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Summary 

 

Cell cycle checkpoints and DNA repair coordinate with each other to safeguard a 

proliferating cell from DNA damage arising from endogenous and exogenous stress. 

Although the first cell cycle in mammalian embryos comprises four phases resembling 

those of a somatic cell cycle, whether and how DNA damage checkpoint works in each 

cell cycle phase is unclear. Besides, it remains elusive how 1-cell stage embryos with 

the specific chromatin structure respond to DNA damage. Therefore, this study 

examined the DNA damage response in the first cell cycle and its connection with 

embryonic sensitivity. 

In chapter I, I investigated the radiosensitivity of 1-cell stage embryos and the DNA 

damage checkpoints in the first cell cycle. The development until the blastocyst stage 

was monitored in zygotes irradiated at the G1, S, G2 or M phase. Unlike the high 

radiosensitivity shown by G2 and M phase somatic cells, zygotes at the G2 phase 

seemed to be the most resistant to DNA damage, whereas zygotes irradiated during the 

G1, S or M phase barely developed to the blastocyst stage. Further examination of the 

first cell cycle revealed that DNA damage checkpoints were absent in the G1 and S 

phases of the first cell cycle, which presumably led to the hyper-radiosensitivity of 

zygotes in these phases.  

In chapter II, DNA repair in the first cell cycle and the consequent chromosomal 

aberrations were examined. Embryos irradiated at the interphase of the first cell cycle 
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featured micronuclei, which likely resulted from unrepaired double strand breaks 

induced by irradiation and acentric chromosome fragments.  

Taken together, DNA damage checkpoint is activated during the G2 phase, but not 

in the G1, S or M phase. The defective cell cycle checkpoints contribute to insufficient 

DNA repair in the first interphase, which in turn causes micronucleus formation in the 

subsequent 2-cell stage and low blastocyte developmental rates.  
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General introduction 

 

The genetic integrity of a cell is frequently threatened by genotoxic stress. Cells 

are equipped with a set of response to deal with DNA damage and to ensure accurate 

transmission of genetic information to daughter cells. Several checkpoints stop or slow 

down the cell cycle progression when DNA is damaged, allowing time for DNA repair 

system to work on the damaged sites (Murray, 1994). If the lesions are too severe to be 

restored, the cell enters senescence or apoptosis. Without such proper DNA damage 

response (DDR), cells with incomplete genetic information may die. Alternatively, 

dysfunctional DDR will drive accumulation of mutations and even tumorigenesis (Lord 

et al., 2012).  

Preimplantation development refers to the initial 7-9 cell division after fertilization 

and lasts around 4 days in mice. One-cell embryos, also referred to as zygotes, execute 

their first cleavage to 2-cell embryos above 10 hours after fertilization. After 3 

cleavages without any increase in the whole volume, the embryos reach the morula 

stage at which blastomeres adhere to each other, i.e. a process called compaction. The 

embryos reach the blastocyte stage around 90 hours after insemination, consisting of 

two cell lineages with the outer and inner layers called trophectoderm and inner cell 

mass, respectively. The blastocyte is characterized by a fluid-filled cavity known as 

blastocoel. Up to this stage, the embryos have been enveloped by the zona pellucida 

and prevented from attaching to the oviduct. The preimplantation period ends when the 

embryos hatch out and adhere to the wall of the uterus (Cockburn et al., 2010) (Fig. 1).  
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It has long been known that preimplantation embryos are hypersensitive to 

genotoxic agents. Exposure of preimplantation embryos to ionizing radiation causes a 

high level of lethality before or shortly after implantation while the same dose on later 

developmental stages such as organogenesis or fetal period yields less prenatal 

mortality (Russell et al., 1954). This is attributable to the truncated gap phases and rapid 

cell cycling during the early development and the consequent weakened DNA damage 

checkpoints (Palmer et al., 2016). Radiosensitivity was also found to vary dramatically 

during the preimplantation period: blastocyte formation is more severely impaired by 

irradiation at the 1-cell and 4-cell stage than at the 2-cell stage, whereas embryos after 

8-cell stage become significantly more radioresistant than 4-cell stage embryos 

(Domon, 1982; Goldstein et al., 1975). The dramatic change in radiosensitivity of 

preimplantation embryos may be due to the chromatin remodeling during this period. 

Chromatin is structurally loose after fertilization and becomes gradually tightened 

during the preimplantation development through histone variant exchange and 

chromatin modifications (Akiyama et al., 2011; Nashun et al., 2010; Ooga et al., 2016).  

The first cell cycle after fertilization strands out in the preimplantation period. It is 

relatively long and comprises four phases, resembling a somatic cell cycle (Palmer et 

al., 2016). Yet it remains unclear if DNA damage checkpoints are present in each phase 

of the first cell cycle or not. Furthermore, the unique chromatin context and 

transcription pattern at the 1-cell stage may give rise to distinctive DNA damage 

response. It has been shown that chromatin structure and its composing histone variants 

are particularly unique at this stage. Fluorescence recovery after photobleaching（FRAP）
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analysis revealed that chromatin structure is extremely loosened in 1-cell stage embryos, 

compared to later preimplantation stage embryos and embryonic stem (ES) cells (Ooga 

et al., 2016). Some core histone variants are missing and are replaced by other ones 

specifically expressed in 1-cell stage embryos: H3 variants H3.1 and 3.2 and H2A 

variants H2AZ and macroH2A are barely deposited in chromatin of zygotes, while H3.3, 

H2AX and TH2A are abundant (Akiyama et al., 2011; Nashun et al., 2010; Shinagawa 

et al., 2014). Since the incorporation of H3.1 into DNA damaged sites has been reported 

(Polo et al., 2006) and H2AX is widely accepted to play an important role in DNA 

damage response (Lowndes et al., 2005), the response to DNA damage seems to be 

unique in 1-cell stage embryos. Regarding linker histones at the 1-cell stage, oocyte-

specific H1foo is abundant in chromatin whereas somatic-type linker histones except 

for H1A is not present; yet in later stages H1foo is lost and somatic-type ones become 

dominant (Funaya et al., 2018). It was reported that somatic-type linker histone H1.2 is 

involved in DNA damage repair (Li et al., 2018), suggesting again that DNA damage 

response at the 1-cell stage may differ from the canonical form in somatic cells. 

Supporting this hypothesis is that studies in my lab and another research group have 

shown that the signal of γH2AX, a well-established DNA damage marker, is low in 

irradiated zygotes, compared with that in oocytes and later stage embryos (Adiga et al., 

2007; Yukawa et al., 2007), despite the abundance of histone H2AX in zygotes ( Nashun 

et al., 2010). However, whether DNA lesions can be repaired in the first cell cycle and 

how this affects the sensitivity of zygotes are still under-researched. This study aims to 

view the DNA damage response in 1-cell stage embryos in a systematic fashion and to 
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provide an explanation about the embryonic sensitivity.  
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Chapter I  

DNA damage checkpoints in the first cell cycle and radiosensitivity 

 

 

本章は東京大学が認める「やむを得ない事由」にある「博士論文の全部または

一部が、単行本もしくは雑誌掲載等の形で刊行される予定」に該当するため、

インターネットでの公表をすることができません。 
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Chapter II 

DNA repair in the first cell cycle and chromosomal aberrations  

 

 

本章は東京大学が認める「やむを得ない事由」にある「博士論文の全部または

一部が、単行本もしくは雑誌掲載等の形で刊行される予定」に該当するため、

インターネットでの公表をすることができません。 
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Figures 

 

Fig. 1 

 

 

 

 

 

 

Fig. 1 Outline of the preimplantation development after fertilization 
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Materials and methods 

 

Animals 

Female BDF1 mice at 3 weeks old and male ICR mice retired from breeding were 

purchased from SLC Japan, Shizuoka. H2AX knockout mice were generated by my 

colleague Tsukioka san. 

All of the procedures using animals were reviewed and approved by the University 

of Tokyo Institutional Animal Care and Use Committee and were performed in 

accordance with the Guiding Principles for the Care and Use of Laboratory Animals. 

 

In vitro fertilization and culture of embryos 

Female mice were superovulated with 5 IU of pregnant mare serum gonadotropin 

(PMSG, ASKA Pharmaceutical Co., Tokyo) for 48 h followed by 5 IU of human 

chorionic gonadotropin (hCG, ASKA Pharmaceutical). After 16 h. MII oocytes were 

collected from the ampullae of the mouse oviducts and inseminated in human tubal 

fluid (HTF) media in a humidified atmosphere of 5% CO2 / 95% air at 38 °C with the 

spermatozoa that had been collected from the caudal epididymides of the male mice 

and capacitated by preincubation for 2 h. The oocytes were washed with KSOM-R 

media 2 h after the insemination (Lawitts et al., 1993). Successfully fertilized oocytes 

were selected as two pronuclei became visible around 4.5 HPI.  

 

γ-irradiation 
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Irradiation was performed at room temperature with γ-rays emitted by 137Cs 

(Gammacell 3000Elan, MDS Nordion, Ottawa, Canada) at a dose rate of 6.8 Gy/min 

for certain amount of time (1’28’’ and 5’’) to reach indicated doses (10 Gy and 0.5 Gy). 

G1, S and G2 phase zygotes were cultured until 3 ΗPI, 6 HPI and 11 HPI, respectively, 

when they were exposed to irradiation. Embryos were cultured until 12 HPI when they 

were transferred to KSOM-R media containing 0.5 μM nocodazole (#140-08531, 

FUJIFILM) to arrest the development at the metaphase. The arrested M phase zygotes 

were irradiated at 15 HPI.  

 

Detection of DNA synthesis by BrdU labelling 

Bromodeoxyuridine (BrdU, #10280879001, Roche) was preincubated with 

KSOM-R media at a final concentration of 10 μM for 30 min before use. Embryos were 

transferred to the KSOM-R media containing BrdU 15 min before the indicated time 

points and incubated for 30 min. The embryos were then washed with phosphate-

buffered saline (PBS) containing 1% bovine serum albumin (BSA, A3311, Sigma-

Aldrich) and fixed with 3.7% paraformaldehyde (PFA) in PBS at 4°C overnight. In the 

following day, the fixed embryos were washed and treated with 2 N HCl at 37°C for 1 

h to denature the DNA, allowing the primary antibody to get access to the incorporated 

BrdU. The samples were then washed and neutralized in 0.1 M Tris-HCl (pH8.5), at 

room temperature for 15 min. After several washes, the samples were incubated with 

the primary antibodies recognizing BrdU (1:100, #11170376001, Roche) and 

H3K9me3 (1:1000, #07-442, Sigma-Aldrich) at 4°C overnight. The samples were 
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washed in the following day and incubated with anti-Mouse IgG secondary antibody 

Alexa Fluor 488 (1:100, #A11001, Invitrogen) and anti-Rabbit IgG secondary antibody 

Alexa Fluor 647 (1:100, #A31573, Invitrogen) at room temperature for 1 h. All the 

antibodies were diluted with PBS containing 1% BSA. The embryos were finally 

washed and mounted on slide glass with VECTASHILD mounting medium containing 

DAPI (#H-1200, funakoshi). Three independent experiments were conducted, and total 

more than 75 embryos were examined for each condition. Embryos positive for BrdU 

signals were counted and representative pictures are shown. 

 

Image shooting and processing 

Immunocytochemical images were taken on confocal laser scanning microscope 

FV3000 (OLYMPUS). Analysis of areas and intensity was performed on ImageJ.
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