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Abstract

In recent years, a large amount of four-dimensional event data have been obtainable
in neutron inelastic scattering experiments conducted by chopper spectrometers at Japan
Proton Accelerator Research Complex (J-PARC). As preprocessing, researchers make his-
tograms from obtained event data. At present, the researchers only empirically select bin
widths and slice conditions to obtain a two-dimensional histogram, while checking the
histogram in a visual approach. The arbitrariness of the process and human cost are signif-
icant problems. It is also an essential task to establish an automatic termination strategy
of inelastic neutron-scattering measurement to prevent redundancy of the measurement.
There is no criterion to assess whether the obtained data is sufficient in event number. By
using large-scale data, we can extract the fine features of the measurement target. How-
ever, it is not necessary to extract information beyond the resolution of the measurement
equipment. In this thesis, we propose methods to resolve these issues.

First, we propose a method that can automatically make a multidimensional his-
togram from event data. The optimization criterion is based on a cost function representing
the tradeoff between the reduction of stochastic fluctuation and extraction of the struc-
ture that the data have. In this thesis, we use artificial data to investigate the behavior
of our method. The artificial four-dimensional event data were produced, assuming neu-
tron inelastic scattering due to phonons. We applied the proposed method to both sliced
two-dimensional event data and the whole four-dimensional event data. Comparing their
results, we have found that the optimized bin widths strongly depends on the dimension-
ality of the data. Moreover, the optimal bin widths are affected by the number of events
and the magnitude of the white background noise.

Second, we propose a method to compute the termination criteria and determine
whether to continue or terminate the experiment in real time. In the proposed method,
researchers compute the optimal bin widths of a histogram for the obtained data. Regard-
ing the termination criterion, the experiment is terminated when the optimal bin widths
become smaller than the target resolutions. Since the optimal bin-width calculation can
be performed in parallel to the experiment, it is effective as a real-time stopping arrange-
ment. In numerical experiments, we dealt with real inelastic neutron-scattering data of
a typical size. As a result of the numerical experiments, the optimal bin widths decrease
as the number of events increases. Even the optimal bin widths for data downsampled to
1/5 are comparable with the resolutions limited by the sample size, choppers, and so on.
This implies excessive measurement of the inelastic neutron experiments for the moment.
Moreover, we show that Bayesian optimization (BO) is useful in searching for the optimal
bin widths.

Third, we propose a method for efficient terminating strategy while measuring
event data in real time. In general, the computational cost of bin widths optimization
grows exponentially with the number of the dimension of the data. Therefore, it is urgent
task to reduce the computational cost of the bin widths optimization. We proposed a
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method using the prior distribution of BO computed from the information about the cost
function obtained in the past. We perform numerical experiments using inelastic neutron-
scattering experiment data. As a result of numerical experiments, the proposed method
greatly improves the search efficiency of the optimal bin widths. Moreover, it is robust for
a hyper parameter.
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Chapter 1

Introduction

1.1 Background

1.1.1 Data-intensive science

Jim Gray proposed a fourth paradigm, data-intensive science. [3] This is a scientific
framework based on “big data” [4, 5, 6] and advanced computational analysis technology.
Currently, infrastructures are being actively developed to efficiently apply machine learning
to big data.[7, 8, 9] In this section, we introduce the current state of data-intensive science
and its challenges. The definition of four paradigms are as follows.

• 1st paradigm: experimental science

This paradigm empirically describes natural phenomena without advanced mathematics
and computer.

• 2nd paradigm: theoretical science

Researchers analyze the observed data and reveal the laws behind it. The laws are mainly
written in the form of differential equations. Newton’s laws of motion, Maxwell’s equations
and Schrodinger’s equation are well known. Then, for many problems, the theoretical
models grew too complicated to solve analytically, and researchers had to start simulation.
This leads to the third paradigm.

• 3rd paradigm: computational science

Researchers use computers to numerically solve nonlinear equations that cannot be solved
analytically The simulation facilitated the analysis of many-body problems. Moreover,
these simulations are generating a whole lot of data, along with a huge increase in data
from the experimental sciences.

• 4th paradigm: data-intensive science

The fourth paradigm unifies the first to the third paradigms. The world of science has
changed. Data-intensive science consists of three basic activities: capture, curation, and
analysis. The new model is optimized by using the data to be captured by instruments
or generated by simulations. The resulting information and knowledge are to be stored in
computers.
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1.1. Background Chapter 1. Introduction

Preprocessing and data integration are significant for the data to make it easier
to analyze and to reduce the volume. Scientists only get to look at their data fairly late
in this pipeline. The techniques and technologies for such data-intensive science are so
different that it is worth distinguishing data-intensive science from computational science.
Experimental and theoretical sciences have also been data-centric. However, data-intensive
science is based on “big data” and more sophisticated analysis. Various elemental technolo-
gies; data collection, organization, storage, analysis and visualization, are needed to realize
data-intensive science. Therefore, there is an urgent task to develop and integrate these
methods. There are several efforts to integrate the science of each discipline with data-
intensive science. Materials informatics (MI) is known as a field of study that applies the
principles of informatics to materials science and engineering to improve the understand-
ing, use, selection, development, and discovery of materials. In 2011, the Materials Genome
Initiative was launched in the United States. [10, 11] It was the start of the research trend
on MI all over the world. Big data generated by simulation are analyzed for material de-
velopment. The organization of these data is an important issue, and several universities
and national institutes are building material databases. In recent years, the construction
of a real-time data analysis platform has been focused on in inelastic neutron-scattering
experiments. We aim to build data-intensive methods for inelastic neutron-scattering ex-
periments in this thesis.

1.1.2 Motivation

In recent years, improvements in simulation and measurement technology have led
to the generation of “big data” in various fields. Researchers organize these data to reduce
noise and data volume. Currently, most of the preprocessing are conducted empirically by
experts. There are the problems of arbitrariness of the process and human cost. Therefore,
it is necessary to develop algorithms to automate these processes.

There are many experiments to acquire event data such as neutron scattering ex-
periments, radiation measurements, and spike measurements in neuroscience. We focus on
inelastic neutron scattering experiments in this thesis. Researcher investigate the the dy-
namical structure of materials by using inelastic neutron-scattering experiments. [12]. In
recent years, numerous event data have been obtained in inelastic neutron-scattering ex-
periments using high-power accelerator-based neutron sources such as those of ISIS, SNS,
J-PARC, and CSNS. A time-of-flight neutron spectrometer designed for inelastic scattering
measurements such as MAPS [13], MERLIN [14], HYSPEC [15], ARCS [16], 4SEASONS
[17], AMATERAS [18], and HRC [19] produces a large-scale event data. Researchers ob-
tain event data mapped on the four-dimensional (4D) space of transferred energy (E) and
momentum (q). When the measurements are independent, the process of observation of
the events can be modeled as the Poisson distribution. The data are observed with stochas-
tic fluctuations. At present, researchers create histograms to reduce the fluctuations and
analyze them [20]. If the bin widths are set to be wider, stochastic fluctuation of the event
data can be reduced by smoothing; however, the structure of the data should be lost.12,
13) Thus, selecting the best bin widths can be considered as an optimization of this trade-
off. Currently, researchers empirically select bin widths in a visual approach. Here, the
problem is that the widths are chosen for 2D datasliced from 4D data. When cutting a
2D slice, researchers arbitrarily select the slice widthsand position. These arbitrary pro-
cesses should affect the result of selecting bin widths. The arbitrariness of preprocessing
and human costs of trial and error are current problems. Therefore, we propose a method
for optimizing the bin widths of histograms for multidimensional event data. Bin widths
optimization is formulated as a minimization problem of a cost function in the proposed
method.
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Chapter 1. Introduction 1.1. Background

A practical application of the proposed method is to determine whether to ter-
minate or to continue the experiment. By using a larger amount of data, researchers can
extract more detailed features of the target materials. However, it is not necessary to ex-
tract information beyond the resolution of the measurement system. At present, there is
no criterion to assess whether the obtained data is sufficient in event number, and the mea-
surement usually becomes redundant. We propose a method to compute the termination
criteria and determine whether to terminate or continue the experiment in real time. In
the proposed method, researchers compute the optimal bin widths of a histogram for the
obtained data and terminate the experiment when the optimal bin widths become smaller
than the expected resolutions. Here, it is known that the optimal bin widths decrease as
the number of events increases.[21, 22] Since the proposed method can be executed in
parallel with the experiment, it is helpful for real-time termination decision. Moreover, we
conducted numerical experiments using a set of real experimental data and showed that
Bayesian optimization (BO)[23, 24] is efficient for searching in the optimal bin widths.
Bayesian optimization is known as a method for solving optimization problems for an ob-
jective function. Gaussian process (GP)[25] is often used in Bayesian optimization. GP is
known as a method for calculating a predictive distribution with input data. For further
efficiency, we aim to utilize the information of the cost function computed in the past.
We propose a method using the prior distribution of BO computed from the information
of the cost function obtained in the past. Regarding the proposed method, we focus on
extrapolation of the cost function in the direction of the number of the events. By extrap-
olating the cost function, we can estimate the cost function when the number of the events
increases. We introduce a prior distribution computed by the extrapolated cost function.
This prior distribution contains the information of the cost function obtained in the past.
In the proposed method, we apply BO to the joint distribution of the prior distribution
and the predictive distribution about the cost function with increased data.

1.1.3 Inelastic neutron-scattering experiments

The neutrons have no electric charge, but have a significant magnetic moment.
Neutron scattering is caused by the interaction between magnetic moment of electrons or
the nuclear force of the atoms. Neutrons have a high transmission rate, and are suitable
for identifying the location and structure of light elements such as hydrogen and lithium.
We can measure the atomic configuration and dynamics inside a solid simultaneously by
using inelastic neutron-scattering experiments. This is applied for elucidating the structure
of superconductivity.[26, 27, 28]．We show the outline of the inelastic neutron-scattering
experiments below, and the process of the experiment in Fig. 1.2 and Fig. 1.3

The neutron beam is monochromatized by a Fermi chopper [29] and injected into
a solid sample. Let the momentum of an incident neutron as !ki and, the energy of an
incident neutron as Ei =

!2|ki|2
2mN

. Here, k, mN , and ! represents the wavenumber, the mass
of the neutron, and the conversion Planck’s constant, respectively. Let the momentum of
an scattered neutron as !kf and, the energy of an scattered neutron as Ef = !2|ki|2

2mN
. We

can calculate the change of momentum and energy before and after the scattering as ∆Q
and ∆E. We consider that the incident neutrons are scattered by the nuclei in the solid.
Let the momentum of an scattered neutron as !kf and, the energy of an scattered neutron
as Ef = !2|ki|2

2mN
. Then, we can calculate the change of momentum and energy before and

after the scattering as ∆Q and ∆E as follows.

∆Q = !(ki − kf +G)

∆E = Ei − Ef (1.1)
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1.1. Background Chapter 1. Introduction

Figure 1.1: A schematic view of 4SEASONS.[1]

Here, G represents the reciprocal lattice vector. In J-PARC, researchers obtain large
amount of event data (∆E,∆Q) mapped on 4D space. We describe the way to calcu-
late the wavenumber vectors ki，kf . From De Broglie’s equation, we obtain

k =
mv

! . (1.2)

Here, we define m, v, and k as mass, velocity, and wavenumber vector of a matter, re-
spectively. We can calculate wavenumber vector k from the velocity of the neutron v by
using Eq. (1.2), Regarding time-of-flight method, researchers measure scattering angles
and flighting time to calculate the velocity of the neutron.[30, 31] In previous devices,
researchers had to set the location of the detectors for trials. On the other hand, 4SEA-
SONS (Fig. 1.1) has detectors arranged in a spherical shape, and can detect a wide range
of scattering angles. In addition, 4SEASONS has succeeded in utilizing multiple incident
energies Ei during a single measurement [32, 17]. Therefore, the experimenter can perform
measurement with a wider range of momentum space more efficiently than before. The
experimenter can detect neutrons up to 300 meV with medium resolution. Since we can
perform experiments with high efficiency with 4SEASONS, there are a large amount of
inelastic neutron scattering data in J-PARC. However, researchers empirically select bin
widths in a visual approach and make a histogram. It is an urgent task to develop a method
for optimizing the bin widths for multidimensional event data. In addition, the redundancy
of measurements is also a critical issue.

1.1.4 Time-of-flight method

The principle of time-of-flight (TOF) method [33, 34] of a pulsed neutron source is
shown in Fig. 1.3. Neutrons fly a certain distance and are selected to be irradiated onto a
sample at a speed suitable for the opening interval of a monochromatic chopper. Scattered
neutrons are detected by detectors surrounding the sample. Opening of the chopper timing
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dynamics
�����

ℏ"! ,	%! ℏ"" ,	%"

neutron

Figure 1.2: The process of inelastic neutron-scattering experiments. Let the momentum
of an incident neutron as !ki and, the energy of an incident neutron as Ei =

!2|ki|2
2mN

. Let
the momentum of an scattered neutron as !kf and, the energy of an scattered neutron
as Ef = !2|ki|2

2mN
. Here, k, mN , and ! represents the wavenumber, the mass of the neutron,

and reduced Planck constant, respectively. We can calculate the change of momentum and
energy before and after the scattering as ∆Q and ∆E in Eq. (1.1).

The energy and momentum transitions can be computed from the total flight time, since the
distance of each flight is known. Specifically, the magnitude and energy of the wavenumber
vectors can be calculated as follows

ki =
m

!
L1 − L3

tchm
, (1.3)

kf =
m

!
L2

td − ts
, (1.4)

Ei =
1

2
m

(
L1 − L3

tchm

)
, (1.5)

Ef =
1

2
m

(
L2

td − ts

)
. (1.6)

Thus energy transition !ω is writtens as

!ω = Ei − Ef . (1.7)

Here, mN is the mass of the neutron, L1, L2 and L3 are the distance from the source
to the sample, the sample to the detector, and the chopper to the sample, respectively
tchm, ts, and td are the flight time of a neutron from the source to the chopper, sample,
and detector, respectively. By using TOF method, researchers observe the information
of intensity I(td,φ). Currently, the researchers mainly treat the peak information about
the intensity for analysis in inelastic neutron-scattering experiments. Peak information is
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extracted for the data transformed the form of histogram. The tchm depends on the velocity
(energy) of the incident neutron. Since the neutrons fly to the sample at the same speed,
ts is also determined. The equation for the energy resolution is given as follows

(
∆!ω
Ei

)2

=

(
2∆tchm
tchm

)(
1 +

L1

L2

)2

+

(
2∆tm
tchm

)(
1 +

L3

L2

)2

. (1.8)

Here, ∆tchm and ∆tm are opening interval time of the chopper, and the time width of the
neutron pulse at the source location. For simplicity, we show the case of !ω = 0. Strictly
speaking, error terms of L2 due to sample size and detector size are also exists, however
it is ignored for simplicity. Momentum resolutions depend on the size and arrangement of
the detection devices.

Figure 1.3: (a) A schematic view and (b) a TOF diagram of a conventional chopper
spectrometer at a pulsed neutron source.[2] Neutrons selected by a chopper are injected
into a solid and scattered neutrons are detected by detectors.

1.1.5 Density estimation

In probability and statistics, density estimation is the construction of an estimate
λ̂t, based on observed data, of an unknown underlying rate. [35, 36, 37, 38] The data are
randomly sampled from the underlying rate λt shown in Fig. 1.4. A variety of approaches
to density estimation are used, including parametric methods such as Gaussian mixture
model and nonparametric methods such as kernel density estimation. The most basic form
of density estimation is a rescaled histograms.
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A very natural use of density estimates is in the informal investigation of the prop-
erties of a given set of data. Density estimates can give valuable indication of such features
as skewness and multimodality in the data. An important aspect of density estimation
is data visualization. Density estimation is also frequently used in anomaly detection or
novelty detection if an observation lies in a very low-density region, it is likely to be an
anomaly or a novelty.

In statistics, the mean integrated squared error (MISE) is used in density estimation.[39]
The MISE of an estimate of an unknown probability density is given by Among several
plausible optimizing principles, such as the Kullback-Leibler divergence[40] or the Hellinger
distance[41], we adopt, here, MISE for measuring the goodness-of-fit of an estimate to the
unknown underlying rate.

MISE =

∫
E[(λ̂t − λt)

2]dt (1.9)

E refers to the expectation over different realizations of point events given λt. In
this thesis, we estimate λ̂t as a histogram, and explore a method to select the bin size that
minimizes the MISE. We describes the detail about the method in Chapter. 2.

Figure 1.4: Problem setting of density estimation. Researchers estimate the unknown
underlying rate λ(t) from obtained event data.

We discuss an error in the optimal bin widths search and a fluctuation in bin
height. In the proposed method, we conduct grid search. Therefore, an error corresponding
to the grid size can exist. In other words, you can improve the accuracy by selecting small
grid size. Moreover, we can reduce the computational cost by using summed-area talbes
(SAT) [42] when performing a grid search. As increasing the number of events in a bin,
we can reduce the fluctuation of the bin height. In current inelastic neutron scattering
experiments, since the purpose of the experiment is peak estimation, researchers do not
consider the reduction of the fluctuation.
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1.2 Summary of contributions

We summarize the contributions of our work.

• Multidimensional Bin-Width Optimization for Histogram and Its Application to
Four-Dimensional Neutron Inelastic Scattering Data

We have proposed a method for optimizing bin widths for multidimensional event data on
the basis of a histogram bin-width optimization method.[21] Since the multidimensional-
ization of the bin-width optimization algorithm increases the number of parameters to be
optimized, the computational cost increases. We have also proposed a method of reducing
the computational cost. We generated event data from a dispersion relation by using Pois-
son sampling. First, to verify the validity of our method, we applied it to the 2D event data
sliced from 4D event data. Second, we applied it to the whole 4D event data and compared
the results of 2D bin-width optimization and 4D bin-width optimization. As a result, the
optimal bin widths of the whole high-dimensional data and those of the data sliced from
the high-dimensional data did not agree with each other. The result implies that the bin-
width optimization should be performed for all of the high-dimensional data. In addition,
since it is difficult for researchers to visually process 4D data, the proposed method is
effective. Third, the optimal bin widths increase as the number of pieces of data increases
or the magnitude of the white BG noise decreases. By using our method, we can eliminate
arbitrariness in preprocessing and select the optimal bin widths for multidimensional event
data. Regarding the contribution to machine learning, we formulate multidimensional cost
function for bin-width optimization. Original content can be found in Ref. [22]

• Automatic Termination Strategy of Inelastic Neutron-scattering Measurement Using
Bin-width Optimization

To prevent a redundant measurement in inelastic neutron-scattering measurement, we pro-
posed a strategy to determine whether to terminate the measurement. In the proposed
method, researchers compute approximate optimal bin widths as the stopping criteria
in real time. When the optimal bin widths become smaller than the target resolutions,
the experiment can be terminated. In numerical experiments, we dealt with real inelastic
neutron-scattering data. In this study, we computed the cost function for real data of an
inelastic neutron-scattering experiment for the first time. The optimal bin widths decrease
as the number of data pieces increases. Moreover, we showed that Bayesian optimization
is effective for searching for the optimal bin widths, especially when the number of data
pieces is large. The cost function can be computed in parallel, and the computational re-
sources can be saved by using BO. The estimated computational cost is not too significant
to perform the stop-continue decision during the measurement. This work is planned to
submit to a journal.

• Efficient Bayesian Bin-width Optimization for On-going Event Measurement

we proposed a strategy to determine efficiently whether to terminate or continue the mea-
surement. As a criterion for determining the termination, we focused on the optimal bin
widths of a histogram. For efficient termination judgment, it is necessary to improve the
efficiency of bin widths optimization. We proposed a method using the prior distribution of
BO computed from the information of the cost function obtained in the past. As a result
of numerical experiments, it was found that the proposed method greatly improves the
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search efficiency of the optimal bin widths. It was also found that the proposed method
is robust for HP. Regarding contributions to machine learning, we formulate a Bayesian
optimization method which incorporates information extracted from another domain as a
prior distribution in optimal termination problems. This work is planned to submit to a
journal.

1.3 Overview of this thesis

With respect to the structure of this thesis, we describe the bin widths optimization
of multidimensional histograms in Chapter 2. In Chapter 3 and 4, we describe a proposal of
an efficient termination strategy for event measurement. In Chapter 5 and 6, we conclude
our contributions and present our future prospects.
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Chapter 2

Multidimensional Bin-Width
Optimization for Histogram and Its
Application to Four-Dimensional
Neutron Inelastic Scattering Data

2.1 Introduction

Event data often appear in many experimental methods such as neutron scat-
tering experiments[12, 43, 44, 45, 46], radiation measurements[47, 48, 49, 50], and spike
observation[51, 52, 53] in neuroscience. Generally, these data are smoothed by a histogram
or a kernel in the process of data analysis.[54, 55, 56] In this paper, we treat smooth-
ing by a histogram as the simplest case of such smoothing. With regard to neutron in-
elastic scattering experiments, researchers obtain event data mapped on four-dimensional
(4D) space of energy and momentum. At Japan Proton Accelerator Research Complex (J-
PARC), there are high-intensity Fermi chopper[29] spectrometers such as “4SEASONS”[17],
“AMATERAS”[18], and “HRC”[19]. In recent years, numerous pieces of event data have
been obtained in neutron inelastic scattering experiments by operating the chopper spec-
trometers. Researchers use the software called “Utsusemi”[20] to make histograms, while
empirically adjusting the bin widths for the reduction of noise and data volume. If the
bin widths are set to be wider, stochastic fluctuation of the event data can be reduced by
smoothing; however, the structure of the data should be lost.[57, 58] Thus, selecting the
best bin widths can be considered as an optimization of this tradeoff. Currently, researchers
empirically select bin widths in a visual approach. Here, the problem is that the widths are
chosen for 2D data sliced from 4D data. When cutting a 2D slice, researchers arbitrarily
select the slice widths and position. These arbitrary processes should affect the result of
selecting bin widths. The arbitrariness of preprocessing and human costs of trial and error
are current issues.

To solve these problems, we focus on the fact that the neutron count in a spe-
cific region follows a Poisson distribution.[59] Several bin-width optimization methods
have been proposed in neuroscience, although they have limited applicability for 1D spike
sequences.[21, 60] These methods are used for estimating the firing rate, which represents
the spike count of neurons per unit time. For the spike time series obtained in many exper-
iment trials, it is known that the spike count in a specific time interval follows a Poisson
distribution.[61, 62, 63] Therefore, we tried to develop a method applicable to multidi-
mensional event data such as those obtained from neutron inelastic scattering experiments
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on the basis of previous research in the field of neuroscience. In this study, we propose a
method for automatically optimizing bin widths for whole multidimensinal data.

The structure of this chapter is as follows. In Sect. 2.2, we formulate a method for
optimizing multidimensional bin widths. In Sect. 2.3, we show numerical experiments using
artificial data to investigate the behavior of the proposed method. The method is applied
to 4D artificial event data obtained by Poisson sampling.[64] The validity of our method
is verified in the following steps. First, we apply the proposed method to 2D data sliced
from 4D event data. Second, we apply it to the whole 4D event data and compare the
results of 2D bin-width optimization and 4D bin-width optimization. We have found that
the optimized bin widths strongly depends on the dimensionality of the data. Third, we
compute the optimal bin widths by changing the number of data pieces and the magnitude
of white background (BG) noise. It is shown that the optimal bin widths increase as the
number of data pieces decreases or the magnitude of the white BG noise increases. In Sect.
2.4, we discuss the relationship between the optimal bin widths and the number of pieces
of event data as well as the magnitude of white BG noise. The conclusion of this paper is
provided in Sect. 2.5.

2.2 Method

2.2.1 Bin-width optimization for one-dimensional event data

First, we introduce the bin-width optimization method for 1D event data.[21] Let
us assume that n pieces of event data ti ∈ [0, T ] (1 ≤ i ≤ n) are obtained in the obser-
vation interval [0, T ]. Here, let λ(t) be a true probability density function that the event
data follow. Then, the performance of the estimator λ̂(t) for λ(t) is evaluated using the
mean integrated squared error (MISE) in Eq. (1). In statistics, MISE is used in density
estimation[39]. There is Kullback–Leibler (KL) divergence[40] as a criterion for estimation
accuracy, but when estimating a probability density with a histogram, KL can be infinite.
[54] In this case, we use MISE.

MISE =
1

T

∫ T

0
E

[(
λ̂(t)− λ(t)

)2
]
dt (2.1)

Here, E[·] represents the expectation over different realizations of event data given λ(t).
When the observation interval is equally divided into N parts and the estimator λ̂(t) is
limited to the form of the histogram of the bin width ∆ = T

N , Eq. (2.1) can be expressed
as

MISE =
1

N

N∑

i=1

1

∆

∫ ∆

0
EPoisson

[(
θ̂i − λ(t+∆(i− 1))

)2
]
dt,

where EPoisson[·] :=
∞∑

ki=0

P (ki|n∆θi)[·]. (2.2)

Here, θ̂i represents the height of the i th bin. θ̂i can be written as θ̂i =
ki
n∆ by using the

number of counts ki in the i th bin. Using the parameter θi = 1
∆

∫ ∆
0 λ(t + ∆(i − 1))dt,

which is the average of λ(t) in the i th bin, the probability distribution P (ki|n∆θi) can be
written as Eq. (2.3). In Eq. (2.3), we assume that the data generation process is a Poisson
process.

P (ki|n∆θi) =
(n∆θi)ki

ki!
exp(−n∆θi) (2.3)
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Since E[θ̂i] = θi holds for any i, θ̂i is the unbiased estimator of the parameter θi. Hereafter,
we denote λ(t + (i − 1)∆) in Eq. (2.2) as an average over an ensemble of segmented
probability density functions {λ(t)}, t ∈ [0,∆], and EPoisson[·] as E[·].

MISE =
1

∆

∫ ∆

0

〈
E
[
(θ̂ − λ(t))2

]〉
dt (2.4)

The quadratic term of Eq. (2.4) can be decomposed as

MISE =
〈
E
[
(θ̂ − θ)2

]〉
+

1

∆

∫ ∆

0

〈
(λ(t)− θ)2

〉
dt. (2.5)

The first term is the stochastic fluctuation of the estimator θ̂ around its expected mean
value θ (= E[θ̂]), and the second term is the averaged fluctuation of λ(t) around its section
average θ. We also expand the second term of Eq. (2.5) as

1

∆

∫ ∆

0

〈
(λ(t)− θ)2

〉
dt =

1

∆

∫ ∆

0

〈
(λ(t)− ⟨θ⟩)2

〉
dt−

〈
(θ − ⟨θ⟩)2

〉
(2.6)

=
1

T

∫ T

0
(λ(t)− ⟨θ⟩)2dt−

〈
(θ − ⟨θ⟩)2

〉
. (2.7)

Since the first term in Eq. (2.7) does not depend on the bin width ∆, we eliminate it from
MISE and let the cost function Cn(∆) be Eq. (2.9). Then, the bin width that minimizes
the cost function is taken as the optimal bin width.

1

n2
Cn(∆) := MISE− 1

T

∫ T

0
(λ(t)− ⟨θ⟩)2dt (2.8)

=
〈
E[(θ̂ − θ)2]

〉
−

〈
(θ − ⟨θ⟩)2

〉
(2.9)

The second term in Eq. (2.9) represents the fluctuation of the expected mean value θ
around the ensemble average ⟨θ⟩, where ⟨·⟩ means the average operation for all bins. Since
⟨θ⟩ is unobservable, it is eliminated by using Eq. (2.10), which is the decomposition rule
for an unbiased estimator θ̂.

〈
E

[(
θ̂ −

〈
E[θ̂]

〉)2
]〉

=
〈
E[(θ̂ − θ)2]

〉
+
〈
(θ − ⟨θ⟩)2

〉
(2.10)

From Eqs. (2.9) and (2.10), the following equation is obtained.

1

n2
Cn(∆) = 2

〈
E[(θ̂ − θ)2]

〉
−
〈
E

[(
θ̂ −

〈
E[θ̂]

〉)2
]〉

(2.11)

Since the number of counts in the i th bin follows a Poisson distribution[65] and the esti-
mator of bin height is denoted as θ̂i =

ki
n∆ , the next equation holds.

E[(θ̂ − θ)2] =
1

n∆
E[θ̂] (2.12)

Then, the cost function only has the terms of the estimator θ̂.

1

n2
Cn(∆) =

2

n∆

〈
E[θ̂]

〉
−
〈
E

[(
θ̂ −

〈
E[θ̂]

〉)2
]〉

(2.13)

Cn(∆) =
2⟨E[k]⟩ − ⟨E [(k − ⟨E[k]⟩)]⟩

∆2
(2.14)
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In Eq. (2.14), we apply θ̂i = ki
n∆ . We obtain the estimated cost function Ĉn(∆) of the

observable value ki.

Ĉn(∆) =
2k̄ − v

∆2
(2.15)

k̄ =
n

N
, v =

1

N

N∑

i=1

(ki − k̄)2 (2.16)

The steps of the algorithm are as follows.

1. Assume that n pieces of event data are obtained in the observation interval of
length T .

2. Set the bin width ∆ (number of bins: N = T
∆). Compute the number of counts

ki in the i th bin (1 ≤ i ≤ N).

Then, compute v by using k̄ = n
N , as in Eq. (2.17).

v =
1

N

N∑

i=1

(ki − k̄)2 (2.17)

3. Compute Ĉn(∆) defined by

Ĉn(∆) =
2k̄ − v

∆2
. (2.18)

Repeat steps 2 and 3 above to find the bin width ∆ that minimizes Ĉn(∆), and
let this be the optimal bin width.

2.2.2 Multidimensionalization of bin-width optimization algorithm

Let us consider the case in which n pieces of event data are mapped on Rd and the
observation area is equally divided into N d-dimensional rectangular parallelepipeds just
as in the 1D case [bin widths: (∆1,∆2, ...,∆d)]. Assuming that the number of counts in
the i th bin is ki, we can compute the estimator of the cost function Ĉn(∆1,∆2, ...,∆d) in
the same way as for 1D event data.

Ĉn(∆1,∆2, ...,∆d) =
2k̄ − v

(∆1∆2...∆d)2
(2.19)

k̄ =
n

N
, v =

1

N

N∑

i=1

(ki − k̄)2 (2.20)

For multidimensional event data, let the bin widths that minimize Ĉn(∆1,∆2, ...,∆d) by
changing bin width (∆1,∆2, ...,∆d) be the optimal bin widths. The estimator of the height
of the i th bin is θ̂i =

ki
n∆1∆2...∆d

.

2.2.3 Reducing computational cost by using cumulative sum

Computational cost increases when the algorithm is multidimensionalized, and
therefore it is necessary to reduce the cost. Using the summed-area table (SAT) algorithm,
we can reduce the cost to compute the number of counts in a bin.[42] We show an outline
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of the SAT algorithm in Fig. 2.1. To apply the SAT algorithm, it is necessary to make
event data into a sufficiently fine histogram. In the following, we show a concrete method
for reducing the computational cost for 1D data. The method below can be expanded to
the data of two or more dimensions.

A : 1-dimensional case

(a)  Compute “raw” count data !"

#$ 	= '( − '$

#$#* #+

B : 2-dimensional case

…

#" = '(,(	 − '$,( − '(,$ + '$,$

(b)  Compute cumulative sum '" (c)-1  Set the bin width ∆ (for example, ∆	= 2∆0"1)

(c)-2  Compute the number of counts in 2th bin

(b)  Compute cumulative sum '",3 (c)-1  Set the bin widths ∆$,∆4
(c)-2  Compute the number of counts in 2th bin
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Figure 2.1: Steps of the SAT algorithm. A(a)–A(c) show 1D case. B(a)–B(c) show 2D case.
If we do not use the SAT algorithm, we have to check whether each event is in each bin.
Since this computational cost is proportional to the number of pieces of event data, the
SAT algorithm is effective when the number of pieces of event data is large.

1. Assume that n pieces of event data are obtained in the observation interval of
length T .

2. Define the value of the minimum unit of bin width as ∆min and limit the area for
searching for the optimal bin width to a positive integer multiple of ∆min. Note that the op-
timal bin width is limited within the group of

{
c∆min|1 ≤ c ≤ T

∆min

}
, as described below.

We divide the observation interval into Nmax = T
∆min

in width ∆min. Let ai (1 ≤ i ≤ Nmax)
be the number of pieces of event data in the i th bin. Here, ai represents the number of
pieces of “raw" event data obtained from the experiment, and ki represents the number
of pieces of count data after setting a certain bin against the “raw" event data. Here, we
define the term “raw" count data as an array a.

3. As a preparation for reducing the computational cost in step 4, compute the
cumulative sum Ai as Ai =

∑i
j=1 aj . The number of counts in an arbitrary section in the

observation interval can be computed as the difference in cumulative sums. By using the
cumulative sum, the computational cost in step 4 can be reduced.

4. Fix an integer c in the range 1 ≤ c ≤ Nmax
2 , set the bin width ∆ to ∆ = c∆min,

and equally divide the observation interval into N (= T
∆). In our approach, we compute
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the number ki of counts in the i th bin as a difference of the elements of cumulative sum
A (Fig. 2.1A(c)–2) and obtain v by using k̄ = n

N as Eq. (2.20).

v =
1

N

N∑

i=1

(ki − k̄)2 (2.21)

5. Compute Ĉn(∆) as

Ĉn(∆) =
2k̄ − v

∆2
. (2.22)

Repeat steps 4 and 5 while changing the integer c within 1 ≤ c ≤ Nmax
2 , find the

bin width ∆ that minimizes Ĉn(∆), and define this as the optimal bin width.

Basically, we explore all pairs of bin widths (∆1,∆2, ...,∆d) to find the optimal bin
widths in the d-dimensional case, as shown in Fig. 2.1B(c)–2.

!"
!#

!$

a
&$:

&":

Figure 2.2: (Color online) Assumed diatomic body-centered-cubic lattice model. The mass
of a white atom is M1 and that of a gray atom is M2. The lattice constant is a, and the
spring constants corresponding to the first to third neighboring interactions are α1–α3.

2.2.4 Computational cost and memory usage

We discuss about the computational complexity and memory usage of the proposed
method. In this paper, we chose naive implementation and nearest neighbor search for
comparison The results are shown in table 2.1. In the proposed method, the computational
cost and memory usage mostly depend on the maximun division number in each direction.
On the other hand, the computational cost depend on the maximun division numbers and
the number of events, and the memory usage mostly depends on the number of events.
There is a trade-off between computational cost and memory usage. As the number of
dimensions increases, SAT uses more memory, however, ndata and nNN should be bottleneck
of the computational cost.
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2.3. Results

computational cost memory usage
naive O(ndata

∏d
i=1Ni logNi) O(ndata)

NN O(nNN
∏d

i=1Ni logNi) O(ndata)

SAT O(
∏d

i=1Ni logNi) O(
∏d

i=1Ni)

Table 2.1: The computational complexity and memory usage of the naive implementation
(naive), nearest neighbor search (NN), and proposed method (SAT). d, ndata, nNN , Ni

represents the dimension, number of events, number of the events in the nearest cell, the
maximun division number in i-th direction, respectively. We assume that Ni, ndata, nNN

are sufficiently larger than d.

2.2.5 Error and fluctuation of bin widths optimization

We discuss an error in the optimal bin widths search and a fluctuation in bin height
In the proposed method, we set the minimum units of bin widths and conduct grid search.
Therefore, an error corresponding to the minimum unit can exist in each direction. The
variance of the bin height θ̂ follows the θ

n∆ . As increasing the number of events in a bin, we
can reduce the fluctuation of the bin height. In current experiments, since the purpose of the
experiment is peak estimation, researchers do not consider the reduction of the fluctuation.
The peaks correspond to the dispersion relation. Researchers perform parameter estimation
of the Hamiltonian by using the information of the dispersion relation.

2.3 Results

2.3.1 Applying the proposed method to artificial data

We dealt with the physical model shown in Fig. 2.2, and applied the proposed
method to event data generated from the model. We used a diatomic cubic lattice model
for which the masses of atoms at the corners and center of each unit cell are different.
The first to third neighboring elastic interactions were taken into account. Let the lat-
tice constant be a and the masses of the atoms be M1 and M2. We defined the elastic
constants corresponding to the first, second, and third neighboring interactions as α1, α2,
and α3, respectively. Using this model, we derived the probability density P (E, qx, qy, qz)
that the event data follow. The detailed derivation is shown in Appendix. A.1 In this
paper, P (E, qx, qy, qz) was calculated with M1 = 2 × 10−26[kg], M2 = 4 × 10−26[kg],
α1 = 100[N/m], α2 = 200[N/m], α3 = 300[N/m], and the event data were generated by
Poisson sampling [64] to follow P (E, qx, qy, qz).

First, we set the values of the minimum units of the bin widths to make “raw"
count data. The values of minimum units of the bin widths in the energy direction and
the momentum directions are set to be ∆min,E = 23

7 ,∆min,qx = ∆min,qy = ∆min,qz = 1
70 ,

respectively. To verify the validity of our method, we applied it to the 2D count data sliced
from the “raw" count data. Figures 2.3(a)–2.3(c) are 2D slices of P (E, qx, qy, qz), and Figs.
2.3(d)–2.3(f) are 2D slices of 4D “raw" count data. The total number of pieces of event
data, n, is 10, 000, 000. Figures 2.4(a)–2.4(c) show the corresponding optimal histograms
computed from count data shown in Figs. 2.3(d)–2.3(f), respectively. Here, Figs. 2.3(a)–
2.3(c) are sliced from − 9

35 ≤ qy, qz < −17
70 , 0 ≤ qx, qz < 1

70 , and 1196
7 ≤ E < 1219

7 , 17
70 ≤

qx < 9
35 , respectively. Figures 2.3(d) and 2.4(a) are sliced from −2

7 ≤ qy, qz < −17
70 . Figures

2.3(e) and 2.4(b) are sliced from − 2
70 ≤ qx, qz < − 1

70 . Figures 2.3(f) and 2.4(c) are sliced
from 1173

7 ≤ E < 1242
7 , 8

35 ≤ qx < 19
70 . The optimal bin widths for the sliced count data

are (∆E = 23
7 ,∆qx = 4

70) in the qx-E plane, (∆E = 23
7 ,∆qy = 1

70) in the qy-E plane,
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: (Color online) (a)–(c) 2D slices of the 4D probability distribution P (E, qx, qy, qz)
calculated from the dynamical model. (d)–(f) 2D slices of 4D event data generated by the
probability distribution P (E, qx, qy, qz). Here, (a) is sliced from − 9

35 ≤ qy, qz < −17
70 . (b)

is sliced from 0 ≤ qx, qz < 1
70 . (c) is sliced from 1196

7 ≤ E < 1219
7 , 17

70 ≤ qx < 9
35 . (d) is

sliced from −2
7 ≤ qy, qz < −17

70 . (e) is sliced from − 2
70 ≤ qx, qz < − 1

70 . (f) is sliced from
1173
7 ≤ E < 1242

7 , 8
35 ≤ qx < 19

70 .

and (∆qy = 12
35 ,∆qz = 12

35) in the qz-qy plane. The optimal bin widths for the slice are
much larger in the qz-qy plane than in the qx-E plane and qy-E plane. Figures 2.5(a)–(c)
are 2D cost functions obtained by applying the proposed method to 2D count data (Figs.
2.3(d)–2.3(f)).

Second, we applied the proposed method to all the 4D count data as shown in Figs.
2.4(d)–2.4(f). Figures 2.4(d)–2.4(f) are sliced from −2

7 ≤ qy, qz < −17
70 , −

2
70 ≤ qx, qz < − 1

70 ,
and 1173

7 ≤ E < 1242
7 , 8

35 ≤ qx < 19
70 , respectively. Figures 2.5(d)–2.5(f) are 2D slices of a

4D cost function Ĉ(∆E ,∆qx ,∆qy ,∆qz). Figures 2.5(d)–2.5(f) represent Ĉ(∆E ,∆qx ,
3
70 ,

3
70),

Ĉ(∆E ,
3
70 ,∆qy ,

3
70), and Ĉ(237 ,

3
70 ,∆qy ,∆qz), respectively. Comparison of the results of 2D

[Figs. 2.4(a)–2.4(c)] and 4D bin-width optimizations [Figs. 2.4(d)–2.4(f)] shows that the
2D and 4D optimizations are not exactly the same. We conducted an additional numerical
experiment to verify the validity of the selected the values of the minimum units of bin
widths. Fixing the other bin widths to their optimal values, we computed the cost function
more finely in the qx direction. Here, we set the value of the minimum unit of the bin width
in the qx direction to ∆min,qx/8 (= 1

560), and the result is shown in Fig. 2.6. As a result,
the optimal bin width computed in this experiment ∆qx = 1

28 is close to 3
70 .
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: (Color online) (a)–(c) 2D histograms made by applying the proposed method
to 2D event data in Figs. 2.3(d)–2.3(f), respectively. The optimal bin widths of (a) are
(∆E = 23

7 ,∆qx = 4
70). The optimal bin widths of (b) are (∆E = 23

7 ,∆qy = 1
70). The optimal

bin widths of (c) are (∆qy = 12
35 ,∆qz = 12

35). (d)–(f) 2D slices of a 4D histogram made by
applying the proposed method to 4D count data. (d) is sliced from −2

7 ≤ qy, qz < −17
70 . (e)

is sliced from − 2
70 ≤ qx, qz < − 1

70 . (f) is sliced from 1173
7 ≤ E < 1242

7 , 8
35 ≤ qx < 19

70 .

2.3.2 Investigating properties of proposed method for number of pieces
of event data and magnitude of background noise

To investigate the behavior of the proposed method against data, we conducted nu-
merical experiments. In this paper, we focused on the tendency of the obtained optimal bin
widths and the robustness of the proposed method against data. While we systematically
changed the magnitude of white BG noise and the number of pieces of data, we applied
the proposed method to the numerical-experiment data. In the 2D case, we used a proba-
bility distribution P (E, q) by adding white BG noise to the intensity function I(E, q, 0, 0)
and normalizing it. We defined rBG as the ratio of the sum of the white BG noise to the
magnitude of the white BG noise MBG and P (E, q) as follows.

rBG =
2πEmaxMBG

2πEmaxMBG + a
∫ Emax

0

∫ π
a
−π

a
I(E, q, 0, 0)dEdq

(2.23)

In this experiment, the values of the minimum units of the bin width in the en-
ergy direction and the momentum directions were ∆min,E = 1.15 and ∆min,q = 0.005,
respectively. Figure 2.7(a) shows the probability distribution for rBG = 0. Figures 2.7(b)–
2.7(d) are “raw" count data for rBG = 0, rBG = 0.50, and rBG = 0.86, respectively. We
computed the product of optimal bin widths ∆E∆q for each data under the condition
rBG, n = 100, 000 as shown in Fig. 2.8. We also show the results under the conditions
n,rBG = 0 and rBG = 0.317 in Figs. 2.9 and 2.10, respectively. We performed the same
experiments done to obtain Figs. 2.8–2.10 for the whole 4D event data. The corresponding
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: (Color online) (a)–(c) 2D cost functions obtained by applying the proposed
method to 2D count data in Figs. 2.3(d)–2.3(f), respectively. (d)–(f) 2D slices of a
4D cost function Ĉ(∆E ,∆qx ,∆qy ,∆qz). (d) represents Ĉ(∆E ,∆qx ,

3
70 ,

3
70). (e) represents

Ĉ(∆E ,
3
70 ,∆qy ,

3
70). (f) represents Ĉ(237 ,

3
70 ,∆qy ,∆qz). In this experiment, the value of the

minimum unit of the bin width in the energy direction was ∆min,E = 23
7 , and those in the

momentum directions were ∆min,qx = ∆min,qy = ∆min,qz = 1
70 .

results are shown in Figs. 2.11–2.13. In these experiments, the value of the minimum units
of the bin width in the energy direction was ∆min,E = 5.75, and those in the momentum
directions were ∆min,qx = ∆min,qy = ∆min,qz = 0.025. In the 4D case, rBG is expressed as

rBG =
2πEmaxMBG

2πEmaxMBG + a
. (2.24)

As can be seen in Figs. 2.8–2.13, the optimal bin widths tend to increase as the total
number of pieces of event data decreases or the magnitude of white BG noise increases.
From Figs. 2.8–2.13, we can confirm that the proposed method extracts optimal bin widths
almost uniquely in the case of a large amount of event data and a small magnitude of white
BG noise.

2.4 Discussion

In this section, we discuss the results of the numerical experiments conducted in
the previous section. First, we discuss how the cost function depends on the bin widths by
using Eqs. (19) and (20). We obtain

Ĉn(∆1,∆2, ...,∆d) ∝ − 1

∆

N∑

i=1

(ki
2 − 2ki) + const, (2.25)

and ∆ = ∆1∆2...∆d.

32



Chapter 2. Multidimensional Bin-Width Optimization for Histogram and Its Application
to Four-Dimensional Neutron Inelastic Scattering Data

2.4. Discussion

0 0.05 0.1 0.15

Bin width 
q

x

 [2 /a]

-5

-4

-3

-2

-1

0

C
o
st

 f
u
n
ct

io
n

109

Cost function C
1,i,3,3

  (1  i  280)

C
min

 = C
1,20,3,3

C
1,8,3,3

C
1,16,3,3

C
1,24,3,3

C
1,32,3,3

Figure 2.6: (Color online) Line plot representing the cost
C(∆min,E ,∆qx , 3∆min,qy, 3∆min,qz). ∆qx is limited within the group of
{i∆min,qx/8|1 ≤ i ≤ 280}. Here, ∆min,qx is equal to 1

70 , as described in Sect. 3. C1,i,3,3

represents C(∆min,E , i∆min,qx/8, 3∆min,qy, 3∆min,qz), (1 ≤ i ≤ 280). C1,20,3,3 achieves the
minimum value of the cost function. The line plot is shown within 1 ≤ i ≤ 100.

Since the value of the cost function decreases as the first term of Eq. (25) decreases,
we obtained bin widths that increase 1

∆

∑N
i=1(ki

2 − 2ki). There is a tradeoff between an
increase in (ki

2− 2ki), corresponding to increasing bin widths, and an increase in 1
∆

∑N
i=1,

corresponding to decreasing bin widths. Figures 2.8–2.13 show that the optimal bin widths
increase as the total number of event data decreases or the magnitude of white BG noise
increases. These results can be interpreted as the total number of event data being small
or the magnitude of white BG noise being large and the effect of increasing (ki

2 − 2ki)
in the first term of Eq. (25) becoming dominant. In other words, the effect of smoothing
becomes dominant.

Second, we discuss discrete patterns in the cost functions. In the cost functions
shown in Fig. 2.5, the cost functions abruptly change when the bin widths change. For
example, a sudden change can be seen around (∆E = 552

7 ,∆qx = 12
35) in Fig. 2.5(a). The

change in bin widths is continuous, whereas the change in the number of bins is discrete. By
changing the bin widths, the number of bins may change. At this time, the value of the cost
function greatly changes and results in discrete patterns. Not only the bin widths but also
the locations of the slices and the slice widths affect the result. In Fig. 2.4, we compared
the result of bin-width optimization for 4D data and 2D data sliced from the 4D data.
The results for the two cases were different from each other. When slicing data, researchers

33



2.4. Discussion

Chapter 2. Multidimensional Bin-Width Optimization for Histogram and Its Application
to Four-Dimensional Neutron Inelastic Scattering Data

(a) (b)

(c) (d)

Figure 2.7: (Color online) The dispersion relation and the data. (a) represents the prob-
ability distribution P (E, q) for rBG = 0. (b), (c), and (d) “raw" count data of rBG = 0,
rBG = 0.50, rBG = 0.86, respectively. We set the total number of pieces of event data, n,
100, 000, and the values of the minimum units of the bin width in the energy direction and
momentum directions were ∆min,E = 1.15 and ∆min,q = 0.005, respectively.

arbitrarily set the slice widths. Thus, the number of counts in 2D data changes, and the
change greatly affects the optimal bin widths. For example, in the histogram for the 2D
slice data in Figs. 2.4(a)–2.4(c), the optimal bin widths of Fig. 2.4(c) are extremely large.
The total numbers of pieces of event data in Figs. 2.3(d)–2.3(f) are 18380, 18214, and 869,
respectively. The large estimated optimal bin widths are large owing to the extremely small
number of pieces of event data. Empirical choices of slice and bin widths may sometimes
cause such a serious problem.

Third, we discuss the robustness of the proposed method against local minimums
and data. According to the results shown in Figs. 2.5(d)–2.5(f) and 2.6, the cost function
has several local minimums, although the landscape of the cost function is globally smooth.
In this paper, we conducted a grid search. Since experimental data have probabilistic
fluctuation and noise, we conducted numerical experiments to investigate the robustness
of the proposed method against data. In particular, we focused on the number of pieces
of event data and the magnitude of white BG noise. From Figs. 2.8–2.13, we argue that
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Figure 2.8: (Color online) rBG represents the ratio of white BG noise, defined as Eq. (23).
The horizontal label in each histogram shows the product of optimal bin widths ∆E∆q.
The vertical label in each histogram shows the frequency of obtaining ∆E∆q, and the bin
width of each histogram is ∆min,E∆min,q. In this experiment, we set the total number of
pieces of event data as n = 100, 000. We set the value of the minimum units of the bin
width in the energy direction as ∆min,E = 1.15 and that in the momentum direction as
∆min,q = 0.005.
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Figure 2.9: (Color online) n represents the total number of pieces of event data. The
horizontal label in each histogram shows the product of optimal bin widths ∆E∆q. The
vertical label in each histogram shows the frequency of obtaining ∆E∆q, and the bin width
of each histogram is ∆min,E∆min,q. In this experiment, we set rBG = 0. We set the value
of the minimum units of the bin width in the energy direction as ∆min,E = 1.15 and that
in the momentum direction as ∆min,q = 0.005.
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Figure 2.10: (Color online) n represents the total number of pieces of event data. The
horizontal label in each histogram shows the product of optimal bin widths ∆E∆q. The
vertical label in each histogram shows the frequency of obtaining ∆E∆q, and the bin width
of each histogram is ∆min,E∆min,q. In this experiment, we set rBG = 0.317. We set the　
value　 of the minimum　 units of the bin width in the energy direction as ∆min,E = 1.15
and that in the momentum direction as ∆min,q = 0.005.
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Figure 2.11: (Color online) rBG represents the ratio of white BG noise, defined as Eq.
(24). The horizontal label in each histogram shows the product of optimal bin widths
∆E∆qx∆qy∆qz . The vertical label in each histogram shows the frequency of obtaining
∆E∆qx∆qy∆qz , and the bin width of each histogram is ∆min,E∆min,qx∆min,qy∆min,qz . In
this experiment, we set the total number of pieces of event data as n = 1, 500, 000. We set
the value of the minimum units of the bin width in the energy direction as ∆min,E = 5.75
and those in the momentum directions as ∆min,qx = ∆min,qy = ∆min,qz = 0.025.
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Figure 2.12: (Color online) n represents the total number of pieces of event data. The
horizontal label in each histogram shows the product of optimal bin widths ∆E∆qx∆qy∆qz .
The vertical label in each histogram shows the frequency of obtaining ∆E∆qx∆qy∆qz , and
tne bin width of each histogram is ∆min,E∆min,qx∆min,qy∆min,qz . In this experiment, we
set rBG = 0. We set the value of the minimum units of the bin width in the energy direction
as ∆min,E = 5.75 and those in the momentum directions as ∆min,qx = ∆min,qy = ∆min,qz =
0.025.
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Figure 2.13: (Color online) n represents the total number of pieces of event data. The
horizontal label in each histogram shows the product of optimal bin widths ∆E∆qx∆qy∆qz .
The vertical label in each histogram shows the frequency of obtaining ∆E∆qx∆qy∆qz , and
the bin width of each histogram is ∆min,E∆min,qx∆min,qy∆min,qz . In this experiment, we
set rBG = 0.201. We set the value of the minimum units of the bin width in the energy
direction as ∆min,E = 5.75 and those in the momentum directions as ∆min,qx = ∆min,qy =
∆min,qz = 0.025.
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the proposed method is robust in the case of a large amount of event data and a small
magnitude of white BG noise.

2.5 Conclusion

We have proposed a method for optimizing bin widths for multidimensional event
data on the basis of a histogram bin-width optimization method.[21] Since the multidimen-
sionalization of the bin-width optimization algorithm increases the number of parameters
to be optimized, the computational cost increases. We have also proposed a method of
reducing the computational cost.

We generated event data from a dispersion relation by using Poisson sampling.
First, to verify the validity of our method, we applied it to the 2D event data sliced
from 4D event data. Second, we applied it to the whole 4D event data and compared
the results of 2D bin-width optimization and 4D bin-width optimization. As a result, the
optimal bin widths of the whole high-dimensional data and those of the data sliced from
the high-dimensional data did not agree with each other. The result implies that the bin-
width optimization should be performed for all of the high-dimensional data. In addition,
since it is difficult for researchers to visually process 4D data, the proposed method is
effective. Third, the optimal bin widths increase as the number of pieces of data increases
or the magnitude of the white BG noise decreases. By using our method, we can eliminate
arbitrariness in preprocessing and select the optimal bin width for multidimensional event
data.
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Chapter 5

Conclusion

In recent years, a large amount of four-dimensional event data have been obtainable
in neutron inelastic scattering experiments conducted by chopper spectrometers. Regarding
preprocessing, researchers empirically select bin widths and make histograms from obtained
event data. The arbitrariness of the process and human cost are significant issues. It is
also an essential task to establish an automatic termination strategy of inelastic neutron-
scattering measurement to prevent redundancy of the measurement. There is no criterion
to assess whether the obtained data is sufficient in event number. By using large-scale data,
we can obtain the fine features of the measurement target. However, it is not necessary to
extract information beyond the resolution of the measurement equipment. In this thesis,
we proposed methods to resolve these problems.

First, we proposed a method for optimizing bin widths for multidimensional event
data on the basis of a histogram bin-width optimization method.[21] Since the multidimen-
sionalization of the bin-width optimization algorithm increases the number of parameters
to be optimized, the computational cost increases. We have also proposed a method of
reducing the computational cost. As a result of numerical experiments, the optimal bin
widths of the whole high-dimensional data and those of the data sliced from the high-
dimensional data did not agree with each other. The result implies that the bin-width
optimization should be performed for all of the high-dimensional data. In addition, since
it is difficult for researchers to visually process 4D data, the proposed method is effective.
The optimal bin widths increase as the number of pieces of data increases or the magnitude
of the white BG noise decreases. By using our method, we can eliminate arbitrariness in
preprocessing and select the optimal bin width for multidimensional event data.

Second, we proposed a strategy to determine whether to terminate the measure-
ment. In the proposed method, researchers compute approximate optimal bin widths as
the stopping criteria in real time. When the optimal bin widths become smaller than the
target resolutions, the experiment can be terminated. In this study, we computed the cost
function for real data of an inelastic neutron-scattering experiment for the first time. The
optimal bin widths decrease as the number of data pieces increases. Moreover, we showed
that BO is effective for searching for the optimal bin widths, especially when the number
of data pieces is large. The cost function can be computed in parallel, and the computa-
tional resources can be saved by using BO. The estimated computational cost is not too
significant to perform the stop-continue decision during the measurement.

Third, we proposed a strategy to determine efficiently whether to terminate the
measurement. As a criterion for determining the termination, we focused on the optimal
bin widths of a histogram. For efficient termination judgment, it is necessary to improve the
efficiency of bin widths optimization. We proposed a method using the prior distribution of
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BO computed from the information of the cost function obtained in the past. As a result
of numerical experiments, it was found that the proposed method greatly improves the
search efficiency of the optimal bin widths. It was also found that the proposed method is
robust for HP.

The proposed methods are applicable not only inelastic neutron-scattering exper-
iments for all general multidimensional event data. In this thesis, we focus on histogram,
however, there are several methods that can achieve higher accuracy than histograms. For
instance, kernel density estimation (KDE)[66, 67, 56] is suitable for fitting smooth under-
lying rate. KDE has a problem of computationally complexity, but, GPU acceleration for
KDE is being studied.[68, 69, 70] There is a study for applying KDE to 2D small-angle
scattering experiment data.[71]
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Future view

6.0.1 Formulation of kernel density estimation

In this chapter, we introduce kernel density estimation (KDE) as a future view.
KDE is more computationally expensive than histograms, but high estimation accuracy is
expected. We consider the case where N events x1,x2, ...,xN are independently generated
from the true distribution q(x). We attempt to estimate the true distribution q(x) by
using the observed data x1,x2, ...,xN . In KDE, kernel functions are superimposed on data
points. We treat Gaussian kernel with covariance matrix Σ.

Let kernel function, density estimator, and likelihood as k(x|µ, p̂−i(x|Σ), and
lLOO(Σ|x1,x2, ...,xN ) as follows

k(x|xi,Σ)
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− xi)

TΣ−1(x− xi)

)
, (6.1)

p̂−i(x|Σ) :=
1

N − 1

N∑

j ̸=i

k(x|xj ,Σ), (6.2)

lLOO(Σ|x1,x2, ...,xN ) :=
N∏

i=1

p̂−i(xi|Σ). (6.3)

The problem of density estimation comes down to the maximization of the log likelihood
L(Σ) as follows

L(Σ) = log lLOO(Σ|x1,x2, ...,xN ) (6.4)

6.0.2 Sequential update algorithm for the covariance matrix

As the size of the covariance matrix increases, the computational cost increases, and
grid search should become difficult. In this section, we consider the selection of a covariance
matrix using a sequential update algorithm. [72] We derive a stationary condition by partial
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differentiation of the log likelihood with the covariance matrix.

∂L(Σ)

∂Σ−1
=

N∑

i=i

1

p̂−i(xi|Σ)
1

N − 1

N∑

j ̸=i

[
k(xj |xi,Σ)

∂

∂Σ−1
log k(xj |xi,Σ)

]

=
N∑

i=i

1

p̂−i(xi|Σ)
1

N − 1

×
N∑

j ̸=i

k(xj |xi,Σ)
1

2

[
Σ− (xj − xi)(xj − xi)

T
]

(6.5)

From Eq. (6.5), assuming ∂L(Σ)
∂Σ−1 = 0, we obtain a self-consistent equation as follows

Σ =
1

N(N − 1)

N∑

i=1

1

p̂−i(xi|Σ)

N∑

j ̸=i

k(xj |xi,Σ)(xj − xi)(xj − xi)
T . (6.6)

6.0.3 Nearest neighbor search

Each update with the Eq. (6.6) takes computational cost of O(N2). Therefore, we
consider an approximation for the summation for the index j, using only the neighboring
data points. Specifically, regarding a real number r > 0, we use data points that satisfy
the following inequality.

(xj − xi)
TΣ−1(xj − xi) ≤ r (6.7)

6.1 Numerical experiments

We applied KDE to real data of a neutron scattering experiment. In this exper-
iment, we ignore information about qy and qz direction and focus on E–qx space. The
number of total events which are downsampled from the original data is 2768. The data
and the density estimation result are shown in Fig. 6.1. Figure. 6.2 shows the results for
the exact computation of Eq. (6.6) and the approximation with r = 15, 20

The results of numerical experiments show that KDE achieves a smooth density
estimation. It is also shown that neighbor search is effective for reducing computational
cost. In addition to neighbor search, the computational efficiency is improved by using
GPU. In the future, GPU accelerated KDE is expected to play an important role in neutron
scattering data.
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(a) (b)

(c) (d)

Figure 6.1: (a) is a 2D scatter plot of the inelastic neutron-scattering data. The number
of events is 2768. (b)–(d) are the results of kernel density estimation for (a). We change
the upper bound of the color bar for (b)–(d).

(a)
Figure 6.2: Log likelihood computed by updating the covariance matrix for each iteration.
“Exact” is computed without approximation. r = 15 and r = 20 represent the result of ap-
proximation using Eq. 6.7. The covariance matrices at 50 iterations for “Exact”, r = 20, and
r = 15 are = [[6.5, 0.13], [0.13, 0.18]], [[6.1, 0.096], [0.096, 0.22]] and [[4.8, 0.10], [0.10, 0.24]],
respectively. The computational cost for r = 15 and r = 20 are about 30% and 36% of
“Exact”.
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Appendix

A.1 Derivation of the probability density P (E, qx, qy, qz) in Chap-
ter 2

For a triplet of integers (n,m, l), the position of the atom of mass M1 is Rn,m,l =
naex + maey + laez. Here, ej is the unit vector in the j-axis direction. Define vectors
hj ,nj ,pj , which represent the relative positions of neighboring atoms, as

h1 =
a

2
(ex + ey + ez), h2 =

a

2
(−ex + ey + ez),

h3 =
a

2
(−ex − ey + ez), h4 =

a

2
(ex − ey + ez),

hj = hj−4 − aez, (5 ≤ j ≤ 8),

n1 = aex, n2 = aey, n3 = aez,

nj = −nj−3, (4 ≤ j ≤ 6),

p1 = a(ex + ez), p2 = a(ey + ez), p3 = a(−ex + ez),

p4 = a(−ey + ez), p5 = a(ex + ey), p6 = a(−ex + ey),

p7 = −p5, p8 = −p6, p9 = −p3,

p10 = −p4, p11 = −p1, and p12 = −p2. (A.1)

In Eq. (A.1), let ĥj , p̂j , and n̂j be the unit vectors in the hj , pj , and nj directions,
respectively. With respect to the atoms of masses M1 and M2, Eq. (A.2) is obtained using
the equation of motion. Here, u1 and u2 are the displacement vectors of atoms whose
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masses are M1 and M2, respectively.

M1ü1(r1, t) = α1

8∑

j=1

[
(u2(r1 + hj , t)− u1(r1, t)) · ĥj

]
ĥj

+ α2

6∑

j=1

[(u1(r1 + nj , t)− u1(r1, t)) · n̂j ] n̂j

+ α3

12∑

j=1

[(u1(r1 + pj , t)− u1(r1, t)) · p̂j ] p̂j

(r1 = Rn,m,l)

M2ü2(r2, t) = α1

8∑

j=1

[
(u1(r2 + hj , t)− u2(r2, t)) · ĥj

]
ĥj

+ α2

6∑

j=1

[(u2(r2 + nj , t)− u2(r2, t)) · n̂j ] n̂j

+ α3

12∑

j=1

[(u2(r2 + pj , t)− u2(r2, t)) · p̂j ] p̂j

(r2 = Rn,m,l + hk, (1 ≤ k ≤ 8)) (A.2)

Here, we simplify Eq. (A.2) to Eq. (A.3).

M1ü1(r1, t) = α1

8∑

j=1

[
(∆u(2, 1)(hj))) · ĥj

]
ĥj

+ α2

6∑

j=1

[(∆u(1, 1)(nj)) · n̂j ] n̂j

+ α3

12∑

j=1

[(∆u(1, 1)(pj)) · p̂j ] p̂j

(r1 = Rn,m,l)

M2ü2(r2, t) = α1

8∑

j=1

[(
∆u(1, 2)(hj)

)
· ĥj

]
ĥj

+ α2

6∑

j=1

[(∆u(2, 2)(nj)) · n̂j ] n̂j

+ α3

12∑

j=1

[(∆u(2, 2)(nj)) · p̂j ] p̂j

(r2 = Rn,m,l + hk, (1 ≤ k ≤ 8)) (A.3)

We assume the solution of Eq. (A.3) as Eq. (A.4).

(
u1(r1, t)

u2(r1 + hk, t)

)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

u1x(q)
u1y(q)
u1z(q)

u2x(q)eiq·hk

u2y(q)eiq·hk

u2z(q)eiq·hk

⎞

⎟⎟⎟⎟⎟⎟⎠
ei(q·r1−ωt)

(1 ≤ k ≤ 8) (A.4)

54



Chapter A. Appendix
A.1. Derivation of the probability density P (E, qx, qy, qz) in Chapter 2

Then, ∆u(2, 1)(hj)，∆u(1, 1)(nj)，∆u(1, 1)(pj)，∆u(1, 2)(hj)，∆u(2, 2)(nj)，∆p(2, 2)(pj)
in Eq. (A.3) can be denoted as Eq. (A.5).

∆u(2, 1)(hj) =

⎛

⎝
u2x(q)eiq·hj − u1x(q)
u2y(q)eiq·hj − u1y(q)
u2z(q)eiq·hj − u1z(q)

⎞

⎠ ei(q·r1−ωt)

∆u(1, 1)(nj) =

⎛

⎝

(
eiq·nj − 1

)
u1x(q)(

eiq·nj − 1
)
u1y(q)(

eiq·nj − 1
)
u1z(q)

⎞

⎠ ei(q·r1−ωt)

∆u(1, 1)(pj) =

⎛

⎝

(
eiq·pj − 1

)
u1x(q)(

eiq·pj − 1
)
u1y(q)(

eiq·pj − 1
)
u1z(q)

⎞

⎠ ei(q·r1−ωt)

∆u(1, 2)(hj) =

⎛

⎝
u1x(q)eiq·hj − u2x(q)
u1y(q)eiq·hj − u2y(q)
u1z(q)eiq·hj − u2z(q)

⎞

⎠ ei(q·r2−ωt)

∆u(2, 2)(nj) =

⎛

⎝

(
eiq·nj − 1

)
u2x(q)(

eiq·nj − 1
)
u2y(q)(

eiq·nj − 1
)
u2z(q)

⎞

⎠ ei(q·r2−ωt)

∆u(2, 2)(pj) =

⎛

⎝

(
eiq·pj − 1

)
u2x(q)(

eiq·pj − 1
)
u2y(q)(

eiq·pj − 1
)
u2z(q)

⎞

⎠ ei(q·r2−ωt) (A.5)

We obtain Eq. (A.6) from Eq. (A.3) and Eq. (A.5).

(
u1(Rn,m,l, t)

u2(Rn,m,l + hk, t)

)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

u1x(q)
u1y(q)
u1z(q)

u2x(q)eiq·hk

u2y(q)eiq·hk

u2z(q)eiq·hk

⎞

⎟⎟⎟⎟⎟⎟⎠
ei(q·Rn,m,l−ωt),

(1 ≤ k ≤ 8).

Then, we obtain − ω2Mu = Du,

M = diag(M1,M1,M1,M2,M2,M2),

u =

⎛

⎜⎜⎜⎜⎜⎜⎝

u1x(q)
u1y(q)
u1z(q)
u2x(q)
u2y(q)
u2z(q)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (A.6)

Here, q = (qx, qy, qz) ∈ R3, −π
a ≤ qx, qy, qz ≤ π

a . Using Eq. (A.6), we find solutions
that satisfy u ̸= 0, ω ≥ 0. When calculating the neutron scattering intensity, it is necessary
to consider the neutron scattering lengths of the nucleus of each atom, the displacement
vectors u1 and u2, and the relative angle of the scattering vector q to the polarization vec-
tor. However, because we focus on optimizing bin widths in this paper, these contributions
are not taken into consideration. We simply obtain the intensity function I(E, qx, qy, qz)
by superimposing the Lorentzian of width 3[meV] centered on !ω(q) (! is the converted
Planck’s constant). By normalizing I(E, qx, qy, qz) in the range of −π

a ≤ qx, qy, qz ≤ π
a and

0 ≤ E ≤ Emax[meV], we obtain the probability distribution P (E, qx, qy, qz). We generate
event data to follow P (E, qx, qy, qz). In this paper, we set Emax = 230[meV].
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A.2 Matrix D in Eq. (A.6)

D in Eq. (A.6) is represented as Eq. (A.7) by using symmetric matrices DA and
DB.

D =

(
DA DB

DB DA

)
(A.7)

The elements of DA and DB are as follows.

DA
1,1 = −8

3
α1 − 4α2 sin

2
(qxa

2

)
− 2α3 {(1− cos(qza) cos(qxa)) + (1− cos(qxa) cos(qya))}

DA
2,2 = −8

3
α1 − 4α2 sin

2
(qya

2

)
− 2α3 {(1− cos(qxa) cos(qya)) + (1− cos(qya) cos(qza))}

DA
3,3 = −8

3
α1 − 4α2 sin

2
(qza

2

)
− 2α3 {(1− cos(qya) cos(qza)) + (1− cos(qza) cos(qxa))}

DA
1,2 = −2α3 sin(qxa) sin(qya)

DA
1,3 = −2α3 sin(qxa) sin(qza)

DA
2,3 = −2α3 sin(qya) sin(qza)

DB
1,1 =

8

3
α1 cos

(qxa
2

)
cos

(qya
2

)
cos

(qza
2

)

DB
2,2 = DB

1,1, DB
3,3 = DB

1,1

DB
1,2 = −8

3
α1 sin

(qxa
2

)
sin

(qya
2

)
cos

(qza
2

)

DB
1,3 = −8

3
α1 sin

(qxa
2

)
cos

(qya
2

)
sin

(qza
2

)

DB
2,3 = −8

3
α1 cos

(qxa
2

)
sin

(qya
2

)
sin

(qza
2

)

(A.8)

Using the symmetry of DA and DB, we obtain all the elements of D.

56



Bibliography

[1] https://mlfinfo.jp/en/bl01/.

[2] 中島健次 and 梶本亮. パルス中性子源におけるチョッパー型分光器 (1). 波紋, 25(1):39–
46, 2015.

[3] Tony Hey, Stewart Tansley, Kristin Tolle, et al. The fourth paradigm: data-intensive
scientific discovery, volume 1. Microsoft research Redmond, WA, 2009.

[4] V. Mayer-Schoenberger and K. Cukier. Big Data: A Revolution That Will Transform
How We Live, Work, and Think. Eamon Dolan, 2014.

[5] G. Ehlers et al. Data mining with big data. IEEE Transactions on Knowledge and
Data Engineering, 26(1), 2014.

[6] Tasleem Nizam and Syed Imtiyaz Hassan. Big data: A survey paper on big data inno-
vation and its technology. International Journal of Advanced Research in Computer
Science, 8(5), 2017.

[7] Matteo Migliorini, Riccardo Castellotti, Luca Canali, and Marco Zanetti. Machine
learning pipelines with modern big data tools for high energy physics. Computing and
Software for Big Science, 4(1):1–12, 2020.

[8] Andrii Shelestov, Mykola Lavreniuk, Nataliia Kussul, Alexei Novikov, and Sergii
Skakun. Exploring google earth engine platform for big data processing: Classification
of multi-temporal satellite imagery for crop mapping. frontiers in Earth Science, 5:17,
2017.

[9] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji
Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu, Spiro
Michaylov, Rogério Ramos, et al. Azure data lake store: a hyperscale distributed file
service for big data analytics. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, pages 51–63, 2017.

[10] https://www.mgi.gov/.

[11] Ankit Agrawal and Alok Choudhary. Perspective: Materials informatics and big data:
Realization of the“ fourth paradigm”of science in materials science. Apl Materials,
4(5):053208, 2016.

[12] Stephen W Lovesey. Theory of neutron scattering from condensed matter. 1984.

[13] TG Perring, AD Taylor, R Osbom, D McK Paul, AT Boothroyd, and G Aeppli. Maps:
A chopper spectrometer to measure high energy magnetic excitations in single crystals.
Proc. 12th Meeting of the Collaboration on Advanced Neutron Sources (ICANS-XII),
pages I–60–I–72, 1994.

57

https://mlfinfo.jp/en/bl01/
https://www.mgi.gov/


BIBLIOGRAPHY BIBLIOGRAPHY

[14] RI Bewley, RS Eccleston, KA McEwen, SM Hayden, MT Dove, SM Bennington,
JR Treadgold, and RLS Coleman. Merlin, a new high count rate spectrometer at
isis. Physica B, 385–386:1029–1031, 2006.

[15] Barry Winn, Uwe Filges, V Ovidiu Garlea, Melissa Graves-Brook, Mark Hagen,
Chenyang Jiang, Michel Kenzelmann, Larry Passell, Stephen M Shapiro, Xin Tong,
et al. Recent progress on hyspec, and its polarization analysis capabilities. EPJ Web
of Conferences, 83:03017, 2015.

[16] Douglas L Abernathy, Matthew B Stone, MJ Loguillo, MS Lucas, O Delaire, Xiaoli
Tang, JYY Lin, and B Fultz. Design and operation of the wide angular-range chopper
spectrometer arcs at the spallation neutron source. Rev. Sci. Instruments, 83:015114,
2012.

[17] Ryoichi Kajimoto, Mitsutaka Nakamura, Yasuhiro Inamura, Fumio Mizuno, Kenji
Nakajima, Seiko Ohira-Kawamura, Tetsuya Yokoo, Takeshi Nakatani, Ryuji
Maruyama, Kazuhiko Soyama, et al. The fermi chopper spectrometer 4seasons at
j-parc. J. Phys. Soc. Jpn, 80(Suppl. B):SB025, 2011.

[18] Kenji Nakajima, Seiko Ohira-Kawamura, Tatsuya Kikuchi, Mitsutaka Nakamura, Ry-
oichi Kajimoto, Yasuhiro Inamura, Nobuaki Takahashi, Kazuya Aizawa, Kentaro
Suzuya, Kaoru Shibata, et al. Amateras: a cold-neutron disk chopper spectrometer.
Journal of the Physical Society of Japan, 80(Suppl. B):SB028, 2011.

[19] Shinichi Itoh, Tetsuya Yokoo, Setsuo Satoh, Shin-ichiro Yano, Daichi Kawana, Ju-
nichi Suzuki, and Taku J Sato. High resolution chopper spectrometer (hrc) at j-parc.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 631(1):90–97, 2011.

[20] Yasuhiro Inamura, Takeshi Nakatani, Jiro Suzuki, and Toshiya Otomo. Development
status of software“utsusemi”for chopper spectrometers at mlf, j-parc. J. Phys. Soc.
Jpn, 82(Suppl. A):SA031, 2013.

[21] Hideaki Shimazaki and Shigeru Shinomoto. A method for selecting the bin size of a
time histogram. Neural Computation, 19(6):1503–1527, 2007.

[22] Kensuke Muto, Hirotaka Sakamoto, Keisuke Matsuura, Taka-hisa Arima, and Masato
Okada. Multidimensional bin-width optimization for histogram and its application to
four-dimensional neutron inelastic scattering data. J. Phys. Soc. Jpn, 88(4):044002,
2019.

[23] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. Advances in neural information processing systems,
25:2951–2959, 2012.

[24] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas.
Taking the human out of the loop: A review of bayesian optimization. Proceedings of
the IEEE, 104(1):148–175, 2015.

[25] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for ma-
chine learning, volume 2. MIT press Cambridge, MA, 2006.

[26] A.D. Christianson et al. Unconventional superconductivity in ba 0.6 k 0.4 fe 2 as 2
from inelastic neutron scattering. Nature, 456:930–932, 2008.

58



BIBLIOGRAPHY BIBLIOGRAPHY

[27] S.X. Chi et al. Inelastic neutron-scattering measurements of a three-dimensional spin
resonance in the feas-basedbafe1.9ni0.1as2 superconductor. Phys. Rev. Lett., 102,
2009.

[28] J. Rossat-Mignod et al. Investigation of the spin dynamics in yba2cu3o6+x by inelastic
neutron scattering. Physica B: Condensed Matter, 169, 1991.

[29] G. Ehlers et al. The new cold neutron chopper spectrometer at the spallation neutron
source: design and performance. Review of Scientific Instruments, 82, 2011.

[30] 遠藤 康夫. 中性子散乱. 朝倉書店, 2012.

[31] 橋本 竹治. X線・光・中性子散乱の原理と応用. 講談社, 2017.

[32] M. Nakamura et al. First demonstration of novel method for inelastic neutron scat-
tering measurement utilizing multiple incident energies. JPSJ, 78(9), 2009.

[33] John RD Copley and Terrence J Udovic. Neutron time-of-flight spectroscopy. Journal
of research of the National Institute of Standards and Technology, 98(1):71, 1993.

[34] Alan K Soper. Inelasticity corrections for time-of-flight and fixed wavelength neutron
diffraction experiments. Molecular Physics, 107(16):1667–1684, 2009.

[35] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[36] David W Scott and Stephan R Sain. Multidimensional density estimation. Handbook
of statistics, 24:229–261, 2005.

[37] David W Scott. Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons, 2015.

[38] Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American statistical Association, 97(458):611–631,
2002.

[39] J Steve Marron and Matt P Wand. Exact mean integrated squared error. The Annals
of Statistics, pages 712–736, 1992.

[40] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[41] Rudolf Beran et al. Minimum hellinger distance estimates for parametric models. The
annals of Statistics, 5(3):445–463, 1977.

[42] Franklin C Crow. Summed-area tables for texture mapping. In Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, pages 207–212,
1984.

[43] J Rossat-Mignod, LP Regnault, C Vettier, Ph Bourges, P Burlet, J Bossy, JY Henry,
and G Lapertot. Neutron scattering study of the yba2cu3o6+ x system. Physica C:
Superconductivity, 185:86–92, 1991.

[44] J Rossat-Mignod, LP Regnault, C Vettier, P Burlet, JY Henry, and G Lapertot.
Investigation of the spin dynamics in yba2cu3o6+ x by inelastic neutron scattering.
Physica B: Condensed Matter, 169(1-4):58–65, 1991.

[45] BX Yang, TR Thurston, JM Tranquada, and G Shirane. Magnetic neutron scattering
study of single-crystal cupric oxide. Physical Review B, 39(7):4343, 1989.

59



BIBLIOGRAPHY BIBLIOGRAPHY

[46] JC Smith. Protein dynamics: comparison of simulations with inelastic neutron scat-
tering experiments. Quarterly reviews of biophysics, 24(3):227–291, 1991.

[47] AA Edwards, DC Lloyd, and RJ Purrott. Radiation induced chromosome aberrations
and the poisson distribution. Radiation and Environmental Biophysics, 16(2):89–100,
1979.

[48] FJ Grunthaner, PJ Grunthaner, and J Maserjian. Radiation-induced defects in sio2 as
determined with xps. IEEE Transactions on Nuclear Science, 29(6):1462–1466, 1982.

[49] K Kobayashi, M Yabashi, Y Takata, T Tokushima, S Shin, K Tamasaku, D Miwa,
T Ishikawa, H Nohira, T Hattori, et al. High resolution-high energy x-ray photoelec-
tron spectroscopy using third-generation synchrotron radiation source, and its appli-
cation to si-high k insulator systems. Applied physics letters, 83(5):1005–1007, 2003.

[50] Teruyuki Nakajima and Michael D King. Determination of the optical thickness and
effective particle radius of clouds from reflected solar radiation measurements. part i:
Theory. Journal of the atmospheric sciences, 47(15):1878–1893, 1990.

[51] F. Rieke, D. Warland, and W. Bialek R. R. Steveninck. Spikes: Exploring the Neural
Code. The MIT Press, 1999.

[52] Il Memming Park, Sohan Seth, Antonio RC Paiva, Lin Li, and Jose C Principe. Kernel
methods on spike train space for neuroscience: a tutorial. IEEE Signal Processing
Magazine, 30(4):149–160, 2013.

[53] Asohan Amarasingham, Ting-Li Chen, Stuart Geman, Matthew T Harrison, and
David L Sheinberg. Spike count reliability and the poisson hypothesis. Journal of
Neuroscience, 26(3):801–809, 2006.

[54] M. Rudemo. Empirical choice of histograms and kernel density estimators. Scandina-
vian Journal of Statistics, 9(2):65–78, 1982.

[55] M.P. Wand and M.C. Jones. Kernel Smoothing. Springer, 1994.

[56] H. Shimazaki and S. Shinomoto. Kernel bandwidth optimization in spike rate estima-
tion. Journal of Computational Neuroscience, 29, 2010.

[57] M. P. Wand. Data-based choice of histogram bin width. The American Statistician,
51:59–64, 1997.

[58] David W Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610,
1979.

[59] Walter Hauser and Herman Feshbach. The inelastic scattering of neutrons. Physical
review, 87(2):366, 1952.

[60] K. Watanabe, H. Tanaka, K. Miura, and M. Okada. Transfer matrix method for
instantaneous spike rate estimation. IEICE TRANSACTIONS on Information and
Systems, E92-D(7):1362–1368, 2009.

[61] Donald Lee Snyder. Random point processes. Wiley, 1975.

[62] Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes:
volume II: general theory and structure. Springer Science & Business Media, 2007.

[63] Robert E Kass, Valérie Ventura, and Emery N Brown. Statistical issues in the analysis
of neuronal data. Journal of neurophysiology, 94(1):8–25, 2005.

60



BIBLIOGRAPHY BIBLIOGRAPHY

[64] D.P. Kroese, T. Taimre, and Z.I. Botev. Handbook of Monte Carlo Methods. John
Wiley and Sons, 2011.

[65] John Frank Charles Kingman. P oisson processes. Encyclopedia of biostatistics, 6,
2005.

[66] Philippe Van Kerm. Adaptive kernel density estimation. The Stata Journal, 3(2):148–
156, 2003.

[67] Travis A O ’Brien, Karthik Kashinath, Nicholas R Cavanaugh, William D Collins,
and John P O’Brien. A fast and objective multidimensional kernel density estimation
method: fastkde. Computational Statistics & Data Analysis, 101:148–160, 2016.

[68] Panagiotis D Michailidis and Konstantinos G Margaritis. Accelerating kernel density
estimation on the gpu using the cuda framework. Applied Mathematical Sciences,
7(30):1447–1476, 2013.

[69] Max Heimel, Martin Kiefer, and Volker Markl. Self-tuning, gpu-accelerated kernel
density models for multidimensional selectivity estimation. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages 1477–1492,
2015.

[70] Guiming Zhang, A-Xing Zhu, and Qunying Huang. A gpu-accelerated adaptive kernel
density estimation approach for efficient point pattern analysis on spatial big data.
International Journal of Geographical Information Science, 31(10):2068–2097, 2017.

[71] Kotaro Saito, Masao Yano, Hideitsu Hino, Tetsuya Shoji, Akinori Asahara, Hidekazu
Morita, Chiharu Mitsumata, Joachim Kohlbrecher, and Kanta Ono. Accelerating
small-angle scattering experiments on anisotropic samples using kernel density esti-
mation. Scientific reports, 9(1):1–10, 2019.

[72] José M Leiva-Murillo and Antonio ArtéS-RodríGuez. Algorithms for maximum-
likelihood bandwidth selection in kernel density estimators. Pattern Recognition Let-
ters, 33(13):1717–1724, 2012.

61


	Introduction
	Background
	Data-intensive science
	Motivation
	Inelastic neutron-scattering experiments
	Time-of-flight method
	Density estimation

	Summary of contributions
	Overview of this thesis

	Multidimensional Bin-Width Optimization for Histogram and Its Application to Four-Dimensional Neutron Inelastic Scattering Data 
	Introduction
	Method
	Bin-width optimization for one-dimensional event data
	Multidimensionalization of bin-width optimization algorithm
	Reducing computational cost by using cumulative sum
	Computational cost and memory usage
	Error and fluctuation of bin widths optimization

	Results
	Applying the proposed method to artificial data
	Investigating properties of proposed method for number of pieces of event data and magnitude of background noise

	Discussion
	Conclusion

	Automatic Termination Strategy of Inelastic Neutron-scattering Measurement Using Bin-width Optimization 
	Efficient Bayesian Bin-width Optimization for On-going Event Measurement 
	Conclusion
	Future view
	Formulation of kernel density estimation
	Sequential update algorithm for the covariance matrix
	Nearest neighbor search

	Numerical experiments

	Appendix 
	Derivation of the probability density P(E, qx, qy, qz) in Chapter 2 
	Matrix D in Eq. (A.6)

	Bibliography

