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Abstract

In this thesis a new black-box optimization method, factorization machine

for quantum annealing (FMQA), is proposed. The method targets at any

combinatorial optimization problems. It is composed of a regression model

called factorization machine (FM), and a heuristic minimization solver called

quantum annealing (QA). A proof-of-principle demonstration of the FMQA’s

efficiency on a metamaterial designing problem is made, and it found better

materials structure than the ones found with some classical algorithms.

To improve the performance for further optimization problems, the FMQA

is modified with a local modeling technique. It is tested on several bench-

marking problems and on an application for feature selection problem. The

method is revealed to be more robust than the original FMQA for the early

steps of optimizations.





Contents

1 Introduction 1

1.0.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Black-box optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Local search algorithms . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Surrogate-based methods . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Quantum annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 QA capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 FMQA 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Regression by FM . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Selection by the D-Wave quantum annealer . . . . . . . . . . . . 15

2.2.3 Combining FM and QA . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Application for designing metamaterials 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Methods and Target metamaterials . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Target metamaterials . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Simulation by rigorous coupled-wave analysis . . . . . . . . . . . 24

3.3 Metamaterials design by FMQA . . . . . . . . . . . . . . . . . . . . . . 25

v



CONTENTS

3.3.1 Performance of FM . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Optimum metamaterial structure search by FMQA . . . . . . . . 28

3.3.3 Mechanism of high emittance in designed metamaterial . . . . . 30

3.4 Discussion and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Local modeling 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Training local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Balancing exploration and exploitations . . . . . . . . . . . . . . 38

4.3 Sampling from local models . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Updating model parameters . . . . . . . . . . . . . . . . . . . . . 40

4.4 Benchmark on CUBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 An application for analyzing quantitative structure-activity relation-

ship 43

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Filter method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 Wrapper method . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.3 Embedded method . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.1 Validation of the models . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion and perspective 51

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Different types of annealing solvers . . . . . . . . . . . . . . . . . . . . . 52

References 55

vi



CONTENTS

A Benchmark results on CUBO 61

A.1 Results on all of the problems . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 How the optimization proceeded . . . . . . . . . . . . . . . . . . . . . . 61

B Tutorial 63

B.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii





1

Introduction

In science, industry, and engineering, we often have to do experiments or simulations

to get objective values that are to be optimized. The process of acquiring the value is

considered as an evaluation of objective function. The input variables are the settings

of the experiments or simulations. Unlike analytical functions, evaluations of those

objective functions could be much laborious and costly. Therefore, we should avoid

too much number of trials and errors in that case. Additionally, we cannot expect the

availability of gradient information, which is essential for gradient-descent optimization

methods. Such an optimization task is called black-box optimization (BBO) because

there is no information available about the inside of the function. All we can know is

only the pairs of input and output values obtained by the evaluations (Figure 1.1). In

general, the volume of the possible solutions’ space grows exponentially to the number

of input variables, and it poses a significant difficulty for finding the optimum. The

success of BBO depends on how we utilize the known data to guide through the “ocean”

of the possible solutions.

In the thesis, we only consider combinatorial optimization problems under the BBO

setting. There are several optimization algorithms for solving it, such as greedy edit-

ing, simulated annealing, and tabu search for instance. They are classified as local

search methods, in which a method has a current state as a guess for the solution, and

iteratively updates it to achieve better objective values. These methods are useful for

finding approximate solutions for various combinatorial optimization problems like the

traveling salesman’s problem (TSP). However, the fact that they require an evaluation

1
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Figure 1.1: A schematic of black-box optimization (BBO). The pairs of input and output

values {(xi, yi)}ni=1, obtained by evaluations of the black-box function f , are used for

predicting the input to gain the best output value y∗.

of the target function for updating even one bit restricts their applications for expensive

objective functions.

Surrogate-based methods construct regression models and use them as alternatives

for the original objective functions (1). The regression models can be quickly evaluated

and be optimized with the methods like the afore-mentioned greedy search or simulated

annealing. The optimal point of the regression model is considered to be a good approx-

imation to the optimum of the objective function. We evaluate the objective function

on that point and append the result to the dataset to train a better regression model.

That the optimization process is always taken on the regression model is the reason

why it is also termed as a surrogate model. Selecting the point from the search space is

also called sampling. The selection by the optimization over the surrogate model and

evaluation of the objective function are continued until some convergence criterion is

met. Because of the use of surrogate model, the number of required evaluations of the

objective function is significantly reduced. Therefore, the surrogate-based methods are

adopted for solving many real-world BBO problems.

In the thesis, a surrogate-based BBO method called factorization machine for quan-

tum annealing (FMQA), driven by a regression model called factorization machine (FM)

and an efficient search heuristic called quantum annealing (QA), will be proposed. The

use of QA is expected to accelerate the selection step. We also show some applications

of the method.
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1.1 Black-box optimization

In the remainder of this chapter, existing methods for BBO and the theoretical

background of quantum annealing is discussed. In chapter 2, the factorization ma-

chine and how to combine it with the quantum annealing into the FMQA is explained.

Its proof-of-principle application for materials designing is demonstrated in chapter 3.

Chapter 4 extends the FMQA with a local regression technique. We show the applica-

tion of the FMQA for a drug-discovery process in chapter 5, followed by a conclusion in

chapter 6. Appendix A shows the detailed result of the tests validating our algorithm

described in chapter 4, and the appendix B is devoted to the description of how to use

the FMQA in Python language.

1.0.1 Notations

The notation for the black-box objective function is f , and its input space is D. The

dimension of D is represented by d. The dataset S of size N is composed of the pairs

of input and output values (x, y), hence S = {(xi, yi)}Ni=1.

Through the thesis, we construct regression models for the objective function, and

we represent them by f̂ .

1.1 Black-box optimization

The target of BBO is an any real-valued function f(x):D → R, and its minimization

problem is written as

min
x
{f(x)|x ∈ D}. (1.1)

The formulation is so general that many optimization problems from wide range of fields

fall into BBO. The evaluation of f might be doing an experiment or simulation, which

could be time-consuming or cost-intensive. Example cases are planning efficient min-

ing locations (2), designing the wing of airplanes (3), designing problems in materials

informatics (4), and protein engineering (5), to name a few. There are several methods

available for those problems. The choice of an appropriate method should be made

depending on the objective functions’ properties (e.g. evaluation cost or smoothness).

In addition to the continuous variables, recent studies shed light on BBOs over

discrete or continuous-discrete mixed variables including graph structures, sequences,

trees, etc. (6, 7, 8, 9, 10). We focus on BBO problems with binary input space in this

thesis, and call each variable xi of the input vector x especially as a bit.

3



1. INTRODUCTION

1.1.1 Local search algorithms

Algorithm 1 Simulated Annealing (SA)

Require: xinit ∈ {0, 1}d ▷ initial solution

Require: 0 < Tmin < Tmax ▷ temperature range

Require: 0 < α < 1 ▷ cooling factor

1: procedure SimulatedAnnealing(xinit, Tmin, Tmax, α)

2: x← xinit

3: y ← f(x)

4: T ← Tmax

5: while Tmin < T do

6: yprev ← y

7: select k ∈ {1, · · · , d} randomly

8: xk ← 1− xk

9: y ← f(x)

10: sample r from uniform distribution over [0,1]

11: if r < exp
(
yprev−y

T

)
then

12: yprev ← y ▷ accept the change

13: else

14: xk ← 1− xk ▷ rollback the change

15: end if

16: T ← T × α

17: end while

18: return x, f(x)

19: end procedure

Greedy editing is the most naive method for searching optimal solutions for BBOs

with binary variables. In the method, we apply single-bit flipping repeatedly as long

as that improves the objective value. In a d-dimensional problem, there are d possible

solutions (called neighbors) for the next step. All of them, or possibly a fraction of

them, will be evaluated and the best one will be chosen. Although the method is

very easy to implement, the search process can be very costly because of the need for

evaluating all neighbors, and often results in finding a local optimum.

To avoid being caught by a local optimum, we have to sometimes allow the bit

flipping yielding a degraded objective value. Simulated annealing (SA) (11, 12), origi-

4



1.1 Black-box optimization

Algorithm 2 Tabu Search (TS)

Require: xinit ∈ {0, 1}d ▷ initial solution

Require: Nmax ∈ N ▷ max evaluations

Require: 0 < l ▷ tabu tenure

1: procedure TabuSearch(xinit, Nmax, l)

2: x← xinit

3: L← {0, · · · , 0}︸ ︷︷ ︸
d

▷ tabu list

4: neval ← 0

5: while neval < Nmax do

6: kbest ← −1 ▷ as a sentinel

7: ybest ←∞
8: for k ← 1, d do

9: if Lk == 0 then

10: xk ← 1− xk

11: y ← f(x)

12: neval ← neval + 1

13: if y < ybest then

14: kbest ← k

15: ybest ← y

16: end if

17: xk ← 1− xk ▷ rollback

18: else

19: Lk ← Lk − 1

20: end if

21: end for

22: xkbest ← 1− xkbest
23: Lkbest ← l

24: end while

25: return x, f(x)

26: end procedure

5
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nating from the statistical modelling in physics, allows an update for the worse solution

at some rate governed by a virtual annealing temperature, which is termed as T . The

temperature usually starts from a large value and monotonically decreases as the up-

date goes on. The higher the temperature is, the more likely an update for the worse

solution is allowed. This is an analogy of a development of physical system under the

natural/artificial environmental noise and fluctuations. Another important difference

from the greedy search is that SA does not check all the neighbors, but only one selected

at random. A pseudo-code for the simulated annealing is shown in Algorithm 1.

Another method for escaping from the local minima is a memory-based updating

method called tabu search (TS) (13). In the method, we evaluate all the neighbors,

the 1-bit flipped states from the current solution, except ones which flip the recently-

changed bits. The prohibited moves are memorized in tabu list. Thanks to the rule,

the newly flipped bit would be fixed at least for the next certain amount of steps. The

point is that we always force an update to the best neighbor, even if it degrades the

objective value. The strategy is effective for solving problems like TSPs, but hardly

applicable for expensive objective functions due to the evaluations of all the neighbors.

The pseudo-code of tabu search is shown in Algorithm 2.

Evolutionary algorithms, including evolutionary strategy and genetic algorithm, are

also common as BBO methods (14, 15, 16, 17, 18, 19). They search for good solutions

not by enumerating the neighbors, but by bleeding a population of solutions. The total

number of function’s evaluations is only governed by the predefined population size

and the number of generations. That means that they can be applied for problems

regardless of their dimensions. Since a population can contain points scattered across

multiple local optimums, the methods also show the robust performance against multi-

modal objective functions. Their simple concept and implementations also made them

appealing as instant solvers for wide range of optimization tasks. Here shows the typical

implementation of a genetic algorithm in Algorithm 3.

1.1.2 Surrogate-based methods

Surrogate-based methods are the most successful algorithms for BBOs with expensive

objective functions (1). We construct a regression model (or surrogate model) in a

surrogate-based method that tries to regenerate objective values already evaluated.

The model is then used for selecting the next point to evaluate. If the BBO is defined

6



1.1 Black-box optimization

Algorithm 3 Genetic Algorithm (GA)

Require: λ > 0 ▷ population size

Require: Nmax gen > 0 ▷ number of reproductions

1: procedure GeneticAlgorithm(λ)

2: initialize population P ⊂ {0, 1}d with size |P | = λ

3: YP ← {f(x)|x ∈ P} ▷ evaluate all

4: for ncycle ← 1, Nmax gen do

5: P ′ ← RouletteWheelSelection(P, YP ) ▷ parent pairs P ′ ⊂ P ⊗ P

6: P ′′ ← {Crossover(a, b)|(a, b) ∈ P ′}
7: P ← {Mutation(x)|x ∈ P ′′}
8: YP ← {f(x)|x ∈ P}
9: end for

10: x← argminx∈P f(x)

11: return x, f(x)

12: end procedure

on continuous variables, we can use differentiable regression models and optimize them

by Newton’s method, quasi-Newton method, and other gradient-based optimization

methods. For discrete/binary variables, we use the afore-mentioned methods like SA,

TS, and GA, to optimize the models. The optimum in the model is expected to perform

well on the objective function, too. We evaluate the objective function on the expected

minimum and add the result to the dataset to construct a more precise regression model.

Then we select the next point to evaluate and run the objective function repeatedly until

some convergence criteria are met or one’s budget is used up. The loop of regression,

selection, and evaluation is sketched in Figure 1.2.

The use of the surrogate model greatly reduces the number of evaluations of the

objective function. However, it is only the case when the models are accurate and the

optimizations are correct. The difficulty to predict the shape of the objective function

based on a limited number of data points is called the statistical barrier, and the

difficulty for selecting the best promising input from the large search space is called

the computational barrier. The proposed FMQA method is a surrogate-based method,

too, and addresses the computational barrier problem by using quantum annealing.

7
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Evaluate the 
objective function
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Point x to be
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Figure 1.2: Schematic picture of surrogate-based method.

1.1.3 Bayesian optimization

Bayesian optimization (BO), one of the most popular surrogate-based method, should

be mentioned here. In BO, a Gaussian process (GP) is used as a surrogate model.

The GP is not “a” regression model, but a statistical distribution of them calculated

as a posterior distribution given the dataset. The GP can manage model uncertainties,

enabling us to balance the exploration and exploitation during the search process. Ex-

ploration means searching around the highly-uncertain regions where the evaluations

are not much made before. Exploitation is searching for solutions extensively around

the known good solutions. The former is important for finding the global optima, and

the latter for finding the closest local optima quickly. Balancing the dilemma is essen-

tial for obtaining good solutions in practical cases. We can change how much weight

to put on each of them by modifying a kernel function and the expected noise scale,

along with other hyperparameters. However, the drawback of using GP is that it is

easily suffered from the curse of dimensionality. As the acquisition function, which is

calculated by the GP model and used for selecting the next evaluation point, can be

multi-modal and flat on the most part of the search space, finding the most promising

point gets difficult even with quasi-Newton method (20). Some works applying the

GP to high-dimensional BBO by dimensionality reduction or designing proper kernel

functions exist (21, 22).

8



1.2 Quantum annealing

1.2 Quantum annealing

The emerging quantum computing researches are sparkled by the recent physical imple-

mentations of large scale quantum bits (qubits) and their entanglements. Potentially,

quantum computers can solve specific computational tasks like database search and

prime number factorization faster than the classical computers of the von-Neumann

architecture. The supremacy of quantum computing to the classical computers is actu-

ally observed on carefully crafted problems (23). However, the current implementations

of qubits’ interactions are susceptible to environmental noise, and we have to expect

so-called noisy intermediate-scale quantum (NISQ) devices in the comming age (24).

In this thesis, we only consider the special type of quantum computing called quan-

tum annealing (QA) (25, 26). QA encodes a problem of interest into the system’s

Hamiltonian and its ground state, corresponding to the desired solution, is carefully

tracked. It should be noted that whether the QA can truly achieve the speedups over

the best classical algorithm is still controversial topic (27). However, the current QA

machines, which are the executive hardwares to perform QA, are ready to use and

already equipped with a few thousands of qubits. Therefore, it is reasonable to assess

the scaling performance of quantum devices empirically.

1.2.1 QA capabilities

QA is a kind of heuristic similar to the simulated annealing algorithm, but its variables

go through superposed states. The implementations on the current QA machines can

solve combinatorial optimization problems represented in the quadratic unconstrained

binary optimization (QUBO) format, which is classified as an NP-hard problem (28).

QUBO is a minimization problem of the form:

min
x∈{0,1}d

∑
i≤j

qijxixj , (1.2)

where d is the number of variables and qij ∈ R is a parameter for configuring problems.

Typically, we convert our optimization problems in this QUBO format and solve them

with the QA machine.

D-Wave Systems Inc. has developed D-Wave 2000QTM, a QA machine, to solve

QUBO problems with up to around 2000 bits. The size is by far the more than ones

9
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Figure 1.3: Quantum annealing machine D-Wave 2000QTM(dwavesys.com).

implemented in general-purpose quantum computers so far (29). Diverse applications of

QA have been reported in, e.g., biologicl science (30, 31), machine learning (32, 33, 34),

and IoT (35, 36).

The device’s ability to deal with high-dimensional problems is desirable for BBO

to overcome the difficulty of searching in a large space (computational barrier). To use

the QA machines for the surrogate-based optimization methods, we adopt a surrogate

model which can easily converted to the QUBO format in chapter 2.

1.2.2 Embedding

Despite the large number of qubits implemented, the possible interactions between

the qubits are limited on the real devices. For example, the topology of the qubits’

connection in the D-Wave 2000QTM is called chimera graph (Figure 1.4 left), where the

bipartite graphs composed of 8 qubits (represented by K4,4) are arranged in horizontal

and vertical directions. The figure means that the coefficient qij in equation 1.2 can

take non-zero value only if an edge connecting i’th and j’th node exists. To deal with

the arbitrary QUBO problem with the chimera graph, we have to represent one variable

with multiple qubits, instead. This projection is called embedding (Figure 1.4 right).

By the embedding process, one variable is represented by several qubits called chain.

The connections inside a chain are kept strongly ferromagnetic, so that all the members

of the chain results in the same state. The accuracy of the QA strongly affected

by the length of the chains and strength of their connections. Chains are preferred

to be short, and their connections need to be set to minimum required strengths to

10
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Figure 1.4: (Left) Connections of the qubits in the D-Wave 2000QTM form chimera graph.

(Right) One variable should be embedded into several qubits to deal with arbitrary QUBO.

keep their consistency. Therefore, solving large QUBO problems can be difficult for

QA machines. There is a heuristic algorithm to find efficient embedding patterns to

amend the difficulty (37). However we do not use the heuristic here, and only use the

embedding pattern as shown in Figure 1.4 right because the length of the chains are

kept the same and less inhomogeneities between variables are induced (38).

1.3 Conclusion

We reviewed the BBO and several algorithms for solving it in this chapter. Surrogate-

based methods are good at grabbing the underlying structures of objective functions.

A proper choice of surrogate model and selection schema is important for their per-

formance. Along with the continuous variables considered in BBOs, discrete or binary

variables are also gathering more attention. We will challenge these types of problems

in this thesis.

Quantum annealing, a special type of quantum computing, has just got ready for

business applications. The QA’s performance for selecting the best solution from the

QUBO problem’s solution space is appealing for the selection step of the surrogate-

based methods. As an appropriate surrogate model, a statistical model called factor-

ization machine is introduced in the next chapter. We combine those two techniques

into a new BBO method and show its practical application.
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2

FMQA

2.1 Introduction

A new surrogate-based method, factorization machine for quantum annealing (FMQA),

is introduced in this chapter. It is intended for dealing with the large number of

candidates during an optimization process. The method is made of two components:

• Factorization Machine (FM) as a surrogate model

• Quantum Annealing (QA) as a selection algorithm

The basics of these components are described here after, and followed by the combin-

ing the two. Unfortunately, there are no mathematical guarantees for the convergence,

so we would see the empirical performance on real problems to evaluate the method in

the next chapter.

2.2 Methods

2.2.1 Regression by FM

Looking at the QUBO defined in the equation 1.2, it is straight-forward to use its

objective with a bias term w0 as a surrogate model:

w0 +
∑
i≤j

qijxixj , (2.1)

13



2. FMQA

which is to be optimized by the QA machines. However, we use a factorization machine

(FM), a statistical regression model, instead (39). The model has a form:

f̂(x) = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

K∑
k=1

vikvjkxixj , (2.2)

where w0 is the bias term, wi ∈ R (i = 1, · · · , d) is the linear coefficient, and the

quadratic coefficient for the product xixj is calculated by
∑K

k=1 vikvjk = vi · vj . The

vi ∈ RK (i = 1, . . . , d) is a K-dimensional vector, where the K ∈ N is a hyperparameter

called factorization size. The set of the model parameters {wi ∈ R (i = 0, · · · , d),vi ∈

RK (i = 1, · · · , d)} has a dimension of (K + 1)d + 1 in total. The important fact is

that the number of fitting parameters is reduced from d(d+1)
2 + 1 in equation 2.1 to

(K + 1)d + 1 in equation 2.2. The former is quadratically increasing and the latter is

linearly increasing to the dimension d. In statistical modeling, models with the large

number of parameters are prone to overfitting, and require many data points to train

generalizable models. Therefore, the models with less parameters are more preferable

for the BBO problems with high-dimensional and expensive objective functions. That

justifies the use of the FM, rather than the QUBO objective, for the surrogate model.

On the other hand, too a simple model can fail to fit to the dataset as known as the

underfitting problem. When using the FM as the surrogate-model, the hyperparameter

K should be enough large to make the model enough complex. It is known that the

factorization size K = 8 works empirically well for many cases (39, 40, 41). We mainly

use the same K value for our experiments.

In the training step, the model parameters {w0, wi,vi (i = 1, · · · , d)} are tuned so

that we obtain the minimum value of a loss function L, which is accounting for the

predictive errors on the dataset S:

L(w0, wi,vi (i = 1, · · · , d)) =
∑

(x,y)∈S

(y − f̂(x))2. (2.3)

The minimization of this function is done by the Adam (adaptive moment estimation)

algorithm (42), in this thesis.

To select the best configuration in terms of the constructed regression model f̂(x)

(equation 2.2) with QA machines, we can convert the regression model to the QUBO

14
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objective (equation 2.1) by

w0 = w0, (2.4)

qij =


wi (i = j)∑K

k=1 vikvjk (i < j)

0 otherwise.

(2.5)

2.2.2 Selection by the D-Wave quantum annealer

A D-Wave 2000QTM quantum annealer (29) is utilized to select the next candidate. The

working D-Wave 2000QTM in Vancouver, Canada has 2038 qubits on the chimera graph,

and it can create a virtual fully-connected graph with 63 nodes by regarding some qubits

as one variable. The D-Wave Systems Inc.’s implementation of find clique embedding

method (38) is used for this embedding process.

If num_reads, which is a parameter for the D-Wave 2000QTM, is set to 50, the

candidate solutions of the QUBO problem is sampled for 50 times within 16 ms of

QPU time. Then the state with the lowest energy out of these 50 states is used as the

prediction of the optimal solution. When the suggested solution is already evaluated

and contained in the dataset, a randomly generated solution is used for that step

instead.

2.2.3 Combining FM and QA

After the optimization by the QA, its actual value is evaluated by the objective func-

tion. The result is appended to the training dataset and more accurate FM model is

trained. Then, the model is passed to the QA to make a next guess for the optimum.

By repeating this procedure, the configuration with a good objective value would be

obtained with a small number of evaluations. For machine learning, Ising machines,

including QA machines, are experimentally utilized in the training processes of statis-

tical models so far (32, 33). Our use of QA for selecting next solutions in BBO is a

new application in this field. The entire algorithm of FMQA is listed in Algorithm 4.

2.3 Conclusion

A new BBO method called FMQA, combining the factorization machine (FM) and

quantum annealing (QA), is defined. Overcoming the computational barrier by QA

15
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Algorithm 4 Factorization machine for quantum annealing (FMQA)

Require: Ninit > 0 ▷ initial data points

Require: Nmax > Ninit ▷ total evaluations

1: procedure FMQA(Ninit, Nmax)

2: select the initial data points X ⊂ {0, 1}d of size |X| = Ninit at random

3: S ← {(x, f(x))|x ∈ X} ▷ initial dataset

4: train an FM model f̂ on S

5: for neval ← Ninit + 1, Nmax do

6: convert the model f̂ into a QUBO parameter {qij}
7: sample xnew from the QUBO {qij} by QA ▷ sampling

8: if xnew is already in S then

9: apply random bit flipping on xnew until it is not in S

10: end if

11: ynew ← f(xnew) ▷ evaluation

12: append (xnew, ynew) to S

13: train the model parameter of f̂ on S again ▷ training

14: end for

15: return the best data point in S

16: end procedure
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is first in mind and FM is used for constructing effective regression models. There is

no mathematical foundation for the effectivity of the method. We will test it on an

practical example problem in the next chapter.
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Application for designing

metamaterials

The new BBO method, factorization machine for quantum annealing (FMQA) is intro-

duced in the previous chapter. However, it is difficult to give mathematical guarantees

for its performance. Therefore, we show a proof-of-principle application to demonstrate

the practical effectivity of the method in this chapter. The objective is a simulated per-

formance of a radiative cooling material which will be discussed in detail later. The

result might lead to further applications of the method for designing other materials.

3.1 Introduction

Further evolution in materials that control energy carrier, such as photon, electrons,

and phonons, is a condition to realize sustainable industry and society. The key is

to manipulate properties at the scale of characteristic length of transport of carriers.

Over the last decades, the advance in top-down fabrication and bottom-up synthesis,

together with atomistic and spectroscopic characterizations, have given us access to

nearly-free exploration of the structures with better energy transport characteristics,

and this has resulted in a number of breakthrough in energy materials in photovoltaics

(43), thermal radiators (44, 45), batteries (46, 47) thermoelectrics (48), and others.

Here, metamaterials are a representative case, where the artificial structures produced

inside a material give rise to extraordinary properties.

Now, the above success opens up a new problem that there are too many degrees
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of freedom in the structures to explore. Exploration among single crystals is already

exhausting when considering compounds but the number of candidates becomes truly

massive when extending it to composites in a broad sense with nanoscale inhomogenity

in composition or simply “nanostructures”. Yet, some materials with such composition

inhomogenity have been found to exhibit superior properties over the counterpart or-

dered structures, particularly in case when structures are smaller than the coherence

lengths of energy carriers as shown for photons (49, 50), phonons (51, 52), electrons

(53, 54), and magnons (55). Therefore, for further evolution of materials in energy

technology, overcoming the challenge of massive candidates via automated materials

discovery is crucial.

Automated materials discovery based on BBO is an iterative process of selecting one

candidate from massive candidates (i.e., design space) and recommending it for the next

experimentation (56, 57, 58). From existing materials properties data, machine learning

predicts properties of unobserved candidates and defines an acquisition function in the

design space. A global optimization problem in the design space is solved with respect

to the acquisition function, and the candidate with the highest one is selected as the

next candidate material for experiment. Using the observed properties for the selected

candidate, the machine learning model is updated and defines a different acquisition

function for the next iteration. By repeating this procedure, we would get materials

with desired properties in a small number of experiments. However, the difficulty of

BBO is as stated in chapter 1. When a fast simulator, which can calculate properties

of target materials, is used to replace the experiment, the statistical barrier is often

not as overwhelming as the computational one, as exemplified in several recent studies

(56, 58). To circumvent the difficulty of global optimization, heuristic methods such as

local search, tree search (59) and genetic algorithms (60, 61) are often used. Instead, to

overcome this computational barrier with help of quantum effect, we use a quantum-

classical hybrid algorithm, FMQA defined in the previous chapter, employing a D-Wave

quantum annealing machine.

3.2 Methods and Target metamaterials

The schematic picture of our algorithm is shown in Figure 3.1. Our algorithm, FMQA,

is capable of solving a BBO problem over binary variables representing material’s struc-
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3.2 Methods and Target metamaterials

Figure 3.1: Procedure of our automated materials discovery using a factorization machine

(FM) for learning and a quantum annealing (QA) for selection. Target property is the

figure-of-merit (FOM) for the radiative sky cooling, which is evaluated by the rigorous

coupled wave analysis (RCWA). This simulation part can be replaced by other simulation

methods or experiments, depending on the target properties.

ture. The property of the new candidate is obtained by an atomistic simulation. In the

next step, the new data point is added to the training data, and the FM is retrained.

The QA suggests the next structure to be tried based on the FM. These steps are

repeated again and again.

3.2.1 Target metamaterials

As we have stated in this chapter, we apply our method to design a metamaterial with

tailored thermal radiation spectrum as a proof-of-principle study. Tailoring thermal

radiation is fundamentally important as every material emits and absorbs thermal

radiation. In engineering viewpoint, wavelength-selective thermal radiation (photons)

is needed in a broad range of applications. For instance, narrowband thermal-emission

leads to high-efficiency thermophotovoltaics(62, 63), incandescent light source (64),

biosensing (65, 66), microbolometers (67, 68), imaging (69), and drying furnace (70).

Another application that has recently attracted much attention, in response to

concerns of global warming and energy crises, is radiative sky cooling that utilizes the

untapped 3 K cold space as a heat sink. Previous designs on radiative cooling (45, 71, 72,
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73, 74, 75, 76, 77, 78, 78, 79, 80) have focused on simultaneously blocking solar energy

(0.4-4 µm) while maximizing thermal radiation loss (> 4µm) to the surroundings.

These designs have been experimentally demonstrated to be successful in dry and clear

weather. However, this design strategy is not as effective in hot and humid areas

because the atmospheric window (8-13µm), which allows thermal radiation to directly

transmit to the outer space, becomes less transparent and a large part of the downward

radiation that is beyond the window is absorbed by the radiator. Therefore, a radiator

that only emits thermal radiation to outer space through the transparency window is

desirable. Such a radiator can help maximize the outgoing radiative cooling power

while minimizing the ambient radiative energy absorption. In this study, our proposed

optimization method is used to design such a radiator with a wavelength selectivity

higher than previously designed ones.

A metamaterial, which only emits or absorbs the thermal radiation within the

transparency window of the atmosphere (8-13µm), is preferable for radiative sky cooling

(75, 81). Various material structures have been proposed to match the spectrum of the

atmospheric window, including planar multilayer structures (45, 74), patterned meta-

surface structures (73, 76, 77, 79), and polymers doped with nanoparticles (71, 78, 80).

Most of these structures do not have a high emittance over the whole span of the

atmospheric window. Additionally, their cooling capability is insufficient. On the other

hand, our design employs SiO2 and SiC to achieve this stringent spectral selectivity.

The dielectric functions of SiO2 and SiC indicate that they have phonon-polariton

resonances positioned at 9.7 and 12.5 µm, respectively. Moreover, they both have very

small extinction coefficients in the solar energy wavelength band, implying that the

absorption of solar energy should be suppressed.

Inspired by previous research (72), the target metamaterial structure is comprised

of SiO2 and SiC wires placed in poly(methyl methacrylate) (PMMA), which has a

negligible absorption in the visible to far-infrared range. Each wire is arranged along

the y axis, and light is incident from the top layer (Figure 3.2). The periodic boundary

condition is applied in the x directions (i.e., the structure repeats along the x axis).

Because the RCWA calculation solves a two-dimensional (x − z) problem, the wire

is assumed to be infinitely long without any variations in the cross section in the y

direction. For structural optimization, the x − z plane is uniformly discretized into
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1μm

1μ
m

L

C

Incident light

Figure 3.2: Example of the target metamaterial structure for L = 6 and C = 3, the

binary variables expressing it, and the emissive powers of target metamaterial (RCWA)

compared with the theoretical upper bound (Blackbody).

square units with 1 µm side lengths, which are either SiO2, SiC, or PMMA. The

numbers of meshes along the z and x directions are defined as L and C, respectively.

One constraint adopted in this study is that a layer can contain only SiO2 or SiC

exclusively. The constraint and the unit size, which correspond to the minimum wire

size, are determined considering future fabrication via photolithography. Pretrial simu-

lations confirm that a unit size of 1 µm provides sufficient resolution for the optimization

problem. For these structures, the emissivity properties are calculated based on RCWA,

and the FOM for radiative cooling is evaluated. In our optimization, the target is the

emittance property under p-polarized incidence (TM wave) for a polar angle θ = 0◦.

The metamaterial structure is configured by binary variables as shown in Figure

3.2. Initially, the configuration of the wired materials (SiO2 or SiC) and PMMA is

determined by L × C bits. Then additional bits, which express the type of wired

materials in each layer, are prepared. Consequently, the structure of a metamaterial is

well-defined using L× (C + 1) bits. Note that our algorithm can perform a structural

optimization when L and C are fixed.
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3.2.2 Simulation by rigorous coupled-wave analysis

To calculate the thermal emissivity properties of the target metamaterials, rigorous

coupled-wave analysis (RCWA) is employed (Figure 3.2 right). RCWA is a semi-

analytical method to solve Maxwell’s equation and provides a high numerical accuracy

(82). The spatial distribution of the dielectric constant and the involved electromag-

netic field are decomposed in the x and z directions. By imposing a periodic boundary

condition in the x direction and a continuous boundary condition in the z direction,

the governing Maxwell’s equation can be solved quickly and accurately.

Although PMMA is not universal in identical materials due to the influence of the

fabrication process, our calculations assume that the PMMA is pure and the refractive

index is fixed as 1.48 for simplicity (83). The dielectric functions of SiO2 and SiC are

obtained from the tabulated data from Palik (84) with interpolation. Comparing the

experimental results validates (85) that the RCWA method is a credible approach to

design metamaterials for thermal radiators. Figure 3.2 shows a calculated example of

the emissive power.

For a good thermal radiator for radiative cooling, the emittance spectra should fall

within the wavelength region between 8 and 13 µm. To evaluate the likelihood that

the designed metamaterial is the ideal case, the FOM is defined as in (44):

FOM =

∫ λf

λi
ϵλEbλdλ∫ λf

λi
Ebλdλ

−
∫ λi

λmin
ϵλEbλdλ∫ λi

λmin
Ebλdλ

−

∫ λmax

λf
ϵλEbλdλ∫ λmax

λf
Ebλdλ

(3.1)

where λi = 8µm, λf = 13µm, λmin = 1µm, and λmax = 20µm. Here, ϵλ and Ebλ are the

spectral emittance and the spectral blackbody emissive power calculated by RCWA,

respectively.

In equation 3.1,
∫ λf

λi
Ebλdλ is the energy flux radiated out by the blackbody at the

same temperature in the atmospheric-window wavelength range. This is the maximum

energy flux that an object at that temperature can emit. Thus, the first term in

equation 3.1 is the ratio that quantitatively describes the similarity of the designed

structure to the ideal emissivity with respect to the energy flux. For the remaining

wavelength range (i.e., λ < 8µm and 13µm < λ), the optimization strives to make

the emissivity as low as possible. Therefore, in the definition of FOM, the coefficients

are negative. Since the ideal FOM value is 1 and the worst FOM value is −2, where
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the emissivity functions take exactly the opposite shape, our optimization task is to

maximize the FOM.

It should be noted that according to Kirchhoff’s law, the spectral emittance is

equal to the spectral absorptance in the thermal equilibrium state. In the following

calculations, the spectral absorptance property is obtained directly from the spectral

emittance.

3.3 Metamaterials design by FMQA

The key feature of our method is the use of FM and QA in combination. To check

only the validity of using FM as a regression model at first, we compared it against

another common regression model. However, comparing the performance of QA against

other corresponding methods is beyond our scope. Therefore, the second step of the

validation is made on the optimization performance of the entire FMQA algorithm.

3.3.1 Performance of FM

First, to clarify the usefulness of an FM as a regression model for our metamaterial

design, the performances using an FM and a Gaussian process (GP), which is mentioned

at the chapter 1.1.3, to find the best structure for the L = 4 and C = 3 case are

compared. It takes 16 bits to encode the material’s structure in this setting, and an

exhaustive search of the acquisition function defined by the negative FOM is even

possible by classical computers to select the next candidate material. For the sake of a

comparison against the most “thoughtless” method, a search where the next candidate

material is randomly generated from all candidates in the selection part is also tried.

Since the number of candidate material structures is only 216 = 65536 in this case, all

the FOMs by RCWA are evaluated and the best structure has already been identified.

Figure 3.3(a) shows the best FOM as a function of the number of calculated struc-

tures (iterations of the cycle depicted in Figure 3.1) by each method. For each method,

16 optimization runs with different initial choices are performed and the FOMs are

averaged out. All three methods use the same first 50 randomly selected structures as

the initial data. The regression results are used from step 51 for the FM and the GP

cases. The results in order from worst to best are the random search, the GP, and the

FM. Because the FM finds the best structure within 300 iterations, it can be stated
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Figure 3.3: (a) Dependence of the best FOM on the number of calculated structures

(iterations) by automated materials discovery using an FM, a Gaussian process, and a

random search for the L = 4 and C = 3 case. Inset is the optimum structure and its FOM.

Blue, red, and gray squares denote SiO2, SiC, and PMMA, respectively. (b) Best FOM by

FMQA using a quantum annealer, FMSA using a simulated annealing, and the random

search for the L = 6 and C = 3 case. Inset is the structure with the best FOM identified

by FMQA. (c) Computing time to perform 500 iterations of automated materials discovery

using a quantum annealer and an exhaustive search on a classical computer with an Intel

Xeon E5-2690 v3 @ 2.6GHz for the selection part, respectively. Learnings and simulations

are performed by the same classical computer.

to be suitable for the regression model of our target. This result says that, at least,

the learning by the FM is more useful than a random search to discover metamate-

rial structures with a high FOM within a small number of simulations. This result is

promising for our metamaterial design.

Next, the problem with L = 6 and C = 3 is considered with the use of QA. Since the

candidate number is 224 = 16777216, an evaluation of all FOMs predicted by regression

models such as an FM and a GP to select the next candidate is a time-consuming task.

A more realistic option is to use a QA or similar classical algorithms like simulated

annealing (SA) for the selection part rather than an exhaustive search. Therefore, we
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Table 3.1: Empirical computing time to perform 500 iterations in our automated materials

discovery depending on the number of encoding bits.

by quantum annealer by exhaustive search

Bits Selection Learning Simulation Selection Learning Simulation

9 361 [sec] 54.9 [sec] 2920 [sec] 236 [sec] 50.0 [sec] 2830 [sec]

12 385 [sec] 53.0 [sec] 3620 [sec] 1730 [sec] 50.4 [sec] 2630 [sec]

15 423 [sec] 51.1 [sec] 3690 [sec] 12500 [sec] 45.0 [sec] 2920 [sec]

18 374 [sec] 52.2 [sec] 3140 [sec] 110000 [sec] 50.3 [sec] 3170 [sec]

compared the best FOM by FMQA, FMSA (a method using FM as a surrogate model

and SA as a selection method) and a random search as functions of the iteration number.

The result is shown in Figure 3.3(b). Each line represents the average values from 16

independent runs with 50 different initial structures. The FMQA could reduce the

number of simulations to find a better metamaterial structure, with a high probability

to reach the higher FOM than the FMSA. Hence, it is a useful tool to design new

metamaterials.

Because the computing time to perform FMQA is important, the computing time

of automated materials discovery based on an FM when the selection part is conducted

by a quantum annealer is compared to an exhaustive search by a classical computer

with an Intel Xeon E5-2690 v3 @ 2.6GHz. Note that to this point, the BBO algorithms

accompanied by acquisition functions (e.g., Bayesian optimization) have employed an

exhaustive search for the selection part. Here, an exhaustive search is compared to the

computing time between our algorithm and a conventional algorithm. Figure 3.3(c)

plots the computing time to perform 500 iterations as a function of the problem size

(number of encoding bits). The selection time, learning time by an FM, and simulation

time by RCWA are separately illustrated. The target structure is the L = 3 case with

various C = 2, 3, 4, or 5, which are encoded using 9, 12, 15, and 18 bits, respectively.

Their empirical computing times are also summarized in Table 3.1.

Since the learning and simulation are conducted on the same classical computer,

these parts require about the same time in both cases. The use of a quantum annealer

reduces the selection time. Both methods provide the structure with the highest FOM

within only 500 iterations, and the number of simulations can be reduced to find the best

one. Note that if the FOMs of all structures are evaluated by the RCWA simulations for
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the 18 bits case to identify the best structure, the required time is more than ten times

longer than the algorithm where the exhaustive search method is used for the selection

part. Although RCWA is a relatively high-speed simulation method (one calculation

takes one minute at most), the most time-consuming part becomes the simulation time

when FMQA is performed. Consequently, a quantum annealer can be used to solve the

hard computational barrier in the automated materials discovery.

3.3.2 Optimum metamaterial structure search by FMQA

We search the optimum structure of the metamaterial for radiative cooling. Varying

the number of layers and columns of the target structure should help elucidate a trend

to achieve a high FOM. Starting from the previous setting (L = 6 and C = 3), the

number of layers L is changed. The range of L is varied from 3 to 9, and a single run

with the first 50 randomly generated initial structures and 2000 iterations is conducted

for each optimization trial. Figure 3.4(a) plots the best FOMs as a function of the

number of calculated structures for various numbers of layers. The structure with five

layers (L = 5) exhibits the highest FOM. Figure 3.4(b) shows the found structure

with the best FOM for each L. Interestingly, when L ≥ 6, some layers only contain

PMMA but removing the PMMA-only layers decreases the FOM. Consequently, the

existence of the PMMA layer plays an important role in improving the FOM for thick

metamaterials.

Next, the number of columns C in the target structures is changed while the num-

ber of layers is fixed to five (L = 5). Figure 3.4(c) shows the best FOM as a function

of the iteration number. Larger FOMs appear for the C = 4 and 6 cases. Increasing

the number of columns to more than seven (C ≥ 7) does not yield a higher FOM.

Since larger cases are multiples of smaller ones with commensurate periods, a meta-

material structure for C = 8 should have a similar FOM as the C = 4 case. Thus

2000 samplings are too small to find the optimum structure with a higher FOM due

to the massive number of candidates for C = 8. In fact, the change in the FOMs

with the number of calculated structures gradually increases for larger systems [Figure

3.4(c)]. Consequently, searches should be continued to find the best structure for larger

systems.

Figure 3.4(b) summarizes the metamaterial structures with a high FOM found by

FMQA for various L and C values. The structure for the L = 5 and C = 6 case
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Figure 3.4: (a) Best FOM as a function of the iteration number for C = 3 with various L.

Plotted results are for a single run with the first 50 randomly generated initial structures.

Parentheses denote the number of candidates. (b) Structures with a high FOM designed

by FMQA depending on L and C. Red dotted line denotes the structure with the highest

FOM in our search. (c) Change in the best FOM for L = 5 with various C obtained by

a single run with the first 50 randomly generated initial structures. (d) Emissive power

calculated by RCWA (red curve) of the designed structure with the highest FOM for the

L = 5 and C = 6 case, which is surrounded by the red dotted line in (b). For comparison,

the blackbody emissive power (blue curve) and the multilayer optimum case with five layers

(grey curve) are shown (see Supplemental note D in (86)).
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has the highest FOM, and its value is 0.724 for radiative cooling. Figure 3.4(d) shows

the emissive power of the structure. The large emittances fall into the atmospheric

window. Note that the maximum FOM of a multilayer structure constructed by SiO2,

SiC, and PMMA is 0.250 for five layers. In the multilayer structure, each planar layer

is constructed by the same material similar to the C = 1 case. Hence, the material

arrangement in the z direction is optimized. (For the detail optimized structure, see

Supplemental note D in (86).) This means that our designed metamaterial structure

is essential to obtain a high FOM for radiative cooling.

3.3.3 Mechanism of high emittance in designed metamaterial

From the list of optimized structures (Figure 3.4(b)), structures with SiO2 located

separately at the top and bottom where SiC mediates the middle part always show a

higher FOM. To understand which part of the structure absorbs the wave energy, the

electric power dissipation density we of each part is evaluated. This value is calculated

as (87).

we =
1

2
ϵ0ϵImω|E|2, (3.2)

where ϵ0 is the permittivity in a vacuum, ϵIm is the imaginary part of the dielectric

function, ω is the angular frequency, and E is the complex electric field calculated by

RCWA.

Figure 3.5(a) shows we for several typical wavelengths of the optimum structure

designed above [i.e., the metamaterial structure surrounded by the red dotted line in

Figure 3.4(b)]. The top and bottom SiO2 absorb most of the wave energy within 8–

11µm, whereas the middle parts of the SiC layers dominate the absorption between

11–13µm. Furthermore, around 11.8µm, SiO2 also facilitates absorption.

Next, the mechanism of the high emittance of the designed metamaterial is exam-

ined. The emittance contour plot of the p-wave dispersion relation indicates that a high

emittance is almost insensitive against the incident angle (see Supplemental note E in

(86)). Hence, the resonance is not due to the surface phonon polariton, which is highly

sensitive to the incident angle. On the other hand, in terms of the magnetic polariton

(88), the diamagnetic response between the external field and centralized magnetic field

inside the structure is usually excited. Consequently, the magnetic polariton is almost

insensitive of the incident angle.
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3.3 Metamaterials design by FMQA

Figure 3.5: Contour plots of (a) the normalized electric power dissipation density at select

wavelengths and (b) the normalized magnetic field for the designed optimum structure with

L = 5 and C = 6 which is shown in Figure 3.4 (b).
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To further elucidate the magnetic polariton resonance, Figure 3.5(b) plots the mag-

netic field normalized by the maximum value at several typical wavelengths. Com-

paring Figure 3.4(d) and 3.5(b) reveals that the magnetic fields always show a strong

confinement at the part with a high emittance, which is where the polariton resonance

is excited. Furthermore, when the emittance curve falls, the confined magnetic field

becomes flatter and less centralized. These results suggest that the high emittance

of the designed structure originates from the magnetic polariton resonance. Since a

multilayer structure with five layers only shows a narrow absorption band between 8.5

and 10.5µm (Figure 3.4(d)), the structure design of materials is critical to confine the

magnetic field. To promote the understanding of our designed thermal radiator, the

angle dependence and theoretical cooling power analysis are discussed in Supplemental

notes E and F in (86).

3.4 Discussion and summary

In summary, we have proposed a new optimization technique called FMQA, which

uses a quantum annealer for automated materials discovery. In our algorithm, the

next candidate material, which is selected with respect to the acquisition function, is

represented as a solution to a combinatorial optimization by using an FM, and this

optimization problem is solved by a quantum annealer. By performing FMQA using

the D-Wave 2000QTM quantum annealer, we have demonstrated that a metamaterial

can be designed for radiative cooling within a small number of RCWA simulations. In

the target metamaterial, which has SiO2 and SiC wires placed in PMMA, a high FOM of

0.724 is achieved for radiative sky cooling. Compared to previously designed structures,

the targeted single polarization FOM is far greater than the best reported structures

with a comparable polarization- and angle-averaged cooling power (see Supplemental

note F in (86)).

Although fabrication is beyond the scope of this thesis, a stratified structure simi-

lar to the designed structures has been prepared using current technology (89). Hence,

it should be possible to fabricate the designed optimal structure. The results will be

discussed elsewhere. Here, we demonstrate that our method is applicable to the case

where the metamaterial design is expressed by binary bits. However, if combined with

methods for encoding integer variables (90, 91), our algorithm is applicable to discrete
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structural and compositional optimizations of any property as long as the property

calculation is relatively fast with respect to the optimization process. Therefore our

algorithm should help manage the transportation of various carriers (e.g., phonons,

electrons, and magnons) and contribute to creation of new energy materials by combin-

ing with a straight-forward extension such as tailoring spectral and angular-dependent

radiative heat transfer.

Ising machines are conventionally used to optimize explicitly defined functions.

Herein quantum annealer as an Ising machine is used for the black-box optimiza-

tion algorithm. In the future, the application domain of our algorithm will expand

to even larger problems as next-generation quantum annealers or other Ising machines

equipped with many bits (51, 92, 93, 94, 95, 96, 97) become available. As demon-

strated by our experiments, the hard computational barrier (e.g., candidate selection)

in automated materials discovery can be partly resolved with the help of an Ising

machine. Accordingly, the most time-consuming part will be the simulation of ma-

terial properties even if a fast simulation on classical computers is used. Therefore

it is essential to speed up the materials simulations. As there are increasing number

of studies on materials simulations by quantum computing to overcome this problem

(66, 98, 99, 100, 101, 102, 103, 104, 105, 106), we expect in the future that our algorithm

will further accelerate materials discovery.

—————————————————————————
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Local modeling

The FMQA showed a good performance for the metamaterial designing problem. How-

ever, a difficulty which is mentioned as the statistical barrier still remains in the con-

struction of a regression model on high-dimensional space with a small dataset. In this

chapter, we modify the FMQA so that the FM considers only the data points on a

local region of the input space for ensuring the accuracy inside it. The restricted search

space is still large, though, and the annealing solvers should be used for selecting the

next solution from that region. After the definition of the method, the demonstration

for solving black-box optimization on randomly-generated objective function is made.

4.1 Introduction

In surrogate-based optimization methods, the predictive accuracy of the model is essen-

tial for the effective search. There are two scenarios where the required accuracy is not

satisfied. The first case is when the regression model does not have enough complexity

to capture the shape of the objective function. The second is when not enough data

points are available for the regression. There are no ways to make accurate predictions

in both cases. As long as we stick to use the QA or other Ising machines, we cannot re-

place the FM for the regression model. To amend the first difficulty, as a consequence,

we need to regulate the area of the target region, and inside of which, train a local

regression model. This should be easier than modeling the whole input space. Once

the search space is localized, it also becomes easier to collect enough data points for the

regression, and the second difficulty is also amended. Localized regression models are
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4. LOCAL MODELING

Figure 4.1: Schematic image of BBO with global/local modeling.

actually reported to make more accurate predictions in machine learning tasks (107).

Schematic images of fitting objective function by a single global model or multiple lo-

cal models are shown in Figure 4.1. A model trained with the whole dataset (global

modeling) is expected to gradually fit to local optimum region as the data points ac-

cumulate around the optimum solution. On the other hand, multiple models meant

for fitting local parts of the dataset (local modeling) would converge faster to local

optimum solutions of their respective regions. Some of them converge to the global

optimum. Since it is difficult to tell which local region is promising beforehand, we

have to leave a flexibility so that a model can shift its domain and escape from a local

optimum.

Based on the idea of local modeling, we will try to use the FM as a local surrogate

model to guide through the search space. We will call this method local FMQA against

the original FMQA in chapter 2. For the simplicity, no regularization for the model

complexities would be introduced here. Note that it can be also important to avoid

over-fitting or to keep the interpretability of the model (108).
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4.2 Training local models

4.2 Training local models

4.2.1 Loss functions

The local modeling has been considered in the context of evolutionary optimization

algorithms (109, 110), to deal with inhomogeneity of the objective function across the

search space. According to the methods, a local model in this chapter is trained by

a local loss function, which try to fit the model parameter on only a local fraction of

the dataset around a queried point q. The squared predictive error of each data point

(xi, yi) is multiplied by a certain weight determined by the distance of xi from q. The

loss function for training the FM model (equation 2.2) is

Lq(w0, wi,vi (i = 1 · · · , d)) =
N∑
i=1

(f̂(xi ⊕ q)− yi)
2K

(d(xi,q)

σ

)
, (4.1)

where ⊕ is the XOR operation (applied bitwise for vectors), which makes 1 if the two

bits disagree and 0 if not. d(·, ·) is the distance function between two points, and σ is

the diameter of the local region which needs to be adjusted for each problem. K(·) is a
kernel function, which convert the magnitude of the distance to a weight with which the

error is accounted for. A most simple distance metric for the binary bits is Hamming

distance:

d(a,b) =
d∑

i=1

ai ⊕ bi. (4.2)

However, we would use a different distance metric:

dµ(a,b) =
d∑

i=1

{1 + 4pi(µ)(pi(µ)− 1)}(ai ⊕ bi), (4.3)

where µ is a inverse temperature parameter (≥ 0) and pi(µ) is an estimated probability

that the i’th bit of the optimum solution is 1. The definition of pi(µ) is given later. The

intuition behind equation 4.3 is that the flipping of the almost-confirmed (pi(µ) ≈ 0

or 1) bits matters more than unconfirmed (pi(µ) ≈ 0.5) ones. The kernel adopted in

equation 4.1 is:

K(ζ) =

{
(1− ζ2)2 if ζ < 1

0 otherwise
. (4.4)

This kernel puts more emphasis on the closer data points and ignores ones outside of

the 1 ≤ ζ region (hence, outside of the σ-width region in input space is dismissed).
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As a related work, an approximated covariance matrix between variables, C , is used

as a metric in an evolutionary search method called local meta-model CMA-ES (111):

d(p,q) =
√

(p− q)⊤C−1(p− q). (4.5)

The C is consecutively updated based on each population. The use of a metric defined

by the empirical dataset is useful for ill-conditioned objective functions (16).

4.2.2 Balancing exploration and exploitations

The bitwise probability pi(µ), which is introduced in global equilibrium search (GES)

method (112, 113), is an approximation to a Boltzmann distribution governed by the

objective value as energy. Its definition is based on the observed dataset:

pj(µ) =
exp[−µ(ymin

xj=1 − ymin)]

exp[−µ(ymin
xj=0 − ymin)] + exp[−µ(ymin

xj=1 − ymin)]
(j = 1, · · · , d), (4.6)

where µ is an inverse temperature and ymin is the best objective value found so far in

the dataset S. ymin
xi=0 and ymin

xi=1 are the best found objective values with its j’th bit

being 0 or 1:

ymin = min
y
{(x, y) ∈ S}, (4.7)

ymin
xj=0 = min

y
{(x, y) ∈ S | xj = 0}, (4.8)

ymin
xj=1 = min

y
{(x, y) ∈ S | xj = 1}. (4.9)

When the inverse temperature µ = 0, the probability makes no prediction and all

the data points are treated equally in the loss function:

pi(µ = 0) =
1

2
, (4.10)

d(x,q)|µ=0 = 0, (4.11)

Lq(w0, wi,vi (i = 1 · · · , d))|µ=0 =
N∑
i=1

(f̂(xi ⊕ q)− yi)
2. (4.12)

When µ is large, the probability converges to 1 only on the best observed configuration,
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4.3 Sampling from local models

and the locality is strictly defined by the Hamming distance:

pi(µ→∞) =

{
1 (ymin

xj=1 = ymin)

0 (ymin
xj=0 = ymin)

, (4.13)

d(x,q)|µ→∞ =
d∑

i=1

xi ⊕ qi, (4.14)

Lq(w0, wi,vi (i = 1 · · · , d))|µ→∞ =

N∑
i=1

(f̂(xi ⊕ q)− yi)
2K

(∑d
j=1{xi}j ⊕ qj

σ

)
. (4.15)

By the use of inverse temperature parameter µ, we can manage the metric, and

change to what extent the model is localized. Enforcing no localization will encourage

an active exploration of the search space, while strong localization will encourage a

heavy exploitation from around the existing good solutions. In many optimization

tasks, managing the balance between the exploitation and exploration is important to

find good solutions within a limited number of evaluations. However, in this thesis, the

µ is fixed throughout the optimization to keep the experimental settings simple and

tractable.

4.3 Sampling from local models

By the sampling from the local model around the point q, a relative coordinate δ∗ is

returned for the next evaluation of a point q⊕ δ∗. We need to limit the norm of δ∗ so

that q ⊕ δ∗ is within the scope of the local model. We therefore minimize the model

with a penalty term to suppress the norm of δ∗ from exceeding the predefined width σ:

δ∗ = argmin
δ

[
(1− λ)f̂(δ) + λ ·max(0,

d∑
i=1

pi(µ)δi − σ)
]
. (4.16)

Here, λ is the penalty strength (> 0) which is set manually in this experiment. The

penalty term can be encoded into the QUBO format with additional auxiliary bits. We

then evaluate the objective function on q⊕ δ∗ and append the result to the dataset. If

f(q⊕ δ∗) < f(q), q is replaced with q⊕ δ∗. Repeating the modelings, samplings, and

evaluations, the q is expected to become better.

In both the plain FMQA and local FMQA, the model can be trapped by a local

optimum and the increasing data points around it makes it further difficult for the

algorithms to escape from the local region. In local FMQA, we can change the inverse
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temperature µ, and/or reset the center point of the local model by sampling from pi(µ).

The way of resetting the local region according to the equation 4.6 is also coming from

the GES method. Although we won’t try these methods here, the tuning of µ and

resetting the local region could help the optimization process.

4.3.1 Updating model parameters

When we change the center point of the local model from q to q ⊕ δ∗, we convert

the parameter {w0, wi,vi (i = 1, · · · , d)} of the original model f̂(δ) to the newer

{w′
0, w

′
i,v

′
i (i = 1, · · · , d)} of f̂ ′(δ) by shifting variable:

∀δ f̂ ′(δ) = f̂(δ ⊕ δ∗) (4.17)

⇔


v′
i = (1− 2δ∗i )vi,

w′
i = (1− 2δ∗i )

(
wi +

∑
j ̸=i(vi · vj)δ

∗
j

)
,

w′
0 =

∑
i<j(vi · vj)δ

∗
i δ

∗
j +

∑
iwiδ

∗
i + w0 = f̂(δ∗).

(4.18)

By inheriting the parameters from the previous model, the training cost of the current

model over the new local region is reduced.

4.4 Benchmark on CUBO

Our interest is in that the use of local modeling encourages the better regression accu-

racy for the black-box objective function, in local regions. The FM model is inherently

a quadratic function and, for instance, would fail to fit to cubic functions if trained

over the entire input space. To test the robustness of the local FMQA in such a case,

we generate cubic unconstrained binary optimization (CUBO) problems at random and

solve them in the BBO setting to compare with other methods such as the plain FMQA

and greedy search.

A CUBO problem is formulated as follows:

min
x∈{0,1}d

∑
i≤j≤k

qijkxixjxk, (4.19)

where the problem is formulated by the coefficients qijk. According to the similar rules

for generating QUBO (not CUBO) problems for benchmarking in (114), several CUBO

problems are randomly generated so as that: (i) a problem has non-zero coefficients for

1% of possible n(n−1)(n−2)
3! cubic terms, n(n−1)

2 quadratic terms, and n linear terms. (ii)
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All non-zero coefficients are sampled from integer-valued uniform distribution between

[−100, 100]. The problem size d is set to 64, and 5 problems are generated at total.

4.5 Results

We compared the local FMQA method against the plain FMQA discussed in Chapter

2, greedy search algorithm, and random search. In the local FMQA method, we used

the inverse temperature µ = 1.0, local region width σ = 8, and regularization weight

for the step size λ = 0.05. Simulated annealing is used for the sampling, as a general 64

bit problem is still difficult to solve with the D-Wave machine. This does not matter

here because our focus is on the use of local FM model, rather than on the use of QA.

The greedy search is the most naive local search method. Starting from a random

point, it try to flip one bit at a time. In the experiment, we do not evaluate all the

configurations next to the current solution to select which bit to flip. Instead, we

confirm a bit flipping as soon as the evaluated score is revealed to be better than

current one. This accelerates the optimization process in practice. We can think of this

method as the most exploitation-oriented one.

The result of an experiment on a CUBO problem is shown in Figure 4.2. Each

curve is a minimization trajectory averaged over 10 times of trials. The colored area

shows the standard deviation. At the beginning of the optimization (right after the

evaluations of 100 random structures), the improvement of the solution by local FMQA

and the greedy search was faster than FMQA. While the greedy search tended to stuck

at higher values, the local FMQA reached as good value as the plain FMQA achieved

finaly, with fewer evaluations. Though the FMQA method found good configurations

after 3000 times of evaluations, it showed a plateau-like curve in the early stage of the

optimizations. This was not always the case in the all generated problems, but FMQA

tended to be slower than greedy method at the beginning of the optimization. The

results on all of the problems are shown in the Appendix A of the thesis.

4.6 Discussion

The local FMQA was as fast as greedy search at the beginning, and found as good

solutions as plain FMQA. It seems that we could incorporate the early converging
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Figure 4.2: Result of optimization for a generated 64bit CUBO problem.

speed of the local search to the FMQA without causing the higher probability of being

caught by local minima. We neither reset the center point of local model, nor changed

the inverse temperature for this experiment, but the method was still resistant to the

local optimums. It can be assumed that the method might work robustly without the

delicate tuning of the hyper parameters. We would like to empirically investigate their

effects and best configurations in the future research.
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5

An application for analyzing

quantitative structure-activity

relationship

The local FMQA method made the optimization process fast especially in the earlier

steps. The improvement would be more beneficial when dealing with higher dimensional

optimization problems because learning global FM models in the plain FMQA with

only dozens of data points gets more and more difficult as the dimension increases. An

important example of that sort of problems is feature selection where we have to choose

a subset of available variables for constructing better machine learning models. The

optimization of models for predicting drug-like molecules’ activity against a specific

protein is tried in this chapter.

5.1 Introduction

The structure of organic molecules plays an essential role in chemical reactions in bi-

ological systems such as selectively triggering the function of a targeted enzyme or

propagating information between neural cells. Many drugs enhances or suppresses

the process to modify the chemical dynamics in the body toward the desired one.

Computer-aded drug design/discovery (CADD) has been an indispensable tools for

pharmaceutical researches to tame the structural diversity and complex interactions

of molecules. Although molecular mechanics (MM), molecular dynamics (MD), and
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other simulation methods considering even quantum effects have been evolved and

are available for replacing the part of initial screening steps, they cost a lot of com-

putational time/resources and it is still unrealistic to examine every single candidate

molecule. Therefore, many machine-learning methods to reduce the number of candi-

date molecules or to suggest a good lead compound to developers have been proposed.

The attempt to construct predictive models of organic compounds’ activities/properties

is called the quantitative structure-activity relationship (QSAR) analysis(115, 116).

Scientists have noticed that the structual information of a group of compounds can

describe their some important properties by simple regression models (117, 118). The

very basic type of QSAR models is linear regression for some essential variables like

electronegativity and hydrophobicity based on the molecule’s residues. Some recent

QSAR models utilize the neural networks to capture non-linear effects. Their input

space can be high-dimensional feature vectors which are generated by fingerprinting

methods (discussed later).

One important goals of statistical modeling is to gain insight behind the target

system. Expanding the feature vectors to achieve better predictive accuracy is the half

of the work. The other half is to investigate the resulting model. Before looking at,

say, thousands of input features, we need to extract the only features that are relevant

to the objective value or performance.

5.2 Feature selection

Feature selection is the problem of choosing only the important features out of many

unneeded or redundant features. All feature selection methods are classified into three

groups: filter method, wrapper method, and embeedded method.

5.2.1 Filter method

Reducing the features based on the data itself and then passing the remained features

to the training of the predictive model is called filter method. The correlation between

features and labels, or information gain are often used. This method is relatively

handier, faster and can be applied independent of the successive model to be trained.
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5.2.2 Wrapper method

A feature reduction method, where the predictive model is repeatedly trained on the

subset of features until finding the good subset, is classified as wrapper. Since we

directly check the model’s performance during the process, this method can find the

best models while the computational cost is also the highest. This is the same for the

black-box optimization, which is the repeating of observing the objective value and

changing the input as many times as allowed. This means that the FMQA method is

also classified as this wrapper method, when applied for the feature selection problem.

5.2.3 Embedded method

Some machine-learning models automatically dismiss irrelevant features for their pre-

dictions. We say that the feature selection is embedded in the model for this case. Once

the model training is finished, we can safely omit the unused variables from the input.

5.3 Application

In (119), 1746 molecules from a dataset by Tox21/ToxCast programs (120, 121) of U.S.

Environmental Protection Agency (U.S. EPA) were extracted for training QSARmodels

of androgen receptor (AR) activities. The molecules’ 1024-bits extended connectivity

binary fingerprints (ECFPs) were prepared in (122), which is made available on the

UCI online repository (123). The ECFP is a binary-valued feature vector of a molecule,

and each bit of which represents whether or not one or more specific substructures are

contained in the molecule. The QSAR models based on the molecular fingerprints

are getting more popular thanks to the increasing processing power of computers and

statistical models which can express nonlinear effects between input variables. However,

the drawback of using them is the excess amount of variables which are prone to the

overfitting problem. The models are expected to show better generalizability with

the dimension reduction by feature selection techniques. Here, the local FMQA is

adopted for selecting the effective set out of the 1024 features to construct a classifier

for predicting the AR activity.

We need an index to indicate the “goodness” of a subset of variables for the feature

selection. The N-Nearest Neighbor (N3) method (124), a variation of nearest-neighbor

classifiers, was reported to show a better accuracy along with other methods like naive
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Bayes and random forest classifier on the dataset (122). Therefore, we use the cross-

validated (CV) F1 score of a similar model, k-Nearest Neighbors (k-NN) models with

k = 3 and Jaccard similarity, in this chapter. Technically speaking, the optimization

is treated as a minimization of the negated F1 score in our black-box optimization

experiments.

The performance of local FMQA was compared with several algorithms: random

search, greedy search, forward feature selection, genetic algorithm (GA), and FMQA.

The forward feature selection is a common method where the considering feature subset

in the modeling is initialized with null set and gradually incremented. At each step of

the increment, a feature variable which gives the best improvement on the score is joined

into the modeling. We here avoid checking all the effect of adding each unused variable

exhaustively at each step, and instead, check only subsampled 10 candidate variables

from which the best one is joined. This makes it possible to choose 100 variables after

1000 times of score evaluations. In greedy search, we do the same subsampling for

candidates’ evaluations to update the initial configuration 100 times within the 1000

times of evaluations.

GA is also used for reducing the input variables of QSAR models (125, 126). In

GA, a group of variable subsets is generated at first. The group experience alternating

selection and reproduction (cross-over and mutation) phases to make new generations

so that the only well-performing subsets survive in the end. In the experiment, we used

the group size of 50 and made it pass through 20 generations, which entail 1000 times

of score function’s evaluations. The 8 parent subsets were selected for one cross-over,

mixing in all the configuration, with roulette wheel selection, and the 10 percent of

the bits in the resulting configuration are mutated at random. For the experiment, an

implementation of GA in Python language, PyGAD (127), is used.

For the local FMQA, we used the diameter of the local region σ = 16, inverse

temperature µ = 3.0, and regularization weight λ = 0.1. SA solver, instead of QA, is

used for sampling due to the large problem size.

5.4 Result

The optimization curves are shown in figure 5.1. The local FMQA method showed the

best optimization performance of all the methods. However, the result of the normal
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Figure 5.1: Optimization of the feature subset for constructing QSAR model of AR

activity.

FMQA tended to be worse than random search.

The forward selection began to improve at around 600 evaluations, which tells that

the models with more than 60 variables included would be better. The initial improve-

ment rate in GA was relatively faster, but it soon got stuck. Its resulting configuration

was slightly better than random search. The greedy search method showed the steady

improvement along the optimization steps.

5.5 Discussion

The better performance of local FMQA than other methods indicated its optimality for

the high-dimensional feature selections. The fail of FMQA, on the contraly, suggest the

difficulty of training a global FM model over high dimensional space with data points

fewer than the problem dimension. The steady improvement in greedy method implies

that the method did not reach local optimums within the 1000 evaluations. Finding

even a local optimum seems to be an expensive task in high dimensional problems.

Therefore, the greedy-like methods would be reasonable options when the construction
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of the model is costly. The forward feature selection is also a method which collects

features in a greedy manner and its performance has been dramatically risen up after

selecting 60 features in this case. It suggest that the better performance might be

achieved with the forward selection method if more evaluations are allowed.

5.5.1 Validation of the models

In the experiment, the feature subset with the better CV score was obtained. A good

score means that the models trained on the chosen features “generalize well” for test

data. However, the model can be still overfitting to the specific patterns of splitting

data used in the CVs. With the local FMQA, about 500 features were selected for the

modeling (Figure 5.2). It is still too many to understand the reasons why the choice was

made, but there are two other ways to validate the selected features. The one way is that

if the selected features are preserved across the different trials of optimization, then the

features are considered to have some knowledge for the classification. Unfortunately,

though, no consistent patterns were found in this experiment. The other way is to re-

evaluate the F1 scores of the found feature subsets over different dataset, or different

data splitting patterns of CVs. The distribution of the F1 scores of the feature subsets

found by local FMQA, greedy, and forward feature selection were measured on different

CV trials and shown in Figure 5.3. For the box plots, 50 different random seeds were

used for CV calculations. On all the methods, the score with the original random seed

showed the best score over different seeds, and there were significant gap between the

best and the typical scores. However, the order of the median scores of the methods

were the same as their best F1 scores. This indicate that the best feature subset found

here has some amount of justification to give better classification models on different

datasets on average.

5.6 Conclusion

An application of local FMQA method is demonstrated in this chapter. Note that

we used the SA sampler rather than the QA, to deal with the high-dimensionality of

the problem. The local FMQA method found the better feature subsets for statistical

classification models with fewer actual constructions of the models. This would be a
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Figure 5.2: Number of features selected out of 1024 for the modeling in the 10 different
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help especially when the training of the model is costly, like training neural networks

or other complex statistical models.

The resulting feature subset was validated, and it showed a bit of robustness for

different cross-validation patterns. It would have contained the important combina-

tions of features for the classification task, but yet to be discovered. To facilitate the

understanding of the resulting models, we need to further reduce the number of selected

features without loosing the F1 score. Therefore, imposing the penalties for selecting

many features in the local FMQA to obtain compact and understandable models will

be the future work.
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6

Conclusion and perspective

6.1 Conclusion

The basics of black-box optimization is discussed in chapter 1. The versatility of

the methods are crucial for real-world optimization tasks. Among the methods, the

surrogate-based methods are promising for reducing the number of evaluations of ob-

jective functions, but suffers from computational barrier due to a large search space.

As a new black-box optimization method for combinatorial optimization problems, the

FMQA is proposed in chapter 2. It utilizes a quantum annealing solver to shorten the

time for selecting the next configuration to be evaluated, and partly solved the com-

putational barrier. It actually showed a good performance for a materials designing

problem in chapter 3. Those results encourages the use of FMQA for many combina-

torial optimization problems.

In chapter 4, the factorization machine in the FMQA method is extended with

local modeling technique (local FMQA). The experiments showed that the use of lo-

cal models accelerated the optimization in the beginning of the process. This would

be beneficial especially for problems on high dimensional space, where a normal fac-

torization machine requires a lot of data points until it makes predictions with some

accuracy. In chapter 5, we demonstrated the performance of local FMQA on a feature

selection problem for efficient modeling of drug activities. The successful result of the

optimization supported the usefulness of the method, and the possible scope of the

applications are widened for even higher dimensional problems.

The crucial point of our methods is that it accesses annealing solvers many times
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to solve one optimization problem. This is different from the usual use-cases where the

targeted combinatorial optimization problem is formulated into a QUBO and solved at

one shot. Our approach is more like solving many subproblems to solve one big and hard

problem. The application of annealing solvers as a backend to solve subproblems in

classical optimization frameworks is also discussed in (128). As the quantum system and

various Ising solvers are not freely scalable, the common approach in the application will

be chunking the problems into smaller sizes at which the solvers exceed the performance

of classical algorithms.

6.2 Future perspective

Though the empirical benefits of the proposed methods were observed in the exper-

iments, the best practice for using them is yet to be clarified. The most important

part is the tuning of hyperparameters, which were manually set in this thesis. The

factorization machine requires a fixed factorization size K, whose default value is com-

monly 8. The local modeling by a factorization machine requires further parameters

like the inverse temperature µ, the width σ of a local region, and the weight λ on

which the sampling from the proximity is facilitated. A guideline for selecting these

values properly are essential for both the theoretical understanding of the methods and

the practical use cases. Those knowledge will be pursued by carefully examining each

method in the future.

The pros and cons of using a factorization machine as a local model are also not

addressed here. Looking at the results, the original FMQA would be better for problems

with around few dozens of dimensions, while local FMQA would perform better for

larger problems. While we further explore other applications, a criteria for deciding

which method to use will be defined, too.

6.3 Different types of annealing solvers

In the experiments of the thesis, only the SA and QA were used for the QUBOminimiza-

tion part. However, along with the quantum annealing machine, there are numerous

annealing algorithms/hardwares available like parallel tempering (129), population an-

nealing (130, 131), Digital Annealer (132), Simulated Bifurcation Machines (133), and
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CMOS annealing machines (92). They are very competitive with the QA machines,

especially for the problems with dense connections between the bits. As our FMQA

models output densely-connected QUBO objectives to be minimized, using those op-

tions might improve the performance.
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Appendix A

Benchmark results on CUBO

A.1 Results on all of the problems

All the results of benchmarking localFMQA on 5 CUBO problems, which were men-

tioned in chapter 3.2, are shown in figure A.1. For each instance and each method,

we conducted 10 times of optimization trials to measure the average performance. A

line and its surrounding colored area indicate the mean and the standard deviation

calculated by the 10 trials of each configuration.

As we can see from the plots, greedy search is always the fastest of the four methods

at the first few hundred steps, but ends up in a local optimum. On the other hand,

FMQA seems to be able to find more optimal solutions in the end, though the improve-

ment at the beginning of the optimization is poorer than the greedy search. The scale

of gap varies depending on the problem. However, the localFMQA method constantly

shows the hybrid property of the greedy search and FMQA methods as stated in the

chapter 2. Unless we are sure that only the very small number of evaluations is allowed,

the localFMQA is probably the better choice than greedy search or FMQA.

A.2 How the optimization proceeded

Visualizing the sequence of the evaluated configurations gives us how the optimiza-

tion proceeds. In figure A.2, the 3000 sequencial evaluations by greedy, FMQA, and

localFMQA methods are plot. The characteristic description can be made on each

method:
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Figure A.1: Results of optimization for all the 5 CUBO problems.

Figure A.2: All the configurations obtained through optimizations.

• In greedy method, the configuration is almost fixed in earlier steps

• In FMQA method, the sequence is highly variable and the plot looks noisier, but

finaly find a good solution.

• In localFMQA method, the sequence looks stable like greedy, but drastic changes

occur even at later steps.

The observation supports our assumption that the localFMQA method is the hybrid

of the greedy-like search method and FMQA. In addition, localFMQA changes few

configuration bits at a time, which makes more sense for human than seemingly-noisy

FMQA.
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Appendix B

Tutorial

Our implementation of FMQA in Python language is available at

https://github.com/tsudalab/fmqa.

The simple usage of the package is shown here.

B.1 Installation

To install the package, clone the repository from the github and move into its root

directory at first. We assume a POSIX shell environment in the following instructions.

$ git clone https://github.com/tsudalab/fmqa

$ mv fmqa

All the installation process such as extracting files and resolving dependencies are

managed by the Python’s setuptools utilities. The package’s information is contained

in the setup.py script and the installation command is in one line as:

$ python setup.py install

If no problem occurred, the package is ready to use.

We use a simulated annealing solver in this tutorial. Use pip command to install

it.

$ pip install dwave-neal
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B. TUTORIAL

B.2 Example

As an example problem, we would generate 7x7 binary image with 13 pixels being 1

and with minimum edge length. This makes the pixels concentrate rather than scatter.

We consider the edge length as a black-box objective function, and define it as a

function surface in Python. We also define a function for visualizing the configura-

tions.

import numpy as np

import matplotlib.pyplot as plt

def plot_7x7(x):

plt.figure(figsize=(3,3))

plt.pcolor(np.reshape(x, (7,7)))

def surface(x):

xx = np.reshape(x, (7,7))

return np.sum(xx[1:,:] ^ xx[:-1,:]) + \

np.sum(xx[:,1:] ^ xx[:,:-1]) + \

np.sum(xx[ :, 0]) + \

np.sum(xx[ :,-1]) + \

np.sum(xx[ 0, :]) + \

np.sum(xx[-1, :])

An example image below has surface length of 20.

x = np.array([

[0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0],

[0, 0, 1, 1, 1, 0, 0],

[0, 1, 1, 1, 1, 1, 0],

[0, 0, 1, 1, 1, 0, 0],

[0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0],

]).flatten()
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B.2 Example

print("Length = ", surface(x))

plot_7x7(x)

Length = 20
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To train our initial FM model, we generate 100 random configurations xs and

evaluate all of them (ys).

np.random.seed(12345)

xs = np.random.randint(2, size=(100, 49))

ys = np.apply_along_axis(surface, 1, xs)

Our model is an instance of FMBQM class defined in the fmqa library. A new instance

is initialized based on the dataset at the creation time:

from fmqa import FMBQM

model = FMBQM.from_data(xs, ys)

Now the model is ready to be feeded to the optimization solvers. We select the next

configuration by simulated annealing algorithm here. The implementation is available

in the neal package from D-Wave Systems Inc.
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B. TUTORIAL

from neal import SimulatedAnnealingSampler

sa_sampler = SimulatedAnnealingSampler()

We haven’t coded the constraint that the 13 pixels should take value 1, yet. The

constraint can be represented by QUBO problem, too.

min
x

( d∑
i=1

xi − 13
)2

= min
x

{∑
i<j

2xixj −
d∑

i=1

25xi

}
(B.1)

We encode it to an instance of BQM class in D-Wave’s dimod package.

from dimod import BQM

constraint = BQM.from_qubo(np.triu(np.ones((49,49))*2, k=1) - \

np.diag(np.ones(49)*25))

The constraint is added to the model to generate the solution which satisfies the

constraint while minimizing the predictive value.

def contains(xs, x):

’’’ The utility function to check if

the solution x is already contained

in the dataset xs. ’’’

return np.any(np.all(xs == new_x[None,:], axis=1))

# Main loop

for n in range(900):

# Add constraint with weight 0.25

model_constrained = BQM.from_qubo(model.to_qubo()[0])

for i, qii in constraint.iter_linear(): # Linear term

model_constrained.add_variable(i, qii * 0.25)

for i, j, qij in constraint.iter_quadratic(): # Quadratic term

model_constrained.add_interaction(i,j, qij * 0.25)

# Sampling (optimization) by SA

new_x = sa_sampler.sample(model_constrained).record[’sample’][0]
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B.2 Example

# Apply random editting if the predicted

# minimizer new_x is already contained in xs

while contains(xs, new_x):

new_x[np.random.randint(49)] ^= 1

# Evaluation of the new_x

new_y = surface(new_x)

# Append the new data to the dataset

# and update the model

xs = np.r_[xs, [new_x]]

ys = np.r_[ys, [new_y]]

model.train(xs, ys, num_epoch=100)

Here we plot the result of 1000 times of evaluations.

plt.plot(ys, ’.’)

plt.ylabel(’Length’)

plt.xlabel(’Evaluated structures’)
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We can see that after the 100 times of random samplings, the algorithm selectively

sampled the configurations with relatively less lengths. Among the all of the 1000

evaluations, the best found configuration is shown below.
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B. TUTORIAL

satisfied = constraint.energies(xs) == -169

best_conf = xs[satisfied][np.argmin(ys[satisfied])]

plot_7x7(best_conf)

print("Length = ", surface(best_conf))

Length = 16
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The actual minimum value 16 is found. Note that the solution is solery found on the

BBO setting. No information about the objective function such as geometry of the

pixels or methematical expression is used.
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