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ABSTRACT

Machine learning has become one of the most important technologies to provide intel-
ligent products and systems that can enrich people’s lives. The latest machine learning al-
gorithms have achieved human-level performance in many applications, for example, face
recognition, speech recognition, and multi-lingual translation. One of the most important fac-
tors of such success is the availability of a large-scale training dataset. While it is absolutely
essential, obtaining such a large-scale dataset requires an expensive cost, which will be a
major barrier to apply machine learning technologies to a wide variety of applications.

In this dissertation, we tackle several types of problem settings of domain adaptation with
scarce data. The domain adaptation is a technology to reuse existing datasets, and it can
substantially reduce the cost of obtaining the training dataset for a new domain. It basically
aims to match the distribution of source data (the data we want to reuse) to that of target
data (the data on which the trained model should perform well). By properly conducting the
domain adaptation, the model trained with the adapted source data can perform well in the
target domain. For effective adaptation, we need a sufficient amount of source and target data.
However, due to the motivation of the domain adaptation, the amount of target data is often
supposed to be small. Additionally, we cannot access source data in some practical cases, for
example, due to data privacy issues. Therefore, how to effectively handle such data scarceness
is quite important to make it possible to apply this technology to real-world problems. In this
dissertation, we present three contributions to domain adaptation with scarce data.

In the first part of this dissertation, we consider the case in which we only have incomplete
target data. In this setting, a certain subset of classes is missing in unlabeled target data,
while all classes appear in labeled source data, and the goal is to discriminate all classes in
the target domain. We call this problem setting partially zero-shot domain adaptation. To
solve this problem, we utilize an adversarial training scheme and adopt instance weighting
to estimate the loss related to unavailable target data in the missing classes. The instance
weight is computed based on the prediction of deep neural networks, implying which instance
would be similar to unseen data and having useful information for the loss estimation. This
estimation makes it possible to explicitly consider all classes during the domain adaptation
training even in the partially zero-shot setting, which leads to accurate adaptation between
domains. Experimental results with several benchmark datasets validate the advantage of our
method.

In the second part of this dissertation, we consider the most extreme case called zero-shot
domain adaptation in which we do not have any target data for domain adaptation. If we do not
have any information about the target data, the adaptation may be impossible. Therefore, we
first clarify a possible scenario where we can assume availability of some knowledge instead of
data, which enables us to effectively conduct the domain adaptation. We consider the situation
where domain shift is caused by a prior change of a specific factor and assume that we know
how the prior changes between the source and target domains. We call this factor an attribute,
and reformulate the domain adaptation problem to utilize the attribute prior instead of target
data. In our method, source data are reweighted with the sample-wise weight estimated by the
attribute prior and the data itself so that they are useful in the target domain. We theoretically
reveal that our method provides more accurate estimation of sample-wise transferability than
a straightforward attribute-based reweighting approach. Experimental results with both toy



datasets and benchmark datasets show that our method can perform well, though it does not
use any target data.

In the third part of this dissertation, we consider another extreme case of domain adapta-
tion called source-free domain adaptation in which we cannot access any source data during
adaptation. In this setting, a model pretrained with source data is given instead of source data,
and we aim to fine-tune this model with unlabeled target data. For distributional alignment
between domains, we propose utilizing batch normalization statistics stored in the pretrained
model to approximate the distribution of unobserved source data. This makes it possible
to explicitly evaluate the distributional discrepancy between domains, and we conduct do-
main adaptation by minimizing this discrepancy. Experimental results with several benchmark
datasets show that our method achieves competitive performance with state-of-the-art domain
adaptation methods even though it does not require access to source data during adaptation.

In summary, this dissertation was devoted to increasing the applicability of domain adapta-
tion. We have studied three kinds of problem settings for domain adaptation with scarce data.
Our proposed algorithms are designed with a common perspective of matching data distribu-
tions between domains, and the experiments with several benchmark datasets have validated
their advantages. Therefore, we conclude that we have succeeded to make it possible to apply
domain adaptation to more diverse situations that is conceivable in real-world problems.



論文要旨

機械学習は、人々の生活を豊かにするインテリジェントな製品・システムを提供する
ために必要な、最も重要な技術の一つである。最新の機械学習技術は、顔認識、音声認
識、多言語翻訳などを始めとする様々な応用において、人間に匹敵する性能を達成して
いる。この成功を可能にした大きな要因の一つが、大量の学習データの活用である。学
習データは機械学習において必要不可欠である一方、大量の学習データを取得するコス
トは非常に高い。したがって、今後、機械学習技術を更に様々な実応用に適用する上で、
学習データを構築するコストは大きな障壁になると考えられる。
　本学位論文では、不十分なデータに基づくドメイン適応に取り組んだ。ドメイン適

応とは、学習データを再利用する技術であり、新規タスクのための学習データを取得す
るコストを大幅に低減することができる。多くのドメイン適応手法では、ソースデータ
（再利用するデータ）の分布をターゲットデータ（モデルを学習したい対象のデータ）の
分布に合わせることを目指す。これにより、適応後のソースデータで学習したモデルは、
ターゲットデータにおいて高い性能を達成することができるようになる。効果的な適応
を行うためには十分な量のソースデータとターゲットデータが必要となるが、ドメイン
適応が必要となる多くの場面では、ターゲットデータが少ないと考えられる。また、デー
タの権利的・倫理的な問題によって、ソースデータにアクセスできない場面も実応用上
は想定される。したがって、不十分なデータをいかに効果的に活用するかが、ドメイン
適応を実問題へ適用可能にするために重要である。本学位論文では、不十分なデータに
基づくドメイン適応について三つの手法を提案する。
　第一の手法では、不完全なターゲットデータしか得られない場合を考える。ここで

は、いくつかのクラスがターゲットデータに含まれていない一方、ソースデータには全
てのクラスが含まれているという状況において、ターゲットドメインで全てのクラスを
高精度に識別可能なモデルを学習することを目指す。部分的ゼロショットドメイン適応
と名づけたこの問題設定に対し、新しいドメイン適応手法を提案する。提案手法では、
ターゲットデータに含まれていないクラスの未知データに対する損失を推定するため、
従来の敵対的学習に基づくアプローチに対してサンプル重みづけを併用する。サンプル
重みは、どのサンプルが未知のデータに類似し、その損失の推定に有用かという情報を
反映するように、モデルの予測結果に基づいて推定する。この推定により、部分的ゼロ
ショットドメイン適応の設定においても、全てのクラスのデータを考慮した正確なドメ
イン適応を行うことができる。複数のベンチマークデータを用いた実験により、提案手
法の有効性を示す。
　第二の手法では、ターゲットデータが全く得られないゼロショットドメイン適応と

呼ばれる最も極端な場合に取り組む。もし、ターゲットデータに関する情報が全く得ら
れなければ、適応は不可能である。したがって、まずは、効果的なドメイン適応が可能
となるためには、どのような知識がデータの代わりに得られていればよいかという点を
明らかにする。ここでは、特定の要因の事前分布の違いに起因してドメイン間のデータ



分布がずれている状況を考え、その事前分布の変化が知識として得られることを仮定す
る。この特定の要因を属性と呼び、データの代わりに属性の事前分布を用いるようにド
メイン適応を再定式化した。提案手法では、ソースデータと属性の事前分布からサンプ
ルごとの重みを推定し、重みづけしたソースデータをターゲットデータと見なせるよう
にする。理論的な解析により、提案手法は、属性のみを用いた重みづけを行う従来手法
よりも、サンプルごとの重みを正確に推定できることを示す。また、人工データとベン
チマークデータを用いた実験により、ターゲットデータを全く用いなくても、提案手法
によって適切なドメイン適応が実現できることを示す。
　第三の手法では、別の極端な場合として、ソースデータが全く得られない状況にお

けるドメイン適応に取り組む。この問題設定では、ソースデータを用いて事前学習され
たモデルがソースデータの代わりに与えられており、このモデルをラベルなしターゲッ
トデータのみを用いてターゲットドメインに適応することを目指す。ドメイン間でデー
タの分布を合わせることを可能にするため、モデル内に保存されたバッチ統計量を利用
し、観測されていないソースデータの分布を近似することを提案する。これにより、ド
メイン間の分布のずれを明示的に評価することが可能となり、この分布のずれを最小化
することでドメイン適応を実現する。複数のベンチマークデータを用いた実験により、
提案手法は適応時にソースデータへのアクセスを必要としないにもかかわらず、最新の
ドメイン適応手法と同等の性能を達成していることを示す。
　本学位論文では、ドメイン適応が適用可能な問題設定の範囲を拡大するため、不十

分なデータに基づくドメイン適応について３つの問題設定に取り組んだ。提案手法はい
ずれもドメイン間でデータ分布を合わせるという共通の観点で設計されており、実験に
よってその有効性が示された。以上より、本学位論文によって、実問題で直面し得る多
様な状況にもドメイン適応を適用可能にすることができたと結論付ける。
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Chapter 1

Introduction

In this chapter, we first describe the background and motivation of our work. Then,
we give an overview of our contributions and the organization of this dissertation.

1.1 The age of machine learning

The age of machine learning has arrived. It has become an indispensable technol-
ogy to provide intelligent products and systems that can enrich people’s lives. If you
look around, you will see an abundance of smart services made possible by machine
learning, for example, face recognition by digital cameras [Kortli et al., 2020], speech
recognition by smart speakers [Malik et al., 2020], and automatic multi-lingual trans-
lation in online meeting software [Dabre et al., 2020], just to name a few. We have
greatly benefited from machine learning in our daily lives and even more in the future.

In general, given a particular task and performance metric, machine learning aims
to automatically construct a model that achieves good performance at the task by
learning from experience [Mitchell, 2006]. Here, we mainly focus on a supervised-
learning setting shown in Fig. 1.1. In this setting, a model is trained to accurately
predict a label of a test input sample by learning with a training dataset that contains
pairs of input examples and corresponding correct labels. To evaluate how the perfor-
mance of the trained model generalize to unseen data, we often validate the model’s
performance with test data that are not used for training [Hastie et al., 2009]. In the
long history of machine learning, many kinds of models have been proposed [Bishop,
2006], but, recently, deep neural networks are often adopted due to their promising
performance in various applications [Hatcher and Yu, 2018].

One of the most important factors of recent success by machine learning is the
availability of a large-scale training dataset. For example, in the field of computer
vision, there are several million-scale datasets that are publicly available and are
commonly used in the literature [Russakovsky et al., 2015, Kemelmacher-Shlizerman
et al., 2016, Zhou et al., 2017, Kuznetsova et al., 2020]. The most influential dataset
among them is ImageNet [Russakovsky et al., 2015], which is an image database or-
ganized according to the WordNet [Miller, 1998] hierarchy. Based on this dataset, Im-
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Figure 1.1: A setup of supervised learning.

ageNet Large Scale Visual Recognition Challenge (ILSVRC) has been annually held
since 2010 to 2017. While this dataset contains several sub-datasets for different tasks,
“ImageNet” often indicates the object classification dataset used in ILSVRC2012,
which contains about 1 million images with 1,000 object classes. Through ILSVRC,
a lot of innovative techniques on visual recognition have been developed [Krizhevsky
et al., 2012, He et al., 2016, Hu et al., 2018a]. The best accuracy on ImageNet was
71.8 % at ILSVRC2010, but it reached 97 % at ILSVRC2017, which exceeds human-
level performance [Hu et al., 2018a]. Large-scale datasets enable us to train highly
complex models, which makes it possible to effectively tackle complicated tasks that
often appear in real-world applications. The standardization and construction of such
datasets has substantially accelerated the research and development of machine learn-
ing technology.

1.2 Issues in applying machine learning technology to real-world
problems

As described in the previous section, the huge success of machine learning has been
mainly achieved in standardized tasks where a sufficiently large amount of training
data are available. On the other hand, when we consider to apply machine learning
technology to more diverse real-world problems, we cannot always expect a large-
scale training dataset, because the cost to obtain such a dataset for each task is pro-
hibitively expensive in many practical situations [Pan and Yang, 2010]. This limita-
tion leads to two major issues that have intensely been tackled for decades in the field
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of machine learning: data scarcity [Roh et al., 2019] and domain shift [Quionero-
Candela et al., 2009].

1.2.1 Data scarcity

When we use a small-scale dataset for training, a model tends to be overly fitted to
the training data during training, if it has a sufficient capability to learn from training
data. Although the performance of the trained model would be extremely good in
the training data, it should be poor in unseen test data. This phenomenon is called
overfitting [Hastie et al., 2009]. To detect overfitting, we often conduct model vali-
dation after training [Hastie et al., 2009]. In validation, we evaluate the performance
of the trained model with validation data that are split from the original training data
and are not used for training. If the performance on validation data is substantially
degraded, we can consider that overfitting occurs. However, when training dataset
is quite small, this validation process does not work well, because computed perfor-
mance should have a large variance. Even when we can detect overfitting through
validation, how to avoid overfitting for obtaining better performance still remains as
a major problem.

Since a small-scale dataset contains less information on data distribution, it is
essentially hard to extract much information for generalization in a statistically stable
manner [Hastie et al., 2009]. Therefore, additional assumptions or conditions are
required to effectively avoid overfitting. In this dissertation, we focus on a kind of
transfer learning setting where we additionally have another dataset that is constructed
in a similar domain to our target [Pan and Yang, 2010]. For example, in case of the
object recognition task, even when we only have a small number of real images that
capture the target object, it may be possible to obtain many synthesized images using
computer graphics [Peng et al., 2017]. In the most straightforward way, we can simply
use the additional dataset to train a model. However, this simple method would result
in poor performance due to another issue, called domain shift [Quionero-Candela
et al., 2009].

1.2.2 Domain shift

A domain shift is a change in data distributions between the training dataset and the
test dataset [Quionero-Candela et al., 2009]. It naturally occurs in the setting of trans-
fer learning, because the additional training data, called source data, are obtained in a
similar but different domain from the original training data, called target data [Wilson
and Cook, 2020]. Since many supervised-learning algorithms assume that training
data stem from the same distribution as test data [Hastie et al., 2009], a model trained
with source data does not necessarily work well at target data as visualized in the
left-hand side of Fig. 1.2 [Quionero-Candela et al., 2009]. To overcome this problem,
how to fill the distributional discrepancy between source and target data has been in-
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Figure 1.2: A concept of domain shift and domain adaptation.

tensely studied and is called domain adaptation. By reducing the discrepancy, a model
trained with the adapted source data works well in the target domain as shown in the
right-hand side of Fig. 1.2 [Wilson and Cook, 2020].

To effectively reduce the distributional discrepancy, we need a sufficient amount
of source and target data. However, due to the motivation of the domain adaptation,
the amount of target data is often small, which makes it quite hard to extract precise
information on target distribution that is used to estimate the discrepancy [Motiian
et al., 2017]. Additionally, we cannot access source data in some practical cases
[Kundu et al., 2020, Li et al., 2020]. For example, when we use machine learning
to optimize some personalized services, we can construct a large-scale source dataset
by collecting personal data from all users, but it should be problematic to use it for
domain adaptation in each user’s environment due to data privacy issues [Voigt and
Bussche, 2017]. Therefore, domain adaptation algorithms with scarce data are highly
demanded to make it possible to apply domain adaptation to a wide range of real-
world applications.

1.3 Domain adaptation and transfer learning

As described in the previous section, we focus on the transfer learning setting, partic-
ularly domain adaptation, in this dissertation. Transfer learning aims to help improve
the training of a model in the target domain using the knowledge in the source do-
main [Pan and Yang, 2010]. Meanwhile, in the literature of transfer learning [Pan
and Yang, 2010, Csurka, 2017], domain adaptation was treated as a particular case
of transfer learning that leverages labeled source data to learn a model for unseen or
unlabeled data in a target domain within the same task. However, since recent studies
on domain adaptation do not necessarily assume the availability of labeled source data
[Li et al., 2020, Liang et al., 2020a] nor a common task between domains [You et al.,
2019, Kundu et al., 2020], we can consider that domain adaptation has come to cover
a broad range of transfer learning settings, and there is actually almost no distinction
between domain adaptation and transfer learning in these days.
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Naturally, domain adaptation is closely related to other transfer learning tech-
niques [Csurka, 2017]. Sample selection bias correction [Cortes et al., 2008] has a
similar motivation to domain adaptation; it also aims to make a trained model work
well under a different distribution from the original training dataset. However, it
assumes a more specific situation than domain adaptation in which distributional dis-
crepancy between training and test data is caused by non-random sample selection
when constructing the training dataset. Due to this assumption, it is applicable only
when both source and target data are constructed for a common task and share the
common underlying data distribution.

Multi-task learning [Caruana, 1997] aims to train a model by jointly using both
source and target datasets that are constructed for different tasks. It can achieve better
performance than learning source and target tasks independently, when source and
target tasks are sufficiently related to each other [Evgeniou and Pontil, 2004]. For joint
training, multi-task learning requires labeled target data, while domain adaptation is
often tackled under an unsupervised setting in which only unlabeled target data are
available. Additionally, it also needs to simultaneously access both source and target
data, which is different from the setting of another cross-task transfer learning scheme,
continual learning [Parisi et al., 2019].

Continual learning [Parisi et al., 2019], which is also known as lifelong machine
learning [Chen and Liu, 2018], aims to continuously train a model from a sequence of
multiple tasks. In this setting, a target task to learn is dynamically switched to another
task over time, and training data for previous tasks cannot be directly accessed during
learning of a current task differently from multi-task learning. Therefore, one major
problem in continual learning is how to prevent a model from forgetting the knowl-
edge obtained from previous tasks, so-called catastrophic forgetting [McCloskey and
Cohen, 1989].

1.4 Contributions of this dissertation

This dissertation contributes to developing domain adaptation algorithms with scarce
data. As noted in the previous section, when only scarce data are available during
adaptation, it is quite hard to precisely estimate the distributional discrepancy be-
tween domains. We have tackled this challenging problem and have developed three
algorithms that can work effectively for each specific type of data scarcity.

In the first contribution, we introduce a new problem setting, called partially zero-
shot domain adaptation, which has not been explored in the literature but can appear
in many practical situations. In this setting, a certain subset of classes is missing in tar-
get data, while all classes are to be discriminated after adaptation. We present a novel
method for partially zero-shot domain adaptation, in which a new instance-weighting
strategy is adopted to effectively match distributions between domains while consid-
ering unobservable missing-class target data. We validate its advantage in the experi-
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ments with several benchmark datasets.
In the second contribution, we consider the most extreme case called zero-shot

domain adaptation in which no target data are available for adaptation. Here, we as-
sume that some knowledge is available instead of data to conduct domain adaptation.
We present that a certain kind of information, which is a prior change of an attribute,
enables us to effectively align the source distribution to the target one. The attribute
is expected to represent a factor that causes the difference in distributions between
domains, and we theoretically clarify requirements for the attribute to be useful in
adaptation. Our method conducts domain adaptation with such attribute information,
and its advantage is shown in both theoretical analysis and empirical evaluations.

In the third contribution, we consider another extreme case called source-free do-
main adaptation in which no source data are available during adaptation. In this set-
ting, a model pretrained with source data is given instead of source data, and our
goal is to fine-tune this model with unlabeled target data. Here, we assume that the
pretrained model includes a batch normalization module, which is widely adopted
in modern neural networks. By using batch statistics stored in the module, we esti-
mate the source distribution and consequently the distributional discrepancy between
domains. Then, we minimize this discrepancy to conduct domain adaptation without
access to source data. Experimental results with several benchmark datasets show that
our method achieves comparable performance with state-of-the-art standard domain
adaptation methods though it does not use any source data for adaptation.

1.5 Organization of this dissertation

This dissertation consists of six chapters. In this first chapter, we have given the
introduction of this dissertation. We have described the motivation of domain adapta-
tion and have clarified our focus of this dissertation, which is domain adaptation with
scarce data. The remaining chapters are organized as follows.

Chapter 2 gives a literature review on domain adaptation. After describing the
simplest case of domain adaptation, we introduce several variants of domain adap-
tation methods. These variants are designed to tackle harder situations, which are
related to our work.

Chapter 3 gives our first contribution to domain adaptation with scarce data. We
first define our new problem setting called partially zero-shot domain adaptation and
reveal the problem of standard domain adaptation methods under this setting. Then,
we describe a novel method that utilizes both adversarial training and instance weight-
ing to tackle this problem. We present a setup of experiments and their results to show
the advantage of our method.

Chapter 4 gives our second contribution. We first formulate a baseline method for
standard domain adaptation and introduce existing works on zero-shot domain adapta-
tion. Then, we present our approach and method, and theoretical analysis is also pro-
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vided to clarify characteristics of our method. Experimental results with toy datasets
and benchmark datasets are also shown to validate the advantage of our method.

Chapter 5 gives our third contribution. We start by introducing prior works on
domain adaptation and batch normalization to motivate our main idea, which is the
usage of batch normalization statistics for source-free domain adaptation. Then, we
present our domain adaptation method for the source-free setting and its empirical
evaluation with several benchmark datasets.

Chapter 6 gives the conclusion of this dissertation and discuss future directions to
make domain adaptation techniques more useful in real-world applications.
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Chapter 2

Literature review on domain adaptation

This chapter gives a literature review on domain adaptation. After describing the mo-
tivation of domain adaptation, we formulate the simplest case of domain adaptation,
called closed-set domain adaptation, and review existing studies on this problem via
categorizing them into four approaches. Then, we introduce several variants of do-
main adaptation methods that are designed to tackle harder situations than closed-set
domain adaptation. Finally, we close this chapter by briefly introducing our contribu-
tions on domain adaptation with scarce data.

2.1 Motivation of domain adaptation

Domain adaptation has been intensely studied in a long history of machine learn-
ing researches [Csurka, 2017, Wilson and Cook, 2020] to overcome the domain shift
problem introduced in Section 1.2.2. In domain adaptation, we consider two domains,
called the source domain and target domain, which have different data distributions
from each other. In the source domain, we can obtain annotated data to train a model,
and the obtained source data are expected to be sufficiently large-scaled in general. On
the other hand, in the target domain, we want to make a model work well after train-
ing, and available target data are often assumed to be small-scaled. Additionally, in
unsupervised domain adaptation, which is a popular setting in the literature [Csurka,
2017, Wilson and Cook, 2020], the labels of target data are not available, and we can-
not directly train a model with target data. Due to distributional discrepancy between
domains, simply training a model with source data would result in poor performance
of the trained model at the target domain [Quionero-Candela et al., 2009]. Note that,
in this dissertation, we basically consider this unsupervised setting, unless otherwise
noted. Under such a situation, domain adaptation aims to train a model that works
well in the target domain by utilizing given source and target data.

Domain adaptation algorithms generally adopt a certain kind of “adaptation” tech-
niques to tackle the domain shift. In many cases, they adapt labeled source data to the
target domain based on given target data so that a model trained with the adapted data
achieves substantially good performance in the target domain. From this perspective,
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Figure 2.1: General setups in representative approaches for closed-set domain adap-
tation.

domain adaptation can be viewed as a special case of transfer learning [Wilson and
Cook, 2020]. Domain adaptation also shares a similar motivation to sample selection
bias correction [Cortes et al., 2008].

2.2 The simplest case: closed-set domain adaptation

In this section, we introduce the simplest case of domain adaptation, which is called
closed-set domain adaptation [Wilson and Cook, 2020]. After formulating closed-set
domain adaptation, we present four representative approaches to tackle this problem
shown in Fig. 2.1.

2.2.1 Formulation

We first formulate closed-set unsupervised domain adaptation for a classification task,
which is the most basic setting in the literature [Wilson and Cook, 2020]. Let x ∈
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Rm, y ∈ C, and d ∈ {S,T} denote input data, labels, and domains, respectively.
Here, m is the dimensionality of input data, C is a set of class candidates, and {S,T}
represent the source and target domains, respectively. Let us consider the situation
where we are given labeled source data DS = {(xS

i , y
S
i )} ∼ pS(x, y) and unlabeled

target data DT = {xT
i } ∼ pT(x). The goal of domain adaptation is to train a model

that can accurately predict labels of input data in the target domain. More specifically,
supposing a classification model f : Rd → C is parameterized by θ, the goal is to
obtain the optimal θ that minimizes the target risk defined as

RT(θ) =
∑
y∈C

∫
l(x, y, θ)pT(x, y)dx, (2.1)

where l(x, y, θ) is a loss when y is predicted by f with θ at x. If labeled target data
were given, the target risk could be empirically approximated as

R̂T(θ) =
1

|DT|
∑
i

l(xT
i , y

T
i , θ). (2.2)

However, in the unsupervised domain adaptation setting, labels of target data are not
available, which makes it impossible to calculate this empirical target risk directly.

Since given source data stem from a different distribution than that of target data,
those data cannot be directly used in empirical approximation of Eq. (2.1). To solve
this issue, domain adaptation methods aim to minimize the target risk by utilizing
both labeled source data and unlabeled target data in another way. In closed-set do-
main adaptation, the class candidates are common between domains. This condition
enables us to estimate the target risk with given source data effectively as shown in
the following subsections.

Before presenting representative approaches for closed-set domain adaptation, we
introduce an important condition, called covariate shift [Shimodaira, 2000], which is
often assumed explicitly or implicitly in the existing studies. Under covariate shift, the
class-posterior probability p(y|x) is common in both the source and target domains,
though data distributions p(x) are different between domains:

pS(y|x) = pT(y|x) and pS(x) ̸= pT(x). (2.3)

This condition indicates that the class of a certain input sample can be determined in-
dependently of its domain, and it is intuitively reasonable in many pattern recognition
tasks.

2.2.2 Instance-weighting based approach

In the instance-weighting based approach [Shimodaira, 2000, Huang et al., 2007,
Sugiyama et al., 2008, Kanamori et al., 2009, Wen et al., 2015, Xia et al., 2018], the
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target risk is estimated by calculating the source risk with instance weights. Specifi-
cally, the target risk in Eq. (2.1) can be rewritten as

RT(θ) =
∑
y∈C

∫
w(x, y)l(x, y, θ)pS(x, y)dx, (2.4)

w(x, y) =
pT(x, y)

pS(x, y)
, (2.5)

where w(x, y) is an instance weight for the corresponding data (x, y). Intuitively, the
weight is large if the corresponding sample often appears in the target domain but
rarely appears in the source domain, while it is small in the opposite case. Since the
right-hand side of Eq. (2.4) is the expectation over the distribution of source data, it
can be empirically approximated with source data in a similar manner to that in Eq.
(2.2), while the weight of each source sample is to be estimated. Consequently, how
to estimate the instance weight is the major problem tackled in this approach. Once
estimated, it is used to calculate the weighted source risk, and a model is trained by
minimizing the weighted risk.

By assuming the covariate shift, the instance weight can be simplified as follows:

pT(x, y)

pS(x, y)
=

pT(y|x)pT(x)
pS(y|x)pS(x)

=
pT(x)

pS(x)
= w(x). (2.6)

Note that this simplified weight does not depend on label information, which means
that it can be estimated by using both source and target data without labels. Since the
weight is formulated as the ratio between pS and pT, estimation of the weight can be
considered as density ratio estimation, which has been intensely studied in the field of
machine learning [Sugiyama et al., 2012]. For instance, Huang et al. [2007] proposed
Kernel Mean Matching (KMM), which estimates the weight by matching the mean of
weighted source data with that of target data in a kernel feature space. Sugiyama et al.
[2008] adopted the Kullback-Leibler divergence instead of difference of the means in
a feature space, while a simple but effective least-square criterion is used in Kanamori
et al. [2009]. These are general methods for density ratio estimation, but some of them
have recently been extended for the purpose of domain adaptation in terms of stability
[Xia et al., 2018] or computational efficiency [Wen et al., 2015].

2.2.3 Discrepancy-estimation based approach

In the previous approach, the distribution of target data is approximated by that of
weighted source data. Although it is quite simple and is theoretically validated [Shi-
modaira, 2000], it would show unstable results when the target distribution is far
from the source distribution [Cortes et al., 2010], because such a situation induces
extremely large weights to appear in weighted source data, which leads to overfitting
of the trained model to a small subset of source data. To avoid this issue, several
recent studies [Csurka, 2017] tried to obtain domain-invariant feature representation
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by adopting a trainable feature-transform so that the source risk sufficiently approx-
imates the target risk. Once such feature representation is obtained, the target risk
can be minimized by simply minimizing the empirical source risk in the feature space
without instance weights. Note that, obviously, the feature representation should also
be also discriminative to train a classifier as well as domain-invariant [Ben-David
et al., 2010].

In a discrepancy-estimation based approach [Fernando et al., 2013, Gretton et al.,
2012, Long et al., 2015, Courty et al., 2017, Long et al., 2017, Sun et al., 2017, Yan
et al., 2017, Damodaran et al., 2018, Rozantsev et al., 2018], the distributional dis-
crepancy between source and target features is explicitly evaluated, and it is mini-
mized to obtain good feature representation by which the distribution of source fea-
tures matches that of target features. Therefore, how to compute the distributional
discrepancy is the most important research topic in this approach. Additionally, since
only minimizing distributional discrepancy leads to a trivial solution, which is to map
any data into the same feature, how to avoid this trivial solution is also important.
The most common condition adopted to avoid the trivial solution is that the feature
representation should also be discriminative as well as domain-invariant to train a
good classifier. To satisfy this condition, the empirical source risk is often minimized
jointly in addition to the distributional discrepancy as shown in Fig. 2.1(b).

Maximum Mean Discrepancy (MMD) [Gretton et al., 2012] has often been adopted
in this approach to evaluate the distributional discrepancy. MMD between pS and pT

is defined as the following equation:

MMD(pS(z), pT(z)) =
∥∥EzS∼pS(z)ϕ(zS)− EzT∼pT(z)ϕ(zT)

∥∥
Hk

, (2.7)

where z ∈ Rm′ is a feature representation of x, Hk denotes a Reproducing Kernel
Hilbert Space (RKHS) endowed with a characteristic kernel k, and ϕ is a mapping
function to Hk. Importantly, MMD becomes zero if and only if pS = pT. Therefore,
minimizing MMD by training a feature transform leads to obtaining domain-invariant
feature representation where the source distribution matches the target distribution
[Rozantsev et al., 2018]. For more precise matching, Long et al. [2015] extended
MMD to use multiple kernels, while it is also extended to handle multiple feature
representations in Long et al. [2017]. Yan et al. [2017] adopted a class-wise weight in
MMD to flexibly deal with class-prior change between domains.

Fernando et al. [2013] have shown that simply aligning second-order statistics
(mean and covariance) between domains works well, which can be done by choosing
an appropriate linear subspace of the input-data space. Sun et al. [2017] adopted
a similar idea but also extended it to utilize a non-linear feature transform. More
recently, optimal transport has been used to evaluate the distributional discrepancy
in Courty et al. [2017], Damodaran et al. [2018], and they have shown that it works
substantially better than MMD especially when the distribution of target data is largely
different from that of source data.
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Figure 2.2: Domain Adversarial Neural Network.

2.2.4 Adversarial-training based approach

Adversarial training has been intensely adopted in state-of-the-art domain adapta-
tion methods similarly to recent generative models called Generative Adversarial
Networks (GANs) [Goodfellow et al., 2014]. In adversarial-training based approach
[Ganin et al., 2016, Saito et al., 2017, Tzeng et al., 2017, Long et al., 2018, Shu et al.,
2018, Deng et al., 2019, Zhang et al., 2019, Jiang et al., 2020], an auxiliary classifier,
which is often called a domain discriminator, is adopted in addition to the target clas-
sifier as shown in Fig. 2.1(c). Given features extracted from input data, it is trained
to discriminate which domain those features stem from. On the other hand, feature
representation is jointly trained to fool the domain discriminator. Through this adver-
sarial training, domain-invariant feature representation is obtained, which enables us
to train a good classifier by simply minimizing the source risk in the feature space.

The pioneering work in this approach is done by Ganin et al. [2016], and they
proposed the Domain Adversarial Neural Network (DANN). Since DANN is one of
the important baselines in our work, we describe how DANN works in detail. As
shown in Fig. 2.2, three modules are jointly trained in DANN: feature extractor gf :

Rm → Rm′ , classifier gy : Rm′ → C, and domain discriminator gd : Rm′ → {S,T}.
This joint training is based on two losses. The first loss is a classification loss that
penalizes misclassification of the classifier:

Ly(θ) =
∑
y∈C

∫
ly(x, y, θ)pS(x, y)dx, (2.8)

ly(x, y, θ) = lcp(gy(gf (x; θf ); θy), y), (2.9)

where θ = {θf , θy, θd} is a set of trainable parameters of the three modules and lcp is
a loss function for class prediction. Note that Ly is simply defined as the source risk.
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The second loss is a domain discrimination loss that penalizes mis-discrimination of
the domain discriminator:

Ld(θ) =
1

2

∫
ld(x, d, θ)pS(x)dx+

1

2

∫
ld(x, d, θ)pT(x)dx, (2.10)

ld(x, d, θ) = ldp(gd(gf (x; θf ); θd), d), (2.11)

where ldp is a loss function for domain prediction. Based on these two losses, training
DANN is formulated as the following optimization:

L(θ) = Ly(θ)− λLd(θ), (2.12)

θ∗d = argmax
θd

L(θ), (2.13)

(θ∗f , θ
∗
y) = argmin

θf ,θy
L(θ). (2.14)

The optimization in Eq. (2.13) aims to discriminate domains of the input data by gd,
while that in Eq. (2.14) aims to fool gd by gf as well as accurately classifying the data
by gy. As a result, gf (x) becomes good feature embedding for domain adaptation,
because it would be easy to classify as well as hard to discriminate domains. Good-
fellow et al. [2014] has proved that, under some strict assumptions, this adversarial
training minimizes distributional discrepancy in terms of the Jensen-Shannon diver-
gence. Bousmalis et al. [2016] has empirically shown that DANN generally works
better than MMD-based domain adaptation methods.

After DANN was proposed, many domain adaptation studies have adopted this
adversarial training based approach and extended DANN in several directions. While
DANN only matches marginal distributions between domains, several recent methods
[Saito et al., 2017, Long et al., 2018, Shu et al., 2018, Deng et al., 2019, Jiang et al.,
2020] aim to match each class-conditional distribution by using a sort of pseudo labels
to boost the classification accuracy. Tzeng et al. [2017] adopted two feature extractors
to use them in respective domains, which improves flexibility of feature transform to
effectively match the feature distributions. Zhang et al. [2019] clarified connection
between adversarial training and a traditional domain adaptation theory [Ben-David
et al., 2010] and designed a specific loss for adversarial training to receive benefits
from theoretical guarantee on target risk minimization.

2.2.5 Generative approach

If it is possible to “translate” given source data from a source domain to a target do-
main, a target classifier can be obtained by simply training with the translated data
as shown in Fig. 2.1(d). In generative approach [Benaim and Wolf, 2017, Hoffman
et al., 2018, Murez et al., 2018, Li et al., 2019], such translation is realized by train-
ing a conditional generative model that generates appropriate target data from given
source data. Figure 2.3 shows an example of image-translation from computer graph-
ics to a real image adopted in Hoffman et al. [2018]. Especially when conditional
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(a) An original source image (synthetic im-
age).

(b) An adapted image (translated to real im-
ages).

Figure 2.3: An example of translated images. These images are from Hoffman et al.
[2018]

GANs [Mirza and Osindero, 2014] are used for training the translation model, this
approach is quite similar to the adversarial-training based approach, because both ap-
proaches utilize adversarial training to achieve distributional alignment between do-
mains. However, the generative approach conducts the distributional alignment in the
input-data space, while the adversarial-training approach does it in a certain feature
space. An important benefit of this approach is understandability of how adaptation
goes on by checking adapted source data.

Since the goal is to train a good classifier, the translation model should be carefully
trained so as to generate data that are sufficiently informative to train the classifier. To
this end, cycle consistency regularization [Zhu et al., 2017] is often adopted for the
training in this approach [Benaim and Wolf, 2017, Hoffman et al., 2018, Murez et al.,
2018, Li et al., 2019]. Here, a source-to-target translation model GS→T is jointly
trained with a target-to-source translation model GT→S. Given these two models,
cycle consistency regularization minimizes the reconstruction error between original
source data xS and GT→S(GS→T(x

S)) (and same for target data). This regulariza-
tion enforces translated data to be informative as the original data, and it means that
translated data is to be discriminative at the same level of corresponding original data,
which is a suitable property for domain adaptation.

2.3 Domain adaptation under harder situations

In this section, we introduce several variants of domain adaptation that assume harder
situations than closed-set domain adaptation. As shown in Table 2.1, the harder sit-
uations tackled in the literature can be categorized into two types: scarcity of data
and a large domain-gap. The former one is dealt with in few-shot domain adaptation,
zero-shot domain adaptation, and source-free adaptation, while the latter one is tack-
led in partial domain adaptation and open-set domain adaptation. In the following
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Table 2.1: Domain adaptation under harder situations.

Cause of difficulty Problem setting Situation

Scarcity of data
Few-shot domain adaptation 0 < |DT| ≪ |DS|.
Zero-shot domain adaptation |DT| = 0.

Source-free domain adaptation |DS| = 0.

Large domain-gap
Partial domain adaptation CS ⊃ CT.

Open-set domain adaptation CS ⊂ CT.

subsections, we describe each problem setting and introduce representative studies.

2.3.1 Few-shot domain adaptation

Due to the motivation of domain adaptation, the amount of target data used in domain
adaptation is often small in practice. Few-shot domain adaptation methods [Motiian
et al., 2017, Xu et al., 2019, Teshima et al., 2020] are specifically designed to be used
in such cases. In the few-shot setting, target data contains only a few or few tens
of samples in general. Consequently, simple closed-set domain adaptation methods
introduced in the previous section would fail, because any empirical approximation
over the target distribution, which is necessary to be done in these methods, is sub-
stantially inaccurate due to the scarcity of target data. How to tackle this issue is the
most important challenge in few-shot domain adaptation.

Motiian et al. [2017] proposed an adversarial-training based method in which the
domain discriminator is extended to take a pair of data as an input. This discriminator
classifies the input pair into four classes by discriminating from the following two
aspects: (1) whether samples of a pair come from the source domain or the target do-
main, and (2) whether samples of a pair belong to the same class or not. Since target
data are always used accompanied with randomly selected source data, the discrimina-
tor tends to avoid overfitting to target data. Xu et al. [2019] adopted a similar idea but
used a pair of data to compute distributional discrepancy between domains instead of
adversarial training. While these two methods augmented few target data by pairing
them with source data, Teshima et al. [2020] utilized nonlinear Independent Com-
ponent Analysis (ICA) [Hyvärinen and Pajunen, 1999] on multiple source-domain
datasets to augment target data by manipulating independent components.

2.3.2 Zero-shot domain adaptation

Zero-shot domain adaptation is an extreme case of domain adaptation with scarce data
in which no target data is available during adaptation. If we do not have any informa-
tion about the target domain, zero-shot domain adaptation is obviously impossible.
Consequently, zero-shot domain adaptation methods [Yang and Hospedales, 2015,
Peng et al., 2018, Wang and Jiang, 2019] require another kind of information on the
target domain instead of target data.
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(a) Source-domain task-
relevant data.

(b) Target-domain task-
relevant data. (not available
during adaptation)

(c) Source-domain task-
irrelevant data.

(d) Target-domain task-
irrelevant data.

Figure 2.4: Examples of task-relevant data and task-irrelevant data used in Peng et al.
[2018].

Peng et al. [2018] assumed the availability of both source-domain and target-
domain data for another task, called task-irrelevant data. Figure 2.4 shows examples
of task-irrelevant data as well as task-relevant data. In this example, source-domain
and target-domain data are gray-scale and colored images, respectively, and the goal
is to train a model that can accurately classify colored digit images. Even though the
task-irrelevant data in both domains are not digit images, they should be informative
to learn how to recognize semantics in an image while ignoring whether the image
is gray-scale or not. Therefore, in Peng et al. [2018], task-irrelevant data are used
to learn domain-invariant feature representation via the discrepancy-estimation based
approach. Wang and Jiang [2019] adopted a similar assumption but used those data
to train generative models to synthesize target-domain task-relevant data.

Yang and Hospedales [2015] assumed that multiple source-domain datasets are
given and also assumed that these source domains as well as the target domain are
represented by the common domain indicators. For example, in their experiments with
object recognition datasets, the indicators are the blur size and brightness of images
in each domain. Before adaptation, a classifier is trained with each source-domain
dataset, and its parameters are stored with the corresponding domain indicator. Then,
the parameters of the classifier adapted to the target domain are estimated by a kernel
regression method using the stored dataset.

2.3.3 Source-free domain adaptation

Source-free domain adaptation is also an extreme case of domain adaptation with
scarce data, but its setting is symmetric to that of zero-shot domain adaptation: no
source data is available during adaptation. Instead of source data, the model pre-
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trained with source data is given, and the goal of source-free adaptation is to adapt the
pretrained model to the target domain by training with unlabeled target data. In the
pioneering work [Chidlovskii et al., 2016], this challenging problem was tackled by
constraining the model to be linear, but recent studies [Kundu et al., 2020, Li et al.,
2020, Liang et al., 2020a] have proposed source-free domain adaptation methods that
can be applied to more complex models, specifically, deep neural networks.

Liang et al. [2020a] explicitly divided the pretrained model into two modules,
called a feature encoder and a classifier, similarly to DANN shown in Section 2.2.4,
and trained the target-specific feature encoder while fixing the classifier. To make the
classifier work well with the target features, they jointly minimized two losses for this
training. The first one is the information-maximization loss, which encourages the
classifier’s outputs to be always one-hot vectors and also to be diverse over target data.
The second loss is the classification loss computed with pseudo labels of the target
data that are estimated via clustering of the target features. By jointly minimizing
these two losses, the target encoder is trained so that the fixed classifier can accurately
classify the target features.

Kundu et al. [2020] adopted a similar architecture to Liang et al. [2020a], but it has
three modules: a backbone model, a feature extractor, and a classifier. In the adapta-
tion phase, only the feature extractor is tuned for the target domain by minimizing the
entropy of the classifier’s output. Li et al. [2020] took a generative approach, and they
jointly trained the target model and the conditional GAN that is to generate annotated
target data. In the training phase, the conditional GAN is updated to generate more
easy-to-classify data for the target classifier, and the classifier is updated to more ac-
curately classify the generated data, while it is constrained to be sufficiently close to
the pretrained classifier.

2.3.4 Partial domain adaptation

When a large-scale source dataset is available, target data may contain only a subset of
class candidates, while all class candidates appear in source data. Under this setting,
partial domain adaptation methods aim to train a classifier that performs well in the
target domain over the subset of class candidates appeared in the target data. If we
could precisely extract source data corresponding to the classes appeared in the target
data, standard domain adaptation methods would simply be applicable to the extracted
source data and target data. However, this cannot be easily conducted due to lack of
target labels.

To tackle this issue, partial domain adaptation methods [Cao et al., 2018b,a, Zhang
et al., 2018, Liang et al., 2020b] often adopt instance weights to extract relevant source
data and jointly optimize the weight as well as the adapted model. In Cao et al.
[2018b] and Cao et al. [2018a], class-wise weights are adopted in the adversarial-
training based method and are estimated by simply taking the average of the classi-
fier’s outputs over target data. Liang et al. [2020b] also adopted class-wise weights but
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used them accompanied with artificial noise on domain labels of source data, which
works as an augmentation of target data, to stabilize the adaptation in the early stage
of training. On the other hand, Zhang et al. [2018] utilized sample-wise weights as
similar to instance-weight based domain adaptation shown in Section 2.2.2, and these
weights are efficiently estimated by the domain discriminator’s outputs.

2.3.5 Open-set domain adaptation

If an environment where target data are obtained is not properly controlled, target
data may contain additional classes that do not appear in source data. Due to the
unseen-class data, the distribution of target data cannot be essentially matched with
that of source data, which leads to poor performance of standard domain adaptation
methods. Open-set domain adaptation methods have been proposed to tackle such
situations. Although the setting of open-set domain adaptation seems just a symmetric
setting of partial domain adaptation, it has distinct difficulty due to no restriction on
the additional unseen classes in target data, while additional classes are annotated in
source data under the partial domain adaptation setting.

The open-set domain adaptation problem has been first tackled in Panareda Busto
and Gall [2017]. They defined the (|C| + 1)-th class label for unseen-class data and
explicitly assigned a label for each target sample so that the class-wise distribution
of target data is well aligned with that of source data. Once target labels are as-
signed, standard domain adaptation can be conducted by removing unseen-class data
from target data, which results in obtaining better feature representation where distri-
butional discrepancy between domains is further reduced. By iteratively conducting
the label assignment and feature representation learning, both domain data are well
matched without negative effect by unseen classes in target data. Saito et al. [2018]
adopted a similar idea but jointly conducted label assignment and feature representa-
tion learning by extending the adversarial-training based approach. Baktashmotlagh
et al. [2018] took a sequential approach: without assigning labels, they first learned
factorized feature representation that comprises domain-shared one and target-private
one, and target labels were assigned based on the norm of features in each space.

2.4 Summary

In this chapter, we reviewed a literature of domain adaptation. We first introduced
closed-set domain adaptation as the most fundamental setting in the literature. After
formulating this setting, we reviewed existing studies via categorizing them into four
approaches: the instance-weighting based approach, discrepancy-estimation based
approach, adversarial-training based approach, and generative approach. Then, we
showed several variants of domain adaptation that tackle harder situations. Scarcity
of data is tackled by few-shot domain adaptation, zero-shot domain adaptation, and
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source-free domain adaptation, while large domain-gap is dealt with by partial domain
adaptation and open-set domain adaptation.

As shown in Section 2.2, closed-set domain adaptation methods basically aim to
align distributions between domains in an input space or feature space during adapta-
tion, which has shown good performance and has been also theoretically validated in
the literature [Ben-David et al., 2010]. However, as we will indicate in the subsequent
chapters, existing methods often gave up this most promising direction, when data
is scarce, for example, in zero-shot domain adaptation or source-free domain adap-
tation. In this dissertation, we propose novel domain adaptation algorithms that are
designed to appropriately conduct distributional alignment between domains even in
such situations. Our contributions make it possible to conduct domain adaptation with
scarce data in a theoretically grounded manner and also to achieve surprisingly good
performance.
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Chapter 3

Partially Zero-shot Domain Adaptation from
Incomplete Target Data with Missing Classes

In this chapter, we describe our first contribution to domain adaptation with scarce
data. We first introduce a new problem setting, called partially zero-shot domain adap-
tation, which has not been explored in the literature but can appear in many practical
situations. Then, we propose a novel adversarial-training based method that adopts
instance weighting to tackle the partially zero-shot setting. Experimental results with
several benchmark datasets validate the advantage of our method.

3.1 Introduction

The latest deep neural networks (DNNs) exhibit promising performance in various
applications [Hatcher and Yu, 2018], such as image classification, audio recognition,
and robotics. One of the key factors of their success is the availability of large-scale
training datasets. Since a DNN has extremely high flexibility, a tremendous number
of training data are required to utilize its full potential capability. However, obtaining
such large-scale datasets may be typically hard in practical cases, therefore it has
become a large obstacle to develop practical products or solutions using DNNs. To
solve this problem, many researchers have worked on domain adaptation [Csurka,
2017, Wilson and Cook, 2020] that enables us to reduce the number of training data
by transferring knowledge or data from other related domains.

As introduced in the previous chapter, standard domain adaptation methods basi-
cally aim to match data distributions between the source and target domains so that
a classifier trained on the matched source data performs well in the target domain
[Csurka, 2017] as shown in Fig. 3.1(a). Due to the motivation of the domain adap-
tation, the amount of target data is often small, which results in insufficient variation
of target data to be matched with source data. A possible and important situation we
want to focus on in this chapter is that, in classification tasks, unlabeled target data
do not cover a certain subset of class candidates (we call them missing classes), while
labeled source data include enough data from all classes. Differently from partial
domain adaptation described in Section 2.3.4, although any target data from missing
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Figure 3.1: Comparison of problem setting between standard closed-set domain adap-
tation and partially zero-shot domain adaptation.

classes are not observed, our goal is still to train a model that performs well in the
target domain where target data can stem from all classes including missing classes
as shown in Fig. 3.1(b). Therefore, we call this problem setting “partially zero-shot
domain adaptation.”

Suppose we want to detect anomalous behavior from surveillance videos by ac-
tion recognition. Here, the action recognition is required to discriminate anomalous
actions (e.g., fighting or falling down) as well as normal actions (e.g., walking or
standing). When we have already constructed a training dataset for this recognition
task at a certain surveillance camera, we can transfer it to a new camera at a differ-
ent location by conducting the domain adaptation. In this case, unlabeled target data
obtained by the new camera may not contain any anomalous actions, because such ac-
tions are rare. Although we have no annotations for the target data, we can guarantee
that the target data do not contain the anomaly, if we know that any incident did not
occur at the surveillance area while obtaining the target data. In this setting, standard
closed-set domain adaptation methods would fail, because the source data that corre-
spond to the missing classes do not have appropriate target data to be matched, and
we cannot essentially match the source data with the target data as a whole. Gener-
ally, such a situation can appear if the class candidates have higher level groups (e.g.,
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normal vs. anomalous actions) or a hierarchical structure. In that case, the target data
may be only obtained at a subset of classes, and several classes are missing.

In this chapter, we tackle a domain adaptation problem under partially zero-shot
setting. We adopt an adversarial-training based scheme that is widely used in the ex-
isting domain adaptation methods as described in Section 2.2.4 and extend it so that it
can explicitly match the source data of the missing classes with the corresponding un-
seen target data. To this end, we consider the weighted loss of the given data instead of
the loss of the unseen target data. By appropriately setting the instance weight based
on the posterior estimated by DNNs, we can conduct accurate domain adaptation even
though we do not have target data of the missing classes. Experimental results with
several benchmark datasets validate the advantage of our method over both a standard
domain adaptation method and a state-of-the-art partial domain adaptation method.

3.2 Partially zero-shot domain adaptation

In this section, we first formally define our partially zero-shot setting. After briefly re-
viewing a baseline method of domain adaptation, we clarify what problem will occur
when we use the baseline method in that setting.

3.2.1 Definition of partially zero-shot setting

In our scenario, a certain class (or classes) does not appear in target data. Let x ∈
Rm, y ∈ C and d ∈ {S,T} denote input data, labels, and domains, respectively,
where m is the dimensionality of the input data, C is the set of the class candidates,
S represents the source domain, and T represents the target domain. For the moment,
to make our formulation simple, we assume binary classification (y ∈ {P,N}: the
positive class vs. the negative class). Note that we will extend our method to multi-
class classification in Section 3.3.5 and that experiments will also be carried out for
multi-class problems. Without loss of generality, we can consider that the negative
class does not appear in target data. Specifically, in the partially zero-shot setting,
given target data DT satisfy the following condition:

DT = {xi} ∼ p(x|y = P, d = T). (3.1)

This is the definition of the partially zero-shot setting for a binary classification task.
Note that, in standard closed-set domain adaptation, DT = {xi} ∼ p(x|d = T).
Importantly, in the partially zero-shot setting, p(y = N|d = T) is not necessarily
equal to zero, which means that the missing class can appear in test target data, which
are not available during adaptation.

A similar situation to ours was considered in several recent studies. The most
related study is partial domain adaptation [Zhang et al., 2018, Cao et al., 2018a,b],
and it considered the missing class in the source domain as an outlier class that we
can ignore in classification. Our setting can also be considered as an extreme case
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of the domain adaptation with a class prior shift [Zhang et al., 2013, Chen et al.,
2018] where the priors corresponding to the missing classes are set to zero in the
target domain. In open-set domain adaptation [Panareda Busto and Gall, 2017, Saito
et al., 2018, Baktashmotlagh et al., 2018], several unknown classes appear only in
the target domain, while some classes are missing in the target domain in our setting.
All the above existing works cannot solve our problem, because they cannot explicitly
match the source data of missing classes with corresponding unseen target data, which
results in poor performance of the classifier with the missing-class data. Since we
want to discriminate all classes included in the source data in the target domain, we
need to consider how to match the missing-class data between both domains.

3.2.2 Baseline method

As a baseline method, we chose Domain Adversarial Neural Networks (DANN) [Ganin
et al., 2016], which is one of the most popular domain adaptation methods based on
adversarial training. Since we have already introduced DANN in Section 2.2.4, we
briefly review it here. In DANN, we jointly train feature extractor gf : Rm → Rm′ ,
classifier gy : Rm′ → C, and domain discriminator gd : Rm′ → {S,T} by the follow-
ing optimizations:

L(θ) = Ly(θ)− λLd(θ), (3.2)

θ∗d = argmax
θd

L(θ), (3.3)(
θ∗f , θ

∗
y

)
= argmin

θf ,θy
L(θ), (3.4)

where θ = {θf , θy, θd} is a set of trainable parameters of each network. Ly and Ld

are classification loss and domain discrimination loss, respectively, and are defined as
follows:

Ly(θ) =
∑
y

∫
ly(x, y|θ)p(x, y)dx, (3.5)

ly(x, y|θ) = lcp(Gy(Gf (x; θf ); θy), y), (3.6)

Ld(θ) =
∑
d

∫
ld(x, d|θ)p(x, d)dx, (3.7)

ld(x, d|θ) = ldp(Gd(Gf (x; θf ); θd), d), (3.8)

where lcp and ldp are loss functions for class prediction and domain discrimination,
respectively. Note that, for ease of explanation of our method, we slightly change
some notations from those in Section 2.2.4 by treating d as a random variable.

The optimization in Eq. (3.3) aims to discriminate domains of the input data by gd,
while that in Eq. (3.4) aims to fool gd by gf as well as accurately classifying the data
by Gy. As a result, gf (x; θ∗f ) becomes good feature embedding for domain adaptation,
because it would be easy to classify as well as hard to discriminate domains.
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Figure 3.2: Comparison of the architecture for domain adaptation between (a) the
baseline method and (b) the proposed method.
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3.2.3 The problem of the baseline method under the partially zero-shot setting

To clarify the problem of the baseline method in our scenario, we rewrite Ld in Eq.
(3.7) as follows:

Ld(θ) =
∑
d

∫
ld(x, d; θ)

(∑
y

p(x, y, d)

)
dx

= πPS

∫
ld(x, S; θ)p(x|y = P, d = S)dx

+πNS

∫
ld(x, S; θ)p(x|y = N, d = S)dx

+πPT

∫
ld(x,T; θ)p(x|y = P, d = T)dx

+πNT

∫
ld(x,T; θ)p(x|y = N, d = T)dx, (3.9)

where π·∗ = p(y = ·, d = ∗). These four terms correspond to the domain discrim-
ination losses for the source positive data, source negative data, target positive data,
and target negative data, respectively. Since we do not have any target negative data,
we cannot calculate the fourth term. If we ignore the fourth term by setting πNT to be
zero, the negative data only appear in the second term. It means that, if gf (x) is easy
to classify in terms of class prediction, gd can easily discriminate the domain of the
negative data by just predicting as the source domain. Consequently, to fool gd, we
need to make gf (x) hard to classify, which results in poor classification performance.

3.3 Proposed method

In this section, we propose a novel method for partially zero-shot domain adaptation.

3.3.1 Overview

Following the scheme of DANN, we formulate our partially zero-shot domain adap-
tation method by taking the adversarial-training based approach. A key trick of how
to avoid the problem described in Section 3.2.3 is instance weighting based on the
class posterior p(y|x) as shown in Fig. 3.3(a), which makes it possible to calculate
the loss related to unseen missing-class target data. By using outputs of the classifier,
we can efficiently estimate the class posterior and consequently compute the instance
weights. The same trick is also adopted for the classification loss, which results in
instance weighting based on the domain posterior p(d|x) as shown in Fig. 3.3(b). Fi-
nally, we formulate the overall optimization for our domain adaptation. We focus on
binary classification to make this formulation simple but will extend it to multi-class
classification later.
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(a) Calculation of the domain discrimination loss.
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Figure 3.3: Loss calculation in the proposed method under a binary classification
setting.

3.3.2 Instance weighting for domain discrimination loss

To avoid the problem mentioned in Section 3.2.3, we need to calculate the fourth term
in Eq. (3.9) without the target negative data. Inspired by positive confidence learning
[Ishida et al., 2018], we estimate the value of that term based on the target positive
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data by adopting instance weights as∫
ld(x,T; θ)p(x|y = N, d = T)dx

=

∫
wd(x)ld(x,T; θ)p(x|y = P, d = T)dx, (3.10)

where wd(x) is the instance weight that can be defined as

wd(x) =
p(x|y = N, d = T)

p(x|y = P, d = T)
. (3.11)

By using Bayes’ theorem and assuming the covariate shift condition [Shimodaira,
2000], p(y|x, d = S) = p(y|x, d = T) = p(y|x), we can rewrite the weight as
follows:

wd(x) =
p(y = N|x, d = T)p(d = T|x)p(x)

p(y = N, d = T)

· p(y = P, d = T)

p(y = P|x, d = T)p(d = T|x)p(x)

=
p(y = P, d = T)

p(y = N, d = T)
· p(y = N|x, d = T)

p(y = P|x, d = T)

=
πPT

πNT

· p(y = N|x)
p(y = P|x)

. (3.12)

If we empirically estimate πNT, it should be zero and the weight diverges. Therefore,
we regard πNT and πPT as hyper-parameters in our method. In this paper, we set them
as πNT = πNS and πPT = πPS. This setting corresponds to the assumption where
p(d = S) is equal to p(d = T) and the class prior does not change between the source
and target domains. Based on this assumption, Eq. (3.12) can be rewritten as

wd(x) =
πPS

πNS

· p(y = N|x)
p(y = P|x)

=
p(y = P|d = S)

p(y = N|d = S)
· p(y = N|x)
p(y = P|x)

. (3.13)

In Eq. (3.13), p(y|d = S) is the class prior of the source data, therefore, it can be
easily estimated by using the source data. On the other hand, p(y|x) is the class
posterior, and how to obtain it is not a trivial problem. In [Ishida et al., 2018], the
posterior is assumed to be given, but it is not a reasonable assumption in domain
adaptation problems, so we need to estimate it. Fortunately, in DANN, we jointly
train the classifier as well as the domain discriminator, and the output of the classifier
is a probability distribution over the class candidates, which can be used as the class
posterior like in [Zhang et al., 2018]. We use the output of the classifier instead of the
class posterior to calculate the instance weight in Eq. (3.13).

By substituting Eq. (3.13) into Eq. (3.10) and using it instead of the fourth term
in Eq. (3.9), we can obtain a new formulation of the domain discrimination loss Lw

d
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that can be calculated without the target negative data as

Lw
d (θ) = πPS

∫
ld(x, S; θ)pPS(x)dx

+πNS

∫
ld(x, S; θ)pNS(x)dx

+πPS

∫ (
1 +

πNS

πPS

ŵd(x)

)
ld(x,T; θ)pPT(x)dx, (3.14)

where ŵd(x) is the instance weight in Eq. (3.13) calculated by the output of the
classifier, and p·∗(x) represents p(x|y = ·, d = ∗).

When conducting adaptation, we compute the domain discrimination loss in Eq.
(3.14) by empirically approximating it with given source and target data as the fol-
lowing equation:

L̂w
d (θ) =

1

2|DS|
∑

(xS
i ,y

S
i )∈DS

ld(x
S
i , S; θ)

+
nPS

2|DS||DT|
∑

xT
i ∈DT

(
1 +

nNS

nPS

ŵd(x
T
i )

)
ld(x

T
i ,T; θ), (3.15)

where nPS and nNS are the number of the source positive data and that of the source
negative data, respectively.

3.3.3 Instance weighting for classification loss

Since we assume binary classification, we can know that the target data are all positive
data, which should be useful information for training the classifier. However, if we use
the target data to calculate the classification loss Ly, the similar problem will happen
as we have previously shown in the case of the domain discrimination loss. As in Eq.
(3.9), we can decompose Ly in Eq. (3.5) as follows:

Ly(θ) = πPS

∫
ly(x,P; θ)pPS(x)dx

+πNS

∫
ly(x,N; θ)pNS(x)dx

+πPT

∫
ly(x,P; θ)pPT(x)dx

+πNT

∫
ly(x,N; θ)pNT(x)dx. (3.16)

Again, we cannot calculate the fourth term in Eq. (3.16). Compared with the previous
case, it seems not so problematic, because we do not fool the classifier. Even though
the target data can be easily classified into the negative class in this case, it does not
directly affect the training of DANN. However, since it leads to over-estimation of the
performance of the classifier, it would disturb the training of the classifier. Therefore,
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we also adopt the instance weight to estimate the loss for the target negative data. In
this case, we estimate the loss value based on the source negative data as∫

ly(x,N; θ)pNT(x)dx =

∫
wy(x)ly(x,N; θ)pNS(x)dx, (3.17)

where wy(x) is the instance weight that can be defined in a similar manner to Eq.
(3.12), which results in

wy(x) =
πNS

πNT

· p(d = T|x)
p(d = S|x)

=
p(d = T|x)
p(d = S|x)

. (3.18)

Since we have already assumed πNS = πNT, πNS

πNT
was eliminated. Unlike the case of

the domain discrimination loss, we need the domain posterior p(d|x) instead of the
class posterior to calculate the instance weights. Similarly to the class posterior, we
use the output of the domain discriminator as an estimate of the domain posterior. By
substituting Eq. (3.18) into Eq. (3.17) and using it instead of the fourth term in Eq.
(3.16), we obtain a new formulation of the classification loss Lw

y that can be calculated
without the target negative data:

Lw
y (θ) = πPS

∫
ly(x,P; θ)pPS(x)dx

+ πNS

∫
(1 + ŵy(x)) ly(x,N; θ)pNS(x)dx

+ πPS

∫
ly(x,P; θ)pPT(x)dx, (3.19)

where ŵy(x) represents the instance weight in Eq. (3.18) calculated by the output of
the domain discriminator.

When conducting adaptation, we also empirically approximate the classification
loss in Eq. (3.19) to compute it with given source and target data as shown below:

L̂w
y (θ) =

1

2|DS|
∑

(xS
i ,P)∈DS

ly(x
S
i ,P; θ)

+
1

2|DS|
∑

(xS
i ,N)∈DS

(
1 + ŵy(x

S
i )
)
ly(x

S
i ,N; θ)

+
nPS

2|DS||DT|
∑

xT
i ∈DT

ly(x
T
i ,P; θ). (3.20)

3.3.4 Adversarial training with instance weights

Since we have already derived a new domain discrimination loss and a classification
loss that can be calculated without the target negative data, we can train DNNs based
on these losses for the partially zero-shot domain adaptation. In a similar manner with
DANN, we formulate our domain adaptation as follows:

Lw(θ) = Lw
y (θ)− λLw

d (θ), (3.21)

θ∗d = argmax
θd

Lw(θ), (3.22)(
θ∗f , θ

∗
y

)
= argmin

θf ,θy
Lw(θ). (3.23)
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The above optimization seems to be the same as that of the baseline method, but, by
adopting appropriate instance weights, we can accurately conduct domain adaptation,
even though we do not have any target negative data.

3.3.5 Extension to multi-class classification

In the case of binary classification, only one of the classes does not appear in the target
data. On the other hand, in the case of multi-class classification, multiple classes can
disappear in the target data. Let A and M denote a set of classes that appear in the
target data and a set of classes that do not appear, respectively. By using y ∈ A

instead of y = P and y ∈ M instead of y = N, we can derive our method under
multi-class classification setting in a similar manner to what we have shown in the
previous subsection. For the domain discrimination loss, the instance weight in Eq.
(3.13) is formulated as

wd(x) =
p(y ∈ A|d = S)

p(y ∈ M |d = S)
· p(y ∈ M |x)
p(y ∈ A|x)

. (3.24)

Using this weight, we can derive the domain discrimination loss for multi-class clas-
sification setting as

Lw
d (θ) = πAS

∫
ld(x, S; θ)pAS(x)dx

+πMS

∫
ld(x, S; θ)pMS(x)dx

+πAS

∫ (
1 +

πMS

πAS

ŵd(x)

)
ld(x,T; θ)pAT(x)dx, (3.25)

where π·∗ = p(y ∈ ·, d = ∗), p·∗(x) = p(x|y ∈ ·, d = ∗), and ŵd(x) is the instance
weight in Eq. (3.24) calculated by the output of the classifier. Since ld does not depend
on y, how to calculate the domain discrimination loss is almost the same as that for
binary classification setting. On the other hand, in the case of the classification loss,
it becomes somewhat different. The instance weight for the classification loss in Eq.
(3.18) stays same, because it does not depend on y. However, the classification loss
is changed to

Lw
y (θ) = πAS

∑
i∈A

∫
ly(x, i; θ)piS(x)dx

+πMS

∑
j∈M

∫
(1 + ŵy(x)) ly(x, j; θ)pjS(x)dx

+πAS

∫
ly(x,A; θ)pAT(x)dx. (3.26)

For the first and second terms in the right-hand side of Eq. (3.26), we can easily
calculate ly, because the labels are provided in the source data. However, for the third
term, since there are no labels in the target data, we cannot calculate ly in the same
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way as that in the first and second terms. Considering that ly is the cross entropy loss,
we adopt simple extension of the loss function as

ly(x,A; θ) = − log
∑
y∈A

p̂(y|x; θ), (3.27)

where p̂(y|x; θ) is the output of the classifier when the input is x and the parameters
of DNNs are set to θ.

3.3.6 Implementation details

Our partially zero-shot domain adaptation adopts the instance weight to calculate the
losses, and the weight is calculated by taking the ratio between the outputs of the
classifier or those of the domain discriminator as shown in Eqs. (3.13) and (3.18),
respectively. In the early stage of training DNNs, these outputs are often inaccurate,
and this error would be magnified by taking the ratio, which results in quite inaccurate
estimation of the weight that can severely damage the training process. Since evalu-
ating how accurate the weights are is hard, we suppress the influence of the weight to
alleviate this problem by two heuristic techniques. For simplicity, we explain these
techniques for the binary classification case, but the same ones can be also applied in
the multi-class classification case. First, to avoid extremely large weights, we clip the
weight to be less than a certain upper bound:

ŵd(x) = min

[
α,

p(y = P|d = S)

p(y = N|d = S)
· p̂(y = N|x; θ)
p̂(y = P|x; θ) + ϵ

]
, (3.28)

ŵy(x) = min

[
α,

p̂(d = T|x; θ)
p̂(d = S|x; θ) + ϵ

]
, (3.29)

where α represents the upper bound of the weight. Here, a small positive constant ϵ
is also introduced to avoid computational instability. In this paper, we set α = 5 and
ϵ = 0.01, and they are fixed in all experiments. Second, to suppress the influence of
the weighted losses, we reduce the contribution of the loss that stems from the target
negative data by using βŵd(x) and βŵy(x) instead of ŵd(x) and ŵy(x) to calculate
Lw

d in Eq. (3.14) and Lw
y in Eq. (3.19), respectively. The coefficient β ( 0 < β ≤ 1

) represents the confidence of the loss from the target negative data, and we set it to
1/α in all experiments, which means that we allow the influence of the loss from the
unseen target-negative data at most the same as that from the available target-positive
data.

3.4 Experiments

In this section, we demonstrate the advantage of the proposed method through exper-
iments with several benchmark datasets.
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3.4.1 Setup

We conducted experiments with several datasets that are commonly used to bench-
mark domain adaptation methods in existing works. Specifically, we used digit clas-
sification datasets (MNIST [LeCun et al., 1998], MNIST-M [Ganin et al., 2016],
and SVHN [Netzer et al., 2011]) and an object recognition dataset (Office-31 dataset
[Saenko et al., 2010]). To make partially zero-shot setting, we chose a certain number
of missing classes from the dataset with alphabetical order of class name and did not
use corresponding target data while training. Note that the missing-class data do not
appear in the training data of the target domain but are included in the test data. Af-
ter training, we applied the trained classifier to the test data of the target domain and
evaluated its accuracy to compare the performance of the domain adaptation methods.

For comparison, we used DNN trained with only source data (without domain
adaptation) and DANN [Ganin et al., 2016] as baseline methods and Partial Adversar-
ial Domain Adaptation (PADA) [Cao et al., 2018b] as a state-of-the-art partial domain
adaptation method that are most related to our work. In PADA, the class-wise instance
weight is set to be proportional to the average of the classifier predictions over the tar-
get data and is used when calculating the losses. This instance weighting enables
one to ignore the missing-class data, because the missing class would be rarely pre-
dicted. Since PADA ignores the missing-class data in the classification loss as well as
in the domain discrimination loss, it would result in poor classification performance
in our scenario in which the missing class will appear in test data. Therefore, we
also compared a variant of PADA that ignores the missing class only in the domain
discrimination loss but does not ignore it in the classification loss. This method is
referred to as the PADA-classifier in [Cao et al., 2018b]. For each method, we con-
ducted experiments five times with random initialization of DNNs and will report
their averaged accuracy.

Another possible choice of partial domain adaptation methods would be Impor-
tance Weighted Adversarial Nets (IWAN) [Zhang et al., 2018]. However, IWAN is
not essentially suitable for partially zero-shot setting. Since IWAN adopts two sepa-
rate feature extractors for each domain, the missing class data are never learned while
training of the target-side feature extractor. It results in poor classification perfor-
mance in our scenario, and we cannot easily avoid this problem. Therefore, we did
not include IWAN in our experiment.

3.4.2 Digit image classification

MNIST, MNIST-M, and SVHN are digit image datasets, and the task is to classify
these images into ten classes that correspond to digit numbers. Example images of
each dataset are shown in Fig. 3.4. In the experiments, we tried two popular do-
main adaptation scenarios: from MNIST to MNIST-M and from SVHN to MNIST.
Since MNIST-M images are made by artificially synthesizing MNIST images with
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(a) MNIST (b) MNIST-M (c) SVHN

Figure 3.4: Example images of MNIST, MNIST-M, and SVHN.

Table 3.1: The network architecture used for the domain adaptation from MNIST to
MNIST-M. MP2, BN, and FC denote 2× 2 max-pooling, batch normalization, and a
fully-connected layer, respectively.

Feature extractor
Layer type Filter size / # Filters

conv. + ReLU 5× 5 / 32
MP2 + BN 2× 2 / 32

conv. + ReLU 5× 5 / 48
MP2 + BN 2× 2 / 48

Classifier
FC + ReLU 1 / 100
FC + ReLU 1 / 100

FC + softmax 1 / 10

Domain discriminator
FC + ReLU 1 / 100

FC + sigmoid 1 / 1

background extracted from natural images, domain adaptation between MNIST and
MNIST-M is relatively easy. On the other hand, SVHN and MNIST images are col-
lected at totally different environment. Therefore, these images have largely different
appearance to each other, which makes the domain adaptation harder. We almost
followed the same setup for the experiments in [Ganin et al., 2016]. The network
architectures are shown in Table 3.1 and 3.2, respectively. These networks are trained
by the stochastic gradient descent with momentum. The size of mini-batch was set to
128. Its half is for the source data, and the rest is for the target data. The momentum
was set to 0.9, and the learning rate was decayed while training as µ = µ0/ (1 + αp)β ,
where p is the training progress linearly changing from 0 to 1, µ0 = 0.01, α = 10, and
β = 0.75. The hyper-parameter λ in Eq. (3.21) was set to 1, but, for training feature
extractor, we adopt gradually changing λ as λ = 2/(1+ exp(−γp))− 1, where γ was
set to 10. For fair comparison, we used doubled value of the above equation as λ in
our method to match the contribution of the original discrimination loss of the target
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Table 3.2: The network architecture used for the domain adaptation from SVHN to
MNIST. MP3s2, BN, and FC denote 3 × 3 max-pooling with stride 2, batch normal-
ization, and a fully-connected layer, respectively.

Feature extractor
Layer type Filter size / # Filters

BN + conv. + ReLU 5× 5 / 64
MP3s2 + BN 3× 3 / 64
conv. + ReLU 5× 5 / 64
MP3s2 + BN 3× 3 / 64

conv. + ReLU + BN 5× 5 / 128

Classifier
FC + ReLU 1 / 500
FC + ReLU 1 / 500

FC + softmax 1 / 10

Domain discriminator
FC + ReLU 1 / 100

FC + sigmoid 1 / 1

Table 3.3: Experimental results of domain adaptation from MNIST to MNIST-M.

The number of missing classes
0 3 5 7 9

Source only 26.7% - - - -
DANN 85.2% 64.9% 51.7% 32.6% 24.7%
PADA - 65.5% 58.8% 50.0% 27.1%

PADA-classifier - 70.1% 57.9% 56.4% 36.8%
Proposed method - 85.5% 85.4% 81.0% 52.2%

data between our method and the other methods. For the partially zero-shot setting,
we evaluated the accuracy with varying the number of missing classes.

Table 3.3 shows the experimental results of the adaptation from MNIST to MNIST-
M. When the number of the missing classes is zero, which corresponds to the standard
setting of existing domain adaptation methods, DANN works well and substantially
increases the accuracy from 26.7% to 85.2%. As increasing the number of the miss-
ing classes, the performance of DANN becomes deteriorated and even worse than
that of source only case when nine classes disappear in the target data. This is be-
cause DANN hopelessly tries to match the distribution of the source data with that
of the target data as a whole even though the source data of the missing class do not
have appropriate data to be matched due to lack of the missing class in the target
data. On the other hand, PADA and PADA-classifier actively ignore the missing class
while domain adaptation, which results in better performance than DANN under the
partially zero-shot setting. PADA-classifier performs better than PADA, because it
does not ignore the missing-class data when calculating the classification loss. Com-
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(a) No missing classes. (b) Three classes are missing.

(c) Seven classes are missing.

Figure 3.5: Accuracy on the test data of the target domain while training adaptation
from MNIST to MNIST-M. Solid line represents the averaged accuracy, and shaded
area represents ±2σ.

pared with these methods, our method achieves much better performance, because it
explicitly considers the loss of unseen target data of the missing classes for domain
adaptation, while the other methods do not. Amazingly, the proposed method keeps
almost same accuracy with the standard adaptation setting even when a half of classes
do not appear in the target data.

The test accuracy while training is shown in Fig. 3.5. When there is no missing
class, the test accuracy of DANN gradually increases while training and converges
to a certain level in the end as shown in Fig. 3.5(a). On the other hand, in partially
zero-shot setting, the accuracy of DANN does not substantially increase and even de-
crease when seven classes are missing. PADA works slightly better than DANN, but
its accuracy fluctuates when the number of missing classes is large as shown in Fig.
3.5(c). This is because PADA tries to ignore the missing-class data while training,
which results in instable accuracy on the missing classes in the test data. Compared
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Table 3.4: Experimental results of domain adaptation from SVHN to MNIST.

The number of missing classes
0 3 5 7 9

Source only 63.4% - - - -
DANN 67.8% 66.5% 67.6% 66.7% 62.5%
PADA - 54.7% 58.3% 59.9% 49.0%

PADA-classifier - 66.0% 66.6% 64.8% 64.1%
Proposed method - 67.2% 69.0% 58.1% 62.2%

(a) Amazon (b) DSLR (c) Webcam

Figure 3.6: Example images of Office-31 dataset.

with PADA, the proposed method show better and more stable performance due to
considering the missing class in the calculation of the losses. Specifically, the pro-
posed method behaves almost same as DANN with no missing classes, even when
seven classes are missing.

Table 3.4 shows the results of the adaptation from SVHN to MNIST. All methods
except for our method behaved similar to those in the previous experiment, but our
method gets relatively worse when the number of the missing classes becomes large.
Considering that PADA-classifier that adopts the class posterior to calculate the loss
works well, this is probably because the estimation error of the domain posterior
becomes quite large due to the large discrepancy between SVHN and MNIST as well
as a large amount of missing-class data. In addition, our assumption on the class prior
in Eq. (3.13) is violated in this experiment. The number of training data is almost
balanced between classes in MNIST, but it largely varies in SVHN, which results in
the change of the class prior.

3.4.3 Object recognition

The Office-31 dataset is one of the most popular datasets specialized for benchmark-
ing domain adaptation methods. This dataset contains object images with 31 cate-
gories, and three domains are defined: Amazon, DSLR, and webcam. Example im-
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Table 3.5: Experimental results of domain adaptation from Amazon to webcam in
Office-31 dataset.

The number of missing classes
0 10 20

Source only 61.5% - -
DANN 70.1% 61.3% 52.4%
PADA - 62.9% 31.6%

PADA-classifier - 65.6% 55.3%
Proposed method - 68.2% 63.5%

Table 3.6: Experimental results of domain adaptation from Amazon to DSLR in
Office-31 dataset.

The number of missing classes
0 10 20

Source only 66.3% - -
DANN 71.1% 62.2% 54.2%
PADA - 64.2% 23.4%

PADA-classifier - 67.9% 59.9%
Proposed method - 69.2% 70.0%

ages in each domain are shown in Fig. 3.6. We can consider six scenarios of domain
adaptation in this dataset, but we focus on the most difficult two scenarios that are
from Amazon to webcam and from Amazon to DSLR. This is because DSLR and
webcam are relatively similar to each other and the effect of the original DANN is
marginal (e.g. 96.1% → 96.4% in the case of DSLR-to-webcam reported in [Ganin
et al., 2016]). We also follow the same experimental setup with [Ganin et al., 2016].
We used AlexNet pretained with ImageNet [Krizhevsky et al., 2012] to construct the
initial feature extractor by removing the output layer and adding the 256-dimensional
bottleneck. For the classifier and the domain discriminator, we used a single fully-
connected layer (256 → 31) and a fully-connected network with two hidden layers
(256 → 1024 → 1024 → 1). The learning rate for the pretrained layers is set to be ten
times smaller than the other layers. The other setting is same as that in the previous
experiment.

Table 3.5 and 3.6 show the results with Office-31 dataset. As in the previous
experiment, the proposed method achieves substantially better performance than the
other methods. Even when a large proportion of the classes, such as twenty out of
thirty one, does not appear in the target data, our method achieves better performance
than source only case and does not fall into negative transfer.

38



3.5 Conclusion

In this chapter, we introduced a new problem setting, called partially zero-shot domain
adaptation, which has not been explored in the literature but can often appear in real-
world applications. In this setting, a certain subset of classes only appear in the source
data but do not appear in the target data, while we want to discriminate all classes at
the target data after the domain adaptation. To tackle this problem, we proposed a
novel domain adaptation method that utilizes both adversarial training and instance
weighting. We derived how to estimate losses of unseen missing-class target data by
adopting the instance weights that are estimated based on the outputs of DNNs. In the
experiments, our method has shown excellent performance under partially zero-shot
setting compared with existing domain adaptation methods.
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Chapter 4

Zero-shot Domain Adaptation based on
Attribute Information

In this chapter, we describe our second contribution to domain adaptation with scarce
data. We propose a novel method for zero-shot domain adaptation. We consider the
situation where domain shift is caused by change in the prior of a specific factor and
assume that we know how the prior changes between source and target domains. We
call this factor an attribute, and reformulate the domain adaptation problem to utilize
the attribute prior instead of target data. In our method, source data are reweighted
with the sample-wise weight estimated by the attribute prior and the data themselves
so that they are useful in the target domain. We theoretically reveal that our method
provides more precise estimation of sample-wise transferability than a straightforward
attribute-based reweighting approach. Experimental results with both toy datasets and
benchmark datasets show that our method can perform well, though it does not use
any target data.

4.1 Introduction

In many algorithms for supervised learning, it is assumed that training data are ob-
tained from the same distribution as that of test data [Hastie et al., 2009]. Unfortu-
nately, this assumption is often violated in practical applications. For example, Fig.
4.1 shows images of two different surveillance videos that are obtained from Video
Surveillance Online Repository [Vezzani and Cucchiara, 2010]. Suppose we want
to recognize vehicles from these videos. Since the position and pose of the cam-
era are different, the appearance of the vehicle is somewhat different between two
videos. Due to this difference, even if we train a highly accurate classifier on video
A, it may work poorly on video B. Such discrepancy has recently become a major
problem in pattern recognition, because it is often difficult to obtain training data that
are sufficiently similar to the test data. To deal with this problem, domain adaptation
techniques have been proposed.

Given two datasets, called source and target data, domain adaptation aims to adapt
source domain data to the target domain data so that distributions of both datasets are
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(a) Video A (b) Video B

Figure 4.1: Example images of surveillance videos. Since the position and pose of the
surveillance camera is different, the appearance of the vehicle is somewhat different
between two videos.

Frequency Frequency

Shooting angle Shooting angle

Source data Target data

(unavailable)

(x, y) space

Attribute information Attribute information

The attribute prior changes

between the domains

The discrepancy of 

data distributions

Figure 4.2: The situation we are considering in this work.

matched [Csurka, 2017]. By applying domain adaptation, classifiers trained on the
adapted source data can achieve high accuracy on the target data. Since the dis-
crepancy between two distributions is measured based on observed data, we need a
sufficient number of data in each dataset to estimate the distributional discrepancy ac-
curately. However, due to the motivation of the domain adaptation, obtaining a large
number of target data is often hard, which limits the application of domain adaptation
methods to practical cases.
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In this chapter, we consider the most extreme case in which we cannot obtain
any target data, called zero-shot domain adaptation. A few recent studies [Yang and
Hospedales, 2015, Peng et al., 2018] have tackled this challenging problem, but they
require additional data such as multiple source datasets [Yang and Hospedales, 2015]
or target data of another task [Peng et al., 2018] that are not easy to obtain in practice.
In this work, we propose a novel method of zero-shot domain adaptation that would
be more suitable for practical cases. We assume that we have prior knowledge about
what factor causes the difference in distributions between source and target data. For
example, in Fig. 4.1, the shooting angle for vehicles can be considered as a major
factor that causes the appearance change between videos. Other examples include
gender information in an age estimation task from facial images and the azimuth of
captured objects in an object recognition task, both of which are examined in our
experiments.

We call such a factor an attribute, and assume that we can only obtain attribute
priors in the target domain instead of the target data. We then reformulate the domain
adaptation problem so that we can conduct adaptation based only on attribute priors.
In addition, we clarify requirements for the attribute to be useful in domain adap-
tation, and reveal that our method provides more precise estimation of sample-wise
transferability than the straightforward attribute-based reweighting approach. Exper-
imental results with both toy datasets and benchmark datasets validate the advantage
of our method, even though it does not use any target data.

We explain our setting by using vehicle recognition from surveillance videos as an
example shown in Fig. 4.2. In this task, input data and labels are cropped video frames
and vehicle types, respectively. Suppose that we have already constructed training
datasets from existing surveillance cameras and want to transfer those datasets to a
classifier for a new surveillance camera. If the new camera is not installed yet, we
cannot obtain any target videos, therefore, we cannot apply a standard domain adap-
tation method nor evaluate how much data can be transfered via domain adaptation.
But, if where and how the new camera will be installed have been already determined,
we can estimate the shooting angle for the target vehicle. Since the shooting angle is
a major factor that causes the appearance change of vehicles, we can consider the
shooting angle as an attribute. In this case, we calculate it for each sample in the
source domain and also estimate how often the vehicle will be captured with a cer-
tain shooting angle in the target domain by using the information about the pose and
position of a camera. As shown in the above example, the assumption about attribute
information in our method is sufficiently practical, and we believe that our method
can be applied in many practical applications, especially for computer vision tasks.
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4.2 Problem formulation and related works

Since our method adopts instance-weighting approach for adaptation, we briefly re-
view how the existing instance-weighting based methods tackle standard closed-set
domain adaptation. Let us consider a supervised classification task, and let x ∈
Rm, y ∈ C and d ∈ {S,T} denote input data, labels, and domains, respectively.
Here, m is the dimensionality of the input data, C is the set of the class candi-
dates, and {S,T} represent the source and target domains, respectively. Note that
we treat d as a random variable. We assume that the joint distributions of (x, y) are
different between domains, which means p(x, y|d = S) ̸= p(x, y|d = T). Given
labeled source data DS = {(xS

i , y
S
i )} ∼ p(x, y|d = S) and unlabeled target data

DT = {xT
i } ∼ p(x|d = T), our goal is to train a model f : Rm → C that can accu-

rately predict labels for input data in the target domain. More specifically, supposing
f is parameterized by θ, we want to obtain the optimal θ that minimizes the target risk
defined as

RT(θ) =
∑
y∈C

∫
l(x, y, θ)p(x, y|d = T)dx, (4.1)

where l(x, y, θ) is a loss when y is predicted by f with θ at x.
Since the target data are not labeled, we cannot directly estimate the risk in Eq.

(4.1) by empirical approximation. Instead, we try to use the source data to estimate it.
The target risk can be related to the source risk with instance weights as:

RT(θ) =
∑
y∈C

∫
w(x, y)l(x, y, θ)p(x, y|d = S)dx, (4.2)

w(x, y) =
p(x, y|d = T)

p(x, y|d = S)
(4.3)

where w(x, y) is an instance weight for the corresponding data (x, y). By assuming
covariate shift [Shimodaira, 2000], that means p(y|x) is common in the source and
target domains, we can simplify the weight as follows

p(x, y|d = T)

p(x, y|d = S)
=

p(y|x, d = T)

p(y|x, d = S)

p(x|d = T)

p(x|d = S)

=
p(x|d = T)

p(x|d = S)
:= w(x). (4.4)

The covariate shift assumption is intuitively reasonable in many pattern recognition
tasks, so it is often adopted not only explicitly in the instance-weighting based meth-
ods but also implicitly in the recent adversarial-training based methods [Ganin et al.,
2016, Tzeng et al., 2017] that aim to match p(x|d) instead of p(x, y|d) between the
domains.

Equation (4.2) indicates that we can obtain the optimal θ by minimizing the weighted
source risk. Therefore, many existing instance-weighting based methods [Huang

43



et al., 2007, Sugiyama et al., 2008, Kanamori et al., 2009] basically try to accurately
estimate the weight defined in Eq. (4.4). When we estimate the weight, we assume
that the weight is always finite. Once we obtain the weight for each sample in the
source data, we can calculate the empirically approximated risk R̂T(θ) as:

R̂T(θ) =
1

|DS|
∑

(xi,yi)∈DS

ŵ(xi)l(xi, yi, θ), (4.5)

where ŵ(xi) is the estimated weight for (xi, yi). By minimizing this empirical risk,
we can estimate the optimal θ.

In our zero-shot scenario, the standard instance-weighting based approach cannot
be directly adopted, because they require target data as well as source data to estimate
the weight. Therefore, the main problem in our scenario is how to estimate the weight
without target data. We will show that it can be solved by utilizing the attribute
information instead of the unavailable target data.

As described in Section 2.3.2, a few recent studies [Yang and Hospedales, 2015,
Peng et al., 2018] have tackled zero-shot domain adaptation problem, but they re-
quire additional data such as multiple source datasets [Yang and Hospedales, 2015]
or target data of another task [Peng et al., 2018] that are not easy to obtain in prac-
tice. Moreover, they gave up explicitly aligning data distributions between domain.
Therefore, their performance cannot be guaranteed by well-explored theories in the
literature [Ben-David et al., 2010]. In this work, we explicitly conduct distributional
alignment between domains using attribute information and also theoretically clarify
what property the attribute should hold for effective domain adaptation.

In terms of utilizing attribute information, attribute-based zero-shot learning [Romera-
Paredes and Torr, 2015] or few-shot learning [Li et al., 2006] is somewhat related to
our work. However, there is a significant difference; the attribute information is uti-
lized for representing an unseen“ class” in zero-shot learning while it is used for
representing an unseen“ domain”in zero-shot domain adaptation. In this work, we
establish the algorithm specialized for zero-shot domain adaptation and theoretically
clarify the condition required for zero-shot domain adaptation.

4.3 Proposed method

In this section, we first describe our zero-shot domain adaptation method based on
the attribute information. Then, we theoretically derive specific requirements for the
attribute information to make our method work correctly. Lastly, we clarify some
characteristics of our method and show the robustness against insufficient attribute
information.
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4.3.1 Our approach

We assume that we can obtain attribute information in both the source and target do-
mains which contains information on the discrepancy between the data distributions.
More specifically, in the source domain, attribute z for each sample is also given in
addition to (x, y), and in the target domain, we cannot obtain any data or attributes
as well, but only the probability distribution of attributes p(z|d = T) is given. In our
method, we try to estimate instance weights introduced in the previous section with-
out target data but using attribute information. To make our formulation simple, we
assume a single categorical attribute, but our method can be extended to multivariate
or continuous attributes in a straightforward way.

4.3.2 Instance weight estimation based on attribute information

First, we transform the probability density ratio in Eq. (4.4). Since we do not have
any information about the domain prior p(d) especially for the target domain, we
assumed a uniform distribution (p(d = S) = p(d = T)) that is often used as a
non-informative prior. By using this assumption and Bayes’ theorem, we obtain the
following equation:

w(x)=
p(x|d=T)

p(x|d=S)
=
p(d=T|x)
p(d=S|x)

p(d=S)

p(d=T)
=
p(d=T|x)
p(d=S|x)

. (4.6)

Then, based on the attribute information, we approximate p(d|x) as follows:

p(d|x) ≈
∑
z

p(d|z)p(z|x). (4.7)

We will discuss what condition is required for the approximation in Eq. (4.7) in the
next subsection. Substituting Eq. (4.7) into Eq. (4.6), we obtain

w(x) =

∑
z p(d = T|z)p(z|x)∑
z p(d = S|z)p(z|x)

. (4.8)

By adopting the approximation in Eq. (4.7), we can calculate w(x) by estimating
p(d|z) and p(z|x). It means that we do not need the target data, because p(d|z) can
be estimated from the given information about the attributes, and p(z|x) that does not
depend on domains can be estimated from the source data. This is the key trick of our
method.

Since we assume that p(z|d) is given and p(d = S) = p(d = T), p(d|z) can be
calculated by using Bayes’ theorem as follows:

p(d = T|z) =
p(z|d = T)

p(z|d = S) + p(z|d = T)
, (4.9)

p(d = S|z) =
p(z|d = S)

p(z|d = S) + p(z|d = T)
. (4.10)

For the estimation of p(z|x), we adopt the k-nearest neighbor method which is the
simplest method for the posterior estimation: given x, we search k nearest samples
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Algorithm 1 Zero-shot domain adaptation based on attribute information

Require: Source data (x, y, z) ∼ p(x, y, z|d = S) are given
Require: Target attribute information p(z|d = T ) is given
Require: Equation (4.7) and p(d = S) = p(d = T ) hold

Calculate p(d|z) by Eq. (4.9) and (4.10)
Estimate p(z|x) of the source data (k-NN method is used in this work)
Estimate w(x) of the source data by Eq. (4.8) using p(d|z) and p(z|x)
Obtain θ∗ by minimizing the weighted source risk in Eq. (4.5)
return θ∗

from the source data and extract the corresponding attributes. Since we assumed that
the attributes are categorical, we calculate the proportion of each attribute class within
the extracted attributes and use it as an estimated p(z|x) as shown below:

p(z = i|x) = 1

k

∑
(x′,z′)∈Nk(x)

1(z′ = i), (4.11)

where Nk(x) is a set of k-nearest neighbor samples from x. If the attribute is contin-
uous, we may use kernel density estimation.

4.3.3 Requirements for the attribute information

The most important assumption in our method is Eq. (4.7). In this subsection, we
clarify requirements for this approximation. Since p(d|x) equals

∑
z p(d|x, z)p(z|x),

we need the following approximation to have Eq. (4.7):

p(d|x, z) ≈ p(d|z). (4.12)

By multiplying p(x|z) to both sides of Eq. (4.12), we can obtain

p(d, x|z) ≈ p(d|z)p(x|z). (4.13)

Therefore, this approximation assumes that x and d are conditionally independent
given z.

We show another aspect of this approximation. By using Bayes’ theorem, the
left-hand side of Eq. (4.12) can be transformed as follows:

p(d|x, z) =
p(x, z|d)p(d)

p(x, z)

=
p(x|z, d)p(z|d)p(d)

p(x|z)p(z)

=
p(x|z, d)
p(x|z)

p(d|z). (4.14)
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By substituting Eq. (4.14) into Eq. (4.12), we obtain

p(x|z, d) ≈ p(x|z). (4.15)

This equation indicates that, given a certain z, the probability distribution of x is com-
mon between domains. Since marginal probability density p(x|d) =

∑
z p(x|z, d)p(z|d)

is different between the source and target domains while p(x|z) is common, only the
attribute prior given a domain p(z|d) is different between domains. Therefore, the
approximation in Eq. (4.7) corresponds to the latent prior change assumption that is
adopted in some existing works [Storkey and Sugiyama, 2007, Hu et al., 2018b].

Let us explain this assumption by using vehicle recognition from surveillance
videos that is the example shown at the end of Section 1. Here, x, d, and z corre-
spond to a cropped video, camera ID, and shooting angle to the target object, respec-
tively. The assumption described in Eq. (4.15) means that the appearance of the target
object from a certain shooting angle does not depend on which camera captures the
object, which is reasonable if the environment of the captured area is sufficiently sim-
ilar among different cameras. The discrepancy between the source and target domains
stems only from the change of the frequency of the shooting angle.

4.3.4 Characteristics of the proposed method

We clarify some characteristics of our method. First, we take two special cases to
explain how our method works, and after that we show how our method is different
from the straightforward attribute-based instance weighting.

If the attribute prior is identical between the source and target domains, that means
p(z|d=S)= p(z|d=T), p(d|z) in Eqs. (4.9) and (4.10) are always 0.5 regardless of
the value of z. This results in w(x)=1, which indicates that the source data have been
already adapted to the target data and we do not need to conduct domain adaptation.
This is natural behavior, because we assumed that only the attribute prior changes
between domains as noted in the previous subsection.

If p(z|x) is the delta function δ(z = z∗) where z∗ is the attribute value that corre-
sponds to given sample x, w(x) in Eq. (4.8) can be simplified as follows:

w(x) =
p(d = T|z = z∗)

p(d = S|z = z∗)
=

p(z = z∗|d = T)

p(z = z∗|d = S)
. (4.16)

This means that the weight is determined based on only attribute information and not
on data. It corresponds to the straightforward approach for attribute-based instance
weighting. If we define the weight as

w(x, y, z) =
p(x, y, z|d = T)

p(x, y, z|d = S)
, (4.17)

and assume p(x, y|z, d = S) = p(x, y|z, d = T) that is somewhat a stronger assump-
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tion in Eq. (4.15), we can derive the above instance weight as follows:

w(x, y, z) =
p(x, y|z, d = T)p(z|d = T)

p(x, y|z, d = S)p(z|d = S)

=
p(z|d = T)

p(z|d = S)
. (4.18)

As shown above, our method includes the straightforward attribute-based method as
a special case. In other cases, that mean p(z|x) is not a delta function, our method
behaves differently compared with the straightforward method.
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Let us illustrate the behavior of our method using a simple example. Suppose
there are only two attribute classes z ∈ {0, 1} that have one-dimensional Gaussian
distributions with different means as shown in Fig. 4.3(a). In the source domain,
[p(z = 0|d = S), p(z = 1|d = S)] is set to [0.5, 0.5], while it is set to [1.0, 0.0] in the
target domain. In this case, the weight estimated in the straightforward method (Eq.
(4.18)) leads to a simple delta function, that is w(x, y, z) = 2 · δ(z = 0). In contrast,
the weight in our method (Eq. (4.8)) behaves differently according to the amount of
overlap between p(x|z = 0) and p(x|z = 1). Figure 4.3 shows the case in which the
overlap is quite small. The weight function w(x) becomes almost the same as a step
function over x as shown in Fig. 4.3(b). As a result, the weight over z becomes the
delta function that is the same as that in the straightforward method as shown in Fig.
4.3(c). In contrast, when the overlap is large, our method shows somewhat different
behavior as presented in Fig. 4.4. In this case, w(x) becomes a smoother function
compared with the previous case as shown in Fig. 4.4(b). It leads to non-zero weights
for the samples with z=1 as shown in Fig. 4.4(c), which means that we can transfer
these samples even though the samples with z=1 do not appear in the target domain.
This characteristic is not available in the straightforward method, because it focuses
only on the attribute to estimate the weight. On the other hand, our method utilizes the
information of p(z|x), which results in smoother weights that can transfer the source
data more efficiently.

4.3.5 Sensitivity to insufficient attribute information

So far, we assume that all attribute information is given. However, this assumption
would be unreasonable in real-world situations, and there might be some unknown
attributes that affect distributional discrepancy between domains. In this subsection,
we analyze how sensitive the proposed method is to such insufficient attribute infor-
mation.

When given attribute information is not sufficient, the approximation in Eq. (4.12)
does not hold, and p(d|z) can be different from p(d|z, x). Here, we assume that given
attribute information p(d|z) can be written as a combination of ground-truth infor-
mation p(d|z, x) and a certain unknown factor, which is formulated as the following
equations:

p(d = S|z = i) = (1− ϵ)p(d = S|z = i, x) + ϵδi(x), (4.19)

p(d = T|z = i) = (1− ϵ)p(d = T|z = i, x) + ϵ(1− δi(x)), (4.20)

where δi(x) represents the unknown factor that satisfies 0 ≤ δi(x) ≤ 1, and ϵ repre-
sents the scale of the unknown factor that satisfies 0 ≤ ϵ ≤ 0.5. Note that the scale of
the the unknown factor is upper-bounded by 0.5, which means that the ground-truth
information is more contained in given attribute information than the unknown factor.
Substituting Eq. (4.19) and Eq. (4.20) into Eq. (4.8), we can rewrite the instance
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weight computed in our method as follows:

w(x) =

∑
i ((1− ϵ)p(d = T|z = i, x) + ϵ(1− δi(x))) p(z = i|x)∑

i ((1− ϵ)p(d = S|z = i, x) + ϵδi(x)) p(z = i|x)

=
(1− ϵ)p(d = T|x) + ϵ(1−

∑
i δi(x)p(z = i|x))

(1− ϵ)p(d = S|x) + ϵ
∑

i δi(x)p(z = i|x)

=
p(d = T|x) + ϵ′(1− α(x))

p(d = S|x) + ϵ′α(x)
, (4.21)

where ϵ′ = ϵ/(1 − ϵ) and α(x) =
∑

i δi(x)p(z = i|x). From the definition of ϵ and
δi(x), the range of ϵ′ and α(x) can be specified as

0 ≤ ϵ′ ≤ 1, 0 ≤ α(x) ≤ 1. (4.22)

To evaluate how much the computed weight is biased, we evaluate the ratio between
this computed weight w(x) and the ground-truth weight w∗(x). Considering that the
ground-truth weight is formulated as shown in Eq. (4.6), we can obtain the ratio β(x)

as the following equation:

β(x) =
w(x)

w∗(x)

=
p(d = S|x) (p(d = T|x) + ϵ′(1− α(x)))

p(d = T|x) (p(d = S|x) + ϵ′α(x))
. (4.23)

If ϵ = 0, ϵ′ equals zero, and, consequently, β(x) is equal to one for any x, which
means that the instance weight computed in the proposed method matches the ground-
truth weight if all attribute information is given. Otherwise, β(x) can be smaller or
larger than one, and the instance weight is over- or under-estimated due to insufficient
attribute information. Here, we focus on the worst case, namely, the maximum and
minimum of β(x) over all possible variations of the unknown factor δi(x). Since
ϵ′ and α(x) are constrained to be in the range shown in Eq. (4.22), β(x) takes its
maximal value βmax(x) when α(x) = 0, while it takes its minimal value βmin(x)

when α(x) = 1. Specifically, βmax(x) and βmin(x) are obtained as follows:

βmax(x) =
p(d = T|x) + ϵ′

p(d = T|x)
, (4.24)

βmin(x) =
p(d = S|x)

p(d = S|x) + ϵ′
. (4.25)

Figure 4.5 shows how βmax(x) and βmin(x) change according to the ground-truth
weight and ϵ. When the ground-truth weight is small, βmax(x) can be quite large
depending on ϵ, but βmin(x) is relatively close to one. On the other hand, when the
ground-truth weight is large, βmin(x) can be large, but βmax(x) is relatively close to
one. Such behavior indicates that the estimated weight in the proposed method tends
to avoid an extremely large or small value, which should result in stable performance
even when insufficient attribute information is given.
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Figure 4.5: The upper-bound and lower-bound of β(x).

Table 4.1: The mixing ratios of GMM for toy datasets.

Dataset Centroid
-0.75π -0.5π 0.0 0.5π 0.75π

A d = S 0.1 0.1 0.2 0.4 0.2
d = T 0.2 0.4 0.2 0.1 0.1

B d = S 0.05 0.05 0.1 0.5 0.3
d = T 0.3 0.5 0.1 0.05 0.05

C d = S 0.05 0.05 0.1 0.1 0.7
d = T 0.7 0.1 0.1 0.05 0.05

4.4 Experiments

In this section, we show the experimental results with both toy datasets and bench-
mark datasets.

4.4.1 Toy datasets

We conducted experiments with a 2-dimensional toy dataset for binary classification,
In this dataset, the first feature x0 stemmed from a Gaussian mixture model (GMM)
that has five centroids (−0.75π, −0.5π, 0.0, 0.5π, 0.75π) with common standard
deviation σ = 0.2π, and the second feature x1 stemmed from the uniform distri-
bution from −2.0 to 2.0. For each sample, the index of the corresponding centroid
was treated as attribute z ∈ {0, 1, 2, 3, 4}. The mixing ratio of GMM was set differ-
ently for the source and target domains as shown in Table 4.1. Note that Eq. (4.15)
exactly holds in this dataset, since the Gaussian distribution for each centroid is com-
mon among domains. To change the difficulty of domain adaptation, we constructed
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Figure 4.6: Generation of toy datasets.

three datasets (Datasets A–C) by changing the discrepancy of the ratios between the
domains. The posterior p(y|x) is determined by

p(y|x) = 1

1 + exp (−5.0(x1 − sin x0))
. (4.26)

To make the dataset, first, we generated the sample (x, z) according to the data
distribution that is previously described, then, we determined its label by randomly
sampling according to the above posterior. Figure 4.6 shows a brief flow of how
to generate the toy datasets. We generated 600 samples as source and target data,
respectively. Note that we can obtain ground-truth w(x) by calculating Eq. (4.4) with
true probability density functions p(x|d).

First, we evaluated the accuracy of the weights estimated by our method by com-
paring them with the ground-truth weights. To quantitatively evaluate the accuracy,
we compared our method with unconstrained Least-Squares Importance Fitting (uL-
SIF) [Kanamori et al., 2009] that is one of the representative methods to estimate a
probability density ratio. Using the target data, we estimated the weight by uLSIF,
and compared its estimation error with that of our method. We measured the error by
the root mean squared error. The results are shown in Table 4.2. Although our method
does not use any target data, it shows better performance than uLSIF. This indicates
that attribute information can be more useful to estimate the probability density ra-
tio. Figure 4.7 shows the results for each dataset, in which the horizontal and vertical
axises represent the ground-truth weight and the estimated weight, respectively. We
can see that many samples are close to the diagonal line, which means that our method
successfully estimates the weights accurately.

We also evaluate the performance of our method as domain adaptation. We trained
a classifier with weighted source data and tested it with the target data. To train a
classifier, we used C-support vector machine (C-SVM) with the Gaussian kernel. To
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(c) Dataset C

Figure 4.7: Instance weights estimated by our method.

Table 4.2: The estimation error of weights.

Dataset
A B C

The proposed method 0.179 0.573 0.679
uLSIF 0.291 0.664 0.743

tune its hyper-parameters that are regularization coefficient C and kernel width σ,
we conducted importance-weighted cross validation, which requires only source data
for model selection. First, we split the source data into the training and validation
datasets. We trained the instance weight estimator and the classifier with the train-
ing dataset, and the classifier is tested with the validation dataset that is weighted by
the weight estimator. We compared three methods: training without weights, training
with estimated weights, and training with the ground-truth weights. Table 4.3 shows
the accuracy of the SVM trained by each method. Our method achieved higher accu-
racy than that without importance weights and almost reached the same performance

54



(a) Without instance weights (b) With estimated weights

Figure 4.8: Visualization of instance weights and the trained classifier (◦: positive-
class instances, •: negative-class instances).

Table 4.3: The accuracy of the trained SVM.

Dataset
A B C

w/o weights 91.3± 1.1% 90.4± 1.0 % 88.1± 1.3 %
w/ estimated weights 92.4± 0.4% 91.0± 0.5 % 90.2± 0.8 %

w/ ground-truth weights 92.4± 0.4% 90.9± 0.6 % 90.4± 0.7 %

as that with ground-truth weights, though our method does not utilize ground-truth
weights or any target data. Figure 4.8 visualizes the instance weights and the trained
classifier. The size of circles corresponds to the value of the instance weight, and
contour lines represent the output of the decision function of SVM. Note that the true
decision boundary is a sinusoidal curve as shown in Fig. 4.6. Since only few source
data are distributed at the left-hand side while many target data are at that side, large
weights are assigned to those source data in our method, which results in a more
accurate classifier especially at the left-hand side.

4.4.2 Digit image classification

For the first experiment, we used the MNIST dataset [LeCun et al., 1998] that contains
handwritten digit images. The task is to classify these images into ten classes that cor-
respond to digit numbers. We randomly chose 10,000 samples from the training data,
and used them as source data, while the test data that includes 10,000 samples were
used as target data. To make the source and target data have different data distribu-
tions, we clockwisely rotated each image with a randomly determined angle, where
we set different probability distributions of the rotation angle for source and target
data as shown in Table 4.4. We measured the performance of our method by the ac-
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Table 4.4: The probability distributions of the rotation angle used in the experiment
with the MNIST dataset.

Rotation angle
−1

3
π −1

6
π 0 +1

6
π +1

3
π

Source 0.05 0.05 0.1 0.5 0.3
Target 0.3 0.5 0.1 0.05 0.05

Table 4.5: The network architectures used in the experiments with the MNIST dataset.
MP2, BN, and FC denote 2 × 2 max-pooling, batch normalization, and a fully-
connected layer, respectively.

Layer type Size / number of filters
convolution + ReLU 5×5 / 20

MP2 + BN 2×2 / 20
convolution + ReLU 5×5 / 50

MP2 + BN 2×2 / 50
FC + ReLU 1 / 200

FC + softmax 1 / 10

curacy of the classifier trained with weighted source data similarly to the previous
experiments. Instead of SVM, we used a deep neural network in this experiment. Ta-
ble 4.5 shows its network architecture that is loosely based on LeNet [LeCun et al.,
1998] but is modified by adding batch normalization layers. We trained the network
by stochastic gradient descent with momentum, and the number of total update iter-
ations was 10,000. To calculate the weight in our method, we estimated p(z|x) by
the k-nearest neighbor method with the features at the last hidden layer of the net-
work. Since the calculation cost of the weight estimation is not small compared with
that of the training network, we calculated the weights after each 100 iterations, and
fixed them for the next 100 iterations. We used the weights to calculate the sampling
probability of each sample when making a mini-batch.

Table 4.6 shows the accuracy of the trained classifier on the MNIST dataset. With-
out instance weights, the accuracy decreased from 97.1% to 93.8% when shifting from
the source to target domains. On the other hand, our method suppressed this degra-
dation of the classification performance, and achieved 94.9% in the target domain.
Interestingly, the accuracy in the source domain remains almost unchanged while
adopting the instance weights.

4.4.3 Age estimation from facial image

For the second experiment, we used the Adience dataset [Eidinger et al., 2014] that
contains facial images with age and gender annotations. In this experiment, we con-
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Table 4.6: Accuracy of the trained DNN on the MNIST dataset.

Target data Source data
w/o weights 93.8% 97.1%
Our method 94.9% 97.0%

Figure 4.9: Adience dataset [Eidinger et al., 2014]. The images are from authors’
website.

ducted age estimation while considering gender as an attribute. Since eight age groups
are defined in this dataset, age estimation can be formulated as an eight-class classi-
fication problem. There are five sub-datasets in this dataset, and we used the fifth
sub-dataset as target data and the other sub-datasets as source data. While gender in
this dataset is almost balanced, we artificially made it imbalanced in the target data to
change the data distribution. We varied this imbalance, and evaluated our method for
each setting. The network architecture for this experiment is shown in Table 4.7. The
number of total update iterations was 5,000. The other setting is the same as that in
the previous experiment.

Table 4.8 shows the accuracy of the trained classifier on the Adience dataset.
When the ratio between male and female samples in the target data is set to [0.5, 0.5],
the accuracy of our method is almost the same as that of the other methods. This is
because the ratio in the source data is also balanced and the data distribution is almost
the same between the source and target data. In contrast, when the ratio became im-
balanced, our method achieved better performance. It indicates that the effectiveness
of our method gets more significant as the discrepancy between the source and target
data distributions becomes larger. The straightforward attribute-based weight did not
lead to better performance, because it could not effectively utilize female samples in
heavily imbalanced case. For example, when the ratio was set to [0.9, 0.1], the aver-
age weight of female examples was 9 times smaller than that of male examples in the
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Table 4.7: The network architectures used in the experiments with Adience and
VisDA2017 datasets. MP2, BN, and FC denote 2 × 2 max-pooling, batch normal-
ization, and a fully-connected layer, respectively.

Layer type Size / number of filters
convolution + ReLU 3×3 / 16

MP2 + BN 2×2 / 16
convolution + ReLU 3×3 / 24

MP2 + BN 2×2 / 24
convolution + ReLU 3×3 / 32

MP2 + BN 2×2 / 32
FC + ReLU 1 / 500

FC + softmax 1 / 2 or 12

Table 4.8: Accuracy of the trained DNN on Adience dataset.

[male, female] at target data
[0.5, 0.5] [0.7, 0.3] [0.9, 0.1]

w/o weights 39.8± 0.5% 40.0± 0.9% 39.7± 0.5%

The straightforward
attribute-based weight

39.3± 0.3% 39.7± 0.5% 39.9± 0.3%

Our method 39.9± 0.4% 40.8± 0.7% 41.4± 0.3%

straightforward method, while, in the proposed method, it became 2.2 times smaller,
which is substantially more smooth weight than the straightforward method.

4.4.4 Object recognition

For more large-scale experiment, we used the VisDA2017 classification dataset [Peng
et al., 2017]. This dataset contains object images with twelve categories, and the task
is to discriminate the object category from the given image. Since the azimuth of the
captured object is also provided in this dataset, we discretized the azimuth into five
classes and used it as an attribute. We constructed the source and target data as shown
in Table 4.9. Intuitively, the source domain is biased to “front-view” images, while
the target domain is biased to “rear-view” images. We varied these bias by changing
r in Table 4.9. The network architecture and the setting for training the network are
same as in the previous experiment.

Table 4.10 shows the experimental result with VisDA2017 dataset. When r is
small, the discrepancy between the source and target domain is not large, which results
in almost the same accuracy of all methods. As r increases, the advantage of our
method becomes large as same with the result of the previous experiment.
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Table 4.9: The number of data used in the experiment with the VisDA2017 dataset.
M was set to 24,000, and r was varied in the experiment to control the discrepancy
between domains.

Azimuth of the captured objects
10-61 78-129 146-197 214-265 282-333

Source M M/r M/r M/r2 M/r

Target M/r2 M/r M/r M M/r

Table 4.10: Accuracy of the trained DNN on VisDA2017 dataset. Standard errors are
omitted, because they are very small (≤ 0.1) in this experiment.

Dataset
r = 2 r = 3 r = 4

w/o weights 95.6% 93.7% 91.5%

The straightforward
attribute-based weight

95.6% 93.7% 92.1%

Our method 95.6% 94.0% 92.5%

4.5 Conclusion

In this chapter, we proposed a zero-shot domain adaptation method based on attribute
information. We showed how to estimate instance weights for source data by using
the attribute information, and also clarified requirements for the attribute informa-
tion to be useful, which is actually the same assumption adopted in some existing
works. In addition, we revealed that our method can provide more precise estimation
of sample-wise transferability than a straightforward attribute-based reweighting ap-
proach. Experimental results with both toy datasets and benchmark datasets showed
that our method can accurately estimate the instance weights and performed well as
domain adaptation. Future works include integration of our method with other recent
domain adaptation methods and extension to the case in which the attribute informa-
tion is partially available.
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Chapter 5

Source-free Domain Adaptation via
Distributional Alignment by Matching Batch
Normalization Statistics

In this chapter, we describe our third contribution to domain adaptation with scarce
data. Specifically, we propose a novel method for source-free domain adaptation. In
the source-free setting, we cannot access source data during adaptation, while un-
labeled target data and a model pretrained with source data are given. Due to lack
of source data, we cannot directly match the data distributions between domains un-
like typical domain adaptation algorithms. To cope with this problem, we propose
utilizing batch normalization statistics stored in the pretrained model to approximate
the distribution of unobserved source data. Specifically, we fix the classifier part of
the model during adaptation and only fine-tune the remaining feature encoder part
so that batch normalization statistics of the features extracted by the encoder match
those stored in the fixed classifier. Additionally, we also maximize the mutual infor-
mation between the features and the classifier’s outputs to further boost the classifi-
cation performance. Experimental results with several benchmark datasets show that
our method achieves competitive performance with state-of-the-art domain adaptation
methods even though it does not require access to source data.

5.1 Introduction

In typical statistical machine learning algorithms, test data are assumed to stem from
the same distribution as training data [Hastie et al., 2009]. However, this assumption
is often violated in practical situations, and the trained model results in unexpectedly
poor performance [Quionero-Candela et al., 2009]. This situation is called domain
shift, and many researchers have intensely worked on domain adaptation [Csurka,
2017, Wilson and Cook, 2020] to overcome it. A common approach for domain adap-
tation is to jointly minimize a distributional discrepancy between domains in a feature
space as well as the prediction error of the model [Wilson and Cook, 2020], as shown
in Fig. 5.1(a). Deep neural networks (DNNs) are particularly popular for this joint
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training, and recent methods using DNNs have demonstrated excellent performance
under domain shift [Wilson and Cook, 2020].

Many domain adaptation algorithms assume that they can access labeled source
data as well as target data during adaptation. This assumption is essentially required
to evaluate the distributional discrepancy between domains as well as the accuracy
of the model’s prediction. However, it can be unreasonable in some cases, for ex-
ample, due to data privacy issues or too large-scale source datasets to be handled at
the environment where the adaptation is conducted. To tackle this problem, a few
recent studies [Kundu et al., 2020, Li et al., 2020, Liang et al., 2020a] have proposed
source-free domain adaptation methods in which they do not need to access the source
data.

In source-free domain adaptation, the model trained with source data is given
instead of source data themselves, and it is fine-tuned through adaptation with unla-
beled target data so that the fine-tuned model works well in the target domain. Since
it seems quite hard to evaluate the distributional discrepancy between unobservable
source data and given target data, previous studies mainly focused on how to mini-
mize the prediction error of the model with unlabeled target data, for example, by us-
ing pseudo-labeling [Liang et al., 2020a] or a conditional generative model [Li et al.,
2020]. However, due to lack of the distributional alignment, the performance of those
methods is not guaranteed by theories exploited in typical domain adaptation studies
[Ben-David et al., 2010].

In this chapter, we propose a novel method for source-free domain adaptation.
Figure 5.1(b) shows our setup in comparison with that of typical domain adaptation
methods shown in Fig. 5.1(a). In our method, we explicitly minimize the distribu-
tional discrepancy between domains by utilizing batch normalization (BN) statistics
stored in the pretrained model. Since we fix the pretrained classifier during adaptation,
the BN statistics stored in the classifier can be regarded as representing the distribution
of source features extracted by the pretrained encoder. Based on this idea, to mini-
mize the discrepancy, we train the target-specific encoder so that the BN statistics of
the target features extracted by the encoder match with those stored in the classifier.
We also adopt information maximization as in Liang et al. [2020a] to further boost
the classification performance of the classifier in the target domain. Our method is ap-
parently simple but effective; indeed, we will validate its advantage through extensive
experiments on several benchmark datasets.

5.2 Related work

In this section, we introduce existing works on domain adaptation that are related to
ours and also present a formulation of batch normalization.
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(a) General setup commonly adopted in recent typical
domain adaptation methods. This visualization is in-
spired by [Wilson and Cook, 2020].
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(b) Our setup for source-free domain adaptation.

Figure 5.1: Comparison between typical domain adaptation methods and our method.
A rectangle with solid lines represents a trainable component, while that with dotted
lines represent a fixed component during adaptation.

5.2.1 Domain adaptation

Given source and target data, the goal of domain adaptation is to obtain a good pre-
diction model that performs well in the target domain [Csurka, 2017, Wilson and
Cook, 2020]. Importantly, the data distributions are significantly different between
the domains, which means that we cannot simply train the model with source data
to maximize the performance of the model for target data. Therefore, in addition to
minimizing the prediction error using labeled source data, many domain adaptation
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algorithms try to align the data distributions between domains by adversarial training
[Ganin et al., 2016, Tzeng et al., 2017, Deng et al., 2019, Xu et al., 2019] or explicitly
minimizing a distributional-discrepancy measure [Long et al., 2015, Bousmalis et al.,
2016, Long et al., 2017]. This approach has empirically shown excellent performance
and is also validated in theory [Ben-David et al., 2010]. However, since this dis-
tribution alignment requires access to source data, these methods cannot be directly
applied to the source-free domain adaptation setting.

In source-free domain adaptation, we can only access target data but not source
data, and the model pretrained with the source data is given instead of the source data.
This challenging problem has been tackled in recent studies. Li et al. [2020] proposed
joint training of the target model and the conditional GAN (Generative Adversarial
Network) [Mirza and Osindero, 2014] that is to generate annotated target data. Liang
et al. [2020a] explicitly divided the pretrained model into two modules, called a fea-
ture encoder and a classifier, and trained the target-specific feature encoder while
fixing the classifier. To make the classifier work well with the target features, this
training jointly conducts both information maximization and self-supervised pseudo-
labeling with the fixed classifier. Kundu et al. [2020] adopted a similar architecture
but it has three modules: a backbone model, a feature extractor, and a classifier. In the
adaptation phase, only the feature extractor is tuned for the target domain by minimiz-
ing the entropy of the classifier’s output. Since the methods shown above do not try to
align data distributions between domains, they cannot essentially avoid confirmation
bias of the model and also cannot benefit from well-exploited theories in the studies
on typical domain adaptation problems [Ben-David et al., 2010].

5.2.2 Batch normalization

Batch normalization (BN) [Ioffe and Szegedy, 2015] has been widely used in modern
architectures of deep neural networks to make their training faster as well as being
stable. It normalizes each input feature within a mini-batch in a channel-wise manner
so that the output has zero-mean and unit-variance. Let B and {zi}Bi=1 denote the mini-
batch size and the input features to the batch normalization, respectively. Here, we
assume that the input features consist of C channels as zi = [z

(1)
i , ..., z

(C)
i ] and each

channel contains nc features. BN first computes the means {µc}Cc=1 and variances
{σ2

c}Cc=1 of the features for each channel within the mini-batch:

µc =
1

ncB

B∑
i

nc∑
j

z
(c)
i [j] (5.1)

σ2
c =

1

ncB

B∑
i

nc∑
j

(z
(c)
i [j]− µc)

2, (5.2)
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where z(c)i [j] is the j-th feature in z
(c)
i . Then, it normalizes the input features by using

the computed BN statistics:

z̃
(c)
i =

z
(c)
i − µc√
σ2
c + ϵ

, (5.3)

where ϵ is a small positive constant for numerical stability. In the inference phase,
BN cannot always compute those statistics, because the input data do not necessarily
compose a mini-batch. Instead, BN stores the exponentially weighted averages of the
BN statistics in the training phase and uses them in the inference phase to compute z̃

in Eq. (5.3). To this end, at each iteration during training, the stored BN statistics are
updated with the BN statistics of the current mini-batch as follows:

µ̂(τ+1)
c = γµ̂(τ)

c + (1− γ)µc, (5.4)

σ̂(τ+1)
c = γσ̂(τ)

c + (1− γ)σc, (5.5)

where µ̂
(τ)
c and σ̂

(τ)
c are the stored BN statistics at the τ -th iteration, and γ is a hyper-

parameter that satisfies 0 < γ < 1.
Since BN renormalizes features to have zero-mean and unit-variance, several meth-

ods [Li et al., 2018b, Chang et al., 2019, Wang et al., 2019] adopted domain-specific
BN to explicitly align both the distribution of source features and that of target fea-
tures into a common distribution. Since the domain-specific BN methods are jointly
trained during adaptation, we cannot use these methods in the source-free setting.

5.3 Proposed method

In this section, we propose a novel method for source-free domain adaptation.

5.3.1 Overview

Figure 5.2 shows an overview of our method. We assume that the model pretrained
with source data is given, and it conducts BN at least once somewhere inside the
model. Before conducting domain adaptation, we divide the model in two sub-
models: a feature encoder and a classifier, so that BN comes at the very beginning
of the classifier. Then, for domain adaptation, we fine-tune the encoder with unla-
beled target data with the classifier fixed. After adaptation, we use the fine-tuned
encoder and the fixed classifier to predict the class of test data in the target domain.

To make the fixed classifier work well in the target domain after domain adapta-
tion, we aim to obtain a fine-tuned encoder that satisfies the following two properties:

• The distribution of target features extracted by the fine-tuned encoder is well
aligned to that of source features extracted by the pretrained encoder.

• The features extracted by the fine-tuned encoder are sufficiently discriminative
for the fixed classifier to accurately predict the class of input target data.
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Figure 5.2: An overview of the proposed method.

To this end, we jointly minimize both the BN-statistics matching loss and informa-
tion maximization loss to fine-tune the encoder. In the former loss, we approximate
the distribution of unobservable source features by using the BN statistics stored in
the first BN layer of the classifier, and the loss explicitly evaluates the discrepancy
between source and target feature distributions based on those statistics. Therefore,
minimizing this loss leads to satisfying the first property shown above. On the other
hand, the latter loss is to make the predictions by the fixed classifier certain for every
target sample as well as diverse within all target data, and minimizing this loss leads
to fulfilling the second property. Below, we describe the details of these losses.

5.3.2 Distribution alignment by matching batch normalization statistics

Since the whole model is pretrained with source data and we fix the classifier while
finetuning the encoder, the BN statistics stored in the first BN in the classifier can be
seen as the statistics of the source features extracted by the pretrained encoder. We
approximate the source-feature distribution by using these statistics. Specifically, we
simply use a Gaussian distribution for each channel denoted by N (µ̂c, σ̂

2
c ) where µ̂c

and σ̂2
c are the mean and variance of the Gaussian distribution which are the stored

BN statistics corresponding to the c-th channel.
To match the feature distributions between domains, we define the BN-statistics

matching loss, which evaluates the averaged Kullback-Leibler (KL) divergence from
the target-feature distribution to the approximated source-feature distribution:

LBNM({xi}Bi=1, θ) =
1

C

C∑
c=1

KL
(
N (µ̂c, σ̂

2
c )||N (µc, σ

2
c )
)

=
1

2C

C∑
c=1

(
log

σ2
c

σ̂2
c

+
σ̂2
c + (µ̂c − µc)

2

σ2
c

− 1

)
, (5.6)
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where {xi}Bi=1 is a mini-batch from the target data, θ is a set of trainable parameters of
the encoder, and µc and σc are the BN statistics of the c-th channel computed from the
target mini-batch. Note that, since µc and σc are calculated from the features extracted
by the encoder, they depend on θ. Here, we also approximate the target-feature distri-
bution with another Gaussian distribution so that the KL divergence can be efficiently
computed in a parametric manner. By minimizing this loss, we can explicitly reduce
the discrepancy between the distribution of unobservable source features and that of
target features.

In Eq. (5.6), we chose the KL divergence to measure the distributional discrepancy
between domains. There are two reasons for this choice. First, the KL divergence
between two Gaussian distributions is easy to compute with the BN statistics as shown
in Eq. (5.6). Moreover, since these statistics are naturally computed in the BN layer,
calculating this divergence only requires tiny calculation costs. Secondly, it can be
theoretically justified from the perspective of risk minimization in the target domain.
When we consider a binary classification task, the expected risk of any hypothesis
h in the target domain can be upper-bounded under some mild assumptions as the
following inequality [Ben-David et al., 2010]:

RT(h) ≤ RS(h) + d1(pS, pT) + β, (5.7)

where RS(h) and RT(h) denote the expected risk of h under the source-data distri-
bution pS and target-data distribution pT, respectively, d1(p, q) represents the total
variation distance between p and q, and β is a constant value that is expected to be
sufficiently small. This inequality roughly gives a theoretical justification to recent
domain adaptation algorithms, that is, joint minimization of both the distributional
discrepancy between domains (corresponding to the second term of the bound in
Eq. (5.7)) and the prediction error of the model (corresponding to the first term of
the bound in Eq. (5.7)). Here, the total variation distance can be related to the KL
divergence by Pinsker’s inequality [Csiszar and Körner, 2011]:

d1(p, q) ≤
√

1

2
KL(p||q). (5.8)

Consequently, we can guarantee that minimizing the KL divergence between domains
minimizes the bound of the target risk.

5.3.3 Mutual information maximization

Only aligning the marginal feature-distributions between domains does not guarantee
that the fixed classifier works well in the target domain, because the features extracted
by the encoder are not necessarily discriminative. If the features are sufficiently dis-
criminative for the classifier, we can expect that the output of the classifier is almost
always a one-hot vector but is diverse within the target data. Therefore, following the
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approach presented in Liang et al. [2020a], we also adopt the information maximiza-
tion loss to make the classifier work accurately.

LIM({xi}Bi=1, θ) = −H

(
1

B

B∑
i

fθ(xi)

)
+

1

B

B∑
i

H (fθ(xi)) , (5.9)

where H(p(y)) = −
∑

y′ p(y
′) log p(y′) is the entropy function, and fθ(x) denotes

the output of the classifier. The first term in the right-hand side of Eq. (5.9) is the
negative entropy of the averaged output of the classifier, and minimizing it leads to
large diversity of the output within the mini-batch. The second term is the averaged
entropy of the classifier’s output, and minimizing it makes the outputs close to one-
hot vectors. Therefore, the features extracted by the target encoder are induced to be
discriminative by minimizing the information maximization loss.

5.3.4 Optimization

Finally, our source-free domain adaptation method is formulated as joint minimization
of both the BN-statistics matching loss in Eq. (5.6) and the information maximization
loss in Eq. (5.9):

min
θ

E{xi}Bi=1∼Dt

[
LIM({xi}Bi=1, θ) + λLBNM({xi}Bi=1, θ)

]
, (5.10)

where Dt is the target dataset from which the mini-batch is sampled, and a hyper-
parameter λ controls the balance between the two terms. Note that this optimization
can be conducted without the source data, which means that we do not need to access
to the source data during adaptation.

5.4 Experiments

We conducted experiments with several datasets that are commonly used in existing
works on domain adaptation. Specifically, we used digit recognition datasets (MNIST
[LeCun et al., 1998], USPS [LeCun et al., 1990], and SVHN [Netzer et al., 2011]) and
an object recognition dataset (Office-31 dataset [Saenko et al., 2010]). In the experi-
ment, we first pretrained the model with the source training data. Following the setup
in Liang et al. [2020a], we used standard cross-entropy loss with label smoothing for
this pretraining. Then, we apply our source-free domain adaptation method to fine-
tune the pretrained model with the target training data. We used Adam optimizer for
both pretraining and adaptation. The number of iterations in the optimization was set
to 30,000, and the batch size was set to 64. The hyper-parameter λ in Eq. (5.10) is
set to 10 in all experiments except for those in section 5.4.3. The performance of the
domain adaptation is evaluated by test accuracy of the fine-tuned model on the target
test data. We report the averaged accuracy as well as the standard deviation over five
runs with random initialization of the model at the pretraining phase.
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We compared the performance of our method with those of the state-of-the-art
methods for source-free domain adaptation [Li et al., 2020, Liang et al., 2020a], which
are most related to our work. We did not include the work by Kundu et al. [2020] in
this comparison, because it is designed for more difficult setting, called universal do-
main adaptation. For reference, we also show the performance of the recent methods
for typical domain adaptation [Tzeng et al., 2017, Deng et al., 2019, Xu et al., 2019],
though they require access to the source data during adaptation.

5.4.1 Object recognition

The Office-31 dataset comprises three domains: Amazon (A), DSLR (D), and We-
bcam (W). We examined all possible combinations for the adaptation, which results
in six scenarios. Following the setup of Ganin et al. [2016], Liang et al. [2020a],
we used ResNet-50 pretrained with the ImageNet classification dataset as a backbone
model. We removed the original FC layer from the pretrained ResNet-50 and added
a bottleneck FC layer (256 units) and a classification FC layer (31 units). A BN layer
is put before and after the bottleneck layer, and we used the last one to calculate our
BN-statistics matching loss. Note that the backbone part is fixed in our experiments.

Table 5.1 shows the test accuracy of the adapted models at the target data. The
results shown above the double line are those of the source-free domain adaptation
methods, while the remaining ones are those of the other typical domain adaptation
methods. Our method achieved the best accuracy at three out of six scenarios, and,
surprisingly, its performance reached or exceeded the performance of the state-of-
the-art typical domain adaptation methods in those cases. Moreover, our method also
shows competitive performance in the other scenarios except for A → D. Since SHOT
[Liang et al., 2020a] also adopts the information maximization loss, these results in-
dicate that our BN-statistics matching loss substantially improves the performance of
the adaptation by successfully reducing the distributional discrepancy between do-
mains. The model adaptation [Li et al., 2020] also works well through the all sce-
narios. However, considering that it requires training of a conditional GAN while
adaptation, our method is quite appealing due to simplicity of its training procedure
as well as its high performance.
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Table 5.3: The network architectures used in the experiments with USPS ↔ MNIST.
MP2, BN, and FC denote 2 × 2 max-pooling, batch normalization, and a fully-
connected layer, respectively.

Layer type Size / number of filters
convolution 5×5 / 20

MP2 + BN + ReLU 2×2 / 20
convolution + dropout (ratio = 0.5) 5×5 / 50

MP2 + BN + ReLU 2×2 / 50
FC + ReLU 1 / 256

FC + softmax 1 / 10

5.4.2 Digit image classification

We examined USPS ↔ MNIST and SVHN → MNIST scenarios. Following the pre-
vious studies [Long et al., 2018, Liang et al., 2020a], we used the classical LeNet-5
network for the former scenario as shown in Table 5.3, while a variant of LeNet, called
DTN, is used for the latter one as shown in Table 5.4. For both models, we used the
last BN layer in the model to calculate the BN statistics matching loss in our method.

Table 5.2 shows the experimental results with the digit recognition datasets. Al-
though our method did not achieve the best performance among the source-free meth-
ods, it stably achieved the second highest accuracy in all scenarios. Similarly in the
results with Office-31 dataset, our method exceeds the performance of the typical do-
main adaptation methods in two scenarios, namely USPS→MNIST and SVHN→MNIST.

5.4.3 Performance sensitivity to the hyper-parameter and dataset size

We investigated the performance sensitivity of our method to the hyper-parameter set-
ting and that to the size of the target dataset. In this experiment, we used SVHN→MNIST
scenario, and the experimental settings are same with those in the previous experiment
unless otherwise noted.

Our method introduces single hyper-parameter, which is λ in Eq. (5.10). We first
investigated the performance sensitivity to the value of λ. Since we can only access
the unlabeled target data during adaptation, it is essentially hard to appropriately tune
the hyper parameter. Therefore, high stability of the performance under a suboptimal
setting of the hyper-parameter is required in the source-free domain adaptation. In
the experiment, we varied the value of λ from 0.01 to 100 and used it in our method
to conduct the adaptation with the digit recognition datasets. Figure 5.3 shows how
the test accuracy of the adapted model changes according to the value of λ. In all
adaptation scenarios, the performance of our method is quite stable against the change
of the value of λ. It keeps almost same within the wide range of the value of λ,
specifically 0.2 ≤ λ ≤ 50.
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Table 5.4: The network architectures used in the experiments with SVHN → MNIST.
BN and FC denote batch normalization and a fully-connected layer, respectively.

Layer type Size / number of filters
convolution 5×5 / 64 (stride 2 and padding 2)

BN + dropout (ratio = 0.1) + ReLU -
convolution 5×5 / 128 (stride 2 and padding 2)

BN + dropout (ratio = 0.3) + ReLU -
convolution 5×5 / 256 (stride 2 and padding 2)

BN + dropout (ratio = 0.5) + ReLU -
FC + ReLU 1 / 256

FC + softmax 1 / 10
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Figure 5.3: Performance sensitivity to the hyper-parameter.

Since our method relies on BN statistics, we also investigated the sensitivity of the
performance to the size of a mini-batch. In the previous experiment, we set B = 64,
which is the same setting as prior works [Li et al., 2020, Liang et al., 2020a], for
fair comparison. In this experiment, we varied the mini-batch size from 64 to 320.
Table 5.5 shows the test accuracy obtained by our method for each mini-batch size.
The performance of our method gets better as the mini-batch size increases. This
is because BN statistics with a larger mini-batch represent the feature distribution
over a whole dataset more accurately, which results in more effective distributional
alignment between domains by matching BN statistics. Therefore, a larger mini-batch
is preferred in our method.

Lastly, we investigated the performance of our method in case of small-scale tar-
get data. This investigation is crucial, because, considering the motivation of domain
adaptation, we cannot always expect sufficiently large amount of the target data. To
make the small-scale target data, we randomly selected a subset of the original target
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Table 5.5: Performance sensitivity to the mini-batch size.

Batch size 64 128 192 256 320
Test accuracy 99.05% 99.18% 99.26% 99.31% 99.31%
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Figure 5.4: Performance sensitivity to the dataset size.

training data while keeping the class prior same with that in the original dataset. Fig-
ure 5.4 shows how the test accuracy after the adaptation changes according to the size
of the target dataset. As decreasing the number of the target data, the performance of
our method becomes deteriorated to some extent. However, even when there are only
600 samples in the target dataset, our method still achieved 98.0%, which is compara-
ble performance with those of the typical domain adaptation methods using full target
dataset as well as source dataset.

Figure 5.5 shows how the training loss and test accuracy by the model change
during adaptation. The accuracy is stably and monotonically improved even when the
number of the target data is small. It means that our method can effectively avoid
overfitting to the small-scale target dataset.

5.5 Conclusion

We proposed a novel domain adaptation method for source-free setting. To match the
distributions between unobservable source data and given target data, we utilize the
BN statistics stored in the pretrained model to explicitly estimate and minimize the
distributional discrepancy between domains. This approach is quite efficient in terms
of computational cost and is also theoretically validated. Experimental results with
several benchmark datasets have shown that our method performs well even though
it does not require the access to the source data. Moreover, its performance was em-
pirically quite stable against suboptimal hyper-parameter setting or limited size of
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Figure 5.5: Training loss and test accuracy curves during adaptation in our method.

the target dataset. In concolusion, we argue that our method is quite promising to
tackle many real-world problems that are hard to solve with existing domain adapta-
tion methods.
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Chapter 6

Conclusion and Future Works

In this chapter, we conclude our contributions in this dissertation and discuss future
directions to make domain adaptation technique more useful for real-world applica-
tions.

6.1 Conclusion

Machine learning has become an indispensable technology to provide intelligent prod-
ucts, systems, and services that can enrich people’s lives. This huge success cannot
be achieved without the availability of large-scale training datasets, and the standard-
ization of such datasets has substantially accelerated the research and development
of machine learning technology. However, in many practical situations, we cannot
always expect a large-scale training dataset, which substantially limits the applica-
bility of machine learning technology to diverse real-world problems. To tackle this
issue, this dissertation contributed to developing domain adaptation algorithms that
can effectively work with scarce data.

We presented three contributions in this dissertation as summarized below.

• Partially Zero-shot Domain Adaptation from Incomplete Target Data with
Missing Classes
In Chapter 3, we introduced a new problem setting, called partially zero-shot
domain adaptation. In this setting, a certain subset of classes is missing in
target data, but all classes are to be discriminated after adaptation. Our method
adopts a new instance-weighting strategy to take unobservable missing-class
target data into account during minimization of the distributional discrepancy
between domains. The experimental results with several benchmark datasets
showed that our method performs better than existing methods.

• Zero-shot Domain Adaptation based on Attribute Information
In Chapter 4, we tackled zero-shot domain adaptation in which no target data
are available for adaptation. We first clarified a possible scenario where we
can assume availability of some knowledge instead of target data, which en-
ables us to effectively conduct domain adaptation. In this scenario, a domain
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shift is caused by a prior change of a specific factor, called an attribute, and
we are given the knowledge on how the prior changes between the source and
target domains. We reformulated instance-weighting based domain adaptation
to utilize the attribute prior instead of target data. Our theoretical analysis and
empirical evaluations showed that the proposed method outperforms baseline
methods and achieves effective adaptation, though it does not use any target
data.

• Source-free Domain Adaptation via Distributional Alignment by Matching
Batch Normalization Statistics
In Chapter 5, we tackled source-free domain adaptation in which no source
data are available during adaptation. Here, we assumed that a model pretrained
with source data is given and also assumed that batch normalization is con-
ducted at least once in the pretrained model. We utilized batch normalization
statistics stored in the pretrained model to approximate the distribution of un-
observed source data. This approximation makes it possible to explicitly eval-
uate the distributional discrepancy between domains without access to source
data, and our method conducts domain adaptation by minimizing this discrep-
ancy. Experimental results with several benchmark datasets showed that our
method achieves competitive performance with state-of-the-art domain adapta-
tion methods, though it does not require access to source data during adaptation.

Our proposed algorithms are designed with a common perspective of matching
data distributions between domains, though it was substantially challenging due to
data scarcity that we focused on throughout this dissertation. The experimental results
with several benchmark datasets have demonstrated their advantages. Therefore, we
conclude that we have succeeded in making it possible to apply domain adaptation to
more diverse situations that is conceivable in real-world problems.

6.2 Future work towards more practical domain adaptation

In this section, we describe several subjects that are worth investigating in our future
work towards more practical domain adaptation.

6.2.1 Domain adaptation with biased target data

In Chapter 3, we focused on the situation in which several classes do not appear in
given target data but need to be discriminated in the inference phase. From another
perspective, in this situation, the given target data do not exactly follow the target
distribution where a model should be generalized. Here, we can consider more general
situation — there is a distributional discrepancy between given target data and unseen
“ground-truth” target data. Since retrieval of target data is often limited in practice,
such a situation would occur in real-world applications [Peng et al., 2017]. We expect

75



that the idea of our zero-shot domain adaptation method presented in Chapter 4 can
be combined with standard domain adaptation to tackle this problem by reducing the
distributional discrepancy between seen and unseen target data.

6.2.2 Cross-task domain adaptation

In this dissertation, we assumed that both source and target data are obtained to tackle
a common classification task. Specifically, both source and target distributions have
a common support in the label space, which is necessary to guarantee that a model
trained with adapted source data works well in the target domain [Ben-David et al.,
2010]. However, this assumption is violated, if the source dataset is constructed for a
different task from the target task. This challenging situation has been tackled in very
recent studies [You et al., 2019, Kundu et al., 2020], but a simple yet strong solution
is still to fine-tune a model with labeled target data after pretraining with source data
[Zamir et al., 2018]. Since the source distribution would not be essentially matched
to the target distribution, our methods cannot be simply applied in this situation. We
expect that feature disentanglement techniques [Locatello et al., 2019] would enable
us to extract task-invariant features to be matched between domains and would make
it possible to utilize our algorithms based on these features.

6.2.3 Pretraining for adaptation with scarce data

In Chapter 5, we tackled how to fine-tune a pretrained model with unlabeled target
data. There, we did not require any specific type of training for pretraining, which
made our method widely applicable. On the other hand, if we aim to obtain a pre-
trained model that can be effectively adapted to any target domain, it may be possible
to design a specific pretraining method for this purpose. A similar problem has been
tackled in domain generalization [Li et al., 2018a], and it mainly focuses on designing
how to train a model to make it work in an unseen target domain. Considering that
batch normalization can be utilized for source-free domain adaptation as shown in
Chapter 5, we can also design a new model architecture for this purpose, for example,
by using neural architecture search techniques [Elsken et al., 2019].

6.2.4 Explainable domain adaptation

When a given dataset is scarce, it is essentially difficult to precisely validate the per-
formance of the trained model, though it is quite important in practice to confirm
whether the training goes well or not. In this dissertation, we simply conducted cross-
validation or demonstrated high stability of performance against suboptimal hyper-
parameter settings to empirically show the practicality of our methods. On the other
hand, recent studies on explainable artificial intelligence (XAI) [Arrieta et al., 2020]
proposed another approach to confirm the validity of machine learning process, in
which they tried to provide intuitive information that explains how the model predicts
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the output. In Chapters 3 and 4, we adopted instance weights for adaptation, which
can be understandable as sample-wise importance in the adaptation process. From
this perspective, it might be possible to extend our method by adopting feature-wise
importance that can provide finer information to users on how the data are adapted,
and user feedbacks can be reflected to the adaptation process by editing such impor-
tance.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Fei-Fei Li, Rob Fergus, and Pietro Perona. One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611,
2006.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generaliza-
tion with adversarial feature learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5400–5409, 2018a.

Jingjing Li, Erpeng Chen, Zhengming Ding, Lei Zhu, Ke Lu, and Zi Huang. Cycle-
consistent conditional adversarial transfer networks. In Proceedings of the 27th
ACM International Conference on Multimedia, pages 747–755, 2019.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adapta-
tion: Unsupervised domain adaptation without source data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9641–
9650, 2020.

Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch
normalization for practical domain adaptation. Pattern Recognition, 80:109–117,
2018b.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In International
Conference on Machine Learning, 2020a.

Jian Liang, Yunbo Wang, Dapeng Hu, Ran He, and Jiashi Feng. A balanced and
uncertainty-aware approach for partial domain adaptation. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020b.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly,
Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions in
the unsupervised learning of disentangled representations. In international confer-
ence on machine learning, pages 4114–4124. PMLR, 2019.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable
features with deep adaptation networks. In International conference on machine
learning, pages 97–105. PMLR, 2015.

83



Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep transfer
learning with joint adaptation networks. In International Conference on Machine
Learning, pages 2208–2217, 2017.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional
adversarial domain adaptation. In Advances in Neural Information Processing Sys-
tems, pages 1640–1650, 2018.

Mishaim Malik, Muhammad Kamran Malik, Khawar Mehmood, and Imran
Makhdoom. Automatic speech recognition: a survey. Multimedia Tools and Appli-
cations, pages 1–47, 2020.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist net-
works: The sequential learning problem. In Psychology of learning and motivation,
volume 24, pages 109–165. Elsevier, 1989.

George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie
Mellon University, School of Computer Science, Machine Learning…, 2006.

Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto. Few-shot
adversarial domain adaptation. In Advances in Neural Information Processing Sys-
tems, pages 6670–6680, 2017.

Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam
Kim. Image to image translation for domain adaptation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4500–4509,
2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22:1345–1359, 2010.

Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In Proceedings
of the IEEE International Conference on Computer Vision, pages 754–763, 2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54–71, 2019.

84



Kuan-Chuan Peng, Ziyan Wu, and Jan Ernst. Zero-shot deep domain adaptation. In
European Conference on Computer Vision, pages 793–810, 2018.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate
Saenko. Visda: The visual domain adaptation challenge, 2017.

Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D
Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

Y. Roh, G. Heo, and S. E. Whang. A survey on data collection for machine learning:
A big data - ai integration perspective. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2019. doi: 10.1109/TKDE.2019.2946162.

Bernardino Romera-Paredes and Philip H. S. Torr. An embarrassingly simple ap-
proach to zero-shot learning. In International Conference on Machine Learning,
volume 37, pages 2152–2161, 2015.

Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights for
deep domain adaptation. IEEE transactions on pattern analysis and machine intel-
ligence, 41(4):801–814, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category
models to new domains. In European Conference on Computer Vision, pages 213–
226, 2010.

Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-training for
unsupervised domain adaptation. In International Conference on Machine Learn-
ing, pages 2988–2997, 2017.

Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set
domain adaptation by backpropagation. In European Conference on Computer
Vision, pages 153–168, 2018.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of Statistical Planning and Infer-
ence, 90(2):227–244, 2000.

Rui Shu, Hung Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsu-
pervised domain adaptation. In International Conference on Learning Representa-
tions, 2018.

85



Amos J Storkey and Masashi Sugiyama. Mixture regression for covariate shift. In
Advances in Neural Information Processing Systems, pages 1337–1344, 2007.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Mo-
toaki Kawanabe. Direct importance estimation with model selection and its appli-
cation to covariate shift adaptation. In Advances in Neural Information Processing
Systems, pages 1433–1440, 2008.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation
in machine learning. Cambridge University Press, 2012.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised
domain adaptation. In Domain Adaptation in Computer Vision Applications, pages
153–171. Springer, 2017.

Takeshi Teshima, Issei Sato, and Masashi Sugiyama. Few-shot domain adaptation
by causal mechanism transfer. In International Conference on Machine Learning,
2020.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrim-
inative domain adaptation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2962–2971, 2017.

Roberto Vezzani and Rita Cucchiara. Video surveillance online repository (visor): an
integrated framework. Multimedia Tools and Applications, 50(2):359–380, 2010.

Paul Voigt and Axel von dem Bussche. The EU General Data Protection Regula-
tion (GDPR): A Practical Guide. Springer Publishing Company, Incorporated, 1st
edition, 2017. ISBN 3319579584.

Jinghua Wang and Jianmin Jiang. Conditional coupled generative adversarial net-
works for zero-shot domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3375–3384, 2019.

Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Trans-
ferable normalization: Towards improving transferability of deep neural networks.
In Advances in Neural Information Processing Systems, pages 1953–1963, 2019.

Junfeng Wen, Russell Greiner, and Dale Schuurmans. Correcting covariate shift with
the frank-wolfe algorithm. In Twenty-fourth International Joint Conference on Ar-
tificial Intelligence, 2015.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adapta-
tion. ACM Transactions on Intelligent Systems and Technology (TIST), 11(5):1–46,
2020.

86



Rui Xia, Zhenchun Pan, and Feng Xu. Instance weighting for domain adaptation
via trading off sample selection bias and variance. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 4489–4495. AAAI
Press, 2018.

Xiang Xu, Xiong Zhou, Ragav Venkatesan, Gurumurthy Swaminathan, and Orchid
Majumder. d-sne: Domain adaptation using stochastic neighborhood embedding.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2497–2506, 2019.

Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng
Zuo. Mind the class weight bias: Weighted maximum mean discrepancy for unsu-
pervised domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2272–2281, 2017.

Yongxin Yang and Timothy Hospedales. Zero-shot domain adaptation via kernel re-
gression on the grassmannian. In International Workshop on Differential Geometry
in Computer Vision for Analysis of Shapes, Images and Trajectories, pages 1.1–
1.12, 2015.

Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan.
Universal domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2720–2729, 2019.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and
Silvio Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 3712–
3722, 2018.

Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted
adversarial nets for partial domain adaptation. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 8156–8164, 2018.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain
adaptation under target and conditional shift. In International Conference on Ma-
chine Learning, pages 819–827, 2013.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory
and algorithm for domain adaptation. In International Conference on Machine
Learning, pages 7404–7413, 2019.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
Places: A 10 million image database for scene recognition. IEEE transactions on
pattern analysis and machine intelligence, 40(6):1452–1464, 2017.

87



Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vision, pages 2223–2232, 2017.

88


