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Abstract

The grand challenge in first-principles calculation for magnetic materials is whether we can predict

the experimental magnetic structure for a given material. Among a variety of possible functional

materials, noncollinear magnets are a fascinating playground for materials design [1, 2] as they

facilitate a wide range of fundamental phenomena and possible applications.

For example, in the context of antiferromagnetic (AFM) spintronics [3] there is a particular in-

terest in noncollinear antiferromagnetism sparked by (i) its robustness against perturbations due to

magnetic fields, (ii) a quasi-absence of magnetic stray fields disturbing for instance nearby electronic

devices, and (iii) ultrafast dynamics of AFM domainwalls [4], as well as (iv) its ability to generate

large magnetotransport effects [5–7]. Hence, the optimization of AFM materials would open the

door for applications such as seamless and low-maintenance energy generation, ultrafast spintronics

and robust data retention, as well as be a guide towards advancing fundamental understanding of

magnetotransport.

However, first-principles calculations with the generalized gradient approximation (GGA) in

the framework of spin-density functional theory (SDFT) for magnetic materials have a problem:

It is still an open question how accurately SDFT–GGA can reproduce the experimental magnetic

ground state. While SDFT has been widely used in studies on various magnets [8], there has

been no systematic benchmark calculation for noncollinear AFM materials. Previous attempts

have been restricted to collinear magnetism [9] or even stricter symmetry constraints [10–12]. In

regard to noncollinear AFM materials, high-throughput calculations have been limited to setting

the experimentally determined magnetic configuration as an initial guess [13]. A recently proposed

attempt to predict magnetic structures based on a genetic evolution algorithm [14] strongly relies on

the proper prediction of the magnetic ground state by SDFT. The lack of a systematic benchmark

calculation is a consequence of the fact that it is a highly non-trivial task to investigate all the

local minima in the SDFT energy landscape. Indeed, to search for all the (meta-)stable states, we

need an exhaustive list of physically reasonable magnetic configurations for which first-principles

calculations can be performed.

To this end, we devise the so-called cluster multipole (CMP) expansion, which enables the ex-

pansion of an arbitrary magnetic configuration in terms of an orthogonal basis set of magnetic

multipole configurations. By means of the CMP expansion, a list of initial magnetic structures for
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self-consistent GGA calculations is efficiently and systematically generated. A comparison with the

experimental data collected on MAGNDATA [15] shows that the most stable magnetic configura-

tions in nature are linear combinations of only few CMPs. With this at hand, a high-throughput

calculation for all candidate magnetic structures is performed in the scope of this thesis. We bench-

mark the predictive power of CMP+SDFT with 2935 calculations, which show that (i) the CMP

expansion administers an exhaustive list of candidate magnetic structures, (ii) CMP+SDFT can

narrow down the possible magnetic configurations to a handful of computed configurations, and

(iii) SDFT reproduces the experimental magnetic configurations with an accuracy of ±0.5µB. For a

subset the impact of on-site Coulomb repulsion U is investigated by means of 1545 CMP+SDFT+U

calculations revealing no further improvement on the predictive power.

The thesis is structured as follows: In Chapter 1, we take a birds eye view on magnetism and in

particular motivate the search for novel magnetic structures realized in crystalline compounds, that

feature transition metals, lanthanides and actinoides as magnetic sites. In Chapter 2, we introduce

the framework of SDFT for noncollinear magnetic structures. In Chapter 3, the multipole theory

is first developed generally to expand a vector gauge field characterized by the vector Poisson

equation. Subsequently, this theory is applied to magnetic structures in real materials to arrive at

a scheme to generate a symmetry-adapted orthogonal basis set of magnetic configurations in the

crystallographic point group. This is the so-called CMP theory. In Chapter 4 we present the central

results of this thesis. Here, we discuss a benchmark calculation of 131 materials, those magnetic

ground state is predicted in a high-throughput CMP+SDFT scheme. Moreover, we investigate

the effects of Coulomb repulsion U on the prediction of the most stable magnetic configuration,

as well as the size of the magnetic moment. Based on these practical insights, we revisit SDFT

in Chapter 5. This shall set the stage for a new question: Namely, how can we improve existing

exchange–correlation functionals in order to accurately reproduce the experimental magnetic ground

state in the framework of SDFT. A summary and outlook is presented in Chapter 6.
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Chapter 1

Introduction

水晶の一面光り渡り鳥

小川軽舟

Magnetism is a truly ubiquitous phenomenon and we humans seem to be one of the few specimens

blind to it. For example, migratory birds, common chickens, honeybees, turtles, a number of

mammals, for instance horses, as well as fish and even bacteria have a sense called magnetoreception.

In other words, they can consciously perceive the direction of the magnetic field. This has already

been hunched upon by zoologists observing migratory birds in the wild. Perhaps the earliest record

of that is given by Alexander Theodor von Middendorff in 1855, who writes [16]

(...), es möge die erstaunliche Unbeirrbarkeit der Zugvögel — trotz Wind und Wetter,

trotz Nacht und Nebel — eben darauf beruhen, dass das Geflügel immerwährend der

Richtung des Magnetspoles sich bewusst ist, (...). Was dem Schiffe die Magnetnadel ist,

wäre dann diesen 〈〈Seglern der Lüfte〉〉 das innere magnetische Gefühl, (...).

The scientific proof [17] is provided by W. Wiltschko and coworkers in 1968. However, the exact

biological mechanism of detecting the magnetic field is still discussed with controversy [18] and may

differ between species. In case of migratory birds, the leading hypothesis describes photoexitation of

cryptochrome proteins to create radical pairs in the retina. This so-called radical pair mechanism is

thus expected to be located in the birds eyes and one might even coin the phrase birds see magnetic

fields.

A recent study on human magnetoreception [19] suggests humans may also unconsciously be able

to detect changes in the magnetic field surrounding them. Nevertheless, without a doubt the true

multitude of magnetic field arrangements is only accessible to humans thanks to the experimental

advances [20] made in recent decades. In particular, with the advent of neutron scattering in the

1950s, it became possible to characterize and analyze the static and dynamic spin structure of
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CHAPTER 1. INTRODUCTION 2

polymers, ferrofluids, bulk magnetic materials, superconductors, disordered and porous materials,

ceramics, biological structures etc. This long list hints towards the fact, that the magnetism is far

from a subject sui generis. Here, we shall not attempt to cover magnetism as a whole. Instead,

we focus our attention on the magnetic structures present in crystals1. In particular, compounds

featuring transition metals, lanthanides and actinoides as magnetic sites. The goal is to predict the

magnetic ground state from first-principles, therefore we must begin our discussion at the origin of

magnetism: The spin.

In realistic materials, the electronic spin is fundamentally responsible for magnetism. The origin

of the electronic spin has been discovered in 1928 by P. Dirac, when formulating his relativistic

quantum theory of the electron [21]. One might be tempted to imagine each electron simply

carrying a small bar magnet, however this picture is too classical. Already in 1919 H. van Leeuwen,

a Ph.D. student of N. Bohr, formulates the proof [22,23] that magnetism is a quantum mechanical

phenomenon and cannot be explained by means of classical Boltzmann statistics rigorously applied

to moving particles, even if they carry spin and charge. Thus, in addition to spin, proper quantum

mechanical statistics is necessary to explain magnetism in crystals. In fact, there is one more

necessary ingredient: electron–electron interaction. Only the specific details of the interaction

between electrons leads to the emergence of a finite magnetic moment, otherwise any crystal would

be magnetic [8].

Given that magnetism is a collective, quantum electrodynamic phenomenon, we need to at least

briefly recall Dirac’s theory to properly account for the spin and then solve the quantum mechanical

many-body problem with the appropriate relativistic corrections. However, as P. Dirac puts it [24],

For dealing with atoms involving many electrons the accurate quantum theory, involving

a solution of the wave equation in many-dimensional space, is far too complicated to be

practicable. One must therefore resort to approximate methods.

The way for this practical, approximate method is paved by P. Hohenberg and W. Kohn in 1964 [25]

by formulating density functional theory (DFT). They show that the ground state energy can be

expressed in terms of an energy functional of the electron density only. In a second paper [26],

W. Kohn and L. Sham obtain the now called Kohn–Sham equations, which are effective one-electron

Schrödinger-type equations, by means of the variational principle. This represents the groundwork

for the so-called local spin-density approximation (LSDA) for exchange and correlation energies

in the framework of spin-density functional theory (SDFT), that is formulated in the early 1970s

[27–30]. The tremendous progress in the last five decades is largely dominated by extensions of

LSDA in order to account for specific correlation effects. The perhaps most widely used exchange–

correlation energy functional is the so-called generalized gradient approximation (GGA). However,

there is truly a zoo of exchange–correlation functionals among which no clear winner has emerged

in terms of applicability to real materials. Besides that, in the last five decades, advances have been

1A crystal is a highly regular solid in which atoms occupy fixed atomic positions on an underlying crystal lattice.
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Jij > 0 Jij < 0

ferromagnetic antiferromagnetic

(b)(a)

Mn3Sn, an example noncollinear antiferromagnet

Figure 1.1: (a) Schematic ground state for positive and negative exchange coupling Jij in the

Heisenberg model yielding ferromagnetic and antiferromagnetic alignment of the spins, respec-

tively. (b) The magnetic structure of Mn3SnvisualizedusingV ESTA1001[31].Mnhasanon −
sitemagneticdipolemoment.

made due to the increase in computational capabilities, improvement of numerical methods and a

remarkable, ever increasing material survey provided by experimentalists.

Especially the experimental insights supply a continuous stream of new, intriguing phenomena in

magnetism. One of the major sources for newly observed magnetotransport effects in crystals is the

specific alignment of magnetic moments on neighboring sites. The interaction between neighboring

magnetic sites is determined by the so-called exchange coupling, which can be computed from first-

principles by means of SDFT. In order to illustrate the effects of exchange coupling, let us consider

the arguably simplest model system of coupling spins: Namely, the Heisenberg Hamiltonian, which

reads

HHeis = −1

2

∑
i,j

JijSi · Sj . (1.1)

In this example, positive (negative) exchange coupling Jij leads to parallel (antiparallel) alignment

of neighboring spins Si and Sj . As depicted in Figure 1.1 (a), this corresponds to collinear ferro-

magnetic (FM) and antiferromagnetic (AFM) ordering, respectively. Collinearity implies that site

i and j have a common spin-quantization axis.

In a realistic material however the interplay between the arrangement of magnetic sites on the

crystal lattice and the details of the exchange coupling, may lead to more complex, noncollinear

magnetic structures. One example of a noncollinear antiferromagnet is Mn3Sn, as shown in Fig-

ure 1.1 (b). Here, we show only one of the two layers of magnetic Mn-sites that each form a Kagome

lattice2 in this material. In the magnetic ground state, the on-site magnetic moments are rotated

2The word kagome 籠目 refers to a traditional japanese pattern for woven bamboo baskets that resembles stars
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(b)(a)

Ma
Mb′ ′ 

Mb′ 

Figure 1.2: (a) Yafet–Kittel spin structure. (b) First ever reported [35] spiral magnetic structure

realized in MnAu2. Visualized using tools provided on MAGNDATA [15].

by 120◦ with respect to their neighbour and add up to zero net magnetization. It is noncollinear

magnetic structures like this, that give rise to novel observations and which are at the heart of this

work.

In the next section, we will give a birds eye view on noncollinear magnetism. However before

that, the novice reader may appreciate some introductory works on magnetism, which cover different

aspects of the subject: Magnetism in the solid state–an introduction [32] by P. Mohn, Magnetism and

magnetic materials [33] by J. M. D. Coey, Physical inorganic chemistry: a coordination chemistry

approach [34] by S. F. A. Kettle and Theory of itinerant electron magnetism [8] by J. Kübler.

1.1 A birds eye view on noncollinear magnetism

For a long time the discussion of magnetic order has been dominated by magnets with a collinear

ferromagnetic (FM) order, and the closely related phenomena of collinear antiferromagnetic (AFM)

and ferrimagnetic ordering. Clearly, collinear ferromagnetism is most easily observed due to its

macroscopic magnetization. In 1936 L. Néel, who was a student of P. Weiss, is famously the first

to discuss two equal, FM sublattices that are opposing each other such that the net magnetization

vanishes. The presence of a magnetic order without a resultant macroscopic magnetization is

the defining feature of antiferromagnetism. If the sublattices do not perfectly cancel each others

magnetization, one speaks of ferrimagnetism.

In hindsight, it seems curious that no earlier than 1952 Y. Yafet and C. Kittel [36] first propose

a triangular arrangement of spins, as shown in Figure 1.2 (a). Starting point of their discussion is

L. Néel’s mean-field treatment of two sublattices a and b, where one of the sublattices is further

divided into two sublattices b′ and b′′, each on its own being FM. The magnetic moments of b′ and

b′′ are canted to each other such that their combined total magnetization still fully compensates the

made up of a central hexagon and adjacent triangular.
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magnetization of sublattice a. In their paper, they suggest some materials for which an experimental

confirmation should be possible by means of the back then still rather new method of neutron

diffraction.

Indeed, neutron diffraction itself has been developed around the same time and subsequently

experiences a huge improvement in the 1970s with the advent of high-brilliance neutron sources and

the development of dedicated small-angle neutron scattering instruments [37]. Since then, many

materials have been identified to exhibit the long overlooked noncollinear magnetic ordering. The

possible alignments range from small canting with respect to a dominant FM axis to fully AFM

configurations, such that the total magnetization is zero. For the latter, we have already seen

two examples (i) the theoretically proposed Yafet–Kittel structure in Figure 1.2 (a), and (ii) the

experimentally determined magnetic structure of Mn3Sn in Figure 1.1. Moreover, Figure 1.2 (b)

shows an even more involved spiral structure spanning across multiple crystallographic unit cells

in MnAu2 [35, 38]. In fact, this is the first spiral structure ever reported in 1961. There have been

some early reviews by F. Keffer [39] in the Encyclopedia of Physics in 1966 and in the late 1980

by J. Coey [40] aimed at to provide an overview of compounds exhibiting noncollinear magnetism.

Nowadays, many of these measurements can be found on the database MAGNDATA [15]. In

addition to a convenient quick-look, MAGNDATA offeres access to the corresponding magnetic

cif-files [41]. This is a standard file format since 2014, which enables efficient handling of magnetic

structure data. The curious reader is invited to check out the latest entries at the database’ web

page: www.webbdcrista1.ehu.es/magndata.

The origin of noncollinear magnetic ordering is quite generally the competition between differ-

ent ordering (disordering) exchange coupling mechanisms. At this point, we want to highlight that

in addition to the symmetric Heisenberg-type exchange interaction, one might encounter antisym-

metric exchange coupling, the so-called Dzyaloshinskii–Moriya interaction of the form

HDM =
1

2

∑
ij

Dij · (Si × Sj) . (1.2)

Generally, in realistic materials we expect symmetric and antisymmetric exchange coupling to be

present. If these exchange interactions can be appeased, the system relaxes to an magnetically

ordered ground state.

This stands in contrast with magnetic disorder, which is introduced by randomly distributed

magnetic impurities. These can cause random spin canting, which is categorized as spin glass. Note

however, that even systems without magnetic disorder—that feature anisotropic AFM exchange

coupling—have been shown3 to exhibit a spin glass ground state. The underlying effect, that leads

to a lack of ordering even at the ground state of the so-called Kitaev model, is found in many

realistic materials: magnetic frustration.

3This has been first proven by A. Kitaev in 2015 in one of his lectures at Caltech “A simple model of quantum

holography”, which is available for streaming.

http://webbdcrista1.ehu.es/magndata/index.php?show_db=1
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?

Figure 1.3: Magnetic frustration. A loop of five magnetic sites which couple antiferromagnetically.

One site cannot be chosen to be spin up or down without violating one antiferromagnetic bond.

Magnetic frustration arises when all AFM exchange interactions cannot be easily appeased.

For instance, odd-membered loops with isotropic AFM exchange coupling give rise to an increased

degeneracy of the magnetic ground state. In other words, any of the bounds between neighbors is

equally likely to be the only one that is forced to remain ferromagnetically coupled, while all the rest

couples AFM. This is illustrated in Figure 1.3. As a consequence the Néel temperature, at which

the magnetic moments order antiferromagnetically, is much smaller than the absolute value of the

Curie temperature [33]. It is said [33] that systems featuring magnetic frustration have a tendency

towards exhibiting a noncollinear magnetic ground state. Other possible sources for noncollinear

ordering include a mixture of AFM and FM exchange coupling, electron–electron correlation etc.

Some reader might be already intrigued by this collective, quantum electrodynamic phenomenon

taking on all kind of shapes and beautiful patterns, while others pose the well-vested question: How

is this useful, if we are barely able to detect it? So let us discuss new phenomena that have been

discovered in the context of noncollinear magnetism by looking at two concrete examples. Firstly,

the ability to experimentally detect magnetic domains and magnetic space groups without devising

neutrons. And secondly, the observation of large magneto-transport effects in Mn3Sn.

In the 1990s, M. Fiebig and coworkers develop an experimental technique [42], where by means

of second harmonic generation in laser light magneto-optical properties are detected. In particular,

the shape of the linear response tensor is determined. Based on analysis done by W. Kleiner [6,43],

which have been recently extended by M. Seemann and coworkers [7], the magnetic space group

can be inferred from the shape of the linear response tensor. While this method lacks the ability to

determine the exact size of the on-site magnetic moment, it reveals the magnetic symmetry with

much lower effort compared to neutron diffraction. In view of material design, this method can be

used as a filter in order to identify promising magnetic structures. Further, the prior knowledge
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of the magnetic space group, when post-processing neutron scattering spectra, may give additional

guidance for the interpretation. Most noteworthy, this method can detect the relative orientation

of magnetic domains with respect to each other. This might be the key step towards application of

noncollinear magnetism in a technical devise.

We have mentioned that the allowed shape of linear response might be inferred from the magnetic

space group. It should be highlighted that usually in linear response theory only the coupling

of external magnetic fields to the magnetization is considered, where the magnetization is the

macroscopic magnetic dipole moment emerging as a sum of all on-site magnetic dipole moments.

The discussion by W. Kleiner [6,43] and M. Seemann et al. [7] is exceptional, as it allows—without

explicitly phrasing it in the language of multipole theory—linear response to occur as a result of

higher order moments, because it is based on symmetry considerations only. For instance, the

magneto-optical Kerr effect [44] describes the rotation of the spin-polarization axis of light upon

reflection off a magnetic surface. Naively, one might expect AFM surfaces generally fail to generate

Kerr rotation, because the spin-polarization interacts with the magnetization. However, in principle,

higher magnetic moments could interact with the light.

Let us point out one practical example: Starting with a nature paper [45] by S. Nakatsuji et al.

in 2015 a number of works discover large anomalous4 response in Mn3Sn. Besides a large anomalous

Hall effect [45], also an anomalous Nernst effect [46] and a large magneto-optical Kerr effect [47] are

reported. As mentioned above, in Figure 1.1 the magnetic structure of Mn3Sn is shown. Clearly,

there is no total magnetization, when adding all magnetic moments in the unit cell, which is

encompassed by a black line. So naively one would not expect Kerr rotation to occur. However it

has been demonstrated [48] that the magnetic structure corresponds to a magnetic octupole on the

inter-atomic scale, which—like the magnetic dipole—couples to an external magnetic field. This is

one of many examples, where multipoles on the inter-atomic length scale have recently proven to be

important in order to explain emergent phenomena. Others include the toroidal magnetic moments

to explain aromagnetism [49], magnetic quadrupole in Cr2O3 [50–53] and Co4Nb2O9 [54–58], the

magnetic toroidal dipole in UNi4B [59–61], magnetic toroidal octupole [62], electric and magnetic

toroidal dipoles in BiTeBr [63] and α-Cu2V2O7 [64–68] etc.

Finally, we allow ourselves to envision what might be possible with just the right magnet. A

recent review by V. Baltz [3] has laid out a number of promising applications in the field of AFM

spintronics. The main obstacle in detecting noncollinear AFM materials is simultaneously the main

advantages for technological application: It is quite hard to manipulate AFM structures by means of

magnetic fields and, thus, it is robust against perturbation due to external magnetic fields. These

might otherwise involuntarily interfere with the system. Inversely, there are no significant stray

fields that could potentially disturb nearby circuits or electronic devices. In technical applications

the information is not stored within the magnetic structure itself, but rather in the magnetic

4Anomalous refers to the fact that, the magnetic structure of the material—rather than an applied magnetic

field—causes other transport phenomena such as electric current.
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domain walls. Thus, the timescale at which domain walls can be switched, fundamentally limits

the speed at which information can be written. In case of FM domain walls the so-called Walker

breakdown [69] describes a precision motion above a critical magnetic field and the appearance of

a periodic component in the forward motion of the domain wall. This fundamental limit is absent

in AFM domain walls and hence AFM materials allow for ultra-fast domain wall dynamics [4].

Lastly, as we have mentioned, noncollinear AFM materials have the potential to generate large

magneto-transport effects [7]. One example is indeed Mn3Sn, where the octupole gives rise to a

magneto-optical Kerr effect, which is usually exclusively viewed as a response to a magnetic dipole.

Hence, the optimization of AFM materials would open the door for applications such as seamless

and low-maintenance energy generation, ultra-fast spintronics and robust data retention, as well as

be a guide towards advancing fundamental understanding of magneto-transport.

1.2 Scope of this thesis

So far we have briefly motivated the search for novel magnetic structures. In particular, we have

turned our attention to crystalline compounds, that feature transition metals, lanthanides and

actinoides. We have argued that magnetism is a collective, quantum electrodynamical many-body

problem, which can be discussed from first-principles in the framework of spin-density functional

theory (SDFT). Now, the grand challenge in first-principles calculation for magnetic ma-

terials is whether we can predict the experimental magnetic structure for a given

material.

This challenge stands in a context, where we witness a paradigm shift from computational

science to data-driven science. As eluded in the last section, antiferromagnetic (AFM) compounds

are a fascinating playground for material design as they facilitate a wide range of fundamental

phenomena and possible applications. However, first-principles calculations with the generalized

gradient approximation (GGA) in the framework of spin-density functional theory (SDFT) for

magnetic materials have a problem: It is still an open question how accurately SDFT–GGA can

reproduce the experimental magnetic ground state. While SDFT has been widely used in studies

on various magnets [8], there has been no systematic benchmark calculation for noncollinear AFM

materials. In the scope of this thesis such a systematic high-throughput calculation with 2935

calculations has been performed.

To this end, we devise the so-called cluster multipole (CMP) expansion, which enables the

expansion of an arbitrary magnetic configuration in terms of an orthogonal basis set of magnetic

multipole configurations. By means of the CMP expansion, a list of initial magnetic structures for

self-consistent GGA calculations is efficiently and systematically generated. With this at hand, a

systematic high-throughput calculation with 2935 calculations has been performed.

1.2.1 Outline

The thesis is structured as follows: In Chapter 1, we take a birds eye view on magnetism and in

particular motivate the search for novel magnetic structures realized in crystalline compounds, that
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feature transition metals, lanthanides and actinoides as magnetic sites. In Chapter 2, we introduce

the framework of SDFT for noncollinear magnetic structures. In Chapter 3, the multipole theory

is first developed generally to expand a vector gauge field characterized by the vector Poisson

equation. Subsequently, this theory is applied to magnetic structures in real materials to arrive at

a scheme to generate a symmetry-adapted orthogonal basis set of magnetic configurations in the

crystallographic point group. This is the so-called CMP theory. In Chapter 4 we present the central

results of this thesis. Here, we discuss a benchmark calculation of 131 materials, those magnetic

ground state is predicted in a high-throughput CMP+SDFT scheme. Moreover, we investigate

the effects of Coulomb repulsion U on the prediction of the most stable magnetic configuration,

as well as the size of the magnetic moment. Based on these practical insights, we revisit SDFT

in Chapter 5. This shall set the stage for a new question: Namely, how can we improve existing

exchange–correlation functionals in order to accurately reproduce the experimental magnetic ground

state in the framework of SDFT. A summary and outlook is presented in Chapter 6.

1.2.2 Limitations

While we have made it a priority to formulate our scheme in the most general way, there are still a

number of effects that have been excluded in our considerations and may play an important role in

some materials. For instance, by taking the Born–Oppenheimer approximation [70] we effectively

neglect electron–phonon coupling. Moreover, we only aim to predict the magnetic ground state, so

the treatment of all finite temperature effects has been omitted. One rather surprising choice to

the expert reader might be that in most calculations no electron–electron correlation effects beyond

SDFT are considered. However, we deem a benchmark for GGA to be an appropriate first step and

in fact perform GGA+U calculations for specific materials. Lastly, we have constrained ourselves

to discussing commensurate, q ≡ 0 bulk magnetism without any disorder and thus surface effects,

layered materials, random magnetic impurities etc. are overlooked entirely throughout this thesis.



Chapter 2

A brief introduction to

spin-density functional theory

In this chapter, we introduce the many-body problem and its treatment, which is underlying

noncollinear magnetism and, thus, the phenomena outlined in Section 1.1. The starting point

is that, electrons move in the adiabatic field produced by nuclei in solids, which is known as Born–

Oppenheimer approximation. We shall arrive at the generalized gradient approximation (GGA) in

the framework of spin-density functional theory (SDFT) and get familiar with its ingredients.

Complete derivations have been the subject of many textbooks and shorter works of which we

may list a few for the interested reader: A bird’s-eye view of density-functional theory [71] by

K. Capelle, Theory of itinerant electron magnetism by J. Kübler and Current density functional

theory by H. Eschrig.

2.1 The electronic Hamiltonian

Let us consider N interacting electrons that carry a spin σ =↑ or ↓ with kinetic energy Tσ′σ in an

external potential Vσ′σ, which in the Born–Oppenheimer approximation [70] consists of the potential

vion
σ′σ(r−Rµ) due to the ions located at static positions Rµ and other external fields vfield

σ′σ (r). Then,

considering the relativistic Dirac theory up to third order in powers of the kinetic energy relative

to the rest mass as it follows from the Foldy–Wouthuysen transformation [72] , we recall that the

simplest version of the theory of magnetic materials can be written with electronic states expressed

by two-component spinor functions and with the electronic Hamiltonian expressed by a 2 × 2

matrix [8]. Now, let us use m = 1/2, ~ = 1 and e2 = 2 for notational simplicity—particularly

of the Coulomb interaction Uσ′σ of the electrons. This allows us to write the Hamiltonian of N

10
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interacting electrons in a crystal as

Hσ′σ = Tσ′σ + Vσ′σ + Uσ′σ, (2.1)

Tσ′σ = −δσ′σ
N∑
i=1

∇2
i , (2.2)

Vσ′σ =

N∑
i=1

vextσ′σ(ri), (2.3)

vext
σ′σ(r) =

∑
µ

vion
σ′σ(r −Rµ) + vfield

σ′σ (r), (2.4)

Uσ′σ =

N∑
i,j=1
i6=j

δσ′σ
|ri − rj |

. (2.5)

The only neglect at this point is the motion of nuclei and core electrons bound to that nuclei,

which can be summarized in the term ionic vibrations. We note that, neglecting the effect of

ionic vibrations translates to omitting the treatment of electron–phonon coupling. In the context of

magnetism, electron–phonon coupling is in fact the driving effect underlying structure transitions

caused by magnetic ordering. Although this is an intriguing phenomenon it is beyond the scope of

this thesis.

Here, we are particularly interested in noncollinear magnetism, which implies that the spin state

cannot be described by a single, global quantization axis. Such a mixed quantum mechanical state

can be described by a density matrix of the form

ρ(r′1σ
′
1, r
′
2σ
′
2, ..., r

′
Nσ
′
N |r1σ1, r2σ2, ..., rNσN )

=
∑
α

cαΨα(r′1σ
′
1, r
′
2σ
′
2, ..., r

′
Nσ
′
N )Ψ∗α(r1σ1, r2σ2, ..., rNσN ), (2.6)

where α sums over all degenerate many-particle wave functions Ψα. Here, the sum rule
∑
α cα = 1

and restriction 0 ≤ cα ≤ 1 applies. A salient ingredients of SDFT is the electron density n

n(r) = Tr{ρn̂(r)}, (2.7a)

n̂(r) =

N∑
i=1

δ(r − ri), (2.7b)

where we have defined the electron-density operator n̂ in the last line. The trace entails a summation

over all spins and integration over all but one spacial coordinate. Even more important for SDFT

is the definition of a 2× 2 spin-density matrix n(s)

n(s)(r) =

(
n

(s)
↑↑ (r) n

(s)
↑↓ (r)

n
(s)
↓↑ (r) n

(s)
↓↓ (r)

)
, (2.8)
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where the elements are obtained by sparing one spin index of being traced out, such that we obtain

n
(s)
σ′σ(r) = N

∑
σ2,...,σN

∫
dr2...drN ρ(rσ′, r2σ2, ..., rNσN |rσ, r2σ2, ..., rNσN ). (2.9)

Note that, the spin-density matrix n(s) is not diagonal in general. We can establish the connection

to the electron density by introducing the trace over the remaining spin indices tr and yield

n(r) = tr
{
n(s)(r)

}
= n

(s)
↑↑ (r) + n

(s)
↓↓ (r). (2.10)

So far we have introduced the many-body problem of Equation (2.1) and the spin-density matrix

n(s) as one of the key quantities. We shall now consider how to determine the ground state of this

problem.

2.2 The two basic theorems

In 1973 U. von Barth and L. Hedin [29], shortly followed by A. Radgopal and J. Callaway [30] mod-

ified the proof of the basic theorem by P. Hohenberg and W. Kohn [25] to include spin-polarization

in a matrix formalism. They proved a direct correspondence of the ground state spin-densities to

the ground state itself for non-degenerate ground states.

We proceed by stating the two basic theorems that SDFT builds upon:

• The total energy of a many-body electron system in an external potential V is a unique

functional of the spin-density n(s)(r): E = E[n(s)].

• For any many-electron system the energy functional E[n(s)(r)] has a minimum at exactly the

ground state spin-density n
(s)
0 (r). Hence, it is possible to apply the variational principle to

find E0 = E[n
(s)
0 (r)].

Let us devise the electronic Hamiltonian of Equation (2.1) and show above theorems intuitively

by an argument of contradiction in an back-of-the-envelope calculation. We assume some non-

degenerate ground state of the system defined by H exists and has energy E0. It shall be described

by the density matrix ρ0 with

E0 = Tr{ρ0H}. (2.11)

Now, let us assume there was another external potential V ′ to yield a different density matrix ρ′0,

but the same spin-density n(s):

H′ = T + V ′ + U, (2.12)

E′0 = Tr{ρ′0H′}. (2.13)

Because of the general variational principle, we know that any variation to ρ′0 will increase the

total energy of the system defined by H′. Thus, we obtain

E′0 < Tr{ρ0H′} = Tr{ρ0(H+ V ′ − V )} (2.14)

E′0 < E0 + Tr{ρ0(V ′ − V )}. (2.15)
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Let us write these expressions more explicitly in therms of the spin-density and the external potential

with Equation (2.4). This yields

Tr{ρ0(V ′ − V )} =

∫
dr tr

{
n(s)(r)

[
vext′(r)− vext(r)

]}
(2.16)

And repeating the same argument with primed and unprimed quantities exchanged, yields

E′0 < E0 −
∫

dr tr
{
n(s)(r)

[
vext′(r)− vext(r)

]}
, (2.17)

with the same spin-density n(s). However, combining Equation (2.15) and Equation (2.17) leads to

the following contradiction:

E′0 + E0 < E0 + E′0. (2.18)

We therefore conclude that n(s) cannot be the same for two different external potentials V and V ′.

Or inversely, the ground state energy is uniquely determined by a total energy functional of the

spin-density E[n(s)(r)].

The Kohn–Sham equations [26], that look like single-particle Schrödinger equations, can be

derived by applying the variational principle. The effective single particle equations of noncollinear

magnets have been derived by J. Kübler and coworkers [73, 74] in 1988. Their work pointed out

that there exists a well-defined set of directions for the spins, already in the absence of spin–orbit

coupling. The latter merely couples the set of directions for the spins to the underlying lattice. We

will now introduce a central concept of DFT: the exchange–correlation energy functional.

First, let us assume we can determine single-particle functions {ψiσ} with eigenenergies εi below

the Fermi energy, that allow us to express the spin-density matrix as

n
(s)
σσ′(r) =

N∑
i=1

ψiσψ
∗
iσ′ . (2.19)

The kinetic energy can be split into the kinetic energy T0 of the non-interacting system

T0[n(s)] =

N∑
i=1

∫
dr tr {∇ψ∗iσ′(r)∇ψiσ(r)} (2.20)

and the part Txc that is the remainder. The Coulomb interaction can also be split into the so-called

Hartree term

vHσ′σ(r) = 2δσ′σ

∫
dr′

n(r′)
|r − r′| , (2.21)

that explicitly depends on the electron density and the remainder Uxc. These two remainder

together define the exchange–correlation energy functional Exc[n
(s)(r)] of SDFT:

Exc[n
(s)(r)] = Txc[n

(s)(r)] + Uxc[n
(s)(r)]. (2.22)
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And the exchange–correlation potential when varied w.r.t. the elements of the spin-density matrix

n(s)(r):

vxcσ′σ(r) =
δExc[n

(s)(r)]

δn
(s)
σ′σ(r)

. (2.23)

The choice of the exchange–correlation functional Exc[n
(s)(r)] has evolved to be a large field in

itself and will be discussed in the next section.

Finally, we complete the reduction to an effective single-particle problem by stating the Kohn–

Sham equations ∑
σ

[
−δσ′σ∇2 + veff

σ′σ(r)
]
ψiσ = εiσ′ψiσ′ , (2.24)

with the effective potential

veff
σ′σ(r) = vext

σ′σ(r) + vHσ′σ(r) + vxcσ′σ(r), (2.25)

where we recall that vext is the external potential due to the nuclei and any applied field as given in

Equation (2.4), vH is the usual Hartree potential given in Equation (2.21) and vxc is the exchange–

correlation potential, that is defined in Equation (2.23) through the exchange–correlation energy

functional Exc discussed in the next section. Note that, the Equations (2.19), (2.24) and (2.25) can

be solved iterativly until self-consistency is reached.

2.3 Exchange–correlation functional

The simplest, yet astonishingly useful [75], exchange–correlation functional is modeled after the

homogeneous, interacting electron gas and only takes into account the local-density. It is thus

called local-density approximation (LDA).

2.3.1 Local spin-density approximation

The generalization of LDA to magnetic systems in the case of a global spin-axis, i.e. collinear mag-

netism, leads to local spin-density approximation (LSDA) [29]. The exchange–correlation energy

functional of LSDA is written as

ELSDA
xc [n(s)(r)] =

∫
dr n(r) εLSDA

xc (n
(s)
↑ (r), n

(s)
↓ (r)), (2.26)

where n
(s)
↑ (r) = n

(s)
↑↑ and n

(s)
↓ (r) = n

(s)
↓↓ , while n

(s)
↑↓ = n

(s)
↓↑ = 0. This defines the exchange–

correlation potential of LSDA as

vxc,LSDA
α (r) =

∂

∂n
(s)
α

[
nεLSDA
xc (n

(s)
↑ , n

(s)
↓ )
]
n
(s)
↑ =n

(s)
↑ (r)

n
(s)
↓ =n

(s)
↓ (r)

, (2.27)

with α =↑, ↓.
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Now, the explicit expression for εLSDA
xc can be determined numerically1. In a nutshell, the

exchange part is calculated from the Hartree–Fock approximation of a spin-polarized gas and then

the correlation part is estimated by supplementing such that one obtaines the total energy of a

homogeneous, interacting spin-polarized electron gas. The main difference among LSDA functionals

by different authors lies in the approach to the underlying numerical problem.

The key assumption of J. Kübler and coworkers [73] is that even in the case of noncollinear

magnetism, it is possible to locally diagonalize the spin-density. This leads to the generalized

LSDA for noncollinear magnetism (gLSDA). It is based on a unitary transformation U(r) of the

form

U(r) = exp

{
(
1

2
iθ(r)σy)

}
exp

{
(
1

2
iϕ(r)σz)

}
, (2.28)

with

tanϕ(r) = −
Im(n

(s)
↑↓ (r))

Re(n
(s)
↑↓ (r))

, (2.29a)

tan θ(r) = 2

√[
Re(n

(s)
↑↓ (r))

]2
+
[
Im(n

(s)
↑↓ (r))

]2
n

(s)
↑↑ (r)− n(s)

↓↓ (r)
, (2.29b)

where σi with i = x, y, z are the Pauli matrices. This transformation rotates the spin-axis locally

by means of

σ̃z(r) = U†(r)σz U(r). (2.30)

Finally, the exchange–correlation functional of the generalized LSDA can be written as a diagonal

matrix as follows:

vxc,gLSDA(r) = vxc0 (r)1 + ∆vxc,LSDA(r)σ̃z(r), (2.31a)

vxc0 (r) =
1

2

(
vxc,LSDA
↑ (r) + vxc,LSDA

↓ (r)
)
, (2.31b)

∆vxc(r) =
1

2

(
vxc,LSDA
↑ (r)− vxc,LSDA

↓ (r)
)
, (2.31c)

where 1 is a 2 × 2 unit matrix. Here, again Equation (2.27) is used to compute vxc,LSDA
α (r) and

εLSDA
xc (n

(s)
↑ , n

(s)
↓ ) is modeled after homogeneous, interacting spin-polarized electron gas.

In order to emphasize the connection to magnetism in general, let us present an alternative

terminology. We introduce the usual vector of Pauli matrices σ = (σx, σy, σz)
T , that together

with the unit matrix 1 clearly forms a basis for vxc(r). Then, the exchange–correlation energy

EgLSDAxc [n(s)(r)] can be written in terms of the electron density n(r) = n
(s)
↑ (r) + n

(s)
↓ (r) and the

1A didactically valuable demonstration can be found in Ref. [8].
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spin-magnetization m(s)(r). The latter can be seen as the length of a vector, which reads [76]

m(s)(r) = −µB

∑
αβ

n
(s)
αβ(r)σαβ (2.32)

= Tr
{
ρm̂(s)(r)

}
, (2.33)

which defines the spin-magnetization operator

m̂(s)(r) = −µB

N∑
i=1

δ(r − ri)σ. (2.34)

There are different sign conventions in the literature, however here we chose the spin-magnetization

to oppose the spin, as is most natural from a physical perspective.

In case of LSDA and gLSDA—without loss of generality—we may construe

EgLSDAxc [n(r),m(s)(r)]. (2.35)

It is now possible to define the exchange–correlation magnetic field Bxc(r). In analogy to the

Zeeman term in the Pauli Hamiltonian, that is derived in Section A.3, the variation of Exc with

respect to the spin-magnetization m(s)(r), yields the components of Bxc(r):

Bxc,i(r) =
δExc[n,m

(s)]

δm
(s)
i (r)

. (2.36)

In this alternative formulation, the effective potential in Equation (2.25) is replaced by

veff
σ′σ(r) = vext

σ′σ(r) + vHσ′σ(r) + vxc0 (r)δσ′σ − µBσ ·Bxc(r). (2.37)

Here, the contributions to the exchange–correlation potential is split into vxc0 (r) and a term contain-

ing Bxc(r). These contributions correspond exactly to the two contributions in Equation (2.31a).

The assumption of J. Kübler and coworkers [73], that it is possible to locally diagonalize the spin-

density, can then be reformulated saying that the exchange–correlation magnetic field Bxc(r) is

collinear to the local spin-magnetic moment m(s)(r) everywhere in space: m(s)(r) ‖ Bxc(r).

2.3.2 Generalized gradient approximation

The homogeneous, interacting spin-polarized electron gas is a good approximation, as long as the

spin-density is slowly varying. In a realistic material, this assumption does not generally hold and in

an effort to incorporate the leading nonlocal corrections the exchange–correlation energy functional

is chosen to be not just dependent on the local spin-density, but also its gradient. Interestingly,

attempts to simply compose the exchange–correlation energy functional based on two contributions,

the original LSDA contribution and one arising from the gradient of the spin-density, fail. In

particular, this is because a number of scaling relations and sum rules are violated by this attempt.
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A more general ansatz leads to the so called generalized gradient approximation (GGA). It can

be written as

EGGA
xc [n(s)(r)] =

∫
dr f(n

(s)
↑ (r), n

(s)
↓ (r),∇n

(s)
↑ (r),∇n

(s)
↓ (r)), (2.38)

where the function f is unknown and cannot be modeled after some numerically known system,

in contrast to εLSDA
xc for LSDA, which is modeled after the homogeneous electron gas. In fact,

there is no model system after which the GGA functional could be uniquely constructed, instead

the so-called conservative philosophy of approximations has been adopted [77]. I.e., a number of

conservation laws and scaling relations are used to obtain a suitable, but not uniquely defined GGA

functional starting from the unpolarized uniform electron gas.

In the scope of this thesis, we use the GGA functional introduced in 1996 by J. Perdew, K. Burke

and M. Ernzerhof [78]. This flavor of GGA, the so-called PBE–GGA, is presently the standard choice

particularly in condensed matter physics for multiple reasons. One of which might be that among

different proposals it is the most local [79] and another might be that it is the standard setting2

in the Vienna ab initio Simulation Package (VASP) [80, 81], which is todate the most widely used

program to perform ab initio calculations.

2.4 Solving the Kohn–Sham equations

In the last section, we have roughly outlined how to arrive at an explicit expression for the exchange–

correlation energy functional and, thus, the effective potential in Equation (2.25) is fully defined

given some spin-density n(s). Recall that, if we make an educated guess for the single-particle spinor

wave functions {ψiσ}, the spin-density follows from Equation (2.19). The next step is solving the

Kohn–Sham equations given in Equation (2.24) and finding a new set of single-particle functions

{ψiσ}. This is an iterative process that forms a self-consistency loop as illustrated in Figure 2.1

and can be solved numerically.

Hence, we need an appropriate ansatz for the single-particle wave functions {ψiσ}. However,

the popular plane wave ansatz is bound to fail, because one needs to simultaneously cope with a

diverging potential near the ions and a rather flat potential in between. This lead to the devel-

opment of pseudopotentials [82]. The basic idea is to replace the strong potential near the nuclei

with a well-behaved potential that accommodates the overall behaviour of the wave function, but

neglects strong oscillations. A generalization [83] of the early ideas from both Vanderbilt-type [84]

ultrasoft-peudopotentials [85] (USPP) and the linear-augmented plane waves [86] (LAPW) yields

the projector augmented-wave method (PAW) [87]. In 2000, D. Hobbs, G. Kresse and J. Hafner gen-

eralized the PAW method [76] to account for noncollinear magnetism in the framework3 proposed

by J. Kübler and coworkers [73]. The formalism described in Ref. [76] is implemented in the Vienna

ab initio Simulation Package (VASP) [80, 81] and, thus, it is underlying calculations performed in

the scope of this thesis.

2Standard setting are chosen based on a broad applicability of the selected method.
3This has been discussed in the Section 2.3.1.
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nσ′ σ(r) =
N

∑
i=1

ψ*iσ′ 
ψiσ′ 

veff
σ′ σ(r) = vext

σ′ σ(r) + vH
σ′ σ(r) + vxc

σ′ σ(r)∑
σ

[−δσ′ σ∇2 + veff
σ′ σ(r)] = εiσ′ ψiσ′ 

Equation (2.20)

Equation (2.25)Equation (2.26)

Figure 2.1: Spin-density functional theory self-consistency loop to solve the Kohn–Sham equa-

tions. The Hartree potential is given in Equation (2.21) and the external potential is given in

Equation (2.4).

The reader is encouraged to access one of the many pedagogical tutorials that can be found

in text and video-format provided by VASP. However, in order to be complete, let us formally

introduce the ansatz for the single-particle two-component spinor wave functions4 ψiσ, that are

eigenfunctions of the Kohn–Sham equation in Equation (2.24) with eigenenergy εiσ, i.e.,

|ψiσ〉 = |ψ̃iσ〉+
∑
η

(
|φη〉 − |φ̃η〉

)
〈p̃η|ψ̃iσ〉. (2.39)

Here, η is shorthand for the atomic site Rµ, the quantum numbers n, l and m that label the local

basis functions5 φη, which are solutions of the spherical (scalar relativistic) Schrödinger equation

for a nonspinpolarized atom with reference energy εnl. φ̃η are additional local basis functions called

pseudo partial waves, that are constructed to be dual to the projector functions p̃η, i.e.,

〈p̃η|φ̃η′〉 = δηη′ . (2.40)

They serve as a continuous transition from the local basis φη, that is nonzero within the so-called

PAW sphere in a core radius rc around Rµ, and a non-local, plane wave pseudo-wave functions

ψ̃iσ, that serves as the variational quantity in the minimization of the total energy. These can be

written as plane plane waves as follows

〈r|ψ̃iσ〉 =
1√
Ωr

∑
k

Cσik(r)eik·r, (2.41)

where
√

Ωr is the volume of the Wigner–Seitz cell.

4The single-particle two-component spinor wave functions are also referreed to as all-electron (AE) wave functions.
5The local basis functions φη are also referred to as all-electron partial waves.
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For any term that we would like to include into the Hamiltonian, we will henceforth need to

consider, how the operator Ô, which is associated with the term we want to include, acts on ψiσ

defined in Equation (2.39). This will be the stating point of the next section, where we will discuss

spin–orbit coupling.

2.5 Including spin–orbit coupling

The Hamiltonian introduced in Section 2.1 does not contain any relativistic corrections. In 2016,

S. Steiner and coworkers [88] published a paper6 describing the details of the spin–orbit cou-

pling (SOC) implementation in VASP. It constitutes the most important relativistic correction,

as discussed in the context of Dirac theory in Section A.4.

The relativistic corrections to the 2×2 Hamiltonian in Equation (2.1) can be derived by means of

different perturbative methods [89]. Most commonly, the Foldy–Wouthhuysen transformation [72]

is performed in orders of Ekin/(mc
2), where the kinetic energy reads Ekin =

√
m2c4 + p2c2 −mc2.

However, for r → 0 this is not a well regularized expansion in a Coulomb potential v(r). Thus,

E. van Lenthe and coworkers [90] have proposed to expand in orders of (Ekin +v)/(mc2−v) instead.

The 2× 2 SOC-term can then be written as

HSO =
1

c2
K(r)

r

dvion(r)

dr
σ ·L, (2.42)

where L is the angular momentum operator, σ is the vector of Pauli matrices, vion(r) is the Coulomb

potential of a nonspinpolarized atom and we use the units m = 1/2, ~ = 1 as in Section 2.1. The

factor K(r) appears due to the less common choice of the expansion parameter and is given by

K(r) =

(
1− vion(r)

c2

)−2

. (2.43)

Here, r can be thought to be the distance between an electron at r and a nucleus at Rµ, i.e.,

r = |r −Rµ|. This already anticipates that SOC is expected to be only relevant locally in close

vicinity of the nuclei.

Within the PAW method any (semi-)local operator Ô acting on ψiσ has a corresponding pseudo

operator ˆ̃O of the form [87]

ˆ̃O = Ô +
∑
ηη′

|p̃η〉
(
〈φη|Ô|φη′〉 − 〈φ̃η|Ô|φ̃η′〉

)
〈p̃η′ |. (2.44)

6In the same paper [88], they performed a magnetic anisotropy energy calculation for Fe1−xCox and concluded

that their results prove,

hopefully beyond doubt, that magnetic anisotropy calculations are feasible within the PAW methodol-

ogy and compare very well with other methods.

The outcome of our benchmark in Chapter 4 will strongly rely on their conjecture to hold for other compounds apart

from Fe1−xCox.
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It is assumed that the effect can be neglected outside the PAW sphere and, consequently, only the

second term in Equation (2.44), that is the local contribution by construction, must be considered.

We obtain

H̃SO =
∑
ηη′

|p̃η〉〈φη|HSO|φη′〉〈p̃η′ |. (2.45)

Further following Ref. [88], the local basis functions, i.e.,

φη(r −Rµ) = Rnl(|r −Rµ|)Ylm(Ωµ) (2.46)

are written in terms of the radial-dependence Rnl and angle-dependence by means of spherical

harmonics Ylηmη , where η is shorthand for the atomic site Rµ, the quantum numbers n, l and m

that label the solutions of the spherical (scalar relativistic) Schrödinger equation for a nonspinpo-

larized atom with reference energy εnl. That allows us to obtain7 the SOC pseudo Hamiltonian of

Equation (2.42), which reads

H̃SOσσ′ =
1

c2

∑
ηη′

|p̃η〉Rηη′ σσσ′ ·Lηη′〈p̃η′ |, (2.47a)

Rηη′ =

∫ rc

0

dr r2R∗nl(r)
K(r)

r

dvion(r)

dr
Rn′l′(r) (2.47b)

Lηη′ =

∫
dΩY ∗lm(Ω)LYl′m′(Ω). (2.47c)

With Equation (2.47a), we know how the SOC Hamiltonian acts on the variational pseudo wave

functions

|ψ̃iσ〉 =
∑
σ′

H̃SOσσ′ |ψ̃iσ′〉, (2.48)

which concludes this section. In the next section, we will discuss strong electron–electron correlation

effects that cannot be easily accounted for in SDFT.

2.6 Including strong electron–electron interactions beyond

SDFT

The strongly varying spin-density that lead to the development of GGA is not the only nonrela-

tivistic correction to LSDA in order to satisfactorily reproduce experimental observations. Another

effect that is difficult to account for by exchange–correlation functionals is strong electron–electron

correlation that arise particularly in 3d and 4f -orbitals, where electrons tend to be localized. For

7We note that Eq. (8) of Ref. [88] compared to Equation (2.47b) contains a factor of 4π and lacks a factor r2,

those origin we do not understand. Moreover, in the source code of VASP version 5.4.4, the factor 4π seems not to

appear, however the factor r2, which we believe appears as Jacobi determinant, seems to be not included.
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instance, La2CuO4 [91], NiO [92] and Eu2Ir2O7 [93] are falsely predicted to be metallic for temper-

atures above the AFM phase.

In fact, LSDA and GGA represent a substantial approximation to the treatment of the Coulomb

interaction given in Equation (2.5). In order to reduce the full many-body problem to a set of

single–electron problems in a local or semi-local effective potential, it is necessary to condone a

crude approximation: An electron at position r sees only a time-averaged local spin-density n(s)(r)

and the gradient ∇n(s)(r) of the other electrons. One of said examples, where DFT fails, is

(Eu1−xCax)2Ir2O7 [93]. At x = 0 the strong electronic correlation in the 5d Ir orbitals drives a

so-called Mott–Hubbard metal-to-insulator transition [94–96]. Upon doping x > 0 the filling of the

d-bands can be finely tuned experimentally, which leads to the realization of a doped Mott-insulating

phase.

Both phases, the Mott–Hubbard insulating phase and the doped Mott–Hubbard insulating phase,

are successfully described by a different branch in the condensed matter community that also

tries to solve the electronic Hamiltonian introduced in Section 2.1. By means of equally crude

approximations the problem is rewritten in terms of a kinetic term with hopping amplitude −t and

on-site Coulomb interaction Hubbard U [97]. In a commendable effort of these two communities

to join forces, methods beyond SDFT to include strong electron–electron correlation effects on top

of first-principles calculations have been developed. For instance, one approach is to include a

Hubbard correction term directly in the exchange–correlation functional (SDFT+U) [98], another

approach combines SDFT with the dynamical mean field theory (DMFT) [99–102] which leads to

the SDFT+DMFT [103–108] approach. The DMFT Hamiltonian based on SDFT can be written

as [108]

Ĥ = −
∑

ilσ jmσ′

tσσ
′

il jmĉ
†
il,σ ĉjm,σ′ + U

∑
iσ

n̂σiln̂
σ̄
il +

∑
iσσ′

l 6=m

(U ′ − δσσ′J)n̂σiln̂
σ′

im

− J

2

∑
iσ
l 6=m

ĉ†il,σ ĉjl,σ̄ ĉ
†
im,σ̄ ĉim,σ −

J̃

2

∑
iσ
l 6=m

ĉ†il,σ ĉ
†
il,σ̄ ĉim,σ ĉim,σ̄ −

∑
ilσ

∆ε n̂σil (2.49)

where σ̄ =↑ (↓) for σ =↓ (↑), the creation (annihilation) operator ĉ†il,σ (ĉil,σ) correspond to electron

i in a localized8 d- or f -orbital ϕ∗il,σ(r) with spin σ and orbital quantum number l, the hopping

amplitude tσσ
′

il jm is given by

tσσ
′

il jm = −
∫

dr ϕ∗il,σ(r)
[
−δσσ′∇2 + veff

σσ′
]
ϕjm,σ′(r) (2.50)

and the density operator reads n̂σil = ĉ†il,σ ĉjm,σ.

8Depending on the basis in which the Kohn–Sham equations are solved, these orbitals may not be inherently

defined. Indeed, the PAW method employed here would need a projection onto Wannier orbitals [109] before doing

DMFT calculations: {ψiσ} 7→
{
ϕil,σ

}
. That allows us to define the many-body state in second quantised form:

Ψ̂†σ(r) =
∑
il ĉ
†
il,σϕ

∗
il,σ . For details see Ref. [108].
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The reason for explicitly stating Equation (2.49) at this point is to emphasize the different

terms that appear and their fundamental connection to magnetism. Although we mentioned that

magnetism is a collective phenomenon, it might not be immediately obvious how strong electron–

electron correlations induce magnetic ordering. The first term in Equation (2.49) corresponds to the

kinetic energy with the material specific dispersion relation given by SDFT through Equation (2.50).

The second term is the intra-orbital Coulomb interaction commonly referred to as Hubbard U -term.

If U is large, electrons avoid to occupy the same orbital and tend to be localized, which ultimately

leads to the Mott–Hubbard transition mentioned above. The third term introduces the inter-orbital

Coulomb repulsion U ′, that describes the interaction of two opposing spins in different orbitals at

the same site. If the spins are aligned, we need to avoid double counting of the Hund’s exchange

coupling J , which is properly accounted for in the forth term. It contains a spin-flip term, that

prefers to align spins all up (or down) across orbitals. Next, the fifth term is a pair hopping with

amplitude J̃ , which is only the same as J , if the wave functions can be chosen real. This process

is often neglected since the presence of U makes double occupation unlikely and in respect to

magnetism it has no influence. The last term is the double counting term, that has the nontrivial

task of subtracting all correlation effects already accounted for in SDFT by an appropriate choice

of ∆ε.

All of these parameters (U , J , and J̃) present tuneable parameters in a Hamiltonian that is, in

fact, not exactly solvable in dimensions less than infinity. Powerful, though computationally expen-

sive, numerical methods can treat this model to some extend by first mapping it to the Anderson

impurity model [110,111] and then employing a suitable impurity solver [103]. Furthermore, in an

effort to avoid the parameters to be adjustable, the so-called GW approximation [112] and resulting

GW+DMFT [113, 114], as well as constraint random phase approximation (cRPA) [115–117] have

been developed. More recently diagrammatic extensions of DMFT [118, 119] are able to account

for non-local correlations that arise in low-dimensional systems and have shown some success in

describing critical behaviour in the vicinity of AFM phase transitions [120–124] and accounting

for vertex corrections e.g. corresponding to incommensurate spin-fluctuations in the pseudo-gap

phase of the single-band Hubbard model on a 2d square lattice investigated by the present author

in Ref. [125]. So far the applications of diagrammatic extensions of DMFT have been limited to

model calculations, but most recently fully self-consistent ab initio dynamical vertex approximation

(DΓA) [126] has been implemented.

In practice, the computational cost of these corrections increases rapidly. It is therefore practical

to start from GGA, in order to avoid the tuning parameter U in SDFT+U and only go beyond SDFT

if some observation cannot be explained otherwise. For instance, in the case of (Eu1−xCax)2Ir2O7,

the present author performed a DFT+DMFT calculation [93] in order to explain an unexpected

sign change in the Seebeck coefficient. And in the present thesis, we will perform a case study

on Mn-compounds and half-filled 4f -compounds in order to understand the importance of strong

electronic correlations in the context of magnetic structure prediction, see Section 4.2.6.
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2.7 Concluding remarks

In this chapter, we have introduced the electronic Hamiltonian, which lead to the first crude approx-

imation: We neglected ionic vibrations. Therefore, all structure transitions that might accompany

a magnetic phase transition are neglected. Next, we have outlined the strategy to define and solve

the Kohn–Sham equations for systems featuring noncollinear magnetism. Here, we briefly reviewed

the basic ideas, that were pioneered by J. Kübler et al. [8,73]. The key assumption—which should

be seen as an approximation—is that the spin-density can always be diagonalized locally. The

most important relativistic correction in the context of magnetism, i.e., spin–orbit coupling, has

been introduced in Section 2.5. Subsequently, in Section 2.6, we emphasized that SDFT imposes

additional approximations involved in the treatment of the electron–electron interaction. Neverthe-

less, the sum of all these approximations has produced quantitative results in good agreement with

experimental observations in many instances and, thus, we believe they represent a good starting

point in predicting the magnetic ground state.

Still, the reader is encouraged to critically keep track of these approximations, as only their ap-

plication to realistic materials can prove whether or not they are indeed appropriate. In Chapter 4,

we will present a high-throughput benchmark of 131 materials including many noncollinear com-

pounds. Any lack of accuracy in assigning the correct energy to the magnetic ground state should

be occasion to question the approximations introduced in the present chapter. In the following

chapter, we will introduce the multipole theory with a focus on magnetic multipoles.



Chapter 3

Multipole theory

The expansion of fields in orders of multipole moments is a widely used concept in electromag-

netism and consequently it finds applications in many areas of physics. For instance, in classical

electromagnetism it is used to characterize radiation [127, 128], in particle physics it is exploited

to describe a particle’s motion in various fields [129–131], in nuclear physics it enables the calcu-

lation of form factors [132–138] and in solid-state physics it is increasingly devised to characterize

many-body states [139–150].

The arguably most widely known application of multipole theory is the discussion of atomic

orbitals. They can be found in many text books [152, 153] and their angle dependencies, i.e., the

real spherical harmonics, are shown in Figure 3.1. Let us recall that the solution of the scalar

Poisson equation with a point charge acting as a source is found by separation of variables into

a radial and a spherical problem. The scalar potential can subsequently be expressed in terms of

electric multipole moments1 of order2 l and integer m with −l ≤ m ≤ l. This result leads to

the well-known atomic orbitals, which describe the probability density of an electron with angular

momentum quantum number l and magnetic quantum number m.

In this chapter, we want to apply the multipole theory to magnetic structures in crystallographic

unit cells. In contrast to the discussion of electric multipoles of atomic orbitals, we need to consider

the vector gauge field instead of the scalar potential and arrive at time-reversal odd multipole

1Also referred to as scalar, polar or tensor multipoles. The multitude of names for electric multipole moments

arises from its symmetry properties: It transforms like a tensor of rank l under both proper and improper rotation.

Improper rotations are rotation followed by reflection. In other words, the electric multipole moments have a parity

of (−1)l. Such quantities are called scalar for rank 0, polar vector for rank 1 and (polar) tensors for rank greater

1. The parity is merely a result of the symmetry properties of spherical harmonics at the corresponding expansion

order. On the other hand the name electric implicitly carries the meaning of the most important symmetry property:

The electric multipole moment is invariant under time-reversal symmetry. Nevertheless, all names can be found in

literature and it is useful to know their correspondence.
2Also referred to as rank. Again, this revers to the fact that a multipole of expansion order l transforms like a

tensor of rank l.

24
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Figure 3.1: Atomic orbitals. Order is increasing from top to bottom with l = 0, 1, 2, 3 corresponding

to s, p, d and f . These are real harmonics as defined in Equation (3.38). Columns to the left

(right) correspond to Y
(s)
lm (Y

(c)
lm ) with increasing m to the left. Yl0 is always real. Visualized using

Mathematica [151].

moments3. Here, we are primarily interested in multipoles on an inter-atomic length scale. In fact,

as mentioned in Section 1.1, the discussion of magnetic structures in terms of multipole moments

has recently proven to be useful in order to explain a multitude of phenomena. Here, we will discuss

the derivation of the general form of vector gauge fields starting from Maxwell’s equations. Then,

we will arrive at specific expressions for the time-reversal odd multipoles and examine the so-called

cluster multipole theory. In the last section, we will show a complete cluster multipole expansion

for some representative structures.

3.1 The vector Poisson equation and its solution

The Maxwell equations read

∇×B(r, t) = 4πjtot(r, t) +
∂

∂t
E(r, t), (3.1a)

∇ ·E(r, t) = 4πρtot(r, t), (3.1b)

∇×E(r, t) = − ∂

∂t
B(r, t), (3.1c)

∇ ·B(r, t) = 0, (3.1d)

3The time-reversal odd, magnetic multipole moments have been called axial or pseudotensor multipole moments

in analogy to the terms used for electric multipoles.
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where the B and E are the magnetic and electric fields with sources jtot and ρtot. In general, the

charge and current densities have convective contributions, i.e., external and orbital, and bound

contributions4:

ρtot(r, t) = ρconv(r, t) + ∇ · P (r, t), (3.4a)

jtot(r, t) = jext(r, t) + jorb(r, t) +
∂

∂t
P (r, t) + ∇×M(r, t), (3.4b)

with convective charge density ρconv, polarization P , magnetization M and external current jext.

Here, we are interested in the static limit with no external sources such that jtot in Equation (3.1a)

becomes

j(r) = jorb(r) + ∇×M(r). (3.5)

Motivated by Equation (3.1d), we now make an ansatz for the magnetic field B(r) = ∇×A(r) in

terms of a vector gauge field A(r). By inserting into Equation (3.1a), we readily find5

∇2A(r) = −4πj(r) (3.6)

in the so-called Coulomb gauge ∇·A(r) = 0. This is the vector Poisson equation that shall be solved

in this section. Here, we merely sketch the main steps, while for details on solving Equation (3.6)

we refer the reader to Appendix B.

First, the homogeneous vector Poisson equation is solved by rewriting the problem in terms

of spherical components and performing a separation in radial and spherical variables for each

component of the vector gauge field. Note that, A(r) is a vector and, thus, it is a rank 1 tensor

with three components. Each component is found to have a spherical dependence given in terms of

spherical harmonics Ylm(Ω). We then formally couple the spherical harmonics—that describe the

spherical dependence of each spherical component of the vector gauge field—with the spherical unit

vector, that describes the three degrees of freedom of coordinate space. This yields a general form

of the vector gauge field in terms of so-called vector spherical harmonics. The latter are defined as

Y l1
pq(Ω) =

l∑
m=−l

1∑
m′=−1

〈lm1m′|pq〉Ylm(Ω)e1m′ , (3.7)

l2 Y l1
pq(Ω) = l(l + 1)Y l1

pq(Ω). (3.8)

4For instance, for a Dirac spinor Ψ as introduced in Section A.2, the convective contributions read

ρconv = µB

[
Ψ̄
∂Ψ

∂t
−
(
∂Ψ̄

∂t

)
Ψ

]
+
e2φ

m
Ψ̄Ψ, (3.2)

and

jorb = iµB
[
Ψ̄∇Ψ− (∇Ψ̄)Ψ

]
, jext =

e2A

m
Ψ̄Ψ. (3.3)

5∇×∇×A = εijk∂jεklm∂lAm = (δilδjm − δimδjl)∂j∂lAm = ∇(∇ ·A)−∇2A
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Here, Ylm(Ω) are spherical harmonics and e1m′ are spherical unit vectors, which are coupled to each

other via the Clebsch–Gordon coefficient 〈lm1m′|pq〉 [154]. Note that, by construction the angular

momentum quantum number l = p − 1, p, p + 1, as p is the “total angular momentum” resulting

from coupling the rank 1 tensor e1m′ and the eigenstate of the angular momentum operator l.

The Coulomb gauge acts as an additional constraint on the form of the general solution A(r), and

contributions l = p − 1 are found to always vanish in this gauge. The vector gauge field takes on

the following general form6:

A(r) =

∞∑
p=1

p∑
q=−p

[
Mp1
pq

1

rp+1
Y p1
pq(Ω) + T p+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
. (3.9)

Here, Mp1
pq are magnetic (M) multipole coefficients, T p+1,1

pq are magnetic toroidal (MT) multipole

coefficients. Physically, both, M and MT, multipole moments are magnetic, i.e., as we will see

momentarily they have a time-reversal odd behaviour T = −1. However, they are fundamentally

distinct in the sense that at expansion order p, the M multipole has a parity P = (−1)p+1 as can

be seen from Equation (3.7), while the MT multipole has a parity P = (−1)p+2 or equally (−1)p.

The significance of such MT multipoles is a matter of continued discussion [155]. Let us point

out here, that the observable magnetic field is expressed in terms of M multipoles only, because

∇× 1
rp+2Y

p+1,1
pq (Ω) ≡ 0. The magnetic field B(r) = ∇×A(r) generally reads

B(r) = −i

∞∑
p=0

p∑
q=−p

√
p(2p+ 1)Mp1

pq

1

rp+2
Y p+1,1
pq (Ω). (3.10)

An equivalent expression is given in Ref. [155]. Consequently, we want to broach that any magnetic

density M(r) that causes the emergence of a surrounding magnetic field carries an M multipole

moment Mp1
pq .

More insight can be gained by determining explicit expressions for the M multipole coefficients

Mp1
pq and the MT multipole coefficients T p+1,1

pq . To this end, the Green’s function method and an

appropriate ansatz is employed, as discussed in Section B.3. Let us highlight some intricacies of the

derivation: Due to the general orthogonality relation for vector spherical harmonics the problem

immediately falls apart into M multipole and MT multipole solutions. The Green’s function method

yields a simple result for both types of multipoles, that reads

Mp1
pq =

4π

2p+ 1

∫
d3r rpY ∗p1pq (Ω) · j(r), (3.11)

T p+1,1
pq =

4π

2p+ 3

∫
d3r rp+1Y ∗p+1,1

pq (Ω) · j(r), (3.12)

where j(r) is given by Equation (3.5).

In principle, there is no need to further rewrite these expressions, however in practice it is

useful to arrive at a formulation where the fundamental source of magnetization, i.e., the spin and

6See Appendix B.
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angular momentum, are the source of the multipoles. A lengthy exercise of algebra and partial

integration—that can be found in Section B.3—leads to the following expressions

Mp1
pq = − 4πi

2p+ 1

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × jorb(r)√
p(p+ 1)

+

√
p+ 1

p
M(r)

]
, (3.13)

and

T p+1,1
pq =

−4π√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × r × jorb(r)

p+ 2
+ r ×M(r)

]
. (3.14)

The first terms in brackets, that is in terms of the orbital current jorb(r), in Equation (3.13) and

Equation (3.14), are used to describe convective contributions. For instance, one should avoid only

considering the magnetic dipole7 arising due to the orbital angular momentum operator l̂ acting on

the ith electron at position ri and instead use the definition of the convective current operator8,

which yields

r × ĵorb(r) = −µB

N∑
i=1

[lδ(r − ri) + δ(r − ri)l] . (3.15)

The second terms in brackets, on the other hand, that is in terms of magnetization M(r), in

Equation (3.13) and Equation (3.14), are useful to describe fields arising from bound currents

jm(r) = ∇×M(r). For instance, a set of magnetic dipoles distributed in space or a set ofN intrinsic

magnetic moments due to the electronic spin give rise to the spin-magnetization M(r) = m(s)(r)

defined in Equation (2.32). We recall that the spin-magnetization operator is defined as given in

Equation (2.34), i.e.

m̂(s)(r) = −µB

N∑
i=1

δ(r − ri)σ.

Combining the last two equations with Equation (3.13) and Equation (3.14), we can write the

quantum mechanical M multipole operator M̂p1
pq and the MT multipole operator T̂ p+1,1

pq for an

electron cloud as

M̂p1
pq =

4πiµB

2p+ 1

√
p+ 1

p

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
N∑
i=1

[
[lδ(r − ri) + δ(r − ri)l]

p+ 1
+ δ(r − ri)σ

]
,

(3.16)

T̂ p+1,1
pq =

4π µB√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
N∑
i=1

[
r × [lδ(r − ri) + δ(r − ri)l]

p+ 2
+ r × δ(r − ri)σ

]
.

(3.17)

7Note that M l(r) = −µBL(r) with L(r) = 1
2

Tr
{∑N

i=1

[̂
lδ(3)(r − ri) + δ(3)(r − ri )̂l

]}
would neglect higher

order multipoles arising from the orbital angular momentum.
8See Section A.2 and Section B.5.
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il

i( ̂r × l)
̂r

Yp−1,1
pq

Figure 3.2: Schematic view of the direction of Y p−1,1
pq in the space spanned by r̂ = r/r, il = r ×

and i(r̂ × l). Inspired by Fig. A 1 in Ref. [140].

Here, the only reason we refrain from integrating over d3r by making use of the delta function

to evaluate the integral kernel at ri is that ∇
(
rpY ∗pq(Ω)

)
contains an operator that has not been

applied, though this step can be explicitly done in practice without hesitation. On a different note,

this is a good opportunity to check our claim that M̂p1
pq and T̂ p+1,1

pq are time-reversal odd. We recall

that, the spin magnetization and the orbital angular momentum are time-reversal odd and, thus,

Equations (3.16) and (3.17) are too. Analogous expressions have been first derived by H. Kusunose

and S. Hayami [59,140].

Let us further emphasize that ∇
(
rpY ∗pq(Ω)

)
is a vector, which is directly connected to a vector

spherical harmonic. It is instructive to consider the direction of this vector spherical harmonic in

coordinate space. To this end, we recall the following relations

∇ (rpYpq) =
√
p(2p+ 1)rp−1Y p−1,1

pq , (3.18)

Y p−1,1
pq (Ω) =

1√
p(2p+ 1)

(pr̂ − ir̂ × l)Yp,q(Ω), (3.19)

where r̂ = r/r. The direction, which is schematically shown in Figure 3.2, hence depends on the

expansion order p. Based on that, it is possible to carefully construct an MT density MMT (r; p, p′)

for given expansion orders p and p′ that satisfy the following MT conditions

Y p−1,1
pq (Ω) ·MMT (r; p, p′) = 0, (3.20a)

Y p′−1,1
p′q′ (Ω) ·

(
r ×MMT (r; p, p′)

)
6= 0, (3.20b)

such that the bound M multipole moment in Equation (3.13) at p vanishes, but the bound MT

moments in Equation (3.14) at p′ is finite. This is an intriguing observation, because it grants

access to the manipulation of A(r) by means of a magnetic configuration with concomitant stray

fields with minimal coupling to the surrounding. An article by N. Papasimakis et al. [150] discusses

the toroidal excitations on a rudimentary level and draws a picture of a new field in its infancy.

Applications might be found in combination with the Aharonov–Bohm effect [156] in the field of

spintronics [3] and skyrmion dynamics [157,158].
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Let us emphasize that the direction of ∇
(
rpY ∗pq(Ω)

)
depends on the order p, as can be readily

seen from Equation (3.19). Hence, the MT condition given in Equation (3.20) can only be satisfied

for specified orders p and p′. In other words, every magnetic toroidal multipole moment has a

corresponding finite M multipole moment at some expansion order. Consequently, it is not possible

to define a magnetic density, whose gauge vector field consists of only MT moments, although it is

possible to carefully choose at which expansion order M multipoles appear. This can be exploited in

connection with the discussion of the shape of the linear response tensor by W. Kleiner, M. Seemann

and coworkers [5, 6, 43,159].

A pure M multipole moment, on the other hand, can be easily constructed, invoking

r ×MM (r) = 0. (3.21)

Here, MM (r) is the magnetic density corresponding to a pure magnetic multipole with no toroidal

contribution at any order in the vector gauge field.

In the scope of this thesis, we are interested in constructing all possible magnetic structures,

which can be expressed in terms of M(r). In general, it is true that M multipole gauge fields AM

and MT multipole gauge fields AMT are orthogonal to each other by construction:

AM ⊥ AMT, (3.22)

with

AM =

∞∑
p=0

p∑
q=−p

Mp1
pq

1

rp+1
Y p1
pq(Ω), (3.23)

AMT =

∞∑
p=0

p∑
q=−p

T p+1,1
pq

1

rp+2
Y p+1,1
pq (Ω). (3.24)

This is a result of the orthogonality of vector spherical harmonics, which reads∫
dΩY ∗L1

PQ (Ω) · Y l1
pq(Ω) = δLlδPpδQq. (3.25)

Yet, AM and AMT have different sources as seen in Equation (3.13) and Equation (3.14).

The magnetic structures associated to these sources, i.e., the magnetic structures giving rise to M

multipoles MM and MT multipoles MMT, are NOT generally orthogonal to each other:

MM 6⊥MMT. (3.26)

One might therefore choose to construct a basis for magnetic configurations either by expanding in

magnetic multipoles or in magnetic toroidal multipoles9. We recall that, it is possible to construct

9With this the present thesis follows a different approach than the pioneering work by M.-T. Suzuki et al. in

Ref. [48].
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Figure 3.3: The magnetic density M cl given in Equation (3.27) composed of four magnets pointing

counterclockwise with their north pole. The red and blue axis are symmetry axis, when reflection

is followed by time reversal operation.

magnetic densities, which completely lack MT coefficients, hence we should not construct magnetic

densities based on MT sources. In order to avoid a blind spot, we believe it is better to create all

possible magnetic densities based on the M multipole expansion. In the next section, we will solve

a toy model, which is meant to build intuition before constructing the so-called cluster multipole

expansion for magnetic structures.

3.2 Example of four bar magnets

As a little warm up exercise, let us consider four bar magnets arranged in the xy-plane such that

they obey the point group C4. As shown in Figure 3.3, the northpole of each magnet points counter-

clockwise. Applying the time-reversal operation flips all magnets and reflection at any of the four

planes also flips all magnets. Hence, this system has T = −1 and P = −1.

Let us compute the vector gauge field A(r) and the magnetic field B(r) surrounding this

configuration of magnets. To this end, we determine the M multipole coefficients and the MT

multipole coefficients devisingEquation (3.13) and Equation (3.14). The proposed arrangement of

bar magnets can be expressed by the following magnetization density:

Mb(r) =

4∑
i=1

miδ
(3)(r − r̂i), (3.27a)

mi = (r̂i × ẑ)µB, (3.27b)

r̂1 = −r̂3 = (1, 0, 0)T , (3.27c)

r̂2 = −r̂4 = (0, 1, 0)T . (3.27d)



CHAPTER 3. MULTIPOLE THEORY 32

3

1

4

7

p

8

10

2

5

6

9

q

Figure 3.4: Quantitative solution of Equation (3.28) corresponding to the magnetic multipole coef-

ficients for the arrangement shown in Figure 3.3.

We compute the coefficients

Mp1
pq = − 4πi

2p+ 1

√
p+ 1

p

∫
d3r∇

(
rpY ∗pq(Ω)

)
·Mb(r), (3.28)

T p+1,1
pq =

−4π√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
(
r ×Mb(r)

)
(3.29)

using for instance Mathematica [151]. The lowest order M multipole coefficients, that are nonzero,

are obtained for the tuples (p, q) = (4, 4) and (4,−4):

M41
44 = −M41

4,−4 = −5

3

√
14π. (3.30)

Higher orders appear systematically, in analogy to higher order harmonics in a Fourier analysis of

a discrete function, see Figure 3.4.

The magnetic field up to corrections O(1/r8) is obtained using Equation (3.10) and Equa-

tion (3.30):

B(r) = −i6
M41

44

r6

[
Y 51

44(Ω)− Y 51
4,−4(Ω)

]
+O(1/r8) (3.31a)

= −20
√

7π
1

r6

i√
2

[
Y 51

44(Ω)− Y 51∗
4,4 (Ω)

]
︸ ︷︷ ︸

∈R

+O(1/r8). (3.31b)

Here, we used that the complex conjugate of a vector spherical harmonic is given by

[Y l1
pq(Ω)]∗ = (−1)p+q+l+1Y l1

p−q(Ω). (3.32)
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Figure 3.5: Quantitative solution of Equation (3.29) corresponding to the magnetic toroidal multi-

pole coefficients for the arrangement shown in Figure 3.3.

Therefore, the magnetic field in Equation (3.31) is indeed real. Next, let us compute the leading

order MT multipole coefficient. The reader might have guessed that this arrangement of magnets

yields an MT contribution for p = 1. It renders as

T 21
10 =

4

3

√
2π. (3.33)

Again, there are higher order harmonics of this MT multipole coefficient up to infinite order, as

shown in Figure 3.5.

In summary, the vector gauge field of the configuration of magnets shown in Figure 3.3 is given

by

A(r) = AM (r) +AMT (r), (3.34a)

AM (r) = M41
44

1

r5

[
Y 41

44(Ω) + Y 41∗
44 (Ω)

]
+O(1/r7) (3.34b)

AMT (r) = T 21
10

1

r3
Y 21

10(Ω) + T 41
30

1

r5
Y 41

30(Ω) +O(1/r7). (3.34c)

It is thus dominated by its MT contribution. The leading order multipole gauge field and magnetic

field is shown in Figure 3.6. In particular, Figure 3.6 (a) shows the magnetic hexadecapole gauge

field corresponding to p = 4 in Equation (3.34b). We see that AM points in z-direction and is the

vector analog of the real spherical harmonic Y slm with l = 4 and m = 4 of Equation (3.38), which is

shown in Figure 3.7 (a). In other words, Figure 3.7 (a) presents the gxy(x2−y2)-orbital. The scalar

analogs of higher order contributions that can be extracted from Figure 3.4 are shown in Figure 3.7

(b)-(d).
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(a) magnetic hexadecapole 
gauge field 

(b) magnetic toroidal dipole 
gauge field 

(c) magnetic field of  
magnetic hexadecapole 

Figure 3.6: The leading order fields emerging from the arrangement of four bar magnets. (a)

Magnetic hexagonal gauge field given in Equation (3.34b), (b) magnetic toroidal dipole gauge field

given by the firs term in Equation (3.34c), and (c) Magnetic field of a magnetic hexadecapole given

in Equation (3.31).
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Figure 3.7: Real harmonics defined by Equation (3.38), that are related to the non-zero multipole

coefficients in Figure 3.4. (a) gxy(x2−y2)-orbital with l = 4 m = 4, (b) l = 6 m = 4, (c) l = 8 m = 4,

and (d) l = 8 m = 8. Visualized using Mathematica [151].

The MT dipole gauge field in Equation (3.34c) also points in z-direction, yet integrated over

all angles it is orthogonal to the M multipole as expected. As already mentioned in the paragraph

below Equation (3.44), the symmetry properties for M multipoles are given by

T = −1, P = (−1)p+1, (3.35)

while the symmetry properties for MT multipole moments are given by

T = −1, P = (−1)p. (3.36)

Hence, due to the parity of the arrangement of magnets, only every second order of multipoles is

allowed to be nonzero. Consequently, the correction terms in Equation (3.34) are one order higher

than one might naively expect. We note that the calculated leading order p = 4 and 1 for M

and MT multipole gauge field, respectively, agree with the observation we made when explicitly

applying time-reversal and parity transformation to Figure 3.3 at the beginning of this section.

Let us highlight that, clearly, the same magnetic configuration gives rise to both magnetic

multipoles and magnetic toroidal multipoles. This illustrates the argument we gave in the end

of the previous section about why we focus on the magnetic multipole moments and neglect the

magnetic toroidal moments in the cluster multipole expansion, which will be the focus of the

succeeding section. Furthermore, this example illustrated that very specific linear combinations of

spherical harmonics appear in the expansion of the vector gauge field. In the subsequent section,

we will continue by generalizing this idea.

3.3 Cluster multipole expansion

In Section 3.1, we have derived the explicit form of magnetic (M) and magnetic toroidal (MT)

multipoles and applied it to an electron cloud. In the previous section, we have applied the multipole

theory to a discrete system of four bar magnets as a little warm up exercise. In the present section,
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we want to apply multipole theory to real materials and, hence, our main focus is the point group

symmetry of the underlying crystal.

3.3.1 Point group harmonics

A point group is a group of symmetry operations that leave a finite object invariant. The elements

are confined to rotations and their combinations with inversion about a fixed point of that object

[160]. There are 32 crystallographic point groups, which all derive from the cubic (Oh) or hexagonal

(D6h) point group.

Point group harmonics [161] are linear combinations of spherical harmonics that are invariant

under the action of elements of a given point group:

YpΓγ(Ω) =

p∑
q=−p

c(Γγ)
pq Ypq(Ω) (3.37)

The determination of these linear combinations, i.e. the coefficients c
(Γγ)
lm , can be derived system-

atically from the reduction of all irreducible representations (irrep’s) of the rotation group O(3).

Depending on the dimension of the irrep Γ, there are correspondingly many point group harmonics—

also referred to as basis functions or components—that are labeled by γ in Equation (3.37).

Commonly, one distinguishes cubic harmonics and hexagonal harmonics, that are invariant

under Oh and D6h, respectively. Note that neither of them are exactly equivalent to the well-

known real harmonics, which read

Y
(c)
lm (Ω) =

1√
2

(Yl−m(Ω) + (−1)mYlm(Ω)) =
√

2(−1)mRe [Ylm(Ω)] (3.38a)

Y
(s)
lm (Ω) =

i√
2

(Yl−m(Ω)− (−1)mYlm(Ω)) =
√

2(−1)mIm [Ylm(Ω)] , (3.38b)

with m > 0 in the Condon–Shortley phase convention. Instead, they are often defined as a linear

combinations of real harmonics, though being real is not a necessary condition for point group har-

monics. Another crucially different property of point group harmonics compared to real harmonics

is their behaviour in a sum of products [140]

l∑
m=−l

Ylm(Ω)Y ∗lm(Ω) =

l∑
m=1

[
Y

(c)
lm (Ω)Y

(c)∗
lm (Ω) + Y

(s)
lm (Ω)Y

(s)∗
lm (Ω)

]
+ Yl0(Ω)Y ∗l0(Ω) (3.39)

p∑
q=−p

Ypq(Ω)Y ∗pq(Ω)
O(3)→ point group−→

∑
Γγ

YpΓγ(Ω)Y∗pΓγ(Ω) (3.40)

In 1929, H. Bethe [162] published a method to deduce cubic harmonics and a table up to order

p = 4. Since then, many iterative methods have been proposed and tables published [161,163–171].

For a recent version—in direct connection with the multipole formalism discussed in this thesis—see

Table 1 and 2 for cubic harmonics and Table 12 and 13 for hexagonal harmonics in Ref. [155] by
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order irrep γ definition linear combination

1 T1u 1 x (11)

2 y (11)’

3 z (10)

2 Eg 1 1
2 (3z2 − r2) (20)

2
√

3
2 (x2 − y2) (22)

T2g 1
√

3yz (21)’

2
√

3zx (21)

3
√

3xy (22)’

3 A2u 1
√

15xyz (32)’

T1u 1 1
2x(5x2 − 3r2) 1

2
√

2

[√
5(33)−

√
3(31)

]
2 1

2y(5y2 − 3r2) − 1
2
√

2

[√
5(33)′ −

√
3(31)′

]
3 1

2z(5z
2 − 3r2) (30)

T2u 1
√

15
2 x(5y2 − z2) − 1

2
√

2

[√
3(33) +

√
5(31)

]
2 1

2y(5z2 − x2) − 1
2
√

2

[
−
√

3(33)′ −
√

5(31)′
]

3
√

15
2 z(x2 − y2) (32)

Table 3.1: Cubic harmonics sorted by expansion order and irreducible representation (irrep) with

components (γ). (lm) and (lm)′ correspond to real harmonics Y
(c)
lm and Y

(s)
lm given in Equa-

tion (3.38). See Ref. [155] for higher orders.
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S. Hayami and coworker. In Table 3.1 we provide the first three orders of the cubic harmonics for

the reader’s convenience and better understanding without immediately referring to Ref. [155].

Finally, we can make liberal use of Equation (3.40) in all expressions we have derived thus far,

because the point group harmonics are defined to be complete and orthogonal:

∞∑
p=1

∑
Γγ

YpΓγ(Ω)Y∗pΓγ(Ω′) = δ(Ω− Ω′) (3.41)∫
dΩYpΓγ(Ω)Y∗p′Γ′γ′(Ω) = δpp′δΓΓ′δγγ

′, (3.42)

for all expansion orders p, irreducible representations Γ and components γ.

3.3.2 Multipole expansion on a point form

According to the International Tables for Crystallography [172] a point form is a set of all symmet-

rically equivalent points for a given point group. All possible point forms for a given point group

are classified into Wyckoff positions of point forms. This name has been chosen in analogy to the

Wyckoff positions of space groups. The multiplicity is the number of points in a point form. For

a general point form, the multiplicity is equal to the order of the point group. For special point

forms, on the other hand, the multiplicity is lower than the order of the point group.

A crystal may contain multiple inequivalent sites and thus multiple point forms. In the following

we will define a magnetic cluster to be a magnetic site on a point form. We can write a general

magnetization density of a magnetic cluster as

M(r) =

N∑
i=1

miδ
(3)(r − ri), (3.43)

where mi is the on-site magnetic dipole moment at position ri. The sum goes over all points of a

magnetic site in a point form—or in other words over all points in the magnetic cluster—where N

is the multiplicity.

The gauge field can now be written as

A(r) =

∞∑
p=0

∑
Γγ

[
Mp1
pΓγ

1

rp+1
Yp1
pΓγ(Ω) + T p+1,1

pΓγ

1

rp+2
Yp+1,1
pΓγ (Ω)

]
. (3.44)

Here, we introduced vector point group harmonics in analogy to vector spherical harmonics and the

point group magnetic multipole moment Mp1
pΓγ and the point group MT multipole moment T p+1,1

pΓγ .

These can be explicitly computed by means of

Mp1
pΓγ =

4π

2p+ 1

√
p+ 1

p

∫
d3r

N∑
i=1

∇ (rpYpΓγ(Ω)) ·miδ
(3)(r − ri), (3.45a)

T p+1,1
pΓγ =

4π√
(p+ 1)(2p+ 1)

∫
d3r

N∑
i=1

∇ (rpYpΓγ(Ω)) · (r ×mi) δ
(3)(r − ri). (3.45b)
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The imaginary unit in the definition of Mp1
pΓγ is absorbed into the point group harmonics as we saw

in the example of four bar magnets in Section 3.2. Furthermore, the point group harmonics are

chosen real, such that we can drop the complex conjugation of YpΓγ(Ω).

It is possible to compute all point group M and MT multipoles for an arbitrary magnetic con-

figuration using Equation (3.45). For notational simplicity, we express the magnetic configuration

as a ket-vector

|m〉 = (m1,m2, ...,mN )
T
, (3.46)

where mi is the ith on-site magnetic dipole moment, which is experimentally directly observable

by e.g. neutron diffraction and arises due to the spin and/or the angular momentum. Hence, here

we take on a simplified view, that ignores higher order magnetic moments and convective effects on

the atomic scale. This is because from an experimental viewpoint we cannot measure the spin and

orbital contribution to the on-site magnetic dipole moment separately. |m〉 defines the magnetic

structure well-enough for our purpose, but should not be mistaken as a many-body state of N

particles with good quantum number mi or the spin-magnetization m(r) as it was introduced in

Chapter 2. Instead, the state |m〉 lives in the space of all possible uniform magnetic configurations.

We can formally span this space of all possible uniform magnetic configurations by means of a

complete set of orthogonal magnetic configurations:{
|n〉 =

(
e

(n)
1 , e

(n)
2 , ..., e

(n)
N

)T }
, (3.47a)

1

N

3N∑
n=1

|n〉 〈n| = 13N×3N , (3.47b)

〈n|n′〉 =

N∑
i=1

e
(n)
i · e(n′)

i = N δnn′ . (3.47c)

Here, we define the basis vector e
(n)
i at position ri. We will refer to this basis as a cluster multipole

(CMP) basis of a single cluster. In contrast to a traditional multipole expansion, the cluster

multipole expansion suspends all higher harmonics. Therefore, the maximum expansion order of

the CMP expansion and, thus, the number of elements in the CMP basis is 3N , which corresponds

to three rotational degrees of freedom of the on-site magnetic moment on N points in the point

form.

It is now our task to find a suitable choice of |n〉 in order to span the space of all possible uniform

magnetic configurations. To this end, let us compute the inner product of a CMP basis element

and an arbitrary magnetic configuration:

〈n|m〉 =

N∑
i=1

e
(n)
i ·mi. (3.48)
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The inner product is defined through Equation (3.47c). Let us compare this expression to a slightly

rearranged Equation (3.45a):

Mp1
pΓγ =

N∑
i=1

4π

2p+ 1

√
p+ 1

p

∫
d3r δ(3)(r − ri)∇ (rpYpΓγ(Ω)) ·mi. (3.49)

We now identify the projection of a magnetic configuration onto a CMP basis element with the

point group M multipole moment Mp1
pΓγ . However additionally, we want to invoke the normalization

we have imposed on the CMP basis in Equation (3.47). Let us introduce a dummy vector |upΓγ〉
as a first step. The components of |upΓγ〉 are taken from Equation (3.49):

|u1Γγ〉 =
(
u1Γγ

1 ,u1Γγ
2 , ...,u1Γγ

N

)T
, (3.50)

upΓγi =
4π

2p+ 1

√
p+ 1

p

∫
d3r δ(3)(r − ri)∇ (rpYpΓγ(Ω)) . (3.51)

The next step is a Gram–Schmidt orthonormalization of |upΓγ〉 starting from the lowest order

p = 1:

|vpΓγ1 〉 =
|upΓγ〉√
〈upΓγ |upΓγ〉

, (3.52)

|wpΓγn 〉 = |upΓγ〉 −
n−1∑
n′=1

〈vpΓγn′ |upΓγ〉|vpΓγn′ 〉, (3.53)

|vpΓγn 〉 =
|wpΓγn 〉√
〈wpΓγn |wpΓγn 〉

. (3.54)

This orthonormalization procedure yields 3N basis elements |vpΓγn 〉 of spanning the space of all

possible uniform magnetic configurations. However, we want to avoid the on-site magnetic moment

to be smaller with increasing number of magnetic sites. So we invoke Equation (3.47c) to finally

obtain

|n〉 =
√
N |vpΓγn 〉. (3.55)

This procedure defines the CMP basis for a single point form. This method has been originally

proposed by M.-T. Suzuki and coworkers [48, 173]. In the subsequent section, we will extend this

idea to multiple point forms.

3.3.3 Multipole expansion in real materials

A real material may have multiple inequivalent magnetic sites that form independent clusters

c1, c2, ..., cd. The space of all possible uniform magnetic configurations is then spanned by the

product space of the CMP bases of all contained point forms:

{|nc1〉 ⊗ |nc2〉 ⊗ · · · ⊗ |ncd〉} , (3.56)
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(c)  NiS2(b)  LuFeO3

top viewexperimental magnetic structure of GdB4

Figure 3.8: The experimental magnetic configuration of GdB4 as reported in Ref. [174]. The black

box indicates the boundaries of the unit cell. The structure is shown from two viewpoints visualized

using VESTA [31].

where
∣∣ncj

〉
is the CMP basis for the jth cluster with multiplicity N (cj).

Let us now define the CMP coefficient

M (cj)
n =

〈
m|ncj

〉
, (3.57)

that is closely related to the point group M multipole coefficient Mp1
pΓγ as can be seen by compar-

ison of Equation (3.48) and Equation (3.49). Based on the above, an arbitrary uniform magnetic

configuration in a crystal can be expanded as

|m〉 = |mc1〉 ⊗ |mc2〉 ⊗ · · · ⊗ |mcd〉 , (3.58)

∣∣mcj

〉
=

1

N (cj)

3N(cj)∑
n=1

M (cj)
n

∣∣ncj

〉
. (3.59)

At last, let us devise the CMP expansion to characterize a magnetic structures that has been

measured experimentally. We look at entry 0.9.mcif on MAGNDATA, which correspond to GdB4.

The magnetic structures has been reported in Ref. [174] and can be seen in Figure 3.8 from two

viewpoints. At first glance the magnetic configuration of GdB4, shown in Figure 3.8, closely re-

sembles the example of four bar magnets we have discussed in Section 3.2. There are 4 points in a

Gd-cluster with position ri and on-site magnetic moment mi:

r1 = (0.31746, 0.81746, 0), m1 = (−0.49576,−0.49576, 0) (3.60a)

r2 = (0.18254, 0.31746, 0), m2 = (0.49576,−0.49576, 0) (3.60b)

r3 = (0.81746, 0.68254, 0), m3 = (−0.49576, 0.49576, 0) (3.60c)

r4 = (0.68254, 0.18254, 0), m4 = (0.49576, 0.49576, 0). (3.60d)

The ambitious reader may have implemented the calculation of the M multipole coefficients and

is able to quickly verify the result shown in Figure 3.9. This is achieved using Equation (3.28)

http://webbdcrista1.ehu.es/magndata/index.php?index=0.9
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Figure 3.9: The magnetic multipole moments at different order p and magnetic quantum number q

as defined in Equation (3.28) for the experimental magnetic configuration of GdB4 as reported in

Ref. [174] shown in Figure 3.8 and stated in Equation (3.60).

for the M multipole coefficient Mp1
pq . Interestingly, the leading order M multipole coefficient cor-

responds to a quadrupole gauge field, instead of a hexadecapole as in the toy model despite the

superficial resemblance. And notably the coefficients Mp1
pq are complex. The M quadrupole gauge

field AM(r)—as defined in Equation (3.23)—is real, which can be checked by inserting M21
20 from

Figure 3.9 to find

AM(r) = M21
20

1

r3
Y 21

20(Ω) +O(
1

r5
), (3.61)

and noting that Y p1
p0 is purely imaginary. This can be inferred from some useful identities, which

are extensively used in Appendix B:

Y p−1,1
pq (Ω) =

1√
p(2p+ 1)

(pr̂ − ir̂ × l)Yp,q(Ω), (3.62)

Y p,1
pq (Ω) =

1√
p(p+ 1)

lYp,q(Ω), (3.63)

Y p+1,1
pq (Ω) =

−1√
(p+ 1)(2p+ 1)

((p+ 1)r̂ + ir̂ × l)Yp,q(Ω), (3.64)

These are derived step-by-step in Section B.7. One may also check that the leading order magnetic

field is real-valued, i.e., physical, by inserting M21
20 from Figure 3.9 into Equation (3.10) and this

time noting that Y p+1,1
p0 is purely real.

Turning our attention back to the CMP expansion of GdB4, we find that N = 4 Gd atoms

must yield 12 magnetic configurations in the CMP basis. These are computed by means of the

Gram–Schmidt procedure outlined in the previous section, see Equation (3.54). The complete

CMP basis for GdB4 is shown in Figure 3.10. By a closer look, one may identify | 4 〉 to be exactly

the experimental magnetic configuration shown in Figure 3.8. Consequently, the CMP coefficient of

the Gd-cluster, i.e., M
(Gd)
n = 〈m(GdB4)4)|nGd〉, vanishes for all n 6= 4 for the experimental magnetic

structure |m(GdB4)〉, i.e.,

|m(GdB4)〉 = M
(Gd)
4 | 4 〉. (3.65)
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expansion order (p) 2p multipole

1 2 dipole

2 4 quadrupole

3 8 octupole

4 16 hexadecapole

5 32 32-pole

6 64 64-pole

Table 3.2: The naming convention of multipoles according to their expansion order p.

Compared to the M multipole coefficient Mp1
pq , the CMP coefficient Mn cannot immediately

be used to compute the gauge field or the magnetic field. Only the closely related point group

M multipole coefficients Mp1
pΓγ given in Equation (3.45a) could be used to compute physical fields

using Equation (3.44). This is the price payed for the CMP elements to be orthogonal and must

be kept in mind, when considering the interaction of CMPs with M and MT multipoles in future

projects. Recall, that the close relation between Mn and Mp1
pΓγ allows each n to be traced back to

an expansion order p, irreducible representation Γ and component γ. This allows the CMP basis

elements to be categorized. Conventionally, multipoles are named by the 2p-nomenclature shown in

Table 3.2, where 2p is often replaced by the Greek number up to p = 16. In Figure 3.10 the CMP

basis elements of GdB4 are categorized by the corresponding multipole order, where by construction

the multipole order increases with n. And again we confirm that |4〉 in Figure 3.10 corresponds to

a quadrupole.

3.4 Magnetic domains and linear combinations of cluster

multipoles

In the previous section, we have introduced the cluster multipole (CMP) basis in a pedagogical

way. This scheme to span the space of all uniform magnetic structures in a crystal is deeply rooted

in the symmetry properties of the corresponding crystal. Another concept, that is entrenched with

the crystal symmetry of a magnetic structures, is the idea of magnetic domains. Magnetic domain

walls have been shortly touched upon in Chapter 1 and shall be connected to CMPs in the present

section. Furthermore, we will postulate a heuristic rule, which will play a key role in Chapter 4.

Here, we need to condone some hand waving arguments, but ultimately our heuristic rule will be

statistically validated. We resume on a more or less pedagogical path and introduce these concepts

with the help of a practical example.

Let us consider YMnO3, whose experimental details can be found on MAGNDATA in entry

0.3.mcif. Figure 3.11 shows 18 magnetic configurations that correspond to the CMP basis of

YMnO3. Hence, these 18 magnetic configurations span the space of possible uniform magnetic

configurations on the Mn-cluster in YMnO3. The basis elements are categorized by their expansion

http://webbdcrista1.ehu.es/magndata/index.php?index=0.3
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|1⟩ : |2⟩ : |3⟩ :

|5⟩ : |6⟩ :

|7⟩ : |8⟩ :

|9⟩ : |10⟩ : |11⟩ :

|12⟩ :

|4⟩ :

Octupole

Dipole

Quadrupole

Hexadecapole

Figure 3.10: The complete cluster multipole basis for GdB4 categorized by expansion order. Visu-

alized by Vesta.
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Figure 3.11: Magnetic configurations in the CMP basis of YMnO3.

order from 1 to 6, i.e. from dipole to 64-pole, yet the Gram–Schmidt procedure leads to no 32-

pole. The magnetic configurations within one box—additionally to having the same expansion

order—also share the same irreducible representation (irrep).

3.4.1 Heuristic rule

We now postulate that the magnetic ground state favors either pure CMPs or linear combinations

of CMPs that combine equally weighted CMPs of the same order and same irrep.

This heuristice rule is based on the following physical intuition. From the Landau–Lifshitz

theory of second-order phase transitions we know that the change of the spin-density δn
(s)
σσ′ , that

lowers the symmetry during a phase transition, can be written as a sum over physical irreducible

representations Γ and its components γ:

n
(s)
σσ′ = n

(s)
0σσ′ + δn

(s)
σσ′ , (3.66)

δn
(s)
σσ′ =

∑
Γγ

η(Γ)
γ φ(Γ)

γ . (3.67)

The total free energy F can then be written in even powers of an order parameter η:

F (p, T, η) = F0(p, T ) +
∑

Γ

A(Γ)(p, T )
∑
γ

η(Γ)2
γ︸ ︷︷ ︸

η2

+O(η4), (3.68)
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where p is pressure, T is temperature, and η2 can be expressed by a sum of squares over components

γ. According to the standard Landau theory, there is one Γ for which A(Γ)(p, T ) must change sign

and vanish at the transition point. Therefore it is usually enough to consider the linear combination

of components γ within one irrep at least when T or p is close to the transition point. However, as a

counterexample, within the lower symmetry phase (i.e., far away from the transition point), mixing

among components with different irreps may occur if no further symmetry breaking is induced.

It remains the question why we also expect CMPs of equal expansion order to be more likely

to mix. First, we recall that the point group harmonics YlΓγ(Ω) underlying the CMP expansion

are structured as linear combinations of spherical harmonics Ylm(Ω) of the same order l, such that

they are invariant under the action of elements given a point group with irrep Γ:

YlΓγ(Ω) =

l∑
m=−l

c
(Γγ)
lm Ylm(Ω), (3.69)

so that the CMP basis elements corresponding to a specific order l and irrep Γ always feature all

components at that expansion order. Nevertheless, at different orders the same irrep might appear.

We believe it is more likely that components of the same order mix, because the complexity of the

magnetic configuration increases with the expansion order. Counterexamples are materials where

the magnetic structure has a large collinear contribution and a small tilt introducing noncollinearity.

Following our proposed heuristic rule, we now construct equally weighted linear combinations

of CMP basis elements that have the same order and same irrep. As we have 6 pairs that fulfill

this condition, this leads to additional 12 magnetic configurations. In each instance we consider the

sum and the difference. The resulting configurations for the dipolar magnetic configurations, i.e.,

the red box in Figure 3.11), are shown in Figure 3.12. The upper (lower) row shows the addition

(subtraction) of CMPs. The last column provides a top view of the resulting magnetic configuration.

In the following we will see that the top and the bottom configurations are actually expected to

yield the same total energy and in that sense they are redundant. This is because they are different

domains of the same underlying magnetic configuration. Let us use this example to understand the

notion of magnetic domains.

3.4.2 Magnetic domains

A magnetic domain corresponds to one possible realization of a magnetic structure. Given the

paramagnetic unit cell of a material, the set of all possible symmetry operations yields the space

group (spg). In a magnetic material the spg of the paramagnetic system is often called parent spg,

in contrast to the magnetic space group (mspg). The mspg contains all symmetry operations that

consist of rotations, translations and time reversal, which leave the magnetic unit cell invariant.

When we apply an spg operation, which is not element of the mspg, we obtain a different magnetic

domain, but we explicitly do not change the magnetic structure.

Figure 3.13 presents all possible domains—or magnetic configurations obtained for one magnetic

structure. The starting point is the magnetic configuration we obtained in the top row of Figure 3.12.
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− =

+ =

Figure 3.12: Magnetic configurations corresponding to equally weighted linear combinations of

CMPs with order 1 and same irreducible representation for YMnO3.

Then, an operation which is element of the parent spg combined with both positive and negative

time reversal symmetry is applied. The specific operation is written on top of each resulting

magnetic configuration. Here, the operation is given in BNS convention as used by the Bilbao

Crystallographic Server [175]. The careful reader may have noticed that the magnetic configuration

obtained by application of (x − y,−y, z,−1) exactly agrees with the magnetic configuration we

obtained in the bottom row of Figure 3.12. In other words, these two magnetic configurations

correspond to two domains of the same magnetic structure and we expect the total energy for both

of these magnetic configurations to be exactly the same.

https://www.cryst.ehu.es/cgi-bin/cryst/programs/checkgr.pl?tipog=gmag
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x, y, z, + 1

x − y, x, z + 1
2 , − 1 x − y, x, z + 1

2 , + 1 x, x − y, z + 1
2 , − 1x, x − y, z + 1

2 , + 1

y, x, z, + 1y, x, z, − 1x, y, z, − 1

−y, x − y, z, − 1 −y, x − y, z, + 1x − y, − y, z, − 1 x − y, − y, z, + 1

Figure 3.13: Magnetic configurations corresponding to domains derived from the upper left config-

uration by application of the operation labeling the resulting magnetic configuration. The example

material is YMnO3.



Chapter 4

High-throughput benchmark

CMP+SDFT calculation

The cluster multipole (CMP) expansion for magnetic structures provides a scheme to systematically

generate candidate magnetic structures specifically including noncollinear magnetic configurations

adapted to the crystal symmetry of a given material. A comparison with the experimental data

collected on MAGNDATA shows that the most stable magnetic configurations in nature are linear

combinations of only few CMPs. Furthermore, a high-throughput calculation for all candidate

magnetic structures was performed in the framework of spin-density functional theory (SDFT). We

benchmark the predictive power of CMP+SDFT with 2935 calculations, which show that (i) the

CMP expansion administers an exhaustive list of candidate magnetic structures, (ii) CMP+SDFT

can narrow down the possible magnetic configurations to a handful of computed configurations, and

(iii) SDFT reproduces the experimental magnetic configurations with an accuracy of ±0.5µB. For a

subset the impact of on-site Coulomb repulsion U is investigated by means of 1545 CMP+SDFT+U

calculations revealing no further improvement on the predictive power.

This chapter is almost identical to our manuscript “Benchmark for ab initio prediction of mag-

netic structures based on cluster multipole theory” [176], which is co-authored by T. Nomoto,

M.-T. Suzuki and R. Arita. Text that is clarifying details or needed adjustment to be integrated in this

thesis and, thus, is not part of the published manuscript uses a different font typeface.

4.1 Methods

In this section we shortly discuss the employed methods, namely the CMP expansion and SDFT.

As the CMP expansion is a rather novel approach [48, 145, 177], it has been motivated and set out in

some detail in Chapter 3. However, it will be briefly summarized once again. For more background

and details of the algorithm we refer the reader to Ref. [173]. SDFT, on the other hand, is a

well established method [8, 178]. It is available as part of many ab initio packages [179–184] in its

49
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generalized version [185, 186], which is applicable to noncollinear AFM configurations. Here, we

chose to use VASP [80,81,179] and hence we merely elaborate on the setup details employed in this

study.

4.1.1 Cluster Multipole expansion

The reader unfamiliar with the CMP expansion may want to refer to Chapter 3. Here, we recall

that the cluster multipole (CMP) expansion for magnetic structures [48,173] provides an orthogonal

basis set of magnetic configurations, which are symmetrized based on the crystallographic point

group. In order to motivate the expansion, let us consider the vector Poisson equation:

∇2A(r) = −4π

c
j(r), (4.1)

where j(r) = c∇×M(r) is the current density and M(r) is the magnetization density. Here, the

Coulomb gauge ∇ ·A(r) = 0 is invoked and the potential outside of the magnetization density is

considered. The rotational invariance of ∇2 allows the vector gauge potential A(r) to be expanded

w.r.t. vector spherical harmonics Y l1
pq [140]. Accordingly, the magnetic field B(r) = ∇×A(r) can

be written in terms of magnetic multipole moments M l1
lm as follows [155]

B(r) = −i

∞∑
l=1

l∑
m=−l

√
l(2l + 1)M l1

lm

1

rl+2
Y l+1,1
lm (Ω), (4.2)

where l is the orbital angular momentum quantum number and m magnetic quantum number.

Following M.-T. Suzuki et al. in Ref. [173] the magnetic multipole coefficients for a magnetic

configuration on a point form |m〉 = (m1,m2, ...,mN )
T

read

M l1
lm = − 4πi

2l + 1

√
p+ 1

p

∫
d3r

N∑
i=1

mi ·
[
∇
(
rlY ∗lm(Ω)

)]
δ(3)(r − ri). (4.3)

mi is a local magnetic moment on the magnetic site i at position ri. For a given point group

the point form is a set of all symmetrically equivalent points and can be classified into Wyckoff

positions [172] in analogy to the Wyckoff positions of space groups. Here, N is the multiplicity of

the Wyckoff position of the point form, that constitutes the magnetic configuration. As introduced

by Ref. [173] a point form carrying a magnetic configuration is referred to as (magnetic) cluster in

the context of the CMP expansion for magnetic structures. In contrast to Ref. [173], here we do

not introduce toroidal moments.

Symmetrization according to irreducible representations of the crystallographic point group

allows for a physically meaningful expansion w.r.t. point group harmonics

YlΓγ =
∑
m

c
(Γγ)
lm Ylm, (4.4)

where Γ indicates the irreducible representation and γ its components. Here, the tabulated coeffi-

cients [155] cγlm are chosen to be real valued. With this a virtual cluster [173] is constructed, where
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each magnetic site is assigned a magnetic moment. By mapping lγ → n through a Gram-Schmidt

orthonormalization scheme the CMP basis is computed.

The CMP basis can be written as{
|n〉 =

(
e

(n)
1 , e

(n)
2 , ..., e

(n)
N

)T}
, (4.5)

where e
(n)
i is a unit vector of a local magnetic moment on the magnetic site i. By convention

n = 1, 2, 3 corresponds to ferromagnetism, while n ≥ 4 corresponds to more complicated higher

order magnetic configurations including noncollinear magnetism. The definition of |n〉 coincides

with
{
eµlγ

}
in Ref. [173] up to the choice of normalization1.

In case that the period of the magnetic order coincides with that of the crystal structure, the

propagation vector of the magnetic order q is zero. The magnetic structure is said to exhibit q = 0

magnetism. Note that 3 continuous degrees of freedom of rotation of the magnetic moment per

magnetic site for a total of N magnetic sites yields 3N linearly independent magnetic configurations

and thus n = 1, ..., 3N . In this work, the configuration space of q = 0 magnetic structures is

explored.

The CMP basis defined in Equation (3.47) is complete

1

N

3N∑
n=1

|n〉 〈n| = 13N×3N , (4.6)

and obeys the orthogonality relation

〈n|n′〉 = N δnn′ . (4.7)

Furthermore, the symmetry-adapted CMP coefficient reads

Mn =

N∑
i=1

mi · e(n)
i = 〈m|n〉 = 〈n|m〉 . (4.8)

In case of more than one inequivalent site exhibiting a magnetic moment, the space of all possible

magnetic configurations is spanned by

{|nc1〉 ⊗ |nc2〉 ⊗ · · · ⊗ |ncd〉} , (4.9)

where d is the number of clusters. Based on the above, an arbitrary magnetic configuration can be

1In other words, e
(n)
i correspond to components of

{
eµlγ

}
in Ref. [173] except that here

∑N
i e

(n)
i e

(n′)
i = N δnn′ ,

while in Ref. [173]
(
{en} ·

{
en
′
})

= δnn′ . Also note that
{
eµlγ

}
is labeled by µ = 1, 2 representing magnetic

(M) and magnetic toroidal (MT) multipoles, respectively. As we do not expand in terms of MT multipoles, those

components appear as higher order magnetic multipoles here, and thus completeness is still ensured.
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expanded as

|m〉 = |mc1〉 ⊗ |mc2〉 ⊗ · · · ⊗ |mcd〉 , (4.10)

∣∣mcj

〉
=

1

N (cj)

3N(cj)∑
n=1

M (cj)
n

∣∣ncj

〉
. (4.11)

Any two magnetic configurations on the same magnetic sites can be compared by an overlap, which

we define as

Omm′ =

(
〈m|m′〉√

〈m|m〉
√
〈m′|m′〉

)2

. (4.12)

Lastly, notice that each CMP carries a definite order and irreducible representation (irrep).

4.1.2 Setup for SDFT

The ab initio calculations are performed by the Vienna Ab initio Simulation Package (VASP) in

version 5.4 [80, 81, 179] and the flags are set appropriate to noncollinear SDFT–GGA calculation

including spin–orbit coupling. In practice, the flags in the INCAR file are set a follows:

• First try: ENCUT= 520, EDIFF = 10−8, ISMEAR = 0, SIGMA = 0.02, NELM = 999, LSORBIT =

True, LNONCOLLINEAR = True, NPAR = 4, LORBIT = 11, LORBMOM = True, MAGMOM= (material

dependent)

• Second try: IALGO = 58, AMIX_MAG = 0.1, BMIX_MAG = 0.0001 , ENCUT= 520, EDIFF = 10−8,

ISMEAR = 0, SIGMA = 0.02, NELM = 999, LSORBIT = True, LNONCOLLINEAR = True, NPAR = 4,

LORBIT = 11, LORBMOM = True, MAGMOM= (material dependent)

• Third try: IALGO = 58, ENCUT= 520, EDIFF = 10−6, ISMEAR = 0, SIGMA = 0.02, NELM = 999,

LSORBIT = True, LNONCOLLINEAR = True, NPAR = 4, LORBIT = 11, LORBMOM = True, MAGMOM=

(material dependent)

• Fourth try: IALGO = 58, AMIX_MAG = 0.1, BMIX_MAG = 0.0001, ENCUT= 520, EDIFF = 10−6,

ISMEAR = 0, SIGMA = 0.02, NELM = 999, LSORBIT = True, LNONCOLLINEAR = True, NPAR = 4,

LORBIT = 11, LORBMOM = True, MAGMOM= (material dependent)

Finally, in the rare cases that none of the above converge we chose the most stable setting by visual

inspection of the OSZICAR file and reduced EDIFF as needed. We note that there has been no material,

where this procedure failed to find a converged magnetic result with EDIFF ≤ 10−5.

The pseudopotentials are chosen such that d-electrons in transition metals and f -electrons in

lanthanides and actinoides are treated as valence electrons. The default exchange correlation func-

tional, i.e. generalized gradient approximation [187] by Perdew, Burke and Ernzerhof (PBE), is

used.

The VASP input is created by the aid of the Python Materials Genomics (pymatgen) pack-

age [188]. In particular, we use subroutines based on spglib [189]. The magnetic configurations
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of the CMP basis are created by a code authored by M.-T. Suzuki, which employs the TSPACE

library [190].

4.2 Results and Discussion

In this Section, we want to explore the following two main aspects:

(i) Is the CMP expansion a physically meaningful description of magnetic configurations?

Namely, here the premise for a physically meaningful description constitutes that naturally oc-

curring magnetic configurations can be characterized by one or few symmetrically related CMPs.

It can be understood in the same sense as atomic orbitals are a meaningful basis to describe elec-

trons bound to a free atom, i.e. the probability distribution of one electron is described by one or

few degenerate atomic orbitals. In fact, this analogy extents to molecular orbitals in a complex,

where the underlying spherical harmonics are symmetrized according to site symmetry.

(ii) Can SDFT predict the most stable magnetic configuration by the aid of an exhaustive list

of candidate magnetic configurations for a given crystal? In fact, the predictive power of the com-

bination of the CMP expansion and SDFT (CMP+SDFT) ought to be seen as a composition of the

following issues: (a) Is there evidence to assume that the list of candidate magnetic configurations

generated by the CMP basis is exhaustive?

(b) Can the experimentally determined magnetic configuration be found among all SDFT re-

sults? Note that the similarity between two magnetic configurations is expressed by the overlap

defined in Equation (4.12). In addition, we compare the magnetic space group, which crucially

influences physical properties.

(c) Can SDFT correctly assign the lowest total energy to the experimental magnetic configura-

tion?

4.2.1 The investigated materials and workflow

After preluding these questions, let us start by focusing on the experimental data found on MAG-

NDATA [15]. This commendable collection of meticulously gathered neutron diffraction measure-

ments and other measurements, e.g. optomagnetic response, is still growing and by no means

complete. The MAGNDATA entries used in this study were personally double-checked with the ex-

perimental references [174, 191–194, 194–208,208–214, 214–220,220–231, 231–238, 238, 239, 239, 239–

285,285–297,297–300,300–306,306–310] and the specific compounds are listed in Appendix C.

These materials explicitly contain transition metals, lanthanides and actinoides with on-site

magnetic moments and most data entries are fully AFM or show only weak ferromagnetism. The

magnetic configurations considered here possess zero propagation vector, which limits the available

data to about 400 entries in MAGNDATA. Moreover, entries corresponding to duplicates in respect

to higher temperature, pressure or external magnetic field phases are excluded from this study.

Finally, some large unit cells are omitted for efficiency reasons.

The still evolving nature of this database inclined us to take a differentiated perspective on

each entry: For some materials the size of the magnetic moment is well-determined, while the
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Figure 4.1: Properties of 122 experimental magnetic configurations. (a) The number of CMPs

needed to expand the experimental magnetic configuration—active CMPs—over the number of

degrees of freedom per magnetic cluster. There are 3N degrees of freedom for N sites in a magnetic

cluster, which coincides with the order of the CMP basis. The size of the circle indicates the

frequency of occurrence. (b) Orbital character of the magnetic site. (c) Crystal system.
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magnetic order could not be uniquely identified. And conversely, some materials have a well-known

symmetry, despite the lack of an exactly determined size of the magnetic moment. Therefore, in

this study a total of 131 materials are analyzed, albeit they are distinguished in 122 entries with

known magnetic order and 116 entries with known on-site magnetic moment.

Figure 4.1 (a) presents the number of CMPs needed to describe a magnetic cluster featured

in the experimental magnetic configuration over the total number of degrees of freedom in the

corresponding magnetic cluster. Here, a non-zero CMP component is a so-called active CMP

in analogy to the terminology used w.r.t. irreducible representations. The number of degrees of

freedom per cluster is naturally equivalent to the order of the CMP basis.

The data shown in Figure 4.1 (a) comprises 162 magnetic clusters in 122 materials, among

which 69 are classified to be collinear, 53 are noncollinear. In particular, 10 are coplanar and 43

are noncoplanar, as indicated by the color of the circles. Meanwhile, the size of the circle indicates

the rate of occurrence.

A well-chosen basis is able to express a configuration in terms of few non-zero components. In

this regard, remarkably 48.77% of all clusters are characterized by a single active CMP. And only

6 clusters, i.e. 3.70%, of the clusters in the experimental configurations are linear combinations of

more than three CMPs.

The construction of the CMP basis [173] might intuitively wake the expectation that the number

of active CMPs per cluster for a collinear magnetic structure is equal or less than three. Never-

theless, that could not have been generally expected for the noncollinear case. This intuition is

empirically confirmed in Figure 4.1 (a), where all collinear circles are as expected reported below

three active CMPs. In the case of noncollinear magnetic configurations, on the other hand, ≤ 3

contributing CMPs per cluster strongly suggests that the basis is particularly well-chosen. Thus,

the CMP expansion of experimental configurations in Figure 4.1 (a) establishes the CMP basis to

be a particularly suitable basis.

The pie charts in Figure 4.1 give an overview of the composition of all 131 materials. In

particular, Figure 4.1 (b) shows the orbital character of the valence electrons on the magnetic site.

The majority of the materials features transition metals with emerging d-orbital magnetism, while

a minority of 25% observes f -orbital magnetism. Secondly, the pie chart in Figure 4.1 (c) presents

the underlying Bravais lattice and fortifies a balanced mixture comprising of all lattice types.

After we have discussed the known experimental properties, let us move on to setting up a

predictive scheme. In Figure 4.2 the computational workflow is organized in four steps: input,

setup, calculation, and analysis. The input is taken in form of (magnetic) CIF files [41] from the

database MAGNDATA.

Step 2 in Figure 4.2, the setup, includes reading the magnetic CIF files, creating the list of

candidate magnetic configurations and writing the input files for VASP by the aid of pymatgen.

Crucially, in this step the CMP basis is obtained as described in ??, which does not require the

experimental magnetic configuration as an input, but merely the choice of magnetic clusters.
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We presume the following heuristic rule holds:

The magnetic ground state favors either pure CMPs or linear combinations of CMPs that com-

bine equally weighted CMPs of the same order and same irrep.

We try to provide some physical intuition, why it holds in Section 3.4.1. However, more importantly,

we will present statistical evidence in the discussion of Figure 4.5 (b) and (c). Nevertheless, let us first

continue focusing on the computational workflow, that presents the core of our prediction scheme.

This heuristic rule prompts us to extend the list of inital candidate magnetic configurations by

linear combinations of same order and same irrep. Neglecting linear combinations of pairs yields

(Y − 1)Y additional guesses, for Y being the number of CMPs with same order and same irrep.

In the case of more than one magnetic cluster, d ≥ 2, this would lead to too many additional

guesses. For the 73 materials in concern, where d ≥ 2, we chose to combine only the exact same

multipole projected onto a different magnetic cluster. In other words, the linear combination of

CMPs with same order, same irrep and same y is taken, c.f. the last paragraph of ??. Now this

similarly leads to (Y − 1)Y additional guesses, but Y is the number of CMPs, which are distinct

only w.r.t. cj .

Step 3 in Figure 4.2, the VASP calculation, is performed as described in ??. The total number

of SDFT calculations necessary is equal to the number of candidates. The list of candidates is

composed of in total
(∑d

j 3N (cj)
)

CMP basis magnetic configurations and accordingly many times

(Y −1)Y additional guesses. This amounts to a total of 2935 calculations including all 131 materials

in this study.

Step 4 in Figure 4.2, the analysis, involves determining characteristic quantities of each calcu-

lation. First, all possible domains of the converged magnetic configuration are computed. To that

end each space group operation combined with time reversal operations ±1 is applied, which leads

to either (a) covering the magnetic configuration and thus the operation is element of the mag-

netic space group, or (b) a new magnetic domain. Considering the set of operations that leave the

magnetic configuration invariant, we determine the magnetic space group devising the IDENTIFY

MAGNETIC GROUP application on the Bilbao Crystallographic Server [175].

All calculations of a given material and their domains are cross-checked with each other in order

to filter how many distinct magnetic configurations and, thus, distinct local minima in the SDFT

total energy landscape have been identified. Quantities such as the total energy and the size of

the magnetic moment per site are averaged over all calculation corresponding to the same local

minimum. The calculation with the lowest total energy among all SDFT calculations of a given

material is the CMP+SDFT global minimum.

Note that the list of candidates created as discussed in step 3 is not free of duplicates corre-

sponding to different domains of the same magnetic configuration. In Section 3.4 the CMP basis

for YMnO3 is constructed. Then, linear combinations of CMPs and magnetic domains are eluded

by hands of that example. The candidates corresponding to different domains could be excluded to

avoid unnecessary numerical cost. This amounts to a total of 2313 unique calculations for all 131
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materials in this study, which comprise of 35.75% additional guesses.

To conclude step 4 in Figure 4.2, all possible domains are considered when computing the

overlaps of (i) the experimental and the initial candidate’s magnetic configuration, Oexp,init, (ii) the

experimental and the converged SDFT calculation’s final magnetic configuration, Oexp,fin, and (iii)

the initial candidate’s and the converged SDFT calculation’s final magnetic configuration, Ofin,init,

as defined in Equation (4.12).

In total this study identifies 2005 CMP+SDFT local minima starting from 2313 unique candi-

dates. As mentioned, we performed 2935 calculations including some redundant candidates in this

study. Instead of excluding these redundant candidates that correspond to different domains of the

same magnetic structure, we used them to statistically analyze the reproducibility. In a nutshell, the

reproducibility is the probability to converge to the same local minimum, when repeating the SDFT

calculation. More details are described in the subsequent section. In this study the reproducibility

reaches 0.79 on a scale from 0 to 1, where 1 refers to perfect reproducibility.

4.2.2 Reproducibility

One of the core values of science as a whole is the reproducibility of a result. Especially in big data and

high-throughput calculations, the meaning of reproducibility is different than in fields such as classical

mechanics. Therefore, let us define reproducibility in the context of this study.

In Section 3.4 we have discussed that SDFT calculations starting from the same magnetic configura-

tion are expected to yield the same converged result up to numerical uncertainty. Furthermore, we have

introduced the notion of redundant candidates, that is two magnetic configurations which correspond

to different magnetic domains of the same underlying magnetic structure. Neither the CMP basis nor

the additional linear combinations that are introduced to create an exhaustive list of candidate magnetic

configurations is generally free of such a redundancy. Without loss of exhaustiveness it is possible to

avoid additional computational cost by excluding redundant candidates and only perform SDFT calcula-

tions for unique candidates. In other words, it is sufficient to pick one realization of a magnetic structure

and include it in the list of candidate magnetic configurations.

In this study, we did not filter the redundant candidates. This offers the opportunity to measure the

reproducibility. We define reproducability as the probability to end up in the same local minimum under

the condition that the initial candidates are equivalent up to their domain. Figure 4.3 visualizes how the

reproducibility is computed.

For a given material, the list of candidates is generated, represented by yellow circles. Then each

magnetic structure is given a unique number. Candidates with the same number hence correspond to

different domains of the same magnetic structure. In the following this is referred to as candidate group.

Independent SDFT calculations let each candidate fall into a local minimum in the SDFT total energy

landscape. For the converged magnetic configuration, again all possible domains are constructed. If

two SDFT results are equivalent up to their domain, they are said to have fallen into the same local

minimum. This is represented by boxes in Figure 4.3.

If we assume a bond between each candidate within a candidate group, then we expect these bonds
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1. Input

• obtain experimental magnetic configuration from MAGNDATA as .mcif file

2. Setup

• perform CMP expansion using Fortran code authored by M.-T. Suzuki (uses

TSPACE library)

• read experimental magnetic configurations and CMP basis configurations as pymat-

gen structure

• create list of initial candidate magnetic configurations incl. linear combinations of

same CMP order and irreducible representation

• write VASP input

3. Calculation

• run GGA for noncollinear magnetic magnetism in VASP

4. Analysis

• read final converged magnetic configuration as pymatgen structure

• determine key quantities:

– CMP+SDFT local minima

– compare total energy to obtain CMP+SDFT global minimum

– domains

– overlaps btw. initial, final, and experimental magnetic configurations

– magnetic space groups

Figure 4.2: Computational workflow divided in 4 steps: input, setup, calculation and analysis.
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Figure 4.3: An illustration of the reproducibility.

to hold even after the SDFT calculation. In other words, each candidate group should map to one local

minimum. This is the case for the magnetic structures labeled 3 and 4 in Figure 4.3. On the other

hand, if candidates are at a very unstable initial position or many narrow local minima are present, then

numerical uncertainty might indeed be enough impetus to converge to different magnetic structures.

This is shown for the magnetic structures labeled 2 in Figure 4.3, where one of the bonds is severed.

The reproducibility of one candidate group (g) is defined as

rg =
b
(g)
us

b
(g)
tot

, (4.13)

where btot is the total number of bonds and bus is the number of unsevered bonds. Clearly, the mag-

netic structure labeled 1 in Figure 4.3 is not a candidate group of its own and is disregarded in the

discussion about reproducibility. Finally, for the whole database we compute the expectation value of

the reproducibility by summing over all entries and all candidate groups

〈r〉 =
∑
entries

(∑
g

rg

)
(4.14)

4.2.3 The performance of candidate magnetic configurations

The high computational cost is justified, only if the list of candidates can be expected to be ex-

haustive. Let us recall that the CMP basis defined in Equation (4.5) spans the space of all possible

magnetic configurations. Each CMP is characterized by its order and irrep. First, we want to argue

that the candidate’s irrep is likely to prevail throughout the SDFT calculation. As the CMP basis
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is complete and, thus, any irrep that could be active in a given system explicitly appears in the

CMP basis, the former corroborates that the CMP basis is a good starting point.

Figure 4.4 (a) shows a histogram of the overlap of the final magnetic configuration and the

initial candidate, Ofin,init. In particular, Ofin,init ≈ 1 corresponds to the candidate’s magnetic

configuration remaining almost identical during the iterations. In that case, the candidate appears

to be in close vicinity to a local minimum in the total energy landscape of SDFT. We see that the

uppermost bin, with 46.54% of all calculations, accounts for more calculations than any other bin.

On the other hand, if the candidate does not correspond to a minimum in the total energy,

the calculation is expected to yield a small overlap: Ofin,init � 1. If the system converges to a

magnetic configuration, which is a linear combination of the inital candidate and another magnetic

configuration, a finite Ofin,init occurs.

There is a related scenario in which the system converges to a magnetic configuration that is

of the same irrep, but does not including the CMP of the initial candidate. That case can be

characterized by Ofin,init ≈ 0 and σirrep = 0, warranted the definition of the variance of the irrep

reads

σirrep =

d∑
j,j′

3N(cj)∑
n,n′

|M̂ (cj ,init)
n |Bnn′ |M̂ (cj ,fin)

n′ | (4.15)

with

M̂ (cj ,init/fin)
n =

M
(cj ,init/fin)
n∑d

j=1

∑3N(cj)

n′=1

∣∣∣M (cj ,init/fin)
n′

∣∣∣ , (4.16a)

Bnn′ =

1, irrepn 6= irrepn′

0, irrepn = irrepn′
. (4.16b)

Here, σirrep is defined such that, if the same irreps appear with the same weight in the candidate’s

CMP expansion and in the CMP expansion of the converged calculation, then σirrep = 0. In a

nutshell, |M̂n| indicates to what percentage the n-th CMP contributes to the expansion and Bnn′

is a boolean giving zero weight to equal irreps.

The colorbar in Figure 4.4 (a) corresponds to σirrep defined in Equation (4.15). The variance

of the irrep is less than 10%, σirrep < 0.1, in 78.16% of all SDFT calculations. In other words, the

inital irrep is highly likely to be active in the final magnetic configuration.

The inset of Figure 4.4 (a) emphasizes this observation: The variance of the irrep for the

lowermost bin of Figure 4.4 (a) is shown as a histogram. Notably, the initial irrep has less than

10% deviation, i.e. σirrep < 0.1, in 53.95% of the calculations with Ofin,init ≈ 0.

As a more general statement, we have shown that the candidate’s irrep is statistically likely

to prevail throughout the SDFT calculation. Conversely, the most stable magnetic configuration

is less likely to be found, if the irrep is not among the list of candidates. Hence, creating a list

of candidates building upon the CMP basis is an efficient solution to assure all possible irreps are

among the candidates.
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Figure 4.4: (a) Overlap of the candidate and the final SDFT result. The overlap is defined in

Equation (4.12). The color scale indicates the variance of the irreducible representation. Inset:

The variance of the irreducible representation for the lowermost bin (see arrow). (b) The maximum

overlap of the experiment and the initial candidate w.r.t. the CMP basis. (c) The maximum overlap

of the experiment and the initial candidate w.r.t. all candidates incl. the CMP basis and additional

guesses. The color classifies if the magnetic space group (mspg) agrees with the experimentally

determined mspg.
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From this point of view, it seems unnecessary to introduce additional guesses as candidates that

are equally weighted CMPs of same order and same irrep. However, using the experimental data

as a guide once more, the advantages of including additional guesses into the list of candidates

becomes clear.

Figure 4.4 (b) presents the maximum overlap of the CMP basis and the experiment, maxallOinit,exp.

The histogram shows a probability density strongly peaked close to one. Additionally, there are

side peaks at 1/3 and 1/2. This bias towards 1/3 and 1/2 can be appreciated when considering the

aforementioned heuristic rule once again.

Namely, the magnetic ground state favors either pure CMPs or linear combinations of CMPs

that combine equally weighted CMPs of the same order and same irrep. An irrep can have a

dimension of 1, 2 or 3 and accordingly at each CMP order CMPs basis configurations occur in sets

of 1, 2 or 3 configurations in the expansion. Hence, favored linear combinations projected onto a

CMP basis configuration are prone to yield overlap of 1, 1/2 or 1/3.

In comparison, Figure 4.4 (c), displays the maximum overlap of initial candidate and the ex-

periment, maxallOinit,exp, w.r.t. the complete list of candidates, which contains the CMP basis

configurations as well as additional guesses. The introduction of additional guesses, following the

heuristic rule, can effectively avoid side peaks at 1/3 and 1/2 and thus takes into account linear

combinations common in materials existing in nature.

As Figure 4.4 (a) showed, most magnetic configurations remain close to the initial magnetic

configuration. Therefore it is paramount to start from an exhaustive list of magnetic configurations.

The dark blue and light blue colors in Figure 4.4 (b) and (c) indicate, that the magnetic space

group found experimentally is identical to the magnetic space group of the candidate or not, respec-

tively. Considering all candidates, as in Figure 4.4 (c), 117 of 122 magnetic space groups agree. This

is an improved agreement rate compared to considering only the CMP basis, as in Figure 4.4 (b),

where 110 magnetic space groups agree. It is noteworthy that some magnetic space groups only

enter the list of candidates through the additional guesses.

A final argument in favor of introducing additional guesses is that in total we find 655 of 2005,

hence 32.67%, of the local minima in the SDFT energy landscape only thanks to the additional

guesses. Even among the CMP+SDFT minima with the minimum total energy 23 are thanks to

the additional guesses, as well as 15 of the (local) minima most similar to the experiment.

Therefore, with the collection of arguments mentioned above, we have justified expectation that

the list of candidate magnetic configurations is exhaustive. In the following, let us investigate

whether the experimentally determined magnetic configuration is present among all SDFT results

and how we might predict the likely experimental magnetic configuration for an unknown material.

4.2.4 Analysis of CMP+SDFT local minima

Following the workflow in Figure 4.2 all final SDFT results are scrutinized for their similarity. Some

SDFT results correspond to the same local minimum in the SDFT total energy landscape and as such

they are grouped in CMP+SDFT local minima. The overlap of each CMP+SDFT local minimum
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Figure 4.5: (a) Overlap of experiment and CMP+SDFT minimum most similar to experiment

(MaxOExp). Overlap is defined in Equation (4.12). o/x classifies if the magnetic space group

(mspg) agrees/disagrees with the experimental mspg. (b.1) total energy distribution w.r.t. mate-

rials feature d-orbital magnetism. The minima are classified in MaxOExp and remainder “not”

MaxOExp, and mspg agrees/disagrees. Inset: Q-Q plot, where qd,MaxOExp w.r.t. the distribution

of MaxOExp is compared to qd,tot w.r.t. the distribution of all local minima of materials feature

d-orbital magnetism. (b.2) total energy distribution w.r.t. materials feature f -orbital magnetism.

Inset: Q-Q plot, where qf,MaxOExp w.r.t. the distribution of MaxOExp is compared to qf,tot w.r.t.

the distribution of all local minima of materials featuring f -orbital magnetism.
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with the experimental magnetic configuration is computed according to Equation (4.12). The

CMP+SDFT minimum that yields the maximum overlap with the experiment max{locmin}Ofin,exp

(MaxOExp) is termed to be the most similar CMP+SDFT local minimum to the experiment.

A worthwhile run should yield max{locmin}Ofin,exp ≈ 1, entailing that MaxOExp is indeed very

similar to the experiment. Additionally, the magnetic space group (mspg) should agree with the

experimentally detected symmetry.

Figure 4.5 (a) presents max{locmin}Ofin,exp, i.e. the overlap of MaxOExp for 122 materials with

known experimental magnetic order. The distribution features a substantial peak at max{locmin}Ofin,exp ≈
1. In fact, 82.44% of MaxOExp mark max{locmin}Oexp,vasp > 0.75, verifying good agreement of

one CMP+SDFT local minimum with the experiment.

Despite the large overlap, some mspg do not agree. In particular 70.99% of MaxOExp agree

w.r.t. their mspg, despite yielding max{locmin}Oexp,vasp > 0.75, see the dark blue labeled “o”.

The upper most bin in Figure 4.5 (a) accumulates 54.96% and corresponds to

max
{locmin}

Oexp,vasp > 0.96. (4.17)

Even in the upper most bin not all mspg agree, while on the other hand most CMP+SDFT local

minima with rather inadmissible

max
{locmin}

Oexp,vasp < 0.75 (4.18)

still agree w.r.t. their mspg. For instance, Fe2O3 has a collinear AFM structure with a small

tilting [299]. While the parent spg is R3c (167) the small tilting results in P1 (2.4) for the mspg. In

the CPM expansion, the experimental configuration is described by two CMP basis configurations of

order 5. However, they do not observe the same irreducible representation. In particular, the main

contribution is A1g and the tilting is due to contributions of Eu. In CMP+SDFT the most stable

configuration is pure A1g without any tilting. So that, although the overlap max{locmin}Oexp,vasp =

0.9658, the mspg predicted by CMP+SDFT is R3c (167.103) not P1 (2.4) as found experimentally.

In total 84.43% among MaxOExp yield the correct mspg. This is to say that neither the overlap

nor the mspg alone are a sufficient criterion whether the experimental configuration is correctly

predicted or not.

In comparison, only 16.17% of all CMP+SDFT minima yield the experimental mspg. However,

for 90.16% of the materials at least one CMP+SDFT minima yields the experimental mspg. As

mentioned among MaxOExp 84.43% yield the experimental mspg.

Another characteristic CMP+SDFT minimum is the CMP+SDFT global minimum, which ob-

serves the minimum total energy in SDFT. Among all CMP+SDFT global minima only 37.70%

yield the experimental mspg. This shows that the mspg of the CMP+SDFT global minima is

more likely to agree with the experimental mspg than a random CMP+SDFT minimum, but the

CMP+SDFT global minima is not adequately predicting the mspg.
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Let us continue by analyzing the SDFT total energy of the CMP+SDFT minima in more detail.

Each CMP+SDFT minimum is attributed one or more SDFT results, as multiple candidates might

converge to the same minimum. An average over these attributed SDFT results leads to the material

dependent and magnetic configuration dependent total energy of a specific CMP+SDFT minimum

Elm. The CMP+SDFT global minimum observes the minimum total energy Fmin.

In order to compare the total energy across materials, we take a normalized relative total energy

that reads

(Elm − Emin)/N . (4.19)

Here, N is the total number of degrees of freedom, i.e. the sum of the order of basis over all clusters

that observe a magnetic moment in SDFT in that material.

Figure 4.5 (b.1) and (b.2) present the distribution of CMP+SDFT minima over the normalized

relative total energy of materials featuring d-orbital magnetism and f -orbital magnetism, respec-

tively. The energy scale is logarithmic in units of meV. And the lowermost bin, representing the

CMP+SDFT global minima, would theoretically lie precisely at zero. However, for the obvious prac-

tical reasons, namely that log(0)→ −∞, it is added at the lower edge. The remaining bins represent

the distribution of CMP+SDFT local minima ρd/f,tot. A key question is, whether MaxOExp tends

to be close to the total energy minimum.

In Figure 4.5 (b.1) and (b.2) the color intensity classifies all CMP+SDFT minima according to

agreement/disagreement with the experimental mspg labeled by o/x, respectively. Additionally, the

minima are classified according to being MaxOExp or not. Overall the total energy distributions

ρd/f,tot span across many orders of magnitude. Albeit, ρf,tot is more concentrated in the energy

range 1 meV up to 1000 meV.

The data shows that in total 43 of 122 (35.25%) of the CMP+SDFT global minima coincide

with MaxOExp. Hence, the magnetic configuration with the minimum total energy in this study

does not, at this point, identify the expected experimental configuration. Nevertheless, MaxOExp

might tend towards smaller total energy. In order to gain more insight, we ask if MaxOExp data

points follow the same distribution as an arbitrary local minimum in ρd/f,tot.

Two distributions can be compared in terms of a Q-Q plot [311], where the x-axis represents

the quantile of the reference distribution and the y-axis represents the quantile of the sample

distribution. Let us define the quantile, qs/r for a sample/reference distribution of local minima

{lmk}, where k = 0, ..,K − 1 and the local minima (lm) are ordered by Elmk ≤ Elmk+1
. The

k/(K − 1) quantile qk is given by

qk = (Elmk − Emin)/N . (4.20)

Hence, the 0.5 quantile is simply the median value and the 0.1 quantile is the point that divides

the distribution such that 90% of the local minima have greater total energy.

The Inset of Figure 4.5 (b.1) shows the Q-Q plot comparing quantiles of ρd,MaxOExp, as the

sample distribution, with ρd,tot, as the reference distribution. For each data point in the smaller
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sample distribution the quantile is computed, as explained above. Subsequently, qd,MaxOExp is

juxtaposed against qd,tot.

If the two datasets are sampled from the same underlying distribution ρd,MaxOExp = ρd,tot, all

points align on the median. The quantile is defined on the same axis as the original distribution,

i.e. qd,MaxOExp and qd,tot are defined on (Elmk − Emin)/N .

The Q-Q plot in the inset of Figure 4.5 (b.1) shows significant deviation from the median.

Indeed, the slow incline up to approximately 10 meV reveals an accumulation of MaxOExp towards

lower total energy. For d-orbital magnetism we find 77.66% of MaxOExp below 1 meV. On average

each material has 4.45 CMP+SDFT local minima below 1 meV. In particular, in this dataset the

material with the maximum number of CMP+SDFT local minima has 18 minima below 1 meV.

This shows that CMP+SDFT successfully narrows down the possible magnetic configurations for

a new material featuring d-orbital magnetism to a handful of CMP+SDFT local minima, that are

highly likely to be close to the experimental observation.

The inset of Figure 4.5 (b.2) shows the analogous Q-Q plot for f -orbital magnetism. Here,

the quantiles basically align on the median suggesting that ρf,MaxOExp = ρf,tot. Moreover, for

f -orbital magnetism we find only 32.43% of MaxOExp below 1 meV. Although in case of f -orbital

magnetism the consideration of the total energy seems to fail in narrowing down the number of

possible magnetic configurations, at least the CMP+SDFT run itself proposes a set of 10 − 15

possible magnetic configurations.

The presented data opens a gateway to identifying a handful of magnetic configurations as

CMP+SDFT local minima for a given material among which the experimentally stable magnetic

space group and exact configuration is highly likely to be found. Yet it has not been possible to

uniquely identify the ground state based on the SDFT total energy. Although CMP+SDFT yield

local minima with the experimental mspg and local minima with large overlap with the experimental

magnetic configuration, SDFT fails to assign a low total energy compared to other local minima.

4.2.5 The magnetic moment per site

Besides the magnetic configuration, the size of the on-site magnetic moment crucially influences

the magnetic properties of a material. Hence, it is interesting to ask, if the magnetic moment

estimated by SDFT is close to the experimentally determined magnetic moment per site. In the

literature [34] it is well-known that complexes containing first row transition metals with open

3d orbitals are dominated by crystal field splitting. This is referred to as strong field regime.

Further, the ground state of complexes containing Lantanides with open 4f orbitals are dominated

by spin-orbit coupling. Complementary, this is referred to as weak field regime. Let us explore the

implications by looking closer at the element-dependence of the on-site magnetic moment.

Figure 4.6 presents the on-site magnetic moment averaged over sites within one magnetic cluster

as a function of elements sorted by increasing no. of electrons. In particular, the average magnetic
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Figure 4.6: The magnetic moment per site as a function of electrons per atom for 3d- and 4f -

orbital magnetism. (a.1) and (b.1), the experimental magnetic moment per site µexp. (a.2) and

(b.2), the magnetic moment per site of the CMP+SDFT minimum most similar to experiment w.r.t.

its magnetic configuration µth. (a.3) and (b.3), absolute values of the orbital angular momentum

contribution µl and the spin contribution µs to µth.
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moment per site reads

µcj =
1

N (cj)

N(cj)∑
i=1

|mi| (4.21)

and, thus, the average is taken within each magnetic cluster cj , only. The columns show the case

of 3d-orbital magnetism and 4f -orbital magnetism, respectively.

Figure 4.6 (a.1) gives an overview of the experimental results µexp for 3d-orbital magnetism. We

see that within compounds featuring the same magnetic element vastly different on-site magnetic

moments are reported. This is referred to as compound dependence in the following discussion.

Overall, the maximum on-site magnetic moment per element frames a dome shape with a clear

maximum at Mn closely followed by Fe. In comparison, Figure 4.6 (a.2) shows the on-site magnetic

moment µth predicted by CMP+SDFT. Here, µth is taken to be the magnetic moment of the

magnetic configuration with MaxOExp, which has the most similar magnetic order compared to

the experiment. We can see very good agreement in the overall tendency between experiment and

CMP+SDFT.

A strong crystal field represents a real and time reversal invariant perturbation that forces a

real-valued ground state which effectively quenches the orbital angular moment operator (L ≡ 0)

as discussed in many text books, see e.g. Ref. [312]. Therefore the spin contribution alone is

expected to constitute the on-site magnetic moment. Fortunately, in contrast to the experiment the

numeric calculation grants direct access to the spin contribution µs,th and the angular momentum

contribution µl,th to the on-site magnetic moment

µth = µs,th + µl,th. (4.22)

Figure 4.6 (a.3) presents the absolute values µs,th and µl,th. The data clearly confirms that

the angular momentum is almost entirely quenched in SDFT. Only for the heavier elements, where

spin-orbit coupling becomes more relevant 2, a small contribution is given by µl,th. In other words,

SDFT supports that for compounds with more than half-filled 3d bands the angular momentum is

only partially quenched.

The dominant µs,th can be directly compared to the spin-only magnetic moment in the ionic

limit. It is computed within the Russel-Saunders (or L-S) coupling scheme and is given by

µ
(3d)
s,ion = 2

√
s(s+ 1)µB (4.23)

with spin quantum number s for the total spin operator S. The total spin S of the electronic con-

figuration 3dn with n electrons is essentially constructed by following Hund’s first rules. Albeit in

real complexes the electron configuration can be in the high spin (hs) or the low spin (ls) configura-

tion depending on the crystal field strength compared to the intra-orbital Coulomb repulsion. This

2The spin-orbit coupling is proportional to dV/dr, where V is the potential due to the ions. Hence, heavier

elements exhibit stronger spin-orbit coupling. See e.g. Ref. [8].
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yields different spin-only magnetic moments µ
(3d)
s,ion in the ionic limit for electronic configurations of

the form 3dn(hs/ls).

In Figure 4.6 (a.3) µ
(3d)
s,ion is displayed as a reference for various possible electronic configurations.

Here, we assumed octahedral complexes for the crystal field splitting. the The maximum magnetic

moment is consistent with the experiment and CMP+SDFT calculation realized for Mn2+ or Fe3+

in the ionic limit. Additionally, the ionic limit already hints towards possible reasons for the

observed compound dependence. Namely, we expect the formal oxidation state and the crystal

field strength to introduce compound dependence. Further compound dependence arises due to the

exact symmetry including small distortions as introduced by the Jahn-Teller effect and the choice

of ligands via the nephelauxetic effect, which describes the delocalization of metal electrons through

covalent bonds with the ligands.

Let us now move on to the case of compounds featuring lanthanides shown in the right column

of Figure 4.6. As mentioned, in the weak field regime spin-orbit coupling is strong compared to

the crystal field effect. Therefore the orbital angular momentum operator L cannot be neglected

and the magnetic moment is computed in the j-j coupling scheme in terms of the total angular

momentum J . In the ionic limit, the electronic ground state can be determined following all three

Hund’s rules 3 for a given shell configuration 4fn with n electrons. The magnetic moment in terms

of the total angular momentum quantum number j then reads

µj = gj
√
j(j + 1)µB (4.24)

with the Landé g-factor (gj). Representative, we compute the magnetic moment µ
(4f)
III-ion for all 3+

ions. Note that in fact, Eu2+ for instance is expected to resemble Ga3+ because both have a 4f7

electronic configuration.

Figure 4.6 (b.1) shows the experimental results µ
(4f)
exp for 4f -orbital magnetism in comparison

to µ
(4f)
III-ion. Similar to the 3d-orbital magnetism, different compounds featuring the same magnetic

element observe vastly different µ
(4f)
exp , however the origin must be different as we will see. A

comparison to the CMP+SDFT results presented in Figure 4.6 (b.2) shows good agreement of the

overall characteristic behaviour. In both, experiment and CMP+SDFT, the magnetic moment is

just below the ionic limit and a small (large) dome forms in the less (more) than half-filled region.

Noticeably, the compound dependence in the CMP+SDFT results is reduced compared to the

experiment. By a more detailed analysis of the experimental data, the compound dependence in

4f -orbital magnetism is revealed to arise when long-range order cannot be established very well

experimentally. SDFT naturally assumes a well-established long-range order by design as it is a

zero temperature method. Specific cases are considered in the discussion of Figure 4.7.

3For instance, the 3+-ion for Er has 4f11 and thus 3 unpaired spins yielding s = 3/2. The orbital angular

momentum is maximized when orbitals with magnetic quantum number ml = 3, 2, 1 are singly occupied yielding

l = 6 and L=I. Finally the total angular momentum J = S + L for more than half-filling, i.e. quantum number

j = 15/2. The ground state term-symbol reads 4I15/2.
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Figure 4.6 (b.3) shows the absolute value of the spin and orbital contributions (µ
(4f)
s,th and µ

(4f)
l,th )

in SDFT. As a reference, we plot a fictitious spin-only µ
(4f)
s,III-ion and orbital-only magnetic moment

µ
(4f)
l,III-ion in the ionic limit for 3+ ions:

µ
(4f)
s,III-ion = 2

√
s(s+ 1)µB, (4.25)

µ
(4f)
l,III-ion =

√
l(l + 1)µB. (4.26)

Prominently, the destructively (constructively) coupling for less (more) than half-filling is confirmed

and visualized. Further, the spin contribution µ
(4f)
s,th very closely aligns with the ionic limit. This can

be expected as 4f electrons barely delocalize by covalently bonding with the surrounding ligands.

The orbital contribution µ
(4f)
l,th shows a clearly reduced value compared to µ

(4f)
l,III-ion. This might be

interpreted as partial quenching of L in SDFT, which is supported by the observation that the

reduction of µ
(4f)
l,III-ion is stronger for lighter elements.

So far it has become clear that there is no systematic overestimation of the on-site magnetic

moment by CMP+SDFT. However naively one might anyways expect a general underestimation

due to the lack of treatment of strong electronic correlation effects in SDFT, albeit strong electronic

correlation is expected in particular in 3d and 4f -bands. As we will see in the following, the data

defies this general expectation of an underestimated on-site moment. To this end, let us compare

µth and µexp compound-wise, or rather cluster-wise for all compounds.

Figure 4.7 juxtaposes the average magnetic moment per site µth of the magnetic configuration

with MaxOExp and the experimentally measured magnetic moment per site µexp. If for a magnetic

cluster µth ≈ µexp, the data point is in close vicinity to the median and the size of the magnetic

moment per site is well-estimated. In Figure 4.7 (a), each cluster cj is represented by a star,

whose color indicates the orbital character of the magnetic site and the number of points indicates

which magnetic element forms the cluster. For instance, the 5-pointed dark red star corresponds

to a Mn-cluster, since Mn atom has five 3d electrons. At first sight, there is no general over- or

underestimation seen in the scatter plot.

Moreover, the data suggests that the uncertainty of SDFT is reflected in the absolute deviation

of |µth−µexp|, rather than some relative deviation of the magnetic moment |µth−µexp|/|µth +µexp|.
Indeed, 51.90% of the magnetic moments are within ±0.5µB, and beyond 77.22% obey |µth−µexp| ≤
1µB. Concomitantly, in the small magnetic moment regime, that is approximately µ . 2µB, no

reliable prediction is possible. In the mid to high magnetic moment regime, on the other hand, a

mostly accurate prediction is made.

There is an accumulation of 3d data points within 2µB < µth < 5µB, whose center of mass

closely aligns with the median. However, an apparent lack of precision leads to a wide spread around

the median. Despite another accumulation of 4f data points in the range of 6µB < µth < 10µB

showing similarly a high accuracy with a center of mass near the median, we also see many outliers

with 4f -orbital character across the entire range of the on-site magnetic moments.

The specific group of three outliers at 4µB < µexp < 5µB and 7µB < µth < 8µB correspond to
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Er-clusters in Er2Sn2O7, Er2Ru2O7 and Er2Pt2O7, listed from left to right. In the ionic limit, the

ground state electronic configuration of Er3+ is 4I15/2 with the Landé g-factor (gj) of 6/5. Therefore,

µ
(Er)
III-ion is estimated to be 9.58µB using Equation (4.24). We see that µth of the three outliers are

considerably less than µIII-ion. In fact, the three outliers are known candidates for realizing a spin

liquid phase due to the presence of magnetic frustration, as described in Ref. [273], [226] and [274]

and hence present highly non-trivial cases.

The two outliers with µth > 9µB correspond to Ho-clusters. Both data points are contributed

by the same material HoMnO3, which contains two inequivalent Ho-sites on top of a Mn-cluster.

The latter orders at T = 78.5 K and is well-estimated by CMP+SDFT with µ
(Mn)
exp = 3.32µB and

µ
(Mn)
th = 3.47µB. On the other hand, experimentally ordering of the two Ho-clusters is subject to

controversy [285,313–316]. It seems unclear from an experimental perspective whether one or both

Ho-sites order even down to approximately 2 K. Generally, the long range ordering of magnetic

moments on Ho-sites is suggested to occur at much lower temperature compared to Mn-sites. As

mentioned above, a strict comparison of the SDFT result to µexp is inappropriate in the case

that proper long-range ordering cannot be established experimentally. Nevertheless, SDFT can be

compared to the ionic limit, similar to the discussion on the three materials containing Er. The

ground state electronic configuration of Ho3+ is 5I8, which yields µ
(Ho)
III-ion = 10.61µB as an estimate.

To conclude, in HoMnO3 the µ
(Ho)
th of the Ho-clusters lie below µ

(Ho)
III-ion and a strict comparison to

µ
(Ho)
exp is inappropriate.

In Figure 4.7 (b), again µth and µexp are compared, but additionally the color indicates whether

or not the compound is expected to be frustrated. Here, the expectation of frustration is based on

whether nearest neighbors form rings of odd number of magnetic sites. Assuming AFM coupling

this geometrically leads to magnetic frustration. Hence, we take advantage of the database being

specifically focused on antiferromagnets. Furthermore, rings of even number of magnetic sites could

potentially also yield a magnetically frustrated system, if the AFM coupling is anisotropic, such

as in the Kitaev model. We hence note, that the definition of expected frustration used here is

imprecise and only suitable for a quick superficial classification.

Figure 4.7 (b) shows that indeed the well-estimated 4f -clusters in the large magnetic moment

regime are not expected to feature magnetic frustration. The discussed group of three outliers on

the other hand are expected to be frustrated. Data points with 4f -orbital character in the small

magnetic moment regime µth < 2µB are likewise expected to be magnetically frustrated and are

not particularly well-estimated. Although, we expect that µth is overestimated when the system

is frustrated, many clusters that are expected to be magnetically frustrated are not necessarily

overestimated. And some outliers are—at least in the approximate definition employed here—not

expected to be frustrated. However, as we have seen for HoMnO3 there might be other non-trivial

phenomena preventing a proper long-range order. Hence, the geometrically expected magnetic

frustration is not a sufficient indicator for overestimation of the magnetic moment.

Figure 4.7 (c) displays the filling on a colormap from 0 to 1, where 0.5 correspond to half-filling.
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Here, the filling is defined as the ratio between the number of d or f electrons in each magnetic

atom and the number of orbitals. For the number of electrons, we consider the charge neutral state,

i.e., the ionized state is not taken account. Less (more) than half-filled 4f and 5f -clusters appear

in the underestimated (overestimated) region.

Figure 4.7 (d) addresses the number of magnetic clusters present in a specific compound. The

data points corresponding to single cluster (red), and multiple clusters (blue) appear to be evenly

distributed. Let us divert the attention towards data points with µth ≈ 0. It should be noted that

these are not paramagnetic solutions. Two scenarios can yield µth ≈ 0: Either another cluster

bears most of the on-site magnetic moment, or the spin contribution to the magnetic moment µs

is canceled by the orbital contribution to the magnetic moment µl.

Figure 4.7 (e) shows the normalized orbital contribution

µl
|µl|+ |µs|

(4.27)

in SDFT to the total magnetic moment µth = |µs + µl|. Below the median in the small magnetic

moment regime, indeed many clusters with less than half-filled orbitals observe µl/(|µl|+|µs|) ≈ 0.5.

In these instances, µs and µl adopt opposing signs and thus the contributions in fact cancel.

Clusters of heavier lanthanides are well-estimated solely as a result of including µl. Considering,

once more Figure 4.6 (b.3) and a comparison of Figure 4.6 (a.1) and Figure 4.6 (a.2), the agreement

between experiment and SDFT could be improved, if the orbital angular momentum would be less

quenched in SDFT.

4.2.6 CMP+SDFT+U case study

Hitherto we have discussed the effects of spin–orbit coupling and crystal field splitting on magnetism

in compounds with 3d and 4f -orbital character and omitted the careful treatment of another impor-

tant energy scale in these systems: the electron–electron correlation due to intra-orbital Coulomb

repulsion U . There are various extensions to include electronic correlation beyond SDFT: For

instance, SDFT+U [98], SDFT+DMFT [103–108], self-consistent ab initio DΓA [126] and other

diagrammatic extensions beyond DMFT [118, 119]. In fact, these methods have brought impor-

tant insight in the properties of many compounds closely related to the ones under investigation

here [93,317–319], in particular w.r.t. Mott–Hubbard localization.

A full treatment of electron–electron correlations from first-principles for all materials introduces

various challenges and is beyond the scope of this paper. While it is in principle possible to

estimate the parameter U from first-principles by means of constraint random phase approximation

(cRPA) [116,117], the computational cost of this procedure is immense. Therefore, albeit we aim at

the prediction of the magnetic ground state from first-principles, we must resort to introducing U

as an adjustable parameter in this section. In particular, we will screen U = 2, 3, 4 eV for d-orbitals

in Mn and U = 4, 6, 8 eV for f -orbitals of Eu and Gd in accordance with the range of typical

U -values used in literature [317, 319]. Although this amounts to 1545 additional CMP+SDFT+U

calculations, we caution the reader, that our efforts to include U may not be conclusive enough to
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Figure 4.8: Average magnetic moment per Mn-site of the CMP+SDFT+U minimum most similar

to the experiment w.r.t. its configuration µth compared to the experimentally measured magnetic

moment per site µexp. (a) U = 0 eV, (b) U = 2 eV, (c) U = 3 eV, (d) U = 4 eV.
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be generalized to statements about the importance of strong electronic correlations in regard to the

prediction of the magnetic ground state.

We have chosen to perform CMP+SDFT+U calculations for all materials containing a single

Mn-cluster, because of the following reasons: (i) It is a well-defined subgroup of 28 materials,

which is near the minimum sample size necessary to obtain statistically significant results. (ii) The

compounds are not prone to poor localization due to magnetic frustration in connection with strong

spin-orbit coupling, so that the comparison with the experiment stands on solid grounds. (iii) For

U = 0 the size of the magnetic moment is over- or underestimated depending on the material, as

shown in Figure 4.8 (a). Therefore, we can clearly distinguish if the theoretical magnetic moment

µth gets closer to the experimental value µexp with increasing U or if µth increases regardless of

whether it was already overestimated for U = 0. (iv) The total energy distribution ρMn,MaxOExp

of the CMP+SDFT minimum that yields the maximum overlap with the experiment (MaxOExp)

for U = 0 has a strong bias towards the energy minimum. In other words, there is room to

improve if MaxOExp were to always agreed with the CMP+SDFT global minimum and also room

to deteriorate if ρMn,MaxOExp were to spread across a wider range of energy.

Furthermore, we have chosen to perform CMP+SDFT+U calculations for all materials contain-

ing Eu and Gd, which are the following four compounds: EuTiO3, EuZrO3, GdVO4, GdB4. That

is because these 4f -elements are close to half-filling, where the orbital contribution to the on-site

magnetic moment µl vanishes, as can be confirmed in Figure 4.6 (b.3). Thus, spin–orbit coupling is

of no importance in these systems and furthermore the crystal field splitting is expected to be small,

because the strongly localized 4f -orbitals are well-shielded by the outer 3d and 4s-orbitals. Hence,

we expect the Coulomb interaction U to predominantly determine the dynamics of f -electrons in

these compounds.

The two main questions are as follows: (i) Does including U improve the prediction of the most

stable magnetic structure, and (ii) will the estimation of the on-site magnetic moment improve upon

introducing U? Without further ado let us present the results of CMP+SDFT+U for compounds

containing Mn, Eu and Gd.

We find that CMP+SDFT+U identifies the same local minima as CMP+SDFT with different

relative total energy to each other. Thus, MaxOExp is the same at any value of U . Moreover, the

range of the total energy distribution ρMn,tot is U -independent and ranges from 0 meV to 1000 meV.

Hence, we ask if MaxOExp tends to have the lowest total energy and if this tendency is increased

by increasing U . We note that for the limited number of materials investigated the total energy

distribution of MaxOExp ρMn,MaxOExp for U = 0, 2 eV ranges from 0 meV to approximately 5 meV.

Additionally the distribution of ρMn,MaxOExp is skewed towards lower total energy compared to

ρMn,tot. On the other hand, for U = 3, 4 eV ρMn,MaxOExp reaches close to 1000 meV, while it

remains skewed towards lower total energy. In other words, introducing U does not assign the

correct total energy to the true magnetic ground state found in the experiment in this data. In

fact, increasing U reduces the tendency for MaxOExp to have a particularly low total energy.
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Let us now discuss the estimation of the on-site magnetic moment. Figure 4.8 (a) - (d) shows

the average on-site magnetic moment µth of MaxOExp for all materials containing a single Mn-

cluster for U = 0, 2, 3 and 4, respectively. The grey lines labeled d4hs (high spin), d3 and d4ls

(low spin) correspond to the spin-only contribution of Mn with formal oxidation 3+ and 4+, i.e.

4 and 3 d-electrons, in an octahedral ligand-field [34], same as in Figure 4.6 (a.3). We see that

increasing U never decreases µth. For each compound we distinguish whether the crystal contains

loops of odd number of magnetic sites and is thus expected to be frustrated. This is indicated by

the color of the marker. The shape of the marker implies if the compound contains oxygen. Note

that GGA is known to cause overbinding of oxygen to transition metals [320–323]. The effect of

increasing U most strongly increases µth of frustrated compounds containing no oxygen that are

far away from the high spin state for U = 0 eV. The increase of µth also seems to occur—though

less pronounced—in compounds that satisfy only one of the conditions. That is either compounds

that are expected to be frustrated albeit containing oxygen or compounds lacking oxygen, although

they are not expected to be frustrated.

We speculate that the overbinding of the ligand oxygen could lead to a very strong crystal

field splitting. This may protect the low spin state for instance of the compounds near µth ≈
2.5µB. Furthermore, we intuitively expect frustration to reduce the size of the magnetic moment,

because not all AFM bonds can be satisfied simultaneously and the cost of not satisfying a bond is

proportional to the size of the on-site magnetic moment. Introducing U has a localizing effect and

might cause intra-atomic effects to become prevalent over frustration. The on-site magnetic moment

is reduced compared to the ionic limit due to delocalization of the Mn-electrons for instance onto

the ligands. Moreover, itinerancy may lead to a reduced µth compared to the ionic limit depending

on the partial density of states. Thus, there are various reasons for the on-site magnetic moment

ranging from 1µB to 5µB. In the investigated Mn-compounds the agreement of µth with µexp

corroded by introducing U by means of GGA+U.

The CMP+SDFT+U results for EuTiO3, EuZrO3, GdVO4, GdB4 similarly show no improve-

ment by introducing U . In fact, for EuTiO3, EuZrO3, GdVO4 the magnetic ground state is falsely

predicted to be ferromagnetic for U > 4 eV. Again the same local minima are found, so that in these

cases MaxOExp observes increasing total energy by increasing U relative to the CMP+SDFT+U

global minimum at each U -value. For GdB4 the CMP+SDFT+U global minimum is AFM along

c-direction for all U -values, while the experimental structure is a hexadecapole in the ab-plane.

However, U = 0 eV these two magnetic structures are almost degenerate with 0.5 meV difference

in total energy and for increasing U the system increasingly prefers the out-of-plane magnetic

structure.

The on-site magnetic moment is increased with increasing U for all four compounds containing

Eu and Gd. As can be seen in Figure 4.7 (a) around µexp ≈ 7µB, the size of µth is slightly under-

estimated for U = 0 for all four compounds. Thus, the estimates of µth = 6.95µB, 6.98µB, 7.04µB

and 7.10µB for U = 8 eV for EuTiO3, EuZrO3, GdVO4 and GdB4, respectively, are closer to
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the experimental values µexp = 6.93µB, 7.30µB, 7.00µB and 7.14µB than for U = 0 eV µth =

6.30µB, 6.67µB, 6.87µB and 6.91µB. Let us note that other 4f -compounds observe slightly over-

estimates on-site magnetic moment and we suspect for these compounds increasing U would also

increase µth.

Instead of focusing on effects of strong electronic correlations, we speculate that the prediction

of the true experimental magnetic ground state could be improved by a different choice of exchange–

correlation functional. We would like to point out one recent example of a detailed SDFT+U study

[324] on LiOsO3 and NaOsO3 testing other exchange–correlation functionals thus far implemented

in VASP, including local spin-density approximation (LSDA), PBE’s improved version for solids

(PBEsol), the strongly constrained appropriately normed (SCAN) meta-GGA functional and hybrid

functional HSE06. By means of scanning different U -values including predicted ones from cRPA, Liu

et al. found that none of the considered functionals is capable to simultaneously predict the correct

magnetic ground state for LiOsO3 and NaOsO3 comparing the total energy of two energetically

favorable configurations. The treatment of exchange–correlation effects in all of these functionals

hitherto implemented in VASP have the underlying assumption that locally the spin-density can

be diagonalized. Schematically, an electron thus only couples to an exchange–correlation magnetic

field (Bxc) that is parallel to its own magnetization. In the last two decades, some—perhaps too

poorly noticed—work [325–337] has been done to extend SDFT to include the so-called spin-torque

effect, which couples the electron’s spin to Bxc including antisymmetric terms.

4.3 Concluding Remarks

This study is a benchmark of an ab initio prediction of the magnetic ground state using a novel

approach termed CMP+SDFT. This scheme devises a combination of the cluster multipole (CMP)

expansion and the spin-density functional theory (SDFT) for noncollinear magnetism. We find that

materials existent in nature are well-described in terms of only few CMPs and infer the CMP basis

to be a suitable basis for magnetic configurations. Additionally, the experimental data suggests that

the magnetic ground state favors either pure CMPs or linear combinations of CMPs having the same

expansion order and same irreducible representation. Guided by this heuristic rule an exhaustive

list of initial candidate magnetic configurations for ab initio calculations in the framework of SDFT

is created.

A high-throughput calculation of 2935 ab initio calculations using VASP led to a handful of

CMP+SDFT local minima corresponding to different possible magnetic configurations for each

material. 90.16% of materials yield the experimental magnetic space group for at least one of

the CMP+SDFT local minima. Furthermore, the maximum overlap between the experimental

magnetic configuration and the CMP+SDFT local minima exceeds 0.75—with 1 corresponding to

equivalence—in 70.99% of all materials.

An ab initio prediction of the most stable magnetic configuration in the experiment is guided by

a comparison of the total energy in SDFT using GGA of the the possible magnetic configurations
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for each material. In particular, the local minimum with the larges overlap with the experiment

(MaxOExp) is expected to yield the lowest total energy. Indeed, for materials featuring magnetic

sites with d-orbital magnetism, MaxOExp is in great majority of the cases less than 1 meV above

the so-called CMP+SDFT global minimum. On the other hand, the same could not be confirmed

for f -orbital magnetism. In fact, MaxOExp for f -orbital magnetism shows no tendency towards

lower total energy. The implementation of GGA–PBE [76] used in this study did not necessarily

assign the lowest total energy to the local minimum with the larges overlap with the experiment.

We have further investigated the effect of including strong electronic correlations on the level

of SDFT+U for materials containing a single Mn-cluster, Eu-cluster or Gd-cluster. Our results

show that for the materials we investigated introducing U has a rather unfavorable influence on the

prediction for both, the magnetic ground state and the size of the magnetic moment. In the end

of 4.2 E, we speculate that the prediction of the true experimental magnetic ground state could be

improved by a different choice of exchange–correlation functional that accounts for the spin-torque

effect [325–337], as opposed to focusing on effects of strong electronic correlations.

As far as we know, the only other scheme that aims at the prediction of noncollinear magnetic

structures is based on an genetic algorithm by Zheng and Zhang [14]. In their approach only the

fittest magnetic structures of each generation survive, which is decided based on the total energy

of the magnetic structure. Thus, currently it converges to the global minimum corresponding to a

theoretical magnetic ground state that is not necessarily the true magnetic ground state found in

the experiment. On the other hand, in CMP+SDFT we yield a set of magnetic configurations that

are local minima of the total energy, which is very likely to include the magnetic ground state as

we have demonstrated in this paper. Hence, we want to emphasize that CMP+SDFT succeeded to

significantly narrow down the number of possible magnetic ground states. This is achieved thanks

to a list of candidate magnetic configurations that is tailored to account for details of the symmetry

of the crystallographic unit cell. In fact, CMP theory enables SDFT to identify local minima from

a feasible number of candidate magnetic configurations, that put data screening and AFM material

design within reach. On average, in this study we performed only 2935/131 = 22.4 for each material,

while in Ref. [14] they performed 30 calculations in each generation. In order to ensure convergence,

they ran the evolution for 30 generations which amounts to 900 calculations for one material. This

comparison of the number of calculations that are necessary to find the theoretical magnetic ground

state, emphasizes that our list of candidates—the CMP basis combined with our heuristic rule and

omitting the magnetic configurations corresponding to different magnetic domains of the same

magnetic structure—is well-suited to search the space of all possible magnetic configurations.

In addition, this study showed that the on-site magnetic moment could be estimated surprisingly

well by GGA without including U . The precision of the predicted magnetic moment is estimated to

be roughly ±0.5µB. Some outliers arise from a lack of long-range order in the experiment. This can

be due to extremely low transition temperatures and magnetic frustration. Despite some explainable

outliers, the prediction shows no major systematic over- or underestimation of the on-site magnetic
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moment in GGA. In contrast to the experiment, the SDFT calculation grants additional insight

into the balance of spin contribution and orbital angular momentum contribution to the total

magnetic moment. The first row transition metals prove to be well-described by Russel-Saunders

coupling applicable within the strong field regime. In other words, the orbital angular momentum

is quenched and the spin-only ionic limit can be used as a reference. The case of lanthanides, on the

other hand, is representative for systems in the weak field regime. The on-site magnetic moment

is well-described in the j-j coupling scheme. In the end of 4.2 D, we speculate that GGA might

have slightly overestimates the crystal field effects compared to the strength of spin-orbit coupling.

Some related discussions of GGA causing an overbinding of ligand oxygen can be found in the

literature [320–323]. This could explain why materials governed by crystal field splitting—such as

the compounds with d-orbital magnetism—are assigned more appropriate total energy by GGA.

Yet, materials governed by spin-orbit coupling—such as lanthanides—the experimental magnetic

configuration is not assigned the lowest total energy by GGA. The balance between spin-orbit

coupling and crystal field splitting becomes particularly crucial for lighter 4f -elements and heavier

3d-elements, where the orbital angular momentum is only partially quenched.

We want to end by putting this study into a bigger context and providing an outlook into future

works. The starting point of this study was the experimental database MAGNDATA [15]. It conve-

niently facilitated testing and benchmarking of our ab initio scheme to predict the magnetic ground

state. Generally, experimental databases [338–347] not only facilitate testing and benchmarking

of theoretical methods, but also data mining in the experimentally explored chemical space. In-

deed, for some nonmagnetic functional materials an informed search and optimization has led to

promising discoveries [348–360]. However so far, apart from few pioneering works [9–13] that are

constrained to specific cases, these breakthroughs in material design have not yet been matched

by similar advances with respect to AFM materials. Certainly one of the major obstacles is that

compared to databases of crystal structures with more than 200 000 entries, MAGNDATA has to

date a modest amount of about 1 130 entries. This is because the experimental determination of the

magnetic configuration is much more involved than that of the crystal structure. Given this situa-

tion, it is an urgent challenge to construct a large-scale computational database of AFM materials.

The presented benchmark provides a crucial step in laying a solid foundation for the construction

of such a computational database of AFM materials. We are optimistic that ab initio calculations

will soon be able to reliably predict the magnetic ground state. Based on that, our CMP+SDFT

scheme will be able to construct a computational database of magnetic materials with a feasible

amount of computational effort. On top of that database, model calculations—using for instance

the Liechtenstein method [361–363]—can lead to useful insights in particular w.r.t. the spin wave

dispersion and critical temperatures of magnetic phase transitions. Finally, let us note that many

magnetic transitions are accompanied by structural transitions. And it might prove imperative to

follow a scheme of successively relaxing the atomic position and the magnetic ground state. In

the current study we avoided this obstacle by using the atomic positions obtained experimentally.
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However, in view of material design, the ability to treat experimentally unknown crystal structures

will be of great use.



Chapter 5

Spin-density functional theory

revisited

In Chapter 2, the basic concept of spin-density functional theory (SDFT) has been introduced. It

represents a practical approximation in order to solve the 2 × 2 Hamiltonian derived from Dirac’s

theory of the relativistic electron briefly presented in Appendix A. We have continuously tried

to caution the reader that the approximations must stand the test of time, and should not be

accepted without skepticism. The benchmark presented in Chapter 4 indeed reveals that first-

principles calculations with the generalized gradient approximation (GGA) in the framework of

SDFT for noncollinear magnetism could not accurately reproduce the total energy landscape when

varying the magnetic structure. In this chapter, we want to review some literature on first-principles

approaches to noncollinear magnetism, which has not received much attention by the community.

We start by recalling that in 1988 J. Kübler and coworkers [73, 74] have extended the local

spin-density approach (LSDA) to noncollinear magnetism by assuming that the spin-density could

always be diagonalized locally, see Section 2.3.1. That is, an electron at position r with spin-

magnetic moment m(s)(r) sees only a time-averaged local exchange–correlation (xc) magnetic field

Bxc(r), which happens to be always parallel to the magnetic moment: m(s)(r) ‖ Bxc(r).

In 1999, this assumption is criticized by L. Kleinman [325] because neither LSDA nor GGA

can reproduce the experimental wave vector of the spiral-spin-density-wave ground state in γ-Fe

[364–366]. Due to this limitation, he proposes an additional term for the xc energy functional, which

introduces off-diagonal elements to the xc correlation potential vxc in Equation (2.31a). While this

early work discusses the connection between spiral-spin-density-waves and the off-diagonal elements

of the spin-density, the first numerical results of GGA with the proposed correction term [367] fail

to improve the results for the ground state of γ-Fe [367]. Thus, there remained a lack of convincing

data or any proof that these terms are important. We recall that in 2000, J. Kübler’s approach to

noncollinear magnetism has been implemented in VASP [76], which we use in our calculations.

81
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Still in 2000, K. Capelle and L. N. Oliveira [368] also propose an xc correlation potential with

off-diagonal elements and bring these in connection with the local spin-magnetization. They provide

some theoretical arguments reasoning that the Kleinman functional is incomplete and probably fails

because of that. In fact, shortly before that, in 1997, K. Capelle and E. K. U. Gross [369] have

shown that the xc functional of SDFT is identical to current-DFT on a certain set of densities.

A followup work in 2001 [326] combines these findings [368, 369] and K. Capelle, G. Vignale and

B. L. Györffy derive the equation of motion for the spin degrees of freedom within time-dependent

SDFT in the absence of relativistic effects. They formulated the so-called zero-torque theorem:∫
d3rm(s)(r, t)×Bxc(r, t) ≡ 0, (5.1)

that states that Bxc cannot give rise to a net torque on the system. The zero-torque theorem

can be used as an exact constraint when constructing new xc functionals. Perhaps even more

interestingly, in the same paper [326], they show that in the static limit with no external magnetic

field the divergence of the tensor-valued xc spin-current Jxc is generated by the component of

Bxc(r) perpendicular to m(s)(r), i.e.,

∇ · Jxc(r) = 2µB(m(s)(r)×Bxc(r)). (5.2)

Here, we have introduced the xc spin-current Jxc(r), which is defined as the difference between the

expectation value of the spin-current operator

Ĵαβ = −i
µ2

B

e

N∑
i=1

[∂βσαδ(r − ri) + δ(r − ri)σα∂β ] , (5.3)

with respect to the Kohn–Sham (KS) wave functions ψiσ and with respect to the many-body state

defined by the density matrix ρ in Equation (2.6): Jxc(r) = JKS(r)−J(r). In other words, the xc

spin-current is the anomalous orbital current that carries spin instead of electric charge. The inner

product ∇ ·J is thereby defined to act on the second index of J , i.e. ∂βJαβ . Equation (5.2) proves

that J. Kübler’s assumption, i.e., m(s)(r) ‖ Bxc(r), holds exactly for compounds with zero xc spin-

current everywhere, i.e., Jxc(r) ≡ 0. This renders any xc functional that assumes m(s)(r) ‖ Bxc(r)

improper for the study of spin dynamics.

In order to overcome this serious limitation, the community has been working towards a gen-

eralized xc functional [327, 370–374] for noncollinear magnetism, which has lead to a noteworthy

publication [328] by S. Sharma, E. K. U. Gross and coworkers in 2007. They employ the optimized

effective potential (OEP) method, where the xc functional depends explicitly on the KS single-

particle functions1. In their implementation they formulate a so-called exact exchange (EXX)

functional, which is an exchange-only treatment that employs the Fock energy:

Exc = EEXXx [ψiσ] = −1

2

∫
d3r

∫
d3r′

occ∑
ij

ψ†i (r)ψ†i (r)ψj(r
′)ψi(r′)

|r − r′| . (5.4)

1Consequently, the xc functional implicitly depends on the spin-density.
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states (3 Ha below the Fermi level) are treated as Dirac
spinors and valence states as Pauli spinors. More impor-
tantly, the magnetization density and XC magnetic field are
both treated as unconstrained vector fields throughout
space. In our implementation of the OEP method, the
exchange fields are iteratively updated by subtracting the
residue functions Rv and RB from the exchange fields. In
other words, if i is the iteration number, then

 vix!r" # vi$1
x !r" $ !Riv!r";Bi

x!r" # Bi$1
x !r" $ !Ri

B!r"
(10)

is repeated until convergence is reached, with Riv and Ri
B

calculated by inserting vi$1
x and Bi$1

x into Eqs. (6) and (7).
! is the mixing chosen in such a manner as to achieve a
speedy convergence. In the collinear case, this method is
similar to the one previously suggested in Ref. [19].

In order to explore the impact of treating noncollinear
magnetism in the way outlined above, we compare our
approach with the standard LSDA functional using the
example of an unsupported Cr (111) monolayer. We set
the lattice parameter of the Cr monolayer to that of the Ag
(111) surface. The result is a topologically frustrated anti-
ferromagnet, known from LSDA calculations to exist as a
noncollinear Néel state with the net magnetization direc-
tion of the three nonequivalent atoms pointing at 120% to
each other. In Fig. 1, we show the magnetization density
and B field for both the LSDA and EXX functionals. Both
find, as they must, the noncollinear Néel state, and in fact
the EXX and LSDA MT averaged moments are similar,
being 2:60"B and 2:0"B, respectively. The details of the
XC density and field however are very different with the
EXX functional producing a lot more structure, in contrast
to its fairly homogeneous LSDA counterpart. In the past,
the LSDA results (of the kind shown in Fig. 1), which show

almost no noncollinearity in the MT region, led to the
conclusion that it is sufficient to treat only the interstitial
region as noncollinear [16]. The present Letter shows that
orbital functionals such as EXX are more sensitive to the
atomic shell structure, and this sensitivity also manifests
itself in the magnetization density and exchange B field.
This is clear from the flower petal-like structure visible in
the magnitude of EXX density and B field. The Néel walls
are also much narrower in the EXX case. Adding LSDA
correlations to the EXX functional does not significantly
change these results. A striking feature of the EXX B field
is that, unlike its LSDA counterpart, it is not locally
parallel to the magnetization density.

Another appealing property of the EXX functional that
could have consequences in future time-dependent exten-
sions is the nonvanishing cross product of the magnetiza-
tion density and EXX Bx field. This is interesting because
the equation of motion for the spin magnetization reads

 

dm!r; t"
dt

# #m!r; t" & 'BXC!r; t" (Bext!r; t") $r * Js

(11)

where Js is the spin current and # the gyromagetic ratio. In
the time-independent LSDA and conventional GGA, m!r"
and BXC!r" are locally collinear, as is clear from Fig. 1, and
therefore m!r" & BXC!r" vanishes. This also holds true in
the adiabatic approximation of time-dependent SDFT
which, by Eq. (11), implies that these functionals cannot
properly describe the dynamics of the spin magnetization.
In contrast, already at the static level, for the EXX func-
tional m!r" & Bx!r" does not vanish (see Fig. 2). In fact, in
the ground state of a noncollinear ferromagnet without
external magnetic field, m!r" & BXC!r" exactly cancels
the divergence of the spin current, r * Js; i.e., these terms
are equally important, and it is essential to have a proper

 

FIG. 1 (color). Fully noncollinear magnetization density and B
field obtained using the LSDA and exchange-only EXX func-
tionals for an unsupported Cr monolayer in Néel state. Arrows
indicate the direction, and information about the magnitude (in
atomic units) is given in the color bar.

 

FIG. 2 (color). m!r" &Bx!r" for an unsupported Cr mono-
layer, in the same plane as Fig. 1, obtained using the EXX
functional. Arrows indicate the direction, and information about
the magnitude (in atomic units) is given in the color bar.
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Figure 5.1: Sin-magnetization density m(r) and exchange–correlation magnetic field Bxc(r) field

obtained using the local spin-density approximation (LSDA) and exchange-only exact exchange

(EXX) functionals for an unsupported Cr-monolayer in Néel state. Reprinted figure with permission

from S. Sharma et al., Phys. Rev. Let., vol. 98, no. 19, p. 196405, 2007. [328]

This is then applied to a Cr-monolayer and compared to the gLSDA results, as shown in Figure 5.1:

The top row shows the spin-magnetization m(s)(r) and the xc magnetic filed Bxc(r) in gLSDA.

We see that the magnetization is large in the vicinity of the nuclei indicated by the color code.

The inter-atomic non-collinearity is obtained by a change of direction in Bxc(r) mainly located in

the interstitial regions. Overall Bxc(r) appears quite homogeneous in gLSDA, which is indicated

by a monotonous color. The bottom row of Figure 5.1 shows the m(s)(r) and Bxc(r) of the EXX

result. First of all, the spin-magnetization is not locally aligned with the xc magnetic field, i.e.,

m(s)(r) 6‖ Bxc(r). Then, |m(s)(r)| and |Bxc(r)| show flower-like patterns in the magnitude around

the nuclei, that remind us of the shape of vector spherical harmonics. To our knowledge, there has

been no work on combining the magnetic multipole description with the formulation of exchange–

correlation functionals. In view of this result, this might be worth pursuing in future works. Lastly,

we note that Bxc(r) of EXX is much less homogenous compared to gLSDA and that the change of

direction is not restricted to the interstitial regions of the Cr-monolayer.

Even with this intriguing result, the search for an appropriate xc functional for noncollinear

magnetism is far from over [329,330,375,376] and is continuously fueled by the increasing importance

of the spin-torque in spintronics [377]. We want to highlight works by F. G. Eich, S. Pittalis,

G. Vignale and E. K. U. Gross [331, 332] in 2013, that discuss the extension of xc functionals

including the gradient of the spin-magnetization ∇ ·m(s)(r). Then, in 2017, S. Pittalis, G. Vignale

and F. G. Eich have published a complete formalism [333] for combining spin-DFT and current-DFT

to spin-current-DFT. This is based on the introduction of four potentials via minimal substitution
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that can be performed on existing functionals: The scalar xc potential vxc = δExc/δn(r), the

Abelian xc vector gauge potential Axc,i = δExc/δji(r), the non-Abelian xc vector potential Aσσ′xc,ij =

δExc/δJ
σσ′

ij and the xc magnetic field Bxc,i = δExc/δm
(s)
i (r). However, they mention that in their

formulation these fields do not behave as standard Maxwellian fields, in the sense that Bxc 6=
(∇×Axc).

A year later, in 2018, S. Sharma, E. K. U. Gross, A. Sanna and J. K. Dewhurst propose a simple

method to avoid unphysical xc magnetic fields Bxc by removing the sources. In periodic systems

the energy functional is then given in terms of the density n(r), the curl of the spin-magnetization

∇×m(s)(r) and the total magnetization M , which appear as boundary terms:

Exc[n(r),m(s)(r)] 7→ Esfxc [n(r),∇×m(s)(r),M ]. (5.5)

In this source-free formulation the xc gauge field appears formally as Asfxc,i = δEsfxc/δ(∇×m(s)(r))i.

The source-free xc magnetic field hence satisfies Bsf
xc = ∇ ×Asf

xc . The variable conjugate to the

boundary term M is the external gauge field Aext, which therefore has to be included in the

calculation. The new constraint can be readily implemented by means of shifting the original xc

magnetic field by the divergence of a scalar field:

Bsf
xc = Bxc +

1

4π
∇Φ, (5.6)

where the scalar field Φ is given by the Poisson equation

∇2Φ(r) = −4π∇ ·Bxc(r). (5.7)

An implementation is freely available in the ELK code [181] and has been applied to at least

11 compounds, which are mainly pnictides. The results show that the removal of the source term

enhances the noncollinearity inBsf
xc compared toBxc. In their work, they have decided to introduce

an intra-orbital Coulomb interaction U within the f -orbitals, in order to obtain an on-site magnetic

dipole moment comparable to the experiment.

The current challenge seems to be that extensive tests are run on GGA functionals2 and meta-

GGA functionals [378], those applicability is limited to systems with no divergence of the static

spin-current. This seems to be equivalent to the suppression of on-site magnetic multipole moments

as formulated in Chapter 3. The community working towards the formulation of xc functionals that

appropriately accounts for the xc magnetic field seems to be in pursuit of including electron–electron

correlation effects directly into the xc functional [334–337, 379, 380]. This includes extensions em-

ploying the Hubbard model as well as new formulations of the xc functional including dipole–dipole

interaction terms based on the Hartree energy functional.

Finally, let us create a connection to our results. We employ a similar trick as we used in

Section B.5 in order to obtain the relation between the convective orbital current operator and the

2For instance the present work.
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orbital angular momentum operator. That is we take the cross product of r with the spin-current

operator and yield

r × Ĵ =
µ2

B

e

N∑
i=1

[l⊗ σδ(r − ri) + δ(r − ri)σ ⊗ l] . (5.8)

Then, let us recall the general expression for the spin–orbit term, which is discussed in Section 2.5

and Section A.4, and reads

HSO =
1

c2
K(r)

r

dvion

dr
σ · l. (5.9)

The spin–orbit coupling is the inner product of σ and l, so we can now see that the spin–orbit

coupling is proportional to Tr{r× Ĵ} =
∑
αβγ εαβγrβ × Ĵαγ , which corresponds to taking the trace

over Equation (5.8). Hence, we have drawn a direct connection between the spin–orbit coupling and

the static spin-current tensor. Based on Equation (5.2) and m(s)(r) ‖ Bxc(r), we speculate that

the spin-current tensor is not properly predicted and, thus, the spin–orbit coupling is not obtained

correctly in our calculations. In fact, our results presented in Chapter 4 indicate that the prediction

of the experimental magnetic ground state is particularly difficult in compounds exhibiting strong

spin–orbit coupling compared to crystal field splitting.



Chapter 6

Summary and Outlook

The main goal of this thesis is to predict magnetic structures from first-principles to enable material

design. We aim to be self-contained by deriving the multipole theory and introducing the cluster

multipole (CMP) theory [173] in an easily digestible way. Then, the spin-density functional theory

(SDFT) [28–30] is introduced with a particular focus on noncollinear magnetism and extensive

benchmark calculations [176] are performed.

The noncollinear magnets at the heart of this work are q = 0 magnetic structures with transition

metals, lanthanides and actinoides as magnetic sites. We show that the CMP basis is a natural

choice for magnetic structures by a comparison to experimental data. The analysis prompts us to

setup a heuristic rule: The magnetic ground state favors either pure CMPs or linear combinations

of CMPs that combine equally weighted CMPs of the same expansion order and same irreducible

representation. Based on this, we formulate a scheme to predict magnetic structures from first-

principle calculations by

• creating an exhaustive list of candidate magnetic structures that is comprised of the CMP basis

and linear combinations according to our heuristic rule, but omitting all magnetic structures

that correspond to different magnetic domains of the same magnetic structure. That is we

reject all candidates that are equivalent based on symmetry considerations.

• devising the generalized gradient approximation (GGA) in the form proposed by Perdew,

Burke and Ernzerhof (PBE) [187] as implemented in VASP version 5.4 [80,81] for noncollinear

magnetism [179] in the framework of SDFT proposed by J. Kübler [8,73] using experimentally

determined lattice parameters and atomic positions.

The theoretical magnetic ground states of 131 compounds are computed without input of the ex-

perimentally known magnetic configurations. The comparison between the theoretical prediction

and the experimental data revealed that in 90% of the materials one of the local minima in the total

energy functional has the correct magnetic space group. The magnetic anisotropy is relatively well
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predicted in compounds with magnetism emerging in 3d-orbitals. In other words, there is a clear

tendency that the lowest total energy in SDFT is assigned to the experimental magnetic ground

state. On the other hand, the magnetic anisotropy lacks accuracy in compounds with 4f -orbital

magnetism, which are representative of systems with strong spin–orbit coupling. Furthermore, we

compare the theoretical size of the on-site magnetic moment with the experimental one. Interest-

ingly, we find no systematic over- or underestimations in PBE–GGA, which stands in contrast to

the expectation due to the neglect of strong electronic correlation effects in the 3d and 4f -orbitals.

The accuracy is approximately ±0.5µB. A smaller benchmark on 28 compounds containing Mn as

magnetic sites and 4 compounds containing either Eu or Gd is employed to investigate the impact

of intra-orbital Coulomb repulsion on the level of GGA+U . It shows that the on-site magnetic mo-

ment is enhanced by increasing U , particularly in frustrated systems and in the absence of oxygen,

indifferent to whether the on-site magnetic moment is over- or underestimated at U = 0. Addi-

tionally, the magnetic anisotropy prediction of GGA+U seems to be lessened compared to GGA,

which suggests that the current implementation cannot capture the sensitive balance between the

energy scales of spin–orbit coupling, electronic correlation effects, and crystal field splitting.

Nevertheless, CMP+SDFT can successfully narrow down the possible magnetic configurations to

a handful of computed configurations with minimal computational effort by creating an exhaustive

list of candidate magnetic configurations. This presents a major step towards the prediction of

the magnetic ground state as can be emphasized by a comparison with the, to the best of our

knowledge, only other method attempting to predict the magnetic ground state from first-principles:

The genetic algorithm by F. Zheng and P. Zhang [14]. While they need to perform about 900

calculations to find the theoretical ground state, CMP+SDFT needs on average 22.4 calculations

per materials. Furthermore, they find one magnetic structure with the lowest total energy, and thus

strongly depend on the accuracy of the devised first-principle method. CMP+SDFT on the other

hand, obtains a well-defined set of local minima, which enabled us to point out shortcomings of

the state-of-the-art SDFT implementations for noncollinear magnetism. Our analysis strengthened

a dwelling criticism [325, 326] on a fundamental assumption widely employed in first-principles

calculations, i.e., the exchange–correlation magnetic field is assumed to be locally aligned with the

spin-magnetization. In this thesis, we review recent literature on exchange–correlation functionals

treating noncollinear magnetism, which establishes a relation of the antisymmetric coupling of the

exchange–correlation magnetic field with the spin-magnetization and the static spin-current tensor.

We then formulate a direct connection to the spin–orbit coupling term in the effective Kohn–Sham

Hamiltonian. Based on our benchmark calculation, we speculate that the magnetic anisotropy

prediction might be significantly enhanced when devising an exchange–correlation functional that

allows off-diagonal terms in the spin-density.



CHAPTER 6. SUMMARY AND OUTLOOK 88

6.1 Future perspective

An immediate followup project is to test whether devising an exchange–correlation functional that

allows off-diagonal terms in the spin-density improves the prediction of the magnetic ground state

in our scheme. We hence need to either use a current implementation of an exchange–correlation

functional that treats the exchange–correlation magnetic field on a more general footing, or we

need to extend the current version of VASP to account for it. Finally, we can test if the magnetic

anisotropy prediction is improved compared to the benchmark [176] presented in this thesis.

At that occasion, it would be interesting if we can use a source-free exchange–correlation mag-

netic field [328] and, thus, obtain the exchange–correlation gauge potential. That would allow us

to obtain the on-site multipoles of the gauge field from first-principles. Conversely, it might be

possible to combining the magnetic multipole description with the formulation of an exchange–

correlation functionals. The extraction of multipoles of the gauge field from first-principles can be

combined with recent attempts to promote magnetic multipoles to take on the role of a proper

order parameter. It seems feasible to find explicit expressions to relate the multipoles of the gauge

field with linear response of the system. Recent works [381, 382] that point in this direction are

done by H. Kusonose, S. Hayami and coworkers. Intriguing questions in this context are (i) how do

multipoles interact with each other, and (ii) how do multipoles on the atomic scale interact with

multipoles on the inter-atomic scale, i.e., with cluster multipoles.

In fact, also cluster multipoles might be directly connected to the linear response, or at least to

the shape of the linear response tensor as shown by the case study on Mn3Si [48]. This can be done

by exploiting the analysis provided by W. Kleiner, M. Seemann and coworkers [5,6,43,159] based on

the magnegic Laue group. Furthermore, we recall that in Section 3.3.2 we took on a simplified view,

that ignores higher order magnetic moments and convective effects on the atomic scale. In contrast

to the experiment, our calculations enabled us to separately consider the spin contribution to the

on-site magnetic moment as a source for the cluster multipole and the orbital current as a source for

the cluster multipole. In particular, in 4f -materials it may be interesting to separately expand the

bound spin and convective angular momentum in the cluster multipole expansion and ask in what

linear combinations bound cluster multipoles and convective cluster multipoles appear. Yet another

extension to the cluster multipole theory, that will greatly increase the applicability of the theory,

is the generalization to the nonstatic case by formulating a Bloch-type wave of cluster multipoles.

This could describe the spin-spiral wave as it appears in γ-Fe or, to put it more generally, open the

possibility to discuss q 6= 0 magnetic structures.

Finally, let us recall that the main goal of this thesis has been to predict magnetic structures

from first-principles to enable material design. It is paramount to formulate design criteria for new

magnetic compounds that could find applications in spintronics or energy generation. These crite-

ria may be based on insights acquired by answering questions raised in this section. Moreover, the

present CMP+SDFT scheme should be extended to compute the electronic response, which requires

tools commonly available to the DFT community to be adapted to the treatment of noncollinear
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magnetism. In order to name one example, it would be highly desirable to compute symmetry-

adapted Wannier orbitals to obtain a localized basis, that obeys the magnetic space group symmetry

of the crystal. Currently, the generation of symmetry-adapted Wannier orbitals is only available for

the paramagnetic space group symmetry of the crystal [383,384]. Furthermore, calculations at finite

temperature would open the possibility to discuss phase transitions. This may be done by employ-

ing model calculations on top of the first-principles calculation, using for instance the Liechtenstein

method [361–363] in order to compute the spin-wave dispersion and critical temperatures of mag-

netic phase transitions. This will be particularly useful when we create a computational database

of magnetic materials. Preferably, the database should be based on crystals that are found in

crystal structure optimization, instead of experimentally determined lattice parameters and atomic

positions. This is to achieve independence of whether a material has already been experimentally

realized, which can be highly challenging. The first project [385] to combine CMP+SDFT with

the so-called minima hopping method [386], which is a crystal structure optimization method, is

currently in its final stage: T. Yu and coworkers have proposed a design scheme for electrides1 and

this project shows how a previously unknown material could be designed step-wise by optimizing

the crystal structure, predicting the magnetic ground state and finally computing specific material

properties such as magnon spectra.

1Electrides are materials with intersticial electrons, which are not bound to a nuclei but form ionic bound within

the crystal. Their very low work function and intriguing magnetic and topological nature make them very interesting

potential functional materials.
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Appendix A

Dirac theory

The time dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 (A.1)

is not compatible with relativity due to the choice of the Hamiltonian and the fixed number of

particles1 it describes. In Dirac theory [21] time and space coordinates r = (x1, x2, x3) are put on

equal footing by the ansatz

i~
∂

∂t
Ψ = HDΨ, (A.2)

HD = (−iαi∂i + βm) , (A.3)

where the relativistic dispersion relation E =
√
p2c2 +m2c4 must be satisfied. Here, ∂i = ∂/

(
∂xi
)

is the derivative and defines the momentum as usual via p = −i∇.

A small calculation, that we will do in a moment, yields the algebra for αi and β:

{αi, αj} = 2δij , (A.4)

{αi, β} = 0, (A.5)

β2 = 1, (A.6)

where {αi, αj} = αiαj + αjαi is the anticommutator and δij = 1 if i = j and zero otherwise. For

the sake of readability and simplicity let us switch to natural units ~ = c = 1 and derive above

1Klein’s paradox shows that the Dirac equation can be interpreted as a single-particle theory only as long as there

are no external forces and energies which are comparable to the mass scale m.
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statements. The small calculation goes as follows:

E2 = p2 +m2 = −∂i∂i +m2, (A.7)

H2
D = (iαi∂i + βm) (iαj∂j + βm) (A.8)

= −αiαj∂i∂j︸ ︷︷ ︸
=∂i∂i

−i (αiβ + βαi)︸ ︷︷ ︸
=0

m∂i + β2︸︷︷︸
=1

m2. (A.9)

By comparing the first and the last line we straightforwardly obtain Equations (A.4) and (A.5).

Equation (A.6) on the other hand is obtained by exploiting that ∂i∂j is symmetric in indices i, j

and hence without loss of generality we can symmetrize αiαj = (αiαj + αjαi) /2. We find

αiαj∂i∂j = ∂i∂i (A.10)

1

2
(αiαj + αjαi) ∂i∂j = δij∂i∂j (A.11)

(αiαj + αjαi) ∂i∂j = 2δij∂i∂j , (A.12)

(αiαj + αjαi) = {αi, αj} = 2δij . (A.13)

The last line corresponds to Equation (A.6).

The algebra defined in Equations (A.4) to (A.6) can be fulfilled by 4× 4 matrices and no lower

dimension. The Dirac spinor Ψ consequently has 4 elements that are not corresponding to 3 + 1

dimensions of space-time. The interpretation of the elements Ψν with ν = 1, 2, 3, 4 depends on the

chosen representation. In the non-relativistic limit—that we are interested in in the scope of this

thesis—the appropriate representation of the matrices αi and β is the so-called Dirac representation:

αi =

(
0 σi

σi 0

)
, β =

(
12×2 0

0 −12×2

)
, (A.14)

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, 12×2 =

(
1 0

0 1

)
(A.15)

with Pauli matrices σi.

A.1 Solution of the Dirac equation

Let us now find the solution of the Dirac equation in order to gain a physical interpretation of Ψν .

Starting point is a plane wave ansatz

Ψ(+)
ν (t, r) = e−i(Et−p·r)uν(E,p), (A.16)

Ψ(−)
ν (t, r) = ei(Et−p·r)vν(E,p). (A.17)

Here, the first line corresponds to a solution with positive energy corresponding to electrons prop-

agating forward in time. The second line describes an unbound electron in vacuum with negative
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energy, which was difficult to interpreter at the time. Today, this is known to describe the antipar-

ticle of electrons: positrons.

In the rest frame p = 0, E = m we obtain four solutions by plugging in Equations (A.16)

and (A.17) in Equation (A.3)(
−i

∂

∂t
− iαi,µν∂i + βµνm

)
Ψ(+/−)
ν (m,0) = 0. (A.18)

Without normalization we find

u1 = (1, 0, 0, 0)T , u2 = (0, 1, 0, 0)T , v1 = (0, 0, 1, 0)T , v2 = (0, 0, 0, 1)T . (A.19)

In other words, in the rest frame electrons have nonzero components in ν = 1, 2 and positrons in

ν = 3, 4. The solutions in Equation (A.19) us and vs gained an additional label s. A rotation about

the z-axis shows that ν = 1, 3 correspond to spin up (s=1), while ν = 2, 4 correspond to spin down

in the rest frame (s=2) in Equation (A.19).

The general solution of the non-interacting Dirac equation can finally be obtained by applying

a Lorentz boost to the Dirac spinor of the rest frame. Normalization then leads to:

Ψ(+,s)(t, r) = e−i(Et−p·r) 1√
2m(m+ E)

(
(E +m)ϕs

σ · p ϕs

)
, (A.20)

Ψ(−,s)(t, r) = ei(Et−p·r) 1√
2m(m+ E)

(
σ · p χs

(E +m)χs

)
. (A.21)

Here, we introduce the two-component spinors ϕs and χs with s = 1, 2. The so-called large com-

ponent spinor ϕ1 = (1, 0)T and ϕ2 = (0, 1)T , and the small component spinor χ1 = (1, 0)T and

χ2 = (0, 1)T . This description will become transparent by deriving the Pauli Hamiltonian in Sec-

tion A.3.

A.2 Electromagnetic coupling

The relativistic formulation of Maxwell’s equations introduces the field tensor Fµν , which is com-

posed of E and B and can be defined via the four-vector gauge field Aµ = (φ,A) as

Fµν = ∂µAν − ∂νAµ. (A.22)

Then, the Maxwell’s equations read

∂µFµν = jν , (A.23)

∂µεµνσρFσρ = 0, (A.24)

where we combine the electric charge ρ and the electric current j in jµ = (ρ, j). In order to

couple electrons to an electromagnetic field one would usually introduce a source term jνAµ into

the Hamiltonian. In the Dirac theory, the current reads

jν(r, t) = e(Ψ†(r, t)Ψ(r, t),Ψ†(r, t)αΨ(r, t)). (A.25)
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Conveniently, writing HD + jνAµ yields exactly the same as performing the so-called minimal

substitution in HD:

∂

∂t
→ ∂

∂t
+ ieφ, ∂i → ∂i − ieAi. (A.26)

Finally, the four-vector vector gauge field can be computed by means of the Poisson equations

∇2φ = −4πρ, (A.27)

∇2A = −4πj. (A.28)

Note that, performing minimal substitution on Equation (A.2), c.f. Equation (A.40), we can

write

Ψ(r, t) =
1

m

[
β

(
iβ
∂

∂t
− eφ

)
− βα (−i∇− eA)

]
Ψ(r, t). (A.29)

By defining the Dirac adjoint spinor

Ψ̄ = Ψ†β, (A.30)

we can obtain an analogous expression from the adjoint of the Dirac equation and perform the Gor-

don decomposition, see Ref. [8] p. 44 ff, to obtain new expressions for the density and current based

on the original definition. Both are split into the convective term2, which are reminiscent of the

current and density of spinless, nonrelativistic electrons, and the internal (or bound) contributions.

The density reads

ρ = ρconv + ρint, (A.31a)

ρconv = −iµB

[
Ψ̄
∂Ψ

∂t
−
(
∂Ψ̄

∂t

)
Ψ

]
+
e2φ

m
Ψ̄Ψ, (A.31b)

ρint = −∇ · P , (A.31c)

and the current reads

j = jconv + jint, (A.32)

jconv = iµB

[
Ψ̄∇Ψ− (∇Ψ̄)Ψ

]
+
e2A

m
Ψ̄Ψ, (A.33)

jint = ∇×M +
∂P

∂t
, (A.34)

where µB = e/(2m) is the Bohr magneton, and we defined the magnetization M and polarization

P

M =
e

2m
Ψ̄ΣΨ = −|gs|Ψ̄

1

2
ΣΨµB, (A.35a)

P = −Ψ̄(−iα)ΨµB, (A.35b)

2From Latin convehere, to carry together. The convective term includes the dynamic, unbound contributions to

the density and the current. In Section 3.1, it appears as orbital angular momentum current to obtain ??.
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with |gs| ≈ 2 and the 4× 4 matrix

Σi =

(
σi 0

0 σi

)
. (A.36)

A.3 Pauli Hamiltonian

The Pauli Hamiltonian is the non-relativistic limit of Equation (A.3) when electromagnetic coupling

is introduced. The final result reads

i
∂

∂t
ϕ = HPauliϕ, (A.37)

HPauli = −∇2

2m
+ eφ− µB (L+ 2S) ·B. (A.38)

Without further ado, let us introduce electromagnetic coupling by minimal substitution:

∂

∂t
→ ∂

∂t
+ ieφ, ∂i → ∂i − ieAi, (A.39)

i
∂

∂t
Ψ = HDΨ +HintΨ, (A.40)

Hint = −eαiAi + eφ (A.41)

This defines the interacting problem with interacting Dirac Hamiltonian HD +Hint.
Next, we go to the non-relativistic limit by assuming E −m � m. It is reasonable to split off

the rest mass and start with the ansatz:

Ψ(t, r) = e−it

(
ϕ(t, r)

χ(t, r)

)
(A.42)

With Equation (A.40) we find two equations:

i
∂ϕ

∂t
= −iσi∂iχ− eσiAiχ+ eφϕ, (A.43)

i
∂χ

∂t
= −iσi∂iϕ+ 2mχ− eσiAiϕ+ eφχ (A.44)

In Equation (A.44), we can neglect i∂χ∂t ∝ Eχ � 2mχ and assume weak potential eφ � m and

yield

χ(t, r) ≈ 1

2m
σ · (−i∇− eA)ϕ(t, r)� ϕ(t, r). (A.45)

Here, we see the justification to call χ small component spinor and ϕ large component spinor. This

can be plugged into Equation (A.43) to obtain:

i
∂ϕ

∂t
=

1

2m
[σ · (−i∇− eA)]

2
ϕ+ eφϕ (A.46)

=
1

2m

[
(−i∇− eA)

2 − eσ ·B
]
ϕ+ eφϕ. (A.47)
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Here we used the identity σiσj = δij + iεijkσk with the antisymmetric Levi Cevita symbol εijk in

the following steps

[σ · (−i∇− eA)]
2

= (A.48)

= σiσj (−i∂i − eAi) (−i∂j − eAj) (A.49)

= δij (−i∂i − eAi) (−i∂j − eAj) + iεijkσk (−i∂i − eAi) (−i∂j − eAj) . (A.50)

Note that in the second term in the last line we can drop the symmetric part as εijk is fully

antisymmetric

(−i∂i − eAi) (−i∂j − eAj) f(r)

= −∂i∂jf(r) + ie [Ai (∂jf(r)) +Aj (∂if(r))] + ief(r) (∂iAj) + e2AiAjf(r) (A.51)

→ (−i∂i − eAi) (−i∂j − eAj) a.s.= ie (∂iAj) . (A.52)

And then we introduce the magnetic field B = ∇×A in order to write its components as

Bk = εijk∂iAj . (A.53)

With this we can write Equation (A.50) as Equation (A.47).

Finally, we assume a constant magnetic field to write A = (B × r) /2 and let A be weak and

fulfill Coulomb gauge ∇ ·A = 0 in order to write:

(−i∇− eA)
2 ≈ −∇2 − e (r × p) ·B. (A.54)

This approximation is obtained by the following steps

(−i∇− eA)
2
f(r) (A.55)

= −∇2f(r) + ie∇(Af(r)) + ieA∇(f(r)) + e2 A2︸︷︷︸
≈0

f(r) (A.56)

= −∇2f(r) + ie 2A︸︷︷︸
B×r
·∇(f(r)) + ie∇(A)︸ ︷︷ ︸

=0

f(r) (A.57)

= −∇2f(r) + ie (B × r) ·∇(f(r))︸ ︷︷ ︸
(r×∇(f(r)))·B

. (A.58)

The last step is possible because B is constant. Using p = −i∇ we obtain Equation (A.54).

The weak constant field approximation Equation (A.54) can be plugged into Equation (A.47).

Considering the definition of the Bohr magneton µB = e/(2m) as well as introducing angular

momentum L = (r×p) and spin S = 2σ we obtain the final result. That is the Pauli Hamiltonian
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for the large component ϕ(t, r):

i
∂

∂t
ϕ(t, r) =

1

2m

[
−∇2 − e (r × p) ·B − eσ ·B

]
ϕ(t, r) + eφϕ(t, r) (A.59)

=
[
− ∇2

2m
+ eφ− e

2m︸︷︷︸
µB

(r × p)︸ ︷︷ ︸
L

·B − e

2m︸︷︷︸
µB

σ︸︷︷︸
2S

·B
]
ϕ(t, r) (A.60)

= HPauli ϕ(t, r) (A.61)

HPauli = −∇2

2m
+ eφ− µB (L+ 2S) ·B. (A.62)

A.4 Relativistic corrections

In the preceding section we have seen how decoupling the large and small components of a Dirac

spinor in the nonrelativistic limit can leads to the Pauli Hamiltonian. This enabled us to highligh

some of its physical content. The systematic expansion in a series of powers of Ekin/m has been

worked out by Foldy and Wouthuysen [72]. Here, Ekin =
√
m2 + p2 − m. The goal is to find a

block-diagonal H′ by use of a unitary transformation Ψ′ = eiSΨ such that

i
∂

∂t
Ψ′ = eiS

(
He−iS − i

∂

∂t
e−iS

)
Ψ′ = H′Ψ′. (A.63)

For H = HD +Hint this can be done iteratively, where systematically the remainder is on the

order of O( 1
mn ) in iteration n. In other words, the Hamiltonian after iteration n has the form

H(n) = βm+ E(n) +O(n), where O(n) = O( 1
mn ). After 3 iterations one finds

H(3) =β

[
m+

(p− eA)
2

2m
− p4

8m3

]
+ eφ− β µBσ ·B (A.64)

+

(
−i

e

8m2
σ · (∇×E)− 1

2m
µBσ · (E × p)

)
(A.65)

+
e

8m2
∇ ·E +O(3). (A.66)

The first line yields the Pauli Hamiltonian in the weak constant field limit, where Equation (A.54)

holds, plus a relativistic correction of the kinetic energy. The second line reduces to the spin-

orbit coupling term, when focusing on static sperical potentials V (r) yielding E = −dV
dr

r
r and

(∇×E) = 0. Then (r×p) becomes L. The last term arises as a correction due to the fluctuations

of the position of an electron3 and is called Darwin term.

3Consider an electron at x with 〈δr〉 = 0 but 〈(δr)2〉 > 0. This entails a shift in the electrostatic energy according

to

e〈φ(x + δx)〉 = eφ(r) +
e

2
∇2φ

1

3
〈(δr)2〉 ≈ eφ(r) +

e

2
∇ ·E

1

3

1

m2
. (A.67)

In the last step we used that the fundamental uncertainty is of the order of the Compton wavelength 〈(δr)2〉 ≈ 1/m2.
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We summarize the Hamiltonian with all relativistic corrections in the weak constant field limit

with a static spherical potential:

i
∂

∂t
Ψ′ = [Hkin +Hmag +HV +HSO +HDarwin] Ψ′, (A.68a)

Hkin = β

[
m− ∇2

2m
− p4

8m3

]
, (A.68b)

Hmag = −β µB(L+ 2S) ·B, (A.68c)

HV = eV, (A.68d)

HSO =
µB

2mr

(
dV

dr

)
L · σ, (A.68e)

HDarwin =
e

8m2

(
d2V

dr2

)
. (A.68f)

Although this is the traditional way to obtain relativistic corrections, there are some works

claiming Ekin/m cannot be guaranteed to be small everywhere in space for Coulomb potentials.

Indeed, for r → ∞ we find Ekin becomes a large positive number. In principle, a bound electron

would only render a finite expectation value at r = 0 for l = 0, i.e. the s-orbital, for which there

is no spin–orbit coupling. Nevertheless, it is numerically not a well-posed problem, if the Hamilton

operator is regularized by the wave function. Hence, as discussed in Ref. [90] it is better to expand

in Ekin+V
2m−V .

A.5 Radial Dirac equation and spinor harmonics

Let us discuss the which operators commute with

Hr = HD +HV = α · p+ βm+ eV (r). (A.69)

One finds the total angular momentum operator[
Hr,J2

]
= 0, (A.70)

[Hr, J3] = 0, (A.71)

J = L+ S, (A.72)

gives rise to such constants of motion, but not L and S individually. The eigenvalue of J2 and J3

are denoted by j(j + 1) and mj , respectively. One less often discussed operator is the spin–orbit

operator K, that defines a further conserved quantity:

[Hr,K] = 0, (A.73)

K = β (Σ ·L+ 1) =

(
σ ·L+ 1 0

0 −σ ·L− 1

)
, (A.74)

Σi = σi ⊕ σi (A.75)
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The eigenvalue of K is given as

κ = ±(j +
1

2
), (A.76)

where qualitatively the sign of κ relates to antiparallel (κ > 0) or parallel (κ < 0) alignment of the

spin to the angular momentum in the nonrelativistic limit. In other words sign(κ) also determines

the sign in j = l ± 1
2

The eigenspinors of Hr are thus characterized by three quantum numbers: j, mj and sign(κ). It

is possible to write these eigenspinors in terms of linear combinations of products of the eigenvectors

ξs,ms of spin with s = 1
2

ξ 1
2 ,+

1
2

=

(
1

0

)
, ξ 1

2 ,− 1
2

=

(
0

1

)
(A.77)

and the spherical harmonics Ylm(Ω) with the relevant Clebsch-Gordan coefficients

Y
l 12
jmj

(Ω) =

s∑
ms=−s

l∑
ml=−l

〈lml
1

2
ms|jmj〉Ylml(Ω)ξ 1

2 ,ms
, (A.78)

y
[+]
jmj

= Y
l 12
jmj

(Ω)|j=l+ 1
2
, (A.79)

y
[−]
jmj

= Y
l 12
jmj

(Ω)|j=l− 1
2
. (A.80)

Here, we introduce the so-called spinor harmonics y
[sign(κ)]
jmj

. These stand in exact analogy to vector

spherical harmonics, which we will use extensively in multipole theory. In a nutshell, for vector

spherical harmonics we obtain linear combinations of products of the spherical basis e1m′ and the

spherical harmonics Ylm(Ω) with the relevant Clebsch-Gordan coefficients, see Equation (B.4). One

useful property of the spinor harmonics is that

σ · r̂ y[sign(κ)]
jmj

= y
[−sign(κ)]
jmj

(A.81)

We can now separate the angular- and the radial-dependence of the Dirac spinor, that satisfies

HrΨsign(κ)
jmj

(r) = E
sign(κ)
jmj

Ψ
sign(κ)
jmj

(r), (A.82)

by the ansatz

Ψ
sign(κ)
jmj

(r) =

(
ϕ

sign(κ)
jmj

(r)

χ
−sign(κ)
jmj

(r)

)
=

(
g(r)y

[sign(κ)]
jmj

(Ω)

if(r)y
[−sign(κ)]
jmj

(Ω)

)
. (A.83)

Plugging eq into eq with eq. this yields

[α · p+ βm+ eV (r)]

(
g(r)y

[sign(κ)]
jmj

(Ω)

if(r)y
[−sign(κ)]
jmj

(Ω)

)
= E

sign(κ)
jmj

(
g(r)y

[sign(κ)]
jmj

(Ω)

if(r)y
[−sign(κ)]
jmj

(Ω)

)
. (A.84)
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It is possible to rewrite σ · p by inserting (σ · r̂)2 = 12×2 and obtain

σ · p = (σ · r̂)2σ · p (A.85)

= σ · r̂
(
r · p+ iσ · L

r

)
(A.86)

= σ · r̂ 1

r

(
−i

∂

∂r
− iσ ·L

)
(A.87)

= σ · r̂ i
r

[
− ∂

∂r
r + (σ ·L+ 1)︸ ︷︷ ︸

±κ for y[±]

]
(A.88)

Here, we used L = r× p, p = −i∇ and ∇ = r̂ ∂
∂r − i

r (r̂×L), as well as ∂
∂r = 1

r
∂
∂r r− 1

r . Therefore

the ansatz yields two differential equations

[eV (r) +m] g(r)y
[sign(κ)]
jmj

+ σ · r̂ i

r

[
− ∂

∂r
r + (σ ·L+ 1)

]
if(r)y

[−sign(κ)]
jmj

= E
sign(κ)
jmj

g(r)y
[sign(κ)]
jmj

(A.89)

σ · r̂ i

r

[
− ∂

∂r
r + (σ ·L+ 1)

]
g(r)y

[sign(κ)]
jmj

+ [eV (r)−m] if(r)y
[−sign(κ)]
jmj

= E
sign(κ)
jmj

if(r)y
[−sign(κ)]
jmj

(A.90)

which simplify to [
−1

r

∂

∂r
r − κ

r

]
f(r) =

[
m− Esign(κ)

jmj
+ eV (r)

]
g(r) (A.91)[

−1

r

∂

∂r
r +

κ

r

]
g(r) =

[
m+ E

sign(κ)
jmj

− eV (r)
]
f(r) (A.92)

for the radial dependence. These coupled equations can now be solved numerically. For a compar-

ison of such a fully relativistic calculation, with the first order relativistic corrections discussed in

Section A.4 see Ref. [90].



Appendix B

Details of solving the vector

Poisson equation

We want to solve the vector Poisson equation

∇2A(r) = −4πj(r), (B.1)

in Coulomb gauge

∇ ·A = 0. (B.2)

Here, j(r) is the static current, that could for instance arise due to the orbital angular momentum

or spin.

B.1 General form of the vector gauge field

We want to shown that any solution of Equation (B.1) must have the form

A(r) =

∞∑
p=1

p∑
q=−p

[
Mp1
pq

1

rp+1
Y p1
pq(Ω) + T p+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
, (B.3)

where Mp1
pq are magnetic (M) multipole coefficients, T p+1,1

pq are magnetic toroidal (MT) multipole

coefficients and Y l1
pq(Ω) are the vector spherical harmonics, defined as

Y l1
pq(Ω) =

l∑
m=−l

1∑
m′=−1

〈lm1m′|pq〉Ylm(Ω)e1m′ , (B.4)

l2 Y l1
pq(Ω) = l(l + 1)Y l1

pq(Ω). (B.5)

Here, Ylm(Ω) are spherical harmonics and e1m′ are spherical unit vectors, which are coupled to

each other via the Clebsch–Gordon coefficient 〈lm1m′|pq〉. Note that by construction the angular

101
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momentum quantum number l = p − 1, p, p + 1. A closer look at the Clebsch–Gordon coefficient

reveals that p is a sort of total angular momentum arising from coupling of the angular momentum

l with an intrinsic angular momentum of value 1.1

Let us begin by solving the homogeneous vector Poisson equation:

∇2A(r) = 0, (B.6)

We note that A = (Ax, Ay, Az)T has three components. Here, it is better to write A in terms of

rank 1 spherical tensors, because ∇2 satisfies rotational symmetry. We hence write

A = A1m′e1m′ (B.7)

with contravariant components

A11 = − 1√
2

(Ax − iAy) , (B.8a)

A10 = Az, (B.8b)

A1−1 =
1√
2

(Ax + iAy) (B.8c)

and spherical unit vectors given by Cartesian unit vectors as

e11 = − 1√
2

(ex + iey) , (B.9a)

e10 = ez, (B.9b)

e1−1 =
1√
2

(ex − iey) . (B.9c)

Inversely Cartesian components are given in terms of spherical components as

Ax =
1√
2

(
A1−1 −A11

)
, (B.10a)

Ay = − i√
2

(
A1−1 +A11

)
, (B.10b)

Az = A10. (B.10c)

The implications of Equation (B.6) for the spherical component A1m′ become clear by inserting

Equation (B.10):

∇2Ax = 0 → ∇2
(
A1−1 −A11

)
= 0, (B.11a)

∇2Ay = 0 → ∇2
(
A1−1 +A11

)
= 0, (B.11b)

∇2Az = 0 → ∇2A10 = 0. (B.11c)

1This intrinsic angular momentum is often called spin, although it has no connection to the electronic spin. In

fact, it merely reflects the 3 linearly independent directions of coordinate space by means of m′ = −1, 0, 1.
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Since ∇2 is a linear operator, it is ok to add and subtract Equation (B.11a) and Equation (B.11b).

This yields

∇2A1m′ = 0 (B.12)

for all m = −1, 0, 1 independently.

Next, we follow a seperation ansatz for each component

A1m′(r) = R1m′(r)Y 1m′(Ω), (B.13)

where R1m′(r) describes the radial dependency of the component A1m′ and Y 1m′(Ω) the angular

dependency. The operator ∇2 can be written in radial and angular contributions as

∇2 = ∇2
r +

1

r2
∇2

Ω, (B.14a)

∇2
r =

1

r

∂2

∂r2
r =

1

r2

∂

∂r
r2 ∂

∂r
, (B.14b)

∇2
Ω =

1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ
+

1

sin2 (θ)

∂2

∂ϕ2
(B.14c)

We plug the seperation ansatz of Equation (B.13) and Equation (B.14) component-wise into the

homogeneous Poisson equation Equation (B.11) and obtain[
∇2
r +

1

r2
∇2

Ω

]
R1m′(r)Y 1m′(Ω) = 0, (B.15a)

r2∇
2
rR

1m′(r)

R1m′(r)
= −∇2

ΩY
1m′(Ω)

Y 1m′(Ω)
= C1, . (B.15b)

Since the first term in Equation (B.15b) depends only on r and the second only on Ω, this can

only hold for all r and Ω, if the terms equal a constant C1. This yields two separate differential

equations:

r2∇2
rR

1m′(r) = C1R
1m(r), (B.16)

∇2
ΩY

1m′(Ω) = −C1Y
1m′(Ω). (B.17)

First let us solve for the radial dependence R1m(r). Equation (B.16) has two solutions, which

we find by following the ansatz

R1m′

l (r) = A1m′

l rl : (B.18a)

1

r

∂2

∂r2
rA1m′

l rl = l(l + 1)A1m′

l rl, (B.18b)

→ C1 = l(l + 1) (B.18c)
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and

R1m′

l (r) =
B1m′

l

rl+1
: (B.19a)

1

r

∂2

∂r2
r
B1m′

l

rl+1
= l(l + 1)

B1m′

l

rl+1
(B.19b)

→ C1 = l(l + 1). (B.19c)

Next, we solve Equation (B.17), once again by a seperation ansatz

Y 1m′

l = X1m′

l (θ)Φ1m′

l (ϕ), (B.20)

that separate the polar angle θ and azimuthal angle ϕ:

∇2
ΩY

1m′

l (Ω) = −l(l + 1)Y 1m′

l , (B.21a)[
1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ
+

1

sin2 (θ)

∂2

∂ϕ2

]
X1m′

l (θ)Φ1m′

l (ϕ)

= −l(l + 1)X1m′

l (θ)Φ1m′

l (ϕ), (B.21b)

sin2 (θ)
1

X1m′
l (θ)

[
1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ

]
X1m′

l (θ)

+ l(l + 1) sin2 (θ) = − 1

Φ1m′
l (ϕ)

∂2

∂ϕ2
Φ1m′

l (ϕ) = C2. (B.21c)

We obtain two differential equations, that read:

∂2

∂ϕ2
Φ1m′

l (ϕ) = −C2Φ1m′

l (ϕ), (B.22)[
1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ

]
X1m′

l (θ) + l(l + 1)X1m′

l (θ)

=
1

sin2 (θ)
C2X

1m′

l (θ). (B.23)

We can solve Equation (B.22) with an educated guess:

Φ1m′

l (ϕ) = ei
√
C2φ. (B.24)

Additionally we know the boundary condition

Φ1m′

l (ϕ) = Φ1m′

l (ϕ+ 2π), (B.25)

which puts further constraints on C2:

i
√
C22π = ±im2π m ∈ Z (B.26a)

→
√
C2 = m. (B.26b)
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Finally, the polar differential equation given in Equation (B.23) must be solved. We substitute

with x = cos (θ) and use

sin2 (θ) = 1− cos2 (θ) = 1− x2, (B.27a)

− ∂

∂x
=

1

sin (θ)

∂

∂θ
, (B.27b)

sin (θ)
∂

∂θ
= sin2 (θ)

∂

∂x
= (1− x2)

∂

∂x
. (B.27c)

This yields [
∂

∂x
(1− x2)

∂

∂x
− m2

(1− x2)

]
P 1m′

lm (x) = −l(l + 1)P 1m′

lm (x), (B.28)

which is a differential equation known to be solved by the Legendre polynomials P 1m′

lm (x). Jointly

the spherical dependence is written in terms of spherical harmonics

Y 1m′

lm (Ω) = Φ1m′

lm (ϕ)P 1m′

lm (cos2 (θ)) (B.29)

for each component A1m′ . Thus, any solution of Equation (B.6) can be written as

A(r) =

1∑
m′=−1

A1m′(r,Ω)e1m′ (B.30a)

=

∞∑
l=0

l∑
m=−l

1∑
m′=−1

[
A1m′

lm rlYlm(Ω)e1m′ +
B1m′

lm

rl+1
Ylm(Ω)e1m′

]
(B.30b)

Here we note that, physically we expectA(r) to vanish when r →∞, as well as for r → 0. Therefore

the first (second) term in Equation (B.30b) describes A(r) within (outside) the current j(r). We

are interested in the latter and set A1m′

lm ≡ 0.

We have mentioned that the spherical unit vectors e1m′ are spherical tensors of rank 1. This

means the product Ylm(Ω)e1m′ can be treated as if two angular momenta 1 and l are coupling.

As is known for instance from the coupling of spin and orbital angular momentum, the coupling is

formally done via Clebsch–Gordon coefficients:

Ylm(Ω)e1m′ =

∞∑
p=0

p∑
q=−p

〈lm1m′|pq〉Y l1
pq(Ω). (B.31)

Here, vector valued eigenfunctions Y l1
pq(Ω) of the angular momentum operator l are introduced.

The inverse relation of Equation (B.31) serves as a definition of these so-called vector spherical

harmonics:

Y l1
pq(Ω) =

l∑
m=−l

1∑
m′=−1

〈lm1m′|pq〉Ylm(Ω)e1m′ , (B.32)

l2 Y l1
pq(Ω) = l(l + 1)Y l1

pq(Ω). (B.33)
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as was stated in Equation (B.4) and Equation (B.5).

In addition to introducing vector spherical harmonics, we redefine the expansion coefficients in

Equation (B.30b), in order to swallow the Clebsch–Gordan coefficients:

∞∑
l=0

1∑
m′=−1

B1m′

lm 〈lm1m′|pq〉 = M l1
pq (δl,p−1 + δl,p + δl,p+1) . (B.34)

Here, we used that |l ± 1| < p, which is a property of 〈lm1m′|pq〉. Thus, A(r) can be written as:

A(r) =

∞∑
p=0

p∑
q=−p

∞∑
l=0

l∑
m=−l

1∑
m′=−1

[
B1m′

lm

rl+1
〈lm1m′|pq〉Y l1

pq(Ω)

]
(B.35a)

=

∞∑
p=0

p∑
q=−p

∞∑
l=0

[
M l1
pq (δl,p−1 + δl,p + δl,p+1)

1

rl+1
Y l1
pq(Ω)

]
(B.35b)

=

∞∑
p=0

p∑
q=−p

[
Mp−1,1
pq

1

rp
Y p−1,1
pq (Ω)

+Mp1
pq

1

rp+1
Y p1
pq(Ω) +Mp+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
. (B.35c)

We will now proof that only the terms containing the M multipole coefficient Mp1
pq and the MT

multipole coefficient Mp+1,1
pq , which we will denote by T p+1,1

pq to highlight the difference, are actually

compatible with the Coulomb gauge given in Equation (B.2). To this end, we will use the following

three relations that can be derived from Equation (B.4) [140]:

Y p−1,1
pq (Ω) =

1√
p(2p+ 1)

(pr̂ − ir̂ × l)Yp,q(Ω), (B.36)

Y p,1
pq (Ω) =

1√
p(p+ 1)

lYp,q(Ω), (B.37)

Y p+1,1
pq (Ω) =

−1√
(p+ 1)(2p+ 1)

((p+ 1)r̂ + ir̂ × l)Yp,q(Ω), (B.38)

where r̂ has unit length. These are derived step-by-step in Section B.7. Furthermore, we recall
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some useful identities:

∇ = r̂
∂

∂r
− i

r
(r̂ × l), (B.39)

r̂ =
r

r
, (B.40)

r =
√
r · r, (B.41)

r̂ · r̂ = 1, (B.42)

l = −ir ×∇, (B.43)

r̂ · (r̂ × l) = 0, (B.44)

(r̂ × l) · r̂ = 2i, (B.45)

(r̂ × l) · (r̂ × l) = l2, (B.46)

r̂ · l = 0, (B.47)

(r̂ × l) · l = 0 (B.48)

r̂
∂

∂r
f(r) =

∂

∂r
r̂f(r). (B.49)

The first factor in Equation (B.35c), namely Mp−1,1
pq

1
rpY

p−1,1
pq (Ω), can be investigated by ap-

plying ∇ onto f(r)Y p−1,1
pq (Ω), where f(r) is an arbitrary function of r that commutes with l:

∇ ·
(
f(r)Y p−1,1

pq (Ω)
)

=

[
r̂
∂

∂r
− i

r
(r̂ × l)

]
f(r)

1√
p(2p+ 1)

(pr̂ − ir̂ × l)Yp,q(Ω)

=
1√

p(2p+ 1)

[
r̂
∂

∂r
pr̂ − ir̂

∂

∂r
(r̂ × l)− i

r
(r̂ × l) · r̂p− 1

r
(r̂ × l)2

]
f(r)Yp,q(Ω)

=

√
p

2p+ 1
Yp,q(Ω)

[
∂f(r)

∂r
− p− 1

r
f(r)

]
= 0. (B.50)

The equality in the last line can only hold if

∂f(r)

∂r
=
p− 1

r
f(r) (B.51a)

→ f(r) = rp−1. (B.51b)

However in Equation (B.35c) we see the radial dependence is r−p. Hence, Mp−1,1
pq must be zero for

all p and q, in order to be compatible with the gauge condition.

The next factor in Equation (B.35c) is Mp1
pq

1
rp+1Y

p1
pq(Ω). We follow the same procedure:

∇ ·
(
f(r)Y p1

pq(Ω)
)

=

[
r̂
∂

∂r
− i

r
(r̂ × l)

]
f(r)

1√
p(p+ 1)

lYp,q(Ω) = 0

for all f(r) because r̂ · l = 0 and (r̂ × l) · l = 0. This term can appear without any restrictions.
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Finally, the factor T p+1,1
pq

1
rp+2Y

p+1,1
pq (Ω) is investigated:

∇ ·
(
f(r)Y p+1,1

pq (Ω)
)

=

[
r̂
∂

∂r
− i

r
(r̂ × l)

]
f(r)
− [(p+ 1)r̂ + ir̂ × l]√

(p+ 1)(2p+ 1)
Yp,q(Ω)

=
−1√

(p+ 1)(2p+ 1)

[
(p+ 1)

∂

∂r
+ i

∂

∂r
r̂ · (r̂ × l)

− i

r
(r̂ × l) · r̂(p+ 1) +

1

r
(r̂ × l)2

]
f(r)Yp,q(Ω)

= −
√

(p+ 1)

(2p+ 1)

[
∂

∂r
+
p+ 2

r

]
f(r)Yp,q(Ω) = 0 (B.52)

→ f(r) =
1

rp+2
. (B.53)

This is consistent with the radial dependence in Equation (B.35c).

In summary, we have shown that

∇ ·
(
rp−1Y p−1,1

pq (Ω)
)

= ∇ ·
(
f(r)Y p,1

pq (Ω)
)

= ∇ ·
(
Y p+1,1
pq (Ω)

rp+2

)
= 0 (B.54)

is necessary to satisfy Coloumb gauge. Together with Equation (B.35c) this shows that that any

solution of Equation (B.1) must have the form

A(r) =

∞∑
p=0

p∑
q=−p

[
Mp1
pq

1

rp+1
Y p1
pq(Ω) + T p+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
.

This is equivalent to Equation (B.3) at the beginning of this section, except for the range of p. We

will see in the following that M01
00

1
rp+1 = T 1,1

00 = 0. However, before we can move on to find explicit

expressions for the coefficients Mp1
pq

1
rp+1 and T p+1,1

pq , we introduce the Green’s function method.

B.2 Green’s function method

In this section we will show that the Green’s function can be expanded in spherical harmonics as

follows:

G(r, r′) =
1

|r − r′| =

∞∑
p=0

p∑
q=−p

4π

2p+ 1

rp<

rp+1
>

Y ∗pq(Ω
′)Ypq(Ω), (B.55)

where r< = min(r, r′) and r> = min(r, r′). This is motivated by the scalar Poisson equation

∇2G(r, r′) = −4πδ(3)(r − r′), (B.56)

with a point source

δ(3)(r − r′) =
1

r′2
δ(r − r′)δ(cos(θ)− cos(θ′))δ(φ− φ′), (B.57a)

∞∑
p=0

p∑
q=−p

Y ∗pq(Ω
′)Ypq(Ω) = δ(cos(θ)− cos(θ′))δ(φ− φ′). (B.57b)
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In the subsequent section, we will in particular make use of the radial differential equation(
r2∇r − p(p+ 1)

)
gp(r, r

′) = −4πδ(r − r′), (B.58)

with the solution

gp(r, r
′) =

4π

2p+ 1

rp<

rp+1
>

, . (B.59)

Starting point is the following ansatz:

G(r, r′) =

∞∑
p=0

p∑
q=−p

Gpq(r, r
′,Ω′)Ypq(Ω), (B.60)

Gpq(r, r
′,Ω′) =

∫
dΩ

1

|r − r′|Y
∗
pq(Ω). (B.61)

Plugging this into Equation (B.56) yields(
∇2
r +

1

r2
∇2

Ω

) ∞∑
p=0

p∑
q=−p

Gpq(r, r
′,Ω′)Ypq(Ω) =

− 4π
1

r′2
δ(r − r′)

∞∑
p=0

p∑
q=−p

Y ∗pq(Ω
′)Ypq(Ω), (B.62)

where we can compare for each p and q individually to obtain the differential equation(
∇2
r +

1

r2
∇2

Ω

)
Gpq(r, r

′,Ω′) = −4π
1

r′2
δ(r − r′)Y ∗pq(Ω′). (B.63)

Both sides of the equation should have the same angular dependence. Noting that the radial and

angular contributions are separated on the right hand side, we yet again take a separation ansatz

Gpq(r, r
′,Ω′) = gp(r, r

′)Y ∗pq(Ω
′), (B.64)

and plug it into Equation (B.63) to obtain Equation (B.58)(
r2∇2

r − p(p+ 1)
)
gp(r, r

′) = −4πδ(r − r′).

For r 6= r′ the solution is quickly determined, as we have seen in the homogeneous case from

Equation (B.16) to Equation (B.19). It yields

→ gp(r, r
′) =

Ap(r′) 1
rp+1 , r < r′

Bp(r
′)rp , r′ < r

. (B.65)

The radial solutions are linked to the cases r > r′ and r < r′, because of diverging behaviour that

could occur when r →∞ and r → 0, respectively.
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In contrast to the homogeneous equation discussed before, here we need to consider the case

when r = r′, where δ(r − r′) = 1 First, we note that the dimension of gp(r, r
′) is known to be

[length−1]. Therefore, the dependence on r′ must compensate r, in order to obtain the correct

dimensionality. Furthermore, we assume gp(r, r
′) to be continuous:

Ap(r
′)r′p = Bp(r

′)
1

r′p+1
= Cp

1

r′
(B.66)

→ gp(r, r
′) = Cp

rp<

rp+1
>

. (B.67)

The constant Cp is determined by integrating Equation (B.58) from r′ − ε to r′ + ε, which yields

r = r′ in the limit ε→ 0:

lim
ε→0

∫ r′+ε

r′−ε
dr
[
r2∇2

r − p(p+ 1)
]
gp(r, r

′) = −4π lim
ε→0

∫ r′+ε

r′−ε
drδ(r − r′), (B.68a)

lim
ε→0

∫ r′+ε

r′−ε
dr

[
∂

∂r
r2 ∂

∂r
− p(p+ 1)

]
gp(r, r

′) = −4π, (B.68b)

lim
ε→0

[
r2 ∂

∂r
gp(r, r

′)

]r′+ε
r′−ε

= −4π, (B.68c)

Cp lim
ε→0

[
r2 ∂

∂r

r′p

rp+1

∣∣∣∣
r=r′+ε

− r2 ∂

∂r

rp

r′p+1

∣∣∣∣
r=r′−ε

]
= −4π, (B.68d)

Cp =
4π

2p+ 1
. (B.68e)

That yields Equation (B.59) and Equation (B.55) by using Equation (B.64)

gp(r, r
′) =

4π

2p+ 1

rp<

rp+1
>

,

G(r, r′) =

∞∑
p=0

p∑
q=−p

4π

2p+ 1

rp<

rp+1
>

Y ∗pq(Ω
′)Ypq(Ω).

B.3 General form of multipole coefficients

In this section we show that the magnetic (M) multipole coefficient Mp1
pq and the magnetic toroidal

(MT) multipole coefficient T p+1,1
pq can be written as

Mp1
pq = − 4πi

2p+ 1

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × jorb(r)√
p(p+ 1)

+

√
p+ 1

p
M(r)

]
, (B.69)

and

T p+1,1
pq =

−4π√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × r × jorb(r)

p+ 2
+ r ×M(r)

]
. (B.70)
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From Section B.1 we know that any solution A(r) of the vector Poisson equation in Equa-

tion (B.1) must have the form presented in Equation (B.3). Let us for the moment set

ξ(r; pq) = Mp1
pq

1

rp+1
, (B.71a)

ζ(r; pq) = T p+1,1
pq

1

rp+2
, (B.71b)

and start with the following educated guess:

A(r) =

∞∑
p=0

p∑
q=−p

[
ξ(r; pq)Y p1

pq(Ω) + ζ(r; pq)Y p+1,1
pq (Ω)

]
. (B.72)

We plug Equation (B.72) into Equation (B.1) and use Equation (B.14) for ∇2 = ∇2
r + 1

r2∇
2
Ω

under consideration of Equation (B.21a), which allows us to determine the eigenvalue of ∇2
Ω by

means of ∇2
ΩY

l,1
pq (Ω) = −l(l + 1)Y l,1

pq (Ω):

∑
pq

{[
∇2
r −

p(p+ 1)

r2

]
ξ(r; pq)Y p1

pq(Ω)

+

[
∇2
r −

(p+ 1)(p+ 2)

r2

]
ζ(r; pq)Y p+1,1

pq (Ω)

}
= −4πj(r). (B.73)

By construction vector spherical harmonics satisfy the orthogonality relation∫
dΩY ∗L1

PQ (Ω) · Y l1
pq(Ω) = δLlδPpδQq. (B.74)

Hence, when we multiply Y ∗L1
PQ (Ω) onto Equation (B.73) from the left and integrate over dΩ, we

can use Equation (B.74) in order to evaluate the sum over p and q. This yields[
∇2
r −

P (P + 1)

r2

]
ξ(r;PQ)δLP +

[
∇2
r −

(P + 1)(P + 2)

r2

]
ζ(r;PQ)δL,P+1 = −4π

∫
dΩY ∗L1

PQ (Ω) · j(r). (B.75)

The problem breaks up into the cases L = P ,[
r2∇2

r − P (P + 1)
]
ξ(r;PQ) = −4π r2

∫
dΩY ∗P1

PQ (Ω) · j(r), (B.76)

which corresponds to the magnetic multipole, and the case L = P + 1,[
r2∇2

r − (P + 1)(P + 2)
]
ζ(r;PQ) = −4π r2

∫
dΩY ∗P+1,1

PQ (Ω) · j(r) (B.77)

which corresponds to the magnetic toroidal multipole.
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The green’s function method introduced in Section B.2 showed that[
r2∇2

r − p(p+ 1)
]
gp(r, r

′) = −4πδ(r − r′), (B.78)

gp(r, r
′) =

4π

2p+ 1

r′p

rp+1
, (B.79)

for r′ < r, see Equation (B.58) and Equation (B.59). When we multiply Equation (B.78) with

r′2
∫

dΩ′ Y ∗P1
PQ (Ω′) ·j(r′), we can integrate over

∫
dr′ on the left and rewrite

∫
r′2dr′

∫
Ω′ as

∫
d3r′

on the left. Hence, we obtain[
r2∇2

r − p(p+ 1)
] 4π

2p+ 1

1

rp+1

∫
d3r′ r′pY ∗P1

PQ (Ω′) · j(r′)

= −4πr2

∫
dΩY ∗P1

PQ (Ω) · j(r). (B.80)

This can be compared with Equation (B.76) when p = P and q = Q. Thus, we find

ξ(r; pq) =
1

rp+1

4π

2p+ 1

∫
d3r′ r′pY ∗p1pq (Ω′) · j(r′), (B.81)

Mp1
pq =

4π

2p+ 1

∫
d3r rpY ∗p1pq (Ω) · j(r) (B.82)

In the last line we used Equation (B.71a) ξ(r; pq) = Mp1
pq

1
rp+1 .

Similarly, after multiplying Equation (B.78) with r′2
∫

dΩ′ Y ∗P+1,1
PQ (Ω′)j(r′) and integrating

over
∫

dr′, a comparison with Equation (B.77) with p = P + 1 and q = Q yields

ζ(r; pq) =
1

rp+2

4π

2p+ 3

∫
d3r′ r′p+1Y ∗p+1,1

pq (Ω′) · j(r′), (B.83)

T p+1,1
pq =

4π

2p+ 3

∫
d3r rp+1Y ∗p+1,1

pq (Ω) · j(r), (B.84)

where we used Equation (B.71b), i.e., ζ(r; pq) = T p+1,1
pq

1
rp+2 .

Although Equation (B.82) and Equation (B.84) already present a path to compute the gauge

field A(r) for any current j(r), we will now make somewhat lengthy gymnastics to obtain the form

of the coefficients proposed at the beginning of this section in Equation (B.69) and Equation (B.70).

To this end we need the following identities:

−ir̂ × Y p−1,1
pq =

√
p+ 1

2p+ 1
Y p1
pq, (B.85)

−i∇×
(
rp+1Y p+1,1

pq

)
= (2p+ 3)

√
p

2p+ 1
rpY p,1

pq , (B.86)(
r × Y l1

pq

)
· j = −Y l1

pq · (r × j) , (B.87)

(r × jm) = r × (∇×M) = ∇ (r ·M)− [1 + r ·∇]M , (B.88)

∇ (rpYpq) =
√
p(2p+ 1)rp−1Y p−1,1

pq , (B.89)
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where jm = ∇×M .

We start to compute the M multipole coefficient by using the complex conjugate of Equa-

tion (B.85) in Equation (B.82), and subsequently we rewrite rpr̂ = rp−1r̂ and use Equation (B.87)

to interchange the cross product. Lastly, Equation (B.89) is used to obtain the first term in Equa-

tion (B.69):

Mp1
pq =

4π

2p+ 1

∫
d3r rpY ∗p1pq (Ω) · j(r) (B.90a)

= i
4π√

(2p+ 1)(p+ 1)

∫
d3r rp

(
r̂ × Y ∗p−1,1

pq (Ω)
)
· j(r) (B.90b)

= −i
4π√

(2p+ 1)(p+ 1)

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r × j(r)) (B.90c)

= −i
4π

2p+ 1

1√
p(p+ 1)

∫
d3r∇ (rpYpq) · (r × j(r)) . (B.90d)

Starting again from Equation (B.90c), we use Equation (B.88) to obtain

Mp1
pq = −i

4π√
(2p+ 1)(p+ 1)

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r × jm(r)) , (B.91a)

= −i
4π√

(2p+ 1)(p+ 1)

∫
d3r rp−1Y ∗p−1,1

pq (Ω)

· [∇ (r ·M(r))− [1 + r ·∇]M(r)] (B.91b)

By means of partial integration we find that∫
d3r rp−1Y ∗p−1,1

pq (Ω) ·∇ (r ·M(r)) = −
∫

d3r∇
(
rp−1Y ∗p−1,1

pq (Ω)
)
r ·M(r) (B.92a)

= 0 (B.92b)

due to Equation (B.54). And similarly, through partial integration we find that

(p− 1)

∫
d3r rp−1Y ∗p−1,1

pq (Ω) ·M(r) =

−
∫

d3r rp−1Y ∗p−1,1
pq (Ω) · [3M(r) + (r ·∇)M(r)] . (B.93)

This renders

Mp1
pq = −i

4π(p+ 1)√
(2p+ 1)(p+ 1)

∫
d3r rp−1Y ∗p−1,1

pq (Ω) ·M(r). (B.94)

Lastly, Equation (B.89) is used to obtain the second term in Equation (B.69):

Mp1
pq = − 4πi

2p+ 1

√
p+ 1

p

∫
d3r∇

(
rpY ∗pq(Ω)

)
·M(r). (B.95)
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Next, we compute the MT multipole coefficient starting from Equation (B.84). By means of

partial integration, we find∫
d3r rp+1Y ∗p+1,1

pq (Ω) · (∇×M(r)) =

∫
d3rM(r) ·

(
∇× rp+1Y ∗p+1,1

pq (Ω)
)
. (B.96)

The curl of the vector spherical harmonic can further be evaluated by means of Equation (B.86).

Subsequently we can use Equation (B.85) and rpr̂ = rp−1r̂ once again to obtain the following

expression:

T p+1,1
pq =

4π

2p+ 3

∫
d3r rp+1Y ∗p+1,1

pq (Ω) · j(r) (B.97)

=
4π

2p+ 3

∫
d3rM(r) ·

(
∇× rp+1Y ∗p+1,1

pq (Ω)
)

(B.98)

= −4πi

√
p

2p+ 1

∫
d3r rpY ∗p1pq (Ω) ·M(r) (B.99)

= 4π

√
p

p+ 1

∫
d3r rp−1

(
r × Y ∗p−1,1

pq (Ω)
)
·M(r) (B.100)

Interchanging the cross product renders a minus and using Equation (B.89) yields the second term

in Equation (B.70):

T p+1,1
pq = −4π

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r ×M(r)) (B.101)

=
−4π√

(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
· (r ×M(r)) .

Finally, we will derive the first term in Equation (B.70). First, we find

r ×M =
1

2

{
r × (r × jm) + r [∇ · (r ×M)] + ∇×

(
r2M

)}
. (B.102)

Let us highlight that the vector spherical harmonics are no operators and therefore do not act on

anything to the right2. Thus, by use of Equation (B.36), we find

Y ∗p−1,1
pq · r = rr̂ · Y ∗p−1,1

pq (B.103)

=
r√

p(2p+ 1)
r̂ · [pr̂ + i (r̂ × l)]Y ∗pq (B.104)

=

√
p

2p+ 1
Y ∗pq (B.105)

We plug in Equation (B.102) into Equation (B.101), whereby the last term is a vanishing boundary

term. Then, we use Equation (B.105), before we once again device partial integration and use

2In particular, here we shall not use Equation (B.45), which here reads (r̂ × l) · r = 2ir.
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Equation (B.89) in the last step:

T p+1,1
pq = −4π

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r ×M(r))

= −4π

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω)

· 1

2
{r × (r × jm(r)) + r [∇ · (r ×M(r))]} (B.106)

= −4π

2

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · [r × (r × jm(r))]

− 4π

2

√
p

p+ 1

√
p

2p+ 1

∫
d3r rpY ∗pq(Ω) [∇ · (r ×M)] (B.107)

= −4π

2

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · [r × (r × jm(r))]

+
4π

2

√
p

p+ 1

√
p

2p+ 1

∫
d3r∇

(
rpY ∗pq(Ω)

)
· (r ×M(r)) (B.108)

= −4π

2

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · [r × (r × jm(r))]

+
4π

2

√
p

p+ 1
p

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r ×M(r)) (B.109)

A comparison of Equation (B.109) and Equation (B.101) yields∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r ×M(r)) =
1

p+ 2

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · [r × (r × jm(r))] . (B.110)

Using Equation (B.110) directly in Equation (B.101) we find

T p+1,1
pq = −4π

√
p

p+ 1

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · (r ×M(r))

= −4π

√
p

p+ 1

1

p+ 2

∫
d3r rp−1Y ∗p−1,1

pq (Ω) · [r × (r × jm(r))] . (B.111)

Finally, once more using Equation (B.89) in the inverse direction and replacing jm(r) by jorb(r),

we obtain the first term of Equation (B.70):

T p+1,1
pq = − 4π√

(p+ 1)(2p+ 1)

1

p+ 2

∫
d3r∇

(
rpY ∗pq(Ω)

)
· [r × (r × jorb(r))] .

B.4 Why there are no monopole gauge fields or monopole

magnetic fields

Here, we argue why we can drop p = 0 in Equation (B.3). First, we note that in both, Equa-

tions (B.69) and (B.70), the integrant contains a factor ∇
(
r0Y ∗00

)
, which is zero because Y00 is a
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constant. Then, perhaps one is skeptic of the divergence 1/
√

0 in M01
00 in Equation (B.69). However

in Equation (B.3), we see that Y 01
00 appears at p = 0. And Y 01

00 ≡ 0 and hence independent of the

M multipole coefficient for p = 0 A(r) is always zero, i.e., M01
00 ≡ 0. Later in Section B.6 it is easily

possible to check that the magnetic field also vanishes at p = 0. Thus, without loss of generality

we can drop p = 0.

B.5 Multipole coefficients for an electron cloud

Next, we want to express the magnetic (M) multipole coefficient and the magnetic toroidal (MT)

multipole coefficient of a many-body wave function of N electrons. So first we recall the formalism

introduced in Section 2.1. Specifically, we need the spin-magnetization of a many-body state given

in Equation (2.34), i.e.

m̂(s)(r) = −µB

N∑
i=1

δ(r − ri)σ.

This allows us to define the spin-magnetization current as

ĵm(r) = ∇× m̂(s)(r) (B.112)

The orbital current operator would read3

ĵorb(r) = iµB

N∑
i=1

[∇δ(r − ri) + δ(r − ri)∇] , (B.115)

which relates to the orbital angular momentum through

r × ĵorb(r) = −µB

N∑
i=1

[lδ(r − ri) + δ(r − ri)l] . (B.116)

Thus, we can obtain the static current using

j(r) = Tr
{
ρĵ(r)

}
, (B.117)

ĵ(r) = ĵm(r) + ĵorb(r). (B.118)

The next step is defining the quantum mechanical operator for the M and MT multipole co-

efficients. Let us use Equation (B.69) and Equation (B.70), which were derived in the previous

3One may want to consider the following simplified picture:

jorb(r) = ev(r) =
e

2m
2p(r) = −

|e|~
2m

2

~
p(r). (B.113)

Note that µB =
|e|~
2m

, ~ = 1 and l(r) = r × p(r) to obtain

r × jorb(r) = −2µBl(r). (B.114)
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section:

Mp1
pq = − 4πi

2p+ 1

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × jorb(r)√
p(p+ 1)

+

√
p+ 1

p
M(r)

]
,

T p+1,1
pq =

−4π√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × r × jorb(r)

p+ 2
+ r ×M(r)

]
.

We replace the classical expressions with the appropriate quantum mechanical operators and yield:

M̂p1
pq =

4πiµB

2p+ 1

√
p+ 1

p

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
N∑
i=1

[
[lδ(r − ri) + δ(r − ri)l]

p+ 1
+ δ(r − ri)σ

]
,

(B.119)

T̂ p+1,1
pq =

4π µB√
(p+ 1)(2p+ 1)

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
N∑
i=1

[
r × [lδ(r − ri) + δ(r − ri)l]

p+ 2
+ r × δ(r − ri)σ

]
.

(B.120)

This can be used to obtain the expectation value of the multipole coefficients by means of

Mp1
pq = Tr

{
ρM̂p1

pq

}
, (B.121)

T p+1,1
pq = Tr

{
ρT̂ p+1,1

pq

}
. (B.122)

Note that ∇
(
rpY ∗pq(Ω)

)
contains an operator that has not been applied. Thus, it would be a

misleading notation to execute
∫

d3r and write ∇
(
rpi Y

∗
pq(Ωi)

)
. Together with Equation (B.3),

A(r) =

∞∑
p=1

p∑
q=−p

[
Mp1
pq

1

rp+1
Y p1
pq(Ω) + T p+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
,

this yields a general expression for the vector gauge field of an electron cloud.

B.6 Magnetic field of a general vector gauge field

The original assumption to obtain the vector Poisson equation from the Maxwell equations states

that

B = ∇×A. (B.123)

We found the vector gauge field in Coulomb gauge ∇ · A = 0 generally has the form given in

Equation (B.3), that reads

A(r) =

∞∑
p=0

p∑
q=−p

[
Mp1
pq

1

rp+1
Y p1
pq(Ω) + T p+1,1

pq

1

rp+2
Y p+1,1
pq (Ω)

]
,
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where here we start from p = 0 in order not to presume that the magnetic field has no monopole

contribution. But the argument in Section B.4 can be followed to see that every contribution at

p = 0 always vanishes.

It is also generally true that

∇× [f(r)Y p1
pq] = iY p−1,1

pq

√
p+ 1

2p+ 1

[
∂

∂r
+
p+ 1

r

]
f(r)

− iY p+1,1
pq

√
p

2p+ 1

[
p

r
− ∂

∂r

]
f(r) (B.124a)

∇× [f(r)Y p+1,1
pq ] = iY p1

pq

√
p

2p+ 1

[
∂

∂r
+
p+ 2

r

]
f(r), (B.124b)

for arbitrary function f(r). We hence see that

∇×
[

1

rp+1
Y p+1,1
pq

]
≡ 0 (B.125)

and the magnetic field must be given in terms of magnetic multipoles only. The general form of

the magnetic field reads

B =

∞∑
p=0

p∑
q=−p

Mp1
pq∇×

[
1

rp+1
Y p1
pq(Ω)

]
(B.126)

= −i

∞∑
p=0

p∑
q=−p

√
p(2p+ 1)Mp1

pq

1

rp+2
Y p+1,1
pq (Ω). (B.127)

Here, again the M multipole coefficients are given by

Mp1
pq = − 4πi

2p+ 1

∫
d3r∇

(
rpY ∗pq(Ω)

)
·
[
r × jorb(r)√
p(p+ 1)

+

√
p+ 1

p
M(r)

]
,

as derived in Section B.3. Finally, we see that
√
p(2p+ 1)Mp1

pq is zero at p = 0.

B.7 Generating vector spherical harmonics

In this section, we derive

r̂ Ypq =

√
p

2p+ 1
Y p−1,1
pq −

√
p+ 1

2p+ 1
Y p+1,1
pq (B.128a)

`Ypq =
√
p(p+ 1)Y p1

pq (B.128b)

(r̂ × `)Ypq = i(p+ 1)

√
p

2p+ 1
Y p−1,1
pq + ip

√
p+ 1

2p+ 1
Y p+1,1
pq . (B.128c)
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r̂ Ypq =

√
4π

3

∑
m

(−1)mY1,−memYpq (B.129a)

= −
∑

L,M,m

〈10p0|L0〉 〈LM1m|pq〉YLMem (B.129b)

= −
∑
L

〈10p0|L0〉Y L1
pq (B.129c)

= −〈10p0|(p− 1)0〉Y p−1,1
pq − 〈10p0|p0〉Y p1

pq − 〈10p0|(p+ 1)0〉Y p+1,1
pq (B.129d)

=

√
p

2p+ 1
Y p−1,1
pq −

√
p+ 1

2p+ 1
Y p+1,1
pq (B.129e)

For the first equal sign, we used the definition of r̂ in

r̂ =
r

|r| =
r

r
=

√
4π

3

∑
q

(−1)qY1,−qeq. (B.130)

To get to the second line, we used the product of two spherical harmonics,i.e.,

Y`mYpq = (−1)1+m
∞∑
L=0

L∑
M=−L

√
(2`+ 1)

4π
〈`0p0|L0〉 〈LM`(−m)|pq〉YLM . (B.131a)

In the third line, we use the definition of vector spherical harmonics, eq. (B.4). In the fourth line,

we explicitly write down the sum over L, since it can only go over the values p±1 and p, due to the

rules of angular momentum coupling. Finally, in the last line, we evaluat the three Clebsch–Gordan

coefficients, one of which is zero. Next, we see that

`Ypq =
∑
m

`mYpqem (B.132a)

=
∑
m

√
p(p+ 1) 〈p(q −m)1m|pq〉Yp,q−mem (B.132b)

=
√
p(p+ 1)Y p1

pq. (B.132c)

For the first equal sign, we simply write ` in terms of its spherical components. In the second line,

we use the fact that this angular momentum acts like a ladder operator, i.e.,

`mYpq = (−1)m
√
p(p+ 1) 〈p(q +m)1(−m)|pq〉Yp,q+m (B.133a)

`mYpq =
√
p(p+ 1) 〈p(q −m)1m|pq〉Yp,q−m. (B.133b)

eq. (B.133b) Finally, in the last line we use the definition of a vector spherical harmonics.

In order to derive (r̂×`)Ypq, eq. (B.128c), we look at the components of the resulting vector V :

(r̂ × `)Ypq ≡ V = V −e− + V 0e0 + V +e+ (B.134)
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We can start by investigating V −:

V − = i(r̂0`− − r̂−`0)Ypq = i(r̂0`
− + r̂+`

0)Ypq (B.135)

where we pull down the index of r̂. Next, we write r̂q in terms of spherical harmonics, which reads

r̂q =

√
4π

3
Y ∗1q =

√
4π

3
(−1)qY1,−q r̂q =

√
4π

3
Y1q, (B.136)

as well as evaluate how `m acts on Ypq, as written in eq. (B.133b):

V − = i

√
4π

3

√
p(p+ 1) 〈p(q + 1)1(−1)|pq〉Y10Yp,q+1

+ i

√
4π

3

√
p(p+ 1) 〈pq10|pq〉Y11Yp,q (B.137)

Now we evaluate the product of two spherical harmonics, as detailed in eq. (B.131a):

V − = i
√
p(p+ 1)

∞∑
L=0

L∑
M=−L

[
− 〈10p0|L0〉 〈LM10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉YLM

+ 〈10p0|L0〉 〈LM1(−1)|pq〉 〈pq10|pq〉YLM
]

(B.138)

We can now perform the sum over both L and M . First, since the magnetic quantum numbers have

to match in each Clebsch–Gordan coefficient, M is uniquely determined (and if the necessary value

for M should lie outside its range of −L ≤ M ≤ L, the corresponding Clebsch–Gordan coefficient

is zero anyway):

V − = i
√
p(p+ 1)

∞∑
L=0

[
− 〈10p0|L0〉 〈L(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉YL,q+1

+ 〈10p0|L0〉 〈L(q + 1)1(−1)|pq〉 〈pq10|pq〉YL,q+1

]
(B.139)

Second, due to the first Clebsch–Gordan coefficient in each term, the value of L is constrained to

be either L = p± 1 or L = p. However, by actually calculating those Clebsch–Gordan coefficients,

we see that the one for L = p actually vanishes. Therefore, we can perform the sum over L simply

by using two values, p± 1:

V − = i
√
p(p+ 1)

[
−〈10p0|(p− 1)0〉 〈(p− 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉Yp−1,q+1

+ 〈10p0|(p− 1)0〉 〈(p− 1)(q + 1)1(−1)|pq〉 〈pq10|pq〉Yp−1,q+1

− 〈10p0|(p+ 1)0〉 〈(p+ 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉Yp+1,q+1

+ 〈10p0|(p+ 1)0〉 〈(p+ 1)(q + 1)1(−1)|pq〉 〈pq10|pq〉Yp+1,q+1

]
(B.140)
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The next step is to evaluate the Clebsch–Gordan coefficients. As we already mentioned, the first

one in each row only exists for L = p± 1:

〈10p0|L0〉 =


−
√

p
2p+1 , L = p− 1

0, L = p√
p+1
2p+1 , L = p+ 1

(B.141)

This means we can write:

V − = i

√
p(p+ 1)

2p+ 1

[√
p 〈(p− 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉Yp−1,q+1

−√p 〈(p− 1)(q + 1)1(−1)|pq〉 〈pq10|pq〉Yp−1,q+1

−
√
p+ 1 〈(p+ 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉Yp+1,q+1

+
√
p+ 1 〈(p+ 1)(q + 1)1(−1)|pq〉 〈pq10|pq〉Yp+1,q+1

]
(B.142)

Since the first two Clebsch–Gordan coefficients are multiplied by a spherical harmonic Yp−1,q+1,

the allowed values for q are: −(p− 1) ≤ q+ 1 ≤ p− 1. Otherwise, the spherical harmonic vanishes.

Under this assumption, we can evaluate the first two lines of coefficients:

〈(p− 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉 (B.143)

− 〈(p− 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉 =
p+ 1

p

√
(p− q − 1)(p− q)
2(2p− 1)(p+ 1)

In the third and fourth line, we have Clebsch–Gordan coefficients multiplied by a spherical harmonic

of type Yp+1,q+1. This means, the allowed values for q are: −(p + 1) ≤ q + 1 ≤ p + 1. Under this

assumption, we can again evaluate the coefficients:

〈(p+ 1)(q + 1)10|p(q + 1)〉 〈p(q + 1)1(−1)|pq〉 (B.144)

−
√
p+ 1 〈(p+ 1)(q + 1)1(−1)|pq〉 〈pq10|pq〉 = − 1

p+ 1

√
p(p+ q + 1)(p+ q + 2)

2(2p+ 3)

This drastically simplifies the expression for V −:

V − = i(p+ 1)

√
(p− q − 1)(p− q)
2(2p+ 1)(2p− 1)

Yp−1,q+1 + ip

√
(p+ q + 1)(p+ q + 2)

2(2p+ 1)(2p+ 3)
Yp+1,q+1 (B.145)

Now we perform a rather unintuitive step, which will however lead to a nice result: we pull out



APPENDIX B. DETAILS OF SOLVING THE VECTOR POISSON EQUATION 122

certain factors from underneath the square root:

V − = i(p+ 1)

√
p

2p+ 1

√
(p− q − 1)(p− q)

2p(2p− 1)
Yp−1,q+1

+ ip

√
p+ 1

2p+ 1

√
(p+ q + 1)(p+ q + 2)

2(p+ 1)(2p+ 3)
Yp+1,q+1 (B.146)

The reason for this is that now we can write the large square root again as a Clebsch–Gordan

coefficient:

〈(p− 1)(q + 1)1(−1)|pq〉 −(p−1)≤q+1≤p−1
=

√
(p− q − 1)(p− q)

2p(2p− 1)
(B.147a)

〈(p+ 1)(q + 1)1(−1)|pq〉 −(p+1)≤q+1≤p+1
=

√
(p+ q + 1)(p+ q + 2)

2(p+ 1)(2p+ 3)
(B.147b)

which leads to:

V − = i(p+ 1)

√
p

2p+ 1
〈(p− 1)(q + 1)1(−1)|pq〉Yp−1,q+1

+ ip

√
p+ 1

2p+ 1
〈(p+ 1)(q + 1)1(−1)|pq〉Yp+1,q+1 (B.148)

To see why this is useful, let us list the components of a vector spherical harmonic:

(Y `1
pq)

m′ =


〈`(q + 1)1(−1)|pq〉Y`,q+1, m′ = −1

〈`q10|pq〉Y`q, m′ = 0

〈`(q − 1)11|pq〉Y`,q−1, m′ = 1

(B.149)

This means, the minus-component of (r̂ × `)Ypq, which we denoted as V −, is exactly the minus-

component of two vector spherical harmonics! In particular, we find

V − = i(p+ 1)

√
p

2p+ 1
(Y p−1,1

pq )− + ip

√
p+ 1

2p+ 1
(Y p+1,1

pq )− (B.150)

With a similar, albeit tedious, calculation, we can calculate the other components of (r̂ × `)Ypq as

well:

V 0 = i(p+ 1)

√
p

2p+ 1
〈(p− 1)q10|pq〉Yp−1,q

+ ip

√
p+ 1

2p+ 1
〈(p+ 1)q10|pq〉Yp+1,q (B.151)

V + = i(p+ 1)

√
p

2p+ 1
〈(p− 1)(q − 1)11|pq〉Yp−1,q−1

+ ip

√
p+ 1

2p+ 1
〈(p+ 1)(q − 1)11|pq〉Yp+1,q−1 (B.152)
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This means, our final result is:

(r̂ × `)Ypq = V −e− + V 0e0 + V +e+

= i(p+ 1)

√
p

2p+ 1
Y p−1,1
pq + ip

√
p+ 1

2p+ 1
Y p+1,1
pq (B.153)

which completes the proof.



Appendix C

Experimental data

Table 1 contains a list of MAGNDATA [15] entries used in this study. Each 0.xxx.mcif label is

linked to its web-entry [387] and the corresponding experimental reference. The purpose of Table 1

is to allow quick access to the experimental data. Furthermore, the inequivalent magnetic sites that

constitute magnetic clusters are listed as well. For each cluster, the experimental on-site magnetic

moment µexp, the LSDA+CMP on-site magnetic moment µth and the individual contribution from

spin and orbital angular momentum in LSDA+CMP µs and µl are presented. The number of

degrees of freedom, that is directly related to the number of magnetic configurations in the CMP

basis, is given, as well as the number of active CMPs in the experimental magnetic configuration.

Note that some entries either lack µexp or the number of active CMPs. This is because fol-

lowing the experimental references we could not validate some of the information due to various

reasons. Some examples, where µexp could not be confirmed, include among others: 0.110.mcif

Cr2O3—here, the order was determined using second harmonic generation—0.113.mcif NiCO3,

0.114.mcif MnCO3—here, the magnetic moment was given an arbitrary value. On the other hand,

there are entries, where the exact magnetic order could not be confirmed. For instance, 0.154.mcif

Er2Ru2O7, where MAGNDATA commented that not all possible alternative models seem to have

been checked, or 0.155.mcif CaMnGe2O6, where there is some controversy around the proposed

magnetic order [227,228].
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Table 1: Experimental data.

0.1.mcif LaMnO3 Ref. [191]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.87 3.51 3.53 0.01 2 12

0.3.mcif LiCa3OsO6 Ref. [282]

cluster µexp µth µs µl active CMP dgr. of free-

dom

O 0.0 0.10 0.09 0.01 0 24

Os 2.2 1.59 1.68 0.09 1 6

0.4.mcif Cr2NiO4 Ref. [292]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr 1.40 2.67 2.69 0.02 2 12

Ni 1.64 1.42 1.25 0.17 2 6

0.5.mcif Cr2S3 Ref. [293]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr 1.19 2.64 2.66 0.02 2 3

Cr 1.19 2.63 2.65 0.01 2 3

Cr 1.19 2.64 2.66 0.02 2 6

0.6.mcif YMnO3 Ref. [297]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.90 3.45 3.47 0.02 2 18

0.7.mcif ScMnO3 Ref. [297]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.03 3.37 3.39 0.02 2 18

0.9.mcif GdB4 Ref. [174]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Gd 7.14 6.91 6.83 0.07 1 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.1
http://webbdcrista1.ehu.es/magndata/index.php?index=0.3
http://webbdcrista1.ehu.es/magndata/index.php?index=0.4
http://webbdcrista1.ehu.es/magndata/index.php?index=0.5
http://webbdcrista1.ehu.es/magndata/index.php?index=0.6
http://webbdcrista1.ehu.es/magndata/index.php?index=0.7
http://webbdcrista1.ehu.es/magndata/index.php?index=0.9
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0.10.mcif DyFeO3 Ref. [192]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Dy 1.0 −−− −−− −−− 0 24

Fe 1.04 −−− −−− −−− 0 24

0.12.mcif U3(Al3Ru)4 Ref. [207]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 2.50 1.09 1.50 2.59 5 18

0.13.mcif Ca3MnCoO6 Ref. [212]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 0.66 0.02 0.02 0.0 1 6

Mn 1.93 2.49 2.47 0.01 1 6

0.15.mcif MnF2 Ref. [224]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.6 4.53 4.53 0.00 1 6

0.16.mcif EuTiO3 Ref. [232]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Eu 6.92 6.29 6.63 0.33 2 6

0.17.mcif FePO4 Ref. [239]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.15 3.98 3.96 0.01 3 12

O 0.0 0.13 0.13 0.00 0 12

O 0.0 0.12 0.12 0.0 0 12

0.18.mcif Ba(MnAs)2 Ref. [244]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.88 3.63 3.61 0.01 1 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.10
http://webbdcrista1.ehu.es/magndata/index.php?index=0.12
http://webbdcrista1.ehu.es/magndata/index.php?index=0.13
http://webbdcrista1.ehu.es/magndata/index.php?index=0.15
http://webbdcrista1.ehu.es/magndata/index.php?index=0.16
http://webbdcrista1.ehu.es/magndata/index.php?index=0.17
http://webbdcrista1.ehu.es/magndata/index.php?index=0.18
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0.19.mcif TiMnO3 Ref. [248]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.55 4.34 4.34 0.00 1 6

0.20.mcif MnTe2 Ref. [255]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.27 4.07 4.03 0.03 1 12

0.21.mcif NiPbO3 Ref. [258]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 1.69 −−− −−− −−− 0 12

0.22.mcif DyB4 Ref. [263]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Dy 9.8 8.45 4.65 3.79 1 12

0.23.mcif Ca3Mn2O7 Ref. [269]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.67 2.54 2.56 0.02 1 12

0.24.mcif LiMnPO4 Ref. [276]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.9 4.49 4.49 0.0 2 12

0.25.mcif NaOsO3 Ref. [277]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Os 1.0 0.87 0.93 0.06 2 12

0.26.mcif TmAgGe Ref. [278]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tm 6.44 −−− −−− −−− 0 24

http://webbdcrista1.ehu.es/magndata/index.php?index=0.19
http://webbdcrista1.ehu.es/magndata/index.php?index=0.20
http://webbdcrista1.ehu.es/magndata/index.php?index=0.21
http://webbdcrista1.ehu.es/magndata/index.php?index=0.22
http://webbdcrista1.ehu.es/magndata/index.php?index=0.23
http://webbdcrista1.ehu.es/magndata/index.php?index=0.24
http://webbdcrista1.ehu.es/magndata/index.php?index=0.25
http://webbdcrista1.ehu.es/magndata/index.php?index=0.26
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0.27.mcif Y(Fe2Ge)2 Ref. [279]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 0.63 1.98 1.92 0.05 2 12

Fe 0.63 1.96 1.90 0.06 2 12

0.28.mcif LiFe(SiO3)2 Ref. [280]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.67 4.07 4.05 0.01 3 12

O 0.0 0.15 0.15 0.0 0 12

O 0.0 0.14 0.14 0.0 0 12

O 0.0 0.14 0.14 0.00 0 12

O 0.0 0.14 0.13 0.00 0 12

0.30.mcif YbMnO3 Ref. [283]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Yb 0.0 1.15 0.36 0.79 0 12

Mn 3.25 3.30 3.32 0.01 2 18

0.36.mcif NiF2 Ref. [286]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 2.00 1.76 1.57 0.18 2 6

0.37.mcif U3Al2Si3 Ref. [287]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 0.16 0.18 1.52 1.70 1 3

U 0.16 0.16 1.49 1.64 1 3

U 1.29 0.44 1.76 2.20 4 12

0.39.mcif NaNd2RuO6 Ref. [288]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Nd 2.24 0.82 2.75 3.51 3 12

Ru 1.61 1.53 1.46 0.07 2 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.27
http://webbdcrista1.ehu.es/magndata/index.php?index=0.28
http://webbdcrista1.ehu.es/magndata/index.php?index=0.30
http://webbdcrista1.ehu.es/magndata/index.php?index=0.36
http://webbdcrista1.ehu.es/magndata/index.php?index=0.37
http://webbdcrista1.ehu.es/magndata/index.php?index=0.39
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0.43.mcif HoMnO3 Ref. [285]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ho 4.17 9.35 3.73 5.62 1 6

Ho 1.31 9.32 3.75 5.57 1 12

Mn 3.31 3.47 3.49 0.02 2 18

0.45.mcif La2NiO4 Ref. [291]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 1.68 1.28 1.15 0.12 2 12

0.50.mcif TiMnO3 Ref. [294]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.9 4.34 4.34 0.00 1 6

0.56.mcif Ba2CoGe2O7 Ref. [295]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 2.89 2.74 2.52 0.21 2 6

0.58.mcif Al2CoO4 Ref. [296]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 1.9 2.68 2.50 0.18 1 6

0.64.mcif MnV2O4 Ref. [298]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.2 4.21 4.20 0.00 1 6

V 1.29 1.63 1.67 0.04 3 12

0.66.mcif Fe2O3 Ref. [299]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.22 3.58 3.56 0.02 2 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.43
http://webbdcrista1.ehu.es/magndata/index.php?index=0.45
http://webbdcrista1.ehu.es/magndata/index.php?index=0.50
http://webbdcrista1.ehu.es/magndata/index.php?index=0.56
http://webbdcrista1.ehu.es/magndata/index.php?index=0.58
http://webbdcrista1.ehu.es/magndata/index.php?index=0.64
http://webbdcrista1.ehu.es/magndata/index.php?index=0.66
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0.72.mcif CaMnBi2 Ref. [300]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.73 3.95 3.86 0.09 1 6

0.73.mcif SrMnBi2 Ref. [300]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.75 4.01 3.91 0.09 1 6

0.74.mcif Mn3CuN Ref. [301]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.47 2.91 2.90 0.01 −−− −−−
0.76.mcif Cr2TeO6 Ref. [302]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr 2.45 2.64 2.68 0.03 1 12

0.77.mcif Tb2Ti2O7 Ref. [304]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tb −−− −−− −−− −−− 7 12

0.78.mcif Ni(NO3)2 Ref. [303]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 1.33 −−− −−− −−− 0 24

Ni 1.33 −−− −−− −−− 0 24

0.79.mcif CaIrO3 Ref. [305]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ir −−− −−− −−− −−− 1 6

0.80.mcif U2InPd2 Ref. [306]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 1.40 1.10 1.60 2.70 1 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.72
http://webbdcrista1.ehu.es/magndata/index.php?index=0.73
http://webbdcrista1.ehu.es/magndata/index.php?index=0.74
http://webbdcrista1.ehu.es/magndata/index.php?index=0.76
http://webbdcrista1.ehu.es/magndata/index.php?index=0.77
http://webbdcrista1.ehu.es/magndata/index.php?index=0.78
http://webbdcrista1.ehu.es/magndata/index.php?index=0.79
http://webbdcrista1.ehu.es/magndata/index.php?index=0.80
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0.81.mcif U2SnPd2 Ref. [306]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 1.89 1.06 1.66 2.73 1 12

0.83.mcif LiFeP2O7 Ref. [239]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.62 4.09 4.07 0.01 2 6

O 0.0 0.10 0.10 0.00 0 6

0.88.mcif LiNiPO4 Ref. [307]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 2.22 1.72 1.53 0.19 2 12

0.89.mcif Ba(MnBi)2 Ref. [308]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.83 3.97 3.88 0.09 1 6

0.95.mcif LiFePO4 Ref. [239]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.19 3.72 3.55 0.17 1 12

0.96.mcif CoSO4 Ref. [309]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.21 2.82 2.59 0.23 3 12

0.97.mcif Fe(SbO2)2 Ref. [310]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 3.68 3.70 3.55 0.14 3 12

0.101.mcif Mn2GeO4 Ref. [193]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.02 4.43 4.43 0.0 2 12

Mn 4.5 4.44 4.44 0.0 1 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.81
http://webbdcrista1.ehu.es/magndata/index.php?index=0.83
http://webbdcrista1.ehu.es/magndata/index.php?index=0.88
http://webbdcrista1.ehu.es/magndata/index.php?index=0.89
http://webbdcrista1.ehu.es/magndata/index.php?index=0.95
http://webbdcrista1.ehu.es/magndata/index.php?index=0.96
http://webbdcrista1.ehu.es/magndata/index.php?index=0.97
http://webbdcrista1.ehu.es/magndata/index.php?index=0.101
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0.105.mcif ErVO3 Ref. [194]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Er 8.2 6.89 2.41 4.47 1 12

V 1.47 0.07 0.08 0.03 2 12

0.106.mcif DyVO3 Ref. [194]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Dy 7.76 8.43 4.65 3.77 2 12

V 1.45 1.68 1.70 0.03 2 12

0.107.mcif Ho2Ge2O7 Ref. [195]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ho 9.05 9.12 3.75 5.38 3 24

0.109.mcif Mn3Pt Ref. [196]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.93 3.12 3.09 0.02 3 9

0.110.mcif Cr2O3 Ref. [197]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr −−− −−− −−− −−− 1 12

0.111.mcif Nb2Co4O9 Ref. [198]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.0 2.62 2.43 0.19 1 12

Co 3.0 2.77 2.38 0.38 1 12

0.112.mcif FeBO3 Ref. [199]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.7 3.91 3.89 0.02 1 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.105
http://webbdcrista1.ehu.es/magndata/index.php?index=0.106
http://webbdcrista1.ehu.es/magndata/index.php?index=0.107
http://webbdcrista1.ehu.es/magndata/index.php?index=0.109
http://webbdcrista1.ehu.es/magndata/index.php?index=0.110
http://webbdcrista1.ehu.es/magndata/index.php?index=0.111
http://webbdcrista1.ehu.es/magndata/index.php?index=0.112


APPENDIX C. EXPERIMENTAL DATA 133

0.113.mcif NiCO3 Ref. [200]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni −−− −−− −−− −−− 1 6

0.114.mcif CoCO3 Ref. [201]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co −−− −−− −−− −−− 1 6

0.115.mcif MnCO3 Ref. [202]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn −−− −−− −−− −−− 1 6

0.116.mcif FeCO3 Ref. [203]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe −−− −−− −−− −−− 1 6

0.117.mcif LuFeO3 Ref. [204]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 2.90 3.64 3.61 0.05 2 18

O 0.0 0.12 0.12 0.00 0 18

0.118.mcif Ba5Co5ClO13 Ref. [205]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 0.61 0.69 0.63 0.05 1 12

Co 2.21 2.67 2.59 0.08 1 12

Co 0.35 0.23 0.19 0.04 1 6

O 0.0 0.26 0.26 0.00 0 36

0.119.mcif CoSe2O5 Ref. [206]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.20 2.82 2.55 0.27 2 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.113
http://webbdcrista1.ehu.es/magndata/index.php?index=0.114
http://webbdcrista1.ehu.es/magndata/index.php?index=0.115
http://webbdcrista1.ehu.es/magndata/index.php?index=0.116
http://webbdcrista1.ehu.es/magndata/index.php?index=0.117
http://webbdcrista1.ehu.es/magndata/index.php?index=0.118
http://webbdcrista1.ehu.es/magndata/index.php?index=0.119
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0.121.mcif Li2Co(SO4)2 Ref. [208]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.33 2.90 2.62 0.28 3 6

0.122.mcif Li2Mn(SO4)2 Ref. [208]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.58 4.52 4.52 0.0 3 6

0.125.mcif MnGeO3 Ref. [209]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ge 0.0 0.10 0.10 0.00 0 6

Mn 4.6 3.65 3.66 0.00 1 6

0.126.mcif NpCo2 Ref. [210]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Np 0.5 0.04 1.35 1.31 1 6

0.128.mcif FeSO4F Ref. [211]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.32 4.06 4.04 0.01 1 6

0.130.mcif Cu3Mo2O9 Ref. [213]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cu 0.08 −−− −−− −−− 2 12

Cu 0.62 0.62 0.52 0.09 2 12

Cu 0.62 0.55 0.51 0.03 2 12

O 0.0 0.22 0.22 0.00 0 12

0.131.mcif Mn(C2N3)2 Ref. [214]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 5.01 4.41 4.42 0.00 1 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.121
http://webbdcrista1.ehu.es/magndata/index.php?index=0.122
http://webbdcrista1.ehu.es/magndata/index.php?index=0.125
http://webbdcrista1.ehu.es/magndata/index.php?index=0.126
http://webbdcrista1.ehu.es/magndata/index.php?index=0.128
http://webbdcrista1.ehu.es/magndata/index.php?index=0.130
http://webbdcrista1.ehu.es/magndata/index.php?index=0.131
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0.132.mcif Fe(C2N3)2 Ref. [214]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.11 3.73 3.51 0.22 2 6

0.133.mcif Ni3B7ClO13 Ref. [215]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 1.65 1.79 1.56 0.23 1 12

Ni 0.79 1.70 1.47 0.23 1 12

Ni 0.79 0.16 0.11 0.07 1 12

0.137.mcif V2Cu2O7 Ref. [216]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cu 0.93 0.54 0.48 0.06 2 12

0.138.mcif CrBiO3 Ref. [217]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr 2.04 2.63 2.67 0.04 1 6

Cr 2.04 2.64 2.68 0.04 1 6

0.140.mcif Lu(Fe2Ge)2 Ref. [218]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 0.44 1.93 1.86 0.06 2 12

Fe 0.44 1.79 1.73 0.05 2 12

0.141.mcif TbGe2 Ref. [219]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tb 7.55 7.73 5.74 1.99 1 6

Tb 9.45 7.73 5.81 1.92 1 6

0.142.mcif Fe2TeO6 Ref. [220]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.19 3.82 3.79 0.02 1 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.132
http://webbdcrista1.ehu.es/magndata/index.php?index=0.133
http://webbdcrista1.ehu.es/magndata/index.php?index=0.137
http://webbdcrista1.ehu.es/magndata/index.php?index=0.138
http://webbdcrista1.ehu.es/magndata/index.php?index=0.140
http://webbdcrista1.ehu.es/magndata/index.php?index=0.141
http://webbdcrista1.ehu.es/magndata/index.php?index=0.142
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0.143.mcif Cr2TeO6 Ref. [220]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cr 2.45 2.64 2.68 0.03 1 12

0.146.mcif EuZrO3 Ref. [221]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Eu 7.3 6.67 6.75 0.08 2 12

0.148.mcif LiLa2RuO6 Ref. [222]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ru 2.20 1.82 1.84 0.01 2 6

O 0.0 0.12 0.11 0.00 0 12

O 0.0 0.11 0.11 0.00 0 12

O 0.0 0.10 0.10 0.00 0 12

0.149.mcif Nd3(Al3Ru)4 Ref. [223]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Nd 2.09 0.19 3.22 3.41 2 18

Ru 0.0 0.13 0.11 0.01 0 18

0.150.mcif NiS2 Ref. [225]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 0.98 0.47 0.44 0.03 1 12

0.154.mcif Er2Ru2O7 Ref. [226]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Er 4.5 7.56 2.66 4.89 −−− −−−
Ru 2.0 1.36 1.23 0.12 −−− −−−
0.155.mcif CaMn(GeO3)2 Ref. [228]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.18 4.43 4.43 0.0 −−− −−−

http://webbdcrista1.ehu.es/magndata/index.php?index=0.143
http://webbdcrista1.ehu.es/magndata/index.php?index=0.146
http://webbdcrista1.ehu.es/magndata/index.php?index=0.148
http://webbdcrista1.ehu.es/magndata/index.php?index=0.149
http://webbdcrista1.ehu.es/magndata/index.php?index=0.150
http://webbdcrista1.ehu.es/magndata/index.php?index=0.154
http://webbdcrista1.ehu.es/magndata/index.php?index=0.155
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0.157.mcif Yb2Sn2O7 Ref. [229]

cluster µexp µth µs µl active CMP dgr. of free-

dom

O 0.0 0.09 0.12 0.02 0 6

Yb 1.04 1.54 0.53 1.01 2 12

0.158.mcif Yb2Ti2O7 Ref. [230]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Yb 0.89 1.54 0.53 1.00 2 12

0.159.mcif DyCoO3 Ref. [231]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Dy 9.08 8.83 4.73 4.12 2 12

0.160.mcif TbCoO3 Ref. [231]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tb 8.26 7.69 5.74 1.95 2 12

Co 0.0 0.15 0.14 0.00 0 12

0.163.mcif MnPS3 Ref. [233]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.43 4.25 4.25 0.00 2 6

0.164.mcif Y2MnCoO6 Ref. [234]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn −−− −−− −−− −−− 3 6

Co −−− −−− −−− −−− 3 6

0.165.mcif SrMnVHO5 Ref. [235]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.31 4.34 4.34 0.00 3 6

Mn 3.31 4.34 4.34 0.00 3 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.157
http://webbdcrista1.ehu.es/magndata/index.php?index=0.158
http://webbdcrista1.ehu.es/magndata/index.php?index=0.159
http://webbdcrista1.ehu.es/magndata/index.php?index=0.160
http://webbdcrista1.ehu.es/magndata/index.php?index=0.163
http://webbdcrista1.ehu.es/magndata/index.php?index=0.164
http://webbdcrista1.ehu.es/magndata/index.php?index=0.165
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0.167.mcif Nd3Mg2Sb3O14 Ref. [236]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Nd 1.78 0.73 2.96 3.69 4 9

0.168.mcif Fe2H4NF6 Ref. [237]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.12 3.93 3.81 0.12 3 12

Fe 3.12 4.09 3.92 0.16 1 12

0.169.mcif U3As4 Ref. [238]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 1.90 0.66 1.69 2.36 6 18

0.170.mcif U3P4 Ref. [238]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 1.47 0.43 1.61 2.04 6 18

0.171.mcif DyScO3 Ref. [240]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Dy 9.46 8.88 4.77 4.12 2 12

0.173.mcif Pr3(Al3Ru)4 Ref. [241]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Pr −−− −−− −−− −−− 2 18

0.177.mcif Mn3GaN Ref. [242]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 1.17 2.59 2.57 0.01 3 9

0.178.mcif CoF2 Ref. [243]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 2.6 2.91 2.62 0.29 1 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.167
http://webbdcrista1.ehu.es/magndata/index.php?index=0.168
http://webbdcrista1.ehu.es/magndata/index.php?index=0.169
http://webbdcrista1.ehu.es/magndata/index.php?index=0.170
http://webbdcrista1.ehu.es/magndata/index.php?index=0.171
http://webbdcrista1.ehu.es/magndata/index.php?index=0.173
http://webbdcrista1.ehu.es/magndata/index.php?index=0.177
http://webbdcrista1.ehu.es/magndata/index.php?index=0.178
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0.180.mcif MnPSe3 Ref. [245]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.74 4.22 4.20 0.01 1 6

0.187.mcif CeMnAsO Ref. [246]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ce 0.7 0.41 0.60 1.01 1 6

Mn 3.3 3.53 3.48 0.05 1 6

0.189.mcif CeMn2(GeO3)4 Ref. [247]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.61 4.41 4.41 0.00 2 12

0.191.mcif BaCuF4 Ref. [249]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Cu 0.83 −−− −−− −−− 0 6

0.192.mcif RbFe2F6 Ref. [250]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 3.99 4.06 3.93 0.12 1 12

Fe 4.29 3.93 3.84 0.10 3 12

0.193.mcif LiCoPO4 Ref. [251]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co −−− −−− −−− −−− 1 12

0.194.mcif U(SiPt)2 Ref. [252]

cluster µexp µth µs µl active CMP dgr. of free-

dom

U 1.67 0.86 1.66 2.52 1 6

0.198.mcif GdVO4 Ref. [253]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Gd 7.0 6.87 6.83 0.03 1 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.180
http://webbdcrista1.ehu.es/magndata/index.php?index=0.187
http://webbdcrista1.ehu.es/magndata/index.php?index=0.189
http://webbdcrista1.ehu.es/magndata/index.php?index=0.191
http://webbdcrista1.ehu.es/magndata/index.php?index=0.192
http://webbdcrista1.ehu.es/magndata/index.php?index=0.193
http://webbdcrista1.ehu.es/magndata/index.php?index=0.194
http://webbdcrista1.ehu.es/magndata/index.php?index=0.198
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0.199.mcif Mn3Sn Ref. [254]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.99 3.18 3.15 0.03 3 18

0.203.mcif Mn3Ge Ref. [256]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.99 2.74 2.71 0.02 −−− −−−
0.204.mcif Ca2MnReO6 Ref. [257]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.33 4.17 4.14 0.05 3 6

Re 0.21 0.20 0.46 0.25 2 6

0.211.mcif Ca2MnO4 Ref. [259]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 2.4 2.54 2.56 0.02 1 12

0.212.mcif Sr2Mn3(AsO)2 Ref. [260]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.4 3.55 3.53 0.01 1 6

0.215.mcif BaNi2(PO4)2 Ref. [261]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ni 2.00 1.72 1.55 0.17 2 6

0.219.mcif Co2SiO4 Ref. [262]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.87 2.59 2.40 0.18 3 12

Co 3.35 2.76 2.54 0.22 1 12

O 0.0 0.12 0.12 0.0 0 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.199
http://webbdcrista1.ehu.es/magndata/index.php?index=0.203
http://webbdcrista1.ehu.es/magndata/index.php?index=0.204
http://webbdcrista1.ehu.es/magndata/index.php?index=0.211
http://webbdcrista1.ehu.es/magndata/index.php?index=0.212
http://webbdcrista1.ehu.es/magndata/index.php?index=0.215
http://webbdcrista1.ehu.es/magndata/index.php?index=0.219
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0.220.mcif Mn2SiO4 Ref. [264]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.84 4.44 4.44 0.0 3 12

Mn 4.67 4.45 4.45 0.0 2 12

0.221.mcif Fe2SiO4 Ref. [265]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 4.44 3.57 3.46 0.11 3 12

Fe 4.4 3.73 3.59 0.14 1 12

O 0.0 0.10 0.10 0.0 0 12

0.222.mcif MnCuAs Ref. [266]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 3.6 3.68 3.67 0.01 1 6

0.228.mcif TbCo2 Ref. [267]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 1.19 1.28 1.16 0.12 1 9

Co 1.3 1.28 1.11 0.17 1 3

Tb 8.3 7.10 5.61 1.49 1 6

0.229.mcif Ba2MnSi2O7 Ref. [268]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Mn 4.1 4.39 4.39 0.0 1 6

0.230.mcif K2CoP2O7 Ref. [270]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Co 3.03 2.77 2.55 0.21 1 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.220
http://webbdcrista1.ehu.es/magndata/index.php?index=0.221
http://webbdcrista1.ehu.es/magndata/index.php?index=0.222
http://webbdcrista1.ehu.es/magndata/index.php?index=0.228
http://webbdcrista1.ehu.es/magndata/index.php?index=0.229
http://webbdcrista1.ehu.es/magndata/index.php?index=0.230
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0.235.mcif PrMn2SbO6 Ref. [271]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Pr 2.2 1.63 1.93 3.56 1 12

Mn 5.1 4.43 4.43 0.0 1 6

Mn 5.1 4.44 4.44 0.00 1 6

Mn 5.1 4.41 4.40 0.00 1 12

0.236.mcif Ca(Al2Fe)4 Ref. [272]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Fe 0.71 3.26 3.11 0.15 2 12

0.237.mcif Er2Sn2O7 Ref. [273]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Er 4.38 7.87 2.72 5.14 1 12

0.238.mcif Er2Pt2O7 Ref. [274]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Er 4.80 7.73 2.70 5.03 1 12

0.239.mcif LiCa3RuO6 Ref. [275]

cluster µexp µth µs µl active CMP dgr. of free-

dom

O 0.0 0.10 0.1 0.00 0 24

Ru 2.8 1.78 1.80 0.02 1 6

0.290.mcif CeCu2 Ref. [281]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Ce 0.33 0.04 0.31 0.36 1 6

0.318.mcif Tm2MnCoO6 Ref. [284]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tm 2.17 5.03 1.62 3.40 3 12

Mn 2.82 3.35 3.38 0.03 2 6

Co 2.82 0.14 0.11 0.04 2 6

http://webbdcrista1.ehu.es/magndata/index.php?index=0.235
http://webbdcrista1.ehu.es/magndata/index.php?index=0.236
http://webbdcrista1.ehu.es/magndata/index.php?index=0.237
http://webbdcrista1.ehu.es/magndata/index.php?index=0.238
http://webbdcrista1.ehu.es/magndata/index.php?index=0.239
http://webbdcrista1.ehu.es/magndata/index.php?index=0.290
http://webbdcrista1.ehu.es/magndata/index.php?index=0.318
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0.408.mcif PrSi Ref. [289]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Pr 2.80 0.11 2.23 2.15 2 12

0.409.mcif TmNi Ref. [290]

cluster µexp µth µs µl active CMP dgr. of free-

dom

Tm 5.89 4.35 1.35 2.99 2 12

http://webbdcrista1.ehu.es/magndata/index.php?index=0.408
http://webbdcrista1.ehu.es/magndata/index.php?index=0.409
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[27] R. Gaspar, “Über eine approximation des hartree-fockschen potentials durch eine universelle

potentialfunktion,” Acta Physica Academiae Scientiarum Hungaricae, vol. 3, no. 3-4, pp. 263–

286, 1954.

[28] L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials,” Journal of

Physics C: Solid state physics, vol. 4, no. 14, p. 2064, 1971.

[29] U. von Barth and L. Hedin, “A local exchange-correlation potential for the spin polarized

case. i,” Journal of Physics C: Solid State Physics, vol. 5, no. 13, p. 1629, 1972.

[30] A. Rajagopal and J. Callaway, “Inhomogeneous electron gas,” Physical Review B, vol. 7, no. 5,

p. 1912, 1973.

[31] K. Momma and F. Izumi, “Vesta 3 for three-dimensional visualization of crystal, volumetric

and morphology data,” Journal of applied crystallography, vol. 44, no. 6, pp. 1272–1276, 2011.

[32] P. Mohn, “Magnetism in the solid state–an introduction, springer series,” in Solid-state sci-

ences, Springer Heidelberg, 2003.

[33] J. M. Coey, Magnetism and magnetic materials. Cambridge university press, 2010.

[34] S. F. A. Kettle. Springer, 2013.
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“Single-crystal study of the kagome antiferromagnet U,” Physical Review B - Condensed

Matter and Materials Physics, vol. 85, no. 6, pp. 1–9, 2012.

[208] M. Reynaud, G. Rousse, J.-N. Chotard, J. Rodŕıguez-Carvajal, and J.-M. Tarascon, “Marinite
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[289] V. Nguyen, F. Tchéou, and J. Rossat-Mignod, “Magnetic structures of PrSi and NdSi inter-

metallic alloys,” Solid State Communications, vol. 23, pp. 821–823, sep 1977.

[290] D. Gignoux, J. Rossat-Mignod, and F. Tcheou, “Magnetic structure of the TmNi compound

crystal field effect,” Physica Status Solidi (a), vol. 14, pp. 483–488, dec 1972.



BIBLIOGRAPHY 167

[291] J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, and J. L. Martinez, “Neutron diffraction study

on structural and magnetic properties of La2NiO4,” Journal of Physics: Condensed Matter,

vol. 3, pp. 3215–3234, may 1991.

[292] K. Tomiyasu and I. Kagomiya, “Magnetic Structure of NiCr2O4 Studied by Neutron Scat-

tering and Magnetization Measurements,” Journal of the Physical Society of Japan, vol. 73,

pp. 2539–2542, sep 2004.

[293] E. Bertaut, J. Cohen, B. Lambert-Andron, and P. Mollard, “Étude de Cr2S3 rhomboédrique

par diffraction neutronique et mesures magnétiques,” Journal de Physique, vol. 29, pp. 813–

824, aug 1968.
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W. Chen, A. Jain, M. A. White, M. Asta, G. J. Snyder, K. Persson, and G. Ceder, “Compu-

tational and experimental investigation of TmAgTe2 and XY Z2 compounds, a new group of

thermoelectric materials identified by first-principles high-throughput screening,” Journal of

Materials Chemistry C, vol. 3, no. 40, pp. 10554–10565, 2015.



BIBLIOGRAPHY 172

[353] M. T. Dunstan, A. Jain, W. Liu, S. P. Ong, T. Liu, J. Lee, K. A. Persson, S. A. Scott, J. S.

Dennis, and C. P. Grey, “Large scale computational screening and experimental discovery of

novel materials for high temperature CO2 capture,” Energy & Environmental Science, vol. 9,

no. 4, pp. 1346–1360, 2016.
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