLP&BN

0 100 200 300 400 500
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 lo
ss

(e) SVHN, ResNet18

0 100 200 300 400 500
epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

te
st

 lo
ss

(f) C10, ResNet44

0 100 200 300 400 500
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

te
st

 lo
ss

(g) C10, ResNet44, DA &
LRD

0 100 200 300 400 500
epoch

2.5

3.0

3.5

4.0

4.5

5.0

te
st

 lo
ss

(h) C100, ResNet44

0 100 200 300 400 500
epoch

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

te
st

 lo
ss

(i) C100, ResNet44, DA &
LRD

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Figure 5.5: Learning curves of the test loss showing that adding flooding leads to lower
test loss. The black dotted line shows the baseline without flooding. The colored
lines show the learning curves with flooding for different flooding levels. We show
the learning curves for b ∈ {0.01, 0.02, . . . , 0.10}. KMNIST is Kuzushiji-MNIST, C10
is CIFAR-10, and C100 is CIFAR-100. MLP, BN, DA, and LRD stand for multi-
layer perceptron, batch normalization, data augmentation and learning rate decay,
respectively.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 89

pendix C.1. Stochastic gradient descent (Robbins and Monro, 1951) is used with
learning rate of 0.1 and momentum of 0.9 for 500 epochs. For MNIST and Kuzushiji-
MNIST, we use a two-hidden-layer feedforward neural network with 1000 units and
the ReLU activation function (Nair and Hinton, 2010). We also compared adding
batch normalization (Ioffe and Szegedy, 2015). For SVHN, we used ResNet-18 from
He et al. (2016) with the implementation provided in Paszke et al. (2019). For
MNIST, Kuzushiji-MNIST, and SVHN, we compared adding weight decay with rate
1 × 10−5. For CIFAR-10 and CIFAR-100, we used ResNet-44 from He et al. (2016)
with the implementation provided in Idelbayev (2020). For CIFAR-10 and CIFAR-
100, we compared adding simple data augmentation (random crop and horizontal
flip) and learning rate decay (multiply by 0.1 after 250 and 400 epochs). We split
the original training dataset into training and validation data with with a proportion
of 80 : 20 except for when we used data augmentation, we used 85 : 15. We per-
form the exhaustive hyper-parameter search for the flood level with candidates from
{0.00, 0.01, . . . , 0.10}. We used the original labels and did not add label noise. We
deployed early stopping in the same way as in Section 5.3.1.

Results

We show the results in Table 5.2. For each dataset, the best performing setup and
combination of regularizers always use flooding. Combining flooding with early stop-
ping, weight decay, data augmentation, batch normalization, and/or learning rate
decay usually has complementary effects. As a byproduct, we were able to produce a
double descent curve for the test loss with a relatively few number of epochs, shown
in Fig. 5.5.

5.4 Why Does Flooding Generalize Better?

In this section, we investigate four key properties of flooding to seek potential reasons
for better generalization.

5.4.1 Memorization

Can we maintain memorization (Zhang et al., 2017; Arpit et al., 2017; Belkin et al.,
2018) even after adding flooding? We investigate if the trained model has zero train-
ing error (100% accuracy) for the flood level that was chosen with validation data.
The results are shown in Fig. 5.6.

All datasets and settings show downward curves, implying that the model will give
up eventually on memorizing all training data as the flood level becomes higher. A

90 5.4. WHY DOES FLOODING GENERALIZE BETTER?

Table 5.2: Benchmark datasets. Reporting accuracy for all combinations of early
stopping and flooding. We compare “w/o flood” and “w/ flood” and the better one is
shown in boldface. The best setup for each dataset is shown with underline. “–”
means that flood level of zero was optimal. “LRD” stands for learning rate decay and
“DA” stands for data augmentation. C10 is CIFAR-10 and C100 is CIFAR-100.

w/o early stopping w/ early stopping

Dataset Model & Setup w/o flood w/ flood w/o flood w/ flood

MNIST
MLP 98.45% 98.76% 98.48% 98.66%
MLP w/ weight decay 98.53% 98.58% 98.51% 98.64%
MLP w/ batch norm 98.60% 98.72% 98.66% 98.65%

Kuzushiji
MLP 92.27% 93.15% 92.24% 92.90%
MLP w/ weight decay 92.21% 92.53% 92.24% 93.15%
MLP w/ batch norm 92.98% 93.80% 92.81% 93.74%

SVHN ResNet18 92.38% 92.78% 92.41% 92.79%
ResNet18 w/ weight decay 93.20% – 92.99% 93.42%

C10 ResNet44 75.38% 75.31% 74.98% 75.52%
ResNet44 w/ DA & LRD 88.05% 89.61% 88.06% 89.48%

C100 ResNet44 46.00% 45.83% 46.87% 46.73%
ResNet44 w/ DA & LRD 63.38% 63.70% 63.24% –

0.00 0.02 0.04 0.06 0.08 0.10
Flood Level

96

97

98

99

100

Tr
ai

ni
ng

 A
cc

. o
f T

ra
in

ed
 M

od
el

MNIST(MLP)
MNIST(MLP&BN)
KMNIST(MLP)
KMNIST(MLP&BN)
SVHN(ResNet18)
C10(ResNet44)
C100(ResNet44)
C10(ResNet44+DA+LRD)
C100(ResNet44+DA+LRD

(a) w/o early stopping

0.00 0.02 0.04 0.06 0.08 0.10
Flood Level

96

97

98

99

100

Tr
ai

ni
ng

 A
cc

. o
f T

ra
in

ed
 M

od
el

MNIST(MLP)
MNIST(MLP&BN)
KMNIST(MLP)
KMNIST(MLP&BN)
SVHN(ResNet18)
C10(ResNet44)
C100(ResNet44)
C10(ResNet44+DA+LRD)
C100(ResNet44+DA+LRD

(b) w/ early stopping

Figure 5.6: Vertical axis is the training accuracy and the horizontal axis is the flood
level. Marks are placed on the flood level that was chosen based on validation accu-
racy.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 91

more interesting observation is the position of the optimal flood level (the one chosen
by validation accuracy which is marked with ?, 4, /, ◦, O or .). We can observe
that the marks are often plotted at zero error. These results are consistent with
recent empirical works that imply zero training error leads to lower generalization
error (Belkin et al., 2019; Nakkiran et al., 2020), but we further demonstrate that
zero training loss may be harmful under zero training error.

5.4.2 Performance and Gradients

We visualize the relationship between test performance (loss or accuracy) and gradi-
ent amplitude of the training/test loss in Fig. 5.7, where the gradient amplitude is the
`2 norm of the filter-normalized gradient of the loss. The filter-normalized gradient is
the gradient appropriately scaled depending on the magnitude of the corresponding
convolutional filter, similarly to Li et al. (2018).

More specifically, for each filter of every convolutional layer, we multiply the
corresponding elements of the gradient by the norm of the filter. Note that a fully
connected layer is a special case of convolutional layer and is also subject to this
scaling.

For the sub-figures with gradient amplitude of training loss on the horizontal axis,
“◦” marks (w/ flooding) are often plotted on the right of “+” marks (w/o flooding),
which implies that flooding prevents the model from staying at a local minimum.
For the sub-figures with gradient amplitude of test loss on the horizontal axis, the
method with flooding (“◦”) improves performance while the gradient amplitude be-
comes smaller.

5.4.3 Flatness

We give a one-dimensional visualization of flatness (Li et al., 2018). We compare
the flatness of the model right after the empirical risk with respect to a mini-batch
becomes smaller than the flood level, R̂m(g) < b, for the first time (dotted blue) and
the model after training (solid blue). We also compare them with the model trained
by the baseline method without flooding, and training is finished (solid red).

In Fig. 5.8, the test loss becomes lower and flatter during the training with flood-
ing. Note that the training loss, on the other hand, continues to float around the
flood level until the end of training after it enters the flooding zone. We expect that
the model makes a random walk and escapes regions with sharp loss landscapes dur-
ing the period. This may be a possible reason for better generalization results with
our proposed method.

92 5.4. WHY DOES FLOODING GENERALIZE BETTER?

0.00 0.02 0.04 0.06
Amplitude of Train Loss Gradient

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Te
st

 L
os

s

w/ flooding
w/o flooding

100

200

300

400

500

(a) MNIST, x:train

0.2 0.4 0.6 0.8 1.0
Amplitude of Test Loss Gradient

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090
Te

st
 L

os
s

w/ flooding
w/o flooding

100

200

300

400

500

(b) MNIST, x:test

0.00 0.05 0.10
Amplitude of Train Loss Gradient

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(c) KMNIST, x:train

0.5 1.0 1.5 2.0
Amplitude of Test Loss Gradient

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(d) KMNIST, x:test

0.0 0.1 0.2 0.3
Amplitude of Train Loss Gradient

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

w/ flooding
w/o flooding

100

200

300

400

500

(e) SVHN, x:train

0.5 1.0 1.5 2.0
Amplitude of Test Loss Gradient

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

w/ flooding
w/o flooding

100

200

300

400

500

(f) SVHN, x:test

0.0 0.2 0.4 0.6 0.8 1.0
Amplitude of Train Loss Gradient

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(g) CIFAR-10, x:train

1 2 3 4 5
Amplitude of Test Loss Gradient

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(h) CIFAR-10, x:test

0.0 0.2 0.4 0.6
Amplitude of Train Loss Gradient

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(i) CIFAR-100,
x:train

2.5 5.0 7.5 10.0
Amplitude of Test Loss Gradient

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(j) CIFAR-100, x:test

Figure 5.7: Relationship between test loss and amplitude of gradient (with training
or test loss). Each point (“◦” or “+”) in the figures corresponds to a single model at
a certain epoch. We remove the first 10 epochs and plot the rest. “◦” is used for the
method with flooding and “+” is used for the method without flooding. The large
black “◦” and “+” show the epochs with early stopping. The color becomes lighter
(purple → yellow) as the training proceeds.

CHAPTER 5. FLOODING: A NOVEL REGULARIZER TO AVOID
OVERFITTING 93

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(a) MNIST (train)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Te

st
 L

os
s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(b) MNIST (test)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(c) KMNIST (train)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(d) KMNIST (test)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(e) SVHN (train)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0

2

4

6

8

10

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(f) SVHN (test)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(g) CIFAR-10 (train)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(h) CIFAR-10 (test)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(i) CIFAR-100 (train)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

12

14

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(j) CIFAR-100 (test)

Figure 5.8: One-dimensional visualization of flatness. We visualize the training/test
loss with respect to perturbation. We depict the results for 3 models: the model
when the empirical risk with respect to training data is below the flooding level for
the first time during training (dotted blue), the model at the end of training with
flooding (solid blue), and the model at the end of training without flooding (solid
red).

94 5.5. CONCLUSION

5.4.4 Theoretical Insight

We show that the mean squared error (MSE) of the flooded risk estimator is smaller
than that of the original risk estimator without flooding, with the condition that the
flood level is between the original training loss and the test loss, in the following
theorem.

Theorem 5.1. Fix any measurable vector-valued function g. If the flood level b
satisfies b ≤ R(g), we have

MSE(R̂(g)) ≥ MSE(R̃(g)). (5.15)

If b further satisfies b < R(g) and Pr[R̂(g) < b] > 0, the inequality will be strict:

MSE(R̂(g)) > MSE(R̃(g)). (5.16)

See Appendix C.2 for formal discussions and the proof.

5.5 Conclusion

We proposed a novel regularization method called flooding that keeps the training loss
to stay around a small constant value, to avoid zero training loss. In our experiments,
the optimal flood level often maintained memorization of training data, with zero
error. With flooding, our experiments confirmed that the test accuracy improves
for various synthetic and benchmark datasets, and we theoretically showed that the
MSE will be reduced under certain conditions.

As a byproduct, we were able to produce a double descent curve for the test loss
when flooding was used. An important future direction is to study the relationship
between this and the double descent curves from previous works (Krogh and Hertz,
1991; Belkin et al., 2019; Nakkiran et al., 2020).

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 95

Chapter 6

Conclusions and Future Work

In this chapter, we conclude by summarizing our main contributions and discuss
future directions.

6.1 Conclusions

In this dissertation, we presented reliable machine learning algorithms for weak su-
pervision and limited data. We summarize our main contributions as follows.

• In Chapter 3, we introduced our novel problem setting of learning a binary clas-
sifier from only positive data, without any negative data or unlabeled data. We
showed that if we can equip positive data with confidence, we can successfully
learn a binary classifier with the optimal convergence rate. The key technique
was to reformulate the classification risk into a formulation that only required
the positive-confidence data, from a formulation that originally required both
positive and negative data. This led to a simple empirical risk minimization
framework that is model-, optimization-, and loss-independent. We showed the
consistency and an estimation error bound. Our experimental results demon-
strated the effectiveness of our method.

• In Chapter 4, we introduced another type of weak supervision called comple-
mentary labels, which is helpful for multi-class classification. A complementary
label specifies a class that a pattern does not belong to. We showed that an
unbiased estimator to the classification risk can be obtained only from com-
plementarily labeled data, if a loss function satisfies a particular symmetric
condition. We then derived estimation error bounds for the proposed method
and proved that the optimal convergence rate is achieved. We also showed that
learning from complementary labels can be easily combined with learning from

96 6.2. SHORT TERM FUTURE WORK

ordinary labels, i.e., ordinary supervised learning. We showed experimental re-
sults to confirm the usefulness of our approach. We further extend the unbiased
risk estimator to arbitrary losses and models, and improve it by a non-negative
correction and a gradient ascent trick. We showed experiments with benchmark
datasets to demonstrate the usefulness of this extension.

• In Chapter 5, we introduced a novel regularizer that can be used to avoid over-
fitting. We proposed a regularizer called flooding that intentionally prevents
further reduction of the training loss when it reaches a reasonably small value,
which we call the flood level. Our approach makes the flooded empirical risk
float around the flood level by performing mini-batched gradient descent as
usual but gradient ascent if the empirical risk is below the flood level. With
flooding, the model will continue performing a “random walk” with the same
non-zero empirical risk, and we expect it to drift into an area with a flat loss
landscape that leads to better generalization. We experimentally showed that
flooding improves the generalization performance and as a byproduct, induces
a double descent curve of the test loss.

A recurring theme throughout this dissertation was risk modification. We either
took a risk rewriting approach or a risk correction approach. In Pconf classification
and complementary-label classification, we rewrote the risk in order to utilize weakly
supervised data. When we extended the complementary-label framework to be com-
patible with any loss functions, we encountered a situation where the empirical risk
becomes negative. We corrected the risk to become non-negative, and showed that
this was an effective way to avoid performance deterioration. We used a similar
idea in flooding—we avoided minimizing the empirical risk too much, by directly
correcting the risk to stay around the flood level.

Many machine learning algorithms have different settings, components, and as-
sumptions, but one of the few factors in common is that they often have a target
empirical risk, or more generally, an objective function, that they want to minimize
(or maximize). The advantage of the risk modification approach is that instead of
focusing on specific settings or components, we directly deal with the empirical risk.
This leads to an algorithm that will usually become compatible with a wide variety
of models, loss functions, and optimizers, and potentially can be used for various
domains and tasks.

6.2 Short Term Future Work

We discuss future work of this dissertation.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 97

6.2.1 Future Work for Positive-Confidence Learning

What if we have access to negative data in addition to positive-confidence data?
In order to learn from positive-confidence and negative data, we can rewrite the
classification risk as follows:

R(g) = Ep(x,y)[`(yg(x)]

= π+E+[`(g(x))] + π−E−[`(−g(x))]

= π+E+[`(g(x))] + λπ−E−[`(−g(x))] + (1− λ)π−E−[`(−g(x))]

= π+E+[`(g(x))] + λπ−E−[`(−g(x))] + (1− λ)π+E+

[
1− r(x)

r(x)
`(−g(x))

]
= π+E+

[
`(g(x)) + (1− λ)

1− r(x)

r(x)
`(−g(x))

]
+ λπ−E− [`(−g(x))] , (6.1)

where λ ∈ [0, 1] is a hyper-parameter. λ = 0 corresponds to Pconf classification and
λ = 1 corresponds to ordinary classification. We can learn a classifier by minimizing
the empirical version of the above.

When we are collecting confidence for positive-confidence learning, we may en-
counter positive-confidence values of zero. Although by assumption this is impossible
(since we are giving confidence to positive samples), there may be errors in data col-
lection procedures and negative samples may be included in the training dataset. In
this situation, the above formulation of positive-confidence and negative data can
become handy.

6.2.2 Future Work for Complementary-Label Learning

In this dissertation, we focused on the risk modification approach. For future work, we
can consider other approaches to further enhance the performance of complementary-
label learning. Inspired by ideas from semi-supervised learning, we can consider
adding a regularization term to encourage similar examples to have the same pre-
diction. For example, we can think of propagating complementary labels to nearby
samples: if a sample is not from class k, then a nearby sample also shouldn’t be from
class k.

It would also be interesting to explore the value of using complementary labels
for (weakly-)supervised pretraining (Donahue et al., 2014; Mahajan et al., 2018) or
in the fine-tuning stage after self-supervised pretraining (He et al., 2020; Chen et al.,
2020).

98 6.2. SHORT TERM FUTURE WORK

6.2.3 Future Work for Flooding

In this subsection, we discuss future works for flooding.

Theoretical and Empirical Analysis for Flooding

In Chapter 5, we discussed four potential reasons that may explain the better gener-
alization properties of flooding. But in order to have a better understanding of this
regularizer, we will need to further investigate the properties of flooding theoretically.
The phenomenon of the epoch-wise double descent curve that can be observed with
flooding also needs investigation.

Recently, Zheng et al. (2020) compared various regularizers such as dropout (Sri-
vastava et al., 2014), label smoothing (Szegedy et al., 2016), mixup (Zhang et al.,
2018), adversarial training (Goodfellow et al., 2015), adversarial model perturbation
(Zheng et al., 2020), and flooding (Chapter 5). The experimental results showed
that flooding performs the best or second best with respect to confidence-calibration
based on the expected calibration error (Guo et al., 2017) out of all methods. It
would be interesting to further investigate this property from a theoretical point of
view.

Class-Wise Flooding

We are interested in extending or improving the flooding algorithm. An example
would be to employ different flood levels for different classes, instead of employing a
single flood level for all samples. The motivation is that some classes may be more
difficult than others, and the class-wise empirical risks should have different flood
levels.

However, this increases the number of hyperparameters to K (the number of
classes) from 1, and hyperparameter tuning would become impractical. It would be
interesting to combine ideas from Bayesian optimization (Snoek et al., 2012) to cope
with this issue.

Flooding in Other Tasks and Domains

In Chapter 5, we argued that flooding is task-independent and domain-independent.
However, our experiments were based only on binary and multi-class classification
for image datasets. It is important to investigate if it is effective in other tasks (e.g.,
regression, ranking, and clustering) and domains (e.g., natural language processing
and tabular data).

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 99

6.3 Future Directions

In this section, we discuss potential future directions.

6.3.1 Looking for Yet Another Type of Supervision

In this dissertation, we explored if we can consider an alternative type of supervision,
and investigated if we can propose algorithms to learn from such an alternative
supervision. This exploration has led to positive-confidence learning (in Chapter 3)
and complementary-label learning (in Chapter 4).

Recently, there have been other interesting proposals such as classification from
multiclass label proportions or coarse-grained labels (Zhang et al., 2019), pairwise
comparison binary classification which only has pairs of unlabeled data and a label
showing which one is more likely to be positive (Feng et al., 2020), triplet comparison
binary classification from triplet comparison data (Cui et al., 2020), and regression
from pairwise comparison data (Xu et al., 2019).

An opposite direction is to explore heavy supervision. In some cases, labelers
can provide rich information of the data they are observing. In fact, our idea of
using confidence in Pconf classification can be regarded as making the supervision
heavier for the positive samples while weakening supervision by removing negative
samples. Another example is from Hancock et al. (2018), where they proposed a
practical problem setting for classification where labelers provide a natural language
explanation of why they chose certain class labels, and showed that utilizing this
explanation when learning the classifier can boost the performance.

With ever changing environments and practical constraints, the demand for ma-
chine learning and methods to cope with various types of supervision will continue
to increase in various areas in the industry and science. We believe research on novel
types of supervision will remain to be an important topic.

6.3.2 Shifting Our Focus to Lowering the Total Cost

In this dissertation, we focused on learning from limited data and supervision with
the aim of lowering the data collecting costs and labeling costs. In the long run, this is
rather an intermediate goal, and our ultimate goal is to lower the total cost of starting
a machine learning project and building a machine learning system. Collecting and
labeling data is one of the early steps of a machine learning project, and starting a
machine learning project will become much easier when the cost of data collection
and labeling are low. However, the total cost may still remain high, since it is
sometimes time-consuming and expensive to design, train, and evaluate machine

100 6.3. FUTURE DIRECTIONS

learning models. It will become important to shift our focus to lowering the total
cost. Hyperparameter optimization (Yu and Zhu, 2020), neural architecture search
(Elsken et al., 2019), and Bayes error estimation (Berisha et al., 2015; Sekeh et al.,
2020; Noshad et al., 2019) are promising directions to lower the total cost.

APPENDICES 101

Appendices

A Appendices for Chapter 3

In this section, we explain the neural network architectures that were used in Section
4.2.4.

A.1 CNN Architecture

• Convolution (3 in- /18 out-channels, kernel size 5).

• Max-pooling (kernel size 2, stride 2).

• Convolution (18 in- /48 out-channels, kernel size 5).

• Max-pooling (kernel size 2, stride 2).

• Fully-connected (800 units) with ReLU.

• Fully-connected (400 units) with ReLU.

• Fully-connected (1 unit).

A.2 AutoEncoder Architecture

• Convolution (3 in- /18 out-channels, kernel size 5, stride 1) with ReLU.

• Max-pooling (kernel size 2, stride 2).

• Convolutional layer (18 in- /48 out-channels, kernel size 5, stride 1) with ReLU.

• Max-pooling (kernel size 2, stride 2).

• Deconvolution (48 in- /18 out-channels, kernel size 5, stride 2) with ReLU.

• Deconvolution (18 in- /5 out-channels, kernel size 5, stride 2).

• Deconvolution (5 in- /3 out-channels, kernel size 4, stride 1) with Tanh.

102 B. APPENDICES FOR CHAPTER 4

B Appendices for Chapter 4

B.1 Proof of Lemma 4.3

Proof. By definition, h(xi, ȳi) = L̃OVA(g(xi), ȳi) so that

R̄n(HOVA) = ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi

 1

K − 1

∑
y 6=ȳi

˜̀(gy(xi)) + ˜̀(−gȳi(xi))

 .
(2)

After rewriting L̃OVA(g(xi), ȳi), we can know that

L̃OVA(g(xi), ȳi) =
1

K − 1

∑
y

˜̀(gy(xi)) +
K

K − 1
˜̀(−gȳi(xi)), (3)

and subsequently,

R̄n(HOVA) ≤ 1

K − 1
ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(gy(xi))

+

K

K − 1
ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi ˜̀(−gȳi(xi))

 (4)

due to the sub-additivity of the supremum.
The first term is independent of ȳi and thus

ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(gy(xi))

= EX̄Eσ

 sup
g1,...,gK∈G

1

n

∑
xi∈X̄

σi
∑
y

˜̀(gy(xi))

≤
∑
y

EX̄Eσ

 sup
g1,...,gK∈G

1

n

∑
xi∈X̄

σi ˜̀(gy(xi))

=
∑
y

EX̄Eσ

 sup
gy∈G

1

n

∑
xi∈X̄

σi ˜̀(gy(xi))

= KR̄n(˜̀◦ G), (5)

which means the first term can be bounded by K/(K − 1) · R̄n(˜̀◦ G). The second

APPENDICES 103

term is more involved. Let I(·) be the indicator function and αi = 2I(y = ȳi) − 1,
then

ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi ˜̀(−gȳi(xi))

= ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(−gy(xi))I(y = ȳi)

= ESEσ

 sup
g1,...,gK∈G

1

2n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(−gy(xi))(αi + 1)

≤ ESEσ

 sup
g1,...,gK∈G

1

2n

∑
(xi,ȳi)∈S

αiσi
∑
y

˜̀(−gy(xi))

+ ESEσ

 sup
g1,...,gK∈G

1

2n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(−gy(xi))

= ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi
∑
y

˜̀(−gy(xi))

 , (6)

where we used that αiσi has exactly the same distribution as σi. This can be similarly
bounded by R̄n(˜̀◦G) and the second term can be bounded by K2/(K−1) ·R̄n(˜̀◦G).

As a result,

R̄n(HOVA) ≤
(

K

K − 1
+

K2

K − 1

)
R̄n(˜̀◦ G)

=
K(K + 1)

K − 1
R̄n(˜̀◦ G) ≤ K(K + 1)

K − 1
L`R̄n(G)

=
K(K + 1)

K − 1
L`Rn(G), (7)

according to Talagrand’s contraction lemma (Ledoux and Talagrand, 1991).1

1We thank Katsura and Uchida (2020) for pointing out a miscalculation in our earlier version of
this lemma.

104 APPENDICES FOR CHAPTER 4

B.2 Proof of Lemma 4.4

Proof. By definition,

R̄n(HPC) = ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi

∑
y′ 6=ȳi

˜̀(gy′(xi)− gȳi(xi))

 . (8)

Using the proof technique for handling the second term in the proof of Lemma 4.3,
we have

R̄n(HPC) ≤ ESEσ

 sup
g1,...,gK∈G

1

n

∑
(xi,ȳi)∈S

σi
∑
y

∑
y′ 6=y

˜̀(gy′(xi)− gy(xi))

= EX̄Eσ

 sup
g1,...,gK∈G

1

n

∑
xi∈X̄

σi
∑
y

∑
y′ 6=y

˜̀(gy′(xi)− gy(xi))

≤
∑
y

∑
y′ 6=y

EX̄Eσ

 sup
gy ,gy′∈G

1

n

∑
xi∈X̄

σi ˜̀(gy′(xi)− gy(xi))

 , (9)

due to the sub-additivity of the supremum.

Let Gy,y′ = {x 7→ gy′(x) − gy(x) | gy, gy′ ∈ G}, then by Talagrand’s contraction
lemma (Ledoux and Talagrand, 1991),

EX̄Eσ

 sup
gy ,gy′∈G

1

n

∑
xi∈X̄

σi ˜̀(gy′(xi)− gy(xi))

= R̄n(˜̀◦ Gy,y′)
≤ L`R̄n(Gy,y′)

= L`EX̄Eσ

 sup
gy ,gy′∈G

1

n

∑
xi∈X̄

σi(gy′(xi)− gy(xi))

≤ L`EX̄Eσ

 sup
gy∈G

1

n

∑
xi∈X̄

σigy(xi)

+ L`EX̄Eσ

 sup
gy′∈G

1

n

∑
xi∈X̄

σigy′(xi)

= 2L`R̄n(G)

= 2L`Rn(G). (10)

This proves that R̄n(HPC) ≤ 2K(K − 1)L`Rn(G).

APPENDICES 105

B.3 Proof of Lemma 4.5

Proof. We prove the case of L̄OVA; the other case is similar. We consider a single
direction supg1,...,gK∈G(R̂(g) − R(g)) with probability at least 1 − δ/2; the other
direction is similar too.

Given the symmetric condition (4.19), it must hold that ‖L̄OVA‖∞ = 2 when
g1, . . . , gK can be any measurable functions. Let a single (xi, ȳi) be replaced with
(x′i, ȳ

′
i), then the change of supg1,...,gK∈G(R̂(g)−R(g)) is no greater than 2(K−1)/n.

Apply McDiarmid’s inequality (McDiarmid, 1989) to the single-direction uniform
deviation supg1,...,gK∈G(R̂(g)−R(g)) to get that with probability at least 1− δ/2,

sup
g1,...,gK∈G

(R̂(g)−R(g)) ≤ E

[
sup

g1,...,gK∈G
(R̂(g)−R(g))

]
+ (K − 1)

√
2 ln(2/δ)

n
. (11)

Since R(g) = E[R̂(g)], it is a routine work to show by symmetrization that (Mohri
et al., 2012)

E

[
sup

g1,...,gK∈G
(R̂(g)−R(g))

]
≤ 2(K − 1)R̄n(HOVA) ≤ 2K(K + 1)L`Rn(G), (12)

where the last line is due to Lemma 4.3.

B.4 Proof of Theorem 4.6

Proof. Based on Lemma 4.5, the estimation error bounds can be proven through

R(ĝ)−R(g∗) =
(
R̂(ĝ)− R̂(g∗)

)
+
(
R(ĝ)− R̂(ĝ)

)
+
(
R̂(g∗)−R(g∗)

)
≤ 0 + 2 sup

g1,...,gK∈G

∣∣∣R̂(g)−R(g)
∣∣∣ , (13)

where we used that R̂(ĝ) ≤ R̂(g∗) by the definition of ĝ.

B.5 Benchmark Datasets

In the experiments in Section 4.3.5, we use 4 benchmark datasets explained below.
The summary statistics of the four datasets are given in Table 1.

• MNIST2 (Lecun et al., 1998) is a 10 class dataset of handwritten digits: 1, 2 . . . , 9

and 0. Each sample is a 28× 28 grayscale image.

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

106 C. APPENDICES FOR CHAPTER 5

Table 1: Summary statistics of benchmark datasets. Fashion is Fashion-MNIST and
Kuzushiji is Kuzushiji-MNIST.

Name # Train # Test # Dim # Classes Model

MNIST 60k 10k 784 10 Linear, MLP

Fashion 60k 10k 784 10 Linear, MLP

Kuzushiji 60k 10k 784 10 Linear, MLP

CIFAR-10 50k 10k 2,048 10 DenseNet, Resnet

• Fashion-MNIST3 (Xiao et al., 2017) is a 10 class dataset of fashion items: T-
shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, and
Ankle boot. Each sample is a 28× 28 grayscale image.

• Kuzushiji-MNIST4 (Clanuwat et al., 2018) is a 10 class dataset of cursive
Japanese (“Kuzushiji”) characters. Each sample is a 28× 28 grayscale image.

• CIFAR-105 is a 10 class dataset of various objects: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. Each sample is a colored image in
32 × 32 × 3 RGB format. It is a subset of the 80 million tiny images dataset
(Torralba et al., 2008).

C Appendices for Chapter 5

C.1 Benchmark Datasets

In the experiments in Section 5.3.2, we use five image benchmark datasets explained
below.

• MNIST6 (Lecun et al., 1998) is a 10 class dataset of handwritten digits: 1, 2 . . . , 9

and 0. Each sample is a 28× 28 grayscale image. The number of training and
test samples are 60,000 and 10,000, respectively.

• Kuzushiji-MNIST7 (Clanuwat et al., 2018) is a 10 class dataset of cursive
Japanese (“Kuzushiji”) characters. Each sample is a 28 × 28 grayscale image.
The number of training and test samples are 60,000 and 10,000, respectively.

3https://github.com/zalandoresearch/fashion-mnist
4https://github.com/rois-codh/kmnist
5https://www.cs.toronto.edu/~kriz/cifar.html
6http://yann.lecun.com/exdb/mnist/
7https://github.com/rois-codh/kmnist

https://github.com/zalandoresearch/fashion-mnist
https://github.com/rois-codh/kmnist
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://github.com/rois-codh/kmnist

APPENDICES 107

• SVHN8 (Netzer et al., 2011) is a 10 class dataset of house numbers from Google
Street View images, in 32 × 32 × 3 RGB format. 73257 digits are for training
and 26032 digits are for testing.

• CIFAR-109 is a 10 class dataset of various objects: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. Each sample is a colored image in
32 × 32 × 3 RGB format. It is a subset of the 80 million tiny images dataset
(Torralba et al., 2008). There are 6,000 images per class, where 5,000 are for
training and 1,000 are for test.

• CIFAR-10010 is a 100 class dataset of various objects. Each class has 600
samples, where 500 samples are for training and 100 samples are for test. This
is also a subset of the 80 million tiny images dataset (Torralba et al., 2008).

C.2 Proof of Theorem 5.1

Proof. If the flood level is b, then the proposed flooding estimator is

R̃(g) = |R̂(g)− b|+ b. (14)

Since the absolute operator can be expressed with a max operator with max(a, b) =
a+b+|a−b|

2 , the proposed estimator can be re-expressed as

R̃(g) = 2 max(R̂(g), b)− R̂(g) = A− R̂(g). (15)

For convenience, we used A = 2 max(R̂(g), b). From the definition of MSE,

MSE(R̂(g)) = E[(R̂(g)−R(g))2], (16)

and

MSE(R̃(g)) = E[(R̃(g)−R(g))2]

= E[(A− R̂(g)−R(g))2)]

= E[A2]− 2E[A(R̂(g) +R(g))] + E[(R̂(g) +R(g))2]. (17)

We are interested in the sign of

MSE(R̂(g))−MSE(R̃(g)) = E[−4R̂(g)R(g)−A2 + 2A(R̂(g) +R(g))]. (18)

8http://ufldl.stanford.edu/housenumbers/
9https://www.cs.toronto.edu/~kriz/cifar.html

10https://www.cs.toronto.edu/~kriz/cifar.html

http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

108 APPENDICES FOR CHAPTER 5

Define the inside of the expectation as B = −4R̂(g)R(g) − A2 + 2A(R̂(g) + R(g)).
B can be divided into two cases, depending on the outcome of the max operator:

B =

−4R̂(g)R(g)− 4R̂(g)2 + 4R̂(g)(R̂(g) +R(g)) if R̂(g) ≥ b

−4R̂(g)R(g)− 4b2 + 4b(R̂(g) +R(g)) if R̂(g) < b

=

0 if R̂(g) ≥ b

−4(b− R̂(g))(b−R(g)) if R̂(g) < b.
(19)

In the latter case, B becomes positive when R̂(g) < b < R(g).
Therefore, if b ≤ R(g), we have

MSE(R̂(g))−MSE(R̃(g)) =E[B | R̂(g) ≥ b] Pr[R̂(g) ≥ b]
+ E[B | R̂(g) < b] Pr[R̂(g) < b]

=E[B | R̂(g) < b] Pr[R̂(g) < b]

≥0. (20)

Furthermore, if b < R(g) and Pr[R̂(g) < b] > 0, we have

MSE(R̂(g))−MSE(R̃(g)) = E[B | R̂(g) < b] Pr[R̂(g) < b] > 0. (21)

ACKNOWLEDGMENTS 109

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Prof. Masashi
Sugiyama. This thesis could not have been completed without his tremendous sup-
port, guidance, and supervision. His encouragement kept me going for so many years,
and I learned a lot throughout the journey.

I would like to express my deep gratitude to Prof. Issei Sato, Prof. Junya Honda,
and Prof. Naoto Yokoya for the advice, discussions, and providing a nice research en-
vironment for students in the lab. I would like to thank Prof. Hiroshi Kori, Prof. Taiji
Suzuki, and Prof. Hideki Nakayama for the valuable comments and suggestions for
improving this dissertation.

I was fortunate to have the chance to work with Dr. Gang Niu. He has mentored
me for many years and I learned a lot about writing a scientific paper from the nu-
merous inspiring discussions. I am very grateful to Dr. Ikko Yamane and Dr. Tomoya
Sakai. I had countless research discussions with them, and that formed the basis of
how I tackle machine learning problems. I was also fortunate to have the chance to
collaborate with Weihua Hu, Dr. Aditya Krishna Menon, and Prof. Chang Xu. I was
often inspired by their expertise and learned a lot from this experience.

I had the joy of working or discussing with many incredible researchers, pro-
fessors, and students. Thank you to Nontawat Charoenphakdee, Nan Lu, Kento
Nozawa, Dr. Futoshi Futami, Soma Yokoi, Han Bao, Takeshi Teshima, Jeonghyun
Song, Dr. Yoshihiro Nagano, Dr. Voot Tangkaratt, Prof. Bo Han, David Ha, Dr. Jie
Luo, Prof. Takayuki Osa, Dr. Marthinus Christoffel du Plessis, Prof. Hiroaki Sasaki,
and Dr. Kiyoshi Irie. I would like to thank all members of Sugiyama-Yokoya Lab.
Thank you to Yuko Kawashima and Etsuko Yoshida for supporting me with lab-
related activities.

I am grateful to the many people and coworkers who have supported me during my
years at Sumitomo Mitsui Asset Management and Sumitomo Mitsui DS Asset Man-
agement. In particular, I am grateful to Kunio Yokoyama, Makoto Nagao, Takashi
Kume, Dr. Jason Bennett, Dr. Naoya Kawadai, Prof. Anna Liu, and Takafumi No-
hara.

110 ACKNOWLEDGMENTS

I would like to thank the Google PhD Fellowship Program, Japan Society for the
Promotion of Science (JSPS) Fellowship Program, Toyota-Dwango AI Scholarship
Program, and JST ACT-X. The support from these fellowships, scholarships, and
grants were helpful during my studies.

Last but not least, I would like to thank my family. A huge thank you to my
wife. She gave me a lot of encouragement and support. Thank you to my parents for
raising me, and thank you to my younger brother for the encouragement throughout
the many years.

BIBLIOGRAPHY 111

Bibliography

Akata, Z., Perronnin, F., Harchaoui, Z., and Schmid, C. (2013). Label-embedding for
attribute-based classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 819–826.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Ma-
haraj, T., Fischer, A., Courville, A., Bengio, Y., and Lacoste-Julien, S. (2017). A
closer look at memorization in deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 233–242.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by
jointly learning to align and translate. In 2nd International Conference on Learning
Representations.

Bao, H., Niu, G., and Sugiyama, M. (2018). Classification from pairwise similar-
ity and unlabeled data. In Proceedings of the 35th International Conference on
Machine Learning, pages 452–461.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification,
and risk bounds. Journal of the American Statistical Association, 101(473):138–
156.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. PNAS, 116:15849–15854.

Belkin, M., Hsu, D. J., and Mitra, P. (2018). Overfitting or perfect fitting? Risk
bounds for classification and regression rules that interpolate. In Advances in
Neural Information Processing Systems 31, pages 2300–2311.

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples. Journal of
Machine Learning Research, 7:2399–2434.

112 BIBLIOGRAPHY

Berisha, V., Wisler, A., Hero, A. O., and Spanias, A. (2015). Empirically estimable
classification bounds based on a nonparametric divergence measure. IEEE Trans-
actions on Signal Processing, 64(3):580–591.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Raffel, C. A.
(2019). MixMatch: A holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems 32, pages 5049–5059.

Bishop, C. M. (1995). Regularization and complexity control in feed-forward net-
works. In 5th International Conference on Artificial Neural Networks, pages 141–
148.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer.

Blanchard, G., Lee, G., and Scott, C. (2010). Semi-supervised novelty detection.
Journal of Machine Learning Research, 11:2973–3009.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: Identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 93–104.

Caruana, R., Lawrence, S., and Giles, C. L. (2000). Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in Neural
Information Processing Systems 13, pages 402–408.

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning.
MIT Press.

Chapelle, O., Weston, J., and Schölkopf, B. (2003). Cluster kernels for semi-
supervised learning. In Advances in Neural Information Processing Systems 16,
pages 601–608.

Charoenphakdee, N., Vongkulbhisal, J., Chairatanakul, N., and Sugiyama, M. (2020).
On focal loss for class-posterior probability estimation: A theoretical perspective.
arXiv preprint arXiv:2011.09172.

BIBLIOGRAPHY 113

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C.,
Chayes, J., Sagun, L., and Zecchina, R. (2017). Entropy-SGD: Biasing gradient
descent into wide valleys. In 5th International Conference on Learning Represen-
tations.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages 1597–1607.

Cid-Sueiro, J., García-García, D., and Santos-Rodríguez, R. (2014). Consistency of
losses for learning from weak labels. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 197–210.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D.
(2018). Deep learning for classical Japanese literature. In NeurIPS Workshop on
Machine Learning for Creativity and Design.

Cour, T., Sapp, B., and Taskar, B. (2011). Learning from partial labels. Journal of
Machine Learning Research, 12:1501–1536.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaug-
ment: Learning augmentation strategies from data. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 113–123.

Cui, Z., Charoenphakdee, N., Sato, I., and Sugiyama, M. (2020). Classification from
triplet comparison data. Neural Computation, 32(3):659–681.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552.

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual represen-
tation learning by context prediction. In Proceedings of the IEEE International
Conference on Computer Vision.

114 BIBLIOGRAPHY

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). DeCAF: A deep convolutional activation feature for generic visual recog-
nition. In Proceedings of the 31st International Conference on Machine Learning,
pages 647–655.

Drucker, H. and LeCun, Y. (1992). Improving generalisation performance using
double back-propagation. IEEE Transactions on Neural Networks, 3(6):991–997.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2013). Clustering unclustered data:
Unsupervised binary labeling of two datasets having different class balances. In
TAAI.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2014). Analysis of learning from
positive and unlabeled data. In Advances in Neural Information Processing Systems
27, pages 703–711.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2015). Convex formulation for learn-
ing from positive and unlabeled data. In Proceedings of the 32nd International
Conference on Machine Learning, pages 1386–1394.

du Plessis, M. C., Niu, G., and Sugiyama, M. (2017). Class-prior estimation for
learning from positive and unlabeled data. Machine Learning, 106(4):463–492.

du Plessis, M. C. and Sugiyama, M. (2014a). Class prior estimation from positive and
unlabeled data. IEICE Transactions on Information and Systems, E97-D(5):1358–
1362.

du Plessis, M. C. and Sugiyama, M. (2014b). Semi-supervised learning of class balance
under class-prior change by distribution matching. Neural Networks, 50:110–119.

Dwork, C. (2008). Differential privacy: A survey of results. In International Confer-
ence on Theory and Applications of Models of Computation, pages 1–19. Springer.

Elkan, C. and Noto, K. (2008). Learning classifiers from only positive and unla-
beled data. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A
survey. Journal of Machine Learning Research, 20(55):1–21.

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In ACM
SIGKDD.

BIBLIOGRAPHY 115

Feng, L., Shu, S., Lu, N., Han, B., Xu, M., Niu, G., An, B., and Sugiyama, M.
(2020). Pointwise binary classification with pairwise confidence comparisons. arXiv
preprint arXiv:2010.01875.

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications.
Springer-Verlag.

Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropa-
gation. In Proceedings of the 32nd International Conference on Machine Learning,
pages 1180–1189.

Ghiasi, G., Lin, T.-Y., and Le, Q. V. (2018). Dropblock: A regularization method
for convolutional networks. In Advances in Neural Information Processing Systems
31, pages 10727–10737.

Ghosh, A., Kumar, H., and Sastry, P. (2017). Robust loss functions under label noise
for deep neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representation learn-
ing by predicting image rotations. In Sixth International Conference on Learning
Representations.

Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing.
Morgan & Claypool Publishers.

Goodfellow, I. (2020). Generative adversarial networks. url: https://www.youtube.
com/watch?v=9d4jmPmTWmc. Keynote speech for “GANs for Good–A Virtual Expert
Panel by DeepLearning.AI”.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing ad-
versarial examples. In 3rd International Conference on Learning Representations.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern
neural networks. In Proceedings of the 34th International Conference on Machine
Learning, pages 1321–1330.

Guo, H., Mao, Y., and Zhang, R. (2019). Augmenting data with mixup for sentence
classification: An empirical study. In arXiv:1905.08941.

https://www.youtube.com/watch?v=9d4jmPmTWmc
https://www.youtube.com/watch?v=9d4jmPmTWmc

116 BIBLIOGRAPHY

Han, B., Niu, G., Yu, X., Yao, Q., Xu, M., Tsang, I. W., and Sugiyama, M. (2020).
Sigua: Forgetting may make learning with noisy labels more robust. In Proceedings
of the 37th International Conference on Machine Learning.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I. W., and Sugiyama.,
M. (2018). Co-teaching: Robust training of deep neural networks with extremely
noisy labels. In Advances in Neural Information Processing Systems 31, pages
8527–8537.

Hancock, B., Bringmann, M., Varma, P., Liang, P., Wang, S., and Ré, C. (2018).
Training classifiers with natural language explanations. In Proceedings of the con-
ference. Association for Computational Linguistics. Meeting, volume 2018, page
1884. NIH Public Access.

Hanson, S. J. and Pratt, L. Y. (1988). Comparing biases for minimal network con-
struction with back-propagation. In Advances in Neural Information Processing
Systems 1, pages 177–185.

Harker, R. (1997). Selectively rejecting spam using sendmail. In LISA.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., et al. (2020). Array
programming with numpy. Nature, 585(7825):357–362.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer.

Hataya, R., Zdenek, J., Yoshizoe, K., and Nakayama, H. (2020). Faster autoaug-
ment: Learning augmentation strategies using backpropagation. In 16th European
Conference on Computer Vision.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9729–9738.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition.

Heaton, J. B., Polson, N. G., and Witte, J. H. (2017). Deep learning for finance:
deep portfolios. Applied Stochastic Models in Business and Industry, 33(1):3–12.

BIBLIOGRAPHY 117

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012a). Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97.

Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012b). Improving neural networks by preventing co-adaptation of feature detec-
tors. In arXiv:1207.0580.

Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling the knowledge in a neural
network. In NeurIPS 2014 Deep Learning Workshop.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural Computation, 9:1–
42.

Howe, J. (2008). Crowdsourcing: Why the Power of the Crowd Is Driving the Future
of Business. Currency.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely con-
nected convolutional networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.

Idelbayev, Y. (2020). Proper ResNet implementation for CIFAR10/CIFAR100 in
PyTorch. https//github.com/akamaster/pytorch_resnet_cifar10. Accessed:
2020-05-31.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pages 448–456.

Ishida, T., Niu, G., Hu, W., and Sugiyama, M. (2017). Learning from complementary
labels. In Advances in Neural Information Processing Systems 30, pages 5639–5649.

Ishida, T., Niu, G., Menon, A. K., and Sugiyama, M. (2019). Complementary-label
learning for arbitrary losses and models. In Proceedings of the 36th International
Conference on Machine Learning, pages 2971–2980.

Ishida, T., Niu, G., and Sugiyama, M. (2018). Binary classification from positive-
confidence data. In Advances in Neural Information Processing Systems 31, pages
5917–5928.

https//github.com/akamaster/pytorch_resnet_cifar10

118 BIBLIOGRAPHY

Ishida, T., Yamane, I., Sakai, T., Niu, G., and Sugiyama, M. (2020). Do we need
zero training loss after achieving zero training error? In Proceedings of the 37th
International Conference on Machine Learning.

Jing, L. and Tian, Y. (2020). Self-supervised visual feature learning with deep neu-
ral networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Katsura, Y. and Uchida, M. (2020). Bridging ordinary-label learning and
complementary-label learning. In Proceedings of The 12th Asian Conference on
Machine Learning, pages 161–176.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2017).
On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations.

Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations.

Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M. (2017). Positive-unlabeled
learning with non-negative risk estimator. In Advances in Neural Information
Processing Systems 30, pages 1675–1685.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and
Houlsby, N. (2020). Big transfer (BiT): General visual representation learning.
In arXiv:1912.11370v3.

Krogh, A. and Hertz, J. A. (1991). A simple weight decay can improve generalization.
In Advances in Neural Information Processing Systems 4, pages 950–957.

Laine, S. and Aila, T. (2017). Temporal ensembling for semi-supervised learning. In
Fifth International Conference on Learning Representations.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278–2324.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry
and Processes. Springer.

BIBLIOGRAPHY 119

Lee, D.-H. (2013). Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In ICML Workshop on Challenges in Represen-
tation Learning.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems
31, pages 6389–6399.

Li, W., Dasarathy, G., and Berisha, V. (2020). Regularization via structural label
smoothing. In The 23rd International Conference on Artificial Intelligence and
Statistics, pages 1453–1463.

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018). Machine
learning in agriculture: A review. Sensors, 18(8):2674.

Lim, S., Kim, I., Kim, T., Kim, C., and Kim, S. (2019). Fast autoaugment. In
Advances in Neural Information Processing Systems 32, pages 6665–6675.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
Van Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on
deep learning in medical image analysis. Medical image analysis, 42:60–88.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In 7th
International Conference on Learning Representations.

Lu, N., Niu, G., Menon, A. K., and Sugiyama, M. (2019). On the minimal supervision
for training any binary classifier from only unlabeled data. In 7th International
Conference on Learning Representations.

Lu, N., Zhang, T., Niu, G., and Sugiyama, M. (2020). Mitigating overfitting in
supervised classification from two unlabeled datasets: A consistent risk correction
approach. In The 23rd International Conference on Artificial Intelligence and
Statistics, pages 1115–1125.

Lukasik, M., Bhojanapalli, S., Menon, A. K., and Kumar, S. (2020). Does label
smoothing mitigate label noise? In Proceedings of the 37th International Confer-
ence on Machine Learning.

120 BIBLIOGRAPHY

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., and Van Der Maaten, L. (2018). Exploring the limits of weakly supervised
pretraining. In Proceedings of the European Conference on Computer Vision, pages
181–196.

McDiarmid, C. (1989). On the method of bounded differences. In Siemons, J., editor,
Surveys in Combinatorics, pages 148–188. Cambridge University Press.

Mendelson, S. (2008). Lower bounds for the empirical minimization algorithm. IEEE
Transactions on Information Theory, 54(8):3797–3803.

Menon, A. K., van Rooyen, B., Ong, C. S., and Williamson, R. C. (2015). Learning
from corrupted binary labels via class-probability estimation. In Proceedings of the
32nd International Conference on Machine Learning, pages 125–134.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2018). Virtual adversarial
training: a regularization method for supervised and semi-supervised learning.
IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–1993.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine
Learning. MIT Press.

Morgan, N. and Bourlard, H. (1990). Generalization and parameter estimation in
feedforward nets: Some experiments. In Advances in Neural Information Process-
ing Systems 2, pages 630–637.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P. H., and Dokania, P. K.
(2020). Calibrating deep neural networks using focal loss. In Advances in Neural
Information Processing Systems 33.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge,
MA.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Machine
Learning.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020).
Deep double descent: Where bigger models and more data hurt. In 8th Interna-
tional Conference on Learning Representations.

BIBLIOGRAPHY 121

Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman, B. L., Zhang, F.,
and Barak, B. (2019). SGD on neural networks learns functions of increasing
complexity. In Advances in Neural Information Processing Systems 32.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. (2013). Learning
with noisy labels. In Advances in Neural Information Processing Systems 26, pages
1196–1204.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).
Reading digits in natural images with unsupervised feature learning. In NeurIPS
Workshop on Deep Learning and Unsupervised Feature Learning.

Ng, A. Y. (1997). Preventing “overfitting” of cross-validation data. In Proceedings of
the 14th International Conference on Machine Learning.

Nguyen, Q., Valizadegan, H., and Hauskrecht, M. (2011). Learning classification with
auxiliary probabilistic information. In 2011 IEEE 11th International Conference
on Data Mining, pages 477–486.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer.

Noshad, M., Xu, L., and Hero, A. (2019). Learning to benchmark: Determin-
ing best achievable misclassification error from training data. arXiv preprint
arXiv:1909.07192.

Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., and Moore, J. H. (2018). Data-
driven advice for applying machine learning to bioinformatics problems. Pacific
Symposium on Biocomputing, pages 192–203.

Pantel, P. and Lin, D. (1998). Spamcop: A spam classification & organization pro-
gram. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 12.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8026–
8037.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu, L. (2017). Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.

122 BIBLIOGRAPHY

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and Hinton, G. (2017).
Regularizing neural networks by penalizing confident output distributions. In
arXiv:1701.06548.

Read, J., Pfahringer, B., and Holmes, G. (2011). Classifier chains for mulit-label
classification. Machine Learning, 85:333–359.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive
auto-encoders: Explicit invariance during feature extraction. In Proceedings of the
28th International Conference on Machine Learning, pages 833—-840.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and
Schmidt, L. (2019). A meta-analysis of overfitting in machine learning. In Advances
in Neural Information Processing Systems 32, pages 9179–9189.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
genet large scale visual recognition challenge. International Journal of Computer
Vision, 115:211–252.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. (2016). Regularization with stochastic
transformations and perturbations for deep semi-supervised learning. In Advances
in Neural Information Processing Systems 29, pages 1163–1171.

Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M. (2017). Semi-supervised clas-
sification based on classification from positive and unlabeled data. In Proceedings
of the 34th International Conference on Machine Learning, pages 2998–3006.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C.
(2001). Estimating the support of a high-dimensional distribution. Neural Com-
putation, 13:1443–1471.

Schölkopf, B. and Smola, A. (2001). Learning with Kernels. MIT Press.

BIBLIOGRAPHY 123

Scott, C. and Blanchard, G. (2009). Novelty detection: Unlabeled data definitely
help. In The 12th International Conference on Artificial Intelligence and Statistics,
pages 464–471.

Sekeh, S. Y., Oselio, B. L., and Hero, A. O. (2020). Learning to bound the multi-class
bayes error. IEEE Transactions on Signal Processing, pages 3793 – 3807.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press.

Shimada, T., Bao, H., Sato, I., and Sugiyama, M. (2019). Classification from pair-
wise similarities/dissimilarities and unlabeled data via empirical risk minimization.
arXiv preprint arXiv:1904.11717.

Shinoda, K., Kaji, H., and Sugiyama, M. (2020). Binary classification from posi-
tive data with skewed confidence. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 3328–3334.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. Journal of Big Data, 6.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional
neural networks applied to visual document analysis. In Proceedings of the Seventh
International Conference on Document Analysis and Recognition, pages 958–963.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems 25, pages 2951–2959.

Sokolić, J., Giryes, R., Sapiro, G., and Rodrigues, M. R. (2017). Robust large margin
deep neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. Jour-
nal of Machine Learning Research, 15:1929–1958.

124 BIBLIOGRAPHY

Sugiyama, M. (2015). Introduction to statistical machine learning. Morgan Kauf-
mann.

Sugiyama, M. and Kawanabe, M. (2012). Machine Learning in Non-Stationary En-
vironments: Introduction to Covariate Shift Adaptation. MIT Press.

Sugiyama, M., Niu, G., Yamada, M., Kimura, M., and Hachiya, H. (2014).
Information-maximization clustering based on squared-loss mutual information.
Neural Computation, 26(1):84–131.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
The MIT Press, 2nd edition edition.

Szegedy, C., Vanhoucke, V., Ioffe, S., and Shlens, J. (2016). Rethinking the incep-
tion architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2014). Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations.

Tax, D. M. J. and Duin, R. P. W. (2004). Support vector data description. Machine
Learning, 54(1):45–66.

Thulasidasan, S., Chennupati, G., Bilmes, J., Bhattacharya, T., and Michalak, S.
(2019). On mixup training: Improved calibration and predictive uncertainty for
deep neural networks. In Advances in Neural Information Processing Systems 32,
pages 13888–13899.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58:267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91–108.

Tikhonov, A. N. (1943). On the stability of inverse problems. Doklady Akademii
Nauk SSSR, 39:195–198.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill Posed Problems. Winston.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2015). Efficient
object localization using convolutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 648–656.

BIBLIOGRAPHY 125

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: A large
data set for nonparametric object and scene recognition. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 30, pages 1958 – 1970.

van Rooyen, B., Menon, A., and Williamson, R. C. (2015). Learning with symmetric
label noise: The importance of being unhinged. In Advances in Neural Information
Processing Systems 28, pages 10–18.

van Rooyen, B. and Williamson, R. C. (2018). A theory of learning with corrupted
labels. Journal of Machine Learning Research, 18:1–50.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural
Information Processing Systems 30, pages 5998–6008.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., and Lopez-Paz, D. (2019). Interpola-
tion consistency training for semi-supervised learning. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 3635–3641.

Vu, M.-A. T., Adalı, T., Ba, D., Buzsáki, G., Carlson, D., Heller, K., Liston, C.,
Rudin, C., Sohal, V. S., Widge, A. S., et al. (2018). A shared vision for machine
learning in neuroscience. Journal of Neuroscience, 38(7):1601–1607.

Wager, S., Wang, S., and Liang, P. (2013). Dropout training as adaptive regulariza-
tion. In Advances in Neural Information Processing Systems 26, pages 351–359.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization
of neural networks using dropconnect. In Proceedings of the 30th International
Conference on Machine Learning, pages 1058–1066.

Wang, X., Ounis, I., and Macdonald, C. (2020). Negative confidence-aware weakly
supervised binary classification for effective review helpfulness classification. In
29th ACM International Conference on Information and Knowledge Management.

Werpachowski, R., György, A., and Szepesvári, C. (2019). Detecting overfitting via
adversarial examples. In Advances in Neural Information Processing Systems 32,
pages 7858–7868.

126 BIBLIOGRAPHY

Xian, Y., Schiele, B., and Akata, Z. (2017). Zero-shot learning - the good, the bad
and the ugly. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, L., Honda, J., Niu, G., and Sugiyama, M. (2019). Uncoupled regression from
pairwise comparison data. In Advances in Neural Information Processing Systems
32, pages 3992–4002.

Xu, Y., Xu, C., Xu, C., and Tao, D. (2017). Multi-positive and unlabeled learning.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pages 3182–3188.

Yabe, T. and Zempo, K. (2020). Negative confidence recommendation system avoids
local solution based on user’s negative reactions. In IEEE 9th Global Conference
on Consumer Electronics, pages 531–534.

Yu, T. and Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms
and applications. arXiv:2003.05689.

Yu, X., Liu, T., Gong, M., and Tao, D. (2018). Learning with biased complementary
labels. In 15th European Conference on Computer Vision.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understanding
deep learning requires rethinking generalization. In 5th International Conference
on Learning Representations.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). mixup: Beyond
empirical risk minimization. In 6th International Conference on Learning Repre-
sentations.

Zhang, T. (2004a). Statistical analysis of some multi-category large margin classifi-
cation methods. Journal of Machine Learning Research, 5:1225–1251.

Zhang, T. (2004b). Statistical behavior and consistency of classification methods
based on convex risk minimization. The Annals of Statistics, 32:56–85.

BIBLIOGRAPHY 127

Zhang, Y., Charoenphakdee, N., and Sugiyama, M. (2019). Learning from indirect
observations. arXiv preprint arXiv:1910.04394.

Zheng, Y., Zhang, R., and Mao, Y. (2020). Regularizing neural networks via adver-
sarial model perturbation. arXiv preprint arXiv:2010.04925.

Zhou, Z.-H. (2018). A brief introduction to weakly supervised learning. National
Science Review, 5(1):44–53.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.

	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Machine Learning
	What is Machine Learning?
	Learning Paradigms
	Reliable Machine Learning

	Learning from Weak Supervision
	Binary Classification from Weak Supervision
	Multi-Class Classification from Weak Supervision

	Learning with Limited Data
	Contribution: A Risk Modification Approach
	Risk Rewriting
	Risk Correction

	Proposed Methods
	Learning from Positive-Confidence Data
	Learning from Complementary Labels
	Flooding: A Novel Regularizer to Avoid Overfitting

	Organization
	Publications Related to This Dissertation

	Background and Preliminaries
	Data and Distribution
	Binary Classification
	Classification Risk
	Bayes Risk and Bayes Error
	Models
	Binary Loss Functions
	Regularization

	Multi-Class Classification
	Classification Risk
	Multi-Class Loss Functions

	Learning from Positive-Confidence Data
	Introduction
	Problem Formulation
	Pconf Classification
	Empirical Risk Minimization (ERM) Framework
	Theoretical Analysis
	Implementation

	Experiments
	Synthetic Experiments with Linear Models
	Benchmark Experiments with Neural Network Models

	Conclusion
	Summary
	Recent Advances

	Learning from Complementary Labels
	Introduction
	Complementary-Label Learning with Symmetric Losses
	Formulation
	Theoretical Analysis
	Incorporation of Ordinary Labels
	Experiments

	Complementary-label Learning with Arbitrary Losses
	Formulation
	Necessity of Risk Correction
	Non-Negative Risk Estimator
	Approximate Non-Negative Risk Estimator
	Experiments

	Conclusion

	Flooding: A Novel Regularizer to Avoid Overfitting
	Introduction
	Flooding: How to Avoid Zero Training Loss
	Preliminaries
	Algorithm
	Implementation

	Does Flooding Generalize Better?
	Synthetic Datasets
	Benchmark Experiments

	Why Does Flooding Generalize Better?
	Memorization
	Performance and Gradients
	Flatness
	Theoretical Insight

	Conclusion

	Conclusions and Future Work
	Conclusions
	Short Term Future Work
	Future Work for Positive-Confidence Learning
	Future Work for Complementary-Label Learning
	Future Work for Flooding

	Future Directions
	Looking for Yet Another Type of Supervision
	Shifting Our Focus to Lowering the Total Cost

	Appendices
	Appendices for Chapter 3
	CNN Architecture
	AutoEncoder Architecture

	Appendices for Chapter 4
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6
	Benchmark Datasets

	Appendices for Chapter 5
	Benchmark Datasets
	Proof of Theorem 5.1

	Acknowledgments
	Bibliography

