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Abstract

In the field of materials design, which has a huge diversity, approaches based on
computational science and materials informatics, as well as the experience and intuition of
research and development personnel, are being actively studied. Computational approaches
are designing better functioning materials first-principles from material design parameters,
and materials informatics approaches are applying data science to materials science.

A typical target for materials informatics is the search for materials for lithium-ion
batteries. The aim of the materials search for lithium-ion batteries is to find materials
with superior material properties in multiple aspects such as higher voltage, higher ca-
pacity, longer life, higher safety and faster charge/discharge. For these properties, various
new "electrode" materials have been reported[1, 2, 3]. On the other hand, no significant
progress has been made in the development of new excellent electrolytes for commercial
use, especially for lithium salts, since 1991. This is because the electrolyte is a liquid and its
structure is more complex than that of the usual solid electrode materials, and therefore,
it is difficult to search for electrolytes with various performance requirements[4, 5, 6, 7].
Virtual screening using materials informatics is one way to discover new electrolytes with
the required performance. In this screening process, a database of descriptor material fea-
tures is first constructed using data from first-principles calculations, molecular dynamics
simulations and experiments. Next, a prediction model is built to predict a target property
from the descriptors in the database with information technology. Finally, the prediction
model is used to predict the properties of a large number of candidate materials, and the
materials that are predicted to meet the required performance are extracted. Several appli-
cations of virtual screening for the search of new lithium-ion battery materials have been
reported, but most of them are limited to the study of solid materials[8, 9, 10], while only
a few applications of liquid materials have been reported[11, 12, 13].

Motivated by the above situation, in this doctoral thesis, we create a database for
virtual screening and prediction models for the search for the electrolyte of lithium-ion
batteries. In order to show the versatility of this method, we apply the same method to the
prediction for electrolytes of alkali metals other than Li such as Na, K, Rb and Cs. In this
study, the features to be predicted are "coordination energy" and "diffusion coefficients",
and the prediction models are constructed by applying sparse modeling techniques such as
exhaustive search and a sparse linear mixture model.
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Chapter 1

Introduction

1.1 Introduction to Materials Informatics

In materials science, improvements in computer performance have made it possible
to perform accurate simulations using first-principles calculations. The results of the simu-
lations are fed back into experimental science, and new data generated by the experiments
are reflected in new simulations (Figure 1.1). Materials science has developed through the
interaction of computational and experimental sciences. In recent years, with the devel-
opment of information technology, data science, which extracts information from various
types of data, has been attracting attention. Materials informatics is being applied to ac-
celerate materials exploration by applying data science to conventional computational and
experimental science in materials science. In the United States, the Materials Genome Ini-
tiative was launched in 2011 with the aim of doubling the speed of materials development
by making full use of information science, and has been successful [14]. The competition for
materials exploration using materials informatics is fierce worldwide, with similar projects
being launched in Europe and China[15, 16, 17, 18, 19].

In this study, we develop methods for materials informatics using data science
methods such as sparse modeling and Bayesian inference, specifically targeting computa-
tional science.

Figure 1.1: Materials informatics overview and our target.
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Chapter 1. Introduction

1.2 Li-ion Battery

A typical target in materials informatics is the search for materials for lithium-
ion batteries (LIB) and other secondary batteries (storage batteries)[20, 21]. The aim of
the materials search for secondary batteries is to find materials with excellent material
properties in multiple aspects such as higher voltage, more capacity, longer life, higher
safety, faster charge and discharge, etc. With the widespread use of smartphones and
electric vehicles, the demand for high performance secondary batteries is increasing rapidly.
Efficient material search is strongly demanded by industry. However, the search for solid
materials such as cathode and anode for LIB has progressed rapidly[8, 9, 10], while the
commercial electrolyte has remained the same since 1991[11, 12, 13]. This is due to the fact
that the search for materials for the electrolyte is more difficult than for solid materials such
as the cathode and the anode, because the electrolyte is a disordered system. In recent years,
large-scale materials science simulations, which were not possible in the past, have become
possible using large-scale computers such as the K computer and Fugaku. Computational
exploration of materials for lithium-ion battery electrolytes using first-principles molecular
dynamics techniques is progressing, which is expected to further improve the performance
of LIB. However, even with the use of large computers, first-principles molecular dynamics
calculations for macromolecules are computationally expensive, and therefore a method to
find materials with better performance is required.

1.3 Mission

Virtual screening using materials informatics is one way to discover new electrolytes
with the required performance. An overview of the virtual screening is shown in Figure 1.2.
Computational science in materials science is represented by the black boxes. In computa-
tional science, the parameters of material design are first defined, and then the parameters
are used to calculate the features by first principles. The functions of the material (life,
durability, etc.) are designed using the characteristics. This process is repeated in order to
advance the material search, but it is often very expensive. The purpose of this study is
to apply data science methods such as sparse modeling and Bayesian inference to compu-
tational science and to reduce the enormous computational cost. Concretely, we construct
databases for virtual screening and examine prediction models for the search of the elec-
trolyte of LIB. In addition, in order to demonstrate the versatility of the method, we apply
the same method to alkali metals other than Li such as Na, K, Rb and Cs, and investigate
the prediction models.

1.4 Structure of this paper

This paper consists of five chapters - Chapter 1 is this introduction, Chapter 2-4
is main contents, and Chapter 5 is the conclusion.

In Chapter 2, we describe our database. First, as candidate materials for the
database, we selected 103 solvent molecules that are commercially available as battery
grade materials from KISHIDA CHEMICAL Co.,Ltd.[22]. We also prepared two kinds
of features: experimental values (experimental values) and calculated values (calculated
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Chapter 1. Introduction

Figure 1.2: Applying data science to computational science

values). As the experimental values, we used following values from the catalogs of com-
mercially available materials: melting point, boiling point, flash point, solvent density, and
molecular weight of each solvent molecule. Calculated values were obtained from the Den-
sity Functional Theory (DFT) and DFT-Molecular Dynamics (DFT-MD) calculations. For
the DFT calculations, Gaussian09 was used to perform cluster model DFT calculations of
molecular systems for the 103 solvent molecules described earlier, producing six types of
data: coordination energy between Li ions and solvent molecules, mulliken charges of atoms
coordinating with Li ions (mainly oxygen atoms), the distance between the Li ion and the
coordinating atom, HOMO energy, LUMO energy, dipole moment. DFT calculations were
performed by replacing Li ions with other alkali metals (Na, K, Rb, and Cs) as a database
for alkali metals other than Li, and the same data were generated. The database includes
information on the cations used, such as ionic radius, electronegativity and atomic weight.
In the DFT-MD calculations, Li ions are placed in the solvent and DFT-MD calculations
are performed under the periodic boundary condition to simulate the diffusion of Li ions
in the solvent. The diffusion coefficients of Li ions were used as the database value.

In Chapter 3, we describe the development of prediction models for the coordi-
nation energy based on the database[23, 24, 25]. The coordination energy is a quantity
related to the diffusion of Li ions and is considered to be related to the rate of charge
and discharge of the secondary battery. Therefore, it is an important issue in LIB to find
a solvent molecule with a reasonable coordination energy. The coordination energy is ob-
tained by DFT calculations using a cluster model. Since it takes several hours to obtain
the coordination energy of a single solvent molecule, the purpose of this chapter is to con-
struct models to accurately predict it. One of the important aspects of building a prediction
model is variable selection. The database may contain variables that are noisy in predicting
the coordination energy. It is necessary to remove them appropriately and to extract the
variables that are important for prediction. Sparse modeling is the modeling that assumes
that the important variables are part of a large number of variables. In this study, we per-
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Chapter 1. Introduction

form an exhaustive search (ES) method, which is one of the sparse modeling methods. In
ES, prediction models are built for all combinations of variables, and the combinations of
variables are evaluated with some criteria. In the prediction of the coordination energy of
the electrolyte solvent for LIB, we used exhaustive search with linear regression (ES-LiR)
and exhaustive search with Gaussian Process (ES-GP). In both methods, as a criterion, we
used Cross Validation Error (CVE), which is one of the measures of predictive performance
for unknown data. As a result, CVE was reduced by 14% and 52% for ES-LiR and ES-GP,
respectively, compared to linear regression of all variables. We have also visualized the key
variables and clarified which ones are important in improving the performance of the model
for predicting the coordination energy of the electrolyte solvent of LIB. To demonstrate
the versatility of the method, we used a database of four alkali metals (Na, K, Rb, and
Cs) for Li ions, and predicted the coordination energy of the alkali metal cations. In the
construction of the prediction model, ES-LiR and ES-GP were performed as in the case of
Li ions only and compared with the case using all variables. The results showed that CVE
decreased by 0.7% and 88% in ES-LiR and ES-GP, respectively, compared to the linear
regression of all variables, and while there was no significant difference in ES-LiR, very
accurate predictions were obtained in ES-GP.

In Chapter 4, we construct prediction models for diffusion coefficients based on
the database we created. The diffusion coefficient is a quantity that expresses the speed
of diffusion of Li ion in the electrolyte and is considered to be related to the speed of
charge/discharge of the secondary battery as well as the coordination energy, so finding a
solvent molecule with a reasonable diffusion coefficient is an important issue. The diffusion
coefficients are obtained by DFT-MD calculations. Since it usually takes several weeks to
months of calculation time to obtain the diffusion coefficient for a single solvent molecule,
the purpose of this chapter is to develop a model to predict this. As with the prediction
of the coordination energy in Chapter 3, we first performed linear regression with all vari-
ables, GP with all variables, ES-LiR and ES-GP and we confirmed the accuracy of their
predictions. The results showed that the prediction accuracy was not so high. One pos-
sible reason for the low prediction accuracy is that the data for the diffusion coefficients
may come from a mixture model. In materials science, data can come from multiple back-
grounds. In that case, there is limitations of a single model to explain the data. Thus, we
applyed a mixture model to this data. In this study, we used Sparse Linear Mixture Model
(SpLMM)[26, 27, 28] which is a method of sparse modeling. SpLMM is a model that as-
sumes that the data originate from multiple linear models and predicts the target variable
using spaces of explanatory variables, where each model is not necessarily identical. Since
multiple models are used to make predictions, SpLMM do not produce a single prediction
value. However, in materials science, even if the model does not have a single prediction,
the model can narrow down the candidates for the desired material from a large number
of candidates, so it is efficient to perform DFT-MD calculations and experiments to find
out the exact value. Therefore, if we can find a more consistent model to explain the data,
we can achieve a faster material search. In this study, we used log loss as an indicator to
compare the degree of model agreement. The log loss is the mean of the sign-reversed log-
arithm of the predictive distribution over the test data. The smaller the value, the better
the model matches the data. The test was performed with 10-fold CVs and the average of
the log loss values was used as the comparison. As a result, the log loss value of SpLMM
was reduced by about 80% compared to ES-LiR and ES-GP. This indicates that mixture
models that predict multiple models are better at explaining this data than LiR or GP,
which make predictions with a single model, and that mixture models such as SpLMM are

16



Chapter 1. Introduction

very effective in predicting data consisting of multiple backgrounds, which often occur in
the field of materials science.

Finally, Chapter 5 discusses the potential impact of the series of studies described
in this paper on industry and the research community, as well as issues and directions for
future research.
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Chapter 2

Database

To predict novel LIB liquid electrolytes with desired properties by the information
techniques, we constructed a database of known liquid electrolytes. We selected 103 solvent
molecules which were commercialized as battery grade materials from KISHIDA Chemical
Co., Ltd[22]. We adopted the values of melting point, boiling point, flash point, density
of solvent, and molecular weight from the catalogue data. Some of representative solvent
molecules are shown in Figure 2.1.

Figure 2.1: Representative 25 solvent molecules for the database (Li, purple; O, red; N,
blue; C, grey; F, light blue; S, yellow; P, orange; H, white). The solvent names are referred
to in Table 2.1.
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Abbreviation Solvent
name

Chemical
formula

Ecoord
(kcal/mol)

HOMO
(eV)

LUMO (eV) Dipole
moment
(Debye)

Mulliken
charge

R(Li–O)
(Å)

PC Propylene
carbonate

C4H6O3 -57.4 -7.93 0.946 5.255 -0.243 1.747

EC Ethylene
carbonate

C3H4O3 -55.9 -8.017 0.919 5.07 -0.24 1.752

VC Vinylene
carbonate

C3H2O3 -51.7 -6.973 -0.137 4.365 -0.231 1.76

FEC Fluoro-
ethylene
carbonate

C3H3O3F -51.2 -8.468 0.493 4.487 -0.222 1.763

DMC Dimethyl
carbonate

C3H6O3 -50.0 -7.774 1.115 0.342 -0.306 1.747

DEC Diethyl
carbonate

C5H10O3 -52.6 -7.654 1.217 0.613 -0.308 1.74

EMC Ethyl
methyl
carbonate

C4H8O3 -51.3 -7.713 1.168 0.514 -0.307 1.744

DAC Diallyl car-
bonate

C7H14O3 -31.7 -7.419 -0.238 0.494 -0.306 1.74

Furan Furan C4H4O -48.7 -6.265 0.296 0.511 -0.17 1.866
THF Tetrahydro-

furan
C4H8O -47.2 -6.832 1.38 1.434 -0.323 1.808

THP Tetrahydro-
pyran

C5H10O -43.2 -6.711 1.537 1.301 -0.324 1.804

DOL 1,3-
Dioxolane

C3H6O2 -64.4 -6.955 1.493 1.324 -0.315 1.818

DMM Dimethoxy
methane

C3H8O2 -52.0 -6.846 1.459 2.165 -0.298 1.905

MA Methyl ac-
etate

C3H6O2 -53.5 -7.371 0.339 1.733 -0.265 1.755

EP Ethyl pro-
pionate

C5H10O2 -58.6 -7.31 0.414 1.763 -0.269 1.787

GBL g-Butyro-
lactone

C4H6O2 -54.7 -7.269 0.254 4.296 -0.237 1.758

TMP Trimethyl
phosphate

C3H9O4P -56.8 -7.765 1.112 3.356 -0.467 1.74

NMP N-
Methyl-2-
pyrrolidone

C5H9ON -65.1 -6.421 0.842 3.609 -0.299 1.724

ES Ethylene
sulfite

C2H4O3S -63.9 -7.725 -0.823 3.123 -0.423 1.758

SL Sulfolane C4H8O2S -63.7 -7.383 0.826 5.087 -0.459 2.014
PS 1,3-

Propane
sultone

C3H6O3S -57.3 -7.917 0.549 5.468 -0.426 2.034

DMSO Dimethyl
sulfoxide

C2H6OS -67.8 -6.01 0.963 3.821 -0.542 1.718

AN Acetonitrile C2H3N -47.0 -8.933 0.898 3.743 -0.181 1.92
PN Propionitrile C3H5N -48.4 -8.802 0.587 3.826 -0.185 1.914
MEK Methyl

ethyl ke-
tone

C4H8O -53.0 -6.601 -0.386 2.771 -0.225 1.759

Table 2.1: Calculated values of the coordination energy (Ecoord), the HOMO energy, the
LUMO energy, the dipole moment, the Mulliken charge of the oxygen (nitrogen) atom, and
the distance between the Li-ion and the oxygen (nitrogen) atom (R(Li–O)) of 25 solvent
molecules for the database.

2.1 DFT Calculation

To make the database of the electrolytes more substantial, we added the following
values obtained by density functional theory (DFT) calculations of the molecular systems
using the Gaussian 09[29], the coordination energy between a Li-ion and a solvent molecule,
the Mulliken charge of the atom (typically oxygen atom) that is coordinated to a Li-ion, the
distance between a Li-ion and the coordinated atom (typically Li-O distance) (R(Li-O)),
the HOMO energy, the LUMO energy, and the dipole moment values of the 103 solvent
molecules [23]. The calculated data of the representative solvent molecules are shown in
Table 2.1, and the complete data are listed in Table A.2 in the Appendix. The coordination
energies (Ecoord) are evaluated by the difference between the“ total energy of a Li–solvent
complex”and“ the total energies of a solvent molecule and that of a Li-ion”(Ecoord =
E(Li-solvent) − E(solvent) + E(Li-ion)). We adopted the B3LYP functional[30] with cc-
pVDZ basis sets[31]. The Mulliken charges and the dipole moments are obtained from the
DFT calculations of pure solvent molecules without Li-ions. Geometry optimizations of the
Li-solvent complexes and the pure solvent molecules were also carried out.
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In addition, we changed the cations from Li to other alkali metals (Na, K, Rb,
and Cs), performed DFT calculations, and created a similar database[24]. In this DFT
calculation, M06-2X was used for the exchange–correlation functional, since this functional
is reported to accurately predict the thermodynamic properties of main group elements
[32, 33]. The Def2-SVP basis set was used for all the elements, and the pseudo-potential
was used for K, Rb, and Cs [34]. Another alkali ion, Fr, is omitted in this work because it
is unstable and radioactive, thus not relevant for batteries. Atomic charges were calculated
by the natural population analysis method proposed by Weinhold et al., using the NBO
6 program [35]. All the calculations were performed with Gaussian16 [36]. The data of
Ionic Radius, Electronegativity, and Atomic Weight are added to the database as cation
information. The full list of electrolyte solvents examined is shown in Table A.3 in the
Appendix.

2.2 DFT-MD Calculation

In order to develop a prediction model for the diffusion coefficient of Li-ion in
each solvent, a database of diffusion coefficients was constructed as validation data. In this
study, the behavior of the atoms in the electrolyte is simulated by using first-principles
molecular dynamics calculations (DFT-MD). We performed DFT-MD simulations with the
Car-Parrinello electronic and ionic dynamics[37] using CPMD code[38]. Total energies were
calculated at the G point in a supercell approach by using a PBE generalized gradient-
corrected exchange-correlation functional[39, 40]. A fictitious electronic mass of 500 au
and a time step of 4 au (0.10 fs) were chosen. The energy cutoff of the plane wave was
set to 90 Ry. Goedecker’s norm-conserving pseudopotentials[41, 42] for C, H, O, N, S, F
and Li were used. Nuclear temperature was controlled using a Nosé thermostat[43] with
a target temperature of 298 K. The electronic wave function was quenched to the Born-
Oppenheimer surface approximately every 1 ps to maintain adiabaticity. After equilibration
with the NVT ensemble at 298 K for at least approximately 50 ps, the Nosé thermostat
was switched off, and statistical averages were computed from trajectories of another 50
ps in length with the NVE ensemble at an average kinetic temperature of 298 K[44]. For
the statistical average, four to eight different trajectories were calculated in each settings
with different initial guess structures.

We calculated diffusion coefficients, from the Mean Square Displacement (MSD) of
the DFT-MD simulations of the HC and LC systems with neutral charge. The MSD was
calculated as follows. Let nk = 5000k(k = 0, · · · , 80). Let xtnk

be the coordinates of the
Li-ion at the nk + t(t = 0, · · · , 100000) steps. We calculated MSD for t = 0, · · · , 100000 as
follows.

MSD(t) =
1

80

80∑
k=0

|xtnk
− x0nk

|2.

That is, MSD(t) is the mean of the square of the distance moved after the t steps. It
shows how much Li-ion is diffused in the t steps. Figure 2.2 shows a graph with the time
t(fs) = 10t(steps) on the horizontal axis and the MSD on the vertical axis. The relationship
between the number of steps and the MSD can be expressed as a linear function in suffi-
ciently large steps. The slope of the linear function is called the diffusion coefficient. In this
study, this slope was obtained by linear regression of the data after 1000 steps. Finally, we
created a database of diffusion coefficients for 38 out of the 103 samples described earlier.
The complete database is listed in Table A.2 in Appendix.
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Figure 2.2: MSD at each step.
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Chapter 3

Coordination Energy Prediction

3.1 Introduction

In the search for LIB liquid electrolytes, the evaluation of the properties of ion
transport and electrochemical stability is indispensable. For the transport, solvation to
and desolvation from Li-ions at the electrolyte/electrode interface plays a crucial role, and
thus the coordination energy of the solvent to Li-ions is an important measure. For the
electrochemical stability, the quantities such as ionization potential and electron affinity
are significant. Here, however, we focus on the quantities related to the Li-ion transport
as the first target.

In this study, we investigated the estimation accuracy of the MLR, LASSO, ES-
LiR, ES-GP techniques in the search for liquid electrolyte materials [23]. We estimated
the coordination energies as the required properties of the LIB liquid electrolytes and
discussed the extracted descriptors by LASSO, ES with linear regression (ES-LiR) and ES
with Gaussian process (ES-GP). As a result, we succeeded in extracting the important
descriptors for predicting the coordination energies with high accuracy and clarified the
effectiveness of ES.

In order to demonstrate the versatility of these methods, we have also tested the
database with alkali metals (Na, K, Rb and Cs) other than Li-ion as cations[24]. The results
show that the ES can be used to extract descriptors that can predict the coordination
energy with high accuracy.

In this chapter, the ES method is first described in detail in Section 3.2. Next, in
Section 3.3, we show that ES can correctly select variables in ideal data using synthetic
data. Then, in Section 4, ES is applied to the two simulation data. The first data is the
coordination energy of Li-ion, and the second data is Li-ion data plus other alkali metals
(Na, K, Rb and Cs). We apply the ES method to these data and discuss the results and
accuracy of the variable selection. Finally, we conclude in Section 3.5.

3.2 Method

In this section, we first introduce the exhaustive search (ES) method as a sparse
modelling method for variable selection to improve the prediction accuracy of regression
[45]. The ES method is available for a wide range of learning tasks with various learning
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machines because the ES method only requires a change in input variables, evaluates
the variables and searches all the combinations of variables. In this section, we introduce
exhaustive search with a linear regression model (ES-LiR) [46, 23] and exhaustive search
with a Gaussian process (ES-GP)[47, 48].

3.2.1 Exhaustive Search

When there are N explanatory variables, the simplest method for selecting variables
is to exhaustively search for all combinations, which requires the combinations of variables
to be estimated 2N = NC0+NC1+ · · ·+NCN times the number of estimations [49, 45].We
call this naive method the ES method [50]. Cover and Van Campenhout reported that any
exact methods for variable selection come at the expense of a computational complexity
of at least O(2N ) [51], and this is also true for the ES method. However, since the size of
the data is not large in this study and because of the achieved improvements in computer
performance, we can easily apply the ES method for the estimation [23, 46]. Moreover, the
ES method is available for a wide range of learning tasks with various learning machines,
such as linear regression and Gaussian process, since the ES method only requires a change
in input variables, evaluates the variables and searches all the combinations of variables.

To formulate the ES method, we introduce an indicator

c = [c1, . . . cµ, . . . , cN ], (3.1)

which represents a set of selected explanatory variables. cµ = 1 indicates that the µ-th
explanatory variable xµ is selected, and cµ = 0 indicates that it is not selected. Each
realization value represented by c is called "state" by analogy with statistical mechanics
[52]. Using an indicator c, the input-output relationship of the learning machine between
the descriptor data x∗ = [x1∗, · · · , x

µ
∗ , · · · , xN∗ ] of sample "∗" and the estimated objective

variable y∗ is formulated as follows:

y∗ = fc(x∗(c)), (3.2)

where fc is the functional relationship learned by using the learning machine for state c
and x(c) represents a subset of x excluding unrelated elements.

Cross Validation

In the ES method, we compare and evaluate all states c under a criterion for eval-
uating the estimation accuracy. In this research, cross validation (CV) is used to evaluate
the estimation accuracy of the descriptors. CV approximately extracts prediction error
using only limited data, and the CV procedure consists of three steps, as explained below.
First, the complete learning data (X,y) are divided into training data (Xtr,ytr) and test
data (Xte,yte). Let pte be the number of test data and ptr be the number of training data.
Next, fc is adjusted such that the output of the learning machine fc(Xtr(c)) and the value
of ytr are close. Finally, we evaluate how well the trained learning machine can correctly
describe the input-output relation of the test data (Xte(c),yte) by using the loss function

ϵ(Xte(c),yte) ≡
1

pte

pte∑
i=1

(yte,i − fc(xte,i(c)))
2, (3.3)

where (xte,i(c), yte,i)(i = 1, · · · , pte) is the i-th sample of (Xte(c),yte).
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Since the value of the loss varies depending on how the data are divided, the above
three steps are repeatedly conducted with different partitions of the data to evaluate the
typical value of the loss function. For example, in M -fold CV (in this study, M = 10), the
learning data are randomly divided into M subsets to have the same size, and the mean of
the loss values is calculated by performing the above three steps M times using each subset
as test data only once, and we call the mean cross validation error (CVE). Let CVE(c) be
the CVE for the state c, and it is formulated as follows:

CVE(c) =
1

M

∑
Xte,yte

ϵ(Xte(c),yte). (3.4)

3.2.2 Exhaustive Search with Linear Regression, ES-LiR

Assuming that the relationship between descriptors and the objective variable is
linear and using all of the descriptors, one can select multiple linear regression (MLR), and
the estimation form is the linear sum of descriptors as follows:

y∗ = f(x∗;w) = w0 +
N∑

µ=1

wµxµ∗ (3.5)

where w = [w1, · · · , wµ, · · · , wN ] is the weight of descriptors and w0 is a constant term.
An algorithm that applies ES to MLR is ES-LiR [46]. When the learning machine is in a
state c, its input-output relationship is expressed as follows:

y∗ = fc(x∗(c);w(c)) = f(x∗;w ◦ c) = w0 +
N∑

µ=1

cµwµxµ∗ . (3.6)

Here, the symbol ◦ represents the Hadamard product and is defined as (x ◦ c)µ = xµcµ.
In ES-LiR, CV is performed for each state, and by searching for the state where CVE is
the minimum, it is possible to find the optimal combination of descriptors for estimating
the objective variable. Since MLR and ES-LiR have the assumption that the relationship
between descriptors and the objective variable is linear, the estimation may fail when it is
not satisfied.

3.2.3 Exhaustive Search with Gaussian Process, ES-GP

To further improve the estimation accuracy by both estimating the nonlinear rela-
tionship and variable selection, we conduct ES-GP, which is the method for applying ES
to GP.

To learn the nonlinear relationship, we assumed that from two materials that are
sufficiently similar in the descriptors, the target features will be similar and can be de-
termined by interpolation. The method of GP regression enables us to interpolate and
predict target features [53] using the similarity of descriptors and approximates a nonlin-
ear relationship and provides an unbiased prediction of intermediate values using a few
parameters.

In GP regression, the descriptor data x∗ = [x1∗, · · · , x
µ
∗ , · · · , xN∗ ] of sample "∗" and

the estimated objective variable y∗ are given by the indicator c, expressed as follows:

y∗ = fc(y;w(x∗(c),X(c))) (3.7)
= w(x∗(c),X(c)))Ty, (3.8)
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Figure 3.1: Effects of difference in a parameter of the Gaussian process. The vertical axis
is the objective variable y, and the horizontal axis is the value of the parameter. The black
circles are observation points, "*" is the true value of the point to be estimated, and the red
circle is the estimated value of the point to be estimated. If a parameter that is too small
is used, overfitting will occur and the estimation accuracy will decrease. If the parameter
is too large, the regression curve will be too smooth.

where w(c) = w = [w1, · · · , wi, · · · , wp]
T is a weight vector determined by the distance

between x∗(c) and X(c) and y = [y1, · · · , yp]T is the training data of the objective variable.
The distance is treated by applying a similarity function k, which is often called the kernel
between x∗(c) and X(c). Note that the weight vector w(c) in ES-LiR is the weight of
descriptors and describes the relationship between descriptors and the objective variable.
The weight vector w(c) in ES-GP describes the distance between samples for interpolation,
where the researcher has no knowledge regarding the descriptors. The former and the latter
are classified in statistics as parametric and nonparametric estimation, respectively.

Assuming that the noise follows a normal distribution of the variance σ2, w, which
minimizes Eq. (3.3), can be strictly calculated [53], and w(c) is also expressed as follows:

w(x∗(c),X(c))) =
[
(k∗(c))

T(K(c) + σ2I)−1
]T

, (3.9)

where I is a unit matrix of size p, and K(c) = {k(xi(c),xjc))}i,j is a matrix consisting of
kernels between training data. We set

k∗(c) = (k(x1(c),x∗(c)), . . . , k(xp(c),x∗(c)))
T (3.10)

as the Gaussian kernel function as follows:

k(xi(c),x∗(c)) = exp(−β|xi(c)− x∗(c)|2), (3.11)

where β represents the reciprocal of the scale of the Gaussian kernel.

GP regression results are greatly different by the two parameters β, σ. β in Eq.
(3.11) is represented by a grey line in Fig. 3.1. This parameter determines the width of the
Gaussian kernel of each learning data. If β is too small, overfitting will occur (Fig. 3.1(a)).
If it is too large, the curve of the estimated value becomes too smooth, and the estimation
accuracy decreases (Fig. 3.1(c)). σ is the variance of noise. As is the case with β, if σ is too
small, overfitting will occur, and if it is too large, the curve of the estimated value becomes
smooth, which leads to lower estimation accuracy. As described above, to avoid overfitting
while maintaining estimation accuracy, it is necessary to tune these two parameters. In
this research, we conduct a grid search of two parameters with CVE as the criterion.
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3.3 Synthetic Data Analysis

To make the experimental condition the same as that described in Chapter 2, we set
the dimension of the descriptor of synthetic data x = {x1, ..., xN}, N = 10, and uniformly
sampled from the interval [−1, 1]10. We then generated two types of objective variables,
y = (y1, · · · , yp)T. The first one is linear data such that yi = x1i + 1.5x2i + ϵi, where i is
the sample index and ϵi is sampled from a normal distribution with an average of 0 and
a variance of 0.3. The second one is nonlinear data such that yi = cos(x1i ) + (x2i )

2 + ϵi
generated by yi = cos(x1i ) + (x2i )

2 + ϵi. The number of samples to be generated, p, is 80 to
match the size of the simulation dataset in Chapter 2.

First, let us consider the results of linear synthetic data analysis, as shown in
Fig. 3.2(a). The prediction errors of the results of MLR and ES-LiR are 0.11 and 0.10,
respectively. The prediction error by GP is 0.11, and linear synthetic data can also be
regressed by performing interpolation. Moreover, assuming that the coefficients are sparse,
we apply ES-GP to the synthetic data and obtained the best indicator with a prediction
error of 0.10, which is almost the same prediction error in ES-LiR.

Similarly, the results of nonlinear artificial data analysis are shown in Fig.3.2(b).
In the case of nonlinear data, the prediction errors of MLR and ES-LiR are much larger
than those in the linear data analysis since the linear regression model does not match
the synthetic data well. Meanwhile, the prediction error of GP for the nonlinear synthetic
data was approximately 37% lower than the ES-LiR prediction error, and thus, GP can
regress data with more flexibility because there is no parametric shape of the unknown
regression function considered in advance. Furthermore, the prediction error was 0.10 for
ES-GP, and the prediction error was approximately 70% lower than that of ES-LiR since,
if noise variables are included as descriptors, the prediction accuracy may decrease. Thus,
selecting a few descriptors of GP and removing the noise variables greatly improve the
interpolative prediction.

Figure 3.3 is a diagram that shows the result of variable selection by the ES method.
From left to right, 25 CVE’s lowest prediction error indicators are lined up, and the vertical
axis shows the descriptors. Figures 3.3(a) and 3.3(c) present the result on linear data, and
Figures 3.3(b) and 3.3(d) present the result on nonlinear data. The colour of each cell in
Figures 3.3(a) and 3.3(b) represents the coefficient (weight) of that descriptor obtained as
a result of the linear regression in that indicator. A white cell indicates that a descriptor is
not selected in the indicator. Similarly, for Figures 3.3(c) and 3.3(d), white cells indicate
that a descriptor is not selected in that indicator. The black cell represents the descriptor
being used.

As shown in Figures 3.3(a) and 3.3(c) in linear data, x1, x2, which is a truly efficient
descriptor for both ES-LiR and ES-GP, is the best 25. It is selected as important descriptors
for predicting object variables consistently. However, in nonlinear data, ES-GP is chosen
as a truly efficient descriptor, but ES-LiR is not. This result indicates the possibility that
ES-LiR cannot select the dimension in nonlinear data.
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(a) Linear data estimation
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(b) Nonlinear data estimation

Figure 3.2: Generate x = {x1, · · · , x10} uniformly from [−1, 1]10 and generate Y = x1 +
1.5x2+ ϵ using 80 samples of nonlinear data using the relationship y = cos(x1)+ (x2)2+ ϵ.
Here, ϵ is sampled from a normal distribution with average 0 and variance 0.3. (a) shows
the result of linear data, and (b) shows the result of regression using MLR, ES-LiR, and
ES-GP for nonlinear data. The horizontal axis is the true value, the vertical axis is the
predicted value, and the black line is the graph of y = x. It can be said that the estimation
accuracy is higher as each point is closer to y = x.
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(a) ES-LiR for linear data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Best 25 indicators

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1
0

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b) ES-LiR for nonlinear data
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(c) ES-GP for linear data
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(d) ES-GP for nonlinear data

Figure 3.3: Variable selection by weight diagram. (a) and (c) are linear data, and (b) and
(d) are the results of regression on nonlinear data. (a) and (b) show the coefficients of
each dimension when ES-LiR is performed, and (c) and (d) show the variables used when
performing ES-GP in black cells there. A white cell represents an unused variable. The
vertical axis is the descriptor, and the horizontal axis is the order of the indicators in the
order of the lowest CVE in order from the left.
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3.4 Simulation Data Analysis

3.4.1 Prediction of coordination energies for Li-ion electrolyte

Database

The coordination energy "Ecoord" is the difference between the energy of the Li-
solvent complex "E(Li-solvent)" and the total energy of the solvent molecule "E(solvent)"
and the Li-ion "E(Li-ion)". The coordination energy "Ecoord" is defined by the following
formula:

Ecoord = E(Li-solvent)− {E(solvent) + E(Li-ion)}. (3.12)

We thus constructed a learning database that includes the coordination energy,
which expresses "performance", and the five feature values obtained through DFT calcula-
tions and the five feature values of physical properties (boiling point, melting point, flash
point, density of solvent, and molecular weight) on the catalogue. For data preprocessing,
21 types of data with missing descriptors or the performance are removed, and data of a
total of p = 82 solvents are used as the data for analysis. In addition, we standardized the
data because the scales of the descriptors are different. The standard value is a dimension-
less quantity obtained by subtracting the population mean from an individual raw score
and then dividing the difference by the population standard deviation. For predicting the
normalized coordinate energy, we used a database that includes sample size p = 82 and
N = 10 descriptors, as shown in Table 3.1.

Let us introduce the formation of symbols representing this database. We set the
normalized coordination energies y = [y1, . . . , yi, . . . , yp]

T and the i-th sample’s descriptors
xi = [x1i , · · · , xNi ] as the target objects and N = 10 descriptors defined in Table 3.1,
respectively. These formations are summarized as follows:

xi ≡ [x1i , · · · , xNi ], (3.13)

X ≡

 x1
...
xp

 , (3.14)

y ≡

 y1
...
yp

 , (3.15)

where X represents the descriptor database, which consists of rows of respective sample
data xi.

Results

Figure 3.4 shows the fitting results of MLR, ES-LiR, GP and ES-GP. The vertical
axis shows the predicted value and the horizontal axis shows the true value. Compared to
MLR, which uses all variables, ES-LiR reduced CVE by 14%. In the case of GP, a nonlinear
regression technique, the CVE of ES-GP was reduced by 24% compared to the CVE of
regular GP, which uses all variables. Comparing MLR and ES-GP, CVE was reduced by
52%.
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Table 3.1: Correspondence between symbols and features.

Descriptor Feature
x1i boiling point (BoilingP)
x2i density of solvent (Density)
x3i dipole moment (Dipole)
x4i flash point (FlashP)
x5i HOMO
x6i LUMO
x7i melting point (MeltingP)
x8i molecular weight (MolecularW)
x9i Mulliken charge (MullikenO)
x10i Li-O distance(RLiO)

Figure 3.4 describes the best results of ES-GP and ES-LiR with the minimum
prediction error, but the ES-GP and ES-LiR verify the prediction error for all combinations
of descriptors and the statistical verification of the prediction errors is available, as shown
in Fig. 3.5. Comparing the histogram of ES-LiR and the histogram of ES-GP, we can see
that the average value of CVE of ES-GP is 8.30 and the average value of CVE of ES-LiR
is 9.92. Therefore, the prediction error of ES-GP is 16% smaller than the prediction error
of ES-LiR. These results show that nonlinearity of the regression model is important for
predicting coordination energy from the simulation database used in this study even when
compared statistically.

As noted in Section 3.3, the ES method achieves high prediction accuracy by ex-
tracting some variables that are essentially important and performing regression. In this
data, the prediction accuracy was improved by sparsification. This suggests that there are
only a few descriptors in the whole that are important for the prediction of the coordination
energy.

The ES method not only minimizes the CVE but also derives the CVE in all
combinations, so you can see the whole picture of them. Using the whole pictures, the
ES-LiR and ES-GP method can be used to construct the weight diagram, which shows the
top 25 best combinations of the descriptors, as shown in Figure 3.6. The weight diagram
reveals the stability of the important descriptors for the prediction, even if the error is at
the same level as the other methods. In the weight diagram of ES-LiR (Figure 3.6(a)),
each color represents the fitted coefficient of each descriptor, which shows the importance
for the coordination energy prediction. In the weight diagram of ES-GP (Figure 3.6(b)),
Because GP does not compute descriptor weights, the cells of used descriptors are colored
black. The white-blocks of the map correspond to the descriptorsak which are not adopted
for the prediction.

First, let us explain the interpretation of the results of the weight diagram of ES-
LiR. From the weight diagram of ES-LiR, the Mulliken charge (MullikenO) is the significant
descriptor for the coordination energy prediction and flashing point (FlashP.), and RLiO can
also contribute to it. The coordination energy is highly affected by the Coulomb interaction
between the Li cation and the oxygen atom that has a negative electron charge. Thus, the
extraction of the Mulliken charge as a good descriptor fits our chemical intuition, even if the
Mulliken charge values are sometimes quantitatively not stable with the basis functions.
The RLiO is also a trivial descriptor for the estimation of the solvation energy because the
distance corresponds to the strength of the interaction between Li and O. On the other
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Figure 3.4: A comparison of the prediction results of MLR, ES-LiR, GP and ES-GP. The
horizontal axis is a true value, and the vertical axis is an estimated value. The diagonal
line represents y = x, and the closer to this line, the higher the prediction accuracy is. The
prediction error of all variable MLR was 10.20 (kcal/mol), the prediction error of ES-LiR
was 8.78 (kcal/mol), the prediction error of GP was 6.42 (kcal/mol), and the prediction
error of ES-GP was 4.89 (kcal/mol).

hand, the flashing point is not a trivial descriptor. It might be a weak relationship between
"the oxygen radical reaction for burning" and "the Li cation–solvent interaction", though
the number of the samples should be increased for such a discussion.

On the other hand, as shown in Figure 3.6(b), ES-GP selected different variables
than ES-LiR. For example, the mulliken charge, which is selected for all the top 25 indica-
tors in the ES-LiR, is selected for only 14 out of the top 25 indicators in the ES-GP. The
boiling point, dipole moment and HOMO energy are rarely selected for ES-LiR, but they
are frequently selected for ES-GP. As shown in Fig. 3.3(a), ES-GP can extract descriptors
in linear relations in addition to descriptors in nonlinear relations. From this fact, con-
sidering nonlinearity, HOMO energy, boiling point, and dipole moment are more likely to
predict coordination energy than Mulliken charge.

Although the selected descriptors of ES-LiR, as shown in Fig. 3.6(a), are easier to
use because of simplicity, the physical meaning is also important when extracting features
is performed, in ES-GP, it is generally difficult to understand all the physical phenomena
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Figure 3.5: Histogram of ES-GP and ES-LiR indicator. The horizontal axis represents CVE,
and the vertical axis represents the number of indicators. The circle represents the CVE
minimum value of ES-LiR, the diamond represents the CVE value of GP, and the asterisk
represents the CVE minimum value of ES-GP.

behind extracted features under the linear relation assumption. This result shows that
there are nonlinear relationships behind the selected descriptors and desired properties,
and further investigation is need to determine the physical mechanism behind this. Other
possibilities of these results indicate that there are several relationships between the se-
lected descriptors and desired properties and that the combination of these phenomena
results in the complex relationship.

It is possible that ES-GP is greatly over learning the result of the weight diagram
change between ES-LiR and ES-GP. Therefore, to verify the results of this research, we
conducted a verification with Y-Scrambling [54]. Y-Scrambling is a method of randomly
shuffling the target variable Y in the learning data to learn random training data without
changing the distribution of Y to validate the model. In the conventional ES method,
validity was not verified, but in this study, we compare each density of state (DoS) with
the ES method and confirm the extent to which the ES method can extract information.
Figure 3.7 compares their DoS. The average CVE of the normal ES-GP is 8.23 kcal/mol,
while the average CVE of Y-scrambling ES-GP is 11.6 kcal/mol. The average CVE of the
normal ES-GP is 29% lower than the average CVE of Y-Scrambling ES-GP. Therefore, it
is clear that ES-GP can extract information.
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Figure 3.6: Comparison of weight diagrams between ES-LiR (a) and ES-GP (b). There are
25 low indicators of CVE in order from left to right. The vertical axis is each descriptor. The
colour of each cell in (a) represents the coefficient of each descriptor when linear regression
is performed. A white cell is an unselected descriptor. In (b), the black cell is the selected
variable, and the white cell is the unselected variable. The optimal hyper parameters of
the best indicator of ES-GP are σ = 8.22× 10−6 and β = 4.35× 10−6.

Figure 3.7: Histogram of ES-GP analysis of raw data and shuffled data for verification of
ES-GP results by Y-Scrambling. The horizontal axis represents CVE, and the vertical axis
represents the number of indicators.
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Table 3.2: Correspondence between symbols and features.

Descriptor Feature Experimental /
Computational

Cation /
Solvents

x1i ionic radius Experimental Cations
x2i electronegativity Experimental Cations
x3i atomic weight Experimental Cations
x4i NBO charge (NBOchargeOatom) Computational Solvents
x5i HOMO energy Computational Solvents
x6i LUMO energy Computational Solvents
x7i dipole moment (TotalDipole) Computational Solvents
x8i total energy Computational Solvents
x9i boiling point Experimental Solvents
x10i flashing point Experimental Solvents
x11i melting point Experimental Solvents
x12i molecular weight Experimental Solvents
x13i density of solvent (Density) Experimental Solvents

3.4.2 Prediction of coordination energies for alkali group elements

Database

For the descriptors or explanatory variables, the following were used as ’compu-
tational’ descriptors: energies of the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO), dipole moment, natural bond orbital (NBO)
charge of the O atom that coordinates to the metal ion, total energy (i.e. electronic energy
plus nuclear repulsion), and total dipole moment. From an atomic/molecular perspective,
the ion-solvent interaction can be understood as an acid–base interaction, since the ion
works as a hard acid and the solvent works as a hard or soft Lewis base. Common organic
electrolyte solvents have alkoxy or carbonyl groups, and in these cases the O atom works
as the Lewis base site. For this reason, we assumed that the ion coordinated to this O
atom. Also, the NBO charge on the coordinating O atom was included in the descriptors.
For the optimized geometries of the cation-coordinated system, see Figure B.1 in the Ap-
pendix. The computational properties of the solvent are obtained by DFT calculation of
the pure solvent, i.e. without ions. All the experimental and computational descriptors for
the solvent molecules are shown in Table 3.2.

First, we discuss the accuracy of the three methods to estimate the true (i.e. DFT-
calculated) Ecoord values. Here, the data set includes all the Ecoord data (i.e. coordination
of Li, Na, K, Rb, and Cs to solvent molecule). In other words, solvent descriptors and ion
descriptors were independently made and combined to form the whole data set. Since we
have 70 solvents, the Ecoord data set consists of 5× 70 = 350 points. Our calculated Ecoord

values for Li, Na, K, Rb, and Cs are summarized in the bar chart in Figure 3.8, and the
selected numerical values for Ecoord are shown in Table 3.3. The range of Ecoord for the five
ions are: Li -1.32 to -2.91 eV (mean value: -2.20 eV), Na -0.88 to -2.18 (-1.60), K -0.61 to
-1.73 (-1.20), Rb -0.55 to -1.60 (-1.11), and Cs -0.46 to -1.44 eV (-0.98). Thus, the Ecoord

of metal ions can be ranked as Li > Na > K ∼ Rb > Cs.
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Figure 3.8: Ecoord values of 70 solvents and five ions (Li, Na, K, Rb, and Cs).

Ecoord(eV )
Solvent Li Na K Rb Cs

Ethylene carbonate -2.343 -1.747 -1.365 -1.272 -1.135
Propylene carbonate -2.399 -1.789 -1.397 -1.307 -1.165
Vinylene carbonate -2.179 -1.610 -1.246 -1.157 -1.025
Fluoroethylene carbonate -2.128 -1.569 -1.210 -1.129 -1.001
Dimethyl carbonate -2.068 -1.454 -1.078 -0.968 -0.842
Diethyl carbonate -2.130 -1.492 -1.106 -1.010 -0.877
Ethyl methyl carbonate -2.114 -1.488 -1.108 -1.006 -0.878
Furan -1.320 -0.884 -0.605 -0.545 -0.461
Tetrahydrofuran -2.047 -1.454 -1.065 -0.978 -0.851
Ethyl acetate -2.206 -1.574 -1.185 -1.083 -0.950
Isopropyl acetate -2.222 -1.585 -1.187 -1.093 -0.958
Methyl propionate -2.138 -1.524 -1.133 -1.030 -0.896
Methyl formate -2.011 -1.444 -1.082 -0.981 -0.861
Vinyl acetate -2.052 -1.454 -1.076 -0.984 -0.857
Sulfolane -2.481 -1.879 -1.450 -1.350 -1.200
Dimethyl sulfoxide -2.905 -2.183 -1.725 -1.590 -1.427
Cyclohexanone -2.259 -1.654 -1.265 -1.158 -1.025
Benzaldehyde -2.177 -1.570 -1.188 -1.085 -0.958
Benzyl benzoate -2.758 -2.139 -1.682 -1.591 -1.441
Diphenyl ether -1.625 -1.120 -0.758 -0.738 -0.638
Acetone -2.190 -1.600 -1.219 -1.117 -0.987
Chloroacetone -1.938 -1.399 -1.047 -0.964 -0.845
Methyl acrylate -2.195 -1.570 -1.178 -1.069 -0.938

Table 3.3: DFT-calculated Ecoord of Li, Na, K, Rb, and Cs for 23 selected solvents.
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Figure 3.9: Comparison between Ecoord calculated by DFT (x-axis) and that predicted by
ES-LiR (y-axis). The diagonal line corresponds to a perfect match.

Results

Next, we examined the regression of Ecoord from the solvent and ion properties.
Figure 3.9 demonstrates a good correlation between Ecoord values calculated by DFT and
those estimated by ES-LiR. The CV error for ES-LiR in Figure 3.9 was 0.127 eV. This is
only 5.7 % for the average Li coordination energy, indicating that the regression formula
from ES-LiR gives accurate results. We also observe that the prediction accuracy tends
to be lower at Ecoord < -2.5 eV. As we shall see later, the important descriptors are the
O charge and the total dipole. The deviation from this regression formula indicates other
effects, for example, large distortion of the ion–solvent complex would contribute to large
Ecoord values.

The accuracy of the estimation methods can be evaluated by the CV errors. The
smallest CV error calculated with the MLR, LASSO, and ES-LiR methods was 0.1280,
0.1278, and 0.1271 eV, respectively. These values are shown in Table 3.4, together with
selected combinations of descriptors. Values in Table 3.4 suggest that ES-LiR gives the
smallest CV error and thus the best prediction accuracy, although the differences between
the three methods are moderate. It is well known that the CV error is intimately related
to the choice of descriptors. Since the ES-LiR examines all combinations of descriptors,
it is always guaranteed to choose the best combination. In all three regression formulae,
the ionic radius of the metal ion has the largest coefficient and thus it is the most impor-
tant descriptor. This can be understood in terms of Pearson’s hard–soft acid–base rule,
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MLR LASSO ES-LiR
Ionic radius 0.6637 0.6542 0.6637
Electronegativity 0.1612 0.1569 0.1612
Atomic weight -0.0986 -0.0930 -0.0986
NBO charge of Oatom 0.1832 0.1751 0.186
HOMO energy 0.0121 0.0111 0
LUMO energy 0.026 0.0248 0.0273
Total dipole -0.1467 -0.1420 -0.1475
Total energy -0.1384 -0.1261 -0.1476
Boiling point -0.0956 -0.0941 -0.0977
Flashing point 0.1154 0.1034 0.1182
Melting point -0.0202 -0.0151 0
Molecular weight -0.1156 -0.1051 -0.1215
Density 0.0249 0.027 0
CV error 0.128 0.1278 0.1271

Table 3.4: Coefficient of descriptors in the three regression formulae (MLR, LASSO, and
ES-LiR) with the smallest CV error, and their CV errors

which states that the smaller ion has hard acid character. The positive coefficient of ionic
radius in Table 3.4 indicates that smaller ions give the smaller Ecoord values (thus the
stronger ion–solvent interaction). After the ionic radius, the NBO charge on the O atom
coordinating to the ion has the second largest coefficient. Since the ion–solvent interaction
mainly has an electrostatic cationic–anionic character, a more negative O charge leads
to a stronger interaction and thus a larger Ecoord value. This conclusion is the same as
in Section 3.4.1, in which the O atomic charge is the most important descriptor for the
Li coordination on electrolyte solvent molecules. We also found that the total dipole has
a relatively large coefficient. This adds to the charge–charge electrostatic interaction via
charge–dipole interaction, so this also contributes to the ion–solvent interaction.

Another important difference among the three regression methods is the sparseness
of the regression formula. In MLR and LASSO, all descriptors have some non-zero coeffi-
cients, and thus these methods are the least sparse among the three. Contrary to these two
methods, ES-LiR gives a more sparse regression formula because three descriptors (HOMO
energy, melting point, and density) have zero coefficients. This indicates that the regression
formula given by ES-LiR is the most accurate of the three methods, and at the same time
its physical and chemical meanings are the easiest to interpret.

Up to now, our discussion is based on the optimal combination of descriptors that
minimize the CV error. Estimation accuracy for other descriptor combinations can also
be found using the ES-LiR, because this method examines all combinations of descriptors.
The number of counts in the descriptor combination within a fixed CV error range can be
summarized by the histogram in Figure 3.10, where descriptor combinations that reduce
CV error to below 0.14 are rather rare. From this, we can infer that the combination of
particular descriptors is important for achieving accuracy.

This issue can be analyzed with the linear coefficient of the accurate regression
formula. This is another important piece of information obtained by ES-LiR. The plot
of linear coefficients for ten descriptor combinations that give low CV errors is shown
in weight diagram in Figure 3.11. Since we can find the contribution of descriptors for
several combinations of them, the stability of the important descriptors can be found
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Figure 3.10: The number of counts for the CV error (i.e. histogram) for various descriptor
combinations. The orange, green, and red symbols show the smallest CV errors for ES-LiR,
LASSO, and MLR, respectively.

from the weight diagram. We consider that analysis with several regression formulae is
important, because multicollinearity often occurs in the linear regression model; inspecting
the descriptor weights for multiple combinations of regression models is more robust than
analysis based on a single regression model.

In the weight diagram, the ionic radius has the largest contribution to the regression
formula in all descriptor combinations. Thus, this property is the most important and also
most stable descriptor in the Ecoord prediction, as stated above. Since the ionic radius is
the most important descriptor in all top 20 descriptor combinations, it is also the most
stable one in the present descriptor set. The next important descriptor is the NBO charge
of the coordinating O atom, which is also a stable descriptor among the 20 combinations.

Figure 3.11: Weight diagram for the descriptors of top 20 combinations with small CV
error in ES-LiR. Descriptors with coefficients smaller than 10−10 shown in white box.
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Other descriptors, such as dipole moment, boiling point, and density, are also important,
but their stability is not as high as the ionic radius or the solvent O NBO charge.

We also note that the atomic weights of cation species have large weight. The
atomic weight works as a secondary factor for the ionic radius, as can be confirmed by
carrying out the ES-LiR without the ionic radius; in this case the atomic weights have the
largest weight in the regression formula. However, the calculated CV error is considerably
higher (0.2807 eV), indicating that the ionic radius does much better in the linear regression
model.

Finally, we applied the ES-GP method for Ecoord prediction. This includes the non-
linear terms of the descriptors, which were not taken into account in the ES-LiR method.
According to this feature, we can expect higher prediction accuracy with ES-GP, which
was already shown in Section 3.4.1. Here, the same data set used for ES-LiR was used for
ES-GP. We used the following seven descriptors in the ES-GP; ionic radius, NBO charge,
total dipole moment, total energy, boiling point, melting point, and density. We selected
these descriptors as they minimize the CV error of the ES-GP prediction; the dependence
of the CV error on the number of descriptors is shown in Figure B.2 in the Appendix.

In Figure 3.12, we compare the Ecoord values calculated by DFT and predicted by
ES-GP. The CV error for ES-GP was 0.016 eV, which is significantly better than that for
ES-LiR (0.127 eV). The accuracy of the ES-GP method is 1.54 in kJ mol-1 unit, which is
sufficient for most purposes for battery-related study. From these results, we can conclude
that the combined use of ES-LiR and ES-GP is advantageous in obtaining good physical
or chemical intuition and achieving high prediction accuracy.

3.5 Conclusion

In this study, data-driven science techniques were applied to a database obtained
by computational chemistry in order to find new electrolyte materials.

We first developed a prediction model for the coordination energy in the LIB elec-
trolyte. We used MLR, LASSO, GP, ES-LiR, and ES-GP to predict the coordination energy
of LIBs. As a result, the coordination energies can be predicted from more computation-
ally inexpensive descriptors. Compared with each method, ES-GP reduced the prediction
error by 52% compared to MLR. This demonstrates the importance of sparsification and
nonlinearization in predicting the coordination energy. The prediction model based on ES
enables us to extract the combinations of important descriptors for the prediction of the
coordination energy by using weight diagrams. The weight diagram allows us to choose the
balance between descriptor data acquisition cost and prediction accuracy. This feature is
general for all the material exploring studies with virtual screening. This treatment can be
a key technique to future material searches.

Next, we created a similar database with alkali metals other than Li, and carried
out the same verification for the database. It is now possible to predict the coordination
energies of various ions using only the properties of the ions and solvents. The CVEs of
ES-LiR and ES-GP are 0.127 eV and 0.016 eV respectively, achieving very high prediction
accuracy.

This study has shown that combined use of computational chemistry and data-
driven science can be an efficient and accurate tool for coordination energy prediction.
We succeeded in showing that this approach can be applicable to any alkali metal ion
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Figure 3.12: Comparison between Ecoord calculated by DFT (x-axis) and predicted by
ES-GP (y-axis). The diagonal line corresponds to a perfect match.
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coordination. The constructed regression models are accurate enough for practical use in
the search for battery electrolytes. These features will be important in developing post-Li
next-generation batteries.

42



Chapter 4

Diffusion Coefficient Prediction

4.1 Introduction

The speed of charge and discharge is an important factor in the search for the
electrolyte in secondary batteries. Faster charging would reduce the amount of time a
smartphone being connected to a charging cable and the quicker discharge enable us to
develop a vacuum cleaner with stronger suction or a powerful chainsaw. The charging and
discharging mechanism of a LIB is as follows. Firstly, during the charging process, Li-ions
with a positive charge are attracted to the negative electrode, and potential difference be-
tween the positive and negative electrodes occur. During discharge, electrons move from
the anode to the cathode through the circuit to compensate for the potential difference, and
Li-ions move to the cathode. In other words, charging and discharging are performed by
the movement of Li-ions. Therefore, it is necessary to search for an electrolyte that allows
Li-ions to diffuse more easily in order to create batteries with high charge/discharge speed.
In recent years, improvements in computer performance have made it possible to simulate
microscopic phenomena by first-principles calculations and to observe phenomena that can-
not be observed by experiments. In the field of electrolyte exploration for LIB, Sodeyama
et al. are studying the diffusion of Li-ions in the electrolyte by simulating the diffusion of
Li-ions in the electrolyte using the DFT-MD (Density Functional Theory-Molecular Dy-
namics) method and investigating the diffusion speed (diffusion coefficient)[55]. However,
even with large-scale computers, it takes weeks to months to calculate the properties of a
single solvent molecule.

In this study, we aim to predict the value of the diffusion coefficient by using
a machine learning method. The DFT-MD calculations were performed on a large scale
computer and the results of electrolyte simulations with 38 different solvents were obtained
(Ref: Section 2.2). We used the 11 descriptors, which were used as explanatory variables
in Chapter 2 and the values of the coordination energy as explanatory variables. Using
a formula as a database for regression, we can formulate this database as follows. Let D
be the number of explanatory variables and N be the number of observed solvents. Here
D = 11, N = 38. Let X = (xn)n=1,··· ,N be the explanatory variable for the observed data,
and Y = (yn)n=1,··· ,N be the objective variable (diffusion coefficient) for the observed data.
xn represents the explanatory variable of the n-th data observed and xn = (x1n, · · · , xDn ).
Explanatory variables and features correspond to each other as shown in Table 4.1. The
goal of this study is to build a prediction model that explains the relationship between this
explanatory variable X and the objective variable Y .
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Descriptor Feature
x1n Molecular weight
x2n Density of solvent
x3n Boiling point
x4n Melting point
x5n Flashing point
x6n LUMO energy
x7n HOMO energy
x8n Dipole moment
x9n Coordination energy
x10n Distance between Li and O
x11n Mulliken charge

Table 4.1: Correspondence between symbols and features.

We have tried two main models for predicting the diffusion coefficient. The first
method is to make predictions with a single model. Specifically, it is a prediction model
in which the predictions are output as a single value, such as the linear regression of all
variables, GP, ES-LiR and ES-GP, which were discussed in Chapter 3. The second method is
to make predictions using mixture models. In materials science, the properties of materials
can occur through different mechanisms. Even if we use the same explanatory variables
to make predictions in such cases, there is a limit to the accuracy of the predictions. In
this study, we used Sparse Linear Mixture Model (SpLMM) [26, 56] to build the model in
the different spaces of explanatory variables. The results show that the mixture model is
better suited to explain the data, as the log loss is reduced by about 80% in the mixture
model compared to the method predicted by a single model.

This chapter is outlined as follows. In Section 4.2, we first describe the Sparse
Linear Mixture Model used as a prediction model. Next, we explain the logarithmic loss,
which is criterion for comparison with the linear regression, GP, ES-LiR, and ES-GP used
in Chapter 3. In Section 4.3, we describes the results, and in Section 4.4, we discusses and
concludes the results.

4.2 Method

4.2.1 Sparse Linear Mixture Model

The data of D = (xn, yn)n=1,··· ,N is set as the observation data, where xn =
(x1n, · · · , xDn )(n = 1, · · · , N) is an explanatory variable of the D dimension and yn(n =
1, · · · , N) is the objective variable. Assuming that the model has a observed noise ϵ fol-
lowing a normal distribution N (0, σ2), the relationship between the output y and the
explanatory variable x is represented as follows using a learning machine f(x;w) with a
training parameter w.

y = f(x;w) + ϵ.

In the linear model, it is expressed as follows.

f(x;w) = wTx,

w = (w1, · · · , wN )T.
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Expressing this as the conditional probability of y, we get the following.

p(y | x,w) = N (y | f(x;w), σ2).

In the case of the mixed model, assume that the conditional probability of y is a weighted
sum of multiple normal distributions, as shown below.

p(y | x, {wk}Kk=1,a,K) =

K∑
k=1

akN (y | f(x;wk), σ
2).

where K is the number of mixtures of the model, a = {ak}k=1,··· ,K is the mixture ratio,
which satisfies

∑K
k=1 ak = 1, ak ≥ 0(k = 1, · · · ,K), and wk(k = 1, · · · ,K) are parame-

ters which are trained in each model. Additionally, in the case of Sparse Linear Mixture
Model (SpLMM), the indicator vector ck(k = 1, · · · ,K) introduced in Chapter 3 are also
estimated. Thus, the trainer in the k-th model is represented as follows.

f(x;wk, ck) = (wk ◦ ck)Tx.

where ◦ is the adamant product. Let Θ be all parameters of SpLMM, which means Θ =
{wk, ck,ak}k=1,··· ,K . The conditional probability of y is as follows.

p(y | x,Θ) =
K∑
k=1

akN (y | f(x;wk, ck), σ
2).

In this study, we assume that the prior distributions of {wk}Kk=1, {ck}Kk=1,a are
independent of each other. That is，p(Θ) = p(a)

∏K
k=1 p(wk)p(ck). Additionally, we assume

that the prior distribution of wk is a multivariate normal distribution with a mean vector
0, covariance matrix Σ, the prior distribution of ck is a distribution where the probability
of the d-th element cd becoming 0, 1 is µd, (1− µd) respectively. The formula is as follows.

p(wk) = N (wk | 0,Σ)

=
1√

(2π)D|Σ|
exp

(
−1

2
wT

k Σ
−1wk

)
,

p(ck) =
D∏

d=1

(µd)
cd (1− µd)

1−cd ,

p(a | K) = Dir(a | α)

= C(α)

K∏
k=1

aαk−1
k .

where C(α) is a normalized term of the Dirichlet distribution and

C(α) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)
.

In this study, Σ was set to I (I is the unit matrix), µd = 1/2 and each element of the α is
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set to 1. The posterior distribution p(Θ | D,K) is calculated as follows.

p(Θ | D,K) = p(Θ | (xn, yn)n=1,··· ,N ,K)

∝
N∏

n=1

{p(yn | xn,Θ,K)} p(Θ | K)

=

N∏
n=1

{
K∑
k=1

akN (yn | f(xn;wk, ck), σ
2)

}
p(a | K)

K∏
k=1

p(wk)p(ck)

∝
N∏

n=1

{
K∑
k=1

ak exp

(
−(yn − f(xn;wk, ck))

2

2σ2

)} K∏
k=1

aαk−1
k exp

(
−1

2
wT

k Σ
−1wk

)
.

In this study, we used Bayesian Free Energy (BFE) to determine the number of mixtures
K.

The BFE is a negative logarithmic marginal likelihood − log(p(D | K)), which is
defined as

− log(p(D | K)) = − log

{∫ N∏
n=1

{p(yn | xn,Θ,K)} p(Θ | K)dΘ

}
+ const.

Let KD be K which minimizes BFE. That is, KD = argminK − log(p(D | K)). We used
exchange MCMC [57] to calculate the posterior distribution and BFE. Detail of the calcu-
lation method of the exchange MCMC is shown in Section C.1 in the Appendix.

To compare the degree of model fit with linear regression, GP, ES-LiR and ES-GP,
we use log loss as criterion in this study. Log loss is the mean of the negative logarithm
of the probability density of the predictive distribution of the test data p(ym | xm,Dtrain).
Here, Dtrain = (xn, yn)n=1,··· ,N is the training data and Dtest = (xm, ym)m=1,··· ,M is the
test data. In other words, the formula is as follows.

LogLoss = − 1

M

M∑
m=1

log p(ym | xm,Dtrain).

In particular, in the case of SpLMM, it is as follows.

LogLossSpLMM = − 1

M

M∑
m=1

log p(ym | xm,Dtrain,KDtrain)

= − 1

M

M∑
m=1

log

∫
p(ym | xm,Θ,KDtrain)p(Θ | Dtrain,KDtrain)dΘ.

In this study, 10-fold cross validation was used to calculate the mean of the log loss for
each test data. Specifically, we divide D into 10 datasets Dt(t = 1, · · · , 10) and create 10
pairs of train-test data (Dtrain

t ,Dtest
t ) = (

∪
s ̸=tDs,Dt)(t = 1, · · · , 10). The following values

were set as the log loss values.

LogLossSpLMM = − 1

N

N∑
n=1

log p(yn | xn,Dtrain
t(n) ,KDtrain

t(n)
)

= − 1

N

N∑
n=1

∫
p(yn | xn,Θ,KDtrain

t(n)
)p(Θ | Dtrain

t(n) ,KDtrain
t(n)

)dΘ

where Dtrain
t(n) denotes Dtrain

t such that (xn, yn) /∈ Dtrain
t .
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4.3 Results & Discussion

In this chapter, we develop prediction models for the diffusion coefficient data and
compare with five different methods: linear regression for all variables, GP for all variables,
ES-LiR, ES-GP, SpLMM. Since the model selection (selection of K) of SpLMM was done
by BFE in this study, model selection (variable selection) in ES-LiR and ES-GP was also
done by BFE to maintain consistency.

First, the number K of mixture is estimated using the BFE. Figure 4.1 compares
the BFEs for each mixture number K = 1, 2, 3, 4. The height of each bar represents the
mean of the BFE obtained in each of the 10-fold CVs and the error bars represent the
standard deviation. K = 2 is the minimum and the value of the BFE at K ≥ 2 is much
smaller than the value of the BFE at K = 1. The BFE of K = 2 was also minimal in
each trial. This result shows that the mixture models of K = 2 explains the data best by
using multiple models. it is possible that the values of the diffusion coefficients may occur
through multiple mechanisms with different descriptor spaces. Detailed results of the BFE
for each CV are presented in the Figure C.1 in the Appendix.

Figure 4.1: Comparison of Bayesian free energy at each K. The height of each bar represents
the mean of the BFE obtained in each of the 10-fold CVs and the error bars represent the
standard deviation. Compared to the BFE of K = 1, the BFE of K = 2, 3, 4 is much
smaller, indicating that the model of K ≥ 2 explains the data better than the model of
K = 1.

Figure 4.2 shows a comparison of the log loss for each model. From left to right:
linear regression of all variables, GP of all variables, best model of ES-LiR, best model of
ES-GP, and the results of SpLMM for K = 1, 2, 3, 4. The linear regression of all variables,
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GP of all variables, ES-LiR, and ES-GP had log loss of 2.2 ∼ 2.6, while the value of
SpLMM’s log loss for K ≥ 2 are 0.3 ∼ 0.6. As with Figure 4.1, this result shows that the
model in K ≥ 2 is a better fit to explain the data than the other models.

Figure 4.2: Log loss of each models.

From here on, we will discuss why SpLMM was more successful than other methods.
Figure 4.3 shows the log loss of each CV trial for linear regression and SpLMM(K = 2).
As can be seen from this figure, the log loss of the fourth trial in linear regression is large,
whereas the log loss of the fourth trial in SpLMM is small. Figure 4.4 shows a comparison of
the true and predicted values for ES-LiR and ES-GP. The further away from the diagonal
line, the more prediction error is. The red circles in the lower right corner of this figure
show that the predictions have a significantly large prediction error for both ES-LiR and
ES-GP. This point is the molecule Furan, which has the second highest diffusion coefficient
of 8.34 among all the data, but the predicted values for ES-LiR and ES-GP are −0.20 and
0.16 respectively. Furan is included in the test data in the fourth trial. This is the reason
why the log loss of the fourth trial is high in ES-LiR and ES-GP. Therefore, we will focus
on Furan and see how SpLMM differs from other methods.

Figure 4.5 shows comparing the predictive distributions of Furan for ES-LiR, ES-
GP, and SpLMM (K = 2). The horizontal axis represents the predicted diffusion coefficient
and the vertical axis represents the probability density of the predicted value. The dotted
line is the true value of the diffusion coefficient. The predicted distributions of ES-LiR
and ES-GP are generally located at low diffusion coefficients. On the other hand, the
distribution is wider in SpLMM, with peaks at higher diffusion coefficients. Since log loss
is a sign inversion of the logarithm of the probability density of the true value in the
predictive distribution, the higher the probability density of the dotted line, the lower the
value of log loss. This is why the log loss of the fourth trial is smaller for SpLMM and
higher for ES-LiR and ES-GP.

We compare the selected descriptors to see why the predictions for ES-LiR and
ES-GP are so far off. Figure 4.6 shows the descriptors selected by the ES-LiR, ES-GP, and
SpLMM (K = 2) methods in the fourth trial. The top two diagrams represent ES-LiR
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Figure 4.3: Comparison of log loss between ES-LiR and SpLMM (K = 2). The horizontal
axis shows each trial in CV and the vertical axis shows the log loss in the trial.

and ES-GP, respectively, and the bottom two represent two mixture models of SpLMM.
Each diagram has descriptors on the vertical axis and indicators on the horizontal axis.
The indicators in the ES are arranged from left to right in order of decreasing BFE. To
see the top results, the top 100 out of the 211 items are displayed here. The indicators
in the SpLMM are arranged from left to right in order of posterior probability. The top
1000 are shown here. The black cells represent selected descriptors, and the white cells
represent non-selected descriptors. In the above three diagrams, x1 (Molecular weight), x7
(HOMO energy) and x9 (Coordination energy) are selected relatively frequently. On the
other hand, in the bottom diagram, the only descriptor commonly selected is x1 (Molecular
weight). Therefore, SpLMM is considered to be a mixture of two models as follows: a model
that makes predictions similar to ES-LiR and ES-GP and a model that only emphasizes
molecular weight. This is very important for the correct prediction of Furan. The absolute
value of coordination energy indicates the strength of coordination between Li-ion and
solvent molecules, i.e., the strength of attraction, and basically, the stronger the force,
the faster the diffusion of Li-ion (i.e., the larger the diffusion coefficient). In fact, the
results of linear regression take a negative value for the coefficient of coordination energy
(where coordination energy is negative value). However, Furan differs from that trend.
The absolute value of Furan’s coordination energy is the smallest among all the data.
Therefore, choosing the coordination energy as a descriptor does not predict the Furan
diffusion coefficient correctly. On the other hand, molecular weight which is only frequently
chosen in the second model of SpLMM, is negatively correlated, as lighter molecules are
expected to diffuse faster. In fact, the linear regression results show that the coefficient of
Molecular weight is negative. Furan’s molecular weight is the third lowest among all the
data, and if only molecular weight is used as a descriptor, the diffusion coefficient can be
expected to increase. In other words, although many molecules can be better predicted
using not only molecular weight, but also coordination energy, on the other hand, there
are some molecules, such as Furan, that may cause the low accuracy when coordination
energy is used. This means that only SpLMM can correctly predict the data generated by
different mechanisms.
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Figure 4.4: Predictions for each solvent molecule in the best models of ES-LiR (left) and
ES-GP (right). The horizontal axis represents the true value and the vertical axis represents
the predicted value. The error bars are the standard deviation of the predicted distribution
for each point. The diagonal line indicates that the true value is equal to the prediction,
and the further away the diagonal line is, the more the prediction error is. The dots circled
in red represent the Furan.

In order to investigate how the mechanism of diffusion of Li-ion in Furan diffuses
differently from that of other solvents, we carefully observed the results of the simulations.
As a result, the migration of Li-ion tended to be different from that of other molecules.
Basically, Li-ion coordinates with four solvent molecules to move in the electrolyte. It
is called "vehicle-type" because Li-ion uses solvents like a vehicle. Since the vehicle-type
solvents must be strongly bound to Li-ion, the higher the coordination energy, the faster the
diffusion. However, Furan is not a vehicle-type migrant and tends to migrate by changing
the coordination of its molecules. Although further research is needed to conclude this, we
believe that it is noteworthy that such a different mechanism can be extracted by SpLMM.
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Figure 4.5: Comparison of the predictive distributions of Furan in ES-LiR, ES-GP, and
SpLMM (K ≥ 2). The horizontal axis represents the predicted diffusion coefficient and the
vertical axis represents the probability density of the predicted value. The dotted line is
the true value of the diffusion coefficient. Complete figures for all molecules are presented
in Section C.4 in the Appendix.
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Figure 4.6: Comparison of the indicators chosen for each model in the fourth trial of the CV.
The first model of ES-LiR, ES-GP, and SpLMM(K = 2), the second model in order from
the top. Each diagram has descriptors on the vertical axis and indicators on the horizontal
axis. The indicators in the ES are arranged from left to right in order of decreasing BFE.
Here we took the top 100 pieces out of the 211 pieces to see the top results. The indicators
in the SpLMM are arranged from left to right in order of posterior probability. In this case,
we took out 1000 pieces. The black cells represent used descriptors and the white cells
represent unused descriptors. The descriptors on the vertical axis are defined as follows.
x1: Molecular Weight, x2: Density, x3: Boiling Point, x4: Melting Point, x5: Flashing Point,
x6: LUMO Energy, x7: HOMO Energy, x8: Dipole Moment, x9: Coordination Energy, x10:
Distance between Li and O, x11: Mulliken Charge. The results of the other trials are
available on Appendix C.3.
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4.4 Conclusion

In this chapter, we compared the values of diffusion coefficients using SpLMM in
addition to linear regression with all variables, GP with all variables, ES-LiR, and ES-
GP to predict the values of diffusion coefficients. The results suggest that the data of
diffusion coefficients generated from more than one mechanism, indicating the limitations
of a single-value prediction method for such data. In particular, we focused on Furan, where
the results of SpLMM and the other methods differed greatly, and we conducted a detailed
study, and we showed that some molecules are better predicted without the coordination
energy, which has been thought to be correlated with the diffusion coefficient.

This indicates that predicting with a single model during virtual screening may
not find minorities with different mechanisms than the majority, and on the other hand,
using SpLMM that has multiple spaces of descriptors, such minorities can be searched
appropriately and desired materials can be found quickly. In addition, SpLMM allows
us to compare combinations of mixed descriptors and obtain information on the data
generation mechanism of each model by visualizing the indicators as shown in Figure
4.6. In some cases, the information can be viewed by materials science experts to infer
the hidden descriptors that determine each model. This is very important for materials
science because new discoveries are more likely to be made in the unexplored mechanisms
of minorities than in the well-studied mechanisms of majorities.

Finally, we describe the future development of this research. There are two di-
rections for future research. First, we will further explore the different tendencies of the
molecules we discovered in this study to understand why they are different from other
molecules. Secondly, the SpLMM, which was validated in this study, will be applied to a
larger scale database of candidate materials to perform virtual screening. Through these
studies, we hope to dramatically advance the search for electrolytes, which has not made
significant progress for decades, and contribute to the discovery of new high-performance
electrolyte materials.
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Conclusion & Discussion

In recent decades, there have been no significant developments in the search for
electrolyte materials for commercial LIB. Solid materials such as cathode and anode can be
easily treated by static calculations at absolute zero point because their atomic structure
does not change significantly. However, in the case of electrolyte, the dynamics of the
atomic structure at finite temperatures is required. It makes handling electrolyte difficult
and increases the computational cost. That is one reason why there have been no significant
developments in the search for electrolyte materials for commercial LIB. To address this
issue, we have developed a new framework that combines computational chemistry and data
science throughout this paper. In Chapter 2, we created a database using computational
chemistry, and in Chapters 3 and 4, we discussed data science methods using the database.
In this Chapter, we briefly discuss those conclusions and their effects not only for the
search for electrolytes in secondary batteries, but also for materials science and information
science.

In Chapter 2, we create the database for the search of the electrolyte of secondary
batteries. In this study, we selected commercially available materials for the electrolyte
solvent of secondary batteries to investigate our methods. The LIB electrolyte database
contains five experimental values (boiling point, density, flash point, melting point, and
molecular weight) and seven calculated values (dipole moment, HOMO energy, LUMO
energy, mulliken charge, Li-O distance). We used cluster model DFT calculation to get
following six values: dipole moments, HOMO energy, LUMO energy, mulliken charge, the
distance between the cation and the oxygen atom and the coordination energy. Finally we
obtained a database consisting of 103 electrolyte solvents. For the diffusion coefficient, we
executed a long time DFT-MD calculation and obtained 38 values of diffusion coefficient.
In addition, we also created a database of the electrolytes of secondary batteries including
not only Li but also alkali metals (Na, K, Rb, and Cs). We added the ionic radius, atomic
weights, and electronegativity to the database as descriptors of the cations.

In Chapter 3, we selected the coordination energy as a value related to the function
of the secondary battery, and built the prediction models of the coordination energy. The
coordination energy is one of the most computationally expensive values in our database,
and it is worthwhile to predict it using low-cost descriptors. In this study, we applied
exhaustive search, which is one of the methods of sparse modeling, to build a predictive
model and select variables. Firstly, we tested the effectiveness of the method on the LIB
data set. As a result, the prediction errors of ES-LiR and ES-GP are smaller than those
of linear regression with all variables, 14% and 52%, respectively, making it possible to
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accurately predict the coordination energy from descriptors with small computational costs.
In addition, by visualizing the exhaustive search results using weight diagrams, we have
identified which combinations of variables are important in predicting the coordination
energy in each model. We found following descriptors are important to predict coordination
energy. In the linear model (ES-LiR), important descriptors are mulliken charge of the O
atom, the distance between Li-ion and the O atom, flashing point. In the nonlinear model
(ES-GP), the important descriptors are HOMO energy, dipole moment and the boiling
point.

In addition, we used the database of not only Li but also other alkali metals (Na,
K, Rb, and Cs) to predict the coordination energies. The CVEs of ES-LiR and ES-GP
were 0.127 eV and 0.016 eV, respectively, which showed a very high prediction accuracy.
This makes it possible to predict the coordination energies of not only Li but also various
other ions using only the properties of ions and solvents.

Throughout Chapter 3, we have achieved a practical level of accuracy in predicting
the coordination energy. We also used ES to physically interpret the results and discuss
the relationships between the descriptors and coordination energy. We believe that these
results will greatly advance the search for new electrolytes for secondary batteries. For
reference, the results of using these methods to predict other data are shown in Appendix
D,E.

In Chapter 4, we chose the diffusion coefficient as a value related to the function
of the LIB and built a prediction model for it. Although the diffusion coefficient is an
important value that relates to the speed of charge and discharge of the LIB, a long DFT-
MD calculation is required to calculate it and it takes several weeks to several months.
Therefore, it is of great value to predict diffusion coefficients from other descriptors that
are less computationally expensive. In this study, in addition to MLR, GP, ES-LiR and ES-
GP used in Chapter 3, we constructed a prediction model using the Sparse Linear Mixture
Model (SpLMM), which makes predictions using multiple models. The results showed that
the log loss of SpLMM was significantly lower than those of the single-model prediction
methods, which means SpLMM can best explain the data. In order to investigate how
SpLMM improves prediction accuracy, we focused on the case of Furan, where the single
model approach failed to predict correctly. We found that SpLMM is able to automatically
extract these different mechanisms from the data and accurately predict minority solvents
with different mechanisms than the majority. In the field of materials science, as well as the
search for LIB electrolytes, the variables we want to predict are not always generated by
the same mechanism. In particular, the potential for new scientific progress lies not in the
well-studied majority data, but in the minorities that are not well-studied. In this study,
we were able to show that a mixture model with sparsity, such as SpLMM, is a method
for exploring not only majorities but also minorities.

Through this paper, we proposed a framework for exploring the electrolyte in sec-
ondary batteries. It is the following framework. First, create a database as much as you can
using computational chemistry approach. Next, extract important descriptors and build
a prediction model using the ES method. If the prediction model is enough for practical
use, prepare new candidate database to perform virtual screening. Decide which values
should be included in the database based on a balance between computational cost and
prediction accuracy using the result of the ES method. If the prediction accuracy is not
practically sufficient, build mixture models using SpLMM and perform virtual screening.
This framework allows us to search for useful electrolyte materials while interpreting the
generated data.
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Finally, we will describe the impact and future development of this study based
on the current situation in information science and materials informatics. Recently, many
researches on Deep Learning-based methods have been conducted in the field of informa-
tion science. However, given the high cost of database construction in the field of materials
science, machine learning methods that require large amounts of data, such as Deep Learn-
ing, cannot be applied to this field. Moreover, methods that output predictions as a single
value cannot be learned when the data generated from multiple mechanisms. In this re-
gard, SpLMM treats multiple models by Bayesian inference, which enables us to extract
multiple mechanisms while preventing over-training even with small amounts of data. It
can be said that materials science and Bayesian inference are very compatible with each
other. In the future, Bayesian inference will become more active in material exploration.
One of the methods in materials informatics for handling data with Bayesian inference is
materials search by Bayesian optimization. It is possible to apply Bayesian optimization to
this database ( ref: Appendix F). However, most of the existing applications of Bayesian
optimization to MI use a single model to make predictions. Using the SpLMM, Bayesian
optimization can also be extended to sparse mixture model. It is expected that Bayesian
optimization with SpLMM can captures not only the majority tendency but also the mi-
nority tendency and can be performed quickly. In future research, we will utilize such a
sparse mixture model for Bayesian optimization, and contribute to the development of
materials science by accelerating the search for the electrolyte of secondary batteries.
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Supporting Information for Chapter
2

A.1 Experimental value database of Li-ion electrolytes
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A.2 Calculated value database of Li-ion electrolytes

63



Chapter A. Supporting Information for Chapter 2

T
ab

le
A

.2
:

A
da

ta
ba

se
co

ns
tr

uc
te

d
by

pe
rf

or
m

in
g

cl
us

te
r

m
od

el
D

F
T

ca
lc

ul
at

io
ns

us
in

g
Li

as
a

ca
ti

on
.
T

he
di

ffu
si

on
co

effi
ci

en
ts

(d
iff

C
oe

ff
)

w
er

e
ob

ta
in

ed
by

a
lo

ng
ti

m
e

D
F
T

-M
D

ca
lc

ul
at

io
n.

na
m

e
LU

M
O

H
O

M
O

di
po

le
M

om
en

t
co

or
di

na
ti

on
E

ne
rg

y
di

st
m

ul
lik

en
di

ffC
oe

ff
P

C
0.

94
6

-7
.9

3
5.

25
5

-0
.0

91
53

01
1.

74
72

-0
.2

42
51

5
1.

7
E

C
0.

91
9

-8
.0

17
5.

07
-0

.0
89

09
56

1.
75

23
-0

.2
40

07
4

3.
7

V
C

-0
.1

37
-6

.9
73

4.
36

5
-0

.0
82

46
3

1.
76

-0
.2

31
08

V
E

C
-0

.7
2

-7
.8

29
5.

28
-0

.0
91

75
39

1.
74

61
-0

.2
39

97
5

F
E

C
0.

49
3

-8
.4

68
4.

48
7

-0
.0

81
54

72
1.

76
25

-0
.2

21
58

3
0.

93
D

M
C

1.
11

5
-7

.7
74

0.
34

2
-0

.0
79

69
27

1.
74

69
-0

.3
06

35
8

3.
7

D
E

C
1.

21
7

-7
.6

54
0.

61
3

-0
.0

83
86

14
1.

74
03

-0
.3

08
27

5
0.

83
E

M
C

1.
16

8
-7

.7
13

0.
51

4
-0

.0
81

83
1.

74
38

-0
.3

07
26

2
D

A
C

-0
.2

38
-7

.4
19

0.
49

4
-0

.0
82

74
09

1.
73

98
-0

.3
06

04
6

D
im

et
hy

l2
,5

-d
io

xa
he

xa
ne

di
oa

te
0.

92
2

-7
.9

33
-0

.0
79

33
65

1.
74

91
-0

.2
99

55
5

D
ie

th
yl

2,
5-

di
ox

ah
ex

an
ed

io
at

e
0.

99
-7

.8
56

-0
.0

81
83

61
1.

74
5

-0
.3

00
97

1
Fu

ra
n

0.
29

6
-6

.2
65

0.
51

1
-0

.0
50

55
9

1.
86

59
-0

.1
70

21
4

8.
34

2,
5-

D
im

et
hy

lf
ur

an
e

0.
51

4
-5

.6
21

0.
03

3
-0

.0
58

19
26

1.
84

84
-0

.2
16

97
6

T
H

F
1.

38
-6

.8
32

1.
43

4
-0

.0
77

65
53

1.
80

76
-0

.3
22

93
7

2-
M

eT
H

F
1.

45
4

-6
.5

35
1.

53
5

-0
.0

79
64

59
1.

80
68

-0
.3

47
47

1
3.

9
T

H
P

1.
53

7
-6

.7
11

1.
30

1
-0

.0
75

22
15

1.
80

44
-0

.3
23

57
4

D
O

L
1.

49
3

-6
.9

55
1.

32
4

-0
.0

68
87

6
1.

81
77

-0
.3

15
21

0.
55

D
IO

X
1.

77
3

-6
.4

83
-0

.0
68

88
49

1.
81

03
-0

.3
25

60
3

0.
41

12
-C

ro
w

n
4-

et
he

r
1.

96
5

-6
.6

55
-0

.1
61

15
28

1.
88

93
-0

.3
31

03
7

18
-C

ro
w

n
6-

et
he

r
1.

67
4

-6
.4

91
-0

.1
66

64
53

2.
02

07
-0

.3
18

81
2

D
M

M
1.

45
9

-6
.8

46
2.

16
5

-0
.1

02
67

67
1.

90
45

-0
.2

97
57

8
6.

81
D

M
E

1.
66

9
-6

.8
63

0.
10

1
-0

.0
71

90
01

1.
82

58
-0

.3
33

90
8

D
E

E
1.

66
5

-6
.8

39
-0

.0
75

06
24

1.
81

78
-0

.3
39

68
6

D
ig

ly
m

e
1.

61
6

-6
.8

98
1.

13
1

-0
.0

71
30

6
1.

82
71

-0
.3

33
58

9
T
ri

gl
ym

e
1.

61
-6

.9
07

-0
.0

71
06

93
1.

82
69

-0
.3

33
69

6
T
et

ra
gl

ym
e

1.
57

5
-6

.9
15

1.
12

9
-0

.0
71

01
73

1.
82

69
-0

.3
33

57
6

M
A

0.
33

9
-7

.3
71

1.
73

3
-0

.0
82

88
16

1.
75

53
-0

.2
64

72
2

6.
7

E
A

0.
38

-7
.3

04
1.

88
-0

.0
85

13
44

1.
75

14
-0

.2
66

52
3

2.
4

PA
0.

38
5

-7
.2

99
1.

94
1

-0
.0

85
79

91
1.

74
97

-0
.2

66
05

7
2.

8
iP

A
0.

38
-7

.2
8

1.
79

4
-0

.0
85

88
45

1.
74

88
-0

.2
69

18
5

4.
2

B
A

0.
39

1
-7

.2
9

1.
92

5
-0

.0
86

24
46

1.
74

92
-0

.2
66

27
9

64



Chapter A. Supporting Information for Chapter 2

na
m

e
LU

M
O

H
O

M
O

di
po

le
M

om
en

t
co

or
di

na
ti

on
E

ne
rg

y
di

st
m

ul
lik

en
di

ffC
oe

ff
M

FA
-0

.7
34

-8
.0

32
1.

52
1

-0
.0

88
29

74
1.

88
79

-0
.2

49
35

4
1.

1
E

FA
-0

.8
3

-8
.2

59
3.

09
-0

.0
82

18
95

1.
88

13
-0

.2
30

91
5

3.
79

M
P

0.
37

2
-7

.3
76

1.
61

2
-0

.0
83

15
32

1.
78

46
-0

.2
67

27
6

6
E

P
0.

41
4

-7
.3

1
1.

76
3

-0
.0

85
30

54
1.

78
65

-0
.2

69
17

1
3.

9
P

P
0.

41
8

-7
.3

04
1.

82
7

-0
.0

85
87

86
1.

78
68

-0
.2

68
82

1
6

M
F

0.
08

9
-7

.6
88

3.
89

9
-0

.0
84

01
17

1.
76

82
-0

.2
31

00
4

9.
6

E
F

0.
10

5
-7

.6
03

3.
99

7
-0

.0
86

35
72

1.
76

26
-0

.2
34

36
1

6.
6

E
B

0.
41

4
-7

.3
03

1.
68

2
-0

.0
86

55
53

1.
79

54
-0

.2
69

88
9

1.
6

iP
B

0.
41

4
-7

.2
79

1.
60

5
-0

.0
87

64
26

1.
79

33
-0

.2
72

73
M

iB
0.

29
4

-7
.2

99
1.

67
1

-0
.0

84
67

59
1.

79
36

-0
.2

66
75

4
1.

5
M

C
A

-0
.3

71
-8

.1
34

5.
21

9
-0

.0
93

40
29

1.
90

86
-0

.2
31

46
3

3.
5

V
A

-0
.4

96
-6

.9
41

3.
65

8
-0

.0
87

11
23

1.
76

08
-0

.2
17

01
8

5.
9

G
B

L
0.

25
4

-7
.2

69
4.

29
6

-0
.0

90
48

84
1.

75
82

-0
.2

36
54

6
3.

2
G

V
L

0.
30

4
-7

.2
08

4.
32

7
-0

.0
92

60
31

1.
75

3
-0

.2
39

19
6

3.
3

d-
V

al
er

o
la

ct
on

e
0.

15
5

-7
.0

92
4.

45
9

-0
.0

95
89

87
1.

75
12

-0
.2

39
82

2
2.

3
e-

C
ap

ro
la

ct
on

e
0.

28
8

-7
.0

74
4.

44
9

-0
.0

95
97

84
1.

75
31

-0
.2

38
59

0.
44

g-
H

ex
an

o
la

ct
on

e
0.

31
4

-7
.1

86
4.

39
4

-0
.0

93
37

17
1.

75
17

-0
.2

39
61

0.
8

g-
U

nd
ec

a
la

ct
on

e
0.

33
5

-7
.1

59
4.

56
-0

.0
94

51
97

1.
75

16
-0

.2
40

10
9

T
M

P
1.

11
2

-7
.7

65
3.

35
6

-0
.1

03
74

61
1.

73
99

-0
.4

67
0.

68
T
ri

n-
pr

op
yl

ph
os

ph
at

e
1.

25
3

-7
.6

33
3.

42
7

-0
.1

09
09

16
1.

73
27

-0
.4

69
68

4
T

P
hP

-0
.5

66
-6

.6
49

3.
15

7
-0

.1
09

66
57

1.
83

05
-0

.4
35

94
N

M
P

0.
84

2
-6

.4
21

3.
60

9
-0

.1
01

87
21

1.
72

44
-0

.2
99

09
2.

4
D

M
F

0.
73

1
-6

.6
23

3.
69

8
-0

.0
97

51
07

1.
73

62
-0

.2
96

93
1

4.
2

D
M

I
1.

33
7

-6
.2

16
3.

60
3

-0
.1

03
41

59
1.

71
22

-0
.3

24
57

1
1.

4
D

M
A

C
0.

8
-6

.4
11

3.
55

4
-0

.1
00

81
66

1.
72

3
-0

.3
01

03
2

2.
6

3-
M

et
hy

l-2
-o

xa
zo

lid
in

on
e

1.
06

6
-6

.8
05

4.
76

4
-0

.1
00

08
23

1.
74

8
-0

.2
83

47
3

E
th

yl
en

e
di

am
in

e
1.

46
9

-6
.2

44
10

.8
04

-0
.0

77
64

68
1.

96
86

-0
.1

83
36

1
P

yr
id

in
e

-0
.7

96
-6

.9
85

8.
71

8
-0

.0
78

64
91

1.
94

06
-0

.2
23

08
4

0.
81

N
-M

et
hy

li
m

id
az

ol
e

0.
64

-6
.1

35
7.

98
9

-0
.0

92
97

65
1.

91
22

-0
.2

37
70

5
0.

84
D

im
et

hy
ls

ul
fa

te
0.

34
1

-8
.1

95
3.

40
1

-0
.0

79
95

01
2.

02
85

-0
.3

92
49

9
0.

94
D

im
et

hy
ls

ul
fit

e
-0

.3
27

-7
.4

16
1.

40
6

-0
.0

90
31

77
1.

90
09

-0
.4

56
22

4
D

ip
ro

py
ls

ul
fit

e
-0

.2
48

-7
.2

92
1.

55
-0

.0
96

90
1

1.
90

11
-0

.4
56

48
3

E
S

-0
.8

23
-7

.7
25

3.
12

3
-0

.0
84

49
53

1.
75

77
-0

.4
22

98
1

D
im

et
hy

ls
ul

fo
ne

0.
90

5
-7

.6
83

4.
46

5
-0

.0
97

23
33

2.
02

33
-0

.4
59

80
6

65



Chapter A. Supporting Information for Chapter 2

na
m

e
LU

M
O

H
O

M
O

di
po

le
M

om
en

t
co

or
di

na
ti

on
E

ne
rg

y
di

st
m

ul
lik

en
di

ffC
oe

ff
et

hy
lm

et
hy

ls
ul

fo
ne

0.
88

9
-7

.5
67

4.
38

1
-0

.0
99

72
57

2.
01

33
-0

.4
63

96
1

D
ip

he
ny

ls
ul

fo
ne

-1
.5

38
-7

.2
22

5.
07

8
-0

.1
05

43
81

2.
00

09
-0

.4
54

93
1

B
is

(4
-F

lu
or

o
ph

en
yl

su
lfo

ne
)

-1
.6

1
-7

.2
04

3.
49

3
-0

.0
99

82
39

2.
00

46
-0

.4
52

93
4

SL
0.

82
6

-7
.3

83
5.

08
7

-0
.1

01
56

73
2.

01
37

-0
.4

59
22

5
1

3-
M

eS
L

0.
73

7
-7

.3
66

5.
08

6
-0

.1
02

49
81

2.
01

17
-0

.4
61

40
2

M
et

ha
ne

su
lfo

ni
c

ac
id

m
et

hy
le

st
er

0.
69

6
-8

.2
52

4.
12

7
-0

.0
87

05
25

2.
06

37
-0

.4
38

26
4

B
en

ze
n

su
lfo

ni
c

ac
id

m
et

hy
le

st
er

-1
.4

42
-7

.6
18

5.
01

4
-0

.0
93

28
42

2.
04

99
-0

.4
35

60
5

T
ri

flu
or

om
et

ha
ne

su
lfo

ni
c

ac
id

m
et

hy
le

st
er

0.
01

6
-8

.9
81

3.
20

9
-0

.0
69

17
96

1.
81

16
-0

.4
07

55
2

P
S

0.
54

9
-7

.9
17

5.
46

8
-0

.0
91

35
1

2.
03

4
-0

.4
26

43
8

B
S

0.
41

-8
.0

17
5.

38
4

-0
.0

93
32

86
2.

03
3

-0
.4

30
99

8
D

M
SO

0.
96

3
-6

.0
1

3.
82

1
-0

.1
07

98
28

1.
71

76
-0

.5
42

09
5

D
ip

he
nl

y
di

su
lfi

de
-1

.1
08

-6
.1

11
1.

59
7

-0
.0

67
23

89
2.

41
33

0.
00

36
11

D
im

et
hy

ls
ul

fid
e

1.
10

7
-5

.8
95

1.
48

5
-0

.0
54

10
73

2.
38

91
-0

.0
70

32
D

ie
th

yl
su

lfi
de

0.
83

3
-5

.8
09

1.
49

9
-0

.0
59

31
5

2.
36

9
-0

.0
55

85
1

A
N

0.
89

8
-8

.9
33

3.
74

3
-0

.0
74

94
3

1.
92

04
-0

.1
80

71
7

5.
2

P
N

0.
58

7
-8

.8
02

3.
82

6
-0

.0
77

17
06

1.
91

39
-0

.1
84

84
3

A
di

po
ni

tr
ile

0.
31

2
-8

.9
76

-0
.0

72
18

45
1.

91
64

-0
.1

75
81

3
V

al
er

on
it

ri
le

0.
72

8
-8

.7
04

4.
05

6
-0

.0
79

20
32

1.
90

84
-0

.1
83

41
9

G
lu

ta
ro

ni
tr

ile
-0

.1
36

-9
.0

81
3.

71
6

-0
.0

70
39

36
1.

92
12

-0
.1

70
10

9
M

al
on

on
it

ri
le

-0
.5

1
-9

.5
44

3.
62

3
-0

.0
61

41
03

1.
94

46
-0

.1
52

67
Su

cc
in

on
it

ri
le

-0
.0

97
-9

.3
1

0.
00

1
-0

.0
65

43
51

1.
92

9
-0

.1
64

51
5

P
im

el
on

it
ri

le
0.

34
6

-8
.8

58
3.

73
4

-0
.0

74
42

82
1.

91
39

-0
.1

77
48

8
Su

be
ro

ni
tr

ile
0.

49
7

-8
.7

89
0.

00
1

-0
.0

75
32

87
1.

91
15

-0
.1

79
68

Is
ob

ut
yr

on
it

ri
le

0.
64

2
-8

.7
27

3.
84

7
-0

.0
78

87
26

1.
97

34
-0

.1
88

93
1

Su
cc

in
ic

A
nh

yd
ri

de
-0

.8
66

-7
.7

94
4.

23
4

-0
.0

76
64

37
1.

78
35

-0
.1

99
21

2
M

E
K

-0
.3

86
-6

.6
01

2.
77

1
-0

.0
84

39
3

1.
75

92
-0

.2
25

07
1

2.
12

66



Chapter A. Supporting Information for Chapter 2

A.3 Database of alkali-ion electrolytes

67



Chapter A. Supporting Information for Chapter 2

T
ab

le
A

.3
:

A
da

ta
ba

se
co

ns
tr

uc
te

d
by

pe
rf

or
m

in
g

cl
us

te
r

m
od

el
D

F
T

ca
lc

ul
at

io
ns

us
in

g
Li

,N
a,

K
,R

b
an

d
C

s
as

a
ca

ti
on

.

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
P

R
O

P
Y

LE
N

E
C

A
R

B
O

N
A

T
E

-2
.3

99
0.

9
0.

97
6.

94
-0

.5
93

44
-0

.3
71

9
0.

07
80

8
2.

16
71

84
04

-1
03

75
.1

04
E

th
yl

en
e

ca
rb

on
at

e
-2

.3
43

0.
9

0.
97

6.
94

-0
.5

91
31

-0
.3

75
23

0.
07

99
9

2.
09

16
74

4
-9

30
6.

48
6

V
IN

Y
LE

N
E

C
A

R
B

O
N

A
T

E
-2

.1
79

0.
9

0.
97

6.
94

-0
.5

90
85

-0
.3

15
78

0.
03

55
9

1.
83

68
22

74
-9

27
3.

29
15

F
lu

or
oe

th
yl

en
e

ca
rb

on
at

e
-2

.1
28

0.
9

0.
97

6.
94

-0
.5

73
86

-0
.3

92
23

0.
06

58
1

1.
91

02
27

47
-1

20
04

.2
6

D
im

et
hy

lc
ar

bo
na

te
-2

.0
68

0.
9

0.
97

6.
94

-0
.6

72
04

-0
.3

68
73

0.
09

09
8

0.
07

93
72

43
-9

33
9.

14
29

D
IE

T
H

Y
L

C
A

R
B

O
N

A
T

E
-2

.1
3

0.
9

0.
97

6.
94

-0
.6

78
7

-0
.3

66
79

0.
09

27
9

0.
15

44
64

12
-1

14
76

.1
57

E
th

yl
m

et
hy

lc
ar

bo
na

te
-2

.1
14

0.
9

0.
97

6.
94

-0
.6

75
69

-0
.3

67
82

0.
08

96
0.

29
94

16
79

-1
04

07
.6

44
F
U

R
A

N
-1

.3
2

0.
9

0.
97

6.
94

-0
.4

86
25

-0
.2

85
32

0.
05

39
6

0.
21

87
24

3
-6

25
1.

95
79

2,
5-

D
IM

E
T

H
Y

LF
U

R
A

N
-1

.5
15

0.
9

0.
97

6.
94

-0
.5

09
04

-0
.2

59
0.

06
16

2
0.

01
79

92
1

-8
38

9.
19

73
T

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-2

.0
47

0.
9

0.
97

6.
94

-0
.6

24
28

-0
.3

11
68

0.
09

16
1

0.
70

86
86

51
-6

31
7.

42
53

2-
M

E
T

H
Y

LT
E

T
R

A
H

Y
D

R
O

F
U

R
A

N
-2

.0
96

0.
9

0.
97

6.
94

-0
.6

34
58

-0
.3

10
27

0.
09

20
9

0.
65

45
36

19
-7

38
6.

00
98

T
E

T
R

A
H

Y
D

R
O

P
Y

R
A

N
-1

.9
96

0.
9

0.
97

6.
94

-0
.6

20
07

-0
.3

14
3

0.
09

44
6

0.
56

26
77

76
-7

38
6.

09
63

1,
3-

D
IO

X
O

LA
N

E
-1

.8
25

0.
9

0.
97

6.
94

-0
.6

28
64

-0
.3

24
01

0.
10

22
9

0.
46

74
22

58
-7

29
3.

33
09

1,
4-

D
IO

X
A

N
E

-1
.8

08
0.

9
0.

97
6.

94
-0

.6
16

76
-0

.3
04

15
0.

10
73

1.
04

E
-0

5
-8

36
1.

78
9

E
th

ox
ym

et
ho

xy
m

et
ha

ne
-1

.8
37

0.
9

0.
97

6.
94

-0
.6

37
98

-0
.3

40
33

0.
09

86
6

0.
14

96
97

69
-8

39
4.

44
9

E
T

H
Y

L
A

C
E

T
A
T

E
-2

.2
06

0.
9

0.
97

6.
94

-0
.6

27
31

-0
.3

46
85

0.
05

99
7

0.
64

68
46

99
-8

36
2.

95
17

IS
O

P
R

O
P

Y
L

A
C

E
T
A

T
E

-2
.2

22
0.

9
0.

97
6.

94
-0

.6
26

61
-0

.3
44

44
0.

06
12

0.
68

80
02

47
-9

43
1.

50
03

M
E

T
H

Y
L

P
R

O
P

IO
N

A
T

E
-2

.1
38

0.
9

0.
97

6.
94

-0
.6

21
46

-0
.3

48
69

0.
06

33
2

0.
63

67
78

06
-8

36
2.

88
59

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-2
.2

02
0.

9
0.

97
6.

94
-0

.6
22

61
-0

.3
47

26
0.

06
06

9
0.

68
79

86
82

-9
43

1.
35

41
M

E
T

H
Y

L
FO

R
M

A
T

E
-2

.0
11

0.
9

0.
97

6.
94

-0
.6

05
82

-0
.3

62
95

0.
05

50
5

0.
68

75
05

44
-6

22
5.

71
98

E
T

H
Y

L
B

U
T

Y
R

A
T

E
-2

.1
8

0.
9

0.
97

6.
94

-0
.6

31
93

-0
.3

43
11

0.
05

74
1

0.
62

91
20

16
-1

04
99

.7
97

M
E

T
H

Y
L

IS
O

B
U

T
Y

R
A

T
E

-2
.1

83
0.

9
0.

97
6.

94
-0

.6
19

39
-0

.3
43

84
0.

05
91

9
0.

65
88

59
42

-9
43

1.
32

49
V

IN
Y

L
A

C
E

T
A
T

E
-2

.0
52

0.
9

0.
97

6.
94

-0
.6

00
14

-0
.3

11
14

0.
02

96
6

0.
64

43
39

21
-8

32
9.

58
68

G
am

m
a-

B
ut

yr
ol

ac
to

ne
-2

.3
81

0.
9

0.
97

6.
94

-0
.5

82
46

-0
.3

42
61

0.
05

71
1

1.
77

08
62

98
-8

33
0.

24
69

G
am

m
a-

V
al

er
ol

ac
to

ne
-2

.4
38

0.
9

0.
97

6.
94

-0
.5

83
52

-0
.3

40
66

0.
05

79
7

1.
78

59
52

47
-9

39
8.

84
08

D
el

ta
-V

al
er

ol
ac

to
ne

-2
.5

02
0.

9
0.

97
6.

94
-0

.5
82

26
-0

.3
35

82
0.

04
67

5
1.

79
85

12
37

-9
39

8.
62

11
E

ps
ilo

n-
ca

pr
ol

ac
to

ne
-2

.5
36

0.
9

0.
97

6.
94

-0
.5

88
8

-0
.3

36
31

0.
05

70
7

1.
81

72
88

49
-1

04
67

.0
61

G
am

m
a-

H
ex

an
ol

ac
to

ne
-2

.4
54

0.
9

0.
97

6.
94

-0
.5

83
92

-0
.3

39
92

0.
05

82
1.

81
36

17
05

-1
04

67
.2

53
T

R
IM

E
T

H
Y

L
P

H
O

SP
H

A
T

E
-2

.7
9

0.
9

0.
97

6.
94

-1
.0

84
48

-0
.3

53
8

0.
09

28
5

0.
47

81
99

21
-2

07
19

.4
62

T
R

IE
T

H
Y

L
P

H
O

SP
H

A
T

E
-2

.9
14

0.
9

0.
97

6.
94

-1
.0

88
33

-0
.3

45
17

0.
08

30
8

0.
94

26
94

76
-2

39
24

.9
85

SU
LF

O
LA

N
E

-2
.4

81
0.

9
0.

97
6.

94
-0

.9
50

81
-0

.3
36

95
0.

06
79

9
2.

06
42

84
99

-1
91

92
.0

49

68



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
M

E
T

H
Y

L
M

E
T

H
A

N
E

SU
LF

O
N

A
T

E
-2

.0
8

0.
9

0.
97

6.
94

-0
.7

81
89

-0
.3

63
67

0.
09

12
7

1.
20

15
05

2
-1

91
32

.2
67

M
E

T
H

Y
L

B
E

N
ZE

N
E

SU
LF

O
N

A
T

E
-2

.2
32

0.
9

0.
97

6.
94

-0
.9

27
65

-0
.3

33
-0

.0
17

08
1.

34
60

03
37

-2
43

43
.8

13
1,

3-
P

ro
pa

ne
su

lt
on

e
-2

.2
75

0.
9

0.
97

6.
94

-0
.7

70
35

-0
.3

63
2

0.
06

72
7

2.
31

38
69

41
-2

01
68

.0
47

1,
4-

B
U

T
A

N
E

SU
LT

O
N

E
-2

.3
14

0.
9

0.
97

6.
94

-0
.7

82
02

-0
.3

67
68

0.
07

20
8

2.
14

75
30

13
-2

12
36

.8
6

D
im

et
hy

ls
ul

fo
xi

de
-2

.9
05

0.
9

0.
97

6.
94

-0
.9

71
86

-0
.2

83
91

0.
08

53
7

1.
61

57
07

45
-1

50
43

.4
85

SU
C

C
IN

IC
A

N
H

Y
D

R
ID

E
-1

.9
9

0.
9

0.
97

6.
94

-0
.5

43
6

-0
.3

64
92

0.
01

24
1

1.
71

81
35

93
-1

03
42

.7
27

C
Y

C
LO

H
E

X
A

N
O

N
E

-2
.2

59
0.

9
0.

97
6.

94
-0

.5
52

68
-0

.3
07

24
0.

02
92

6
1.

19
99

49
39

-8
42

2.
24

56
C

A
P

R
O

LA
C

T
O

N
E

-2
.5

36
0.

9
0.

97
6.

94
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61
P

ro
pi

ol
ac

to
ne

-2
.1

62
0.

9
0.

97
6.

94
-0

.5
67

03
-0

.3
55

49
0.

05
28

7
1.

63
15

15
62

-7
26

1.
06

7
C

Y
C

LO
P

E
N

T
A

N
O

N
E

-2
.2

3
0.

9
0.

97
6.

94
-0

.5
50

19
-0

.3
08

55
0.

02
66

6
1.

12
64

21
53

-7
35

3.
64

24
D

ik
et

en
e

-2
.0

23
0.

9
0.

97
6.

94
-0

.5
44

43
-0

.3
20

81
0.

03
87

5
1.

37
86

24
36

-8
29

6.
26

76
A

C
E

T
O

P
H

E
N

O
N

E
-2

.2
72

0.
9

0.
97

6.
94

-0
.5

56
41

-0
.3

15
93

-0
.0

22
63

1.
13

40
55

8
-1

04
61

.1
5

G
ua

ia
co

l
-2

.8
82

0.
9

0.
97

6.
94

-0
.5

75
9

-0
.2

64
69

0.
03

18
8

0.
81

85
35

-1
14

69
.4

46
B

en
za

ld
eh

yd
e

-2
.1

77
0.

9
0.

97
6.

94
-0

.5
35

8
-0

.3
21

33
-0

.0
30

58
1.

20
20

46
62

-9
39

2.
48

09
2-

M
E

T
H

Y
LC

Y
C

LO
H

E
X

A
N

O
N

E
-2

.2
93

0.
9

0.
97

6.
94

-0
.5

54
11

-0
.3

03
68

0.
03

10
8

1.
16

98
02

32
-9

49
0.

65
59

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-2
.0

8
0.

9
0.

97
6.

94
-0

.7
81

88
-0

.3
63

66
0.

09
12

8
1.

20
12

74
47

-1
91

32
.2

67
D

IE
T

H
Y

LS
U

LF
A

T
E

-2
.3

35
0.

9
0.

97
6.

94
-0

.9
26

86
-0

.3
66

95
0.

08
88

8
0.

54
22

02
9

-2
33

13
.5

49
2,

3-
bu

ta
ne

di
on

e
-1

.7
68

0.
9

0.
97

6.
94

-0
.5

26
28

-0
.3

13
41

-0
.0

42
12

0.
05

68
19

95
-8

32
9.

61
47

A
C

E
T

O
P

H
E

N
O

N
E

-2
.2

72
0.

9
0.

97
6.

94
-0

.5
56

44
-0

.3
15

92
-0

.0
22

64
1.

13
39

06
82

-1
04

61
.1

5
B

E
N

ZY
L

B
E

N
ZO

A
T

E
-2

.7
58

0.
9

0.
97

6.
94

-0
.6

22
51

-0
.3

09
1

-0
.0

13
78

0.
75

66
19

17
-1

87
86

.2
28

D
IP

H
E

N
Y

L
E

T
H

E
R

-1
.6

25
0.

9
0.

97
6.

94
-0

.5
51

98
-0

.2
72

53
0.

01
59

5
0.

32
08

20
62

-1
46

36
.6

95
P

E
N

T
A

N
A

L
-1

.9
92

0.
9

0.
97

6.
94

-0
.5

41
01

-0
.3

25
31

0.
02

94
4

0.
99

13
67

67
-7

38
5.

94
81

2-
M

et
ho

xy
et

hy
la

ce
ta

te
-2

.1
59

0.
9

0.
97

6.
94

-0
.6

09
59

-0
.3

30
82

0.
05

69
6

0.
79

69
47

46
-1

14
75

.4
A

ce
to

ne
-2

.1
9

0.
9

0.
97

6.
94

-0
.5

57
17

-0
.3

18
08

0.
03

47
3

1.
09

04
19

01
-5

24
9.

36
38

D
IE

T
H

Y
L

E
T

H
E

R
-2

.0
31

0.
9

0.
97

6.
94

-0
.6

25
64

-0
.3

21
33

0.
09

97
6

0.
43

41
94

98
-6

35
0.

06
84

M
E

T
H

Y
L

M
E

T
H

A
C

R
Y

LA
T

E
-2

.2
08

0.
9

0.
97

6.
94

-0
.6

15
4

-0
.3

27
58

-0
.0

01
19

0.
64

35
37

94
-9

39
8.

06
24

C
hl

or
oa

ce
to

ne
-1

.9
38

0.
9

0.
97

6.
94

-0
.5

31
5

-0
.3

30
56

0.
00

61
6

0.
87

22
96

65
-1

77
51

.4
31

N
-B

U
T

Y
L

A
C

E
T
A
T

E
-2

.2
19

0.
9

0.
97

6.
94

-0
.6

27
31

-0
.3

46
37

0.
06

01
4

0.
62

31
89

74
-1

04
99

.7
54

2-
H

E
P

T
A

N
O

N
E

-2
.1

88
0.

9
0.

97
6.

94
-0

.5
65

42
-0

.3
15

64
0.

03
54

7
0.

99
53

35
91

-9
52

3.
03

42
4-

H
ep

ta
no

ne
-2

.1
76

0.
9

0.
97

6.
94

-0
.5

61
46

-0
.3

10
39

0.
03

51
2

1.
06

72
93

09
-9

52
3.

00
54

6-
M

E
T

H
Y

L-
5-

H
E

P
T

E
N

-2
-O

N
E

-2
.1

14
0.

9
0.

97
6.

94
-0

.5
65

84
-0

.2
82

15
0.

03
52

1.
05

65
83

36
-1

05
58

.1
61

3-
P

E
N

T
A

N
O

N
E

-2
.1

43
0.

9
0.

97
6.

94
-0

.5
66

38
-0

.3
16

73
0.

03
70

8
1.

01
19

16
68

-7
38

6.
30

28
IS

O
P

R
O

P
Y

L
A

C
E

T
A

T
E

-2
.2

25
0.

9
0.

97
6.

94
-0

.6
26

58
-0

.3
44

44
0.

06
12

1
0.

68
82

61
34

-9
43

1.
50

03

69



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
M

E
T

H
Y

L
V

IN
Y

L
K

E
T

O
N

E
-2

.1
9

0.
9

0.
97

6.
94

-0
.5

56
68

-0
.3

24
24

-0
.0

16
87

1.
03

49
36

57
-6

28
4.

46
18

M
E

T
H

Y
L

A
C

R
Y

LA
T

E
-2

.1
95

0.
9

0.
97

6.
94

-0
.6

20
28

-0
.3

46
45

-0
.0

07
86

0.
57

30
52

82
-8

32
9.

48
75

E
T

H
Y

L
A

C
R
Y

LA
T

E
-2

.2
73

0.
9

0.
97

6.
94

-0
.6

21
25

-0
.3

45
79

-0
.0

08
04

0.
64

67
79

09
-9

39
7.

95
83

B
ut

yl
bu

ty
ra

te
-2

.2
14

0.
9

0.
97

6.
94

-0
.6

19
4

-0
.3

40
8

0.
05

81
6

0.
68

95
58

21
-1

26
36

.6
06

B
ut

yl
et

hy
lk

et
on

e
-2

.1
97

0.
9

0.
97

6.
94

-0
.5

66
93

-0
.3

16
06

0.
03

66
2

0.
98

80
54

46
-9

52
3.

10
54

IS
O

A
M

Y
L

A
C

E
T
A

T
E

-2
.2

3
0.

9
0.

97
6.

94
-0

.6
27

14
-0

.3
46

0.
06

05
6

0.
61

11
73

22
-1

15
68

.1
88

P
R

O
P

Y
LE

N
E

C
A

R
B

O
N

A
T

E
-1

.7
89

1.
16

1.
01

22
.9

-0
.5

93
44

-0
.3

71
9

0.
07

80
8

2.
16

71
84

04
-1

03
75

.1
04

E
th

yl
en

e
ca

rb
on

at
e

-1
.7

47
1.

16
1.

01
22

.9
-0

.5
91

31
-0

.3
75

23
0.

07
99

9
2.

09
16

74
4

-9
30

6.
48

6
V

IN
Y

LE
N

E
C

A
R

B
O

N
A

T
E

-1
.6

1
1.

16
1.

01
22

.9
-0

.5
90

85
-0

.3
15

78
0.

03
55

9
1.

83
68

22
74

-9
27

3.
29

15
F
lu

or
oe

th
yl

en
e

ca
rb

on
at

e
-1

.5
69

1.
16

1.
01

22
.9

-0
.5

73
86

-0
.3

92
23

0.
06

58
1

1.
91

02
27

47
-1

20
04

.2
6

D
im

et
hy

lc
ar

bo
na

te
-1

.4
54

1.
16

1.
01

22
.9

-0
.6

72
04

-0
.3

68
73

0.
09

09
8

0.
07

93
72

43
-9

33
9.

14
29

D
IE

T
H

Y
L

C
A

R
B

O
N

A
T

E
-1

.4
92

1.
16

1.
01

22
.9

-0
.6

78
7

-0
.3

66
79

0.
09

27
9

0.
15

44
64

12
-1

14
76

.1
57

E
th

yl
m

et
hy

lc
ar

bo
na

te
-1

.4
88

1.
16

1.
01

22
.9

-0
.6

75
69

-0
.3

67
82

0.
08

96
0.

29
94

16
79

-1
04

07
.6

44
F
U

R
A

N
-0

.8
84

1.
16

1.
01

22
.9

-0
.4

86
25

-0
.2

85
32

0.
05

39
6

0.
21

87
24

3
-6

25
1.

95
79

2,
5-

D
IM

E
T

H
Y

LF
U

R
A

N
-1

.0
59

1.
16

1.
01

22
.9

-0
.5

09
04

-0
.2

59
0.

06
16

2
0.

01
79

92
1

-8
38

9.
19

73
T

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-1

.4
54

1.
16

1.
01

22
.9

-0
.6

24
28

-0
.3

11
68

0.
09

16
1

0.
70

86
86

51
-6

31
7.

42
53

2-
M

E
T

H
Y

LT
E

T
R

A
H

Y
D

R
O

F
U

R
A

N
-1

.4
92

1.
16

1.
01

22
.9

-0
.6

34
58

-0
.3

10
27

0.
09

20
9

0.
65

45
36

19
-7

38
6.

00
98

T
E

T
R

A
H

Y
D

R
O

P
Y

R
A

N
-1

.4
11

1.
16

1.
01

22
.9

-0
.6

20
07

-0
.3

14
3

0.
09

44
6

0.
56

26
77

76
-7

38
6.

09
63

1,
3-

D
IO

X
O

LA
N

E
-1

.2
73

1.
16

1.
01

22
.9

-0
.6

28
64

-0
.3

24
01

0.
10

22
9

0.
46

74
22

58
-7

29
3.

33
09

1,
4-

D
IO

X
A

N
E

-1
.2

5
1.

16
1.

01
22

.9
-0

.6
16

76
-0

.3
04

15
0.

10
73

1.
04

E
-0

5
-8

36
1.

78
9

E
th

ox
ym

et
ho

xy
m

et
ha

ne
-1

.2
83

1.
16

1.
01

22
.9

-0
.6

37
98

-0
.3

40
33

0.
09

86
6

0.
14

96
97

69
-8

39
4.

44
9

E
T

H
Y

L
A

C
E

T
A
T

E
-1

.5
74

1.
16

1.
01

22
.9

-0
.6

27
31

-0
.3

46
85

0.
05

99
7

0.
64

68
46

99
-8

36
2.

95
17

IS
O

P
R

O
P

Y
L

A
C

E
T
A

T
E

-1
.5

85
1.

16
1.

01
22

.9
-0

.6
26

61
-0

.3
44

44
0.

06
12

0.
68

80
02

47
-9

43
1.

50
03

M
E

T
H

Y
L

P
R

O
P

IO
N

A
T

E
-1

.5
24

1.
16

1.
01

22
.9

-0
.6

21
46

-0
.3

48
69

0.
06

33
2

0.
63

67
78

06
-8

36
2.

88
59

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-1
.5

71
1.

16
1.

01
22

.9
-0

.6
22

61
-0

.3
47

26
0.

06
06

9
0.

68
79

86
82

-9
43

1.
35

41
M

E
T

H
Y

L
FO

R
M

A
T

E
-1

.4
44

1.
16

1.
01

22
.9

-0
.6

05
82

-0
.3

62
95

0.
05

50
5

0.
68

75
05

44
-6

22
5.

71
98

E
T

H
Y

L
B

U
T

Y
R

A
T

E
-1

.5
42

1.
16

1.
01

22
.9

-0
.6

31
93

-0
.3

43
11

0.
05

74
1

0.
62

91
20

16
-1

04
99

.7
97

M
E

T
H

Y
L

IS
O

B
U

T
Y

R
A

T
E

-1
.5

64
1.

16
1.

01
22

.9
-0

.6
19

39
-0

.3
43

84
0.

05
91

9
0.

65
88

59
42

-9
43

1.
32

49
V

IN
Y

L
A

C
E

T
A
T

E
-1

.4
54

1.
16

1.
01

22
.9

-0
.6

00
14

-0
.3

11
14

0.
02

96
6

0.
64

43
39

21
-8

32
9.

58
68

G
am

m
a-

B
ut

yr
ol

ac
to

ne
-1

.7
77

1.
16

1.
01

22
.9

-0
.5

82
46

-0
.3

42
61

0.
05

71
1

1.
77

08
62

98
-8

33
0.

24
69

G
am

m
a-

V
al

er
ol

ac
to

ne
-1

.8
2

1.
16

1.
01

22
.9

-0
.5

83
52

-0
.3

40
66

0.
05

79
7

1.
78

59
52

47
-9

39
8.

84
08

D
el

ta
-V

al
er

ol
ac

to
ne

-1
.8

63
1.

16
1.

01
22

.9
-0

.5
82

26
-0

.3
35

82
0.

04
67

5
1.

79
85

12
37

-9
39

8.
62

11
E

ps
ilo

n-
ca

pr
ol

ac
to

ne
-1

.9
1.

16
1.

01
22

.9
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61

70



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
G

am
m

a-
H

ex
an

ol
ac

to
ne

-1
.8

33
1.

16
1.

01
22

.9
-0

.5
83

92
-0

.3
39

92
0.

05
82

1.
81

36
17

05
-1

04
67

.2
53

T
R

IM
E

T
H

Y
L

P
H

O
SP

H
A

T
E

-2
.0

81
1.

16
1.

01
22

.9
-1

.0
84

48
-0

.3
53

8
0.

09
28

5
0.

47
81

99
21

-2
07

19
.4

62
T

R
IE

T
H

Y
L

P
H

O
SP

H
A

T
E

-2
.1

77
1.

16
1.

01
22

.9
-1

.0
88

33
-0

.3
45

17
0.

08
30

8
0.

94
26

94
76

-2
39

24
.9

85
SU

LF
O

LA
N

E
-1

.8
79

1.
16

1.
01

22
.9

-0
.9

50
81

-0
.3

36
95

0.
06

79
9

2.
06

42
84

99
-1

91
92

.0
49

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.5

27
1.

16
1.

01
22

.9
-0

.7
81

89
-0

.3
63

67
0.

09
12

7
1.

20
15

05
2

-1
91

32
.2

67
M

E
T

H
Y

L
B

E
N

ZE
N

E
SU

LF
O

N
A

T
E

-1
.6

8
1.

16
1.

01
22

.9
-0

.9
27

65
-0

.3
33

-0
.0

17
08

1.
34

60
03

37
-2

43
43

.8
13

1,
3-

P
ro

pa
ne

su
lt

on
e

-1
.7

21
1.

16
1.

01
22

.9
-0

.7
70

35
-0

.3
63

2
0.

06
72

7
2.

31
38

69
41

-2
01

68
.0

47
1,

4-
B

U
T
A

N
E

SU
LT

O
N

E
-1

.7
52

1.
16

1.
01

22
.9

-0
.7

82
02

-0
.3

67
68

0.
07

20
8

2.
14

75
30

13
-2

12
36

.8
6

D
im

et
hy

ls
ul

fo
xi

de
-2

.1
83

1.
16

1.
01

22
.9

-0
.9

71
86

-0
.2

83
91

0.
08

53
7

1.
61

57
07

45
-1

50
43

.4
85

SU
C

C
IN

IC
A

N
H

Y
D

R
ID

E
-1

.4
5

1.
16

1.
01

22
.9

-0
.5

43
6

-0
.3

64
92

0.
01

24
1

1.
71

81
35

93
-1

03
42

.7
27

C
Y

C
LO

H
E

X
A

N
O

N
E

-1
.6

54
1.

16
1.

01
22

.9
-0

.5
52

68
-0

.3
07

24
0.

02
92

6
1.

19
99

49
39

-8
42

2.
24

56
C

A
P

R
O

LA
C

T
O

N
E

-1
.9

1.
16

1.
01

22
.9

-0
.5

88
8

-0
.3

36
31

0.
05

70
7

1.
81

72
88

49
-1

04
67

.0
61

P
ro

pi
ol

ac
to

ne
-1

.5
92

1.
16

1.
01

22
.9

-0
.5

67
03

-0
.3

55
49

0.
05

28
7

1.
63

15
15

62
-7

26
1.

06
7

C
Y

C
LO

P
E

N
T
A

N
O

N
E

-1
.6

32
1.

16
1.

01
22

.9
-0

.5
50

19
-0

.3
08

55
0.

02
66

6
1.

12
64

21
53

-7
35

3.
64

24
D

ik
et

en
e

-1
.4

81
1.

16
1.

01
22

.9
-0

.5
44

43
-0

.3
20

81
0.

03
87

5
1.

37
86

24
36

-8
29

6.
26

76
A

C
E

T
O

P
H

E
N

O
N

E
-1

.6
35

1.
16

1.
01

22
.9

-0
.5

56
41

-0
.3

15
93

-0
.0

22
63

1.
13

40
55

8
-1

04
61

.1
5

G
ua

ia
co

l
-2

.0
77

1.
16

1.
01

22
.9

-0
.5

75
9

-0
.2

64
69

0.
03

18
8

0.
81

85
35

-1
14

69
.4

46
B

en
za

ld
eh

yd
e

-1
.5

7
1.

16
1.

01
22

.9
-0

.5
35

8
-0

.3
21

33
-0

.0
30

58
1.

20
20

46
62

-9
39

2.
48

09
2-

M
E

T
H

Y
LC

Y
C

LO
H

E
X

A
N

O
N

E
-1

.6
79

1.
16

1.
01

22
.9

-0
.5

54
11

-0
.3

03
68

0.
03

10
8

1.
16

98
02

32
-9

49
0.

65
59

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.5

27
1.

16
1.

01
22

.9
-0

.7
81

88
-0

.3
63

66
0.

09
12

8
1.

20
12

74
47

-1
91

32
.2

67
D

IE
T

H
Y

LS
U

LF
A

T
E

-1
.7

6
1.

16
1.

01
22

.9
-0

.9
26

86
-0

.3
66

95
0.

08
88

8
0.

54
22

02
9

-2
33

13
.5

49
2,

3-
bu

ta
ne

di
on

e
-1

.2
35

1.
16

1.
01

22
.9

-0
.5

26
28

-0
.3

13
41

-0
.0

42
12

0.
05

68
19

95
-8

32
9.

61
47

A
C

E
T

O
P

H
E

N
O

N
E

-1
.6

35
1.

16
1.

01
22

.9
-0

.5
56

44
-0

.3
15

92
-0

.0
22

64
1.

13
39

06
82

-1
04

61
.1

5
B

E
N

ZY
L

B
E

N
ZO

A
T

E
-2

.1
39

1.
16

1.
01

22
.9

-0
.6

22
51

-0
.3

09
1

-0
.0

13
78

0.
75

66
19

17
-1

87
86

.2
28

D
IP

H
E

N
Y

L
E

T
H

E
R

-1
.1

2
1.

16
1.

01
22

.9
-0

.5
51

98
-0

.2
72

53
0.

01
59

5
0.

32
08

20
62

-1
46

36
.6

95
P

E
N

T
A

N
A

L
-1

.4
38

1.
16

1.
01

22
.9

-0
.5

41
01

-0
.3

25
31

0.
02

94
4

0.
99

13
67

67
-7

38
5.

94
81

2-
M

et
ho

xy
et

hy
la

ce
ta

te
-1

.5
4

1.
16

1.
01

22
.9

-0
.6

09
59

-0
.3

30
82

0.
05

69
6

0.
79

69
47

46
-1

14
75

.4
A

ce
to

ne
-1

.6
1.

16
1.

01
22

.9
-0

.5
57

17
-0

.3
18

08
0.

03
47

3
1.

09
04

19
01

-5
24

9.
36

38
D

IE
T

H
Y

L
E

T
H

E
R

-1
.4

73
1.

16
1.

01
22

.9
-0

.6
25

64
-0

.3
21

33
0.

09
97

6
0.

43
41

94
98

-6
35

0.
06

84
M

E
T

H
Y

L
M

E
T

H
A

C
R
Y

LA
T

E
-1

.5
83

1.
16

1.
01

22
.9

-0
.6

15
4

-0
.3

27
58

-0
.0

01
19

0.
64

35
37

94
-9

39
8.

06
24

C
hl

or
oa

ce
to

ne
-1

.3
99

1.
16

1.
01

22
.9

-0
.5

31
5

-0
.3

30
56

0.
00

61
6

0.
87

22
96

65
-1

77
51

.4
31

N
-B

U
T

Y
L

A
C

E
T
A
T

E
-1

.5
89

1.
16

1.
01

22
.9

-0
.6

27
31

-0
.3

46
37

0.
06

01
4

0.
62

31
89

74
-1

04
99

.7
54

2-
H

E
P

T
A

N
O

N
E

-1
.5

8
1.

16
1.

01
22

.9
-0

.5
65

42
-0

.3
15

64
0.

03
54

7
0.

99
53

35
91

-9
52

3.
03

42

71



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
4-

H
ep

ta
no

ne
-1

.5
53

1.
16

1.
01

22
.9

-0
.5

61
46

-0
.3

10
39

0.
03

51
2

1.
06

72
93

09
-9

52
3.

00
54

6-
M

E
T

H
Y

L-
5-

H
E

P
T

E
N

-2
-O

N
E

-1
.5

04
1.

16
1.

01
22

.9
-0

.5
65

84
-0

.2
82

15
0.

03
52

1.
05

65
83

36
-1

05
58

.1
61

3-
P

E
N

T
A

N
O

N
E

-1
.5

41
1.

16
1.

01
22

.9
-0

.5
66

38
-0

.3
16

73
0.

03
70

8
1.

01
19

16
68

-7
38

6.
30

28
IS

O
P

R
O

P
Y

L
A

C
E

T
A

T
E

-1
.5

87
1.

16
1.

01
22

.9
-0

.6
26

58
-0

.3
44

44
0.

06
12

1
0.

68
82

61
34

-9
43

1.
50

03
M

E
T

H
Y

L
V

IN
Y

L
K

E
T

O
N

E
-1

.5
8

1.
16

1.
01

22
.9

-0
.5

56
68

-0
.3

24
24

-0
.0

16
87

1.
03

49
36

57
-6

28
4.

46
18

M
E

T
H

Y
L

A
C

R
Y

LA
T

E
-1

.5
7

1.
16

1.
01

22
.9

-0
.6

20
28

-0
.3

46
45

-0
.0

07
86

0.
57

30
52

82
-8

32
9.

48
75

E
T

H
Y

L
A

C
R
Y

LA
T

E
-1

.6
32

1.
16

1.
01

22
.9

-0
.6

21
25

-0
.3

45
79

-0
.0

08
04

0.
64

67
79

09
-9

39
7.

95
83

B
ut

yl
bu

ty
ra

te
-1

.5
78

1.
16

1.
01

22
.9

-0
.6

19
4

-0
.3

40
8

0.
05

81
6

0.
68

95
58

21
-1

26
36

.6
06

B
ut

yl
et

hy
lk

et
on

e
-1

.5
82

1.
16

1.
01

22
.9

-0
.5

66
93

-0
.3

16
06

0.
03

66
2

0.
98

80
54

46
-9

52
3.

10
54

IS
O

A
M

Y
L

A
C

E
T
A

T
E

-1
.6

01
1.

16
1.

01
22

.9
-0

.6
27

14
-0

.3
46

0.
06

05
6

0.
61

11
73

22
-1

15
68

.1
88

P
R

O
P

Y
LE

N
E

C
A

R
B

O
N

A
T

E
-1

.3
97

1.
52

0.
91

39
.1

-0
.5

93
44

-0
.3

71
9

0.
07

80
8

2.
16

71
84

04
-1

03
75

.1
04

E
th

yl
en

e
ca

rb
on

at
e

-1
.3

65
1.

52
0.

91
39

.1
-0

.5
91

31
-0

.3
75

23
0.

07
99

9
2.

09
16

74
4

-9
30

6.
48

6
V

IN
Y

LE
N

E
C

A
R

B
O

N
A

T
E

-1
.2

46
1.

52
0.

91
39

.1
-0

.5
90

85
-0

.3
15

78
0.

03
55

9
1.

83
68

22
74

-9
27

3.
29

15
F
lu

or
oe

th
yl

en
e

ca
rb

on
at

e
-1

.2
1

1.
52

0.
91

39
.1

-0
.5

73
86

-0
.3

92
23

0.
06

58
1

1.
91

02
27

47
-1

20
04

.2
6

D
im

et
hy

lc
ar

bo
na

te
-1

.0
78

1.
52

0.
91

39
.1

-0
.6

72
04

-0
.3

68
73

0.
09

09
8

0.
07

93
72

43
-9

33
9.

14
29

D
IE

T
H

Y
L

C
A

R
B

O
N

A
T

E
-1

.1
06

1.
52

0.
91

39
.1

-0
.6

78
7

-0
.3

66
79

0.
09

27
9

0.
15

44
64

12
-1

14
76

.1
57

E
th

yl
m

et
hy

lc
ar

bo
na

te
-1

.1
08

1.
52

0.
91

39
.1

-0
.6

75
69

-0
.3

67
82

0.
08

96
0.

29
94

16
79

-1
04

07
.6

44
F
U

R
A

N
-0

.6
05

1.
52

0.
91

39
.1

-0
.4

86
25

-0
.2

85
32

0.
05

39
6

0.
21

87
24

3
-6

25
1.

95
79

2,
5-

D
IM

E
T

H
Y

LF
U

R
A

N
-0

.7
41

1.
52

0.
91

39
.1

-0
.5

09
04

-0
.2

59
0.

06
16

2
0.

01
79

92
1

-8
38

9.
19

73
T

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-1

.0
65

1.
52

0.
91

39
.1

-0
.6

24
28

-0
.3

11
68

0.
09

16
1

0.
70

86
86

51
-6

31
7.

42
53

2-
M

E
T

H
Y

LT
E

T
R

A
H

Y
D

R
O

F
U

R
A

N
-1

.0
95

1.
52

0.
91

39
.1

-0
.6

34
58

-0
.3

10
27

0.
09

20
9

0.
65

45
36

19
-7

38
6.

00
98

T
E

T
R

A
H

Y
D

R
O

P
Y

R
A

N
-1

.0
28

1.
52

0.
91

39
.1

-0
.6

20
07

-0
.3

14
3

0.
09

44
6

0.
56

26
77

76
-7

38
6.

09
63

1,
3-

D
IO

X
O

LA
N

E
-0

.9
11

1.
52

0.
91

39
.1

-0
.6

28
64

-0
.3

24
01

0.
10

22
9

0.
46

74
22

58
-7

29
3.

33
09

1,
4-

D
IO

X
A

N
E

-0
.8

88
1.

52
0.

91
39

.1
-0

.6
16

76
-0

.3
04

15
0.

10
73

1.
04

E
-0

5
-8

36
1.

78
9

E
th

ox
ym

et
ho

xy
m

et
ha

ne
-0

.8
81

1.
52

0.
91

39
.1

-0
.6

37
98

-0
.3

40
33

0.
09

86
6

0.
14

96
97

69
-8

39
4.

44
9

E
T

H
Y

L
A

C
E

T
A
T

E
-1

.1
85

1.
52

0.
91

39
.1

-0
.6

27
31

-0
.3

46
85

0.
05

99
7

0.
64

68
46

99
-8

36
2.

95
17

IS
O

P
R

O
P

Y
L

A
C

E
T
A

T
E

-1
.1

87
1.

52
0.

91
39

.1
-0

.6
26

61
-0

.3
44

44
0.

06
12

0.
68

80
02

47
-9

43
1.

50
03

M
E

T
H

Y
L

P
R

O
P

IO
N

A
T

E
-1

.1
33

1.
52

0.
91

39
.1

-0
.6

21
46

-0
.3

48
69

0.
06

33
2

0.
63

67
78

06
-8

36
2.

88
59

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-1
.1

72
1.

52
0.

91
39

.1
-0

.6
22

61
-0

.3
47

26
0.

06
06

9
0.

68
79

86
82

-9
43

1.
35

41
M

E
T

H
Y

L
FO

R
M

A
T

E
-1

.0
82

1.
52

0.
91

39
.1

-0
.6

05
82

-0
.3

62
95

0.
05

50
5

0.
68

75
05

44
-6

22
5.

71
98

E
T

H
Y

L
B

U
T

Y
R

A
T

E
-1

.1
42

1.
52

0.
91

39
.1

-0
.6

31
93

-0
.3

43
11

0.
05

74
1

0.
62

91
20

16
-1

04
99

.7
97

M
E

T
H

Y
L

IS
O

B
U

T
Y

R
A

T
E

-1
.1

65
1.

52
0.

91
39

.1
-0

.6
19

39
-0

.3
43

84
0.

05
91

9
0.

65
88

59
42

-9
43

1.
32

49
V

IN
Y

L
A

C
E

T
A
T

E
-1

.0
76

1.
52

0.
91

39
.1

-0
.6

00
14

-0
.3

11
14

0.
02

96
6

0.
64

43
39

21
-8

32
9.

58
68

72



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
G

am
m

a-
B

ut
yr

ol
ac

to
ne

-1
.3

77
1.

52
0.

91
39

.1
-0

.5
82

46
-0

.3
42

61
0.

05
71

1
1.

77
08

62
98

-8
33

0.
24

69
G

am
m

a-
V

al
er

ol
ac

to
ne

-1
.4

12
1.

52
0.

91
39

.1
-0

.5
83

52
-0

.3
40

66
0.

05
79

7
1.

78
59

52
47

-9
39

8.
84

08
D

el
ta

-V
al

er
ol

ac
to

ne
-1

.4
56

1.
52

0.
91

39
.1

-0
.5

82
26

-0
.3

35
82

0.
04

67
5

1.
79

85
12

37
-9

39
8.

62
11

E
ps

ilo
n-

ca
pr

ol
ac

to
ne

-1
.4

78
1.

52
0.

91
39

.1
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61
G

am
m

a-
H

ex
an

ol
ac

to
ne

-1
.4

26
1.

52
0.

91
39

.1
-0

.5
83

92
-0

.3
39

92
0.

05
82

1.
81

36
17

05
-1

04
67

.2
53

T
R

IM
E

T
H

Y
L

P
H

O
SP

H
A

T
E

-1
.6

11
1.

52
0.

91
39

.1
-1

.0
84

48
-0

.3
53

8
0.

09
28

5
0.

47
81

99
21

-2
07

19
.4

62
T

R
IE

T
H

Y
L

P
H

O
SP

H
A

T
E

-1
.7

1
1.

52
0.

91
39

.1
-1

.0
88

33
-0

.3
45

17
0.

08
30

8
0.

94
26

94
76

-2
39

24
.9

85
SU

LF
O

LA
N

E
-1

.4
5

1.
52

0.
91

39
.1

-0
.9

50
81

-0
.3

36
95

0.
06

79
9

2.
06

42
84

99
-1

91
92

.0
49

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.1

41
1.

52
0.

91
39

.1
-0

.7
81

89
-0

.3
63

67
0.

09
12

7
1.

20
15

05
2

-1
91

32
.2

67
M

E
T

H
Y

L
B

E
N

ZE
N

E
SU

LF
O

N
A

T
E

-1
.2

63
1.

52
0.

91
39

.1
-0

.9
27

65
-0

.3
33

-0
.0

17
08

1.
34

60
03

37
-2

43
43

.8
13

1,
3-

P
ro

pa
ne

su
lt

on
e

-1
.3

27
1.

52
0.

91
39

.1
-0

.7
70

35
-0

.3
63

2
0.

06
72

7
2.

31
38

69
41

-2
01

68
.0

47
1,

4-
B

U
T
A

N
E

SU
LT

O
N

E
-1

.3
56

1.
52

0.
91

39
.1

-0
.7

82
02

-0
.3

67
68

0.
07

20
8

2.
14

75
30

13
-2

12
36

.8
6

D
im

et
hy

ls
ul

fo
xi

de
-1

.7
25

1.
52

0.
91

39
.1

-0
.9

71
86

-0
.2

83
91

0.
08

53
7

1.
61

57
07

45
-1

50
43

.4
85

SU
C

C
IN

IC
A

N
H

Y
D

R
ID

E
-1

.0
95

1.
52

0.
91

39
.1

-0
.5

43
6

-0
.3

64
92

0.
01

24
1

1.
71

81
35

93
-1

03
42

.7
27

C
Y

C
LO

H
E

X
A

N
O

N
E

-1
.2

65
1.

52
0.

91
39

.1
-0

.5
52

68
-0

.3
07

24
0.

02
92

6
1.

19
99

49
39

-8
42

2.
24

56
C

A
P

R
O

LA
C

T
O

N
E

-1
.4

78
1.

52
0.

91
39

.1
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61
P

ro
pi

ol
ac

to
ne

-1
.2

28
1.

52
0.

91
39

.1
-0

.5
67

03
-0

.3
55

49
0.

05
28

7
1.

63
15

15
62

-7
26

1.
06

7
C

Y
C

LO
P

E
N

T
A

N
O

N
E

-1
.2

47
1.

52
0.

91
39

.1
-0

.5
50

19
-0

.3
08

55
0.

02
66

6
1.

12
64

21
53

-7
35

3.
64

24
D

ik
et

en
e

-1
.1

26
1.

52
0.

91
39

.1
-0

.5
44

43
-0

.3
20

81
0.

03
87

5
1.

37
86

24
36

-8
29

6.
26

76
A

C
E

T
O

P
H

E
N

O
N

E
-1

.2
35

1.
52

0.
91

39
.1

-0
.5

56
41

-0
.3

15
93

-0
.0

22
63

1.
13

40
55

8
-1

04
61

.1
5

G
ua

ia
co

l
-1

.5
35

1.
52

0.
91

39
.1

-0
.5

75
9

-0
.2

64
69

0.
03

18
8

0.
81

85
35

-1
14

69
.4

46
B

en
za

ld
eh

yd
e

-1
.1

88
1.

52
0.

91
39

.1
-0

.5
35

8
-0

.3
21

33
-0

.0
30

58
1.

20
20

46
62

-9
39

2.
48

09
2-

M
E

T
H

Y
LC

Y
C

LO
H

E
X

A
N

O
N

E
-1

.2
86

1.
52

0.
91

39
.1

-0
.5

54
11

-0
.3

03
68

0.
03

10
8

1.
16

98
02

32
-9

49
0.

65
59

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.1

41
1.

52
0.

91
39

.1
-0

.7
81

88
-0

.3
63

66
0.

09
12

8
1.

20
12

74
47

-1
91

32
.2

67
D

IE
T

H
Y

LS
U

LF
A

T
E

-1
.3

84
1.

52
0.

91
39

.1
-0

.9
26

86
-0

.3
66

95
0.

08
88

8
0.

54
22

02
9

-2
33

13
.5

49
2,

3-
bu

ta
ne

di
on

e
-0

.8
99

1.
52

0.
91

39
.1

-0
.5

26
28

-0
.3

13
41

-0
.0

42
12

0.
05

68
19

95
-8

32
9.

61
47

A
C

E
T

O
P

H
E

N
O

N
E

-1
.2

35
1.

52
0.

91
39

.1
-0

.5
56

44
-0

.3
15

92
-0

.0
22

64
1.

13
39

06
82

-1
04

61
.1

5
B

E
N

ZY
L

B
E

N
ZO

A
T

E
-1

.6
82

1.
52

0.
91

39
.1

-0
.6

22
51

-0
.3

09
1

-0
.0

13
78

0.
75

66
19

17
-1

87
86

.2
28

D
IP

H
E

N
Y

L
E

T
H

E
R

-0
.7

58
1.

52
0.

91
39

.1
-0

.5
51

98
-0

.2
72

53
0.

01
59

5
0.

32
08

20
62

-1
46

36
.6

95
P

E
N

T
A

N
A

L
-1

.0
79

1.
52

0.
91

39
.1

-0
.5

41
01

-0
.3

25
31

0.
02

94
4

0.
99

13
67

67
-7

38
5.

94
81

2-
M

et
ho

xy
et

hy
la

ce
ta

te
-1

.1
39

1.
52

0.
91

39
.1

-0
.6

09
59

-0
.3

30
82

0.
05

69
6

0.
79

69
47

46
-1

14
75

.4
A

ce
to

ne
-1

.2
19

1.
52

0.
91

39
.1

-0
.5

57
17

-0
.3

18
08

0.
03

47
3

1.
09

04
19

01
-5

24
9.

36
38

D
IE

T
H

Y
L

E
T

H
E

R
-1

.0
56

1.
52

0.
91

39
.1

-0
.6

25
64

-0
.3

21
33

0.
09

97
6

0.
43

41
94

98
-6

35
0.

06
84

73



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
M

E
T

H
Y

L
M

E
T

H
A

C
R
Y

LA
T

E
-1

.1
86

1.
52

0.
91

39
.1

-0
.6

15
4

-0
.3

27
58

-0
.0

01
19

0.
64

35
37

94
-9

39
8.

06
24

C
hl

or
oa

ce
to

ne
-1

.0
47

1.
52

0.
91

39
.1

-0
.5

31
5

-0
.3

30
56

0.
00

61
6

0.
87

22
96

65
-1

77
51

.4
31

N
-B

U
T

Y
L

A
C

E
T
A
T

E
-1

.2
02

1.
52

0.
91

39
.1

-0
.6

27
31

-0
.3

46
37

0.
06

01
4

0.
62

31
89

74
-1

04
99

.7
54

2-
H

E
P

T
A

N
O

N
E

-1
.1

87
1.

52
0.

91
39

.1
-0

.5
65

42
-0

.3
15

64
0.

03
54

7
0.

99
53

35
91

-9
52

3.
03

42
4-

H
ep

ta
no

ne
-1

.1
59

1.
52

0.
91

39
.1

-0
.5

61
46

-0
.3

10
39

0.
03

51
2

1.
06

72
93

09
-9

52
3.

00
54

6-
M

E
T

H
Y

L-
5-

H
E

P
T

E
N

-2
-O

N
E

-1
.1

11
1.

52
0.

91
39

.1
-0

.5
65

84
-0

.2
82

15
0.

03
52

1.
05

65
83

36
-1

05
58

.1
61

3-
P

E
N

T
A

N
O

N
E

-1
.1

52
1.

52
0.

91
39

.1
-0

.5
66

38
-0

.3
16

73
0.

03
70

8
1.

01
19

16
68

-7
38

6.
30

28
IS

O
P

R
O

P
Y

L
A

C
E

T
A

T
E

-1
.1

9
1.

52
0.

91
39

.1
-0

.6
26

58
-0

.3
44

44
0.

06
12

1
0.

68
82

61
34

-9
43

1.
50

03
M

E
T

H
Y

L
V

IN
Y

L
K

E
T

O
N

E
-1

.1
87

1.
52

0.
91

39
.1

-0
.5

56
68

-0
.3

24
24

-0
.0

16
87

1.
03

49
36

57
-6

28
4.

46
18

M
E

T
H

Y
L

A
C

R
Y

LA
T

E
-1

.1
78

1.
52

0.
91

39
.1

-0
.6

20
28

-0
.3

46
45

-0
.0

07
86

0.
57

30
52

82
-8

32
9.

48
75

E
T

H
Y

L
A

C
R
Y

LA
T

E
-1

.2
37

1.
52

0.
91

39
.1

-0
.6

21
25

-0
.3

45
79

-0
.0

08
04

0.
64

67
79

09
-9

39
7.

95
83

B
ut

yl
bu

ty
ra

te
-1

.1
89

1.
52

0.
91

39
.1

-0
.6

19
4

-0
.3

40
8

0.
05

81
6

0.
68

95
58

21
-1

26
36

.6
06

B
ut

yl
et

hy
lk

et
on

e
-1

.1
74

1.
52

0.
91

39
.1

-0
.5

66
93

-0
.3

16
06

0.
03

66
2

0.
98

80
54

46
-9

52
3.

10
54

IS
O

A
M

Y
L

A
C

E
T
A

T
E

-1
.2

15
1.

52
0.

91
39

.1
-0

.6
27

14
-0

.3
46

0.
06

05
6

0.
61

11
73

22
-1

15
68

.1
88

P
R

O
P

Y
LE

N
E

C
A

R
B

O
N

A
T

E
-1

.3
07

1.
66

0.
89

85
.4

7
-0

.5
93

44
-0

.3
71

9
0.

07
80

8
2.

16
71

84
04

-1
03

75
.1

04
E

th
yl

en
e

ca
rb

on
at

e
-1

.2
72

1.
66

0.
89

85
.4

7
-0

.5
91

31
-0

.3
75

23
0.

07
99

9
2.

09
16

74
4

-9
30

6.
48

6
V

IN
Y

LE
N

E
C

A
R

B
O

N
A

T
E

-1
.1

57
1.

66
0.

89
85

.4
7

-0
.5

90
85

-0
.3

15
78

0.
03

55
9

1.
83

68
22

74
-9

27
3.

29
15

F
lu

or
oe

th
yl

en
e

ca
rb

on
at

e
-1

.1
29

1.
66

0.
89

85
.4

7
-0

.5
73

86
-0

.3
92

23
0.

06
58

1
1.

91
02

27
47

-1
20

04
.2

6
D

im
et

hy
lc

ar
bo

na
te

-0
.9

68
1.

66
0.

89
85

.4
7

-0
.6

72
04

-0
.3

68
73

0.
09

09
8

0.
07

93
72

43
-9

33
9.

14
29

D
IE

T
H

Y
L

C
A

R
B

O
N

A
T

E
-1

.0
1

1.
66

0.
89

85
.4

7
-0

.6
78

7
-0

.3
66

79
0.

09
27

9
0.

15
44

64
12

-1
14

76
.1

57
E

th
yl

m
et

hy
lc

ar
bo

na
te

-1
.0

06
1.

66
0.

89
85

.4
7

-0
.6

75
69

-0
.3

67
82

0.
08

96
0.

29
94

16
79

-1
04

07
.6

44
F
U

R
A

N
-0

.5
45

1.
66

0.
89

85
.4

7
-0

.4
86

25
-0

.2
85

32
0.

05
39

6
0.

21
87

24
3

-6
25

1.
95

79
2,

5-
D

IM
E

T
H

Y
LF

U
R

A
N

-0
.6

49
1.

66
0.

89
85

.4
7

-0
.5

09
04

-0
.2

59
0.

06
16

2
0.

01
79

92
1

-8
38

9.
19

73
T

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-0

.9
78

1.
66

0.
89

85
.4

7
-0

.6
24

28
-0

.3
11

68
0.

09
16

1
0.

70
86

86
51

-6
31

7.
42

53
2-

M
E

T
H

Y
LT

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-1

.0
07

1.
66

0.
89

85
.4

7
-0

.6
34

58
-0

.3
10

27
0.

09
20

9
0.

65
45

36
19

-7
38

6.
00

98
T

E
T

R
A

H
Y

D
R

O
P

Y
R

A
N

-0
.9

4
1.

66
0.

89
85

.4
7

-0
.6

20
07

-0
.3

14
3

0.
09

44
6

0.
56

26
77

76
-7

38
6.

09
63

1,
3-

D
IO

X
O

LA
N

E
-0

.8
36

1.
66

0.
89

85
.4

7
-0

.6
28

64
-0

.3
24

01
0.

10
22

9
0.

46
74

22
58

-7
29

3.
33

09
1,

4-
D

IO
X

A
N

E
-0

.8
01

1.
66

0.
89

85
.4

7
-0

.6
16

76
-0

.3
04

15
0.

10
73

1.
04

E
-0

5
-8

36
1.

78
9

E
th

ox
ym

et
ho

xy
m

et
ha

ne
-0

.8
09

1.
66

0.
89

85
.4

7
-0

.6
37

98
-0

.3
40

33
0.

09
86

6
0.

14
96

97
69

-8
39

4.
44

9
E

T
H

Y
L

A
C

E
T
A
T

E
-1

.0
83

1.
66

0.
89

85
.4

7
-0

.6
27

31
-0

.3
46

85
0.

05
99

7
0.

64
68

46
99

-8
36

2.
95

17
IS

O
P

R
O

P
Y

L
A

C
E

T
A

T
E

-1
.0

93
1.

66
0.

89
85

.4
7

-0
.6

26
61

-0
.3

44
44

0.
06

12
0.

68
80

02
47

-9
43

1.
50

03
M

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-1
.0

3
1.

66
0.

89
85

.4
7

-0
.6

21
46

-0
.3

48
69

0.
06

33
2

0.
63

67
78

06
-8

36
2.

88
59

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-1
.0

72
1.

66
0.

89
85

.4
7

-0
.6

22
61

-0
.3

47
26

0.
06

06
9

0.
68

79
86

82
-9

43
1.

35
41

74



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
M

E
T

H
Y

L
FO

R
M

A
T

E
-0

.9
81

1.
66

0.
89

85
.4

7
-0

.6
05

82
-0

.3
62

95
0.

05
50

5
0.

68
75

05
44

-6
22

5.
71

98
E

T
H

Y
L

B
U

T
Y

R
A

T
E

-1
.0

4
1.

66
0.

89
85

.4
7

-0
.6

31
93

-0
.3

43
11

0.
05

74
1

0.
62

91
20

16
-1

04
99

.7
97

M
E

T
H

Y
L

IS
O

B
U

T
Y

R
A

T
E

-1
.0

63
1.

66
0.

89
85

.4
7

-0
.6

19
39

-0
.3

43
84

0.
05

91
9

0.
65

88
59

42
-9

43
1.

32
49

V
IN

Y
L

A
C

E
T
A
T

E
-0

.9
84

1.
66

0.
89

85
.4

7
-0

.6
00

14
-0

.3
11

14
0.

02
96

6
0.

64
43

39
21

-8
32

9.
58

68
G

am
m

a-
B

ut
yr

ol
ac

to
ne

-1
.2

92
1.

66
0.

89
85

.4
7

-0
.5

82
46

-0
.3

42
61

0.
05

71
1

1.
77

08
62

98
-8

33
0.

24
69

G
am

m
a-

V
al

er
ol

ac
to

ne
-1

.3
28

1.
66

0.
89

85
.4

7
-0

.5
83

52
-0

.3
40

66
0.

05
79

7
1.

78
59

52
47

-9
39

8.
84

08
D

el
ta

-V
al

er
ol

ac
to

ne
-1

.3
51

1.
66

0.
89

85
.4

7
-0

.5
82

26
-0

.3
35

82
0.

04
67

5
1.

79
85

12
37

-9
39

8.
62

11
E

ps
ilo

n-
ca

pr
ol

ac
to

ne
-1

.3
89

1.
66

0.
89

85
.4

7
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61
G

am
m

a-
H

ex
an

ol
ac

to
ne

-1
.3

33
1.

66
0.

89
85

.4
7

-0
.5

83
92

-0
.3

39
92

0.
05

82
1.

81
36

17
05

-1
04

67
.2

53
T

R
IM

E
T

H
Y

L
P

H
O

SP
H

A
T

E
-1

.5
12

1.
66

0.
89

85
.4

7
-1

.0
84

48
-0

.3
53

8
0.

09
28

5
0.

47
81

99
21

-2
07

19
.4

62
T

R
IE

T
H

Y
L

P
H

O
SP

H
A

T
E

-1
.5

95
1.

66
0.

89
85

.4
7

-1
.0

88
33

-0
.3

45
17

0.
08

30
8

0.
94

26
94

76
-2

39
24

.9
85

SU
LF

O
LA

N
E

-1
.3

5
1.

66
0.

89
85

.4
7

-0
.9

50
81

-0
.3

36
95

0.
06

79
9

2.
06

42
84

99
-1

91
92

.0
49

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.0

56
1.

66
0.

89
85

.4
7

-0
.7

81
89

-0
.3

63
67

0.
09

12
7

1.
20

15
05

2
-1

91
32

.2
67

M
E

T
H

Y
L

B
E

N
ZE

N
E

SU
LF

O
N

A
T

E
-1

.1
8

1.
66

0.
89

85
.4

7
-0

.9
27

65
-0

.3
33

-0
.0

17
08

1.
34

60
03

37
-2

43
43

.8
13

1,
3-

P
ro

pa
ne

su
lt

on
e

-1
.2

4
1.

66
0.

89
85

.4
7

-0
.7

70
35

-0
.3

63
2

0.
06

72
7

2.
31

38
69

41
-2

01
68

.0
47

1,
4-

B
U

T
A

N
E

SU
LT

O
N

E
-1

.2
81

1.
66

0.
89

85
.4

7
-0

.7
82

02
-0

.3
67

68
0.

07
20

8
2.

14
75

30
13

-2
12

36
.8

6
D

im
et

hy
ls

ul
fo

xi
de

-1
.5

9
1.

66
0.

89
85

.4
7

-0
.9

71
86

-0
.2

83
91

0.
08

53
7

1.
61

57
07

45
-1

50
43

.4
85

SU
C

C
IN

IC
A

N
H

Y
D

R
ID

E
-1

.0
25

1.
66

0.
89

85
.4

7
-0

.5
43

6
-0

.3
64

92
0.

01
24

1
1.

71
81

35
93

-1
03

42
.7

27
C

Y
C

LO
H

E
X

A
N

O
N

E
-1

.1
58

1.
66

0.
89

85
.4

7
-0

.5
52

68
-0

.3
07

24
0.

02
92

6
1.

19
99

49
39

-8
42

2.
24

56
C

A
P

R
O

LA
C

T
O

N
E

-1
.3

89
1.

66
0.

89
85

.4
7

-0
.5

88
8

-0
.3

36
31

0.
05

70
7

1.
81

72
88

49
-1

04
67

.0
61

P
ro

pi
ol

ac
to

ne
-1

.1
4

1.
66

0.
89

85
.4

7
-0

.5
67

03
-0

.3
55

49
0.

05
28

7
1.

63
15

15
62

-7
26

1.
06

7
C

Y
C

LO
P

E
N

T
A

N
O

N
E

-1
.1

44
1.

66
0.

89
85

.4
7

-0
.5

50
19

-0
.3

08
55

0.
02

66
6

1.
12

64
21

53
-7

35
3.

64
24

D
ik

et
en

e
-1

.0
49

1.
66

0.
89

85
.4

7
-0

.5
44

43
-0

.3
20

81
0.

03
87

5
1.

37
86

24
36

-8
29

6.
26

76
A

C
E

T
O

P
H

E
N

O
N

E
-1

.1
31

1.
66

0.
89

85
.4

7
-0

.5
56

41
-0

.3
15

93
-0

.0
22

63
1.

13
40

55
8

-1
04

61
.1

5
G

ua
ia

co
l

-1
.3

98
1.

66
0.

89
85

.4
7

-0
.5

75
9

-0
.2

64
69

0.
03

18
8

0.
81

85
35

-1
14

69
.4

46
B

en
za

ld
eh

yd
e

-1
.0

85
1.

66
0.

89
85

.4
7

-0
.5

35
8

-0
.3

21
33

-0
.0

30
58

1.
20

20
46

62
-9

39
2.

48
09

2-
M

E
T

H
Y

LC
Y

C
LO

H
E

X
A

N
O

N
E

-1
.1

78
1.

66
0.

89
85

.4
7

-0
.5

54
11

-0
.3

03
68

0.
03

10
8

1.
16

98
02

32
-9

49
0.

65
59

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-1
.0

56
1.

66
0.

89
85

.4
7

-0
.7

81
88

-0
.3

63
66

0.
09

12
8

1.
20

12
74

47
-1

91
32

.2
67

D
IE

T
H

Y
LS

U
LF

A
T

E
-1

.2
99

1.
66

0.
89

85
.4

7
-0

.9
26

86
-0

.3
66

95
0.

08
88

8
0.

54
22

02
9

-2
33

13
.5

49
2,

3-
bu

ta
ne

di
on

e
-0

.8
07

1.
66

0.
89

85
.4

7
-0

.5
26

28
-0

.3
13

41
-0

.0
42

12
0.

05
68

19
95

-8
32

9.
61

47
A

C
E

T
O

P
H

E
N

O
N

E
-1

.1
32

1.
66

0.
89

85
.4

7
-0

.5
56

44
-0

.3
15

92
-0

.0
22

64
1.

13
39

06
82

-1
04

61
.1

5
B

E
N

ZY
L

B
E

N
ZO

A
T

E
-1

.5
91

1.
66

0.
89

85
.4

7
-0

.6
22

51
-0

.3
09

1
-0

.0
13

78
0.

75
66

19
17

-1
87

86
.2

28
D

IP
H

E
N

Y
L

E
T

H
E

R
-0

.7
38

1.
66

0.
89

85
.4

7
-0

.5
51

98
-0

.2
72

53
0.

01
59

5
0.

32
08

20
62

-1
46

36
.6

95

75



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
P

E
N

T
A

N
A

L
-0

.9
84

1.
66

0.
89

85
.4

7
-0

.5
41

01
-0

.3
25

31
0.

02
94

4
0.

99
13

67
67

-7
38

5.
94

81
2-

M
et

ho
xy

et
hy

la
ce

ta
te

-1
.0

4
1.

66
0.

89
85

.4
7

-0
.6

09
59

-0
.3

30
82

0.
05

69
6

0.
79

69
47

46
-1

14
75

.4
A

ce
to

ne
-1

.1
17

1.
66

0.
89

85
.4

7
-0

.5
57

17
-0

.3
18

08
0.

03
47

3
1.

09
04

19
01

-5
24

9.
36

38
D

IE
T

H
Y

L
E

T
H

E
R

-0
.9

6
1.

66
0.

89
85

.4
7

-0
.6

25
64

-0
.3

21
33

0.
09

97
6

0.
43

41
94

98
-6

35
0.

06
84

M
E

T
H

Y
L

M
E

T
H

A
C

R
Y

LA
T

E
-1

.0
78

1.
66

0.
89

85
.4

7
-0

.6
15

4
-0

.3
27

58
-0

.0
01

19
0.

64
35

37
94

-9
39

8.
06

24
C

hl
or

oa
ce

to
ne

-0
.9

64
1.

66
0.

89
85

.4
7

-0
.5

31
5

-0
.3

30
56

0.
00

61
6

0.
87

22
96

65
-1

77
51

.4
31

N
-B

U
T

Y
L

A
C

E
T
A
T

E
-1

.0
98

1.
66

0.
89

85
.4

7
-0

.6
27

31
-0

.3
46

37
0.

06
01

4
0.

62
31

89
74

-1
04

99
.7

54
2-

H
E

P
T
A

N
O

N
E

-1
.0

81
1.

66
0.

89
85

.4
7

-0
.5

65
42

-0
.3

15
64

0.
03

54
7

0.
99

53
35

91
-9

52
3.

03
42

4-
H

ep
ta

no
ne

-1
.0

6
1.

66
0.

89
85

.4
7

-0
.5

61
46

-0
.3

10
39

0.
03

51
2

1.
06

72
93

09
-9

52
3.

00
54

6-
M

E
T

H
Y

L-
5-

H
E

P
T

E
N

-2
-O

N
E

-1
.0

15
1.

66
0.

89
85

.4
7

-0
.5

65
84

-0
.2

82
15

0.
03

52
1.

05
65

83
36

-1
05

58
.1

61
3-

P
E

N
T
A

N
O

N
E

-1
.0

55
1.

66
0.

89
85

.4
7

-0
.5

66
38

-0
.3

16
73

0.
03

70
8

1.
01

19
16

68
-7

38
6.

30
28

IS
O

P
R

O
P

Y
L

A
C

E
T
A

T
E

-1
.0

95
1.

66
0.

89
85

.4
7

-0
.6

26
58

-0
.3

44
44

0.
06

12
1

0.
68

82
61

34
-9

43
1.

50
03

M
E

T
H

Y
L

V
IN

Y
L

K
E

T
O

N
E

-1
.0

84
1.

66
0.

89
85

.4
7

-0
.5

56
68

-0
.3

24
24

-0
.0

16
87

1.
03

49
36

57
-6

28
4.

46
18

M
E

T
H

Y
L

A
C

R
Y

LA
T

E
-1

.0
69

1.
66

0.
89

85
.4

7
-0

.6
20

28
-0

.3
46

45
-0

.0
07

86
0.

57
30

52
82

-8
32

9.
48

75
E

T
H

Y
L

A
C

R
Y

LA
T

E
-1

.1
34

1.
66

0.
89

85
.4

7
-0

.6
21

25
-0

.3
45

79
-0

.0
08

04
0.

64
67

79
09

-9
39

7.
95

83
B

ut
yl

bu
ty

ra
te

-1
.0

87
1.

66
0.

89
85

.4
7

-0
.6

19
4

-0
.3

40
8

0.
05

81
6

0.
68

95
58

21
-1

26
36

.6
06

B
ut

yl
et

hy
lk

et
on

e
-1

.0
89

1.
66

0.
89

85
.4

7
-0

.5
66

93
-0

.3
16

06
0.

03
66

2
0.

98
80

54
46

-9
52

3.
10

54
IS

O
A

M
Y

L
A

C
E

T
A

T
E

-1
.1

12
1.

66
0.

89
85

.4
7

-0
.6

27
14

-0
.3

46
0.

06
05

6
0.

61
11

73
22

-1
15

68
.1

88
P

R
O

P
Y

LE
N

E
C

A
R

B
O

N
A

T
E

-1
.1

65
1.

81
0.

86
13

2.
91

-0
.5

93
44

-0
.3

71
9

0.
07

80
8

2.
16

71
84

04
-1

03
75

.1
04

E
th

yl
en

e
ca

rb
on

at
e

-1
.1

35
1.

81
0.

86
13

2.
91

-0
.5

91
31

-0
.3

75
23

0.
07

99
9

2.
09

16
74

4
-9

30
6.

48
6

V
IN

Y
LE

N
E

C
A

R
B

O
N

A
T

E
-1

.0
25

1.
81

0.
86

13
2.

91
-0

.5
90

85
-0

.3
15

78
0.

03
55

9
1.

83
68

22
74

-9
27

3.
29

15
F
lu

or
oe

th
yl

en
e

ca
rb

on
at

e
-1

.0
01

1.
81

0.
86

13
2.

91
-0

.5
73

86
-0

.3
92

23
0.

06
58

1
1.

91
02

27
47

-1
20

04
.2

6
D

im
et

hy
lc

ar
bo

na
te

-0
.8

42
1.

81
0.

86
13

2.
91

-0
.6

72
04

-0
.3

68
73

0.
09

09
8

0.
07

93
72

43
-9

33
9.

14
29

D
IE

T
H

Y
L

C
A

R
B

O
N

A
T

E
-0

.8
77

1.
81

0.
86

13
2.

91
-0

.6
78

7
-0

.3
66

79
0.

09
27

9
0.

15
44

64
12

-1
14

76
.1

57
E

th
yl

m
et

hy
lc

ar
bo

na
te

-0
.8

78
1.

81
0.

86
13

2.
91

-0
.6

75
69

-0
.3

67
82

0.
08

96
0.

29
94

16
79

-1
04

07
.6

44
F
U

R
A

N
-0

.4
61

1.
81

0.
86

13
2.

91
-0

.4
86

25
-0

.2
85

32
0.

05
39

6
0.

21
87

24
3

-6
25

1.
95

79
2,

5-
D

IM
E

T
H

Y
LF

U
R

A
N

-0
.5

6
1.

81
0.

86
13

2.
91

-0
.5

09
04

-0
.2

59
0.

06
16

2
0.

01
79

92
1

-8
38

9.
19

73
T

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-0

.8
51

1.
81

0.
86

13
2.

91
-0

.6
24

28
-0

.3
11

68
0.

09
16

1
0.

70
86

86
51

-6
31

7.
42

53
2-

M
E

T
H

Y
LT

E
T

R
A

H
Y

D
R

O
F
U

R
A

N
-0

.8
74

1.
81

0.
86

13
2.

91
-0

.6
34

58
-0

.3
10

27
0.

09
20

9
0.

65
45

36
19

-7
38

6.
00

98
T

E
T

R
A

H
Y

D
R

O
P

Y
R

A
N

-0
.8

21
1.

81
0.

86
13

2.
91

-0
.6

20
07

-0
.3

14
3

0.
09

44
6

0.
56

26
77

76
-7

38
6.

09
63

1,
3-

D
IO

X
O

LA
N

E
-0

.7
15

1.
81

0.
86

13
2.

91
-0

.6
28

64
-0

.3
24

01
0.

10
22

9
0.

46
74

22
58

-7
29

3.
33

09
1,

4-
D

IO
X

A
N

E
-0

.6
88

1.
81

0.
86

13
2.

91
-0

.6
16

76
-0

.3
04

15
0.

10
73

1.
04

E
-0

5
-8

36
1.

78
9

E
th

ox
ym

et
ho

xy
m

et
ha

ne
-0

.6
82

1.
81

0.
86

13
2.

91
-0

.6
37

98
-0

.3
40

33
0.

09
86

6
0.

14
96

97
69

-8
39

4.
44

9

76



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
E

T
H

Y
L

A
C

E
T
A
T

E
-0

.9
5

1.
81

0.
86

13
2.

91
-0

.6
27

31
-0

.3
46

85
0.

05
99

7
0.

64
68

46
99

-8
36

2.
95

17
IS

O
P

R
O

P
Y

L
A

C
E

T
A

T
E

-0
.9

58
1.

81
0.

86
13

2.
91

-0
.6

26
61

-0
.3

44
44

0.
06

12
0.

68
80

02
47

-9
43

1.
50

03
M

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-0
.8

96
1.

81
0.

86
13

2.
91

-0
.6

21
46

-0
.3

48
69

0.
06

33
2

0.
63

67
78

06
-8

36
2.

88
59

E
T

H
Y

L
P

R
O

P
IO

N
A

T
E

-0
.9

35
1.

81
0.

86
13

2.
91

-0
.6

22
61

-0
.3

47
26

0.
06

06
9

0.
68

79
86

82
-9

43
1.

35
41

M
E

T
H

Y
L

FO
R

M
A

T
E

-0
.8

61
1.

81
0.

86
13

2.
91

-0
.6

05
82

-0
.3

62
95

0.
05

50
5

0.
68

75
05

44
-6

22
5.

71
98

E
T

H
Y

L
B

U
T

Y
R

A
T

E
-0

.9
02

1.
81

0.
86

13
2.

91
-0

.6
31

93
-0

.3
43

11
0.

05
74

1
0.

62
91

20
16

-1
04

99
.7

97
M

E
T

H
Y

L
IS

O
B

U
T

Y
R

A
T

E
-0

.9
26

1.
81

0.
86

13
2.

91
-0

.6
19

39
-0

.3
43

84
0.

05
91

9
0.

65
88

59
42

-9
43

1.
32

49
V

IN
Y

L
A

C
E

T
A
T

E
-0

.8
57

1.
81

0.
86

13
2.

91
-0

.6
00

14
-0

.3
11

14
0.

02
96

6
0.

64
43

39
21

-8
32

9.
58

68
G

am
m

a-
B

ut
yr

ol
ac

to
ne

-1
.1

48
1.

81
0.

86
13

2.
91

-0
.5

82
46

-0
.3

42
61

0.
05

71
1

1.
77

08
62

98
-8

33
0.

24
69

G
am

m
a-

V
al

er
ol

ac
to

ne
-1

.1
8

1.
81

0.
86

13
2.

91
-0

.5
83

52
-0

.3
40

66
0.

05
79

7
1.

78
59

52
47

-9
39

8.
84

08
D

el
ta

-V
al

er
ol

ac
to

ne
-1

.2
03

1.
81

0.
86

13
2.

91
-0

.5
82

26
-0

.3
35

82
0.

04
67

5
1.

79
85

12
37

-9
39

8.
62

11
E

ps
ilo

n-
ca

pr
ol

ac
to

ne
-1

.2
38

1.
81

0.
86

13
2.

91
-0

.5
88

8
-0

.3
36

31
0.

05
70

7
1.

81
72

88
49

-1
04

67
.0

61
G

am
m

a-
H

ex
an

ol
ac

to
ne

-1
.1

88
1.

81
0.

86
13

2.
91

-0
.5

83
92

-0
.3

39
92

0.
05

82
1.

81
36

17
05

-1
04

67
.2

53
T

R
IM

E
T

H
Y

L
P

H
O

SP
H

A
T

E
-1

.3
46

1.
81

0.
86

13
2.

91
-1

.0
84

48
-0

.3
53

8
0.

09
28

5
0.

47
81

99
21

-2
07

19
.4

62
T

R
IE

T
H

Y
L

P
H

O
SP

H
A

T
E

-1
.4

15
1.

81
0.

86
13

2.
91

-1
.0

88
33

-0
.3

45
17

0.
08

30
8

0.
94

26
94

76
-2

39
24

.9
85

SU
LF

O
LA

N
E

-1
.2

1.
81

0.
86

13
2.

91
-0

.9
50

81
-0

.3
36

95
0.

06
79

9
2.

06
42

84
99

-1
91

92
.0

49
M

E
T

H
Y

L
M

E
T

H
A

N
E

SU
LF

O
N

A
T

E
-0

.9
28

1.
81

0.
86

13
2.

91
-0

.7
81

89
-0

.3
63

67
0.

09
12

7
1.

20
15

05
2

-1
91

32
.2

67
M

E
T

H
Y

L
B

E
N

ZE
N

E
SU

LF
O

N
A

T
E

-1
.0

55
1.

81
0.

86
13

2.
91

-0
.9

27
65

-0
.3

33
-0

.0
17

08
1.

34
60

03
37

-2
43

43
.8

13
1,

3-
P

ro
pa

ne
su

lt
on

e
-1

.1
02

1.
81

0.
86

13
2.

91
-0

.7
70

35
-0

.3
63

2
0.

06
72

7
2.

31
38

69
41

-2
01

68
.0

47
1,

4-
B

U
T
A

N
E

SU
LT

O
N

E
-1

.1
38

1.
81

0.
86

13
2.

91
-0

.7
82

02
-0

.3
67

68
0.

07
20

8
2.

14
75

30
13

-2
12

36
.8

6
D

im
et

hy
ls

ul
fo

xi
de

-1
.4

27
1.

81
0.

86
13

2.
91

-0
.9

71
86

-0
.2

83
91

0.
08

53
7

1.
61

57
07

45
-1

50
43

.4
85

SU
C

C
IN

IC
A

N
H

Y
D

R
ID

E
-0

.9
04

1.
81

0.
86

13
2.

91
-0

.5
43

6
-0

.3
64

92
0.

01
24

1
1.

71
81

35
93

-1
03

42
.7

27
C

Y
C

LO
H

E
X

A
N

O
N

E
-1

.0
25

1.
81

0.
86

13
2.

91
-0

.5
52

68
-0

.3
07

24
0.

02
92

6
1.

19
99

49
39

-8
42

2.
24

56
C

A
P

R
O

LA
C

T
O

N
E

-1
.2

38
1.

81
0.

86
13

2.
91

-0
.5

88
8

-0
.3

36
31

0.
05

70
7

1.
81

72
88

49
-1

04
67

.0
61

P
ro

pi
ol

ac
to

ne
-1

.0
11

1.
81

0.
86

13
2.

91
-0

.5
67

03
-0

.3
55

49
0.

05
28

7
1.

63
15

15
62

-7
26

1.
06

7
C

Y
C

LO
P

E
N

T
A

N
O

N
E

-1
.0

12
1.

81
0.

86
13

2.
91

-0
.5

50
19

-0
.3

08
55

0.
02

66
6

1.
12

64
21

53
-7

35
3.

64
24

D
ik

et
en

e
-0

.9
28

1.
81

0.
86

13
2.

91
-0

.5
44

43
-0

.3
20

81
0.

03
87

5
1.

37
86

24
36

-8
29

6.
26

76
A

C
E

T
O

P
H

E
N

O
N

E
-0

.9
97

1.
81

0.
86

13
2.

91
-0

.5
56

41
-0

.3
15

93
-0

.0
22

63
1.

13
40

55
8

-1
04

61
.1

5
G

ua
ia

co
l

-1
.2

27
1.

81
0.

86
13

2.
91

-0
.5

75
9

-0
.2

64
69

0.
03

18
8

0.
81

85
35

-1
14

69
.4

46
B

en
za

ld
eh

yd
e

-0
.9

58
1.

81
0.

86
13

2.
91

-0
.5

35
8

-0
.3

21
33

-0
.0

30
58

1.
20

20
46

62
-9

39
2.

48
09

2-
M

E
T

H
Y

LC
Y

C
LO

H
E

X
A

N
O

N
E

-1
.0

43
1.

81
0.

86
13

2.
91

-0
.5

54
11

-0
.3

03
68

0.
03

10
8

1.
16

98
02

32
-9

49
0.

65
59

M
E

T
H

Y
L

M
E

T
H

A
N

E
SU

LF
O

N
A

T
E

-0
.9

28
1.

81
0.

86
13

2.
91

-0
.7

81
88

-0
.3

63
66

0.
09

12
8

1.
20

12
74

47
-1

91
32

.2
67

D
IE

T
H

Y
LS

U
LF

A
T

E
-1

.1
48

1.
81

0.
86

13
2.

91
-0

.9
26

86
-0

.3
66

95
0.

08
88

8
0.

54
22

02
9

-2
33

13
.5

49

77



Chapter A. Supporting Information for Chapter 2

na
m

e
E
c
o
o
rd

Io
ni

c
R

ad
iu

s
E

le
ct

ro
-

ne
ga

ti
vi

ty
A

to
m

ic
W

ei
gh

t
N

B
O

C
ha

rg
e

H
O

M
O

LU
M

O
D

ip
ol

e
M

om
en

t
T
ot

al
E

ne
rg

y
2,

3-
bu

ta
ne

di
on

e
-0

.7
1.

81
0.

86
13

2.
91

-0
.5

26
28

-0
.3

13
41

-0
.0

42
12

0.
05

68
19

95
-8

32
9.

61
47

A
C

E
T

O
P

H
E

N
O

N
E

-0
.9

97
1.

81
0.

86
13

2.
91

-0
.5

56
44

-0
.3

15
92

-0
.0

22
64

1.
13

39
06

82
-1

04
61

.1
5

B
E

N
ZY

L
B

E
N

ZO
A

T
E

-1
.4

41
1.

81
0.

86
13

2.
91

-0
.6

22
51

-0
.3

09
1

-0
.0

13
78

0.
75

66
19

17
-1

87
86

.2
28

D
IP

H
E

N
Y

L
E

T
H

E
R

-0
.6

38
1.

81
0.

86
13

2.
91

-0
.5

51
98

-0
.2

72
53

0.
01

59
5

0.
32

08
20

62
-1

46
36

.6
95

P
E

N
T
A

N
A

L
-0

.8
59

1.
81

0.
86

13
2.

91
-0

.5
41

01
-0

.3
25

31
0.

02
94

4
0.

99
13

67
67

-7
38

5.
94

81
2-

M
et

ho
xy

et
hy

la
ce

ta
te

-0
.9

07
1.

81
0.

86
13

2.
91

-0
.6

09
59

-0
.3

30
82

0.
05

69
6

0.
79

69
47

46
-1

14
75

.4
A

ce
to

ne
-0

.9
87

1.
81

0.
86

13
2.

91
-0

.5
57

17
-0

.3
18

08
0.

03
47

3
1.

09
04

19
01

-5
24

9.
36

38
D

IE
T

H
Y

L
E

T
H

E
R

-0
.8

25
1.

81
0.

86
13

2.
91

-0
.6

25
64

-0
.3

21
33

0.
09

97
6

0.
43

41
94

98
-6

35
0.

06
84

M
E

T
H

Y
L

M
E

T
H

A
C

R
Y

LA
T

E
-0

.9
44

1.
81

0.
86

13
2.

91
-0

.6
15

4
-0

.3
27

58
-0

.0
01

19
0.

64
35

37
94

-9
39

8.
06

24
C

hl
or

oa
ce

to
ne

-0
.8

45
1.

81
0.

86
13

2.
91

-0
.5

31
5

-0
.3

30
56

0.
00

61
6

0.
87

22
96

65
-1

77
51

.4
31

N
-B

U
T

Y
L

A
C

E
T
A
T

E
-0

.9
64

1.
81

0.
86

13
2.

91
-0

.6
27

31
-0

.3
46

37
0.

06
01

4
0.

62
31

89
74

-1
04

99
.7

54
2-

H
E

P
T
A

N
O

N
E

-0
.9

47
1.

81
0.

86
13

2.
91

-0
.5

65
42

-0
.3

15
64

0.
03

54
7

0.
99

53
35

91
-9

52
3.

03
42

4-
H

ep
ta

no
ne

-0
.9

23
1.

81
0.

86
13

2.
91

-0
.5

61
46

-0
.3

10
39

0.
03

51
2

1.
06

72
93

09
-9

52
3.

00
54

6-
M

E
T

H
Y

L-
5-

H
E

P
T

E
N

-2
-O

N
E

-0
.8

79
1.

81
0.

86
13

2.
91

-0
.5

65
84

-0
.2

82
15

0.
03

52
1.

05
65

83
36

-1
05

58
.1

61
3-

P
E

N
T
A

N
O

N
E

-0
.9

2
1.

81
0.

86
13

2.
91

-0
.5

66
38

-0
.3

16
73

0.
03

70
8

1.
01

19
16

68
-7

38
6.

30
28

IS
O

P
R

O
P

Y
L

A
C

E
T
A

T
E

-0
.9

6
1.

81
0.

86
13

2.
91

-0
.6

26
58

-0
.3

44
44

0.
06

12
1

0.
68

82
61

34
-9

43
1.

50
03

M
E

T
H

Y
L

V
IN

Y
L

K
E

T
O

N
E

-0
.9

59
1.

81
0.

86
13

2.
91

-0
.5

56
68

-0
.3

24
24

-0
.0

16
87

1.
03

49
36

57
-6

28
4.

46
18

M
E

T
H

Y
L

A
C

R
Y

LA
T

E
-0

.9
38

1.
81

0.
86

13
2.

91
-0

.6
20

28
-0

.3
46

45
-0

.0
07

86
0.

57
30

52
82

-8
32

9.
48

75
E

T
H

Y
L

A
C

R
Y

LA
T

E
-1

.0
01

1.
81

0.
86

13
2.

91
-0

.6
21

25
-0

.3
45

79
-0

.0
08

04
0.

64
67

79
09

-9
39

7.
95

83
B

ut
yl

bu
ty

ra
te

-0
.9

5
1.

81
0.

86
13

2.
91

-0
.6

19
4

-0
.3

40
8

0.
05

81
6

0.
68

95
58

21
-1

26
36

.6
06

B
ut

yl
et

hy
lk

et
on

e
-0

.9
48

1.
81

0.
86

13
2.

91
-0

.5
66

93
-0

.3
16

06
0.

03
66

2
0.

98
80

54
46

-9
52

3.
10

54
IS

O
A

M
Y

L
A

C
E

T
A

T
E

-0
.9

77
1.

81
0.

86
13

2.
91

-0
.6

27
14

-0
.3

46
0.

06
05

6
0.

61
11

73
22

-1
15

68
.1

88

78



Appendix B

Supporting Information for Chapter
3

B.1 Optimized structures

Figure B.1: Optimized structures of 70 Li-coordinated solvent systems. The gray, red,
yellow, orange, light green, green, purple and white sphere corresponds to C, O, S, P, F,
Cl, Li, and H atom, respectively. M06-2X with Def2-SVP basis set was used in the DFT
calculations
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Chapter B. Supporting Information for Chapter 3

B.2 Cross Validation Error for each K

Figure B.2: The CV error (in eV) dependence on the number of descriptors when the
ES-GP regression model was used. The yellow circle shows the minimum in the CV error.
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Appendix C

Supporting Information for Chapter
4

C.1 Posterior distribution and free energy calculation using
Exchange MCMC

When performing Bayesian inference, it is often difficult to calculate the posterior
distribution. In such cases, we may use MCMC to sample from the posterior distribution
and use the sampled results to perform approximate calculations. In this study, we selected
exchange MCMC[57]. The posterior distributions p(Θ | D,K) in the main content are
calculated using exchange MCMC using the following procedure.

1. Using L reverse temperatures, define {βl}Ll=1 , 0 = β1 < β2 < · · · < βL−1 < βL = 1.

2. Let pβl
(Θl | D,K) ∝ exp (−βlE (Θl)) p (Θl) be the posterior distribution with inverse

temperature.

3. For each temperature distribution, update {Θl}Ll=1 using the Metropolis algorithm.

4. Create a pair of neighboring temperatures and compute the following probability r.

r =
pβl+1 (Θl) pβl

(Θl+1)

pβl
(Θl) pβl+1 (Θl+1)

5. Generate a uniform random number R in 0 ≤ R < 1 and, if R < r, exchange Θl+1

and Θl.

6. Return to Step 3.

The posterior distribution obtained by this procedure is the one obtained by pβL
.

In order to perform the integration of the free energy with respect to Θ by sampling
the MCMC method, we consider the following fβ(K) with the introduction of the inverse
temperature β into the free energy.

fβ(K) = − log

∫
dΘexp(−βE(Θ))p(Θ | D,K)
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Introducing fβ(K), Free energy F (K) can be written as follows.

F (K) = f1(K)

=

∫ 1

0
dβ

∂fβ
∂β

=

∫ 1

0
dβ

∫
dΘE(Θ) exp(−βE(Θ))p(Θ | D,K)∫

dΘexp(−βE(Θ))p(Θ | D,K)

=

∫ 1

0
dβ

∫
dΘE(Θ)pβ(Θ | D,K)

The integral with respect to Θ is the expectation of E(Θ) according to a probability
distribution pβ(Θ | D,K), which can be calculated using the sampling results of the MCMC
method. We can perform Bayesian estimation for the number K of mixture by computing
the free energy.

C.2 Bayesian Free Energy for each K

Figure C.1: Comparison of BFE at each K for all trials. The horizontal axis shows each
trial of the CV and the vertical axis is the BFE. The BFE of K=2 is the smallest for all
trials.
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C.3 Indicator Ranking

The following figures show the top 1000 indicators of the posterior distribution of
the indicators in the prediction of diffusion coefficients by SpLMM. When sampling from
the posterior distribution, the number of unique indicators can be below 1000. In such a
case, all indicators are displayed. The black cells represent used descriptors and the white
cells represent unused descriptors.
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Figure C.2: Indicator Ranking (Trial=0,1)
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Figure C.3: Indicator Ranking (Trial=2,3)
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Figure C.4: Indicator Ranking (Trial=4,5)
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Figure C.5: Indicator Ranking (Trial=6,7)
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Figure C.6: Indicator Ranking (Trial=8,9)
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C.4 Predicted distribution of each solvent molecule.

The following figure shows the predicted distributions of the diffusion coefficients
of each solvent molecule in ES-LiR, ES-GP and SpLMM. The results for each solvent
molecule in each Trial are side-by-side, and the predicted distributions for K = 1, 2, 3, 4
are side-by-side vertically. The horizontal axis represents the diffusion coefficient and the
vertical axis represents the probability density. The dotted line is the true value of the
diffusion coefficient.
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Figure C.7: Predicted Distribution of Diffusion Coefficients of Solvent Molecules (Trial=0,
1)
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Figure C.8: Predicted Distribution of Diffusion Coefficients of Solvent Molecules (Trial=2,
3)
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Figure C.9: Predicted Distribution of Diffusion Coefficients of Solvent Molecules (Trial=4,
5)
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Figure C.10: Predicted Distribution of Diffusion Coefficients of Solvent Molecules (Trial=6,
7)
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Figure C.11: Predicted Distribution of Diffusion Coefficients of Solvent Molecules (Trial=8,
9)
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Appendix D

Database of multiple coordinated
molecules and prediction

In calculating the calculated values in the database created in Chapter 2, we as-
sumed that one solvent molecule is coordinated to Li-ion. However, in reality, several
(typically four) solvent molecules are coordinated to Li-ion in the electrolyte. Therefore,
we performed DFT calculations in a multiple-molecule coordination situation and created
a database. While this database is useful, this calculation is more expensive than the DFT
calculation with a single coordinated molecule and takes several days to several weeks. If
the results of a DFT calculation with multiple solvents can be predicted from the results of
a DFT calculation with one molecule coordinating, we do not need to calculate for every
molecule. Therefore, it is worthwhile to build a predictive model for it. Figure D.1 shows
the predicted values from the DFT calculations with one molecule coordinating to the DFT
calculations with multiple molecules coordinating using ES-LiR. This result shows that the
prediction accuracy is high for all calculated values except dipole moment.
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Figure D.1: Prediction of the computed value from the DFT calculation for a single molecule
to the computed value from the DFT calculation for multiple coordinated molecules.
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Appendix E

Experimental Value Prediction

E.1 Experimental value prediction from calculated values

We tried to predict the experimental values from the calculated values using the
database of alkali metal electrolytes built in Chapter 2. In this study, the acquisition cost
of the experimental values was not a problem because the experimental data were already
available, but in practice, it is often difficult to obtain the experimental data because
of the human cost. Figure E.1 shows the prediction of the experimental values from the
calculated values only using the ES-LiR introduced in Chapter 3. In this study, the boiling
point, density, flashing point and melting point were predicted. For the solvents other than
the melting point, it was found that the prediction of solvents other than the melting point
is highly accurate even from the calculated values.
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Figure E.1: Predictions of experimental values from ES-LiR. The horizontal axis represents
the true value and the vertical axis represents the predicted value.
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Appendix F

Application of Bayesian optimization
to coordination energy

In Chapter 3, GP was used for function estimation (regression). One of the fea-
tures of GP is that it can give not only predictions but also predictive variance. Bayesian
Optimization (BO) is an optimization method that uses both predictions and predictive
variance. In BO, we perform GP estimation from the current results and determine the
next point to investigate based on the value and variance. In this study, we used COMmon
Bayesian Optimization Library (COMBO) [58], which is a Bayesian optimization Python
library that has attracted much attention in the field of materials science calculations, to
verify the effectiveness of Bayesian optimization in electrolyte search using the database
created in Chapter 2. We also verify sparsification of variables in Bayesian optimization.

F.1 BO for coordination energy

We measured the number of searches to find the sample with the highest coordina-
tion energy in the database. BO requires a few randomly obtained data at the beginning,
and the results vary depending on which samples are selected first. Therefore, we ran 100
trials with different randomly selected samples and calculated the average. Figure 1 shows
the mean and variance for a completely random search and a Bayesian optimization case.
In the case of BO, the maximum value was found with less than half the number of searches
than random searches.

F.2 Validation of Sparsified BO using synthesis data

When searching for the maximum value of the y objective variable by Bayesian
optimization, descriptors that are uncorrelated with the objective variable y is expected
to be noisy and the number of searches for the maximum value will increase. We tested
the effectiveness of sparsification in BO by examining how much the number of searches
for the maximum value is reduced by sparsification. For verification, we generated the
following synthetic data. We first generated 100 random sample data in 10 dimensions and
created a database of 100 samples of 10 descriptors. We then used two specific descriptors
from among the 10 descriptors to generate the objective variable y by a linear sum of
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Figure F.1: Average search times to find the maximum value.

three two-dimensional Gaussian distributions, as shown in Figure F.2a. In addition, to
examine the case where some descriptors have a linear dependency, as shown in Figure
F.2b, we also tested the situation where Figure F.2a is embedded in 3D space and one of
the ten descriptors is represented as a linear sum of the two descriptors used to generate
the function.

(a) Linear summation of the 2-D Gaussian dis-
tribution

(b) Figure (a) embedded in 3D space

Figure F.2: Synthesis data

As in Section F.1, we measured the number of searches to find the maximum sample
in the synthesis data. Figure F.3 is a validation of the data shown in Figure F.2a. This is
a comparison between BO in 2 dimensions with no noise and BO in 10 dimensions with 8
noises. In the case of sparsification, we confirmed that the optimization can be performed
with less than half the number of searches on average.

Figure F.4 is a validation of the data shown in Figure F.2b. "2d" denotes the case
with only two descriptors without noise, "3d" denotes the case with a third descriptor that
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Figure F.3: Average number of searches to find the maximum value. "sparsified" indicates
the case of BO with noisy descriptors pruned and sparsified, and "non sparsified" indicates
the case where all the descriptors are used. In the case of sparsification, the number of
searches was less than half the number of times compared to the case where all descriptors
were used.

is linearly dependent, and the rest with noise. The addition of a third linearly dependent
descriptor did not differ significantly from the case with only two noise-free descriptors, but
we confirmed that the number of search times increased as the number of noise descriptors
increased.

F.3 Sparsified BO

In Section F.2, we verified that sparsification works well in BO using synthetic data.
In this section, we discuss the results of applying it to the optimization of the coordination
energy. In real data, we do not know which descriptors are noise and which are effective,
so we need a framework to decide which descriptors are effective. In this study, we used a
method called the ES-K method to extract effective descriptors. The ES-K method first
determines the number of dimensions K to choose, then trains only the indicators that have
only K descriptors, compares the results, and extracts the descriptors. Since the results of
Chapter 3 already show results for all indicators, the indicator with the highest prediction
accuracy for each K can be selected. In Chapter 3, we used ES-LiR and ES-GP, but since
BO uses GP, we used the descriptors extraction results by ES-GP to prune the noise for
each K.

Figure F.5 shows the results of BO for each K. The horizontal axis shows the
number of iterations and the vertical axis shows the maximum coordination energy found
up to that point. The one with K = 10 is the one that has not been sparsified. This result
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Figure F.4: Average number of searches to find the maximum value in the synthetic data.
We see that increasing the number of correlated descriptors does not significantly change
the number of searches.

shows that sparsification does not make a significant difference. Figure 1 shows the number
of times it took to find the maximum value of the coordination energy. These results also
showed that sparsification did not make a significant difference. Considering the results of
Section F.2, this may be because there is a strong correlation between the descriptors, or
because there are few unrelated descriptors.
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Figure F.5: Results of sparsified BO for each dimension K. The horizontal axis shows the
number of iterations and the vertical axis shows the maximum coordination energy found
up to that point. The red color is the result of BO for K = 7, which is the number of
dimensions with the lowest prediction error in the ES-GP.

Figure F.6: Number of searches to find the maximum value in sparsified BO for every K
of dimension.
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