
 

 

 

 

博士論文 (要約) 

 

Studies on the estimation of water temperature experienced  
during the larval stage of Pacific bluefin tuna Thunnus orientalis 

using SIMS oxygen isotope analysis of otoliths 
 

 

 

(SIMSによる耳石酸素安定同位体比分析を用いた 
クロマグロ仔魚期の経験水温の推定に関する研究) 

 

 

 

 

 

 

Yulina Hane 

羽根 由里奈 

 



 
 

1 

Acknowledgement 
 

My sincere gratitude goes first to my supervisor Prof. Shingo Kimura, who guided me throughout 

the entire course of my graduate education since I have become a member of his laboratory in 2013. 

His expertise and enthusiasm in the field of biological oceanography gave me an inspiration to pursue 

a career in science and taught me what it is like to be a researcher. My research journey would not 

have been possible without his valuable advice, expertise, and supervision. 

I would also like to thank Prof. Yusuke Yokoyama whose expertise in interdisciplinary academic 

topics broadened my perspectives and pushed me think and explore out the box. I would also like to 

thank him for reviewing my thesis and providing valuable suggestions. My heartfelt gratitude also 

goes to Dr. Takayuki Ushikubo of the Kochi Core Center of Japan Agency for Marine-Earth Science 

and Technology and Assoc. Prof. Toyoho Ishimura of Kyoto University who kindly provided me 

necessary technical support and constructive advice whenever I encountered difficulties in carrying 

out my research. I would also like to extend my appreciation to Dr. Yosuke Miyairi and Dr. Nobuhiro 

Ogawa for the stimulating discussions with challenging questions which incented me to think beyond 

the scope of my research. I am also grateful to Dr. Yoichi Miyake of the National Research Institute 

of Fisheries and Environment of Inland Sea for his critical feedback on my research that always 

navigated me into the right direction. I would also like to thank Prof. Shigeaki Kojima, Assoc. Prof. 

Kosei Komatsu, and Assoc. Prof. Shigeyoshi Otosaka for their critical review on my doctoral 

dissertation and insightful and extremely helpful comments that improved the quality of the thesis. 

My warm appreciation also goes to Dr. Shengle Yin, Dr. Kuan-Mei Hsiung, and members of 

Biological Oceanography Group in the Atmosphere and Ocean Research Institute who supported me 

with great care and love and helped me get through hard times and countless sleepless nights. I would 

also like to thank Dr. Kozue Nishida of University of Tsukuba and Mr. Tomoya Aono for their 

technical support and critical suggestions on the design of the experiment. 

Last but not least, I would like to give my warmest thanks to my family for always being there for 

me and supportive and encouraging me whenever I had difficulties in the course of completing the 

doctoral degree. I could not thank enough for the love and support that you have given me. 



 
 

2 

CHAPTER 1 

Chapter 1 cannot be viewed because the contents will be published in an 
academic journal. 
  



 
 

3 

CHAPTER 2 

Chapter 2 cannot be viewed because the contents will be published in an 
academic journal. 
  



 
 

4 

 

CHAPTER 3 

Temperature reconstruction using otolith δ18O 

 
3.1.  Introduction 

Ocean warming causes significant impacts on marine species and ecosystems, including high 

mortality, distribution shifts, and loss of spawning and nursery habitats (Perry et al., 2005, Kimura et 

al., 2010, Muhling et al., 2011, 2015). Species that spawn seasonally in relatively limited areas are 

particularly vulnerable to increasing water temperature, as their optimum range in spawning 

temperatures tends to be restricted. Pacific bluefin tuna is a highly migratory species that spawns in 

waters near the Nansei Islands in the western North Pacific from May to June and in the Sea of Japan 

from July to August (Yonemori 1989, Ohshimo et al., 2017). Adult fish in the western North Pacific 

spawn at temperatures between 26 and 29°C, whereas those in the Sea of Japan initiate spawning at 

temperatures greater than 20°C (Chen et al., 2006, Tanaka 2011, Suzuki et al., 2014, Okochi et al., 

2016). In the laboratory, the growth rate and survival of Pacific bluefin tuna larvae significantly 

decrease when temperatures exceed 29°C (Kimura et al., 2007). In fact, projected temperature in the 

current spawning sites is expected to increase by more than 3°C by 2100 under the most extreme 

IPCC climate-warming scenario (IPCC 2007) and become unsuitable for Pacific bluefin tuna to 

spawn (Kimura et al., 2010). As bluefin larvae are particularly vulnerable to thermal stress, warming 

sea temperatures are likely to cause significant impacts on their early growth and survival. However, 

the effects of ongoing climate change on the early life stages of Pacific bluefin tuna are poorly 

understood due to a lack of empirical evidence and methods to study such effects. 

Oxygen isotope ratios (δ18O) in otoliths, biogenic calcium carbonate (aragonite) found in the inner 

ear of teleost fish (ray-finned bony fish), has been widely used as a natural tag to reconstruct water 

temperatures and salinity conditions experienced by fish (Thorrold et al., 1997, Campana 1999, Jones 
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& Campana 2009). Such reconstructions of past environment are possible because otoliths generally 

develop at or close to the isotope equilibrium with ambient water, and many studies have 

demonstrated the temperature-dependency of otolith δ18O for various fish species under laboratory 

conditions (Kalish 1991, Thorrold et al., 1997, Høie et al., 2004, Kitagawa et al., 2013). Existing 

methods of temperature reconstruction for fish mostly rely on δ18Ootolith measurements by conventional 

isotope ratio mass spectrometer (IRMS), which often involves a milling process to obtain a relatively 

large amount of otolith powder for analysis (usually > a few tens of micrograms with a minimum 

weight requirement of 15 µg). Ambient water temperatures have previously been reconstructed using 

IRMS for sockeye salmon Oncorhynchus nerka (Zazzo et al., 2006), alewife Alosa pseudoharengus 

(Dufour et al., 2008), Atlantic cod Gadus morhua (Jones & Campana 2009, Leesen et al., 2020), 

turbot Scophthalmus maximus (Imsland et al., 2014), and chub mackerel Scomber japonicus (Higuchi 

et al., 2019), most of which have a monthly to annual resolution depending on the otolith size. The 

limited temporal resolution due to the sample mass requirement of the IRMS is inevitable and makes 

it particularly difficult when analyzing the otolith core and edge. 

The recent developments in secondary ion mass spectrometry (SIMS) δ18O analysis of otoliths 

have enabled a high-resolution reconstruction of migration and life history characteristics of marine 

species (Hanson et al., 2010, Matta et al., 2013, Shiao et al., 2014, Helser et al., 2018a, Shirai et al., 

2018, Willmes et al., 2019). Unlike conventional IRMS, SIMS is capable of determining isotopic 

composition within a spatial resolution of 5–15 µm, which allows sub-annual, seasonal, and even 

weekly or much shorter timescale analyses with high accuracy and precision (Valley & Kita 2009, 

Kita et al., 2009). While a recent study (Sakamoto et al., 2019) reconstructed migration histories of an 

individual Japanese sardine Sardinops melanostictus with 10–30 days resolution (20–30 days around 

the core regions and 10–15 days toward the edge) using microvolume isotope analysis measured by 

continuous-flow IRMS (CF-IRMS), SIMS provides even finer temporal resolution, particularly for 

the otolith core and edge. High-resolution reconstruction of experienced temperatures using SIMS 
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δ18Ootolith has important utility to investigate the early life history of fish that may be affected by 

increasing water temperature associated with climate change. 

In this chapter, we aim to develop a method to reconstruct ambient water temperatures experienced 

during the larval period of an individual fish using SIMS δ18Ootolith analysis. δ18Ootolith of five adult 

Pacific bluefin tuna are measured from the otolith core to edge by SIMS, and the measured SIMS 

δ18Ootolith values were compared to those measured by CF-IRMS. Water temperatures are then 

estimated using a temperature-dependent oxygen isotope fractionation equation for Pacific bluefin 

tuna larvae that has been already established in the previous study (Kitagawa et al., 2013). The 

temperature reconstruction technique presented here allows for a high-resolution investigation of the 

early life history of fish and provides a more thorough understanding of the characteristics of 

survivors and thermal environment that may constrain their early growth and survival. 

 

3.2.  Materials and Methods 

3.2.1. Sample collection and sample preparation 

Otoliths were collected from the defrosted heads of Pacific bluefin tuna caught mostly by longline 

fishing gear in waters around Japan from 2017 to 2018 (Fig. 3-1). In total, otoliths from 119 bluefin 

tuna (sub-adult and adult) were collected. As data on fish weight was only available, the fork length 

of fish was estimated using a weight–length relationship established by Kai (2007). The otolith weight 

(length) and estimated weight (fork length) of the fish collected in this study and those of young-of-

the-year fish (Suzuki, 2019) were measured, and their relationship with fish weight and fork length 

was determined, respectively (Figs. 3-2, 3-3, 3-4).  

Age of the fish was determined according to the age reading protocol that has been already 

developed for Pacific bluefin tuna (Shimose & Ishihara, 2015) (Fig. 3-5). The relationship between 
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otolith weight (length) and fish weight for sub-adult and adult, young-of-the-year fish, and those 

combined is shown in Fig. 3-2a (b), Fig. 3-3a (b), and Fig. 3-4a (b), respectively. 

Five adult fish samples were randomly selected and one of paired otoliths from each individual 

was used for SIMS δ18O analysis. Catch location, date of catch, and biological information of bluefin 

tuna samples are shown in Fig. 3-6 and Table 3. Otoliths were cleaned and rinsed with double 

deionized water (Milli-Q water) to remove any remaining muscle tissues, air-dried in a clean 

environment, and stored in microtubes for later analyses. For CF-IRMS δ18O analysis, the three 

otolith sections that were analyzed by SIMS were used. 

For the preparation of otolith samples for SIMS δ18O analysis, we used the sample preparation 

protocol for a single otolith thin section that has been previously developed in Chapter 2. A detailed 

sample preparation protocol can be found in Fig. 2-1. Briefly, an otolith was mounted on a 

microscope slide with thermoplastic cement perpendicular to the sagittal plane with its sulcus side 

facing down. The otolith core was observed under an inverted microscope (IX-71, Olympus) and 

straight lines were drawn on the glass slide at 250 to 270 µm on each side of the otolith core using 

waterproof ink and a comic pen. An otolith thin section was cut out together with the glass slide along 

the drawn lines with an automatic low-speed precision cutter (IsoMet 5000, Buehler) equipped with a 

0.3 mm thick diamond blade (IsoMet 15LC, Buehler). The sectioned otolith was then removed from a 

strip of glass by rinsing it with acetone and was allowed to air-dry in a laminar flow hood. The 

sectioned otolith was fixed in the center of a 2.54 cm silicon mold and embedded in epoxy 

(EpoxyCure 2 Resin, Buehler) along with a UWC-3 standard, that was placed right above the otolith. 

It was then kept at room temperature for 24 h to cure the resin. The epoxy disk containing an otolith 

thin section and a piece of standard material was ground with a grinding machine equipped with 70 

and 13 µm diamond cup wheels (Discoplan-TS, Struers) until the distance from the otolith surface to 

the core reached 15 to 20 µm. It was then successively polished using 6, 3, and 1 µm diamond pastes 

on a fine grinding disc (MD-Largo, Struers) to expose the core on a flat mirror-finished surface. 
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Before analysis, the samples were cleaned in an ultrasonic cleaner and dried in a vacuum oven at 40 

°C for 2 h. They were then sputter-coated with ~60 nm gold.  

 

3.2.2. SIMS δ18O analysis 

Otolith oxygen isotope ratios were measured in situ using a CAMECA IMS 1280-HR large radius, 

multi-collector ion microprobe (SIMS) at the Kochi Institute for Core Sample Research, Japan 

Agency for Marine-Earth Science and Technology (JAMSTEC). Five otolith thin sections were 

prepared for SIMS δ18Ootolith analyses using the sample preparation protocol developed in the present 

study (Fig. 2-1). The δ18Ootolith values were measured from otolith core to edge along the growth axis 

for each otolith sample (Fig. 3-7). 

The SIMS analytical conditions that were used for δ18Ootolith measurements in this study are 

described in detail in Kita et al., (2009). The sample surface was sputtered by a 20 kV accelerated 

133Cs+ primary ion beam of 1.5–1.8 nA focused to a diameter of 10 to 15 µm, resulting in a pit of ~1 

µm depth (Fig. 3-7b). The secondary ions (16O–, 18O–, and 16OH–) were accelerated at 10 kV and 

detected simultaneously by three Faraday cup detectors. Since hydrogen is present in the SIMS 

chamber even under ultra-high vacuum conditions, measured 16OH–/16O– ratios were background-

corrected by subtracting the average 16OH–/16O– ratio of the UWC-3 standard (nominally anhydrous 

minerals) bracketing analyses from the 16OH–/16O– ratio of δ18Ootolith measurements. The background-

corrected 16OH–/16O– ratios served as a proxy for the relative hydrogen content contained in otolith 

samples. Each analysis took ~3 min, consisting of pre-sputtering (10 s), automatic centering of the 

secondary ion beam (90 s), and the isotopic measurements with 20 analytical cycles (40 s). The count 

rates for 16O– and 18O– were 1.7–2.5 × 109 and 3.5–5.1 × 106 counts per second (cps), respectively. 

For accurate calibration of SIMS δ18O measurements in biogenic carbonate samples, a 

homogeneous biocarbonate standard with a matched-matrix is needed. The UWC-3 standard is a 
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chemically and isotopically homogeneous calcite standard which has a similar chemical composition 

as otoliths (aragonite), and thus all δ18Ootolith measurements were normalized with this standard in our 

study (Kozdon et al., 2009). Every 10 to 15 unknown sample measurements were bracketed by 10 

analyses of a UWC-3 calcite standard (5 analyses before and after each group of unknown samples) to 

calculate the spot-to-spot precision of sample analyses and to correct for instrumental mass 

fractionation. The precision of sample analyses for all 5 otolith thin sections was ±0.3 to ±0.6‰ (2 

standard deviations). 

After analysis, each spot was observed on scanning electron microscope (SEM) images taken with 

an electron probe micro analyzer (JXA-8230, JEOL) to check for any cracks and inclusions that might 

bias the resulting δ18O values (e.g. Weidel et al., 2007). No spots had such surface irregularities. In 

addition, the secondary ion yield (16O–, cps/nA) relative to the mean of the UWC-3 standard 

bracketing analyses were used to assess the quality of each spot measurement and check for any 

extreme outliers. Raw SIMS δ18O measurements are presented in Table S1. 

For comparison purposes, all δ18Ootolith values were converted from VSMOW to VPDB by using 

the latest published conversion equation (δ18OVSMOW = 1.03092 * δ18OVPDB + 30.92, Brand et al., 2014, 

Kim et al., 2015). 

 

3.2.3. Microvolume δ18O analysis by CF-IRMS 

Microvolume CF-IRMS δ18O analysis was conducted to compare δ18Ootolith values measured by 

SIMS and CF-IRMS. Three otolith thin sections that were analyzed by SIMS were used for 

microvolume CF-IRMS δ18O analysis. δ18O analyses were performed with an IsoPrime100 isotope 

ratio mass spectrometer (Isoprime Ltd, Cheadle Hulme, UK) equipped with a customized continuous-

flow gas preparation system (MICAL3c) at National Institute of Technology, Ibaraki College, Japan. 

This system can measure isotope ratios of calcium carbonate samples with a minimum sample mass 
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of 0.2 µg (about 1/100 of the sample mass required for commercially available IRMS systems) with 

high precision and accuracy (Ishimura et al., 2004, 2008). By micromilling the otolith material 

deposited during the same growth period that is being analyzed by SIMS, it is possible to compare 

average SIMS and CF-IRMS δ18Ootolith values. 

A high precision micromilling system (Geomill326) was used for milling the specific regions of 

otolith samples. This system comprised a carbide bur fixed over an XYZ sample stage, a high-

resolution camera, and a computerized image analyzer. An otolith image with marks indicating the 

target milling areas was imported into the system and milling paths were configured on the computer. 

The target milling areas were set in the otolith region where the measured SIMS δ18Ootolith values were 

stable, and they covered roughly 3–4 SIMS beam spots (Fig. 3-8). First, an unwanted area right next 

to the target milling path was milled and removed from otolith to avoid cross-contamination. The 

removed otolith powders were also collected and used for analysis as supplementary samples to 

increase the dataset. For each otolith sample, two to three target paths were milled along the growth 

rings to obtain powder samples. The milled paths resulted 15 to 80 µm wide, 250 to 350 µm long, and 

60 to 90 µm deep. 

The life stages of the corresponding milled paths were estimated based on the distance from otolith 

core and the location of the annual growth increments. Each path corresponded to either the juvenile 

(a few months old), immature (about 5 months old to age 1+), or sub-adult stage (age 2–3). The non-

parametric Kruskal-Wallis test was used to determine the statistical difference in resulting offset 

values between SIMS and CF-IRMS among different life stages. 

The amount of powder produced from each path was 0.9 to 3.5 µg. The milled powder was 

carefully collected and placed on to a small piece of glass using a needle under a microscope, and 

then put into the bottom of a reaction tube. The aragonite powder was then reacted with phosphoric 

acid at 25°C, and the evolved CO2 was purified in a stainless vacuum line. After further purification 
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using a helium-purged purification line, the purified CO2 was introduced into the mass spectrometer. 

Samples that weighed more than 2.0 µg were analyzed twice. The results are reported in standard δ 

notation (‰) relative to Vienna Pee Dee Belemnite (VPDB). We measured a lab standard CO2 gas for 

the determination of the analytical precision of pure CO2 gas (δ13CVPDB = −1.56‰ and δ18OVPDB = 

−4.42‰, Nishida & Ishimura 2017) three or more times every day. The analytical precision was better 

than ± 0.1‰ (± 1SD) for the entire analysis. 

To compare the difference between SIMS and CF-IRMS values, the average SIMS δ18Ootolith values 

were calculated by averaging the SIMS spot measurements adjacent to or within each milling path 

and then compared to CF-IRMS δ18Ootolith value. A linear regression analysis was performed to 

determine the correlation between values measured by the two methods. In addition, the Wilcoxon 

signed rank test was applied to test the statistical difference between the average SIMS and CF-IRMS 

δ18Ootolith values, and the Tukey’s test was used to detect outliers. All statistical analyses were 

performed using the R software (version 3.3.2). 

 

3.2.4. Temperature reconstruction for larval stages of adult bluefin tuna 

Ambient water temperatures experienced during the larval stages of adult bluefin were estimated 

using SIMS δ18Ootolith of otolith core region. The daily growth increments were counted around the 

core region on the SEM images. The SIMS spot measurements that were made within 20 days post 

hatch (DPH) were used for the temperature estimation as the larval period of bluefin tuna lasts for 

approximately 20 days. For an accurate estimation of ambient water temperatures, a species-specific 

fractionation equation and δ18Oseawater are needed. To reconstruct ambient temperatures, we used the 

oxygen isotope fractionation equation for Pacific bluefin tuna larvae proposed by Kitagawa et al. 

(2013): 
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 δ18Ootolith (VPDB) − δ18Owater (VPDB) = 5.193 − 0.270 × T (3-1) 

 

where δ18Owater is the δ18O value of ambient water, and T is the water temperature in °C. For δ18Owater 

in the equation, we applied the δ18O value of +0.22‰ (VSMOW) which is the average δ18Owater of the 

main spawning ground around the Nansei Islands (123.56-131.00°E, 24.04-26.09°N) in May to June 

from 2008 to 2010 (Uozato 2011). The δ18Oseawater value was corrected on the VPDB scale by simply 

subtracting 0.27‰ (Hut 1987). The mean temperatures were calculated for the samples that had 

multiple δ18Ootolith measurements made around the core regions. Although the focus was on the 

reconstruction of ambient water temperatures experienced during the larval period of the fish, the 

lifetime temperature history was estimated to evaluate how well δ18Ootolith records ambient water 

temperatures in the older stages of Pacific bluefin tuna. 

 

3.3.  Results 

3.3.1. Comparison of SIMS and CF-IRMS δ18Ootolith measurements 

In total, 22 paths were milled by a micromilling system and δ18Ootolith of collected powders from 

each milled path was measured by CF-IRMS. After carefully examining the accuracy of how well 

each milled path captured the same growth zone as the SIMS spots, 18 samples, including 9 main 

samples and 9 supplementary samples, were selected to assess the difference between SIMS and CF-

IRMS δ18Ootolith values. The average values of multiple CF-IRMS measurements were used when the 

milling accuracy of a single milling path was low (See Appendix 2 for a complete list of data). The 

precision of δ18Ootolith values measured by CF-IRMS was better than that of SIMS. 

The δ18Ootolith values measured by CF-IRMS were significantly higher than those measured by 

SIMS (Fig. 3-9, Wilcoxon signed-rank test, p < 0.001) except for two measurements in which the CF-

IRMS value was 0.12‰ and 0.47‰ lower than the average SIMS value, respectively. We considered 
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the CF-IRMS δ18Ootolith measurement that resulted 0.47‰ lower than the average SIMS δ18Ootolith value 

as an outlier based on the Tukey’s outlier detection method. This measurement was taken from a 

relatively large area of the otolith deposited during the second to third years of life, where the 

interannual variation in water temperature is expected. It is likely that this temperature variation was 

not well reflected in the average SIMS value since only 3 spot measurements were averaged over 

more than a half-year period. Therefore, this measurement was excluded for calculating a linear 

regression curve and the average SIMS–CF-IRMS difference. 

There was a significant positive correlation between SIMS and CF-IRMS δ18Ootolith values (r2 = 

0.79, p < 0.001) with a slope of 1.1408 and an intercept of 0.0704. The slope is 1 within the 95% 

confidence interval (lower limit = 0.82, upper limit = 1.46) with a high correlation coefficient (r2 = 

0.78), and thus a linear regression with a slope of 1 was fitted to the data to calculate the y-intercept, 

which is the average difference (Fig. 3-10). The average offset between SIMS and CF-IRMS δ18Ootolith 

values was 0.41‰, with SIMS yielding lower values. The SIMS–CF-IRMS δ18Ootolith correction 

equation for Pacific bluefin tuna can be expressed as: 

 

 SIMS δ18Ootolith (VPDB) = CF-IRMS δ18Ootolith (VPDB) − 0.41 (3-2) 

 

No significant difference was observed between δ18Ootolith measurements at different life stages 

(Kruskal-Wallis test, p = 0.29), and thus the consistent application of this offset correction equation to 

all SIMS measurements was considered appropriate. 

 

3.3.2. Seasonal variations in SIMS δ18Ootolith profiles 

In total, 259 δ18Ootolith measurements were made on the otoliths of five Pacific bluefin tuna by 

SIMS (Table 3). The total number of spots measured per otolith was 42 to 78 (two life-history transect 
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lines were analyzed for T64R). The length of each transect ranged between 2.5 mm and 2.8 mm with 

a spot-to-spot distance ranging from 16 µm to 153 µm around the core region, and 26 µm to 337 µm 

toward the edge. The spatial resolution around the core region in one of the samples was more than 10 

times higher compared to the conventional IRMS method previously used for Pacific bluefin tuna 

otoliths (Shiao et al., 2010). The temporal resolution of SIMS spots was 3–5 days near the core region 

and roughly a few weeks to a month on the outer edge depending on the age of fish. 

The offset-corrected SIMS δ18Ootolith values for 5 Pacific bluefin tuna samples are plotted in Fig. 3-

11 (see left y-axis). High-resolution δ18Ootolith profiles of all otolith samples showed distinct seasonal 

variations with an increasing trend from the otolith core to about 1250 µm. The average δ18Ootolith 

values from the core to about 750 µm ranged between −3.1 to −2.5‰ (VPDB), and sharply increased 

toward the first annual increment (opaque zone), peaking at −1.3 to −0.4‰. After the increase, the 

δ18Ootolith values decreased, showing a cyclical pattern toward the edge fluctuating mostly between 

−2.5 to −1.5‰ (VPDB). The δ18Ootolith of the core regions corresponding to the larval stages (10 to 20 

DPH) of bluefin tuna ranged between −3.1 to −1.9‰ (VPDB). 

The background-corrected 16OH−/16O− ratios measured for the five otoliths ranged between 0.017 

and 0.031 and had a general inverse relationship with the SIMS δ18Ootolith values (there is no impact of 

individual differences on this relationship) (Fig. 3-12a). This indicates that the relative hydrogen 

content in the otolith increases with lower SIMS δ18Ootolith values. Overall, higher 16OH−/16O− ratios 

resulted in larger SIMS–CF-IRMS δ18Ootolith differences (Fig. 3-12b), which is consistent with the 

inverse trend seen in Fig. 3-12a. 

 

3.3.3. Estimation of temperature experienced during larval period 

Core-to-edge water temperature profiles of all samples are shown in Fig. 3-11 (see right y-axis). 

The estimated temperatures experienced during the larval stages ranged between 26.7°C to 30.7°C 
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among the individuals (T64R: 30.7 ± 1.3°C [~20 DPH], T75R: 27.9 ± 1.0°C [~10 DPH], T104L: 26.7 

± 1.0°C [~12 DPH], T118R: 28.9 ± 0.9°C [~12 DPH], T131R: 28.4 ± 1.4°C [~12 DPH]). After the 

year 0, temperature raged mostly between 24 and 30°C, and never reached 35°C. 

 

3.4. Discussion 

An increasing number of experimental and modeling studies have shown significant impacts of 

projected climate change on the early growth and survival of various fish species (Kimura et al 2007, 

Pankhurst & Munday 2011, Moyano et al., 2017). Generally, fish larvae are more sensitive to 

temperature variations than juveniles and adults as they have narrower thermal tolerance ranges 

(Pörtner & Peck 2010, Moyano et al., 2017), making them particularly vulnerable to climate change. 

However, the effects of ongoing climate change-driven ocean warming on the early life history of fish 

remain largely unexplored for many species, mostly due to difficulties in monitoring long-term 

responses to climatic stressors. Thus, the advancement of techniques that can quantitatively estimate 

past environments actually experienced by fish during key phases of the life cycle is essential to fill 

this knowledge gap. In this study, a high-resolution temperature reconstruction technique using SIMS 

δ18Ootolith analysis was developed and applied to Pacific bluefin tuna, a species of great economic 

importance, whose early larval growth and survival may be constrained by climate change. 

The 0.41‰ offset observed between SIMS and CF-IRMS δ18Ootolith values for bluefin tuna otoliths 

is most likely due to incomplete correction for “matrix effects” by SIMS methods. Matrix effects refer 

to an instrumental mass fractionation caused by different chemical compositions and structures 

between given samples and standard materials, which shifts measured values (Eiler et al., 1997, 

Riciputi et al., 1998, Śliwiński et al., 2016, 2017, Wycech 2018). Otoliths contain a small amount of 

organic proteins, namely otolith matrix protein-1 and Otolin-1 (Murayama et al., 2000, 2002). The 

presence of these proteins in the otolith would be responsible for a subtle change in instrumental mass 



 
 

16 

fractionation, which results in lower SIMS δ18Ootolith values relative to those measured by CF-IRMS 

and higher 16OH− ion yields compared to that of the calcite standard. The general inverse relationship 

between 16OH–/16O– ratios and SIMS δ18Ootolith values (Fig. 3-12a) may be the result of the 

incorporation of more proteins into the otolith matrix which is thought to relate to fast growth in 

summer (or less proteins in winter due to slow growth). Water content (OH−) of the otoliths, if any, is 

also responsible for the lower δ18Ootolith values. These organic proteins and water content bias SIMS 

δ18Ootolith values because they are measured together with calcium carbonates, whereas they do not 

affect CF-IRMS δ18Ootolith values since these proteins do not react with phosphoric acid at 25°C that is 

used in a digestion process to generate CO2 gas. Furthermore, the systematic difference in isotopic 

fractionations caused by sputtering different crystalline structures (the biogenic aragonite samples and 

calcite standard) may contribute to the observed offset (Linzmeier et al., 2016). Although matrix 

effects are likely the primary cause of the SIMS–CF-IRMS difference, other potential factors (e.g. 

milling and roasting effects) may influence the measurement results of SIMS and CF-IRMS. The 

effects of roasting and other factors are discussed in detail in Wycech et al. (2018) which investigated 

the δ18O difference between SIMS and IRMS using foraminiferal shells. 

The offset of 0.41‰ found in this study is within the range of offset values previously reported for 

otolith of other fish species and biocarbonate samples. Orland et al. (2015) has reported that there is a 

consistent sample-dependent offset in δ18O typically less than 1.0‰, but it can go up to 1.8‰ 

depending on different sample matrices including biocarbonates and speleothems. Matta et al. (2013) 

used roasting to remove organic materials and observed an offset of about 1‰ in SIMS δ18O values 

between roasted and unroasted otoliths of a yellowfin sole Limanda aspera. Helser et al. (2018b) also 

observed a 0.5‰ offset between SIMS and CF-IRMS δ18Ootolith measurements in otoliths of Pacific 

cod Gadus macrocephalus. The temperature estimation without the correction of the 0.41‰ offset 

using SIMS δ18Ootolith values of Pacific bluefin tuna would cause a bias of 1.5°C in the estimates, 

resulting in some unrealistically high temperature estimates (i.e. >34°C). While it is unknown to what 
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extent organic proteins and water content contribute to an overall offset, it is necessary to determine 

these offsets between SIMS versus IRMS when estimating ambient water temperatures from SIMS 

δ18Ootolith values for different species.  

The SIMS analyses performed on five otolith samples of Pacific bluefin tuna revealed fine-scale 

δ18Ootolith profiles from the core to the edge with clear seasonal variations (Fig. 3-11). As water 

temperature and δ18Ootolith are negatively correlated (Devereux 1967, Høie et al., 2004, Thorrold et al., 

1997), the initial increase of the δ18Ootolith values observed toward the first annual increment (opaque 

zone) for all otolith samples indicates that Pacific bluefin tuna experienced a decreasing water 

temperature. Age-0 juveniles predominantly inhibit in the surface mixed layer (Kitagawa et al., 2000), 

and they are known to migrate northward in summer along the coastal regions of Japan and southward 

for overwintering in the East China Sea and nearshore waters in the Pacific side of Japan (Itoh et al., 

2003, Fujioka et al., 2018). The increase of the δ18Ootolith values thus reflects the actual water 

temperature change experienced by the individuals from autumn to winter. The increasing patterns of 

the δ18Ootolith in the first year of life observed in this study are consistent with the results previously 

reported by Shiao et al. (2010), with much greater temporal resolutions (days to weeks) with high 

precision and accuracy achieved by SIMS techniques.  

The δ18Ootolith profiles after the age 0 showed similar seasonal fluctuations, but with much less 

variation. Figure 3-13 shows monthly averaged water temperature in 2013 at the surface layers (10 to 

30 m) in major nursery grounds (Tohoku area and northern Sea of Japan in summer and the East 

China Sea in winter) of immature bluefin tuna. The estimated water temperature are approximately 

8°C higher than the water temperature in respective nursery ground, suggesting that the observed 

δ18Ootolith profiles after the age 0 is likely due to the effect of thermoregulatory ability developed by 

Pacific bluefin tuna. For endothermic fish (warm-bodied) such as Pacific bluefin tuna and other tuna 

species, the δ18Ootolith of immature and adult stages do not merely reflect ambient (in-situ) water 

temperature but, rather, the elevated, internal body temperatures. Using counter current heat 
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exchangers known as retia mirabilia (Dickson & Graham, 2004), bluefin tuna have the capacity to 

elevate the temperature of their viscera, red (slow-twitch, oxidative) myotomal muscle fibers, eyes, 

and brain (Linthicum & Carey, 1972, Carey & Lawson, 1973). When juvenile bluefin tuna reach 

about 20.0 cm in fork length at age-0 (about 2 months after hatching) (Kubo et al., 2008), 

thermoregulatory ability begins to develop and they are able to maintain their body temperature < 1°C 

above that of the surrounding water (Furukawa et al., 2017). Thermoregulatory ability of Pacific 

bluefin tuna increases as fish grow and develop. For example, water temperatures of the peritoneal 

cavity of adult fish (a 250 kg bluefin tuna) could be 10°C higher than ambient temperatures 

constructed from acoustic telemetry data (Kitagawa et al., 2006). Since temperatures >35°C are lethal 

for Pacific bluefin tuna, the observed upper temperature range (30°C) in immature and adult stages is 

likely a result of physiological thermoregulation to avoid overheating. Understanding how 

thermoregulatory ability changes with body size and its physiological effects on δ18Ootolith will 

facilitate better interpretation of the temperature data obtained from this technique. 

The estimated temperatures experienced during the larval stages ranged between 26.7°C and 

30.7°C among the individuals, with the mean temperature of 28.5 ± 3.0°C (± 2 SD). The field surveys 

have collected Pacific bluefin tuna larvae in sea surface temperatures (SSTs) between 23.5°C and 

29.5°C in the two main spawning grounds (Yonemori 1989, Abe et al., 2014, Suzuki et al., 2014), 

with higher concentrations of larvae found around 27°C. The estimated temperatures overlap with the 

range of temperatures observed for larval occurrence of Pacific bluefin tuna. As newly hatched 

bluefin larvae tend to stay in warm waters within or near the spawning grounds for their optimal 

growth and survival, temperatures estimated from the core δ18Ootolith corresponding to the early larval 

period may also serve as a useful indicator of spawning temperatures or the location of spawning 

grounds. One of the specimens (T64R) appeared to experience relatively warm temperatures (>30°C) 

associated with decreased growth rates and survival of larvae in the laboratory (Kimura et al., 2007). 

Although there is evidence that the eggs of Pacific bluefin tuna hatched to normal larvae at 31.5°C in 
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rearing experiments (Miyashita et al., 2000), the resulted higher temperature estimated for this 

specimen could be a result of the high-resolution sampling of SIMS which captured several warmer 

days. Despite the need to increase sample size to accurately judge whether the estimated temperatures 

are realistic, particularly for the specimens with higher temperature, our results suggest that SIMS 

δ18Ootolith analysis coupled with a microvolume CF-IRMS δ18Ootolith analysis and a species-specific 

temperature-dependent fractionation equation is an effective method for reconstructing ambient water 

temperatures experienced by fish and inferring their early life characteristics, which are difficult to 

obtain with limited resolutions of the conventional methods. 

We developed a novel method to estimate ambient temperatures experienced during the larval 

stage of fish species using SIMS and microvolume CF-IRMS δ18Ootolith analyses. Microvolume 

δ18Ootolith analysis revealed that the SIMS δ18Ootolith values were 0.41‰ lower on average than CF-

IRMS δ18O values. High-resolution SIMS δ18Ootolith analysis on Pacific bluefin tuna otoliths achieved 

greater spatial and temporal resolutions with high precision and accuracy compared to the 

conventional IRMS methods. The δ18Ootolith profiles of all samples showed distinct seasonal variations, 

reflecting ambient water temperatures experienced by an individual fish. The developed protocol is 

useful especially for smaller otoliths with narrow growth increments. SIMS δ18Ootolith analysis coupled 

with micromilling and microvolume δ18Ootolith analysis allows for microscale examinations of otoliths, 

and more detailed information on the thermal life history of fish can be obtained compared to 

conventional IRMS methods. This novel method is a powerful tool for the reconstruction of 

environmental histories of various fish species and has important implications for understanding how 

ocean warming is potentially affecting the early life history of fish. 
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Fig. 3-1. Catch locations and landing ports of Pacific bluefin tuna Thunnus orientalis collected in this 
study. 
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Fig. 3-5. Transverse otolith section of Pacific bluefin tuna Thunnus orientalis. Age was determined 
by counting the number of opaque zones (annual increments) indicated by yellow arrows. 

Otolith core 
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Fig. 3-6. Catch locations of Pacific bluefin tuna Thunnus orientalis otolith samples. 
Two samples (T118R and T131R) were caught in nearshore waters off Kii Peninsula 
by a small local boat and thus the locations are not shown on the map. 

Kii Peninsula 

    Landing port 
    Catch location 



 
 

23 

 

  

Fig. 3-7. Cross-sectional electron probe micro analyzer (EPMA) image of bluefin tuna otolith with beam 
spot locations. (b) SIMS beam spot sputtered with a 133Cs+ primary ion beam focused to a diameter of 10 to 
15 μm. (c) Otolith thin section from Pacific bluefin tuna Thunnus orientalis embedded in epoxy resin with 
a calcite UWC-3 standard. The sample surface was mirror-finished and coated with gold. 
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Fig. 3-8. Images of Pacific bluefin tuna Thunnus orientalis otolith thin section (T64R) used for micromilling. (a) Before 
milling, (b) after milling unwanted areas to avoid cross-contamination, (c) and after milling the target milling path (the 
area inside the red line). Black dots indicate the locations of beam spot where SIMS δ18Ootolith values are stable (−3.01‰, 
−2.93‰, −3.04‰, respectively from the top to bottom [VPDB]). The images were taken under an optical microscope 
for (a), and a stereo microscope for (b) and (c). 

(a) (b) (c) 
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Fig. 3-9. Comparison of SIMS and CF-IRMS δ18Ootolith values (‰, VPDB). (a) CF-IRMS 
δ18Ootolith values were significantly higher than SIMS δ18Ootolith values (*: Wilcoxon 
signed-rank test, p < 0.001). The bottom and top of the box represent the first (25th 
percentile) and third (75th percentile) quartiles of the data distribution, respectively. The 
thick horizontal line inside the box indicates the median, and the upper and lower whiskers 
represent the maximum and minimum values, respectively. 
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Fig. 3-10. SIMS δ18Ootolith values were 0.41‰ lower on average than CF-IRMS δ18Ootolith values (solid 
line) when a linear regression with a slope of 1 was fit to the data (r2 

= 0.78). Dashed line indicates 1:1. 
Horizontal and vertical error bars represent CF-IRMS analytical precision (± 1SD) and propagated error 
of the average SIMS measurements (± 2SD), respectively. Note that one CF-IRMS δ18Ootolith measurement 
(grey dot) that had a lower value than the average SIMS δ18Ootolith value was considered as an outlier based 
on Tukey’s outlier detection method and thus excluded for the calculation of the average SIMS–CF-IRMS 
difference. 
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Fig. 3-11. Offset-corrected SIMS δ18Ootolith (‰, VPDB, orange plot on the left y-axis) and reconstructed water 
temperature (°C, dark blue plot on the right y-axis) of five Pacific bluefin tuna (Thunnus orientalis). Error bars 
represent the spot-to-spot precision of SIMS analyses and the estimated precision of the reconstructed water 
temperatures (± 2SD). Ambient water temperatures were estimated from the offset-adjusted SIMS δ18Ootolith values 
using an oxygen fractionation equation for Pacific bluefin larvae proposed by Kitagawa et al. (2013). Dashed vertical 
lines indicate the locations of annual increments (opaque zone), with numbers showing calendar years of otolith 
formation. Note δ18Ootolith at the most outer edge was not measured for T104L and T131R, and therefore dashed 
lines are shown beyond the plots. 

12 13 14 15 16 17    11                                   12 13 14 15 16 17    

11                                     12 13 14 15   16 17    

10 11 12 13 14 15 16 17

SIMS δ18Ootolith

Water temperature

Fig. 6. Offset-corrected SIMS δ18Ootolith (‰, VPDB, orange plot on the left y-axis) and 

reconstructed water temperature (°C, dark blue plot on the right y-axis) of five Pacific bluefin 

tuna (Thunnus orientalis). Error bars represent the spot-to-spot precision of SIMS analyses and 

the estimated precision of the reconstructed water temperatures (± 2SD). Ambient water 

temperatures were estimated from the offset-adjusted SIMS δ18Ootolith values using an oxygen 

fractionation equation for Pacific bluefin larvae proposed by Kitagawa et al. (2013). Dashed 

vertical lines indicate the locations of annual increments (opaque zone), with numbers showing 

calendar years of otolith formation. Note δ18Ootolith at the most outer edge was not measured for 

T104L and T131R, and therefore dashed lines are shown beyond the plots.
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Fig. 3-12. Background-corrected 16OH–/16O– plotted against (a) SIMS δ18Ootolith values and (b) SIMS–CF-IRMS 
δ18Ootolith differences measured for 5 Pacific bluefin tuna (Thunnus orientalis) otolith samples. 
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Sample 
ID Catch location Date of catch 

Weight  
(kg) 

Estimated  
fork length  

(cm)  
Number of  
SIMS spots 

Number of CF-IRMS 
measurements  

T64R 30.0°N, 134.0°E 26 April 2017 146.0 191.1 78 (35 and 43) 5 (2)* 

T75R 30.0-32.0°N, 
136.0°E 30 April 2017 52.2 136.2 42 – 

T104L 27.0-28.0°N, 
132.0-134.0°E 18 May 2017 99.2 168.3 53 8 (3)* 

T118R Nearshore off  
Kii Peninsula 22 May 2017 138.0 187.6 44 9 (4)* 

T131R Nearshore off  
Kii Peninsula 28 May 2017 118.0 178.2 42 – 

Table 3. Biological information, sampling data, and number of δ18Ootolith analyses of Pacific bluefin tuna Thunnus 
orientalis used in the present study. Fork length was calculated with a weight-length relationship established by Kai 
(2007). Two life-history transect lines were analyzed for T64R by SIMS. Numbers in parentheses with asterisks 
indicate the number of supplementary samples (removed otolith powders that were milled before milling the target 
milling areas to avoid cross-contamination) analyzed by CF-IRMS. 
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CHAPTER 4 
Chapter 4 cannot be viewed because the contents will be published in an 
academic journal. 
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CHAPTER 5 

Chapter 5 cannot be viewed because the contents will be published in an 
academic journal. 
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