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ABSTRACT

Tsunami Risk Management is a very complex process which requires knowledge of tsunami

sources, wave propagation, subsequent inundation, and geographical condition of the affected

area along with socio-economic factors. To date the outcome of various risk management

implemented in the world have been less effective than hoped by their planners. It is mostly

because of the uncertain nature of hazards and individuals. Based on world’s experience from

previous disasters there are various sources of uncertainties that may cause failure on the

implication of a risk management. These uncertainty indicators are scattered in different fields

(e.g. engineering, sociology, and psychology), and a holistic perspective is needed to connect

various disciplines and stakeholders in order to develop a universal framework to minimize the

uncertainties.

To this purpose, in this study, after introduction in Chapter 1, a systematic literature review

from different subjects was conducted in Chapter 2 to evaluate the most important uncertainty

indices and factors which caused failure on the previous disaster risk managements. Accordingly,

a holistic framework of uncertainty indicators that includes the failure roots and their drivers was

developed. It is concluded that the inefficiency of protection infrastructures (i.e. hard measures),

awareness and experience, belief system, normalcy bias, too much reliance on warning system

and sea walls, demographic characteristics (e.g. aging society and gender discrimination), and

trust are the main sources causing the failure. Furthermore, it is indicated that to propose an

optimal mitigation measure, mitigation strategies have to acknowledge heterogeneity in each

community characteristics. This remains an important gap in regions where risk probability is

low and the lack of empirical data are considered a serious shortcoming. Thus, Makran region

was selected as the study area that is – due to the relatively infrequent coastal disasters and

its low population – not as important in literature as other tsunami prone areas. The identified

uncertainty indicators for Makran were evaluated in order to promote resilience and minimize

the prolonged uncertainty.

Chapter 3 provides a general methodology to how to incorporate each uncertainties. In

Chapter 4 an interdisciplinary approach to tsunami hazard assessment in Makran Subduction

Zone (MSZ) was illustrated via developing a methodology that incorporates uncertainties



stemming from the lack of researcher knowledge and the random nature of the hazards. Former

is represented by epistemic uncertainty in literature while the latter is known as aleatory

variability. The method combines statistical, geological, historical tsunami assessment and

simulation modeling. The threat of tsunami hazard posed to the coast of Iran by the MSZ

were assessed and a comprehensive probabilistic tsunami hazard assessment for the entire coast

regardless of population density was presented. The sources of epistemic uncertainties were

taken into account by employing event tree and ensemble modeling. Aleatory variability was

also considered through probability density function. Further, the contribution of small to large

magnitudes was considered and multitude of scenarios were created as initial conditions using

the developed event trees. Funwave-TVD was employed to propagate these scenarios. The

results of this chapter are of vital for various stakeholders for developing and implementing

tsunami risk activities such as insurance activity, land use, critical facility design, and guiding

risk-aware city planning.

On the other hand a mere reliance on engineering measures, i.e. hard, could lead to

more vulnerability since people at risk neglect self-protection. Furthermore, implication of

this type of measures is very costly yet not efficient enough. Hence, the importance of soft

measures to minimize vulnerability should be taken into account and more research has to be

done along these lines. Accordingly, a cost-benefit disaster management should be applied in

developing countries like Iran, where there is a limited budget for developing hard measures

in the area. Having said that, one of the challenges nowadays is how to apply the methods

of performance of soft measures to disaster preparedness. A very first step is to assess local

awareness, knowledge, perception, and willingness to evacuate, which is discussed in Chapter

5. In order to asses the aforementioned factors in Makran region, a mixed methodology was

used, using questionnaire survey, interviews and group discussion amongst the local residents,

beach users and authorities. Some initial steps were taken including systematic literature review

and expert’s consultation. The questions were distributed to 6 experts in the field of disaster

from Iran by email and their comments were applied on the questionnaire. In addition, the

questionnaire was first tested on 10 residents through face to face interviews. The modified

questionnaire covers the following topics: knowledge, awareness, experience, trust, evacuation



behavior, socio-demographic factors (age, income, gender, occupation, religion, and education),

family composition, vulnerable groups and sense of belonging. The survey was conducted by

various convenience sampling methods at four locations along the Makran coast in the period

September 10-30, 2018. In total, 198 valid questionnaires were collected. 24 households’ face

to face surveys, three group discussions (about 3 hours and 45 minutes in total) were held in 3

fishery ports. Finally, the quantitative and qualitative analysis were done.

From the analysis of both questioners and interviews, it was learned that the solid faith in

destiny and lack of belief in their will and determination are among the personal characteristics

of individuals living in the area. The improper belief in destiny and neglecting one’s part

(ability) to change his or her situation lead to have less plans and almost dismiss the role of

mitigation strategies. It should be noted that getting used to any circumstances blindly together

with “actions” that come with no action, make any change and acceptance of new thoughts and

methods difficult. Also, the results showed that the level of people’s trust to government for

disaster education and information is very low. This is comparable with the SVS framework

(Salient Value Sharing Framework) that was furthermore modified to incorporate this study’d

findings.

The results, limitations and future direction were discussed in chapter 6. Finally, this

research’s findings were concluded and summarized in Chapter 7. The results of this study

shed light on the uniqueness of the community characteristic in a less known region (Makran),

expands upon the empirical evidence of them, provides accurate and reliable tsunami hazard

maps, and help policy-makers to understand how to shape a cost-effective and sustainable

tsunami risk planning and provide valuable information for diverse stakeholders to underpin

tsunami activities, and risk-aware city planning, and mitigation measure design.
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1 INTRODUCTION

In this chapter, first, the background and motivation of this study are provided. Then, based on

what is discussed in these sections, the main and sub-objectives of the research are described.

1.1 Disaster risk management

“It may be said that the twenty first century is the age not so much of the ‘revolt of the masses’

as the ‘revolt of nature’ (Starrs, 2014a).”

Risk is the probability of loss that takes place at three levels of sophistication: hazard,

vulnerability, and exposure. The probability of loss changes as any elements change (Crichton,

1999). Hazard is a potentially destructive physical phenomenon (e.g. earthquake, tsunami,

flood). Hazard assessment is the process of identifying what hazards have threatened an

area, how often specified hazards have occurred, and with what intensity. Succinctly, it is

the probability and severity of a destructive physical phenomenon. Exposure is the value of

asset that could be affected by a hazard (e.g. population, structures, historical and natural

attractions). Vulnerability describes the characteristics of people, structure and any system

and their circumstances due to the damaging effects of a hazard. There are various factors of

vulnerability, like physical, environmental, economic, and social (Wisner et al., 2004).

Disaster risk management is a multidisciplinary research field since its assessment cannot

solely be reduced by an evaluation of the physical hazard itself and socio-economic factors play

a prominent role to decrease or increase it. Fig. 1 shows the diagram of the key elements of

risk.

Risk management mainly consists of risk assessment and risk evaluation. Risk assessment

is dealing with scientific outputs of modeled parameters and vulnerable factors. Risk evalua-

tion employs perceived risk to a practical and sensible way of analysis, such as cost benefit

relationship and socio economic or/and cultural impact.

In risk management, evaluation and assessment of all the three pillars (see Fig. 1) are

inevitable. Besides, any disaster risk reduction effort require intersections among different

disciplines involved. The Sendai framework for disaster risk reduction 2015 – 2030 underlines

1



that for disaster risk reduction and promoting disaster resilience, knowledge of the hazards and

vulnerability factors (i.e. physical, social, cultural, economic, and environmental is infrangible

(UNISDR, 2015).

On the other hand, disasters can have a devastating impact on the long-term sustainability

of human settlements. Thus, disaster risk reduction is one of the crucial topics in sustainability

science (Esteban et al., 2020). Moreover, five sustainable development goals (SDGs) namely,

11.b, 2.4, 11.5, 1.5 and 13.1 concern about disaster risk reduction and are linked directly to

reduce risk disaster. Moreover, SDG3 – population health outcomes – cannot be achieved

without risk reduction than can cause health problems.
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Fig. 1 Three pillars of Risk: Hazard, Vulnerability, and Exposure.

1.2 Tsunami risk management

The global population continues to increase and so does the number of people living in disaster

prone regions without strong risk awareness. Tsunamis are a representative natural threat

that can lead to significant casualties and widespread destruction, homelessness, and poverty.

2



Although tsunamis are not frequent around the world, their damages are significant and not

negligible owing to their destructive forces as well as many other impacts after it, namely,

displaced populations, health risks, food scarcity, emotional after shocks and etc.

Tsunami Risk Management is a very complex process which requires knowledge of the

tsunami resources, the wave propagation and subsequent inundation, geographical condition of

the affected area, social and economic aspects and etc. Also, it is a highlighted subject since the

three key elements of sustainability science are directly affected by it (society, environment and

economy). In addition, holistic point of view is needed to connect various disciplines in order

to develop approaches that can reduce the tsunami risk.

The initial step toward a comprehensive tsunami risk management is the hazard assess-

ment. In particular, the importance of a comprehensive tsunami hazard assessment (THA)

is highlighted when a disastrous tsunami occurs. Recent devastating tsunamis such as the

Sumatra tsunami of 2004, with more than 200,000 fatalities (Starrs, 2014b), and the 2011

Tohoku tsunami in Japan, which caused more than 15,000 fatalities and was responsible for

the Fukushima Nuclear Power Plant accident (Fujii et al., 2011a), are representative examples.

Following these disasters, there has been a remarkable development in tsunami risk management

to reduce the effect of future tsunamis. For recent reviews of these developments, including full

lists of references, see (Løvholt et al., 2015; Ward et al., 2020).

The assessment of vulnerability in the concept of risk management is a complex area, by

considering its wide variety parameters and being scattered in different fields. It constitute

a multidisciplinary research field and can be classified as human, physical, socio economic,

environmental, behavioural and etc. A review of available global risk management analyses

reveals that greater focus has been on potential of hazards and other aspects are yet under

- studied. In the other word, in addition to the view that the world needs more engineering

measures, there is actually a ”knowledge gap“ built on the relative lack of knowledge regarding

other risk factors such as social and human behavior. This can lead to a massive vulnerability in

any tsunami prone areas.
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Hence, comprehensive management in disaster confrontation systems and mitigation strate-

gies should be considered as beneficial approaches that no harm can come out of them and for

the sake of coastal areas they should be deeply and carefully investigated all the factors.

1.3 Uncertainty in tsunami risk management

Uncertainty is a prerequisite and constant element of risk (Vasvári et al., 2015). To date the

outcome of various risk management implemented in the world have been less effective than

hopped by their planners. It mostly is because of the uncertain nature of hazards and individuals.

Based on world’s experience from previous disasters there are different types of uncertainties

that may cause failure on the implication of the risk management. These uncertainty indicators

are ubiquitous and scattered in different field (e.g. engineering, social, psychology) and even the

definition of uncertainty is not consistent across different disciplines. This makes identifying

and covering all of the indicators in a risk management a complicated process.

Uncertainty is mainly because of the lack of data, and/or predictability of a major event

(Argote, 1982). The less data and information on the study area, the more uncertainty involve

in risk managements. To overcome and minimize these uncertainties in any events, gathering

and analysing more data about potentially affected areas is the keystone for decision makers

(Comfort, 2007). Besides of lack of information, uncertainty can stem from a lack of un-

derstanding of the information among both residents and decision makers. Hence, decision

makers need to understand that they must work together with other stakeholders rather than

simply “educate” them. Moreover, ignoring the heterogeneity in community characteristics

and individuals’ behaviour may lead to a situation in which decision makers are not aware

of the uncertain factors in their community. Furthermore, a poor historical data can lead to a

significant uncertainties and a technique is needed to be applied to overcome this shortcoming.

Other uncertainties due to inherent randomness of an event, are like throwing a coin. These

kind of uncertainties can be best considered by probability studies.

In tsunami risk management various factors such as the ones related to the hazard itself

(e.g. maximum magnitude, and arrival time), knowledge, awareness, psychological factors,

socio-cognitive process, cultural, and personality causes uncertainties. A comprehensive and
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holistic view is needed to identify the uncertainties, gather data (be it evidence or modeled),

and develop approaches and frameworks to minimize them in tsunami risk management.

1.4 Tsunami risk management in Iran

Tsunamis can hamper the development of developing countries, and recovery is arduous and

expensive. Historically, Iran has been affected by tsunamis; in both the Caspian sea and Oman

sea.1 The historical tsunami events are shown in Fig. 2. From historical records there were no

significant tsunami that could affect coast of Caspian sea in the northern part of Iran. However,

The most significant one happened in 1945 in the Makran subduction zone (MSZ), causing

upwards of 4000 casualties along the southern coasts of Iran and Pakistan (Murty and Rafiq,

1991).

In Iran coastal hazards are infrequent, which leads to a false sense of safety among leaders,

decision makers and residents. Besides, according to the country’s economic report (census,

2016) Makran is one of the areas with the highest poverty rate. These two together make

the MSZ more vulnerable to an unexpected natural hazard. However, considering tsunami

hazard and risk assessment, Makran remains one of the under-studied regions in the world.

Moreover, there is no local warning system, inundation map, evacuation map, measures to

reduce vulnerability of coastal Disaster in the prone areas. In this regard, a comprehensive

study is needed to assess both hazard and vulnerability in the MSZ. because damages can be

minimized by sufficient mitigation plans and initial preparations.

1.5 Thesis objectives

The main objective of this study is to identify and consider uncertainties in tsunami risk

management stemming from the nature of hazard itself and the social vulnerability factors,

taking southern coast of Iran as a case study. More categorically the sub-objectives are to:

(i) comprehensively investigate, determine and classify the important factors playing a role

in risk and vulnerability assessment in the presence of major uncertainties to provide a

holistic framework of uncertainties indicators.
1Or the Gulf of Oman, Makran sea.
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Fig. 2 Historical tsunami happened in the coast of Iran both in the Caspian and Oman sea.
References: Caspian sea (Kulikov et al., 2014) and Oman sea (Smith et al., 2013)

(ii) illustrate an interdisciplinary approach to Tsunami hazard assessment integrate uncer-

tainties dealing with the hazard itself. The approach combines statistical, geological,

historical tsunami assessment and simulation modeling and provides hazard maps. It

includes covering limitation in historical data as well as considering all the stakeholder’s

interests.

(iii) evaluate the identified uncertainty factors in the MSZ study area addressing how people

perceive risks and underpinning risk perception, shed light on the uniqueness of the

community characteristic and in this way expands upon the empirical evidence of them,

and propose alternative measures considering the priority of approaches for reducing the

risk and increasing preparedness mitigation with less cost and effort.
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Research findings could be applied in other areas with the similar feature (e.g. incomplete-

ness historical data, similar community characteristics) and other hazards than tsunami.

1.6 Thesis outline

After Introduction provided here in Chapter 1, a systematic literature review to evaluate the

most important uncertainty indices and factors which caused failure on the risk management is

shown in Chapter 2. Chapter 3 provides a general methodology on both hazard and vulnerability

factors assessment in the study area. In chapter 4 uncertainties assessment of hazard and its

results are presented. Chapter 5 provides the vulnerability assessment of residents addressing

the uncertainties and uniqueness of community. In Chapter 6 discussion, recommendation, and

limitations of the study is provided. Finally, all the results are concluded in Chapter 7.
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2 SYSTEMATIC LITERATURE REVIEW

In this chapter a systematic literature review to evaluate the most important uncertainty indices

and factors which caused failure on the risk management in the previous natural hazards around

the world is provided. First, to recognise the most relevant resources and indicators a review

of the literature on tsunami risk managements using various keywords published from 1900

to the present had been done. Then, a framework of the most important and used keywords in

literature is illustrated. Finally, a detailed review is provided on the filtered academic resources

and based on the developed framework.

2.1 Literature mining

A literature search was conducted to identify the relevant studies and articles based on abstract

and title words and citation relation. Data were collected from the Web of Science Core

Correction in the period of 1900–2020. Various keywords were used to increase the chance of

finding more relevant publications. Tsunami + risk management”, “Tsunami + failure cause

”, “Tsunami + uncertainty” and “Tsunami + lessons” are used as keywords. More than 2000

results were found.

The results were then filtered based on their relevance, and frequency. Fig. 3 shows the den-

sity map of the most repeated keywords extracted from the filtered publications. VOS-viewer

software was used for the visualization (Van Eck and Waltman, 2010). As it was expected, the

keywords map shows a vast range of disciplines and are scattered in different fields of research

(e.g. engineering, social studies, management studies, probability analysis).

There are two approaches to increase coastal resilience against natural hazards such as

tsunamis or storm surges: hard (i.e., structural) and soft (i.e., non-structural) measures. soft

measures are “any measures not involving physical construction that uses knowledge, practice or

agreement to reduce risk and impacts, in particular through policies and laws, public awareness-

raising, training, and education.” (UNISDR, 2015). The former includes protection and

accommodation in infrastructures while soft measures are any measures not involving physical

construction. However, the most highlighted and repeated keywords have focused on the
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uncertainties in the physics of the hazard itself, rather than other socio-economic, environment

and etc. aspects.

Hence, after a full-text screen and removing the publications without presenting any in-

dicators of uncertainties and failure roots of tsunami risk managements, publications were

divided into (i) studies focusing on hard measures and uncertainties in the physics of hazard,

and (ii) studies focusing on soft measures and uncertainties in individuals and people.

aleatory uncertainty

strike

discrepancy

bias

tsunami impact

tsunami height

dip
water level

simulation result

large uncertainty

probabilistic tsunami hazard a

frequency

population

forecast

treatment

large earthquake
degree

tsunami deposit

safety
numerical model

practice

future

action

operation

life

distance

age

trench

ability

ptha
tsunami source

reactor

person

uncertainty analysis

slip distribution

wave height

rupture
deposit

sensitivity analysis

building

size
evidence

coefficient

resolution
velocity

strategy

subduction zone

experiment

sensitivity

fault

scale
propagation

response

slip

development

probability

tsunami hazard

coast

VOSviewer

Fig. 3 The density map of the most repeated keywords extracted from the filtered publications.
Filtering was based on their relevance, and frequency. Search engine: Web of Science Core and
Correlation; Keywords: “ Tsunami + risk management”, “Tsunami + failure cause ”, “Tsunami
+ uncertainty” and “Tsunami + lessons”; VOS-viewer software was used for visualization. The
transparency of colors is determined by the weight of the keyword. The higher the weight, the
darkest the keyword and its color.

2.2 Literature review – hard uncertainties

The 2004 and 2011 tsunamis lead to the unprecedented role of uncertainty in tsunami hazard

assessment in tsunami-prone areas. The failure of hard measures (e.g. sea walls, dikes) in some

areas of Japan during the 2011 tsunami, made communities more vulnerable. New concept for
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tsunami mitigation measures (i.e., levels 1 and level 2) was considered in Japan (Suppasri et al.,

2016).

Tsunami hazard assessment includes sensitivity analyses (see e.g. (Goda et al., 2014, 2019))

as well as deterministic (see e.g. (Heidarzadeh et al., 2009; Lynett et al., 2016; Salah and

Soltanpour, 2014)) and probabilistic approaches. The latter approach– called the probabilistic

tsunami hazard assessment (PTHA) –has received substantially increased attention after the

2004 and 2011 tsunamis (Kagan and Jackson, 2013; Lorito et al., 2015; Løvholt et al., 2014;

Satake, 2014). Unlike deterministic approaches that consider specific scenarios (commonly

including the worst case scenario) to calculate tsunami hazard metrics (such as run up height and

arrival time), PTHA calculates the likelihood of tsunami impact employing multiple possible

scenarios consisting of the contributions from small to large events along with all quantifiable

uncertainties (Geist and Lynett, 2014). Hence, PTHA can overcome the limitation of incomplete

or insufficient historical records, and extend the return periods from hundreds to thousands

of years. Furthermore, this approach considers the uncertainties. PTHA was developed by

adopting the probabilistic seismic hazard analysis (PSHA) (Cornell, 1968; Downes and Stirling,

2001; Rikitake and Aida, 1988), and much progress has been built upon it see (Grezio et al.,

2017) and the references therein. Notwithstanding that PTHA is a relatively new method, it

has been widely used in tsunami-prone areas owing to its diverse range of applications (e.g.,

(Bayraktar and Ozer Sozdinler, 2020; Davies and Griffin, 2019; Mori et al., 2018; Sepúlveda

et al., 2019; Thio et al., 2014)), each of them covers different uncertainties, methods, and level

of accuracy. A reliable PTHA must consider the epistemic uncertainty and aleatory variability

simultaneously.

Epistemic uncertainties are stemming from the lack of researcher knowledge and is related

to the lack of understanding and limited knowledge of the process. while aleatory variability

expresses the innate variability of the physical process and the random nature of hazards.

Epistemic uncertainty can be reduced by collecting new data and new knowledge about hazards

and modeling the process. Whereas the unpredictability of a hazard (i.e. aleatory variability)

does not reduce with additional data.
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Many authors believe that no theoretical significance exists for this separation because,

as long as our knowledge increases, all uncertainties become epistemic (Marzocchi et al.,

2015). The main epistemic uncertainty and aleatory variability sources in tsunami hazards are

following:

(i) Source mechanism (zone): the spatial distribution of earthquakes is heterogeneous. A

big challenge is to define a subduction where there is a constrained historical data. Low

activity rates mean that a lot of intraplate faults may be unidentified (Grezio et al., 2017)

and it is not accurate to not consider them in PTHA studies.

(ii) Recurrence model: The magnitude density functions give the relative rate of different

magnitude levels on a source. Earthquake catalogues are limited at large magnitudes

for a particular fault zone and it imposes uncertainties in frequency distribution. Return

periods of large earthquakes are at most of the time undefined.

(iii) Slip distribution: slip distribution significantly affects tsunami heights nearshore. In

THA studies it has been typical to use uniform slip instead of heterogeneous distributions.

Recently, different studies have shown that maximum nearshore wave height varies by

a factor of 2 or more due to heterogeneity in earthquake slip (Butler et al., 2017; Goda

et al., 2014; Løvholt et al., 2012; Mueller et al., 2015; Sugino et al., 2015).

(iv) Tide stage: the tide level at tsunami arrival time is unknown. In most tsunami models

the sea level can be adjusted to see the effect of the tsunami at different tide stages. Tide

level is one of the main aleatory variability sources (González et al., 2009). (Mofjeld

et al., 2007) computed the probability density function of the maximum wave height of

tsunami plus the tidal stage. The results area approximated by the least squares fit the

Gaussian distribution. (Adams et al., 2015) suggested a method in which the effect of

tide can be included by calculating the exceedance probability of tide level.

(v) Modeling and bathymetry: Because PTHA have usually multitude scenarios included

(cf. deterministic approach),the modeled tsunami metrics (such as run up height and

arrival time) are not expected to give a highly accurate representation of the once’s in real

events.
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(vi) Rupture area: Given the earthquake magnitude, rupture length and width can varies

largely and it is one of the main sources of uncertainties.

(vii) Intensity (magnitude) considering maximum magnitude (Mmax) event due to their short

records is one of the main sources of uncertainty (Thio, 2010)

(viii) Earthquake epicenter: the location of earthquakes is unknown. Short historical data

makes the prediction of exact location of next earthquake impossible.

Fig. 4 shows all the above-mentioned uncertainties. As it was discussed there is no

theoretical significance between epistemic uncertainty and aleatory variability. In different

studies the boundary of incorporating aleatory and epistemic in to PTHA has been blurry.

The method used in this study is explained in Chapter 4. Fig. 4 is restructured with

distinguishing epistemic uncertainty and aleatory variability and the approach used in

this work (see Fig. 8).
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2.3 Literature review – soft measures

After an in deep review, the publications with the most relevance to uncertainties and failures

of soft measures were extracted. Fig. 5 shows the network map of the keywords with more

than 5 times repeats in abstract of the extracted literature. Lines colors represent links between

keywords and the cluster to which the keyword belongs, respectively. the stronger two keywords

relatedness, they located closer to each other. The strongest co-citation links between keywords

are represented by lines.

Overall the keywords such as local knowledge, experience, willingness of evacuation,

normalcy bias, trust, leader, culture are among the most repeated keywords in publications

targeting soft measures and their failure. They can be categorized into (i) people’s knowledge

and awareness and (ii) their perception and attitude towards a hazard. A more detailed review

on these topics is provided in due sections.

Fig. 5 The network map of the keywords with more than 5 times repeats in abstract of lit-
erature on soft measures uncertainties and failure roots. VOS-viewer software was used for
visualization.
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2.3.1 In deep literature review

Usually, after any coastal disaster there is a major drive to construct and/or improve the hard

measures in the prone areas. These structures may reduce the tsunami awareness of residents

by leading them to believe that the structures fully protect them rather than simply reducing

damages. However, an over-reliance on engineering construction, that is, hard measures alone,

can still lead to mass casualties as the at-risk population neglects self-protection strategies. A

simple example is that of the 2011 Tohoku tsunami, more specifically in Taro town that this

thinking occurred (Suppasri et al., 2013). Moreover, implication of this type of measures are

very costly yet not efficient enough. Despite the expensive exercise for preventing, predicting,

and protecting vulnerable communities in the United States against natural hazards, people

have still faced staggering helplessness (Science and Council, 2003). All these together raises

the question as to whether hard measures are sustainable and can support the socio-economic

development of local communities. This is because the effect of disasters can be exacerbated

when socio-economic factors are not addressed (Esteban et al., 2015a; Mileti et al., 1995).

Hence, soft measures should also be considered to minimize vulnerability and studied more

extensively (Shibayama et al., 2013a; Yun and Hamada, 2012). Accordingly, cost benefit and

disaster management analyses should be applied in developing countries such as Iran, where

the budget for developing hard measures is limited.

Having said that, still one of the most formidable challenges nowadays is how to apply the

concepts and methods of performance of soft measures to disaster preparedness.

To propose optimal mitigation measures, decision makers and education strategies must

acknowledge community heterogeneity (Paton and Johnston, 2001).

2.3.1.1 knowledge and awareness

On general grounds, awareness and knowledge influence disaster preparedness. First, literature

concerning this topic were briefly reviewed. Awareness in this sense has been defined as the

extent to which people think and talk about a specific hazard (Paton, 2003). the authors in

(Tavares et al., 2010) assumed that awareness depends on general knowledge of residents and

their access to the information sources. However, (Esteban et al., 2013a) pointed out that
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awareness of people is location specific and depends on different factors, such as education,

policies, and culture. These indices have been separately targeted in unique locations prone

to different natural hazards; for example, typhoons (Esteban et al., 2015c, 2016), hurricanes

(Ukkusuri et al., 2017; Whitehead et al., 2000), and floods (Esteban et al., 2013a; Mabuku et al.,

2018; Takagi et al., 2016). Tsunamis, however, have received comparatively less attention.

Some studies have established the level of community awareness in tsunami prone areas (ANH

et al., 2017; Esteban et al., 2013b; Gregg et al., 2006; Takabatake et al., 2018a). Researches on

knowledge, awareness, and willingness have been carried out in Vietnam (ANH et al., 2017;

Esteban et al., 2014), Trinidad and Tobago (La Daana et al., 2016), Samoa (Lindell et al., 2015),

and Japan (Kakimoto et al., 2016; Nomoto, 2016; Takabatake et al., 2018a; Yun and Hamada,

2015). Gregg et al. in (Gregg et al., 2006) summarized that people knowledge about tsunami in

Hilo is low, hence, changes in disaster education is needed to increase understanding among

locals. Esteban et al. (Esteban et al., 2013b) investigated indices in Japan, Chile, and Indonesia

that can reflect the degree of awareness at the authority, institution, or citizen levels. Cubelos

et al.(Cubelos et al., 2019) established the level of tsunami awareness through community

mapping in Chile.

Some studies have further analyzed awareness and proposed new directions for tsunami

mitigation and evacuation (Hein, 2014; Shibayama et al., 2013b). For example, the idea

conceptualized by Esteban et al.(Esteban et al., 2015b) showed how a given event can quickly

raise awareness; however, this increased awareness often fades with each successive generation.

Hence, repeated education and regular evacuation drills by local government (Suppasri et al.,

2015), and storytelling across generations, may maintain this level of awareness (Viglione et al.,

2014).

Global awareness about tsunamis and the risk associated with it has increased owing to the

recent events, including the 2004 Indian Ocean tsunami, the 2010 Samoa and Chile tsunami,

and the 2011 Tohoku earthquake tsunami (Esteban et al., 2018). Due to the high casualties and

destruction forces of these events, a conception of “tsunami culture” has developed in vulnerable

communities. Furthermore, the mass media coverage following tsunamis has impacted areas

that are not often affected by such events.These yield a renewed interest among researchers.
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Some studies investigated factors of failures and successes of tsunami mitigations through

post-survey: (Gregg et al., 2006) studied socio-cognitive indices of tsunami’s warnings based

on the 2004 Indian ocean tsunami experience; (Kanai and Katada, 2011) identified issues

among residents’ preparedness resulting from 2010 Chile tsunami; (Suppasri et al., 2013) found

self-evacuation is very important through post-survey after 2011 tsunami; Toshitaka Katada

– known as the tsunami hero – showed “children’s power to survive” from tsunami education

before 2011 Tohoku tsunami (Katada and Kanai, 2016); furthermore, (Esteban et al., 2013a)

compared preparedness among Indonesia, Chile and Japan after tsunami. All studies have

reported increase awareness and knowledge about tsunami in recent years; however, there is

likely an upper limit regarding mass media’s influence in areas without tsunami experiences .

In addition, the uniqueness of each community, cultural and local factors, play pivotal roles in

the context of awareness and knowledge. Accordingly, the MSZ provides a novel case study to

be further investigated.

2.3.1.2 Attitude and Perception

Although factors related to the hazard – physics of tsunamis – largely dictate impact, knowledge

and awareness affect a community’s vulnerability. Other factors like socio-cognitive, personality,

cultural are inevitable and yet poorly understood. In the 2011 Tohoku tsunami, only 57% of

people evacuated immediately in some areas (MAS et al., 2012), even though owing to different

experiences, regular drills were conducted, and educational awareness and general knowledge

were relatively high.

(Pidgeon et al., 1992) defined risk perception as “people’s beliefs, attitudes judgment and

feelings, as well as the broader social or cultural values that people adopt against risks.” Risk

perception can therefore be considered a cognitive process capable of guiding people’s behavior

to reduce the impact of a uncertain event. Various factors such as psychological and cultural,

which are usually correlated can influence perception assessment.

The importance role of risk perception in evacuation behavior has been showed in the

literature, but empirical data are lacking (Sugiura et al., 2019). In addition, although evacuation

behavior have been discussed in literature for other types of natural hazards, like, earthquakes
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and volcanoes, and hurricanes (Dash and Gladwin, 2007; Lindell and Perry, 2012; Vicente et al.,

2014), it is yet to be addressed for tsunami. some studies have been carried out on investigating

reasons of failure/success in evacuation in the affected areas (Sugiura et al., 2019; Yasuda

et al., 2016) and identified factors related to intention to evacuate by considering a hypothetical

scenario in areas not experiencing a major tsunami. Some examples for the former one are:

(Sugiura et al., 2019) in which the authors addressed psychological and personality factors

by applying hierarchical regression analysis to survey data from survivors of 2011 Tohoku

earthquake. (Ohno and Isagawa, 2012; Yasuda et al., 2016) and (Suwa and Kato, 2009) tried to

answer how residents behave after 2011 earthquake and 2006 Kuril island tsunami, respectively.

Moreover, (Nakasu et al., 2018) investigated reasons behind high death toll of Rikuzentakata

in 2011 tsunami. People’s experience, belief systems, normalcy bias, too much reliance on

warning system and engineering infrastructures, trust, some demographic characteristics such

as age and gender have been considered the main failure factors for evacuation (Basolo et al.,

2009; Nakasu et al., 2018). Normalcy bias is a tendency to underestimate the risk of a warned

hazard, which affects appropriate evacuation.

Regarding the latter subject, i.e. willingness and intention behavior to evacuate, there have

been some studies focusing on variety of coastal hazards in different countries. For example,

(Fraser et al., 2013) addressed the intended evacuation behavior of residents at Napier city in the

event of tsunami. (Whitehead et al., 2000) investigated the intended or hypothetical evacuation

willingness from hurricanes in the United States. Other studies have been conducted on the

willingness of specific groups (e.g., older (Gray-Graves et al., 2010) and tourist (Faulkner, 2001;

Rittichainuwat, 2013) populations) to evacuate. Finally, some studies went one step further and

provided predict modelings including actual behavior of residents, employing data appeared

already in the literatures (Takabatake et al., 2017, 2018b; Yamashita et al., 2014).

The consideration of evacuation behavior for tsunami events in areas without frequent

tsunami experience is poorly studied in the literature; and, remarkably no studies have been

carried out in the MSZ regarding this issue.
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2.4 Summary

This chapter shows a systematic literature review that had been conducted to find the uncertainty

indicators and failure roots in tsunami risk managements. There were rather two branches

of indicators and failure roots: the ones dealing with hard measures and those dealing with

soft measures. In regards to hard measures uncertainties were mostly stemming from the

physics of hazard itself (the lack of data and knowledge, epistemic and unpredictability nature

of it, aleatory). They were scattered in different fields, geophysics, numerical modeling,

statistical approach, earth science, and etc. Soft measures failure roots were mostly connected

to community’s knowledge, awareness, attitude, perception, and heterogeneity of each. Hence,

both “hard” and “soft” protection measures should be applied in an interactive and simultaneous

way to design a cost-benefit and sustainable disaster management.
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3 GENERAL METHODOLOGY

In this chapter, the general methodology to account and incorporate uncertainties in both hard

and soft measures in Makran, Iran is explained. The identified indicators from literature review

in Chapter 2 are taking into account using described method here.

3.1 Study area

As it was shown in Chapter 2, section 1.4, historical records of tsunami show the potential of

tsunami in both the north (Caspian sea) and the south (Makran) of Iran. However, Makran was

selected as a case study in this research owing to its more vulnerability and uniqueness of the

area that it shall be discussed in this section.

The Makran region, located along the southeastern coast of Iran and the southern coast of

Pakistan. It should be taken into consideration that area is one of the closest and best access

point to the open sea for landlocked countries (e.g., Uzbekistan, Afghanistan, and Mongolia)

and is one of the most significant intersections of North-South world business Corridor (see

Fig. 6). Moreover, it is benefiting from numerous historical and natural attractions in addition

to its valuable Geo-economics advantageous. the Iranian government approved the “Makran

sustainable development” plan in 2016, naming Chabahar, the most populated city in the region,

a free economic zone and unrestrained migration after the development will happen.

The Makran coast is covered by two province in Iran, Hormozgan and Sistan and Baluches-

tan and from Gwadar bay to Jask is around 600 km. There are five major port in the area namely,

Gwadar, Chabahar, Tis, Konarak and Jask. The Human Development Index (HDI) with 0.682

in Sistan and Baluchestan is the lowest among other provinces in Iran.

Notably, historically, the area has been affected by tsunamis as it was shown in Fig. 2;

the most disastrous of which occurred in 1945, with upwards of 4000 casualties reported in

Pakistan and Iran.

(Heidarzadeh et al., 2008; Salah and Soltanpour, 2014) carried out studies in Makran to

simulate tsunami waves, inundation areas , and predict possible scenarios for future tsunami

events (Heidarzadeh and Kijko, 2011; Salah et al., 2020). These studies mainly focused on the
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the hazard itself; however, social factors play an important role in the concept of sustainable

risk management. Moreover, uncertainties had not been account in the area.

Fig. 6 Study area, Makran shown in red rectangular. It is located at the southern part of
Iran. It is covered by two provinces, Hormozgan and Sistan and Baluchestan. it is benefiting
from numerous historical and natural attractions in addition to its valuable Geo-economics
advantageous.

3.2 Incorporating hard uncertainties

For a region that lacks an extensive historic record of tsunamis and earthquakes, such as

Makran, it is utmost important to provide a valuable tool for assessing tsunami hazard. As

it was already discussed in Chapter 2, PTHA can overcome the limitation of incomplete or

insufficient historical records, and extend the return periods from hundreds to thousands of

years. Furthermore, having a sustainability point of view a tsunami hazard assessments should

be a very comprehensive one. Accordingly, Probabilistic approaches are highly preferred to

deterministic ones since all of the stakeholder’s interests and objectives should be taken into

account. Moreover, PTHA approach is needed to better quantify the uncertainties, namely

Aleatory and Epistemic one.
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The MSZ is a tsunami risk zones as attested by compiled tsunami catalogues and recent

paleotsunami studies (Kakar et al., 2015) that exhibits risks for the neighboring countries of

Iran, Oman, and Pakistan. This region is not as prominent in scientific literature as other

tsunami-prone subduction zones owing to its low population density, and it remains as one of

the least studied regions. The authors of (Heidarzadeh and Kijko, 2011) performed the first

generation of PTHA in the MSZ. Their results are not reliable for return period far from the

typical recurrence time of magnitude Mw = 8.1 because only three earthquakes were considered

in their study. Furthermore, the rough discretization of sources used may have affected the

final results. (Hoechner et al., 2016) conducted a PTHA along the MSZ based on a synthetic

earthquake catalogue. In their study, a simple geometry model along with a uniform (cf.

heterogeneous) slip distribution were used because their primary focus was identifying the

consequences of maximum magnitude assumptions. Finally, (El-Hussain et al., 2016) performed

a logic tree approach for assessing the hazard only for Oman coasts. Of particular importance

is the absence of aleatory variability in the aforementioned studies. For any tsunami probability

study, it is critical to understand how uncertainty affects probability estimation. Thus, this study

aim to fill the gaps of previous PTHA studies in the MSZ via developing a methodology that

incorporates both aleatory and epistemic uncertainties. This work overcomes the limitation in

the integration of uncertainties, namely, tidal level, heterogeneity in slip distribution and rupture

size, numerical and geometry models, earthquake recurrence rate, and maximum magnitude.

The methodology aims to calculate the probability of exceeding a /set of tsunami heights at

the Makran coast, considering both epistemic and aleatory uncertainties. In order to incorporate

epistemic uncertainties two event trees were developed based on scientific facts and historical

data. Later, to select the true hazard ensemble modeling was applied. Aleatory variability was

considered by incorporating directly to the probabilistic equations.

First, the seismicity area and generated synthetic scenarios similar to that described by

(Davies and Griffin, 2019) were determined. Then, for each scenario, a fully nonlinear tsunami

model Funwave-TVD (Kirby et al., 1998; Shi et al., 2012) was ran to obtain the maximum wave

heights along the coastline. Additionally, the epistemic uncertainties by developing two event

22



trees and ensemble modeling were incorporated. Finally, the tsunami height exceedance rate

considering the aleatory variability was calculated.

3.2.1 Epistemic incorporation

Epistemic uncertainties can be incorporated by developing event trees. The event tree framework

was first considered for PSHA (Cornell, 1968) and then was adapted to assess PTHA (Annaka

et al., 2007; Burbidge et al., 2008) and was recognized as a comprehensive method for PTHA.

Each node of event tree represents a specific uncertainty and collects a series of alternative

models, represented by the different branches. Different branches of event trees may make the

analysis expensive in terms of computation time and storage yet it is better than Monte carlo

approach. each path of event tree represents one hazard curve, thus the number of path in event

trees results the same number of hazard curves.

3.2.1.1 Ensemble model

The selection of true hazard has been subjective of an argument among practitioners. Some

argues the mean hazard of event tree is the hazard and hazard distributions of all the paths do

not have probabilistic meaning. In contrast, others describe the hazard using the distribution

of all event tree hazard curves. (Marzocchi et al., 2015) claims that interpretation of all event

tree’s outcomes is more appropriate and meaningful from probabilistic point of view. With an

example of coin toss with two persons. Probability tree of it is shown in Fig. 7. The mean value

of this tree (in this case it is equal to 0.54) has no frequentist interpretation as it would expected

one coin with one person will happen every time.

In this study a more general method was used in addition to event trees was used: ensemble

model which is based on a method initially introduced for PSHA studies.

To estimate the true hazard, the approach that considers the mean hazard should be abounded

and it does not represent a long-term probability of exceedances as the true hazard. Ensemble

modeling presumes that epistemic uncertainty is greater than that evaluated by one event tree,

and treats the branches of the event tree as an unbiased sample from a parent distribution

(Marzocchi et al., 2015). In this way and it solves some drawbacks of logic trees such as the
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Coin 5

Coin 4

Coin 3

Person B

Coin 2

Coin 1

Person A

1/2 *1/3 = 1/6

1/2 *1/3 = 1/6

1/2 *1/3 = 1/6

1/2 *1/2 = 1/4

1/2 *1/2 = 1/4  0.3

0.4

0.7

0.7

0.8

Fig. 7 Probability tree for coin toss. In this tree there are two persons and 5 coins. Each branches
of the tree is weighted bu blue color. The mean value of this tree is 0.54, and do not represent
any meaningful description as it is expected the outcome of this event be one specific person
and coin each time.

interpretation of outcomes. To build an ensemble model of alternatives a parent distribution was

fit to the set of event branches’ probability outcomes. A natural choice is the beta distribution

with parameters of (α,β ). Parameters α and β are the average and variance of each branch.

3.2.2 Aleatory variability

Aleatory variability was directly incorporated in probability equations. In the analysis, three

main contributions to the aleatory variability have been identified: (i) The mismatch between

tsunami height model and observed caused by the numerical and bathymetric model error,

(ii) The stochasticity in the earthquake dimensions imposed by the scaling relations, (iii) The

tide variation at tsunami arrival time. Fig. 4 is restructured with distinguishing epistemic

uncertainty and aleatory variability and the approach used to incorporate each (see Fig. 8).

3.2.3 Generation and propagation model

To calculate generation waves some steps were taken as follow:

(i) First, the vertical co-seismic dislocation of each segments (see Chapter 4 section 4.5.1

for more details about construction of the segments over the MSZ) was calculated via a

homogeneous elastic half-space model (Okada, 1985). Okada model is derived from a
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Green’s function solution to the elastic half space problem. It calculates the displacements

at the free surface given rectangular fault geometry, namely fault length (L), fault width

(W ), depth, dip, and strike, as well as two parameters of dislocation amplitude, rake angle,

and slip (see Fig. 9).
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Fig. 9 Seismic parameters of the Okada model (Okada, 1985) to generate the the vertical
co-seismic dislocation.

(ii) Then, the Kajiura filter (Kajiura, 1963) was used for the ocean surface deformation

of the dislocation to calculate the initial conditions. Kajiura filter represents the three-

dimensional non-hydrostatic response of the water column to seafloor uplift, leading to

smoothing of the co-seismic dislocation over spatial scales of a the ocean depth.

(iii) Finally, all the active segments were combined linearly considering their associated slips

(see Chapter 4, section 4.5.3 for slip calculation approach for each segment). This method

is mathematically valid as the Okada model is linear in slip and Kajiura filter is a linear

convolution integral (Glimsdal et al., 2013).
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Regarding the simulation of tsunami propagation a fully nonlinear and dispersive Boussinesq

long wave model, FUNWAVE-TVD (Kirby et al., 1998; Shi et al., 2012), was employed. It features

accurate dissipation by considering the breaking wave and bottom friction processes, and has

been systematically validated against experimental studies and benchmarks (Tehranirad et al.,

2011). The code was parallelized using the message passing interface (MPI). This salable

algorithm (using more than 90% of the number of cores in a computer cluster (Shi et al., 2012))

has been paved the way for modeling multitude scenarios.

3.2.3.1 Governing equations

FUNWAVE-TVD, the fully nonlinear Boussinesq equations relying on (Wei et al., 1995), with

various parameters is implemented. It considers bottom friction, breaking, and shoreline run-up

effects proposed by (Chen et al., 2000; Kennedy et al., 2000) have been applied. The volume

conservation and momentum equations are defined as follows,

βηt +∇ ·M = 0 , (3.1)

where ηt represents water surface elevation relative to the ocean mean depth h, ∇ is gradient in

horizontal coordinates. M is depth integrated horizontal volume flux given by Eq. (3.2):

uα,t +(uα ·∇)uα +g∇η +V1 +V2 +R f −Rb = 0 , (3.2)

V1 and V2 are terms representing the dispersive Boussinesq terms and are given by (Grilli et al.,

2007, Eq.(5) and Eq.(6)).

V1 =

{
z2

α

2
∇B+ zα∇A

}
t
−∇

[
η2

2
Bt +ηAt

]
,

V2 = ∇

{
(zα −η)(uα ·∇)A+

1
2
(z2

α −η
2)(uα ·∇)B+

1
2
[A+ηB]2

}
.

(3.3)
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Rb and R f are forces related to the wave breaking and bottom friction, respectively, and M is

the horizontal volume flux:

M = Λ

[
uα +

(
z2

α

2
− 1

6
(h2 −hη +η

2)

)
∇A+

(
zα +

1
2
(h−η)∇B

)]
, (3.4)

Here, uα is horizontal velocity at an elevation zα taken to be zα = 0.531h following (Wei

et al., 1995). A and B are functions of velocity given as follows,

A = ∇ ·uα . (3.5)

B = ∇ · (huα) . (3.6)

The factors β and Λ were implemented to simulate a porous beach method for calculation of

run up on dry shorelines. These factors are shown as follows:

β =


1 , η ≥ z∗

δ +(1−δ )eλ (η−z∗)/h0 , η ≤ z∗
, (3.7)

Λ =


(η − z∗)+δ (z∗+h0)+

(1−δ )h0
λ

(
1− e−λ (1+z∗/h0)

)
, η ≥ z∗

δ (η +h0)+
(1−δ )h0

λ
eλ (η−z∗)/h0

(
1− e−λ (1+z∗/h0)

)
, η ≤ z∗

, (3.8)

Here, h0 is the porous layer depth. It must be deeper than depth of maximum wave rundown

during a calculation. The selection of z∗ is explained by (Kennedy et al., 2000) . According

to the number of tsunami run-up events investigated by (Day et al., 2005; Grilli et al., 2007)

δ = 0.08 and λ = 25 were used.

Boundary condition In this study an absorbing boundary condition introduced by (Larsen

and Dancy, 1983) was implemented. In this approach, the variables φ(η ,u,v) are directly

attenuated at every time step, φ = φ/Cs. Cs is a damping coefficient defined as:

Cs = α
γ i−1

x
s , i = 1,2, . . .n . (3.9)
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where αs and γs are free parameters and i represents grid numbers. (Chen et al., 1999) suggested

αs = 2, γs ∈ [0.88,0.92], and n ∈ [50,100]. The length of the sponge layer was selected in the

process of validating the model (see section 4.6).

3.2.4 Return periods

In PTHA method, the various return periods, ∆T could be used by different purpose and

stakeholders. In this study, return periods are set to ∆T = {50,100,250,500,1000} years; each

choice interests different stakeholders and provides information on a specific aspect of the

tsunami hazard in the MSZ.

50-year return period hazard curves are shown for understanding threaten of a short term

hazard. The failure of coastal defense structures during 2011 Japan tsunami led to a new

concepts for tsunami mitigation measures, levels 1 and 2 in Tohoku region. The new generation

of coastal embankments have been designed to prevent a tsunami with a return period of up to

100-year (level 1) from over topping, tsunamis that are larger than this (level 2) are expected to

cause over topping (Suppasri et al., 2016).

500-year was suggested by UNSIDR (Wright, 2013) for designing airports to provide

country wise and global statistics. 1000-year return period hazard curves are shown for

understanding threaten of a long term hazard, this can be used by insurance company and

designing critical facilities such as nuclear power plant. Moreover, for the facilities located

at the coastline such as desalination systems, sea water purifier and etc. Results for different

return periods introduced in this section are investigated and provided in hazard curves and

probability maps in Chapter 4.

3.3 Incorporating soft uncertainties

There were uncertainties in soft measures of tsunami mitigation measures that had been caused

failure in risk managements. The main indicators were discussed and shown in section 2.3.

In areas with low tsunami risk probability, mitigation plans are unlikely to resonate with

individuals. Evidence and data about local’s knowledge, awareness, and attitudes toward

tsunamis is a keystone for an optimal risk management and improving the preparedness. In this
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chapter, the aforementioned factors in 4 places in the southern part of Iran has been investigated

through field survey.

To do so a mixed methodologies approach was used, including distributing the questionnaire

and interviewing locals. Moreover, 3 focus group discussions were carried out for further

discussion on the findings of the questionnaire survey and interviews.

3.3.1 Samples and analysis

The survey was conducted using different convenience sampling methods at each sites in

September of 2018 . Responses were collected at different times of day throughout the week

to obtain a better distribution. For Chabahar, questionnaires were administered by two trained

enumerators using a random sampling method In Konarak, a GPS random spatial sampling was

used to select households in the tsunami prone area. In Tis and Ramin, due to the relatively low

level of education, face to face interview was utilised.

3 focus group discussion (3 hours and 45 minutes) were held at 3 fishery ports, namely Beris,

Ramin, and Shahid Beheshty with local fishers and beach users. Audio data collected from the

focus group discussions were transcribed, and coded analysis to determine the suitability of the

study. See Table 1.

Samples were compared with the latest census data (where available) to evaluate their

representative. In addition to tabulating the results using descriptive statistics, and ANOVA and

chi-squared tests were used to analyze the significance of the relationship between variables

using the scipy.stats package in Python.

3.3.2 Questionnaires

(Plomp, 2013) suggested, typical steps were taken for the creation of the questionnaire, including

a systematic literature review shown in Chapter 2 and expert consultation. First, The questions

were distributed to 6 Iranian disaster resilience experts. They were selected based on their

familiraty about the area, resilience topic, and availability. Their comments were applied to

the questionnaire. The approach introduced by Lawshe (Lawshe, 1975) were used to select the

number of experts and how to apply their suggestions on the existing questionnaire.
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Table 1 Sampling methods and the number of samples.

Area Chabahar Konarak Ramin and
Tis

Fisheries

Sampling
method

Random sampling in
high density area of the
city

GPS
random
sampling

Face-
to-face
interview

FGD

Type questionnaire questionnaire open ended
interview

open ended
interview

Number of
samples

153 45 24 3

Then, the questionnaire was tested with 10 residents through face to face surveys to detect

suitability, comprehensibility, and amount of time required for response.

Finally, the modified questionnaire contained: knowledge, awareness, experience, trust,

evacuation behavior, and socio-demographic characteristics (gender, age, education, income,

religion).

For FGDs an open ended interview method were selected. The participants were asked

about their experience in various natural hazards, their knowledge, awareness about existing

mitigation plans in their living area.

3.4 Summary

In this section a general methodology to incorporate the identified uncertainties were discussed.

Makran was introduced as an strategic area for the country and its feature makes it potential to

absorb population and more development will happen in the next few years. Hence, tsunami

hazard assessment were suggested for entire coastline irrespective of population density. A

combination of statistical approach, historical assessment, and numerical model was introduced

to incorporate both epistemic uncertainty and aleatory variability and assess hazard for entire

Makran coast in different return periods. Epistemic uncertainty were incorporated using event

trees and ensemble modeling. While aleatory variability were considered directly to probability

equations. The selection of return periods were based on various stakeholders’ interest and
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information on a specific aspect of the tsunami hazard in the MSZ. Results for this part are

explained in Chapter 4.

Finally, to cover uncertainties in soft measure and considering heterogeneity in community

factors introduced in Chapter 2 were evaluated and empirical data was provided in four places

in the MSZ. A mixed methodology, including questionnaire and interviews among residents

were used. Results for this part are explained in Chapter 5.
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4 PROBABILISTIC TSUNAMI HAZARD ASSESSMENT

In this chapter, tsunami hazard was assessed using the probabilistic approach described in

Chapter 3 for the Makran subduction zone (MSZ), considering all identified and aforementioned

uncertainties in Fig. 8.

First, the epistemic uncertainties of fault source for the assessment of mean annual rates of

earthquakes at different magnitude levels were quantified. Despite the more classical approaches

commonly used in literature, the combination of event tree and ensemble modeling was used,

which is based on a method initially introduced for PSHA studies (Marzocchi et al., 2015).

To develop the original event tree for the area, available seismic, geodetic, and historical

catalogue data were utilized to better understand the potential seismogenic zone, maximum

magnitude, and recurrence model for the MSZ. Next, rupture complexity, namely, dimensions,

slip distribution, and possible earthquake locations, were considered to develop scenarios. Then,

a high-resolution tsunami numerical model was used to propagate tsunami waves resulting

from these scenarios. Finally, the aleatory variability associated with tidal variations, tsunami

numerical and bathymetric models, and scaling relations were considered through statistical

methods. These specific intermediate steps were followed to derive the probability of tsunami

height occurrence and exceedance for a given exposure time along the Iran and Pakistan coasts.

Fig. 10 demonstrates a summary of the framework. As it is explained in Chapter 3 a

combination of statistical, historical, and numerical model assessment was used to cover all the

uncertainties. The development of method and its results are provided in this chapter.

Results are presented for different return periods for insurance activity, land use and city

planning, critical facility design, mitigation measure design and implementation. Moreover,

some sensitivity analysis were made, for example the results obtained in the presence and

absence of the aleatory variability were compared (see section 4.8.3). Also, slip distribution in

its uniform form and heterogeneous were demonstrated (see section 4.5.3).
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node 3:   Maximum MW

node 4: Reccurence model 
uncertainty

node 1:  Segmentation zone

node 4:  Possible location -- Float 
seismicity area

Earthquake reccurence rate, EV1 Tsunami scenario creation, EV2                   

Generation - Okada model
Propagation - Funwave-TVD

Tsunami model

Numerical model and 
bathymetry 
Tidal variation

 Aleatory Variability

Probability Calculation

node 1:  Mw={7.7, 7.8, ..., Mmax}

node 2:   Reccurance model

Epistemic Uncertainties Treatment: Event tree + Ensemble model

node 3:   Slip distribution -- K -2 
model

node 2:  Rupture area -- A random 
sample from Scaling relations

Fig. 10 Methodology framework. First, the fault geometry was defined using SLAB 2.0, and
the source was discretized into smaller segments. Next, two event trees were developed to
define the earthquake recurrence rate and create tsunami scenarios; then, the Okada model and
Funwave-TVD were used to calculate tsunami heights for the scenarios. Finally, considering the
aleatory variability, the probability of exceedance was derived.

4.1 Treatment of uncertainties

Both aleatory and epistemic uncertainties had been taken into consideration. for the latter, two

event trees were developed based on determination of information contents, through statistical,

historical and geometry facts. the former one had been directly affected probability calculation.

The detail of developed methodology and results are described in due courses.
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(a)

(b)

Fig. 11 Developed event trees for (a) source recurrence model; (b) rupture complexity and
tsunami scenario creation.

4.1.1 Epistemic

Two event trees based on scientific facts in MSZ were developed as bellow: ( See Fig. 11)

(i) Focusing on the fault source recurrence model for the assessment of mean annual rates

of earthquakes at different magnitude levels with 36 branches. It consists of two zonations

[segmented and none, section 4.4.1]; three approaches for the seismicity model [Gutenberg–

Richter–Bayes (GRB) (Kijko et al., 2016), truncated Gutenberg–Richter, and characteristic

(Kagan, 2002), section 4.4.2]; three maximum magnitudes (Mmax) [based on the Kijko–Sellevoll–

Bayes method (Kijko, 2004), thermomechanical modeling (Smith et al., 2013) and ergodic

assumption (Bird and Kagan, 2004), section 4.4.3]; and three for incorporating the uncertainty

of the earthquake occurrence model.
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(ii) Focusing on the bulk rupture parameters and rupture complexity. It consists of rupture

length and width (see section 4.5.2), slip distribution (see section 4.5.3), and earthquake source

location within the fault (see section 4.5.4).

4.1.2 Aleatory

The proper treatment of aleatory variability in tsunami wave heights is a prominent subject, and

ignoring this typically leads to significant hazard underestimation (Bommer and Abrahamson,

2006). In the analysis, three main contributions, i.e., {σm,σs,σt}, to the aleatory variability

have been identified:

1. The mismatch between tsunami height model and observed caused by the numerical and

bathymetric model error (σm, see section 4.2)

2. The stochasticity in the earthquake dimensions imposed by the scaling relations (σs, see

section 4.5.2.1),

3. The tide variation at tsunami arrival time (σt, see section 4.3)

4.2 Numerical model and bathymetry mismatch (σm)

Due to the lack of field data and background information on the MSZ, the 2011 Tohoku

earthquake of Japan was modeled, and the results were compared with the available measured

data to quantify the mismatch between the observed and computed tsunami heights. This

uncertainty is described as the standard deviation of a log-normal distribution with a zero

mean (Aida, 1978; Thio et al., 2007):

σm = logκ =

√
1
n

n

∑
i=1

(logKi)2 − (logK)2 ,

logK =
1
n

n

∑
i=1

log
(

Hobs

Hmodel

)
.

(4.1)

Here, Ki = Hobs/Hmodel with Hobs and Hmodel are the measured and simulated tsunami heights,

respectively.
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4.2.1 The 2011 Japan tsunami modeling

The 2011 Tohoku tsunami was simulated using the same bathymetry and numerical model

as the ones used for the MSZ to obtain Hmodel . Moreover, in order to only consider the

mismatch between modeled and observed tsunami height resulted because of numerical model

and bathymetry a very precise initial condition needed to be used. Accordingly, to get better

accuracy an inverted source that had goodness of fit was used from (Fujii et al., 2011b; Hossen

et al., 2015). Fig. 12 shows initial condition used for the 2011 tsunami Japan.

Fig. 12 Inverted initial condition of the 2011 Japan tsunami the maximum 8.7 and minimum
−5.

4.2.1.1 Field data – Hobs

Many field measurements were made during and after the tsunami. The methods of measure-

ments have their own uncertainties caused by survey measuring tools. Hence, to avoid them,
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for Hobs, only the measured tsunami height at GPS (Yamazaki et al., 2011), DART buoys (Lay

et al., 2011), and tide and wave gauges (Kawai et al., 2013) were used.

4.2.1.2 Propagation model inputs

FUNWAVE-TVD was used in its Cartesian implementation to simulate the tsunami propagation

from the source to the Japan coast. GEBCO 2020 (global bathymetric model based on ship-track

data) with 15 arcsec resolution was used. The computation domain and bathymetry data are

showed in Fig. 13. A 600 m resolution was used for the computational domain, which is a

trade-off between precision and practical feasibility. To prevent non-physical reflection from the

boundaries, sponge layers were specified with 50 km thickness within the computational domain

along the north, east and south boundaries. Also, to avoid the triggering of instabilities because

of sharply varying bathymetry during wetting-drying, the critical depth for wetting-drying was

set to 1 cm, and the bottom drag coefficient to 0.01. All the inputs were validated by comparison

between differences between modeled height and field observation and computation time. The

final inputs parallels with those suggested by (Bakhsh, 2014). A summary of the inputs are

shown in Table 2.

Table 2 A summary of input variables for the 2011 tsunami Japan propagation model.

Variables Inputs

Computational domain 137 - 152.5 ◦ E , 32 - 46 ◦ N

Bathymetry data GEBCO 15 arcsec – 2020

Resolution 600 m

Sponge layers thickness 50 km in all directions

Drag coefficient 0.01

Wetting-drying (the critical depth) 1 cm

4.2.1.3 Results

Fig. 14 shows the comparison between the modeled and measured tsunami heights (top),

Eq. (4.1) were then used to calculate the standard deviation of a log normal distribution showing
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Fig. 13 Bathymetry and computational domain of the 2011 Tohoku tsunami.

the mismatch of modeled and measured tsunami height. It resulted σm = 0.376. The value

derived here is somewhat smaller than the one previously reported by (Thio, 2010) (i.e. 0.595).

The difference is due to the simplified uniform-slip representation of the tsunami source and

Green’s approach that were used in the latter reference.

4.3 Tidal variation (σt)

Because the tide level at tsunami arrival time is unknown, tidal variation variability must be

included in the PTHA. In the Makran region, the tidal variation is notable, and the peak to peak

tidal amplitude is as high as 2-3 m. For this task, the probability of exceedance of mean sea

level (MSL) from the tidal record at each point of interest (PoI) was calculated.

To calculate tidal record probability, a relatively long time-series of record measured by

tidal gauges for each PoI was used. For PoIs in which a tidal record is not available, a linear

interpolation of the closest tidal gauges was used. This choice seems reasonable because the

39



1.0 0.5 0.0 0.5 1.0 1.5
log(Ki)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

0 1 2 3 4 5 6 7 8 9
Modeled heights (m)

0

1

2

3

4

5

6

7

8

9

O
bs

er
ve

d 
he

ig
ht

s 
(m

)

Fig. 14 Comparison between modeled and measured tsunami height for the 2011 Japan tsunami
at 15 stations recorded by GPS, DART buoys, tide and wave gauges; regression line for
modeled versus measured height (bottom right); histogram of errors in log tsunami height and
corresponding normal distribution (bottom left).

differences in tidal levels along the Makran coast are not significant (Akbari et al., 2017). Mean

is equal to MSL which had been used in tsunami propagation modeling and standard deviation

is calculated for each PoIs. Fig. 14 illustrates some example of the methodology for some of

the PoIs, namely Beris, Jask, Chabahar, and Konarak. The dynamic interaction between tides

and tsunami waves was disregarded.

4.4 Source

For any earthquake induced tsunamis the probability of earthquake for different magnitudes is

needed to be considered. The mean annual rates (ν j) of earthquakes at different magnitudes
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Fig. 14 Tidal time series record of one year for Beris, Jask, Chabahar, and Konarak; and their
corresponding normal distributions.
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can be assessed as

ν j = λmin(1−FM (M|Mmin,Mmax)) . (4.2)

Mmin is minimum magnitude of interest (7.7), Mmax is maximum magnitude (see section 4.4.3

and λmin refers to the parameter of the Poisson distribution and describes activity rate of

earthquake occurrence. FM(M|Mmin,Mmax) is provided by different methods in section 4.4.1.

Uncertainties are highly depend on the underlying assumptions of earthquake physics. To do

so the mean annual rates (ν j) of earthquakes at different magnitudes was calculated considering

all the associated uncertainties. As it is mentioned in Chapter 3 the MSZ is located on the south-

eastern coasts of Iran and southern coasts of Pakistan. This zone extends east from the Strait

of Hormoz to the Ornch–Nal Fault in Pakistan. It experienced the deadliest tsunami that has

occurred in the Indian Ocean prior to 2004, and recent smaller earthquakes suggest seismicity

on the megathrust. However, poor historical records have led to significant uncertainty and

complicated hazard potential estimation. Therefore, to incorporate the uncertainties associated

with the fault source, an event tree (EV1) to assess the mean annual rates (ν j) of earthquakes at

different magnitude levels was developed, as described below.

4.4.1 Zone: node 1 in EV1

The eastern and western parts of the MSZ exhibit extremely different seismicity patterns

(Aldama-Bustos et al., 2009). This, along with its unrecognized bathymetric trench, makes

the MSZ a unique subject of analysis. (Al-Lazki et al., 2014) argued that the eastern MSZ is

underlain by an oceanic lithosphere, while the western part is possibly underlain by a continental

or very low velocity oceanic lithosphere. This, along with the more historical seismicity activity

at the eastern part, form the hypothesis of east-west segmentation of the MSZ. However, it

remains a controversial issue whether the MSZ should be considered segmented in hazard

studies because the existence of late Holocene marine terraces along the eastern and western

halves suggests that both can generate megathrust earthquakes (Normand et al., 2019).

Both the segmented and non-segmented zone in node 1 of EV1 are presented. However,

owing to the above mentioned related controversy, the hypothesis of the segmented the MSZ

was neglected as it leads to a strong hazard underestimation. Note that treating Tohoku as a
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segmented zone led to strong underestimation of the devastating 2011 tsunami (Kagan and

Jackson, 2013). Accordingly, the segmented and non-segmented zones were weighted as 0 and

1, respectively. However, in this methodology framework one can change it as their interests.

4.4.2 Recurrence rate model: node 2 in EV1

The severity of a large earthquake is determined by the tail of a frequency distribution. Earth-

quake catalogues are limited at large magnitudes for a particular fault zone. This makes the

accurate estimation of the PTHA through the recurrence interval of seismic history impossible

and inaccurate. In particular, for the MSZ with poor and incomplete catalogues, a simple linear

regression of the historical cumulative distribution is known to be biased (Power et al., 2012).

Accordingly, several models exist that can be used to define the distribution of earthquake

magnitudes for incomplete catalogues. In this study, three seismicity models were used to

define the behavior of the MSZ using its earthquake catalogues (see section 4.4.4):

(i) Gutenberg–Richter–Bayes(GRB) (Kijko et al., 2016). Seismicity was determined using

the HA3 application built in MATLAB. The applied procedure of the seismic hazard consid-

ers the incompleteness of the seismic catalogues, uncertainty in magnitude estimation,

and variation in seismicity. The code accepts mixed data catalogues, namely, paleo, histor-

ical, and instrumental with different completeness magnitudes, magnitude uncertainties,

and time periods. This method employs a mixed (Bayesian) Poisson-gamma distribution

as a model of earthquake occurrence over time.

ΦM = 1−FM =


1−Cβ

[
1−

(
p

p+M−Mmin

)q]
, Mmin ≤ M ≤ Mmax

0 , M > Mmax

, (4.3)

where p and q are gamma function parameters and Cβ being the normalization coefficient.

(ii) Characteristic (Kagan, 2002). 1 The characteristic distribution has the cumulative com-

plementary function (ΦM) truncated on both ends and is characterized by the following

1Caution: there is another “Characteristic” Gutenberg-Richter model (Youngs and Coppersmith, 1985) which is conceptu-
ally similar to the Kagan, but it spreads the rate of the highest magnitude event over a small interval
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equation

ΦM = 1−FM =


e−β (M−Mmin) , Mmin ≤ M ≤ Mmax

0 , M > Mmax

, (4.4)

(iii) Truncated Gutenberg-Richter (TGR). The cumulative complementary function (ΦM),

which is truncated at both ends, is expressed as

ΦM = 1−FM =


e−β (M−Mmin)−e−β (Mmax−Mmin)

1−e−β (Mmax−Mmin)
, Mmin ≤ M ≤ Mmax

0 , M > Mmax

, (4.5)

where Mmin is the level of magnitude completeness, Mmax is the maximum possible

earthquake magnitude and β = b log10, and b is the parameter of the Gutenberg-Richter

relation.

The simplest method to obtain parameters for power law, i.e., β and λmin is the least square

method (LS) of historical catalogues. The disadvantages of this method is that it usually

overestimates β that causes the rates of large earthquake to be underestimated. Moreover, due to

the lack of historical and modern tools in the MSZ, incompleteness and uncertainty in data need

to be considered. Hence, in this study β and λmin were calculated using earthquake catalogues

and HA3 application to cover both incompleteness and uncertainties in catalogues. (see section

4.4.4).

Fig. 15 shows an example of the earthquake curves generated by the aforementioned

recurrence models with one specific Mmax = 8.1. All of these models are modifications of the

“pur” Gutenberg-Richter. The original formulation is for any events with magnitude more than

zero, while the modified distributions are used in truncated form – because earthquakes like

most other natural hazards are size limited. Because an upper magnitude bound for any finite

source is presumably an associated maximum magnitude. As it can be seen in Fig. 15, in case

of characteristic model the limit at the tail of the distribution is “hard”, while the other two

distributions, i.e., GRB and TGR apply a “soft” exponential taper to the distribution tail.
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Fig. 15 An example of the earthquake curves (the probability of earthquake at different magni-
tude level) generated by the different recurrence models with one specific Mmax = 8.1.

4.4.3 Mmax: node 3 in EV1

PTHAs are more sensitive to Mmax than PSHAs because with increasing magnitude, tsunami

heights do not saturate but seismic ground motion does (Thio et al., 2007). Mmax based on

instrumental catalogues may underestimate the maximum magnitude event due to their short

records. Here, to include this uncertainty, three maximum magnitude (Mmax) methods were

used based on three different methodology:

Mmax = 8.2: Kijko-Sellevoll-Bayes method (Kijko, 2004): the maximum magnitude was

calculated base on earthquake catalogues in section 4.4.4 and using the HA3 application. Their

code calculates maximum magnitude via an iterative solution of a Bayesian estimator with the

equation:

Mmax = Mobs
max +

δ
1
q+2e

n·rq
1−rq

β

[
Γ

(
−1

q
,δ · rq

)
−Γ

(
−1

q
,δ

)]
, (4.6)

where Γ(·, ·) denotes the incomplete Gamma function, p and q are gamma function parameters,

and

r =
p

p+Mmax −Mmin
, δ = nCβ , (4.7)
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with Cβ = 1/(1− rq) being the normalization coefficient. The worse case scenario recorded in

earthquake catalogue in the MSZ was Mobs
max = 8.1 and using above equations Mmax = 8.2 was

obtained.

Mmax = 9.22: Thermomechanical model: (Smith et al., 2013) using a 2 - D thermal model

of the subduction zone showed that high sediment thickness leads to high temperature in

boundaries making the megathrust potentially seismogenic to a shallow depth and shallow dip

leads to high seismogenic zone area. For the full length of subduction zone they observed a

potential of Mmax = 9.22.

Mmax = 9.58: Ergodic theory says:

lim
T→∞

1
2T

∫ T

−T
x(t)dt = lim

N→∞

1
N

N

∑
k=1

xk(t0) , (4.8)

the time of process x at a particular geographic point is equal to the average at a particular rim

(t0) over an ensemble of points (xk) (Anosov, 2001). Using the concept of this theory, it can be

assumed that by compiling all subduction zones data in world for a century, enough information

may be available to extract average seismicity properties in local zones with a confidence that

is small enough to cover uncertainties. (Bird and Kagan, 2004) suggested Mmax = 9.58 for

subductions based on their statistical analysis for a number of faults worldwide in a century.This

value also meets the MSZ seismicity area limit.

4.4.4 Earthquake catalogues

Earthquake data employed in this study were derived from various sources:

(i) International Seismological Centre (ISC),

(ii) Incorporated Research Institutions for Seismology (IRIS),

(iii) The United States Geological Survey Online bulletin (USGS), which includes information

from the National Ocean and Atmospheric Administration (NOAA) and Preliminary
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Determination of Epicentres (PDE) provided by the National Earthquake Information

Center (NEIC),

(iv) Iranian Seismological Center (IRSC),

(v) Global Historical Earthquake Archive (GEM).

Extra efforts have been made to extract more data from the literature regarding earthquakes

with magnitudes beyond 6.5. This includes information from the Pakistan Meteorological

Department (PMD) (Department], 2007) and (Ambraseys and Melville, 1982).

4.4.4.1 Pre-processing catalogues

The ZMAP7 analysis tool (Reyes and Wiemer, 2019) was used for the pre-processing data from

different catalogues mentioned in section 4.4.4. First, the catalogues were compiled for a region

that lies in the plate interface, excluding nonsubduction seismicity (see Fig. 22). The catalogues

cover the period from 825 BCE to mid-2020 CE. Table 3 shows different catalogues periods

along with the sources for historical records.

Table 3 The time period of different catalogues and the sources for historical records

Catalogue name The time period

ISC 1907/07/04 — 2016/10/31

IRIS 2013/03/03 — 2020/04/26

USGS 1909/10/20 — 2020/04/26

IRSC 1902/07/09 — 2000/12/26

Historical records from: GEM, PMD, IRSC,
(Murty and Rafiq, 1991), (Pararas-Carayannis, 2006),
(Dominey-Howes et al., 2007), (Ambraseys and
Melville, 1982), (Quittmeyer and Jacob, 1979)

825 BCE — 1899 CE

These catalogues are different in terms of magnitude scale. When available, the moment

magnitude, Mw, was used; otherwise, the published magnitudes, e.g., teleseismic magnitudes

(Ms, mb) and modified Mercalli intensity (MMI) were converted to Mw. Table 4 shows compari-

son of MMI scale and Mw (Allen et al., 2012). For other teleseismic magnitudes the empirical
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laws proposed by (Lolli et al., 2014) were used as below:

Mw =


exp(2.133+0.063Ms)−6.205, Ms ≤ 5.5

exp(−0.109+0.229Ms)+2.586, Ms > 5.5
, (4.9)

Mw = exp(0.741+0.210mb)−0.758 . (4.10)

Table 4 The degrees of the MMI scale compare to magnitude Mw

Magnitude modified Mercalli intensity (mmi)

1 – 3 I

3 – 3.9 II – III

4 – 4.9 IV – V

5 – 5.9 VI – VII

6 – 6.9 VII – VIII

7 and higher IX or higher

Then, following the assumption that seismicity obeys a Poisson process, it is necessary to

decluster the catalogues by removing all dependent events, namely, precursors and aftershocks.

Hence, the cluster approach proposed by Reasenberg (Reasenberg, 1985) was employed to

eliminate dependent shocks. Then, duplicate events from different catalogues were removed.

Subsequently, the plot of the cumulative number of events allowed to split the working cata-

logues into prehistorical, historical, and three sub-instrumental categories (i.e., sub1, sub2, and

sub3). Each has a different magnitude of completeness (Mc) and magnitude uncertainty. Fig.

16 shows 3 sub-instrumental categories events. It can be seen the differences in event number

thus magnitude of completeness (Mc) of each.

4.4.4.2 Statistical analysis of compiled catalogue

Fig. 17 shows all three instrumental sub-catalogues together and divided limited to the subduc-

tion area and the number of events in each. The number of recorded earthquake events had been
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Fig. 16 The number of event for three different 3 sub-instrumental categories through years.
White: sub1, blue: sub2, and red: sub3.

increasing over years. Another interesting analysis is longitude histogram to more understand

the activity of east and west part of the MSZ. Fig. 18 (a) shows the number of events along the

subduction trench with 0.5 km interval. The number of event at the west part is more than other

parts, while the center shows historically less active than other parts. Of course, the magnitude

intensity needs to be taken into consideration in order to have a reasonable judgment about

activity rate, however, limited earthquake catalogues makes it nor possible neither precise. This

is why along with the other aforementioned reasons in section 4.4.1 both east and west part of

the MSZ weighted equal in this study. Fig. 18 (b) shows histogram of number of event with the

magnitude sizes in the compiles catalogue. It is trivial that the number of events increases in

the middle of the interval between the completeness and maximum magnitude.

Finally, to calculate a prior value for b for the recurrence Bayesian model for each

catalogue an analysis of b_value from events had been done using The ZMAP7 analysis tool.

4.4.4.3 Results of statistical analysis

In this section the results of two previous subsections are provided. Table 5 shows extracted

values for magnitude of completeness (Mc), error, and b-value from zmap for different working

catalogues. Moreover, the time period for each time catalogue is provided. Because seismic

network capabilities have improved year by year, the completeness magnitude of data and error

values decrease as the observation period becomes more recent. These values had been used in

the recurrence models introduced in section 4.4.2.
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(a) all the sub catalogues

(b) sub-catalogue 2 (c) sub-catalogue 3

(d) sub-catalogue 1

Fig. 17 Earthquake events catalogue map
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Fig. 18 The number of earthquake events in different: (a) magnitude and (b) longitude
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Table 5 Extracted values for magnitude of completeness (Mc), error, and b-value from zmap for
different working catalogues.

prehistorical historical sub-
catalogue
1

sub-
catalogue
2

sub-
catalogue
3

period 326 BC −
1020 AD

1480−1899 1900−1963 1964−1989 1990−2020

Mc — 5.5 5.7 4.8 4.8

error value 0.6 0.5 0.45 0.35 0.25

prior b-value 0.91±0.04

4.5 Tsunami scenarios

To create possible tsunami scenarios and incorporate rupture and location uncertainties, event

tree 2 (EV2) was developed (see Fig. 11). The branches of EV2 are introduced in section 4.1.1;

here, a more detail description are provided:

4.5.1 Source discretization

The subduction zone geometry represent a keystone in determining the spatial extent and

the size of subduction zone earthquakes. In this study, similar to (Davies and Griffin, 2019),

fault geometry was defined using a three-dimensional source zone fault-plane, SLAB 2.0 – a

comprehensive subduction zone geometry model (Hayes et al., 2018). Fig. 19 shows dip, rake,

strike, and depth of the MSZ calculated for the first time for the MSZ using a three-dimensional

geometry.

The MSZ has an extremely shallow subduction angle (dip) and thick sediment pile (≈ 7 km)

that leads to a wide potential seismogenic zone (Smith et al., 2013). Following the suggestion

of (Berryman et al., 2015) and (Safari et al., 2017), the seismogenic zone was constrained from

0 km (i.e., trench) to 38 km depth as a preferred down-dip limit. This assumption leads to

define a seismogenic zone for the MSZ as shown in Fig. 22.

Then, to obtain a better representative of the MSZ fault geometry, the seismogenic zone was

discretized into 50×50 km2 segments. A 20×8 unit source was created. The area of segments
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Fig. 19 Three - dimensional MSZ geometry showing the contour of dip, rake, strike, and depth
of the MSZ.

varies slightly around 50 km to fit the MSZ geometry. Finally, dip, rake, strike, and depth for

each segment were identified from the geometry model in Fig. 19 for use in the Okada model

(Okada, 1985) to generate the initial tsunami conditions.
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4.5.2 Rupture area: node 1 and 2 in EV2

For each magnitude ranging from Mw = 7.7 2 to Mw = 9.5 with a regular magnitude interval

of 0.1, i.e., Mw ∈ {Mw,min,Mw,min +0.1, . . . ,Mw,max −0.1,Mw,max}, the rupture length (L) and

width (W) were calculated using the scaling relation derived from the regression analysis of

historical subduction events worldwide:

log10 L = (a+b×Mw) ,

log10W = (c+d ×Mw) ,

(4.11)

a, b, c, and d are the regression coefficients. Table 6 shows the rupture coefficient for five

different scaling relation. The results of these five scaling relation for different magnitude levels

were compared in Fig. 20. Fig. 20 (a) and (b) demonstrates different length and width calculated

from the five scaling relations in vertical axis and different magnitude level in horizontal axis.

It can be seen the differences in rupture length derived from the different scaling relation is not

significant. While, the differences in the widths is significant and This difference is underscored

by increasing the magnitude level. Finally, (Strasser et al., 2010) relation owing to its better fit

to the trust events was used to calculate rupture area.

Table 6 Rupture scaling coefficient for five different scaling relations

Scaling relation
L W

a b c d

(Strasser et al., 2010) -2.477 0.585 -0.882 0.351

(Blaser et al., 2010) -2.37 0.57 -1.56 0.41

(Allen and Hayes, 2017) -2.9 0.63 -0.86 0.35

(Goda et al., 2016) -2.16 0.549 -0.689 0.289

(Wells and Coppersmith, 1994) -2.42 0.58 -1.61 0.41

2Mw = 7.7 considered as the minimum magnitude capable of causing a noticeable tsunami.
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Fig. 20 Length (a) and width (b) calculated from the five scaling relations in vertical axis and
different magnitude level in horizontal axis

4.5.2.1 Scaling relations uncertainty (σs)

Given the earthquake magnitude, rupture length and width were derived by evaluating the

scaling relations as explained. To account for stochasticity in the earthquake dimensions

imposed by the scaling relations, For Mw ≤ 8.7, uncertainties associated with the use of the

scaling relation for earthquake dimensions were included as aleatory variability directly in
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probabilistic equations. To do so the standard deviations associated with the equations, which

were σs = 0.173 and σs = 0.180 for length and width, respectively were used. However, the

variability enlarges with growing magnitude. Hence, for Mw > 8.7, rather than using only

one value for rupture length and width, a random sample was selected from a log-normal

distribution. The initial intention was to consider the dependence of the variance of rupture

length and width, and sample from a two-dimensional multivariate normal distribution (Blaser

et al., 2010). However, the range of variation was quite small and considering the segmentation

size (i.e., 50×50 km2), the independent random selection of length (L) and width (W ) were

generated form normal distributions according to

log10 L ∼ N (−2.477+0.585Mw,0.18) ,

log10W ∼ N (−0.882+0.351Mw,0.173) .
(4.12)

N (µ,σ) is a normally distributed of random variable with mean µ and standard deviation σ ;

notation ∼ denotes the equivalence of distributions.

4.5.2.2 Rupture area and entangled segments (ns,nl)

For each length and width the number of segments downdip (ns) and along-strike (nl) were

calculated. To do so, first the area (A) was calculated from:

log10 A = (−3.476+0.952×Mw) . (4.13)

Then, four pair of (ns,nl) were investigated. Two pairs from round up and down ns and setting

nl to best match A calculated form Eq. (4.13) and the other two from round up and down nl and

setting ns to best match A. The one pair that minimize the bellow aspect ratio error was selected

(for more detail see (Davies et al., 2018)):

(
log10

(
nsl̄s
nd l̄d

)
− log10

(
L
W

))2

. (4.14)
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An example of above method for Mw = 8 and L = 159.59, W = 84.33 is shown in Table 7. In

this case ns = 3 and nl = 2 was selected as the rupture area and segments entanglements.

Table 7 Example of segments involvement calculation method for Mw = 8 and rupture area of
L = 159.59, W = 84.33.

Pairs ns nl Aspect ratio

1 4 1 0.10564

2 3 2 0.01018

3 3 2 0.01018

4 5 1 0.17803

Minimum ratio 0.1018, pair number 2 with ns = 3 and nl = 2

4.5.3 Slip distribution: node 3 in EV2

Slip distribution significantly affects tsunami heights nearshore. Recently, different studies have

shown that maximum nearshore wave height varies by a factor of 2 or more due to heterogeneity

in earthquake slip (Butler et al., 2017; Goda et al., 2014; Løvholt et al., 2012; Mueller et al.,

2015; Sugino et al., 2015). However, owing to its convoluted nature and computation complexity,

tsunami hazard assessments are usually based on idealized uniform slip earthquakes. In this

study, a uniform slip for Mw ≤ 8.6, where the effect of spatial slip distribution is not significant

was used. 15 heterogeneous slip distribution for Mw ≥ 8.7, where the heterogeneity of slip

notably varies tsunami heights at the PoIs was used. This trade-off was specified to account

for the effect on tsunami heights and optimize the number of scenarios through a sensitivity

analysis. The number of scenarios and differences among modeled tsunami heights at PoIs were

compared for a fixed scenario, but with varying Mw, starting from Mw = 7.7. This observation

is relatively similar to (Sugino et al., 2015) in which, for the Japan PTHA, earthquakes with

Mw > 8.9 were considered large, and the authors included three levels of spatial slip in their

model.
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Average slip was computed for each scenario with magnitude Mw employing the scaling

relation as follows:

Mw =
logMo −9.1

1.5
, S =

Mo

µ ×A
, (4.15)

where Mo is the seismic moment, µ the shear modulus, and A the area of each scenario. µ

was set to 3× 1011 dyn cm−2 as it is appropriate for crustal rocks and shallow depth faults

(Deif and El-Hussain, 2012). Then the evaluated S from Eq. (4.15) as a uniform slip was used

for Mw ≤ 8.6; whereas for Mw > 8.6, the slip for each sampled (L,W )-scenario was created

randomly using the PTHA18 code built in R. The PTHA18 code uses the SNCF model of (Davies

et al., 2015) for generating random slip distribution for a given segment dimension and number.

This model is a variant on the widely used K2 model.

Let Snm be an image representing a 2-D planar slip distribution, it can be represent via its

2-D discrete Fourier transform:

Snm =
1

ns ×nl

ns−1

∑
j=0

nl−1

∑
l=0

η j,l exp
(

2πi
(

n j
ns

+
ml
nl

))
, (4.16)

η j,l =
ns−1

∑
n=0

nl−1

∑
m=0

Snm exp
(

2πi
(

n j
ns

+
ml
nl

))
, (4.17)

with ns,nl segments in the along-strike (x) and down-dip (y) directions respectively, segment

dimensions ∆x,∆y, length L = ns∆x and width W = nl∆y. Further implementation details can be

found in (Davies, 2019) and (Davies et al., 2015). Fig. 21 demonstrates 15 randomly selected

slip distribution generated from the 2 - D planner distribution – Eq. (4.16) – for one of the

scenarios with magnitude Mw = 8.9. The distributions are scattered in the MSZ seismicity zone

along - strike (ns = 20) and down-dip (nl = 8).
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Fig. 21 Fifteen randomly selected slip distribution generated from the 2 - D planner distribution,
Eq. (4.16) for one of the scenarios with magnitude Mw = 8.9.

4.5.4 Possible location: node 4 in EV2

To cover all the seismogenic zone for each magnitude and sampled length and width, the

calculated ns×nl were floated through all possible locations of the MSZ seismicity area, shown

in the blue mesh in Fig. 22. Table 8 shows the number of scenarios for different magnitude level

based on the method described in sections 4.5.2 and 4.5.3. For each magnitude and number

of segments along-strike and down-dip, scenarios were created by floating through all the

seismicity zone (20×8).

In total, 5275 scenarios were created using the approach discussed considering the branches

of EV2 for different magnitudes, which were randomly sampled from the rupture area, slip

distribution, and all possible locations.

It is assumed that the occurrence of a specific magnitude was equally probable in all possible

locations; therefore, an equal weight was assigned to the branches of EV2.

4.6 Tsunami model

For each scenario, numerical simulations of tsunami generation and propagation were performed

using the models and techniques described in Chapter 3, section 3.2.3.
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Table 8 The number of scenarios for each magnitude considering the heterogeneity of slip.

Mw ns nl Possible
scenarios
along-strike

Possible
scenarios
down-dip

Total Possible
scenarios

Total Possible
Heterogeneity’s
scenarios

7.7 2 2 19 7 133 133
7.8 2 2 19 7 133 133
8.0 3 2 18 7 126 126
8.2 4 2 17 7 119 119
8.4 6 2 15 7 105 105
8.6 7 3 14 6 84 84
8.7 8 3 13 6 78 1170
8.8 9 3 12 6 72 1080
8.9 11 3 10 6 60 900
9.0 13 4 8 5 40 600
9.1 15 4 6 5 30 450
9.2 16 4 5 5 25 375

Sum 1024 5275

Here, FUNWAVE-TVD was used in its Cartesian implementation. To prevent non-physical

reflection from the boundaries, sponge layers were specified with 10 km thickness within the

computational domain. A 600 m resolution was used for the computational domain, which is a

trade-off between precision and practical feasibility.

To guarantee representative bathymetry, three bathymetric models were evaluated. In

particular, Etopo-v1 (based on satellite gravity data), GEBCO (global bathymetric model based

on ship-track data), and SRTM+ (space shuttle radar mapping) with measured data provided

by the Ports and Maritime Organization of Iran (PMO) were compared. It appears that the

latest released data of the GEBCO model with 15 arc-second resolution are the best among the

aforementioned models and exhibit a smoother transition between deep and shallow water. This

contrasts the results of (Thio et al., 2007) while agreeing with those of (Marks and Smith, 2006).

The former can be due to the heterogeneous characteristic of each site or/and the latest update

of the bathymetry data. Hence, GEBCO-2020 with 15 arc-second resolution has been used for

the tsunami simulations. Each scenario has been simulated for 8 h, and for each computational

time step, a time series of tsunami wave has been recorded at 84 hazard points. These PoIs are

located at 5 to 0 m isobath at approximately 10−12 km intervals along the Iran and Pakistan

coastline. The PoIs are shown in Fig. 22.
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Fig. 22 Bathymetry model and computational domain; dots represent PoIs located at 0 m isobath
along the coast; blue mesh indicates the seismogenic zone and source discretization into 50×50
km2.

Table 9 A summary of input variables for the MSZ propagation model.

Variables Inputs

Computational domain 55.8 - 67.8 ◦ E , 22.6 - 28.5 ◦ N

Bathymetry data GEBCO 15 arcsec – 2020

Resolution 600 m

Sponge layers thickness 10 km in all directions

Drag coefficient 0.01

Wetting-drying (the critical depth) 1 cm

4.6.1 Propagation result

Fig. 23 shows initial condition and propagation waves for one of the scenarios with the

magnitude Mw = 8.7. Tsunami waves are arriving to the coast 25 min to 45 min after earthquake

in different PoIs. depend on the location of the event. In this example, earthquake was located

at the east part of the MSZ.

Fig. 24 demonstrates tsunami wave time series for the same scenario as above - mentioned

in four PoIs as an example. PoIs in Fig. 24 (a) and (b) are located at the west part of the MSZ,
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Fig. 23 Propagation results for one of the scenarios with magnitude Mw = 8.7 in t = 0, t = 5
min, t = 10 min, and t = 20 min.

and PoIs in 24 (c) and (d) are at the eat part. Tsunami waves are arriving to the east part around

25 min later while in the west part it takes more than 35 min to be affected by the first wave of
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tsunami. It is because of the epicenter of earthquake which in this particular example (scenario)

is located at the east part of the MSZ. With changing the scenario and locations the arrival time

will significantly change in the PoIs. Recalling that all the possible earthquake locations were

weighted the same (see section 4.5.4).

Considering the same chance in all the location tsunami waves will arrive to the coast within

15 min to 45 min for different magnitude levels and mitigation planers must consider it in their

designs.

(a) (b)

(c) (d)

Fig. 24 The timeserie results of one of the scenarios with magnitude Mw = 8.7 at four PoIs: (a)
and (b) are located at the west part of the MSZ and (c) and (d) are located at the east part.

4.7 Deriving the probability of exceedance

For a given exposure time (∆T ), PTHA was performed by deriving the exceedance of maximum

tsunami height (ψ) at each PoI form a threshold value (ψt). Considering a total of J possible
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magnitudes, the total probability of exceedance was defined

Ptot(ψ > ψt ,∆T,PoI) = 1−
J

∏
j=1

(
1−P(E j,∆T )P(ψ > ψt |E j)

)
, (4.18)

where P(E j,∆T ) is the probability that at least one event (E j) occurs in the return period ∆T .

Assuming that the occurrence of earthquakes conforms to a stationary Poisson process with the

annual recurrence rate ν j, it can be assessed as

P(E j,∆T ) = 1− exp
(
−ν j ×∆T

)
. (4.19)

Considering the uncertainties on rupture dimensions, locations, and slip distribution in EV2,

each E j can cause different scenarios (S ( j)
A ). The probability that tsunami height (ψ) exceeds a

threshold (ψt) when the event E j occurs is then given by

P(ψ > ψt |E j) =
A j

∑
A=1

P
(
S

( j)
A |E j

)
P
(
ψ > ψt |S ( j)

A

)
. (4.20)

Here, P
(
S

( j)
A |E j

)
is the probability of occurrence of the scenario S

( j)
A , and in the absence of

aleatory variability,

P
(

ψ > ψt

∣∣∣S ( j)
A

)
=

{ 0, ψ < ψt

1, ψ ≥ ψt

, (4.21)

While in the presence of the aleatory variability that was discussed in section 4.1.2 (Thio, 2010),

P
(

ψ > ψt

∣∣∣S ( j)
A

)
= 1−Φ

(
log(ψt)

∣∣[log(ψ
S

( j)
A
)

]
,σ

)
. (4.22)

Φ is the cumulative distribution function for a log-normal distribution with the mean equal to

the modeled tsunami height at each PoI and standard deviation σ , given value of a log(ψt).

From (Thio, 2010), σ can be computed by combining the aleatory variability terms σ =√
σ2

m +σ2
t +σ2

s .
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4.7.1 Ensemble model

In this section, how to incorporate the uncertainties from EV1 and obtain P(E j,∆T ) using

the ensemble model (Marzocchi et al., 2015) is explained. As it is explained in Chapter 3,

section 3.2.1.1 To calculate the probability that at least one earthquake E j occurs for the selected

∆T , an event tree was developed as described in section 4.4 and Fig. 11. The branches of

EV1 were treated in the framework of ensemble modeling, as introduced in (Marzocchi et al.,

2015). Ensemble modeling presumes that epistemic uncertainty is greater than that evaluated

by one event tree, and treats the branches of the event tree as an unbiased sample from a parent

distribution. This distribution, f (θ), describes the variable θ simultaneously considering the

aleatory variability and epistemic uncertainty.

Here, branches of EV1 are a small sample size, and their few probability outcomes can be

replaced by a parametric distribution. A natural choice is the beta distribution that is commonly

used in hazard literature. In this case, variable θ (E j) is set to P(E j,∆T ) so that the variable

will be the hazard curve. Different θ (E j) are the branches of EV1 that are now a sample of a

Beta (α,β ) distribution. Parameters α and β are related to the average and variance of θ (E j) as

E[θ (E j)] =
α

α +β
, Var[θ (E j)] =

αβ

(α +β )2(α +β +1)
. (4.23)

E[θ (E j)] and Var[θ (E j)] denote, respectively, the weighted average and variance of the ex-

ceedance probabilities of the jth magnitude for the selected ∆T . Inverting equations Eq. (4.23),

the parameters of the Beta distribution were found for each magnitude j. Finally, calculating

the Beta parameters of the exceedance probability for a set of magnitudes, the full hazard curves

was plotted. Fig. 25 shows beta distribution of the 50 yrs exceedance probability calculated for

four different magnitude levels. This beta distributions were generated from P(E j,∆T ) of EV1

and calculated beta parameters from Eq. (4.23). After, calculating all the beta distributions for

all the magnitude levels, statistical description, mean, and the 16th-86th percentiles confidence

intervals was calculated and used for further calculation.
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Fig. 25 The calculated beta distribution of 50 yrs exceedance probability for four different
magnitude levels.

4.8 Probability of exceedance results

In this section, the results obtained from the analyses and modeling presented in previous

sections are presented for the coastal area of the MSZ. The main results are presented by earth-

quake and tsunami probability exceedance curves and tsunami probability maps for the selected

return time periods. In this study, return periods are set to ∆T = {50,100,250,500,1000} years;

each choice interests different stakeholders and provides information on a specific aspect of the

tsunami hazard in the MSZ.

As it was mentioned in Chapter 3, section 3.2.4, ∆T = 500 and ∆T = 1000 years for city

planing and designing critical facilities (e.g. nuclear power plant), respectively, had been

selected for further analysis and discussion. However, the results for ∆T = {50,100,250} are

also provided for the sake of other stakeholders’ interest.

Furthermore, besides the sensitivity analysis in sections 4.2, 4.4.2, 4.5.2, and 4.5.3, in this

section another sensitivity analysis has been done comparing the results obtained in the presence

and absence of the aleatory variability.
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4.8.1 Earthquake probability exceedance curves

The earthquake probability of exceedance for the selected ∆T s are depicted in Fig. 26. The

ensemble model results from section 4.7.1 is shown through its statistical description, its mean,

and the 16th-86th percentiles confidence intervals. For the sake of comparison, the branches of

EV1 (θ (E j)) are also shown in light gray. In nearly all cases, the statistical description of the

mean ensemble model is a good representative of EV1 branches Fig. 26. Henceforth, the value

of mean ensemble was used for each magnitude to calculate tsunami probability exceedance

curves and probability maps. Notably, in this step, any other statistical description can be

chosen for further analysis and using the probability codes.

4.8.1.1 ∆T = 500 years

Each gray curves in Fig. 26 shows exceedance probability for different magnitude levels

for one path of the EV1 branches (i.e. different recurrence model, maximum magnitude

and the modeling error, see Fig. 11 (a)). Selection of the most appropriate curve which

represents the true hazard has been a subject of discussion and controversies among scientists

and risk managers (Marzocchi and Jordan, 2014). For example for 500 years return period, the

probability of exceedance of Mw = 8.1 – the worst historically recorded magnitude – varies

from nearly zero to 87% for different path of EV1.

Using the statistical description of ensemble modeling, the probability of exceedance of

Mw = 8.1 is less than 10% for its 16th percentile, 52% for 84th percentile and its mean is 23%.

4.8.1.2 ∆T = 1000 years

The probability of exceedance of Mw = 8.1 for return period of 1000, changes between 3%

to 100%. Ensemble statistical descriptions are: 15% and 80% for 16th and 84th percentile,

respectively. Its mean show a probability of 50% exceedance for Mw = 8.1. It is almost twice

as the probability of exceedance for 500 year return period.

68



5 6 7 8 9
Mw

0.0

0.2

0.4

0.6

0.8

1.0
50

-y
ea

rs
 E

xc
ee

da
nc

e 
Pr

ob
ab

ilit
y

EV1 branches
Ensemble_mean
Ensemble_84th, 16thpercentile

5 6 7 8 9
Mw

0.0

0.2

0.4

0.6

0.8

1.0

10
0-

ye
ar

s E
xc

ee
da

nc
e 

Pr
ob

ab
ilit

y

EV1 branches
Ensemble_mean
Ensemble_84th, 16thpercentile

5 6 7 8 9
Mw

0.0

0.2

0.4

0.6

0.8

1.0

25
0-

ye
ar

s E
xc

ee
da

nc
e 

Pr
ob

ab
ilit

y

EV1 branches
Ensemble_mean
Ensemble_84th, 16thpercentile

5 6 7 8 9
Mw

0.0

0.2

0.4

0.6

0.8

1.0

50
0-

ye
ar

s E
xc

ee
da

nc
e 

Pr
ob

ab
ilit

y

EV1 branches
Ensemble_mean
Ensemble_84th, 16thpercentile

5 6 7 8 9
Mw

0.0

0.2

0.4

0.6

0.8

1.0

10
00

-y
ea

rs
 E

xc
ee

da
nc

e 
Pr

ob
ab

ilit
y

EV1 branches
Ensemble_mean
Ensemble_84th, 16thpercentile

Fig. 26 Earthquake probability of exceedance for the sample of ∆T s: red and blue curves show
the statistical description of ensemble model, i.e., mean and 16th-86th percentiles, respectively.
For comparison, all outcomes of the EV1 branches are also displayed in light gray.

4.8.2 Tsunami probability exceedance curves

Using the equations described in section 4.7, and the mean value of ensemble modeling of the

exceedance probability of earthquake in section 4.8.1, the probability of exceedance from a set

of tsunami height thresholds ψt = {0.5,1,1.5, ..,5.5,6} m were calculated. Fig. 27 shows the

generated hazard curves at different PoIs incorporating all uncertainties. The hazard curves

for each PoI are shown in gray. The results show that the spread of hazard curves for different

locations of the Makran coast is remarkably large. As an example, Ptot(ψ > 3,∆T = 50)
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ranges from 0 to 16% for different PoIs. By increasing ∆T , this range opens up and it reaches

30%,58%,80%, and 95% for the return periods of 100, 250, 500, and 1000 years, respectively.
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Fig. 27 Tsunami probability of exceedance for a sample of ∆T s at different PoIs along the Iran
and Pakistan coasts.

Ptot(ψ > 5,∆T = 500,1000) ranges 0−60% and 5−97%, respectively, in different PoIs

along the coast of Iran and Pakistan. The range of the probability of tsunami exceedance is quit

large and it is thus not wise to consider a mean (or percentile) of PoI hazard curves for any

purpose in the coasts of Iran and Pakistan. Hence, six main PoIs close to the major cities of the

Makran region, namely, Chabahar, Konarak, Jask, Ramin, Jiwani, and Gwadar, were selected to

explore the results in detail.
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Fig. 28 shows the tsunami probability exceedance curve at the above mentioned six major

cities for different return periods. For a 50-year return period, the probability of exceedance

does not vary much among different cities. However, this difference becomes significant with

increasing ∆T . For instance, for Ptot(ψ > 1,∆T = 1000), it ranges from 32% in the west

(Gwadar) to 97% in the east (Jask). Moreover, the probability that tsunami height exceeds 4 m

is low (less than 10%) near all major cities except for Jask, with the probability of 53%.
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Fig. 28 Tsunami probability of the selected ∆T s exceedance for the selected six PoIs near main
cities.
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4.8.3 Sensitivity analysis

The effect of inclusion of the aleatory variability introduced in section 4.1.2 is shown in Fig.

29. Fig. 29 (a) illustrates the probability of exceedance in the presence and absence of the

aleatory variability at one random PoI (i.e., Chabahar) for two return periods, 100 and 500

years. The inclusion of the aleatory variability has a significant effect on the probability

of exceedance, which increases for a longer return period. As an example, the differences

between Ptot(ψ > 1,∆T,Chabahar) with and without the aleatory variability are 8% and 26%

for ∆T = 100 and 500 years, respectively. To obtain a better interpretation, this difference

for all PoIs and ∆T s were also calculated, see Fig. 29 (b). In summary, omitting the aleatory

variability mostly leads to a noticeable underestimation with a median of 10% for all PoIs,

reaching and it even reaches 40% at somewhere for 1000-year return period.

4.8.4 Probability maps

Probability maps were used to assess hazard along the entire coast irrespective of population

density, which is crucial for prioritizing tsunami mitigation plans and city development in

low-population areas, while most literature and mitigation plans focus on specific populated

areas. Fig. 30 illustrates tsunami probability maps exceeding from three selective thresholds,

ψt = 1,3 m with different return periods. The probability of exceedance is much more intense

in the west. Furthermore, in some rural areas (e.g., Tis and Tang) neighboring Chabahar, the

probability that tsunami height will exceed 3 m for return periods of 100 and 1000 years is

approximately 30% and 95%, respectively. Notably, this is almost 6 to 7 times higher than

that in Chabahar. Owing to the small distances between these regions, the inundated area at

Chabahar may be affected.
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Fig. 29 (a) Exceedance curve of Chabahar as a random PoI for 100- and 500-year return periods;
blue and red curves show the probability of exceedance in the presence and absence of the
aleatory variability, respectively; (b) box plot showing the differences in exceedance probability
(%) for different ∆T s with and without the presence of the aleatory variability for all PoIs.
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Fig. 30 Maps of tsunami probability exceeding 1 and 3 m for different ∆T s along the entire
coast of Iran and Pakistan.
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4.9 Summary

In this chapter, all the identified uncertainties in Chapter 2 associated with the potential tsunami

were incorporated using PTHA approach. Moreover, different stakeholders’ interests were

taken into consideration by demonstrating the probability map for different return periods. To

obtain more accurate and reliable results the combination of statistical, historical, geological

and numerical assessment were considered. The epistemic uncertainties were incorporated by

combining event tree and ensemble modeling, including uncertainties of fault source and rupture

complexity (dimensions, slip distribution, and possible locations of earthquakes). The aleatory

variability was identified from three main contributions (numerical model and bathymetry

mismatch, tidal variation, and scaling relation), and incorporated directly into the probability

equations, see Eq. (4.22). The results were demonstrated using hazard curves and probability

maps. Moreover, several sensitivity analysis were performed in various stages of the work to

find: (i) the optimal resolution of propagation model which is a trade-off between precision and

practical feasibility, (ii) the best available bathymetry data which represent the real bathymetry

of the area, (iii) the best source of tidal records, which was compared with the model constituents

in the area, (iv) the threshold of Mw that after which a multitude number of rupture areas for

each magnitude level was considered, (v) the threshold of Mw that after which a heterogeneous

(instead of a uniform) slip distribution was used, (vi) the effect of the aleatory variability in

probability of exceedance.
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5 UNCERTAINTIES IN SOFT MEASURES

In this chapter, the uncertainties that had the most effect on vulnerability of communities

in the past tsunamis and other hazards are evaluated in Makran. To propose mitigation and

education plans, education strategy and disaster communication and must consider hetero-

geneity in community (Paton and Johnston, 2001). Accordingly, the present chapter provides

emperical data about the this issue in an under-studied area, Makran, and thus expands upon

the limited empirical data. Moreover, the heterogeneity of community was taken into account

by interviewing risk experts in Iran and adding their suggested indices into the questionnaire.

Furthermore, this chapter engages to the literature (see Chapter 2) in 2 ways. First, it

contributes issues with little attention in previous researches; second, it applies important

indices, extracted from the literature in Chapter 2, to address local’s knowledge, awareness,

and attitudes about tsunamis. To do so, the the method explained in Chapter 3 was applied.

Moreover, ANOVA and Chi-squared tests were used to find the variables that have a significant

relationship. Understanding these variables can help development of optimal mitigation plans.

Furthermore, mitigation and education plans can be resonate to more locals with lower effort

and costs. This is essential considering the limited budget in the Makran and other vulnerable

regions.

the following questions were assessed in this chapter:

1. What is the level of loval knowledge and awareness?

2. Correlation between awareness and other factors.

3. What is the willingness and intention of locals to evacuate?

4. What are the factors that affect the willingness of evacuation among locals and how are

they correlated?
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5.1 Study area

Using the results of Chapter 3 the most vulnerable areas in the southern coast of Iran, Makran

can be recognized. To select the study area for doing survey the population and covering

different characteristics of community were taken into account. Generally, the area is under

developed and populated and big cities are few. The most populated cities are Chabahar,

Konarak and Jask. Remarkably, above 65% of the population living in Makran coast in Iran

side are rural population, which compare to the the country’s norm with 74% urban population

is significant. Therefore, both urban and rural areas were chosen to have a better representative

of population. 4 sites were chosen to be investigated: Konarak and Chabahar, two densely

populated coastal cities, and Tis and Ramin, two populated rural areas in the region (see Fig.

31). They are all located at Sistan and Baluchestan province.

 

Fig. 31 Study area along the Makran coast. Sources: Google Earth, Data SIO, NOAA, U.S.
Navy, NGA, GEBCO.
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5.1.1 Vulnerability of the study area

Tsunami maps near four selected study areas are provided in this section. Different return

periods and tsunami wave threshold are shown in Fig. 32 to have a better understanding about

the situation both in short and long time. The probability of exceedance from 1 m and 3 m

for three return periods, ∆T = 100,500,1000, are shown. The probability that tsunami waves

exceed 1 m in 100 years is between 28% to 39%. In case of exceeding from 3 m for the same

return period the probability is less than 19%. This probability increases with increasing return

period, in which Ptot(ψ > 1,∆T = 500)∈ [37%,73%] and Ptot(ψ > 3,∆T = 500)∈ [20%,48%].

The differences of the probability of exceedance for different areas are significant. It is much

less in the PoIs close to Konarak and Chabahar than Tis and Ramin. Finally, in long term with

1000 return period the maximum probability of exceedance from 1 m and 3 m is 83% and 64%,

respectively.
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Fig. 32 The probability of exceedance from: (a) 1 m in 100 year; (b) 3 m in 100 year; (c) 1 m in
500 year; (d) 3 m in 500 year; (e) 1 m in 1000 year; (f) 3 m in 1000 year, for the areas close to
Chabahar, Konarak, Tis, and Ramin.

Inundation area is dependent on the resolution of inundation model, high resolution of

bathymetry and topography data, coast morphology, vegetation, land use and etc. since the latest

researches have indicated that changing the aforementioned parameters have the highest impact

on the simulation’s accuracy, to predict the inundated area in each study area a comprehensive

model is needed to cover all the factors. Otherwise, the results will be neither accurate nor

reliable. To show how different the results can be Fig. 33 shows the final results extracted from

the existing literature in the area (e.g. (Akbarpour Jannat et al., 2017; Payande et al., 2015;

Rastgoftar and Soltanpour, 2016)). It had been shown for Mw ≥ 9.0 a large inundated area

where would affect all the study areas – Chabahar, Konarak, Tis, and Ramin. Although each

study used different and limited number of scenarios, all are showing area is vulnerable if the

worst case scenario happens.
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(a) Inundation area for Mw = 9.2 (Payande et al., 2015)

(b) Inundation area for Mw = 8.7,8.3,9.1 (Akbarpour Jannat et al., 2017)

(c) Inundation area for Mw = 9.0 (Rast-
goftar and Soltanpour, 2016)

Fig. 33 Inundation area resulted from literature for different scenarios in the study areas.

5.1.2 Demographic characteristics of population

The demographic characteristic of population for all the selected study areas are illustrated in

this section. These information can be used to be compared with survey sample. The latest
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census data were used if available (census, 2016) which had been conducted at 2016 by the

government. Fig. 34 shows the population of the study areas with the separation of urban

and rural population. Chabahar with 283,204 is the most populated city in Makran coast. The

ration of rural population is significant with 68% of the total population. Konarak has 82,001

population. The population of Tis and Ramin are 6,348 and 3,821, respectively. Gender ratio
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Fig. 34 (a) population of Chabahar and Konarak in total, rural and urban. (b) total population of
two rural area, Tis and Ramin. Data were gathered using the raw sheets of 2016 country wide
census.

in the study areas are shown in Table 10. A relative gender balance can be seen in all the areas.

Available census data for age and education distributions were only gathered and provided

in county level (Chabahar and Konarak) not village level (Tis and Ramin). Fig. 35 (a) and

Fig. 35 (b) show age and education distribution of population, respectively. Age groups were

classified as 10-29, 30-49, and more than 50. Education distribution were divided into two

groups: “with university education” and “without university education.” It can be seen that
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Table 10 Population gender ratio in four study areas.

Area male female

Chabahar 144482 (51%) 138722 (49%)

Konarak 40933 (49.9%) 41067 (50.1%)

Tis 3238 (51%) 3110 (49%)

Ramin 1982 (51.87%) 1839 (48.13%)

population is young with 67.44% and 67.78% under 30 years old in Konarak and Chabahar,

respectively. The data shows more than 90% of population in both areas do not have university

education.
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Fig. 35 (a) Age distribution; (b) education distribution of population in Chabahar and Konarak.
Data were gathered using the raw sheets of 2016 country wide census.
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5.1.3 Samples and analyze

The survey was conducted by different sampling methods at the 4 study areas in September,

2018. (n1 = 153) valid questionnaires were collected in Chabahar. In Konarak, GPS random

spatial sampling method was used to choose households in the tsunami prone area. Due to the

availability of respondents, (n2 = 45) households were questioned. In Ramin and Tis, face-to-

face interview were collected due to the relatively low level of education, and 12 households

in each were interviewed. Moreover, 3 focus group discussion (taking < 4 hrs) were held at 3

main fishery ports, Shahid Beheshty,Beris, and Ramin with local fishers and beach users.

5.2 Demographic characteristic of samples

The demographic characteristics of respondents in study areas are shown in Table 11 and

Fig. 36. In urban areas, a relatively balanced gender ratio was obtained. The number of men

respondents (Chabahar: 55.95%; Konarak: 57.42%) and women (Chabahar: 45.05%; Konarak:

42.22%) was similar. owing to gender prejudice which in rural area it is difficult to access and

speak directly with women, there was an imbalance in the responses of the two rural areas (men:

70.83%; women: 29.17%). Respondents in urban areas were predominantly young, with 75%

and 73.33% under the age of 40 in Chabahar and Konarak (cf. Fig. 35 (a)), respectively. In

contrast, 66.67% of respondents in Ramin and Tis were older than 40. It is typical considering

the recent migration of the youth to urban areas in Makran. Fig. 36 (a) is indicative of the

typical education distribution according to the latest government census of the study area. In all

sites, the majority of samples did not have a university education (Chabahar: 70.24%; Konarak:

93.44%; Ramin and Tis: 100%, cf. Fig. 35 (b)). The socioeconomic status of respondents was

quite low, where the most reporting monthly household income was less than 30,000,000 IRR

(Iranian Rials) or 110 USD (Chabahar: 75%; Konarak: 91.25%), and all respondents in Tis and

Ramin). Notably, the income distribution seems typical because the average monthly income of

this province has been 46% greater than the country’s average income of 12,460,000 IRR for

the past ten years.
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Table 11 Demographic profile of samples.

Chabahar (%) Konarak (%) Tis & Ramin (%)

Gender
Men 55.95 57.42 70.83

Women 44.05 42.22 29.17

Age

10-19 20.24 4.44 8.33
20-29 25 37.78 8.33
30-39 29.76 31.11 16.67
40-49 15.48 11.11 25
50-59 5.95 8.89 25
≥ 60 3.57 6.67 16.67

Education

No schooling 17.86 35.56 66.67
Primary 15.48 31.11 25

High school 36.9 26.67 8.33
University 25 4.44 0

Higher 4.76 2.22 0

Income (IRR)

≤ 12,000,000 44.05 75.6 83.33
12,000,001 - 30,000,000 30.95 15.65 16.67
30,000,001 - 50,000,000 17.86 6.67 0

> 50,000,000 7.14 2.22 0
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Fig. 36 Demographic profile of samples: age (top), income (bottom left), and education (bottom
right).
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5.3 Knowledge and awareness

Respondents were asked about their knowledge about the basic definition of a tsunami and

their information sources of their knowledge. Results are demonstrated in Fig. 37. In both

Chabahar and Konarak, < 22% of all respondents did not have the basic definition of a tsunami,

while most of them had a basic knowledge (Chabahar: 61.9%; Konarak: 64.4%). In contrast,

only 34.5% of respondents reported this same level of knowledge in Tis and Ramin. This

may be the because of minimal access to information sources such as radio, tv, etc. in rural

areas, as notedin the survey observations, and their low education level. Regarding to the

information sources, a notable difference among study areas was observed. In Chabahar,

73% of respondents who had basic knowledge about tsunami, had obtained their knowledge

from“internet.” 43% of respondents in In Konarak indicated “Family/Friends,” as their primary

source of information. 27% “stated other sources not listed in the questionnaire,” and only 16%

the “internet.” In Ramin and Tis, likely due to their minimum access to information sources,

respondents obtained their basic knowledge either from “Family/Friends” or “Other sources not

listed in the questionnaire.”

5-point Likert scale question was asked to evaluate how respondents considered the degree

of danger associated with tsunamis in their living area (from “Strongly disagree” to “Strongly

agree”). Fig. 38 shows the results. most respondents with knowledge about tsunamis disagreed

or strongly disagreed that tsunamis are a real danger to them (Chabahar: 66.66%; Konarak:

75.56%; Tis and Ramin: 85.72%). This low level of awareness may be attributed to the low

experiences of a major coastal hazard, such as a tsunami. Moreover, it could be because of

improper education plans where almost all of the respondents said that they had neither heard

nor seen information about tsunamis and were not aware of public educations (as reported 97%

of respondents).

5.4 Attitudes

There were considerable challenges during the pilot investigation, primarily related to the low

number of tsunami events in the area. Therefore, to evaluate the intended evacuation behavior,
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Fig. 37 Basic knowledge regarding tsunami definition and knowledge sources for Chabahar
(top), Konarak (bottom left), and Tis and Ramin (bottom right).
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Fig. 38 Tsunami awareness believing it will not happen in their area and believing it is a threaten
in their living area.

first respondents were asked whether they had experienced any natural hazards. > 82% had

experienced at least one natural hazard in their lifetime (for example flood, earthquake, storm,

or tsunami). Then, respondents were asked what was their reactions during the hazards. See

Fig. 39. more than half of them with the experience of natural hazards in their lifetime selected

“not evacuated–trusting God will help” (Chabahar: 54.7%; Konarak: 65.8%; Tis and Ramin:
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81.8%). In both cities, only 25% selected “evacuated immediately”, whereas in Ramin and

Tis, only 13.6% evacuated immediately. Respondents were then asked “whose actions would

prevent loss of life during natural hazards?” > 65% said God would prevent the loss of life.

Remarkably, “individuals” and “the government” with less than 14.29% had almost the same

ratio (Fig. 40).
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Tis and Ramin

8.0%

12.0%

54.7%

25.3%

Chabahar

Others
Waited for other family member
Not evacuated-Trusted God
Evacuated

Fig. 39 Reactions of respondent during natural hazards.

another factor which is prominent is trust. It is a crucial in the effectiveness of policy for risk

communication (Eiser et al., 2012). Based on experts’ comments in Iran (see Chapter 3, section

3.3.2) and literature, trust is a multifaceted factor that can influence people’s behavior toward

action (Basolo et al., 2009). Therefore, the level of trust in the government in risk managements

were assessed. The level of people’s trust in the government’s ability to manage a disaster in

three states: before, after, and in disaster education plans is shown in Fig. 41. Majority of

respondents either strongly disagreed or disagreed rather than being agreed/strongly agreed on

trusting in the government’s ability to manage hazards (Konarak, 74%; Chabahar, 60%; Ramin

and Tis, 74%).
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Fig. 41 The level of trust in government’s ability to manage a natural hazard in 3 states: before,
after, and in disaster education plans.

5.5 Statistical analysis

ANOVA and chi-square test were used to determine the dependency between the variables.

The results were considered significant at the level of p ≤ 0.05. The relationship between

demographic factors and respondents’ knowledge, awareness, reactions, and trust were assessed.

All respondents from 4 areas were combined to meet computing needs. Second, to make

comparisons easier and overcome the limited number of respondents in some categories,

demographic factors were reclassified into new classification:

• Age: 10-29 (“young”), 30-49 (“middle-aged”), and > 50 (“old”).

• Education: two groups: “with university education” and “without university education.”

90



• Income: Because most of respondents were in a poor status, respondents were categorized

into 2 groups: household income > 12,000,000 IRR and < 12,000,000. The threshold

was chosen based on the national minimum wage in 2018.

The results of p-value from ANOVA/chi-square tests are shown in Fig. 42. At the 0.05

significance level, 6 statistically significant relations were found. In regards with gender, the

differences in knowledge and awareness of men and women were found to be significant

(p = 0.000 and p = 0.010). Knowledge and awareness among men were higher compared with

those of women, likely correlated to notable gender discrimination in the region (Sariolghalam,

2014). No significant relations between gender and their reaction during hazards or their

trust level in the government were observed. The other statistical relationship was found

to be between age and knowledge (p = 0.007). younger respondents had more knowledge

about tsunami than other age groups. People with higher education levels tended to evacuate

immediately in their previous disaster experiences. However, this difference was not significant

compared with other relations (p = 0.049). respondents with university education had less trust

in the government (p = 0.028). Finally, there was a significant association between respondents’

income and their reaction to hazards (p = 0.039).

To understand whether differences in awareness could result in respondents’ reactions further

tests were conducted. The same test was applied for reaction and trust; and no significant

relationships were found.
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Fig. 42 p-values between variables and demographic characteristics (left).
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5.6 Focus group discussion

3 focus group discussions were held with fishers and beach users to support the results from

questionnaire survey. The interviewees were asked about their experiences in natural hazards.

After the transcribed discussions were coded, “God” and “trust” were found to be among the

most repeated terms. Some quotes from interviewees who had experienced cyclone Gonu in

2007 are presented below:

We did not evacuate because we thought God will save us. (age 45, Ramin)

The local government asked us to get on the buses and leave the area; my mom did

not let us to do so, believing God will take care if we are innocent. (age 26, Ramin)

My dad told us we have to stay and suffer to be forgiven because of our sins. (age

18, Ramin)

We do not trust Shilat, governmental place in charge of coastal hazards in Makran.

They asked people to get on the buses provided by them, but we did not. Shilat

does not know where to take people. (age 42, Ramin)

The interviewees largely either trusted God to save them or believed the event to be some form

of punishment or test. Moreover, distrusting the government was also among the main reasons

respondents did not evacuate. These FGD findings were aligned with those of the questionnaire

survey.

5.7 Summary

In this chapter, the uncertainty factors associated with soft measures in four areas along the

Makran coast namely, Chabahar, Konarak, Tis, and Ramin were evaluated. First, the results of

probability of exceedance for all these areas (which had been derived from Chapter 3) were

investigated to have a better understanding on vulnerability of each areas. It has been observed

that all the areas are extremely vulnerable areas and may experience waves higher than 3 m.

The probability of having tsunami waves exceeding 3 m over a 100 year is 19% with a higher

92



chance for long term periods with maximum probability of 48% and 64% for period of 500

and 1000 year, respectively. However, based on the results from this work and literature in the

area the first priority in the region should be given to the development of inundation maps and

development of a regional tsunami warning system.

Then, local’s knowledge, awareness, and attitudes toward tsunamis in the aforementioned

areas were evaluated by conducting a field survey. All these factors were identified and classified

in Chapter 2 that are playing an important role in risk and vulnerability assessment. The results

indicated a low level of awareness and willingness to evacuate among residents and a low

level of trust in the government in regard to risk management. Moreover, the results showed a

significant religious attribution affecting respondents’ risk perception and evacuation behavior,

that along with the aforementioned factors increase residents’ vulnerability.
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6 DISCUSSION

The MSZ is one of the two sources of tsunamis in the Indian Ocean, and has the potential

of generating large tsunamis that threaten neighboring countries of Iran, Oman, and Pakistan.

However, a fortune lack of large tsunamis recently has led to a false sense of safety between

community leaders and residents, which may negatively affect the area’s vulnerability and

resilience against future tsunamis. In this work, first a systematic literature review had been

conducted to identify uncertainties and failure reasons of tsunami risk management around

the world. Failure reasons were associated with both hard and soft measures. The indicators

were then evaluated and assessed for the MSZ. In this chapter a summary of main findings are

presented and discussed. Finally, a number of recommendations to improve risk management is

proposed.

6.1 Uncertainties in hard measures

The potential seismogenic zone, maximum magnitude, and recurrence models were assessed

at the MSZ using available seismic, geodetic, and historical catalogue data. Moreover, both

aleatory and epistemic uncertainties were considered to obtain more accurate and reliable

results. The findings are highlighted as follows.

1. The spread of hazard curves for different locations along the Makran coast is remarkably

large. The probability that the tsunami height exceeds 3 m for return periods ∆T =

{50, 100,250,500,1000} ranges from 0 to {16,30,58,80,95} percent, respectively, for

different PoIs.

2. The probability of exceedance at PoIs near populated cities decreases and becomes

insignificant for the exceedance threshold of 4 m (even for a long return period), except

for Jask at the western coast of Iran. The results provide evidence that if consider the

western part of the MSZ equally active and potential to the eastern part –similar to this

paper, by weighting both parts the same in the developed event tree–the exceedance

probability could be higher at the western part for a long return period. This can be
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clearly seen from the probability maps where the exceedance probability of 3 m fluctuates

and becomes maximum at the western part of the MSZ.

3. The inclusion of the aleatory variability has a significant effect on the probability of

exceedance, and not including it mostly leads to a remarkable underestimation in the

PTHA with a median of 10% difference for all PoIs. This difference is underscored by

increasing the return periods and reaches 40% at somewhere for 1000-year return period

in the presence and absence of the aleatory variability.

Owing to Makran’s economical, geographical, and strategic importance, Iran approved a plan

for developing the Makran Coast on December, 2016 titled “Makran Sustainable Development.”

This plan, along with the drought occurring recently in the neighboring cities, has led to an

inevitable migration toward the coastlines, with Chabahar exhibiting 10% population rate

growth last year and ranking among the highest population growth rates globally in 2019.

Hence, the results are of vital for various stakeholders for developing and implementing tsunami

risk mitigation activities and guiding risk-aware city planning.

6.2 Uncertainties in soft measures

The central findings of Chapter 5 are presented and compared with those found in literature.

Moreover, based on the empirical data, a hypothesis framework for decreasing the vulnerability

in the region was constructed.

6.2.1 Knowledge and awareness

The survey results revealed that the majority of people had a basic knowledge of tsunamis in

Chabahar and Konarak. In contrast, around one-third of respondents maintained this level in

Tis and Ramin. Following our expectations, awareness was rather low among respondents

with basic knowledge of tsunamis. Some studies have focused on specific factors In Indonesia,

Chile, and Japan that could influence awareness, such as experience (Mulilis et al., 2003; Norris

et al., 1999; Weinstein, 1989), information sources, policies (Esteban et al., 2013a),different

capitals (e.g. social and cultural (Bastaminia et al., 2017, 2018; Mavhura, 2017)), poverty
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(Fothergill and Peek, 2004; Mavhura, 2017), and demographic indicators (Bodas et al., 2017;

Mohammad-pajooh et al., 2014; Sjöberg, 2000). In the studied region, low awareness may

stem from respondents’ minimal experience with coastal hazards over the last 75 years in the

area. Low awareness also may come from lack of data and tools such as evacuation maps and

warning systems, and their improper distribution among locals. Almost all respondents (> 97%)

had neither received nor heard/seen any information about tsunami and were not aware of any

public education program in their community.

Moreover, there are studies that considered the effect of demographic characteristics on

hazard awareness. e.g., gender (Juran, 2012), education (Muttarak and Pothisiri, 2013), and age

(Ngo, 2001). The relationship between respondents’ demographic profiles and their awareness

levels were investigated. There was a significant difference between different gender and their

knowledge and awareness. Many studies have been confirmed the inequalities between genders

and their awareness; however, the difference between men and women remains a controversial

issue. Some researchers indicated that risks tend to be judged as lower by men than by women

(Finucane et al., 2000), while others have rejected this hypothesis (Hines, 2007; Juran, 2012;

Mohammad-pajooh et al., 2014). In societies with strong patriarchal values, such as those

of middle eastern countries, women’s influence in society and decision making is typically

diminished, and this gender gap could intensify the disparity in knowledge and awareness, as

indicated by the findings here.

6.2.2 Attitude

In previous studies, the prominent role of risk perception in evacuation behavior has been

highlighted. How people perceive risks is shaped by their experience, feelings, values, and

beliefs. In addition to a lack of awareness and experience, this study provided information on

how other variables can affect people’s attitudes regarding natural hazards, specifically religion

and trust in the government.

Trust In the literature, trust influences people’s risk perception and their acceptance of

preventive actions. It has unique effects in each area and community examined. Even though

absolute trust in civil protection may lead to neglecting self-protection, trust in the government
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and information sources may improve disaster risk communication. Trust influences people’s

risk perception and their acceptance of preventive actions (Samaddar et al., 2012). In a review

by (Wachinger et al., 2013) it is suggested that trust in authorities and experts have the most

impact on risk perception. Some studies have shown that a high level of trust in government to

manage a disaster and provide information sources is correlated with a higher level of perceived

preparedness (Basolo et al., 2009), whereas in Japan, the high level of trust led to neglecting

self-protection strategies. In the results of this thesis, respondents’ trust in authorities regarding

risk management in risk education, evacuation warning, and post-disaster management was

evaluated. Results show that more than two third of respondents (strongly) disagreed with

trusting the government to manage hazards. This lack of trust in the government may lead to

greater vulnerability in the study area. For example, cyclone Sidr caused hundred of casualties

along the Bangladeshi coasts because people did not trust the cyclone early warnings circulated

by the local government and mass media (Paul, 2012). Based on the FGDs conducted in this

study, the same attitude was reported by interviewees for not evacuating in 2007 during cyclone

Gonu.

Religion In both the questionnaire and FGDs, the role of religion in respondents’ attitudes

toward hazards was highlighted. Most of respondents with experiencing natural hazards in

their life, either trusted God to save them or thought it was a God’s punishment. Moreover,

>two-third of respondents believed if a natural hazard occurs, God will prevent loss of life.

The absolute faith in destiny, together with one’s lack of belief in his or her own free will and

determination, are strong personal characteristics associated with those living in the Middle

East and Muslim countries (Sariolghalam, 2014); however, there are similar findings in other

parts of the world and other religions. For example, Sun et al. (Sun et al., 2019) found that

in 2010, the religious attribution of earthquakes in Tibet had a negative impact on people’s

awareness and behavioral responses. Moreover, most of residentsin Trinidad and Tobago (57%

of interviewees) had a perception that “God is a Trini”, and believed that if a tsunami were

to occur, God was most likely to prevent the loss of life (La Daana et al., 2016). In their

study, it was argued that the religious attribution of natural hazards might come from a low
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awareness and limited experience with tsunamis. However, several studies revealed that even

in communities where individuals are familiar with scientific explanations of natural hazards,

people still perceived it as “God’s will or punishment,” (e.g., Nepal (Sherry and Curtis, 2017;

Welton-Mitchell et al., 2016), Ghana (Bempah and Øyhus, 2017) and Japan (McLaughlin,

2011).) Extra efforts have been made to extract information from the literature regarding

the survivors’ experiences following the 1945 Makran tsunami. This included a booklet of

interviews from 2008 to 2015 under United Nations projects (Kakar et al., 2015). Several

examples showed the strong religious attribution of the tsunami among interviewees (some are

presented in Table 12). Similar findings were reported after a mosque and shrine survived the

2004 Indonesia and 2011 Japan tsunamis, respectively, where people had asserted that God(s)

were protecting his house.

Table 12 Extracted quotes of survivors of 1945 Makran tsunami from literature.

Gender, age at
1945 (years old)

Indicative quotes

Male, 20 Only a mosque survived, and the rest of the town was destroyed.
Male, 20 We could not protect ourselves, but many of us prayed at the

mosque that Allah may save us from any destruction.
Female, 20 The roof of the shrine fell because of the earthquake. The sea did

not go further than the mosque; Allah (God) stopped it.
Male, 12 Before the sea went far onshore, I went to the mosque for dawn

prayer; the first wave happened, but it was small, so we began the
prayer.

Male, 13 This area was not flooded because of a shrine that would not allow
the sea to enter.

Male, – The story of the daughter of a just judge, she was either kidnapped
or killed in Qalhaat, and thus causing the wrath of God upon the
town.

Salient value similarity (SVS) The over-reliance on destiny and subsequent neglect of one’s

ability to control their own situation can lead to insufficient planning and dismissal of the role of

risk management against natural hazards. Becoming blindly accustomed to any circumstance,

together with “actions” that come with inaction, make change and acceptance of new thoughts

and methods difficult . This situation is intensified when the level of trust in the government

regarding risk management is rather low. Hence, It is suggested that leaders and disaster
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management practitioners obtain help from religious leaders to improve risk awareness and

perception among low-trust populations. In previous studies, the importance of local leaders,

both religious and non-religious, in disaster risk reduction has been reported Said et al. (Said

et al., 2011) found that a better tsunami mitigation strategy should involve local community

leaders as the primary focus of attention. Furthermore, local religious leaders can transfer

important information about disaster preparedness to people through religious studies as they

possess the ability to accept and interpret the information into such terms (Sherry and Curtis,

2017). Several studies have demonstrated that people tend to trust those who share similar values.

Evidence supporting the theory known as salient value sharing (SVS) (Siegrist et al., 2000)

indicates that policies based on salient cultural values are more widely accepted (Cvetkovich,

2013). Based on the findings, a hypothesize framework to improve risk perception among

residents were introduced (see Fig. 43). Religion and risk are interconnected, which can have

both positive and negative influences on risk assessment and mitigation (Sherry and Curtis,

2017). the hypothesis framework suggests that the negative aspects can be turned into positive

factors in risk management by seeking help from religious leaders. However, since the survey

questions were not designed originally to reflect the construct of SVS and the final hypothesis

model, validating them were beyond the scope of this study and shall be addressed in future

work.

Salient Value Sharing 
(SVS) +

Trust 
+

Perceived risk

Value=Religious Religious leadership

+

Fig. 43 Hypothesis based SVS framework for improving risk perception in Makran.

6.3 Limitations and future direction

This study is the first step toward comprehensive and reliable mitigation plans and activities;

however, it is important to acknowledge its limitations. Tsunami sources beyond earthquakes
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were not considered in this study. Notably, the only tsunami induced with combination of

earthquake and landslide in word history occurred in Makran in 1945. Moreover, in September

2013, a landslide was recorded immediately following an earthquake in the MSZ (Heidarzadeh

and Satake, 2014). This highlights the need to consider landslides (Rastgoftar and Soltanpour,

2016) and their combination with earthquakes in future PTHA studies. Moreover, the dynamic

interaction between tides and tsunami waves was disregarded. This works for a tsunami wave

with one isolated peak; however, it may lead to hazard underestimation when the tsunami

has several peaks with significant heights. Finally, providing an accurate inundation map is

paramount. an extensive data collection could be a better representative of the outcomes since

the sample size of the study was quite small. Also, different sampling strategies were applied to

each study area, which may limit the generalizability. Moreover, validating SVS model shall be

addressed in the future work.
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7 CONCLUSION

This study provides crucial information for developing comprehensive and reliable mitigation

plans and activities addressing uncertainties in tsunami risk management for the southern coast

of Iran, Makran. The Makran subduction zone is a hazardous tsunami-prone region; however,

due to its low population density, it is not as prominent in literature. The results from the

systematic literature review in Chapter 2 revealed that uncertainty indicators and failure roots

are scattered in different fields and an multidisciplinary approach have been applied to evaluate

and cover various aspects of it.

In Chapter 4 a methodology to cover the limitation of historical data and incorporating

uncertainties (epistemic and aleatory) was applied using the combination of probabilistic

approach, historical assessments, and numerical model –introduced in Chapter 3. The threat

of tsunami hazard posed to the coast of Iran by the MSZ was assessed and a comprehensive

PTHA for the entire coast regardless of population density was presented. Sources of epistemic

uncertainties were accounted by employing event tree and ensemble modeling. Aleatory

variability was also considered through probability density function. Further, the contribution

of small to large magnitudes were considered and to create a multitude of scenarios as initial

conditions. Funwave-TVD was employed to propagate these scenarios. The results demonstrate

that the spread of hazard curves for different locations on the coast is remarkably large, and

the probability that a maximum wave will exceed 3 m somewhere along the coast reaches

{16,30,58,80,95}% for return periods {50,100,250,500,1000}, respectively. Moreover, the

exceedance probability could be higher at the west part of Makran for a long return period, if

consider it as active as the east part of the MSZ. Finally, the inclusion of aleatory uncertainty that

was overlooked by the previous related studies demonstrated that the contribution of aleatory

variability is significant, and overlooking it leads to a significant hazard underestimation,

particularly for a long return period.

The results provides a reliable estimation of the associated hazard for designing a local early

warning systems, site selection for critical infrastructures and prioritising necessary mitigation

measures for existing infrastructures and critical regions.
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Empirical data can also help to identify factors that decreases uncertainty in tsunami

mitigation plans and evacuation process. Results of Chapter 5 provide as great help for a more

evidence-based prediction, more informed, and cost-effective recommendations. The results

presented in Chapter 5 indicate a low level of awareness and willingness to evacuate among

residents and a low level of trust in the government in regard to risk management. Moreover,

the results show a significant religious attribution affecting respondents’ risk perception and

evacuation behavior, that along with the aforementioned factors increase residents’ vulnerability.

Based on the findings, some recommendation were made to help policy-makers understand

how to shape mitigation and evacuation plans such that they will become more evidence-based,

sensitive, informed, and cost-effective.

Moreover, owing to the notable findings regarding the roles of religion, trust, and risk

perception, new lines of research and discussion on this topic have been proposed. This

exhibits a potential range of applicability that extends well beyond this region; however, further

investigations in both Makran and other regions are still necessary. Risk reduction measures

for one hazard should be compatible with those for other hazards. Therefore, the perspective

presented in this study could be beneficial for developing disaster measures for other natural

hazards.
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