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ABSTRACT

A commonly accepted mathematical formalism for describing and proving properties
of concurrent systems is the π-calculus. The π-calculus provides various operational
techniques for reasoning about the behavior of systems, and this is one of the reasons
why the π-calculus has been widely used.

Although the operational aspects of π-calculus have been well-studied, the connection
between the π-calculus and other mathematical objects is not well-understood. This is
in contrast to the case of λ-calculus, which is a formal calculus often used as the basis for
functional programming. The correspondence between simply typed λ-calculus, cartesian
closed categories and intuitionistic logic is well-known. Such correspondence has not been
discovered for the π-calculus, except for session-typed variants of the π-calculus in which
only a limited form of concurrency is expressible. The lack of such correspondence has
been preventing the transfer of established techniques from logic and category theory to
the field of concurrency.

This thesis makes an effort to extend the three-way correspondence between compu-
tation, categories and logic to the π-calculus (not limited to the session-typed variants).

First, we develop a correspondence between a categorical structure, which we call
compact closed Freyd category, and a variant of the π-calculus, which we call the πF -
calculus. Both the compact closed Freyd category and the πF -calculus are novel and are
carefully defined so that they correspond to each other. Although compact closed Freyd
category is introduced for a particular purpose, i.e. establishing a correspondence with the
π-calculus, its definition is fairly standard: compact closed Freyd categories combines two
well-known structures, namely, closed Freyd category and compact closed category. The
former is a model of higher-order effectful language, and the latter describes connections
via channels. To demonstrate the relevance of the categorical model, we reconstruct the
classical results on the relation between higher-order languages and the π-calculus by a
simple semantic consideration using this model.

The categorical analysis of πF -calculus reveals a fundamental difficulty in develop-
ing a categorical type theory for the π-calculus. We show (modulo some reasonable
assumption) that conventional behavioral equivalences for the π-calculus are inherently
incompatible with categorical semantics. The root cause of this problem lies in the
mismatch between the operational and categorical interpretation of a process called the
forwarder. From the operational viewpoint, a forwarder may add an arbitrary delay
when forwarding a message, whereas, from the categorical perspective, a forwarder must
not add any delay when forwarding a message. As an attempt to overcome this gap, we
introduce a novel operational semantics for the πF -calculus in which forwarders do not
cause any delay. We then show that this new operational semantics (i) is compatible
with the categorical semantics and (ii) can simulate the standard operational semantics.

As for the relation with logic, we discuss the relation between πF -calculus and linear
logic. The relation between linear logic and the π-calculus has been intensively explored
since the early phase of the study of the π-calculus. Among others, Abramsky (1994)
and Belling and Scott (1994) showed that linear logic proofs can be interpreted using
π-calculus processes. Later Caires and Pfenning (2010) showed that if we limit our fo-
cus to session-typed processes, the converse also holds, i.e. session typed processes can
be interpreted as linear logic proofs. However, it remained an important open problem
whether there exists a proof system that is not only interpretable by π-calculus, but
that can also interpret the traditional π-calculus processes. We provide a novel obser-
vation to this question by constructing an (inconsistent) proof system that one could
reasonably expect to correspond to the πF -calculus. Our construction makes use of the
relation between linear logic and compact closed Freyd category. Since a compact closed
Freyd category is a specific instance of a categorical model of linear logic, analyzing the
difference between general categorical models for linear logic and compact closed Freyd
categories leads us to an extension of linear logic that corresponds to πF -calculus.



論文要旨

π計算は並行システムを記述したり，並行システムの性質を証明する際に広く使われて

いる形式体系である．π計算が広く使われている理由のひとつに π計算はシステムの性質

を解析する際に使える様々な操作的な手法を提供してくれる点が挙げられる．

π計算の操作的側面は広く研究されているものの，π計算と他の数学的対象との関係性

はよく理解されているとはいえない．この状況は，関数型言語の論理的基盤である λ計算

をとりまく状況とは異なっている．単純型付 λ計算，デカルト閉圏，直観主義論理の間の

対応は十分理解されている．一方，セッション型付 π計算という並行性が強く制限された

π計算を除くと，π計算に対してはそのような対応関係は発見されていない．対応関係が

ないことは，圏論や論理の手法を並行計算の分野へ流用することの妨げになっていた．

本論文は，計算，圏，論理の対応を（セッション型付でない）π計算に拡張することを

試みる．

初めに，本論文はコンパクト閉フライド圏という圏論的構造と πF 計算という π計算の

部分体系の対応をあらわにする．コンパクト閉フライド圏も πF 計算もともに本論文で導入

されるものであり，両者は対応関係をもつように注意深く設計されている．コンパクト閉

フライド圏は π計算と対応することを目的として設計されたものであるが，その定義は標

準的なものである．コンパクト閉フライド圏はコンパクト閉圏と閉フライド圏という 2つ
のよく知られた圏論的構造を組み合わせることによって定義されている．前者は計算効果

を含む高階言語のモデルであり，後者はチャネルのネットワーク構造を記述するのに使わ

れる構造である．本モデルの有用性を示すために，π計算と高階のプログラミング言語の

関係性に関した古典的な結果を本モデルを使った意味論的考察から導出できることを示す．

πF 計算の圏論的分析は，π 計算の圏論的型理論を発展させる上での本質的な難しさを

明らかにする．本論文では（適当な仮定のもとで）伝統的な π計算の振る舞い等価性は圏

論的意味論と相容れないことを示す．この問題の根本的な原因はフォワーダーとよばれる

特殊なプロセスの操作的・圏論的解釈の相違である．操作的な観点からはフォワーダーは

メッセージを転送する際に遅れを発生させることができるのに対し，圏論的な解釈ではフォ

ワーダーが転送時に遅れを発生させることは許されていない．この差異を埋めるための試

みとして，本研究では πF 計算の操作的意味論をフォワーダーが遅れを発生させないよう

に変更する．そして，この新しい操作的意味論が (i)圏論的意味論と矛盾がないこと (ii)π
計算の標準的な操作的意味論を模倣できることを示す．

論理との関連については，πF 計算と線形論理の関係性について議論する．線形論理と

π計算の関係は π計算の研究の黎明期から調べられてきた．中でも，Abramsky(1994)お
よび Bellinと Scott(1994)は線形論理の証明がプロセスを使って解釈できることを発見し，
その後 Cairesと Pfennningが，対象をセッション型付プロセスに絞れば，プロセスを線形
論理の証明として解釈できることを発見した．しかし，「証明をプロセスとして解釈できる

だけでなく，伝統的な π 計算のプロセスを証明として解釈できる論理体系が存在するか」

は重要な未解決問題である．本論文では，πF 計算と対応すると期待できる（無矛盾でな

い）論理体系を構成することで，この問いに対する新たな観察を与える．この論理体系の

構成には線形論理とコンパクト閉フライド圏の関係を利用する．コンパクト閉フライド圏

は線形論理の圏論的モデルの特殊な場合であるから，一般の線形論理の圏論的モデルとコ

ンパクト閉フライド圏を比較することで πF 計算と対応する線形論理の拡張を導出する．
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Chapter 1

Introduction

1.1 Background

1.1.1 Reasoning concurrent programs

Writing concurrent program is hard. Programmers have to consider how different
threads of programs interact or how they should synchronize. One can easily write
a program that ends up in a deadlock or a race condition.

One way of writing concurrent programs is by message passing. In this ap-
proach, threads (or processes) interact by explicitly passing data via channels.
This approach has benefits over the shared memory approach that are common
in practice. In the shared memory approach one has to deal with locks in or-
der to guarantee that a thread has exclusive access. On the other hand, the
message passing style abstracts away the notion of locks and this style of pro-
gramming keeps the code structured. Nowadays, this message passing style is
becoming more popular, and there are several languages that support this style
of programming. For instance, languages such as Go [2], Rust [26] and Erlang [1]
have lightweight threads and message passing between them as builtin language
features.

Though message passing is an elegant way to express concurrent computation,
reasoning about programs written in message-passing style is still challenging. We
still need to consider things such as whether the nondeterministic feature of the
program does not affect the expected behavior, whether communications do not
fall into deadlocks at runtime, or whether a particular channel will be eventually
used. Also asking whether two concurrent programs have the same behavior is
far from trivial.

To rigorously reason about concurrent programs, we need a suitable math-
ematical foundation to work on. Ideally, the mathematical foundation should
have a high-level of abstraction but at the same time be able to describe existing
systems.

Very broadly speaking, this thesis is an attempt to give a (yet another) math-
ematical foundation against message passing style communication. The weight is
put on the study of the (denotational) semantic and logical aspects of the message
passing concurrency.

1.1.2 π-calculus

This thesis is concerned with the π-calculus, which is the one of the most studied
formalisms for describing (message passing style) concurrent systems. The π-
calculus is a kind of a process calculus originally introduced by Milner, Parrow and
Walker [94, 95]. The distinguished feature of π-calculus is that π-calculus allows
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channel names to be communicated along the channels themselves. Actually, in
π-calculus, channel passing is the only computational step: every computation is
modeled by channel passing.

One of the characteristics of the π-calculus is the conciseness of its syntax.
The syntax of (an asynchronous) π-calculus is given by the following grammar:1

P ::= 0 | ā〈x〉 | a(x).P | (P | Q) | (νa)P | !P

Arguably the most important constructs of the π-calculus are ā〈x〉, a(x).P and
P | Q. These expresses output action, input prefixing and parallel composition,
respectively. The remaining constructs 0, (νa)P and !P are inaction (i.e. a
process that does nothing), name restriction that is used to restrict the scope of
a name and replication of P that is used to create as many parallel replicas of P
as needed. The name restriction (νa)P is also called as name creation because
it can be regarded as an operation that creates a private name.

In the π-calculus, computation proceeds by communications. For instance the
following rule is the base case of the reduction relation:

a(x).P | ā〈y〉 −→ P{y/x} | 0 (1.1)

The above relation expresses that the channel y is transmitted along the channel
a. When the receiver a(x).P receives the name y, the continuation P{x/y} is
executed.

Though the syntax and the reduction relation of π-calculus are very simple, π-
calculus is very expressive. It is well-known that π-calculus can encode functional
languages such as λ-calculus [90] as well as object oriented models [134].

Because of its simplicity and expressiveness, π-calculus has been (and proba-
bly will be) a mathematical model for computation used in various researches.

1.1.3 Curry-Howard-Lambek correspondence

However, what we are interested in is not the syntactical aspects of the π-calculus.
This thesis investigates the semantic and logical aspects of the π-calculus. History
tells us that insight from logic and category theory are very useful in the study of
programming languages. We shall briefly review the impact of logic and category
theory on the study of programming languages.

The case of λ-calculus When we turn our attention to the study of (sequen-
tial) functional programming languages, the role λ-calculus has played is signif-
icant. For example, it has been used for proving various properties of programs
and typed lambda calculi play an essential role in the design of type systems for
programming languages. In a sense, π-calculus is a calculus that aims to follow
the success of the λ-calculus.

One reason why λ-calculus has played a central role in the study of functional
programs and programming languages is that λ-calculus has a deep connection
with logic. The (simply typed) λ-calculus and intuitionistic propositional logic
are the two side of the same coin: types are identified with propositions and pro-
grams are identified with proofs. This correspondence, also known as the Curry-
Howard correspondence [27, 58], enabled the cross-fertilization of the study on

1The calculus presented in this section is different from that of the target calculus used in
this thesis. We will use this calculus throughout this chapter for presentational purposes; this
calculus is simpler than the target calculus of this thesis and is closer to the original π-calculus
given by Milner et al. [94, 95], which some readers might be familiar with.

2



programming languages and logics. The correspondence also demonstrates that
the design of the λ-calculus is not arbitrary, but canonical. The correspondence
between typed λ-calculi and logical systems are surprisingly robust in the sense
that it scales well beyond the identification of simply typed λ-calculus and intu-
itionistic propositional logic. For example, the tight connection between quantifi-
cation over propositional variables and polymorphism; classical logic and control
operators [100] and modal logic and staged computation [31] has been discovered.

In some cases, there is a third object, namely categorical structure, that
fits into this correspondence. In the case of the simply typed λ-calculus, Lam-
bek [76, 77] discovered that simply typed λ-calculus (with pairing) is essentially
the same thing as a categorical structure called cartesian closed category. Hence,
the correspondence among a programming language, logical system, and cate-
gorical structure is called the Curry-Howard-Lambek correspondence. From a
programming language perspective, this correspondence is important because it
says that cartesian closed categories capture the semantics of the simply-type
λ-calculus. This allows us to quickly recognize whether a certain mathematical
structure is a model of the λ-calculus without going into the details, and serve as
a guide when one looks for a specific model of λ-calculus. The connection between
category theory and programming language also allows us to employ categorical
notions to describe features of programming languages. This is very useful be-
cause category theory often captures analogous notions in a unified manner. For
example, monads have become standard tools for describing various “computa-
tional effects” [97, 98].

Because of these advantages Curry-Howard-Lambek correspondence offer, de-
signing a language in a way that it corresponds to certain logic or categorical
structure is a principle that is adopted in the research of programming languages.

The case of π-calculus The connection between π-calculus and logical sys-
tems, especially linear logic, has been intensively explored since the birth of the
π-calculus. Linear logic [43] is a logic that emphasizes the role of formulas as re-
sources. In linear logic, assumptions can be considered as resources that interact
and consumed as the proof goes on. Influence of linear logic to π-calculus can
already be found in the syntax of the π-calculus. The replication operator !P
seems to be inspired by the exponential modality !A, which is the unlimited copy
of the formula A.

An early work by Abramsky [3], which was then followed by Bellin and
Scott [11], revealed that linear logic proofs can be interpreted as π-calculus pro-
cesses. However, these studies were not considered as a Curry-Howard correspon-
dences, since the opposite direction, i.e. interpreting processes using proofs, was
not possible.

The work by Caires and Pfenning [18] was then a turning point, providing
a precise correspondence between (dual intuitionistic) linear logic and session-
typed π-calculus. They identified session-types with linear logic formula, typed
processes with proofs and process reduction with cut elimination of a proof.
Session types [53, 56] are types that describes the protocol that (two) processes
of a concurrent system needs to obey. This precise relationship against linear
logical operators and session types was later extended to classical linear logic
by Wadler [132] and Caires et al. [19]. These correspondences can be regarded
as Curry-Howard-Lambek correspondences, though the connection to category
theory was not explicitly given in these work, since the connection between linear
logic and category theory has already been well-known [120, 12, 84].

3



The influential work by Caires and Pfenning [18] and Wadler [132] inspired
lots of work on session-typed calculi (not limited to the π-calculus) that are based
on logical insights or techniques (e.g. [79, 8, 29, 70]).

1.2 Research Problem and Aim of This Thesis

Though there is no doubt that the correspondence between session-type π-calculus
and linear logic is a remarkable result, this correspondence is not completely sat-
isfactory for a Curry-Howard correspondence of the π-calculus.

One limitation of the linear logic based session typed-calculi is the lack of
expressiveness. The session-typed calculi [19, 133] corresponding to linear logic
have only well-behaved processes because the session type systems guarantee
deadlock-freedom and race-freedom of well-typed processes. This strong guaran-
tee is often useful for programmers but can be seen as a significant limitation
of expressive power. Wadler—the founder of a linear logic based session typed
calculus called CP—also mentions to this point. The following text is taken from
his paper [133]:

a foundation for concurrency based on linear logic will be of limited
value if it only models race-free and deadlock-free processes. Are there
extensions that support more general forms of concurrency?

Another problem is that there are quite a few type systems of the π-calculus
that are not based on session type. Historically, types (aka sorting) for π-calculus
was introduced to “specify what kind of data the channel can receive or send” [93]
rather than to describe the interactive behavior between processes. This type has
been refined and extended in many ways: by distinguishing the input and output
capability [106], adding the notion of linearity [69], adding polymorphism [130]
and so on. We shall call these types “standard types” following [30]. Since
“standard types” and session types are quite different, transferring techniques
used in logic to the studies on π-calculus that uses “standard types” via the
Curry-Howard correspondence between linear logic and session-typed calculi is
not that easy. Moreover, “standard types” for π-calculus may be considered
more primitive than session types because session types can be encoded into
standard types (with linear channels [69]) [67, 30]. “Standard types” are also the
classification that is used in the majority of the practical languages that supports
message-passing style programming. Languages such as Go, Erlang and Rust
uses the “standard types” for channels, and session types are not supported as
primitive language features. Therefore, a logical or categorical foundation for
“standard types” is also of demand.

The aim of this thesis is to give a solution to these problems. We introduce a
variant of the “standard typed” (i/o-typed [106] to be specific) π-calculus and a
new categorical structure that corresponds to this calculus in the same way that a
cartesian closed category is a model of the λ-calculus. The calculus we introduce
is expressive enough to model wild concurrent systems or programs that might
fall into deadlocks or race conditions.

1.3 Our Approach

In order to establish a Curry-Howard-Lambek correspondence for the π-calculus
we first need to exhibit the algebraic structure underlying the π-calculus. Here
we briefly discuss how we identify the categorical structure that corresponds to
the π-calculus.
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The starting point of our work is the observation that π-calculus can be re-
garded as a higher-order language that communicates programs rather than a
(first-order) language that communicates names. This observation is not new
and has been pointed out since the early days of research on the π-calculus; for
instance Sangiorgi [115] revealed that adding higher-order features to π-calculus
does not increase the expressive power of the π-calculus.

The key idea is to decompose the input prefixing a(x).P into the name a
and an abstraction (x).P . Let us write a @ (x).P for a(x).P to emphasize this
decomposition. The abstraction (x).P is just an alternative notation for the
λ-abstraction of the λ-calculus. Then the reduction relation (1.1) can also be
decomposed as follows:

a @ (x).P | ā〈x〉 −→ 0 | ((x).P ) 〈y〉
−→ 0 | P{y/x}

(The order of the parallel composition is not important: 0 | P{y/x} and P{y/x} |
0 are processes with same behavior) The second step of the above reduction is the
β-reduction (in the λ-calculus), i.e. (λx.P )y −→ P{y/x}. The first step expresses
a communication where the function (x).P is passed from a to ā. (Note that the
direction of the communication is the opposite of that of the message passing
interpretation of (1.1).) Therefore, in this view, we regard

• an output action ā〈y〉 as a function application

• an input prefixing as an abstraction (x).P (or λx.P ) located at a location
(or a name) a

Now the core operations of the π-calculus are decomposed into the better
known constructs of a higher-order (functional) language. Therefore, the π-
calculus can be thought of as a functional language with some uncommon opera-
tions such as a @ (P ) or name creation (νa)P . It should be emphasized that this
language is effectful; communications and name creations are usually considered
as a computational effect.

This observation leads us to base our categorical model for the π-calculus on
a categorical model for effectful functional languages. The categorical models for
effectful functional languages are well-studied. The seminal work by Moggi [97]
presented the idea that computational λ-calculus can be modeled by (strong)
monads. Our categorical model for the π-calculus uses a categorical structure
that is equivalent to the monadic model of the computational λ-calculus, which
is called the closed Freyd category [111].

Now it remains to identify the structure behind the operations a @ (−) and
(νa)P . Our claim is that these operations can be modeled using the compact
closed structure. Compact closed categories [63] are categories that has an asso-
ciated graphical language of “string diagrams” that is expressive enough to depict
various networks. The importance of compact closed categories in the context of
concurrency theory has been pointed out by Abramsky et al. [5]. They pointed
out that compact closed categories (with some additional structures) can nicely
model CCS-like processes interconnected via ports. Since a @ (x).P can be seen
as a “connection of a name a and abstraction (x).P”, compact closed structure
can be used to model a @ (−). The name creation (νa) can also be modeled
by a morphism of a compact closed category. Each compact closed category is
equipped with a special morphism (parameterized by objects A) ηA : I → A⊗A∗

called the unit. Here the object A∗ is called the dual of A. If we consider I
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as the unit type and ⊗ as a product ηA can be considered as an operation that
returns a pair of elements of type A and its dual A∗. This can be considered
as an operation that creates the two endpoints of a channel (by considering the
input-end as the dual of output-end), which is the operation (νa).

Putting the two structures described above together, we introduce a categor-
ical structure called compact closed Freyd category as a categorical model of the
π-calculus. Despite its simplicity, compact closed Freyd category captures the
strong expressive power of the π-calculus. The compact closed structure allows
us to construct the network topology in an arbitrary way, in return for the pos-
sibility of deadlocks whereas the Freyd structure allows arbitrary duplication of
channels, in return for the possibility of race conditions.

1.4 Contributions

The main contribution of this thesis is the introduction of a new variant of the
i/o-typed π-calculus, which we call πF -calculus. A remarkable feature of the
πF -calculus is that it has a categorical counterpart, called compact closed Freyd
category. Using the πF -calculus and compact closed Freyd category, this thesis
investigates and re-examine various aspects of the π-calculus, including its rela-
tion to linear logic, relation to higher-order calculi and its operational semantics.

More concretely, contributions of this thesis can be summarized as follows:

Introduction of a variant of the i/o-typed π-calculus with a categorical
counterpart As mentioned, this thesis introduces a new variant of the i/o-
typed π-calculus, which we call the πF -calculus. The syntax and the axiomatic
semantics of the πF -calculus is carefully designed so that it has a correspond-
ing categorical structure. The corresponding categorical structure, the compact
closed Freyd structure, is also introduced by this thesis. The correspondence is
fairly firm: the categorical semantics is sound and complete, and the term model
is the classifying category.

Indication of a fundamental difficulty in developing a categorical type
theory for the π-calculus The categorical analysis of this thesis reveals that
many conventional behavioral equivalences for the π-calculus are problematic
from the viewpoint of categorical type theory. The problem is that they induce
only semi-categories, which may not have identities for some objects. This is
reminiscent of the β-theory of the λ-calculus, of which the categorical model is
given by semi-categorical notions [50]. We formally show that this problem is
inevitable modulo some mild assumptions.

Provision of insights on the relationship between the π-calculus and lin-
ear logic Though we now know that session-typed π-calculus corresponds to
linear logic, it is still an open problem to find a proof system that corresponds to
the standard π-calculus. We provide a reasonable candidate by using πF -calculus
and compact closed Freyd categories. We construct an extension of linear logic
in which we conjecture that πF -processes can be interpreted. This logical system
is obtained by making use of the fact that compact closed Freyd categories are
specific instances of a categorical model of linear logic (linear/non-linear mod-
els [12]). By investigating the difference between general categorical models of
linear logic and compact closed Freyd category, we discover the additional logical
axioms that should be added to linear logic in order to interpret πF -processes.
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Semantic explanation against the relationship between higher-order
calculi and the π-calculus We demonstrate the relevance of compact closed
Freyd category by giving a semantic reconstruction of Sangiorgi’s translation
between the higher-order π-calculus and the (first-order) π-calculus. This is done
by introducing another calculus, which can be seen as an extension of the higher-
order π-calculus, that corresponds to the compact closed Freyd category. Since
this calculus and πF -calculus both corresponds to the same categorical structure,
we immediately get a semantic-guided syntactic translation between these calculi.
We show that these translations are essentially the same as the ones given by
Sangiorgi [118]. The relationship between the π-calculus and other higher-order
calculi, such as the λ-calculus, is also re-examined using this coincidence.

Development of an operational semantics that harmonizes with cate-
gorical semantics As explained above, asynchronous π-calculus modulo most
of the behavioral equivalences do not form categories. We diagnose the nature
of this problem and attempt to fill the gap by introducing a new operational se-
mantics that is compatible with the categorical semantics. We introduce a novel
reduction semantics to the πF -calculus and show that πF -calculus modulo weak
barbed congruence, defined on top of the new reduction semantics form a compact
closed Freyd category. The new operational semantics is quite complex since it
treats a multi-step reduction in the conventional reduction semantics as a one-step
reduction. To reason about such a complicated semantics, we develop an inter-
section type system, or equivalently a system of linear approximations [128, 83],
that captures the behavior of a process, which we think would be of independent
technical interest.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 covers preliminaries for
the thesis. Chapter 3 introduces the πF -calculus, the target language of this the-
sis. Chapter 4 introduces the notion of compact closed Freyd category, and shows
the correspondence between the πF -calculus and compact closed Freyd category.
Chapter 5 compares the πF -calculus with linear logic, and Chapter 6 re-examines
the relationship between higher-order calculi and the π-calculus through the lens
of categorical semantics. Chapter 7 introduces a novel operational semantics to
the πF -calculus and shows that it harmonizes with the categorical semantics.
Chapter 8 discusses related work and Chapter 9 concludes the thesis.

First appearance Most of the part of Chapter 3, 4 and 6 are based on a
previously published paper [114]. Chapter 5 is also an extended version of the
discussion given in [114] with some new results. (The paper [114] is an open
access paper licensed under cc by 4.0.)
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Chapter 2

Preliminaries

This chapter is devoted to preliminaries. Section 2.1 introduces some notations
used throughout this thesis. In Section 2.2, we review some categorical notions
that are used in the following chapters.

2.1 Notational Conventions

The set of natural numbers (starting from 0) is denoted by Nat. We define the
set [n] as {1, . . . , n} for a natural number n; if n = 0 then [n] is the empty set ∅.

The notation def= is used for “equality by definition”. We also use ::= for the
introduction of a syntactic category defined by the Backus-Naur form. We write
~x for a possibly empty sequence x1, . . . , xn, provided that every xi belongs to the
same syntactic category, and write |~x| for the length n of the sequence ~x. The
capture-avoiding substitution is denoted by N{M/x} and we also write N{ ~M/~x}
for the simultaneous substitution provided that |~x| = | ~M |.

2.2 Category Theory

The aim of this section is to provide some background material on category theory
that will be used in this thesis. Definitions that are given in this section include
monoidal category, monoidal functors and compact closed category. Readers
familiar with these notions may skip this section.

2.2.1 Prerequisites

We assume that the readers are familiar with basic categorical theory. It is suffi-
cient to know the definition of a (plain) category, functors, adjunctions, cartesian
closed category and (co)monads. Standard references are [80, 113].
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2.2.2 Notations

We use the following notations.

C,D, . . . categories
f ; g : A→ C composition of morphisms f : A→ B and g : B → C

Obj(C) collection of objects in C
C(A, B) homset consisting of morphisms from A to B in C
〈f, g〉 : X → A×B pairing of f : X → A and g : X → B

πA1×A2
i : A1 ⊗A2 → A1 the i-th projection where i ∈ {1, 2}

dA : A→ A×A diagonal map of A in a category with finite products
!A : A→ 1 the unique morphism to the terminal object

Be warned that we write composition in “diagram order”.

2.2.3 Monoidal categories and compact closed categories

Here we review the notion of (symmetric) monoidal category and compact closed
category and the structure preserving functors between them. The notion of nat-
ural transformations between these structure preserving functors is also reviewed.

Definition 2.1 (Monoidal category [80]). A monoidal category is a category C
with

• a bifunctor ⊗ : C × C → C called the monoidal product

• an object I of C called the unit object

• a natural isomorphism αA,B,C : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C) called the
associator

• a natural isomorphism lA : I ⊗ A ∼= A called the left unitor and a natural
isomorphism rA : A⊗ I ∼= A called the right unitor

such that the following two diagrams commute:

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

αA⊗B,C,D

αA,B,C⊗idD

αA,B,C⊗D

αA,B⊗C,D

idA⊗αB,C,D

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

rA⊗idB

idA⊗lB

A strict monoidal category is a monoidal category of which αA,B,C , lA and rA

are identities, for every A, B, C ∈ Obj(C). �

Definition 2.2 (Symmetric monoidal category [80]). A monoidal category (C,⊗, I)
is a symmetric monoidal category if it is equipped with a natural isomorphism
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cA,B : A⊗B ∼= B ⊗A called the symmetry (or braiding) such that

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗A)

αA,B,C

cA,B⊗idC

cA,B⊗C

αB,C,A

αB,A,C idB⊗cA,C

A⊗B B ⊗A

A⊗B

cA,B

idA⊗B

cB,A

commutes. �
It is known that any monoidal category is equivalent to a strict monoidal

category, thanks to coherence theorem [80]. However, it is not always possible to
strictify symmetry.

Example 2.1. The category Rel is a category whose objects are sets and mor-
phisms between X and Y are relations R ⊆ X × Y . The identity is the diagonal
relation {(x, x) | x ∈ X} and compositions are defined by the usual relational
composition. The category Rel is a symmetric monoidal category; the bifunctor
⊗ is defined by the cartesian product × and the identity object I is given as a sin-
gleton set {∗}. Morphisms αX,Y,Z , lX , rX and cX,Y are defined by the canonical
ones. It is easy to check that these morphisms satisfy the required diagrams. �
Example 2.2. Every cartesian category (C,×, 1) is a symmetric monoidal cate-
gory. The associator, left unitor, right unitor and symmetry is given by

αA,B,C
def= 〈π(A×B)×C

1 ; πA×B
1 , 〈π(A×B)×C

1 ; πA×B
2 , π

(A×B)×C
2 〉〉

lA
def= π1×A

2 r
def= πA×1

1 cA,B
def= 〈πA×B

2 , πA×B
1 〉.

�
We now review the notion of monoidal functor, which is a functor that pre-

serves the monoidal structure.

Definition 2.3 (Monoidal functor [80]). A (lax) monoidal functor between monoidal
categories (C,⊗, I, α⊗, l⊗, r⊗) and (D,�, E, α�, l�, r�) is a functor F : C → D
equipped with natural transformations

m2
A,B : F (A)� F (B)→ F (A⊗B) m0 : E → F (I)

that makes the following three diagrams commute.

((FA� FB)� FC) F (A⊗B)� FC F ((A⊗B)⊗ C)

FA� (FB � FC) FA� F (B ⊗ C) F (A⊗ (B ⊗ C))

m2
A,B�idF C

α�

m2
A⊗B,C

F α⊗

idF A�m2
B,C m2

A,B⊗C

FA� E FA

FA� FI F (A⊗ I)

r�

idF A�m0

m2
A,I

F r⊗

E � FA FA

FI � FA F (I ⊗A)

l�

m0�idF A

m2
I,A

F l⊗

A strong monoidal functor is a monoidal functor whose mediating maps, i.e. m2
A,B

and m0, are isomorphisms. A monoidal functor (F, m2, m0) is a strict monoidal
functor if all components of m2 and m0 are identities. �
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Definition 2.4 (Symmetric monoidal functor [80]). Let (F, m2, m0) be a lax
monoidal functor between two symmetric monoidal categories (C,⊗, I, α⊗, l⊗, r⊗, c⊗)
and (D,�, E, α�, l�, r�, c�). Then F, m2, m0 is a symmetric monoidal functor if
it satisfies the following diagram.

F (A)� F (B) F (B)� F (A)

F (A⊗B) F (B ⊗A)

c�
F A,F B

m2
A,B m2

B,A

F (c⊗
A,B)

A strict monoidal functor F : C → D is a strict symmetric monoidal functor if F
is a also symmetric monoidal, i.e. F (c⊗) = c�. �
Example 2.3 (Strict finite product preserving functor). A strict finite product
preserving functor from a cartesian category C to a cartesian category D is a
functor F : C → D that maps the chosen product cones (resp. the chosen terminal
object) in C to the chosen product cones in D (resp. chosen terminal object). It
is routine to check that F is a strict (symmetric) monoidal functor. �
Definition 2.5 (Monoidal natural transformation [80]). Let (F, m2, m0) and
(G, n2, n0) be monoidal functors from (C,⊗, I) to (D,�, E). Then a monoidal
natural transformation τ : (F, m2, m0) → (G, n2, n0) is a natural transformation
τ : F → G such that the following diagrams commute.

F (A)� F (B) F (A⊗B)

G(A)�G(B) G(A⊗B)

m2
A,B

τA�τB τA⊗B

n2
A,B

E

FI GI

m0 n0

τI

�
If F and G are strict, then τ is a natural transformation that satisfies τA⊗B =

τA ⊗ τB and τI = idI .
We now introduce the notion of compact closed category. To make the defini-

tion simple, we will define the notion over strict monoidal categories and in the
sequel we may write monoidal category to mean a strict monoidal category.

Definition 2.6 (Compact closed category [63]). A symmetric monoidal category
C,⊗, I is a compact closed category if every object (A ∈ Obj(C)) has the dual
A∗. The object A∗ is a (left) dual of A if there exist morphisms ηA : I → A⊗A∗

and εA : A∗ ⊗ A → I, called unit and counit, respectively, that satisfies the two
triangle identities.

A A⊗A∗ ⊗A

A

ηA⊗idA

idA

idA⊗εA

A∗ A∗ ⊗A⊗A∗

A∗

idA∗ ⊗ηA

idA∗
εA⊗idA∗

The dual of A is unique up to isomorphism. �
The operator (−)∗ induces a functor (−)∗ : Cop → C: the action on morphisms

is defined by

f∗ def= B∗ idB∗ ⊗ηA−−−−−→ B∗ ⊗A⊗A∗ idB∗ f⊗idA∗−−−−−−−→ B∗ ⊗B ⊗A∗ εB⊗idA∗−−−−−→ A∗

where f : A → B. It is easy to see that this functor (−)∗ is involutive (up to
isomorphism), i.e. A∗∗ ∼= A, and distributes over monoidal products, i.e (A ⊗
B)∗ ∼= A∗ ⊗B∗.
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Example 2.4. One of the simplest example of a compact closed category is Rel,
which we defined in Example 2.1. The dual of A, unit and counit is given by

A∗ def= A

ηA : I → A⊗A∗ def= {(∗, (a, a)) | a ∈ A}

εA : A∗ ⊗A→ I
def= {((a, a), ∗) | a ∈ A}.

�

Now we define the notion of compact closed functor, which is the “structure
preserving functor” between compact closed categories. Probably, the defini-
tion of a compact closed functor is a folklore; in fact, the term “compact closed
functor” appears in various papers (e.g. [4, 64, 24]). Unfortunately, however,
its definition is rarely found. We think that this situation is not desirable be-
cause compact closed functors can be defined in varying levels of strictness and
strength. Here we explicitly define our version of compact closed functor.

Definition 2.7 (Compact closed functor). Let (C, ηC , εC) and (D, ηD, εD) be
compact closed categories with chosen unit and counit and (F, m2, m0) be a
strong symmetric monoidal functor from C to D. Then F (A∗) is a dual of F (A):
units η′ and counits ε′ are given by

η′
A

def= m0; F (ηC); (m2
A,A∗)−1 and ε′

A
def= m2

A∗,A; F (εC); (m0)−1.

Hence, we have a canonical isomorphism θA : F (A)∗ ∼= F (A∗) defined as (idF (A)∗⊗
η′

A); (εD
A⊗idF (A∗)) for each object A ∈ Obj(C). The functor F is a strong compact

closed functor if θ satisfies the diagram below for all A ∈ Obj(C).

F (A∗)∗ F (A∗∗)

F (A)∗∗ F (A)

θA∗

(θA)∗ ∼=
∼=

A strong compact closed functor (F, m2, m0, θ) is a strict compact closed functor
if F is a strict symmetric monoidal functor and θA = idF (A)∗ for all A. �

Remark 2.1. Our definition of compact closed functor is built upon that of ∗-
autonomous functor given by Cockett et al. [25]. Since compact closed categories
are special kinds of ∗-autonomous categories, compact closed functors are also
defined as particular instances of ∗-autonomous functors.

The following proposition gives us an alternative characterization of strict
compact closed functors.

Proposition 2.2. Let (C, ηC , εC) and (D, ηD, εD) be compact closed categories
and F : C → D be a strict symmetric monoidal functor. Then F is a strict
compact closed functor if and only if F (ηC) = ηD and F (εC) = εD.

Proof. First, we show the only if direction. Since F (ηC) = ηD and F (εC) = εD

and F is a strict symmetric monoidal functor, we have

θA = (idF (A)∗ ⊗ F (ηC
A)); (εD

A ⊗ idF (A∗))
= (idF (A)∗ ⊗ ηD

A ); (εD
A ⊗ idF (A∗))

= idF (A)∗ . (triangle identity)
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We are left to check the coherence condition for θ. As required, the two isomor-
phisms of the coherence diagram coincides because F (ηC) = ηD, F (εC) = εD and
F (cC) = cD. Here cC and cD are the symmetries of C and D respectively.

Next, we show the if direction. Since θA = idF (A)∗ , we have

ηD
A = ηD

A ; (idA ⊗ θA)
= ηD

A ; (idA ⊗ idF (A)∗ ⊗ F (ηC
A)); (idA ⊗ εD

A ⊗ idF (A∗))
= F (ηC

A); (ηD
A ⊗ idA ⊗ idF (A)∗); (idA ⊗ εD

A ⊗ idF (A∗))
= F (ηC

A); (idA ⊗ idF (A)∗) (triangle identity)
= F (ηC

A).

We can show εD
A = F (εC

A) in a similar manner.

This proposition implies that our definition of “strict compact closed functor”
is equivalent to (one of the few explicit) definition of “compact closed functor”
given by Abransky and Coecke [4], which says that compact closed functors are
functors that strictly preserves the monoidal structure, unit and counit.

Remark 2.1. It should be noted that strong symmetric monoidal functors al-
ready preserve dualities. If F : C → D is a strong symmetric monoidal functor
and C is compact closed, we can easily check that F (A∗) is a dual of F (A) by
applying F to the triangle identities. Hence, the notion of strong compact closed
functor is redundant unless we specify the chosen duals (or chosen units and
counits) of compact closed categories. For this reason we imagine that compact
closed functor often refers to strict compact closed functor. �

To discuss the precise relationship between compact closed categories, we also
introduce the notion of isomorphisms between compact closed functors.

Definition 2.8 (Isomorphisms between compact closed functors). Let (F, θF )
and (G, θG) be strong compact closed functors from C to D. Then a monoidal
natural isomorphism τ : F ∼= G is an isomorphism between strong compact closed
functors (or a compact closed isomorphism for short) if it satisfies the following
diagram.

G(A)∗ F (A)∗

G(A∗) F (A∗)

(τA)∗

θG
A θF

A

(τA∗ )−1

�

This definition is essentially the same as that of isomorphisms between ∗-
autonomous functors given by Cockett et al. [25].
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Chapter 3

πF -calculus

This chapter defines the target calculus of this thesis, the πF -calculus, which is
based on an asynchronous variant of the polyadic π-calculus with i/o-types [106].
Using the axiomatic semantics and the operational semantics of the πF -calculus,
we also discuss a fundamental difficulty in developing a categorical type theory
for the π-calculus in Section 3.4.

3.1 Syntax and Sorts

The set of sorts,1 ranged over by S and T , is given by

S, T ::= cho[T1, . . . , Tn] | chi[T1, . . . , Tn] (n ≥ 0).

The sort cho[T1, . . . , Tn] is for output channels that are used to send n arguments
of sorts T1, . . . , Tn. The sort chi[T1, . . . , Tn] is for input channels. The dual T ⊥

of sort T is defined by cho[~T ]⊥ def= chi[~T ] and chi[~T ]⊥ def= cho[~T ]. For a sequence
~T

def= T1, . . . , Tn of sorts, we write ~T ⊥ for T ⊥
1 , . . . , T ⊥

n .
An important difference from the original i/o-type system [106] is that no

name has both input and output capabilities. We will refer this feature of πF -
calculus as i/o-separation.

The set of processes, ranged over by P , Q and R, is defined by

P, Q, R ::= 0 | (P | Q) | (νcho[~T ] xy)P | x〈y1, . . . , yn〉 | !x(y1, . . . , yn).P .

Here x, y, . . . range over a denumerable set of names. Each name is either input-
only or output-only, because of i/o-separation. As usual, ~y in !x(~y).P and x, y in
(νxy) are called bound names; the other names are called free names. The set of
free names and bound names of P are written as fn(P ) and bn(P ) respectively.
The set n(P ) is defined as fn(P ) ∪ bn(P ). We allow tacit renaming of bound
names, and identify α-equivalent processes. The sort annotation in (νT xy)P is
often omitted and (νx1y1) . . . (νxnyn)P is abbreviated to (ν~x~y)P .

Let us briefly explain the intuitive meanings of the constructs. The process
0 is the inaction, which is a process that does nothing; P | Q is a parallel
composition; x〈~y〉 is an output; and !x(~x).P is a replicated input. The restriction
(νT xy)P is slightly unusual and is a bit different from the name restriction used
in conventional π-calculi. It hides the names x and y of sort T and T ⊥ and, at
the same time, establishes a connection between x and y. Communication takes
place only over bound names explicitly connected by ν (cf. Section 3.2.1). This is
in contrast to the conventional π-calculus, in which input-output correspondence

1The term sort instead of type is used in order to avoid confusion with intersection types
introduced later in this thesis (Chapter 7).
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∆ ` 0 : �
(S-Nil)

∆ ` P : � ∆ ` Q : �
∆ ` P | Q : �

(S-Par)

(x :cho[~T ]) ∈ ∆ ~y : ~T ⊆ ∆
∆ ` x〈~y〉 : �

(S-Out)
(x :chi[~T ]) ∈ ∆ ∆, ~y : ~T ` P : �

∆ ` !x(~y).P : �
(S-In)

∆, x : cho[~T ], y : chi[~T ] ` P : �
∆ ` (νcho[~T ] xy)P : �

(S-Nu)
∆, x : S, y : T, ∆′ ` P : �
∆, y : T, x : S, ∆′ ` P : �

(S-Ex)

Figure 3.1: Sort assignment rules for processes.

is a priori (i.e. ā is the output to a). However, for readability, we will often use
the names ā, b̄, . . . and x̄, ȳ, . . . for output names. This is just a convention and it
is possible to use names such as ā for input names; e.g. ā(~y).P is a valid process.

This calculus is polyadic [93] as it can send or receive multiple names at
the same time and it is asynchronous [55] because the output action ā〈~x〉 does
not have a continuation. Polyadic and asynchronous variants of π-calculus are
widely used and thus being polyadic or asynchronous is not something unique to
the πF -calculus.

An important characteristic of πF -calculus is the absence of non-replicated
input x(~y).P . This allows us to consider input prefixing as λ-abstractions (that
is located at a certain address) as we described in the introduction. However,
considering a calculus without non-replicated input itself is not our contribution.
For example, a typed asynchronous π-calculus without non-replicated inputs has
been considered in the work by Honda and Laurent [54] that studies the relation-
ship between polarized proof nets and π-calculus.

Sort assignment rules

A sort environment ∆ is a finite sequence of bindings of the form x : T such
that all the names appearing in ∆ are pairwise distinct. We write ~x : ~T for
x1 : T1, . . . , xn : Tn provided that ~x = x1, . . . , xn and ~T = T1, . . . , Tn and also
write (~x : ~T ) ⊆ ∆ to mean xi : Ti ∈ ∆ for every i.

A sort judgement is of the form ∆ ` P : �, meaning that P is a well-sorted
process under the environment ∆. Here the symbol � is the unique sort for
processes. The sort assignment rules are listed in Fig. 3.1. The rules are standard
and there is not much to explain. For instance the rule for x(~y).P says that x
should have a sort chi[~T ] for input channels and the body P must be well sorted
under the environment ∆ extended with ~y : ~T . We note that the rule for name
restriction stipulates that only names with dual sorts can be restricted.

3.2 Operational and Axiomatic Semantics

This section defines the operational and the axiomatic semantics of the πF -
calculus. The operational semantics is unnecessary to obtain a theory/model
correspondence between a calculus and a categorical structure; we only need the
axiomatic semantics. We, however, introduce an operational semantics because
it is more intuitive than the axiomatic semantics and also helps us understand
the axiomatic semantics.
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3.2.1 Operational semantics

We now introduce the reduction semantics for πF -calculus and some behavioral
equivalences that can be defined using the reduction relation.

The one-step reduction relation on processes, written −→, is defined by the
base rule

(ν ~w~z)(νāa)(!a(~x).P | ā〈~y〉 | Q) −→ (ν ~w~z)(νāa)(!a(~x).P | P{~y/~x} | Q)

and the structural rule which concludes P −→ Q from P ≡ P ′ −→ Q′ ≡ Q
for some processes P ′ and Q′. Here the relation ≡ is the structural-congruence
defined below. It should be emphasized that, unlike conventional π-calculi, com-
munication only occurs over bound names created by the same ν operator. We
write −→∗ for the reflexive and transitive closure of −→.

Now we define the structural congruence (in a slightly non-standard way). For
a technical reason, we shall first define structural precongruence V. A precon-
gruence is like a congruence, but it is just reflexive and transitive, not necessarily
symmetric. We defineV as the smallest precongruence relation on processes that
satisfies the following rules (P WV Q means P V Q and QV P ):

P | 0WV P P | QWV Q | P (P | Q) | RWV P | (Q | R)
(νwx)(νyz)P WV (νyz)(νwx)P ((νxy)P ) | QV (νxy)(P | Q)

where w, x, y, z are distinct in the fourth rule and x, y /∈ fn(Q) in the fifth rule. It
is similar to the structural congruence, but the restriction of the scope of (νxy) is
not allowed. The structural congruence ≡ is the symmetric closure ofV and this
definition coincides with the standard definition of the structural congruence.
The structural precongruence will be used in Chapter 7, in which we define a
novel reduction semantics for the πF -calculus.

Remark 3.1. Although some calculi based on the π-calculus have the rule
(νāa)P = P included in structural congruence, we do not include this rule. This
is because the rule (νāa)P = P is incompatible with the categorical semantics.
That is J(νāa)KP = JP K does not hold in our categorical semantics defined in
Chapter 4. �
Example 3.1. Let us consider a process (ν b̄b)(νāa)(!a(x).b̄〈x〉 | ā〈x〉 | P ). Then
the following is a valid reduction:

(ν b̄b)(νāa)(!a(x).b̄〈x〉 | ā〈m〉 | P ) −→ (ν b̄b)(νāa)(!a(x).b̄〈x〉 | b̄〈m〉 | P )

This represents that a message m has been sent via the channel ā and received by
the channel a and now the message is m is ready to be sent by b̄. Or one can think
that the message m has now been stored in a communication medium b̄ and is
available to any unguarded subprocess of the form !b(y).Q because b̄ is connected
with b. Note that the process !a(x).b̄〈x〉 remains after the reduction because it is
a replicated process. Processes of the form !a(~x).b̄〈~x〉 are called forwarders and
will be written as a ↪→ b. As the name suggests they forward a message from
one place to another. Forwarders will play an important role throughout this
thesis because they will be treated as the syntactic counterpart of the identity
morphisms of categories. When x : T and y : T ⊥, we write x� y to mean x ↪→ y
if T = chi[~S] and otherwise y ↪→ x. �

We now introduce two behavioral equivalences: testing equivalence and barbed
congruence. These equivalences are two of the most studied behavioral equiva-
lences among the various equivalences defined for π-calculi. We will later use
these equivalences when we do a “sanity check” on the axiomatic semantics.
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In both testing equivalence and barbed congruence, two processes are con-
sidered to have the same behavior if “no difference can be observed when the
processes are put into arbitrary context”. To formalize this idea we formally
introduce the notion of observables and contexts. The observables of a pro-
cess are the names it can use for sending. For each name ā, we write P↓ā if
P ≡ (ν~x~y)(ā〈~z〉 | Q) and ā is free, and P⇓ā if P −→∗ Q↓ā for some Q. We do
not consider input names as observables because input actions are not observable
in an asynchronous setting. This is because output actions in an environment,
which is also described as πF -process, have no continuations. The set of contexts
ranged over by C, D is defined by the following grammar:

C, D ::= [ ] | (C | P ) | (P | C) | !a(~x).C.

A (∆′/∆)-context is a context C such that ∆′ ` C[P ] : � for every ∆ ` P : �.

Definition 3.1 (May-testing equivalence [33, 15]). Well sorted processes ∆ `
P : � and ∆ ` Q : � are may-testing equivalent at ∆, written ∆ ` P =may Q, if
C[P ]⇓ā ⇔ C[Q]⇓ā for every (∆′/∆)-context C and name ā. �

Definition 3.2 (Barbed bisimulation/Barbed congruence [96]). A strong barbed
bisimulation is a symmetric relation R on processes such that, whenever P R Q

1. P↓ā implies Q↓ā and

2. P −→ P ′ implies Q −→ Q′ and P ′ R Q′ for some Q′.

Similarly, a weak barbed bisimulation is a symmetric relation R on processes
such that,

1. P↓ā implies Q⇓ā and

2. P −→ P ′ implies Q −→∗ Q′ and P ′ R Q′ for some Q′.

The strong barbed bisimilarity •∼ and the weak barbed bisimilarity •≈ are the largest
strong barbed bisimulation and the largest weak barbed bisimulation, respec-
tively.

Sorted processes ∆ ` P : � and ∆ ` Q : � are strong (resp. weak) barbed
congruent at ∆, written ∆ ` P 'c Q (resp. ∆ ` P ≊c Q), if C[P ] •∼ C[Q] ((resp.
C[P ] •≈ C[Q])for every (∆′/∆)-context C. �

3.2.2 Axiomatic semantics

We define a class of equivalence, called the πF -theory, by the rules listed in
Figure 3.2. The πF -theory is the theory that will be shown to correspond to
compact closed Freyd category.

Definition 3.3. An equivalence E is a πF -theory if it is closed under the rules
in Figure 3.2. Here a ↪→ b̄ represents a forwarder process !a(~x).b̄〈~x〉 (cf. Exam-
ple 3.1). Any set Ax of equations-in-context has the minimum theory Th(Ax)
that contains Ax. We write Ax � ∆ ` P = Q if (∆ ` P = Q) ∈ Th(Ax). �

Let us examine each rule in Figure 3.2.
The rule (E-Beta) is reminiscent of the reduction relation. When C = ([ ] |

Q), (E-Beta) becomes

(νāa)(!a(~x).P | ā〈~y〉 | Q) = (νāa)(!a(~x).P | P{~y/~x} | Q)
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a /∈ fn(P, C) ā /∈ bn(C)
∆ ` (νāa)(!a(~x).P | C[ā〈~y〉]) = (νāa)(!a(~x).P | C[P{~y/~x}])

(E-Beta)

a, ā /∈ fn(P )
∆ ` (νāa)!a(~y).P = 0

(E-GC)
ā, a /∈ fn(c̄〈~x〉)

∆ ` c̄〈~x〉 = (νāa)(a ↪→ b̄ | c̄〈~x{ā/b̄}〉)
(E-FOut)

b, ā /∈ fn(P )
∆ ` (νāa)(b ↪→ ā | P ) = P{b/a}

(E-Eta)

P ≡ Q

∆ ` P = Q
(E-SCong)

∆ ` P = Q C : ∆′/∆-context
∆′ ` C[P ] = C[Q]

(E-Ctx)

Figure 3.2: Inference rules of equations-in-context. Each rule has implicit as-
sumptions that the both sides of the equation are well-sorted processes.

where a /∈ fn(P, Q), which is indeed a special case of the reduction.
The rule (E-Beta), however, is not a conservative extension of the reduction

due to the side condition. The side condition is important because it prevents πF -
theories from collapsing. Without the side condition, every πF -theory would be
forced to contain the symmetric and transitive closure of the reduction relation;
thus it would identify P | (νāa)(!a().P | !a().Q) with Q | (νāa)(!a().P | !a().Q)
for every processes P and Q (where ā, a are fresh), because

(νāa)(ā〈〉 | !a().P | !a().Q) −→ P | (νāa)(!a().P | !a().Q)
(νāa)(ā〈〉 | !a().P | !a().Q) −→ Q | (νāa)(!a().P | !a().Q).

Note that the above argument relies on the presence of race conditions.
Another, relatively minor, difference compared to the reduction relation is

that application of (E-Beta) is not limited to the contexts of the form [ ] | Q.
We can therefore rewrite a (sub)process guarded by an input prefixing. This
kind of extension can be found in, for example, work by Honda and Laurent [54]
studying π-calculus from a logical perspective. Nevertheless, this kind of law
has been studied since the birth of the i/o-typed calculus [106], and thus is not
something that was artificially introduced to establish a correspondence between
π-calculus and logic.

The rule (E-GC) is a “garbage-collection” law. Because no process in the
environment can send a message to the hidden name a, the process !a(~x).P will
never be invoked and thus can be safely discarded. This rule is sound with
respect to many behavioral equivalences, including barbed congruence. Rules of
this kind often appear in the literature studying logical aspects of concurrent
calculi (e.g. [54, 133]).

Another well-known rule is (E-FOut) that is used to replace an output of
free names with that of bound names. This kind of operation has been studied
in [14, 88] as a part of translations from the π-calculus to its internal fragments.
Internal π-calculus [116], is a π-calculus where free outputs are forbidden and
only bound outputs, i.e. outputs of newly created names, are allowed.2

The rule (E-FOut) can also be seen as a variant of the η-rule of abstractions,
as in the λ-calculus and in the higher-order π-calculus [115]. In the latter, an

2Free outputs can be eliminated from πF -processes by using the rules (E-FOut) and
(E-Eta), i.e. external mobility can be encoded by internal mobility [14, 116]. If the calcu-
lus is local [88, 136], then we do not need (E-Eta) to eliminate free outputs.
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output name b̄ can be identified with an abstraction (~y).b̄〈~y〉. With this identi-
fication (E-FOut) becomes an admissible rule in the presence of the η-rule of
abstraction; for example,

(νāa)(a ↪→ b̄ | c̄〈ā〉) = (νāa)(a ↪→ b̄ | c̄〈 (~y).ā〈~y〉 〉) = c̄〈 (~y).b̄〈~y〉 〉 = c̄〈b̄〉

where we use (E-Beta) and (E-GC) in the second step.
The rule (E-Eta) requires that forwarders to work as a substitution for input

names. To our knowledge, this rule is new and has not been studied elsewhere.
This is probably because this law is not valid in most of the behavioral equiv-
alences for π-calculus. For example, let us consider the case where P

def= 0.
The process 0 and P ′ def= (ν b̄b)(!a().b̄〈〉 | 0) can be distinguished by a context
C

def= (νāa)(ā〈〉 | !a().ō〈〉 | [ ]), where ō is the observable. The process C[P ′] can
reduce as

C[P ′] −→ (νāa)(ν b̄b)(!a().b̄〈〉 | b̄〈〉 | !a().ō〈〉)

and after this reduction we can never observe the output ō. However, there is
no reduction from C[0] that matches this reduction. Though the rule (E-Eta)
has a problem from an operational perspective, it is inevitable to include this
rule into the logical axioms of πF -theory in order to achieve a correspondence to
a certain categorical structure; we shall explain the details later in this chapter
(Section 3.4).

Remaining rules (E-SCong) and (E-Ctx) are easy to understand. The for-
mer requires that structurally congruent processes should be identified; the latter
says that a πF -theory is a congruence.

Let us introduce some admissible rules for convenience. The following struc-
tural rules are derivable.

∆ ` P = Q x /∈ fn(∆)
∆, x : T ` P = Q

(E-Wk)
∆, x : S, y : T, ∆′ ` P = Q

∆, y : T, x : S, ∆′ ` P = Q
(E-Ex)

We note that we also have the substitution rule as a derived rule.

Lemma 3.1. Suppose that ∆, x : T ` P = Q and y /∈ fn(∆). Then ∆, y : T `
P{y/x} = Q{y/x}.

Since the proof of this lemma uses the fact that forwarders behaves as sub-
stitutions, let us first prove some properties of forwarders.

Lemma 3.2.

1. (νāa)(a ↪→ b̄ | P ) = P{b̄/ā} if a /∈ fn(P ).

2. (ν b̄b)(a ↪→ b̄ | b ↪→ c̄) = a ↪→ c̄.

3. (ν ~T ~y~y′)(~x� ~y | ~y′ � ~z) = ~x� ~z. Here we assume that no names are
shared between ~x, ~y, ~y′ and ~z.

Proof.

1. We first rewrite P into an equivalent process P ′ such that ā only appears
in subject positions. Let P ′ be the process obtained by replacing every free
output c̄i〈~xi〉 that contains ā in an object position with (νā′

ia
′
i)(a′

i ↪→ ā |
c̄i〈~xi{ā′

i/ā}〉) by using (E-Out). Note that the type system ensures c̄i 6= ā
for all i.
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Now, there exists a multi-hole context C (which may be a context without
a hole, i.e. a process) such that P ′ = C[ā〈~b1〉] · · · [ā〈~bn〉] and ā /∈ fn(C).
Since a ↪→ b̄ = !a(~x).b̄〈~x〉, we can apply the axiom (E-Beta) n times to
show

(νāa)(a ↪→ b̄ | P ′) = (νāa)(a ↪→ b̄ | C[b̄〈~b1〉] · · · [b̄〈~bn〉])

= (νāa)(a ↪→ b̄ | C[ā〈~b1〉{b̄/ā}] · · · [ā〈~bn〉{b̄/ā}])
= (νāa)(a ↪→ b̄ | P ′{b̄/ā}).

Note that each subprocess of the form (νā′
ia

′
i)(a′

i ↪→ ā | c̄i〈~xi{ā′
i/ā}〉), which

is equal to c̄i〈~xi〉, has been replaced with (νā′
ia

′
i)(a′

i ↪→ b̄ | c̄i〈~xi{ā′
i/ā}〉). Us-

ing the rule (E-FOut), each of these process can be replaced by c̄i〈~xi{b̄/ā}〉.
So, we have (νāa)(a ↪→ b̄ | P ′{b̄/ā}) = (νāa)(a ↪→ b̄ | P{b̄/ā}).
Thus, we conclude

(νāa)(a ↪→ b̄ | P ) = (νāa)(a ↪→ b̄ | P{b̄/ā})
= (νāa)(a ↪→ b̄) | P{b̄/ā} (ā, a /∈ fn(P{b̄/ā}))
= 0 | P{b̄/ā} (E-GC)
= P{b̄/ā}.

2. This is a direct consequence of (E-Eta), but can also be proved without
(E-ETA) by using (1).

3. Follows from (2).

Now it is easy to see that the substitution rule is derivable.

Proof of Lemma 3.1. The proof is by a case analysis on the sort T . If T is a
sort for input channels, then we have ∆, y : T, x̄ : T ⊥, x : T,` P = Q by
(E-Wk) and (E-Ex). Since ∆, y : T, x̄ : T ⊥, x : T ` y ↪→ x̄, we have ∆, y :
T ` (νx̄x)(y ↪→ x̄ | P ) = (νx̄x)(y ↪→ x̄ | Q). Using (E-Eta), we conclude
∆, y : T ` P{y/x} = Q{y/x}.

The proof for the remaining case is similar. The only difference is to use (1)
of Lemma 3.2 instead of (E-Eta).

As briefly explained, all the rules except for (E-Eta) are well-studied and
these rules can be justified from the operational viewpoint as well. The following
is a well-known result on the i/o-typed π-calculus (see, e.g. [119, 106]).

Proposition 3.3. Weak barbed congruence is closed under all rules but (E-Eta).

Proof. The proof is essentially the same as in the case of the standard i/o-typed
π-calculus [119]. The i/o-separation and disallowing non-replicated inputs does
not affect the proof.

In case of may-testing equivalence, which is a rather coarse equivalence,
(E-Eta) holds as well. Hence, we have the following result:

Proposition 3.4. May-testing equivalence is a πF -theory.
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3.3 Expressiveness

The aim of this short section is to clarify what can and cannot be written in the
πF -calculus.

Our calculus can express systems with cyclic structures, which cannot be
expressed in session-typed calculi that correspond to linear logic [19, 133]. A
typical example is the Milner’s cyclic scheduler [89].

Example 3.2. In the πF -calculus, the Milner’s cyclic scheduler can be expressed
as follows:

Sched def= (νā0a0) . . . (νān−1an−1)(ν b̄0b0) . . . (ν b̄n−1bn−1)
(P0 | · · · | Pn−1 | Q0 | · · · | Qn−1 | b̄0〈〉)

Pi
def= !bi().(ν r̄r)(āi〈r̄〉 | !r().b̄i+1modn〈〉)

Qi
def= !ai(r̄).Ri

provided that the process Ri sends an acknowledgment using r̄ at the end of
its computation and that r̄ is linearly used. Here the processes Pi are used to
express the scheduling policy and each Qi is the processes that “does the job”.
The process Qi is taken care by the process Pi and once the Pi receives the
acknowledgement from Qi it sends a message via b̄i+1 mod n and then Pi+1 mod n

invokes the next job Qi+1 mod n. More complicated scheduling policies can also
be expressed by changing the structure of P1, . . . , Pn−1. �

This expressive power comes at the cost of the possibility of deadlock. For
example, in πF -calculus we can write process like (νāa)(ν b̄b)(!a().b̄〈〉 | !b().ā〈〉).

As we have already seen, the πF -calculus can model global nondeterminism
that arises due to a race condition. For instance, the following process is an
example of race condition.

(νāā)(ā〈〉 | !a().P1 | !a().P2)

This kind of process cannot be written in session-typed calculi that correspond
to linear logic [19, 133].

Functional programming can also be done using the πF -calculus. As we shall
see in Chapter 6, the πF -calculus can encode the simply typed λ-calculus.

However, there are things that πF -process cannot represent due to the absence
of non-replicated inputs. It seems impossible to encode imperative features such
as reference cells and locks in the πF -calculus. The following is the typical way
to encode a read operation let x = !` in P of a reference ` in the asynchronous
π-calculus [51]:

`(x).(¯̀〈x〉 | P ).

The reference ` storing a value v is just an output message ¯̀〈v〉 and the read
operation is just an input at `.3 Note that the above process immediately emits
a message at ¯̀ with the new content of the reference, which is unchanged in
the case for read operation. Similarly, a write operation ` := v; P is encoded as
`( ).(`〈v〉 | P ), where the underscore represents a name that does not appear in
P . Since this encoding relies on the presence of non-replicated input, we cannot
use this encoding in the πF -calculus. On the other hand, non-replicated inputs

3Here we are assuming that ` and ¯̀ are connected by ν and that there is always exactly one
output of the form ¯̀〈x〉 that can be accessed.
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are usually implemented by using reference cells; a reference cell is used to record
whether we have used the input or not. From these observations, we think that
the presence of reference cells is equivalent to the presence of the non-replicated
inputs. Hence, we conjecture that it is impossible to encode reference cells in
the πF -calculus and the lack of these imperative features is a reason why we
succeeded to give a corresponding categorical structure to the πF -calculus.

3.4 Necessity of the η-rule

When we introduced the axiomatic semantics of the πF -calculus, we have ex-
plained that (E-Eta) is problematic from an operational viewpoint, but is nec-
essarily to have this rule. To make the long story short, (E-Eta) is necessary
if πF -calculus were to correspond to a certain category (not limited to compact
closed Freyd category). This section formally proves this argument under some
mild assumptions. We think that this gives a certain explanation on why cate-
gorical type-theoretic correspondence for π-calculus has not been discovered.

Let us forget about πF -theory for a moment and reconsider what it means
to have a Curry-Howard-Lambek correspondence. To establish a Curry-Howard-
Lambek correspondence is to find a nice algebraic or categorical structure of
terms. For example, the original Curry-Howard-Lambek correspondence reveals
the cartesian closed structure of λ-terms. Such a nice structure would become
visible only when appropriate notions of composition and of equivalence could be
identified, such as substitution and βη-equivalence for the λ-calculus.

In the context of π-calculus (or other process calculi) “parallel composition +
hiding” [52] has been used to compose processes. Let us explain what “parallel
composition + hiding” means using well-sorted πF -processes. Given

~x : ~T , ~y : ~S ` P : � and ~w : ~S⊥, ~u : ~U ` Q : �,

their composite via (~y, ~w)is defined as

~x : ~T , ~u : ~U ` (ν ~S ~y ~w)(P | Q) : �.

This kind of composition appears quite often in logical studies of π-calculi [3,
11, 54]. It also plays a central role in interaction category paradigm proposed by
Abramsky, Gay and Nagarajan [5].

So it remains to determine an equivalence on πF -processes, appropriate for our
purpose. This section examines behavioral equivalences proposed and studied in
the literature. Among the various behavioral equivalence, we start by considering
weak barbed congruence because it is one of the most widely used equivalences.

Let us consider a category-like structure C in which an object is a sort and a
morphism is an equivalence class of πF -processes modulo weak barbed congruence
≊c. More precisely, a morphism from T to S is a process x : T, y : S⊥ ` P : �
modulo weak barbed congruence (and renaming of free names x and y). Then the
composition (i.e. “parallel composition + hiding”) is well-defined on equivalence
classes, because barbed congruence is a congruence. This is a fairly natural
setting.

We have a strikingly negative result.

Theorem 3.5. C is not a category.

Proof. In every category, if f : A −→ A is a left-identity on A (i.e. f ◦ g = g
for every g : A −→ A), then f is the identity on A. The process a : cho[], b̄ :
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chi[] ` !a().b̄〈〉 : � seen as a morphism (cho[]) −→ (cho[]) is a left-identity but not
the identity. The former means that c : cho[], b̄ : chi[] `

(
(νāa)(!a().b̄〈〉 | P )

)
≊c

P{b̄/ā} for every c : cho[], ā : chi[] ` P : �. This holds for weak barbed congru-
ence. Being a right-identity means that (ν b̄b)(P | a ↪→ b̄) ≊c P{a/b}, which is
exactly the same as requiring the (E-Eta) to hold. However, as we explained,
weak barbed congruence does not satisfy the rule (E-Eta).

There are few points worth noting. First, it should be emphasized that this
argument also applies to many other equivalences such as must-testing equiva-
lence [32]. Second, race condition seems essential for the proof, specifically, for
the part proving that the process !a().b̄〈〉 is not the identity. Recall that when
we demonstrated that !a().b̄〈〉 does not satisfy (E-Eta) we used the process

(νāa)(ā〈〉 | !a().ō〈〉 | (ν b̄b)(!a().b̄〈〉 | 0))

where there are two receivers that can receive a message send via ā. Session-typed
calculi in Caires, Pfenning and Toninho [18, 19], which correspond to linear logic,
do not seem to suffer from this problem. In our understanding, this is due to the
race-freedom of their calculi.

Remark 3.6. The argument in the proof of Theorem 3.5 is widely applicable to
i/o-typed calculi, not specific to the πF -calculus. In particular, i/o-separation
(i.e. absence of chi/o[~T ]) has no effect.

The above theorem says that many conventional behavioral equivalences for
the π-calculus induce only semicategories, which may not have identities for
some objects. This situation is reminiscent of the β-theory of the λ-calculus,
of which categorical model is given by semi-categorical notions [50].4 Adding the
rule (E-Eta) resolves this problem and this is the reason why we named the rule
“η-rule”.

4To be more precise, the situation of πF -calculus and β-theory of the λ-calculus is slightly
different. The β-theory of the λ-calculus is modeled using semi-functors and semi-adjunctions,
but these notions are built upon (ordinary) categories not semicategories.
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Chapter 4

Categorical Semantics

Categorical semantics attempts to model programming languages by mapping a
(typed) program Γ ` M : τ to a morphism JMK : JΓK → JτK in some category,
where the types are interpreted as objects in that category. In a categorical type
theoretic approach, typically the interpretation is not given in a specific category
but in categories belonging to a certain class of categories C . There are properties
that we would like to expect against the semantics. The following two properties
are of particular importance:

Soundness M ' N implies JMKC = JNKC for every C ∈ C

Completeness JMKC = JNKC for every C ∈ C implies M ' N

Here we are assuming that a notion of program equivalence ' is already given.
Soundness ensures that we can prove equivalence of pairs of programs by showing
their equality in the model. The completeness, on the other hand, ensures that
we can use the semantics for proving that a pair of programs are inequivalent.

The purpose of this chapter is to give, for πF -calculus, a precise analog of this
standard categorical type theory. We introduce the class of compact closed Freyd
categories and show that the interpretation of πF -processes in compact closed
Freyd categories are sound and complete with respect to πF -theories. A process
in context ∆ ` P : � will be interpreted as a morphism JP K : J∆K → I, where
I is the unit object of a monoidal category. The completeness will be shown by
constructing a term model, a compact closed Freyd category that is syntactically
built from the πF -calculus; this is a categorification of the Lindenbaum-Tarski
construction. We also show that every model of πF -calculus is equivalent to
a functor with the term model as domain, preserving the compact closed Freyd
structure. The correspondence between models and structure preserving functors
is the standard criteria required for a correspondence between a programming
language (or a type theory) and a categorical structure.

This chapter is organized as follows. Section 4.1 defines compact closed Freyd
categories as well as the interpretation of πF -processes. The soundness of the
interpretation is also proved in this section. In the beginning of Section 4.1, we
also give an informal explanation on the interpretation so the readers may read
this part even if they are not familiar with category theory. In Section 4.2, we
first define the term model and prove the completeness using the term model.
Then we end the chapter by proving the correspondence between models and
structure preserving functors.
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4.1 Compact Closed Freyd Categories and Interpretation of πF -
processes

This section defines the interpretation of πF -processes in compact closed Freyd
categories and proves the soundness of the interpretation. We first give an infor-
mal overview of the interpretation in Section 4.1.1. Section 4.1.2 formally defines
compact closed Freyd categories and the interpretation for πF -processes is given
in Section 4.1.3. The proof of the soundness is treated as an individual section
(Section 4.1.4).

4.1.1 Overview

Before getting into the technical details of the interpretation, let us explain the
ideas behind the interpretation without heavily using categorical notions. We
employ the idea that categories can be regarded as a deductive system [75, 77]
and give a rather “syntactical” explanation to the interpretation. We informally
present compact closed Freyd category as a deductive system and discuss how to
interpret πF -processes by using this deductive system.

As repeatedly mentioned, compact closed Freyd category is a categorical
structure that has both closed Freyd and compact closed structures. There-
fore, to explain what compact closed Freyd category is, we first need to explain
closed Freyd and compact closed categories.

A closed Freyd category is a model of higher-order programs with side effects.
It has, among others, the structures to interpret the function type A⇒ B and its
constructor and destructor, namely, abstraction λx.t and application t u. Under
some simplification, closed Freyd category, when regarded as a deductive system,
can be seen as a typed λ-calculus with pairings. As the usual λ-calculus, compact
closed Freyd category can duplicate variables; in terms of logic, contraction is
admissible.

A compact closed category can be seen as multiplicative linear logic [43] (MLL
for short) with the left rule:1

∆, A, A∗ ` I

∆ ` I

[∆ ` A∗ ∆ ` A

∆, ∆ ` I

]
. (4.1)

(The right rule is the companion, which itself is derivable in MLL.)
Since we define a compact closed Freyd category as the combination of the

two structures mentioned above, compact closed Freyd category inherits the con-
structors from the two structures. It has the structures corresponding to the
following type constructors:

(closed Freyd) I, A⊗B, A⇒ B (compact closed) I, A⊗B, A∗.

Note that the pair type A⊗B (as well as the unit I) coming from the closed Freyd
structure is identified with that from the compact closed structure. Inference rules
for a compact closed Freyd category are those for functional languages and the
above rules of the compact closed structure.

Roughly speaking, interpreting πF -calculus in a compact closed Freyd cate-
gory is to interpret it by using these constructs. As mentioned in Section 1.3,
following the observation made by Sangiorgi [115], we regard

1From the categorical viewpoint, the left rule corresponds to precomposing the unit morphism
η : A ⊗ A∗ → I of a compact closed category (Definition 2.6). The right rule corresponds to
postcomposing the counit morphism ε : A∗ ⊗ A → I.
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• an output ā〈~x〉 as an application of a function ā to a tuple 〈~x〉, and

• an input !a(~x).P as an abstraction (~x).P (or λ~x.P ) located at a.

We interpret the output action by using the function application. Hence the type
cho[T ] is regarded as a function type T ⇒ I (where the unit type I is the type
for processes i.e. �); then the typing rule for output actions becomes

∆, ā : (T ⇒ I), x : T ` ā : T ⇒ I ∆, ā : (T ⇒ I), x : T ` x : T

∆, ā : (T ⇒ I), x : T ` ā〈x〉 : I

The type chi[T ] is understood as (T ⇒ I)∗; the input-prefixing rule becomes

∆, a : (T ⇒ I)∗ ` a : (T ⇒ I)∗
∆, a : (T ⇒ I)∗, x : T ` P : I

∆, a : (T ⇒ I)∗ ` (x).P : T ⇒ I

∆, a : (T ⇒ I)∗ ` !a(x).P : I

This derivation directly expresses the intuition that an input-prefixing is abstrac-
tion followed by allocation; here allocation is interpreted by using the compact
closed structure, i.e. connection of ports.

The remaining constructs P | Q and (νāa)P are also easy to interpret. We
regard parallel composition as pairing. Because we have the compact closed
structure, we can use the (right) introduction rule of ⊗ in MLL,

∆ ` P : I ∆ ` Q : I

∆, ∆′ ` 〈P, Q〉 : I ⊗ I,

as a rule for pairing. Since (1) I ⊗ I is isomorphic to I and (2) contractions,
which comes from the closed Freyd structure, are allowed, the following rule is
derivable from the above rule.

∆ ` P : I ∆ ` Q : I

∆ ` P | Q : I

Since this rule corresponds to the typing rule of parallel execution, this means that
we can interpret parallel composition. The name restriction also has a natural
derivation:

∆, a : (T ⇒ I)∗, ā : (T ⇒ I) ` P : I

∆ ` (νāa)P : I

that corresponds to the left rule in (4.1).

4.1.2 Compact closed Freyd category

We now give the formal definition of compact closed Freyd categories. As briefly
explained, compact closed Freyd category is defined as a combination of compact
closed category and closed Freyd category. We start by defining the missing
ingredient, namely the (closed) Freyd category.

Definition 4.1 (Freyd category [111]). A Freyd category is given by

• a category with (chosen) finite products (C,⊗, I),

• a monoidal category (K,⊗, I, l, r, α) and
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• an identity-on-object strict symmetric monoidal functor J : C → K.

�

The categories C and K are called the “category of values” and “category
of computations” respectively and we will use these term too. The reason they
are named as such comes from the fact that Freyd categories were introduced
in the study of computational effects [111] and there values and computations
were interpreted as morphisms in C and K respectively. We note that Obj(C) =
Obj(K) because J is an identity-on-object functor.

For simplicity, in what follows, we only consider Freyd categories whose monoidal
and cartesian structures are strict. Since every Freyd category is equivalent to a
strict version of Freyd category the restriction to strictness is not very severe.

Remark 4.1. The above definition is a special case of the original definition of
Freyd category [111]. The original definition uses the notion of premonoidal cat-
egories [110]: the original definition can be obtained by relaxing the requirement
of K being a monoidal category to premonoidal category in the above definition.

We restrict the definition to monoidal categories to capture concurrency. A
premonoidal category is “a monoidal category whose monoidal product is not
necessarily a bifunctor” i.e. (id⊗f); (g⊗ id) may differ from (g⊗ id); (id⊗f). The
difference between these two morphisms models a computation that is sensitive
to evaluation order such as computational effects. If we use the syntax of the
computational λ-calculus [97], the difference between the two morphisms can be
expressed by the following inequality:

let x = M in let y = N in L 6= let y = N in let x = M in L.

On the other hand, the bifunctoriality of monoidal products allows us to equate
the above two expressions. Hence, we may consider that M and N are concur-
rently executed because the evaluation order does not matter. �

Definition 4.2 (Compact closed Freyd category). A Freyd category (C,K, J) is
a compact closed Freyd category if

• K is a compact closed category with the unit ηA : I → A ⊗ A∗ and the
counit εA : A∗ ⊗A→ I and

• the functor J : C → K has a (chosen) right adjoint I ⇒ (−) : K → C.

We write J : C ⊥ K : I ⇒ (−), J : C ⊥ K or even J to represent a compact
closed Freyd category; the last notation is used when we do not have to deal with
the actual data such as morphisms in C and K. �

The readers might be confused because we defined compact closed Freyd cat-
egory without defining closed Freyd category. This is not a mistake.

A closed Freyd category is a Freyd category with an additional data, but
in the case of compact closed Freyd category, this data can be defined using
the other data compact closed Freyd category has. Specifically, a closed Freyd
category [111] is a Freyd category together with a right adjoint for the functor
J(−)⊗A, for each object A. The right adjoint is often denoted by A⇒ (−) and
A⇒ B is called the Kleisli exponential.

Proposition 4.1. Every compact closed Freyd category J : C ⊥ K : I ⇒ (−) is
a closed Freyd category.
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Proof. The following natural isomorphisms defines the Kleisli exponential:

K(J(A)⊗B, C) ∼= K(J(A), B∗ ⊗ C)
∼= C(A, I ⇒ (B∗ ⊗ C)).

This means that the “higher-order structure” of compact closed Freyd cate-
gory is derivable; this fact will play an important role in Chapter 6 where we com-
pare higher-order calculi with the π-calculus. We write ΛA,B,C for the natural iso-
morphism fromK(J(A)⊗B, C) to C(A, B ⇒ C) and evalA,B : J(A⇒ B)⊗A→ B
for the counit of the adjunction. These morphisms will be used to interpret ab-
stractions (which is used to model input prefixing) and applications (which is
used to model output actions).

Let us now give some examples of compact closed Freyd categories.

Example 4.1. One of the most elementary examples of a compact closed Freyd
category is (the strict monoidal version of) J : Sets ⊥ Rel : P. Here J is the
identity-on-object functor that maps a function to its graph and P is the “power
set functor” that maps a relation R ⊆ A× B to a function P(R) def= {(SA, SB) |
SB = {b | a ∈ SA, a R b}}.

A similar, but non-degenerated example (i.e. an example with A∗ 6∼= A) is
obtained by replacing sets with posets, functions with monotone functions and
relations with downward closed relations. �

Example 4.2. A more sophisticated example is taken from Laird’s game-semantic
model of π-calculus [74]. Precisely speaking, the model in [74] itself is not com-
pact closed Freyd, but it is not difficult to define its variant that is compact closed
Freyd.2

This model is important since it is fully abstract with respect to may-testing
equivalence [74, Theorem 1]. Hence our framework has a (syntax-free) model
that captures the may-testing equivalence. �

4.1.3 Interpretation

This section defines the interpretation of πF -processes in compact closed Freyd
categories. The interpretation map J−K maps sorts and sort environments to
objects as usual, and a well-typed process ∆ ` P : � to a morphism JP K : J∆K→ I
in K.

Figure 4.1 defines the interpretation of sorts and processes. Here the mor-
phism π∆

x : J∆K→ JTjK is the j-th projection provided that ∆ = (y1 : T1, . . . , yn : Tn)
and x = yj . The definition of the interpretation is obtained by formalizing the
ideas presented in Section 4.1.1. For example, the interpretation of !a(~x).P is the
abstraction Λ (from the closed Freyd structure) followed by “name allocation” ε
(from the compact closed structure).

Example 4.3. In order to better understand how reductions are modeled, let us
consider y : T ` (νāa)(ā〈y〉 | !a(x).P ) : �, where ā, a, y /∈ fn(P ) and a : chi[T ].
By (E-Beta) and (E-GC), this process is equal to P{y/x}. It is natural to
expect that the interpretations of the two processes coincide; indeed it does. As
the following calculation indicates, our semantics factorizes the reduction into

2(For readers familiar with game semantics) To obtain a compact closed Freyd model we
only need to allow non-negative arenas as objects, and thus the modification does not have any
impact.
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JT K
Jchi[T1, . . . , Tn]K def= ((JT1K⊗ · · · ⊗ JTnK)⇒ I)∗

Jcho[T1, . . . , Tn]K def= (JT1K⊗ · · · ⊗ JTnK)⇒ I

J∆K Jx1 : T1, . . . , xn : TnK def= JT1K⊗ · · · ⊗ JTnK
J∆ ` P : �K

J∆ ` 0 : �K def= J(!∆)

J∆ ` !a(~x).P : �K def= J(〈π∆
a , Λ∆, ~T ,I(J∆, ~x : ~T ` P : �K)〉); εch[~T ]J∆ ` ā〈~x〉 : �K def= J(〈π∆
ā , π∆

x1 , . . . , π∆
xn
〉); eval~T ,IJ∆ ` P | Q : �K def= J(d∆); (J∆ ` P : �K⊗ J∆ ` Q : �K)

J∆ ` (νxy)P : �K def= (id∆ ⊗ ηT ); J∆, x : T, y : T ⊥ ` P : �K
Figure 4.1: Interpretation of types and processes.

two steps: (1) the “transmission” of the closure λ~x.P by the triangle identity of
the compact closed structure, and (2) the β-reduction modelled by eval of the
closed Freyd structure:

Jy : T ` (νāa)(ā〈y〉 | !a(x).P ) : �K
= (idT ⊗ ηcho[T ]); Jy : T, ā : cho[T ], a : chi[T ] ` ā〈y〉 | !a(x).P : �K
= (id⊗ η); (Jy : T, ā : cho[T ] ` ā〈y〉 : �K⊗ Ja : chi[T ] ` !a(x).P : �K)
= (id⊗ η); ((cT,cho[T ]; evalT,I)⊗ (idch[T ]∗ ⊗ J(Λ(Jx : T ` P : �K))); εT ⇒I

= (idT ⊗ J(Λ(Jx : T ` P : �K))); cT,cho[T ]; evalT,I (By triangle identity)
= (J(Λ(Jx : T ` P : �K))⊗ idT ); evalT,I

= Jx : T ` P : �K (By the universality of eval)
= Jy : T ` P{y/x} : �K.

In the above calculation, we implicitly use derived rules for weakening and ex-
change (See Lemma 4.4). �

Example 4.4. The interpretation of a forwarder a : chi[~T ], b̄ : cho[~T ] ` a ↪→ b̄ : �
is the counit εcho[~T ] : Jcho[~T ]K∗⊗Jcho[~T ]K −→ I in K, which is the one-sided form
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of the identity. In fact, this can be checked as follows (where S
def= cho[~T ])

Ja : chi[~T ], b̄ : cho[~T ] ` a ↪→ b̄K
= Ja : chi[~T ], b̄ : cho[~T ] ` !a(~x).b̄〈~x〉K
= J((dS∗)⊗ idS); (idS∗ ⊗ cS∗,S); (J(Λ(Ja : S⊥, b̄ : S, ~x : ~T ` b̄〈~x〉K))⊗ idS∗);

cS,S∗ ; εS

= J((dS∗)⊗ idS); (J(!S∗)⊗ cS∗,S); (J(Λ(Jb̄ : S, ~x : ~T ` b̄〈~x〉K))⊗ idS∗);
cS,S∗ ; εS (Weakening & naturality of Λ)

= (idchi[~T ] ⊗ J(Λ(Jb̄ : ch[~T ], ~x : ~T ` b̄〈~x〉K))); εcho[~T ]
(By naturality of c, id = cA,B; cB,A and dA; (!A ⊗ idA) = idA)

= (idchi[~T ] ⊗ J(Λ(eval~T ,I))); εcho[~T ]

= εch[~T ]. (By Λ(eval) = id)

Therefore, the interpretation reflects the fact that a forwarder is the identity in
every πF -theory. �

Remark 4.2. As we mentioned in Remark 3.1, J(νāa)P K = JP K may not hold
even if ā, a /∈ fn(P ). For example, let us consider the case where P = 0. ThenJ` P : 0K = idI whereas J` (νT āa)0 : �K = ηJT K; J(!JT K⊗JT K∗), which is not equal
to the identity.

We now state the soundness theorem that says that if P = Q are provable,
then their interpretations are the same in all compact closed Freyd categories.

Definition 4.3. We say that an equational judgement ∆ ` P = Q is valid in
J if J∆ ` P : �KJ = J∆ ` Q : �KJ . Given a set Ax of non-logical axioms, J is
a model of Ax, written J |= Ax, if it validates all judgements in Ax. We write
Ax � ∆  P = Q if ∆ ` P = Q is valid in every J such that J |= Ax. �

Theorem 4.3 (Soundness). If Ax � ∆ ` P = Q, then Ax � ∆  P = Q.

4.1.4 Proof of soundness

The soundness is shown by checking that the interpretations is sound with respect
to the logical axioms listed in Figure 3.2. The soundness of each logical axiom
is proved by lengthy, but (arguably) simple calculation. The presentation of
this subsection is rather dry because calculation takes up most of the part. We
believe that the intuition behind the interpretation has already been conveyed by
the previous subsection.

For readability, in what follows, we may write J∆ ` P K or even JP K forJ∆ ` P : �K. We may also omit the semantic bracket and write T for JT K
especially when the object appears as a superscript/subscript.

We start by giving auxiliary lemmas, which are the semantic counterpart of
Exchange and Weakening rules, that will be heavily used throughout this section
without further comment.

Lemma 4.4 (Exchange and Weakening).

1. If ∆, x : S, y : T, ∆′ ` P : �, then J∆, x : S, y : T, ∆′ ` P K = (id∆ ⊗ cS,T ⊗
id∆′); J∆, y : T, x : S, ∆′ ` P K.

2. Let ∆, x : T ` P : � such that x /∈ fn(P ). Then J∆, x : T ` P K =
(id∆ ⊗ J(!T )); J∆ ` P K.
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Proof. By straight forward induction on the type derivation. The statement (1)
is used in the proof of (2).

Below we proceed by checking the soundness of each logical axiom one by one.
The most nontrivial case is the case for (E-Beta) so we will later prove this as
an individual lemma.

Lemma 4.5. Suppose that ∆ ` P and ∆ ` Q. If P ≡ Q by an axiom of the
structural congruence, then J∆ ` P K = J∆ ` QK.
Proof. By easy calculation.

Lemma 4.6. The interpretation is sound with respect to (E-GC), (E-FOut)
and (E-Eta).

Proof.
(Proof for (E-GC))

J∆ ` (νāa)!a(~y).P K
= (id∆ ⊗ ηcho[~T ]); J∆, ā : cho[~T ], a : chi[~T ] ` !a(~y).P K
= (id∆ ⊗ ηcho[~T ]); (id∆ ⊗ J(!cho[~T ])⊗ idcho[~T ]∗); J∆, a : chi[~T ] ` !a(~y).P K
= (id∆ ⊗ ηcho[~T ]); (id∆ ⊗ J(!cho[~T ])⊗ idcho[~T ]∗); (id∆ ⊗ J(dcho[~T ]∗));

(J(Λ∆a:chi[~T ], ~T ,I(J∆, a : chi[~T ], ~x : ~T ` P K))⊗ idcho[~T ]∗); ccho[~T ],cho[~T ]∗ ; εcho[~T ]

= (id∆ ⊗ ηcho[~T ]); (id∆ ⊗ J(!cho[~T ])⊗ idcho[~T ]∗); (id∆ ⊗ J(dcho[~T ]∗));

(id∆ ⊗ J(!cho[~T ]∗)); J(Λ∆, ~T ,I(J∆, ~x : ~T ` P K))⊗ idcho[~T ]∗); ccho[~T ],cho[~T ]∗ ; εcho[~T ]
(Weakening & naturality of Λ)

= (id∆ ⊗ ηcho[~T ]); (id∆ ⊗ J(!cho[~T ])⊗ idcho[~T ]∗); J(Λ∆, ~T ,I(J∆, ~x : ~T ` P K))⊗ idcho[~T ]∗);

ccho[~T ],cho[~T ]∗ ; εcho[~T ]

= (ηcho[~T ] ⊗ id∆); (J(!cho[~T ])⊗ idcho[~T ]∗ ⊗ J(Λ∆, ~T ,I(J∆, ~x : ~T ` P K))); εcho[~T ]
(Naturality of c)

= J(Λ∆, ~T ,I(J∆, ~x : ~T ` P K)); J(!cho[~T ]) (Triangle identity)

= J(!∆)
= J∆ ` 0K.

((E-FOut) and (E-Eta)) Follows from the fact that forwarders are inter-
preted as counits of the compact closed category and the triangle identities. The
calculation is similar to that in Example 4.4.

We are left to show that the interpretation is sound with respect to (E-Beta).
To facilitate the calculation to show the soundness of (E-Beta), we prepare

two technical lemmas. These lemmas use the trace operator [62]. A trace operator
in a symmetrical monoidal category (C,⊗, I, c) is a natural family of functions
TrX

A,BC(A⊗X, B⊗X)→ C(A, B) that satisfies certain laws (see [47] for the laws).
It should be noted that every compact closed category has a canonical trace [62,
48], i.e. a trace operator uniquely exists in every compact closed category. The
canonical trace operator is defined by

TrX
A,B(f) def= (idA ⊗ ηX); (f ⊗ idX∗); (idB ⊗ (cX,X∗ ; εX)).

Using the trace operator instead of directly using units or counits of the compact
closed category simplifies the calculation and makes the proof more readable.
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Lemma 4.7. Let ∆ ` (νāa)(Q | !a(~x).P ) : � be a well-sorted process such that
a /∈ fn(P, Q). Suppose that the type of ā is S

def= ch[~T ]. Then

J∆ ` (νāa)(Q | !a(~x).P )K
= J(d∆); (id∆ ⊗ TrS

∆,S((id∆ ⊗ J(dS)); (c∆,S ⊗ idS); (idS ⊗ J(Λ(J∆, ā : S, ~x : ~T ` P K))));J∆, ā : S ` QK.
Proof. Follows from the definition of J∆ ` (νāa)(Q | !a(~x).P )K and the definition
of the canonical trace operator.

Lemma 4.8. Let J : C ⊥ K be a compact closed Freyd category, f : A⊗X → X

be a morphism in C and f † def= TrX
A,X((idA⊗ J(dX)); (cA,X ⊗ idX); (idX ⊗ J(f))).

Then we have

f † = J(dA); (idA ⊗ f †); J(f).

Proof. Essentially the same as that of [47, Theorem 7.1.1], where a fixed point
operator is defined via a trace operator.

The above lemma says that (−)† is a parameterized-fixed point operator [47,
122]. Intuitively, it means that a “value f” can be copied in certain situations.
Together with Lemma 4.7, informally speaking, we can say that the interpretation
of (νāa)(Q | !a(~x).P ) is equal to that of (νāa)(Q | !a(~x).P | (~x).P | (~x).P | · · · )
when a /∈ fn(P, Q). These lemmas together with the observation that the π-
calculus can be seen as a process passing calculus is the key to show that the
interpretation is sound with respect to (E-Beta). In other words, we think that
the rule (E-Beta) says that the abstraction (~x).P is copied and then transmitted
to the output action ā〈~x〉.

We next prove a lemma that is analogous to the standard substitution lemma.

Definition 4.4. If ∆, ā : cho[~T ] ` Q : � and ∆′, ~x : ~T ` P : � are well-sorted
processes such that fn(∆) ∩ fn(∆′, ~x : ~T ` P ) = ∅, then we write Q{∆′ ` ā :=
(~x).P} for (νāa)(Q | !a(~x).P ), where a is fresh. Note that Q{∆′ ` ā := (~x).P} is
well-sorted under ∆, ∆′. �

Lemma 4.9 (Substitution Lemma).

1. J∆, ∆′ ` ā〈~y〉{∆′ ` ā := (~x).P}K = J∆, ∆′ ` P{~y/~x}K.
2. If ā /∈ fn(Q) then J∆, ∆′ ` Q{∆′ ` ā := (~x).P}K = J∆, ∆′ ` QK.
3. J∆, ∆′ ` (Q | R){∆′ ` ā := (~x).P}K = J∆, ∆′ ` Q{∆′ ` ā := (~x).P} |

R{∆′ ` ā := (~x).P}K.
4. J∆, ∆′ ` (!b(~y).Q){∆′ ` ā := (~x).P}K = J∆, ∆′ ` !b(~y).Q{∆′ ` ā :=

(~x).P}K.
5. J∆, ∆′ ` ((ν b̄b)Q){∆′ ` ā := (~x).P}K = J∆, ∆′ ` (ν b̄b)(Q{∆′ ` ā :=

(~x).P})K.
Proof. We only show the proof for case (1). The other cases can be proved with
similar arguments.

32



(1) By weakening, Lemma 4.7 and generalized yanking property of the trace
operator, we haveJ∆, ∆′ ` ā〈~y〉{∆′ ` ā := (~x).P}K

= (id∆ ⊗ Trcho[~T ]
∆′,cho[~T ]

((c∆′,cho[~T ]; (idcho[~T ] ⊗ J(Λ(J∆′, ~x : ~T ` P K))));
J∆, ā : cho[~T ] ` ā〈~y〉K

= (id∆ ⊗ J(Λ∆′, ~T ,I(J∆′, ~x : ~T ` P K))); J∆, ā : cho[~T ] ` ā〈~y〉K.
Now by the definition of J∆, ā : cho[~T ] ` ā〈~y〉K we conclude thatJ∆, ∆′ ` ā〈~y〉{∆′ ` ā := (~x).P}K

= (id∆ ⊗ J(Λ∆′, ~T ,I(J∆′, ~x : ~T ` P K))); J∆, ā : cho[~T ] ` ā〈~y〉K
= c∆,∆′ ; (J(Λ∆′, ~T ,I(J∆′, ~x : ~T ` P K))⊗ id∆); Jā : cho[~T ], ∆ ` ā〈~y〉K

(by Exchange and naturality of c)
= c∆,∆′ ; (id∆′ ⊗ J(〈π∆

y1 , . . . , π∆
yn
〉));

(J(Λ∆′, ~T ,I(J∆′, ~x : ~T ` P K))⊗ id~T ); eval~T ,I

= c∆,∆′ ; (id∆′ ⊗ J(〈π∆
y1 , . . . , π∆

yn
〉)); J∆′, ~x : ~T ` P K

(since (J(Λ(f))⊗ id); eval = f)
= c∆,∆′ ; (id∆′ ⊗ J(〈π∆

y1 , . . . , π∆
yn
〉)); J∆′, ~y : ~T ` P{~y/~x}K

= J∆, ∆′ ` P{~y/~x}K.
We are now ready to prove the soundness of (E-Beta).

Lemma 4.10. The interpretation is sound with respect to (E-Beta).
Proof. We need to show thatJ∆ ` (νāa)(!a(~x).P | C[ā〈~b〉])K = J∆ ` (νāa)(!a(~x).P | C[P{~b/~x}])K, (4.2)

provided that a /∈ fn(P, C) and ā /∈ bn(C). Since the interpretation is sound
with respect to the rule (E-FOut), we may assume that the context C does not
contain ā in object positions of output actions, as in the proof of (1) of Lemma 3.2.

Instead of showing (4.2), we show thatJ∆ ` (νāa)(!a(~x).P | D[ā〈~b1〉] . . . [ā〈~bn〉])K
= J∆ ` (νāa)(!a(~x).P | D[P{~b1/~x}] . . . [P{~bn/~x}])K (4.3)

where D is a multi-hole context such that D[ā〈~b1〉] . . . [ā〈~bn〉] = C[ā〈~b〉] (which
means that~b = ~bi for some i) and ā /∈ fn(D). The claim follows from (4.3) because
adding a rule D[ā〈~b1〉] . . . [ā〈~bn〉]) = (νāa)(!a(~x).P | D[P{~b1/~x}] . . . [P{~bn/~x}])
instead of (E-Beta) to the equational theory does not change the power of the
equational theory.

We now show that (4.3) holds. By Lemma 4.7 and Lemma 4.8, we can show
thatJ∆ ` (νāa)(!a(~x).P | D[ā〈~b1〉] . . . [ā〈~bn〉])K
= J(d∆); (id∆ ⊗ TrS

∆,S((id∆ ⊗ J(dS)); (c∆,S ⊗ idS); (idS ⊗ J(Λ(J∆, ā : S, ~x : ~T ` P K))));J∆, ā : S ` D[ā〈~b1〉] . . . [ā〈~bn〉]K
= J(d∆); (id∆ ⊗ TrS

∆,S((id∆ ⊗ J(dS)); (c∆,S ⊗ idS); (idS ⊗ J(Λ(J∆, ā : S, ~x : ~T ` P K))));J∆, ā : S ` (D[ā〈~b1〉] . . . [ā〈~bn〉]){∆, ā : S ` ā := (~x).P}K. (4.4)
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Since ā does not appear in object positions of output actions, we have

J∆, ā : S ` (D[ā〈~b1〉] . . . [ā〈~bn〉]){∆, ā : S ` ā := (~x).P}K
= J∆, ā : S ` (D[P{~b1/~x}] . . . [P{~bn/~x}])K

by Lemma 4.9. Now the claim follows by substituting the above equation to the
equation (4.4) and applying Lemma 4.7.

Theorem 4.3 follows from lemmas stated above since the lemmas say that the
interpretation is sound with respect to all the logical axioms of the theory.

4.2 Theory/Model Correspondence

This section shows the correspondence between compact closed Freyd categories
and the πF -theories.

We first establish a correspondence by showing that the categorical semantics
not only sound, but complete. By complete we mean that P = Q is provable
if JP KJ = JQKJ for all compact closed Freyd categories J . The proof of the
completeness is by the standard term model construction. It should be noted
that soundness and completeness results are rather weak criteria for a categorical
type theory correspondence.

We then prove a stronger result: the category of models is equivalent to
the category of “structure preserving functors” from the term model to (special
kinds of) compact closed Freyd categories. This is the standard criterion for
a categorical type theory correspondence and thus this result shows that the
correspondence between the πF -calculus and compact closed Freyd category is
rigid. However, there is a caveat: a model only corresponds to a functor whose
codomain is a special kind of compact closed Freyd category. This means that
the term model satisfies some additional axioms reflecting some aspects of the
πF -calculus. We shall also discuss this point in this section.

Be warned that the latter part of this section is quite technical (compared to
other parts of this thesis) and requires familiarity with categorical type theory.

4.2.1 Term model and completeness

A term model is a category freely generated by the syntax, i.e. a category whose
objects are type environments and whose morphisms are terms (i.e. processes in
this setting). his section gives a construction of the term model, by which we
show completeness.

Given a set Ax of axioms, we define the term model JAx : CAx ⊥ KAx , which
we also write as Cl(Ax). The definition of KAx is standard, except for the fact
that (1) composition is given by “parallel composition plus hiding” instead of
substitution and (2) identities are defined as forwarders instead of judgements of
the form x : T ` x : T .

Definition 4.5. Given an equational theory over Ax, we define a category KAx
by the following data. (In the definition below we assume that all the variables
appearing in the sort environments are distinct.)

(Objects) Objects are defined as possibly empty list of sorts. Tensor prod-
ucts are defined by list concatenations and the unit object of the monoidal
structure is defined as the empty list. The dual of an object ~T is given by
(~T )∗ def= ~T ⊥.
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(Morphisms) A morphism from ~S to ~T is an equivalence class of type judge-
ments of the form ~x : ~S ` P ; ~y : ~T , where the equivalence relation is defined
by (~x : ~S ` P ; ~y : ~T ) ∼ (~x′ : ~S ` Q; ~y′ : ~T ) just in case ~x′σ = ~x and
~y′σ = ~y for some substitution σ, and ~x : ~S, ~y : ~T ⊥ ` P = Qσ. As usual, the
equivalence class of a judgement ∆ ` P ; Σ is denoted [∆ ` P ; Σ].

(Identity) The identity on ~T is given by [~x : ~T ` ~x� ~y; ~y : ~T ].

(Composition) The composite of two morphisms [∆ ` P ; ~x : ~T ] and [~y : ~T `
Q; Σ] is defined as [∆ ` (ν~x~y)(P | Q); Σ].

(Monoidal Product) The monoidal product of two morphisms [∆ ` P ; Σ] and
[∆′ ` Q; Σ′] is given by [∆ ` P ; Σ] ⊗ [∆′ ` Q; Σ′] = [∆, ∆′ ` P | Q; Σ, Σ′].
The symmetry from ~S ⊗ ~T to ~T ⊗ ~S is defined as [~x : ~S, ~x′ : ~T ` ~x� ~y |
~x′ � ~y′; ~y′ : ~T , ~y : ~S].

(Unit and Counit) The unit and counit for ~T is defined as [ ` ~x� ~y; ~x :
~T ⊥, ~y : ~T ] and [~x : ~T ⊥, ~y : ~T ` ~x� ~y; ], respectively.

Note that the identity, unit, counit on the unit object is defined as [ ` 0; ]. �

The definition of the value category CAx is not as straightforward as that of
KAx . This is because there is no notion of value in π-calculus.

It is not that hard to come up with the notion of value for π-calculus if we
take a look at how values are defined in λ-calculus. In the case of λ-calculus,
values are variables and abstractions. As in the case of the λ-calculus, we may
attempt to define values for π-calculus by the grammar V ::= x | (~x).P , where P
is a process and (~x).P is called an abstraction, with the following typing rules:

x : T ∈ ∆
∆ ` x : T

∆, ~x : ~T ` P

∆ ` (~x).P : cho[~T ]
.

(To understand the right rule, recall that Jcho[~T ]K = J~T K ⇒ I.) Then we may
define a morphism from ~T to ~S = (S1, . . . , Sn) is an n-tuple (V1, . . . , Vn) of values
of type ~x : ~T ` Vi : Si for each i (modulo renaming of ~x).

This definition, however, is technically inconvenient. First, the set of values
is not a subset of the set of processes. Second, the term obtained by substituting
a name in a value with a value does not always become a value. For instance,
(x).ā〈y〉{(z).Q/y} is not a value.

Therefore, we employ the following definition for values:

Definition 4.6 (Value). Values, written ∆ `v P ; Σ, are inductively defined by
the following rules.

∆ `v 0;
(V-Unit) ∆, ~x : ~T ` P a /∈ fn(∆, ~x : ~T )

∆ `v !a(~x).P ; a : chi[~T ]⊥
(V-In)

∆, b̄ : cho[~T ] ` !a(~x).b̄〈~x〉
∆ `v !a(~x).b̄〈~x〉; b̄ : cho[~T ]⊥

(V-Star)
∆ `v P ; Σ ∆ `v Q; Σ′

fn(Σ) ∩ fn(Σ′) = ∅
∆ `v P | Q; Σ, Σ′ (V-Par) �

The definition of values ∆ `v P ; Σ might seem unusual at first sight, but
we can consider them as ordinary values, i.e. variables and abstractions, placed
to some names. If we ignore the names that appear in Σ and regard parallel
composition as pairing, then the above definition resembles the intuitive definition
of values given in the preceding paragraphs. Discarding the name a, the rule
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f ; idB = f = idA; f (M1)
f ⊗ idI = f = idI ⊗ f (M2)

idA ⊗ idB = idA⊗B (M3)
f ; (g; h) = (f ; g); h (M4)

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h (M5)
f ; g ⊗ f ′; g′ = (f ⊗ g); (f ′ ⊗ g′) (M6)

c; (f ⊗ g) = (g ⊗ f); c (Sym1)
(cA,B ⊗ idC); (idB ⊗ cA,C) = cA,B⊗C (Sym2)

cA,B ; cB,A = idA⊗B (Sym3)
(ηA ⊗ idA); (idA ⊗ εA) = idA (C1)

(idA∗ ⊗ ηA); (εA ⊗ idA∗) = idA∗ (C2)
(idA ⊗ ηA∗); (cA,A∗ ; εA ⊗ idA∗∗) = idA (C3)

(id(A⊗B)∗ ⊗ ηA ⊗ ηB); (id(A⊗B)∗ ⊗ idA ⊗ cA∗,B ⊗ idB∗); (εA⊗B ⊗ idA∗⊗B∗)
=

id(A⊗B)∗

(C4)

Figure 4.2: Axiomatization of strict compact closed categories.

(V-In) can be read as a rule that creates an abstraction (~x).P (or λ~x.P ), so the
rule simply says that an abstraction is a value. The rule (V-Unit) and (V-Par)
correspond to saying that the empty tuple is a value and pairing of a value is a
value respectively. To understand the rule (V-Star), ∆ `v !a(~x).b̄〈~x〉; b̄ : ch[~T ]⊥
should be read as ∆ `v b̄; b̄ : ch[~T ]⊥.

This definition is handy because we can define the composition of values by
using “parallel composition plus hiding” as in the case for the producer category.
It is easy to check that this is well-defined, i.e. “parallel composition plus hiding”
of values is again a value, by induction on the definition of value.

Definition 4.7. Given an equational theory over Ax, we define the category CAx
as the wide subcategory of KAx , whose morphisms are equivalence classes that
contains a value. We often write [∆ `v P ; Σ] instead of [∆ ` P ; Σ] when we want
to emphasize the fact that the equivalence class contains a value.

We write JAx : CAx → KAx for the identity-on-object functor that maps [∆ `v
P ; Σ] to [∆ ` P ; Σ]. We also write Cl(Ax) for the triple (CAx ,KAx , JAx). �

Theorem 4.11. Cl(Ax) is a compact closed Freyd category for every Ax.

In the model Cl(Ax), the interpretation of a process ∆ ` P : � is the equiva-
lence class that P belongs to. This fact leads to completeness.

Theorem 4.12 (Completeness). If Ax �∆  P = Q, then Ax �∆ ` P = Q.

The rest of this subsection is devoted to the proof of Theorem 4.11. Readers
not interested in the proof may skip this part.

Things we need to check are (1) KAx is a compact closed category (2) CAx is
a cartesian category, (3) JAx is a strict symmetric monoidal functor and (4) JAx
has the right adjoint. Since (3) is trivial and checking (2) can be done by the
argument used to check (1), we only prove (1) and (4).

For technical convenience, let us give an axiomatization of (strict) compact
closed categories such that satisfies the axiom (I) and (D). The axiomatization
is given in Figure 4.2. We will show that KAx is a compact closed category by
checking these axioms.

Lemma 4.13. KAx is indeed a compact closed Freyd category.

Proof. The proof proceeds by checking that KAx satisfies all the axioms listed in
Fig. 4.2.
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(M1) Let f
def= [∆ ` P ; ~x : ~T ], where ~x = x1, . . . xn and ~T = T1, . . . , Tn. We

show that f ; id = f . Recall that the identity over ~T is given by [~y : ~T `
~y � ~z; ~z : ~T ] and ~y � ~z is defined as y1 � z1 | · · · | yn � zn.
By definition, we have

f ; id = [∆ ` P ; ~x : ~T ]; [~y : ~T ` y1 � z1 | · · · | yn � zn; ~z : ~T ]
= [∆ ` (ν~x~y)(P | y1 � z1 | · · · | yn � zn); ~z : ~T ].

So, it suffices to show that

∆, ~z : ~T ⊥ ` (ν~x~y)(P | y1 � z1 | · · · | yn � zn) = P{~z/~x}.

By structural congruence, we have

(ν~x~y)(P | y1 � z1 | · · · | yn � zn)
= (νxnyn)(· · · (νx2y2)((νx1y1)(P | y1 � z1) | y2 � z2) · · · | yn � zn).

We now proceed the proof by a case analysis on whether T1 is a sort for
output or input. If T1 is a sort for output channel then y1 � z1 = y1 ↪→ z1
and thus (νx1y1)(P | y1 � z1) = P{z1/x1} by (1) of Lemma 3.2. If T1
is a sort for input, then y1 � z1 = z1 ↪→ y1 and from the (E-Eta) rule it
follows that (νx1y1)(P | y1 � z1) = P{z1/x1}. So, in both cases we have
(νx1y1)(P | y1 � z1) = P{z1/x1}.
By repeating this argument we have

(ν~x~y)(P | y1 � z1 | · · · | yn � zn)
= (νxnyn)(· · · (νx2y2)((νx1y1)(P | y1 � z1) | y2 � z2) · · · | yn � zn)
= (νxnyn)(· · · (νx2y2)(P{z1/x1} | y2 � z2) · · · | yn � zn)
= · · ·
= P{~z/~x}.

The equation id; f = f is proved similarly.

(M2) Trivial as idI = [ ` 0; ] and, for every process P , we have P = 0 | P =
P | 0 by the structural equivalence.

(M3) Trivial because in KAx identities are parallel compositions of forwarders
and monoidal product is parallel composition.

(M4) Let f
def= [∆ ` P ; ~w : ~S], g

def= [~x : ~S ` Q; ~y : ~T ] and h
def= [~z : ~T ` R; Σ].

The equality follows from the following calculation, which uses the scope
extrusion rule and the associativity of the parallel composition.

f ; (g; h) = [∆ ` P ; ~w : ~S]; ([~x : ~S ` Q; ~y : ~T ]; [~z : ~T ` R; Σ])
= [∆ ` P ; ~w : ~S]; [~x : ~S ` (ν~y~z)(Q | R); Σ]
= [∆ ` (ν ~w~x)(P | (ν~y~z)(Q | R)); Σ]
= [∆ ` (ν ~w~x)(ν~y~z)(P | Q | R); Σ] (since fn(~y, ~z) ∩ fn(P ) = ∅)
= [∆ ` (ν~y~z)(ν ~w~x)(P | Q | R); Σ]
= [∆ ` (ν~y~z)((ν ~w~x)(P | Q) | R); Σ] (since fn(~w, ~x) ∩ fn(R) = ∅)
= ([∆ ` P ; ~w : ~S]; [~x : ~S ` Q; ~y : ~T ]); [~z : ~T ` R; Σ]
= (f ; g); h.
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(M5) This case follows from the associativity of parallel compositions.

(M6) Let f
def= [∆ ` P ; ~x : ~T ], f ′ def= [∆′ ` P ′; ~x′ : ~T ′], g

def= [~y : ~T ` Q; Σ] and
g′ def= [~y′ : ~T ′ ` Q′; Σ′]. By definition,

f ; g = [∆ ` (ν~x~y)(P | Q); Σ]
f ′; g′ = [∆′ ` (ν~x′~y′)(P ′ | Q′); Σ′]

f ⊗ f ′ = [∆, ∆′ ` P | P ′; ~x : ~T , ~x′ : ~T ′]
g ⊗ g′ = [~y : ~T , ~y′ : ~T ′ ` Q | Q′; Σ, Σ′].

Hence, we have

(f ; g)⊗ (f ′; g′) = [∆ ` (ν~x~y)(P | Q); Σ]⊗ [∆′ ` (ν~x′~y′)(P ′ | Q′); Σ′]
= [∆, ∆′ ` (ν~x~y)(P | Q) | (ν~x′~y′)(P ′ | Q′); Σ, Σ′]
= [∆, ∆′ ` (ν~x~y)(P | Q | (ν~x′~y′)(P ′ | Q′)); Σ, Σ′]

(since fn(~x, ~y) ∩ fn((ν~x′~y′)(P ′ | Q′)) = ∅)
= [∆, ∆′ ` (ν~x~y)(ν~x′~y′)(P | Q | P ′ | Q′); Σ, Σ′]

(since (fn(~x′, ~y′)) ∩ fn(P, Q) = ∅)
= [∆, ∆′ ` P | P ′; ~x : ~T , ~x′ : ~T ′]; [~y : ~T , ~y′ : ~T ′ ` Q | Q′; Σ, Σ′]
= (f ⊗ f ′); (g ⊗ g′).

(Sym1) Let f
def= [~x : ~S ` P ; ~y : ~T ] and g

def= [~x′ : ~S′ ` Q; ~y′ : ~T ′]. Then,

f ⊗ g = [~x : ~S, ~x′ : ~S′ ` P | Q; ~y : ~T , ~y′ : ~T ′]

by definition. Recall that a symmetry from ~S′ ⊗ ~S to ~S ⊗ ~S is given by
[~w′ : ~S′, ~w : ~S ` ~z � ~w | ~z′ � ~w′; ~z : ~S, ~z′ : ~S′]. By an argument similar to
that in the proof of case (M1), we can show that

c; (f ⊗ g)
= [~w′ : ~S′, ~w : ~S ` ~z~z′ � ~w ~w′; ~z : ~S, ~z′ : ~S′]; [~x : ~S, ~x′ : ~S′ ` P | Q; ~y : ~T , ~y′ : ~T ′]
= [~w′ : ~S′, ~w : ~S ` (ν~z~x)(ν~z′~x′)(~z � ~w | ~z′ � ~w′ | P | Q); ~y : ~T , ~y′ : ~T ′]
= [~w′ : ~S′, ~w : ~S ` (P | Q){~w′/~x′, ~w/~x}; ~y : ~T , ~y′ : ~T ′].

Similarly, we have

(g ⊗ f); c = [~x′ : ~S′, ~x : ~S ` (Q | P ){~z/~y, ~z′/~y′}; ~z : ~T , ~z′ : ~T ′].

Since

[~w′ : ~S′, ~w : ~S ` (P | Q){~w′/~x′, ~w/~x}; ~y : ~T , ~y′ : ~T ′]
= [~x′ : ~S′, ~x : ~S ` P | Q; ~y : ~T , ~y′ : ~T ′]
= [~x′ : ~S′, ~x : ~S ` Q | P ; ~y : ~T , ~y′ : ~T ′]
= [~x′ : ~S′, ~x : ~S ` (Q | P ){~z/~y, ~z′/~y′}; ~z : ~T , ~z′ : ~T ′],

we conclude that c; (f ⊗ g) = (g ⊗ f); c.

(Sym2) and (Sym3) These cases follow from the definition of id and c in KAx
and the transitivity of forwarders ((2) of Lemma 3.2). In other words, the
proof is similar to the case of (C1), which is given below.
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(C1) Suppose that A = T1, . . . , Tn. Recall that

ηA = [ ` ~x� ~y; ~x : ~T , ~y : ~T ⊥] εA = [~x′ : ~T ⊥, ~y′ : ~T ` ~x� ~y; ]

and thus

ηA ⊗ idA = [~z : ~T ` ~x� ~y | ~w � ~z; ~x : ~T , ~y : ~T ⊥, ~w : ~T ]
idA ⊗ εA = [~z′ : ~T , ~x′ : ~T ⊥, ~y′ : ~T ` ~w′ � ~z′ | ~x′ � ~y′; ~w′ : ~T ].

So, we have

(idA ⊗ ηA); (εA ⊗ idA)
= [~z : ~T ` (ν~x~z′)(ν~y~x′)(ν ~w~y′)(~x� ~y | ~w � ~z | ~w′ � ~z′ | ~x′ � ~y′); ~w′ : ~T )].

Thanks to the transitivity of forwarders ((3) of Lemma 3.2), we can check
that (C1) holds. More concretely, we have

(ν~x~z′)(ν~y~x′)(ν ~w~y′)(~x� ~y | ~w � ~z | ~w′ � ~z′ | ~x′ � ~y′)
= (ν~x~z′)(ν~y~x′)((ν ~w~y′)(~x′ � ~y′ | ~w � ~z) | ~x� ~y | ~w′ � ~z′)
= (ν~x~z′)(ν~y~x′)(~x′ � ~z | ~x� ~y | ~w′ � ~z′)
= (ν~x~z′)((ν~y~x′)(~x� ~y | ~x′ � ~z | ~w′ � ~z′)
= (ν~x~z′)(~x� ~z | ~w′ � ~z′)
= ~w′ � ~z.

Hence, we conclude that (idA ⊗ ηA); (εA ⊗ idA) = idA.

(C2), (C3) and (C4) The proof is similar to that of the case (C1).

Lemma 4.14. The functor JAx has the right adjoint that associates an object
~T in KAx to an object cho[~T ⊥] in CAx .

Proof. To show that the JAx has the right adjoint it suffices to show that there
is an arrow e~T : cho[~T ⊥] → ~T universal from JAx to ~T , for each object ~T . In
other words, we need to show that for each f ∈ KAx(JAx(~S), ~T ), there is exactly
one g ∈ CAx(~S, cho[~T ⊥]) such that JAx(g); e~T = f . Let us define a map ϕ from
KAx(JAx(~S), ~T ) to CAx(~S, cho[~T ⊥]) by ϕ([∆ ` P ; ~x : ~T ]) def= [∆ `v !a(~x).P ; a :
cho[~T ⊥]], where a is a fresh name.

First, we show that for every morphism f
def= [∆ ` P ; ~x : ~T ], JAx(ϕ(f)); e~T =

f . This can be confirmed by the following calculation:

JAx(ϕ(f)); e~T = [∆ ` !a(~x).P ; a : cho[~T ⊥]]; [ā : cho[~T ⊥] ` ā〈~y〉; ~y : ~T ]
= [∆ ` (νāa)(!a(~x).P | ā〈~y〉)); ~y : ~T ]
= [∆ ` P{~y/~x}; ~y : ~T ] ((E-Beta) and (E-GC))
= [∆ ` P ; ~x : ~T ] (By renaming)
= f.
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Next, we show that for every h
def= [∆ `v !a(~x).P ; a : cho[~T ⊥]] in CAx ,

ϕ(JAx(h); e~T ) = h. This is shown by the following calculation:

ϕ(JAx(h); e~T ) = ϕ([∆ ` (νāa)(!a(~x).P | ā〈~y〉); ~y : ~T ])
= ϕ([∆ ` P{~y/~x}; ~y : ~T ]) (By (E-Beta) and (E-GC))
= [∆ `v !a(~y).P{~y/~x}; a : cho[~T ⊥]]
= [∆ `v !a(~x).P ; a : cho[~T ⊥]]
= h.

Therefore, if JAx(g); e~T = f then g = ϕ(JAx(g)); e~T ) = ϕ(f). This shows the
uniqueness of g and completes the proof of adjointness.

4.2.2 Classifying category

It is natural to expect that Cl(Ax) is the classifying category as in the standard
categorical type theory. That is to expect

Mod(Ax, J) ∼= CCFCs(Cl(Ax), J) in Sets. (4.5)

holds, where Mod(Ax, J) is the set of model of Ax in J and CCFCs(Cl(Ax), J)
is the set of “structure-preserving functors” from Cl(Ax) to J . The equation (4.5)
means that to give a model of Ax in J is equivalent to give a structure-preserving
functor from the term model to J . Note that the above equation is given in Sets
rather than Cats. This is because we are only working with the empty signature.
(We shall come back to this point at the end of this section.)

The set Mod(Ax, J) of models of Ax in J is defined as follows. If J |= Ax,
then Mod(Ax, J) is a singleton set; otherwise Mod(Ax, J) is the empty set.

We now define the notion of “structure preserving functors” between compact
closed Freyd categories. In Section 2.2 we have already seen what “structure
preserving functors” are in the case of cartesian categories and compact closed
categories; they are finite product preserving functors (Example 2.3) and com-
pact closed functors (Definition 2.7) respectively. We, therefore, are led to the
definition of compact closed Freyd functors by combining these two notions.

Definition 4.8 (Map of Adjunctions [80]). Let F : C ⊥ D : G and F ′ : C′ ⊥ D′ : G′

be adjunctions. A map of adjunctions is a quadruple (L, K, α, β) of functors
L : C → C′ and K : D → D′ and natural isomorphisms α : KF → F ′L and
β : LG→ G′K such that

D C D

D′ C′ D′

G

K

F

L
β

K
α

G′ F ′

and such that the diagram of hom-sets and adjunctions commutes

D(FC, D) C(C, GD)

D′(KFC, KD) C′(LC, LGD)

K′(F ′LC, GD) C′(LC, G′KD)

ϕ

K L

αC ;− −;βD

ϕ′
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for all objects C ∈ Obj(C) and D ∈ Obj(D), where ϕ and ϕ′ are the adjunction
isomorphisms. We say that (L, K) are strict map of adjunctions if the associated
natural isomorphisms are identities. �

Definition 4.9 (Compact closed Freyd functor). A strong compact closed Freyd
functor between compact closed Freyd categories J : C ⊥ K and J ′ : C′ ⊥ K′ is a
pair of functors (Φ, Ψ) such that

• Φ: C → C′ is a finite product preserving functor,

• Ψ: K → K′ is strong compact closed functor and

• (Φ, Ψ) is a map of adjunctions between J a I ⇒ − and J ′ a I ⇒′ −.

We say that (Φ, Ψ) is a strict compact closed Freyd functor if Φ is a strict finite
product preserving functor, Ψ is a strict compact closed functor and (Φ, Ψ) is a
strict map of adjunctions. �

Given compact closed Freyd categories J and J ′, we write CCFCs(J, J ′) for
the set of strict compact closed Freyd functors from J to J ′; we will work with
strict functors for simplicity.

Now that we have defined all the notation appearing in (4.5), we can discuss
whether (4.5) holds. Unfortunately, the answer is no. More precisely, the left-to-
right inclusion does not hold in general. This means that the term model satisfies
some additional axioms reflecting some aspects of the πF -calculus.

The additional axioms reflect the definition of the dual ~T ∗ in the term model.
Recall that ~T ∗ def= ~T ⊥ by definition, and thus ~T ∗∗ = ~T and (~T ⊗ ~S)∗ = ~T ∗ ⊗ ~S∗.
In other words, the operator (−)∗ is strictly involutive and it strictly distributes
over the monoidal products. Since this is not the case in every compact closed
Freyd category we require these conditions as additional axioms, which we call
(I) and (D):

(I) The canonical isomorphism A∗∗ → A in K is the identity.

(D) The canonical isomorphism (A⊗B)∗ → A∗ ⊗B∗ in K is the identity.

It might be surprising that we need to add these equations as additional ax-
ioms because isomorphisms A∗∗ ∼= A and (A ⊗ B)∗ ∼= A∗ ⊗ B∗ exist in every
compact closed category. One might expect that we can strictify these isomor-
phisms so that the additional axioms (I) and (D) become redundant. This is not
possible, however. The point is that the equations also require the value category
C to have isomorphisms A∗∗ ∼= A and (A ⊗ B)∗ ∼= A∗ ⊗ B∗ (witnessed by the
respective identities), which does not always exist.

Remark 4.2. The nullary version of the axiom (D), i.e. the condition that says
the canonical isomorphism from I∗ to I is the identity, is derivable from the
axioms (I) and (D). We give a sketch of the proof. By the axiom (I), we have

I∗ = I ⊗ I∗ = I∗∗ ⊗ I∗ and I = (I∗)∗ = (I∗ ⊗ I)∗.

By the axiom (D), we have

I∗∗ ⊗ I = (I∗ ⊗ I)∗

and thus I∗ = I. �
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Theorem 4.15. If a compact closed Freyd category J : C ⊥ K : I ⇒ (−) satisfies
(I) and (D), then we have

Mod(Ax, J) ∼= CCFCs(Cl(Ax), J) in Sets

We split the proof into three-steps: (1) we define a functor from the classifying
category (2) we show that the functor is indeed a compact closed Freyd functor,
and then (3) we show that it is unique. In the sequel we only consider the case
where J |= Ax because the proof for the other case is trivial.

Definition of the functor Let us define J∆ ` P ; ΣK as (ηΣ ⊗ id∆); (idΣ ⊗JΣ⊥, ∆ ` P K), where J∆ ` P K is the interpretation of P in J : C ⊥ K. We define
a map Ψ from KAx to K by

Ψ([∆ ` P ; Σ]) def= J∆ ` P ; ΣK.
The map Ψ is well-defined thanks to the soundness of the interpretation.

Since an element of CCFCs is a pair of functors one for category of compu-
tations and another for the value category, we need to construct a functor for
the value category. We define such a functor Φ by induction on the derivation of
∆ `v P ; Σ.

Φ([∆ `v 0; ]) def= !∆

Φ([∆ `v !a(~x).b̄〈~x〉; b̄ : cho[~T ]⊥]) def= π∆
a

Φ([∆ `v !a(~x).P ; a : chi[~T ]⊥]) def= Λ(J∆, ~x : ~T ` P K)
Φ([∆ `v P | Q; Σ, Σ′]) def= 〈Φ([∆ `v P ; Σ]), Φ([∆ `v Q; Σ′])〉

It is routine to check that the map Φ is well-defined.

(Φ, Ψ) is a strict compact closed Freyd functor To check that (Φ, Ψ) is
a strict compact closed Freyd functor we need to check that (1) Ψ is a strict
compact closed functor, (2) Φ is a strict finite product preserving functor and (3)
(Φ, Ψ) is a strict map of adjunctions.

Before getting into the proof let us state some lemmas on compact closed
Freyd categories that satisfy the axioms (I) and (D).

Lemma 4.16. Suppose that K is a compact closed category that satisfies the
axioms (I) and (D). Then, for all objects A and B, we have

ηA∗ = ηA; cA,A∗

εA∗ = cA,A∗ ; εA

ηA⊗B = (ηA ⊗ ηB); (idA ⊗ cA∗,B ⊗ idB∗)
εA⊗B = (idA∗ ⊗ cA,B∗ ⊗ idB); (εA ⊗ εB)

Remark 4.3. The proof showing that Ψ is a strict compact closed functor relies
on this lemma, and thus depends on the two additional axioms. To put it another
way, we do not have theory/model correspondence for arbitrary compact closed
Freyd category because we cannot construct the structure preserving functor
from the classifying category if the category in target does not satisfy the two
axioms. �
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We now show that Ψ is a strict compact closed functor and that Φ is a strict
finite product preserving functor.

Lemma 4.17. The map Ψ described above is a (strict) compact closed functor.

Proof. We start by checking that Ψ is a functor. Recall that identities in the term
model is of the form [~x : ~T ` ~x� ~y; ~y : ~T ] and a single forwarder is interpreted
as counit. Therefore, using Lemma 4.16 it follows that the interpretation of
multiple forwarders is also a counit, i.e. J~y : ~T ⊥, ~x : ~T ` ~x� ~yK = ε~T . The map
Ψ therefore preserves identities because

Ψ([~x : ~T ` ~x� ~y; ~y : ~T ]) = J~x : ~T ` ~x� ~y; ~y : ~T K
= (η~T ⊗ id~T ); (id~T ⊗ J~y : ~T ⊥, ~x : ~T ` ~x� ~y; K)
= (η~T ⊗ id~T ); (id~T ⊗ ε~T )
= id~T

by the triangle identity. Preservation of compositions can also be checked by
unfolding the definition of the interpretation:

Ψ([∆ ` P ; ~x : ~T ]; [~y : ~T ` Q; Σ])
= Ψ([∆ ` (ν~x~y)(P | Q); Σ])
= (ηΣ ⊗ id∆); (idΣ ⊗ JΣ⊥, ∆ ` (ν~x~y)(P | Q)K)
= (ηΣ ⊗ id∆ ⊗ η~T ∗); (idΣ ⊗ JΣ⊥, ∆, ~x : ~T ⊥, ~y : ~T ` Q | P K)
= (ηΣ ⊗ id∆ ⊗ η~T ∗); (idΣ ⊗ J(d));

(idΣ ⊗ JΣ⊥, ∆, ~x : ~T ⊥, ~y : ~T ` QK⊗ JΣ⊥, ∆, ~x : ~T ⊥, ~y : ~T ` P K)
= (ηΣ ⊗ id∆ ⊗ η~T ∗ ; c~T ∗, ~T ); (idΣ,Σ∗ ⊗ c∆, ~T ,~T ∗); (idΣ ⊗ JΣ⊥, ~y : ~T ` QK⊗ J~x : ~T ⊥, ∆ ` P K)

(by weakening & exchange)
= (ηΣ ⊗ id∆ ⊗ η~T ); (idΣ,Σ∗ ⊗ c∆, ~T ,~T ∗); (idΣ ⊗ JΣ⊥, ~y : ~T ` QK⊗ J~x : ~T ⊥, ∆ ` P K)

(by Lemma 4.16)
= (ηΣ ⊗ η~T ⊗ id∆); (idΣ ⊗ JΣ⊥, ~y : ~T ` QK⊗ J~x : ~T ⊥, ∆ ` P K)
= J∆ ` P ; ~x : ~T K; J~y : ~T ` Q; ΣK.

The functor Ψ is not only a functor, but a strict monoidal functor because

Ψ([∆ ` P ; Σ]⊗ [∆′ ` Q; Σ′]) = J∆ ` P ; ΣK⊗ J∆′ ` Q; Σ′K
can be shown by an argument similar to the one we used for proving the

preservation of composition.
The last thing to check is that Ψ strictly preserves chosen units and counits.

By the definition of Ψ, we have

Ψ([ ` ~x� ~y; ~T , ~y : ~T ⊥])
= η~T ,~T ∗ ; (id~T ,~T ∗ ⊗ J~x : ~T ⊥, ~y : ~T ` ~x� ~yK)
= η~T ,~T ∗ ; (id~T ,~T ∗ ⊗ ε~T )

= (η~T ⊗ η~T ∗); (id~T ⊗ c~T ∗, ~T ∗ ⊗ id~T ); (id~T ,~T ∗ ⊗ ε~T ) (by Lemma 4.16)

= η~T ; (id~T ⊗ η~T ∗ ⊗ id~T ∗); (id~T ⊗ id~T ∗ ⊗ c~T ,~T ∗ ; ε~T )

= η~T ; (id~T ⊗ η~T ∗ ⊗ id~T ∗); (id~T ⊗ id~T ∗ ⊗ ε~T ∗) (by Lemma 4.16)
= η~T . (by triangle identity)

Similarly, one can show that Ψ preserves counit on the nose. So we have checked
that Ψ is a strict compact closed functor.
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Lemma 4.18. For the maps Φ and Ψ defined above, we have JAx ; Ψ = Φ; J .

Proof. It suffices to show that for each value ∆ `v P ; Σ, (JAx ; Ψ)([∆ `v P ; Σ]) =
(Φ; J)([∆ `v P ; Σ]) by straight forward induction on the derivation of ∆ `v P ; Σ.
It should be noted that Lemma 4.16 is needed for the case (V-Par).

Lemma 4.19. The map Φ described above is a (strict) finite product preserving
functor.

Proof. Before getting into the main thread of the proof we note that

Φ([∆ `v !a(~x).b̄〈~x〉; a : chi[~T ]⊥]) = π∆
b̄

.

From this equation and the definition of Φ it follows that

Φ([∆ `v x� y; y : T ]) = π∆
x . (4.6)

That is a forwarder is mapped to the projection map regardless of whether T is
a sort for outputs or inputs. We will use this equation during the main thread of
the proof.

We now check that the map Φ is a functor. Using the above equation, it is
easy to see that Φ preserves identities because

Φ([~y : ~T ` ~x� ~y; ~x : ~T ])
= 〈Φ([~y : ~T ` x1 � y1; x1 : T1]), . . . , Φ([~y : ~T ` xn � yn; xn : Tn])〉
= 〈πy1 , . . . , πyn〉 (By (4.6))
= id~T .

The next thing to check is the preservation of composition. We can show that

Φ([∆ `v P ; Θ]; [Θ `v Q; Σ]) = Φ([∆ `v P ; Θ]); Φ([Θ `v Q; Σ])

by induction on the derivation of Θ `v Q; Σ with a case analysis on the last rule
applied; Lemma 4.18 is needed to show the case (V-In).

To show that Φ is a strict finite product preserving functor, we show that the
chosen terminal map and projections are mapped to the chosen terminal map
and projections respectively.

The terminal map in the term model is [∆ ` 0; ] and this is mapped to !∆ by
the definition of Φ.

Recall that the projections in the term model is defined as [~x : ~S, ~y : ~T `
~x� ~z; ~z : ~S]. Since forwarders are mapped to projections, we have

Φ([~x : ~S, ~y : ~T ` ~x� ~z; ~z : ~S])
= 〈Φ([~x : ~S, ~y : ~T ` x1 � z1; z1 : S1]), . . . , Φ([~x : ~S, ~y : ~T ` xn � zn; zn : Sn])〉
= 〈πx1 , . . . , πxn〉 (By (4.6))
= π1.

We now check that (Φ, Ψ) is a strict map of adjunctions to conclude that
(Φ, Ψ) is a strict compact closed Freyd functor. Since one of the conditions,
namely Lemma 4.18, is proved, we are left to check the other two conditions:
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Lemma 4.20. The two functors Φ and Ψ satisfy (1) Ψ; I ⇒ (−) = I ⇒Ax (−); Φ
and (2) Ψ; ϕ = ϕAx ; Φ. Here JAx a I ⇒Ax (−) is the adjunction in the term
model and ϕ and ϕAx are the adjunction isomorphisms for J a I ⇒ (−) and
JAx a I ⇒Ax (−).

Proof. First, we prove Ψ; I ⇒ (−) = I ⇒Ax (−); Φ. Let f := [~x : ~S ` P ; ~y : ~T ].
By the definition of Ψ, we have

I ⇒ Ψf = I ⇒ J~x : ~S ` P ; ~y : ~T K.
On the other hand,

Φ(I ⇒Ax f) = Φ([ā : cho[~S⊥], ~y : ~T ⊥ ` !b(~y).(ν~x~z)(P | ā〈~z〉); b : chi[~T ⊥]⊥])
= Λcho[~S⊥], ~T ∗,I(Jā : cho[~S⊥], ~y : ~T ⊥ ` (ν~x~z)(P | ā〈~z〉)K).

Since the adjunction J(−⊗A) a A⇒ (−) is defined by the closed structure and
the adjunction J a I ⇒ (−),

Λcho[~S⊥], ~T ⊥,I(Jā : cho[~S⊥], ~y : ~T ⊥ ` (ν~x~z)(P | ā〈~z〉)K)
= ϕ((idcho[~S⊥] ⊗ η~T ⊥); (Jā : cho[~S⊥], ~y : ~T ⊥ ` (ν~x~z)(P | ā〈~z〉)K⊗ id~T )).

Using the naturality of c, the exchange rule and Lemma 4.16, we can show that

(idcho[~S⊥] ⊗ η~T ∗); (Jā : cho[~S⊥], ~y : ~T ⊥ ` (ν~x~z)(P | ā〈~z〉)K⊗ id~T )

= (η~T ⊗ idcho[~S⊥]); (id~T ⊗ J~y : ~T ⊥, ā : cho[~S⊥] ` (ν~x~z)(P | ā〈~z〉)K).
By the definition of the interpretation, we can rewrite the above expression as
follows:

(η~T ⊗ idcho[~S⊥]); (id~T ⊗ J~y : ~T ⊥, ā : cho[~S⊥] ` (ν~x~z)(P | ā〈~z〉)K)
= (idcho[~S⊥] ⊗ η~S); (ccho[~S⊥],~S ⊗ id~S∗); (id~S ⊗ eval~S∗,I); J~x : ~S ` P ; ~y : ~T K

So by substituting this expression, we obtain

Φ(I ⇒Ax f)
= ϕ((idcho[~S⊥] ⊗ η~S);(ccho[~S⊥],~S ⊗ id~S∗); (id~S ⊗ eval~S∗,I);J~x : ~S `P ; ~y : ~T K)
= ϕ((id⊗ η); (c⊗ id); (id⊗ eval)); I ⇒ J~x : ~S ` P ; ~y : ~T K.

It remains to show that ϕ((id⊗ η); (c⊗ id); (id⊗eval)) is the identity morphism.
Since eval~S∗,I = (e⊗ id~S∗); ε~S∗ , where e is the counit of the adjunction J a I ⇒
(−), we can show that

ϕ((idcho[~S⊥] ⊗ η~S); (ccho[~S⊥],~S ⊗ id~S∗); (id~S ⊗ eval~S∗,I))

= ϕ(Tr~S
cho[~S⊥],~S(ccho[~S⊥],~S ; (id~S ⊗ e)))

by Lemma 4.16 and the definition of the canonical trace. Now we have

ϕ(Tr~S
cho[~S⊥],~S(ccho[~S⊥],~S ; (id~S ⊗ e)))

= ϕ(e) (by generalized yanking)
= id

as desired.
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The other equation clearly holds because we have

ϕ(Ψ([∆ ` P ; ~x : ~T ])) = ϕ(J∆ ` P ; ~x : ~T K)
= Φ([∆ `v !a(~x).P ; a : chi[~T ⊥]⊥])
= Φ(ϕAx([∆ ` P ; ~x : ~T ]))

by the definition of Φ and Ψ, and ΛA,I,B = ϕA,B.

Uniqueness of the functor Finally, we show the uniqueness of the (Φ, Ψ),
and this will prove Theorem 4.15.
Lemma 4.21. Let (Φ′, Ψ′) be a strict compact closed Freyd functor from the
term model to a compact closed Freyd functor J : C ⊥ K. Then (Φ′, Ψ′) = (Φ, Ψ),
where (Φ, Ψ) is the compact closed Freyd functor defined above.
Proof. The proof is by induction on the derivation of ∆ ` P : � and ∆ `v P ; Σ,
with case analysis on the last rule used in the derivation. Briefly speaking, the
claim follows because we are using strict functors, i.e. Φ, Φ′, Ψ′ and Ψ′ preserves
the chosen structures on the nose.

To show Ψ′ = Ψ, we only need to consider the morphisms of the form [∆ `
P ; ]. This is because

Ψ′([∆ ` P ; Σ]) = Ψ′((η∆ ⊗ id); (id⊗ [Σ∗, Γ ` P ; ]))
= (η∆ ⊗ id); (id⊗ JΣ∗, Γ ` P K)
= J∆ ` P ; ΣK

by the strictness of Ψ′ provided that Ψ′([Σ∗, ∆ ` P ; ]) = Ψ([Σ∗, ∆ ` P ; ]).
Now we do the actual case analysis. We only show the case for (V-In) and

(S-In) in detail because these are the most complicated cases; the other cases
can be proved by similar arguments.

Case (V-In): Recall that, in the term model, a morphism [∆ `v !a(~x).P ; a :
ch[~T ]] can be obtained by applying the adjunction isomorphism ΛAx to
[Γ, ~x : ~T ` P ; ]. So it suffices to show that ΛAx ; Φ′ = Ψ′; Λ, where Λ is
the adjunction isomorphism in J : C ⊥ K. Using this equation we can show
that

Φ′([∆ `v !a(~x).P ; a : ch[~T ]]) = Φ′(ΛAx([∆, ~x : ~T ` P ; ]))
= Λ(Ψ′([∆, ~x : ~T ` P ; ]))
= Λ(J∆, ~x : ~T ` P ; K)
= Φ([∆ `v !a(~x).P ; a : ch[~T ]])

by the induction hypothesis.
The equation ΛAx ; Φ′ = Ψ′; Λ follows from the facts that (Φ′, Ψ′) is a map
of adjoints and Ψ′ is a strict compact closed functor. Since ΛAx(f) =
ϕAx((id⊗ η); (f ⊗ id)),

Φ′(ΛAx(f)) = Φ′(ϕAx((id⊗ η); (f ⊗ id)))
= ϕ(Ψ′((id⊗ η); (f ⊗ id)))

(since (Φ′, Ψ′) is a map of adjoints)
= ϕ((id⊗ η); (Ψ′(f)⊗ id))

(since Ψ′ is a strict compact closed functor)
= Λ(Ψ′(f))

as desired.
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Case (V-Unit): Since Φ′ and Φ map the chosen terminal map to the chosen
terminal map, we have

Φ′([∆ `v 0; ]) = !Γ = Φ([Γ `v 0; ]) = !Γ.

Case (V-Star): Similar to the previous case because Φ′ and Φ map chosen
projections to the chosen projections.

Case (V-Par): This case follows from the induction hypothesis and the fact
that Ψ′ preserves d and f⊗g because Ψ′ is a strict finite product preserving
functor.

Case (S-In): We first show that [∆ ` !a(~x).P ; ] is equal to

JAx(〈π∆
a , idΓ〉); (idch[~T ]∗ ⊗ JAx(Λ′([Γ, ~x : ~T ` P ]))); εch[~T ]

in the term model. The process !a(~x).P is equal to (ν c̄c)(ν b̄b)(a ↪→ c̄ |
!b(~x).P | c ↪→ b̄) under the assumption b, c, c̄ /∈ n(!a(~x).P ) because

(ν c̄c)(ν b̄b)(a ↪→ c̄ | !b(~x).P | c ↪→ b̄)
= (νac̄)(c ↪→ b̄ | (ν b̄b)(!b(~x).P | c ↪→ b̄))
= (νac̄)(a ↪→ c̄ | !c(~x).P )
= !a(~x).P.

Therefore,

[∆ ` !a(~x).P ; ]
= [∆ ` a ↪→ c̄ | !b(~x).P ; c̄ : ch[~T ]∗, b : ch[~T ]];

[c : ch[~T ]∗, b̄ : ch[~T ] ` b̄ ↪→ a′; ]

and since [c : ch[~T ]∗, b̄ : ch[~T ] ` b̄ ↪→ a′; ] is the counit we have

[∆ ` !a(~x).P ; ] = JAx(〈πa, id∆〉); (idch[~T ]∗ ⊗ [∆ ` !b(~x).P ; b : ch[~T ]]); εch[~T ].

It remains to show that [∆ ` !b(~x).P ; b : ch[~T ]] = JAx(ΛAx([∆, ~x : ~T ` P ]).
This follows from the fact that [∆ ` !b(~x).P ; b : ch[~T ]] is a value because
b /∈ fn(∆) and that [∆ `v !b(~x).P ; b : ch[~T ]] = ΛAx([∆, ~x : ~T ` P ]).
To complete the proof for this case, we show that

Ψ′(JAx(ΛAx([∆, ~x : ~T ` P ]))) = J(Λ(J∆, ~x : ~T ` P K)).
This equation holds because

Ψ′(JAx(ΛAx([∆, ~x : ~T ` P ])))
= J(Φ′(ΛAx([∆, ~x : ~T ` P ]))) (by JAx ; Ψ′ = Φ′; J)
= J(Λ(Ψ′([∆, ~x : ~T ` P ]))) (by ΛAx ; Φ′ = Ψ′; Λ)
= J(Λ(J∆, ~x : ~T ` P K)). (by the induction hypothesis)

Hence, Ψ′([∆ ` !a(~x).P ; ]) = J∆ ` !a(~x).P ; K follows from the above equa-
tion and the fact that Ψ′ strictly preserves projections (lifted by JAx) and
the counit.
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Case (S-Nil): Trivial because Φ′ strictly preserves ! : A→ I.

Case (S-Out): We can show Ψ′ strictly preserves eval by an argument similar
to the one we used to show ΛAx ; Φ′ = Ψ′; Λ in the case for (V-In). From
this and the fact that Φ′ strictly preserves projections concludes this case.

Case (S-Nu): Again, using the forwarders, it is easy to see that [∆ ` (νxy)P ; ] =
(id ⊗ η); [Γ, x : T, y : T ∗ ` P ; ] in the term model. The claim follows by
the induction hypothesis and the fact that Ψ′ maps the chosen unit to the
chosen unit.

Case (S-Par): Similar to the case for (V-Par).

Discussions: Strengthening the correspondence We end this chapter by
discussing the imperfections in Theorem 4.15 and whether they can be improved.
Besides the problem on the axiom (I) and (D) Theorem 4.15 differs from the
standard theory/model correspondence in that (1) “the collection of models” is
a set not a category and (2) the structure preserving functor is restricted to the
strict ones.

The cause for the first problem lies in the syntax side. As explained, the
problem is caused by the fact that we only consider a calculus with the empty
signature, i.e. we are considering a calculus with no additional type nor constant.
In contrast to the case of the λ-calculus it is not obvious how ground types
and constants should be added. This is because it is not clear what the dual
of a ground type represents. For instance, it is not clear what Nat⊥ means.
Similarly, we are not sure how to express constants such as natural numbers as
processes. If we do not need to stick to the syntax of π-calculus, it is possible
to give a calculus that corresponds to compact closed Freyd category and can
deal with non-empty signatures. In fact, we can use the λch-calculus, which we
will introduce in Chapter 6. The λch-calculus is an instance of the computational
λ-calculus, and the λch-calculus can be seen as a functional language augmented
with communication channels. Since we can add additional constants and types
to the computational λ-calculus without any problem, the λch-calculus can also
deal with non-empty signatures.

We believe that the second point is not an essential problem. The reason why
we used strict functors was to facilitate the calculation. One could reasonably
expect everything to generalize to the non-strict case by inserting suitable iso-
morphisms into the calculation we have done. However, checking this seems to
require quite an effort.
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Chapter 5

πF -calculus vs. Linear Logic

This chapter discusses logical aspects of the πF -calculus and compact closed Freyd
category.

Section 5.1 introduces a new process representation of linear logic proofs from
a semantic consideration. A compact closed Freyd category is a model of lin-
ear logic (more precisely the multiplicative exponential fragment), as an instance
of linear/non-linear model [12]. Therefore, the interpretation of proofs in the
term model gives a mapping from proofs to πF -processes that is correct by con-
struction. The purpose of explicitly showing this interpretation is to clarify the
similarities and differences between the πF -calculus and other π-calculi that are
based on linear logic.

Section 5.2 discuss the converse direction, i.e. a proof system to which ev-
ery πF -process can be interpreted. Such a logic needs to be expressive enough
to capture deadlocks and race conditions. The discovery of a proof system that
corresponds to the traditional π-calculus has been an open problem since Abram-
sky’s “proofs as processes” program [3]. We give a reasonable candidate for such
a proof system by investigating the relation between compact closed Freyd cate-
gories and other categorical models of linear logic.

5.1 Proofs as Processes

5.1.1 Definition of the translation

We explain how MELL formulas and MELL proofs are represented as (lists of)
sorts and process of the πF -calculus respectively. Here we simply focus on the
definition of the translation and do not explain how the translation is derived
(which will be explained in Section 5.1.3).

We use the standard presentation of classical linear logic by one-sided se-
quents [43]. The inference rules of MELL are introduced along with the transla-
tion, but for more details we refer the readers to the literature [43, 46].

The formulas of MELL are given by the following grammar:

A ::= 1 | ⊥ | A⊗A | A ` A | !A | ?A.

Note that we do not have propositional variables. This is because we do not have
base types in the πF -calculus. This is a common setting that is used in logical
studies of π-calculi (e.g. [11, 54, 19]).

As usual, we introduce negation as a meta-operation on formulas rather than
a logical connective. The dual of a formula A, written A⊥, is inductively defined
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linear logic compact closed Freyd category πF -calculus
(formula) (object) (sort environment)

1
⊥ I empty environment

A⊗B
A ` B

A⊗B ~x : A, ~y : B

!A I ⇒ A x : cho[A⊥]
?A (A⇒ I)∗ x : chi[A]

Table 5.1: The categorical and πF -calculus interpretations of MELL formulas.

as follows:

1⊥ def= ⊥ ⊥⊥ def= 1

(A⊗B)⊥ def= A⊥ ` B⊥ (A ` B)⊥ def= A⊥ ⊗B⊥

(!A)⊥ def= ?A⊥ (?A)⊥ def= !A⊥

By definition, the duality is strictly involutive, that is we have (A⊥)⊥ = A.
Formulas are interpreted as list of sorts (or sort environments) rather than

sorts. This is because objects of Cl(∅) is a list of sorts, not a single sort. The in-
terpretation of formulas is shown in Table 5.1. For readability, the same metavari-
ables A, B are used to denote formulas, objects and (list of) sorts, but the meaning
should be clear. The names appearing in the sorts environment will be used when
we translate proofs into process. Note that A⊗B and A`B are translated into
the same sort environment. This is because in a compact closed category A ` B
is interpreted as (A∗⊗B∗)∗ which coincides with A⊗B in the term model. The
table also shows the categorical interpretation of formulas in a compact closed
Freyd category, but we will explain this later in this section.

Proofs are translated into well-sorted processes. A sequent is an expression
` Γ, where a context Γ = A1, . . . , An is a finite list of formulas; in what follows
we tacitly use the exchange rule and treat a context as if it is a multiset. We
write ` Γ :: Π to mean that Π is a proof with the sequent ` Γ as the root.
Proofs of the form ` A1, . . . , An :: Π are translated to processes in context ~x1 :
A⊥

1 , . . . , ~xn : A⊥
n ` P : �, and we write ` Γ :: Π Γ⊥ ` P : � for this translation.

Again, by abuse of notation, we are using A to represent formulas and the list
of sorts that correspond to the formula A and similarly Γ is used to denote the
sort environment corresponding to the context Γ. Note that we take the dual A⊥

when a formula appearing in a context is translated to sorts in a sort judgement.1
This is because formulas appear in the right-hand side of a sequent whereas sorts
appear in the left-hand side of a sort judgement. In what follows, we will often
omit the symbol �.

Throughout the following paragraphs we introduce how proofs are translated
into processes. Rather than giving the whole translation at once, we present and
explain how each rule is translated in a step-by-step manner.

Multiplicatives The rule for the tensor ⊗ is translated as parallel composition.

⊗
` Γ, A ` ∆, B

` Γ, ∆, A⊗B
 

Γ⊥, (~x) : A⊥ ` P ∆⊥, (~y) : B⊥ ` Q

Γ⊥, ∆⊥, (~x, ~y) : A⊥, B⊥ ` P | Q
1The sort A⊥ can either be interpreted as (1) taking the dual of the formula A and then

taking the corresponding sort or (2) taking the sort corresponding to the formula A and then
considering the dual of that sort. They result in the same sort.
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Perhaps surprisingly, the process representation of the introduction rule for `,
which is the dual of ⊗, does nothing:

` ` Γ, A, B

` Γ, A ` B
 

Γ⊥, (~x) : A⊥, (~y) : B⊥ ` P

Γ⊥, (~x, ~y) : A⊥, B⊥ ` P

This is because A⊗ B ∼= (A∗ ⊗ B∗)∗ ∼= A ` B in compact closed categories and
⊗ is interpreted as juxtaposition of sorts in a sort environment.

The rules for multiplicative units are also ”silent”, i.e. applying the rules for
multiplicative units do not have any effect to the translation. This is because 1
and ⊥ are interpreted as the empty environment in our translation.

Exponential In linear logic weakening and contraction rules do not apply to
every formula, but only to a certain class of modal formulas. The modalities are
! and ?. Intuitively, !A represents an arbitrary number of copies of the formula A
and ? is the dual of !. The weakening and contraction rules are limited to modal
formulas ?A on the right-hand side of a sequent.2

The introduction rule for ! is translated as follows:

!
` ?Γ, A

` ?Γ, !A
 

(?Γ)⊥, (~x) : A⊥ ` P

(?Γ)⊥, a : chi[A⊥] ` !a(~x).P

Here ?Γ represents a context of the form ?A1, . . . , ?An. The ! introduction rule
is translated into input prefixing. This translation seems natural because input
prefixing blocks the computation, i.e. reduction under prefixing is not allowed,
and !-boxes of proof-nets are also used to block computation. An interesting
consequence of this translation is that there are no free input names inside !a(~x).P
because !A = cho[A⊥] in the term model.

The dereliction rule,3 which is the rule that introduces ? is translated as
follows:

D
` Γ, A

` Γ, ?A
 

Γ⊥, (~x) : A⊥ ` P

Γ⊥, ā : cho[A] ` (ν~x~y)(P | ā〈~y〉)

By using the bounded-output notation, the process in the conclusion can be
written as ā(~x).P . Here ā(~x).P means “send fresh names ~x using the channel ā
and then execute P”.

The weakening and contraction rules for ? is translated as follows:

W
` Γ
` Γ, ?A

 
Γ⊥ ` P

Γ⊥, ā : cho[A] ` P

C
` Γ, ?A, ?A

` Γ, ?A
 

Γ⊥, x̄ : cho[A], ȳ : cho[A] ` P

Γ⊥, z̄ : cho[A] ` P{z̄/x̄, z̄/ȳ}

Identity and Cut We interpret the axiom as forwarders.

AX
` A, A⊥  

~x : A∗, ~y : A ` ~x� ~y

2If we use two-sided presentation, then we can also apply weakening and contractions to
formulas of the form !A on the left-hand side of a sequent.

3It might be easier to understand the intuition behind the dereliction rule when it is written

in the two-sided form
Γ, A ` ∆
Γ, !A ` ∆

, which says that “the linearity information on A is lost”.
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Interpreting axiom as forwarders is an idea pervasively used in translations from
linear logical proofs to π-calculi (e.g. [11, 133, 19]).

The cut rule is represented as “parallel composition + hiding”, which is also
standard.

CUT
` Γ, A ` ∆, A⊥

` Γ, ∆
 

Γ∗, (~x) : A∗ ` P ∆∗, (~y) : A ` P

Γ∗, ∆∗ ` (ν~x~y)(P | Q)

Remark 5.1. The πF -calculus can interpret not only MELL proofs, but also
MELL proof-structures as processes. By proof-structures we mean graphs con-
structed in the language of proof-nets—a geometrical method of representing
proofs of linear logic—that do not necessarily represent a proof in MELL. This is
due to the compact closed structure of the πF -calculus [85]. The interpretation is
not given in this thesis since we do not need the interpretation of proof-structures
to compare our work with related studies. �

5.1.2 Cut elimination

We show that the standard proof conversions used in cut elimination procedures
correspond to process equivalences. The translation is sound with respect to these
proof conversions: if a proof Π is converted to Π′ and the process presentation
of Π and Π′ are P and P ′, respectively, then we have P = P ′. This is because
our translation is correct by construction (see Corollary 5.2 below). We believe
that giving explicit correspondences between proof conversions helps readers un-
derstand our translation and also clarifies the difference between our translation
and existing translations from linear logic to π-calculi. (Comparison with related
work is given in the subsequent section.) Instead of listing all the cut reduction
rules and commuting conversion rules, we only present some interesting cases.

The cut reduction for ! and the dereliction rule is one of the most interest-
ing rules to examine since it correspond to communication. The following cut
reduction

cut
!
` ?Γ, A :: Π
` ?Γ, !A

d
` ∆, A⊥ :: Π′

` ∆, ?A⊥

` ?Γ, ∆ −→
cut

` ?Γ, A :: Π ` ∆, A⊥ :: Π′

` ?Γ, ∆

corresponds to the following equation, where Π and Π′ corresponds to P and Q
respectively.

(νāa)(!a(~x).P | (ν~y~z)ā〈~z〉 | Q) = (ν~y~z)(P{~z/~x} | Q)

The above equation follows from (E-Beta), (E-GC) and structural equivalence.
On the other hand, the cut reduction between ⊗ and ` is quite boring. The

cut reduction for ⊗ and ` is defined as follows:

cut
⊗
` Γ, A ` Γ′, B

` Γ, Γ′, A⊗B
` ` ∆, A⊥, B⊥

` ∆, A⊥ ` B⊥

` Γ, Γ′, ∆

−→
cut

` Γ, A
cut

` Γ′, B ` ∆, A⊥, B⊥

` Γ′, ∆, A⊥

` Γ, ∆
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This corresponds to the equation below

(ν~x1~x2 ~y1~y2)((P | Q) | R) = (ν~x1~y1)(P | (ν~x2~y2)(Q | R)).

The above two processes are simply structurally equivalent, and thus no commu-
nications occur to model this cut reduction.

Let us also elaborate on how commuting conversions are modeled. Com-
muting conversions are conversions that “pushes the cut inside”, which corre-
sponds to pushing the ν operator inside. Most of the commuting conversion
rules corresponds to the scope extrusion rule (νāa)(P | Q) ≡ (νāa)P | Q, where
ā, a /∈ fn(Q). The commuting conversion for ! is a little tricky from the πF -
calculus perspective because it requires the commutation between input prefixing
and ν. The commuting conversion for ! and its process representation is given as

cut
!
` ?Γ, A, ?B :: Π
` ?Γ, !A, ?B ` ?∆, !B⊥ :: Π′

` ?Γ, ?∆, !A

−→
!

Cut
` ?Γ, A, ?B :: Π ` ?∆, !B⊥ :: Π′

` ?Γ, ?∆, A

` ?Γ, ?∆, !A

and
(ν b̄b)(!a(~x).P | Q) = !a(~x).(ν b̄b)(P | Q).

where P corresponds to Π and Q corresponds to Π′.The above equation is valid
because the rules of MELL and the definition of the translation ensures that Q
is equivalent to a process of the form !b(~w).Q′.Since !b(~w).Q′ works as a substi-
tution, we can equate the above two processes, i.e. we can equate the processes
by (E-Beta) and (E-GC).

5.1.3 Semantics-directed translation

As mentioned in the beginning of this chapter, our translation is derived using
our semantic framework. The translation is defined by interpreting the MELL
proofs using the term model Cl(∅) and this ensures the soundness of our syntactic
translation.

Here we briefly explain the relationship between compact closed Freyd cate-
gories and models of linear logic and how linear logic proofs are interpreted in
these model. For more details on categorical semantics of linear logic, the reader
may consult a survey written by Melliès [84].

Definition 5.1 (Linear/non-linear model [12, 9]). A linear/non-linear model
(LNL model) is a symmetric monoidal adjunction F : C ⊥ M : G, where C is a
cartesian category and M is a symmetric monoidal closed category. A LNL
model is a categorical model of intuitionistic multiplicative linear logic with ex-
ponentials. If the symmetric monoidal closed category M is a ∗-autonomous
category [10], then we say that the adjunction is a LNL model of MELL. �

Remark 5.2. Our definition of the LNL model differs from the original definition
given by Benton [12] in that we only require C to be cartesian instead of requiring
C to be cartesian closed. �
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Compact closed Freyd categories are LNL models of MELL. The functor
J : C → K of a compact closed Freyd category is a (strong) symmetric monoidal
functor and the right adjoint I ⇒ − is also a monoidal functor because the right
adjoint of a strong monoidal functor lifts to a monoidal functor [84, Proposi-
tion 14]. The category C is cartesian and the category K is ∗-autonomous because
every compact closed category is a ∗-autonomous category.

We briefly explain how formulas and proofs are interpreted in LNL models.
Let F : C ⊥ M : G be a LNL model of MELL. As the notation suggests the multi-
plicative ⊗ and the unit 1 are interpreted by monoidal products and the monoidal
unit in M. Each ∗-autonomous category is equipped by the dualization functor
(−)∗ : Mop → M and this determines the interpretation of the remaining mul-
tiplicative connectives. That is, JA ` BK def= (JAK∗ ⊗ JBK∗)∗ and J⊥K def= I∗. 4

The ! modality is modeled by the comonad GF induced by the monoidal ad-
junction and ?A is defined as (GFA∗)∗. So, in a compact closed Freyd category
J : C ⊥ K : I ⇒ (−), the modality ! is modeled by the comonad J(I ⇒ −) as we
summarized in Table 5.1. A proof ` A1, . . . , An :: Π is interpreted as a morphismJΠK : I → JA1 ` · · ·` AnK in M. See [84] for the definition of the translation.

The important point is that the interpretation of MELL proofs in every LNL
model is known to be sound, i.e. the interpretation is invariant modulo cut-
elimination. It is easy to check that the translations we defined in Section 5.1.1
correctly specifies a representative of the interpretation in the term model Cl(∅)
and thus it follows that the syntactic translation is also sound without the need
for an extra proof.

Theorem 5.1. Let ` Γ :: Π be an MELL proof and assume ` Γ :: Π Γ⊥ ` P :
�. Then the interpretation of Π in the term model Cl(∅) is [ ` P ; Γ], which is a
process typed under Γ⊥.

Proof. By simple calculation.

Corollary 5.2. Assume ` Γ :: Π  Γ⊥ ` P : � and ` Γ :: Π′  Γ⊥ ` P : � and
suppose that Π −→ Π′ in the cut-elimination process. Then we have ∅ � Γ⊥ `
P = P ′.

5.1.4 Comparison with related studies

On the translation of formulas and proofs We discuss the similarities and
the differences between our translation and other studies that have investigated
π-calculus interpretation of linear logic proofs. As mentioned, axioms and cuts
are translated as forwarders and “parallel composition + hiding” in most studies.
Hence, we only discuss how the rules for exponential modalities and multiplicative
connectives are translated.

The way we translate the rules for exponential modalities are very similar
to that of the translation from linear logic to session-typed π-calculi [133, 19].
In fact, our translation for the exponential rules and Wadler’s translation for
the exponential rules coincide. More concretely, the introduction rule for ! is
represented as replicated input prefixing and the dereliction rule is represented
as bound output in both translations. (Weakening and contraction rules are also
represented in the same way.) Our translation is not directly comparable to πCLL
given by Caires et al. [19] since they use a dyadic system [6], i.e. a system with

4Note that, in general, (A∗ ⊗ B∗)∗ is not isomorphic to A ⊗ B and I∗ is not isomorphic to
I in a ∗-autonomous category C. As repeatedly mentioned, they are isomorphic if C is compact
closed.
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dual contexts, instead of the standard one-sided formalism of linear logic with
single context. Nevertheless, there are similarities in the translation for the rules
for exponential modalities. The introduction rule for !, i.e. the (T!) rule in [19],
corresponds to replicated inputs and the (Tcopy) rule, a rule that can be seen as
a decomposition of the dereliction rule, corresponds to bound output.

The Abramsky translation [11] for the exponentials are more complicated than
ours. This is because the translation tries to encode the cut reduction between
! introduction and weakening and contraction for ? using communications rather
than process equivalence. Moreover, due to this complexity, it is hard to consider
their system as a type assignment system; there is no natural interpretation for
the formula !A.

However, when the translations for multiplicative connectives are compared,
our translation is conceptually closer to the Abramsky translation than the trans-
lation to session-typed π-calculi.

Abramsky translation interprets A⊗B as cho[A, B] and A`B as chi[A, B].5
The ` introduction rule is interpreted as follows

P ` Γ, x : A, y : B

z(x, y).P ` Γ, z : A ` B
(5.1)

The difference compared to our translation is that Abramsky translation adds
an input prefixing so that the cut reduction for ⊗ and ` corresponds to com-
munication. However, like our translation, the idea that (1) names represent
“communication ports” and (2) process describes how the ports are connected
can be seen in this translation. In the words of Bellin and Scott, “communica-
tions in π-calculus is about the pluggings in proof structures”.

In linear logic based session-typed π-calculi, A ⊗ B is interpreted as a type
for sessions that first outputs a value of type A and then behaves according to
B. Dually, A ` B is interpreted as a type for sessions that input A and behave
as B. Thus the type does no longer represent the “pluggings in proof structures”.
For example the ` introduction rule given by Wadler is as follows:

P ` Γ, x : A, B : y

x(y).P ` Γ, x : A ` B

Note that the input only receives one name in contrast to (5.1).
To our knowledge, the work most similar to ours is the correspondence be-

tween a local π-calculus and polarized proof-nets discovered by Honda and Lau-
rent [54]. The polarized logic used in their work is presented in focalized form [44]
and the set of formulas is given by the following grammar:

P ::=
⊗

1≤i≤n

!Ni N ::=
¸

1≤i≤n

!Pi

As in the other translations ! and ? (on the right-hand side of a sequent) corre-
spond to input action and output actions respectively. The interesting point is
that connectives ⊗ and ` are used to express polyadic communication action,
i.e. receiving or sending n names. Note that each ` connective appears under
the !-modality. This allows one to consider !(P1 ` · · · ` Pn) as a type for input
channels receiving n-arguments. This is exactly the way how sorts and formulas
correspond in the πF -calculus. However, a crucial difference compared to our

5It is more precise to interpret A ⊗ B as a linear output channel [69] because the name
assigned to the type cho[A, B] is linearly used.
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work is that processes in their calculus only receives input names. This condition
is called the locality constraint [88, 136] in the context of π-calculus and reflects
the fact that the formulas are polarized.

On cut-elimination A possible criticism on our translation is that it does
not always map cut reductions to communications. As we have seen, the cut
reduction for ⊗ and ` is modeled by structural equivalence in our translation.
This is in contrast to the other studies where the correspondences between cut
reductions and communications were emphasized.

However, we think that the requirement that every cut reduction should cor-
respond to reduction/communication is too strong. When one tries to fulfill
this strong requirement one often ends up with a process calculus whose re-
duction relation is distant from the conventional reduction. For example, the
π-calculus used by Bellin and Scott admits prefix commutations (e.g. a(x).b(y).P
and b(y).a(x).P are equivalent), which is not allowed in conventional π-calculus.
Wadler’s CP also suffers from this problem. The session typed calculi introduced
by Caires et al. [19] do not suffer from this problem because they relate some
of the cut reduction rules to process equivalence instead of reduction; the opera-
tional validity of these equivalences has also been checked [103]. We think it is not
that peculiar to model the cut reduction for ⊗ and ` using structural equivalence
once we forgo the idea that cut reduction should correspond to communication.

Also there is no strong semantic reason to interpret ⊗ as outputs and `
as inputs. For example, Bellin and Scott mentions that the choice of treating
⊗ as senders and ` as receivers is arbitrary [11]; having said that, we note
that they gave a detailed observation based on information flow to support their
choice. Another example is the work on multiparty session types [20] where
⊗ is interpreted as inputs and ` as outputs. Thus, the fact that ⊗ does not
correspond to neither inputs nor outputs in our translation is not unnatural from
the semantic perspective.

5.2 Processes as Proofs

Here we discuss the converse direction, i.e. a variant of linear logic to which every
πF -process can be interpreted. It should be a degenerate system in the sense that
A⊗B and A`B must coincide because A⊗B and A`B are isomorphic in any
compact closed category. It seems that we also need weakening and contraction
rules for formulas of the form ?A appearing in the left-hand side of the sequent,
because input channels can be replicated and discarded in the πF -calculus.

Instead of making guesses at the rules we need based only on syntactic obser-
vations, we use our categorical semantics as a guide. We start from a model of
linear logic and look for additional data and axioms that are sufficient to turn that
model into a compact closed Freyd category using some categorical construction.

We use linear categories as our starting point. It is well-known that a linear
category that is also ∗-autonomous category is a model of MELL. Although LNL
models and linear categories are both sound and complete models of linear logic,
linear categories have better match with sequent style formulation of linear logic.
The internal language of LNL models is a kind of adjoint logic and does not
exactly correspond to linear logic [81].

Definition 5.2 ([13, 59]). A linear category is a symmetric monoidal closed
category (L,⊗, I) with a symmetric monoidal comonad ((!, m0, m2), δ, ε) with
two monoidal natural transformations d and e such that for all A ∈ Obj(L)
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1. dA : !A→ !A⊗ !A and eA : !A→ I form a commutative comonoid A, dA, eA

2. dA and eA are coalgebra morphisms

3. the morphism δA is a comonoid morphism.

The symmetric monoidal comonad ! is called the linear exponential comonad. �

Since the proof system we are seeking for needs to have the compact closed
structure, it is natural to start from a linear category that is compact closed.
The logic corresponding to linear categories that are also compact closed should
be a proper extension of linear logic. For example, the following rules are invalid
in linear logic but admissible in compact closed categories:

` Γ ` ∆
` Γ, ∆

` Γ, A, B ` ∆, A⊥, B⊥

` Γ, ∆
` Γ, A, A⊥

` Γ
.

These rules, especially the second rule called multicut, were often studied in
concurrency theory; see the work by Abramsky et al. [5] for their relevance to
concurrency.

Now the following is the question we want to answer:

Can we obtain a compact closed Freyd category from a linear category
that is compact closed?

Since compact closed Freyd categories are monoidal adjunctions (with additional
properties) between cartesian category and monoidal category, we need to con-
struct these structures.

Fortunately there is a well-known recipe to construct a cartesian category
from a linear category. Linear categories are instances of LNL models because
the Eilenberg-Moore category of the linear exponential comonad is cartesian.

Proposition 5.3 ([84, Proposition 28]). Let (L,⊗, I) be a linear category whose
linear exponential comonad is !. The monoidal structure inherited from L is
cartesian in its Eilenberg Moore category L!. Therefore, the U : L! ⊥ L : F is a
LNL model, where U and F are the forgetful and the free functor respectively.

Be warned that the above adjunction is not a compact closed Freyd category
as U is not identity-on-object. Our aim is to construct a Freyd category from the
above adjunction.

From the monoidal adjunction U a F in the above proposition, we can con-
struct a monad FU over L!. When we have a monad there is a somewhat canon-
ical way to obtain an identity-on-object functor: taking the Kleisli adjunction of
the monad. However, the Kleisli category (L!)F U is not a compact closed cate-
gory in general even if L is compact closed. Thus taking the Kleisli adjunction
does not always give a compact closed Freyd category. The following proposition
characterizes the condition for (L!)F U to be a compact closed category.

Proposition 5.4. Let (L,⊗, I) be a compact closed category, where the du-
alization functor is given by (−)∗, together with a linear exponential comonad
(((!, m0, m2), δ, ε). Then the adjunction U : L! ⊥ L : F induces a monad FU . The
Kleisli category of this monad (L!)F U is a compact closed Freyd category if and
only if L satisfies the following condition:

(R) for all coalgebra (A, A
h→ !A) there exists a coalgebra (A∗, A∗ h•

→ !(A∗))
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Proof. First observe that (L!)F U is equivalent to a category L!
U whose objects

are the same as L! and morphisms are defined as

L!
U ((A, A

h→ !A), (B, B
h′
→ !B)) def= L(U(A, A

h→ !A), U(B, B
h′
→ !B))

= L(A, B)

This category is clearly a monoidal category since L! is equipped by with the
symmetric monoidal functor structure induced by L.

Now we prove the only if direction. Since (L!)F U is compact closed by as-
sumption, the category L!

U is also compact closed. Thus, there is a dual for every
object (A, A

h→ !A), which we write (A•, A
h•
→ !A•). It follows that A• is the dual

of A in L and thus A• ∼= A∗. It is easy to check that (A∗, A∗ ∼= A• h•
→ !A• ∼= !A∗)

is a coalgebra. Hence, L satisfies the condition (R).
The proof for the if direction is easy. It suffices to show that L!

U is a compact
closed category. We can define the dual objects by (A, A

h→ !A)∗ def= (A∗, A∗ h•
→

!A∗). The unit and counit is given by the unit ηA : I → A∗ ⊗ A and counit
εA : A⊗A∗ → I inherited from L.

Since formulas of the form !A are coalgebras in MELL, the above proposition
leads us to consider the following axiom:

R
` !?A, (?A)⊥

(
or an equivalent axiom in a two-sided form

?A ` !?A

)

with the following conversion rules.

Cut
R
` !?A, (?A)⊥ D

Ax
` ?A, (?A)⊥

` ?A, ?(?A)⊥

` ?A, (?A)⊥ −→
Ax
` ?A, (?A)⊥

Cut
R
` !?A, (?A)⊥ !

D
R
` !?A, (?A)⊥

` !?A, ?(?A)⊥

` !!?A, ?(?A)⊥

` !!?A, (?A)⊥ −→
Cut

R
` !?A, (?A)⊥ !

Ax
` !?A, (!?A)⊥

` !!?A, ?(?A)⊥

` !!?A, (?A)⊥

The axiom in the two-sided form corresponds to requiring the existence of a
morphism (!A)∗ →!(!A)∗ for every A; note that ?A = (!A⊥)⊥. The two conver-
sion rules correspond to the axioms that coalgebras need to satisfy, which are
sometimes called the unit triangle and the multiplication square.

With this axiom, the weakening rule and the contraction rule for ! (on the
right-hand side of a sequent) becomes derivable. For example, the weakening rule
is given as follows:

Cut
R
` !?A⊥, !A

w
` Γ
` Γ, ?!A

` Γ, !A

Categorically speaking, this means that ?A is a comonoid object. From the π-
calculus point of view, this means that input channels can be duplicated and
discarded. Therefore, races are introduced by this axiom.

We conjecture that MELL together with the multicut rule, the axiom ?A ` !?A
and the above two proof conversion rules induces a category initial among linear
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categories that are compact closed and satisfy the condition (R). If this is the
case then we can derive a syntactic translation from πF -calculus to this proof
system by applying Proposition 5.4 to the linear category constructed from this
proof system. Checking this conjecture is left for future work.

Note that the proofs in this proof system are also representable by πF -
processes. This is because the term model Cl(∅) give rise to a linear category that
satisfies (R) by taking ! def= JAx(I ⇒Ax −) as the linear exponential comonad. So,
if the conjecture holds, we may say that πF -calculus corresponds to “MELL +
multicut + axiom (R)”. The correspondence is, however, quite loose in the sense
that it is not a direct correspondence. We need some categorical constructions,
like taking the Kleisli category, for the mutual interpretation.

To our knowledge, the axiom ?A ` !?A, has not been considered in the lit-
erature. However, a similar rule was considered when Atkey et al. [7] tried to
introduce race into the session typed calculus CP [133]. They identified the for-
mula ?A with !A and showed that this yields access points, a rendezvous mecha-
nism for initiating session typed communication that may cause race conditions.
Our axiom is weaker than their requirement in the sense that ?A ` !A is not
derivable in general, i.e. we do not have back-and-forth translations between
?A and !A. Another difference is that their syntactic identification of ! and ? is
not well understood from the semantic viewpoint. In fact, it is not clear what
it means to identify a linear exponential comonad ! with a monad ? defined by
?A

def= (!A∗)∗. To the contrary, our axiom ?A ` !?A originates from a semantic
consideration. However, the proof theoretic and process theoretic understanding
against this axiom is still missing. This is left for future work. In particular,
we are interested in whether we can define a variant of π-calculus that directly
corresponds to “MELL + multicut + the axiom ?A ` !?A”. Such a calculus is
interesting because we may be able to introduce linear types [69] to the calculus.
This is because types that are not duplicable nor discardable can exist in such a
calculus.
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Chapter 6

Comparing First-Order and Higher-Order
Calculi

In order to demonstrate the relevance of our semantic framework, this chapter
tries to give a semantic understanding against the various existing translations
from higher-order calculi, such as the λ-calculus, to the π-calculus. Our primary
tool to analyze these translations is a higher-order calculus called the λch-calculus
that also corresponds to compact closed Freyd categories. The λch-calculus is an
instance of the computational λ-calculus and is obtained by a straightforward
extension of the coincidence between the computational λ-calculus and closed
Freyd categories. Since the λch-calculus is sound and complete with respect to
compact closed Freyd categories, there are translations between the λch-calculus
and the πF -calculus. We show that these translations can be seen as (an extended
version of) the translations between the higher-order π-calculus and the first-order
π-calculus [115, 118], and use them to study other translations from higher-order
calculi to the π-calculus.

6.1 The λch-calculus

The λch-calculus1 is a computational λ-calculus with additional constructors deal-
ing with channels. This section introduces and explains the calculus.

The situation is nicely expressed by the following intuitive equation:

λch
λc

≈ (compact closed Freyd category + I + D)
(closed Freyd category)

.

The base calculus λc-calculus is the computational λ-calculus, which corresponds
to closed Freyd category [97, 111]. It is a call-by-value higher-order programming
language, given in Fig. 6.1(a).2 Our calculus λch-calculus is obtained by adding
type and term constructors originating from the compact closed structure, which
λc-calculus does not have.

Remark 6.1. It is possible to define an instance of the computational λ-calculus
that corresponds to compact closed Freyd categories that do not necessary satisfy
conditions (I) and (D). However, we wanted λch-calculus to correspond to the
πF -calculus, so we made it to correspond to “compact closed Freyd category +
(I) + (D)”. �

1There is another calculus also called the λch-calculus in the literature [38, 37], which is very
similar to ours. This is just a coincidence and our calculus was developed independently of that
of [38, 37]. (See Section 6.4 for details.)

2The syntax of λc-calculus is adapted to the setting of this thesis.
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σ ::= τ → τ ′ ξ ::= σ τ ::= (ξ1, . . . , ξn)
V ::= x | λ〈~x〉.M
M ::= 〈~V 〉 | V 〈~V 〉 | let 〈~x〉 = M in M ′

(a) λc-calculus

ξ ::= · · · | σ∗

V ::= · · · | channelσ | sendσ

(b) λch (difference from λc)

Figure 6.1: Syntax of types and terms of the λc-calculus and λch-calculus.

6.1.1 Syntax

As for types, λch has a new constructor coming from the dual object A∗. Nor-
malizing occurrences of the dual A∗ using the axioms (I) A∗∗ = A and (D)
(A⊗B)∗ = A∗ ⊗B∗, we obtain the following grammar of types:

σ ::= τ → τ ′ ξ ::= σ | σ∗ τ ::= (ξ1, . . . , ξn)

where n ≥ 0 and (ξ1, . . . , ξn) is an alternative notation for ξ1⊗· · ·⊗ξn. Compared
with λc, the only new type is the dual type σ∗ of a function type σ.

As for terms, λch has constructors corresponding to the unit and counit

ηA : I −→ A⊗A∗ εA : A∗ ⊗A −→ I (for each object A)

of the compact closed structure. We simply add these morphisms as constants:

∆ ` channelσ : ()→ (σ, σ∗)
and

∆ ` sendσ : (σ∗, σ)→ ()
.

We shall often omit the subscript σ.
Type environments are of the form ∆ = x1 : ξ1, . . . , xn : ξn and the type judge-

ment is of the form ∆ `M : τ . We omit the typing rules since they are standard.
In summary, we obtain the syntax of λch-calculus shown in Figure 6.1. In-

terestingly, λch-calculus can be seen as a very core of Concurrent ML [112], a
practical higher-order concurrent language, even though λch-calculus is devel-
oped from purely semantic considerations.

6.1.2 Semantics

Let us first discuss the intuitive meanings of the new constructors. The type σ∗

is for output channels; channel 〈〉 creates and returns a pair of an input channel
and an output channel that are connected; and send 〈α, V 〉 sends the value V
via the output channel α. The following points are worth noting.

• λch has no type constructor for input channels. The type system does not
distinguish between input channels for type σ and values of type σ.

• λch has no receive constructor. Receiving operation is implicit and on de-
mand, delayed as much as possible.

• The send operator broadcasts a value via a channel. Several receivers may
receive the same value from the same channel.

The first two points reflect the asynchrony of the πF -calculus, and the last point
reflects the absence of non-replicated input (cf. Section 6.2).
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let 〈~x〉 = M in 〈~x〉 = M

let 〈~x〉 = 〈~V 〉 in M = M{~V /~x}
let 〈~x〉 = (let 〈~y〉 = M in N) in L = let 〈~y〉 = M in let 〈~x〉 = N in L

(λ〈~x〉.M) 〈~V 〉 = let ~x = 〈~V 〉 in M

(λ〈~x〉.y〈~x〉) = y

(a) Rules for λc-calculus

let 〈~x〉 = M in let 〈~y〉 = N in L = let 〈~y〉 = N in let 〈~x〉 = M in L

(b) Rules for concurrent λc-calculus

(νxx̄)(send 〈x̄, V 〉 ‖M) = (νxx̄)(send 〈x̄, V 〉 ‖M{V/x}) (x̄ /∈ fv(V ) ∪ fv(M))
(νxx̄)(send 〈x̄, V 〉) = 〈〉 (x, x̄ /∈ fv(V ))

(νyȳ)(send 〈z̄, y〉 ‖ N) = N{z̄/ȳ} (y /∈ fv(N) and z̄ 6= ȳ)
(c) Rules for λch-calculus

Figure 6.2: Equational rules for the λch-calculus.

Based on this intuition, we develop the axiomatic and categorical semantics
of the λch-calculus. We shall use the following abbreviations:

(νxy)M def= let 〈x, y〉 = channel 〈〉 in M M ‖ N
def= let 〈〉 = M in N.

These abbreviations help us clarify the similarity among λch-calculus, πF -calculus
and the higher-order π-calculus.

Axiomatic semantics The inference rules of the equational logic for the λch-
calculus are listed in Figure 6.1.2. The rules are equations-in-context; each rule
has implicit assumptions that the both sides of the equation are well-typed terms.
The first five are the standard rules for computational λ-calculus [78, 47]. The
sixth one is the rule of concurrent evaluation that reflects the bifunctoriality of
monoidal products. The last three rules are the β- and η-rules for channels and
a GC rule that reflect the compact closed structure.

Categorical semantics One can interpret λch-terms in a compact closed Freyd
category with (I) and (D). Here we define the interpretation J−KJ , where J is a
compact closed Freyd category. The interpretation of types and terms are listed
in Figure 6.1.2 where a type environment x1 : ξ1, . . . , xn : ξn is interpreted asJξ1K⊗ · · · ⊗ JξnK. The interpretation of the λc-calculus part is standard [111, 78].
Interpretations of constants channelσ and sendσ) are the part that is specific
to the λch-calculus. They are interpreted as the “closure” whose body is ησ and
εσ, respectively, as expected.

The categorical semantics is sound and complete with respect to the equa-
tional theory of the λch-calculus. The completeness is shown by constructing a
term model using types and terms of the λch-calculus. We omit the proofs for
soundness and completeness since they are analogous to that for the πF -calculus;
actually, soundness and completeness for the λch-calculus is easier to prove be-
cause we can reuse some results on the λc-calculus. There is a subtle issue in
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Jτ → τ ′K def= JτK⇒ Jτ ′K Jσ∗K def= JσK∗ J(ξ1, . . . , ξn)K def= Jξ1K⊗ · · · ⊗ JξnK
J∆ ` x : ξK def= J(π∆

x )

J∆ ` 〈V1, . . . , Vn〉 : (ξ1, . . . , ξn)K def= J(〈id, . . . , id〉); (J∆ ` V1 : ξ1K⊗ · · · ⊗ J∆ ` Vn : ξnK)
J∆ ` λ〈~x〉.M : (~ξ)→ τK def= J(Λ∆,~ξ,τ

(JΓ, ~x : ~ξ `M : τK))
J∆ ` V 〈 ~W 〉 : τ ′K def= J(d∆); (J∆ ` V : τ → τ ′K⊗ J∆ ` 〈 ~W 〉 : τK); evalτ,τ ′

J∆ ` let ~x = M in NK def= J(d∆); (id∆ ⊗ J∆ `M : (~ξ)K); J∆, ~x : ~ξ ` N : τK
J∆ ` channelσ : ()→ (σ, σ∗)K def= J(!∆; ΛI,I,σ⊗σ∗(ησ))

J∆ ` sendσ : (σ∗, σ)→ ()K def= J(!∆; ΛI,σ⊗σ∗,I(εσ)).

Figure 6.3: Interpretations of the types and λch-terms.

[(cho[~T ])] def= [(~T )]→ () [(chi[~T ])] def= ([(~T )]→ ())∗ [((T1, . . . , Tn))] def= ([(T1)], . . . , [(Tn)])

[(0)] def= 〈〉 [(P | Q)] def= [(P )] ‖ [(Q)] [((νxy)P )] def= (νxy)[(P )]

[(ā〈~x〉)] def= ā 〈~x〉 [(!a(~x).P )] def= send 〈a, λ(~x).[(P )]〉

Figure 6.4: Translation from πF -calculus to λch-calculus.

the definition of the term model that is worth mentioning: we have different def-
initions of the right adjoint I ⇒ (−), which are of course equivalent but do not
coincide on the nose. Our choice here is I ⇒ 〈~ξ〉 def= (~ξ⊥)→ ().

6.2 Translations between λch and πF

The higher-order calculus λch-calculus is equivalent to πF -calculus. This is be-
cause both calculi correspond to the same class of categories, namely, the class
of compact closed Freyd categories with (I) and (D), i.e.,

(λch-calculus) ≈ (compact closed Freyd category + I + D) ≈ (πF -calculus)

This section studies translations derived from this semantic correspondence.
The translations are defined by the interpretations in the term models. For

example, the translation L−M from λch-calculus to πF -calculus is induced by the
interpretation of λch-terms in the term model Cl(∅). The interpretation JMKCl(∅)
of a λch-term M is an equivalence class of πF -processes, since a morphism in
Cl(∅) is an equivalence class of πF -processes. The translation LMM is defined by
choosing a representative of the equivalence class. The other direction [(−)] is
obtained by the interpretation of πF -processes in the term model of λch-calculus.

Figures 6.4 and 6.5 are concrete definitions of the translations defined by a
natural choice of representatives. The representatives are chosen so that there is
no redundant forwarders or redexes.

Let us discuss the translations in more details. The translation from πF -
calculus to λch-calculus (Fig. 6.4) should be easy to understand. It directly
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Lτ1 → τ2M def= cho[Lτ1M, Lτ2M⊥] Lσ∗M def= LσM⊥ L(τ1, . . . , τn)M def= (Lτ1M, . . . , LτnM)
LxMp

def= (p� x) Lλ~x.MMp
def= !p(~x, ~q).LMM~q L〈~V 〉M~p

def= LV1Mp1 | · · · | LVnMpnLV 〈 ~W 〉M~p
def= (νaā)(ν~r~s)(LV Ma | L〈 ~W 〉M~s | ā〈~r, ~p〉)

Llet 〈~x〉 = M in NM~p
def= (ν~x~q)(LMM~q | LNM~p)

LchannelMp
def= !p(x, y).x ↪→ y LsendMp

def= !p(x, y).x ↪→ y

Figure 6.5: Translation from λch-calculus to πF -calculus.

expresses the higher-order view of the first-order π-calculus that has been re-
peatedly discussed in this thesis. For example, an output action is mapped to
an application and an input-prefixing !a(~x).P to a send operation of the value
λ〈~x〉.P via the channel a.

An interesting (and perhaps confusing) phenomenon is that an input channel
in the πF -calculus is mapped to an output channel in λch-calculus. This can be
explained as follows. In the name-passing viewpoint, the reduction

(νxy)(!y(~z).P | x〈~u〉) −→ (νxy)(!y(~z).P | P{~u/~z})

sends ~u to the process !y(~z).P , and thus x is output and y is input. In the
process-passing viewpoint, the abstraction (~z).P is sent to the location of x, and
thus y is the output and x is the input.

Next, we explain the translation from the λch-calculus to the πF -calculus
shown in Figure 6.5). Let us first examine the translation of types. The most
non-trivial part is the translation of a function type τ1 → τ2. A key to understand
the translation is the isomorphism τ1 → τ2 ∼= τ1 ⊗ τ⊥

2 → (). The latter form of
function type corresponds to an output channel type in the πF -calculus. Hence
a function is understood as a process additionally taking channels to which the
return values are passed.

The translation LMM~p of a λch-term ∆ `M : (ξ1, . . . , ξn) takes extra parame-
ters ~p = p1, . . . , pn to which the values should be placed. This is a consequence of
the definition in the term model of the πF -calculus that a morphism ~T −→ ~S is a
process ~x : ~T , ~y : ~S⊥ ` P : � where there is no “return value”. Here ~p corresponds
to ~y, Γ to ~x : ~T and ~ξ to ~S.

Now it should be easier to understand the interpretations of the λch-terms.
For example, the abstraction Lλ〈~x〉.MMp is mapped to an abstraction (~x, ~q).LMM~q

placed at p, which takes additional channels ~q to which the results of the evalu-
ation of M should be sent.

Example 6.1. As an example, let us see how a β-redex (λx̄.M) N is translated
and how reductions are expressed. Since we cannot directly write (λx̄.M) N in
λch-calculus we will use an equivalent expression that uses the let-expression.

Llet ȳ = N in (λx̄.M) ȳMp

= (νȳy)(LNMy | (νāa)(ν b̄b)(!a(x̄, q).LMMq | b ↪→ ȳ | ā〈b̄, p〉)
= (νȳy)(LNMy | (νāa)(!a(x̄, q).LMMq | ā〈ȳ, p〉) ((E-FOut) and (E-GC))
−→ (νȳy)(LNMy | (νāa)(!a(x̄, q).LMMq | LMMp{ȳ/x̄})
= (νȳy)(LNMy | LMMp{ȳ/x̄}) (E-GC)
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Note that the above process allows to reduce the abstraction body M and the
argument N in parallel sharing the private channel ȳ and y. Intuitively, this
happens because (λx.M)N = let x = N in M and terms N and M can be
reduced in parallel in λch-calculus. A similar observation has been given by
Toninho et al. [126] when they gave an encoding of the simply-typed λ-calculus
in session-typed π-calculus by employing Girard’s call-by-value translation from
intuitionistic logic to linear logic. They observed that the call-by-value Girard
translation only captures a reduction strategy in which sub-expressions are eval-
uated in parallel. We note that we are observing the same problem in different
type systems because the way we interpret the arrow type is the call-by-value
Girard translation. That is we have A⇒ B ∼= J(I ⇒ A∗ ⊗B) ∼= !(A( B).

This means that the translation from λch-calculus to πF -calculus is too loose
as an encoding of the standard call-by-value (or call-by-name) λ-calculus. In
Section 6.3, we show that this problem can be avoided by restricting the evalua-
tion strategy using CPS translations, which is the idea that is often used in the
literature (e.g. [90, 118, 17]). �

It might be surprising that the interpretations of channel and send coin-
cide. This is because of the one-sided formulation of the πF -calculus. In the
two-sided formulation, the unit η and counit ε of the compact closed structure,
corresponding to channel and send, can be written as logical inference rules

∆, A, A⊥ ` ∆′

∆ ` ∆′ and ∆ ` A⊥, A, ∆′

∆ ` ∆′ ,

which are different. In the one-sided formulation, however, they become

∆, A, A⊥, (∆′)⊥ `
∆, (∆′)⊥ `

.

Hence η and ε (or channel and send) cannot be distinguished in the πF -calculus.
The translation L−M must be the inverse of [(−)] because both the term models

are the initial compact closed Freyd category with (I) and (D). That means,
∅ � ∆ ` P = L[(P )]M and ∅ � ∆ ` M = [(LMM)] are provable for every P and M .
This result is independent of the choice of representatives.

6.2.1 λch-calculus vs. HOπ

We show that a variant of a higher-order π-calculus can be seen as a subcalculus of
the λch-calculus. This fact together with the mutual translation between the λch-
calculus and the πF -calculus gives a semantic reconstruction of the translations
by Sangiorgi [118] (see also [119]) between asynchronous higher-order π-calculus
(AHOπ for short) and asynchronous local π-calculus (Lπ for short).

A variant of AHOπ can be seen as a fragment of the λch-calculus. The syntax
of AHOπ and their representation by λch-terms are given in Figure 6.6. The first
rows of the BNF notations are the grammar for the AHOπ and the corresponding
λch-terms are written below. We can thus consider the constructs of AHOπ as
macros defined over the λch-calculus. The syntax of AHOπ presented here slightly
differs from that of the original one because ν binds a pair of names and non-
replicated inputs are forbidden.

This fragment is nicely described as a limitation on types:

σ ::= (~σ)→ () ξ ::= σ | σ∗ τ ::= ().
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v, w ::= x | (~x).P
x λ〈~x〉.P

P, Q ::= 0 | (P | Q) | (νxy)P | !x v | v〈~w〉
〈〉 P ‖ Q (νxy)P send 〈x, v〉 v 〈~w〉.

Figure 6.6: AHOπ processes as λch-terms.

L0M def= 0 LP | QM def= LP M | LQM L(νxy)P M def= (νxy)LP M L !x vM def= LvMxLv〈w1, . . . , wn〉M def= (νāa)(ν b̄1b1) . . . (ν b̄nbn)(LvMa | Lw1Mb1 | · · · | LwnMbn | ā〈b̄1, . . . , b̄n〉)LxMa
def= (a ↪→ x) L(~x).P Ma

def= !a(~x).LP M
Figure 6.7: Translation from AHOπ to πF -calculus.

Recall that σ is a type for abstractions, ξ is a type for variables, and τ is a type
for terms. This limitation means that (1) an abstraction cannot take a channel
as an argument, and (2) a term M must be of the unit type, i.e. a process.

Once regarding AHOπ as a fragment of λch-calculus, the translation from
AHOπ to πF -calculus is obtained by restricting L−M to AHOπ-processes. The
resulting translation is in Fig. 6.7. As mentioned, the translation is the same as
that of Sangiorgi [118] except for minor differences due to the slight change of
the syntax.

Sangiorgi also gave a translation in the opposite direction, from Lπ to AHOπ
in the same paper. The calculus Lπ, a variant of the local π-calculus [88, 136]),
is a fragment of the π-calculus in which only output channels can be passed. The
i/o-separation of the πF -calculus allows us to characterize the local version of
the πF -calculus by a limitation on types. In the local variant, the output channel
type is restricted to T ::= cho[~T ], expressing that only output channels can be
passed via an output channel. Then the definition of type environment should
be changed accordingly: ∆ ::= · | ∆, x : T | ∆, x : T ⊥ (since the syntactic class
represented by T is not closed under the dual (−)⊥ in the local setting).

Interestingly the limitation on types in AHOπ coincides with that in Lπ,
when one identify cho[~T ] with (~T ) → () (as we have done in many places). In
other words, the syntactic restrictions of AHOπ and Lπ are the same semantic
conditions described in different syntax. As a consequence, the image of Lπ by
[(−)] is indeed in AHOπ.

6.3 Combining CPS transformation

6.3.1 From λV/λN to πF

In another paper [117] (see also [119]), Sangiorgi observed that call-by-value and
call-by-name encoding of λ-calculus into π-calculus can be factorized into CPS
transformation and the compilation from HOπ to the first order π-calculus. The
situation is nicely summarized in Figure 6.8. The translations V and N are the
call-by-value and call-by-name encoding of the λ-calculus, respectively. The maps
CV and CN are call-by-value and call-by-name CPS translations that translates
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λV λN

CPSv CPSN

HOπ

π

CV

V

CN

N

H
H

L−M

Figure 6.8: Decomposition of the π-calculus encoding of λV and λN . The figure
is taken from [117].

λ-terms to CPS-calculus; roughly speaking, CPS-calculus is a subcalculus of the
λ-calculus that is defined as the image of the CPS translation. The translation
H is the injection from the CPS-calculus to the higher-order π-calculus. It is
the identity except for the fact that it does some uncurrying such as λx.λk.M to
λ(x, k).M .

We give semantic analysis to these translations. We show that encoding of
the call-by-value and call-by-name λ-calculus can be understood as a call-by-value
and call-by-name monad translation [131, 98] for a certain continuation monad.

Our starting point is the observation that a continuation monad can be ob-
tained from a tensorial negation [87]. A tensorial negation on a symmetric
monoidal category (C,⊗I) is a functor ¬ : C → Cop together with a natural family
of bijections

ϕA,B,C : C(A⊗B,¬C) ∼= C(A,¬(B ⊗ C))

that satisfy a coherent condition with respect to the associativity of the monoidal
product (see [87] for details). From the definition it easily follows that ¬ a ¬op,
i.e. ¬ is a self-adjunction. Thus ¬op¬ is a monad, called the continuation monad
of the negation, and this can be considered as a “double-negation monad”.3

Now let us apply this observation to compact closed Freyd category. Let
J : C ⊥ K : I ⇒ (−) be a compact closed Freyd category. Since (−)∗ : K → Kop is
a self adjoint, we have the following three adjunctions:

C ⊥ K ⊥ Kop ⊥ Cop

J (−)∗

I⇒−

(I⇒−)op

((−)∗)op Jop

We define ¬ def= J ; (−)∗; (I ⇒ −)op. Then it is easy to check that ¬ is also
a tensorial negation. By abuse of notation, we also write ¬ for the opposite
functor of ¬ : C → Cop. Then ¬¬ : C → C is a strong monad on C. Moreover,
we have a Kleisli exponential for (C,¬¬), which is obtained from the following
isomorphisms:

C(A⊗B,¬¬C) = C(A⊗B, I ⇒ J(I ⇒ J(C)∗)∗)
∼= K(J(A⊗B), J(I ⇒ J(C)∗)∗)
∼= K(J(A), J(B)∗ ⊗ J(I ⇒ J(C)∗)∗)
∼= C(A, I ⇒ J(B)∗ ⊗ J(I ⇒ J(C)∗)∗).

3It should be noted that the relationship between self-adjunction and continuation was al-
ready explored in Thielecke’s PhD thesis [125].
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()◦ def= () (τ → σ)◦ def= (τ◦, σ◦ → ())→ ()

x◦ def= λk.k x

(λx.M)◦ def= λk.k (λ(x, v).M◦ v)

(M N)◦ def= λk.M◦ (λv.N◦ (λw.v 〈w, k〉))

(x1 : τ1, . . . xn : τn `M : σ)◦ def= x1 : τ◦
1 , . . . , xn : τ◦

n `M◦ : (σ◦ → ())→ ()

Figure 6.9: Translation from the call-by-value λ-calculus to the λch-calculus.

If we ignore J (recall that J is identity-on-object) then the Kleisli exponential
with respect to ¬¬ is given by B ⇒Kl C

def= I ⇒ B∗ ⊗ (I ⇒ C∗)∗ which is
isomorphic to B ⊗ (C ⇒ I) ⇒ I. Since the category C is a cartesian category
with a strong monad ¬¬ that has Kleisli exponentials, (C,¬¬) is a λc-model [98].4

We show that the translation from call-by-value λ-calculus can be obtained
by interpreting the call-by-value λ-calculus in the Kleisli category (C,¬¬) con-
structed from the term model. Instead of directly transforming the λ-calculus
into the πF -calculus, we first translate it into the λch-calculus, so that we can
better compare our translation with the translation given by Sangiorgi.

The result is summarized in Figure 6.3.1. Here we are considering a λ-calculus
whose only base type is (); furthermore, we assume that all the variables appear-
ing in a type environment have type that is not ().5 This translation is exactly
the same as the translation from call-by-value λ-calculus to the HOπ given by
Sangiorgi; the translation (−)◦ coincides with H composed with CV . This trans-
lation can also be seen as a variant of the call-by-value CPS transformation given
by Plotkin [107].

As the final step we interpret the term as the morphism in the category of
computation by means of the following natural bijection

C(A1 ⊗ · · · ⊗An, I ⇒ B) ∼= K(J(A1)⊗ · · · ⊗ J(An), B)
∼= K(J(A1)⊗ · · · ⊗ J(An)⊗B∗, I)

and then apply the compilation from λch-calculus to πF -calculus. Concretely
speaking, if a type judgement of a λ-calculus x1 : τ1, . . . , xn : τn ` M : σ is
given, then we translate this judgement as x1 : Lτ◦

1 M, . . . , xn : Lτ◦
nM, p̄ : Lσ◦ → ()M `LM◦pM : �. By simplifying the result using the equational rules, the translation

from call-by-value λ-calculus to πF -calculus can be summarized as in Figure 6.3.1.
The result is essentially the same as the translation V given by Sangiorgi [117].
A minor difference is that he uses non-replicated inputs to model the additional
λ-abstractions introduced by the CPS translation reflecting the fact that they
are linearly used.

Remark 6.2. Note that we did not use arguments specific to the compact closed
structure in the above argument. The same argument applies if K is a symmetric

4Strictly speaking, (C, ¬¬) is not a λc-model since the mono-requirement [98] is not satisfied.
However, this does not give any affect to the following arguments.

5This assumption is not essential. We can still define the translation even if there is a variable
of type (). However, with this assumption, the derived translation becomes simpler since we do
not have to deal with the equality A ⊗ I = A.
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J()Kv def= () J(τ → σ)Kv def= cho[JτKv, cho[JσKv]]

JxKv
p̄

def= p̄〈x〉

J(λx.M)Kv
p̄

def= (νȳy)(p̄〈ȳ〉 | !y(x, q̄).JMKv
q̄)

J(M N)Kv
p̄

def= (νāa)(JMKv
ā | !a(x̄).(ν b̄b)(JNKv

b̄
| !b(ȳ).x̄〈ȳ, p̄〉)

J(x1 : τ1, . . . xn : τn `M : σ)Kv def= x1 : Jτ1Kv, . . . , xn : JτnKv, p̄ : cho[JσKv]`JMKv
p̄ :�

Figure 6.10: Translation from call-by-value λ-calculus to πF -calculus.

()• def= () (τ → σ)• def= (τ•¬¬, σ• → ())→ () τ•¬¬ def= (τ• → ())→ ()

x• def= λk.x k

(λx.M)• def= λk.k (λ(x, v).M• v)

(M N)• def= λk.M• (λv.v 〈N•, k〉)

(x1 : τ1, . . . xn : τn `M : σ)• def= x1 : τ•¬¬
1 , . . . , xn : τ•¬¬

n `M• : σ•¬¬

Figure 6.11: Translation from the call-by-name λ-calculus to the λch-calculus.

monoidal category with a tensorial negation. This is not a surprise because
λ-calculus is a sequential language. The expressive power of compact closed
categories are not needed to describe the “communication topology” of λ-calculus.

We also could have used the functor (−) ( R instead of (−)∗ to define the
negation, i.e. there is no need to restrict the answer type to I. However, we chose
to use (−)∗ so that the induced translation coincides with the translation given
by Sangiorgi [117]. �

The encoding of call-by-name λ-calculus can be obtained in a similar manner
by using the call-by-name monad transformation. That is we interpret σ → τ
as the object ¬¬JσK ⇒Kl JτKand a judgement x1 : τ1, . . . , xn : τn ` M : σ as a
morphism JMK : ¬¬Jτ1K⊗ · · · ⊗ ¬¬JτnK→ ¬¬JσK. By interpreting the λ-term in
the term model we obtain the translations given in Figure 6.11 and Figure 6.12.
Again the translation to λch-calculus is essentially the same as H composed with
CN and the translation to the πF -calculus is the translation N .

6.3.2 Discussions

Relation to linear logic Using our semantic framework we briefly relate the
translation from λ-calculus to πF -calculus and translations from classical logic to
linear logic.

Firstly we observe that the encoding of call-by-value λ-calculus is related to
the Q-translation [28] that transforms a proof of classical sequent calculus (LK)
to a proof of linear logic (LL). In Q translation the implication is translated
by (σ → τ)Q def= !(σQ ( ?τQ). The translation of sequents is (A1, . . . , Am `
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J()Kn def= () J(τ → σ)Kn def= cho[JτKn¬¬, cho[JσKn]] JτKn¬¬ def= cho[cho[JτKn]]

JxKn
p̄

def= x〈p̄〉

J(λx.M)Kn
p̄

def= (νȳy)(p̄〈ȳ〉 | !y(x, q̄).JMKn
q̄ )

J(M N)Kn
p̄

def= (νāa)(JMKn
ā | !a(x̄).(ν b̄b)(!b(ȳ).JNKn

ȳ | x̄〈b̄, p̄〉)

J(x1 :τ1, . . . xn :τn`M :σ)Kn def= x1 :Jτ1Kn¬¬, . . . , xn :JτnKn¬¬, p̄ :cho[JσKn]`JMKn
p̄ :�

Figure 6.12: Translation from the call-by-name λ-calculus to the πF -calculus.

B1, . . . , Bn)Q def= AQ
1 , . . . , AQ

n ` ?BQ
1 , . . . , ?BQ

m; note that if we only consider the
intuitionistic fragment, then there must be at most one conclusion. This is exactly
how we translated types and judgements in the translation from call-by-value λ-
calculus to the πF -calculus. Recall that Jσ → τKv = cho[JσKv, cho[JτKv]] and thus
the interpretation of Jσ → τKv can be read as follows (for readability we write τv

for JτKv)

J(σ → τ)vK = Jcho[σv, cho[τv]]K
= JσvK⊗ (JτvK⇒ I)⇒ I
∼= J(I ⇒ JσvK∗ ⊗ (JτvK⇒ I)∗)
∼= !(JσvK∗ ⊗ (JτvK⇒ I)∗)
∼= !(JσvK( (!JτvK∗)∗)
∼= !(JσvK( ?JτvK)

Here we considered J(I ⇒ −) as ! because this is the exponential comonad and
used the isomorphisms ?A ∼= (!A∗)∗ and A∗ ⊗ B ∼= A ( B. As for judgements,
if we move the p̄ : cho[JσKv] in

x1 : Jτ1Kv, . . . , xn : JτnKv, p̄ : cho[JσKv] ` JMKv
p̄ : �

to the right-hand side, we have

x1 : Jτ1Kv, . . . , xn : JτnKv, p̄ : cho[JσKv] ` JMKv
p̄ : p̄ : cho[JσKv]⊥

and by considering cho[JσKv]⊥ as ?JσKv, the translation of types becomes identical
to that of the Q-translation. We conjecture that we can show a correspondence
at the level of proofs as well. That is we conjecture that we can define a variant of
Q-translation that transforms a proof of NJ to LL and interpreting the translated
proof using πF -processes will coincide with the call-by-value translation from λ-
calculus to πF -calculus.

Similarly, call-by-name encoding of the λ-calculus is related to the translation
that maps τ → σ to !(!?τ ( ?σ).6 Danos et al. [28] have rectified this trans-
lation and defined T -translation that maps σ → τ to ?(!σ ( τ) which makes
less use of exponential modalities. It would be interesting to investigate whether
an encoding of call-by-name λ-calculus to πF -calculus that corresponds to the

6This translation does not have a name, but is known to correspond to Plotkin’s call-by-value
CPS-translation [107]. Sometimes this translation is described as a translation that maps σ → τ
to !?!τ → ?!σ. These translations are the same translations in different presentations.
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T -translation can be defined and, once defined, study its faithfulness from op-
erational perspective. Note that the image of such a translation would not be
included in the local fragment of the πF -calculus because ?(!σ( τ) corresponds
to chi[chi[σ⊥], τ⊥].

Encoding of λµ-calculus Since CPS translations or the Q-translation are
used to interpret classical proofs in intuitionistic logic or linear logic, it would be
natural to expect that we can interpret classical proofs in the π-calculus by using
these translations.

With hindsight, this seems to be done by Honda et al. [57]. They gave an
encoding of the call-by-value λµ-calculus [100] into a variant of i/o-typed asyn-
chronous π-calculus, which is similar to the πF -calculus.7 Though it is not argued
in the paper, their encoding seems to be equivalent to a combination of a variant
of call-by-value CPS transformation from λµ-calculus to HOπ and the compila-
tion from HOπ to the first order π-calculus.

We use λch-calculus to explain this translation. The call-by-value CPS trans-
lation from λµ-calculus to the λch-calculus is given as follows:

⊥◦ def= 0 where 0 is a type such that 0→ () = ()

(µα.M)◦ def= λα.M◦ 〈〉 ([α]M)◦ def= λk.M◦α

(For the descriptions on the constructs of the λµ-calculus, please consult [100,
121].) Here 0 is a type called zero [39] such that 0 → () is terminal. (For
the ease of presentation we identified 0 → () with (), but in general they are
just isomorphic.) We only listed the difference from the CPS translation for
the call-by-value λ-calculus (Figure 6.3.1), but the λ-calculus part needs some
modification as well. This is because the shape of (σ → τ)◦ changes depending
on whether τ is equal to 0 or not.

By applying the compilation from λch-calculus to πF -calculus we get

Jµα.MKv
p̄

def= JMKv
q̄{p̄/α} J[α]MKv

p̄
def= JMKv

α

This is essentially the same as the way Honda et al. translates λµ-terms. The
translation for the λ-calculus part is also the same, except for the fact that they
are using bounded output instead of free outputs. If we rewrite the bounded
outputs using free outputs and name creation, then the translation is almost
identical to our translation given in Figure 6.3.1.

However, the categorical/denotational understanding against this translation
is still premature, at least not as successful as the case of the encoding of λ-
calculus. The problem is that we do not have a zero object8 in the category of
values, i.e. we do not have an object 0 that satisfies ¬0 ∼= I. If we do have a zero
object, we can apply the result of Führmann and Thielecke [39] which says that
a response category with zero is a model of call-by-value language with a control
operator. Since a cartesian category with a tensorial negation is essentially the
same as their definition of response category, the only thing we are lacking to

7Their type system has additional features to ensure properties like deadlock-freedom and the
uniqueness of a server (replicated) process. These properties were used to prove the definability
of the encoding and the decoding of processes to λµ-terms. Nevertheless, for discussing the
encoding, a simple i/o-type will be sufficient.

8By zero object we mean an object that corresponds to zero type. Do not confuse with the
object that is both initial and terminal. A initial object is a zero object, but the requirement of
being zero is weaker than being an initial object.
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apply their result is the zero object. However, even if we had a zero object
whether (the continuation category of the) response category models the call-by-
value λµ-calculus is not that clear. This is because the language used in the work
of Führmann and Thielecke [39] is not the λµ-calculus, but a λ-calculus with
Felleisen’s C operator [35]. Further investigation is left for future work.

6.4 Related Work

Since this chapter is somewhat independent of other chapters and there exists a
number of studies that relate to this chapter, comparison with related studies is
made here.

Translating higher-order languages to π-calculus A number of transla-
tions from higher-order languages to the π-calculus have been developed [130,
115, 116, 118, 126] since Milner [90] presented the encodings of the λ-calculus
into the π-calculus. The basic idea shared by these studies is to transform λx.M
to a process !a(x, p).P that receives the argument x together with a name p where
the rest of the computation will be transmitted. In our framework, this idea is
described as the isomorphism A⇒ B ∼= A⊗B∗ ⇒ I.

Among others, the translation from AHOπ to Lπ [118] is the closest to our
translation from the λch-calculus to the πF -calculus. Although the translation
from higher-order π-calculus to (first-order) π-calculus has already been given by
Sangiorgi [115] himself, the use of Lπ allowed him to simplify the translation. He
showed that his translation is fully abstract with respect to both strong and weak
barbed congruence. Our translation from λch-calculus to πF -calculus can be seen
as a semantic reconstruction of Sangiorgi’s translation, as well as an extension
because we do not restrict our translation to local π-calculus. However, it should
be noted that the full-abstraction result with respect to barbed congruence cannot
be obtained from a semantic consideration. The property that the categorical
semantics guarantee is that the translation is sound and complete with respect
to the axiomatic semantics of the πF -calculus and the λch-calculus.

The relationship between continuation passing and translation from higher-
order languages to the π-calculus was already noticed since Milner’s encoding
of the λ-calculus [90]. The relation between CPS transformation and Milner’s
encoding was first partly formalized by Boudol [17] and Thielecke [125]. Thi-
elecke [125] introduced a variant of a CPS calculus, which does not have func-
tions as primitives, and showed the similarity between the CPS calculus and the
π-calculus. Moreover, he showed that if Plotkin’s CPS transformations [107] are
formulated in his CPS calculus, their translations into the π-calculus yield an
encoding similar to Milner’s encoding. Actually, the main concern of Thielecke’s
work was the categorical semantics of the CPS calculus, and he observed the
importance of the self-adjunction to model such a calculus. This observation led
us to define our continuation monad for the πF -calculus. Later, Sangiorgi [117]
observed that Milner’s translation can be factorized using CPS translation and
the compilation of AHOπ to the π-calculus. We showed that Sangiorgi’s transla-
tions can be understood as call-by-value and call-by-name monad interpretations
using a certain continuation monad. This may not be a surprise because the re-
lationship between call-by-name and call-by-value CPS translation and monadic
interpretations were already studied by Wadler [131] and Hatcliff and Danvy [49]
in the case of functional languages. However, a fully semantic explanation against
monadic interpretation and translation from λ-calculus to π-calculus would not
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have been possible without the correspondence between πF -calculus and compact
closed Freyd categories.

Higher-order calculi with channels Besides the λch-calculus, there are num-
bers of functional languages augmented by communication channels, from theo-
retical ones [41, 127, 133, 79, 38] to practical languages [112, 105].

On the practical side, Concurrent ML (CML) [112], among others, is a well-
developed higher-order concurrent language. CML has primitives to create chan-
nels and threads, and primitives to send and accept values through channels.
Since our λch-calculus can create (non-linear) channels and send values via chan-
nels, the λch-calculus can be seen as a core calculus of CML despite its origin in
categorical semantics. The major difference between CML and the λch-calculus
is that communications in CML are synchronous whereas communications in the
λch-calculus are asynchronous.

On the theoretical side, session-typed functional languages have been actively
studied [41, 127, 133, 79]. Notably, some of these languages [127, 133, 79] are
built upon the Curry-Howard foundation between linear logic and session-typed
processes. It might be interesting to investigate whether we can relate these
languages and the λch-calculus through the lens of Curry-Howard-Lambek corre-
spondence.

Last but not least, we compare our λch-calculus to the λch-calculus given
by Fowler et al. [38, 37]. To avoid confusion we write λS

ch for our calculus and
λF

ch for their calculus. The λF
ch is also a concurrent λ-calculus extended with

asynchronous channels that was developed independently of λS
ch . It is based on

fine-grain call-by-value λ-calculus [78], which is a calculus that corresponds to
the closed Freyd categories. Therefore, it has constructs such as let expressions,
λ-abstractions and function applications as is the case for λS

ch-calculus. The λF
ch

calculus have a special type ChanRef(A) that is for a channel that transmits
values of type A. Operations related to ChanRef(A) is as follows:

Γ ` V : A Γ `W : ChanRef(A)
Γ ` give V W : 1 Γ ` newCh : ChanRef(A)

Γ ` V : ChanRef(A)
Γ ` take(V ) : A

The operators (and their typing rules) give and newCh are very similar to send
and channel of λS

ch . However, λF
ch does not adopt i/o-separation unlike λS

ch . This
difference also explains why an explicit receive operator take is needed in λF

ch ,
but not in λS

ch .
The λF

ch does not have a denotational semantics and the study on λF
ch is

purely operational. The evaluation strategy is slightly different from λS
ch as well.

In the λS
ch-calculus, almost all the expressions are evaluated in parallel as the

let expression cannot be used for sequentializing the evaluation. On the other
hand, λF

ch-calculus is basically a call-by-value language with a fork(M) operation
that spawns a new process to evaluate term M . Probably, the call-by-value
strategy was taken because λF

ch was introduced as a core language for describing
realistic channel-based languages. More specifically, λF

ch was introduced to study
the relationship between channel-based and actor-based programming languages.
We think the fact that λS

ch and λF
ch are very similar despite their difference in the

motivations supports the design of these languages.
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Chapter 7

Redesigning Operational Semantics from
Semantic Viewpoints

So far we have seen the semantic or logical aspects of the πF -calculus, but the
main concern of this chapter is operational semantics. The purpose of this chapter
is to provide an operational semantics that harmonizes with categorical semantics.

Recall that we have shown that asynchronous π-calculus modulo most of the
behavioral equivalences do not form categories (Theorem 3.5). The root cause of
this problem is that most of the behavioral equivalences do not satisfy the rule
(E-Eta), which is the rule that says forwarders are the left-identities.

Therefore, if a process calculus based on the asynchronous π-calculus were to
have some categorical foundation, their operational behavior must be different
from conventional behavior. This chapter introduces a novel reduction semantics
to the πF -calculus and show that weak barbed congruence, defined on top of the
new reduction semantics is a πF -theory. In other words, we show that there is
a compact closed Freyd model that is fully abstract with respect to the barbed
congruence defined upon the new reduction semantics.

Let us briefly review the problem with (E-Eta), which says that forwarders
work as substitution operations for input names (cf. Section 3.2.1). A forwarder
!a(x).b̄〈x〉 under the standard behavioral interpretation does not work as substi-
tution. This is because a forwarder !a(x).b̄〈x〉 receives a message from a, possibly
waits as long as it wants or needs, and then sends the message to the receiver.
Hence the process (ν b̄b)(!a(x).b̄〈x〉 | P ) can immediately receive a message from
a and keep it until P actually requires a message from b. On the other hand,
P{a/b} does not receive a message from a unless P actually requires it. This
difference is significant in the presence of race condition, and thus (E-Eta) fails
for weak barbed congruence.

This chapter discusses a new operational semantics on processes in which for-
warders are delayless. The new operational semantics introduced in this chapter
is a reduction semantics that forces output actions to happen as soon as they get
unguarded. In the new reduction semantics, when a forwarder !a(x).b̄〈x〉 receives
a message m from a, it must immediately send the message to a receiver b. In
other words, the following two transitions are atomic

!a(x).b̄〈x〉 a(m)−→ !a(x).b̄〈x〉 | b̄〈m〉 b̄〈m〉−→ !a(x).b̄〈x〉,

and the process cannot stop at the underlined intermediate step since it has an
unguarded output action. So a one-step reduction of the new semantics corre-
sponds to a multi-step reduction in the conventional operational semantics. We
may consider that the new behavior expresses a synchronous communication since
a message m now cannot be kept in a communication medium ā〈m〉.

74



We also discuss the relationship between the standard reduction relation and
the new reduction relation. We show that the πF -calculus with the standard
reduction semantics can be embedded into the πF -calculus with the new reduction
semantics by using a special constant τ that explicitly represents the existence of
a delay. The translation replaces each output action ā〈m〉 with τ.ā〈m〉, making
explicit the delay of the output action in the standard reduction. Note that the
following reduction, which simulates the behavior of a conventional forwarder, is
valid because the output action is guarded.

!a(x).τ.b̄〈x〉 a(m)−→ !a(x).b̄〈x〉 | τ.b̄〈m〉

The results in this chapter are not meant to say that we should change the
operational semantics of the π-calculus. The standard reduction semantics has
a good match with labeled transition semantics and are very useful for reason-
ing processes. Our intention is to clarify the mismatch between the standard
reduction semantics and categorical semantics.

Technically the new operational semantics is quite complicated because its
one-step reduction is a multi-step reduction with a certain condition in the con-
ventional calculus. To overcome the difficulty in reasoning about such a compli-
cated calculus, we develop an intersection type system, or equivalently a system
of linear approximations [128, 83], that captures the behavior of a process. We
think that the system would be of independent technical interest.

7.1 Reduction with Undelayed Output

This section makes formal the idea that a one-step reduction in the new reduction
relation corresponds to a multi-step reduction in the standard reduction.

7.1.1 Definitions and the main result

We first extend the syntax of the πF -calculus. The grammar of πF -processes and
contexts (originally defined in Section 3.1) are extended as follows:

P ::= · · · | τ.P C ::= · · · | τ.C

The operation τ.P may be regarded as an internal action as usual, but in this
thesis, we emphasize the view that τ is a guard that freezes the continuation P .
In other words, the continuation P in τ.P is delayed until the guard is explicitly
taken off.

The sort assignment rule is also extended by the following rule:

(τ : chi[]) ∈ ∆ ∆ ` P

∆ ` τ.P
(S-Tau)

We allow bindings of the form (τ : chi[]) to appear in a sort environment ∆.
We redefine the reduction relation for technical convenience. The standard

reduction relation `−→ (` = τ or 0) is defined by the base rules

(ν ~w~z)(νāa)(!a(~x).P | ā〈~y〉 | Q) 0−→ (ν ~w~z)(νāa)(!a(~x).P | P{~y/~x} | Q)
(ν ~w~z)(τ.P | Q) τ−→ (ν ~w~z)(P | Q)

together with the structural rule which concludes P
`−→ Q from P V P ′ `−→ Q′ V

Q for some P ′ and Q′. Note that we are using the structural precongruence V
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(cf. Section 3.2.1) rather than structural congruence ≡ in the above definition.
We write P −→ Q if the label is not important.

We now formally define =⇒. A process P has an unguarded output action if
P ≡ (ν ~w~z)(ā〈~x〉 | Q) for some Q. A process with an unguarded output action
is regarded as an incomplete, intermediate state that needs to perform further
actions to complete an “atomic operation”. We say that P is settled if P has no
unguarded output action. We write P =⇒ Q if P

τ−→ ( 0−→)∗Q and Q is settled.
The notion of barbed congruence can be easily adapted to this setting.

Definition 7.1 (Barbed bisimulation and barbed congruence). LetR be a binary
relation on settled processes. We say that R is a barbed bisimulation with respect
to Trans if whenever P R Q,

1. P↓τā if and only if Q↓τā

2. P =⇒ P ′ implies Q =⇒ Q′ and P ′ R Q′ for some process Q′

3. Q =⇒ Q′ implies P =⇒ P ′ and P ′ R Q′ for some process P ′,

where the notation P↓τā means that P
τ−→ ( 0−→)∗ ≡ (ν~x~y)(ā〈~z〉 | P ′) and ā is a

free name of P .
The barbed bisimilarity with respect to =⇒, which we write •∼τ , is the largest

barbed bisimulation with respect to =⇒. Processes P and Q are barbed congruent,
written P 'c

τ Q, if τ.C[P ] •∼ τ.C[Q] for all context C. (The additional τ -prefixing
is to ensure that the processes are settled.) �

The main result of this chapter is that there exists a categorical model that
is fully abstract with respect to 'c

τ .

Theorem 7.1. The relation 'c
τ is a πF -theory, which means that Cl('c

τ ) is
a compact closed Freyd category. Hence, there exists a compact closed Freyd
category that is fully abstract with respect to 'c

τ .

The proof can be easily adapted to prove a similar claim for any other con-
gruence that subsumes 'c

τ , such as weak barbed congruence (for =⇒).

7.1.2 Relationship to the standard semantics

We have introduced two reduction relations to the πF -calculus, namely −→ and
=⇒. There exists an embedding of the πF -calculus with −→ to that with =⇒.

The translation, which we write (−)†, is a homomorphism on all constructs
except output for which we have

(ā〈~x〉)† def= τ.ā〈~x〉.

Intuitively, this transformation adds an additional guard before every output
action reflecting the fact that an output action in the standard semantics can be
delayed.

The translation (−)† preserves the semantics in the following sense.

Proposition 7.2. Let P be πF -process such that ∆ ` P for some ∆. Then (i)
P −→ Q implies (P )† =⇒ (Q)†, (ii) (P )† =⇒ Q′ implies Q′ = (Q)† and P −→ Q for
some Q, and (iii) P↓ā iff (P )†↓τā.

Proof. By a simple induction on the definition of the reduction relation. We also
use the following facts: (1) (P )† =⇒ P ′ implies either (P )† τ−→ P ′ or (P )† τ−→ 0−→
P ′ and (2) and (P )† ≡ (Q)† if and only if P ≡ Q.
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From this proposition and the compositionality of (−)†, we obtain the fol-
lowing result. Recall that 'c is the (conventional) strong barbed congruence for
πF -processes (Definition 3.2).

Theorem 7.3. If ∆ ` P , ∆ ` Q and (P )† 'c
τ (Q)†, then P 'c Q.

Proof sketch. Assume that P 6'c Q. Then there is a context C such that C[P ] 6 •∼
C[Q]. Since (C[P ])† = (C)†[(P )†] and the same holds for Q, we obtain (C)†[(P )†] 6 •∼τ

(C)†[(Q)†] with the help of Proposition 7.2. Thus we conclude (P )† 6'c
τ (Q)†.

This translation, however, is not fully abstract with respect to barbed congru-
ence. Contexts that are not in the image of the translation (−)† give additional
observational power.

7.2 Technical Overview

To prove our main theorem, i.e. to show that 'c
τ is a πF -theory, we need to

show that barbed congruence with respect to =⇒ is a congruence that satisfies the
logical axioms listed in Figure 3.2. Since barbed congruence is a congruence by
definition, it suffices to check that barbed congruence satisfies the axioms.

However, checking the required axioms directly using the definition of =⇒ given
in the previous section does not seem tractable. Recall that P =⇒ Q is indeed a
reduction sequence P

τ−→ P1
0−→ . . .

0−→ Pn
0−→ Q. The problem is that Pi

0−→ Pi+1 is
defined in terms of the structure of Pi, which may be quite different from that of
P . A representation of reduction sequence defined by structural induction on P ,
without directly referring to Pi, would be desirable.

We thus utilize the following correspondence [128, 83]:

(Reduction sequences) ∼= (Derivations in an intersection type system)
∼= (Linear approximations).

An example of a linear approximation is (a1.τ1.ā2 ‖ a2.⊥) < !a.τ.ā where the
green part is the linear approximation of the right-hand side. A linear approxima-
tion is linear in the sense that each name is used exactly once and all inputs are
non-replicated; it is an approximation in the sense that some part of the original
process is discarded (e.g. ⊥ < τ.ā and replicated inputs are replaced by a finite
number of its copies (e.g. (a1.τ1.ā2 ‖ a2.⊥) < !a.τ.ā).1

To see how a linear approximation corresponds to a reduction sequence, let
us consider the following linear approximation:

(ν[〈ā1, a1〉〈ā2, a2〉〈ā3, a3〉])((a1.τ1.(ā2 | ā3) ‖ a2.⊥) | τ2.ā1 | a3.⊥)
< (νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄).

Because of linearity, a linear approximation is race-free; hence it induces an es-
sentially unique reduction sequence. For example,

(ν[〈ā1, a1〉〈ā2, a2〉〈ā3, a3〉])((a1.τ1.(ā2 | ā3) ‖ a2.⊥) | τ2.ā1 | a3.⊥) (7.1)
τ2−→ 0−→ (ν[〈ā2, a2〉〈ā3, a3〉])(a2.⊥ | τ1.(ā2 | ā3) | a3.⊥)
τ1−→ 0−→ (ν[〈ā2, a2〉])(a2.⊥ | (ā2 | ⊥) | ⊥) 0−→ (ν[])(⊥ | (⊥ | ⊥) | ⊥).

1In the approximation, | represents parallel-composition coming from the original process,
whereas p ‖ q means that p and q originate from the same replicated (sub)process. The opera-
tional semantics does not distinguish between | and ‖.
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Importantly a reduction sequence of an approximation canonically induces that
of the approximated process: the reduction sequence corresponding to (7.1) is

(νāa)(!a.τ.(ā | ā) | τ.ā | !a.τ.b̄) τ−→ 0−→(νāa)(!a.τ.(ā | ā) | τ.(ā | ā) | !a.τ.b̄) (7.2)
τ−→ 0−→(νāa)(!a.τ.(ā | ā) | (ā | τ.b̄) | !a.τ.b̄)

0−→(νāa)(!a.τ.(ā | ā) | (τ.(ā | ā) | τ.b̄) | !a.τ.b̄).

Via the three-way correspondence mentioned above, this phenomenon can be
understood as subject reduction of the intersection type system.

The fact that output actions cannot be delayed/discarded is also achieved by
tweaking the definition of linear approximations. In the definition of the linear
approximation we allow an output action to be approximated by a linear output,
but we disallow an output action to be approximated by ⊥, i.e. ā1〈x〉 < ā〈x〉 is
valid, but ⊥ < ā〈x〉 is not.

So far, we have discussed a relationship between {Q | P −→∗ Q } and { p | p <
P }. This relation can be seen as a bisimulation, by appropriately introducing a
relation to { p | p < P }. Note that such a relation is not the reduction, since
p −→ q changes the subject, i.e. q < Q for some Q with P −→ Q but not q < P .
Instead, we introduce an “ordering” over approximations of P . The idea is that
a longer reduction sequence corresponds to a larger approximation. We write
p1 E p2 if p1 is obtained by discarding some (sub)processes of p2. For example,
the second step of (7.3) corresponds to

(ν[〈ā1, a1〉])((a1.⊥) | τ2.ā1 | ⊥) (7.3)
E (ν[〈ā1, a1〉〈ā3, a3〉])(a1.τ1.(⊥ | ā3) | τ2.ā1 | a3.⊥),

that means, the third process in (7.3) is obtained by performing the actions cor-
responding to τ1 and ā3. It should be emphasized that two linear approximations
appearing in (7.3.1) are defined according to the structure of P .

The bisimilarity gives us a characterization of the behavior of a process P
in terms of linear approximations (or intersection type derivations) for P . Then
checking that 'c

τ satisfies the non-logical axioms can be proved by “proof manip-
ulation”. For example, the proof for (E-Beta), i.e. (νāa)(!a(~x).P | C[ā〈~y〉]) =
(νāa)(!a(~x).P | C[P{~y/~x}]), resembles to the proof of the substitution lemma in
a typical type system.

The reset of this chapter is devoted to the proof of the main theorem. We
first formally define the notion of linear approximation and then proceed to the
proof of the main theorem.

7.3 Linear Approximation and Execution Sequence

We introduce linear processes by which executions of processes can be described.

7.3.1 Linear processes and intersection types

We start by defining linear processes. Although the definition of linear processes
depends on the definition of intersection types because processes are annotated
by types, we defer defining types for the sake of presentation.

Definition 7.2 (Linear processes). A linear name is an object of the form xi

where x is an ordinary name and i is a natural number. Similarly, a linear term,
denoted by t, is either a linear name or a constant of the form τi.
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Linear processes are defined by the following grammar:

p, q ::= 0 | xi〈λ1, . . . , λn〉 | xi(µ1, . . . , µn).p | τi.p

| (p | q) | (p1 ‖ · · · ‖ pn) | (ν[〈xi1 , yi1〉ρ1 , . . . , 〈xin , yin〉ρn ])p
µ ::= 〈xi1 , . . . , xin〉 λ ::= 〈ϕ1 � xi1 , . . . , ϕn � xin〉

Here name restriction is annotated with types ρi, and the argument of an output
action is annotated with witnesses of type isomorphisms ϕi. (The notion of types
and type isomorphisms are introduced below and thus can be ignored for the
moment.) In the above definition, n may be 0; for example, (ν[])p and 〈〉 are
valid process and list, respectively. We require that each linear term of a linear
process appears exactly once. �

The informal meanings of the constructs are almost the same as that of the
ordinary processes. The linear processes 0, xi〈λ1, . . . , λn〉 and xi(µ1, . . . , µn).p
are nil process, output action and input prefixing, respectively. An important
difference from the ordinary process is that, in linear processes, the output and
input take lists of variables as arguments. When a list of linear names is received
each element of a list must be used exactly once. There are two types of parallel
composition p | q and p ‖ q. The former is the conventional parallel composition
and the latter is used when a replicated process is approximated by finite parallel
compositions.2 We use Πipi as a shorthand notation of p1 ‖ · · · ‖ pn and write
the nullary composition of ‖ as ⊥. The approximation relation defined later
(Section 7.3.2) may also help the readers to understand the intuitive meaning of
linear processes.

We identify linear processes with “similar structure”. The strong structural
congruence, written p ≡0 q over linear processes is the smallest congruence rela-
tion that satisfies:

p ‖ q ≡0 q ‖ p (p ‖ q) ‖ r ≡0 p ‖ (q ‖ r)
(ν[〈x1, y1〉, . . . , 〈xn, yn〉])p ≡0 (ν[〈xσ(1), yσ(1)〉, . . . , 〈xσ(n), yσ(n)〉])p,

where σ is a permutation over [n]. Since we do not care how the pairs are ordered
in ν[〈xi1 , yi1〉, . . . , 〈xin , yin〉], we will write ν[〈xi, yi〉]i∈I , where I = {i1, . . . , in},
to represent this binding.

We now define the intersection types. The syntax of raw types and raw (in-
dexed) intersection types are given by the following grammar:

(Raw types) ρ ::= cho
α[θ1, . . . , θm] | chi

α[θ1, . . . , θn]

(Raw intersection types) θ ::=
∧
i∈I

(i, ρi)

where I ⊆fin Nat and α ranges over the set of levels (A,≤), a universal poset
in which any finite poset can be embedded into. In the above grammar, an
intersection

∧
i∈I(i, ρi) is a map i 7→ ρi from I to types. The intuitive meaning

of
∧

i∈I(i, ρi) is the intersection ρi1 ∧ ρi2 ∧ · · · ∧ ρin provided that I = {i1 < i2 <
· · · < in}.

Levels represents “timing information” and only raw types with appropriate
“timing information” are considered as valid types. Let us write lv(ρ) and lv(θ)

2(For readers familiar with resource calculi) Although the intuitive meaning of p ‖ q is the
parallel composition of p and q, this process should be thought of as an analogous to the bag in
the resource λ-calculi [16, 34].
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for the set of levels that appear in ρ and θ, respectively. Then types and inter-
section types are inductively defined as follows: cho

α[θ1, . . . , θn] is a type if θi is
an intersection type for all i ∈ [n] and α ≤ γ for all γ ∈ lv(θ1, . . . , θn) (similar
for chi

α[θ1, . . . , θn]) and
∧

i∈I(i, ρi) is an intersection type if ρi is a type for all
i ∈ I. In what follows, we use the metavariables ρ and θ to range over types and
intersection types, respectively.

Notations: A special symbol • is introduced to mean undefined type of sort T ;
now an intersection type θ can be also be represented by a (total) function from
Nat to the union of the set of types and {•}. We write (i1, ρi1) ∧ · · · ∧ (in, ρin)
for the intersection type θ such that dom(θ) = {i1 < · · · < in} and θ(ij) = ρij

for every j ∈ [n]. We also write > for the empty intersection, i.e. θ such that
θ(i) = • for all i ∈ Nat. The dual ρ⊥ of type ρ is defined by cho

α[~θ]⊥ def= chi
α[~θ]

and chi
α[~θ]⊥α

def= cho
α[~θ]. We also define θ⊥ by θ⊥(i) = (θ(i))⊥.

The type chi
α[θ1, . . . , θn] is for a channel that is used to receive n lists, where

the i-th list has type θi and the type cho
α[~θ] is for output channels. If the i-th

list has type (i1, ρ1) ∧ · · · ∧ (im, ρm), it means that the j-the element of the list
has type ρj . For example, ai(〈x1, x2〉, 〈ȳ1〉).x1().x2().ȳ1〈〈〉〉 is well-typed if ai has
type chi

α[(0, chi
β[]) ∧ (1, chi

γ []), (0, cho
γ [>])] with α ≤ β ≤ γ. The levels are used

to describe the timing of actions. In the above example, the level γ tells us that
the second element of the first argument, namely x2, and the first element of
the second argument, namely ȳ1, must be used at the same timing. Levels also
describe the fact that x1 must be used before x2 and ȳ1 are used.

Although the intersection types are non-commutative in the sense that (0, ρ)∧
(1, ρ′) 6= (0, ρ′) ∧ (1, ρ), we consider that they are isomorphic. Intuitively, this
means that we do not mind that much about the order of elements in a list.
For example, we consider that ā0〈〈x0, x1〉〉 and ā0〈〈x1, x0〉〉 are almost identi-
cal.3Without this identification, we face a technical problem: an approximation
of a forwarder a0(〈y0, y1〉).b̄0〈〈y1, y0〉〉 cannot be seen as an “identity” because
(ν[〈ā0, a0〉])(a0(〈y0, y1〉).b̄0〈〈y1, y0〉〉 | ā0〈〈x0, x1〉〉) “reduces to” b̄0〈〈x1, x0〉〉.

Definition 7.3 (Type isomorphism). We write ϕ : ρ ∼= ρ′ (resp. ϕ : θ ∼= θ′) to
mean that ρ and ρ′ (resp. θ and θ′) are isomorphic and that ϕ is the witness of
this isomorphism. This relation is defined by the rules below:4

id• : • ∼= •

ϕi : θi
∼= θ′

i (for i ∈ [n])
cho

α[ϕ1, . . . , ϕn] : cho
α[θ′

1, . . . , θ′
n] ∼= cho

α[θ1, . . . , θn]

ϕi : θi
∼= θ′

i (for i ∈ [n])
chi

α[ϕ1, . . . , ϕn] : chi
α[θ1, . . . , θn] ∼= chi

α[θ′
1, . . . , θ′

n]

σ : Nat
∼=→ Nat ϕi : ρi

∼= ρ′
σ(i) (for i ∈ Nat)

(σ, (ϕi)i∈Nat) :
∧

i∈Nat
(i, ρi) ∼=

∧
i∈Nat

(i, ρ′
i)

Note that cho
α[−] is a contravariant operator, whereas chi

α[−] is a covariant op-
erator. �

3The reason for annotating arguments of free outputs with ϕ is slightly more technical. This
is needed to ensure that the η-rule for the linear process is valid. (cf. Remark 7.3)

4Here,
∧

i∈I
(i, ρi) is considered as a total map

∧
i∈Nat(i, ρi) in which ρi

def= • if i /∈ I.
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∅ `α 0
(TNil)

ϕi : θi
∼= θ′

i ϕi � xi = λi (for i ∈ [n]) α ≤ lv(θ1, . . . , θn)
x1 : θ1 u · · · u xn : θn, ā : (i, cho

α[θ′
1, . . . , θ′

n]) `α āi〈λ1, . . . , λn〉
(TOut)

Γ, x1 : θ1, . . . , xn : θn `β p idθi
� xi = µi α ≤ β

Γ u a : (i, chi
β [θ1, . . . , θn]) `α ai(µ1, . . . , µn).p

(TIn)

Γ `β p α ≤ β

Γ u τ : (i, chi
β []) `α τi.p

(TTau)
Γ1 `α p1 Γ2 `α p2

Γ1 u Γ2 `α p1 | p2
(TPar)

Γi `α pi (1 ≤ i ≤ n)
Γ1 u · · · u Γn `α p1 ‖ · · · ‖ pn

(TRep)
Γ, ā : θ, a : θ⊥ `α p

Γ `α (ν[〈āi, ai〉]i∈dom(θ))p
(TNu)

Figure 7.1: Typing rules for the intersection type system.

We define yet another operator θ1uθ2 for intersection types which “coalesces”
the two intersection. It is defined by

(θ1 u θ2)(i) def=


θ1(i) (if i ∈ dom(θ1))
θ2(i) (if i ∈ dom(θ2))
• (otherwise)

provided that dom(θ1) ∩ dom(θ2) = ∅; otherwise θ1 u θ2 is undefined.
We now present the typing rules for the intersection type system. Type judg-

ments are of the form Γ `α p and the typing rules are given in Figure 7.1. We
stipulate that the deduction is allowed only if the result of the u operation in the
conclusion is defined. The operation ϕ � x used in the above definition is defined
by

(σ, (ϕi)i∈Nat) � x def= 〈ϕσ−1(i1) � xσ−1(i1), . . . , ϕσ−1(in) � xσ−1(in)〉,

where (σ, (ϕi)i∈Nat) : θ ∼= θ′ and dom(θ′) = {i1 < · · · < in}; similarly idθ � x is
defined as 〈xi1 , . . . , xin〉 when dom(θ) = {i1 < · · · < in}.

Let us explain how the subscript α of `α is used; the other parts of the typing
rule should be easy to understand. The intuitive meaning of the subscript α of `α

is the “current time”. The typing rule for output actions ensures that the “level
of āi” is the “current time”. In other words, the rule ensures that the output
cannot be delayed. On the other hand, we may delay an input or a τ action. For
example, in the rule (TIn), the “level of ai” can be greater than α meaning that
we can delay the use of ai. The rule (TIn) also says that the “level of ai” must
be equal to the level assigned to Γ, x1 : θ1, . . . , xn : θn `β p. This expresses the
fact that the unguarded outputs in p must be used as soon as ai is used, i.e. there
cannot be any delay between an input and an output.

7.3.2 Approximation

In this subsection we show how sorts are refined by intersection types and pro-
cesses are approximated by linear processes.

Given a sort T , the refinement relation ρ < T (resp. θ < T ), meaning that
the type ρ (resp. the intersection type θ) refines the sort T , is defined by the
following rules:

θi < Ti (i ∈ [n]) m ∈ {i, o}
chm

α [θ1, . . . , θn] < chm[T1, . . . , Tn]
ρi < T (i ∈ I ⊆fin Nat)∧

i∈I

(i, ρi) < T
.
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x : {i1, . . . , in} ` 〈ϕ1 � xi1 , . . . , ϕn � xin〉 < x ` 0 < 0 ` ⊥ < τ.P

Xi ` λi < xi (for i ∈ [n])
X1 u · · · uXn u ā : {i} ` āi〈λ1, . . . , λn〉 < ā〈x1, . . . , xn〉

X ` p < P

X u τ : {i} ` τi.p < τ.P

X, x1 : S1, . . . , xn : Sn ` p < P xi : Si ` µi < xi (for i ∈ [n])
X u a : {i} ` ai(µ1, . . . , µn).p < a(x1, . . . , xn).P

X1 ` p < P X1 ` q < Q

X1 uX2 ` p | q < P | Q
Xi ` pi < P (for i ∈ [n])

X1 u · · · uXn ` p1 ‖ · · · ‖ pn < !P

X, x : S, y : S ` p < P S = {i1, . . . , in} ρi < T (for i ∈ S)
X ` (ν[〈xi1 , yi1〉ρi1

, . . . , 〈xin
, yin
〉ρin

])p < (νT xy)P

Figure 7.2: Rules for approximation relation. We stipulate that the deduction is
allowed only if the result of the u operation in the conclusion is defined.

We write Γ < ∆ if (x : θ) ∈ Γ implies that (x : T ) ∈ ∆ for some T and θ < T .
Next we show how processes are approximated by linear processes.
A term refinement X is a finite set of the form t1 : S1, . . . , tn : Sn such

that Si ⊆fin Nat and i 6= j implies ti 6= tj . Notations X(t) and X1 u X2 are
defined analogous to Γ(t) and Γ1 uΓ2. There is a canonical way to obtain a term
refinement from a type environment: given a type environment Γ, we define Γ\

as {(t : dom(Γ(t))) | t ∈ dom(Γ)}.
An approximation judgement is of the form X ` p < P and inference rules

for judgments are given in Figure 7.2. It should be emphasized that we do not
allow ⊥ < ā〈~x〉, that is, we ensure that all the output actions are used. Note
that we can discard an output action that is guarded by τ , i.e. ⊥ < τ.ā〈~x〉, and
this is why the translation (−)† defined in Section 7.1.2 allows us to relate the
reduction −→ with =⇒.

7.3.3 Reduction

Here we define the reduction relation for linear processes. We also show that
every reduction sequence from P has a representation by a linear process p such
that X ` p < P .

The reduction relation of linear processes is almost the same as that of ordi-
nary processes. We define the base step of the reduction, where the substitution
of (linear) names occur, and the structural rule for the reduction.

However, substitutions for linear processes is more complex than that for ordi-
nary processes. We need to take actions of type isomorphisms to linear processes
into account. The action of ϕ to linear processes is defined by the rules in Fig-
ure 7.3. It is defined via the action of type isomorphisms on subject names and op-
eration {ϕ � y/x}, which substitutes ϕ � y to x. The substitution {ϕ � y/x} works
as the standard substitution, except for the fact the action of ϕ is performed after
the substitution. The witness ϕ2 ◦ ϕ1 : ρ1 ∼= ρ3 is the composition of ϕ1 : ρ1 ∼= ρ2

and ϕ2 : ρ2 ∼= ρ3 defined below. For readability, given λ
def= 〈ϕ1 � y1, . . . , ϕn � yn〉

and µ
def= 〈x1, . . . , xn〉, we write {λ/µ} to denote {ϕ1 � y1/x1, . . . , ϕn � yn/xn}.

We complete the definition of {ϕ � y/x} by giving the definition of ϕ2 ◦ ϕ1.
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〈ϕ1 � xi1 , . . . , ϕi � (ϕ′ � y), . . . , ϕn � xin〉
def= 〈ϕ1 � xi1 , . . . , (ϕi ◦ ϕ′) � y, . . . , ϕn � xin〉

(cho[ϕ] � āi)〈〈ϕ′
i1
� xi1 , . . . , ϕ′

in
� xin
〉〉 def= āi〈〈(ϕi1 ◦ ϕ′

σ(i1)) � xσ(i1), . . . , (ϕin
◦ ϕ′

σ(in)) � xσ(in)〉〉

(chi[ϕ] � ai)(〈xi1 , . . . , xin
〉).p def= ai(〈xi1 , . . . , xin

〉).p{ϕσ−1(j) � xσ−1(j)/xj}j∈{i1,...,in}

Figure 7.3: Action of isomorphisms on linear (monadic) processes where ϕ =
(σ, (ϕi)) in the last two equations; the action on polyadic processes is defined
similarly.

Composition of witnesses are defined by:

cho
α[ϕ′

1, . . . , ϕ′
n] ◦ cho

α[ϕ1, . . . , ϕn] def= cho
α[ϕ1 ◦ ϕ′

1, . . . , ϕn ◦ ϕ′
n]

chi
α[ϕ′

1, . . . , ϕ′
n] ◦ chi

α[ϕ1, . . . , ϕn] def= chi
α[ϕ′

1 ◦ ϕ1, . . . , ϕ′
n ◦ ϕn]

(σ2, (ϕ′
i)i∈Nat) ◦ (σ1, (ϕi)i∈Nat)

def= (σ2σ1, (ϕ′
σ1(i) ◦ ϕi)i∈Nat)

Types and type isomorphisms forms a groupoid. That is, we can define the
inverse operator (−)−1 for witnesses of type isomorphisms and show that there
is an identity idρ : ρ ∼= ρ for every type ρ. The inverse operator (−)−1 is defined
by:

(chm
α [ϕ1, . . . , ϕn])−1 def= chm

α [ϕ−1
1 , . . . , ϕ−1

n ] (for m ∈ {i, o})

(σ, (ϕi)i∈Nat)−1 def= (σ−1, (ϕ−1
σ−1(i))i∈Nat).

As is the case of standard substitution, {ϕ � y/x} satisfies (a modified version
of) the substitution lemma.

Lemma 7.4 (Substitution Lemma). Suppose that Γ u x : (i, ρ) `α p, ϕ : ρ′ ∼= ρ
and Γ u y : (j, ρ′) is defined. Then Γ u y : (j, ρ′) `α p{ϕ � yj/xi}.

Proof. By induction on the structure of p. The proof of this lemma is similar to
that of the conventional substitution lemma, except for the fact that we need to
take group actions into account.

Lemma 7.5. Let Γ u x : (i, ρ) `α p, ϕ1 : ρ ∼= ρ′, ϕ2 : ρ′ ∼= ρ′′ and assume that
yj , zk /∈ fn(p). Then p{ϕ1 � yj/xi}{ϕ2 � zk/yj} = p{(ϕ2 ◦ ϕ1) � zk/xi}

Proof. By induction on the structure of p.

Once we defined the notion of substituion, it is straightforward to define
the reduction relation. The structural precongruence V over linear process is
the smallest precongruence relation that contains ≡0, contains α-equivalence and
satisfies:

0 | pWV p p | q WV q | p (p | q) | r WV p | (q | r)
(ν[〈~w, ~z〉])(ν[〈~y, ~z〉])pWV (ν[〈~y, ~z〉])(ν[〈~w, ~x〉])p (fn(~w, ~x) ∩ fn(~y, ~z) = ∅)
(ν[〈x1, y1〉, . . . , 〈xn, yn〉])p | q V (ν[〈x1, y1〉, . . . , 〈xn, yn〉])(p | q) (~x, ~y /∈ fn(q))

where p WV q means p V q and q V p. The structural congruence ≡ for linear
processes is defined as symmetric closure of V.
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We define the one-step reduction relation over well-typed linear processes by
the base rule

(ν~ξ)(ν[〈āi, ai〉]i∈J)(Πi∈Iai(µi1, . . . , µin).pi | ām〈λ1, . . . , λn〉 | q) 0−→

(ν~ξ)(ν[〈āi, ai〉]i∈J ′)(Πi∈I′ai(µi1, . . . , µin).pi | pm{λ1/µm1, . . . , λn/µmn} | q)

where (ν~ξ) is a sequence of name restrictions, m ∈ I ⊆ J , J ′ = J \ {m} and I ′ =
I\{m}, and the structural rule which concludes p

0−→ q from pV p′ and p′ 0−→ q.
The relation τi−→ is obtained by replacing the base rule of the 0−→ with

(ν~ξ)(τi.p | q) τi−→ (ν~ξ)(p | q). We write p
τ−→ q if p

τi−→ q for some index i.

Remark 7.1. We use V instead of ≡ in the definition of reduction because
X ` p < P and p ≡ q does not ensure the existence of Q such that X ` q < Q

and P ≡ Q. For instance, if P
def= (νāa)(!a(x).R | τ.ā〈y〉) then (ν[])(⊥ | ⊥)

approximates P and this linear process is structurally congruent to (ν[])⊥ | ⊥,
but there is no Q such that (ν[])⊥ | ⊥ < Q and P ≡ Q. �

We now show the correspondence between execution sequences and linear
approximations, which we briefly explained in Section 7.2. Let us write P

π−→ Q

if there exists a sequence P = P0
l1−→ P1

l2−→ · · · ln−→ Pn = Q, where each
li is either 0 or τ , and π = l1l2 . . . ln; p

π−→ q is defined similarly. We write
(p π−→ q) < (P π−→ Q) if there exists p = p0

l1−→ · · · ln−→ pn = q and P = P0
l1−→

· · · ln−→ Pn = Q such that Xi ` pi < Pi for some Xi for each i ∈ {0, . . . , n} and
π = l1 · · · ln.

Proposition 7.6. Let τ : chi[] ` P , i.e. let P be a process that does not have
any free names.

1. Suppose that Γ `α p and Γ\ ` p < P . If p
π−→ q then we have (p π−→ q) <

(P π−→ Q) for some Q.

2. Assume P
π−→ Q, Γ `α q and Γ\ ` q < Q. Then we have (p π−→ q) <

(P π−→ Q) for some p.

The above proposition is a consequence of the subject reduction/expansion
property of the type system. We thus prove the above theorem after proving
subject reduction/expansion.

The subject reduction lemma, and a similar lemma for the τ -reduction can
be stated as follows:

Lemma 7.7 (Subject reduction). Assume that Γ `α p and p
0−→ q. Then we

have Γ `α q. Moreover, if Γ\ ` p < P then there exists Q such that Γ\ ` q < Q
and P −→ Q.

Lemma 7.8. Suppose that Γ u τ : (i, chi
β[]) `α p, β ≤ γ for all γ ∈ lv(Γ) and

p
τi−→ q. Then we have Γ `β q. Moreover, if (\Γ) u τ : {i} ` p < P , then there

exists Q such that Γ\ ` q < Q and P
τ−→ Q.

We omit the proofs as they can be shown by standard arguments.
Since we are using an intersection type system, the subject expansion property

also holds.
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Lemma 7.9 (Subject expansion). Suppose that P −→ P ′, Γ `α p′ and Γ\ ` p′ <
P ′. Then there exists p such that Γ `α p, Γ\ ` p < P and p

0−→ p′.

Proof. We only consider the base case of the reduction; proving the correspon-
dence between V and V is easy. Furthermore, for simplicity, we consider the
case where the arity of the channel is one. That is we consider the case where

P = (νāa)(!a(x).Q | ā〈y〉 | R)
P ′ = (νāa)(!a(x).Q | Q{y/x} | R).

(We also omitted the outermost ν operators.)
Since Γ\ ` p′ < P ′ and Γ `α p′, p′ is of the form

(ν[〈āi, ai〉]i∈dom(θ))(Πi∈Iai(µi).qi | q′ | r)

and the derivation of Γ `α p′ must be of the following form

π1 :: Γ1 ` Πi∈Iai(µi).qi π2 :: Γ2 `α q′ π3 :: Γ3 `α r

Γ, ā : θ, a : θ⊥ `α (Πi∈Iai(µi).qi | q′ | r)
=====================================================

Γ `α p′

where Γ1 u Γ2 u Γ3 = Γ, ā : θ, a : θ⊥ and I ⊆ dom(θ). Note that we also have
Γ\

1 ` Πi∈Iai(µi).qi < !a(x).Q, Γ\
2 ` q′ < Q{y/x} and Γ\

3 ` r < R. Since we
know the shape of Q and Q{y/x}, we know which occurrences of y in Q{y/x}
are due to the substitution {y/x}. Thus, we can split Γ2 as Γ′

2 u y : θy such
that yi (i ∈ dom(θy)) approximates the occurrence of y that originates from the
substitution. Let us write qk for q′{xi/yi}i∈dom(θy) under the assumption that
k /∈ dom(θ). Then define p as

(ν[〈āi, ai〉]i∈dom(θ′))(Πi∈I∪{k}ai(µi).qi | āk〈λ〉 | r)

where θ′ = θ ∧ (k, cho
α[θy]), µk = idθy

� x and λ = idθy
� y. It is clear that this

linear process can reduce to p′.
We now show that p is typed under Γ. By substitution lemma (Lemma 7.4),

we have Γ′
2, x : θy `α qk. Applying the typing rule for input prefixing to this

derivation, we obtain a derivation π′
2 for Γ′

2 u a : (k, chi
α[θy]) `α ak(µk).qk. We

also have a type derivation for āk〈λ〉, namely

ā : (k, cho
α[θy]), y : θy `α āk〈λ〉

Therefore, we can construct a derivation for p:

π1 π′
2

Γ1 u Γ′
2 ` Πi∈I∪{k}ai(µi).qi ā : (k, cho

α[θy]), y : θy `α āk〈λ〉
π3

Γ3 `α r

Γ, ā : θ′, a : θ′⊥ `α (Πi∈I∪{k}ai(µi).qi | āk〈λ〉)
Γ `α p

Checking that Γ\ ` p < P is easy.

Lemma 7.10. Suppose that P
τ−→ Q, Γ `α q and Γ\ ` q < Q. For all i /∈

dom(Γ(τ)), there exists p and β such that Γ u τ : (i, chi
β[]) `α p, Γ\ u τ : {i} `

p < P and p
τi−→ q.
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Proof. Similar to that of the previous lemma.

We are now ready to prove Proposition 7.6.

Proof of Prop. 7.6. (Proof of 1.) Let us write chi
αi

[] for Γ(τ)(i) when i ∈ dom(Γ(τ)).
By the assumption that p

π−→ q, there exists a sequence p = p0
l1−→ · · · ln−→ pn =

q. Let τi1 . . . τik
be the subword of π that is obtained by deleting 0 from π. With-

out loss of generality, we may assume that αi1 < · · · < αik
and αik

< α for all
α ∈ {αi | i ∈ dom(Γ(τ))}\{αi1 , . . . , αik

}; if not we can always reannotate the lev-
els appearing in Γ and use that type environment instead of Γ. Now suppose that
l1 = τi1 . Then we can apply Lemma 7.8 to obtain P1 such that P0

τ−→ P1 and
Γ\

1 ` p1 < P1, where Γ1 is the type environment that satisfy Γ1 `αi1
p1. If l1 = 0

we can use Lemma 7.7 instead. By repeating this argument we obtain a sequence
P = P0

l1−→ · · · ln−→ Pn = Q that can be used to show (p π−→ q) < (P π−→ Q).
(Proof of 2.) Since P

π−→ Q, we have P = P0
l1−→ · · · ln−→ Pn = Q, where

π = l1 . . . ln. Let us consider the case where ln = τ . In this case we can appeal
to Lemma 7.10 (if ln = 0 we use Lemma 7.9). Let i be an index such that
i /∈ dom(Γ(τ)) and β be a level such that β < γ for all γ ∈ lv(Γ). Then by
Lemma 7.10, we have pn−1 such that Γ u τ : (i, chi

β[]) `β pn−1 and Γ\ u τ : {i} `
pn−1 < Pn−1. By repeating the argument we obtain p

π−→ q with the desired
property.

7.4 LTS Based on Linear Approximation

Using the notion of linear processes, we introduce a labelled transition system
(LTS) for processes to describe the behaviour of processes in which outputs cannot
be delayed. Intuitively, the LTS that describes the behaviour of P is given as an
LTS whose states are linear approximations of P and transition relation is the
extension relation E, which we briefly explained in Section 7.2. This LTS will
be presented as a presheaf following the view that presheaves can be regarded as
transition systems [23, 135].

7.4.1 Extension relation

We now define an ordering p′ E p over linear processes, which may be read as “p
extends p′”. Giving a larger linear approximation corresponds to extending an
execution sequence.

Before we define the extension relation on linear processes, we define the
extension relation over types.

Definition 7.4. Let A be a set of levels. Restriction of types and intersection
types are inductively defined by:

cho
α[θ1, . . . , θn]�A

def=
{

cho
α[θ1�A, . . . , θn�A] (if α ∈ A)

• (otherwise)

chi
α[θ1, . . . , θn]�A

def=
{

chi
α[θ1�A, . . . , θn�A] (if α ∈ A)

• (otherwise)

(θ�A)(i) def= θ(i)�A.
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Similarly, restriction of type isomorphisms is defined by:

cho
α[ϕ1, . . . , ϕn] def=

{
cho

α[ϕ1�A, . . . , ϕn�A] (if α ∈ A)
id• (otherwise)

chi
α[ϕ1, . . . , ϕn] def=

{
chi

α[ϕ1�A, . . . , ϕn�A] (if α ∈ A)
id• (otherwise)

(σ, (ϕi)i∈Nat)�A
def= (σ, (ϕi�A)i∈Nat)

We write ρ′ <: ρ (resp. θ′ <: θ) if ρ′ = ρ�A (resp. θ′ = θ�A) for some A ⊆ A and
ϕ′ <: ϕ if ϕ′ = ϕ�A for some A ⊆ A. �

For ρ′ <: ρ, there may be multiple set of levels A that satisfies ρ = ρ�A. We say
that A is the standard witness of ρ′ <: ρ if and only if A =

⋂
{A′ ⊆ A | ρ′ = ρ�A′};

the notion of standard witness for intersection types and type isomorphisms are
defined similarly.

We list some basic properties of type restriction. These properties are only
used in the proofs of the forthcoming propositions and can be ignored for the
moment. We recommend the readers to come back when they find the use of
these lemmas. All of the lemmas given below are easy to prove; most of the
proofs are by straightforward induction on the structure of type or intersection
type.

Lemma 7.11.

1. If ρ�A = ρ′ (resp. θ�A = θ′) then lv(ρ′) ⊆ A (resp. lv(θ′) ⊆ A).

2. Let A be the standard witness of ρ′ <: ρ (resp. θ <: θ′). Then A = lv(ρ′)
(resp. A = lv(θ′)).

Lemma 7.12. Let A ⊆ A be a downward-closed set and let ρ be a type. If
α ∈ A and α ∈ lv(ρ) then α ∈ lv(ρ�A).

Lemma 7.13. If ϕ : ρ ∼= ρ′ (resp. ϕ : θ ∼= θ′) then ϕ�A : ρ�A ∼= ρ′�A (resp.
ϕ�A : θ�A ∼= θ′�A).

Lemma 7.14.

1. Let ρ1 = ρ′
1�A and ϕ : ρ1 ∼= ρ2. Then there exist a type ρ′

2 and a type
isomorphism ϕ′ : ρ′

1
∼= ρ′

2 such that ρ2 = ρ′
2�A and ϕ = ϕ′

2�A.

2. Let θ1 = θ′
1�A and ϕ : θ1 ∼= θ2. Then there exist an intersection type θ′

2 and
a type isomorphism ϕ′ : θ′

1
∼= θ′

2 such that θ2 = θ′
2�A and ϕ = ϕ′

2�A.

The extension relation on linear processes, written p′ E p, is inductively
defined by the rules in Figure 7.4. For example, a1(〈〉).⊥ E a1(〈x1〉).τ1.x1〈〉 holds
and this intuitively means that !a(x).x〈〉 a(x)−−→ !a(x).x〈〉 | x〈〉 can be extended to
!a(x).x〈〉 a(x)−−→ !a(x).x〈〉 | x〈〉 x〈〉−−→ !a(x).x〈〉 | 0 (under the assumption that both
of the linear process approximates !a(x).x〈〉).

Extending a linear process does not precisely correspond to extending an
execution sequence: there are cases where an execution sequence cannot be ex-
tended even if the corresponding linear process can be extended. This problem
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I = {i1 < · · · < im} J = {j1 < · · · < jn} J ⊆ I ϕ′
i <: ϕi (for i ∈ J)

〈ϕ′
j1
� xj1 , . . . , ϕ′

jn
� xjn〉 E 〈ϕi1

� xi1 , . . . , ϕim
� xim〉

0 E 0 ⊥ E τi.p

p E q

τi.p E τi.q

J ⊆ I ρ′
i <: ρi (for i ∈ J) p E q

(ν[〈āi, ai〉ρ′
i
]i∈J)q E (ν[〈āi, ai〉ρi ]i∈I)p

λ′
i E λi (for i ∈ [n])

āi〈λ′
1, . . . , λ′

n〉 E āi〈λ1, . . . , λn〉
p E q µ′

i E µi (for i ∈ [n])
ai(µ′

1, . . . , µ′
n).p E ai(µ1, . . . , µn).q

⊥ E ai(~µ).q
p′ E p q′ E q

p′ | q′ E p | q
m ≤ n p′

i E pi p′
i 6= ⊥ (for i ∈ [m])

p′
1 ‖ · · · ‖ p′

m E p1 ‖ · · · ‖ pn

Figure 7.4: Rules for extension relation. Here we identify processes up to ≡0.

is due to the existence of deadlocks. For instance, we have (ν[])(ν[])(⊥ | ⊥) E
(ν[〈ā1, a1〉])(ν[〈b̄1, b1〉])(a1.τ1.b̄1 | b1.τ2.ā1), but both of the linear processes are
not reducible. To exclude linear processes that may create a deadlock, we intro-
duce the notion of terminable processes:

Definition 7.5. A linear process p is idle if it has no action (input, output
nor τ), i.e. consisting of 0, ⊥, | and ν[]. A linear process p is terminable if
(ν~ξ).(p | q) 0−→

∗
r for some ~ξ, q and idle r. �

Only terminable processes will be used as the states of the LTS.
In case p and p′ correspond to executions that only consists of 0−→ and τ−→

the intuition that p E p′ corresponds to “extending execution sequences” can be
formalised as follows:

Proposition 7.15. Let τ : chi[] ` P and let R be a relation between execution
sequences starting from P and well-typed terminable linear approximations of P
such that (P π−→ Q) R p if and only if (p π−→ q) < (P π−→ Q) for a process q
that is typed under the empty environment. Then if (P π−→ Q) R p

1. Q
π′
−→ Q′ implies that (P π−→ Q

π′
−→ Q′) R p′ and p E p′ for some p′.

2. if p E p′ for some terminable well-typed linear process p′ that approximates
P , then there is an execution Q

π′
−→ Q′ such that (P π−→ Q

π′
−→ Q′) R p′.

Lemmas used to prove Proposition 7.15 is given below. The first lemma
says that substitution {ϕ � y/x} is monotonic with respect to E. The second
and the third lemmas are variants of the subject reduction lemmas and the last
two lemmas are variants of the subject expansion lemmas; the monotonicity of
substitution is used to prove the second and the fourth lemma. If we ignore the
details, the first two lemmas say that if p E p′ and p

l−→ q then p′ l−→ q′ for
some q′ such that q E q′. We omit the proofs for these lemmas because they are
similar to that of the subject reduction/expansion lemmas.

Lemma 7.16 (Monotonicity of substitution). Suppose that q E p, ϕ′ <: ϕ and
assume that p, q, p{ϕ � yj/xi} and q{ϕ′ � yj/xi} are appropriately typed. Then
q{ϕ′ � yj/xi} E p{ϕ � yj/xi}.

Proof. By induction on the structure of p.
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Lemma 7.17. Let Γ `α p and Γ `α q be well-typed linear processes such that
p

0−→ q, Γ\ ` p < P and Γ\ ` q < Q. Suppose that there exists p′ such that
Γ′ `β p′, (Γ′)\ ` p′ < P . Then there is a linear process q′ such that p′ 0−→ q′,
Γ′ `β q′ and (Γ′)\ ` q′ < Q.

Lemma 7.18. Let Γu τ : (i, chi
β) `α p and Γ `α q be well-typed linear processes

such that p
τi−→ q, Γ\ u τ : {i} ` p < P and Γ\ ` q < Q. Suppose that there

exists p′ such that Γ′ u τ : (i, chi
δ[]) `γ p′, (Γ′)\ u τ : {i} ` p′ < P . Then there is

a linear process q′ such that p′ τi−→ q′, Γ′ `γ q′ and (Γ′)\ ` q′ < Q.

Lemma 7.19. Let Γ `α p and Γ `α q be processes such that p
0−→ q, Γ\ ` p < P

and Γ\ ` q < Q. Assume that there exists q′ such that q E q′, Γ′ `β q′ and
(Γ′)\ ` q′ < Q, where Γ(t)(i) <: Γ′(t)(i) for all term t and index i. Then there
exists p′ such that p E p′, Γ′ `β p′, (Γ′)\ ` p′ < P and p′ 0−→ q′.

Lemma 7.20. Let Γ u τ : (i, chi
β[]) `α p and Γ `β q be processes such that

p
τi−→ q, Γ\ u τ : {i} ` p < P and Γ\ ` q < Q. Assume that there exists q′ such

that q E q′, Γ′ `γ q′ and (Γ′)\ ` q′, where Γ(t)(i) <: Γ′(t)(t), for all term t and
index i, and Γ′(τ)(i) = •. Then there exists p′ such that Γ′ u τ : (i, chi

γ []) `γ p′,
(Γ′)\ u τ : {i} ` p′ < P and p′ τi−→ q′.

Using these lemmas, we prove that there is a bisimulation between execution
sequences and the extension relation.

Proof. (Proof of Proposition 7.15)
(Proof of 1.) By the assumption that (p π−→ q) < (P π−→ Q) and P

π−→
Q

π′
−→ Q′, we have

P = Q0
l1−→ Q1

l2−→ · · · ln−→ Qn = Q
π′
−→ Q′

< < < < <

p = q0
l1−→ q1

l2−→ · · · ln−→ qn = q

where π = l1 . . . lm and π′ = l′1 . . . l′n. Let q′ be a linear process that approximates
Q′ and is typed under the empty environment. By Proposition 7.6, there exists a
sequence q′

n
π−→ q′ such that (q′

n
π−→ q′) < (Q π′

−→ Q′). Since q′
n is a linear process

that approximates Q(= Qn) and qn is the minimum approximation (with respect
to E), we have qn E q′

n. Now let qn−1 be the process that approximates Qn−1 and
appears in the execution p

π−→ q. Then, by Lemma 7.19 (or Lemma 7.20) there
is a well-typed linear process q′

n−1 that approximates Qn−1 such that q′
n−1

ln−→
q′

n and qn−1 E q′
n−1. By applying Lemma 7.19 (or 7.20) repeatedly along the

reduction sequence p
π−→ q (in reverse order), we obtain a well-typed terminable

linear process p′ that approximates P and satisfies p′ E p and (p′ ππ′
−→ q′) <

(P π−→ Q
π′
−→ Q′).

(Proof of 2.) By the assumption (p π−→ q) < (P π−→ Q), we have

P = Q0
l1−→ Q1

l2−→ · · · ln−→ Qn = Q

< < < < <

p = q0
l1−→ q1

l2−→ · · · ln−→ qn = q

where π = l1 . . . ln. By the assumption we also have a well-typed terminable
linear process p′ such that p E p′. From Lemma 7.17 (or Lemma 7.18) we obtain
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q′
1 such that p′ l1−→ q′

1 and q1 E q′
1. By repeating this argument we obtain

(p′ π−→ q′) < (P π−→ Q) for some q′ such that q E q′. Since p′ is terminable
and p′ is closed it must reduce to an idle process.Therefore, we have q′ π′

−→ r
for an idle r, and by the definition of idle process r is typed under the empty
environment. Since the reduction of the linear process induces that of (non-linear)
processes, i.e. by Lemma 7.6 there exists an execution sequence, Q

π′
−→ R that

satisfy (p′ π−→ q′ π′
−→ r) < (P π−→ Q

π′
−→ R) as desired.

Remark 7.2. Let R be the relation defined in Proposition 7.15 and let (P π−→
Q) R p. When we take a larger terminable linear process p′, we can always extend
P

π−→ Q according to p′ until it reaches a settled process, i.e. there exists Q′

that is settled and P
π−→ Q

π′
−→ Q′ R p′. This is because p′ can be reduced until

it becomes an idle process q′ and if ∅ ` q′ < Q′ then Q′ must be idle. (Recall
that an unguarded output cannot be replaced by ⊥.) �

7.4.2 Presheaf semantics

We define the LTS that describes the behaviour of ∆ ` P as a presheaf JP K : E∆ →
Sets. Roughly speaking, the path category E∆ is a category whose objects are
type environments and morphisms are extension relations and JP K maps a type
environment Γ to the set of approximations of P that is typed under Γ.

Actually, the objects of the path category are not only type environments,
but the pair of type environments and the “current time”.

Definition 7.6. We say that (Γ, α) extends (Γ′, α) and write (Γ′, α) <: (Γ, α) if
there exists a witness A ⊆ lv(Γ) ∪ {α} that satisfies

1. dom(Γ′) ⊆ dom(Γ) and Γ′(t) = Γ(t)�A, for t ∈ dom(Γ),

2. α ∈ A and

3. A is downward-closed: for every β, γ in lv(Γ), β ≤ γ and γ ∈ A implies
β ∈ A.

�

We define the category of type environments E∆ to be a category whose objects
are (Γ, α) such that Γ < ∆ and whose morphisms are given by the relation
(Γ′, α) <: (Γ, α).

Now we define the presheaf JP K. Given ∆ ` P and Γ < ∆, the set JP K(Γ, α)
is defined by JP K(Γ, α) def= {p | Γ\ ` p < P, Γ `α p and p is terminable}. (Here we
are identifying linear processes up to ≡0.)

The key lemma to construct a presheaf is given below. The proof of this
lemma will be given after we have defined the presheaf.

Lemma 7.21. Assume that Γ `α p, p is terminable and (Γ′, α) <: (Γ, α). Then
there is a unique (up to ≡0) linear process that satisfy q E p and Γ′ `α q.

By Lemma 7.21 there is a map JP K(−,−) that maps an extension rela-
tion (Γ′, α) <: (Γ, α) to a function from JP K(Γ, α) to JP K(Γ′, α) that maps
p ∈ JP K(Γ, α) to q such that q E p and Γ′ `α q; we will write p�Γ′,α for the
unique process q.

Theorem 7.22. Let ∆ ` P . Then JP K(−,−) is a functor from E∆ to Sets.
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Proof. We need to check that JP K(−,−) preserves identities and composition.
The fact that JP K(−,−) preserves identities follows from Lemma 7.21.

So it remains to show that JP K(−,−) preserves composition. This also follows
from Lemma 7.21. Suppose that (Γ1, α) <: (Γ2, α) <: (Γ3, α). Let p ∈ JP K(Γ3, α)
and let us write f for JP K((Γ2, α) <: (Γ3, α)), g for JP K((Γ1, α) <: (Γ2, α)) and
h for JP K((Γ1, α) <: (Γ3, α)). Then we have g(f(p)) E f(p) and f(p) E p, and
hence g(f(p)) E p because E is transitive. We also have h(p) E p. Since g(f(p))
and h(p) are both typed under Γ1, by Lemma 7.21, we have g(f(p)) ≡0 h(p) as
desired.

We now prove the key lemma (Lemma 7.21). The proof of the lemma proceeds
by induction on the structure of the derivation of Γ `α p.

The nontrivial case is the case of ν-restriction and to handle this case we use
the following lemmas.

Lemma 7.23. Suppose that Γ `α (ν[〈āi, ai〉]i∈dom(θ))p and that (ν[〈āi, ai〉]i∈dom(θ))p
is terminable. Then lv(θ) ⊆ lv(Γ) ∪ {α}.

Lemma 7.24. Let (ν[〈āi, ai〉]i∈dom(θ))p be a terminable process such that Γ `α

(ν[〈āi, ai〉]i∈dom(θ))p. Suppose that (ν[〈āi, ai〉]i∈dom(θ′))q E (ν[〈āi, ai〉]i∈dom(θ))p
and Γ′ `α (ν[〈āi, ai〉]i∈dom(θ′))q, where Γ′ satisfies Γ′(t)(i) <: Γ(t)(i) for all term
t and index i.If there is a level β such that β ∈ lv(θ) but β /∈ lv(θ′), then there
is a term t and an index i such that β ∈ Γ(t)(i) and β /∈ Γ′(t)(i).

Instead of giving a detailed proof of these lemmas, we explain why this holds
by giving an example.

Example 7.1. Let us consider a well typed linear process

τ : (0, chi
β[]),`γ (ν[〈b̄0, b0〉ρb

])(ν[〈ā0, a0〉ρa ])(τ0.ā0〈〈b0〉〉 | a0(〈x̄0〉).x̄0〈〈〉〉 | b0(〈〉))

where ρb = cho
β[] and ρa = cho

α[(0, ρβ)]. The following figure shows the way to
point a free name (or a constant τi) whose type contains the level β ∈ lv(ρb). (In
this case we can tell that the type for τ0 contains β.)

(ν[〈b̄0, b0〉])(ν[〈ā0, a0〉])(τ0.ā0〈〈b̄0〉〉| a0(〈x̄0〉).x̄0〈〈〉〉 |b0(〈〉))

Let us explain what the pointers mean. A pointer points to a name that must be
“executed at the same time” with the name placed at the source of the pointer.
We start from b̄0 because that is the name with type ρb. Since b̄0 is in an object
position of an output via the name ā0 and ā0 is bound, we first look for the
name that communicates with ā0, which is a0 in this case. Because x̄0 is the
argument that corresponds to b̄0, the type for x̄0 must have the level β for its
“outermost level”. So now we have another name x̄0 whose type has β as the
“outermost level”, and the link from b̄0 to x̄0 is used to expresses this fact. Now
we look for the place where x̄0 is actually used, this is expressed by the second
link. Since x̄0 is guarded by a0 we now know that a0 must be executed at the
same time as x̄0. Because ā0 communicates with a0, we know that ā0 and a0
must be executed simultaneously and thus we have a pointer from a0 to ā0. The
output ā0 is guarded by τ0, so we know that τ0 also happens at the same time.
Because τ0 is a constant we conclude that β appears in the type environment.

Lemma 7.23 can be proved by formalising the notion of pointer and general-
ising the above procedure.
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Lemma 7.24 can be proved by showing that E does not create any “dangling
pointer”. That is if q E p and linear terms tj , ti appearing in p are linked by a
pointer, then either tj and ti both appears in q or tj and ti do not appear in q.
This follows from the definition of E and the way we add pointers. For example,
let us consider the case where p is the linear process depicted above. The only
process q such that b̄0 does not appear in q and q E p is (ν[])(ν[])(⊥ | ⊥ | ⊥). �

Now we are ready to prove the key lemma.

Proof of Lemma 7.21. Let A be the smallest witness of (Γ′, α) <: (Γ, α). The
proof proceeds by induction on the derivation of Γ `α p.

(Case (TNil)) Trivial.

(Case (TOut)) In this case, Γ `α p is of the form x1 : θ1 u · · · u xn : θn, ā :
(i, cho

α[θ′
1, . . . , θ′

n]) `α āi〈λ1, . . . , λn〉, where λi = ϕi � xi for some type iso-
morphim ϕi : θi

∼= θ′
i for each i ∈ {1, . . . , n}. Recall that by the definition

of witness, we have α ∈ A. Therefore, Γ′ is x1 : θ1�A u · · · u xn : θn�A, ā :
(i, cho

α[θ′
1�A, . . . , θ′

n�A]). We also have ϕi�A : θ1�A ∼= θ′�A by Lemma 7.13.
So we have Γ′ `α āi〈λ′

1, . . . , λ′
2〉, where λ′

i = ϕi�A � xi. Since λ′
i E λi by the

definition of ϕi�A and ϕi�A � xi, we can take āi〈λ′
1, . . . , λ′

2〉 as q.
To show the uniqueness of q it suffices to show that

if ϕ′
i <: ϕi and ϕ′

i : θi�A ∼= θ′
i�A then ϕ′

i = ϕi�A.

This can be shown by a straightforward induction on the structure of ϕi.

(Case (TIn)) The derivation for Γ `α p must be of the following form

Γ0, x1 : θ1, . . . , xn : θn `β p0

Γ0 u b : (i, chi
β[θ1, . . . , θn]) `α bi(µ1, . . . , µn).p0

where µi = idθi
� xi for i ∈ {1, . . . , n} and α ≤ β. Let us consider the case

where β ∈ A; the other case is easy.
We first show the existence of q. Let Γ′

0 be the type environment that
satisfies Γ′

0 u b : (i, cho
β[θ1, . . . , θn]�A) = Γ′. Then we have A : (Γ′

0, x1 :
θ1�A, . . . , xn : θn�A, β) <: (Γ0, x1 : θ1, . . . , xn : θn, β). Hence, by the induc-
tion hypothesis, there exists q0 such that Γ′

0, x1 : θ1�A, . . . , xn : θn�A `β q0
and q0 E p0. By applying (TIn), we have Γ′ `α bi(µ′

1, . . . , µ′
n).q0, where

µ′
i = idθi�A � xi, and we can take this process as q.

We now prove the uniqueness of q. Assume that there exists q′ such that
Γ′ `α q′ and q′ E p. Then by the definition of E, q′ must be of the
form bi(µ′′

1, . . . , µ′′
n).q′

0 with q′
0 E p0. Therefore the last rule applied to the

derivation Γ′ `β q′ must be (TIn) and the derivation must be the following
form

Γ0, x1 : θ1�A, . . . , xn : θn�A `β q′
0

Γ′
0 u b : (i, chi

β[θ1�A, . . . , θn�A]) `α bi(µ′′
1, . . . , µ′′

n).q′
0

where µ′′
i = idθi�A � xi = µ′

i for all i ∈ {1, . . . , n}. By the uniqueness of q0
we have q0 ≡0 q′

0, and thus q′ ≡0 q as desired.

(Case (TTau)) Similar to the case for (TIn).
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(Case (TPar)) In this case, the derivation for Γ `α p is of the following form:

Γ1 `α p1 Γ2 `α p2

Γ1 u Γ2 `α p1 | p2

Let Γ′
i be a type environment defined by Γ′

i(t)
def= Γi(t)�A for i ∈ {1, 2}.

Then we have A : (Γ′
i, α) <: (Γi, α) for i ∈ {1, 2}. By the induction hypoth-

esis there exists qi such that Γ′
i `α qi and qi E pi. Since Γ′ = Γ′

1 u Γ′
2 we

can take q1 | q2 as q.
For the uniqueness part, assume that there exists q′ such that Γ′ `α q′ and
q′ E p. Then by the definition of E, q′ = q′

1 | q′
2 for some q′

1 and q′
2 such

that qi E pi (i ∈ {1, 2}). The type derivation for Γ′ `α q′
1 | q′

2 must have
the form

Γ′′
1 `α q′

1 Γ′′
2 `α q′

2

Γ′ `α q′
1 | q′

2

where Γ′ = Γ′′
1 u Γ′′

2. It suffices to show that Γ′′
i = Γ′

i for i ∈ {1, 2} because
then we can conclude that q′

i ≡0 qi by the induction hypothesis. Since
Γ′′

i (t)(j) 6= • iff tj ∈ fn(q′
i) ⊆ fn(pi) and Γ′′

i (t)(j) = Γ′(t)(j) = Γ(t)(j)�A
when Γ′′

i (t)(j) 6= •, we have Γ′
i(t)(j) = Γ′′

i (t)(j). We therefore conclude that
q′ ≡0 q.

(Case (TRep)) Similar to the case for (TPar).

(Case (TNu)) In this case the derivation must have the following form:

Γ, ā : θ, a : θ⊥ `α p0

Γ `α (ν[〈āi, ai〉]i∈dom(θ))p0

By Lemma 7.23, we have A ⊆ lv(Γ, ā : θ, a : θ⊥) and thus A : (Γ′, ā : θ�A, a :
θ⊥�A, α) <: (Γ, ā : θ, a : θ⊥, α). By the induction hypothesis, there exists
a terminable q0 such that q0 E p0 and Γ′, ā : θ�A, a : θ⊥�A `α q0. Thus we
can take (ν[〈āi, ai〉]i∈dom(θ�A))q0 as q.
Now we show the uniqueness of q. Since q E p, the derivation of Γ′ `α q is
of the following form

Γ′, ā : θ′, a : θ′⊥ `α q′
0

Γ′ `α (ν[〈āi, ai〉]i∈dom(θ′))q′
0

Our goal is to show that θ′ must be θ�A. Then we can conclude the proof
by applying the induction hypothesis. By the definition of E, we have
θ′(i) <: θ(i) for each i ∈ dom(θ′) ⊆ dom(θ). Let Bi be the standard witness
of θ′(i) <: θ(i) and let Ai be the standard witness of (θ�A)(i) <: θ(i) for
each i ∈ dom(θ). It suffices to show that Ai = Bi. We first show that
Bi ⊆ Ai. Take β ∈ Bi. Note that we have β ∈ lv(θ′(i)) ⊆ lv(θ(i)) by
Lemma 7.11. By Lemma 7.23, we have β ∈ lv(Γ′). Since A is the smallest
set such that A : (Γ′, α) <: (Γ, α), we have β ∈ A. Because A is downward-
closed, we have β ∈ lv(θ(i)�A) by Lemma 7.12. Hence, β ∈ Ai. Now we
show Ai ⊆ Bi. Assume that there exists β ∈ Ai such that β /∈ Bi; we
show that this leads to a contradiction. Since β /∈ Bi, we have β /∈ lv(θ′(i))
by Lemma 7.11. We also have β ∈ lv(θ(i)) because β ∈ Ai. This means
that there exists a term t and index j such that β ∈ lv(Γ(t)(j)), but β /∈
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(lvΓ′(t)(j)) by Lemma 7.24. However, this is a contradiction because by
applying Lemma 7.12 to the fact that Γ′(t)(j) = Γ(t)(j)�A, β ∈ A and
β ∈ lv(Γ)(t)(j), we have β ∈ lv(Γ′(t)(j)).

7.5 Proof of the Main Theorem

Now that we have set up all the technical tools, we are ready to prove the main
theorem (Theorem 7.1), which says that 'c

τ is a πF -theory.

7.5.1 Main line

Here we prove the main theorem modulo some propositions that will be proved
in the subsequent subsection.

To prove Theorem 7.1, it suffices to show that (i) 'c
τ satisfies the axioms

such as (E-Eta) and (E-Beta) (defined in Chapter 3), and (ii) that barbed
congruence is a congruence relation, which trivially holds. Instead of directly
proving (i), we define a yet another equivalence∼ and show that∼ is a congruence
relation that satisfies the axioms and ∼ ⊆ 'c

τ . These are relatively easier to show
than to directly prove (i). The main difficulty of directly proving (i) is that we
need to deal with arbitrary context. By introducing∼, we can avoid this difficulty.

The equivalence ∼ is defined using the notion of open map bisimulation [61].
We write P ∼ Q if and only if JP K and JQK are open map bisimilar. 5 This means
that there is a span JP K f←− X

g−→ JQK, where f and g are open maps. A map
f : X → Y is an open map if and only if whenever, for m : y(Γ1, α1) → y(Γ, α2),
the square

y(Γ1, α1) X

y(Γ2, α2) Y

p

m f

q

(7.4)

commutes there is a diagonal map d : y(Γ2, α2)→ X

y(Γ1, α1) X

y(Γ2, α2) Y

p

m f

q

d (7.5)

making the two triangles commute. Here y is the Yoneda embedding, i.e. y(Γ, α) =
E∆(−, (Γ, α)) : Eop

∆ → Sets
To show that JP K and JQK are open map bisimilar, it suffices to show that

there is an open map r : JP K → JQK. Intuitively, this is analogous to giving a
functional bisimulation (indexed by (Γ, α)) between JP K(Γ, α) and JQK(Γ, α).

The fact that ∼ satisfy the rules such as (E-Beta), can be proved by “proof
manipulation”. As explained, to show that P ∼ Q, it suffices to give a functional
bisimulation between JP K(Γ, α) and JQK(Γ, α). As a special case, let us consider
the case where P = (νāa)(!a(x).P | ā〈y〉) and Q = (νāa)(!a(x).P | P{y/x}).
In this case, a functional bisimulation r can be defined by r(p) def= q, where
p

0−→ q, and the proof that this r is a bisimulation is similar to that of subject
reduction/expansion. Hence, we have

5To be more specific, we define the open-map bisimulation in the setting where yE∆ (the
Yoneda embedding of E∆) is the path category and [Eop

∆ , Sets] is the category of models.
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Lemma 7.25. The relation ∼ satisfies the axioms listed in Figure 3.2.

We can also show that ∼ is a congruence relation.

Lemma 7.26. The relation ∼ is a congruence.

Checking that ∼ is a congruence is not that difficult, thanks to the fact that
E is defined according to the structure of a process.

From the above two lemmas (Lemma 7.25 and Lemma 7.26) we have

Theorem 7.27. The relation ∼ is a πF -theory. Therefore, Cl(∼) is a compact
closed Freyd category.

Since our main interest is the main theorem, we postpone the proof of this
theorem (and the proof of Lemma 7.25 and Lemma 7.26). The proofs are given
at the end of this chapter (Section 7.5.2).

Now we show that ∼ ⊆ 'c
τ . From this and the above theorem (Theorem 7.27)

we obtain our main theorem (Theorem 7.1), which states the existence of a com-
pact closed Freyd model that is fully abstract with respect to 'c

τ .
To show that ∼ ⊆ 'c

τ we first show that ∼ is a barbed bisimulation (with
respect to =⇒).

Lemma 7.28. Let ∆ def= τ : chi[], ō1 : cho[], . . . , ōn : cho[] and P and Q be settled
process such that ∆ ` P and ∆ ` Q. Then P ∼ Q implies P

•∼τ Q.

Before giving the proof, let us prepare a notation that will be used in the
proof.

Definition 7.7. Let ∆ ` P and ∆ ` Q be processes such that P ∼ Q. For
p ∈ JP K(Γ, α) and q ∈ JQK(Γ, α), we write p ∼ q if there exists a span of open
maps JP K f← X

g→ JQK and an element x of X(Γ, α) such that fΓ,α(x) = p and
gΓ,α(x) = q. �

Proof of Lemma 7.28. Let S be a relation defined as
(Pk, Qk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(P = P0 =⇒ P1 =⇒ · · · =⇒ Pk) R pk
0

(Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk) R qk
0

pk
0 ∼ qk

0

for some sequences P = P0 =⇒ P1 =⇒ · · · =⇒ Pk and
Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk and
some linear approximations pk

0 and qk
0


where R is the relation used in Proposition 7.15. (Strictly speaking, we cannot
directly use Proposition 7.15 because P and Q have free outputs. However, the
same argument can be applied to the current situation.) Clearly, we have P S Q.

Our goal is to show that S is a barbed bisimulation. Suppose that Pk S Qk.
First we show that a transition Pk =⇒ Pk+1 can be mimicked by Qk. By the
definition of S, we have (P = P0 =⇒ P1 =⇒ · · · =⇒ Pk) R pk

0 for some reduction
sequence and pk

0, an approximation of P . By the definition of R we have (P =
P0 =⇒ P1 =⇒ · · · =⇒ Pk =⇒ Pk+1) R pk+1

0 for some pk+1
0 that approximates P such

that pk
0 E pk+1

0 . Moreover, we have τ : (i1, chi
α1 []) ∧ · · · ∧ (ik+1, chi

αk+1
[]) `β

pk+1
0 . Without loss of generality, we may assume that α1 < · · · < αk+1. Since

pk
0 ∼ qk

0 , there exists a terminable linear process qk+1
0 such that qk

0 E qk+1
0 ,

τ : (i1, chi
α1 []) ∧ · · · ∧ (ik+1, chi

αk+1
[]) `β qk+1

0 , and p0
k+1 ∼ q0

k+1. Thanks to
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Proposition 7.15, we know that there is an execution sequence Q = Q0 =⇒ Q1 =⇒
· · · =⇒ Qk

π−→ Qk+1 that is related to pk+1
0 by R. Moreover, we can assume

that Qk+1 is settled (See Remark 7.2). It remains to show that the word π is
of the form τ0∗. Let qk+1

0
π′
−→ q1

k
π−→ q0

k+1 be the execution that corresponds
to the execution Q = Q0 =⇒ Q1 =⇒ · · · =⇒ Qk

π−→ Qk+1. Now observe that we
have τ : (ik+1, chi

αk+1
) `αk

q1
k. Since qk+1

0 is terminable and closed, we must

have q1
k( 0−→)∗ τik+1−→ ( 0−→)∗q0

k+1 (Recall that q0
k+1 is idle). Note that we have

q1
k 6

0−→; if q1
k

0−→ q′ for some q′, then there is a process Q′ such that Qk −→ Q′,
but this contradicts to the fact that Qk is settled. Therefore, we must have
q1

k
τ−→ ( 0−→)∗q0

k+1, that is π is of the form τ0∗.
Checking that the transition Qk =⇒ Qk+1 is matched by a transition from P

can be done in a similar fashion.
Similarly we can show that Pk↓τā if and only if Qk↓τā.

Note that we only proved P ∼ Q implies P
•∼τ Q in case P and Q are sorted

under particular sort environments. This does not cause a problem due to the
following observation.
Observation 1. When we want to prove that P and Q are barbed congruent, we
do not need to consider arbitrary contexts. First, we can assume that C[P ] does
not have free input name. If there is a free input name a in C[P ], we can consider
the context (νāa)(C[−] | !a(~x).ā〈~x〉), where ā is fresh, instead of C. Because
the output action ā can never happen, the behaviour of C[P ] and (νāa)(C[P ] |
!a(~x).ā〈~x〉) are the same. Second, we can restrict the types for free outputs. If
C[P ] has a free output ā with type cho[~T ], then we can consider the context
(νāa)(C[−] | !a(~x).b̄〈〉), where a and b̄ are fresh and b̄ has type cho[], instead of
C. Note that we have C[P ]↓τā if and only if (νāa)(C[P ] | !a(~x).b̄〈〉)↓τ

b̄
.

The above lemma immediately implies that ∼ ⊆ 'c
τ .

Lemma 7.29. If P ∼ Q then P 'c
τ Q.

Proof. Suppose that P ∼ Q and let C be a context. Without loss of generality,
we may assume that there are no free input names in C[P ] and that all the free
outputs in C[P ] have type cho[] by Observation 1. Since ∼ is a congruence by
Lemma 7.26, we have τ.C[P ] ∼ τ.C[Q]. By Lemma 7.28, we have τ.C[P ] •∼τ

τ.C[Q] and thus P 'c
τ Q.

Finally, we have our main theorem.
Theorem 7.1. The relation 'c

τ is a πF -theory, which means that Cl('c
τ ) is

a compact closed Freyd category. Hence, there exists a compact closed Freyd
category that is fully abstract with respect to 'c

τ .
Proof. Since ∼ ⊆ 'c

τ by Lemma 7.29 and ∼ satisfies the axioms listed in Fig-
ure 3.2, 'c

τ also satisfies these axioms. This concludes that 'c
τ is a πF -theory

because it is a congruence.

7.5.2 Remaining proofs

This section skeches the proof of Theorem 7.27, which says that ∼ is a πF -theory.
We do not give the full proof to keep the proof understandable; the proof requires
a lot of case analysis which can be proved by the same technique and proving all
the cases will just make the proof longer. Recall that to prove ∼ is a πF -theory
it suffices to show that (1) ∼ satisfies the axioms listed in Figure 3.2 and (2) ∼
is a congruence. We start by showing (1).
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Proof of Lemma 7.25

As explained, the fact that ∼ satisfies the axioms can be shown by “proof ma-
nipulation”. Here we only prove the case for (E-Eta) because this is the most
nontrivial case; the proof for the other axioms are similar. The proof for the
η-rule also clarifies why witnesses of type isomorphisms needs to appear in the
syntax of linear processes.

Proposition 7.30. Let P be a well-sorted process such that b, ā /∈ fn(P ). Then
there is an open-map r : J(νāa)(b ↪→ ā | P )K→ JP{b/a}K.
Proof. Let p1 ∈ J(νāa)(b ↪→ ā | P )K(Γ, α) and let θ = Γ(b). Then p1 must be of
the following form

(ν[〈āj , aj〉]j∈dom(θ′))(Πi∈dom(θ)bi(µi1, . . . , µim).āσ(i)〈λσ(i)1, . . . , λσ(i)m〉 | p). (7.6)

where σ : Nat→ Nat is a bijection such that σ�dom(θ) is a bijection from dom(θ)
to dom(θ′). Note that θ(i) and θ′⊥(σ(i)) must be isomorphic for each i. In
fact, the witness of the type isomorphism between θ(i) and θ′⊥(σ(i)) can be
explicitly given by inspecting the linear process p1. We write ϕi for the witness
of θ(i) ∼= θ′⊥(σ(i)).

The function rΓ,α is defined by rΓ,α(p1) def= p{ϕi � bi/aσ(i)}i∈dom(θ). To see
that this is well-defined, we need to check that rΓ,α(p1) ∈ JP{b/a}K(Γ, α). Since
Γ `α p1, we have a derivation of the following form:

π1i :: Γ1i `α bi(µi1, . . . , µim).āσ(i)〈λσ(i)1, . . . , λσ(i)m〉

(b : θ, ā : θ′) `α Πi∈dom(θ)bi(µi1, . . . , µim).āσ(i)〈λσ(i)1, . . . , λσ(i)m〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

π2 :: Γ2, a : θ′⊥ `α p

(b : θ, ā : θ′) u (Γ2, a : θ′⊥) `α (Πi∈dom(θ)bi(µi1, . . . , µim).āσ(i)〈λσ(i)1, . . . , λσ(i)m〉 | p)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ `α p1

where
d

i Γ1i = b : θ, ā : θ′ and Γ = b : θ, Γ2. By applying Lemma 7.4 (Substi-
tution lemma) to the derivation π2, we obtain a type derivation for Γ2, b : θ `α

p{ϕi � bi/aσ(i)}i∈dom(θ) with Γ2, b : θ = Γ as desired.
We next see that r is a natural transformation. Let p1 ∈ J(νāa)(b ↪→ ā |

P )K(Γ, α) and suppose that A : (Γ′, α′) <: (Γ, α). It suffices to show that r(p1�Γ′,α′) E
r(p1). Recall that p1 is of the form of (7.6). Therefore, by (the proof of)
Lemma 7.21, p1�Γ′,α′ is of the following form:

(ν[〈āj , aj〉]j∈dom(θ′�A))(Πi∈dom(θ�A)bi(µ′
i1, . . . , µ′

im).āσ(i)〈λ′
σ(i)1, . . . , λ′

σ(i)m〉 | p
′).

where

bi(µ′
i1, . . . , µ′

im).āσ(i)〈λ′
σ(i)1, . . . , λ′

σ(i)m〉 E bi(µ′
i1, . . . , µ′

im).āσ(i)〈λ′
σ(i)1, . . . , λ′

σ(i)m〉
(7.7)

for i ∈ dom(θ′�A) and p′ E p. It is easy to check that the witness of type iso-
morphism between θ�A(i) and (θ′�A)⊥(σ(i)) that is constructed from the relation
(7.7) is given by ϕi�A.Hence,

r(p1�Γ′,α′) = p′{ϕ�A � bi/aσ(i)}i∈dom(θ�A)

and thus r(p1�Γ′,α′) E r(p1), that is

p′{ϕ�A � bi/aσ(i)}i∈dom(θ�A) E p{ϕ � bi/aσ(i)}i∈dom(θ)
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by the monotonicity of substitution with respect to E (Lemma 7.16).
Our remaining task is to verify that r is an open map. To this end, we

construct the diagonal map d by defining p2
def= dΓ2,α2(id) provided that the

square (7.4), with X, Y and f replaced by J(νāa)(b ↪→ ā | P )K, JP{b/a}K and r

respectively, commutes. Let p1
def= pΓ1,α1(id) ∈ J(νāa)(b ↪→ ā | P )K(Γ1, α1) and

q
def= qΓ2,α2(id) ∈ JP{b/a}K(Γ2, α2). Again p1 is of the following form

(ν[〈āj , aj〉]j∈dom(θā))(Πi∈dom(θb)bi(µi1, . . . , µim).āσ(i)〈λσ(i)1, . . . , λσ(i)m〉 | p).

where θb = Γ1(b). It should be noted that, by the naturality of q, we have r(p1) =
p{ϕi � bi/aσ(i)}i∈dom(θb) = q�Γ1,α1 .This means that p = q�Γ1,α1{ϕ

−1
i
� aσ(i)/bi}i∈dom(θb)

by Lemma 7.5. Our strategy is to extend the process p1 according to how the
type environment Γ2 is extended from Γ1. For each i ∈ dom(Γ1(b)), let us first
pick a type isomorphism ϕ′

i that extends ϕi : Γ1(b)(i) ∼= θ⊥
a (σ(i)) to a type iso-

morphism from Γ2(b)(i) to some ρ′
i, which is an extension of θ⊥

a (σ(i)). Such an
extension always exists by Lemma 7.14. We define p2 by

p2
def= (ν[〈āj , aj〉]j∈dom(θ′′))


Πi∈dom(θ)bi(µ′

i1, . . . , µ′
il).āj〈λ′

σ(i)1, . . . , λ′
σ(i)l〉

‖ Πj∈Jbi(µj1, . . . , µjm).āj〈µj1, . . . , µjm〉
| q{(ϕ′

i)−1 � ai/bi}i∈dom(θ){aj/bj}j∈J


where

• J
def= dom(Γ2(b)) \ dom(θ)

• θ′
a is the intersection type such that (θ′

a)⊥(σ(i)) = ρ′
i for i ∈ dom(θ) and

(θ′
a)⊥(i) = Γ2(b)(i) for i /∈ dom(θ)

• for j ∈ J, k ∈ {1, . . . , m}, µjk
def= idθjk

� xk if the type of the k-th argument
of Γ2(b)(j) is θjk

• for i ∈ dom(θ), k ∈ {1, . . . , m}, µ′
ik

def= idθik
� xk if the type of the k-th

argument of Γ2(b)(i) is θik

• for i ∈ dom(θ), k ∈ {1, . . . , m}, λ′
ik

def= ϕ′
ik
� xk, where ϕ′

i = chi[ϕ′
i1, . . . , ϕ′

i1]

Intuitively, p2 is obtained by replacing q�Γ1,α with q and “padding linear variables”
to p according to the type Γ2(b). Clearly r(p2) = q because

r(p2) = q{(ϕ′
i)−1 � aσ(i)/bi}i∈dom(θ){aj/bj}j∈J{ϕ′

i
� bi/aσ(i)}i∈dom(θ){bj/aj}j∈J ,

which is equal to q by Lemma 7.5. Together with the naturality of r, this
means that the lower triangle of (7.5) commutes. To show the commutativ-
ity of the upper triangle, it suffices to show that p2�Γ1,α1 = p1. This follows from
the construction of p2 and the monotonicity of substitution with respect to E
(Lemma 7.16).

Witnesses of type isomorphisms play an important role in the above proof.
To see why let us consider a linear calculus without type isomorphisms. That is
a calculus identical to the one defined in Section 7.3.1, except for the fact that
all the outputs are of the form ā〈µ1, . . . , µn〉 instead of ā〈λ1, . . . , λn〉. The typing
rule for the output action is also modified as follows:

id � xi = µi (for i ∈ [n]) α ≤ lv(θ1, . . . , θn)
x1 : θ1 u · · · u xn : θn, ā : (i, cho

α[θ1, . . . , θn]) `α āi〈µ1, . . . , µn〉
(TOut’)
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Now let P
def= (νāa)(!b(x).ā〈x〉 | c̄〈a〉) and Q

def= c̄〈b〉 be processes typed
under a sort environment ∆ def= b : chi[cho[]], c̄ : cho[chi[cho[]]]. Note that
P and Q can be equated by the η-rule. Let us consider a type environment
Γ def= b : (0, chi

β[(0, ρ0) ∧ (1, ρ1)]), c̄ : (0, cho
γ [chi

β[(1, ρ1) ∧ (0, ρ0)]]), where ρ0 and
ρ1 are refinements of cho[], Γ is a valid refinement of ∆ and a linear process
p

def= (ν〈ā0, a0〉)(b0(〈x0, x1〉).ā0〈〈x1, x0〉〉 | c̄0〈〈a0〉〉) is a valid approximation of P ,
i.e. Γ\ ` p < P . Clearly, Γ `γ p. However, there is no q such that Γ `γ q and
Γ\ ` q < Q. We want to take c̄0〈〈b0〉〉 for q, but this is not possible because the
type of b0 is cho

β[(0, ρ0)∧ (1, ρ1)] rather than cho
β[(1, ρ1)∧ (0, ρ0)]. In other words,

a strict non-commutative intersection type system does not meet our technical
requirement.

Remark 7.3. The notion of type isomorphism was taken from the rigid intersec-
tion type system given by Tsukada et al. [128], but in their calculus, witnesses do
not appear in the syntax. This is so because all the (raw) terms in their resource
calculus are assumed to be in η-long form. (See [128] for details.)

Similarly, we may remove witnesses of type isomorphisms from our linear
calculus, if there is a way to convert a linear process p to an “equivalent” process
p′ that does not contain any free outputs. A possible way to do this is to transform
a free output to a “bound output + forwarder”. That is to (recursively) transform
a free output ā0〈〈b̄0〉〉 into (ν[〈c̄0, c0〉])(ā0〈〈c̄0〉〉 | b(µ).c̄0〈µ〉). We chose to keep
free outputs in the syntax of the linear process because by doing so it is easier
to see the correspondence between a (non-linear) process P , which may contain
free outputs, and its linear approximation p. Note that we cannot assume that
(non-linear) processes do not contain free outputs because the validity of the
transformation ā〈b〉 = (ν c̄c)(ā〈c̄〉 | c ↪→ b̄) is not something that is taken for
granted (even if the forwarder does not introduce any delay). Indeed the purpose
of Lemma 7.30 was to check whether such kind of translations are valid. �

Proof that ∼ is a congruence

Now we prove the remaining lemma which says that∼ is a congruence (Lemma 7.26).

Proof of Lemma 7.26. Assume that P ∼ Q. Then there exists a span of open
map JP K ← X → JQK. For all context C, we construct a functor C[X] and
show that there is a span of open maps from JC[P ]K to JC[Q]K of the formJC[P ]K ← C[X] → JC[Q]K. The proof proceeds by induction on the structure of
C. We only prove the case for the parallel composition in detail; we only sketch
the remaining cases because they can be proved by a similar reasoning.

(Case C = [ ]) Trivial because we can take X as C[X].

(Case C = C ′ | R) We define C[X] by

C[X](Γ, α) def= {(x, r) | x ∈ C ′[X](Γ1, α), r ∈ JRK(Γ2, α), Γ = Γ1 u Γ2}.

The action over morphisms is defined by

C[X]((Γ, α) <: (Γ′, α′))(x′, r′) def= (x, r)

where

C ′[X]((Γ1, α) <: (Γ′
1, α′))(x′) = xJRK((Γ2, α) <: (Γ′
2, α′))(r′) = r.
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Here Γ′
2 is the unique type environment such that Γ′

2 `α′ r and Γ′
2 ⊆ Γ,

which can be inferred from r, and Γ′
1 is the type environment such that

Γ′ = Γ′
1 u Γ′

2. Type environments Γ1 and Γ2 are the restrictions of Γ′
1 and

Γ′
2, respectively, such that Γ = Γ1 u Γ2.

We next construct an open map f from C[X] to JC[P ]K. Let us first choose
an open map f ′ from C ′[X] to JC ′[P ]K, which exists by the induction hy-
pothesis. Each component fΓ,α of f is defined as a map that maps (x, r)
to a linear process p | r where p = f ′

Γ1,α(x). Here the type environment Γ1
is the type environment that satisfies Γ = Γ1 u Γ2, where Γ2 is the type
environment determined by r. Naturality of f is inherited from that of f ′.
We now verify that f is an open map. That is we show that there is a
diagonal map d : y(Γ2, α2)→ C[X] whenever the square

y(Γ1, α1) C[X]

y(Γ2, α2) JC[P ]K
p

m f

q

commutes. To define the diagonal map d, we use a diagonal map that
is associated with the open map f ′ : C ′[X] → JC ′[P ]K. By “dropping the
information that is related to the linear approximation of R” from the above
square we get

y(Γ11, α1) C ′[X]

y(Γ21, α2) JC ′[P ]K
p′

m′ f ′

q′

d′ (7.8)

Formally speaking, Γ11 is the type environment such that Γ1 = Γ11 u Γ12,
where Γ12 is the type environment that satisfies Γ12 `α1 r1, provided that
(x1, r1) = pΓ1,α1(idΓ1,α1). The natural transformation p′ is the one that
satisfies pΓuΓ12(∗) = (p′

Γ(∗), r2). (Similarly, Γ21 and q′ are determined by
p2 | r2 = qΓ2,α2(id).) Let us now construct the (Γ, α) component of d. We
want the two triangles in the following square to commute:

E((Γ, α), (Γ1, α1)) C[X](Γ, α)

E((Γ, α), (Γ2, α2)) JC[P ]K(Γ, α)

pΓ,α

m fΓ,α

qΓ,α

dΓ,α

We only consider the case where E((Γ, α), (Γ2, α2)) is a singleton set {∗};
the other case, namely the case where E((Γ, α), (Γ2, α2)) is empty, is trivial
because dΓ,α must be the empty map. Now let p | r def= qΓ,α(∗). Then the
map dΓ,α is defined by dΓ,α(∗) def= (d′(∗), r). The lower triangle commutes
because

fΓ,α(dΓ,α(∗)) = fΓ,α(d′
Γ′,α(∗), r)

= p′ | r (where p′ = f ′
Γ′,α(d′

Γ′,α(∗)) = p)
= qΓ,α(∗).

for some suitable Γ′. Now we check the commutativity of the upper triangle.
Suppose that the E((Γ, α), (Γ1, α1)) = {∗}; if it is empty the commutativity
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of the triangle is trivial. Let (x1, r1) def= pΓ,α(∗). Since the outer square
commutes, we have fΓ,α(x1, r1) = p | r, and hence r1 = r. We also have
x1 = d′

Γ′,α′(∗) because x1 = p′
Γ′,α(∗) by definition of p′ and p′

Γ′,α(∗) = d′
Γ′,α′

by (7.8). Therefore, pΓ,α(∗) = dΓ,α(∗) as desired. It remains to check the
naturality of d, but this is immediate from the naturality of d′.
The open map from C[X] to JC[Q]K can be defined in a similar manner.

(Case C = (νāa)C ′) Let JC ′[P ]K f ′
←− C ′[X] g′

−→ JC ′[Q]K be a span of open map,
which exists by the induction hypothesis. We define C[X] by

C[X](Γ, α) def=


(x, (ā : θ, a : θ⊥))

∣∣∣∣∣∣∣∣∣∣∣

ā, a /∈ dom(Γ), lv(θ) ⊆ lv(Γ) ∪ {α}
x ∈ C ′[X](Γ, ā : θ, a : θ⊥, α)

(ν[〈āi, ai〉]i∈dom(θ))p is terminable,
where p = f ′

Γ,ā:θ,a:θ⊥,α(x)


The action over morphisms is defined by

C[X]((Γ, α) <: (Γ′, α))(x′, (ā : θ′, a : θ′⊥)) def= (x, (ā : θ′�A, a : θ′⊥�A))

where

x = C ′[X]((Γ, ā : θ′�A, a : θ′⊥�A, α) <: (Γ, ā : θ, a : θ⊥, α))(x′)

and A is a witness of (Γ, α) <: (Γ′, α).
The open map g from C[X] to JC[Q]K is given by

gΓ,α(x, (ā : θ, a : θ⊥)) def= (ν[〈āi, ai〉]i∈dom(θ))q,

where q = gΓ,ā:θ,a:θ⊥,α. It is not hard to check that g is indeed an open
map. (The open map from C[X] to JC[P ]K is defined similarly.)

(Case C = a(~x).C ′) and (Case C = τ.C ′)] We only sketch the case of input
prefixing. Let T be the sort of a. We define C[X] by

C[X](Γ, α) def=
((i, chi

β[~θ]), (y1, . . . , yn), x)

∣∣∣∣∣∣∣∣∣∣∣

chi
β[θ1, . . . , θn] < T,

x ∈ C ′[X](Γ′, y1 : θ1, . . . , yn : θn, β),
y1, . . . yn /∈ dom(Γ′),

Γ = Γ′ u a : (i, chi
β[~θ]), α ≤ β


(The action on morphisms is defined accordingly)
The open map f : C[X]→ JC[P ]K is given by

fΓ,α((i, chi
β[~θ]), (y1, . . . , yn), x) def= ai(µ1, . . . , µn).p

where µi = id � yi, p = f ′
Γ′,~y:~θ,β

(x) and Γ′ is the type environment such that

Γ = Γ′ u a : chi
β[~θ].
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Chapter 8

Related Work

In the chapters so far, we have already commented on relationships of our results
to other work. These comments were mostly technical. Here we discuss related
work from a broader perspective.

8.1 Logical Studies of π-calculi

There is a considerable amount of studies on connections between process calculi
and linear logic. Here we divide these studies into two classes. One is the studies
that investigates the connection between π-calculus and proof-nets (or proof-
structures1) of linear logic. In these work names are related to ports of a proof-
net and types are considered as the specification of a port. The other class is the
studies that is based on the Curry-Howard correspondence between session typed
π-calculi and linear logic. Our work is more closely related to the former than
the latter, but some interesting coincidence to the latter kind of studies can also
be found.

Proof nets and π-calculus The former class of research dates back to the
work by Abramsky [3] and Bellin and Scott [11], where they discovered that π-
calculus processes can encode proof-nets of classical linear logic. Later, Abramsky
et al. [5] introduced the interaction categories to give a semantic description of a
CCS-like process calculus. In their work, they observed that the compact closed
structure is important to capture the strong expressive power of process calculi.

A tighter connection between π-calculus and proof-nets was recently presented
by Honda and Laurent [54]. They showed that an i/o-typed π-calculus corre-
sponds to polarized proof-nets, and introduced the notion of extended reduction
for the π-calculus to simulate cut-elimination. The π-calculus used in this work is
very similar to the πF -calculus in terms of syntax and reduction. Their calculus is
asynchronous, does not allow non-replicated inputs, and requires i/o-separation.
Furthermore, the extended reduction is almost the same as the rules (E-Beta)
and (E-GC) except for the side conditions. A significant difference compared
to our work is that their calculus is local [88, 136], reflecting the fact that the
corresponding logic is polarized.

Our work is inspired by these studies. The idea of i/o-separation can already
be found in the work by Bellin and Scott and the use of compact closed category
is motivated by the study of interaction category. However, none of these studies
(explicitly) provide a categorical type theoretic correspondence like we did.

1By proof-structures we mean a proof-net that does not necessarily satisfy the correctness
criterion.
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Linear logic and session-typed π-calculus The latter approach started
with the Curry-Howard correspondences between session-typed π-calculi and
linear logic established by Caires, Pfenning and [18, 19] and subsequently by
Wadler [132, 133]. The key difference between the above class of studies and
these studies lies in the interpretation of ⊗ (and `). For example in CP [133],
the connective ⊗ is interpreted as

P ` Γ, y : A Q ` ∆, x : B

(νy)x〈y〉.(P | Q) ` Γ, ∆x : A⊗B

where A ⊗ B is the type of a channel which outputs data of type A and then
behaves as B rather than “a parallel connection” of A and B. Note that the
constructor for output always takes two continuations P and Q whereas in process
calculi, only one continuation is typically necessary. Recently this discrepancy
was solved by introducing hyperenvironments to linear logic and considering a
calculus, called HCP, that corresponds to this logic [70].

These correspondences are exact in the sense that every process has a corre-
sponding proof, and vice versa. As a consequence of the exact correspondence,
processes of the calculi inherit good properties of linear logic proofs such as ter-
mination and confluence of cut-elimination. In terms of process calculi, process
of these calculi do not fall into deadlock or race condition. This can be seen as
a serious restriction of expressive power as pointed out by various researchers
(e.g. [133, 7, 82]).

Several extensions to increase the expressiveness of these calculi have been
proposed and studied. Interestingly, ideas behind some of these extensions are
related to our work, in particular to Section 5.2 discussing the multicut rule [5]
and the axiom that relates ! with ?. Atkey et al. [7] studied CP [133] with
the multicut rule and rules that identify ! with ? and discussed how these ex-
tensions increase the expressiveness of the calculus, at the cost of losing some
good properties of CP. Dardha and Gay [29] studied another extension of CP
with multicut, keeping the calculus deadlock-free by an elaborated type system.
Their type system is inspired by type systems introduced by Kobayashi [65, 66],
where types are annotated by “tags” to ensure the absence of deadlock. Besides
introducing multicut rule, other approaches are also taken to increase the expres-
siveness of (logically founded) session-typed π-calculi. Balzer and Pfenning [8]
proposed a session-typed calculus with shared (mutable) resources, inspired by
linear-non-linear adjunction [12]. Kokke et al. [71] also introduced the notion
of shared channels to HCP so that some amount of races can be expressed. In
their work, types of a shared channel tracks how many times it is used, much
like the modalities in bounded linear logic [45], and this type system guarantees
deadlock-freedom.

8.2 Categorical Semantics of π-calculi

The idea of using a closed Freyd category to model the π-calculus is strongly
inspired by Laird [74]. He introduced the distributive-closed Freyd category to
describe abstract properties of a game-semantic model of the asynchronous π-
calculus and showed that distributive-closed Freyd categories with some addi-
tional structures suffice to interpret the asynchronous π-calculus. The additional
structures are specific to his game model and not completely axiomatized. Our
notion of compact closed Freyd category might be seen as a rectification of his
idea, obtained by filtering out some structures difficult to axiomatize and by
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strengthening some others to make axioms simpler. A significant difference is
that our categorical model does not deal with non-replicated inputs, which we
think is essential for a simple axiomatization.

Before Laird’s work, Freyd categories have already been used to model a pro-
cess calculus called action calculus [91] introduced by Milner. In fact, Power [109]
showed that the elementary control structure, which is essentially a (monoidal)
Freyd category, corresponds to a moderately special case of the action calculus.
Later, Gardner and Hasegawa [40] showed that extensions of action calculus corre-
spond to special Freyd categories: higher-order action calculus [92] and reflexive
action calculus were shown to correspond to closed Freyd category and traced
Freyd category, respectively. Since the introduction of the action calculus, it was
known that action calculus could encode π-calculus by adding specific rules and
constants [91]. However, the relationship between π-calculus and closed Freyd
category was not investigated in depth by this time.

Another approach for categorical semantics of the π-calculus has been the
presheaf based approach [123, 36, 22]. These studies gave particular categories
that nicely handles the nominal aspects of the π-calculus; these studies, how-
ever, do not aim for a correspondence between a categorical structure and the
π-calculus. Among others, the work by Cattani et al. [22] shares similarity with
our presheaf semantics (given in Chapter 7), because they define the equality over
processes using the notion of open map bisimilarity [61]. However, the definition
of the path category is significantly different. The path category used in the work
by Cattani et al. is indexed by the category of finite name sets and injective maps
so that it can treat fresh names. On the other hand, our path category is simply
the category of type environments of an intersection type system.

8.3 Linear Approximation and π-calculus

We are not the first one to apply the notion of linear approximation to the
π-calculus. A non-idempotent intersection type system for a variant of the π-
calculus that comes from the notion of linear approximations has also been intro-
duced by Dal Lago et al. [72]; it should be noted that they did not introduce a
“linear calculus” that corresponds to the derivation of the intersection type sys-
tem as we did. The connection between linear approximations and intersection
types [83] was applied to the encoding of π-calculus to proof-nets to derive the
basis of an intersection type system for a fragment of the local π-calculus [136, 88]
called hyperlocalized π-calculus. They showed that the type system obtained this
way characterizes some “good behavior”, such as deadlock-freedom, of hyperlocal-
ized processes. In contrast to our work, they use intersection types to guarantee
that typable processes are “well-behaved”, rather than to define “operational
semantics” of the calculus.

8.4 On the Delay of Forwarders

In Chapter 7, we observed that the delay that a forwarder introduces is a cause
for the mismatch between behavioral equivalences and categorical semantics. The
delays that forwarders add has also been an issue in the field of game semantics.
In game semantics, forwarders correspond to copycat strategies and the delay
copycat strategies introduce were an obstacle to model synchronous computations
using game semantics. When giving a game semantics of a synchronous session
typed π-calculus, Castellan and Yoshida [21] observed that the traditional copycat
strategy does not behave as identity due to the delay it introduces. To avoid
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this problem, they introduced a copycat strategy that does not introduce any
delay and proved that this “delayless copycat strategy” works as the identity.
Whereas [21] added delayless forwarders as semantics elements that processes
cannot represent, Chapter 7 of this thesis discusses a new operational semantics
on processes with respect to which forwarders are delayless. A “delayless copycat
strategy” has also been considered by Melliès in a framework called template
games [86], but the relation to π-calculus is not clear. Although these game
semantic work are apparently different from ours, we believe that they are relevant
to our work given that there is a tight relationship between game semantics and
linear approximations [129]; detailed comparisons are left for future work.
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Chapter 9

Conclusion and Future Work

We have developed the πF -calculus, a variant of an i/o-typed π-calculus which
has a corresponding categorical structure. This gives a categorical foundation to
π-calculi that are not session-typed.

The corresponding categorical structure we introduced is the compact closed
Freyd category, which is defined as a combination of closed Freyd category and
compact closed category. The correspondence was established based on the ob-
servation that the π-calculus can be considered as a higher-order programming
language [115]. Inputs and outputs were considered λ-abstractions (that is lo-
cated at a certain address) and applications, respectively, and these were modeled
by the closed Freyd structure. Another characteristic of πF -calculus is the i/o-
separation, which ensures that each type has its dual. This allowed channels
to be modeled by the compact closed structures. The correspondence is quite
solid: we proved that the categorical semantics is sound and complete, and the
term model is the classifying category. We also discussed that, to achieve this
correspondence, it was necessary to consider the η-rule, which is awkward from
the operational semantic viewpoint.

The πF -calculus and compact closed Freyd structure capture the strong ex-
pressive power of the π-calculus. The compact closed structure allows us to
connect ports in an arbitrary way, in return for the possibility of deadlocks. The
Freyd structure allows us to duplicate objects, and duplication of input chan-
nels introduces the possibility of race conditions. Hence, the πF -calculus is more
expressive than linear logic based session-typed π-calculi [19, 133] in the sense
that it can express deadlocks and race conditions. However, even in the πF -
calculus, it seems impossible to encode reference cells and locks due to the lack
of non-replicated inputs.

In Chapter 5, we discussed the relationship between the πF -calculus and linear
logic. First, we showed that every linear logic proof can be interpreted as a πF -
process. Then we discussed the other direction, i.e. a proof system that can
interpret πF -processes as proofs. We presented an extension of linear logic with
multicut rule [5] and an axiom ?A ` !?A as a candidate of a logical system that
can interpret πF -processes. We think that this gives a new observation against
the open problem that asks whether there is a proof system that corresponds to
the traditional π-calculus.

To illustrate the usefulness of the πF -calculus and compact closed Freyd cat-
egory, we gave a semantic analysis against the relationship between higher-order
languages and π-calculus (Chapter 6). We introduced the λch-calculus, a com-
putational λ-calculus augmented with communication channels that corresponds
to πF -calculus, and showed that translations between these calculi are essen-
tially the same as the translations between the higher-order π-calculus and the
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π-calculus [118]. We also showed that encoding of call-by-value and call-by-name
λ-calculus to π-calculus [90], can be understood as call-by-value and call-by-name
monadic interpretation using a continuation monad defined over compact closed
Freyd categories. It should be emphasized that these translations were redis-
covered without any elaborated analysis/calculation but by a simple semantic
considerations thanks to the correspondence between the πF -calculus and com-
pact closed Freyd categories.

Lastly, in an effort to bridge the gap between behavioral and categorical se-
mantics of the πF -calculus, we developed a new operational semantics that is
compatible with the categorical semantics (Chapter 7). The novel operational
semantics is based on a simple idea: unguarded output actions must be imme-
diately consumed. We showed that barbed congruence defined upon this new
operational semantics is a πF -theory. The novel operational semantics was re-
lated to the conventional operational semantics by defining a translation from
πF -calculus with conventional operational semantics to the πF -calculus with the
new semantics. We showed that this translation is sound, but incomplete with
respect to barbed congruence.

Future Work An interesting direction of future work is to add linear channels
to πF -calculus. In order to add linear channels to πF -calculus, we need to give up
using Freyd categories. This is because requiring an identity-on-object functor
from a cartesian category makes every object copyable. A hopeful solution is to
consider linear categories (or LNL models) with additional axioms as we did in
Chapter 5. In these models, we conjecture that linear channels can be added as
resource modalities [87].

Adding non-replicated inputs (for non-linear channels) to the πF -calculus
seems much harder than adding linear channels. As mentioned, we think it
is similar to adding reference cells to λ-calculus, which is known to be hard to
give denotational models. It would be interesting to give a formal relationship
between reference cells and non-replicated inputs. For example, we may develop
mutual encoding between “πF -calculus + reference cells” and “πF -calculus +
non-replicated inputs” and study whether it is fully-abstract. Constructing a
specific denotational model (e.g. game model) for π-calculus with non-replicated
inputs by adopting the techniques used to model reference cells [99, 73] is also a
technically interesting future work.

From a broader perspective, we would like to apply our semantic framework
to the study of type systems. There are two directions that we want to explore.
One is to design a type system for π-calculus by logical or semantic techniques.
For instance, we are interested in using bounded linear logic [45] to design a type
system that ensures deadlock-freedom. The other is to give semantic understand-
ing to the sophisticated type systems of π-calculus [67, 60, 68, 102] that are based
on i/o-types and are used to analyze properties such as deadlocks and races.

Semantic understanding of the relationship between i/o-typed π-calculi and
session typed π-calculi is also left for future work. It is well known that session-
types can be encoded into i/o-type by “continuation passing” [30, 67]. We are
interested in whether this can be understood as “model translation”, i.e. whether
we can understand this encoding as a construction of a model of linear logic from
the model of πF -calculus. To do such a semantic analysis, we may first need to
add linear channels to πF -calculus for capturing the linear usage of continuations.

Revealing the relationship between locality and the η-rule is another impor-
tant problem. The local π-calculus behaves well with respect to the “(πF -theory)
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− (η-rule)”. For instance, (1) the compilation from asynchronous higher-order
π-calculus to the local fragment of the πF -calculus preserves and reflects the
provability without using the η-rules and (2) in local π-calculus we can replace
free outputs with bound outputs without using the η-rule. Our semantic frame-
work cannot (at least at the moment) explain why local π-calculus behaves well.
Further investigation on the relationship between local π-calculus and polarized
linear logic [54] might provide some insights to this phenomenon.

Finally, we would also like to continue the study on λch-calculus, which we
introduced in Chapter 6. Though the λch-calculus is equivalent to πF -calculus,
we think λch-calculus is attracting because it is (1) closer to practical program-
ming languages and (2) an instance of λc-calculus, which has been well-studied.
Primarily, the operational properties of the λch-calculus and its relation to the
equational theory needs further investigation. We are also interested in combining
communication with various computational effects. Restructuring communica-
tion in the form of an algebraic effect [108] may help improve our understanding
against this issue since algebraic effects can be naturally combined. Applying
sophisticated typing systems studied for λ-calculus, such as effect [42, 124] and
coeffect [104] systems, to λch-calculus to analyze concurrent programs might also
be possible. It would be interesting to consider whether we can port these typing
systems to the π-calculus by using the relationship between λch and πF as in the
case of session-typed π-calculus [101].
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