
 

論 文 の 内 容 の 要 旨 

 

 

論文題目    量子アニーリングを用いたブラックボックス最適化 

        （Black-Box Optimization with Quantum Annealing） 

           氏  名    北井 孝紀 

 

In this thesis a new black-box optimization method, factorization machine for quantum annealing (FMQA), 

is proposed. The method targets at any combinatorial optimization problems. It is composed of a regression 

model called factorization machine (FM), and a heuristic minimization solver called quantum annealing 

(QA). A proof-of-principle demonstration of the FMQA's efficiency on a metamaterial designing problem is 

made, and it found better materials structure than the ones found with some classical algorithms. To 

improve the performance for further optimization problems, the FMQA is modified with a local modeling 

technique. It is tested on several benchmarking problems and on an application for feature selection 

problem. The method is revealed to be more robust than the original FMQA for the early steps of 

optimizations. 

 

In science, industry, and engineering, there are often optimization problems where we have to get an 

objective value by experiments or simulations (e.g., maximizing energy conversion efficiency or minimizing 

resource consumption). We cannot always expect the objective function's analytical representation or 1st-

degree gradient information in those cases. Such an optimization task is called black-box optimization (BBO).  

 

In the recent development of BBO methods, optimization problems over discrete or binary variables are 

gathering more attention, for example, in materials informatics. In this thesis, our targets are limited for 

BBO problems with binary variables. The assumption in BBO is so common and there are several 

optimization algorithms for solving them. One of the naivest ways is greedy editing.  In the greedy editing, 

we apply single-variable flipping repeatedly as long as that improves the objective value. Simulated 

annealing and tabu search are variations of the greedy editing, where the variable flipping yielding the 

degraded objective value is sometimes allowed. They are suited for solving problems where the objective 

value is easily evaluated but not for all BBO problems. The most successful algorithms for BBO belong to 

surrogate-based methods. We construct a regression model (or surrogate model) using the data already 

obtained and select the most promising input configuration based on it. Afterward, we evaluate the 

objective function on the selected configuration and add the result to the dataset. The selections and 



evaluations are continued until some convergence criterion is met. Using the surrogate model makes the 

process aware of the objective function's landscape and it reduces the required evaluations of the objective 

function. That is what makes the surrogate-based methods appropriate for real-world BBO problems. 

 

On the other hand, BBO algorithms may fail when the search space is too large because finding the most 

promising configuration can be difficult even on the surrogate model. To solve the increasingly larger 

problems, a new BBO algorithm that can deal with a huge search space is required. 

 

Recent technological advancement for implementing multiple quantum bits (qubits) and manipulating their 

connections sparkled further exploration of quantum computing algorithms. Adiabatic quantum computing 

(AQC) is a special type of quantum computing, which utilizes the time development of an adiabatic 

quantum system for solving computational tasks. D-Wave Systems Inc. has developed D-Wave 2000QTM, a 

quantum annealing (QA) machine, for realizing an AQC process. The scope of AQC is more limited than the 

general quantum computing. However, the D-Wave 2000QTM, for example, is composed of 2000 qubits, 

which is an order of magnitude more than the ones implemented in general-purpose quantum computers 

so far. The machines are already used as the core of optimization systems for various commercial-scale 

problems. 

 

QA is a heuristic similar to the simulated annealing algorithm, but its variables go through superposed states. 

QA's current implementation can solve combinatorial problems represented in the quadratic unconstrained 

binary optimization (QUBO) format, which includes NP-hard problems. QUBO is a minimization problem of 

the form: 

min
𝐱∈{0,1}𝑑

∑ 𝑞𝑖𝑗𝑥𝑖𝑥𝑗𝑖≤𝑗       (1) 

where 𝑑 is the number of variables and 𝑞𝑖𝑗 ∈ ℝ is a parameter for configuring the problem. Typically, we 

convert our optimization problems in this QUBO format and solve them with the QA machine. 

 

QA's ability to deal with high-dimensional problems is desirable for BBO to overcome the limitation of 

searching in a large space. To fit the BBO problems to QA machines, we must use surrogate-based methods 

whose model is compatible with the QUBO format. 

 

A quadratic regression function as a surrogate model is proposed for the BBO over continuous variables in 

[M. J. D. Powell, 2009]. Similarly, the objective function of QUBO in expression (1) can be used as a surrogate 

model for BBO over binary variables. However, a difficulty arises from that there are 𝑑(𝑑 + 1) 2⁄ + 1 ∼

𝒪(𝑑2)  model parameters in (1), which requires the dataset of the size proportional to 𝑑2 . This is too 

demanding when 𝑑 is large and when one evaluation cost is unignorable. 

 

 



 

Figure 1: (Left) Materials structure and calculation of its FOM. (Right) Comparison of 

FMQA against Bayesian optimization and random search. 

 

We instead use the factorization machine (FM) as a surrogate model. FM is the following quadratic function: 
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where 𝑤𝑖(𝑖 = 0, ⋯ , 𝑑) is scalar and 𝐯𝐢(𝑖 = 1, ⋯ , 𝑑) is a vector of size 𝐾 (hyperparameter). Compared 

to QUBO's objective, the model parameters' size is reduced to 𝑑𝐾 +  𝑑 +  1, leading to less size required 

for the training dataset. We can convert a trained FM model to QUBO's objective function easily by 

equations: 

𝑞𝑖𝑖 = 𝑤𝑖                  ( 𝑖 ∈ {1, ⋯ , 𝑑}) 

                                  𝑞𝑖𝑗 = 𝐯𝑖 ⋅ 𝐯𝑗     (𝑖, 𝑗 ∈ {1, ⋯ , 𝑑}; 𝑖 < 𝑗).         (3) 

 

We then solve the resulting QUBO problem by the QA. Since the QA machine is specially designed hardware 

for the QUBO problem, a promising solution is obtained instantly. The combination of FM and QA is termed 

factorization machine for quantum annealing (FMQA). 

 

A proof-of-principle experiment on a realistic application in materials science is made for validating the 

FMQA. A composition of different materials to show extraordinary properties than bulk materials is called 

metamaterial. Designing metamaterials became complex and difficult because of advancements in 

synthesizing technology. We tried to design metamaterials for selective radiative cooling as an example 

where such a designing task is represented in a BBO on binary variables. 

 

Our target material was a stacking of fiber-shaped materials in a repeating pattern, with each fiber has a 

cross-section of a 1μm square (Fig.1 Left). The source materials (SiO2, SiC, and PMMA) are stacked up to 9 

layers. We can calculate spectral radiation by rigorous coupled-wave analysis (RCWA) simulation if a 
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stacking pattern is specified. 

 

What is to be optimized here is the radiation intensity's fitness to a wavelength band so-called atmospheric 

window (from 8 to 13μm). In other words, we have to keep the radiation intensity between the atmospheric 

window as close to a theoretical upper bound, while at outside keeping it as close to zero. The whole fitness 

is evaluated by a weighted integration over the entire wavelengths, resulting in a real value between -2.0 

and 1.0 (higher is better), referred to as FOM (Figure of Merit). 

 

By applying our method to the problem, we achieved faster optimization than Bayesian optimization, which 

is an algorithm known to works well for BBO on continuous variables, in designing structures with 4 layers 

and 3 columns (Fig.1 Right). We also tried to design many different sizes of the structures and found a 

configuration which shows an unprecedented performance of FOM=0.724. 

 

We also developed the variation of the FMQA with localized FM models, local FMQA. The QA part needed 

to be replaced with SA due to the shortage of qubits, but the modification made the model faster and 

robust for a set of benchmarking problems especially in the beginning steps of the optimization. It is also 

applied for a feature selection task for efficiently modeling the androgen receptor (AR) activity of chemical 

compounds. The data is based on an open repository about quantitative structure-activity relationship 

(QSAR) analysis. As a result, the local FMQA was faster and better at choosing the relevant features to 

predict the output label of the compounds than other methods. The localization of surrogate models can 

be beneficial for a practical performance of BBO methods. 

 

Throughout the thesis, effective applications of QA for black-box optimization are proposed with several 

use cases. The selection power of QA could help the optimization process, with the use of an FM as a 

surrogate model. The design and hyper-parameter tuning of the models could further accelerate it. The 

future work will be finding an effective strategy for achieving better optimization performance, along with 

other realistic applications other than the ones addressed here. 


