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Abstract

The general topic of this thesis is the property that a random item drawn from some probability dis-
tribution likely to have. We investigate four topics concerning the structure of random graphs and the
behavior of randomized algorithms.

The first topic is the average-case complexity, that is the computational complexity of a problem under
the assumption that the input is drawn from a probability distribution. The perspective of considering
a random input relaxes the pessimism of worst-case complexity that regards the hardest instance of
a problem. For graph problems, several researchers have shown that some NP-hard problems such as
finding a Hamiltonian cycle admit a polynomial-time algorithm if the input is a random graph. With
this in mind, we consider the following natural research question: Is there a problem that is hard to
solve even for random graphs? We handle this issue by presenting a problem that is hard in this sense.
Specifically, we consider the problem of counting biclique subgraphs and show a “sharp threshold” result:
As a positive result, we present an algorithm that solves the problem for any input. As a negative result,
we prove that any slightly faster algorithm fails to solve the problem on most of the random graph under
a widely-investigated conjecture concerning worst-case hardness. At the heart of this result, we present
a general framework of fine-grained hardness amplification, which is inspired by the classical technique
from average-case complexity.

Our next topic is a voting process that is a certain type of randomized distributed algorithms on
a graph. Voting processes are known as simple models of consensus dynamics and have an application
to the consensus problem in the area of distributed computing. Roughly speaking, voting processes
on a graph consists of a single dense component such as the Erdős–Rényi graph are known to exhibit
simple dynamics and thus converge to consensus quickly. However, voting processes on graphs with
more complex structures are much less understood. In response to it, we consider the stochastic block
model, which is a random graph consists of two distinct Erdős–Rényi graphs joined by random edges.
We obtain a phase transition result concerning the edge density between the components regarding the
dynamics: Above the threshold, the dynamics are simple and converge to consensus quickly. Below the
threshold, the dynamics expose a “meta-stable” equilibrium and thus require exponentially long rounds
to reach consensus. Another contribution of this thesis regarding voting processes is to introduce a new
notion of quasi-majority functional voting that is a wide class of voting processes containing several
previously-known voting processes. We then prove that the dynamics of any quasi-majority functional
voting on graphs consists of a single dense component (i.e., expander graphs) are simple and converge
to consensus quickly.

The third topic is random walks on growing networks. A random walk on a graph is a fundamental
stochastic process: A walker on a vertex repeats moving to a randomly selected neighbor. Random walks
have a wide variety of applications in network analysis. In particular, a random walk on dynamic networks
has gathered special attention since real-world networks change their structure over time. However, most
of the previous works were concerned with random walks on dynamic graphs with static vertex set (i.e.,
they considered graphs in which the edge set changes over time). We propose a new model of random
walks on a growing graph and then study their performance.

Finally, we explore the distance properties of random graphs. Specifically, we are interested in the
average distance and diameter of dense random regular graphs. The average distance and diameter of
regular graphs attract special attention in the literature of high-performance computing since a regular
graph with a low average distance and diameter yields an efficient network topology for parallel comput-
ers. We prove that the diameter of a random regular graph is likely to be asymptotically optimal under
a certain mild condition of the degree.
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Chapter 1

Introduction

Suppose we are given a random item chosen from a specific probability distribution. Then, what property
does the item likely to have? This question gather a great deal of attention in a wide range of fields
including combinatorics and theoretical computer science. In this thesis, we investigate properties that
asymptotically almost all objects satisfy. More precisely, for a set S (e.g., the set of all graphs) and a
positive integer n ∈ N, let Sn ⊆ S be the set of elements in S of size n (e.g., the set of graphs of n
vertices). Consider a sequence (Dn)n∈N where each Dn is a probability distribution over Sn. We are
interested in a property P such that the probability Prx∼Dn

[x satisfies P] tends to one as n→ ∞. Such
a property can be seen as the property that a typical object in S chosen from Dn satisfies for large n.
In this thesis, as a random object, we focus on two sources of randomness concerning graphs: random
graphs and randomized algorithms that run on graphs.

The structure of a typical graph under specific distribution has been well investigated in random
graph theory. A random graph refers to a graph sampled according to some probability distribution
over a set of graphs. The distribution is called random graph model. Usually, a random graph model is
specified by either defining the probability measure or giving a generating algorithm. For example, the
Erdős–Rényi graph is an n-vertex graph G(n, p) where each vertex pair holds an edge with probability
p independently to any other vertex pairs. The distribution of G(n, p), denoted by G(n, p), is called the
Erdős–Rényi model.

Random graphs were initially introduced by Erdős [Erd59] to prove the existence of a graph satisfying
a certain property. Soon later, Erdős and Rényi [ER59] studied the connectivity of random graphs. At
the same time, independently to Erdős and Rényi [ER59], Gilbert [Gil59] studied the connectivity of
a different random graph model. These are known as the first systematic studies of random graphs.
Since then, several random graph models (e.g., random geometric graph [Gil61], random regular graph
(configuration model) [Bol80], and random planar graph [DVW96]) were introduced and various struc-
tural properties of random graphs (e.g., the maximum clique [BE76], Hamiltonicity [Pós76], chromatic
number [GM75], and perfect matching [ER66]) have been investigated.

It is widely recognized that randomness provides algorithms with a surprising computational power.
Using randomness, one can design simple, low memory, and fast algorithms for various kinds of com-
putational tasks such as the minimum cut [Kar93], the polynomial identity testing [Sax09], random
walks [Lov93], and approximate counting [JVV86, SJ89]. The typical behavior of a randomized al-
gorithm is an important issue since the performance of a randomized algorithm relies on its typical
behavior.

This thesis consists of four topics regarding random graphs and randomized algorithms: time complex-
ity of a specific subgraph counting problem on random graphs, consensus dynamics of voting processes
on graphs, random walks on growing graphs, and distance properties of random regular graphs.

In Chapters 3 and 4, we study the time complexity of graph problems on random graphs. It is known
that some NP-hard problems such as finding a Hamiltonian cycle [AV79] and a 2-approximation of the
chromatic number [GM75] (for any constant ϵ > 0, it is NP-hard to approximate the chromatic number
within an n1−ϵ-factor [FK98, Zuc07]) admit simple polynomial-time algorithms if the input is a random
graph. On the other hand, some problems including finding a maximum clique [Kar73] and counting the
number of clique subgraphs of a fixed size [GR18a, BABB19] are believed to be hard even when the input
is a random graph. We study a subgraph counting problem that is hard to solve even for random graphs
in terms of fine-grained complexity. More precisely, the problem can be solved in nc+o(1)-time for any
graph but solving it in time nc−ϵ for an n−Ω(ϵ)-fraction of random graphs is impossible for any constant

7
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ϵ > 0 unless a widely-investigated conjecture fails. In other words, at least (1−n−Ω(ϵ))-fraction of random
graphs are hard to solve for any nc−ϵ-time algorithms, whereas there is an nc+o(1)-time algorithm that
solves the problem for all graphs.

In Chapters 5 to 7, we focus on a (synchronous) voting process that is a certain type of randomized
distributed algorithms. In a voting process, we consider an undirected and connected graph where each
vertex holds an opinion from a finite set. In each discrete time step, vertices communicate with their
neighbors and simultaneously update their opinion according to a predefined protocol. The aim of the
protocol is to reach consensus in which all vertices hold the same opinion. In Chapter 5, we introduce
a functional voting process that is a wide class of voting processes. In Chapter 6, we consider specific
voting processes on a stochastic block model, which is a random graph model playing key role in the
context of community detection of networks. We obtain a phase transition result regarding the behavior
of the voting processes. In Chapter 7, we introduce a quasi-majority functional voting process that is a
subclass of functional voting processes and study the consensus time (i.e., the number of steps to reach
consensus) of the process on expander graphs.

In Chapter 8, we focus on a random walk on a growing network. Although dynamic graphs gather
great deal of attention in network analysis since the shapes of real-world networks change over time,
most previous works concerning random walks on dynamic graphs consider a graph with a static vertex
set (only edges change over time). In view of this, we present the notion of rondam walk on a growing
graph and study the performance of it for several growing graphs.

In Chapter 9, we study the average distance and diameter of the random regular graph Gn,d, which is
a graph selected uniformly at random from the set of n-vertex d-regular graphs. In contrast to G(n, p),
it is nontrivial to sample Gn,d. Indeed, there is no known efficient algorithm that generates Gn,d for
d�

√
n. This makes the analysis of Gn,d difficult for large d. We present asymptotic results concerning

the average distance and diameter of Gn,d.
Finally, in Chapter 10, we conclude this thesis.
In what follows, we present overview of our contributions with their backgrounds.

1.1 Average-Case Complexity (Chapters 3 and 4)

One of the goals of computational complexity theory is to understand the tractability of computational
tasks. A standard framework for the tractability of a computational task is the worst-case complexity.
In this framework, we consider a computational problem Π and seek an algorithm that outputs the
correct answer for all inputs of Π. However, the worst-case complexity can be too pessimistic since it
regards only the hardest instance. To be more optimistic, one may seek an algorithm that perform well
on almost all inputs. One common way to formalize this perspective is the framework of average-case
complexity [Lev86]. In this framework, we consider a distributional problem (Π,D) that is a pair of
a problem Π and sequence D = (Dn)n∈N where each Dn is a distribution over inputs of size n (e.g.,
G(n, p)). An algorithm is given n ∈ N and x ∼ Dn (i.e., x is sampled according to the distribution Dn).
Then we are interested in the success probability, that is, the probability that the algorithm outputs the
correct answer for the random input. In average-case complexity, we seek a fast algorithm that solves a
distributional problem with high success probability.

1.1.1 Biclique counting on random bipartite graphs

It is known that several graph problems such as Hamiltonian Cycle and Graph Isomorphism, which
are believed not to be in P, admit a polynomial-time algorithm with a high success probability if the
input is sampled from G(n, p) [FM97] for suitable p. Even for polynomial-time solvable problems, similar
gaps between average- and worst-case complexity have been observed. For example, the current fastest
algorithm finds a maximum matching in an unweighted m-edge n-vertex graph admits in time O(m

√
n),

while we can find it in time O(mpolylog n) on G(n, p) with high probability [Mot94].
On the other hand, recently, an average-case hardness of some subgraph counting problems has

been established under the assumption of a worst-case hardness [GR18a, BABB19, DLW20]. For ex-
ample, Boix-Adserà, Brennan, and Bresler [BABB19] proved that we cannot count the number k-clique
subgraphs in G(n, p) in time no(k) unless the exponential time hypothesis (ETH) of Impagliazzo and
Paturi [IP01] fails.

In Chapter 3, we consider the problem of counting the number of biclique (a.k.a. complete bipartite
graphs) subgraphs of fixed size in a given graph. Formally, a biclique on partite sets each of size a and
b is the graph Ka,b = (A ∪ B,E) for two disjoint sets A and B such that |A| = a and |B| = b, and the
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edge set E is defined as E := {{i, j} : i ∈ A, j ∈ B}. We focus on the problem in which we are asked to
count the number of Ka,b-subgraphs (i.e., subgraphs that are isomorphic to Ka,b) in a given graph.

Finding or counting bicliques has been investigated from both practical and theoretical motiva-
tions. On the practical side, this study has applications in data mining [AS94, MT17] and bioinformat-
ics [DAB+04]. See [MT17, AVJ98] and the references therein for details and lists of further applica-
tions. On the theoretical side, the problem of finding or counting biclique subgraphs has been studied
in computational complexity theory [Lin18, GJ79] and several exact exponential algorithms have been
proposed [CK12, GKL12, BRFGL10, Kut12].

In this thesis, we obtain a negative result and a positive result. As the negative result, we prove
that, under the strong exponential time hypothesis (SETH) of Impagliazzo, Paturi and Zane [IPZ01],
for any constants a ≥ 3 and ϵ > 0, there is a constant b = b(a, ϵ) satisfying the following: Any na−ϵ-
time algorithm for the Ka,b-subgraph counting problem has success probability at most 1/ polylog(n),
where the input is a random bipartite graph. As the positive result, we prove that there is an na+o(1)-
time algorithm that counts the number of Ka,b-subgraphs in any graph if a ≥ 8. As a consequence,
we obatin the nearly-tight average-case complexity of the Ka,b-subgraph counting problem, that is, the
Ka,b-subgraph counting problem admits a worst-case na+o(1)-time algorithm, while it does not admit
any na−ϵ-time algorithm with success probability more than 1 − 1/polylog(n) for any constant ϵ > 0
unless SETH is false.

1.1.2 Fine-grained hardness amplification

The hardness result in Section 1.1.1 was that, any na−ϵ-time algorithm fails to solve the Ka,b-subgraph
counting problem on a random birpartite graph with probability at least 1/polylog(n). In other words,
1/ polylog(n)-fraction of random bipartite graphs are hard to count Ka,b-subgraphs for any na−ϵ-time
algorithms. This result does not represent the hardness of random graphs since the fraction 1/ polylog(n)
of hard instances is small: For example, there might exist, say, an O(n2)-time algorithm that solves the
counting problem on, say, 90% of instances. In Chapter 4, we handle with this issue.

In computational complexity theory, the existence of an average-case hard problem (i.e., a distribu-
tional problem with high fraction of hard instances) has gathered special attention. The main reason for
this is that the average-case hardness of a problem can serve as the first step towards building secure
cryptographic primitives such as pseudorandom generators and one-way functions [HILL99, NW94]. To
obtain average-case hard problems, a considerable amount of effort has been devoted to constructing a
“strongly” average-case hard problem from a “weakly” average-case hard problem. The technique of
such construction is known as hardness amplification. See [GNW11] for detailed background.

In Chapter 4, we explore hardness amplification in the fine-grained complexity setting. Specifically,
we consider the following research question.

Question 1.1.1. Suppose that a function f(x) is hard to compute on more than γ-fraction of inputs
x for any nc−ϵ-time algorithm. Then, is there a function g(y) such that computing g(y) on more than
γ′ � γ fraction of inputs y is impossible for any nc−ϵ-time algorithm?

As a main result, we prove that, for a certain variant f of subgraph counting problem, we construct
an another problem g that holds the property of Question 1.1.1. Consequently, we obtain a problem
such that a (1 − no(1))-ratio of random bipartite graphs are hard for any na−ϵ-time algorithms unless
SETH fails. Moreover, the problem is closely related to the Ka,b subgraph counting. At the heart of this
result, we establish a general framework of fine-grained hardness amplification based on the direct product
theorem [IW97, Tre03, GNW11, IJK09, IJKW10] and Yao’s XOR lemma [Yao82, GNW11, Tre03, IW97].

1.2 Voting Process (Chapters 6 and 7)

Consider an undirected graph G = (V,E) where each vertex v ∈ V initially holds an opinion σv ∈ Σ for
a finite set Σ. A voting process is specified with a local updating rule: In each discrete time step, all
vertices communicate with their neighboring vertices and simultaneously update their opinion according
to the rule. The process aims to reach consensus, that is, a configuration where all vertices have the same
opinion. Voting processes appear as simple mathematical models in a wide range of fields, e.g., social
behavior, physical phenomena, and biological systems [MNT14, Lig85, AAB+11]. In distributed com-
puting, voting processes are known to be a simple approach for the consensus problem [FLM86, GK10].

In this thesis, we focus on the setting of binary opinion (i.e., Σ = {0, 1}) and consider stochastic
updating rule (i.e., each vertex can flip its private coins). Hence, a voting process can be seen as a
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Markov chain on 2V . An element of 2V is called a configuration. Configurations where all vertices have
the same opinion are called consensus. The main quantity of interest is the consensus time, which is the
number of steps required to reach consensus.

1.2.1 Examples of voting processes

Pull voting. In pull voting, each vertex v picks up a neighbor uniformly at random. Then, the vertex
v adopts the opinion of the selected neighbor.

Best-of-two. In best-of-two (a.k.a. 2-Choices), each vertex v picks up two neighbors u1, u2 uniformly at
random (with replacement). If u1 and u2 have the same opinion, the vertex v adopt the opinion.
Otherwise, v keeps its own opinion.

Best-of-three. In best-of-three (a.k.a. 3-Majority), each vertex v picks up three neighbors u1, u2, u3
uniformly at random (with replacement). Then, the vertex v adopts the majority opinion among
the three vertices u1, u2, u3. Note that the tie does not occur since we consider the binary opinion
setting.

We refer Section 5.2 to previous works of voting processes.

1.2.2 Voting processes on stochastic block model

In Chapter 6, we focus on best-of-two and best-of-three on the stochastic block model, a well-known
random graph that forms multiple communities. This model has been well-explored in a wide range of
fields, including biology [CY06, MPN+99], network analysis [BDLBH17, GZFA10], and machine learn-
ing [AS15, Abb18], where it serves as a benchmark for community detection algorithms. The study of
the voting processes on the stochastic block model has a potential application in distributed community
detection algorithms [BCM+18, BCN+17b, CNS19].

Definition 1.2.1 (Stochastic block model). Let n ∈ N and p, q ∈ [0, 1] with q ≤ p be parameters. The
stochastic block model G(2n, p, q) is a random graph defined as follows:

• The vertex set is V1 ∪ V2, where |V1| = |V2| = n and V1 ∩ V2 = ∅.

• Each pair {u, v} of distinct vertices u ∈ Vi and v ∈ Vj forms an edge with probability θij, indepen-
dent of any other edges, where

θij =

{
p if i = j,

q otherwise.

We denote by G(2n, p, q) a graph sampled according to the distribution of G(2n, p, q).

The behavior of a voting process on G(2n, p, q) depends on the parameters p and q. For example, if
p = q = 1, then G(2n, 1, 1) is the complete graph (i.e., the graph where all vertex pairs are connected by
an edge). It is known that, on the n-vertex complete graph, best-of-two and best-of-three reach consensus
within O(log n) steps [DGM+11]. On the other hand, if p = 1 and q = 0, then G(2n, 1, 0) consists of
two disjoint complete graphs each of size n, meaning that, if one complete graph is in consensus with
opinion 0 and the other does with opinion 1, then the voting process keeps the configuration and thus
does not reach consensus. In Chapter 6, we prove that there is a threshold r∗ depending on the voting
process (best-of-two or best-of-three) such that, if r > r∗, then the corresponding voting process reaches
consensus quickly, while the consensus time can be exponential if r < r∗.

1.2.3 General voting processes on expander graphs

In the context of the voting process, it is widely known that the behaviors of best-of-two and best-of-
three are similar. For example, both processes on the n-vertex complete graph reach consensus within
O(log n) rounds with high probability [DGM+11, BCN+16]. Another example is the phase transition
result on the stochastic block model presented in the previous part. However, the proofs of these results
for best-of-two and best-of-three are obtained independently.

In Chapter 7, we introduce a quasi-majority functional voting process as a generalization of the best-
of-two, best-of-three, and many other voting processes and consider the consensus time of it on expander
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graphs. Intuitively speaking, expander graphs are sparse graphs that have strong connectivities (see
Chapter 7 for the definition). Expander graphs gather special attention in the context of Markov chains
on graphs, yielding a wide range of theoretical applications.

There is a line of works that studied best-of-two and best-of-three on expander graphs [CEOR13,
CER14, CER+15]. Roughly speaking, best-of-two and best-of-three reach consensus within O(log n)
rounds with high probability if the initial configuration has a sufficiently large bias (i.e., ||V0| − |V1|| is
large, where Vi is the set of vertices that holds opinion i ∈ {0, 1} initially). As a main result, we prove
that the quasi-majority functional voting on dense expander graphs reaches consensus within O(log n)
rounds with high probability without any assumption on the initial configuration. This extends the
previous work [DGM+11] that studies best-of-two on complete graphs. Moreover, we prove that, on
a sparse expander graph, the consensus time of a quasi-majority functional voting is O(log n) if the
initial configuration has a bias. This result generalizes previous works of best-of-two and best-of-three
on expander graphs. Our result can be applied to obtain the consensus time of quasi-majority functional
voting on random graphs such as the Erdős–Rényi graph. Moreover, the result provides an easy criterion
for the practicality of voting processes: If someone may come up with a new voting process, then he can
ensure the practicality of it on expander graphs by checking that whether the process is quasi-majority
functional. Indeed, quasi-majority functional votings are so general that they contains many natural
voting processes (see Section 7.1.5).

1.3 Random Walk on Growing Networks (Chapter 8)

Real-world networks change their shapes over time. Nevertheless, what is known about the analyses of
algorithms on dynamic networks is quite limited, comparing with a wealth of knowledge on computations
in static networks. In response to it, theoretical analyses of models and algorithms on dynamic networks
recently attract high attentions, particularly in the context of network science and engineering, con-
cerning such as information spreading [CST15], agreement [KO11], population protocol [MS18], random
walks [Coo11] and other stochastic processes [Mic16, JAR16].

Random walk on a graph is a fundamental stochastic process: A walker on a vertex moves to a
randomly picked neighbor at each discrete time step. A random walk is a simple and powerful tool in
the wide range of computer science [Coo11, SMP15, AKL18, SZ19]. The cover time of a random walk is
the time it takes for a walker to visit all vertices of the graph. The cover time is one of the fundamental
quantities of a random walk, see e.g., [AKL+79, Ald83, Mat88, Fei95b, Fei95a, DS84, AF, LP17], and
it is important with applications such as randomized search. Analyses of random walks on dynamic
graphs have been actively developed in the context, where the cover time is a central issue [Coo11, CF03,
AKL08, AKL18, DR14, YM16, LMS18, SZ19] (see Section 8.3 for more detail).

Those existing works, except for Cooper and Frieze [CF03], about random walks on dynamic networks
are concerned only with networks over a static vertex set. However, the real networks change their vertex
sets over time. Motivated by a new analysis technique, in Chapter 8, we investigate random walks on
graphs with increasing the number of vertices. A dynamic vertex set causes some technical troubles: it
is questionable if the “cover time,” that is a natural quantity for a static vertex set, is also appropriate
for a dynamic vertex set, and also it is hopeless, as Cooper and Frieze [CF03] revealed, to cover vertices
beyond a constant ratio when the number of vertices constantly increases.

In view of this, we introduce in Chapter 8 a simple model of growing graphs, and presents an analysis
of the number of vertices remaining unvisited by a random walk as a counterpart to the cover time of a
random walk on a static vertex set.

1.4 Average Distance and Diameter (Chapter 9)

The study of the diameter of regular graphs is well-motivated in graph theory [BI73, HS60, Mv05,
EFH80, Del85] and gathers special attention in high-performance computing (HPC) [EFH80, HS60,
Mv05]. A central question is how to construct an n-vertex d-regular graph with the minimum possible
diameter. In the literature of HPC, the performance of a parallel computer depends on the topology
of the interconnection network, which is a graph where each vertex corresponds to a calculation node
(e.g., CPU) and each edge does a link. If the interconnection network has low average distance and low
diameter, data transmission on the network has a small number of hops. On the other hand, the degree
of each node is limited due to physical constraints. Therefore, designing an interconnection network
with low average distance and diameter under the degree constraint is important issue in HPC [EFH80,
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HS60, Mv05]. Indeed, several researchers in the HPC area suggested using random graphs as network
topologies (e.g., [SHPG12, KMA+12, KFI+16]).

In Chapter 9, we prove that asymptotically almost all dense regular graphs have the asymptotically
optimal diameter. More precisely, we study the average distance and diameter of random regular graphs.
A random regular graph Gn,d is the graph sampled according to the uniform distribution Gn,d over the
set of all n-vertex d-regular graphs. Although several researchers have studied the diameter of random
graphs [Bol81, BdlV82, CL01, FR07, RW10, KL81], the diameter of dense random regular graphs is
much less understood due to the lack of generation algorithm; The current known efficient algorithm can
sample Gn,d for d = o(

√
n) [GW15]. We prove that the diameter of Gn,d for d = d(n) = (β + o(1))nα

with two arbitrary constants α ∈ (0, 1) and β > 0 is equal to bα−1c + 1 with probability asymptotically
one as n tends to infinity. Since any n-vertex d-regular graph for d(n) = (β + o(1))nα has diameter
at least dα−1e (we will see this fact in Chapter 9), our result implies that Gn,d has the minimum
diameter among all n-vertex d-regular graphs if d = (β + o(1))nα with α−1 6∈ N. Therefore, our
result provides a theoretical guarantee for works suggesting network topologies based on random graphs
(e.g., [SHPG12, KMA+12, KFI+16]).

1.5 Publications

The results of this thesis are based on the following publications.

• N. Shimizu, The average distance and the diameter of dense random regular graphs, The Electronic
Journal of Combinatorics, 27(3), pp. 62:1–62:20, 2020. Preliminary version is in Proceedings of
the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1934–1944, 2018.

• N. Shimizu and T. Shiraga, Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block
Models, Random Structures and Algorithms, 2020, to appear. Preliminary version is in Proceedings
of the 33rd International Symposium on Distributed Computing (DISC), pp. 32:1-32:17, 2019.

• N. Shimizu and T. Shiraga, Quasi-Majority Functional Voting on Expander Graphs, In Proceed-
ings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP),
pp. 97:1-97:19, 2020.

• S. Hirahara and N. Shimizu, Nearly Optimal Average-Case Complexity of Counting Bicliques
Under SETH, In Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2021, to appear.

• S. Kijima, N. Shimizu, and T. Shiraga, How Many Vertices Does a Random Walk Miss in a
Network with Moderately Increasing the Number of Vertices?, In Proceedings of the 32nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021, to appear.



Chapter 2

Preliminaries

2.1 General Notation

We denote by N, Z, and R the set of positive integers, integers, and real numbers, respectively. We
use Z≥0 and R≥0 to denote the set of nonnegative integers and real numbers, respectively. For k ∈ N,

let [k] be the set {1, . . . , k} of integers. For a finite set S and a positive integer k ≤ |S|, let
(
S
k

)
:=

{{x1, . . . , xk} ⊆ S : |{x1, . . . , xk}| = k} be the set of all subsets of size k and

(S)k :=

(x1, . . . , xk) ∈ S × · · · × S︸ ︷︷ ︸
k

: {x1, . . . , xk} ∈
(
X

k

)
be the set of all ordered k-tuples.

Unless otherwise noted, log(x) stands for the logarithm of x to base e. We use Fq for the finite field
of order q.

The probability that an event E holds is denoted by Pr[E ]. For a random variable X, we denote
by E[X] and Var[X] the expectation and variance of X, respectively. By x ∼ R we mean that x is
sampled according to the distribution R. The binomial distribution of n trials with success probability
p is denoted by Bin(n, p).

For a p ∈ R≥0∪{∞} and a vector x ∈ Rn, the ℓp-norm ‖x‖p of x is defined as ‖x‖p =
(∑

i∈[n] |x|p
)1/p

.

Let f, g : N → N be functions. We follow the standard convention of the O-notation. We write
f(n) = O(g(n)) if there are constants C > 0 and n0 ∈ N such that f(n) ≤ Cg(n) holds fol all n ≥ n0.
We write f(n) = o(g(n)) if, for any small constant C > 0, there is n0 ∈ N such that f(n) < Cg(n) holds
for all n ≥ n0. We write f(n) = Ω(g(n)) if g(n) = O(f(n)), and write f(n) = ω(g(n)) if g(n) = o(f(n)).
We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. We sometimes use polylog(n) to

denote (log n)O(1). We write f(n) = Õ(g(n)) if f(n) = O(g(n) polylog(n)).

2.2 Graph

In this thesis, by graph we mean a simple undirected graph, that is, a pair (V,E) of a finite set V and
set E ⊆

(
V
2

)
of unordered pairs of elements of V . Each element of V and E are called a vertex and edge,

respectively. For a graph G, we denote by V (G) and E(G), respectively, the vertex set and the edge set
of G. For a vertex v, let N(v) = {w ∈ V : {v, w} ∈ E(G) be the set of vertices adjacent to v. Note
that N(v) does not contain v. The degree deg(v) of a vertex v ∈ V (G) is defined as deg(v) = |N(v)|.
For a vertex v ∈ V and subset S ⊆ V , let degS(v) = |N(v) ∩ S|. A graph G is d-regular if the degrees
of all vertices are equal to d. A graph H is a subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G) hold. For two graph G and H, we say G is isomorphic to H if there is a bijection
ϕ : V (G) → V (H) such that {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(H) holds. For two graphs H
and G, an H-subgraph of G is a subgraph S of G that is isormorphic to H.

A graph property P is the set of graphs that is invariant under the isomorphism, that is, if G ∈ P
and H is isomorphic to G, then H ∈ P. We say that a graph G satisfies the graph property P if G ∈ P.

13
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2.2.1 Random graph

A random graph model is a distribution over finite graphs. A random graph is a graph drawn from a
random graph model.

Definition 2.2.1 (Erdős–Rényi graph). The Erdős–Rényi model, denoted by G(n, p), is the distribution
of n-vertex graphs satisfying

Pr
G(n,p)∼G(n,p)

[G(n, p) = H] = p|E(H)|(1 − p)(
n
2)−|E(H)|

for any fixed n-vertex graph H. The graph G(n, p) ∼ G(n, p) is called Erdős–Rényi graph.

We often consider the probability that a random graph satisfies a certain graph property P. To state
it more formally, consider a sequence (Ωn, Pn,Fn)n∈N of probability spaces and a sequence (En)n∈N of
events (i.e., En ∈ Fn for all n ∈ N). We say that the event En holds asymptotically almost surely (a.a.s.)
if Pr[En] = 1 − o(1). We say that the event En holds with high probability (w.h.p.) if Pr[En holds] ≥
1 − n−Ω(1). Note that if En holds w.h.p., then En holds a.a.s. For example, it is easy to see that G(n, p)
does not contain any edge if p = o(n−2) a.a.s. See Section 2.5 for more details.

2.3 Computational Complexity

We regard a problem Π as a function from an input to the solution. The solution of Π for input x is
denoted by Π(x). A decision problem is a problem such that Π(x) ∈ {0, 1} for any input x. An instance
x with Π(x) = 1 (respectively, Π(x) = 0) is called an YES-instance (respectively, NO-instance) Π. The
size n of an input x is specified by the problem we consider (for example, if the input is a graph, n stands
for the number of vertices).

A randomized algorithm A is said to solve a problem Π in time T (n) if A runs in time T (n) for any
input x of size n and PrA[A(x) = Π(x)] ≥ 3

4 . Here, by PrA[·] we mean that the probability is taken
over the randomness of the algorithm A. Similarly, for an event E on x ∼ R, we sometimes denote by
Prx∼R[E ] the probability of the event E holds, where the probability is over the choice of x ∼ R. We
use these notations in order to clarify the randomness in the probability.

2.3.1 Average-case complexity

This thesis follows the common notion of average-case complexity (e.g., [BT06]). A distributional prob-
lem is a pair (Π,D) of a problem Π and a family of distributions D = (D1,D2, . . .), where each Dn

denotes a distribution over inputs of size n. To simplify notations, we shall refer to (Π, Dn) rather than
(Π, (Dn)n∈N). We say that a (deterministic) algorithm A solves a distributional problem (Π,D) with
success probability δ if, for every n ∈ N, it holds that Pr[A(x) = Π(x)] ≥ δ where the probability is over
the random choice of x ∼ Dn. The definition can be extended to a randomized algorithm:

Definition 2.3.1. Let (Π,D) be a distributional problem and δ : N → [0, 1] be a function. We say that a
randomized algorithm A solves (Π,D) with success probability p if, for every n ∈ N, Prx∼Dn

[PrA[A(x) =
Π(x)] ≥ 3

4 ] ≥ p.

2.4 Finite Markov Chain

We here briefly introduce other terminology for time-homogeneous Markov chains (cf. [LP17]).
Let V be a finite set. A transition matrix P over V is a matrix P ∈ [0, 1]V×V satisfying

∑
v∈V Pu,v = 1

for any u ∈ V . A transition matrix P is irreducible if for any u, v ∈ V , there exists t ∈ N such that
(P t)u,v > 0, and is apperiodic if for any v ∈ V , GCD({t > 0 : (P t)v,v > 0}) = 1 holds, where, for a
set S ⊆ N of positive integers, GCD(S) denotes the greatest commond divisor of S. An irreducible and
apperiodic P is said to be ergodic.

Let π ∈ [0, 1]V denote the stationary distribution of P , that is, a probability distribution over V
satisfying πP = π. It is well known that an ergodic P has a unique stationary distribution [LP17]. A
transition matrix P is reversible if πuPu,v = πvPv,u for any u, v ∈ V . Note that a transition matrix over
V defines a Markov chain on V .

For ease of notation, we sometimes identify a matrix P ∈ [0, 1]V×V as a function P : V × V → [0, 1].
Here, we denote P (u, v) = Pu,v, P (u, S) :=

∑
v∈S P (u, v), and π(S) :=

∑
v∈S π(v).



CHAPTER 2. PRELIMINARIES 15

Example 2.4.1 (Simple random walk). Let G = (V,E) be a graph. Define a transition matrix P ∈
[0, 1]V×V as

P (u, v) =

{
1

deg(u) if {u, v} ∈ E(G),

0 otherwise.
(2.1)

The matrix P of (2.1) is known as the transition matrix of the simple random walk on G. Note that the
simple random walk on G is not apperiodic if G is bipartite.

Example 2.4.2 (Simple lazy random walk). A simple lazy random walk on an undirected graph G is
given by

P (u, v) =


1

2 deg(u) if {u, v} ∈ E(G),
1
2 if u = v ∈ V (G),

0 otherwise.

Note that the simple lazy random walk on G is apperiodic even if G is bipartite.

2.5 Basic Tools

Proposition 2.5.1 (Union Bound). For any countable set of events {Ei}i∈Λ,

Pr

[⋃
i∈Λ

Ei

]
≤
∑
i∈Λ

Pr[Ei]

Proposition 2.5.2 (The Markov Inequality). Let X be a random variable that takes positive real num-
bers. Then, for any a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Example 2.5.3. Consider the Erdős–Rényi graph G(n, p) for p = o(n−2). Let Pempty denote the graph
property of being an empty graph (i.e., Pempty is the set of graphs that does not contain any edge).
Then, we can easily prove that G(n, p) satisfies Pempty a.a.s. using the Markov inequality. To see this,
let X be the random variable denoting the number of edges of G(n, p). Then, E[X] =

(
n
2

)
p = o(1). By

applying Proposition 2.5.2 with a = 1, we have Pr[G(n, p) 6∈ Pempty] = Pr[X ≥ 1] = o(1). In other
words, G(n, p) a.a.s. satisfies Pempty.

Proposition 2.5.4 (The Chebyshev inequality). Let X be a random variable such that E[X] <∞ and
Var[X] <∞. Then, for any t > 0,

Pr[|X −E[X]| ≥ t] ≤ Var[X]

t2
.

Proposition 2.5.5 (The Chernoff bound; Theorem 1.10.1 and Theorem 1.10.5 of [DN20]). Let (Xi)i∈N
be independent random variables taking values in [0, 1]. Let X =

∑
i∈[n]Xi. Then the following hold:

(i) for any δ ≥ 0,

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−min{δ, δ2}E[X]

3

)
.

(ii) for any δ ∈ [0, 1],

Pr[X ≤ (1 − δ)E[X]] ≤ exp

(
−δ

2 E[X]

2

)
.

Example 2.5.6. Let X be the degree of a fixed vertex v of G(n, p). For i ∈ V (G(n, p)) \ {v}, let Xi be
the binary random variable defined as Xi = 1 if {v, i} ∈ E(G(n, p)) and Xi = 0 otherwise. Then, the
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random variables (Xi)i∈V \{v} are independent and thus satisfy the condition of Proposition 2.5.5. If we

set δ = 2
√

logn
(n−1)p , we obtain

Pr[X ≥ (1 + δ)(n− 1)p] ≤ exp(−4 log n/3) = n−4/3,

Pr[X ≤ (1 − δ)(n− 1)p] ≤ exp(−2 log n) = n−2.

By taking the union bound over all vertices, we have that

Pr [∃v ∈ V (G(n, p)) : |deg(v) − (n− 1)p| > δ(n− 1)p] ≤ n · (n−4/3 + n−2) ≤ 2n−1/3.

In other words, if dmin and dmax are the minimum and maximum degree of G(n, p), respectively, then it
holds w.h.p. that

(n− 1)p

(
1 − 2

√
log n

(n− 1)p

)
≤ dmin ≤ dmax ≤ (n− 1)p

(
1 + 2

√
log n

(n− 1)p

)
.

Note that this inequality is meaningful when p = ω
(

logn
n

)
Proposition 2.5.7 (The inclusion-exclusion principle). Let S1, . . . , Sk ⊆ E be subsets of a finite set E.
Then, ∣∣∣∣∣∣

⋃
i∈[k]

Si

∣∣∣∣∣∣ =
∑

I∈⊆[k]:I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ .



Chapter 3

Biclique Counting on Random
Bipartite Graphs

3.1 Results

In this chapter, we consider the problem of counting the number of Ka,b-subgraphs on a natural dis-

tribution. To state it more formally, for a fixed graph H, let #Emb(H) denote the problem that asks
the number of embeddings of H in G for a given graph G. (An embedding of H in G is an injec-

tive homomorphism from H to G; see Section 3.3 for the formal definition.) The problem #Emb(H)

is equivalent to the H-subgraph counting problem: The number of H-subgraphs in G is equal to the
number of embeddings of H in G divided by the number of automorphisms of H. Our main interest
is the average-case complexity of #Emb(Ka,b) on random bipartite graphs. Specifically, we consider the
following distribution.

Definition 3.1.1 (Random bipartite graph Ka,b,n). For given parameters a, b, n ∈ N, choose α, β uni-
formly at random from [a] and [b], respectively. Let Ka,b,n be the distribution of a random bipartite
graph with nα left vertices and nβ right vertices, where each possible edge is included independently with
probability 1/2.

The reader is referred to Section 2.3 for the notions of average-case complexity. The result of this
chapter determines a threshold between worst- and average-case complexity of the distributional problem
(#Emb(Ka,b),Ka,b,n) under rSETH, a randomized variant of the strong exponential time hypothesis
(SETH) of Impagliazzo, Paturi and Zane [IPZ01] (see Definition 3.3.5).

Theorem 3.1.2 (Worst- and Average-Case Complexity of Counting Ka,b). The following hold.

• For any constants a ≥ 8 and b, there is an na+o(1)-time algorithm that solves #Emb(Ka,b) for any
inputs.

• Under rSETH, for any constants ϵ > 0 and a ≥ 3, there is a constant b = b(a, ϵ) such that no na−ϵ-

time algorithm solves (#Emb(Ka,b),Ka,b,n) with success probability greater than 1 − (1/ log n)C ,
where C = C(a, b, ϵ) is a constant depending only on a, b and ϵ.

Theorem 3.1.2 is the first result that determines the nearly optimal average-case complexity of dis-
tributional graph problem under a widely investigated hypothesis. This result provides insight towards
understanding the hardest instance of subgraph counting problems.

However, there is still an issue that the subgraph Ka,b is not fixed in Theorem 3.1.2: The parameter
b depends on ϵ. The problem of counting fixed Ka,b might be more natural in the context of complexity
theory. To cope with this issue, we consider the special case of b = a and obtain the average-case hardness
under randomized Exponential Time Hypothesis (rETH) (see Definition 3.3.4).

Theorem 3.1.3. Under rETH, any no(a)-time algorithm solves (#Emb(Ka),Ka,a,n) with success prob-
ability no more than (1 − (1/ log n)C), where C = C(a) is a constant that depends on a.

17
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SETH

k-OVC

Colored Ka,b Detection

#Emb
(Ka,b)

col

#Emb(Ka,b)

(Theorem 3.2.1)

(
#Emb

(Ka,b)

col ,G(Ka,b)

n,1/2

)

(#Emb(Ka,b),Ka,b,n)

Theorem 3.2.5

Lemma 3.5.1

Theorem 3.2.4

Proposition 3.2.6

Figure 3.1: The organization of the proof of average-cane hardness of #Emb(Ka,b).

3.2 Overview of Our Techniques

In what follows, we briefly present the ingredients for our results while reviewing the literature. The
overall outline of the proof of Theorem 3.1.2 is illustrated in Figure 3.1. In Section 3.2.1, we describe
the worst-case complexity of #Emb(Ka,b) under SETH and ETH (see Definitions 3.3.2 and 3.3.3 for
the definition). In Section 3.2.2, we present our idea for the worst-case-to-average-case reduction for
subgraph counting problems. We review related results in Section 3.2.3.

3.2.1 Worst-case complexity of Ka,b-subgraph counting

Nearly Optimal Complexity of #Emb(Ka,b). Our first step is to determine the nearly optimal
worst-case complexity for #Emb(Ka,b) under SETH by proving the following results.

Theorem 3.2.1. For any constants ϵ > 0 and a ≥ 3, there exists a constant b such that one cannot
solve #Emb(Ka,b) in time O(na−ϵ) unless SETH fails.

Theorem 3.2.2. If there exists an no(a)-time algorithm that solves #Emb(Ka,a), then ETH fails.

Theorem 3.2.3. If a ≥ 8, for any ϵ > 0 and b ∈ N, there is an algorithm that solves #Emb(Ka,b) in
time O(bna+ϵ).

We are not aware of previous results that determine the nearly optimal complexity of subgraph
counting problems, while the fine-grained complexity of many natural problems, including the All-Pairs
Shortest Paths, 3SUM, Orthogonal Vectors, and related problems, has been extensively explored in the
research area of hardness in P [Wil15, LPW17].

SETH-hardness of #Emb(Ka,b). The notions in this part are defined in Section 3.3. Our key idea
for showing Theorem 3.2.1 is to consider Colored Ka,b Detection, which is defined as follows. Let
Kn be the n-vertex complete graph. For a graph H, let Kn ×H denote the tensor product. In general,
the problem Colored H Detection is defined as follows. For a graph G ⊆ Kn × H, each vertex
v = (u, i) ∈ V (G) is associated with a color c(v) := i ∈ V (H). We say that an H-subgraph F of
G ⊆ Kn × H is colored if F contains every colors from H. The problem Colored H Detection
asks, given a pair (n,G) of n ∈ N and a graph G ⊆ Kn × H, to decide whether G contains a colored
H-subgraph.

Exploiting the fact that Colored Ka,b Detection is more “structured” than #Emb(Ka,b), we
first present a reduction from k-Orthogonal Vectors (k-OV) to Colored Ka,b Detection for
k := a. Since k-OV is known to be SETH-hard for any k ≥ 2 [Wil15, Wil05, LPW17], this establishes
SETH-hardness of Colored Ka,b Detection:

Theorem 3.2.4. For any constants a ≥ 2 and ϵ > 0, there exists a constant b = b(a, ϵ) ≥ a such that
Colored Ka,b Detection cannot be solved in time O(ma−ϵ) unless SETH fails, where m is the number
of edges of the input graph.

To complete the proof of Theorem 3.2.1, we reduce Colored Ka,b Detection to #Emb(Ka,b) by
using the inclusion-exclusion principle. This technique is well known in the literature of fixed-parameter
complexity (see, e.g. [CM14, Cur18]). We will present the detail in Section 3.5.2.
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ETH-hardness of #Emb(Ka,a). The problem of finding a complete bipartite graph Ka,a in a given
graph has gathered special attention in parameterized complexity. Lin [Lin15, Lin18] proved that the
problem is W[1]-hard when a is a parameter. His proof implies that the problem of finding Ka,a does not

admit any no(
√
a)-time algorithm unless ETH fails. In particular, under ETH, any no(

√
a)-time algorithm

fails to solve #Emb(Ka,a).
Theorem 3.2.2 improves this lower bound by ruling out an no(a)-time algorithm under ETH. A key

idea behind this improvement is to take advantage of the structure of counting the number of embeddings:
We first reduce the problem of finding a clique Ka of size a (which is known to be ETH-hard [CHKX06])

to Colored Ka,b Detection, and then reduce it to #Emb(Ka,a) by using the inclusion-exclusion
principle. The latter reduction exploits the structure of counting.

3.2.2 Average-case complexity of subgraph counting problems

Compared to the worst-case hardness, the average-case hardness of subgraph counting problems has not
been well understood until very recently [GR18a, BABB19, DLW20]. A breakthrough result of Boix-
Adserà, Brennan, and Bresler [BABB19] shows that the worst-case and average-case complexities of
counting k-cliques in an n-vertex Erdős–Rényi graph are equivalent up to a polylog(n)-factor. They left
as an open question the extension of their results to other subgraph counting problems.

In this chapter, we investigate their open question under a different setting, which is one of our
key insights. Specifically, let G × H be the tensor product of two graph G and H (see Section 3.3 for

definition). For a fixed graph H, consider the problem #Emb
(H)
col of counting color-preserving embeddings

of H to G that preserves colors (see Figure 3.2 for an illustration). Here, we say that an embedding ϕ
preserves colors if u = c(ϕ(u)) holds for any u ∈ V (H), where c : V (G) → V (H) is the coloring of G.

Note that #Emb
(H)
col (G) is the solution of #Emb

(H)
col for input G, that is, #Emb

(H)
col (G) is equal to the

number of embeddings of H in G that preserves colors.

H G G

Figure 3.2: An example of color-preserving embedding of H to G for G ⊆ Kn ×H. Note that we do not
consider the subgraph in right-hand side since G ⊆ Kn ×H contains neither blue-orange nor green-red
edges.

Let G(H)
n,1/2 be the distribution of graph where a graph G ⊆ Kn ×H is generated by adding edges in

E(Kn ×H) independently with probability 1/2. Based on the techniques of Boix-Adserà, Brennan, and

Bresler [BABB19], we prove that #Emb
(H)
col is reducible to the distributional problem (#Emb

(H)
col ,G

(H)
n,1/2).

Theorem 3.2.5 (Worst-case-to-average-case reduction for #Emb
(H)
col ). Let H be a fixed graph. Suppose

that the distributional problem (#Emb
(H)
col ,G

(H)
n,1/2) can be solved by a T (n)-time randomized algorithm A

with success probability 1− δ, where δ = (log n)−C and C = CH is a sufficiently large constant depending

on H. Then, there is a T (n)·polylog(n)-time randomized algorithm B that solves #Emb
(H)
col for any input

with success probability 2/3. Moreover, the number of oracle calls of A by B is at most (log n)O(|E(H)|).

It should be noted that, Dalirrooyfard, Lincoln, and Williams [DLW20] proved the same result as
Theorem 3.2.5 (their work is independent to us). See Section 3.2.3 for the detail. We then reduce

(#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ) to (#Emb(Ka,b),Ka,b,n) using the inclusion-exclusion principle, which is one of our

technical contributions in this chapter.

Proposition 3.2.6. Suppose that there is a T (n)-time randomized algorithm that solves the distributional

problem (#Emb(Ka,b),Ka,b,n) with success probability 1 − δ. Then, there is an O(ab2a+b · T (n))-time

randomized algorithm that solves (#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ) with success probability 1 − O(ab2a+bδ).
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Combining Theorem 3.2.5 and Proposition 3.2.6, we obtain a worst-case-to-average-case reduction
from #Emb(Ka,b) to (#Emb(Ka,b),Ka,b,n).

Theorem 3.2.7. Let 2 ≤ a ≤ b be arbitrary constants. Suppose that there is a T (n)-time randomized

algorithm that solves (#Emb(Ka,b),Ka,b,n) with success probability 1 − δ, where δ = (log n)−C and C =
C(a, b) is a sufficiently large constant. Then, there is a T (n) ·polylog(n)-time randomized algorithm that

solves #Emb(Ka,b) for any input with success probability 2/3.

Theorem 3.2.7 is of interest in its own right; we emphasize that a and b can be chosen arbitrarily
unlike Theorem 3.2.1 (i.e., the SETH-hardness of #Emb(Ka,b)). In the context of subgraph counting,
counting K2,2 (i.e., 4-cycle) subgraphs in a graph on n vertices with m edges attracts particular interest:
The current fastest counting algorithm runs in time O(nω) or O(m1.48) [AYZ97], whereas finding a K2,2

can be done in time O(n2) [YZ97] or O(m1.41) [AYZ97]. A central question in this context is whether
we can beat the O(nω)-time algorithm for the K2,2-counting problem. The worst-case-to-average-case
reduction given in Theorem 3.2.7 indicates that a random bipartite graph is essentially the hardest
distribution for the K2,2-counting problem.

3.2.3 Related work

Worst-case complexity of subgraph counting

The problem #Emb(H) is a fundamental task in the context of graph algorithms. For a general subgraph
H, we can solve #Emb(H) in time f(k) · n(0.174+o(1))ℓ for some function f(·), where k and ℓ are the
number of vertices and edges of H, respectively [CDM17]. If H has some nice structural property (e.g.,
small treewidth), several faster algorithms are known (see [Cur18] and the references therein). However,
to the best of our knowledge, there is no previous result that precisely determines the complexity of
counting subgraphs. Chen, Huang, Kanj, and Xia [CHKX06] proved that one cannot find a k-clique in
a given graph in time f(k) · no(k) for any function f(·) unless ETH fails. The current fastest algorithm
was given by Nesětřil and Poljak [NP85], who presented an O(nω⌈k/3⌉)-time algorithm that counts the
number of k-cliques in a given n-vertex graph. Here, ω < 2.373 is the square matrix multiplication
exponent [Gal14, Wil12, AW21]. Lincoln, Williams, and Williams [LWW18] imposed the assumption
that detecting a k-clique in an n-vertex graphs requires time nωk/3−o(1) and then derived a super-linear
lower bound for the shortest cycle problem. However, the precise value of ω is currently not known, and,
as a consequence, the precise time complexity of counting k-cliques is not well understood.

Worst-case complexity of biclique counting

We mention in passing some algorithmic results concerned with finding or counting bicliques. The
results below consider the case where a and b are given as input. Binkele-Raible, Fernau, Gaspers, and
Liedloff [BRFGL10] proved that, for given a, b and a graph G, one can find a Ka,b subgraph in G in

time O(1.6914n). Couturier and Kratsch [CK12] gave an O(1.6107n)-time algorithm for #Emb(Ka,b).
They also provided an O(1.2691n)-time counting algorithm that works on bipartite graphs. It is known
that the number of distinct maximal induced biclique subgraphs in any n-vertex graph is O(3n/3) =

O(1.442n) [GKL12]. If a given graph is bipartite, one can solve #Emb(Ka,b) by enumerating all maximal
Ka,b subgraphs using a polynomial delay algorithm [MU04]. Kutzkov [Kut12] presented an O(1.2491n)-

time counting algorithm, which is currently the fastest one. If a ≤ b are small, we can solve #Emb(Ka,b)

in time O(na+1) by enumerating all size-a vertex subsets. If a = 2, we can solve #Emb(K2,b) in time
O(nω) by computing A2, where A ∈ {0, 1}n×n is the adjacency matrix of a given graph.

Finding a Ka,a-subgraph in a given graph is NP-complete if a is given as input [GJ79]. The pa-
rameterized complexity of finding a Ka,a-subgraph (parameterized by a) has gathered special attention.
Lin [Lin18] proved the W[1]-hardness of the Ka,a-finding problem parameterized by a. Moreover, his

proof implies that, assuming ETH, one cannot find a Ka,a-subgraph in time no(
√
a). However, it still

remains open whether ETH rules out an no(a)-time algorithm for the Ka,a-subgraph finding problem.

Theorem 3.2.2 rules out an no(a)-time algorithm for the counting variant #Emb(Ka,a) under ETH.

Fine-grained complexity

A standard criterion of the tractability of a problem is whether the problem can be solved in polynomial-
time. This viewpoint of tractability is called coarse-grained complexity. The theory of NP-hardness has
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established superpolynomial lower bounds of time complexity for several computational tasks based on
the conjecture that some NP problem does not admit a polynomial-time algorithm.

In fine-grained complexity, we consider problems that can be solved in time T (n) but no current-known
T (n)1−ϵ-time algorithm solves it for any constant ϵ > 0. Under well-known conjectures (e.g., SETH,
APSP conjecture, 3-SUM conjecture), lower bounds for several problems (even for polynomial-time
solvable problems) have been investigated. See [Wil15] for further details.

Average-case complexity in P

The distributional problem (Colored H Detection,G(H)
n,1/2) has been studied in the literature of

average-case circuit complexity of the subgraph isomorphism problem (cf. Rossman [Ros18]).
In a pioneering work of Ball, Rosen, Sabin, and Vasudevan [BRSV17], they initiated the study

of average-case complexity in the context of fine-grained complexity. Ball et al. [BRSV17] and their
subsequent work [BRSV18] constructed average-case hard problems by encoding worst-case problems
by a low-degree polynomial over a large finite field. Based on techniques of random self-reducibility
(e.g. [CPS99]), they explored the average-case hardness of the evaluation of this polynomial under the
worst-case assumptions including the Orthogonal Vector Conjecture, APSP Conjecture, and 3SUM Con-
jecture, recent hot conjectures in the study of hardness in P [LPW17, Wil15]. Their work is motivated
by the construction of PoW systems. Due to the construction, their average-case problems are artificial.

Goldreich and Rothblum [GR18a] studied the average-case complexity of #Emb(Kk) for a constant

k. They presented a simple distribution over Õ(n)-vertex graphs on which it is hard to count the
number of k-cliques with a success probability better than 3/4. The distribution is constructed by a
gadget reduction, and it is somewhat artificial. The key idea of their reduction is to consider counting
weighted cliques: The input graph has node and edge weights in Fq, and the task is to compute the
sum of all weights of clique subgraphs. The weight of a clique is defined as the product of all node
weights and edge weights contained in the clique. They represented this counting problem as a low-degree
polynomial P : Fn×n

q → Fq and used polynomial interpolation to reduce evaluating P to computing P (r),
where r ∼ Unif(Fn×n

q ). Combining the Chinese Reminder Theorem, a vertex-blowing-up technique and

unifying multiple instances into one instance, they further reduced evaluating P (r) to solving #Emb(Kk)

in a specific random graph. Their result has an error tolerance of constant probability. However, the
blowing-up technique and unifying instances yielded an artificial random graph distribution.

The proof of Theorem 3.2.5 is based on techniques of Boix-Adserà, Brennan, and Bresler [BABB19],

who reduced #Emb(Kk) to (#Emb(Kk), G(n, p)). The reduction runs in time p−1n2 polylog n. Here, the
error probability of the average-case solver is assumed to be at most (log n)−C for a sufficiently large

constant C = C(k). They also presented a parity variant of #Emb(Kk) and obtained a worst-case-to-
average-case reduction with a better error tolerance.

Very recently, independently to this thesis, Dalirrooyfard, Lincoln, and Williams [DLW20] reduced

#Emb
(H)
col to the distributional problem (#Emb(H),Gn,p) for a constant p. They first proved the same

result as Theorem 3.2.5 and then reduced (#Emb
(H)
col ,G

(H)
n,1/2) to (#Emb

(H)
col ,Gn,p).

3.2.4 Organization

In Section 3.4, we present the worst-case-to-average-case reduction for #Emb
(H)
col . In Section 3.5, we

investigate the worst-case complexity of #Emb(Ka,b).
Here is the organization of the proof of our main results.

Theorem 3.1.2. The first statement follows from Theorems 3.2.1 and 3.2.7. We can obtain Theo-
rem 3.2.7 by combining Theorem 3.2.5 and Proposition 3.2.6. See Section 3.4 and Section 3.5.5 for
the proofs of Theorem 3.2.5 and Proposition 3.2.6, respectively. The second statement is equivalent to
Theorem 3.2.3, which is shown in Section 3.5.4.

Theorem 3.1.3. This result follows from Theorems 3.2.2 and 3.2.7. Theorem 3.2.2 is shown in Sec-
tion 3.5.6.
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3.3 Preliminaries

Our computational model is the O(log n)-Word RAM model. As a consequence, we assume that any
field operation can be done in constant-time if the underlying field is Fq with q = nO(1) (n is specified
by the problem).

For simplicity, we sometimes use uv to abbreviate an edge {u, v}. We identify a graph G with a
vector xG ∈ {0, 1}E(H) by regarding xG as the edge indicator of G.

3.3.1 Subgraph problem

For two graphs G and H, a mapping ϕ : V (H) → V (G) is homomorphism from H to G if {ϕ(u), ϕ(v)} ∈
E(G) whenever {u, v} ∈ E(H). An embedding is an injective homomorphism. Let #Emb(H)(G) be

the number of embeddings from H to G. For a fixed graph H, we consider the problem #Emb(H) of
computing #Emb(H)(G) for an input graph G.

The tensor product X × Y of two graphs X and Y is a graph defined as V (X × Y ) = V (X) × V (Y )
and {(x1, y1), (x2, y2)} ∈ E(X × Y ) if and only if {x1, x2} ∈ E(X) and {y1, y2} ∈ E(Y ).

For a fixed graph H, a graph G is H-colored if G ⊆ Kn × H for some n. Let G be an H-colored
graph G ⊆ Kn × H. A vertex v ∈ V (G) is associated with a color c(v) ∈ V (H). Formally, if v =
(a, i) ∈ V (G) ⊆ V (Kn) × V (H), then c(v) = i. An embedding ϕ : V (H) → V (G) of H to G preserves

color if c(ϕ(i)) = i. For a fixed graph H, we consider the problem #Emb
(H)
col of counting the number of

color-preserving embeddings of H to G for a given H-colored graph H. See Figure 3.2 for an illustration.
In Colored H Detection, we are asked, given an H-colored graph G, to decide whether there

is a color-preserving embedding of H to G. In other words, Colored H Detection is the decision

problem that asks whether #Emb
(H)
col (G) > 0 for a given H-colored graph.

For a fixed graph H, let G
(H)
n,1/2 ⊆ Kn × H be a random subgraph of Kn × H such that each edge

e ∈ E(Kn×H) is included independently with probability 1/2. The distribution of G
(H)
n,1/2 is denoted by

G(H)
n,1/2. For a graph H and a finite set S, let U (H)

n (S) be the uniform distribution over SE(Kn×H). Note

that U (H)
n ({0, 1}) is equivalent to G(H)

n,1/2.

3.3.2 ETH and SETH

A Boolean function ϕ is a function ϕ : {0, 1}n → {0, 1} for some n. Let x1, . . . , xn denote the variables
of ϕ. A Boolean function ϕ is a k-CNF formula if ϕ can be written as

ϕ =
∧

i∈[m]

Ci

for some m, where each Ci is of the form Ci =
∨

j∈Si
ℓj for literals ℓj ∈ {xj , xj} and some Si ⊆ [n]

satisfying |Si| ≤ k. Each Ci is called clause of ϕ.

Definition 3.3.1 (k-SAT). In k-SAT, we are given a k-CNF ϕ and are asked to decide the existence
of a satifying assignment of ϕ. That is, if x1, . . . , xn are the variables of ϕ, then our task is to decide
whether there is an assignment (b1, . . . , bn) ∈ {0, 1}n such that ϕ(b1, . . . , bn) = 1.

The problem k-SAT is a classical NP-complete problem. Despite a long line of works, no polynomial-
time algorithm for k-SAT is known. There are many algorithms that solves k-SAT in time of the form

2(1− c
k )n, where the constant c depends on the algorithm. In the current fastest (randomized) algorithm

of Paturi, Pudlák, Saks, and Zane [PPSZ05], c ≈ 1.64. In the special case of k = 3, slightly faster
algorithms are known. Recently, Hansen, Kaplan, Zamir, and Zwick [HKZZ19] proved that there is a
1.307n-time randomized algorithm that solves 3-SAT.

Definition 3.3.2 (Exponential time hypothesis (ETH); Impagliazzo and Paturi [IP01]). There is an
absolute constant δ > 0 such that any (1 + δ)n-time deterministic algorithm cannot solve 3-SAT.

Definition 3.3.3 (Strong exponential time hypothesis (SETH); Impagliazzo, Paturi, and Zane [IPZ01]).
For any ϵ > 0, there is k ≥ 3 such that any (2 − ϵ)n-time deterministic algorithm cannot solve k-SAT.

In this chapter, we consider a randomized variant of ETH and SETH that exclude randomized
algorithms.
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Definition 3.3.4 (Randomized exponential time hypothesis (rETH)). There is an absolute constant
δ > 0 such that any (1 + δ)n-time randomized algorithm cannot solve 3-SAT.

Definition 3.3.5 (Randomized strong exponential time hypothesis (rSETH)). For any ϵ > 0, there is
k ≥ 3 such that any (2 − ϵ)n-time randomized algorithm cannot solve k-SAT.

3.4 Average-Case Complexity of #Emb
(H)
col

In this section, we present a proof of Theorem 3.2.5, that is, we reduce #Emb
(H)
col to (#Emb

(H)
col ,G

(H)
n,1/2).

For ease of notation, we use z[i] to denote zi for a vector z ∈ ZI and i ∈ I.

For a fixed graph H and a prime q > n|V (H)|, let EMBCOLn,H,q : FE(Kn×H)
q → Fq be a polynomial

defined as

EMBCOLn,H,q(x) =
∑

v1,...,vk∈V (Kn×H)
c(vk)=k (∀k)

∏
{i,j}∈E(H)

x[vivj ]. (3.1)

Suppose x ∈ {0, 1}E(Kn×H) is the edge indicator of a graph G ⊆ Kn × H. Then EMBCOLn,H,q(x) =

#Emb
(H)
col (G) mod q = #Emb

(H)
col (G) as q > n|V (H)|. We sometimes identify Fq with the set {0, . . . , q−1}.

The proof of Theorem 3.2.5 consists of two steps.

3.4.1 Step 1: Random self-reducibility of EMBCOLn,H,q(·)

First, we reduce evaluating EMBCOLn,H,q(x) for a given x to solving (EMBCOLn,H,q(·),U (H)
n (Fq)) for a

large prime q > n|V (H)|. Note that we can obtain such a prime q as follows. Sample a random integer r
from {n|V (H)|, n|V (H)| + 1, . . . , 2n|V (H)|} and then run the primality test for r (according to the Prime
Number Theorem, r is prime with probability Ω(1/ log n).)

The following is well known in the context result of random self-reducibility. A precise estimation of
the running time was given by [BABB19, BRSV17].

Lemma 3.4.1 (Essentially given in Lemma 3.2 of [BRSV17]). Let P : FN
q → Fq be a multivariate

polynomial of degree d for a prime q > 12d. Suppose that there is a T (N, q, d)-time algorithm A satisfying

Pr
x∼Unif(FN

q )
[A(x) = P (x)] ≥ 1 − δ,

where δ ∈ (0, 1/3). Then, there is a randomized algorithm B that computes P (y) on input y ∈ FN
q with

probability 2/3 in time O(Nd2(log q)2 + d3 + dT (N, q, d)).

Proof sketch. Ball et al. [BRSV17] proved this result under the condition that d > 9. Boix-Adserà,
Brennan, and Bresler [BABB19] obtained the same result for a prime power q > 12d (under the same
condition) by the same way. The common idea is to invoke the well-known local decoding of the Reed-
Muller code (see, e.g., [Lip91, GS92]). In this chapter, we just modify a parameter appeared in their
proof to remove the degree condition. We briefly describe the algorithm and refer to the full version
of [BRSV17] for the analysis.

For a given y ∈ FN
q , sample two random vectors z1, z2 ∼ Unif(FN

q ) independently, and consider the
univariate function f(t) := y + z1t + z2t

2. Note that our task is to compute f(0). Set m = 100d (the
authors of [BRSV17] set m = 12d). Use the oracle algorithm A and compute A(f(1)), . . . , A(f(m)). By

the Berlekamp–Welch decoding [BW86], obtain a polynomial f̂ and output f̂(0).

By applying this result to our setting, we obtain the following.

Corollary 3.4.2. For a fixed graph H and a prime n|V (H)| < q < 2n|V (H)|, let EMBCOLn,H,q(·) be the
polynomial given in (3.1). Suppose that there is a T (n)-time algorithm A satisfying

Pr
x∼U(H)

n (Fq)

[A(x) = EMBCOLn,H,q(x)] ≥ 2

3
.

Then, there is a randomized algorithm B that computes EMBCOLn,H,q(y) on input y ∈ FE(Kn×H)
q with

success probability 2/3 in time O(n2(log n)2 + T (n)).
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3.4.2 Step 2: Reduce EMBCOLn,H,q(U (H)
n (Fq)) to EMBCOLn,H,q(U (H)

n ({0, 1}))

We reduce the problem of computing EMBCOLn,H,q(·) over the distribution U (H)
n (Fq) to that over

U (H)
n ({0, 1}) based on the binary extension technique of [BABB19]. Observe that the distributional

problem (EMBCOLn,H,q(·),U (H)
n ({0, 1})) is equivalent to (#Emb

(H)
col ,G

(H)
n,1/2) if q > n|V (H)|.

Lemma 3.4.3. Let H be a fixed graph and q be a prime satisfying n|V (H)| < q < 2n|V (H)|. Suppose
there is a T (n)-time randomized algorithm A satisfying

Pr
x∼U(H)

n ({0,1}))

[
Pr
A

[A(x) = EMBCOLn,H,q(x)] ≥ 2

3

]
≥ 1 − δ,

where δ = (log n)−C for a sufficiently large constant C = CH > 0 that depends on H.
Then, there is a T (n) · polylog n-time randomized algorithm B satisfying

Pr
x∼U(H)

n (Fq)

[
Pr
B

[B(x) = EMBCOLn,H,q(x)] >
2

3

]
>

2

3
.

Note that Theorem 3.2.5 follows from Corollary 3.4.2 and Lemma 3.4.3.

Observation. Suppose that, for each uv ∈ E(Kn ×H), x[uv] ∈ Fq can be rewritten as

x[uv] =

t−1∑
l=0

2l · z(l)[uv] mod q (3.2)

for some binary variables z(0)[uv], . . . , z(t−1)[uv] ∈ {0, 1}. Here, t is some large integer that will be
specified later. Then, we obtain

EMBCOLn,H,q(x) =
∑

v1,...,vk∈V (G)
c(vi)=i (∀i)

∏
ij∈E(H)

t−1∑
l=0

2l · z(l)[vivj ]

=
∑

v1,...,vk∈V (G)
c(vi)=i (∀i)

∑
a∈{0,...,t−1}E(H)

∏
ij∈E(H)

2a[ij] · z(a[ij])[vivj ]

=
∑

a∈{0,...,t−1}E(H)

2
∑

e∈E(H) a[e]
∑

v1,...,vk∈V (G)
c(vi)∈i (∀i)

∏
ij∈E(H)

z(a[ij])[vivj ].

=
∑

a∈{0,...,t−1}E(H)

2
∑

e∈E(H) a[e] · EMBCOLn,H,q(χ(a)). (3.3)

Here, we define χ(a)[uv] := z(a[c(u)c(v)])[uv] ∈ {0, 1} for each uv ∈ E(Kn ×H).

Thus, our goal is to sample z such that the distribution of z(a) is closed to G(H)
n,1/2 for each a ∈

{0, . . . , t− 1}E(H). In this chapter, we invoke a special case of Lemma 4.3 of [BABB19] and improve the
running time of a sampling procedure.

Lemma 3.4.4. Let q > 2 be a prime and t be some integer. For each x ∈ Fq, let Mx := {m ∈
{0, . . . , 2t − 1} : m mod q = x} and Yx ∼ Unif(Mx) be a random variable. Let YR be the distribution of
YR for R ∼ Unif(Fq). Then, the following hold.

1. dTV(YR,Unif({0, . . . , 2t − 1})) ≤ Cq/2t for some absolute constant C.

2. For any given x ∈ Fq, we can sample Yx in time O(t).

Corollary 3.4.5. Let t be some integer. Let Z0, . . . , Zt−1 ∼ Unif({0, 1}) be i.i.d. random variables.
Then, for any given x ∈ Fq, we can sample t random variables z0, . . . , zt−1 satisfying the following in
time O(t).

1. It holds that
∑t−1

i=0 2i · zi mod q = x.
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2. The distribution of (z0, . . . , zt−1) when x is sampled from Unif(Fq) is of total variation distance at
most O(q/2t) from the uniform distribution (Z0, . . . , Zt−1).

Proof. For a given x ∈ Fq, let z0, . . . , zt−1 be the binary expansion of Yx of Lemma 3.4.4. Then,

Yx =
∑t−1

i=0 2i · zi = x (mod q) by the definition of Yx. Let Y :=
∑t−1

i=0 2i ·Zi ∼ Unif({0, . . . , 2t−1}). Let
f : {0, . . . , 2t−1} → {0, 1}t denote the function that maps y ∈ {0, . . . , 2t−1} to the binary representation
of y. Note that f is a bijection and f(Yx) = (z0, . . . , zt−1) holds. Then, from Lemma 3.4.4, for any
A ⊆ {0, 1}t, we have

|Pr[(z0, . . . , zt−1) ∈ A] −Pr[(Z0, . . . , Zt−1) ∈ A]| = |Pr[Yx ∈ f−1(A)] −Pr[Y ∈ f−1(A)]|
= O(q/2t).

This implies the statement 2 of Corollary 3.4.5.

Remark 3.4.6. Boix-Adserà, Brennan, and Bresler [BABB19] considered the general case of Zi ∼
Ber(ci), where Ber(ci) is the Bernouli random variable with success probability ci. Roughly speaking,
for some t = Θ(c−1(1 − c)−1 log(q/ϵ2) log q), they proved (1) dTV(L(Y ),L(YR)) ≤ ϵ, and (2) For any
given x ∈ Fq, Yx can be sampled in time O(tq). Since q > nV (H), the sampling of Yx cannot be
applied directly due to the running time O(tq). To avoid the large running time, Boix-Adserà, Brennan,
and Bresler [BABB19] used the Chinese Reminder Theorem to reduce computing EMBCOLn,H,q(·) to the
computing EMBCOLn,H,q1(·), . . . ,EMBCOLn,H,qm(·), where q1, . . . , qm are small primes. In Lemma 3.4.4,
we focus on the special case of ci = 1/2 and improve the running time of sampling Yx.

We will present the proof of Lemma 3.4.4 later.

Proof of Lemma 3.4.3. We describe the randomized algorithm B that computes EMBCOLn,H,q(x)

for a given x ∼ U (H)
n (Fq).

Set t = K log q for a sufficiently large constant K = K(H) that will be chosen later depending only
on H. For each e ∈ E(Kn ×H), do the following: For x = x[e] ∈ Fq, sample z[e] = (z0[e], . . . , zt−1[e]) of
Corollary 3.4.5 in time O(t). Note that (3.2) holds.

After sampling (z[e])e∈E(Kn×H), the algorithm B computes EMBCOLn,H,q(x) using (3.3): For each

a ∈ {0, . . . , t− 1}E(H), construct χ(a) using (z[e])e∈E(Kn×H) and compute EMBCOLn,H,q(χ(a)) using the

T (n,H)-time algorithm A that solves (EMBCOLn,H,q(·),U (H)
n ({0, 1})) with success probability 1 − δ.

We claim that B has success probability 1 − t|E(H)|δ − O(n2|E(H)|q/2t), which completes the proof
of Lemma 3.4.3: Indeed, choosing t = K log n for a sufficiently large constant K = K(H), the success
probability of B is at least 1 − O(δ(log n)2|E(H)|) − o(1) ≥ 2/3 if δ = o((log n)−2|E(H)|).

Success probability of B. Since x[e] ∼ Unif(Fq), Lemma 3.4.4 implies that the distribution of z[e] :=
(zi[e])i∈{0,...,t−1} is total variation distance at most ϵ := O(q/2t) from that of Z[e] := (Z0[e], . . . , Zt−1[e]),
where Z0[e], . . . , Zt−1[e] ∼ Unif({0, 1}) are i.i.d. random variables. Therefore, the distribution of z =
(z[e])e∈E(Kn×H) is total variation distance at most |E(Kn ×H)|ϵ from Z = (Z[e])e∈E(Kn×H) (here, z[e]
are independent as well as Z[e]).

Let A be the randomized algorithm described in Lemma 3.4.3. Let S be the set of graphs that is
solved by A. Formally,

S =

{
F ⊆ Kn ×H : Pr

A
[A(F ) = #Emb

(H)
col (F )] ≥ 3

4

}
.

Let z := (z[e])e∈E(Kn×H) and Z := (Z[e])e∈E(Kn×H) be random variables described above. For each

a ∈ {0, . . . , t − 1}E(H), we have PrZ
[
χ̃(a) ∈ S

]
≥ 1 − δ, where χ̃(a) = (χ̃(a)[e])e∈E(Kn×H) is defined as

χ̃(a)[uv] := Z(a[c(u)c(v)])[uv]. Here, we identify a graph with a binary vector in {0, 1}E(Kn×H). Recall
that c : V (Kn ×H) → V (H) maps a vertex to its color. Note that the distribution of χ̃(a) is the same

as G(H)
n,1/2 for every fixed a ∈ {0, . . . , t− 1}E(H). By the union bound, we have

Pr
Z

[
∀a ∈ {0, . . . , t− 1}E(H) : χ̃(a) ∈ S

]
≥ 1 − t|E(H)|δ.

Since z is total variation distance at most |E(Kn ×H)|ϵ from Z, this implies

Pr
z

[
∀a ∈ {0, . . . , t− 1}E(H) : χ(a) ∈ S

]
≥ 1 − t|E(H)|δ − |E(Kn ×H)|ϵ.

This completes the proof of the claim.
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Proof of Lemma 3.4.4. Indeed, the statement 1 is a special case of Lemma 4.3 in [BABB19] and the
proof is already given (see p. 23 of [BABB19]). For completeness, we present the proof by focusing on
the special case. Consider the size of Mx. Let N := 2t/q. Since x ∈ {0, . . . , q − 1}, it holds that

N − 2 ≤
⌊

2t

q
− 1

⌋
≤ |Mx| ≤

⌊
2t

q

⌋
≤ N.

Let Y ∼ Unif({0, . . . , 2t − 1}) and YR ∼ YR be random variables, where R ∼ Unif(Fq). For any
A ⊆ {0, . . . , 2t − 1}, consider the events that Y ∈ A and YR ∈ A. Observe

Pr[YR ∈ A] =
∑
x∈Fq

Pr[Yx ∈ A ∩Mx|R = x]Pr[R = x] =
1

q

∑
x∈Fq

|A ∩Mx|
|Mx|

and

Pr[Y ∈ A] =
|A|
2t

=
1

q

∑
x∈Fq

|A ∩Mx|
N

.

Therefore, it holds for any A ⊆ {0, . . . , 2t − 1} that

|Pr[YR ∈ A] −Pr[Y ∈ A]| ≤ 1

q

∑
x∈Fq

|A ∩Mx|
∣∣|Mx|−1 −N−1

∣∣
≤ |A|

q

(
1

N − 2
− 1

N

)
=

|A|
q

· O(N−2) ≤ O(q/2t).

This completes the proof of the statement 1.
We show the statement 2. The sampling can be done by the following scheme: For a given x ∈ Fq,

let M := b(2t − x − 1)/qc = |Mx| − 1 and sample K ∼ Unif({0, . . . ,M}). Then, output L := Kq + x.
For any k ∈ {0, . . . ,M},

Pr[L = kq + x] = Pr[K = k] =
1

M + 1
.

In other words, L ∼ Unif(Mx) for any x.

3.5 Complexity of Counting Ka,b-Subgraphs

This section is devoted to the proofs of Theorems 3.2.1 to 3.2.3 and 3.2.7. In Sections 3.5.1 to 3.5.5,
we provide several technical results. Finally, in Section 3.5.6, we combine these results to show Theo-
rems 3.2.1 to 3.2.3 and 3.2.7.

3.5.1 Colored subgraph counting vs. (uncolored) subgraph counting

We first prove that the Ka,b-subgraph counting (i.e., #Emb(Ka,b)) and colored Ka,b-subgraph counting

(i.e., #Emb
(Ka,b)
col ) are computationally equivalent.

Lemma 3.5.1. Consider #Emb
(Ka,b)
col and #Emb(Ka,b). Given oracle access to one of them, we can

solve the other one in time 2O(a+b) + O(n2) (in the worst-case sense).

One direction is well known: The problem #Emb
(H)
col is reducible to #Emb(H) by using the inclusion-

exclusion principle [CM14, Cur18].

Proposition 3.5.2. Let H be a graph. If #Emb(H) for n-vertex graphs can be solved in time T (n), then

#Emb
(H)
col can be solved in time O(2|V (H)|T (n)) (in the worst-case sense).
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Proof. We identify a vertex of H with a color. Let S be the set of embeddings of H to G. For each
color i ∈ V (H), let Si ⊆ S be the set of embeddings ϕ of H to G such that the image ϕ(V (H)) contains

the color i. Then, in #Emb
(H)
col , our task is to compute

∣∣∣⋂i∈V (H) Si

∣∣∣. We denote by Si the complement

S \ Si. Using the inclusion-exclusion principle (Proposition 2.5.7), we can rewrite
∣∣∣⋂i∈V (H) Si

∣∣∣ as∣∣∣∣∣∣
⋂

i∈V (H)

Si

∣∣∣∣∣∣ = |S| −

∣∣∣∣∣∣
⋃

i∈V (H)

Si

∣∣∣∣∣∣
= |S| +

∑
I⊆V (H):I ̸=∅

(−1)|I|

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ .
Note that |S| = #Emb(H)(G) and

∣∣⋂
i∈I Si

∣∣ = #Emb(H)(GI), where GI is the graph obtained by

removing vertices with color in I from G. We can compute these values using the oracle of #Emb(H).

Now we discuss the converse direction: Can we solve #Emb(H) given oracle access to #Emb
(H)
col ? We

show that #Emb(H) is reducible to #Emb
(H)
col when H = Ka,b. To this end, we consider the problem

#Hom(H) that asks the number #Hom(H)(G) of homomorphisms from H to a given graph G. Recall
that a mapping ϕ : V (H) → V (G) is a homomorphism if {ϕ(u), ϕ(v)} ∈ E(G) whenever {u, v} ∈ E(H).

We reduce #Emb(Ka,b) to #Emb
(Ka,b)
col by the following three steps. First, we show that #Hom(H)(G)

is equal to #Emb
(H)
col (G×H) (Fact 3.5.3). Second, we use Lovász’s identity [Lov12] to reduce #Emb(H)

to #Hom(H′) for some family of graphs H ′ (Theorem 3.5.4). Finally, we observe that #Hom(H′) is

reducible to #Emb(Ka,b) when H = Ka,b (Proposition 3.5.5).

The following well-known fact asserts that #Hom(H) is reducible to #Emb
(H)
col .

Fact 3.5.3. Let H be a k-vertex graph. For any graph G, it holds that #Hom(H)(G) = #Emb
(H)
col (G×H).

Consequently, if #Emb
(H)
col can be solved in time T (kn) on kn-vertex graphs, then #Hom(H) can be solved

in time O(T (kn) + kn2) on n-vertex graphs.

Proof. We can solve #Hom(H) on input G as follows. Construct G×H and then run the algorithm for

#Emb
(H)
col on input G×H. Now we show #Hom(H)(G) = #Emb

(H)
col (G×H). Let ϕ be a homomorphism

from H to G. Then, the mapping ψ : V (H) 3 v 7→ (ϕ(v), v) ∈ V (G ×H) is also a homomorphism and
moreover it is injective. This correspondence between ϕ and ψ is one-to-one.

In light of Fact 3.5.3, it suffices to reduce #Emb(H) to #Hom(H). To this end, we invoke the following
identity.

Theorem 3.5.4 (Lovász [Lov12]; See (2) of [CDM17]). Let H be a fixed graph. Let P(H) be the set of
partitions of V (H) such that, for every π = {B1, . . . , Bt} ∈ P(H), each Bi ⊆ V (H) is an independent
set (i = 1, . . . , t). For each π ∈ P(H), define H/π as the graph obtained by contracting each vertex set
in π. Then

#Emb(H)(G) =
∑

π∈P(H)

(−1)|V (H)|−|π|
∏
B∈π

(|B| − 1)! · #Hom(H/π)(G).

Here, |π| denotes the number of subsets in π.

Combining Theorem 3.5.4 and Fact 3.5.3, we can reduce #Emb(H) to solving a family of problems

(#Emb
(H/π)
col )π∈P(H). If H = Ka,b, we can enumerate all elements of P(H) in time O(2a+b), and thus

the reduction runs in time O(n2 + 2a+b). Moreover, we show in Proposition 3.5.5 that #Emb
(Ka,b/π)
col is

reducible to #Emb
(Ka,b)
col for every π ∈ P(Ka,b), which enables us to reduce #Emb(Ka,b) to #Emb

(Ka,b)
col .

Proposition 3.5.5. Assume that #Emb
(Ka,b)
col can be solved in time T (n). Let π ∈ P(Ka,b). Then,

#Emb
(Ka,b/π)
col can be solved in time O(n2 + T (n)).

Proof. Observe that, for any π ∈ P(Ka,b), we have Ka,b/π = Kc,d for some constants c ≤ a and d ≤ b;

therefore, it suffices to reduce #Emb
(Kc,d)
col to #Emb

(Ka,b)
col .
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Let (n,G) be an input of #Emb
(Kc,d)
col , where G ⊆ Kc,d × Kn. Regard the vertices in V (Ka,b) as

V (Ka,b) = {l1, . . . , la, r1, . . . , rb} so that E(Ka,b) = {li, rj}i∈[a],j∈[b]. Then, each vertex v ∈ V (G) can be
represented as the form (ri, u) or (li, u). We write V (G) = R ∪ L, where R is the set of vertices of the
form (ri, u), and L is that of the form (li, u). Fix a vertex v ∈ V (Kn) and let Ladd = {(li, v)}ai=c+1 and

Radd = {(ri, v)}bi=d+1 be vertex sets. We construct a graph Ĝ ⊆ Ka,b ×Kn as follows.

V (Ĝ) = V (G) ∪ Ladd ∪Radd,

E(Ĝ) = E(G) ∪ E(Radd, L ∪ Ladd) ∪ E(Ladd, R ∪Radd),

where, for two vertex subsets S and T , E(S, T ) = {s, t}s∈S,t∈T . See Figure 3.3 for an illustration.

RL

Radd

Ladd

Figure 3.3: The graph Ĝ of the reduction. In this figure, #Emb
(K3,4)
col (G) = #Emb

(K4,5)
col (Ĝ) holds.

Note that #Emb
(Ka,b)
col (Ĝ) = #Emb

(Kc,d)
col (G) holds since there is a one-to-one correspondence between

copies of Ka,b in Ĝ and that of Kc,d in G.

Lemma 3.5.1 follows from Propositions 3.5.2 and 3.5.5, Fact 3.5.3, and Theorem 3.5.4.

Remark 3.5.6. We comment on the relationship between #Hom(H) and #Emb(H). It is easy to see
that the problems #Hom(Kk) and #Emb(Kk) are equivalent. More generally, such an equivalence holds
if H is a core; here, a graph H is said to be a core if any homomorphism from H to H is an isomorphism.
However, for some H, it is widely believed that there is a gap between #Hom(H) and #Emb(H): For
example, let Mk be the graph of disjoint k edges. It is known that #Emb(Mk) (which is the problem of

counting the number of matchings of size k) is #W[1]-hard [Cur13], while #Hom(Mk) can be solved in

linear time (observe that #Emb(Mk)(G) = (2|E(G)|)k).

3.5.2 SETH-hardness of finding a colored Ka,b-subgraph

Assume a ≤ b. By enumerating all subsets of size a, we can solve both Colored Ka,b Detection in
time O(na+1). If a given graph G is sparse and has m edges, we can solve the problem in time O(ma)

by enumerating
(
N(v)
a

)
for every vertex v, where N(v) denotes the set of vertices adjacent to v.

Theorem 3.5.7 (Reminder of Theorem 3.2.4). For any constants a ≥ 2 and ϵ > 0, there exists a
constant b = b(a, ϵ) ≥ a such that Colored Ka,b Detection cannot be solved in time O(ma−ϵ) unless
SETH fails, where m is the number of edges of the input graph.

Remark 3.5.8. Theorem 3.2.1 immediately follows from Proposition 3.5.2 and Theorem 3.2.4.

In the proof of Theorem 3.2.4, we consider k-Orthogonal Vectors (k-OV). In k-OV, we are given
sets A1, . . . , Ak ⊆ {0, 1}d of binary vectors each of cardinarity n and dimension d satisfying d ≤ K log n
for a constant K. Our task is to decide whether there exist vectors a1, . . . ,ak such that ai ∈ Ai for
any i and

∑d
j=1

∏k
i=1 ai[j] = 0. The näıve exhaustive search solves k-OV in time O(nkd) = O(nk log n).

The current known fastest algorithm solves it in time O(nk−1/O(log(d/ logn))) [AWY15]. The k-Orthogonal
Vectors Conjecture (k-OVC) asserts that k-OV requires time nk−o(1) for any d = ω(log n): More precisely,
under k-OVC, for any k ≥ 2 and ϵ > 0, there exists a constant K ≥ 1 such that no O(nk−ϵ)-time
algorithm solves k-OV of dimension d ≤ K log n. It is known that, for every constant k ≥ 2, SETH
implies k-OVC [Wil15, Wil05, LPW17]. Thus, it suffices to reduce k-OV to #Emb(Ka,b) for k = a.
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Reduction (Proof of Theorem 3.2.4)

Fix any constant a ≥ 2. Assume that there exists a constant ϵ > 0 such that Colored Ka,b Detection
can be solved in O(ma−ϵ) for every b ≥ a. We will prove that, under this assumption, there exists a
constant ϵ′ > 0 such that a-OV of dimension d = K log n can be solved in time O(ma−ϵ′) for any K. To
this end, we present a many-to-one reduction: The reduction maps an instance of a-OV to an equivalent
instance of Colored Ka,b Detection.

Let ϵ > 0 be a sufficiently small constant that will be specified later. Let A1, . . . , Ak ⊆ {0, 1}d be
an instance of k-OV of dimension d = K log n. We identify a vector x ∈ {0, 1}d with a subset x ⊆ [d].
Thus, each Ai is identified with a family of subsets of [d]. Let P1 ∪ · · · ∪ PC be a partition of [d] such
that |Pi| ≤ ϵ log n holds for every i ∈ [C], where C = K/ϵ (we will choose ϵ so that K/ϵ is an integer).

The reduction constructs a graph G and a coloring c : V (G) → [a + b], resulting in an instance of
Colored Ka,b Detection of a := k and b := C. The vertex set of G is of the form

V (G) = V1 ∪ · · · ∪ Vk ∪W1 ∪ · · · ∪WC ,

where each subset V1, . . . , Vk,W1, . . . ,WC is assigned with a distinct color. For each subset a ∈ Ai, we
create a vertex va ∈ Vi. For each index j ∈ [C], enumerate all subsets of Pj . We associate a k-tuple
z = (y1, . . . , yk) ∈ (2Pj )k of the subsets with a vertex wz ∈ Wj , if the corresponding vectors y1, . . . ,yk

are orthogonal on Pj . Formally, the vertex set V (G) is

Vi := {va : a ∈ Ai},

Wj :=

wz : z = (y1, . . . , yk) ∈ (2Pj )k satisfies
∑
r∈Pj

∏
s∈[k]

ys[r] = 0

 .

Two vertices va ∈ Vi and wz ∈ Wj of z = (y1, . . . , yk) are joined by an edge if a ∩ Pj = yi holds. The
edge set E(G) contains no other edges. Note that G ⊆ Kn×Ka,b in which V1, . . . , Va,W1, . . . ,Wb obtain
distinct colors.

Correctness. Let A1, . . . , Ak ⊆ {0, 1}[d] be the instance of k-OV with d = K log n and G be the graph
constructed by the reduction above. Recall that each Ai is identified with a family of n subsets of [d].
Suppose that the given instance is an YES-instance. Then, there is a k-tuple (a1, . . . , ak) ∈ A1×· · ·×Ak

such that the corresponding vectors a1, . . . ,ak satisfy
∑

r∈[d]

∏
s∈[k] as[r] = 0. Let

U :=
⋃
i∈[k]

{vai
} ⊆ V (G),

W :=
⋃

j∈[C]

{wz ∈Wj : z = (y1, . . . , yk) where each yi satisfies yi ∩ Pj = ai ∩ Pj}.

The set U ∪W induces a colored subgraph isomorphic to Ka,b, where a = k and b = C; thus, the pair
(G, c) of a graph G and coloring c is an YES-instance of Colored Ka,b Detection.

Conversely, suppose that G contains a colored Ka,b-subgraph. Then we have |V (H) ∩ Vi| = |V (H) ∩
Wj | = 1 for every i ∈ [k] and j ∈ [C]. Let vi ∈ V (H) ∩ Vi and wj ∈ V (H) ∩Wj . As H is isomorphic
to Ka,b, {vi, wj} ∈ E(G) for every i, j. Let ai ∈ {0, 1}d be the vector associated with the vertex vi. For
every j ∈ [C], we have

∑
r∈Pj

∏
s∈[k] as[r] = 0 since each wj is incident to vi for all i ∈ [k]. Thus, we

have
∑

r∈[n]

∏
s∈[k] as[r] = 0 and hence (A1, . . . , Ak) is an YES-instance of k-OV.

Time complexity. The size of the constructed graph G satisfies

|V (G)| ≤ kn+ Cnϵk,

|E(G)| ≤ kCn1+ϵk.

Thus, if Colored Ka,b Detection on G can be solved in time O(ma−ϵ′), letting ϵ > 0 be a constant
satisfying (1 + ϵk)(k − ϵ′) ≤ k − ϵ′/2 yields an

O(ma−ϵ′) = O(n(1+ϵk)(k−ϵ′)) = O(nk−ϵ′/2)

time algorithm for k-OV. This falsifies k-OVC as well as SETH.
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3.5.3 ETH-hardness of finding a colored Ka,a-subgraph

Consider the decision problem Ka Detection in which we are asked to decide whether the given
graph contains a clique of size a or not. In this section, we reduce Ka Detection to Colored Ka,a

Detection. Note that Ka Detection does not admit an f(k) · no(k)-time algorithm for any function
f(·) unless ETH fails [CHKX06]; thus, the reduction establishes the ETH-hardness of the problem
Colored Ka,a Detection.

Lemma 3.5.9. There is an O(n2)-time algorithm that, given a graph G of n vertices, outputs a graph
G′ ⊆ Kn ×Ka,a of O(an) vertices such that G contains an a-clique if and only if G′ contains a colored
Ka,a-subgraph.

Proof. Let G be an instance of Ka Detection. We transform G to the graph G′ mentioned in
Lemma 3.5.9.

Let U1, . . . , Ua,W1, . . . ,Wa be copies of V (G). We write V (G) = {v1, . . . , vn}, Ui = {u(i)1 , . . . , u
(i)
n },

and Wi = {w(i)
1 , . . . , w

(i)
n }. Here, each u

(i)
j corresponds to vj (and so does w

(i)
j ). We set V (G′) =⋃

i∈[a](Ui ∪Wi); each Vi and Wi is assigned with a distinct color (more formally, each vertex in Vi is

assigned with a color i and each vertex in Wi is assigned with a color a + i). We construct E(G′) such

that, for all i, k ∈ [a] and j, l ∈ [n], an edge {u(i)j , u
(k)
l } is in E(G′) if either (1) i = j and j = l, or (2)

i 6= j and {vj , vl} ∈ E(G) holds. The set E(G′) does not contain any other edges. This graph can be
constructed in time O(an2).

Now we check the correctness. Suppose that a vertex set S = {vi1 , . . . , via} forms an a-clique in G.

Then, the vertex set {u(1)i1
, . . . , u

(a)
ia
, w

(1)
i1
, . . . , w

(a)
ia

} forms a colored Ka,a-subgraph in G′. Conversely,

if the set {u(1)i1
, . . . , u

(a)
ia
, w

(1)
j1
, . . . , w

(a)
ja

} forms a colored Ka,a-subgraph in G′, then it holds that i1 =
j1, . . . , ia = ja and the set {vi1 , . . . , via} forms an a-clique in G.

3.5.4 An na+o(1)-time algorithm for counting Ka,b

We now present an algorithm that matches the lower bounds presented so far. Specifically, we design an

algorithm that solves #Emb
(Ka,b)
col in time O(bna+o(1)), thereby proving Theorem 3.2.3. The algorithm

of Theorem 3.2.3 is similar to the O(nk+o(1))-time algorithm for k-Dominating Set of k ≥ 7 proposed
by Pǎtraşcu and Williams [PW10]. The algorithm of [PW10] adopts the fast rectangular matrix multi-
plication [GU18, Gal12, Cop97]. Recently, Le Gall and Urrutia [GU18] proved that we can compute the
multiplication of an n×nγ matrix and an nγ ×n matrix in n2+o(1) arithmetic operations if γ ≤ 0.31389.

Let G = (V,E) be a given instance of #Emb(Ka,b). We first consider the case when a is even. We
construct an

(
n

a/2

)
× n matrix B as follows: For each S ∈

(
V
a/2

)
and v ∈ V , the corresponding element

B[S][v] is defined as

B[S][v] :=

{
1 if S ⊆ N(v),

0 otherwise.

Then, compute the product BB⊤ by the fast rectangular matrix multiplication [GU18]. The running time
is O(na+o(1)) if a ≥ 8. Notice that BB⊤[S1][S2] is equal to the size of the vertex subset W (S1, S2), where
W (S1, S2) := {v ∈ V \ (S1 ∪ S2) : S1 ∪ S2 ⊆ N(v)}. In other words, the set W (S1, S2) contains vertices

that is adjacent to all vertices in S1 ∪ S2. For any S1, S2 ∈
(

V
a/2

)
with S1 ∩ S2 = ∅ and T ∈

(
W (S1,S2)

b

)
,

the vertex set S1 ∪ S2 ∪ T forms a Ka,b subgraph. On the other hand, for a Ka,b subgraph, there are
c
(

a
a/2

)
ways to take S1, S2, T , where c = 2 if a < b and c = 4 if a = b. If a < b, the factor c reflects

the symmetry of S1 and S2; thus c = 2. If a = b, we further take the symmetry of S1 ∪ S2 and T into
account; thus c = 4. Then, the number of Ka,b subgraphs contained in G is given by

c−1

(
a

a/2

)−1

·
∑

S1,S2∈( V
a/2):S1∩S2=∅

(
BB⊤[S1][S2]

b

)
.

Now consider the case when a is odd. Fix a vertex u ∈ V . Again, we construct an
(

n
(a−1)/2

)
× n

matrix B(u) as follows: For each S ∈
(

V
(a−1)/2

)
and v ∈ V ,

B(u)[S][v] =

{
1 if {u, v} ∈ E, v 6∈ S and S ⊆ N(v),

0 otherwise.
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Then compute B(u)(B(u))⊤ for all u ∈ V . Note that the multiplication can be computed in time na−1+o(1)

for each u ∈ V . Observe that B(u)(B(u))⊤[S1][S2] is the number of vertices that is adjacent to all vertices
in S1 ∪ S2 ∪ {u}. Thus, the number of Ka,b contained in G is given by

c−1

(
a

(
a− 1

(a− 1)/2

))−1

·
∑
u∈V

∑
S1,S2∈( V

(a−1)/2):S1∩S2=∅

(
B(u)(B(u))⊤[S1][S2]

b

)
,

where c = 2 if a < b and c = 4 if a = b.
This yields an O(bna+o(1)) time algorithm (note that

(
n
k

)
can be computed in O(k log n) time).

3.5.5 Reduce (#Emb
(Ka,b)

col ,G(Ka,b)

n,1/2 ) to (#Emb(Ka,b),Ka,b,n)

In this section, we present a proof of Proposition 3.2.6, i.e., an average-case-to-average-case reduction

from (#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ) to (#Emb(Ka,b),Ka,b,n). This will complete a proof of Theorem 3.2.7.

Proof of Theorem 3.2.7. Recall that Theorem 3.2.5 reduces #Emb
(Ka,b)
col to (#Emb

(Ka,b)
col ,G(Ka,b)

n,1/2 ). Com-

bined with Proposition 3.5.2, one can reduce #Emb(Ka,b) to (#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ). Overall, we obtain

a reduction from #Emb(Ka,b) to (#Emb(Ka,b),Ka,b,n) as stated in Theorem 3.2.7.

Proof of Proposition 3.2.6. The proof is similar to that of Proposition 3.5.2.
Let Bn,m,1/2 be the distribution of a random bipartite graph with left and right vertex sets of size n

and m, respectively. Let G be an input of (#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ). Observe that the distribution G(Ka,b)

n,1/2 is

identical to Ban,bn,1/2. We say that a subgraph F ⊆ G contains color i if F contains a vertex of color i.
Let S be the set of subgraphs F ⊆ G isomorphic to Ka,b. Let Si ⊆ S be the set of subgraphs F ∈ S that

contain color i. Observe that #Emb
(Ka,b)
col (G) =

∣∣∣⋂i∈V (Ka,b)
Si

∣∣∣. By the inclusion-exclusion principle, we

have ∣∣∣∣∣∣
⋂

u∈V (Ka,b)

Su

∣∣∣∣∣∣ = |S| −

∣∣∣∣∣∣
⋃

i∈V (Ka,b)

Si

∣∣∣∣∣∣
= |S| −

∑
∅̸=J⊆V (Ka,b)

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Sj

∣∣∣∣∣∣ .
In light of this equality, it suffices to compute |S| and

∣∣∣⋂j∈J Sj

∣∣∣ for all nonempty J ⊆ V (Ka,b). Note that

the set ∩j∈JSj is equal to the set of Ka,b subgraphs in G that does not contain any colors from J . To
state it more formally, for a nonempty set J ⊆ V (Ka,b), let VJ = {x ∈ V (G) : c(x) ∈ J} and GJ = G[VJ ]
be the induced subgraph of G by VJ . Then,

⋂
j∈J Sj is equal to the set of Ka,b subgraphs contained in

GJ . Suppose that we have a T (n)-time randomized algorithm A that solves (#Emb(Ka,b),Ka,b,n) with
failure probability δ. Note that, for each J ⊆ V (Ka,b), the distribution of GJ for G ∼ Ban,bn,1/2 is

identical to Bcn,dn,1/2 for some c ≤ a and d ≤ b; thus, we can obtain
∣∣∣⋂j∈J Sj

∣∣∣ with probability at least

1−abδ since A(GJ) = c!d!
∣∣∣⋂j∈J Sj

∣∣∣ (here, c!d! is the number of automorphisms of Kc,d). Therefore, from

the union bound, we can obtain
∣∣∣⋂j∈J Sj

∣∣∣ for all ∅ 6= J ⊆ V (Ka,b) with probability at least 1− ab2a+bδ.

Moreover, A(G) = a!b!|S| holds with probability 1 − abδ. Hence, we can solve (#Emb(Ka,b),G(Ka,b)

n,1/2 ) in

time O(ab2a+b · T (n)) with probability 1 − O(ab2a+bδ).

3.5.6 Worst-case complexity of Ka,b-subgraph counting

We present proofs of Theorems 3.2.1, 3.2.3 and 3.2.7. Theorem 3.2.7 follows from Propositions 3.2.6
and 3.5.2 and Theorem 3.2.5. We can show Theorem 3.2.1 by combining Theorem 3.2.4 and Lemma 3.5.1
(Note that we can solve Colored Ka,b Detection using a solver for #Emb(Ka,b)). Similarly, Theo-
rem 3.2.2 follows from Lemmas 3.5.1 and 3.5.9 and the well-known fact that ETH rules out an no(a)-time
algorithm for Ka Detection [CHKX06].



Chapter 4

Fine-Grained Hardness
Amplification

4.1 Result

In this chapter, we propose a general framework of fine-grained hardness amplification, that is, the
hardness amplification in fine-grained complexity setting. To state it more formally, suppose that there
is a distributional problem (Π,D) such that any T (n)-time algorithm has success probability at most γ.
The aim of fine-grained hardness amplification is to construct another distributional problem (Π′,D′)
such that any T (n)no(1)-time algorithm has success probability at most γ′ � γ.

For a probability distribution R over a set D, let supp(R) denote the support of R, that is, if X is
the random item sampled from D according to R, then supp(R) = {x ∈ D : Pr[X = x] > 0}. For a
probability distribution R and k ∈ N let Rk denote the joint probability distribution of k independent
copies each is from R. We define the direct product of a distributional problem as follows.

Definition 4.1.1 (Direct product). Let k = k(n) be any function, and (Π,D) be any distributional
problem. The k-wise direct product of (Π,D), denoted by (Π,D)k, is defined as the distributional problem
(Πk,Dk) such that

1. (Dk)n := Dk
n for each n ∈ N, and

2. Πk(x1, . . . , xk) := (Π(x1), . . . ,Π(xk)) for any (x1, . . . , xk) ∈ supp(Dk
n).

Observe that, if (Π,D) has a T (n)-time algorithm with success probability γ, then (Π,D)k has a
k · T (n)-time algorithm with success probability γk. Equivalently, if (Π,D)k is hard to solve more than
γk-fraction of instances, then (Π,D) has more than γ-fraction of hard instances (run the algorithm on
each of the k inputs). Roughly speaking, the direct product theorem claims that the converse direction
holds: if (Π,D) is weakly hard in average, then (Π,D) is strongly hard.

Before going to the detail, we present applications of it to the Ka,b-subgraph counting problem

#Emb(Ka,b) on the random bipartite graph drawn from Ka,b,n. We consider the k-wise direct product

(#Emb(Ka,b),Ka,b,n)k.

Theorem 4.1.2 (Average-case complexity of counting Ka,b-subgraphs for multiple instances). Under
rSETH, for any constants ϵ > 0 and a ≥ 3, there is a constant b = b(a, ϵ) such that any na−O(ϵ)-time

algorithm solve (#Emb(Ka,b),Ka,b,n) with success probability at most n−ϵ, where k = O(ϵ log n).

Theorem 4.1.2 is a “sharp threshold” result: On one side, there is an na+o(1)-time algorithm that
solves #Emb(Ka,b) for any input. On the other side, any na−ϵ-time algorithm can solve at most n−Ω(ϵ)-
fraction of inputs under rSETH.

Our proof techniques of amplifying average-case hardness can be applied to other subgraph counting
problems. Consider the problem ⊕Ka-Subgraph of asking the parity of the number of Ka-subgraphs
contained in a given input graph, where Ka denotes the complete graph with a vertices. Recall the
distribution G(n, 1/2) of the Erdős–Rényi graph of edge density 1/2. The disjoint union X ] Y of two
(disjoint) graphs X and Y is the graph defined as X ] Y = (V (X) ∪ V (Y ), E(X) ∪ E(Y )), where we

assume V (X) ∩ V (Y ) = ∅. Let
⊎k G(n, 1/2) denote the distribution of the disjoint union of k random

graphs G1, . . . , Gk each of which is independently drawn from G(n, 1/2).

32
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We show that the distribution
⊎k G(n, 1/2) is a “hardest” distribution for ⊕Ka-Subgraph as follows.

Theorem 4.1.3 (Worst-case to average-case reduction for ⊕Ka-Subgraph). Let ϵ > 0 and a ∈ N be
arbitrary constants. If there is a T (n)-time randomized algorithm that solves the distributional problem

(⊕Ka-Subgraph,
⊎k G(n, 1/2)) with success probability greater than 1

2 + n−ϵ for any k = O(ϵ log n),

then there is a T (n)nO(ϵ)-time randomized algorithm that solves ⊕Ka-Subgraph on any input.

Since any decision problem can be solved with success probability 1
2 by outputting a uniformly

random bit, the success probability of the algorithm in Theorem 4.1.3 is nearly optimal. Therefore,
Theorem 4.1.3 shows that the decision problem ⊕Ka-Subgraph exhibits some sharp threshold between
worst- and average-case complexity.1

4.2 Overview of Our Framework

In this section, we present a general framework for amplifying average-case hardness in the fine-grained
complexity settings, based on the techniques from “coarse-grained” complexity theory. Specifically,
we prove fine-grained complexity versions of hardness amplification theorems for any problem Π that
admits an efficient selector that makes no(1) queries. In particular, we construct such a selector for
Π = #Emb(Ka,b) by showing a doubly-efficient interacive proof system with low query complexity. We
explain the details below.

4.2.1 Direct product theorem

A direct product theorem is one of the fundamental hardness amplification results: It states that, if no
small circuit can compute a function f on more than a γ-fraction of inputs, then no small circuit can
compute the k-wise direct product fk on a roughly γk-fraction of inputs. Here, the k-wise direct product
fk of f is defined as fk(x1, . . . , xk) := (f(x1), . . . , f(xk)). Our plan is to apply a direct product theorem

to the function f := #Emb(Ka,b) in order to amplify the average-case hardness of the distributional
problem (#Emb(Ka,b),Ka,b,n). We have proved in Theorem 3.1.2 that, under rSETH, no na−ϵ-time

algorithm solves #Emb(Ka,b) on a (1−1/ polylog(n))-fraction of inputs drawn from Ka,b,n. Our strategy
is to apply the direct product theorem with γ = 1 − 1/(log n)C+1, k = (log n)C+1 and thus γk ≈ n−1.

A direct product theorem is a basic way of hardness amplification and there is a long line of
works [IW97, Tre03, GNW11, IJK09, IJKW10]. However, there is an obstacle for applying the di-
rect product theorem to our setting. The standard proof of the direct product theorem presents an
oracle algorithm A that, given an oracle O that computes fk for a γk-fraction of inputs, produces a list
AO

1 , . . . , A
O
m of oracle algorithms one of which is guaranteed to computes f for a roughly γ-fraction of

inputs. Hence, there still remains an issue of identifying a correct algorithm from the list A1, . . . , Am.
In this chapter, we exploit the direct product theorem of Impagliazzo, Jaiswal, Kabanets, and Wigder-
son [IJKW10], in which the size m of the list is m = O(γ−k).

4.2.2 Identifying a correct circuit by a selector

To identify a correct circuit, we use a selector, introduced in [Hir15]. For problems Π′ and Π, a selector
from Π′ to Π is an efficient algorithm that solves the problem Π′ given oracle access to two oracles A0, A1

one of which is guaranteed to compute Π. As shown in [Hir15], it is not hard to see that any selector
that can identify a correct circuit among two circuits can be modified to a selector that can identify a
correct circuit among many circuits (here, we use circuits as oracle).

In light of this, what is needed for applying the direct product theorem of [IJKW10] is the existence

of a selector from #Emb(Ka,b) to the task of solving the distributional problem (#Emb(Ka,b),Ka,b,n)
with success probability γ.

In the settings of “coarse-grained” complexity [Hir15], it suffices to consider a polynomial-time selector
since polynomial-time algorithms can be composed nicely. However, in the settings of fine-grained
complexity, one cannot afford even nΩ(1) queries for each candidate circuit, because simulating the circuit
takes time na−ϵ. We overcome this difficulty by using the doubly-efficient interactive proof system that
makes at most polylog(n) queries (Theorem 4.2.3) for #Emb(Ka,b). See Section 4.2.3 for details.

1The current fastest algorithm [NP85] of counting Ka subgraphs runs in time O(nω⌈a/3⌉) on n-vertex graphs, where ω
denotes the matrix multiplication exponent. However, the precise value of ω is not well understood.
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Theorem 4.2.1 (Selector for #Emb(Ka,b) using subpolynomial queries). Let C1, . . . , Cm be circuits

such that, for some i∗, the circuit Ci∗ solves (#Emb(Ka,b),Ka,b,n) with success probability 1− (log n)−C ,
where C is a sufficiently large constant that depends only on a, b, and m = polylog(n). Then, there is a

randomized n2 polylog(n)-time algorithm that, given the list of circuits C1, . . . , Cm, solves #Emb
(Ka,b)
col

(in the worst-case sense) by making polylog(n) queries for each circuit Ci.

More generally, we constructed a selector for #Emb
(H)
col for any fixed graph H.

Theorem 4.2.2 (Selector for #Emb
(H)
col using subpolynomial queries). Let C1, . . . , Cm be circuits such

that, for some i∗, the circuit Ci∗ solves (#Emb
(H)
col ,G

(H)
n,1/2) with success probability 1− (log n)−KH , where

KH is a sufficiently large constant that depends only on H, and m = polylog(n). Then, there is a

randomized n2 polylog(n)-time algorithm that, given the list of circuits C1, . . . , Cm, solves #Emb
(H)
col (in

the worst-case sense) by making polylog(n) queries for each circuit Ci.

Combining the “almost uniform” direct product theorem of [IJKW10] with the selector of Theo-
rem 4.2.1, we obtain a completely uniform and fine-grained version of a direct product theorem for the
distributional problem (#Emb(Ka,b),Ka,b,n), which completes a proof of Theorem 4.1.2.

4.2.3 Doubly-efficient interactive proof system

A line of research on interactive proof systems, pioneered by Goldwasser, Micali, and Rackoff [GMR89],
revealed the surprising power of interaction (The reader is referred to Section 4.3.1 for the formal def-
inition of an interactive proof system). Early studies of interactive proof systems focused on efficient
verification of intractable problems such as PSPACE-complete problems [LFKN92, Sha92]. In contrast,
a recent line of research (e.g., [GKR15, RRR16, GR18b, GR18a, BRSV18]) concerns interactive proof
systems for tractable problems, which are called doubly-efficient interactive proof systems: The goal of
a doubly-efficient interactive proof system is to verify a statement in almost linear time by interacting
with a polynomial-time prover. We often use n to denote the number of vertices of a given graph;
thus, “almost linear time (in the input length)” means O(n2 polylog n) time in our context. It is worth
mentioning that a doubly-efficient interactive proof system plays an important role in Proof of Work
systems [BRSV17, BRSV18].

At the heart of the proof of Theorems 4.1.2 and 4.1.3, we construct a doubly-efficient interactive proof
system with subpolynomial number of queries.

Theorem 4.2.3 (Interactive proof system for Ka,b-subgraph counting with subpolynomial queries).

There is an O(log n)-round interactive proof system for the statement “#Emb(Ka,b)(G)=C” such that

the verifier runs in time O(n2 log n) and asks the prover to solve #Emb(Ka,b) for polylog n instances,
where n is the number of vertices of the given input graph.

Roughly speaking, we can construct a selector of Theorem 4.2.1 by simulating the verifier of an
interactive proof system of Theorem 4.2.3 by using the candidate circuit as a prover. More precisely, for
a given input x and two circuits C0 and C1, the selector simulates C0 and C1 on input x and obtains
the two outputs C0(x) and C1(x). Then, the selector runs the interactive proof system to check whether
the output is correct. If one of C0 or C1 is correct, the verifier accepts the corresponding output and the
selector outputs the accepted one.

We emphasize the importance of low query complexity of a doubly-efficient interactive proof system.
Suppose that we can simulate the candidate circuits C0 and C1 in time TC(n) and that the verifier runs
in time TV (n), making Q(n) queries in the interactive proof system. The running time of a selector
that is constructed from the interactive proof system is roughly O(TV (n) +Q(n)TC(n)). In our setting,
TC(n) = na−ϵ and thus Q(n) must satisfy Q(n) = no(1) to archive our goal.

The salient feature of our interactive proof system is that the amount of communication between
a verifier and a prover is at most polylog(n) bits; equivalently, the number of queries that a verifier
makes to a prover is at most polylog(n). This will be important in the next section—where we prove
hardness amplification theorems in a fine-grained setting based on an interactive proof system whose
query complexity is subpolynomially small.

Theorem 4.2.4 (interactive proof system for #Emb
(H)
col ). Let H be a graph. There is an O(log n)-round

interactive proof system IP for the statement “#Emb
(H)
col (G) = C” such that, given an input (G,n,C),
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• The verifier accepts with probability 1 for some prover if the statement is true (perfect completeness),
while it rejects for any prover with probability at least 2/3 otherwise (soundness).

• In each round, the verifier runs in time n2(log n)O(|E(H)|) and sends (log n)O(|E(H)|) instances of

#Emb
(H)
col to a prover.

Furthermore, for any constant L0, there exists a constant L1 = L1(H,L0) such that, if the statement

is true and the prover has oracle access to a randomized algorithm that solves (#Emb
(H)
col ,G

(H)
n,1/2) with

success probability 1 − (log n)−L1 , then the verifier accepts with probability 1 − (log n)−L0 .

The “Furthermore” part follows the worst-case-to-average-case reduction of Theorem 3.2.5: We can
easily modify an honest prover of IP so that the prover is required to solve polylog(n) instances of the

distributional problem (#Emb
(H)
col ,G

(H)
n,1/2).

The interactive proof system of Theorem 4.2.4 can be compared with one given by Goldreich and
Rothblum [GR18a]. They presented an O(1)-round Õ(n)-query doubly-efficient interactive proof system

for #Emb(Kk). Theorem 4.2.4 significantly improves the query complexity from Õ(n) to polylog(n),
at the cost of increasing the round complexity from O(1) to O(log n). To explain the source of our
improvement, we review the ideas of [GR18a]: Their interactive proof system is essentially a variant of the

sum-check protocol [LFKN92]. They encoded #Emb(Kk) as a polynomial over a large finite field and used

the following downward self-reducibility of #Emb(Kk)(G): #Emb(Kk)(G) =
∑

i∈V (G) #Emb(Kk−1)(G−
i), where G− i denotes the graph obtained by removing the vertex i from G. In each round, the prover
sends a polynomial of degree O(n) to the verifier. Each coefficient of the polynomial can be computed

by calling a #Emb(Kk) solver polylog n times. Overall, the number of queries made by the verifier
is O(n polylog n). To summarize, the degree of the polynomial is the main bottleneck for the query
complexity.

We improve the query complexity by exploiting a different type of downward self-reducibility. Roughly

speaking, at each round, we reduce verifying #Emb
(H)
col (G) for an n-vertex graph G to the verification of

#Emb
(H)
col (G1), . . . ,#Emb

(H)
col (Gm) for m = polylog(n), where each Gi has n/2 vertices. The downward

self-reducibility enables us to encode the problem #Emb
(H)
col as a polynomial of degree |E(H)|(2|V (H)| −

1) = O(1) for a fixed graph H, thereby reducing the query complexity. The details are presented in
Section 4.4.

We mention that the existence of a doubly-efficient interactive proof system with communication

complexity polylog(n) for #Emb
(H)
col is guaranteed by using the general result of Goldwasser, Kalai,

and Rothblum [GKR15]. However, the strategy of an honest prover of their proof system may not be

computed efficiently with #Emb
(H)
col oracle. We need an interactive proof system in which an honest

prover is simulated with oracle access to #Emb
(H)
col , as is guaranteed in Theorem 4.2.4.

4.2.4 Yao’s XOR lemma

Let f : {0, 1}n → {0, 1} be a Boolean function. Yao’s XOR lemma [Yao82] asserts that, if no small circuit
can compute f on more than a γ fraction of inputs, then no small circuit can compute f⊕k on a roughly
1
2+γk fraction of inputs, where f⊕k : {0, 1}nk → {0, 1} is defined as f⊕k(x1, . . . , xk) := f(x1)⊕· · ·⊕f(xk).
Yao’s XOR lemma is a way to construct a strongly hard-in-average Boolean function from a weakly hard-
in-average Boolean function and has been extensively investigated [Yao82, Tre03, GNW11, IJK09] (recall
that the direct product theorem does not yield a Boolean function). One can obtain the Yao’s XOR lemma
by combining the direct product theorem of Impagliazzo, Jaiswal, Kabanets, and Wigderson [IJKW10]
with the local list decoding algorithm for the Hadamard code given by Goldreich and Levin [GL89].
Broadly speaking, the algorithm of Goldreich and Levin [GL89] is given an oracle access O computing
f⊕k in 1/2 + γ and then produces a list AO

1 , . . . , A
O
m of oracle algorithms one of which is guaranteed to

compute fk with a nonnegligible success probability. The algorithm of [GL89] is simple and efficient and
thus we can apply it directly to the fine-grained complexity setting. As a consequence, we can prove a
uniform and fine-grained version of Yao’s XOR lemma for any problem that admits an efficient selector
(Theorem 4.6.3).

We apply the fine-grained version of Yao’s XOR lemma to the parity variant of #Emb
(H)
col . To

state our results formally, let ⊕Emb
(H)
col denote the problem of computing the parity ⊕Emb

(H)
col (G) :=

(#Emb
(H)
col (G) mod 2). Observe that, for k graphs G1, . . . , Gk ⊆ Kn×H, computing the k-wise XOR of

⊕Emb
(H)
col (G1), . . . ,⊕Emb

(H)
col (Gk) is equivalent to computing ⊕Emb

(H)
col (G1]· · ·]Gk) (recall that F ]G
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denotes the disjoint union of two graphs F and G). Let
⊎k G(H)

n,1/2 denote the distribution of G1]· · ·]Gk,

where each Gi is independently chosen from G(H)
n,1/2.

Theorem 4.2.5 (XOR lemma for ⊕Emb
(H)
col ). Let H be an arbitrary graph and c > 0 be an arbitrary

constant. Suppose that there is a T (n)-time randomized algorithm that solves (⊕Emb
(H)
col ,

⊎k G(H)
n,1/2) for

any k = O(log n) with success probability greater than 1
2 + n−c. Then, there exists a T (n)nO(c)-time

randomized algorithm that solves ⊕Emb
(H)
col with probability at least 2/3 on every input.

The proof of Theorem 4.2.5 is presented in Section 4.6. The idea is to combine the fine-grained direct
product theorem and the local list decoding of [GL89]. Details can be found in Section 4.6.

4.2.5 Related work

Boix-Adserà, Brennan, and Bresler [BABB19] and Goldreich [Gol20] reduced ⊕Ka-Subgraph to the
distributional problem (⊕Ka-Subgraph,G(n, 1/2)). However, their results required an algorithm that
solves (⊕Ka-Subgraph,G(n, 1/2)) with success probability closed to 1. They left an open question of
improving this success probability. Our result Theorem 4.1.3 improves it, albeit for a slightly different
distribution.

Goldenberg and Karthik C. S. [GK20] studied hardness amplification of optimization problems, in-
cluding problems in P. Unlike our settings (in which it is highly non-trivial to construct a selector as in
Theorem 4.2.2), it is trivial to construct a selector for any optimization problem; therefore, it is easy to
obtain hardness amplification theorems of optimizations problems by using the powerful direct product
theorem of Impagliazzo, Jaiswal, Kabanets, and Wigderson [IJKW10].

Goldreich and Rothblum [GR18a] constructed a distribution D such that (#Emb(Kk),D) is hard
to solve efficiently for greater than a n−c-fraction of instances for some constant c > 0, based on the
worst-case hardness of #Emb(Kk). Their distribution D of graphs is not natural since the distribution
is constructed through a number of artificial reductions. Therefore, we cannot exploit their technique
since our goal is to obtain a natural average-case hard random graph.

4.2.6 Organization of this chapter

In Section 4.4, we present the doubly-efficient proof system of Theorems 3.1.2 and 4.2.4. In Section 4.5,
we prove the direct product theorem in the setting of fine-grained complexity. In Section 4.6, we prove
our fine-grained XOR Lemma.

The proofs of Theorems 4.1.2 and 4.1.3 are given in Sections 4.5.2 and 4.6.2, respectively.

4.3 Formal Definition

4.3.1 Interactive proof system

We follow the basic notion of interactive proof system (see, e.g., Chapter 8 of [AB08]). For a string
x ∈ {0, 1}∗, let |x| denote the length of x.

Definition 4.3.1 (Interaction of deterministic functions; Definition 8.2 of [AB08]). Let f, g : {0, 1}∗ →
{0, 1}∗ be functions and k : N → N be a function. A k-round interaction of f and g on input x ∈ {0, 1}∗,
denoted by 〈f, g〉(x), is the sequence of strings a1, . . . , ak ∈ {0, 1}∗ for k = k(|x|) defined as follows.

a1 = f(x),

a2 = g(x, a1),

...

a2i+1 = f(x, a1, . . . , a2i) if 2i < k,

a2i+2 = g(x, a1, . . . , a2i+1) if 2i+ 1 < k.

The output of f at the end of the interaction, denoted by outf 〈f, g〉(x), is defined as outf 〈f, g〉(x) :=
f(x, a1, . . . , ak).
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Note that an interaction is specified by k and two functions f and g. The string a2i+1 can be
interpreted as a message from f to g, and so does a2i+2 vice versa. We can regard f and g as deterministic
algorithms: One algorithm sends a new message aj+1 to the other given the history (x, a1, . . . , aj) as
input. We can extend the notion of interaction of two deterministic algorithms to that of a randomized
algorithm f and deterministic algorithm g: We add an additional input r ∈ {0, 1}∗ to f , where the bit
string r stands for the random bit used in the randomized algorithm f .

Definition 4.3.2 (Interaction of functions with private input). Let f, g : {0, 1}∗ → {0, 1}∗ be functions
and k : N → N be a function. A k-round interaction of f and g on input x ∈ {0, 1}∗ with private input
r ∈ {0, 1}∗, denoted by 〈f, g〉(x; r), is the sequence of strings a1, . . . , ak ∈ {0, 1}∗ for k = k(|x|) defined
as follows.

a1 = f(x, r),

a2 = g(x, a1),

...

a2i+1 = f(x, r, a1, . . . , a2i) if 2i < k,

a2i+2 = g(x, a1, . . . , a2i+1) if 2i+ 1 < k.

The output of f at the end of the interaction, denoted by outf 〈f, g〉(x; r), is defined as outf 〈f, g〉(x; r) :=
f(x, r, a1, . . . , ak).

Note that the function g is not given the string r (thus r is a private input for f). If r is a random
string, then the interaction 〈f, g〉(x; r) and output outf 〈f, g〉(x; r) are random variables. Moreover, we
can regard f as a randomized algorithm since it is given a randomness.

Definition 4.3.3 (Interactive proof system). A decision problem Π has a k-round interactive proof
system if there is an algorithm V (called verifier) that performs a k-round interaction satisfying, for any
input x and a private random string r,

1. (completeness condition) if x is an YES-instance, then there is an algorithm Phonest such that

Pr
r

[outV 〈V, Phonest〉(x; r) = 1] ≥ 2/3,

2. (Soundness condition) if x is a NO-instance, then for any algorithm P ,

Pr
r

[outV 〈V, P 〉(x; r) = 0] ≥ 2/3.

An algorithm P that interacts with the verifier is called prover and the algorithm Phonest in the com-
pleteness condition is called honest prover.

If the probability in the completeness condition is equal to one, then we say that the verifier has a
perfect completeness.

Example 4.3.4 (Interactive proof system for NP). Let Hamilton Path be the decision problem that
asks whether a given graph G contains a path of length |V (G)| − 1. This problem is a well-known
NP-complete problem. It is easy to see that Hamilton Path has a one-round interactive proof system
with perfect completeness.

Verifier Given a graph G as input, the verifier V sends nothing to the prover P (i.e., the first message
a1 is the empty string).

Prover. Given the input G and an empty message a1, the prover sends a path P to the verifier as a
message.

Verifier. Given a path P , the verifier outputs 1 if P ⊆ G and P is a path of length |V (G)|−1. Otherwise,
the verifier outputs 0.

If the input G is an YES-instance, an honest prover sends a path of length |V (G)| − 1 and then the
verifier outputs 1. On the other hand, if G is a NO-instance, no matter what path the prover sends, the
verifier outputs 0 since G does not contain such a long path.

In general, any problem in NP has a polynomial-round interactive proof system with a polynomial-
time verifier: An honest prover sends the witness and the verifier checks it.
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4.3.2 Oracle algorithm

Definition 4.3.5 (Oracle algorithm). Let O : {0, 1}∗ → {0, 1}∗ be a function. Then, an oracle algorithm
is an algorithm that uses the function O as a subroutine.

We denote by AO if an algorithm A uses O as an oracle. Note that an oracle can be an algorithm (for
example, we will consider an oracle that solves a distributional problem with certain success probability
in Chapter 4).

Observation 4.3.6. Consider an oracle algorithm AO. Suppose that A calls the oracle O at most Q(n)
times. If A and O runs in time TA(n) and TO(n), respectively, then the total running time of AO is at
most TA(n) + TO(n)Q(n).

We will construct a randomized oracle algorithm AO that solves #Emb(Ka,b) with total running
time na−Ω(ϵ), where the oracle O solves the k-wise direct product (#Emb(Ka,b),Ka,b,n)k with success
probability at least n−o(ϵ) in time na−ϵ for k = polylog(n). Here, the number Q(n) of queries has to be
at most no(1).

4.4 Doubly-Efficient Interactive Proof System

This section is devoted to the proof of Theorem 4.2.4. Fix a prime n|V (H)| < q < 2n|V (H)| and consider

the polynomial EMBCOLn,H,q : FE(Kn×H)
q → Fq defined in (3.1). In our interactive proof system IP, the

verifier checks the statement that EMBCOLn,H,q(x) = C for given C ∈ Fq and x ∈ FE(Kn×H)
q . Recall

that, if x is an edge indicator vector of a graph G, then EMBCOLn,H,q(x) = #Emb(H)(G) holds.

4.4.1 Downward reducibility

We may assume without loss of generality that n = 2t for some t ∈ N. Since otherwise, we can add
isolated vertices to G. For each i ∈ V (H), let Vi := {v ∈ V (Kn ×H) : c(v) = i}.

For each i ∈ V (H), let (Vi,0, Vi,1) be a partition of Vi such that |Vi,0| = |Vi,1| = |Vi|/2. For η ∈
{0, 1}V (H), let Eη = ∪ij∈E(H)E(Vi,η(i), Vj,η(j)), where E(S, T ) = {e ∈ E(Kn×H) : e∩S 6= ∅ and e∩T 6=
∅} for S, T ⊆ V (Kn×H) (see Figure 4.1). Since |Vi,η(i)| = |Vi|/2, we can identify Eη with E(Kn/2×H).
From the definition (3.1), we have

EMBCOLn,H,q(x) =
∑

η∈{0,1}V (H)

EMBCOLn/2,H,q(x[Eη]), (4.1)

where x[Eη] ∈ FEη
q is the restriction of x on Eη.

We identify {0, 1}V (H) with {0, 1, . . . , 2|V (H)| − 1} ⊆ Fq in the following way. Regard V (H) =
{0, . . . , k − 1} ⊆ Fq for k = |V (H)| and consider the mapping {0, 1}V (H) 3 η 7→

∑
i∈V (H) 2iη(i) ∈

{0, . . . , 2|V (H)| − 1} ⊆ Fq. This mapping is injective and thus we can regard η as an element of Fq. For
η ∈ {0, . . . , 2|V (H)| − 1}, let δη : Fq → Fq be the degree-(2|V (H)| − 1) polynomial satisfying

δη(z) =

{
1 if z = η,

0 if z 6= η and 0 ≤ z < 2|V (H)|.

Note that these 2|V (H)|−1 conditions specify δη since δη has degree 2|V (H)|−1. Let m = |E(Kn/2×H)|.
Suppose E(Kn/2 × H) = {e1, . . . , em} and Eη = {eη1 , . . . , eηm} for each η ∈ {0, 1}V (H). For each

η ∈ {0, 1}V (H) and v ∈ FEη
q , define v′ ∈ FE(Kn/2×H)

q by v′[ei] = v[eηi ]. Then, for x ∈ FE(Kn×H)
q ,

let x̃ : Fq → FE(Kn/2×H)
q be x̃(·) :=

∑
η∈{0,1}V (H) δη(·)(x[Eη])′. Note that x̃ satisfies (i) x̃(η) = x[Eη]

holds for all η ∈ {0, 1}V (H), and (ii) for each e ∈ E(Kn/2 × H), the function Fq 3 z 7→ x̃(z)[e] ∈ Fq

is a polynomial of degree 2|V (H)| − 1. In condition (i), we identified Eη with E(Kn/2 × H). For each

η, the function δη can be constructed by O(2|V (H)||V (H)|) field operations using the fast univariate
polynomial interpolation [Hor72]. Since our computational model is O(log n)-Word RAM, we can per-
form any field operation on Fq in constant time. Thus, the construction of x̃ can be done in time
O(2|V (H)||V (H)||E(H)|n2). Using x̃(·), we can rewrite the recursion formula (4.1) as

EMBCOLn,H,q(x) =
∑

η∈{0,...,2|V (H)|−1}

EMBCOLn/2,H,q(x̃(η)). (4.2)
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H
V1,0 V1,1

V2,0 V2,1

V3,0 V3,1

V4,0 V4,1

1

2

3

4

G(Kn × H)

Eη

Figure 4.1: An example of Eη. In this example, η = (1, 0, 0, 1) ∈ {0, 1}V (H). Four grey areas represent
Vi,η(i) for i = 1, 2, 3, 4.

Note that EMBCOLn,H,q(x̃(·)) is a univariate polynomial over Fq of degree |E(H)|(2|V (H)| − 1).

4.4.2 Description and analysis of IP

Now we present IP that verifies the statement “EMBCOLn,H,q(x) = C”. Suppose that n = 2t. IP consists

of t+ 1 rounds. The verifier is given a vector x ∈ FE(Kn×H)
q (in our case, x is the edge indicator of the

input graph G). At each round, the verifier updates the vector x and the constant C. In r-th round, the
protocol proceeds as follows.

Verifier. When r = t+ 1, check EMBCOLn,H,q(x) = C and halt.

Prover. Send a polynomial G(·) of degree at most |E(H)|(2|V (H)| − 1) over Fq to the verifier.

Verifier. Check C =
∑

z∈{0,...,2|V (H)|−1}G(z). If not, reject. Otherwise, construct the polynomial

vector x̃(·) using x. Sample i ∼ Unif(Fq) and proceed to the next round, where Verifier checks the
statement “EMBCOLn/2,H,q(x̃(i)) = G(i)” recursively.

The task of the prover is to construct the function EMBCOLn/2,H,q(x̃(·)). Note that we can construct

EMBCOLn/2,H,q(x̃(·)) by evaluating EMBCOLn/2,H,q(x̃(·)) at |E(H)|(2|V (H)| − 1) + 1 points. The evalu-

ation is reducible to #Emb
(H)
col via (3.3). Thus, one can modify IP above such that the verifier asks the

prover to solve #Emb
(H)
col for (log n)O(1) instances. In what follows, we analyze this modified protocol.

Running time

Let n be the size of the original input. In the beginning of r-th round, the size of x is |E(Kn×H)|/4r−1 =
|E(H)| · 4t−r+1. Thus, in the (t+ 1)-th round, the verifier runs in constant time. Any other task of the
verifier can be done in time n2(log n)O(1) (the bottleneck is the simulation of the reduction of constructing

EMBCOLn/2,H,q(x̃(·)) to #Emb
(H)
col ).

Completeness and soundness

The perfect completeness of IP is easy: If the statement is true, an honest prover convinces the veri-
fier with probability 1 by sending the polynomial EMBCOLn/2,H,q(x̃(·)) at each round (recall that the
polynomial EMBCOLn,H,q(x̃(·)) satisfies the recurence formula (4.2)).

Now we show the soundness.
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Proposition 4.4.1. Let n = 2t. If the statement “EMBCOLn,H,q(x) = C” is false, then for any provers,

the verifier rejects with probability
(

1 − D
q

)t−1

.

Proof. The proof is based on the standard argument of sumcheck protocols. We show Proposition 4.4.1
by induction on the number of rounds. Suppose that the statement “EMBCOLn,H,q(x) = C” is false. In
the last t-th round, the verifier immediately reject (with probability 1).

Let D := |E(H)|(2|V (H)| − 1) be the degree of EMBCOLn/2,H,q(x̃(·)). Fix 1 ≤ r < t and suppose that
the verifier rejects with probability (1 −D/q)t−r during (r + 1)-th to t-th rounds. Consider r-th round
with the assumption that the the statement “EMBCOLn,H,q(x) = C” is false. Then, any provers cheat
with sending a polynomial G(·) that is not equal to EMBCOLn/2,H,q(x̃(·)). It holds that

Pr
i∼Unif(Fq)

[
G(i) 6= EMBCOLn/2,H,q(x̃(i))

]
≥ 1 − D

q

since both G and EMBCOLn/2,H,q(x̃(·)) are degree at most D. Therefore, with probability 1 −D/q, the
rounds proceeds to the next (t+ 1)-th round with a false statement. By the induction assumption, the
verifier rejects with probability at least (1−D/q) · (1−D/q)t−r = (1−D/q)1+t−r, which completes the
proof of Proposition 4.4.1.

Ability of an honest prover

In IP, the prover is required to send a polynomial G that is expected to be EMBCOLn/2,H,q(x̃(·)). As

mentioned above, this can be reduced to solving m = polylog(n) instances of #Emb
(H)
col . Moreover, by

Theorem 3.2.5, each of the m instances can be reduced to polylog(n) instances of (#Emb
(H)
col ,G

(H)
n,1/2). In

other words, an honest prover can construct the polynomial EMBCOLn/2,H,q(·) by solving mpolylog(n) =

polylog(n) instances of the distributional problem (#Emb
(H)
col ,G

(H)
n,1/2).

Suppose that the prover has oracle access to a randomized algorithm solving (#Emb
(H)
col ,G

(H)
n,1/2) with

success probability 1 − (log n)−L1 . Then, by the union bound, the probability that the oracle outputs
at last one wrong answer is at most polylog(n) · (log n)−L1 ≤ (log n)−L0 if L1 = L1(H,L0) is sufficiently
large.

This completes the proof of Theorem 4.2.4.

4.4.3 Interactive proof system for counting Ka,b

By combining Theorems 3.2.7 and 4.2.4 and Lemma 3.5.1, we obtain an interactive proof system for
#Emb(Ka,b) as follows.

Corollary 4.4.2 (IP for #Emb(Ka,b)). Let H be a fixed graph. There is an O(log n)-round interactive

proof system IP for the statement “#Emb(Ka,b)(G) = C” such that, given an input (G,n,C),

• The verifier accepts with probability 1 if the statement is true (perfect completeness), while it rejects
for any prover with probability at least 2/3 otherwise (soundness).

• The verifier runs in time n2(log n)O(ab) and sends (log n)O(ab) instances of #Emb(Ka,b) at each
round.

Furthermore, for any contant L0, there exists a constant L1 = L1(a, b, L0) such that, if the prover solves

(#Emb(Ka,b),Ka,b,n) with success probbalitiy 1 − (log n)−L1 , then the verifier accepts with probability
1 − (log n)−L0 .

Proof. For a given graphG, the verifier applies Lemma 3.5.1 and reduces #Emb(Ka,b) to solvingm = O(1)

instances of #Emb
(Ka,b)
col .

Then, the verifier solves each of the m instances G′
1, . . . , G

′
m of #Emb

(Ka,b)
col using the reduction of

Theorem 3.2.5 with the help of the prover. Let C ′
1, . . . , C

′
m be the values obtained by the reduction. Now,

the verifier suffices to check that, for each i ∈ [m], the answer of the i-th instance G′
i of #Emb

(Ka,b)
col is

C ′
i (if all of these m values are the correct one, then the verifier could solve the original instance G of

#Emb(Ka,b)).
To this end, run IP of Theorem 4.2.4 with letting H = Ka,b. Here, an honest prover suffices to solve

(#Emb(Ka,b),Ka,b,n) since #Emb
(Ka,b)
col reduces to solving polylog(n) instances of (#Emb(Ka,b),Ka,b,n)

by combining the reductions of Lemma 3.5.1 and Theorem 3.2.7.
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4.5 Fine-Grained Direct Product Theorem

In this section, we provide a sufficient condition for a direct product theorem to hold. We will present
a direct product theorem for any distributional problem that admits a selector. The notion of selector
that we use in this chapter is defined below.

Definition 4.5.1 ((Oracle) Selector; [Hir15]). A randomized oracle algorithm S is said to be a selector
from Π to a distributional problem (Π,D) with success probability 1 − δ if

1. given access to two oracles A0, A1 one of which solves (Π,D) with success probability 1−δ, on input
x, the oracle algorithm SA0,A1 computes Π(x) with high probability (say, probability ≥ 3

4), and

2. for any n ∈ N and any input x ∈ supp(Dn), each query q of S to the oracles A0 and A1 satisfies
that q ∈ supp(Dn).

In order to obtain a direct product theorem in the settings of fine-grained complexity, it will be crucial
to consider a selector with polylog(n) queries.

4.5.1 Selector for subgraph counting problems

In this subsection, we show the existence of a selector with polylog(n) queries for #Emb
(H)
col . We first

recall the notion of instance checker, which is known to imply the existence of selector ([Hir15]).

Definition 4.5.2 (Instance Checker; Blum and Kannan [BK95]). For a problem Π, a randomized oracle
algorithm M is said to be an instance checker for Π if, for every instance x of Π and any oracle A,

1. PrM [MA(x) = Π(x)] = 1 if A solves Π correctly on every input, and

2. PrM [MA(x) 6∈ {Π(x), fail}] = o(1).

The existence of an instance checker for a problem Π is implied by an efficient interactive proof system
for Π where the computation of an honest prover is efficiently reducible to Π. By using the interactive
proof system of Theorem 4.2.4, we obtain the following instance checker with polylog(n) queries for

#Emb
(H)
col .

Theorem 4.5.3. There exists an instance checker Checker for #Emb
(H)
col such that, given a graph G ⊆

Kn ×H,

1. Checker runs in time Õ(n2),

2. for any oracle A, CheckerA calls the oracle A at most (log n)CH times, where CH is a constant that
depends only on H, and

3. each query G′ of Checker satisfies G′ ⊆ Kn ×H.

Proof. Recall IP of Theorem 4.2.4. For a given oracle A, Checker obtains C := A(G) and then runs IP

using A as a prover to verify #Emb
(H)
col (G) = C. If the verifier accepts, then Checker outputs C and

otherwise it outputs fail.

Suppose the oracle A solves #Emb
(H)
col correctly. Then, Checker output the correct answer with

probability 1 by the perfect completeness of IP.
Now we check the second condition of Definition 4.5.2. If A(G) is the correct answer, then the output

of Checker is either A(G) or fail. Otherwise, IP proceeds with the false statement that #Emb
(H)
col (G) =

A(G). It follows from the soundness of IP (c.f. Proposition 4.4.1) that Verifier rejects with probability
(1 − O(q−1))t. Hence, Pr[Checker(G) = fail] ≥ 1 − O(t/q) = 1 − o(1).

Theorem 4.5.4 (Restatement of Theorem 4.2.2). Let H be a fixed graph. There exists a selector S from

#Emb
(H)
col to (#Emb

(H)
col ,G

(H)
n,1/2) with success probability 1 − 1/polylog(n) such that

1. S runs in time Õ(n2), and

2. S makes at most polylog(n) queries.
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Proof. We combine the instance checker C of Theorem 4.5.3 with a worst-case to average-case reduction
R (Theorem 3.2.5).

Here is the algorithm of a selector S. Given a graph G and oracle access to A0, A1, for each b ∈ {0, 1},
the selector S simulates the instance checker C(G), and answer any query q of the instance checker by
running the reduction RAb(q). If the checker outputs some answer other than fail, the selector S outputs
the answer and halts.

The correctness of S can be shown as follows. Let Ab be an oracle that solves (#Emb
(H)
col ,G

(H)
n,1/2)

with success probability 1 − 1/ polylog(n), where b ∈ {0, 1}. By the correctness of the reduction R, the

algorithm RAb solves #Emb
(H)
col with high probability. Therefore, if the instance checker C is simulated

with oracle access to RAb , then by the property of an instance checker, C outputs the correct answer
with high probability. Moreover, C outputs a wrong answer with probability at most o(1); thus, the
selector outputs the correct answer with high probability.

Corollary 4.5.5. There is an Õ(n2)-time selector S from #Emb(Ka,b) to (#Emb(Ka,b),Ka,b,n) with
success probability 1 − 1/ polylog(n). Moreover, S makes at most polylog(n) queries.

Proof. From Theorem 4.5.4, we obtain a selector S from #Emb
(Ka,b)
col to (#Emb

(Ka,b)
col ,G(Ka,b)

n,1/2 ). Here,

we let H = Ka,b. Invoke Proposition 3.2.6 that reduces (#Emb
(Ka,b)
col ,G(Ka,b)

n,1/2 ) to (#Emb(Ka,b),Ka,b,n)

in 2O(a+b) = O(1) time. Note that the reduction of Proposition 3.2.6 preserves the success probability
within a constant factor. Thus, each oracle query of S can be replaced by the reduction and we obtain a

selector from #Emb
(Ka,b)
col to (#Emb(Ka,b),Ka,b,n). By Lemma 3.5.1, #Emb(Ka,b) is efficiently reducible

to #Emb
(Ka,b)
col , from which the existence of a selector from #Emb(Ka,b) to (#Emb(Ka,b),Ka,b,n) follows.

4.5.2 Direct product theorem for any problem with selector

Using the notion of selector, we provide a direct product theorem in the context of fine-grained complexity.
A direct product of a distributional problem is formally defined as follows. Recall Definition 4.1.1 of the
direct product of a distributional problem.

The following direct product theorem gives an almost uniform direct product, in the sense that it
requires O(log 1/ϵ) bits of non-uniform advice in order to identify which is a correct algorithm. We
observe that the direct product theorem is quite efficient and useful even in the setting of fine-grained
complexity.

Theorem 4.5.6 (Impagliazzo, Jaiswal, Kabanets, and Wigderson [IJKW10]). Let k ∈ N, ϵ, δ > 0 be
parameters that satisfy ϵ > exp (−Ω(δk)). There exists a randomized oracle algorithm M that, given
access to an oracle C that solves (Π,D)k with success probability ϵ, with high probability, produces a list
of deterministic oracle algorithms M1, · · · ,Mm such that MC

i computes (Π,D) with success probability
1 − δ for some i ∈ {1, . . . ,m}, where m = O(1/ϵ).

If an oracle C can be computed in TC(n) time, then each MC
i runs in time O(TC(n)ϵ−1 log δ−1)).

The running time of M is at most O(ϵ−1TC(n)).

Remark 4.5.7. The algorithm M of Theorem 4.5.6 works even when Π is not a decision problem (see
Theorem 1.6 of [IJKW10]).

Lemma 4.5.8. Let (Π,D) be a distributional problem. Suppose there exists a selector S from Π to
(Π,D) with success probability 1− δ that calls an oracle at most Q(n) times. Let M1, . . . ,Mm be a list of
deterministic algorithms such that, (1) for some i ∈ {1, . . . ,m}, Mi solves (Π,D) with success probability
1 − δ, (2) for all i ∈ {1, . . . ,m}, Mi runs in time tM (n), and (3) for all i, j ∈ {1, . . . ,m}, the selector
SMi,Mj runs in time tS(n) (here, tS(n) does not take the running times of Mi and Mj into account).

Then, there exists a t(n)-time randomized algorithm that solves Π with high probability, where t(n) =
O(m2(tM (n)Q(n) + tS(n)) logm/ log δ−1).

Proof. Let x be an input. From the assumption, there exists a selector S such that PrS [SA0,A1(x) =
Π(x)] ≥ 1−1/16m for any oracles A0, A1 and any input x. Here, at least one of A0 and A1 solves (Π,D)
with success probability 1 − δ. Note that the probability PrS [SA0,A1(x) = Π(x)] can be assumed to be
1 − 1/16m since one can repeat the computation of S for O(logm) times and then output the majority.

Let us call this selector S̃.
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We present a randomized algorithm B that solves Π. For each i, j ∈ {1, . . . ,m} with i 6= j, B runs

S̃Mi,Mj (x) and let cij be its output. If there exists i ∈ {1, . . . ,m} such that cij = c for all j ∈ {1, . . . ,m},
B outputs c. If B outputs nothing during the iteration, B outputs anything. Since the overall running
time of S̃Mi,Mj is at most (tS(n) + tM (n)Q(n)) · O(logm) for every i, j, the algorithm B runs in time
O(m2(tM (n)Q(n) + tS(n)) logm).

We claim the correctness of the algorithm B. From the assumption, there exists i ∈ {1, . . . ,m} such

that Mi solves (Π,D) with success probability 1 − δ. For this Mi, we have PrS̃ [S̃Mi,Mj (x) = Π(x)] ≥
1 − 1/16m for every j. By the union bound, with probability at least 15/16, ci,j = Π(x) for every j.
Similarly, we also have cj,i = Π(x) for every j with probability at least 15/16. These two properties
guarantee that the output of B is equal to Π(x). Overall, with probability at least 1−3/16, the algorithm
B outputs Π(x).

We usually set Q(n) = polylog(n). We now present a completely uniform direct product theorem for
any problem that admits a polylog(n)-query selector.

Theorem 4.5.9 (Direct Product Theorem for Any Problem with Selector). Let k ∈ N, ϵ, δ > 0 be
parameters that satisfy ϵ > exp (−Ω(δk)). Let (Π,D) be a distributional problem. Suppose there exists a
tS(n)-time selector S from Π to (Π,D) with success probability 1 − δ that calls an oracle at most Q(n)
times.

Suppose that there exists a t(n)-time algorithm solving (Π,D)k with success probability ϵ. Then, there
exists an O((t(n)Q(n)ϵ−1 log δ−1 + tS(n))ϵ−2 log ϵ−1)-time algorithm that solves Π with high probability.

Proof. Let A be a t(n)-time algorithm solving (Π,D)k with success probability ϵ. By using the algorithm
M of Theorem 4.5.6, MA produces a list of oracle algorithms M1, · · · ,Mm such that MA

i computes (Π,D)
with success probability 1− δ for some i ∈ {1, . . . ,m}, where m = O(1/ϵ). Then, we apply Lemma 4.5.8
using MA

1 , . . . ,M
A
m as the list of algorithms. Note that, from Theorem 4.5.6, each MA

i runs in time
O(t(n)ϵ−1 log δ−1) and M runs is time t(n)/ϵ. Thus, the algorithm solving Π of Lemma 4.5.8 runs in
time O((t(n)Q(n)ϵ−1 log δ−1 + tS(n))ϵ−2 log ϵ−1).

We obtain the main result (Theorem 3.1.2) by combining a selector (Corollary 4.5.5) with the direct
product theorem (Theorem 4.5.9).

Proof of Theorem 4.1.2. We prove the contrapositive. Assume that there exists a t(n)-time algorithm

that solves (#Emb(Ka,b),Ka,b,n)k with success probability ϵ = n−α/4, where t(n) = na−α.

By Corollary 4.5.5, there is a Õ(n2)-time selector using Q(n) = polylog(n) queries from #Emb(Ka,b)

to (#Emb(Ka,b),Ka,b,n) with success probability 1− δ, where δ = (log n)−CH for a constant CH > 0 that
depends only on H. We choose k = O(δ−1 log ϵ−1) ≤ O(α(log n)CH+1) = polylog(n) large enough so that
the assumption of Theorem 4.5.9 is satisfied. By Theorem 4.5.9, we obtain a t′(n)-time algorithm that

solves #Emb(Ka,b), where t′(n) = Õ((n2+t(n))·nα/2) ≤ Õ(na−α/2). This contradicts Theorem 3.2.1.

4.6 Fine-Grained XOR Lemma

In this section, we show a XOR lemma in the context of fine-grained complexity. We focus on the XOR
problem Π⊕k defined as follows.

Definition 4.6.1. Let Π be a problem such that Π(x) ∈ {0, 1} for any input x. For a parameter k ∈ N,
let Π⊕k be the problem of computing

∑k
i=1 Π(xi) (mod 2) on input (x1, . . . , xk).

Throughout this section, we consider decision problems unless otherwise noted. For a distributional
problem (Π,D), let Dk be the direct product of D (see Definition 4.1.1). Suppose that there is a selector
from Π to (Π,D) that makes at most polylog(n) queries. The aim of this section is to derive the average-
case hardness of the distributional problem (Π⊕k,Dk) from the worst-case hardness assumption of Π (see
Theorem 4.6.3). To this end, we combine Direct Product Theorem (Theorem 4.5.9) and the well-known
list-decoding technique for the Hadamard code due to Goldreich and Levin [GL89]. Let us restate the
Goldreich-Levin theorem as follows.

Theorem 4.6.2 (Goldreich-Levin Theorem [GL89]). Let (Π,D) be a distributional problem and let
k = k(n) ∈ N, ϵ = ϵ(n) > 0 be parameters. Then, there exists an oracle algorithm M that, given
an oracle A solving (Π⊕k,Dk) with success probability 1/2 + ϵ, produces with high probability a list of
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deterministic oracle algorithms M1, . . . ,Mm such that, for some t ∈ {1, . . . ,m}, the oracle algorithm
MA

t solves (Π,D)2k with success probability ϵ/(6
√
k). Here, m = O(k/ϵ2).

If an oracle A can be computed in time TA(n), then each MA
i runs in time O

(
TA(n)k2.5/ϵ2

)
for any

i, and M runs in time O
(
m · TA(n)k2.5/ϵ2

)
= O

(
TA(n)k3.5/ϵ4

)
.

Proof. The proof is essentially given in [GL89]. Let (Π,D) be the distributional problem and k =
k(n), ϵ = ϵ(n) be the parameters mentioned in Theorem 4.6.2. Consider the following problem Π′: Given

2k instances x1, . . . , x2k of Π and r ∈ {0, 1}2k, compute
∑2k

i=1 ri · Π(xi) mod 2. Let (Π′,D′) be the
distributional problem, where, in D′, an input (x1, . . . , x2k, r) is sampled as (x1, . . . , x2k) ∼ D2k and
r ∼ Unif({0, 1}2k). Note that, if r ∼ Unif({0, 1}2k), with probability at least

(
2k
k

)
/22k ≥ 1/(2

√
k), the

vector r ∈ {0, 1}2k has exactly k ones (note that
(
2k
k

)
≥
(
1 − 1

8k

)
4k√
πk

). Conditioned on this event,

the distributional problem (Π′,D′) is equivalent to (Π⊕k,Dk). Let A′ be the algorithm that takes 2k
instances x1, . . . , x2k and r ∈ {0, 1}2k as input and outputs A(xi1 , . . . , xik) if r contains exactly k ones
in the position of i1 < · · · < ik; otherwise outputs a random bit. This algorithm A′ runs in time O(t(n))
and solves (Π′,D′) with success probability at least 1/2 + ϵ/(2

√
k). In other words,

Pr
A′,x1,...,x2k,r∼Unif({0,1}2k)

[
A′(x1, . . . , xk, r) =

2k∑
i=1

riΠ(xi) mod 2

]
≥ 1

2
+

ϵ

2
√
k
.

Now we present the algorithm M mentioned in Theorem 4.6.2. We say that an input (x1, . . . , x2k) is
good if

Pr
A′,r∼Unif({0,1}2k)

[
A′(x1, . . . , xk, r) =

2k∑
i=1

riΠ(xi) mod 2

]
≥ 1

2
+

ϵ

4
√
k
.

We claim that at least ϵ/(4
√
k) fraction of (x1, . . . , xk) are good. To see this, let E be the event that

A′ success (i.e., A′(x1, . . . , x2k, r) =
∑2k

i=1 riΠ(xi) (mod 2)) and let F be the event that (x1, . . . , x2k) is

good. Assume Pr[F ] < ϵ/(4
√
k). Then, from the property of A′ and the assumption, we have

1

2
+

ϵ

2
√
k
≤ Pr[E ]

≤ Pr[E|F ]Pr[F ] + Pr[E|not F ]Pr[not F ]

<
ϵ

4
√
k

+

(
1

2
+

ϵ

4
√
k

)
=

1

2
+

ϵ

2
√
k
.

Thus we have Pr[F ] = Pr[(x1, . . . , x2k) is good] ≥ ϵ/(4
√
k).

Let m = 24k/ϵ2 and ℓ be the minimum integer satisfying m ≤ 2ℓ. The algorithm M produces a list
M1, . . . ,M2ℓ such that, for some i ∈ {1, . . . , 2ℓ}, MA′

i solves (Π,D)2k for good inputs (it outputs anything
for non-good inputs). Let s(1), . . . , s(ℓ) ∼ Unif({0, 1}2k) be ℓ i.i.d. random vectors. Construct m distinct

nonempty subsets T1, . . . , Tm ⊆ [ℓ] in a canonical way and let r(i) :=
∑

j∈Ti
s
(i)
j . Note that, for every

i 6= i′, r(i) and r(i
′) are pairwise independent random vectors and each r(i) is drawn from Unif({0, 1}2k).

Now we present the list of oracle algorithms M1, . . . ,M2ℓ . For each t ∈ {1, . . . , 2ℓ}, the algorithm

MA′

t works as follows. Write t =
∑ℓ

j=1 2j−1wj as a binary extension. In other words, (w1, . . . , wℓ) can

be seen as an ℓ-bits of advice. The bit wj tells us the value of 〈Π(x), s(j)〉 :=
∑2k

i=1 Π(xi)s
(j)
i (mod 2).

Note that, for some t, this equality holds for all j = 1, . . . , ℓ.
Suppose that the input (x1, . . . , x2k) is good. Given (w1, . . . , wℓ), for every i = 1, . . . ,m, MA′

t

does the following: First, MA′

t computes W (i) :=
∑

j∈Ti
wj . Note that, for some t, we have W (i) =∑

j∈Ti
〈Π(x), s(j)〉 = 〈Π(x), r(i)〉. Then, for every index l ∈ {1, . . . , 2k}, MA′

t calls the oracle and ob-

tain A′(x1, . . . , x2k, r
(i)
1 , . . . , r

(i)
l−1, r

(i)
l , r

(i)
l+1, . . . , r

(i)
2k ), where z := 1 − z for z ∈ {0, 1}. The output O(i)

satisfies W (i) +O(i) = Π(xl) (mod 2) if A′ success. This happens with probability 1/2 + ϵ/(4
√
k) since

(x1, . . . , x2k) is good. We repeat this for Q = 96k1.5/ϵ2 times and then we can compute Π(xl) by taking
the majority among the Q trials with successes probability at least 1− 1

12k for each l = 1, . . . , 2k. To see

this, let Zi be a binary indicator random variable such that Zi = 1 if and only if W (i) + O(i) = Π(xl).
Let Z = Z1 + · · · + ZQ. It suffices to show Pr[Z > Q/2] ≥ 1 − 1

3k . Note that E[Z] ≥ Q
2 + ϵQ

4
√
k
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and Var[Z] =
∑Q

i=1 Var[Zi] ≤ Q since the random variables Zi are pairwise independent. From the
Chebyshev inequality, we obtain

Pr

[
Z ≤ Q

2

]
≤ Pr

[
|Z −E[Z]| ≥ ϵQ

4
√
k

]
≤ Pr

[
|Z −E[Z]| ≥ ϵ

√
Q

4
√
k

√
Var[Z]

]
≤ 16

√
k

ϵ2Q
≤ 1

6k
.

Here, recall that the Chebyshev inequality asserts

Pr
[
|Z −E[Z]| ≥ ξ

√
Var[Z]

]
≤ 1

ξ2

for any ξ > 0. Then, from the union bound over 2k indices, MA′

t (for the appropriate t) computes
(Π(x1), . . . ,Π(x2k)) with probability at least 2/3.

Note that MA′

i is deterministic without loss of generality since the coin flips can be given by M . The

success probability of MA′

i is at least (2/3) · (ϵ/(4
√
k)) ≥ ϵ/(6

√
k) since input (x1, . . . , x2k) is good with

probability at least ϵ/(4
√
k). The running time of MA′

i is O(Qk) = O(k2.5/ϵ2) for all i ∈ {1, . . . ,m}.
Thus, if A′ is a TA(n)-time algorithm, then we can construct Mi as a deterministic O(TA(n)k2.5/ϵ2)-time
algorithm. The total running time of M is at most m ·O(TA(n)k3.5/ϵ4) since M constructs m = O(k/ϵ2)
algorithms each of them runs in time O(TA(n)k2.5/ϵ2).

Now we prove the main result of this section.

Theorem 4.6.3 (XOR lemma for any problem with selector). Let k ∈ N, ϵ, δ > 0 be parameters satisfying
ϵ > exp(−Ω(δk)). Let (Π,D) be a distributional decision problem.

Suppose there exists a tS(n)-time selector S from Π to (Π,D) with success probability 1− δ that calls
an oracle at most Q(n) times. Suppose that there exists a t(n)-time algorithm solving (Π⊕k,Dk) with
success probability 1

2 + ϵ.
Then, there exists a t′(n)-time randomized algorithm that solves Π with high probability. Here t′(n) =

O
(
(tS(n) +Q(n)t(n)) · log(1/δ)(k/ϵ)8

)
.

Proof. From the assumption, we have a t(n)-time algorithm A solving (Π⊕k,Dk) with success probability
1
2 + ϵ. Then, by Theorem 4.6.2 using A as the oracle, we obtain a list of deterministic oracle algorithms

M1, . . . ,Mm such that MA
i solves (Π,D)2k with success probability Ω

(
ϵ/
√
k
)

for some i ∈ {1, . . . ,m},
where m = O(k/ϵ2). Each of Mi runs in time O(t(n)k2.5ϵ−2) if we take the running time of A into
account. This list can be constructed in time O(t(n)k3.5ϵ−4).

Let δ > 0 be the parameter mentioned in Theorem 4.6.3. For each i ∈ {1, . . . ,m}, apply Theorem 4.5.6
using Mi as the oracle. This yields a list Mi,1, . . . ,Mi,m′ of deterministic algorithms for each i ∈
{1, . . . ,m}, where m′ = O(ϵ−1). Moreover, if Mi∗ solves (Π,D)2k, then Mi∗,j∗ solves Π with success
probability 1−δ for some j∗ ∈ {1, . . . ,m′}. For every i, j, Mi,j runs in time O(t(n)k2.5ϵ−2 ·ϵ−1 log δ−1) ≤
O(t(n)k2.5ϵ−3 log δ−1).

Now we have a list (Mi,j) of mm′ = O(kϵ−3) deterministic algorithms. From Lemma 4.5.8, there
exists an algorithm B that solves Π with high probability. The overall running time of B is at most
O
(
(mm′)2(tS(n) +Q(n)t(n)k2.5ϵ−3) log(

√
k/ϵ) log(mm′)

)
≤ O

(
(tS(n) +Q(n)t(n)) · (k/ϵ)8

)
.

4.6.1 Application 1: ⊕EMB
(H)
col

Let H be a fixed graph. Consider the problem ⊕Emb
(H)
col of computing the parity of #Emb

(G)
col (H) for a

given graph G. For a parameter k, let
⊎k G(H)

n,1/2 be the distribution of random graphs that is a direct

sum of k i.i.d. graphs drawn from G(H)
n,1/2. That is, let G1, . . . , Gk ∼ G(H)

n,1/2 be i.i.d. random graphs.

Suppose that G(Vi) ∩G(Vj) = ∅ for any i 6= j. Then, the graph G defined by V (G) =
⋃k

i=1 V (Gi) and

E(G) =
⋃k

i=1E(Gi) forms the distribution
⊎k G(H)

n,1/2. Let Emb
(H)
col be the decision problem in which we

are asked to decide whether #Emb
(H)
col (G) > 0 or not for a given graph G. This subsection is devoted to

the proof of the following result.
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Theorem 4.6.4. Suppose that there exists a t(n)-time algorithm solving the distributional problem

(⊕Emb
(H)
col ,

⊎k G(H)
n,1/2) with success probability 1

2 + ϵ far any k = polylog(n). Then, there exists a

t(n) · (log n/ϵ)O(1)-time randomized algorithm solving Emb
(H)
col with probability 2/3.

The proof of Theorem 4.6.4 consists of the following three steps. First, we present a randomized

reduction of Emb
(H)
col to ⊕Emb

(H)
col in the worst-case sense. Then, we check that the parity problem

⊕Emb
(H)
col admits a Õ(n2)-time selector with polylog(n) queries. Finally, we apply Theorem 4.6.3 to

boost the error tolerance. The second and third steps imply Theorem 4.2.5. More specifically, we obtain
the following.

Theorem 4.6.5 (Refinement of Theorem 4.2.5). Let H be an arbitrary graph. Suppose that there exists

a T (n)-time randomized algorithm that solves (⊕Emb
(H)
col ,

⊎k G(H)
n,1/2) with success probability greater than

1
2 + ϵ for any k = O(log ϵ−1). Then, there exists a T (n)(log n/ϵ)O(1)-time randomized algorithm that

solves ⊕Emb
(H)
col with probability at least 2/3 for any input.

Remark 4.6.6. Theorem 4.2.5 immediately follows from Theorem 4.6.5 (substitute ϵ = n−c to Theo-
rem 4.6.5).

Parity vs. Detection.

Lemma 4.6.7. Suppose that there exists a t(n)-time randomized algorithm solving ⊕Emb
(H)
col for any

input with probability at least 2/3. Then, there exists a t′(n)-time randomized algorithm that solves

Emb
(H)
col with probability at least 2/3. Here, t′(n) = O(2|E(H)|t(n)).

Proof. The proof is essentially given in Appendix A of [BABB19]. For completeness, we present the

proof. Consider the polynomial PG : FE(G)
2 → F2 defined as

PG(x) :=
∑

F⊆E(G):
F is isomorphic to H

∏
e∈F

xe.

Then, G does not contain H if and only if PG(·) ≡ 0. The degree of PG is |E(H)|. Moreover, if PG(·) 6≡ 0,

then PG(z) = 1 for at least 2−|E(H)| fraction of z ∈ F|E(G)|
2 (see, e.g., Lemma 2.6 of [NS94]).

We present an algorithm that solves Emb
(H)
col using an oracle for ⊕Emb

(H)
col . Let m = 100 · 2|E(H)|

and sample m i.i.d. random vectors z1, . . . , zm ∼ Unif(FE(G)
2 ). Then, compute PG(z1), . . . , PG(zm). If

PG(zi) = 1 for some i, output YES. Otherwise, output NO. Note that one can compute PG(·) by solving

⊕Emb
(H)
col since PG(·) is a polynomial over F2.

If G does not contain H, the algorithm outputs NO with probability 1. If G contains H, the
probability that the algorithm outputs NO is at most (1 − 2−|E(H)|)m ≤ e−100.

Selector for ⊕EMB
(H)
col .

Theorem 4.6.8. There exists a selector S from ⊕Emb
(H)
col to (⊕Emb

(H)
col ,G

(H)
n,1/2) with success probability

1 − 1/polylog(n) such that (1) S runs in time Õ(n2), and (2) The number of oracle accesses is at most
polylog(n).

Proof. The proof is essentially the same as that of Theorem 4.5.4. First, we encode ⊕Emb
(H)
col to the

low-degree polynomial EMBCOLn,H,F2t
. Note that, since F2t has characteristic 2 (i.e., a+ a = 0 for any

a ∈ F2t), computing the polynomial EMBCOLn,H,F2t
(x) for x ∈ {0, 1}E(H)×Kn is equivalent to solving

⊕Emb
(H)
col by regarding the input x as the edge indicator of a graph. Using Corollary 3.4.2, we reduce

computing EMBCOLn,H,F2t
to solving the distributional problem (EMBCOLn,H,F2t

,U (H)
n (F2t)). More-

over, we can reduce (EMBCOLn,H,F2t
,U (H)

n (F2t)) to (EMBCOLn,H,F2t
,U (H)

n (F2)) with query complexity

(log n)O(|E(H)|) using the technique of [BABB19]. This yields a worst-case-to-average-case reduction for

⊕Emb
(H)
col (c.f., Theorem 3.2.5).

Similarly, a slight modification of the interactive proof system IP of Theorem 4.2.4 works for ⊕Emb
(H)
col .

To be more specifically, let us consider an interactive proof system IP′ for the statement “⊕Emb
(H)
col (G) =



CHAPTER 4. FINE-GRAINED HARDNESS AMPLIFICATION 47

b”. The protocol IP′ is the same as IP except for using F2t instead of Fq. Note that the equation (4.2)
holds even for EMBCOLn,H,F2t

. Moreover, computing the polynomial EMBCOLn,H,F2t
can be reduced to

computing EMBCOLn,H,F2
using the aforementioned technique of [BABB19].

Using the interactive proof system IP′ for ⊕Emb
(H)
col , we can construct an Õ(n2)-time polylog(n)-query

instance checker C ′ for ⊕Emb
(H)
col (see Theorem 4.5.3). Combining the instance checker C ′ and the worst-

case-to-average-case reduction, we can construct the desired selector (see the proof of Theorem 4.5.4).

XOR lemma for ⊕EMB
(H)
col (proof of Theorem 4.6.5). Assume that there exists a t(n)-time al-

gorithm A that solves (⊕Emb
(H)
col ,

⊎k G(H)
n,1/2) with success probability ϵ. Note that the distributional

problem (
⊕

(⊕Emb
(H)
col )k, (G(H)

n,1/2)k) is equivalent to the distributional problem (⊕Emb
(H)
col ,

⊎k G(H)
n,1/2).

Hence, the algorithm A also solves (
⊕

(⊕Emb
(H)
col )k, (G(H)

n,1/2)k). From Theorem 4.6.8, there exists an

Õ(n2)-time selector using polylog(n) oracle accesses from ⊕Emb
(H)
col to (⊕Emb

(H)
col ,G

(H)
n,1/2) with success

probability 1 − (log n)−C for some constant C > 0 that depends only on H. Let δ = (log n)−C and
k = k(n) be parameters such that the assumptions of Theorem 4.6.3 is satisfied. Note that we can set
k = (log n)O(C) = polylog(n). Then, by Theorem 4.6.3, we have an t′(n)-time ranndomized algorithm

that solves ⊕Emb
(H)
col with high probability, where t′(n) = Õ((n2 + t(n)) · (k/ϵ)8 = t(n) · (log n/ϵ)O(1)

(here we assume t(n) ≥ n2).

Proof of Theorem 4.6.4. We combine Lemma 4.6.7 and Theorem 4.6.5. Suppose that there exists

a t(n)-time algorithm solving (⊕Emb
(H)
col ,

⊎k G(H)
n,1/2) with success probability ϵ. From Theorem 4.6.5,

there exists a t(n) · (log n/ϵ)O(1)-time randomized algorithm for ⊕Emb
(H)
col . Then, from Lemma 4.6.7, we

obtain a 2|E(H)| · t(n) · (log n/ϵ)O(1)-time randomized algorithm for Emb
(H)
col .

4.6.2 Application 2: ⊕Ka-Subgraph

Recall that ⊕Ka-Subgraph is the problem of computing the parity of the number of Ka subgraphs
contained in a given graph. This subsection is devoted to the proof of Theorem 4.1.3. Recall that
G(n, 1/2) is the distribution of the Erdős–Rényi graph G(n, 1/2), and

⊎k G(n, 1/2) is the distribution of
the disjoint union of k random graphs G1, . . . , Gk each of which is independently drawn from G(n, 1/2).

Theorem 4.6.9 (Refinement of Theorem 4.1.3). Suppose that there exists a T (n)-time randomized algo-

rithm that solves (⊕Ka-Subgraph,
⊎k G(n, 1/2)) with success probability 1

2 + ε for any k = polylog(n).

Then, there exists a T (n)(log n/ε)O(1)-time randomized algorithm that solves ⊕Ka-Subgraph for any
input with probability 2/3.

Proof of Theorem 4.1.3. Theorem 4.6.9 directly implies Theorem 4.1.3 (let ε = n−ϵ).

The core of the proof of Theorem 4.6.9 is the existence of the following efficient selector.

Lemma 4.6.10. There exists an Õ(n2)-time selector S from ⊕Ka-Subgraph to the distributional prob-
lem (⊕Ka-Subgraph,G(n, 1/2)) with success probability 1 − 1/polylog(n). Moreover, the number of
oracle accesses of S is at most polylog(n).

Proof. The proof of Lemma 4.6.10 is similar to that of Corollary 4.5.5. From Theorem 4.6.8, we have

obtain a selector from ⊕Emb
(Ka)
col to (⊕Emb

(Ka)
col ,G(Ka)

n,1/2). Then, we use the reduction by Boix-Adserá,

Brennan, and Bresler [BABB19]. They reduced (⊕Emb
(Ka)
col ,G(Ka)

n,1/2) to (⊕Ka-Subgraph,G(n, 1/2)) with

preserving the success probability up to a constant factor (Lemma 3.10 of [BABB19]). Using their reduc-

tion, each query of the selector S can be replaced by the reduction. This yields a selector from ⊕Emb
(Ka)
col

to (⊕Ka-Subgraph,G(n, 1/2)). We then use the reduction of Lemma 3.3 of Boix-Adserá, Brennan, and

Bresler [BABB19]. They reduced ⊕Ka,b-Subgraph to ⊕Emb
(Ka)
col . Specifically, if ⊕Emb

(Ka)
col can be

solved in time t(n), then there exists a t(n) +O(n2)-time algorithm for ⊕Ka-Subgraph.

Proof of Theorem 4.6.9. Suppose that there exists a T (n)-time randomized algorithm that solves the dis-

tributional problem (⊕Ka-Subgraph,
⊎k G(n, 1/2)) with success probability 1

2+ϵ for any k = polylog(n).

Note that (⊕Ka-Subgraph,
⊎k G(n, 1/2)) is equivalent to ((⊕Ka,b-Subgraph)⊕k, (G(n, 1/2))k). From

Theorem 4.6.3 and Lemma 4.6.10, we obtain a t′(n)-time randomized algorithm solving ⊕Ka,b-Subgraph
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with probability 2/3, where t′(n) = (n2 + t(n)(log n/ϵ)O(1) = t(n) · (log n/ϵ)O(1) (here, we assume
t(n) = Ω(n2) and let δ = 1 − (log n)−C) and k = (log n)O(1).



Chapter 5

Functional Voting

5.1 Model

In this chapter, we introduce functional voting, which contains the pull voting, best-of-two, and best-
of-three as special cases. Then we investigate basic properties of functional voting. The model in this
chapter will play a central role in Chapters 6 and 7.

Definition 5.1.1 (Functional voting process). Let V be a finite set. Let f : R → R be a function
satisfying f([0, 1]) = f([0, 1]), f(0) = 0, and f(1) = 1. Let P ∈ [0, 1]V×V be a transition matrix over
V . For a fixed subset A ⊆ V , let B = V \ A and let (Xv)v∈V be independent binary random variables
defined as

Pr[Xv = 1] = f
(
P (v,A)

)
if v ∈ B,

Pr[Xv = 0] = f
(
P (v,B)

)
if v ∈ A.

(5.1)

For A ⊆ V and (Xv) above, define A′ = {v ∈ V : Xv = 1}. A functional voting with respect to f is the
Markov chain (At)t∈Z≥0

over 2V given by At+1 = (At)
′. We call the function f a betrayal function.

In particular, a functional voting with respect to f on a graph G is the functional voting with respect
to f where transition matrix P is given as the simple random walk (2.1) on G.

Note that, if At ∈ {∅, V } then At+1 = At since f(0) = 0 and f(1) = 1.

Definition 5.1.2. Consider a functional voting on V . For A ⊆ V , the consensus time, denoted by
Tcons(A), is defined as

Tcons(A) := min {t ≥ 0 : At ∈ {∅, V }, A0 = A} .

Definition 5.1.3 (Best-of-two and best-of-three). The best-of-two is a functional voting with respect to
fBo2 : x 7→ x2. The best-of-three is a functional voting with respect to fBo3 : x 7→ 3x2 − 2x3.

Remark 5.1.4. The definitions of best-of-two and best-of-three on a graph given in Definition 5.1.3
coincide with the best-of-two and best-of-three introduced in Section 1.2.1. Note that the pull voting is
a functional voting with respect to fpull : x→ x.

5.2 Previous Works on Voting Processes

In this part, we review previous results concerning voting processes on graphs.
The pull voting is a simple and well-studied voting process [NIY99, HP01]. The pull voting and

its variants have been studied as a model of interactive particle systems in the context of statistical
physics. In the context of voting process, Hassin and Peleg [HP01] showed that the expected consensus
time is O(n3 log n) for any non-bipartite graphs and any initial opinion configuration, where n is the
number of vertices. Note that, for bipartite graphs, there is an initial opinion configuration that never
reaches consensus. Cooper, Elsässer, Ono, and Radzik [CEOR13] improved the bound of Hassin and
Peleg [HP01] by showing that the expected consensus time is O(n3). Cooper and Rivera [CR16] proposed
the linear voter model, that is a generalization of the pull voting, push voting and several other voting
processes.

49
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Doerr Goldberg, Minder, Sauerwald, and Scheideler. [DGM+11] introduced best-of-two and showed
that, for complete graphs initially involving two possible opinions, the consensus time of best-of-two is
O(log n) with high probability. Since best-of-two reaches consensus much faster than the pull voting, the
study of best-of-two has gathered special attention in the area of distributed computing.

Motivated by the application in distributed computing, several researchers have studied voting process
on complete graphs initially involving k ≥ 2 opinions [BCN+16, BCN+17a, BCE+17, GL18]. Becchetti,
Clemanti, Natale, Pasquale, and Trevisan [BCN+16] introduced the best-of-three and obtained an upper
bound on the consensus time of the process on complete graphs. Interestingly, it is known that best-
of-three outperforms best-of-two in the multi-opinion setting: Berenbrink, Clemanti, Elsässer, Kling,
Mallmann-Trenn, and Natale [BCE+17] proved that, on the complete graph, best-of-three reaches con-
sensus within O(n3/4(log n)7/8) rounds from any initial configuration (k is arbitrary), while best-of-two
requires Ω(n/ log n) rounds to reach consensus for some initial configuration. Ghaffari and Lengler [GL18]

proved that the consensus time of the best-of-three on the complete graph is Õ(n2/3), where the term

“Õ(·)” hides a (log n)O(1) factor.
Several researchers considered the best-of-two and best-of-three on general graphs. Cruciani, Natale,

Nusser, and Scornavacca [CNNS18] studied best-of-two on the core periphery network. Cruciani, Natale,
and Scornavacca [CNS19] studied best-of-two on the (a, b)-regular stochastic block model, which is a graph
consisting of two a-regular graphs connected by a b-regular bipartite graph. Kang and Rivera [KR19]
considered the best-of-three on graphs with minimum degree nγ for γ = Ω((log log n)−1). Under the
assumption that the initial configuration is randomly sampled from a biased distribution, they proved
that the process reaches consensus within O(log log n) rounds. There is a line of works that studies these
voting processes on expander graphs [CEOR13, CER14, CER+15] (see Section 7.1.1 for details).

The best-of-k is a natural generalization of pull voting, best-of-two and best-of-three. In each round,
every vertex v randomly selects k neighbors (with replacement) and then if at least bk/2c+1 of them have
the same opinion, the vertex v adopts it. Note that the best-of-1 is equivalent to pull voting. Abdullah
and Draief [AD15] studied a variant of best-of-k (k ≥ 5 is odd) on a specific class of sparse graphs that
contains the random regular graph Gn,d of d = o(

√
log n) with a random initial configuration. To the

best of our knowledge, best-of-k has not been studied explicitly so far.
In Majority (a.k.a. local majority), each vertex v updates its opinion to match the majority opinion

among the neighbors. This simple model has been extensively studied in previous works [BCO+16,
Ber01, GZ18, Pel98, Pel02, Zeh18]. For example, Majority on certain families of graphs including the
Erdős–Rényi random graph [BCO+16, Zeh18], random regular graphs [GZ18] have been investigated.
See [Pel02] for further results.

5.3 Basic Property

In this section, we explore basic properties of a functional voting on an n-vertex graph. For fixed
A ⊆ V , let α = |A|/n and α′ = |A′|/n. Note that α′ is a random variable that can be written as
the sum of independent random variables: α′ = 1

n

∑
v∈V 1v∈A′ . Hence, from the Hoeffding bound

(Proposition 5.4.3), we obtain the following.

Proposition 5.3.1 (Concentration of α′). For any κ > 0,

Pr [|α′ −E[α′]| ≥ κ] ≤ 2 exp

(
−2κ2

n

)
.

In particular, it holds w.h.p. that α′ = E[α′] + O(
√

log n/n).

Consider a functional voting on the n-vertex complete graph with self-loops (that is, the transition
matrix P satisfies Pu,v = 1/n for all u, v ∈ V ). Then, we can write E[α′] as

E[α′] = α+
1

n

∑
v∈B

Pr[v ∈ A′] − 1

n

∑
v∈A

Pr[v ∈ B′]

= α+ (1 − α)f(α) − αf(1 − α).

Therefore, we can view the sequence (αt)t∈Z≥0
(αt = |At|/n) as an iteration of applying the mapping

x 7→ x+ (1 − x)f(x) − xf(1 − x).
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5.4 Tool

We present inequalities that will be used in Chapters 6 and 7.

5.4.1 Concentration inequalities

Proposition 5.4.1 (A variant of the Chernoff bound; Corollary 1.10.4 of [DN20]). Let X1, X2, . . . , Xn

be independent random variables taking values in [0, 1]. Let X =
∑

i∈[n]Xi. Then, for any k ≥ 2eE[X],
we have

Pr [X ≥ k] ≤ 2−k.

Proposition 5.4.2 (Additive Chernoff bound; Theorems 10.10 and 10.11 of [DN20]). Let X1, X2, . . . , Xn

be independent random variables taking values in [0, 1]. Let X =
∑

i∈[n]Xi. Then for any δ ≥ 0,

Pr[X ≥ E[X] + δ] ≤ exp

(
−1

3
min

{
δ2

E[X]
, δ

})
,

Pr[X ≤ E[X] − δ] ≤ exp

(
− δ2

2E[X]

)
.

Proposition 5.4.3 (Hoeffding bound; Theorem 10.9 of [DN20]). Let X1, X2, . . . , Xn be independent
random variables. Assume that each Xi takes values in a real interval [ai, bi] of length ci := bi − ai. Let
X =

∑
i∈[n]Xi. Then for any δ > 0,

Pr [X ≥ E[X] + δ] ≤ exp

(
− 2δ2∑

i∈[n] c
2
i

)
,

Pr [X ≤ E[X] − δ] ≤ exp

(
− 2δ2∑

i∈[n] c
2
i

)
.

Corollary 5.4.4. Let X1, X2, . . . , Xn be independent random variables. Assume that each Xi takes
values in a real interval [ai, bi] of length ci := bi − ai. Let X =

∑
i∈[n]Xi. Then, for any δ > 0,

Pr [|X| ≥ |E[X]| + δ] ≤ 2 exp

(
− 2δ2∑

i∈[n] c
2
i

)
,

Pr
[
|X| ≤

∣∣E[X]
∣∣− δ

]
≤ 2 exp

(
− 2δ2∑

i∈[n] c
2
i

)
.

Proof. For the first inequality, it is straightforward to see that

Pr [|X| ≥ |E[X]| + δ] = Pr [|X| − |E[X]| ≥ δ] ≤ Pr [|X −E[X]| ≥ δ]

≤ 2 exp

(
− 2δ2∑

i∈[n] c
2
i

)
.

Note that |x| − |y| ≤ |x− y| for any x, y ∈ R. Similarly, it holds that

Pr [|X| ≤ |E[X]| − δ] = Pr [|E[X]| − |X| ≥ δ] ≤ Pr [|E[X] −X| ≥ δ]

≤ 2 exp

(
− 2δ2∑

i∈[n] c
2
i

)
,

and we obtain the claim.

Proposition 5.4.5 (The Janson inequality; Theorem 21.12 of [FK16]). Let I1, . . . , IM be independent
binary random variables and let F1, F2, . . . , FN be subsets of [M ]. Consider a random variable Y defined
as

Y :=
∑
i∈[N ]

∏
e∈Fi

Ie.
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Then, it holds for any t ≤ E[Y ] that

Pr [Y ≤ E[Y ] − t] ≤ exp

(
− t2

2∇

)
where

∇ :=
∑

i∈N,j∈N :
Fi∩Fj ̸=∅

E

(∏
e∈Fi

Ie

) ∏
e′∈Fj

Ie′

 .
Proposition 5.4.6 (The Kim-Vu concentration inequality; Main Theorem of [KV00]). For a given set
[M ] = {1, 2, . . . ,M}, let I1, I2, . . . , IM be independent binary random variables. Now, let E ⊆ 2[M ] be a
collection of subsets of [M ] and let

Y :=
∑
F∈E

w(F )
∏
e∈F

Ie,

where w(F ) are positive coefficients. For a subset A ⊆ [M ], define YA as

YA =
∑
F∈E:
F⊇A

w(F )
∏

e∈F\A

Ie.

If the polynomial Y has degree at most k (i.e., maxF∈E |F | ≤ k), then for any positive λ > 1, it holds
that

Pr

[
|Y −E[Y ]| ≥

√
k! max

A⊆[M ]
E[YA] max

A⊆[M ]:A̸=∅
E[YA](8λ)k

]
≤ 2 exp(2 + (k − 1) logM − λ).

5.4.2 Other inequalities

Proposition 5.4.7 (The Berry-Esseen theorem; Theorem 1 of [She10]). Let X1, X2, . . . , Xn be in-
dependent random variables such that E[Xi] = 0, E[X2

i ] > 0, E[|Xi|3] < ∞ for all i ∈ [n] and∑
i∈[n] E[X2

i ] = 1. Let X =
∑

i∈[n]Xi and let Φ(x) = 1√
2π

∫ x

−∞ e−y2/2dy (the cumulative distribution

function of the standard normal distribution). Then

sup
x∈R

∣∣Pr [X ≤ x] − Φ(x)
∣∣ ≤ 5.6

∑
i∈[n]

E[|Xi|3].

Corollary 5.4.8. Let X1, X2, . . . , Xn be independent random variables and let X :=
∑

i∈[n]Xi. Suppose

that Var[X] 6= 0 and |Xi −E[Xi]| ≤ ci <∞ for all i ∈ [n]. Then for any x ∈ R,∣∣∣∣∣Pr

[
X −E[X]√

Var[X]
≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ 5.6C√
Var[X]

.

Proof. For all i ∈ [n], let

Zi :=
Xi −E[Xi]√

Var[X]
,

Z :=
∑

i∈[n]:E[Z2
i ]>0

Zi =
∑
i∈[n]

Zi.

Note that E[Z2
i ] = 0 ⇐⇒

∑
z z

2 Pr[Zi = z] = 0 ⇐⇒ Pr[Zi = 0] = 1. Then, for all i ∈ {j ∈ [n] :

E[Z2
j ] > 0}, it is easy to check that E[Zi] = 0, E[Z2

i ] > 0, and E[|Zi|3] ≤ C3

Var[X]3/2
<∞. Furthermore,

∑
i∈[n]:E[Z2

i ]>0

E[Z2
i ] =

∑
i∈[n]

E[Z2
i ] =

∑
i∈[n] E[(Xi −E[Xi])

2]

Var[X]
= 1.
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Thus we can apply Proposition 5.4.7 to Z and it holds that∣∣∣∣∣Pr

[
X −E[X]√

Var[X]
≤ x

]
− Φ(x)

∣∣∣∣∣ =

∣∣∣∣∣∣Pr

∑
i∈[n]

Zi ≤ x

− Φ(x)

∣∣∣∣∣∣
= |Pr [Z ≤ x] − Φ(x)|

≤ 5.6
∑

i∈[n]:E[Z2
i ]>0

E[|Zi|3]

≤ 5.6C√
Var[X]

∑
i∈[n]

E[Z2
i ] =

5.6C√
Var[X]

.

Corollary 5.4.9. Let X1, X2, . . . , Xn be independent random variables, c = (c1, . . . , cn) ∈ Rn be a
vector, and X :=

∑n
i∈[n]Xi. Suppose that, for all i ∈ [n], |Xi − E[Xi]| ≤ ci < ∞ and Var[X] > 0. Let

Φ(x) = 1√
2π

∫ x

−∞ e−y2/2dy. Then, for any positive x ∈ R,

Pr
[
|X| ≤ x

√
Var[X]

]
≤ Φ(x) +

5.6‖c‖33
Var[X]3/2

.

Proof. For each i ∈ [n], let

Zi :=
Xi −E[Xi]√

Var[X]
, Z :=

∑
i∈[n]:E[Z2

i ]>0

Zi =
∑
i∈[n]

Zi.

For any i ∈ [n] satisfying E[Z2
i ] > 0, it is easy to check that E[Zi] = 0, E[Z2

i ] > 0, and E[|Zi|3] ≤
c3i

Var[X]3/2
<∞. Furthermore,

∑
i∈[n]:E[Z2

i ]>0

E[Z2
i ] =

∑
i∈[n]

E[Z2
i ] =

∑
i∈[n] E[(Xi −E[Xi])

2]

Var[X]
= 1.

Thus, we can apply Proposition 5.4.7 to Z and it holds that∣∣∣∣∣Pr

[
X −E[X]√

Var[X]
≤ x

]
− Φ(x)

∣∣∣∣∣ =

∣∣∣∣∣∣Pr

∑
i∈[n]

Zi ≤ x

− Φ(x)

∣∣∣∣∣∣ = |Pr [Z ≤ x] − Φ(x)|

≤ 5.6
∑

i∈[n]:E[Z2
i ]>0

E[|Zi|3]

≤ 5.6
∑
i∈[n]

c3i
Var[X]3/2

=
5.6‖c‖33

Var[X]3/2
. (5.2)

Next we observe that

Pr
[
|X| ≥ x

√
Var[X]

]
= Pr

[
X ≥ x

√
Var[X]

]
+ Pr

[
Y ≤ −x

√
Var[X]

]
(5.3)

holds. If E[X] ≥ 0, we have

Pr
[
|X| ≥ x

√
Var[X]

]
≥ Pr

[
X ≥ x

√
Var[X] + E[X]

]
≥ 1 −Pr

[
X −E[X] ≤ x

√
Var[X]

]
≥ 1 − Φ(x) − 5.6‖c‖33

Var[X]3/2

from (5.2). Similarly, if E[X] ≤ 0, (5.2) yields

Pr
[
|X| ≥ x

√
Var[X]

]
≥ Pr

[
X ≤ −x

√
Var[X] + E[X]

]
= Pr

[
X −E[X] ≤ −x

√
Var[X]

]
≥ Φ(−x) − 5.6‖c‖33

Var[X]3/2
.

Thus, the claim holds for both cases. Note that Φ(−x) = 1 − Φ(x) holds.
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A function f : {0, 1}M → R is monotone increasing if f(x) ≤ f(y) whenever x = (x1, . . . , xM ),y =
(y1, . . . , yM ) ∈ {0, 1}M satisfies xi ≤ yi for every i = 1, . . . ,M .

Proposition 5.4.10 (The FKG inequality; Theorem 21.5 of [FK16]). Let I1, I2, . . . , IM be independent
binary random variables. Then for any two monotone increase functions f, g : {0, 1}M → R, it holds
that

E[f(I)g(I)] ≥ E[f(I)]E[g(I)]

where I = (I1, I2, . . . , IM ) ∈ {0, 1}M .



Chapter 6

Voting Process on Stochastic Block
Model

6.1 Our Results

In this chapter, we consider best-of-two and best-of-three on the graph G(2n, p, q) drawn from the
stochastic block model G(2n, p, q) (see Definition 1.2.1 for the definition). Throughout this chapter, we
assume p = ω(log n/n), in which regime each community is connected w.h.p [FK16]. We denote by V
the vertex set of the underlying graph.

Our voting process proceeds as follows. We first generate a graph G(2n, p, q) according to G(2n, p, q),
and then set an initial opinion configuration A0 ⊆ V . Then consider functional voting (see Defini-
tion 5.1.1) on the graph G(2n, p, q). We are interested in the consensus time Tcons.

Remark 6.1.1 (Two sources of randomness). A functional voting on the graph G(2n, p, q) drawn from
G(2n, p, q) involves two sources of randomness: the generation of G(2n, p, q) and the Markov chain
(A(t))t=0,1,.... We say Tcons(A) ≤ f(n) for any A ⊆ V w.h.p. if there is a set P of finite graphs satisfying

• It holds w.h.p. that G(2n, p, q) ∈ P, and

• For any n-vertex graph G ∈ P and any A ⊆ V (G), Tcons(A) ≤ f(n) w.h.p.

In the former (respectively, latter) condition, the probability is taken over G(2n, p, q) (respectively, the
process). The term “Tcons(A) ≥ g(n) for some A ⊆ V w.h.p.” is defined in a similar way.

The set P can be interpreted as a graph property (strictly speaking, P may not be a graph property
since G(2n, p, q) has a vertex set V1 ∪ V2 and P may not invariant under the isomorphism).

Cooper, Elsässer, and Radzik [CER14] used the framework of Remark 6.1.1 to consider the consensus
time of best-of-two on the random regular graph Gn,d.

Example 6.1.2. Consider the best-of-two on the graph G(2n, 1, 1). Then, Tcons(A) = O(log n) for any
A ⊆ V w.h.p. To see this, let P =

⋃
n∈N{K2n}, where K2n is the 2n-vertex complete graph. Obviously,

G(2n, 1, 1) is in P with probability 1. Moreover, from [DGM+11], it is known that Tcons(A) = O(log n)
w.h.p. for any A ⊆ V .

Example 6.1.3. Consider the best-of-two on the random regular graph Gn,d for d = ω(log n). Then,
Tcons(A) = O(log n) w.h.p. for any A ⊆ V satisfying ||A| − |V \A|| = Ω(n). To see this, let P be the set
of all λ-expander graphs for an appropriate λ = O(1/

√
np) (see Chapter 7 for the definition of λ-expander

graphs). It is known that Gn,d is O(1/
√
d)-expander w.h.p. [CGJ18, TY19]. Moreover, from [CER14], it

is known that, the best-of-two on any O(1/
√
d)-expander graph reach consensus within O(log n) rounds

w.h.p. if the initial configuration A ⊆ V satisfies ||A| − |V \A|| = Ω(n).

In this chapter we obtain two results. The first result concerns the phase transition of voting processes
on G(2n, p, q). In the second result, we consider the worst-case consensus time of voting processes on
G(2n, p, q). Here, the term “worst-case” refers to the worst initial configuration, that is, the configuration
A ⊆ V that attains the maximum consensus time.

55
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Result I: Phase transition. We obtain a “sharp threshold result” on the consensus time of voting
processes on the stochastic block model.

Theorem 6.1.4 (Phase transition of best-of-three onG(2n, p, q)). Let p = p(n) and q = q(n) be functions
such that p, q = ω(log n/n) and r = r(n) := q(n)/p(n) is a constant. Consider best-of-three on G(2n, p, q).

Then, for any constant ϵ > 0, the following hold.

(i) If r ≥ 1
7 +ϵ, then Tcons(A) = O(log log n+log n/ log(np)) for any A ⊆ V satisfying ||A| − |V \A|| =

Ω(n) w.h.p.

(ii) If r ≤ 1
7 − ϵ, then Tcons(A) = exp(Ω(n)) for some A ⊆ V w.h.p.

Theorem 6.1.5 (Phase transition of best-of-two on G(2n, p, q)). Let p = p(n) and q = q(n) be functions
such that p, q = ω(log n/n) and r = r(n) := q(n)/p(n) is a constant. Consider best-of-two on G(2n, p, q).
Then, for any constant ϵ > 0, the following hold.

(i) If r ≥
√

5 − 2 + ϵ, then Tcons(A) = O(log log n + log n/ log(np)) for any A ⊆ V satisfying
||A| − |V \A|| = Ω(n) w.h.p.

(ii) If r ≤
√

5 − 2 − ϵ, then Tcons(A) = exp(Ω(n)) for some A ⊆ V w.h.p.

The bound Tcons(A) = O(log log n+ log n/ log(np)) is tight up to a constant factor if log n/ log(np) ≥
log log n. To see this, observe that there is a set A ⊆ V such that Tcons(A) is at least half of the diameter.
In addition, it is easy to see that the diameter of G(2n, p, q) is Θ(log n/ log(np)) w.h.p. [FK16].

We also note that the consensus time of the pull voting is poly(n) w.h.p. for any connected non-
bipartite graph [HP01]. Therefore, Theorems 6.1.4 and 6.1.5 imply that best-of-two and best-of-three
can be exponentially slower than the pull voting.

Result II: Worst-case consensus time. The most difficult part in the analysis of voter processes
is the symmetry breaking, i.e. the number of iterations required to cause a small bias starting from the
half-and-half state. Here, we are interested in the worst-case consensus time with respect to initial
opinion configurations. To the best of our knowledge, all current results on worst-case consensus time
of best-of-two and best-of-three deal with complete graphs [DGM+11, BCN+17a, BCE+17, GL18]. All
previous work on non-complete graphs has involved some special bias setting (e.g. an initial bias [CER14,
CER+15, CRRS17], or a random initial opinion configuration [AD15, CNS19, KR19]). In this chapter,
we present the first worst-case result concerning the consensus time of best-of-two and best-of-three on
non-complete graphs.

Theorem 6.1.6 (Worst-case analysis of best-of-three on G(2n, p, q)). Let p ≥ q > 0 be constants and
consider best-of-three on G(2n, p, q). If q

p >
1
7 , then Tcons(A) = O(log n) w.h.p. for any A ⊆ V .

Theorem 6.1.7 (Worst-case analysis of best-of-two on G(2n, p, q)). Consider best-of-two on G(2n, p, q)
for positive constants p and q. If q

p >
√

5 − 2, then Tcons(A) = O(log n) w.h.p. for any A ⊆ V .

6.1.1 Our strategy: Structual analysis of G(2n, p, q)
Consider a functional voting on a graph G = (V,E) (see Definition 5.1.1). Then, if At = A is fixed,
then |A′| =

∑
v∈V 1v∈A′ is the sum of independent random variables; thus, the size |A′| concentrates on

E[|A′|].
As mentioned in Section 5.3, if the underlying graph is the complete graph (with self loops), the

state space of the functional voting becomes {0, . . . , n} (each state represents |A|). Therefore, the
expectation E[|At+1| | At = A] can be written as a function E[|At+1| | At = A] = F (|A|), where F (·)
is a function depending on f . For example, in best-of-three, from a straightforward calculation, we

have E[|A′|] = nfBo3

(
3 |A|

n

)
, where fBo3(x) := 3x2 − 2x3. Doerr et al. [DGM+11] exploited this idea for

best-of-two and obtained the worst-case consensus time on complete graphs.
The key observation of the best-of-three on complete graphs is that, the property that the expectation

E[|At+1| | At = A] can be written as a function F (|A|) makes the analysis of best-of-three on complete
graphs tractable. Our strategy is to extend this observation. For simplicity, we state our strategy for
the analysis of best-of-three on G(n, p). The first idea is to define a graph property P as the set of
graphs such that E[|At+1| | At = A] can be approximated by a function F (|A|). Next, we show that
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G(n, p) satisfies the graph property P. Then, the graph property P makes the analysis of best-of-three
on G(n, p) tractable.

We further extend this strategy to G(2n, p, q). Recall that, the graph G(2n, p, q) has the vertex set
V = V1 ∪ V2. For A ⊆ V and i ∈ {1, 2}, let Ai := A ∩ Vi. Since |A′

i| can be written as the sum of
random variables, we focus on E[|A′

i|]. We define a set Papprox of graphs as the set of graphs with vertex

set V1 ∪ V2 on which the best-of-three satisfies E[|A′
i|] = Fi(|A1|, |A2|) ± O(

√
n/p) for all A ⊆ V , where

F1, F2 : N2 → N are fixed functions.
The technical contribution of this chapter is to show that G(2n, p, q) ∈ Papprox w.h.p. Indeed, in

best-of-three, we show that E[|A′
i|] = Fi(|A1|, |A2|) ± O(

√
n/p) for all A ⊆ V , where Fi : N2 → N is

some function (i ∈ {1, 2}). We prove that the similar approximation result holds for the best-of-two.
Our key tool is the concentration inequalities, specifically the Janson inequality (Proposition 5.4.5) and
the Kim-Vu concentration inequality (Proposition 5.4.6).

6.1.2 Proof overview: Voting process on G(2n, p, q)

We briefly present our idea by considering the best-of-three on G(2n, p, q). The following arguments
on the best-of-three also works for the best-of-two, which implies Theorem 6.1.5. Consider a sequence

(α(t))t∈Z≥0
= ((α

(t)
1 , α

(t)
2 ))t∈Z≥0

of random variables, where α
(t)
i = |At ∩ Vi|/n for i ∈ {1, 2}. From

our technical result that G(2n, p, q) ∈ Papprox w.h.p., we can approximate the sequence (α(t))t∈Z≥0
by

a sequence (a(t))t∈Z≥0
defined as a(t+1) = H(a(t)) and α(0) = a(0) for some function H : [0, 1]2 →

[0, 1]2. Specifically, we show that ‖α(t) − a(t)‖2 = O(1)t · (1/
√
np +

√
log n/n) for all t = 0, . . . , no(1)

(Theorem 6.2.3). The function H defines a two-dimensional dynamical system, which we call the induced
dynamical system (see Figure 6.1).
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Figure 6.1: The induced dynamical system of the best-of-three on G(2n, p, q) is illustrated, where
r = q/p. Note that the best-of-three exhibits a phase transition at threshold r = 1/7 (Theorem 6.1.4).
The existence of a “sink point” affects the behavior of the best-of-three.

In terms of induced dynamical systems, we obtain two results concerning α(t). Let H be the induced
dynamical system. First, we show that, for any initial configuration A, α(t) is arbitrary closed to one of
the fixed points of H for some t = O(1). Figure 6.2 illustrates the fixed points of the induced dynamical
system H of best-of-three on G(2n, p, q). In general, it is quite difficult to predicate the orbit of a
dynamical system since some dynamical systems exhibit chaos property. Moreover, some dynamical
system has a loop of period two or more (i.e., there might exist two distinct points a,b such that
H(a) = b and H(b) = a). Therefore, the proof of the convergence of the sequence (a(t)) generated by
H is difficult in general. Fortunately, the induced dynamical system of best-of-two and best-of-three on
G(2n, p, q) is competitive, which is a nice property of dynamical systems [HS05] (see Section 6.2.4 for
definition).

Second, we investigate the behavior of α(t) starting from a point closed to a fixed point of H.
The fixed points are classified into four types using the Jacobian matrix: consensus, sink, saddle and
source points.Around consensus points, we show that the process reaches consensus within O(log log n+
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Figure 6.2: Four fixed points of the induced dynamical system H are illustrated. Note that, the
horizontal and vertical axis correspond to α1 and α2, respectively. The points (α1, α2) = (0, 0), (1, 1)
represents consensus. If r > 1/7, sink areas (excluding consensus points) do not exist.

log n/ log(np)) steps. Around sink points, we show that the process remains there for at least exp(Ω(n))
steps, and also show that sink points do not appear if r > 1/7. This yields the lower bound of the
consensus time. Around saddle and source points, we show that the process “escapes” from there within
O(log n) steps if p and q are constants. Intuitively speaking, in these two kinds of fixed points, there are
drifts towards outside and we can apply the framework of [DGM+11].

6.1.3 Organization of this chapter

As a preliminary, we introduce precise definition of our model and auxiliary results of the stochastic
block model and dynamical systems in Section 6.2. In Section 6.4, we prove Theorems 6.1.4 to 6.1.7
using the auxiliary results. In Sections 6.5 and 6.6, we prove the auxiliary results of the stochastic block
model and dynamical systems, respectively.

6.2 Auxiliary Results

In this section, we introduce auxiliary results for Theorems 6.1.4 to 6.1.7.

6.2.1 Our model

We say that a functional voting is a polynomial voting process if it is a functional voting with respect to
a polynomial. We consider a polynomial voting process on G(2n, p, q).

6.2.2 Concentration result for the stochastic block model

Consider a polynomial voting process on the graph G(2n, p, q). For a fixed A ⊆ V , let αi = |A ∩ Vi|/n
for i ∈ {1, 2} and α′

i = |A′ ∩ Vi|/n (see Definition 5.1.1 for the definition of A′). Since α′
i = 1

n

∑
v∈Vi

Xv

is the sum of independent random variables, the Hoeffding bound (Proposition 5.4.3) implies that

|α′
i −E[α′

i]| = O
(√

n log n
)

(6.1)
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holds w.h.p. (here, the probability is over the randomness of the process). For any fixed A ⊆ V , we have

E[α′
i] =

1

n

∑
v∈Vi

E[Xv]

=
1

n

∑
v∈Ai

(1 −Pr[Xv = 0]) +
1

n

∑
v∈V \Ai

Pr[Xv = 1]

=
1

n

∑
v∈Ai

(
1 − f

(
1 − degA(v)

deg(v)

))
+

1

n

∑
v∈V \Ai

f

(
degA(v)

deg(v)

)
. (6.2)

In general, (6.2) is a random variable since G(2n, p, q) is a random graph. Our key ingredient is the
following concentration result for this random variable.

Definition 6.2.1 (f -good graph). Let G = (V,E) be a graph on 2n vertices. Let f : [0, 1] → [0, 1] be
a function, V1, V2 ⊆ V be a partition of V such that |V1| = |V2| = n, and p, q ∈ [0, 1] be parameters
satisfying p ≥ q > 0 (p = p(n) and q = q(n) may depend on n). We say a graph G = (V,E) is f -good
for a partition V1, V2 and parameters p, q if the graph satisfies the following conditions.

(P1) It is connected and non-bipartite.

(P2) There is a positive constant C1 such that, for all A,S ⊆ V and i ∈ {1, 2},∣∣∣∣∣ ∑
v∈S∩Vi

f

(
degA(v)

deg(v)

)
− |S ∩ Vi|f

(
|Ai|p+ |A3−i|q

n(p+ q)

)∣∣∣∣∣ ≤ C1

√
n

p
,

where Aj = A ∩ Vj for j ∈ {1, 2}.
(P3) There is a positive constant C2 such that, for all A ⊆ V , S ∈ {A, V \A, V } and i ∈ {1, 2},

∑
v∈S∩Vi

f

(
degA(v)

deg(v)

)
≤ |S ∩ Vi|f

(
|Ai|p+ |A3−i|q

n(p+ q)

)
+ C2|A|

√
log n

np
.

Theorem 6.2.2 (Main technical theorem). Consider a stochastic block model G(2n, p, q) on a vertex set
V1 ∪ V2. Let f : [0, 1] → [0, 1] be a polynomial, and p = ω(log n/n) and q ≥ log n/n2 be functions. Then
G(2n, p, q) is f -good for a partition (V1, V2) and parameters p, q w.h.p.

The proof of (P1) is not difficult since p = ω(log n/n) and q ≥ log n/n2 (see, e.g., [FK16]). However,
proving (P2) and (P3) is challenging: we prove them in Section 6.5.

Let f : [0, 1] → [0, 1] be a polynomial and define f(x) = 1 − f(1 − x). Note that g : [0, 1] → [0, 1].
From Theorem 6.2.2, G(2n, p, q) is f - and f -good for a partition (V1, V2) and parameters p, q w.h.p.
Henceforth, we consider a polynomial voting process on a (fixed) f - and f -good graph for a partition

(V1, V2) and parameters p, q. Let r := q
p , αi := |Ai|

n and α = α1 + α2. From (6.2), (P2) and (P3), we
have

E[α′
i] = αif

(
αi + rα3−i

1 + r

)
+ (1 − αi)f

(
αi + rα3−i

1 + r

)
+ O

(
min

{
1

√
np
, α

√
log n

np

})
(6.3)

for all A ⊆ V and i = 1, 2. Here, we note that the additive error O
(

min
{√

1
np , α

√
logn
np

})
depends on

α. This property plays a key role in consensus.

6.2.3 Induced dynamical system

Consider a polynomial voting process with respect to a polynomial f on a fixed graph that is f -good
for a partition (V1, V2) and parameters p, q. Suppose that r = q

p is a constant. Define two functions

H1,H2 : [0, 1]2 → [0, 1] as

Hi(a1, a2) = aif

(
ai + ra3−i

1 + r

)
+ (1 − ai)f

(
ai + ra3−i

1 + r

)
for i ∈ {1, 2}. (6.4)
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From (6.1) and (6.3), for all A ⊆ V and i ∈ {1, 2}, it holds w.h.p. that

|α′
i −Hi(α1, α2)| = O

(√
1

np
+

√
log n

n

)
. (6.5)

Throughout this chapter, we use α = (α1, α2) and α′ = (α′
1, α

′
2) as vector-valued random variables.

Equation (6.5) leads us to the dynamical system H, where we define H : R2 → R2 as

H : a 7→ (H1(a),H2(a)). (6.6)

By combining (6.5) with the Lipschitz condition (see Section 6.3.3), it is not difficult to show the
following result.

Theorem 6.2.3. Consider a polynomial voting process with respect to f on an f -good graph for a
partition (V1, V2) and parameters p, q. For the mapping H given by (6.4) and (6.6), let (a(t))∞t=0 be the
sequence defined as {

a(0) = α(0),

a(t+1) = H(a(t)).
(6.7)

Then, there is a constant C > 0 such that

∀0 ≤ t ≤ no(1),∀A0 ⊆ V : Pr

[
‖α(t) − a(t)‖∞ ≤ Ct

(
1

√
np

+

√
log n

n

)]
≥ 1 − n−Ω(1).

Broadly speaking, Theorem 6.2.3 approximates the behavior of α(t) by the orbit a(t) of the dynamical
system determined by H. We call the mapping H induced dynamical system.

Proof of Theorem 6.2.3. From (6.5), for all A ⊆ V , there is some positive constant C1 such that ‖α′ −

H(α)‖∞ ≤ C1

(
1√
np +

√
logn
n

)
holds w.h.p. Since f and f are polynomials, the function H satisfies the

Lipschitz condition. That is, there is a positive constant C2 such that ‖H(x) −H(y)‖∞ ≤ C2‖x− y‖∞
holds for any x,y ∈ [0, 1]2 (see Section 6.3.3). Then, we have

‖α(t) − a(t)‖∞ = ‖α(t) −H(α(t−1)) +H(α(t−1)) −H(a(t−1))‖∞
≤ ‖α(t) −H(α(t−1))‖∞ + C2‖α(t−1) − a(t−1)‖∞

≤ C2‖α(t−1) − a(t−1)‖∞ + C1

(
1

√
np

+

√
log n

n

)

≤ Ct

(
1

√
np

+

√
log n

n

)
,

where C is a sufficiently large constant.

Now, we change the coordinate of H for convenience. Let δ and δ′ be

δ = (δ1, δ2) := (α1 − α2, α1 + α2 − 1), (6.8)

δ′ = (δ′1, δ
′
2) := (α′

1 − α′
2, α

′
1 + α′

2 − 1).

Axes δ1 and δ2 correspond to the dotted lines of Figure 6.2. From (6.3), for any A ⊆ V and any i = 1, 2,

E[δ′i] = Ti(δ1, δ2) + O
(

1√
np

)
holds, where

T1(d1, d2) := H1

(
1 + d1 + d2

2
,

1 − d1 + d2
2

)
−H2

(
1 + d1 + d2

2
,

1 − d1 + d2
2

)
,

T2(d1, d2) := H1

(
1 + d1 + d2

2
,

1 − d1 + d2
2

)
+H2

(
1 + d1 + d2

2
,

1 − d1 + d2
2

)
− 1.

This suggests a dynamical system T (d) = (T1(d), T2(d)). Here, we use d = (d1, d2) as a specific point
and δ = (δ1, δ2) as a vector-valued random variable. Note that δ satisfies |δ1| + |δ2| ≤ 1. In addition,
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the dynamical system T is symmetric: Specifically, T1(±d1,∓d2) = ±T1(d1, d2) and T2(±d1,∓d2) =
∓T2(d1, d2) hold. To see this, observe Hi(α2, α1) = H3−i(α1, α2) (exchange V1 and V2) and Hi(1 −
α1, 1 − α2) = 1 − Hi(α1, α2) (consider (V \ A)′ instead of A′). Consider δ(t) = (δ

(t)
1 , δ

(t)
2 ) = (α

(t)
1 −

α
(t)
2 , α

(t)
1 + α

(t)
2 − 1) and (d(t))∞t=0, where d(0) = δ(0) and d(t+1) = T (d(t)) for each t ≥ 0. From

Theorem 6.2.3, it holds w.h.p. that

‖δ(t) − d(t)‖∞ ≤ Ct

(
1

√
np

+

√
log n

n

)
(6.9)

for sufficiently large constant C > 0, any 0 ≤ t ≤ no(1) and any initial configuration A0 ⊆ V .
Let

S := {(d1, d2) ∈ [0, 1]2 : d1 + d2 ≤ 1}. (6.10)

We will show in Lemma 6.4.1 that, d(t+1) ∈ S holds for any d(t) ∈ S in best-of-two and best-of-three.
Therefore, we focus on the behavior (d(t))∞t=0 within S.

6.2.4 Orbit convergence

In this subsection, for a map T : S → S and an initial point x ∈ S, we present a sufficient condition for
the convergence of the orbit (i.e., the sequence (Tn(x))n≥0). We call a point x a fixed point if T (x) = x
holds.

Theorem 6.2.4. Let T : S → S be an injective and C1 (i.e., differentiable and its derivation is contin-
uous) function where S is defined in (6.10). Let J = (jij)i,j∈[2] be the Jacobian matrix of T at x ∈ S.
Suppose that J satisfies

(C1) For any x ∈ S, it hold that j11, j22 ≥ 0 and j12, j21 ≤ 0, and

(C2) For any x ∈ S \ {(0, 1)}, the determinant satisfies det J > 0.

Then, for any x ∈ S, there is the limit limn→∞ Tn(x) and the limit is a fixed point of T .

We will show that the dynamical system T of the best-of-two (and best-of-three) satisfies both (C1)

and (C2). Roughly speaking, from (6.9) and Theorem 6.2.4, it holds w.h.p. that δ(t) approaches around
a fixed point after constant steps (see Section 6.4 for details).

To show Theorem 6.2.4, we introduce the notion of competitive dynamical system.

Definition 6.2.5 (Competitive dynamical system). For two points x = (x1, x2) and y = (y1, y2), we
write x ≤K y if x1 ≤ y1 and y2 ≤ x2 hold. For S ⊆ R2, a map T : S → S is competitive if T (x) ≤K T (y)
whenever x ≤K y.

See [HS05] for the background of competitive dynamical systems. For two points x = (x1, x2) and
y = (y1, y2), we write x ≤ y if x1 ≤ y1 and x2 ≤ y2. We write x � y if x1 < y1 and x2 < y2.
The following known result provides a sufficient condition for the orbit convergence of a competitive
dynamical system.

Theorem 6.2.6 (Theorem 5.28 of [HS05]). Suppose that a competitive map T : S → S satisfies x ≤ y
for any x,y ∈ S of T (x) � T (y). Then, for any x ∈ S, the sequence (Tn(x))n≥0 converges to some
fixed point of T .

Proof of Theorem 6.2.4. It suffices to check the condition of Theorem 6.2.6 holds. First, we claim that
T is competitive. Let T (x) = (T1(x), T2(x)) for x = (x1, x2) ∈ S. From (C1), the function Ti is
nondecreasing on xi and is nonincreasing on x3−i. Therefore, for any (a, b), (c, d) ∈ S of (a, b) ≤K (c, d),
we have T (a, b) ≤K T (c, d). In other words, T is competitive.

Second, we claim that the inverse T−1 satisfies T−1(x) ≤ T−1(y) whenever x ≤ y. Let U := T−1

and U(x) = (U1(x), U2(x)) for x = (x1, x2) ∈ S. By the Inverse Function Theorem (Proposition 6.3.5),
the Jacobian matrix K of U at x ∈ S \ {(0, 1)} is the inverse of that of T . Thus, from (C2), we have
∂Ui

∂xj
(x) ≥ 0 for any x ∈ S \ {(0, 1)}. Hence the functions U1(x1, x2) and U2(x1, x2) are nondecreasing on

both x1 and x2. Therefore for any two points (a, b), (c, d) ∈ S of (a, b) ≤ (c, d), we have U1(a, b) ≤ U1(c, d)
and U2(a, b) ≤ U2(c, d) (note that if (a, b) = (0, 1) then (c, d) must be (0, 1) and we are done).

For any points x,y ∈ S of T (x) � T (y), the second claim implies that x = T−1(T (x)) ≤
T−1(T (y)) = y. Therefore, we can apply Theorem 6.2.6.
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6.2.5 Local dynamics around fixed points

Consider a polynomial voting process with respect to f on an f - and f -good graph for a partition (V1, V2)
and parameters p, q (recall that f(x) = 1 − f(1 − x)). Let H be the induced dynamical system.

In this subsection, we focus on the behavior of (α(t))∞t=0 when the initial point α(0) is around a fixed
point of H (i.e., a point x such that H(x) = x holds). In this case, Theorem 6.2.3 does not provide
enough information about the dynamics. In dynamical system theory, a common approach for the local
behavior around fixed points is to consider the Jacobian matrix. In what follows, we will investigate
the local dynamics from the viewpoint of the maximum singular value and eigenvalue of the Jacobian
matrix. For the readability, we put the proofs of each statements in Section 6.6.

Sink point. We begin with defining the notion of sink points. Recall that the singular value of a
matrix M is the positive square root of the eigenvalue of M⊤M (see Section 6.3.2 for formal definition
and basic properties). For x ∈ [0, 1]2 and r > 0, let B(x, r) := {y ∈ R2 : ‖x−y‖∞ < r} denote the open
ball of radius r with respect to the ℓ∞-norm.

Definition 6.2.7 (sink point). Consider a dynamical system H. A fixed point a∗ ∈ R2 is a sink point
if the Jacobian matrix J at a∗ satisfies σmax < 1, where σmax is the largest singular value of J .

Proposition 6.2.8. Consider a polynomial voting process with respect to f on an f - and f -good graph
for a partition (V1, V2) and parameters p, q such that r = q

p is a constant. Let H be the induced dynamical

system. Then, for any sink point a∗ and any sufficiently small ϵ = ω(
√

1/np),

Pr [α′ 6∈ B(a∗, ϵ) |α ∈ B(a∗, ϵ)] ≤ exp(−Ω(ϵ2n))

holds. In particular, let τ := inf
{
t ∈ N : α(t) 6∈ B(a∗, ϵ)

}
be a stopping time. Then, τ ≥ exp(Ω(ϵ2n))

holds w.h.p. conditioned on α(0) ∈ B(a∗, ϵ) for any ϵ satisfying ϵ = ω(max{1/
√
np,
√

log n/n}).

Fast consensus. We consider the case in which the initial opinion configuration A0 is closed to con-
sensus. We first observe that, in the best-of-two and best-of-three, the Jacobian matrix at the consensus
point (i.e., α = (0, 0), (1, 1)) is the all-zero matrix.

Proposition 6.2.9. Consider a polynomial voting process with respect to f on an f - and f -good graph
for a partition (V1, V2) and parameters p, q such that p

q is a constant. Suppose that the Jacobian matrix

at the point α = (0, 0) is the all-zero matrix. Then, there are constants C1, C2, δ > 0 such that

Pr

[
Tcons(A) ≤ C1

(
log log n+

log n

log np

)]
≥ 1 − n−C2

hold for any A ⊆ V satisfying |A| ≤ δn.

Escape from a fixed point. Let a∗ ∈ R2 be a fixed point of the induced dynamical system H. Let
J be the Jacobian matrix of H at a∗ and λ1, λ2 be its eigenvalues. Let ui be the eigenvector of J
corresponding to λi. Suppose that u1,u2 are linearly independent. Then, we can rewrite J as

J = U−1ΛU,

where Λ = diag(λ1, λ2) and U = (u1 u2)−1. For a fixed point a∗ ∈ R2, let β = (β1, β2) be a vector-valued
random variable defined as

β = U(α− a∗). (6.11)

From the Taylor expansion of H at a∗, we have E[β′] ≈ Λβ if ‖β‖∞ is sufficiently small.
Recall that B(a, R) is the open ball of radius R (with respect to the ℓ∞-norm) centered at a. If

|λi| > 1 for some i ∈ [2], one may expect that α(τ) 6∈ B(a∗, ϵ0) holds for any A0 ⊆ V and for some
constant ϵ0 > 0. We prove this under some assumptions.

Assumption 6.2.10 (Basic assumptions). Consider an (f1, f2)-polynomial voting process on an f1- and
f2-good graph for a partition (V1, V2) and parameters p, q, where p ≥ q ≥ 0 are constants. Let H be the
induced dynamical system. Let a∗ be a fixed point and J be the Jacobian matrix of H at a∗. We assume
that J satisfies
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(A1) The eigenvectors u1 and u2 are linearly independent.

(A2) There is a constant ϵ0 > 0 such that Var[α′
i] ≥ Ω(n−1) for any i ∈ {1, 2} and any A ⊆ V of

α ∈ B (a∗, ϵ0).

(A3) The matrix J contains an eigenvalue λ satisfying |λ| > 1.

Proposition 6.2.11. Let a∗ be a fixed point satisfying Assumption 6.2.10. Suppose that the eigenvalues
λ1, λ2 of the Jacobian matrix J at a∗ satisfies |λi| 6= 1 for all i ∈ [2]. Then, for some t = O(log n) and

some constant ϵ′ > 0, it hold w.h.p. that ‖β(t)‖∞ > ϵ′, and |β(t)
j | ≤ ϵ′ for any j ∈ [2] of |λj | ≤ 1.

We consider the case of λi = 1 for some i as follows.

Proposition 6.2.12. Let a∗ be a fixed point satisfying Assumption 6.2.10. Suppose that there is a
constant ϵ∗ > 0 satisfying

(B1) There are two positive constants ϵ1, C such that |E[β′
i]| ≥ (1 + ϵ1)|βi| − C√

n
holds for any A ⊆ V

of ‖β‖ ≤ ϵ∗ and any i ∈ [2] of |λi| > 1.

(B2) For any i ∈ [2] of |λi| ≤ 1 and any A ⊆ V of |βi| ≤ ϵ∗, it holds that Pr[|β′
i| ≤ ϵ∗] ≥ 1 − n−Ω(1).

Then, for some t = O(log n) and some constant ϵ′ > 0, it hold w.h.p. that ‖β(t)‖∞ > ϵ′, and |β(t)
j | ≤ ϵ′

for any j ∈ [2] of |λj | ≤ 1.

6.3 Tool

6.3.1 Probability

Proposition 6.3.1 (Lemma 4.5 of [CGG+18]). Consider a Markov chain (Xt)
∞
t=1 with finite state space

Ω and a function f : Ω → {0, . . . , n}. Let C3 be arbitrary constant and let m = C3

√
n log n. Suppose

that Ω, f and m satisfies the following conditions:

(1) For any positive constant h, there is a positive constant C1 < 1 such that

Pr
[
f(Xt+1) < h

√
n
∣∣ f(Xt) ≤ m

]
< C1.

(2) There are three positive constants ϵ, C2 and h such that, for any x ∈ Ω satisfying h
√
n ≤ f(x) < m,

Pr [f(Xt+1) < (1 + ϵ)f(Xt) |Xt = x] < exp

(
−C2

f(x)2

n

)
.

Then f(Xτ ) ≥ m holds for some τ = O(log n).

Corollary 6.3.2. Consider a Markov chain (Xt)
∞
t=1 with finite state space Ω and a function f : Ω →

{0, . . . , n}. Let C3 be arbitrary constant and m = C3

√
n log n. Consider a set B ⊆ Ω such that

B ⊆ {x ∈ Ω : f(x) < m}.

Suppose that Ω, f,m and B satisfy the following conditions:

(1′) For any positive constant h, there is a positive constant C1 < 1 such that

Pr
[
f(Xt+1) < h

√
n
∣∣ f(Xt) ≤ m,Xt ∈ B

]
< C1.

(2′) There are three positive constants ϵ, C2, h such that, for any x ∈ B satisfying h
√
n ≤ f(x) < m,

Pr [f(Xt+1) < (1 + ϵ)f(Xt) |Xt = x] < exp

(
−C2

f(x)2

n

)
.

(3′) For some constant C4 > 0,

Pr [Xt+1 6∈ B and f(Xt+1) < m |Xt ∈ B] ≤ O(n−C2).
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Then,

Pr [f(Xτ ) ≥ m | X0 ∈ B] ≥ 1 − n−Ω(1)

holds for some τ = O(log n).

Proof. Let Ω′ = B ∪ {a, b} be the state space with two special states a and b. We consider a Markov
chain (X ′

t)
∞
t+1 on Ω′ by

Pr[X ′
t+1 = x | X ′

t = y] =


Pr[Xt+1 = x | Xt = y] if x, y ∈ B,
Pr[Xt+1 6∈ B ∧ f(Xt+1) < m | Xt = y] if x = a and y ∈ B,
Pr[f(Xt+1) ≥ m | Xt = y] if x = b and y ∈ B,
1 if x = y ∈ {a, b}.

In other words, the special state a corresponds to the event “f(x) < m and x 6∈ B ”, and b does
“f(x) ≥ m”.

Suppose that X ′
0 ∈ B and let τ ′ = min{t : X ′

t 6∈ B} > 0 be the stopping time. Then, the above
definition of X ′

t naturally yields a coupling (Xt, X
′
t)t<τ ′ satisfying Xt = X ′

t for t < τ ′.
Let f ′ : Ω′ → {0, . . . , n} be a function given by

f ′(x) =

{
f(x) if x ∈ B,
n if x ∈ {a, b}.

Then, the Markov chain (X ′
t) on Ω′ and the function f ′ satisfies the conditions (1) and (2) of Propo-

sition 6.3.1. Hence, for some τ = O(log n), it holds that X ′
τ ∈ {a, b}. We insist that X ′

τ = b, that is,
f(Xτ ) ≥ m. Indeed, from the condition (3′), we have Pr[X ′

τ = a | X ′
0 ∈ B] ≤ τ · O(n−c2) ≤ n−Ω(1).

6.3.2 Linear algebra

Definition 6.3.3 (singular value). For a real matrix A ∈ Rm×n, singular values σ1, . . . , σm of A are
nonnegative square roots of eigenvalues of AA⊤. We write σi(A) when we specify A. In particular, the
maximum singular value, denoted by σmax, is the largest value among all singular values.

Proposition 6.3.4. For a real matrix A ∈ Rm×n, it holds that

σmax = max
v∈Rn:∥v∥2=1

‖Av‖2,

where the norm ‖ · ‖2 is the ℓ2 norm.
In particular, it holds that

‖Av‖2 ≤ σmax‖v‖2

for any vector v ∈ Rn.

6.3.3 Real analysis

Proposition 6.3.5 (The inverse function theorem; Theorem 12.17 of [Kra16]). Let f be a continuously
differentiable function from an open set U ⊆ Rk into Rk. Suppose that the Jacobian matrix J at p ∈ U
is invertible. Then there is a neighborhood V of p such that the restriction of f to V is invertible.
Moreover, the Jacobian matrix of f−1 at p is given by J−1.

Definition 6.3.6. Consider a function H : S → T , where S ⊆ Rm and T ⊆ Rn are closed sets. The
function H satisfies the Lipschitz condition if there is a constant C > 0 such that

‖H(x) −H(y)‖∞ ≤ C‖x− y‖∞

holds for any x,y ∈ S.

It should be noted that the definition of the Lipschitz condition does not depends on the norm.



CHAPTER 6. VOTING PROCESS ON STOCHASTIC BLOCK MODEL 65

Proposition 6.3.7 (Exercise 1D.3 of [DR14]). Let O ⊆ Rk be an open set and S ⊆ O be a compact
convex subset of O. Suppose that H : O → Rk is continuously differentiable on an open set O. Then H
is Lipschitz continuous on C and

‖H(x) −H(y)‖∞ ≤ max
p∈S

σmax(Jp)‖x− y‖∞,

where Jp is the Jacobian matrix at p.

Corollary 6.3.8. Let H : Rm → Rn be a function given by

H(x) = (H1(x), . . . , Hn(x)),

where Hi(x) = Hi(x1, . . . , xm) is a polynomial on x1, . . . , xm for all i ∈ [n]. Then, H satisfies the
Lipschitz condition on [0, 1]m.

6.4 Best-of-Two and Best-of-Three on Stochastic Block Model

This section is devoted proving our main results Theorems 6.1.4 to 6.1.7. For notational convenience,
let fBo3(x) := 3x2 − 2x3, fBo2(x) := x2, and fBo2(x) := 1 − fBo2(1 − x) = x(2 − x). Recall that the
best-of-two (best-of-three) is a polynomial voting with respect to fBo2 (fBo3, respectively). Consider the
best-of-two on an fBo2- and fBo2-good graph, or the best-of-three on an fBo3-good graph (note that fBo3

satisfies fBo3(x) = 1 − fBo3(1 − x) for every x ∈ [0, 1]). We consider the behavior of δ defined as (6.8).

Let u := 1−r
1+r . Then we have E[δ′i] = Ti(δ1, δ2) + O

(
1√
np

)
, where, in the best-of-three,

T1(d1, d2) :=
ud1
2

(
3 − (ud1)2 − 3d22

)
, T2(d1, d2) :=

d2
2

(
3 − 3(ud1)2 − d22

)
, (6.12)

and in the best-of-two,

T1(d1, d2) :=
d1
2

(
(2u+ 1) − (ud1)2 − (2u+ 1)d22

)
, T2(d1, d2) :=

d2
2

(
3 − u(2 + u)d21 − d22

)
. (6.13)

Note that T : S → S, where S is defined as (6.10). For notational convenience, we refer d′ to T (d).
The dynamical system H of the best-of-three is illustrated in Figure 6.3.

Lemma 6.4.1. Consider the best-of-two or best-of-three. For any d ∈ S, it holds that d′ ∈ S.

Proof. In this chapter, we prove Lemma 6.4.1 for the best-of-three. The case of the best-of-two can be
shown in the same way. If (d1, d2) ∈ S, we have 3d22 + (ud1)2 ≤ max{3, u2} ≤ 3 and d22 + 3(ud1)2 ≤
max{1, 3u2} ≤ 3. Hence, from (6.12), we have d′1 ≥ 0 and d′2 ≥ 0. Let x = 1+d1+d2

2 and y =
1+d2−d1

2 . Then, (d1, d2) ∈ S implies 1
2 ≤ x ≤ 1 and 0 ≤ y ≤ 1. In addition, a simple calculation yields

T1(d1, d2) + T2(d1, d2) = 3
(

x+ry
1+r

)2
− 2

(
x+ry
1+r

)3
≤ 1, where r = 1−u

1+u . Note that 0 ≤ x+ry
1+r ≤ 1 and the

function f : z 7→ 3z2 − 2z3 satisfies f(z) ≤ f(1) = 1 for all 0 ≤ z ≤ 1. Therefore, d′ ∈ S.

From Lemma 6.4.1 and the symmetry of T , it suffices to consider the case of δ(0) ∈ S.

6.4.1 Best-of-three

It is straightforward to check that fixed points of (6.12) in S are d∗
1,d

∗
2,d

∗
3,d

∗
4, where

d∗
i :=



(0, 0) if i = 1,(√
3u−2
u3 , 0

)
if i = 2 and u ≥ 2

3 ,(√
1

4u3 ,
√

4u−3
4u

)
if i = 3 and u ≥ 3

4 ,

(0, 1) if i = 4.

(6.14)

The Jacobian matrix at (d1, d2) of the dynamical system (6.12) is

J =
3

2

(
u(1 − (ud1)2 − d22) −2ud1d2

−2u2d1d2 1 − (ud1)2 − d22

)
. (6.15)
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d*1

d*4

d*2

d1

d2

(a) r = 1/6

d*1

d*2

d*3

d*4

d1

d2

(b) r = 1/9

Figure 6.3: The induced dynamical system H of the best-of-three. The horizontal and vertical axes
correspond to α1 and α2, respectively. The points d∗

i are the fixed points of T in S. In (a), the only sink
point is d∗

4, which is the consensus point.

Proposition 6.4.2 (Orbit convergence). Consider a sequence (d(t))∞t=0 such that d(0) ∈ S and d(t+1) =
T (d(t)). Then limt→∞ d(t) = d∗

i for some i ∈ {1, 2, 3, 4}. Additionally, suppose that u < 3
4 and d(0) =

(d
(0)
1 , d

(0)
2 ) ∈ S satisfies d

(0)
2 > c for some constant c > 0, then limt→∞ d(t) = d∗

4.

Proof of Proposition 6.4.2. If u = 1, we have d′1 + d′2 = f(d1 + d2) and d′1 − d′2 = f(d1 − d2), where
f : z 7→ 1

2z(3−z
2). Since f(z) > z for z ∈ (0, 1), we have limt→∞ d(t) ∈ {(0, 0), (0, 1), (1, 0)}. In addition,

if d
(0)
2 > 0 then d

(t)
2 → 1 as t → ∞. Suppose that 0 ≤ u < 1. Note that T is C1 and injective1 on

S. It is straightforward to check that the conditions (C1) and (C2) hold (see (6.15)). Therefore, from
Theorem 6.2.4, we obtain the first claim of Proposition 6.4.2.

We show the second claim of Proposition 6.4.2. Suppose that u < 3
4 . From (6.14), there are at most

three fixed points d∗
1,d

∗
4, and d∗

4 of T (if u ≥ 2
3 ). From the first statement of Proposition 6.4.2, we have

limt→∞ d(t) = d∗
i for some i ∈ {1, 2, 4}. If i = 4, we are done. Suppose that i = 1. Then, for any ϵ > 0,

there is T ∈ N such that ‖d(t) − d∗
1‖∞ < ϵ for all t ≥ T . Recall that, from the assumption, d

(0)
2 > 0.

From (6.12), it is easy to check that d′2 > d22 if d2 > 0. Fix a sufficiently small constant ϵ > 0 and a point
d such that ‖d− d∗

1‖∞ < ϵ and d2 > 0. Then, from (6.12), we have d′2 ≥ 1.5(d2 − 3u2ϵ2 − ϵ2) > 1.49d2.

Therefore, if d
(0)
2 satisfies ‖d(0) − d∗

1‖∞ < ϵ and d
(0)
2 > 0, then either d

(t)
1 > ϵ or d

(t)
2 > ϵ holds for

some t = Oϵ→0(log ϵ−1). This contradicts to the assumption that limt→∞ d(t) = d∗
1. Therefore, we have

limt→∞ d(t) 6= d∗
1. Similarly, we can show that limt→∞ d(t) 6= d∗

2 (when 2
3 ≤ u < 3

4 ).

Now we focus on the behavior of δ(t) when δ(0) is around a fixed point. Table 6.1 shows the property
of eigenvalues of the Jacobian matrix at d∗

i for each i ∈ {1, 2, 3, 4}.

Table 6.1: Each (c1, c2) represents the property of the eigenvalues λ1 ≥ λ2 of the corresponding Jacobian
matrix. Specifically, ci represents the sign of λi − 1. For example, (+, 0) means that λ1 > λ2 = 1 and
(+,−) means that λ1 > 1 > λ2.

points 0 < u < 2
3 u = 2

3
2
3 < u < 3

4 u = 3
4

3
4 < u ≤ 1

d∗
1 (+,−) (+, 1) (+,+) (+,+) (+,+)

d∗
2 undefined (+, 1) (+,−) (1,−) (−,−)

d∗
3 undefined undefined undefined (1,−) (+,−)

d∗
4 (−,−) (−,−) (−,−) (−,−) (−,−)

1Note that det J > 0 for any d ∈ S \ {(0, 1)}. Then, from the Inverse Function Theorem (Proposition 6.3.5), T is
injective on S.
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Recall that B(x, r) is the open ball of radius r with respect to the ℓ∞-norm. For d = (d1, d2) ∈ R2,
let 〈d〉+ := (|d1|, |d2|) ∈ R2.

Proposition 6.4.3. Consider the best-of-three on an fBo3-good graph for a partition (V1, V2) and pa-
rameters p, q such that r = q/p < 1/7 is a constant. Then there is a constant ϵ = ϵ(r) > 0 satisfying

Pr
[
〈δ′〉+ 6∈ B(d∗

2, ϵ)
∣∣ 〈δ〉+ ∈ B(d∗

2, ϵ)
]
≤ exp(−Ω(n)).

In particular, Tcons(A) = exp(Ω(n)) w.h.p. for any A satisfying 〈δ〉+ ∈ B(d∗
2, ϵ).

Proof. From Table 6.1, it is straightforward to check that the points d∗
2 and −d∗

2 are sink if r < 1
7 (or

equivalently, u > 3
4 ). Therefore, Proposition 6.4.3 immediately follows from Proposition 6.2.8.

Proposition 6.4.4. Consider the best-of-three on an fBo3-good graph for a partition (V1, V2) and pa-
rameters p, q such that r = q/p is a constant. Then, for some constant ϵ = ϵ(r) > 0, Tcons(A) ≤
O(log log n+ log n/ log(np)) holds w.h.p. for any A ⊆ V satisfying min{|A|, 2n− |A|} ≤ ϵn.

Proof. Note that the Jacobian matrix at d∗
4 is the all-zero matrix and the same holds for −d∗

4. Let ϵ > 0
be sufficiently small constant. If A satisfies |A| ≤ ϵn, apply Proposition 6.2.9. If A satisfies |A| ≥ (2−ϵ)n,
apply Proposition 6.2.9 for V \A.

Proposition 6.4.5. Consider the best-of-three on an fBo3- and fBo3(1−fBo3)-good graph for a partition

(V1, V2) and parameters p, q such that p and q are constants. If q/p > 1/7 and |δ(0)2 | = o(1), then it holds

w.h.p. that |δ(t)2 | > κ for some t = O(log n) and some constant κ > 0.

Proof. Suppose that u < 3
4 (or equivalently, r > 1

7 ) and that p ≥ q > 0 are constants. From Proposi-
tion 6.4.2, we may assume

δ(0) ∈
⋃

i∈{1,2}

B(d∗
i , ϵ2) (6.16)

for a sufficiently small constant ϵ2 > 0. We use Propositions 6.2.11 and 6.2.12.
First, we check the condition (A2) of Assumption 6.2.10. Note that variance Var[|A′

i| | A] can be

written as Var[|A′
i] =

∑
v∈Vi

g
(

degA(v)
deg(v)

)
for any A ⊆ V , where g(x) := fBo3(x)(1− fBo3(x)). Therefore,

from the property (P2) of g-goodness, there are two constants C1 > 0, C2 > 0 such that

∀A ⊆ V, ∀i ∈ {1, 2} :

∣∣∣∣Var [|A′
i|] − n · g

(
|Ai|p+ |A3−i|q

n(p+ q)

)∣∣∣∣ ≤ C2

√
n

p
. (6.17)

Using zi := ai+ra3−i

1+r , we rewrite Var[α′
i] = Var[|A′

i]/n
2 as

Var[α′
i] =

z2i (3 − 2zi)(1 − zi)
2(2zi + 1)

n
± O

(
1√
n3p

)
.

Note that Var[α′
i] = Ω(n−1) if α1 < 1 − ϵ3 or α2 < 1 − ϵ3 for some constant ϵ3 > 0. Therefore, the

statement (A2) holds for every δ satisfying δ ∈
⋃

i∈{1,2}B(d∗
i , ϵ2) with sufficiently small constant ϵ2 < 1

mentioned in (6.16).
We consider two cases: u 6= 2

3 and u = 2
3 .

The case of u 6= 2
3 . A straightforward calculation of the Jacobian matrix implies that both d∗

1 and d∗
2

satisfies the conditions (A1) and (A3) of Assumption 6.2.10. Moreover, the condition of Proposition 6.2.11
holds (see Table 6.1). Therefore, we can apply Proposition 6.2.11.

Suppose that u < 2
3 . Then the fixed point d∗

2 does not exist and thus we may assume δ(0) ∈ B(d∗
1, ϵ2).

From Proposition 6.2.11, we have |δ(t)2 | > ϵ2 for some t = O(log n) (note that, here, β = δ and the
eigenvalues satisfy 0 ≤ λ1 < 1 < λ2).

Suppose that u > 2
3 . Both eigenvalues of J1 are strictly larger than 1. Hence, for d∗

1, Proposi-

tion 6.2.11 implies that either |δ(t)1 | > ϵ2 or |δ(t)2 | > ϵ2 holds for some t = O(log n) if δ(0) ∈ B(d∗
1, ϵ2).

If the former holds with |δ(t)2 | = o(1), then δ(t+T ) ∈ B(d∗
2, ϵ2) holds for some constant T = T (ϵ2) since

d′1 > d1 holds whenever 0 < d1 <
√

3u−2
u3 and d2 = 0. Note that, at the point d∗

2, the Jacobian matrix

J2 has eigenvalues λ1, λ2 satisfying 0 < λ1 < 1 < λ2. Moreover, in look at (6.11), we have β = δ − d∗
2.

Thus, Proposition 6.2.11 yields that |δ(t
′)

2 | > ϵ2 holds for some t′ = O(log n) and for any δ(0) ∈ B(d∗
2, ϵ2).
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The case of u = 2
3 . In this case, we have d∗

1 = d∗
2 = (0, 0). We claim that this point satisfies (B1)

and (B2) and then apply Proposition 6.2.12.
Let ϵ2 > 0 be sufficiently small constant mentioned in (6.16). The Jacobian matrix J1 = J2 has

eigenvalues 1 and 3
2 . Suppose that ‖δ(0)‖∞ ≤ ϵ2 for sufficiently small constant ϵ2 > 0. Then, we have

|E[δ′2]| =
∣∣ δ2
2 (3 − 3(uδ1)2 − δ22)

∣∣ ± O(n−0.5) ≥ 1.49|δ2| − O(n−0.5). This verifies the assumption (B1).
Now we check that the assumption (B2) holds. Note that (B2) is equivalent to

Pr [|δ′1| ≤ ϵ2 | |δ1| ≤ ϵ2] ≥ 1 − n−Ω(1).

For any δ of |δ1| ≤ ϵ2, we have

|E[δ′1]| =

∣∣∣∣uδ12

∣∣∣∣ ∣∣3 − (uδ1)2 − 3δ22
∣∣± O(n−0.5) ≤ |δ1|

(
1 − 4

27
δ21

)
+ O(n−0.5).

Therefore, from the Hoeffding inequality (Proposition 5.4.3), if |δ1| ≤ ϵ2, it holds w.h.p. that

|δ′1| ≤ |δ1| −
4

27
|δ1|3 + C

√
log n

n

for sufficiently large constant C > 0 and large n. If |δ1|3 ≥ 27C
4

√
logn
n , we have |δ′1| ≤ |δ1| ≤ ϵ2 holds

w.h.p. If |δ1|3 < 27C
4

√
logn
n , we have |δ′1| = O

(√
logn
n

)
≤ ϵ2 holds w.h.p.

Thus, from Proposition 6.2.11, we have |δ(t)2 | > ϵ2 w.h.p. for some t = O(log n). This completes the
proof of Proposition 6.4.5.

Here, we prove Theorems 6.1.4 and 6.1.6 using Propositions 6.4.2 to 6.4.5.

Proof of Theorem 6.1.4. From Theorem 6.2.2, G(2n, p, q) is fBo3-good. If r > 1
7 and A0 ⊆ V satisfies∣∣|A0| − n

∣∣ = Ω(n), then we have |d(0)2 | = |δ(0)2 | > κ for some constant κ > 0. Next, for any constant

ϵ > 0, Proposition 6.4.2 implies 〈d(l)〉+ ∈ B(d∗
4, ϵ) for some constant l = l(ϵ). From (6.9), we have

〈δ(l)〉+ ∈ B(d∗
4, ϵ) for sufficiently large n. Set ϵ be the constant mentioned in Proposition 6.4.4. Then,

from Proposition 6.4.4, it holds w.h.p. that Tcons(A0) ≤ l + Tcons(Al) ≤ O(log log n+ log n/ log(np)).

If r < 1
7 , Proposition 6.4.3 yields Tcons(A0) ≥ exp(Ω(n)) w.h.p. for any A0 ⊆ V with δ(0) ∈ B(d∗

2, ϵ),
where ϵ > 0 is the constant from Proposition 6.4.3. This completes the proof of (ii).

Proof of Theorem 6.1.6. From Theorem 6.2.2, G(2n, p, q) is both fBo3- and fBo3(1−fBo3)-good w.h.p. If
|δ(0)| = o(1), then Proposition 6.4.5 yields that |δ(t)| > κ for some constant κ > 0 and some t = O(log n).
Then, from Theorem 6.1.4, we have Tcons(At) ≤ O(log log n + log n/ log(np)). Thus, Tcons(A0) ≤ t +
Tcons(At) ≤ O(log n).

6.4.2 Best-of-two

The induced dynamical system (6.13) of the best-of-two has the same form as that of the best-of-three.
A straightforward calculation yields that d′ = d ∈ S holds if and only if d ∈ {d∗

i }4i=1, where

d∗
i :=



(0, 0) if i = 1,(√
2u−1
u2 , 0

)
if i = 2 and u ≥ 1

2 ,(√
u2+u−1
(u+1)2 ,

√
1

u(u+1)2

)
. if i = 3 and u ≥

√
5−1
2 ,

(0, 1) if i = 4.

(6.18)

The Jacobian matrix J at (d1, d2) is

J =
1

2

(
2u+ 1 − 3(ud1)2 − (2u+ 1)d22 −2(2u+ 1)d1d2

−2u(u+ 2)d1d2 3 − u(2 + u)d21 − 3d22

)
. (6.19)

See Table 6.2 for the eigenvalues of J at each d∗
i .

Proposition 6.4.6. For any sequence (d(t))∞t=0, limt→∞〈d(t)〉+ = d∗
i for some i ∈ {1, 2, 3, 4}. Further-

more, if u <
√
5−1
2 and there is a positive constant κ > 0 such that the initial point d(0) = (d

(0)
1 , d

(0)
2 ) ∈ S

satisfies |d(0)2 | > κ, then limt→∞〈d(t)〉+ = d∗
4.
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Table 6.2: Each (c1, c2) represents the property of the eigenvalues λ1 ≥ λ2 of the corresponding Jacobian
matrix. Specifically, ci represents the sign of λi − 1.

points 0 < u < 1
2 u = 1

2
1
2 < u <

√
5−1
2 u =

√
5−1
2

√
5−1
2 < u ≤ 1

d∗
1 (+,−) (+, 1) (+,+) (+,+) (+,+)

d∗
2 undefined (+, 1) (+,−) (1,−) (−,−)

d∗
3 undefined undefined undefined (1,−) (+,−)

d∗
4 (−,−) (−,−) (−,−) (−,−) (−,−)

Proposition 6.4.7. Consider the best-of-two on an fBo2
1 - and fBo2

2 -good graph for a partition (V1, V2)
andparameters p, q such that r = q/p <

√
5 − 2 is a constant. Then, there is a constant ϵ = ϵ(r) > 0

satisfying

Pr
[
δ′ 6∈ B(d∗

2, ϵ)
∣∣ δ ∈ B(d∗

2, ϵ)
]
≤ exp(−Ω(n)).

In particular, Tcons(A) = exp(Ω(n)) holds w.h.p. for any A ⊆ V satisfying 〈δ〉+ ∈ B(d∗
2, ϵ).

Proposition 6.4.8. Consider the best-of-two on an fBo3-good graph for a partition (V1, V2) and pa-
rameters p, q such that r = q/p is a constant. Then, for some constant ϵ = ϵ(r) > 0, Tcons(A) ≤
O(log log n+ log n/ log(np)) holds w.h.p. for any A ⊆ V satisfying min{|A|, 2n− |A|} ≤ ϵn.

Proposition 6.4.9. Consider the best-of-two on an fBo2-, fBo2(1−fBo2)-, fBo2- and fBo2(1−fBo2)-good
graph for a partition (V1, V2) and parameters p, q such that p and q are constants. If q/p >

√
5 − 2 and

|δ(0)2 | = o(1), then it holds w.h.p. that |δ(t)2 | > κ for some t = O(log n) and some constant κ > 0.

We omit proofs of Propositions 6.4.6 to 6.4.9 since they are substantially the same as that of Propo-
sitions 6.4.2 to 6.4.5.

Proof of Theorems 6.1.5 and 6.1.7. The proof of Theorem 6.1.5 is the same as that of Theorem 6.1.4
except for the threshold and using Propositions 6.4.6 to 6.4.9 instead of Propositions 6.4.2 to 6.4.5.

6.5 Proof of f-Goodness

In this section we show Theorem 6.2.2. In Section 6.5.1, we show that the property (P2) is obtained
from Lemma 6.5.1.

Lemma 6.5.1. For a finite set V with |V | = N , let (Ie)e∈(V
2) be

(
N
2

)
independent binary random

variables. Let p := maxe∈(V
2) E[Ie]. Suppose that Np ≥ 1. For ℓ+ 1 vertex subsets S0, S1, . . . , Sℓ, let

W (S0;S1, . . . , Sℓ) :=
∑
s∈S0

∏
i∈[ℓ]

degSi
(s), (6.20)

Ŵ (S0;S1, . . . , Sℓ) :=
∑
s∈S0

∏
i∈[ℓ]

E[degSi
(s)] (6.21)

where degS(v) =
∑

s∈S\{v} I{v,s} for S ⊆ V and v ∈ V .
Then there are two positive constants C1, C2 depending only on ℓ such that the following holds with

probability 1 −N−C1 :

∀S0, S1, . . . , Sℓ :
∣∣W (S0;S1, . . . , Sℓ) − Ŵ (S0;S1, . . . , Sℓ)

∣∣ ≤ C2N(Np)ℓ−1/2.

Our proof of Lemma 6.5.1 consists of three parts. First, we give a concentration of W (Lemma 6.5.3).
Next, we give an upper bound on the gap between E[W ] and Ŵ (Lemma 6.5.4). At the end, we show
Lemma 6.5.2 which plays a key role in showing Lemmas 6.5.3 and 6.5.4.
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6.5.1 Reduction to the concentration of W

Proof of (P2) of Theorem 6.2.2 via Lemma 6.5.1. Let f(x) =
∑ℓ

j=0 cjx
j . For notational convenience,

let xv = degA(v)
deg(v) , x̄v = E[degA(v)]

E[deg(v)] and x̂ = |Ai|p+|A3−i|q
n(p+q) . Then from the triangle inequality, it holds that∣∣∣∣∣ ∑

v∈S∩Vi

(
f(xv) − f(x̂)

)∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
v∈S∩Vi

(
f(xv) − f(x̄v)

)∣∣∣∣∣+

∣∣∣∣∣ ∑
v∈S∩Vi

(
f(x̄v) − f(x̂)

)∣∣∣∣∣ . (6.22)

For the second term of the right hand of (6.22), there are two positive constants C1, C2 such that∣∣∣∣∣ ∑
v∈S∩Vi

(
f(x̄v) − f(x̂)

)∣∣∣∣∣ ≤ ∑
v∈S∩Vi

|f(x̄v) − f(x̂)| ≤ C1

∑
v∈S∩Vi

|x̄v − x̂| ≤ C2
|S ∩ Vi|

n
≤ C2.

The second inequality follows from the Lipschitz condition of f (cf. Section 6.3.3). The third inequality
holds since E[deg(v)] = (n− 1)p+ nq and (|Ai| − 1)p+ |A3−i|q ≤ E[degA(v)] ≤ |Ai|p+ |A3−i|q for any
v ∈ Vi.

For the first term of the right hand of (6.22), since

(
degA(v)

deg(v)

)j

−
(
E[degA(v)]

E[deg(v)]

)j

=

(
E[deg(v)]j − deg(v)j

) (degA(v)
deg(v)

)j
+
(
degA(v)j −E[degA(v)]j

)
E[deg(v)]j

for any j and v ∈ V , we have∣∣∣∣∣ ∑
v∈S∩Vi

(
f(xv) − f(x̄v)

)∣∣∣∣∣ =

∣∣∣∣∣∣
ℓ∑

j=1

cj
∑

v∈S∩Vi

(
(xv)j − (x̄v)j

)∣∣∣∣∣∣
≤

ℓ∑
j=1

|cj |
((n− 1)p)j

(∣∣∣∣∣ ∑
v∈S∩Vi

(
E[deg(v)]j − deg(v)j

)
(xv)

j

∣∣∣∣∣+

∣∣∣∣∣ ∑
v∈S∩Vi

(
degA(v)j −E[degA(v)]j

)∣∣∣∣∣
)
.

Note that E[deg(v)] = (n− 1)p+ nq ≥ (n− 1)p for any v ∈ V . Since∣∣∣∣∣ ∑
v∈S∩Vi

(
E[deg(v)]j − deg(v)j

)
(xv)

j

∣∣∣∣∣ ≤ max
U⊆V

∣∣∣∣∣∑
u∈U

(
E[deg(u)]j − deg(u)j

)∣∣∣∣∣
= max

U⊆V

∣∣∣∣∣∣W (U ;

j︷ ︸︸ ︷
V, . . . , V ) − Ŵ (U ;

j︷ ︸︸ ︷
V, . . . , V )

∣∣∣∣∣∣
and

∑
v∈S∩Vi

(
degA(v)j −E[degA(v)]j

)
= W (S∩Vi;

j︷ ︸︸ ︷
A, . . . , A)−Ŵ (S∩Vi;

j︷ ︸︸ ︷
A, . . . , A), we obtain the claim

from Lemma 6.5.1. Note that, for any S ⊆ V , a ∈ RV and x ∈ [0, 1]V , |
∑

s∈S asxs| ≤ maxU⊆V |
∑

u∈U au|
since

∑
s∈S:as≤0 as ≤

∑
s∈S asxs ≤

∑
s∈S:as≥0 as.

Now we introduce the following lemma, which we will use in Sections 6.5.2 and 6.5.3.

Lemma 6.5.2. Let V be a finite set of size N and fix l + 1 subsets S0, S1, . . . , Sl ⊆ V . For any
s = (s0, s1, . . . , sl) ∈ S0 × S1 × · · · × Sl, define

U(s) := {si : i ∈ {0} ∪ [l]}.

Consider
∑

s∈S p
|F(s)|, where p ∈ [1/N, 1], S ⊆ S0 × S1 × · · · × Sl and

F : S0 × S1 × · · · × Sl → 2(V
2).

Suppose that the following three conditions hold for any s ∈ S: (1) |F(s)| ≤ k, (2) F(s) ⊆
(
U(s)
2

)
and (3)

the graph G(s) =
(
U(s),F(s)

)
is connected. Let L ⊆ {0} ∪ [l] be a set of indices such that Si ∩ Sj = ∅

for any i, j ∈ L (i 6= j). Then ∑
s∈S

p|F(s)| ≤ Bl+1N(Np)k
∏

i∈L |Si|
N |L|

where Bl denotes the l-th Bell number.
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The l-th Bell number Bl is the number of possible partitions of a set with l labeled elements. It is

known that Bl <
(

0.792l
ln(l+1)

)l
for all positive integer l [DT10].

6.5.2 Concentration of W

Lemma 6.5.3. Let W and Ŵ be the values defined in (6.20) and (6.21), respectively. Then there are
two positive constants C1, C2 depending only on ℓ such that the following holds with probability 1−N−C1 :

∀S0, S1, . . . , Sℓ :
∣∣W (S0;S1, . . . , Sℓ) −E[W (S0;S1, . . . , Sℓ)]

∣∣ ≤ C2N(Np)ℓ−1/2.

Proof. For ℓ+ 1 vertex subsets S0, S1, . . . , Sℓ, let

S := {(s0, s1, . . . , sℓ) : s0 ∈ S0, si ∈ Si \ {s0} for every i ∈ [ℓ]}

and for any s = (s0, s1, . . . , sℓ) ∈
∏ℓ

i=0 Si = S0 × S1 × · · · × Sℓ, let

F (s) :=
{
{s0, si} : i ∈ [ℓ]

}
\ {s0}.

For example, F
(
(a, b, a, c, d, b, f, a)

)
=
{
{a, b}, {a, c}, {a, d}, {a, f}

}
. Then,

W (S0;S1, . . . , Sℓ) =
∑

s0∈S0

∏
i∈[ℓ]

 ∑
si∈Si\{s0}

I{s0,si}

 =
∑
s∈S

∏
i∈[ℓ]

I{s0,si} =
∑
s∈S

∏
e∈F (s)

Ie. (6.23)

Lower bound on W . First, we claim the following: There are two positive constants C3, C4 such that

Pr
[
∀S0, S1 . . . , Sℓ : W (S0;S1, . . . , Sℓ) ≥ E[W (S0;S1, . . . , Sℓ)] − C4N(Np)ℓ−1/2

]
≥ 1 −N−C3 . (6.24)

To obtain (6.24), we apply Janson’s inequality (Proposition 5.4.5) to (6.23). Then we have

Pr [∃S0, S1, . . . , Sℓ : W (S0;S1, . . . , Sℓ) ≤ E[W (S0;S1, . . . , Sℓ)] − t]

≤
(
2N
)ℓ+1

exp

(
− t2

2∇(S0;S1, . . . , Sℓ)

)
≤ exp

(
(ℓ+ 1)N − t2

2∇(S0;S1, . . . , Sℓ)

)
(6.25)

where

∇(S0;S1, . . . , Sℓ) =
∑

s∈S,s′∈S:
F (s)∩F (s′ )̸=∅

E

 ∏
e∈F (s)

Ie
∏

e′∈F (s′)

Ie′

 .
Thus it suffices to show that ∇(S0;S1, . . . , Sℓ) = O(N(Np)2ℓ−1). Since maxe∈(V

2) E[Ie] = p, it holds that

∇(S0;S1, . . . , Sℓ) =
∑

s∈S,s′∈S:
F (s)∩F (s′ )̸=∅

E

 ∏
e∈F (s)

Ie
∏

e′∈F (s′)

Ie′

 ≤
∑

s∈S,s′∈S:
F (s)∩F (s′ )̸=∅

p|F (s)∪F (s′)|. (6.26)

To bound (6.26), we apply Lemma 6.5.2 which we will prove in Section 6.5.4. Consider 2ℓ + 2 vertex
subsets S′

0, S
′
1, . . . , S

′
2ℓ+1 where S′

i := Si mod (ℓ+1). For any i ∈ {0} ∪ [2ℓ+ 1], let

S :=
{

(s0, s1, . . . , s2ℓ+1) ∈ S× S : F
(
(s0, . . . , sℓ)

)
∩ F

(
(sℓ+1, . . . , s2ℓ+1)

)
6= ∅
}
⊆

2ℓ+1∏
i=0

S′
i,

F(s) := F
(
(s0, . . . , sℓ)

)
∪ F

(
(sℓ+1, . . . , s2ℓ+1)

)
for any s = (s0, s1, . . . , s2ℓ+1) ∈

2ℓ+1∏
i=0

S′
i.

Then for any s ∈ S, G(s) =
(
U(s),F(s)

)
is a connected graph and |F(s)| ≤ 2ℓ − 1. Thus, for any

i∗ ∈ {0} ∪ [ℓ], Lemma 6.5.2 with letting l = 2ℓ+ 1, k = 2ℓ− 1 and L = {i∗} yields∑
s∈S,s′∈S:

F (s)∩F (s′) ̸=∅

p|F (s)∪F (s′)| =
∑
s∈S

p|F(s)| ≤ B2(ℓ+1)N(Np)2ℓ−1 |S
′
i∗
|

N
= B2(ℓ+1)|Si∗ |(Np)2ℓ−1. (6.27)
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Equations (6.26) and (6.27) imply the following statement: For any ℓ + 1 vertex subsets S0, S1, . . . Sℓ

and for any i∗ ∈ {0} ∪ [ℓ],

∇(S0;S1, . . . , Sℓ) ≤ B2(ℓ+1)|Si∗ |(Np)2ℓ−1 ≤ B2(ℓ+1)N(Np)2ℓ−1. (6.28)

Thus by substituting t = C4N(Np)ℓ−1/2 with C4 =
√

2(ℓ+ 1 + C3)B2(ℓ+1) to (6.25), we obtain the claim
(6.24).

Upper bound on W . To complete the proof of Lemma 6.5.3, we combine the claim (6.24) and the
following claim: There are two positive constants C5, C6 such that

Pr
[
∀S0, S1 . . . , Sℓ : W (S0;S1, . . . , Sℓ) ≤ E[W (S0;S1, . . . , Sℓ)] + C6N(Np)ℓ−1/2

]
≥ 1 −N−C5 . (6.29)

To show the claim, we consider the following expression of W . For any S0, S1, . . . , Sℓ, let W0 :=

W (S0;S1, . . . , Sℓ) and let Wi := W (

i︷ ︸︸ ︷
V ;V . . . , V , Si, Si+1, . . . , Sℓ) for each i ∈ [ℓ+ 1]. Since Wi+1 −Wi =

W (

i︷ ︸︸ ︷
V ;V, . . . , V , V \ Si, Si+1, . . . , Sℓ) for any i ∈ {0} ∪ [ℓ + 1] and

∑ℓ
i=0(Wi+1 −Wi) = Wℓ+1 −W0, we

have

W (S0;S1, . . . , Sℓ) = W (

ℓ+1︷ ︸︸ ︷
V ;V, . . . , V ) −

ℓ∑
i=0

W (

i︷ ︸︸ ︷
V ;V, . . . , V , V \ Si, Si+1, . . . , Sℓ). (6.30)

We can apply (6.24) for the second term of the right hand of (6.30). Now we try to get an upper bound

on W (

ℓ+1︷ ︸︸ ︷
V ;V, . . . , V ). For the notational convenience, let Y = W (

ℓ+1︷ ︸︸ ︷
V ;V, . . . , V ). Let Si = V for every

i ∈ {0} ∪ [ℓ] and let

E := {F (s) : s ∈ S} .

From (6.23), we have

Y =
∑
s∈S

∏
e∈F (s)

Ie =
∑
F∈E

|{s ∈ S : F (s) = F}|
∏
e∈F

Ie.

Thus applying Kim-Vu inequality (Proposition 5.4.6) to Y yields

Pr

[
|Y −E[Y ]| ≥

√
ℓ! max

A⊆(V
2)

E[YA] max
A⊆(V

2):A ̸=∅
E[YA](8λ)ℓ

]
≤ 2 exp(2 + 2(ℓ− 1) logN − λ) (6.31)

where

YA =
∑
F∈E:
F⊇A

|{s ∈ S : F (s) = F}|
∏

e∈F\A

Ie =
∑
s∈S:

F (s)⊇A

∏
e∈F (s)\A

Ie.

Now, we give an upper bound on E[YA]. Since maxe∈(V
2) E[Je] = p, it holds that

E[YA] =
∑
s∈S:

F (s)⊇A

E

 ∏
e∈F (s)\A

Ie

 ≤
∑
s∈S:

F (s)⊇A

p|F (s)\A| =
∑
s∈S:

F (s)⊇A

p|F (s)|−|A|.

If A = ∅, a direct application of Lemma 6.5.2 with letting l = k = ℓ and L = ∅ yields

E[YA] = E[Y ] ≤
∑
s∈S

p|F (s)| ≤ Bℓ+1N(Np)ℓ. (6.32)

Note that |F (s)| ≤ ℓ and G(s) = (U(s), F (s)) is a connected graph for any s ∈ S ⊆
∏ℓ

i=0 Si.
Now we consider the case |A| = κ ≥ 1. Let V (A) be the set of vertices induced by the edge set

A ⊆
(
V
2

)
. If F (s) ⊇ A for some s ∈

∏ℓ
i=0 V , the graph G′ = (V (A), A) is a star graph and hence
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|V (A)| = |A| + 1 = κ + 1. Let V (A) = {a0, a1, . . . , aκ}. Now consider (ℓ + 1) + (κ + 1) vertex subsets
S′
0, S

′
1, . . . S

′
ℓ+κ+1 where S′

i = Si for any 0 ≤ i ≤ ℓ and S′
i = {ai−(ℓ+1)} for any ℓ+ 1 ≤ i ≤ ℓ+ κ+ 1. Let

S :=

{
(s0, s1, . . . , sℓ+κ+1) ∈ S×

κ∏
i=0

{ai} : F
(
(s0, . . . , sℓ)

)
⊇ A

}
⊆

ℓ+κ+1∏
i=0

S′
i,

F(s) := F
(
(s0, . . . , sℓ)

)
for any s = (s0, s1, . . . , sℓ+κ+1) ∈

ℓ+κ+1∏
i=0

S′
i.

Note that, for any s ∈ S, the graph G(s) =
(
U(s),F(s)

)
is connected and |F(s)| ≤ ℓ. Thus Lemma 6.5.2

with letting l = ℓ + κ + 1, k = ℓ and L = {ℓ + 1, ℓ + 2, . . . , ℓ + κ + 1} (note that ai 6= aj for any i 6= j

and
∏ℓ+κ+1

i=ℓ+1 |S′
i| =

∏ℓ+κ+1
i=ℓ+1 |{ai−(ℓ+1)}| = 1) yields

E[YA] ≤
∑
s∈S:

F (s)⊇A

p|F (s)|−|A| =
1

pκ

∑
s∈S

p|F(s)| ≤ 1

pκ
Bℓ+κ+2N(Np)ℓ

∏ℓ+κ+1
i=ℓ+1 |S′

i|
Nκ+1

≤ B2(ℓ+1)(Np)
ℓ−κ. (6.33)

Combining (6.32) and (6.33), we have

max
A⊆(V

2):|A|≥1
E[YA] ≤ max

A⊆(V
2):|A|≥1

B2(ℓ+1)(Np)
ℓ−|A| = B2(ℓ+1)(Np)

ℓ−1,

max
A⊆(V

2)
E[YA] = max

{
max

A⊆(V
2):|A|≥1

E[YA],E[dℓ(V )]

}
≤ B2(ℓ+1)N(Np)ℓ.

Thus from (6.31) with λ = (2(ℓ− 1) + C7/2) logN and C8 =
√
ℓ!B2(ℓ+1)(16(ℓ− 1 + C7/2))ℓ, we obtain

Pr
[
|Y −E[Y ]| ≥ C8

√
N(logN)ℓ(Np)ℓ−1/2

]
≤ 2e2/NC7 . (6.34)

Combining (6.30), (6.24) and (6.34), the following holds with probability at least 1− 2e2/NC7 − 1/NC3 :

∀S0, S1, . . . , Sℓ :

W (S0;S1, . . . , Sℓ) ≤ E[W (S0;S1, . . . , Sℓ)] + C9

√
N(logN)ℓ(Np)ℓ−1/2 + (ℓ+ 1)C4N(Np)ℓ−1/2.

Thus we obtain the claim (6.29) and combining the claims (6.24) and (6.29) complete the proof of
Lemma 6.5.3.

6.5.3 Expectation evaluation

Lemma 6.5.4. Suppose the same setting of Lemma 6.5.1. Then for any vertex subsets S0, S1, . . . , Sℓ

and for any i∗ ∈ {0} ∪ [ℓ], there is a positive constant C such that∣∣∣E[W (S0;S1, . . . , Sℓ)] − Ŵ (S0;S1, . . . , Sℓ)
∣∣∣ ≤ C|Si∗ |(Np)ℓ−1.

Proof of Lemma 6.5.4. We show∑
s∈S0

∏
i∈[ℓ]

E[degSi
(s)] ≤ E[W (S0;S1, . . . , Sℓ)] ≤

∑
s∈S0

∏
i∈[ℓ]

E[degSi
(s)] + Bℓ+1|Si∗ |(Np)ℓ−1

for any i∗ ∈ {0} ∪ [ℓ]. The first inequality follows directly from the FKG inequality (Proposition 5.4.10)
since degSi

(s) is a monotone increase function on (Ie)e∈(V
2) for every i. Now we show the second

inequality. We write each element s ∈ S as s = (s0, s1, . . . , sℓ). Then we have

E[W (S0;S1, . . . , Sℓ)] =
∑
s∈S:

|F (s)|=ℓ

E

∏
i∈[ℓ]

I{s0,si}

+
∑
s∈S:

|F (s)|≤ℓ−1

E

∏
i∈[ℓ]

I{s0,si}


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since E[W (S0;S1, . . . , Sℓ)] =
∑

s∈S E
[∏

i∈[ℓ] I{s0,si}

]
. For the first term, since si 6= sj for any i, j ∈ [ℓ]

(i 6= j) if |F (s)| = ℓ, we obtain

∑
s∈S:

|F (s)|=ℓ

E

∏
i∈[ℓ]

I{s0,si}

 =
∑
s∈S:

|F (s)|=ℓ

∏
i∈[ℓ]

E
[
I{s0,si}

]
≤
∑
s∈S

∏
i∈[ℓ]

E
[
I{s0,si}

]
=
∑
s∈S0

∏
i∈[ℓ]

E[degSi
(s)].

For the second term, from Lemma 6.5.2,

∑
s∈S:

|F (s)|≤ℓ−1

E

 ∏
e∈F (s)

Ie

 ≤
∑
s∈S:

|F (s)|≤ℓ−1

p|F (s)| ≤ Bℓ+1|Si∗ |(Np)ℓ−1.

Note that G(s) = (U(s), F (s)) is a connected graph for any s ∈ S.

6.5.4 Proof of the key result

To complete the proof of Lemma 6.5.1, we show Lemma 6.5.2 in this section.

Proof of Lemma 6.5.2. It is easy to see that

∀s ∈ S : |U(s)| − 1 ≤ |F(s)| ≤ k

since G(s) =
(
U(s),F(s)

)
is a connected graph from the assumption. Hence we have∑

s∈S
p|F(s)| ≤

∑
s∈S

p|U(s)|−1 =
∑

s∈S:|U(s)|≤k+1

p|U(s)|−1 ≤
∑

s∈
∏l

i=0 Si:|U(s)|≤k+1

p|U(s)|−1. (6.35)

To estimate above, we introduce the following notations. For any (l + 1)-dimensional vector s =
(s0, s1, . . . , sl) ∈ S0 × S1 × · · · × Sl, let

R(s) :=
{
{j ∈ {0} ∪ [l] : sj = si} : i ∈ {0} ∪ [l]

}
.

For example, R
(
(a, b, a, c, d, b, f, a)

)
=
{
{0, 2, 7}, {1, 5}, {3}, {4}, {6}

}
. Note that R(s) is a partition

of {0} ∪ [l]. From the definition, we have |R(s)| = |U(s)|. For example, |U
(
(a, b, a, c, d, b, f, a)

)
| =

|{a, b, c, d, f}| = 5 = |R
(
(a, b, a, c, d, b, f, a)

)
|. Let Rl be the family of all partitions of {0} ∪ [l]. For

example,

R2 =
{{

{0}, {1}, {2}
}
,
{
{0}, {1, 2}

}
,
{
{1}, {0, 2}

}
,
{
{2}, {0, 1}

}
,
{
{0, 1, 2}

}}
.

Note that |Rl| = Bl+1. Then we have

∑
s∈

∏l
i=0 Si:

|U(s)|≤k+1

p|U(s)| =
∑

R∈Rl:
|R|≤k+1

∑
s∈

∏l
i=0 Si:

R(s)=R

p|U(s)| =
∑

R∈Rl:
|R|≤k+1

p|R|

∣∣∣∣∣
{
s ∈

l∏
i=0

Si : R(s) = R

}∣∣∣∣∣ . (6.36)

From the definition of R(s), for any r ∈ R(s), si = sj for any i, j ∈ r. Thus∣∣∣∣∣
{
s ∈

l∏
i=0

Si : R(s) = R

}∣∣∣∣∣ =
∑

s∈
∏l

i=0 Si:
R(s)=R

1 ≤
∑

s0∈S0

∑
s1∈S1

· · ·
∑
sl∈Sl

∏
r∈R

∏
i,j∈r

1si=sj ≤
∏
r∈R

∣∣∣∣∣⋂
i∈r

Si

∣∣∣∣∣ . (6.37)

For example, consider four vertex subsets S0, S1, S2, S3, let R =
{
{0, 1}, {2}, {3}

}
∈ R3 and let l =

{i∗} ⊆ {0} ∪ [3] where i∗ ∈ {0} ∪ [3]. Then (6.37) means that∣∣∣∣∣
{
s ∈

3∏
i=0

Si : R(s) = R

}∣∣∣∣∣
= |{(s0, s1, s2, s3) ∈ S0 × S1 × S2 × S3 : s0 = s1, s0 6= s2, s0 6= s3, s2 6= s3}|

≤
∑

s0∈S0

∑
s1∈S1

∑
s2∈S2

∑
s3∈S3

1s0=s1 ≤ |S0 ∩ S1||S2||S3| =
∏

r∈{{0,1},{2},{3}}

∣∣∣∣∣⋂
i∈r

Si

∣∣∣∣∣ .
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For an index i ∈ {0} ∪ [l], let ri be the element of R such that ri 3 i. Now let us consider the set L
described in the statement (of Lemma 6.5.2). First we assume that there are i, j ∈ L with i 6= j such
that both i and j in the same r∗ = ri = rj ∈ R. In this case, since Si ∩ Sj = ∅ from the definition of L,
we have ∏

r∈R

∣∣∣∣∣⋂
i∈r

Si

∣∣∣∣∣ =

∣∣∣∣∣ ⋂
i∈r∗

Si

∣∣∣∣∣ ∏
r∈R\r∗

∣∣∣∣∣⋂
i∈r

Si

∣∣∣∣∣ = 0. (6.38)

Now we assume that ri 6= rj for any i, j ∈ L. Then since |{ri : i ∈ L}| = |L| and R = {ri : i ∈
L} ∪R \ {ri : i ∈ L}, we have

∏
r∈R

∣∣∣∣∣⋂
i∈r

Si

∣∣∣∣∣ =
∏
i∈L

∣∣∣∣∣∣
⋂
j∈ri

Sj

∣∣∣∣∣∣
∏

r∈R\{ri:i∈L}

∣∣∣∣∣∣
⋂
j∈r

Sj

∣∣∣∣∣∣ ≤
(∏

i∈L

|Si|

)
N |R|−|L|. (6.39)

Finally, by combining (6.35) to (6.39), we obtain

∑
s∈S

p|F(s)| ≤ 1

p

∑
R∈Rl:

|R|≤k+1

p|R|

∣∣∣∣∣
{
s ∈

l∏
i=0

Si : R(s) = R

}∣∣∣∣∣
≤ 1

p

∑
R∈Rl:

|R|≤k+1

p|R|N |R|
∏

i∈L |Si|
N |L| ≤ 1

p

(∏
i∈L |Si|
N |L|

)
(Np)k+1

∑
R∈Rl:

|R|≤k+1

1

≤ |Rl|
(∏

i∈l |Si|
N |L|

)
N(Np)k = Bl+1

(∏
i∈L |Si|
N |L|

)
N(Np)k.

Note that the third inequality follows since Np ≥ 1 from the assumption.

Proof of Lemma 6.5.1. Combining Lemmas 6.5.3 and 6.5.4, we obtain the proof.

6.5.5 Concentration of sum of degree powers for small |A|
We prove that G(n, p, q) satisfies the property (P3) of Theorem 6.2.2. We begin with showing the
following two lemmas.

Lemma 6.5.5. Suppose that 0 ≤ q ≤ p = ω(log n/n). Then there are two positive constants C1, C2 such
that G(2n, p, q) satisfies the following with probability 1 − O(n−C1):

∀v ∈ V : |deg(v) − n(p+ q)| ≤ C2

√
np log n.

Proof. Applying the Chernoff bound (Lemma 5.4.2),

Pr [∃v ∈ V : |deg(v) − n(p+ q)| > t]

≤
∑
v∈V

(
exp

(
− t2

3E[deg(v)]

)
+ exp

(
− t

3

)
+ exp

(
− t2

2E[deg(v)]

))
≤ n

(
2 exp

(
− t2

6np

)
+ exp

(
− t

3

))
≤ 2 exp

(
log n− t2

6np

)
+ exp

(
log n− t

3

)
.

Note that E[deg(v)] = (n− 1)p+ nq for any v ∈ V and E[deg(v)] ≤ n(p+ q) ≤ 2np. Thus we obtain the
claim letting t = C2

√
np log n since t = C2

√
np log n ≥ C log n for some constant C.

Lemma 6.5.6. Suppose that 0 ≤ q ≤ p = ω(log n/n). Let S(A) =
{
S ∩ U : S ∈ {A, V \ A, V }, U ∈

{V1, V2, V }
}
for A ⊆ V . For any constant ℓ, there are two positive constants C1, C2 such that G(2n, p, q)

satisfies the following with probability 1 − O(n−C1):

∀A ⊆ V, ∀S0, . . . , Sℓ−1 ∈ S(A) :∣∣W (S0;S1, . . . , Sℓ−1, A) − Ŵ (S0;S1, . . . , Sℓ−1, A)
∣∣ ≤ C2|A|

√
log n(np)ℓ−1/2.
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Proof.
Lower bound. First we claim the following: There are two positive constants C3, C4 such that the
following holds with probability 1 − n−C3 :

∀A ⊆ V, ∀S0, . . . , Sℓ−1 ∈ S(A) :

W (S0;S1, . . . , Sℓ−1, A) ≥ Ŵ (S0;S1, . . . , Sℓ−1, A) − C4|A|
√

log n(np)ℓ−1/2. (6.40)

From Janson’s inequality (Proposition 5.4.5) and (6.28) with a constant C5 and C6 =
√

2(C5 + 1)B2(ℓ+1),
we have

Pr
[

∃A⊆V,
∃S0,...,Sℓ−1∈S(A) : W (S0;S1, . . . , Sℓ−1, A) ≤ E[W (S0;S1, . . . , Sℓ−1, A)] − C6|A|

√
logN(Np)ℓ−1/2

]
≤
(
N

|A|

)
|S(A)|ℓ exp

(
−

2(C5 + 1)B2(ℓ+1)|A|(logN)(Np)2ℓ−1

2B2(ℓ+1)|A|(Np)2ℓ−1

)
≤ 9ℓ exp (|A| logN − (C5 + 1)|A| logN) ≤ 9ℓ/NC5 . (6.41)

Thus combining (6.41) and Lemma 6.5.4 yields the claim (6.40).
Upper bound. Now we show the following claim: There are two positive constants C7, C8 such that
the following holds with probability 1 − n−C7 :

∀A ⊆ V, ∀S0, . . . , Sℓ−1 ∈ S(A) :

W (S0;S1, . . . , Sℓ−1, A) ≤ Ŵ (S0;S1, . . . , Sℓ−1, A) + C8|A|
√

log n(np)ℓ−1/2. (6.42)

From the same discussion of (6.30),

W (S0;S1, . . . , Sℓ−1, A) = W (

ℓ︷ ︸︸ ︷
V ;V, . . . , V , A) −

ℓ−1∑
i=0

W (

i︷ ︸︸ ︷
V ;V, . . . , V , V \ Si, Si+1, . . . , Sℓ−1, A) (6.43)

since Wℓ −W0 =
∑ℓ−1

i=0(Wi+1 −Wi). Thus we consider an upper bound on W (S0;S1, . . . , Sℓ−1, A). Let
dmax := maxv∈V deg(v). Since

∑
v∈V degA(v) =

∑
a∈A deg(v), we have

W (V ;V, . . . , V︸ ︷︷ ︸
ℓ

, A) =
∑
v∈V

deg(v)ℓ−1 degA(v) ≤ dℓ−1
max

∑
v∈V

degA(v) ≤ dℓ−1
max

∑
a∈A

deg(a) ≤ dℓmax|A|.

From Lemma 6.5.5, it holds with high probability that

dℓmax =
(
n(p+ q) + O(

√
np log n)

)ℓ
=
(
n(p+ q)

)ℓ(
1 + O

(√
log n

np

))
.

The second equality holds since (log n)/(np) = o(1) and ℓ is a constant. Hence we have

W (

ℓ︷ ︸︸ ︷
V ;V, . . . , V , A) ≤ dℓmax|A| = |A|

(
n(p+ q)

)ℓ(
1 + O

(√
log n

np

))

≤ Ŵ (

ℓ︷ ︸︸ ︷
V ;V, . . . , V , A) + O(|A|

√
log n(np)ℓ−1/2). (6.44)

Note that Ŵ (

ℓ︷ ︸︸ ︷
V ;V, . . . , V , A) = |A|

(
(n− 1)p+ nq

)ℓ
. Thus we obtain the claim (6.42) by applying (6.40)

and (6.44) to (6.43). Combining the claims (6.40) and (6.42) complete the proof of Lemma 6.5.6.

Proof of (P3) of Theorem 6.2.2. Let dmin := minv∈V deg(v). Then for any j ∈ [ℓ],

∑
s∈S∩Vi

(
degA(s)

deg(s)

)j

≤ d−j
min

∑
s∈S∩Vi

degA(s)j = d−j
minW (S ∩ Vi;

j︷ ︸︸ ︷
A, . . . , A).
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From Lemma 6.5.5, it holds with high probability that

d−j
min =

(
n(p+ q) − O(

√
np log n)

)−j

=

(
1 + O

(√
log n

np

))(
n(p+ q)

)−j
.

The second equality holds since (log n)/(np) = o(1) and j ∈ [ℓ] is a constant. Thus from Lemma 6.5.6,
we have

∑
s∈S∩Vi

(
degA(s)

deg(s)

)j

=

(
1 + O

(√
log n

np

))Ŵ (S ∩ Vi;
j︷ ︸︸ ︷

A, . . . , A)

(n(p+ q))j
+ O

(
|A|

√
log n

np

)
≤ |S ∩ Vi|

(
|Ai|p+ |A3−i|q

n(p+ q)

)j

+ O

(
|A|

√
log n

np

)
.

Note that |S∩Vi|(|Ai|p+|A3−i|q)j
(n(p+q))j = |S∩Vi|(|Ai|p+|A3−i|q)

n(p+q)

(
|Ai|p+|A3−i|q

n(p+q)

)j−1

≤ |A|p
(p+q) ≤ |A|. Thus we obtain

the claim.

6.6 Proof of local dynamics around fixed points

In this section, we consider a polynomial voting process with respect to f on an f - and f -good graph G
for a partition (V1, V2) and parameters p, q (recall that f(x) = 1 − f(1 − x)). Throughout this section,
the randomness is the generation of A′ at each step. Let H = (H1,H2) : [0, 1]2 → [0, 1]2 be the induced
dynamical system.

6.6.1 Dynamics around sink points

Let B2(x, r) denote the open ball of radius r (with respect to the ℓ2-norm) centered at x. Let a∗ be the
sink point. From the property of singular value (Proposition 6.3.4) and the Taylor expansion, there are
constants r,K > 0 such that, for any x ∈ B(x∗, r), it holds that

‖H(x) − x∗‖2 = ‖H(x) −H(x∗)‖2 ≤ σmax‖x− x∗‖2 +Ox→x∗(‖x− x∗‖22) < (1 −K)r.

Let ϵ > 0 be such that ϵ < r and ϵ = ω(1/
√
np). From the Hoeffding inequality (Proposition 5.4.3), for

any A ⊆ V of α ∈ B(a∗, ϵ), we have

Pr[‖α′ − a∗‖2 ≥ ϵ] ≤ Pr[‖α′ −E[α′]‖2 + ‖E[α′] −H(α)‖2 + ‖H(α) − a∗‖2 ≥ ϵ]

≤ Pr[‖α′ −E[α′]‖2 ≥ Kϵ− O(1/
√
np)]

≤ Pr

[
‖α′ −E[α′]‖∞ ≥ Kϵ√

2
− O

(
1

√
np

)]
≤ exp(−Ω(Kϵ2n)).

Fix an initial set A0 ⊆ V such that α(0) ∈ B(a∗, ϵ). For any T ≥ 0, from the union bound over the
time t = 1, . . . , T , we obtain

Pr
[
∃t ∈ [T ] : α(t) 6∈ B(a∗, ϵ)

]
≤ T exp(−Ω(ϵ2n)).

Suppose that ϵ = ω(max{
√

log n/n,
√

1/np}). If we set T = exp(Dϵ2n) for some constant D > 0, the
stopping time τ = min{t : α(t) 6∈ B(a∗, ϵ)} satisfies τ ≥ exp(Ω(ϵ2n)) w.h.p. Note that Tcons(A0) ≥ τ and
we are done.

6.6.2 Dynamics around consensus points

This subsection is devoted to the proof of Proposition 6.2.9. We begin with the following result which is
of independent interest.



CHAPTER 6. VOTING PROCESS ON STOCHASTIC BLOCK MODEL 78

Proposition 6.6.1. Suppose that there are absolute constants C, δ > 0 and a function ϵ = ϵ(n) = o(1)
such that

E[|A′|] ≤ C|A|2

n
+ ϵ|A|

holds for all A ⊆ V satisfying |A| ≤ δn. Then, there are positive constants δ′, C ′, C ′′ such that

Pr

[
Tcons(A) ≤ C ′

(
log log n+

log n

log ϵ−1

)]
≥ 1 − n−C′′

holds for any A ⊆ V satisfying |A| ≤ δ′n.

Proof of Proposition 6.6.1. Note that we may assume ϵ(n) = Ω(
√

log n/n): If ϵ = o(
√

log n/n), we
have log n/ log ϵ−1 = O(1) and we will obtain the claim by applying Proposition 6.6.1 with letting
ϵ =

√
log n/n.

Take a positive constant δ′ such that

10

(
CM2

n
+ ϵM

)
≤M, (6.45)

δ′ ≤ min

{
δ,

1

16C

}
(6.46)

hold for any 0 ≤ M ≤ δ′n. We can take such constant δ′ > 0 since ϵ = o(1) and thus the inequality
(6.45) holds if the ratio M

n is sufficiently small.
Consider (At)t∈Z≥0

given by the polynomial voting process such that |A0| ≤ δn. To exploit the

assumption of the expectation, we first claim that |At| ≤ δ′n ≤ δn holds w.h.p. for all t = 0, . . . , no(1).
Let B(t) be the event that |Ai| ≤ δn for all i = 0, . . . , t. Note that B(0) holds. Consider Pr[B(t+1)|B(t)].
If E[|A′|] ≥ log n, from the Chernoff bound ((i) of Proposition 2.5.5), for any A ⊆ V such that |A| ≤ δ′n,
we obtain

Pr

[
|A′| ≥ 10

(
C|A|2

n
+ ϵ|A|

)]
≤ Pr [|A′| ≥ 10E[|A′|]] ≤ exp

(
−10

3
log n

)
≤ n−3.

Then, for |A| ≤ δ′n, it holds with probability 1 − O(n−3) that

|A′| ≤ 10

(
C|A|2

n
+ ϵ|A|

)
≤ |A| ≤ δ′n. (6.47)

Here, we used (6.45) with letting M = |A|. If E[|A′|] ≤ log n, from the Chernoff bound (Proposi-
tion 5.4.1), we have

|A′| ≤ 6 log n = o(δ′n) (6.48)

with probability at least 1 − O(n−3). From (6.47) and (6.48), we obtain Pr
[
B(t+1)

∣∣B(t)
]
≥ 1 − O(n−3)

for each t and thus B(t) holds for t = n0.01 with probability 1 − O(n−2.99).
Now we look at |At|. Note that, if |A| ≤ δ′n, then

E[|A′|] ≤

{
2C|A|2

n if ϵ
Cn ≤ |A| ≤ δ′n,

2ϵ|A| if 0 ≤ |A| ≤ ϵ
C .

We consider the following two cases.

Case I: ϵ
Cn ≤ |A|(t) ≤ δ′n. From the Chernoff bound (Proposition 5.4.1), we have

Pr

[
|At+1| ≥

12C|At|2

n

∣∣∣∣B(t)

]
≤ 2−Ω(logn).

In the last inequality, we used |At| ≥ ϵ
Cn = Ω(

√
n log n). Hence, conditioned on B(t) and |A|(i) ≥ ϵ

Cn
(i = 0, . . . , t), it holds w.h.p. that

|At| ≤
12C(|At−1|)2

n
≤ n

12C

(
12C|A0|

n

)2t

≤ 0.752
t

n

12C
.

Here, we used (6.46). Therefore, for some τ1 = O(log log n), |Aτ1 | ≤ ϵ
C holds w.h.p.
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Case II: 0 ≤ |At| ≤ ϵ
Cn. Conditioned on |A0| ≤ ϵ

Cn, we claim that E[|Aτ2 |] ≤ n−Ω(1) for some
τ2 = O(log n/ log ϵ−1). Note that this completes the proof of Proposition 6.6.1 since Pr[Aτ2 6= ∅] ≤
E[|Aτ2 |] = n−Ω(1) from the Markov inequality.

To show the claim, we exploit the property that E[|A′|] ≤ 2ϵ|A| if |A| ≤ ϵn
C . Before using this, we show

that |At| ≤ ϵn
C holds for all t = 1, . . . , no(1). Conditioned on |A| ≤ ϵn

C , we have E[|A′|] ≤ 2ϵ|A| ≤ O(ϵ2n)
and thus, from the Chernoff bound (Proposition 5.4.1), for any A ⊆ V such that |A| ≤ ϵn

C , we obtain

Pr
[
|A′| ≥ ϵn

C

]
≤ 2−Ω(ϵn) = n−Ω(1). Therefore, it holds w.h.p. that |At| ≤ ϵ

Cn for all t = 0, . . . , no(1).

Let C(t) be the event that |Ai| ≤ ϵ
Cn holds for all i = 0, . . . , t. Then, from the tower property of the

conditional expectation, we have

E[|Aτ2 | | C(τ2)] ≤ E[E[|Aτ2 | | Aτ2−1, C(τ2)] | C(τ2)]

≤ E[2ϵ|Aτ2−1| | C(τ2)]

≤ (2ϵ)τ2 · ϵn
C

≤ n−Ω(1)

for some τ2 = O(log n/ log ϵ−1). This shows the aforementioned claim, which completes the proof of
Proposition 6.6.1.

Proof of Proposition 6.2.9. It suffices to check the condition of Proposition 6.6.1 for ϵ = Θ
(√

logn
np

)
.

Using (P3) and the Taylor expansion, there is a constant C = C(H) such that

E[|A′
i|] = nHi(α1, α2) ± O

(
|A|

√
log n

np

)
≤ nC

(
(α1 + α2)2 + |A|

√
log n

np

)

= C
|A|2

n
+ C|A|

√
log n

np

holds if ‖α‖ ≤ δ for sufficiently small constant δ.

6.6.3 Dynamics around source and saddle points

Let a∗ be a fixed point satisfying Assumption 6.2.10. Recall the random variable β defined in (6.11).
From the definition (6.11), each element βi of β can be rewritten as

βi =
2∑

j=1

uijαj − (Ua∗)i, (6.49)

where we let U = (uij). Each element uij of the matrix U does not depend on n. Hence, the Hoeffding
bound (Proposition 5.4.3) implies

Pr[|β′
i −E[β′

i]| ≥ t] ≤ exp
(
−Ω(t2n)

)
. (6.50)

From (6.3) and the Taylor expansion, it holds w.h.p. for any A ⊆ V that

E[β′] = U(H(α) − a∗) + O

(
1

√
np

)
· 1

= UJ(α− a∗) +

(
Oα→a∗(‖α− a∗‖2∞) + O

(
1

√
np

))
· 1

= Λβ +

(
O∥β∥→0(‖β‖2∞) + O

(
1

√
np

))
· 1.

Hence, the i-th element βi of β = (β1 β2)⊤ satisfies

|E[β′
i]| = |λi‖βi| +O∥β∥→0(‖β‖2∞) + O

(
1

√
np

)
. (6.51)
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It is convenient to consider the behavior of β instead of α. Note that α → a∗ implies β → 0 and vice

versa since the matrix U is nonsingular. By substituting t = Θ

(√
logn
n

)
to (6.50), for sufficiently large

constant C > 0, it holds w.h.p. that

||β′
i| − |λi||βi|| ≤ C‖β‖2∞ + C

√
log n

n
. (6.52)

Proof of Proposition 6.2.12 Suppose that the fixed point a∗ satisfies the condition of Proposi-
tion 6.2.12 and Assumption 6.2.10. Let I>1 := {i ∈ [2] : |λi| > 1} and I≤1 := [2] \ I>1. Fix a sufficiently
large constant K > 0 and let ϵ∗ be the constant mentioned in Proposition 6.2.12. Define

A1 =

{
A ⊆ V : ‖β‖∞ ≤ ϵ∗ and |βj | < K

√
log n

n
for all j ∈ I>1

}
,

A2 =

{
A ⊆ V : ‖β‖∞ ≤ ϵ∗ and |βj | ≥ K

√
log n

n
for some j ∈ I>1

}
,

A3 = {A ⊆ V : ‖β‖∞ > ϵ∗ and |βj | ≤ ϵ∗ for all j ∈ I≤1} .

We claim that, for each i = 1, 2 and any A0 ∈ Ai, it holds w.h.p. that Aτ ∈ Ai+1 for some τ =
O(log n). This completes the proof of Proposition 6.2.12.

Case I: A0 ∈ A1. Let f(A) := bnmax{|βi| : i ∈ I>1}c and m = K
√
n log n. We use Corollary 6.3.2

to show Aτ ∈ A2 for some τ = O(log n). Here, we use A1 as B of Corollary 6.3.2. Note that A ∈ A1

implies f(A) < m.
From (6.49) and (A2), we have Var[|βi|] =

∑
j∈[2] u

2
ij Var[αj ] = Ω(n−1) for any A ∈ A1. Here, note

that, for every i ∈ [2], there is j ∈ [2] such that uij 6= 0, since otherwise, it contradicts to the fact that
the matrix U is nonsingular. Thus, from Corollary 5.4.8, it holds that, for any constant h > 0, there is
a positive constant C1 < 1 such that Pr[f(A′) < h

√
n] < C1 holds for any A ⊆ V with f(A) ≤ m This

verifies the condition (1′) of Corollary 6.3.2.
Now we check the condition (2′). Let z ∈ [2] be the least index satisfying |βz| = max{|βi| : i ∈ [2]}.

Suppose that A ∈ A1 satisfies f(A) = bn|βz|c ≥ h
√
n for sufficiently large constant h > 100C

ϵ1
(recall that

the constant ϵ1 is mentioned in (B1)). Then, from (B1), we have

|E[β′
z]| ≥ (1 + 0.99ϵ1)|βz| + 0.01ϵ1|βz| −

C√
n
≥ (1 + 0.99ϵ1)|βz|.

Thus, from the Hoeffding inequality (Proposition 5.4.3), we obtain

Pr[f(A′) < (1 + 0.98ϵ1)f(A)] ≤ Pr

[
f(A′) <

1 + 0.98ϵ1
1 + 0.99ϵ1

E[f(A′)]

]
≤ exp

(
−Ω

(
f(A)2

n

))
holds for every A ∈ A1 satisfying f(A) ≥ h

√
n. This verifies the condition (2′).

Finally, we check the condition (3′) of Corollary 6.3.2. From (B2), for any A ∈ A1, it holds that

Pr[A′ 6∈ A1 and f(A′) < m] ≤ Pr[∃j ∈ I≤1, |β′
j | > ϵ∗] ≤ n−Ω(1).

Therefore, from Corollary 6.3.2, we have f(Aτ ) ≥ m = K
√
n log n (i.e. Aτ ∈ A2) holds w.h.p. for

some τ = O(log n).

Case II: A0 ∈ A2. Suppose that A0 ∈ A2 and let j ∈ I>1 be the index satisfying |βj | > K
√

logn
n .

We remark that K is sufficiently large. From (B1) and (6.52), we have |β′
j | ≥ (1 + 0.99ϵ1)|βj |. Thus,

for some τ = O(log n), we have |β(τ)
j | > ϵ∗. Moreover, from (B2), we have |β(τ)

i | ≤ ϵ∗ for all i ∈ I≤1.
Therefore, Aτ ∈ A3 holds w.h.p.
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Proof of Proposition 6.2.11. Suppose that the fixed point a∗ satisfies the condition of Proposi-
tion 6.2.11. Let

I<1 := {i ∈ [2] : |λi| < 1},
I>1 := {i ∈ [2] : |λi| > 1}.

Note that I<1 ∪ I>1 = [2]. Moreover, there is some constant ϵ > 0 such that

||λi| − 1| > 3ϵ (6.53)

holds for every i ∈ [2]. For A ⊆ V , let z = z(A) ∈ [2] be the least index satisfying |βz| = ‖β‖∞. We use
four constants: In (6.52) and (6.53), we defined C and ϵ. Let K := C

ϵ and ϵ′ := ϵ
C . Consider four events

B1 =

{
A ⊆ V : K

√
log n

n
< ‖β‖∞ ≤ ϵ′ and z(A) ∈ I<1

}
,

B2 =

{
A ⊆ V : ‖β‖∞ ≤ K

√
log n

n

}
,

B3 =

{
A ⊆ V : K

√
log n

n
< ‖β‖∞ ≤ ϵ′ and z(A) ∈ I>1

}
,

B4 = {A ⊆ V : ‖β‖∞ > ϵ′ and |βj | ≤ ϵ′ for all j ∈ I<1} .

We claim that, if A0 ∈ Bi, then Aτ ∈ Bj holds w.h.p. for some j > i and some τ = O(log n). This
completes the proof of Proposition 6.2.11.

Case I: A0 ∈ B1. Suppose A0 ∈ B1. We claim that, if At ∈ B1, then either At+1 ∈ B3 or ‖β(t+1)‖∞ ≤
(1 − ϵ)‖β(t)‖∞ holds w.h.p. For any j ∈ I<1, the bound (6.52) yields that

|β′
j | ≤ (1 − 3ϵ)‖β‖∞ + C‖β‖2∞ + C

√
log n

n

≤ (1 − ϵ)‖β‖∞ − 2ϵ‖β‖∞ + Cϵ′‖β‖∞ + C

√
log n

n

= (1 − ϵ)‖β‖∞ − ϵ‖β‖∞ + C

√
log n

n

≤ (1 − ϵ)‖β‖∞

holds w.h.p. If At+1 6∈ B3, then ‖β′‖∞ = |β′
j | for some j ∈ I<1; thus, we have ‖β′‖∞ ≤ (1 − ϵ)‖β‖∞

w.h.p. Therefore, for some τ = O(log n), it holds w.h.p. that Aτ ∈ B2 ∪ B3.

Case II: A0 ∈ B2. Suppose A0 ∈ B2. Our strategy is to apply Corollary 6.3.2. We will prove the
following result in the last part of this subsection.

Lemma 6.6.2. For any fixed A ∈ B2, the following hold w.h.p.:

(i) For every i ∈ I<1, it holds that |β′
i| ≤ K

√
logn
n , and

(ii) there is a constant h > 0 such that |E [β′
i]| ≥ (1 + ϵ)|βi| for every i ∈ I>1 satisfying |βi| ≥ h√

n
.

Let m = K
√
n log n and define f(A) := bn · maxi∈I>1 |βi|c. Suppose that f(Aτ ) ≥ K

√
n log n holds

w.h.p. for some τ = O(log n). Then, we have Aτ 6∈ B1∪B2 w.h.p. since |β(τ)
i | ≤ K

√
logn
n holds w.h.p. for

any i ∈ I<1. Here, we used (i) of Lemma 6.6.2. To show f(Aτ ) ≥ K
√
n log n, we check the condition

(1′) to (3′) of Corollary 6.3.2 and then apply it.
First, we check the condition (1′) of Corollary 6.3.2. We use the same argument described in the

Case I in Section 6.6.3. From (6.49), we have Var[β′
i] ≥

∑2
j=1 u

2
ij Var[α′

j ]. Moreover, for every i ∈ [2]
there is j ∈ [2] such that uij 6= 0, since otherwise, it contradicts to the fact that U is nonsingular. From
(A2), we have Var[β′

i] = Ω(n−1); thus, from Corollary 5.4.8, it holds that, for any constant h > 0, there
is a positive constant C1 < 1 such that Pr[f(A′) ≥ h

√
n] < C1 holds for any A ⊆ V with f(A) < m.
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We check the condition (2′) of Corollary 6.3.2. For every i ∈ I>1, from Lemma 6.6.2, we obtain

|E[β
(t+1)
i | At ∈ B2]| ≥ (1 + ϵ)|β(t)

i |. (6.54)

In look at (6.49), from the Hoeffding inequality (Proposition 5.4.3), it holds for any set At ∈ B2, any
index i ∈ I>1 and any constant ϵ′ > 0 that

Pr[|β′
i| ≤ (1 − ϵ′)|E[β′

i]|] ≤ exp
(
−Ω

(
ϵ′2 E[β′

i]
2n
))

≤ exp

(
−Ω

(
ϵ′2
f(A)2

n

))
. (6.55)

From (6.54) and (6.55), by letting ϵ′ = ϵ
2(1+ϵ) , we obtain

Pr
[
|β(t+1)

i | ≤
(

1 +
ϵ

2

)
· |β(t)

i |
∣∣∣At ∈ B2

]
≤ Pr [|β′

i| ≤ (1 − ϵ′) · |E[β′
i | At ∈ B2]|]

≤ exp

(
−Ω

(
f(A)2

n

))
.

In other words, for any A ∈ B2 satisfying f(A) ≥ h
√
n for some constant h > 0, we have

Pr
[
f(At+1) <

(
1 +

ϵ

2

)
f(At)

∣∣∣At = A
]
≤ exp

(
−Ω

(
f(A)2

n

))
.

Finally, we check the condition (3′) of Corollary 6.3.2. From Lemma 6.6.2, we have

Pr[At+1 6∈ B2 ∧ f(At+1) ≤ m | At ∈ B2] ≤ Pr

[
∃j ∈ I<1 : |β′

j | > K

√
log n

n

∣∣∣∣∣A ∈ B2

]
≤ n−Ω(1).

Now, from Corollary 6.3.2, there is some τ = O(log n) such that f(Aτ ) ≥ K
√

logn
n and |β(τ)

j | ≤

K
√

logn
n hold w.h.p. for every j ∈ I<1. Consequently, Aτ ∈ B3 ∪ B4 holds w.h.p.

Case III: A0 ∈ B3. Suppose that A0 ∈ B3. From (6.52), it holds w.h.p. that

|β′
z| ≥ |λz||βz| − C‖β‖∞ − C

√
log n

n

≥ (1 + ϵ)|βz| + (ϵ|βz| − C|βz|2) +

(
ϵ|βz| − C

√
log n

n

)
≥ (1 + ϵ)|βz|.

Moreover, for any j ∈ I<1, it holds w.h.p. that

|β′
j | ≤ (1 − 3ϵ)‖β‖∞ + C‖β‖2∞ + C

√
log n

n
≤ (1 − ϵ)|βz|

These imply that At+1 6∈ B1 ∪ B2 holds w.h.p. whenever At ∈ B3. Let τ be the stopping time given by

τ := min{t : At 6∈ B3}. Then, ‖β(t+1)‖∞ ≥ (1 + ϵ)‖β(t)‖∞ holds w.h.p. for all t < τ . Therefore, we have

Aτ ∈ B4 with τ = O(log n), and |β(τ)
j | ≤ ϵ′ for all j ∈ I<1.

Proof of Lemma 6.6.2. Suppose A ∈ B2 and recall the definition K = C
ϵ . For any i ∈ I<1, the bound

(6.52) yields that

|β′
i| ≤ (1 − 3ε)K

√
log n

n
+K2 log n

n
+ C

√
log n

n
≤ K

√
log n

n

holds w.h.p. This completes the proof of the statement (i).
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Now we consider the statement (ii). Suppose that A ∈ B2 and |βi| ≥ C
ϵ · 1√

n
(we expect h = C

ϵ ).

For i ∈ I>1, the bound (6.51) implies |E[β′
i]| ≥ |λi||βi| − C‖β‖2∞ − C√

n
. Since ‖β‖∞ ≤ K

√
logn
n and

|βi| ≥ h√
n

= C
ϵ · 1√

n
, we have

C‖β‖2∞ ≤ CK log n

n
≤ ϵ|βi| (for sufficiently large n),

C√
n
≤ ϵ|βi|.

This leads to |E[β′
i]| ≥ (1 + ϵ)|βi|, which completes the proof of the statement (ii).



Chapter 7

Quasi-Majority Functional Voting

7.1 Introduction

In this chapter, we focus on voting processes on expander graphs. We say that a graph G is λ-expander
if max{|λ2|, |λn|} ≤ λ, where 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 are the eigenvalues of the transition matrix
P of the simple random walk on G. For example, the Erdős–Rényi graph G(n, p) of p ≥ (1 + ϵ) logn

n for
an arbitrary constant ϵ > 0 is O(1/

√
np)-expander w.h.p. [CO07]. The random d-regular graph Gn,d of

3 ≤ d ≤ n/2 is O(1/
√
d)-expander w.h.p. [CGJ18, TY19].

7.1.1 Voting processes on expander graphs

There is a line of works concerning voting processes on expander graphs. Cooper, Elsässer, Ono, and
Radzik [CEOR13] showed that the expected consensus time of the pull voting is O(n/(1 − λ)) on λ-
expander regular graphs for any initial configuration. Compared to the pull voting, the study of the
best-of-two on general graphs seems much harder. Most of the previous works concerning the best-of-two
on expander graphs put some assumptions on the initial configuration. Let A denote the set of vertices
of opinion 0 and let B := V \ A. Cooper, Elsässer, and Radzik [CER14] showed that, for any regular
λ-expander graph, the consensus time is O(log n) w.h.p. if

∣∣|A|− |B|
∣∣ = Ω(λn). This result was improved

by Cooper, Elsässer, Radzik, Rivera, and Shiraga [CER+15]. Roughly speaking, they proved that, on λ-
expander graphs, the consensus time is O(log n) if |d(A)−d(B)| = Ω(λ2d(V )), where d(S) =

∑
v∈S deg(v)

denotes the volume of S ⊆ V . To the best of our knowledge, any previous works that studies voting
process other than pull voting on non-complete graphs put some assumption on the initial configuration
(e.g., random initial configuration [KR19, AD15] and initial bias [CEOR13, CER14, CER+15]).

7.1.2 Our model

In this part, we introduce quasi-majority functional voting, a subclass of functional voting (see Defini-
tion 5.1.1 for the definition of functional voting).

Definition 7.1.1 (update function). For a functional voting, the function

Hf (x) := x
(
1 − f(1 − x)

)
+ (1 − x)f(x)

is called an update function.

The intuition behind the update function Hf is that, on a complete graph Kn (with self-loops), the

functional voting with respect to f satisfies E[α′] = |A|
n

(
1 − f

(
|B|
n

))
+ |B|

n f
(

|A|
n

)
= Hf (α), where

α = |A|/n and α′ = |A′|/n (see Section 5.3).

Example 7.1.2. The pull voting, best-of-two, and best-of-three are functional votings with respect to x,
x2 and 3x2−2x3, respectively. The update function of them are x,3x2−2x3, and 3x2−2x3, respectively.
In general, the best-of-k is a functional voting with respect to

fk(x) =

k∑
i=⌊k/2⌋+1

(
k

i

)
xi(1 − x)k−i. (7.1)

84
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It is straightforward to check that Hfk(x) = fk(x) if k is odd and Hfk(x) = fk+1(x) if k is even. Majority
is a functional voting with respect to

f(x) =


0 if x < 1

2 ,
1
2 if x = 1

2 ,

1 if x > 1
2

(7.2)

if a vertex adopts the random opinion when it meets the tie. It is easy to see that Hf (x) = f(x) for
Majority.

We focus on a functional voting with respect to f satisfying the following property.

Definition 7.1.3 (Quasi-majority functional voting). A function f is quasi-majority if f satisfies the
following conditions.

(1) f is in class C2 (i.e., the derivatives f ′ and f ′′ of f exist and are continuous),

(2) 0 < f(1/2) < 1,

(3) Hf (x) < x whenever x ∈ (0, 1/2).

(4) H ′
f (1/2) > 1,

(5) H ′
f (0) < 1.

A voting process is a quasi-majority functional voting if it is a functional voting with respect to a quasi-
majority function f .

Note that Hf (x) is symmetric (i.e., Hf (1 − x) = 1 − Hf (x)) and thus the condition (3) implies
Hf (x) > x for every x ∈ (1/2, 1). Intuitively speaking, the conditions (3) to (5) ensure the drift towards
consensus. The conditions (1) and (2) are due to a technical reasons.

	0

	0.5

	1

	0 	0.5 	1

Hf(x)

x

pull	voting
best-of-three
best-of-seven

Figure 7.1: The update functions Hf (x) of pull voting (solid line), best-of-three (dashed line) and best-
of-seven (dotted line). One can easily observe that best-of-three and best-of-seven are quasi-majority
functional voting. Intuitively speaking, quasi-majority functional voting processes have update functions
Hf with the property so-called “the rich get richer”, which coincides with Definition 7.1.3.

For each constant k ≥ 2, the best-of-k is quasi-majority functional voting but the pull voting and
Majority are not. Indeed, if Hfk is the update function of best-of-k, then H ′

f2ℓ
(x) = H ′

f2ℓ+1
(x) =

(2ℓ+ 1)
(
2ℓ
ℓ

)
xℓ(1 − x)ℓ. It is straightforward to check that this function satisfies the conditions (3) to (5)

if ℓ 6= 0 (this condition excludes the pull-voting). See Figure 7.1 for depiction of update functions of the
pull voting, best-of-three and best-of-seven.
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7.1.3 Our result

We study the consensus time Tcons of a quasi-majority functional voting on expander graphs. Throughout
this chapter, we consider sufficiently large n = |V |. Let Tcons(A) denote the consensus time starting from
the initial configuration A ⊆ V . For a graph G = (V,E), let π = (π(v))v∈V denote the degree distribution
defined as

π(v) =
deg(v)

2|E|
. (7.3)

Note that π is the stationary distribution of the transition matrix (2.1) of the simple random walk on G.
For A ⊆ V , let π(A) :=

∑
v∈A π(v). Let

δ(A) := π(A) − π(V \A) = 2π(A) − 1

denote the bias between A and V \A.

Theorem 7.1.4 (Main theorem). Consider a quasi-majority functional voting with respect to f on an
n-vertex λ-expander graph with degree distribution π. Then, the following hold:

(i) Let C1 > 0 be an arbitrary constant and ε : N → R be an arbitrary function satisfying ε(n) → 0
as n → ∞. Suppose that λ ≤ C1n

−1/4, ‖π‖2 ≤ C1/
√
n and ‖π‖3 ≤ ε/

√
n. Then, for any A ⊆ V ,

Tcons(A) = O(log n) w.h.p.

(ii) Let C2 be a positive constant depending only on f . Suppose that λ ≤ C2 and ‖π‖2 ≤ C2/
√

log n.
Then, for any A ⊆ V satisfying |δ(A)| ≥ C2 max{λ2, ‖π‖2

√
log n}, Tcons(A) = O(log n) w.h.p.

The following result which we show in Section 7.5 indicates that the consensus time of Theorem 7.1.4(i)
is optimal up to a constant factor.

Theorem 7.1.5 (Lower bound). Under the same assumption of Theorem 7.1.4(i), Tcons(A) = Ω(log n)
w.h.p. for some A ⊆ V .

Theorem 7.1.6 (Fast consensus forH ′
f (0) = 0). Consider a quasi-majority functional voting with respect

to f on an n-vertex λ-expander graph with degree distribution π. Let C > 0 be a constant depending
only on f . Suppose that H ′

f (0) = 0, λ ≤ C and ‖π‖2 ≤ C/
√

log n. Then, for any A ⊆ V satisfying

|δ(A)| ≥ C max{λ2, ‖π‖2
√

log n}, it holds w.h.p. that

Tcons(A) = O

(
log log n+ log |δ(A)|−1 +

log n

log λ−1
+

log n

log(|π‖2
√

log n)−1

)
.

For example, for each constant k ≥ 2, best-of-k is quasi-majority with H ′
f (0) = 0.

Remark 7.1.7. Roughly speaking, for p ≥ 2, ‖π‖p measures the imbalance of the degrees. For any
graphs, ‖π‖p ≥ n−1+1/p and the equality holds if and only if the graph is regular. For star graphs, we
have ‖π‖p ≈ 1.

Results of best-of-k. Our results above do not explore Majority since it is not quasi-majority. A
plausible approach is to consider best-of-k for k = k(n) = ω(1) since each vertex is likely to choose the
majority opinion if the number of neighbor sampling increases. Also, note that the betrayal function
fk of best-of-k given in (7.1) converges to that of Majority (i.e., fk(x) → f(x) as k → ∞ for each
x ∈ [0, 1], where f is the betrayal function (7.2) of Majority). On the other hand, if k = O(1), there is a
tremendous gap between best-of-k and Majority: For any functional voting on the complete graph Kn,
Tcons(A) = Ω(log n) for some A ⊆ V from Theorem 7.1.5. Majority on Kn reaches the consensus in a
single step if |A| < |V \ A| − 1. This motivates us to consider best-of-k for k = k(n) → ∞ as n → ∞.
For simplicity, we focus on best-of-(2k + 1) and prove the following result in Section 7.6.

Theorem 7.1.8. Let k = k(n) be such that k = ω(1) and k = o(n/ log n). Let C be an arbitrary positive
constant. Consider the best-of-(2k + 1) on an n-vertex λ-expander graph with degree distribution π such

that λ ≤ Ck−1/2n−1/4, ‖π‖2 ≤ Cn−1/2 and ‖π‖3 ≤ Ck−1/6n−1/2. Then, Tcons(A) = O
(

logn
log k

)
holds

w.h.p. for any A ⊆ V . Furthermore, there exists a set A ⊆ V such that Tcons(A) = Ω
(

logn
log k

)
holds w.h.p.
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7.1.4 Application

Here, we apply our main theorem to specific graphs and derive some useful results.

Erdős–Rényi graph

For any p ≥ (1 + ϵ) logn
n for an arbitrary constant ϵ > 0, the Erdős–Rényi graph G(n, p) is connected and

O(1/
√
np)-expander w.h.p [CO07, FK16].

Corollary 7.1.9. Consider the best-of-k on the Erdős–Rényi graph G(n, p) for an arbitrary constant
k ≥ 2. Then, G(n, p) w.h.p. satisfies the following:

(i) Suppose that p = Ω(n−1/2). Then

(a) for any A ⊆ V , Tcons(A) = O(log n) w.h.p.

(b) for some A ⊆ V , Tcons(A) = Ω(log n) w.h.p.

(ii) Suppose that p ≥ (1 + ϵ) logn
n for an arbitrary constant ϵ > 0. Then, for any A ⊆ V satisfying

|δ(A)| ≥ C max
{

1
np ,
√

logn
n

}
, Tcons(A) = O

(
log log n+ log |δ(A)|−1 + logn

log(np)

)
w.h.p., where C >

0 is a constant depending only on f .

If logn
log(np) = O(log log n) (or equivalently, np = nΩ(1/ log logn)), Corollary 7.1.9(ii) implies Tcons(A) =

O(log log n+ log |δ(A)|−1) w.h.p.

Corollary 7.1.10. Let k = k(n) be such that k = ω(1) and k = O(
√
n). Consider the best-of-(2k + 1)

on G(n, p) for p = Ω(k/
√
n). Then, for any A ⊆ V , Tcons(A) = O

(
logn
log k

)
holds w.h.p.

From Corollary 7.1.10, best-of-nϵ on G(n, n−1/2+ϵ) for any constant ϵ ∈ (0, 1/2) reaches consensus in
O(1) steps. It is known that Majority on G(n,Cn−1/2) satisfies Tcons(A) ≤ 4 for large constant C and
random A ⊆ V with constant probability [BCO+16].

Random regular graph

For 3 ≤ d ≤ n/2, it is known that the random d-regular graph Gn,d is connected and O(1/
√
d)-expander

w.h.p. [CGJ18, TY19].

Corollary 7.1.11. Consider the best-of-k on the random d-regular graph Gn,d for an arbitrary constant
k ≥ 2. Then, Gn,d w.h.p. satisfies the following:

(i) Suppose that d = Ω(n1/2) and d ≤ n/2. Then,

(a) for any A ⊆ V , Tcons(A) = O(log n) w.h.p.

(b) for some A ⊆ V , Tcons(A) = Ω(log n) w.h.p.

(ii) Suppose that d ≥ C and d ≤ n/2 for a constant C > 0 depending only on f . Then, for any A ⊆ V

satisfying |δ(A)| ≥ C max
{

1
d ,
√

logn
n

}
, Tcons(A) = O

(
log log n+ log |δ(A)|−1 + logn

log d

)
w.h.p.

Corollary 7.1.12. Let k = k(n) be such that k = ω(1) and k = O(
√
n). Consider the best-of-(2k + 1)

on the random d-regular graph Gn,d such that d = Ω(k
√
n) and d ≤ n/2. Then, for any A ⊆ V ,

Tcons(A) = O
(

logn
log k

)
holds w.h.p.

Roughly-regular expander graphs

We can apply Theorems 7.1.4 and 7.1.6 if the ratio of the maximum and average degree is constant as
follows.

Corollary 7.1.13. Consider a quasi-majority functional voting with respect to f on an n-vertex λ-
expander graph with degree distribution π. Suppose that dmax ≤ C1dave for an arbitrary constant C1 > 0,
where dmax and davr denote the maximum and average degree, respectively. Then, the following hold:

(i) Suppose that λ ≤ C1n
−1/4. Then
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(a) for any A ⊆ V , Tcons(A) = O(log n) w.h.p.

(b) for some A ⊆ V , Tcons(A) = Ω(log n) w.h.p.

(ii) Suppose that λ ≤ C2 for some constant C2 > 0 depending only on f . Then, for any A ⊆ V

satisfying |δ(A)| ≥ C2 max
{
λ2,
√

logn
n

}
, Tcons(A) = O(log n) w.h.p.

(iii) In addition to the same assumption as (ii), suppose that H ′
f (0) = 0. Then, it holds w.h.p. that

Tcons(A) = O
(

log log n+ log |δ(A)|−1 + logn
log λ−1

)
.

Corollary 7.1.14. Let k = k(n) be such that k = ω(1) and k = o(n/ log n). Let C be an arbitrary
constant. Consider the best-of-(2k + 1) on an n-vertex λ-expander graph with degree distribution π such
that λ ≤ Ck−1/2n−1/4, and dmax ≤ Cdavr, where dmax and davr denote the maximum and average degree,

respectively. Then, Tcons(A) = O
(

logn
log k

)
holds w.h.p. for any A ⊆ V .

Corollaries 7.1.13 and 7.1.14 immediately follow from Theorems 7.1.4 to 7.1.6 and 7.1.8 since ‖π‖2 =
O(n−1/2). Note that if the ratio of the maximum degree dmax and average degree davr is constant,
‖π‖p = Θ(1/n1−1/p) since π(v) = O(1/n) for all v ∈ V . We obtain Corollaries 7.1.9 to 7.1.12 from
Corollaries 7.1.13 and 7.1.14.

7.1.5 Other quasi-majority functional votings

We can consider the ρ-lazy variant of a voting process, i.e., every vertex v individually tosses its private
coin and operates the voting process with probability ρ, while v does nothing with probability 1 − ρ.
Berenbrink, Giakkoupis, Kermarrec, and Mallmann-Trenn [BGKMT16] studies 1/2-lazy pull voting. If
the original voting process is a quasi-majority functional voting with respect to f , then the corresponding
ρ-lazy variant is quasi-majority functional voting with respect to ρf : x 7→ ρf(x). Indeed, Hρf (x) =
(1 − ρ)x+ ρHf (x).

Corollary 7.1.15. Consider a ρ-lazy quasi-majority functional voting on G(n, p) for an arbitrary con-
stant ρ ∈ (0, 1]. Suppose that p = Ω(1/

√
n). Then, for any A ⊆ V , Tcons(A) = O(log n) w.h.p.

This implies the following interesting observation. In voting processes, the number of neighbor
sampling queries per each vertex at each step affects the performance. In pull voting, each vertex
communicates with one neighbor but it has a drawback on the slow consensus time. In the best-of-two,
each vertex communicates with two random neighbors and its consensus time is much faster than that
of pull voting. In ρ-lazy best-of-two, each vertex queries 2ρ vertices at each round in expectation, that
is less queries than pull voting if ρ < 1/2. On the other hand, the consensus time is much faster than
pull voting.

Additionally, we can deal with k-careful voting. In this model, each vertex v selects k random
neighbors (with replacement), and if these sampled k opinions are the same one, v adopts it. Note
that the one-careful voting and two-careful voting are equivalent to the pull voting and best-of-two,
respectively. One can check easily that, for any constant k ≥ 2, this model is a quasi-majority functional
voting with respect to f(x) = xk. Note that H ′

f (0) = 0 and H ′
f (1/2) = 1 + k−1

2k−1 .

Corollary 7.1.16. Consider a k-careful voting on G(n, p) for an arbitrary constant k ≥ 2. Suppose that
p = Ω(1/

√
n). Then, for any A ⊆ V , Tcons(A) = O(log n) w.h.p.

7.2 Preliminary

7.2.1 Technical background

Consider best-of-two on a complete graph Kn (with self loop on each vertex) with a current configuration
A ⊆ V . Let α = |A|/n. We have P (v,A) = α for any v ∈ V and A ⊆ V . Then, for any A ⊆ V ,
E[α′] = Hf (α) = 3α2 − 2α3. Thus, in each round, α′ = 3α2 − 2α3 ± O(

√
log n/n) holds w.h.p. from

Proposition 5.3.1. Therefore, we can regard the behavior of α as the iteration of applying Hf .
The most technical part is the symmetry breaking at α = 1/2. Note that Hf (1/2) = 1/2 and thus,

the argument above does not work in the case of |α − 1/2| = o(
√

log n/n). To analyze this case, the
authors of [DGM+11, CGG+18] proved the following technical lemma asserting that α w.h.p. escapes
from the area in O(log n) rounds.
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Lemma 7.2.1 (Lemma 4.5 of [CGG+18] (informal)). For any constant C, it holds w.h.p. that |α−1/2| ≥
C
√

log n/n in O(log n) rounds (the hidden constant factor depends on C) if

(i) For any constant h, there is a constant C0 > 0 such that, if |α − 1/2| = O(
√

log n/n) then
Pr[|α′ − 1/2| > h/

√
n] > C0.

(ii) If |α − 1/2| = O(
√

log n/n) and |α − 1/2| = Ω(1/
√
n), Pr[|α′ − 1/2| ≤ (1 + ϵ)|α − 1/2|] ≤

exp(−Θ((α− 1/2)2n)) for some constant ϵ > 0.

Intuitively speaking, the condition (ii) means that the bias |α′ − 1/2| is likely to be at least (1 +
ϵ)|α− 1/2| for some constant ϵ > 0. The condition (ii) is easy to check using the Hoeffding bound. The
condition (i) means that α′ has a fluctuation of size Ω(1/

√
n) with a constant probability. We can check

condition (i) using the Central Limit Theorem (or the Berry-Esseen bound, see Proposition 5.4.7). The
Central Limit Theorem implies that the normalized random variable (α′ − E[α′])/

√
Var[α′] converges

to the standard normal distribution as n→ ∞. In other words, α′ has a fluctuation of size Θ(
√
Var[α′])

with constant probability. Now, to verify the condition (i), we evaluate Var[α′]. On Kn, it is easy to
show that Var[α′] = Θ(1/n), which implies the condition (i).

The authors of [CER+15, CRRS17] considered best-of-two on expander graphs. They focused on the
behavior of π(A) instead of α. Roughly speaking, they proved that E[π(A′) − 1/2] ≥ (1 + ϵ)(π(A) −
1/2)−O(λ2). Then, from the Hoeffding bound, we have E[π(A′)− 1/2] ≥ (1 + ϵ)(π(A)− 1/2)−O(λ2 +
‖π‖2

√
log n)). Thus, if the initial bias |π(A) − 1/2| is Ω(max{λ2,

√
log n/n}), we can show that the

consensus time is O(log n).
Unfortunately, we can not apply the same technique to evaluate Var[π(A′)] on expander graphs,

and due to this reason, the worst-case consensus time on expander graphs seems to be a nontrivial
task. Actually, any previous works put assumptions on the initial bias due to the same reason. It
should be noted that Lemma 7.2.1 is well-known in the literature. For example, Cruciani, Natale, and
Scornavacca [CNS19] used Lemma 7.2.1 from random initial configurations (under this assumption, we
can trivially evaluate Var[π(A0)], where the randomness is taken over the initial configuration).

The techniques of evaluating E[π(A′)] by Cooper, Elsässer, Radzik, Rivera, and Shiraga [CER+15]
and Cooper, Radzik, Rivera, and Shiraga [CRRS17] are specialized in best-of-two. Thus, it is not
straightforward to prove the evaluation of E[π(A′)] for voting processes other than best-of-two.

7.2.2 Our technical contribution

For a C2 function h : R→ R, let

K1(h) := max
x∈[0,1]

|h′(x)| , K2(h) := max
x∈[0,1]

|h′′(x)| (7.4)

be some constants depending only on h. The following technical result enables us to evaluate E[π(A′)]
and Var[π(A′)] of a functional voting with respect to any C2 function.

Lemma 7.2.2. Consider a functional voting with respect to a C2 function f on a λ-expander graph.
Then, for all A ⊆ V ,∣∣E[π(A′)] −Hf

(
π(A)

)∣∣ ≤ K2(f)λ
(
|2π(A) − 1| + λ

)
π(A)

(
1 − π(A)

)
.

Lemma 7.2.3. Consider a functional voting with respect to a C2 function f on a λ-expander graph. Let
g(x) := f(x)(1 − f(x)). Then, for all A ⊆ V ,∣∣∣∣Var[π(A′)] − ‖π‖22g

(
1

2

)∣∣∣∣ ≤ K1(g)

(
1

2
‖π‖22 |2π(A) − 1| + 2‖π‖3/23 λ

√
π(A)

(
1 − π(A)

))
.

7.2.3 Proof sketch of the main result

We present proof sketch of Theorem 7.1.4(i). From the assumption of Theorem 7.1.4(i) and Lemma 7.2.3,
if |π(A) − 1/2| = o(1), we have Var[π(A′)] = Θ(‖π‖22g(π(A))) = Θ(‖π‖22g(1/2 + o(1))) = Θ(1/n).
Moreover, E[π(A′)] = Hf (π(A))±O(π(A)/

√
n) holds for any A ⊆ V . Hence, from the Hoeffding bound,

π(A′) = Hf (π(A)) + O(
√

log n/n) holds w.h.p. for any A ⊆ V .
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• If |π(A)−1/2| = O(
√

log n/n), we use Lemma 7.2.1 to obtain an O(log n) round symmetry breaking.
In this phase, since |π(A) − 1/2| = o(1), Var[π(A′) − 1/2] = Θ(1/n). Then, from the Berry-
Esseen theorem (Proposition 5.4.7), we can check the condition (i). To check the condition (ii), we
invoke the condition H ′

f (1/2) > 1 of the quasi-majority function. From Taylor’s theorem and the

assumption of Lemma 7.2.1(ii) (π(A)− 1/2 = Ω(1/
√
n)), E[π(A′)− 1/2] = Hf (π(A))−Hf (1/2)−

O(1/
√
n) ≈ (1 + ϵ1)(π(A) − 1/2) for some positive constant ϵ1 > 0. Note that Hf (1/2) = 1/2.

• If C1

√
log n/n ≤ |π(A) − 1/2| ≤ C2 for sufficiently large constant C1 and some constant C2 > 0,

we use the Hoeffding bound and then obtain π(A′)− 1/2 ≈ (1 + ϵ1)(π(A)− 1/2)−O(
√

log n/n) ≥
(1 + (ϵ1/2))(π(A)− 1/2) w.h.p. Hence, O(log n) rounds suffice to yield a constant bias. (Note that
this argument holds when |π(A) − 1/2| ≤ C2 due to the remainder term of Taylor’s theorem.)

• If C3 ≤ π(A) < 1/2, it is straightforward to see that π(A′) = Hf (π(A))+O(
√

log n/n) ≤ π(A)−ϵ2
w.h.p. for some constant ϵ2 > 0. Note that we invoke the property that Hf (x) < x whenever
0 < x < 1/2.

• If π(A) ≤ C3 for sufficiently small constant C3, we use the Markov inequality to show π(At) =
O(n−3) w.h.p. for some t = O(log n). Since π(A) ≥ 1/n2 whenever A 6= ∅, this implies that the
consensus time is O(log n) w.h.p. Note that, since H ′

f (0) < 1, we have E[π(A′)] ≤ Hf (π(A)) +

O(π(A)/
√
n) ≈ H ′

f (0)π(A) + O(π(A)/
√
n) ≤ (1 − ϵ3)π(A) for some constant ϵ3 > 0.

In the proof of Theorem 7.1.8, we modify Lemma 7.2.1 and apply the same argument.

7.2.4 Tools

Let λ1 ≥ · · · ≥ λn be eigenvalues of a transition matrix P . If P is reversible, it is known that λi ∈ R for
all i. Let λ = max{|λ2|, |λn|} be the second largest eigenvalue in absolute value. The quantity

Q(S, T ) :=
∑
v∈S

π(v)P (v, T ) (7.5)

is well known as edge measure [LP17] or ergodic flow [AF, MT06] in the context of Markov chain. Note
that, for any reversible P and subsets S, T ⊆ V , Q(S, T ) = Q(T, S) holds.

Proposition 7.2.4 (Expander mixing lemma; p.163 of [LP17]). Suppose P is reversible. Then, for any
S, T ⊆ V ,

|Q(S, T ) − π(S)π(T )| ≤ λ
√
π(S)π(T )

(
1 − π(S)

)(
1 − π(T )

)
.

Proposition 7.2.5 (Lemma 3 of [CRRS17]). Suppose that P is reversible. Then, for any S ⊆ V ,∣∣∣∣∣∑
v∈V

π(v)P (v, S)2 − π(S)2

∣∣∣∣∣ ≤ λ2π(S)
(
1 − π(S)

)
.

Corollary 7.2.6. Suppose that P is reversible. Then, for any S ⊆ V ,∑
v∈V

π(v)
(
P (v, S) − π(S)

)2 ≤ λ2π(S)
(
1 − π(S)

)
.

Proof. Since Q(V, S) = Q(S, V ) = π(S) for any reversible P and S ⊆ V , we have∑
v∈V

π(v)
(
P (v, S) − π(S)

)2
=
∑
v∈V

π(v)P (v, S)2 + π(S)2 − 2π(S)Q(V, S)

=
∑
v∈V

π(v)P (v, S)2 − π(S)2 ≤ λ2π(S)
(
1 − π(S)

)
.

Here, we invoked Proposition 7.2.5 in the last inequality.
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7.3 Evaluate the Expectation and Variance of π(A′)

7.3.1 Extension to reversible Markov chains

The main results of this chapter (Theorems 7.1.4 to 7.1.6) hold for any quasi-majority functional vot-
ing specified by a reversible Markov chain (see Definition 5.1.1). For example, we can apply our
results to a voting process on an edge-weighted graph G = (V,E,w), where w : E → R≥0 de-
notes an edge weight function by considering the transition matrix P defined as follows: P (u, v) =
w({u, v})/

∑
x:{u,x}∈E w({u, x}) for {u, v} ∈ E and P (u, v) = 0 for {u, v} /∈ E. A weighted functional

voting with respect to f is determined by Pr[v ∈ A′ | v ∈ B] = f(P (v,B)) and Pr[v ∈ B′ | v ∈ A] =
f(P (v,A)). The weighted variant can be interpreted as follows: For example, in the best-of-three, a ver-
tex selects three neighbors uniformly at random. In the weighted best-of-three, each edge has a positive
weight and the probability of the selection is in proportional to the weight of the edge.

For a function h : R → R and subsets S, T ⊆ V , we are interested in the quantity Qh(S, T ) defined
as

Qh(S, T ) :=
∑
v∈S

π(v)h
(
P (v, T )

)
. (7.6)

Note that the edge measure (7.5) is a special case of Qh where h(x) = x. We show the following lemma
which gives a useful evaluation of Qh(S, T ).

Lemma 7.3.1. Suppose P is reversible. Then, for any S, T ⊆ V and any C2 function h : R → R,∣∣∣Qh(S, T ) − π(S)h
(
π(T )

)
− h′

(
π(T )

)(
Q(S, T ) − π(S)π(T )

)∣∣∣ ≤ K2(h)

2
λ2π(T )

(
1 − π(T )

)
.

Proof of Lemma 7.3.1. From Taylor’s theorem, it holds for any x, y ∈ [0, 1] that

|h(x) − h(y) − h′(y)(x− y)| ≤ K2(h)

2
(x− y)2.

Hence ∣∣∣Qh(S, T ) − π(S)h
(
π(T )

)
− h′

(
π(T )

)(
Q(S, T ) − π(S)π(T )

)∣∣∣
=

∣∣∣∣∣∑
v∈S

π(v)
(
h
(
P (v, T )

)
− h
(
π(T )

)
− h′

(
π(T )

)(
P (v, T ) − π(T )

))∣∣∣∣∣
≤
∑
v∈S

π(v)
∣∣∣h(P (v, T )

)
− h
(
π(T )

)
− h′

(
π(T )

)(
P (v, T ) − π(T )

)∣∣∣
≤
∑
v∈S

π(v)
K2(h)

2

(
P (v, T ) − π(T )

)2 ≤ K2(h)

2

∑
v∈V

π(v)
(
P (v, T ) − π(T )

)2
≤ K2(h)

2
λ2π(T )

(
1 − π(T )

)
.

Note that the last inequality follows from Corollary 7.2.6.

Next, consider

Rh(S, T ) :=
∑
v∈S

π(v)2h
(
P (v, T )

)
(7.7)

for a function h : R → R and S, T ⊆ V . For ease of notation, let π2(S) :=
∑

v∈S π(v)2 for S ⊆ V . We
show the following result that evaluates Rh(S, T ).

Lemma 7.3.2. Suppose that P is reversible. Then, for any S, T ⊆ V and any C2 function h : R → R,∣∣Rh(S, T ) − π2(S)h
(
π(T )

)∣∣ ≤ K1(h)‖π‖3/23 λ
√
π(T )

(
1 − π(T )

)
.
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Proof. We first observe that ∣∣h(x) − h(y)
∣∣ ≤ K1(h)|x− y| (7.8)

holds for any x, y ∈ [0, 1] from Taylor’s theorem. Hence,∣∣∣Rh(S, T ) − π2(S)h
(
π(T )

)∣∣∣
=

∣∣∣∣∣∑
v∈S

π(v)2
(
h
(
P (v, T )

)
− h
(
π(T )

))∣∣∣∣∣ ≤∑
v∈S

π(v)2
∣∣∣h(P (v, T )

)
− h
(
π(T )

)∣∣∣
≤
∑
v∈S

π(v)2K1(h)
∣∣P (v, T ) − π(T )

∣∣ ≤ K1(h)
∑
v∈V

π(v)2
∣∣P (v, T ) − π(T )

∣∣.
Then, applying the Cauchy-Schwarz inequality and Corollary 7.2.6,

∑
v∈V

π(v)2
∣∣P (v, T ) − π(T )

∣∣ ≤
√√√√(∑

v∈V

π(v)3

)(∑
v∈V

π(v)
(
P (v, T ) − π(T )

)2)

≤ ‖π‖3/23 λ
√
π(T )

(
1 − π(T )

)
and we obtain the claim.

For simplicity, in this chapter, we do not explore the weighted variant and focus on the usual setting
where P is the matrix (2.1) and its stationary distribution π is (7.3).

7.3.2 Expectation and Variance

This section is devoted to evaluating E[π(A′)] and Var[π(A′)] for a quasi-majority functional voting.
Recall that we use B = V \A for A ⊆ V . Then, it is clear that

E[π(A′)] = π(A) −
∑
v∈A

π(v)f
(
P (v,B)

)
+
∑
v∈B

π(v)f
(
P (v,A)

)
, (7.9)

Var[π(A′)] =
∑
v∈A

π(v)2g
(
P (v,B)

)
+
∑
v∈B

π(v)g
(
P (v,A)

)
. (7.10)

Proof of Lemma 7.2.2. From Definition 5.1.1, (7.6) and (7.9), we have

E[π(A′)] = π(A) −Qf (A,B) +Qf (B,A), (7.11)

Hf

(
π(A)

)
= π(A) − π(A)f

(
π(B)

)
+ π(B)f

(
π(A)

)
. (7.12)

For notational convenience, for S, T ⊆ V , let

∆f (S, T ) := Qf (S, T ) − π(S)f
(
π(T )

)
− f ′

(
π(T )

)(
Q(S, T ) − π(S)π(T )

)
= Qh(S, T ) − π(S)f

(
π(T )

)
− f ′

(
π(T )

)(
Q(T, S) − π(T )π(S)

)
.

The equality follows from the reversibility of P (see Section 7.3). From Lemma 7.3.1, we have

|∆f (S, T )| ≤ K2(f)

2
λ2π(T )

(
1 − π(T )

)
.

Then, combining (7.11) and (7.12), we have∣∣∣E[π(A′)] −Hf

(
π(A)

)∣∣∣
=
∣∣∣Qf (B,A) − π(B)f

(
π(A)

)
−Qf (A,B) + π(A)f

(
π(B)

)∣∣∣
=
∣∣∣∆f (B,A) + f ′

(
π(A)

)(
Q(A,B) − π(A)π(B)

)
−∆f (A,B) − f ′

(
π(B)

)(
Q(A,B) − π(A)π(B)

)∣∣∣
≤ |∆f (B,A)| + |∆f (A,B)| +

∣∣∣f ′(π(A)
)
− f ′

(
π(B)

)∣∣∣∣∣Q(A,B) − π(A)π(B)
∣∣

≤ K2(f)λ2π(A)π(B) +K2(f)
∣∣π(A) − π(B)

∣∣λπ(A)π(B).

and we obtain the claim. Note that the last inequality follows from Taylor’s theorem (7.8) and Proposi-
tion 7.2.4.
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Proof of Lemma 7.2.3. From (7.7) and (7.10),

Var[π(A′)] = Rg(A,B) +Rg(B,A).

Thus, applying Lemma 7.3.2 yields∣∣∣Var
[
π(A′)

]
−
(
π2(A)g

(
π(B)

)
+ π2(B)g

(
π(A)

))∣∣∣ ≤ 2K1(g)‖π‖3/23 λ
√
π(A)π(B). (7.13)

Next, using Taylor’s theorem (7.8),∣∣∣∣π2(A)g
(
π(B)

)
+ π2(B)g

(
π(A)

)
− ‖π‖22g

(
1

2

)∣∣∣∣
=

∣∣∣∣π2(A)

(
g
(
π(B)

)
− g

(
1

2

))
+ π2(B)

(
g
(
π(A)

)
− g

(
1

2

))∣∣∣∣
≤ K1(g)π2(A)

∣∣∣∣π(B) − 1

2

∣∣∣∣+K1(g)π2(B)

∣∣∣∣π(A) − 1

2

∣∣∣∣ = K1(g)‖π‖22
∣∣∣∣π(A) − 1

2

∣∣∣∣ . (7.14)

The last equality follows since |π(A) − 1/2| = |π(B) − 1/2|. Combining (7.13) and (7.14), we obtain the
claim.

7.3.3 Symmetric functions

In this subsection, we consider a special case that f(x) is symmetry (i.e., f(1−x) = 1− f(x) holds). We
present the following simplified variant of Lemma 7.2.2, which we will use in Section 7.6. Note that, for
a symmetric function f , it holds that Hf (x) = f(x) hor all x ∈ [0, 1].

Lemma 7.3.3 (Special case of Lemma 7.2.2). Consider a functional voting with respect to a symmetric
C2 function f on a λ-expander graph with degree distribution π. Suppose that f satisfies f(1 − x) =
1 − f(x) for every x ∈ [0, 1]. Then, for all A ⊆ V ,∣∣E[π(A′)] − f(π(A))

∣∣ ≤ K2(f)

2
λ2π(A)

(
1 − π(A)

)
.

Proof. Note that, for a functional voting with respect to a symmetric f , we have Pr[v ∈ A′] = f(P (v,A))
for any v ∈ V . Thus we have

E[π(A′)] =
∑
v∈V

π(v)f
(
P (v,A)

)
= Qf (V,A).

By substituting V to S of Lemma 7.3.1, we obtain∣∣∣Qf (V,A) − f
(
π(A)

)∣∣∣ ≤ K2(f)

2
λ2π(A)

(
1 − π(A)

)
.

Note that Q(V, T ) = Q(T, V ) = π(T ) from the reversibility of P .

7.4 Proof of main results

We prove Theorems 7.1.4 and 7.1.6. Consider a quasi-majority functional voting with respect to f on
an n-vertex λ-expander graph with degree distribution π. Let A0, A1, . . . , be the sequence given by the
functional voting with initial configuration A0 ⊆ V . Theorems 7.1.4 and 7.1.6 follow from the following
lemma.

Lemma 7.4.1. Consider a quasi-majority functional voting with respect to f on an n-vertex λ-expander
graph with degree distribution π. For the betrayal function f , let ϵh(f) := H ′

f (1/2)−1, ϵc(f) := 1−H ′
f (0),

and K(f) := max{K2(f),K2(Hf )} be three positive constants depending only on f . Then, the following
hold:

(I) Let C1 > 0 be an arbitrary constant and ε : N → R be an arbitrary function satisfying ε(n) → 0
as n → ∞. Suppose that λ ≤ C1n

−1/4, ‖π‖2 ≤ C1/
√
n and ‖π‖3 ≤ ε/

√
n. Then, for any A0 ⊆ V

such that |δ(A0)| ≤ c1 log n/
√
n for an arbitrary constant c1 > 0, |δ(At)| ≥ c1 log n/

√
n within

t = O(log n) steps w.h.p.
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(II) Suppose that λ ≤ ϵh(f)
2K(f) . Then, for any A0 ⊆ V s.t. 2max{K(f),8}

ϵh(f)
max{λ2, ‖π‖2

√
log n} ≤ |δ(A0)| ≤

ϵh(f)
K(f) , |δ(At)| ≥ ϵh(f)

K(f) within t = O(log |δ(A0)|−1) steps w.h.p.

(III) Let c2, c3 be two arbitrary constants satisfying 0 < c2 < c3 < 1/2 and ϵ(f) := minx∈[c2,c3]

(
x −

Hf (x)
)
be a positive constant depending f, c2, c3. Suppose that λ ≤ ϵ(f)

2K(f) and ‖π‖2 ≤ ϵ(f)

4
√
logn

.

Then, for any A0 ⊆ V satisfying c2 ≤ π(A0) ≤ c3, π(At) ≤ c2 within constant steps w.h.p.

(IV) Suppose that λ ≤ ϵc(f)
2K(f) and ‖π‖2 ≤ ϵc(f)

2

32K(f)
√
logn

. Then, for any A0 ⊆ V satisfying π(A0) ≤ ϵc(f)
8K(f) ,

π(At) = 0 within t = O(log n) steps w.h.p.

(V) Suppose that H ′
f (0) = 0, λ ≤ 1

10K(f) and ‖π‖2 ≤ 1
64K(f)

√
logn

. Then, for any A0 ⊆ V satisfying

π(A0) ≤ 1
7K(f) , it holds w.h.p. that π(At) = 0 within

t = O

(
log log n+

log n

log λ−1
+

log n

log(‖π‖2
√

log n)−1

)
steps.

Proof of Theorem 7.1.4(ii). Since ‖π‖2 ≥ 1/
√
n, we have |δ(A0)| = Ω(

√
log n/n). This implies that

Phase (II) takes at most O(log n). Thus, we obtain the claim since we can merge Phases (II) to (IV) by
taking appropriate constants c2, c3 in Phase (III).

Proof of Theorem 7.1.4(i). Under the assumption of Theorem 7.1.4(i), for any positive constant C, a
positive constant C ′ exists such that C(λ2 + ‖π‖2

√
log n) ≤ C ′ logn√

n
. Thus, we can combine Phase (I)

and Theorem 7.1.4(ii), and we obtain the claim.

Proof of Theorem 7.1.6. Combining Phases (II), (III) and (V), we obtain the claim.

In the rest of this section, we show Phases (I) to (V) of Lemma 7.4.1. For notational convenience, let

α := π(A), α′ := π(A′), αt := π(At),

δ := δ(A) = 2α− 1, δ′ := δ(A′), δt := δ(At).

7.4.1 Phase (I): 0 ≤ |δ| ≤ c1 log n/
√
n

We invoke Proposition 6.3.1 to show Lemma 7.4.1(I). We begin with showing the following result con-
cerning the growth rate of |δ| to prove (I) and (II) of Lemma 7.4.1.

Lemma 7.4.2. Consider a quasi-majority functional voting with respect to f on an n-vertex λ-expander
graph with degree distribution π. Let ϵh(f) := H ′

f (1/2) − 1 and K(f) := max{K2(f),K2(Hf )} be

positive constants depending only on f . Suppose that λ ≤ ϵh(f)
2K(f) . Then, for any A ⊆ V satisfying

2K(f)
ϵh(f)

λ2 ≤ |δ| ≤ ϵh(f)
K(f) ,

Pr

[
|δ′| ≤

(
1 +

ϵh(f)

8

)
|δ|
]
≤ 2 exp

(
−ϵh(f)2δ2

128‖π‖22

)
.

Proof. Combining Lemma 7.2.2 and Taylor’s theorem, we have∣∣∣∣E[δ′] −H ′
f

(
1

2

)
δ

∣∣∣∣ = 2

∣∣∣∣E[α′] − 1

2
−H ′

f

(
1

2

)(
α− 1

2

)∣∣∣∣
= 2

∣∣∣∣E [α′] −Hf (α) +Hf (α) −Hf

(
1

2

)
−H ′

f

(
1

2

)(
α− 1

2

)∣∣∣∣
≤ 2K2(f)λ (|δ| + λ)α(1 − α) +K2(Hf )

(
α− 1

2

)2

≤
(
K(f)

2
λ+

K(f)

4
|δ|
)
|δ| +

K(f)

2
λ2 (7.15)
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Note that Hf (1/2) = 1/2 from the definition. From assumptions of λ ≤ ϵh(f)
2K(f) , |δ| ≤

ϵh(f)
K(f) and λ2 ≤

ϵh(f)
2K(f) |δ|, we have ∣∣∣∣H ′

f

(
1

2

)
δ

∣∣∣∣− |E[δ′]| ≤
∣∣∣∣H ′

f

(
1

2

)
δ −E[δ′]

∣∣∣∣ ≤ 3

4
ϵh(f)|δ|.

Hence, it holds that∣∣E[δ′]
∣∣ ≥ ∣∣∣∣H ′

f

(
1

2

)
δ

∣∣∣∣− 3

4
ϵh(f)|δ| = (1 + ϵh(f))|δ| − 3

4
ϵh(f)|δ| =

(
1 +

ϵh(f)

4

)
|δ|.

We observe that, for any κ > 0,

Pr
[
|δ′| ≤

∣∣E[δ′]
∣∣− κ

]
≤ 2 exp

(
− κ2

2‖π‖22

)
(7.16)

from Corollary 5.4.4. Note that δ′ =
∑

v∈V π(v)(2Xv − 1) for independent indicator random variables
(Xv)v∈V (see Definition 5.1.1 for the definition of Xv). Thus,

Pr

[
|δ′| ≤

(
1 +

ϵh(f)

8

)
|δ|
]

= Pr

[
|δ′| ≤

(
1 +

ϵh(f)

4

)
|δ| − ϵh(f)

8
|δ|
]

≤ Pr

[
|δ′| ≤

∣∣E[δ′]
∣∣− ϵh(f)

8
|δ|
]
≤ 2 exp

(
−ϵh(f)2δ2

128‖π‖22

)
and we obtain the claim.

Proof of Lemma 7.4.1(I). We check the conditions (1) and (2) of Proposition 6.3.1 with letting Ψ(A) =
bn|δ(A)|c and m = c1

√
n log n.

Condition (1). First, we show the following claim that evaluates Var[δ′].

Claim 7.4.3. Under the same assumption as Lemma 7.4.1(I),

ϵvar(f)

n
≤ Var[δ′] ≤ 5C2

1

n

where ϵvar(f) := f(1/2)(1 − f(1/2)) is a positive constant depending only on f .

Proof of the claim. From Lemma 7.2.3 and assumptions, we have∣∣∣∣Var[δ′]

4
− ‖π‖22g

(
1

2

)∣∣∣∣ =

∣∣∣∣Var[α′] − ‖π‖22g
(

1

2

)∣∣∣∣ ≤ K1(g)

(
‖π‖22

|δ|
2

+ ‖π‖3/23 λ

)
≤ K1(g)

n

(
C2

1c1
log n√
n

+ C1ϵ
3/2

)
=

1

n
· o(1).

Note that Var[δ′] = Var[2α′ − 1] = 4Var[α′]. Since ‖π‖22 ≥ 1/n, we have

ϵvar(f)

n
≤ 4ϵvar(f) − o(1)

n
≤ Var[δ′] ≤ 4C2

1 + o(1)

n
≤ 5C2

1

n
.

From Corollary 5.4.9 with letting Yv = π(v)(2Xv − 1), we have

Pr

[
|δ′| ≤ x

√
ϵvar(f)

n

]
≤ Pr

[
|δ′| ≤ x

√
Var[δ′]

]
≤ Φ(x) +

5.6‖π‖33
Var[δ′]3/2

≤ Φ(x) + 5.6
ϵ3

n3/2
· n3/2

ϵvar(f)3/2
= Φ(x) + o(1) (7.17)

for any x ∈ R, where Φ(x) = 1√
2π

∫ x

−∞ e−y2/2dy. Thus, for any constant h > 0, there exists some

constant C > 0 such that

Pr[Ψ(A′) < h
√
n | Ψ(A) ≤ m] < C,

which verifies the condition (1).
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Condition (2). Set h = 2K(f)
ϵh(f)

C2
1 and assume h

√
n ≤ Ψ(A) < m. Then

2K(f)

ϵh(f)
λ2n ≤ 2K(f)

ϵh(f)
C2

1

√
n = h

√
n ≤ Ψ(A) ≤ |δ|n = o(n).

Thus, we can apply Lemma 7.4.2 and positive constants γ, C exist such that, for any h
√
n ≤ Ψ(A) ≤

c1
√
n log n,

Pr[Ψ(A′) < (1 + γ)Ψ(A)] < exp

(
−CΨ(A)2

n

)
.

Note that ‖π‖22 = Θ(1/n) from the assumption. This verifies the condition (2).
Thus, we can apply Proposition 6.3.1 and we obtain the claim.

7.4.2 Phase (II): 2max{K(f),8}
ϵh(f)

max{λ2, ‖π‖2
√
log n} ≤ |δ| ≤ ϵh(f)

K(f)

Proof of Lemma 7.4.1(II). Since |δ| ≥ 16
ϵh(f)

‖π‖2
√

log n from assumptions, applying Lemma 7.4.2 yields

Pr

[
|δ′| ≤

(
1 +

ϵh(f)

8

)
|δ|
]
≤ 2

n2
.

Thus, it holds with probability larger than (1 − 2/n2)t that |δt| ≥
(

1 + ϵh(f)
8

)t
|δ0| and we obtain the

claim by substituting t = O(log |δ0|−1).

7.4.3 Phase (III): 0 < c2 ≤ α ≤ c3 < 1/2

Proof of Lemma 7.4.1(III). We first observe that, for any κ > 0,

Pr
[
|α′ −E[α′]| ≥ κ‖π‖2

√
log n

]
≤ 2n−2κ (7.18)

from Proposition 5.4.3. Note that α′ =
∑

v∈V π(v)Xv for independent indicator random variables
(Xv)v∈V . Hence, applying Lemma 7.2.2 yields

|α′ −Hf (α)| ≤ |α′ −E[α′]| + |E[α′] −Hf (α)| ≤ ‖π‖2
√

log n+
K2(f)

4
(|δ| + λ)λ (7.19)

with probability larger than 1 − 2/n2. Then, for any α ∈ [c2, c3], it holds with probability larger than
1 − 2/n2 that

α′ ≤ Hf (α) +
K(f)

2
λ+ ‖π‖2

√
log n ≤ α− ϵ(f) +

ϵ(f)

4
+
ϵ(f)

4
≤ α− ϵ(f)

2
.

Thus, for α0 ∈ [c2, c3], αt ≤ c2 within t = 2(c3 − c2)/ϵ(f) = O(1) steps w.h.p.

7.4.4 Phase (IV): 0 ≤ α ≤ ϵc(f)
8K(f)

We show the following lemma which is useful for proving (IV) and (V) of Lemma 7.4.1.

Lemma 7.4.4. Let ϵ ∈ (0, 1] be an arbitrary constant. Consider functional voting on an n-vertex
connected graph with degree distribution π. Suppose that, for some α∗ ∈ [0, 1] and K ∈ [0, 1 − ϵ],

E[α′] ≤ Kα

for any A ⊆ V satisfying α ≤ α∗ and ‖π‖2 ≤ ϵα∗
2
√
logn

. Then, for any A0 ⊆ V satisfying α0 ≤ α∗, αt = 0

w.h.p. within O
(

logn
logK−1

)
steps.

Proof. For any α ≤ α∗, from (7.18) and assumptions of E[α′] ≤ α and ‖π‖2 ≤ ϵα∗
2
√
logn

, it holds with

probability larger than 1 − 2/n4 that

α′ ≤ E[α′] + 2‖π‖2
√

log n ≤ Kα+ ϵα∗ ≤ (1 − ϵ)α∗ + ϵα∗ = α∗.



CHAPTER 7. QUASI-MAJORITY FUNCTIONAL VOTING 97

Thus, for any α0 ≤ α∗, we have

E[αt] =
∑
x≤a∗

E [αt|αt−1 = x]Pr [αt−1 = x] +
∑
x>a∗

E [αt|αt−1 = x]Pr [αt−1 = x]

≤
∑
x≤a∗

KxPr [αt−1 = x] + Pr [αt−1 > a∗] ≤ K E[αt−1] +
2t

n4

≤ · · · ≤ Ktα0 +
2t2

n4
≤ Kt +

2t2

n4
.

This implies that, E[αt] = O(n−3) within t = O
(

logn
logK−1

)
steps. Let πmin := minv∈V π(v) ≥ 1/(2|E|) ≥

1/n2. Markov inequality yields

Pr[αt = 0] = 1 −Pr[αt ≥ πmin] ≥ 1 − E[αt]

πmin
= 1 − O(1/n)

and we obtain the claim.

Proof of Lemma 7.4.1 of (IV). Combining Lemma 7.2.2 and Taylor’s theorem,∣∣E[α′] −H ′
f (0)α

∣∣ =
∣∣E[α′] −Hf (α) +Hf (α) −Hf (0) −H ′

f (0)(α− 0)
∣∣

≤ K2(f)λ (|δ| + λ)α(1 − α) +
K2(Hf )

2
α2

≤ 2K(f)λα+
K(f)

2
α2. (7.20)

Hence, for any α ≤ ϵc(f)
8K(f) , we have

E[α′] ≤
(
H ′

f (0) + 2K(f)λ+
K(f)

2
α

)
α

≤
(

1 − ϵc(f) +
ϵc(f)

4
+
ϵc(f)

4

)
α =

(
1 − ϵc(f)

2

)
α.

Letting ϵ = ϵc(f)/2, K = 1 − ϵc(f)/2 and α∗ = ϵc(f)
8K(f) , from the assumption, ‖π‖2 ≤ ϵc(f)

2

32K(f)
√
logn

=
ϵα∗

2
√
logn

. Thus, we can apply Lemma 7.4.4 and we obtain the claim.

7.4.5 Phase (V): H ′
f (0) = 0 and 0 ≤ α ≤ 1

7K(f)

Proof of Lemma 7.4.1(V). In this case, from (7.20),

E[α′] ≤ 2K(f)λα+
K(f)

2
α2. (7.21)

We consider the following two cases.

Case 1. max

{
λ,
√

∥π∥2

√
logn

K(f)

}
≤ α ≤ 1

7K(f) : In this case, combining (7.18) and (7.21), it holds with

probability larger than 1 − 2/n2 that

α′ ≤
(

2K(f)λ

α
+
K(f)

2
+

‖π‖2
√

log n

α2

)
α2 ≤ 7K(f)

2
α2.

Applying this inequality iteratively, for any α0 ≤ 7K(f)−1,

αt ≤
7K(f)

2
α2
t−1 ≤ · · · ≤ 2

7K(f)

(
7K(f)

2
α0

)2t

≤ 2

7K(f)22t
.

holds with probability larger than (1 − 2/n2)t. This implies that, within t = O(log log n) steps,

αt ≤ max

{
λ,
√

∥π∥2

√
logn

K(f)

}
w.h.p. Note that max

{
λ,
√

∥π∥2

√
logn

K(f)

}
≥
√

∥π∥2

√
logn

K(f) ≥
√√

logn/n

K(f) since

‖π‖22 ≥ 1/n.
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Case 2. α ≤ max

{
λ,
√

∥π∥2

√
logn

K(f)

}
: Set α∗ = max

{
λ,
√

∥π∥2

√
logn

K(f)

}
≥
√

∥π∥2

√
logn

K(f) , K = 5K(f)
2 λ +

1
2

√
K(f)‖π‖2

√
log n and ϵ = 1/4. Then, from λ ≤ 1

10K(f) and ‖π‖2 ≤ 1
64K(f)

√
logn

,

‖π‖2 = (
√

‖π‖2)2 ≤
√
‖π‖2

8
√
K(f)

√
log n

=

√
‖π‖2

√
log n

K(f)

ϵ

2
√

log n
≤ ϵα∗

2
√

log n
,

K ≤ 1

2
+

1

16
≤ 1 − ϵ,

E[α′] ≤
(

2K(f)λ+
K(f)

2
α

)
α ≤

(
2K(f)λ+

K(f)

2
λ+

1

2

√
K(f)‖π‖2

√
log n

)
α = Kα.

K ≤ 1/4 + 1/2 = 3/4. Thus, applying Lemma 7.4.4, we obtain the claim.

7.5 Lower Bound of Consensus Time

This section is devoted to prove Theorem 7.1.5. In particular, we show the following theorem.

Theorem 7.5.1. Let C > 0 be an arbitrary constant. Consider a quasi-majority functional voting with
respect to f on an n-vertex λ-expander graph with degree distribution π. Suppose that max{λ, ‖π‖2} ≤
n−C . Then, for any A ⊆ V satisfying |δ(A)| ≤ n−C , Tcons(A) = Ω(log n) w.h.p.

Proof of Theorem 7.5.1. From (7.15),

|E[δ′]| ≤ H ′
f

(
1

2

)
|δ| +

(
K(f)

2
λ+

K(f)

4
|δ|
)
|δ| +

K(f)

2
λ2

≤
(

1 + ϵh(f) +
3K(f)

4

)
|δ| +K(f)λ2.

Recall that δ′ =
∑

v∈V (2πv − 1) for independent indicator random variables (Xv)v∈V Definition 5.1.1.
Thus, for any κ > 0,

Pr [|δ′| ≥ |E[δ′]| + κ] ≤ exp

(
− κ2

2‖π‖22

)
from Corollary 5.4.4. Hence, it holds with probability larger than 1 − 2/n2 that

|δ′| ≤ c|δ| +K(f)λ2 + 2‖π‖2
√

log n,

where we put c := 1 + ϵh(f) + 3K(f)
4 > 1. Then, applying this inequality iteratively with t = (C/2) logc n

steps,

|δt| ≤ c|δt−1| +K(f)λ2 + 2‖π‖2
√

log n

≤ · · · ≤ ct|δ0| + tct
(
K(f)λ2 + 2‖π‖2

√
log n

)
≤ nC/2

nC
+ nC/2 logc n

C/2

(
K(f)

n2C
+

2
√

log n

nC

)
= o(1)

w.h.p., and we obtain the claim. Note that we use our assumptions of |δ0|,maxλ, ‖π‖2 ≤ n−C in the
last inequality.

7.6 Best-of-(2k + 1) on Expander Graphs

We show Theorem 7.1.8. The proof is almost same as the one given in Section 7.4 but we need some
special care. We assume k = ω(1) and thus k is sufficiently large. Consider the best-of-(2k + 1) on an
n-vertex λ-expander graph with degree distribution π. Suppose that the graph satisfies the conditions of
Theorem 7.1.8. Let A0, A1, . . . , be the sequence given by the best-of-(2k + 1) with initial configuration
A0 ⊆ V . For notational convenience, let

α := π(A), α′ := π(A′), αt := π(At),

δ := δ(A) = 2α− 1, δ′ := δ(A′), δt := δ(At).
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The dynamics of best-of-(2k+1) are divided into four phases. More specifically, we prove the following
key result that corresponds to Lemma 7.4.1.

Lemma 7.6.1. Consider the best-of-(2k + 1) on an n-vertex λ-expander graph with degree distribution
π. Suppose that the graph satisfies the conditions of Theorem 7.1.8. Then, the following hold:

(I) For any A0 ⊆ V satisfying |δ0| ≤ 300C log n/
√
n , |δt| ≥ 300C log n/

√
n within t = O(log n/ log k)

steps w.h.p.

(II) For any A0 ⊆ V satisfying |δ0| satisfying 300C log n/
√
n ≤ |δ0| ≤ 1.25√

k
, |δt| > 1.25√

k
within t =

O(log n/ log k) steps w.h.p. Moreover, there exists A0 ⊆ V satisfying 300C log n/
√
n ≤ |δ0| ≤ 1.25√

k

such that |δt| ≤ 1.25√
k

w.h.p. for any t = o(log n/ log k)

(III) For any A0 ⊆ V satisfying 1.25√
k

≤ |δ0| ≤ 0.9, |δ1| > 0.9 w.h.p.

(IV) For any A0 ⊆ V satisfying 0.9 ≤ |δ0| < 1, |δt| = 1 (or equivalently, the voting process reaches
consensus) within t = O(log n/ log k) steps w.h.p.

Proof of Theorem 7.1.8 using Lemma 7.6.1. Theorem 7.1.8 is straightforward from Lemma 7.6.1. For
any initial configuration A0 ⊆ V , A0 satisfies one of (I) to (IV). If A0 satisfies (IV), the consensus time
is O(log n/ log k). Otherwise, from Lemma 7.6.1, for some t = O(log n/ log k), At satisfies |δ(At)| > 0.9
and then apply Lemma 7.6.1(IV).

Note that, for an initial configurationA0 satisfying (II), we have Tcons(A0) = Ω(log n/ log k) w.h.p.

The rest of this section is devoted to prove Lemma 7.6.1. We begin with preparing useful facts
concerning with best-of-(2k + 1). Let f2k+1 be the betrayal function of best-of-(2k + 1). Then, we have

1.05
√
k ≤ (2k + 1)

(
2k

k

)
4−k =

∣∣∣∣f ′2k+1

(
1

2

)∣∣∣∣ ≤ 2
√
k,

|f ′2k+1(x)| ≤
∣∣∣∣f ′2k+1

(
1

2

)∣∣∣∣ ≤ 3√
π

√
k ≤ 2

√
k,

|f ′′2k+1(x)| ≤
∣∣∣∣f ′′2k+1

(
1

2
+

1

2
√

2k − 1

)∣∣∣∣ < 1.6k

for sufficiently large k. Here, we used 4k√
πk

(
1 − 1

8k

)
≤
(
2k
k

)
≤ 4k√

πk
.

From Lemmas 7.2.3 and 7.3.3 (note that f2k+1(x) satisfies f2k+1(x) + f2k+1(1 − x) = 1), it holds for
all A ⊆ V that ∣∣E[α′] − f2k+1(α)

∣∣ ≤ 0.8kλ2α(1 − α) (7.22)∣∣Var[α′] − g2k+1(1/2)‖π‖22
∣∣ ≤ 2

√
k

(
‖π‖22

2
|δ| + λ‖π‖3/23

)
, (7.23)

where g2k+1(x) = f(x)(1 − f(x)). Note that g′2k+1(x) = f ′2k+1(x)(1 − 2f2k+1(x)) satisfies |g′2k+1(x)| ≤
|f ′2k+1(x)| ≤ 2

√
k. Thus, from the Hoeffding bound (Proposition 5.4.3), it holds w.h.p. that

|α′ − f2k+1(α)| ≤ 0.8kλ2α(1 − α) + ‖π‖2
√

log n

≤ 0.8kλ2α(1 − α) +

√
C log n

n
. (7.24)

On the other hand, it is routine to check the following facts.

λ
√
k‖π‖33 = o(n−1), (7.25)

1

n
≤ ‖π‖22 ≤ C

n
, (7.26)

kλ2 = O(1/
√
n). (7.27)

We begin with proving the following result.
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Lemma 7.6.2. There exist constants h, c, C,C ′ > 0 such that the following hold for any A ⊆ V satisfying
h/

√
nk ≤ |δ| ≤ 1.25/

√
k:

Pr[|δ′| < 0.025
√
k|δ|] ≤ exp

(
−cknδ2

)
,

and

Pr[|δ′| > C
√
k|δ|] ≤ exp(−C ′knδ2).

Proof. Let h be a sufficiently large constant and let A ⊆ V be a configuration satisfying h√
kn

≤ |δ| ≤ 1.25√
k

.

From (7.22), (7.27) and Taylor’s theorem, we have

|E[δ′]| ≥
∣∣∣∣2f2k+1

(
1

2
+
δ

2

)
− 1

∣∣∣∣− 0.8kλ2α(1 − α)

≥ f ′2k+1

(
1

2

)
|δ| − max

0≤z≤1
|f ′′2k+1(z)|δ

2

2
− 0.2kλ2

≥ 0.05
√
k|δ| + (

√
k|δ| − 0.8kδ2) − 0.2kλ2

≥ 0.05
√
k|δ| +

0.01h√
n

− 0.2kλ2

≥ 0.05
√
k|δ|.

In the fourth inequality, note that
√
k|δ| ≥ 0.8kδ2 holds if |δ| ≤ 1.25/

√
k. In the last inequality, we used

λ = O(k−0.5n−0.25) and thus kλ2 = O(1/
√
n) ≤ 0.01h/

√
n for sufficiently large constant h. Then, from

Corollary 5.4.4, we have

Pr[|δ′| < 0.025
√
k|δ|] ≤ Pr [|δ′| < 0.5|E[δ′]|]

≤ 2 exp

(
−0.5|E[δ′]|2

‖π‖22

)
≤ exp

(
−cknδ2

)
for some suitable constant c > 0. In the last inequality, we used (7.26).

Similarly, we obtain

|E[δ′]| ≤
∣∣∣∣2f2k+1

(
1

2
+
δ

2

)
− 1

∣∣∣∣+ 0.8kλ2α(1 − α)

≤ f ′2k+1

(
1

2

)
|δ| + max

0≤z≤1
|f ′′2k+1(z)|δ

2

2
+ 0.2kλ2

≤ 2
√
k|δ| + 0.8kδ2 + 0.2kλ2

= O(
√
k|δ|)

and thus, from Corollary 5.4.4, two constants C and C ′ exist such that

Pr[|δ′| > C
√
k|δ|] ≤ exp(−C ′knδ2).

7.6.1 Phase (I): 0 ≤ |δ| ≤ 300C log n/
√
n

In this part, we show Lemma 7.6.1(I). The proof is almost same as that of Lemma 7.4.1(I) that is
presented in Section 7.4.1. The difference is that we use the following result, which is a slight modification
of Proposition 6.3.1.

Lemma 7.6.3 (Modification of Proposition 6.3.1). Consider a Markov chain (Xt)
∞
t=1 with finite state

space Ω and a function Ψ : Ω → [0, n]. Let C1 be an arbitrary constant and m = C1
√
n log n. Let

k = k(n) be a function such that k(n) → ∞ as n→ ∞. Suppose that Ω,Ψ and m satisfies the following
conditions:
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(i) For any positive constant h, there exists a positive constant C2 < 1 such that

Pr

[
Ψ(Xt+1) < h

√
n

k

∣∣∣∣Ψ(Xt) ≤ m

]
<
C2√
k
.

(ii) Three positive constants C3, C4 and h exist such that, for any x ∈ Ω satisfying h
√
n/k ≤ Ψ(x) < m,

Pr
[
Ψ(Xt+1) < C3

√
kΨ(Xt)

∣∣∣Xt = x
]
< exp

(
−C4

kΨ(x)2

n

)
.

Then, Ψ(Xt) ≥ m holds w.h.p. for some t = O(log n/ log k).

We prove Lemma 7.6.3 in Section 7.6.5. Lemma 7.6.1(I) is immediate from Lemma 7.6.3 with letting
Ψ(A) = n|δ| and C1 = 300C. Hence, it suffices to verify the conditions (i) and (ii).

Condition (i). First we evaluate the variance Var[δ′].

Claim 7.6.4. Under the same assumption as that of Lemma 7.6.1(I),

Var[δ′] ≥ 0.99

n
.

Proof of the claim. Note that Var[δ′] = 4Var[α′]. From (7.23), we can evaluate the variance Var[α′] as
follows:

Var[α′] ≥ g2k+1(1/2)‖π‖22 −
√
k|δ|‖π‖22 − 2

√
kλ‖π‖3/23

≥ 1

4n
− 3

√
k

(
300C2

√
log n

n3
+ λ‖π‖3/23

)
(from (7.26))

=
1 − o(1)

4n
(since k = o(log n/n)) and (7.25))

≥ 0.99

4n
.

From Corollary 5.4.9, for any positive real x, we have

Pr

[
|δ′| ≤ x

√
0.99

n

]
≤ Φ(x) +

5.6‖π‖33
Var[δ′]3/2

= Φ(x) + o(1),

where Φ(x) = 1√
2π

∫ x

−∞ e−y2/2dy (see (7.17)). This yields the condition (i).

Condition (ii). This condition directly follows Lemma 7.6.2 by substituting |δ| = Ψ(A)
n .

7.6.2 Phase (II): 300C log n/
√
n ≤ |δ| ≤ 1.25/

√
k

Since |δ| ≥ 300C log n/
√
n, from Lemma 7.6.2, we have

Pr[|δ′| < 0.025
√
k|δ|] ≤ exp

(
−ckn(log n)2

n

)
≤ n−2

if k is sufficiently large. Thus, we have |δt| ≥ (0.025
√
k)t · 300C log n/

√
n with probability (1 − n−2)t.

Therefore, for some t = O(log n/ log k), |δt| ≥ 1.25/
√
k with probability 1 − n−1.9.

Now we show the lower bound that t = Ω(log n/ log k). We assume that k = no(1) (otherwise,
log n/ log k is a constant and the lower bound is trivial). From Lemma 7.6.2, we have |δ′| = O(

√
k|δ|)

w.h.p. Suppose that |δ| = 300C log n/
√
n. If t = o(log n/ log k), we have |δt| ≤ no(1)O(log n/

√
n) ≤

O(n−1/3) ≤ 1.25/
√
k if k = no(1). This implies that it requires Ω(log n/ log k) steps to reach a configu-

ration that |δ| ≥ 1.25/
√
k.
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7.6.3 Phase (III): 1.25/
√
k < |δ| ≤ 0.9

We may assume that δ ≥ 0 without loss of generality (otherwise, consider Ac). From (7.24), we have

δ′ ≥ 2f2k+1

(
1

2
+
δ

2

)
− 1 − 0.4kλ2 − 2

√
K log n

n

≥ 2f2k+1

(
1

2
+
δ

2

)
− 1 − o(1).

We claim that 2f2k+1

(
1
2 + δ

2

)
− 1 > 0.9 during this phase (for sufficiently large n and k). Let Bin(N, p)

denote the random variable of the binomial distribution with N trials and probability p. Then, from the
definition of f2k+1, it holds that

f2k+1

(
1

2
+ δ

)
= Pr

[
Bin

(
2k + 1,

1

2
+ δ

)
≥ k + 1

]
= 1 −Pr

[
Bin

(
2k + 1,

1

2
+ δ

)
≤ k

]
. (7.28)

Let µ = (2k + 1)(1/2 + δ) be the expectation of Bin(2k + 1, 1/2 + δ). Then, since µ− k ≥ 2kδ, we have

Pr

[
Bin

(
2k + 1,

1

2
+ δ

)
≤ k

]
≤ Pr

[
Bin

(
2k + 1,

1

2
+ δ

)
≤ µ− (µ− k)

]
≤ Pr

[
Bin

(
2k + 1,

1

2
+ δ

)
≤ µ− 2kδ

]
≤ exp(−2kδ2). (7.29)

In the third inequality, we applied the Hoeffding bound (Proposition 5.4.3). If δ ≥ 1.25√
k

, by combining

(7.28) and (7.29), we obtain

f2k+1

(
1

2
+ δ

)
≥ 1 − exp(−2kδ2)

≥ 1 − e−3.125

> 0.92.

Thus, from (7.24), δ′ ≥ 0.92 − o(1) > 0.9 holds w.h.p.

7.6.4 Phase (IV): 0.9 < |δ| ≤ 1

We may assume π(A0) ≤ 0.1 without loss of generality. We claim that π(At) < 1
n2 for some t =

O(log n/ log k), which implies At = ∅ (since π(S) ≥ 1
2m ≥ 1

n2 whenever S 6= ∅).
Observe that

f2k+1(x) =

2k+1∑
i=k+1

(
2k + 1

i

)
xi(1 − x)2k+1−i

≤ (4x)k

≤ x

4k

whenever x ≤ 0.1 ≤ 4−1(16k)1/(k−1) with k ≥ 2. Therefore, from (7.22), we have

E[α′] ≤
(

1

4k
+ 0.4kλ2

)
α.

From (7.24) and the upper bound of E[α′] above, it holds with probability 1 − O(n−3) that α′ ≤ 0.9
conditioned on α ≤ 0.1. Thus,

E[π(At)] ≤
(

1

4k
+ 0.4kλ2

)t

+ n−3+o(1) ≤ n−3+o(1)

for some t = O(log n/ log k + log n/ log λ−1) = O(log n/ log k) (note that λ−1 = Ω(n1/4) from (7.27)).
For this t, we have Pr[At 6= ∅] ≤ Pr[π(At) ≥ n−2] ≤ n2 E[π(At)] = O(n−1). This completes the proof
of Lemma 7.6.1 as well as Theorem 7.1.8.
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7.6.5 Symmetry breaking lemma for best-of-k

The proof is essentially given in [CGG+18]. By inspecting the proof of [CGG+18] with evaluating
constant terms carefully, we obtain Lemma 7.6.3. For completeness, let us present it here.

Let m = C1
√
n log n. Let τ = inf{t ∈ N : Ψ(Xt) ≥ m} and {τ(i)}i∈N be the hitting times defined as{

τ(0) = 0,

τ(i) = inft∈N{t : τ(i− 1) < t < τ, f(Xt) ≥ h
√
n/k}.

Let R1, R2, . . . be the sequence of random variables defined as Ri = Xτ(i). It is shown in [CGG+18] that

• The sequence (Ri)i∈N is a Markov chain.

• The sequence (Ri)i∈N satisfies

Pr[Ψ(Ri+1) < C3

√
kΨ(Ri)|Ri = x] < exp

(
−C4

kΨ(x)2

n

)
for any x ∈ Ω that h

√
n/k ≤ Φ(x) < m.

We claim that Ψ(Ri) ≥ m for some i = O(log n/ log k). To prove this, we use the Markov inequality.

Fix a state x ∈ Ω such that h
√
n/k ≤ Ψ(x) < m for a sufficiently large constant h. Let Yi = exp(−Ψ(Ri)√

n
)

for each i. Let y = exp(−Ψ(x)√
n

) and z = z(x) =
√
kΨ(x)√

n
≥ h for x ∈ Ω. Note that ez = y−

√
k. Then, we

have

E[Yi+1|Ri = x]

≤ Pr[Ψ(Ri+1) < C3

√
kΨ(x)] + Pr[Ψ(Ri+1) ≥ C3

√
kΨ(x)] · exp

(
−C3

√
k

Ψ(x)√
n

)
≤ exp

(
−C4

kΨ(x)2

n

)
+ exp

(
−C3

√
kΨ(x)√
n

)
= exp

(
−C4z

2
)

+ exp (−C3z)

= y−
C3
2

√
k

(
exp

(
C3

2
z − C4z

2

)
+ exp

(
−C3

2
z

))
≤ 1

2
y

C3
2

√
k (since z ≥ h is sufficiently large and C2 > 1)

≤

{
1
2 if 1

2 < yi ≤ 1,
y

C3

√
k

if yi ≤ 1
2 .

In the second part of the last inequality, we assume that k ≥ 2; hence, it holds that ra ≤ r
a for 0 ≤ r ≤ 1

2

if a ≥ 2. Note that for each i ≥ 1, the random variable Ψ(Ri) = Ψ(Xτ(i)) satisfies h
√
n/k ≤ Ψ(Ri) < m.

Then, we have

E[Yi] ≤
1

2

(
1

C3

√
k

)i−2

and thus, by the Markov inequality,

Pr[Ψ(Ri) < m] = Pr

[
Yi > exp

(
− m√

n

)]
≤ exp

(
m√
n

)
1

2

(
1

C3

√
k

)i−2

=
nC1

2(C3

√
k)i−2

≤ n−1

for i = bC5 log n/ log kc for some constant C5 that depends on C1 and C3.
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Finally, we consider τ(bC5 log n/ log kc). Let W0,W1, . . . be binary random variables defined as

Wt =

{
1 if Ψ(Xt) ≥ h

√
n
k ,

0 otherwise.

Note that Pr[τ(T1) ≥ T2] = Pr[
∑T2

t=1Wt ≤ T1]. Let Ŵ0, Ŵ1, . . . be i.i.d. binary random variables such

that E[Ŵt] = 1 − C1√
k

. From the condition (i), for every T , the sum
∑T

t=1 Ŵt has stochastic dominance

over
∑T

t=1Wt.Therefore, setting T1 = bC4 logn
log k c and T2 = d 2C4 logn

log k e, we obtain

Pr

[
τ

(⌊
C5 log n

log k

⌋)
≥ T2

]
= Pr

[
T2∑
t=1

Wt ≤
⌊
C5 log n

log k

⌋]

≤ Pr

[
T2∑
t=1

Wt ≤
C5 log n

log k

]

≤ Pr

[
T2∑
t=1

Ŵt ≤
C5 log n

log k

]

≤ Pr

[
T2∑
t=1

(1 − Ŵt) ≥ T2 −
C5 log n

log k

]

≤ Pr

[
T2∑
t=1

(1 − Ŵt) ≥
C5 log n

log k

]

≤ 2T2

(
C1√
k

)C5 log n
log k

≤ nO(1/ log k)−C5
2 .

In the fifth inequality, we used the union bound over the choice for Ŵt. Note that 1 − Ŵt = 1 with
probability C1√

k
.



Chapter 8

Random Walk on Growing Networks

8.1 Model and Quantities

In this chapter we introduce a new notion of growing graph and investigate a random walk on it.

8.1.1 Random walk on a growing graph

A growing graph is a sequence G = (Gt)t∈Z≥0
of graphs where each Gt = (Vt, Et) is a graph such that

Vt ⊆ Vt+1. A random walk on a growing graph is a stochastic process Z = (Zt)t∈Z≥0
for Zt ∈ Vt, where

the transition probability from Zt to Zt+1 is provided as a random walk on Gt. Note that Zt ∈ Vt−1

holds for t ∈ N.
We are particularly concerned with a simple model of growing graphs with moderate changes. Roughly

speaking, a growing graph G in this chapter keeps being a graph G(n) unchanged for some duration of
steps, then changes its shape to G(n+1) by adding a single vertex and connecting it to G(n). Let d : N → N
be a function, denoting the duration of keeping the graph unchanged. For n ∈ N, let G(n) = (V (n), E(n))
be a graph such that V (n) = {v1, . . . , vn}, E(1) = ∅, and E(n) = E(n−1) ∪

⋃
u∈S{{vn, u}} for some

S ⊆ V (n−1). Then, G is given as Gt = G(n(t)), where n(t) ∈ N is the least positive integer satisfying
d(i) ≤ t <

∑n
i=1 d(i). Notice that G0 is a graph of a single vertex1. In other words, d(n) denotes the

duration of |Vt| = n, and hence d(n) = min{t : |Vt| = n+ 1} − min{t : |Vt| = n} holds. For convenience,

let Tn :=
∑n−1

i=1 d(i) = min{t ≥ 0 : |Vt| = n} for n ∈ N. For example, if d(n) = n, then G(0) = G(1),
G(1) = G(2) = G(2), G(3) = G(4) = G(5) = G(3), and T1 = 0, T2 = 1, T3 = 3, T4 = 6.

This chapter is also concerned with a particular model of random walks on growing graphs. For
simplicity, we assume that a random walk on a growing graph G is temporarily time-homogeneous,
meaning that a random walk is formally represented by a common n × n transition matrix P (n) such
that Pr[Zt+1 = v | Zt = u] = (P (n))u,v when Gt = G(n). We simply represent a random walk on
a growing graph (RWoGG, for short) by a triple R = (d, (G(n))n∈N, (P

(n))n∈N). Strictly speaking, an
RWoGG is specified by a pair (d, (P (n))n∈N) and the sequence (G(n))n∈N is not essential. However, we
define an RWoGG as a triple (d, (G(n))n∈N, (P

(n))n∈N) in order to emphasize that the random walk takes
place on a growing graph.

We are concerned with the number of vertices unvisited by an RWoGG, formally given by

Ut := |{v ∈ Vt−1 : v 6= Zs for any s ∈ {0, 1, . . . , t}}| ,

where recall the fact that Zt ∈ Vt−1. Particularly, let U(n) (or simply U without confusion) denote

UTn+1
, i.e., U(n) = n−

∣∣∣⋃Tn+1

t=0 {Zt}
∣∣∣, and we will be concerned with it.

8.2 Our Results

This chapter investigates the behavior of E[U ] regarding d for an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N).

As a warm-up, we first study the simple random walk on a growing complete graph. Then, we obtain
upper bounds of E[U ] for general growing graph in terms of the hitting and mixing time of G(n). Finally,
we obtain a lower bound of E[U ] for a growing path. This verifies that our upper bounds for general
case is tight for the growing path.

1This is just for convenience of descriptions, but not essential in our later analyses.
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8.2.1 Complete graph (Section 8.5)

As an introductory example of our analyses, we firstly concerned with a random walk on a growing
complete graph. Let Rc = (d, (G(i))i∈N, (P

(i))i∈N) be a the simple random walk on a growing complete
graph, where G(i) is the i-vertex complete graph (with self-loops), and (P (i))(u, v) = 1/i for any u, v ∈
V (i).

Theorem 8.2.1. For Rc = (d, (G(i))i∈N, (P
(i))i∈N), the following hold:

(1) If there is a constant C > 0 such that d(i) ≥ Ci for all i ∈ [n], then E[U ] = O(1).

(2) If d(i)/i→ ∞ as i→ ∞, then E[U ] → 0 as n→ ∞.

(3) If d is unbounded (i.e., d(i) → ∞ as i → ∞) and satisfies for all i ∈ N that d(i)
i ≥ d(i+1)

i+1 and
d(i) ≤ d(i+ 1), then E[U ] = (1 − o(1)) n

d(n)+1 .

(4) If d(i) = c for all i ∈ N, then E[U ] = (1 − O(n−1)) n
c+1 .

Claim (3) means that, in case of d(i) = o(i) and d(i) = ω(1), we have E[U ] ≈ n
d(n) . Claim (4) is the

counterpart of (3) for constant d. For example, if a new vertex appears every step (d(i) = 1), a random
walk on a growing complete graph misses a half of the number of vertices.

8.2.2 General upper bound (Section 8.6)

In the rest of this chapter, let thit(i), tcov(i) and tmix(i) denote the hitting, cover and mixing times of
P (i), respectively. We obtain several bounds of E[U ] for an RWoGG (d, (G(i))i∈N, (P

(i))i∈N) in terms of
thit(i), tcov(i) and tmix(i).

Theorem 8.2.2. Let (d, (G(i))i∈N, (P
(i))i∈N) be an arbitrary RWoGG.

(1) If there is a constant C > 1 such that d(i) ≥ Cthit(i) for all i ∈ [n], then E[U ] = O(1).

(2) If d(i)/thit(i) → ∞ as i→ ∞, then E[U ] → 0 as n→ ∞.

Theorem 8.2.2 can be seen as an generalization of Theorem 8.2.1 (1) and (2): it is known that
thit(i) = Θ(i) if G(i) is the i-vertex complete graph.

In Theorem 8.2.2, we obtain a general upper bound of E[U ] in the case of d(i) ≥ (1 + ϵ)thit(i), where
ϵ > 0 is a constant. In contrast, the case of d(i) ≤ (1 + o(1))thit(i) seems not easy: it contains an issue of
“short random walks”. that is a challenging topic in the literature of the cover time of multiple random
walks, see e.g., [KMTS19]. Intuitively speaking, if d(i) is large enough (say, d(i) ≥ tmix(i)), then at time
t = Ti (recall that Ti = min{t ∈ Z≥0 : G(t) = Gi}), the distribution of the position ZTi is close to the
stationary distribution of G(i−1). This property makes the analysis of E[U ] tractable.

RWoGG on graphs with tmix � thit. We focus on lazy and reversible random walks. For “rapidly”
mixing random walks such that tmix � thit, we obtain the following upper bound.

Theorem 8.2.3. Let (d, (G(i))i∈N, (P
(i))i∈N) be an RWoGG such that P (i) is lazy and reversible. Let

C > 0 and γ ∈ [0, 1] be arbitrary constants. If thit(i)/tmix(i) ≥ iγ/C and d(i) ≥ 3Cthit(i)
iγ for all 1 < i ≤ n,

then E[U ] ≤ 8nγ

C + 32.

Observe that Theorem 8.2.3 for γ = 0 claims that E[U ] = O(1) if d(i) = Θ(thit(i)) under the mild
condition. A natural question remains unsettled whether E[U ] = O(1) requires d(i) = Ω(thit(i)) for
any RWoGG (d, (G(i))i∈N, (P

(i))i∈N). As a consequence of Theorem 8.2.3, for example, we obtain a
bound for degree restricted expander graphs, for which thit(i) = O(i) and tmix(i) = O(log i) hold, that
E[U ] = O(nγ) if d(i) = Ω(i1−γ) for γ ∈ [0, 1); see Corollary 8.2.6, for detail.

RWoGG on sparse graphs. Though the condition of tmix � thit covers interesting examples of
rapidly mixing random walks, it misses some representative examples, such as random walks on paths
and lollipop graphs, interested in the context of hitting and cover times. To cover those examples,
we consider RWoGG on “sparse” graph. Our first concern is a graph sequence (G(i))i∈N satisfying
|E(i)|

|E(i−1)| = 1 + O(i−1). For example,



CHAPTER 8. RANDOM WALK ON GROWING NETWORKS 107

Theorem 8.2.4. Let (d, (G(i))i∈N, (P
(i))i∈N) be an RWoGG such that P (i) is lazy and simple, and that

for all i ∈ {3, . . . , n}, |E(i)|
|E(i−1)| ≤ 1 + L

i hold for some positive constant L. Let C > 0 and γ ∈ [0, 1] be

arbitrary constants. If d(i) ≥
(
C
iγ + L+1

2i

)
thit(i) holds for any 1 < i ≤ n, then E[U ] ≤

√
L+ 1nγ

C .

We can obtain an upper bound of E[U ] for a growing path by applying Theorem 8.2.4. Indeed, we will
prove that the upper bound is tight in Theorem 8.2.9. We will also demonstrate another applications
of Theorem 8.2.4 to a growing lollipop graph (see Corollary 8.2.7), where the static lollipop graph is
well-known as a tight example for the bounds thit = O(n3) and tcov = O(n3) for a simple random walk
for any graph.

In the following result, we focus on a lazy simple and symmetric random walk with d � thit.

Theorem 8.2.5. Let (d, (G(i))i∈N, (P
(i))i∈N) be an RWoGG such that P (i) is lazy and symmetric. Let

C > 0 and γ ∈ [0, 1] be arbitrary constants. If d(i) ≥
(
C
iγ + 2

i

)
thit(i) for all 1 < i ≤ n, then E[U ] ≤

√
3nγ

C .

A typical application of Theorem 8.2.5 is a lazy Metropolis walk with the uniform stationary distri-
bution (see Corollary 8.2.8 for details), which often appears in the context of Markov chain Monte Carlo.
Nonaka, Ono, Sadakane, and Yamashita [NOSY10] proved that the Metropolis achieves thit(i) = O(i2)
for any connected graph. The upper bound by Theorem 8.2.5 is also tight for a Metropolis walk on a
growing path (Theorem 8.2.9 and Corollary 8.2.10).

Example: Degree restricted expander graph. For a graph G = (V,E), let dave(G) and dmin(G)
denote the average and the minimum degree of G, respectively. Suppose that P is the transition matrix
of the lazy simple random walk on G and let λ2(P ) denote the second largest eigenvalue of P . We

call a graph G degree restricted expander graph if both dave(G)
dmin(G) and 1

1−λ2(P ) are upper bounded by

some positive constant. For example, it is easy to see that G(n, p) is a degree restricted expander
graph if p = ω(log n/n). For any degree restricted expander graph, we have thit(P ) = O(|V |) and
tmix(P ) = O(log |V |) (See Lemma 8.4.6 in Section 8.4 and Theorem 12.4 in [LP17]). Thus Theorem 8.2.3
implies the following.

Corollary 8.2.6. Suppose that G(i) is a degree restricted expander graph and P (i) is the transition
matrix of the lazy simple random walk on G(i) in R = (d, (G(i))i∈N), (P (i))i∈N). Let γ ∈ [0, 1] and
C > 0 be arbitrary constants. Then two positive constants K1,K2 satisfying the following exist: If
d(i) ≥ CK1i

1−γ +K2 log i for all i ∈ [n], then E[U ] ≤ 8nγ

C + 32.

Proof. Since there exist some positive constants K1,K2 satisfying thit(i) ≤ K1i and tmix ≤ K2 log i, we
obtain the claim from Theorem 8.6.2.

Example: Lollipop graph. A graph G = (V,E) is (a, b)-lollipop graph if G is obtained by connecting
the complete graph Ka with the path on b vertices (thus G has a+b vertices and

(
a
2

)
+b edges). Lollipop

graphs gather special attention in the literature of random walk since the (2n/3, n/3)-lollipop graph
attains the maximum possible cover and connected graphs [Fei95b].

In this thesis we consider an RWoGG on which each G(i) is the (di/2e, bi/2c)-lollipop graph. Formally,

at each round i ∈ [n], the sets of odd-indexed vertices V
(i)
odd := {v2i−1 : 1 ≤ i ≤ di/2e} and even-indexed

vertices V
(i)
even := {v2i : 1 ≤ i ≤ bi/2c} form the complete graph and path graph, respectively. Then these

two components are connected by an edge {v1, v2}. Let P (i) be the transition matrix of the simple lazy
random walk on G(i). For such P (i), it is well known that thit(i) = O(i3) [Fei95b].

Corollary 8.2.7. Consider R = (d, (G(i))i∈N, (P
(i))i∈N) where G(i) is the lollipop graph defined above

and (P (i))i∈[n] is the transition matrix of the lazy simple random walk on G(i). Let γ ∈ [0, 1] be an
arbitrary constants. If d(i) ≥ C1i

3−γ for all i, then E[U ] ≤ C2n
γ . Here, C1, C2 are some positive

constants.

Proof. From definition, |E(2i)| = 1 + i(i−1)
2 + i − 1 = i(i+1)

2 and |E(2i+1)| = 1 + (i+1)i
2 + i − 1 = i(i+3)

2 .

Thus for any i, |E(i)|

|E(i−1)| ≤ 1+ K1

i for some constant K1. Furthermore, t
(i)
hit ≤ K2i

3 holds for some constant

K2. Applying Theorem 8.2.4, we obtain the claim.
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v1 v2 vi−1 vip

1− p

q

1− 2q

q

q

q

1− 2q

q

q

1− p

p

Figure 8.1: The transition diagram of (8.2).

Example: Metropolis walk. For a given G = (V,E), the transition matrix P of the lazy Metropolis
walk on G is defined by

(P )u,v =


1

2max{du,dv} (if {u, v} ∈ E)

1 −
∑

w:{u,w}∈E(P )u,w (if u = v)

0 (otherwise).

(8.1)

Nonaka, Ono, Sadakane and Yamashita [NOSY10] proved that thit(P ) = O(|V |2) for any connected
graphs. Since P is symmetric matrix, we can apply Theorem 8.2.5 directly.

Corollary 8.2.8. Consider R = (d, (G(i))i∈N, (P
(i))i∈N), where each P (i) is the lazy Metropolis walk on

a connected graph G(i). Let γ ∈ [0, 1] and C > 0 be arbitrary constants. If d(i) ≥
(
C
iγ + 2

i

)
thit(i) for all

1 < i ≤ n, then E[U ] ≤
√

3nγ

C .

8.2.3 Lower bound for paths (Section 8.7)

In contrast to upper bounds, an analysis of a lower bound requires more technically complicated argu-
ments. We establish a lower bound of E[U ] for a random walk on a growing path graph, which implies
that the upper bound by Theorem 8.2.5 is tight in the case. Let Rp = (d, (G(i))i∈N, (P

(i))i∈N) be a
random walk on a growing path graph, where G(i) = (V (i), E(i)) is given by V (i) = {v1, . . . , vi}, and
E(i) = {{v1, v2}, . . ., {vi−1, vi}}, and P (i) is given by

(P (i))u,v =



p if u = v = v1 or u = v = vi,

1 − p if (u, v) ∈ {(v1, v2), (vi, vi−1)},
q if {u, v} = {vj , vj+1} for j ∈ {2, 3, . . . , i− 1},
1 − 2q if u = v = vj for j = {2, 3, . . . , i− 1},
0 otherwise

(8.2)

for two parameters p, q ∈ [0, 1] satisfying p ≥ q and q ≤ 1/2 (see Figure 8.1). For example, if (p, q) =
( 1
2 ,

1
4 ), the corresponding walk is the lazy simple random walk. If (p, q) = ( 3

4 ,
1
4 ) the corresponding one

is the lazy Metropolis random walk.

Theorem 8.2.9. If d(i) ≤ Ci2−γ in Rp for some constants C > 0 and γ ∈ [0, 1] then E[U ] = Ω(nγ/C).

Theorems 8.2.4, 8.2.5 and 8.2.9 imply the following tight bounds of E[U ] on a growing path.

Corollary 8.2.10. For Rp = (d, (G(i))i∈N, (P
(i))i∈N), where P (i) is the transition matrix of either the

lazy simple random walk or the lazy Metropolis random walk. Then

(1) If d(i) ≥ Ci2−γ for some constants C > 0 and γ ∈ [0, 1] then E[U ] = O(nγ/C).

(2) If d(i) ≤ Ci2−γ for some constants C > 0 and γ ∈ [0, 1] then E[U ] = Ω(nγ/C).

8.3 Related Works

The cover time is a fundamental topic of analyses of random walks. Here, we review some representative
results about the cover times of random walks on static graphs, and on dynamic graphs.



CHAPTER 8. RANDOM WALK ON GROWING NETWORKS 109

8.3.1 Cover times of random walks on static graphs

It is known that the cover time of a simple random walk satisfies tcov ≤ 2m(n − 1) for any undirected
graph, see Aleliunas, Karp, Lipton, Lovász, and Rackoff [AKL+79] and Aldous [Ald83]. Mathews [Mat88]
devised a technique of upper and lower bounding tcov by thit, of which a celebrated implication is
tcov ≤ thit log n. The lolipop graph is famous for thit = Ω(n3), and hence tcov = Ω(n3). Fiege gave a tight
upper bound of the cover times of simple random walks on any graphs such that tcov ≤ 4

27n
3 + O(n5/2)

in [Fei95b], while he in [Fei95a] gave a tight lower bound of the cover time of simple random walks on any
graphs such that tcov ≥ n lnn+ o(n lnn), using a Mathews’ argument [Mat88]. The connection between
the hitting time and electric circuits is well known (see e.g., [DS84, AF, LP17]).

Motivated by a faster covering by a random walk, Ikeda et al. [IKOY03] (see also [IKY09]) proposed
β-random walk, which makes transitions only using local information, and proved that the cover time
of a β-random walk is upper bounded by O(n2 log n) for any graph. Nonaka et al. [NOSY10] proved
the same bound holds for a Metropolis walk, which is simpler and more popular than β-random walk.
Recently, David and Feige [DF17] (see also [DF18]) proved that a biased random walk achieves O(n2)
cover time for any graph, and affirmatively settled the question posed by Ikeda et al. [IKOY03].

8.3.2 Cover time of random walks on dynamic graphs

An early work [CF03] by Cooper and Frieze investigated random walks on growing “web-graphs”. Specifi-
cally, they considered a random walk on a growing preferential attachment graph with a constant duration
(i.e., the number of vertices increases every constant steps). They proved that E[U ]/n converges to some
constant as n tends to infinity. Note that our RWoGG contains their model as a special case.

There are several results about the cover times of random walks on dynamic graphs, sometimes
called “evolving graphs,” with static vertex sets. Avin et al. [AKL08] (see also [AKL18]) investigated
the hitting times, mixing times and cover times of random walks on evolving graphs with static vertex
sets. They gave a prescribed sequence of graphs on which the hitting time of a simple random walk
gets 2Ω(n), and hence the cover time is as well. On the other hand, they proved that the cover time
of a max-degree random walk is O(dmaxn

3(log n)2) where dmax is the maximum degree of the evolving
graph. Denysyuk and Rodrigues [DR14] were concerned with ρ-recurrent family of evolving graphs,
where preferable graphs are assumed to appear frequently in the graph sequence. Then, for max-degree
random walks on ρ-recurrent families, they gave upper and lower bounds of the cover time in terms of the
hitting time, as well as gave an upper bound of the mixing time. Lamprou, Martin, and Spirakis [LMS18]
were concerned with two random walks of “random walk with a delay” (RWD), where at each step, the
walker chooses an edge of underlying graph and moves when it appears, and “random walk on what is
available” (RWA), where the walker chooses an edge of current graph and moves immediately. Then,
they investigated the cover times of RWD and RWA for edge-uniform stochastically evolving graphs.
Sauerwald and Zanetti [SZ19] extended the argument by Avin et al. [AKL18] in the case that a sequence
of graphs have the same stationary distribution, and presented an upper bound O(n2) of the cover time
on d-regular dynamic graphs.

8.3.3 Other related works

Saloff-Coste and Zúñiga investigated time-inhomogeneous Markov chains, and provided some Nash and
log-Sobolev inequalities [SCZ09, SCZ11]. Recently, Cai, Sauerwald, and Zanetti [CSZ20] investigated
the relation between the density of edge-Markovian dynamic graphs and mixing times. They showed for
fast-changing dynamic graphs that tmix = ∞ in sparse case while tmix = O(log n) in dense case. They
also showed for slowly-changing dynamic graphs that tmix = Ω(n) in sparse case while tmix = O(log n)
in dense case.

There are many works on other stochastic processes on dynamic graphs, such as exploration, infor-
mation spreading, rumor spreading, gossiping and voter model, see e.g., [JAR16, CST15, BGKMT16].
Theoretical analyses of algorithms on dynamic graphs attract high attentions in the context of dis-
tributed computing, and there are many works concerning the topics, such as exploration, agreement,
and population protocol, on dynamic networks, see e.g., [MS18, Mic16, KO11].
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8.4 Preliminaries

8.4.1 Random walk

We briefly introduce notions of random walk. Let P ∈ [0, 1]V×V be a transition matrix over V . A
(time-homogeneous) random walk (or Markov chain) is a sequence X = (Xt)t∈Z≥0

of random variables
given as Pr[Xt+1 = v | Xt = u] = Pu,v for each t ∈ Z≥0. Note that a random walk is characterized by
the transition matrix P .

A random walk is lazy if Pv,v ≥ 1/2 for all v ∈ V , is reversible if P is reversible, and is symmetric if
Pu,v = Pv,u holds for all u, v ∈ V .

For a transition matrix P , The hitting time thit (also denoted by thit(P )) is the random variable given
by thit := maxu,v∈V E[min{t ≥ 0 : X0 = u and Xt = v}]. The cover time tcov (or tcov(P )) is given by
tcov := maxu∈V E[min{t ≥ 0 : [X0 = u] and [∀v ∈ V, ∃s ≤ t, Xs = v]}]. The mixing time tmix is given
by tmix := min{t > 0 : (1/2) maxu∈V

∑
v∈V |P t(u, v) − π(v)| ≤ 1/4}.

8.4.2 Notation

For ease of notation, we sometimes use x(v) to denote xv for a vector x ∈ RV and v ∈ V . For two vectors
x, y ∈ R and a probability vector π ∈ (0, 1]V , let 〈x, y〉π :=

∑
v∈V π(v)x(v)y(v). Then, the ℓ2(π)-norm

of x is defined by ‖x‖2,π :=
√
〈x, x〉π =

√∑
v∈V π(v)x(v)2. For two vectors x, y ∈ RV where y(v) 6= 0

holds for all v ∈ V , define x
y ∈ RV by x

y (v) = x(v)
y(v) . Note that, for any probability vector ξ ∈ [0, 1]V ,∥∥∥ ξ

π − 1(|V |)
∥∥∥2
2,π

=
∥∥∥ ξ
π

∥∥∥2
2,π

− 1 holds. Here, 1(n) denotes the n-dimensional vector where all elements are

equal to one.

8.4.3 Tools

Lemma 8.4.1 (Theorem 4.1 of [OP19]). Let P ∈ [0, 1]V×V be an irreducible, reversible and lazy tran-
sition matrix over V , and let π ∈ (0, 1]V denote its stationary distribution. Let (Xt)t∈Z≥0

denote the
Markov chain according to P . Let τv(P ) = min{t ≥ 0 : Xt = v} and let thit(P ) = maxu,v∈V Eu[τv(P )].
Then for any t ≥ 0 and any h0, h1, . . . , ht ∈ V ,

Pr
π

[Xs 6= hs for all s ∈ {0, . . . , t}] ≤
(

1 − 1

thit(P )

)t

.

By taking h0 = · · · = ht = v in Lemma 8.4.1, we immediately obtain the following.

Corollary 8.4.2. Let P ∈ [0, 1]V×V be an irreducible, reversible and lazy transition matrix over V , and
let π ∈ (0, 1]V denote its stationary distribution. Let (Xt)t∈Z≥0

denote the Markov chain according to
P . Let τv(P ) = min{t ∈ Z≥0 : Xt = v} and let thit(P ) = maxu,v∈V Eu[τv(P )]. Then for any v ∈ V and
t > 0,

Pr
π

[τv(P ) > t] ≤
(

1 − 1

thit(P )

)t

≤ exp

(
− t

thit(P )

)
.

Lemma 8.4.3 (See Section 3.6.5 of [AF] or Theorem 4.1 of [OP19]). Let P ∈ [0, 1]V×V be an irreducible
and reversible transition matrix over V , and let π ∈ (0, 1]V denote its stationary distribution. For a
subset S ⊆ V , define PS ∈ [0, 1]V×V by (PS)u,v = Pu,v if u, v ∈ V \ S and (PS)u,v = 0 otherwise. Let
λ(M) denote the largest eigenvalue of a matrix M . Then for any S /∈ {∅, V },

λ(PS) ≤ 1 − 1

thit(P )
.

Furthermore, for any S /∈ {∅, V } and any f ∈ RV ,

〈f, PSf〉π ≤ λ(PS) 〈f, f〉π .

Since ‖PSf‖
2
2,π

= 〈PSf, PSf〉π =
〈
f, P 2

S
f
〉
π
, we have the following corollary.
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Corollary 8.4.4. Let P ∈ [0, 1]V×V be an irreducible, reversible and lazy transition matrix over V , and
let π ∈ (0, 1]V denote its stationary distribution. Suppose that PS is a matrix defined in Lemma 8.4.3.
Then for any S /∈ {∅, V } and any f ∈ RV ,

‖PSf‖
2
2,π

≤ λ1(PS)2 ‖f‖22,π ≤
(

1 − 1

thit(P )

)2

‖f‖22,π

Here, λ1(M) denotes the largest eigenvalue in absolute value of a matrix M .

Lemma 8.4.5 (See e.g. (12.8) of [LP17]). Let P ∈ [0, 1]V×V be a reversible transition matrix with respect

to π ∈ (0, 1]V . Then for any probability vector f ∈ [0, 1]V ,
∥∥∥ f
π − 1

∥∥∥2
2,π

=
∥∥∥ f
π

∥∥∥2
2,π

− 1 and

∥∥∥∥P fπ − 1
∥∥∥∥2
2,π

≤ λ2(P )2
∥∥∥∥fπ − 1

∥∥∥∥2
2,π

holds where λ2(P ) is the second largest eigenvalue (in absolute value) of P .

Lemma 8.4.6 (Lemmas 4.24 and 4.25 of [AF]). Let P be reversible transition matrix and let π be its
stationary distribution. Then

1

1 − λ2(P )
≤ thit(P ) ≤ 2

πmin(1 − λ2(P ))
.

8.5 Complete Graph

This section is devoted to the proof of Theorem 8.2.1. Consider a random walk (Zt)t∈Z≥0
on a RWoGG.

For convenience, we divide the Tn+1 step random walk Z0, . . . , ZTn+1
into n random walks each of

length d(i) (for i = 1, . . . , n). We call each period a round. For each i ∈ [n], let (X
(i)
s )s∈Z≥0

denote

a random walk in the i-th round (specifically, it is a random walk according to P (i)) with the initial

state X
(i)
0 = ZTi

= X
(i−1)
d(i−1). Note that (X

(i)
s )s∈Z≥0

is a random walk on G(i). Table 8.1 illustrates the

correspondence between Zt and X
(i)
s in the case of d(i) = i.

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 · · ·
G(1) X

(1)
0 X

(1)
1 · · ·

G(2) X
(2)
0 X

(2)
1 X

(2)
2 · · ·

G(3) X
(3)
0 X

(3)
1 X

(3)
2 X

(3)
3 · · ·

G(4) X
(4)
0 X

(4)
1 X

(4)
2 · · ·

Table 8.1: Correspondence between Zt and X
(i)
s when d(i) = i. For each i ∈ N, (X

(i)
s )s∈Z≥0

is a random

walk on G(i). Note that X
(i)
0 = X

(i−1)
d(i−1) = ZTi

for i ≥ 2. In this example, U(3) = 3 −
∣∣∣⋃T3+1

t=0 {Zt}
∣∣∣ =

3 −
∣∣∣⋃3

i=1

⋃i
s=0{X

(i)
s }
∣∣∣.

For v ∈ V (n) let E(v) denote the event that v 6∈
⋃n

i=1

⋃d(i)
s=0{X

(i)
s }. In other words, E(v) means that

the random walk Z0, Z1, . . . , ZTn+1
does not visit the vertex v.

Consider the RWoGG of Theorem 8.2.1. For the vertex vk attached to G at time Tk, we see that

Pr[E(vk)] =
∏n

i=k

(
1 − 1

i

)d(i)
holds, and thus

E[U ] =

n∑
k=1

Pr[E(vk)] =

n∑
k=1

n∏
i=k

(
1 − 1

i

)d(i)

holds. Theorem 8.2.1 follows from the next lemma.

Lemma 8.5.1. For a function f : N → N, let S(n) :=
∑n

k=1

∏n
i=k

(
1 − 1

i

)f(i)
.

(i) If f(i) ≥ Ci for some constant C, then S(n) = O(1).
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(ii) If f satisfies f(i) ≤ f(i+ 1) for all i ∈ N, then S(n) ≥ n
f(n)+1

(
1 − 1

n

)f(n)
.

(iii) If f satisfies f(i)
i ≥ f(i+1)

i+1 , then for all n ∈ N, S(n) ≤ n
f(n) .

(iv) If there is a constant c ∈ N such that f(i) = c for all i ∈ N, then for all n ∈ N, S(n) ≤ n
c+1 .

Proof of (i). Since 1 + x ≤ ex, we have

S(n) ≤
n∑

k=1

exp

(
−

n∑
i=k

f(i)

i

)
≤

n∑
k=1

exp (−(n− k + 1)C) = O(1).

Proof of (ii). Observe that S(1) = 0 and for all n ≥ 1,

S(n+ 1) =

n+1∑
k=1

n+1∏
i=k

(
1 − 1

i

)f(i)

=

(
1 − 1

n+ 1

)f(n+1)

(S(n) + 1) . (8.3)

We prove (ii) by induction on n. In the base case, S(1) = 0 and we are done. If S(n) ≥ n
f(n)+1

(
1 − 1

n

)f(n)
,

then

S(n) + 1 ≥ n

f(n) + 1

(
1 − 1

n

)f(n)

+ 1 ≥ n

f(n) + 1

(
1 − f(n)

n

)
+ 1

=
n− f(n)

f(n) + 1
+ 1 =

n+ 1

f(n) + 1
≥ n+ 1

f(n+ 1) + 1
. (8.4)

Here, we used (1 + x)r ≥ 1 + rx in the second inequality and f(n) ≤ f(n + 1) in the last inequality.

Combining (8.3) and (8.4), S(n+ 1) ≥
(

1 − 1
n+1

)f(n+1)
n+1

f(n+1)+1 and we are done.

Proof of (iii). The proof is obtained by induction on n ≥ 1. When n = 1, S(1) = 0 ≤ 1/f(1). Assume
S(n) ≤ n/f(n). Then,

S(n+ 1) =

(
1 − 1

n+ 1

)f(n+1)

(S(n) + 1) ≤
n

f(n) + 1

1 + f(n+1)
n+1

≤
n+1

f(n+1) + 1

1 + f(n+1)
n+1

=
n+ 1

f(n+ 1)
.

Note that (1 − x)y ≤ 1/(1 + xy) for all x ∈ [0, 1] and y ≥ 0. The second inequality follows from
f(n+1)
n+1 ≤ f(n)

n .

Proof of (iv). The proof is obtained by induction on n. First S(1) = 0 ≤ 1/(f(1) + 1). Assume S(n) ≤
n/(f(n) + 1). Then, from (8.3) and the induction assumption, we have

S(n+ 1) ≤
n

f(n)+1 + 1

1 + f(n+1)
n+1

=

n
f(n)+1 + 1

1 + f(n)
n+1

=

n+1
f(n)+1

(
n

n+1 + f(n)+1
n+1

)
n

n+1 + f(n)+1
n+1

=
n+ 1

f(n) + 1
=

n+ 1

f(n+ 1) + 1
.

Note that we use f(n) = f(n+ 1) in the first and the last equality.

We are ready to prove Theorem 8.2.1.

Proof of Theorem 8.2.1. Recall that E[U ] = S(n). Statement (1) follows from Lemma 8.5.1(i). State-
ment (3) follows from (ii) and (iii) of Lemma 8.5.1. (4) follows from (ii) and (iv) of Lemma 8.5.1.

Now, we prove Statement (2). More precisely, we prove that, for any ϵ > 0, there is n0 ∈ N such that
for all n ≥ n0, S(n) ≤ ϵ holds. From the assumption that d(i) = ω(i), for any large constant C > 0, we
can take i0 ∈ N such that for all i ≥ i0, f(i) > Ci holds. Fix a constant C > 0 and take i0 in this way.
Since 1 + x ≤ ex and f(k)/k > C for all k ≥ i0, we have

S(n) ≤
i0∑
i=1

exp

(
−

n∑
k=i0

f(k)

k

)
+

n∑
i=i0+1

exp

(
−

n∑
k=i

f(k)

k

)

≤ i0 exp(−(n− i0 + 1)C) +

n∑
i=i0+1

exp(−(n− i+ 1)C)

≤ i0 exp(−(n− i0 + 1)C) +
e−C

1 − e−C
.
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Let ϵ > 0 be an arbitrary small constant. Then, take C > 0 such that e−C

1−e−C < ϵ
2 holds. According to

this constant C, we can take i0 such that f(i) > Ci for all i ≥ i0 holds. Now C and i0 are fixed. Hence,
for sufficiently large n, we have i0 exp(−(n− i0 + 1)C) ≤ ϵ

2 . This implies S(n) ≤ ϵ and we are done.

8.6 General Upper Bound

In this section we prove Theorems 8.2.2 to 8.2.5. Consider an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N).

Recall that, at each round i, (X
(i)
t )t∈Z≥0

denotes the random walk according to P (i) where X
(i)
0 =

X
(i−1)
d(i−1) holds (See Table 8.1 for an example). Let π(i) denote the stationary distribution of P (i). Let

τ
(i)
v := min{t ≥ 0 : X

(i)
t = v}, i.e., τ

(i)
v denotes the time taken for a random walk (X

(i)
t )t∈Z≥0

to reach

v ∈ V (i). Note that E[τ
(i)
u ] ≤ maxu,v∈V E[τ

(i)
v |X(i)

0 = u] = thit(i). Recall that V (G(i)) = {v1, . . . , vi}
and thus X

(1)
0 = v1. For any round k ≤ n, the probability that the walker does not visit the vertex vk

until the end of the round n is equal to Pr
[∧n

i=k

{
τ
(i)
vk > d(i)

}]
. Hence we have

E[U ] =

n∑
k=1

Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}]

=

n∑
k=2

Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}]

=

n∑
k=2

∑
v∈V (k−1)

Pr
[
X

(k)
0 = v

]
Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}∣∣∣∣∣X(k)

0 = v

]
(8.5)

≤
n∑

k=2

max
v∈V (k−1)

Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}∣∣∣∣∣X(k)

0 = v

]
. (8.6)

The second equality follows from Pr[X
(1)
1 6= v1] = 0. The rest of this section is devoted giving upper

bounds of (8.5) and (8.6).

8.6.1 Upper bound for large d

We show Theorem 8.2.2 in this section. To begin with, we show the following lemma.

Lemma 8.6.1. For any R = (d, (G(i))i∈N, (P
(i))i∈N), we have

E[U ] ≤
n∑

k=2

n∏
i=k

max
v∈V (i)

Pr
[
τ (i)vk

> d(i)
∣∣∣X(i)

0 = v
]
.

Proof. Consider a fixed vertex vk with k > 1. For a round i ≥ k and a vertex u ∈ V (i), let E(i)
u = E(i)

u (vk)
denote the event that the walker is in vertex u at the end of the i-th round without visiting vertex vk
during the round. Formally E(i)

u (vk) is defined as the event of {τ (i)vk > d(i)} ∧ {X(i)
d(i) = u}. Then for any

uk−1 ∈ V (k−1),

Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}∣∣∣∣∣X(k)

0 = uk−1

]
=

∑
uk∈V (k)

· · ·
∑

un∈V (n)

Pr

[
n∧

i=k

E(i)
ui

∣∣∣∣∣X(k)
0 = uk−1

]
. (8.7)

To bound (8.7), we first observe that, for any vertices, uk−1 ∈ V (k−1), uk ∈ V (k), . . . , un ∈ V (n),

Pr

[
n∧

i=k

E(i)
ui

∣∣∣∣∣X(k)
0 = uk−1

]
=

Pr
[
X

(k)
0 = uk−1, E(k)

uk

]
Pr
[
X

(k)
0 = uk−1

] n∏
ℓ=k+1

Pr
[
X

(k)
0 = uk−1,

∧ℓ
i=k E

(i)
ui

]
Pr
[
X

(k)
0 = uk−1,

∧ℓ−1
i=k E

(i)
ui

] (8.8)

holds. Then, from the definition of the conditional probability, we have

Pr
[
X

(k)
0 = uk−1, E(k)

uk

]
Pr
[
X

(k)
0 = uk−1

] = Pr[E(k)
uk

|X(k)
0 = uk−1]
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and

Pr
[
X

(k)
0 = uk−1,

∧ℓ
i=k E

(i)
ui

]
Pr
[
X

(k)
0 = uk−1,

∧ℓ−1
i=k E

(i)
ui

] = Pr

[
E(ℓ)
uℓ

∣∣∣∣∣X(k)
0 = uk−1,

ℓ−1∧
i=k

E(i)
ui

]

= Pr
[
E(ℓ)
uℓ

∣∣∣X(ℓ−1)
d(ℓ−1) = uℓ−1

]
= Pr

[
E(ℓ)
uℓ

∣∣∣X(ℓ)
0 = uℓ−1

]
. (8.9)

We use the Markov property in the second equality. The last equality follows from our assumption of

X
(ℓ−1)
d(ℓ−1) = X

(ℓ)
0 . Hence combining (8.7) to (8.9), we have

Pr

[
n∧

i=k

{
τ (i)vk

> d(i)
}∣∣∣∣∣X(k)

0 = uk−1

]

=
∑

uk∈V (k)

· · ·
∑

un∈V (n)

n∏
ℓ=k

Pr
[
τ (ℓ)vk

> f(ℓ), X
(ℓ)
d(ℓ) = uℓ

∣∣∣X(ℓ)
0 = uℓ−1

]
(8.10)

=
∑

uk∈V (k)

Pr
[
E(k)
uk

∣∣∣X(k)
0 = uk−1

]
· · ·

∑
un∈V (n)

Pr
[
E(n)
un

∣∣∣X(n)
0 = un−1

]

≤
n∏

ℓ=k

max
u∈V (ℓ)

∑
uℓ∈V (ℓ)

Pr
[
E(ℓ)
uℓ

∣∣∣X(ℓ)
0 = u

]
=

n∏
ℓ=k

max
u∈V (ℓ)

Pr
[
τ (ℓ)vk

> d(ℓ)
∣∣∣X(ℓ)

0 = u
]
. (8.11)

We obtain the claim from (8.6) and (8.11).

Proof of Theorem 8.2.2(1). From the Markov inequality, for any k ≤ i and v ∈ V (i), we have

Pr
[
τ (i)vk

> d(i)
∣∣∣X(i)

0 = v
]
≤

E
[
τ
(i)
vk

∣∣∣X(i)
0 = v

]
d(i)

≤ thit(i)

d(i)
.

Hence from Lemma 8.6.1, we obtain

E[U ] ≤
n∑

k=1

n∏
i=k

thit(i)

d(i)
≤

n∑
k=1

C−(n−k+1) =

n∑
k=1

C−k ≤ 1

C − 1
.

Proof of Theorem 8.2.2(2). For an arbitrary (small) ϵ > 0, let C = C(ϵ) = 2
ϵ + 1. From assumption

on (2), we can take some i0 = i0(ϵ) such that d(i) ≥ Cthit(i) for all i ≥ i0. Let K = maxi∈[i0]
thit(i)
d(i) .

From Lemma 8.6.1,

E[U ] ≤
i0∑
i=1

(
i0∏
k=i

thit(k)

d(k)

)(
n∏

k=i0+1

thit(k)

d(k)

)
+

n∑
i=i0+1

n∏
k=i

thit(k)

d(k)

≤ C−(n−i0)
i0∑
i=1

Ki−i0+1 +

n∑
i=i0+1

C−(n−i+1)

= C−(n−i0)
i0∑
i=1

Ki +

n−i0∑
i=1

C−i

≤ C−(n−i0)
K(1 −Ki0)

1 −K
+

1

C − 1
.

Then we can take some n0 = n0(ϵ) satisfying C−(n−i0)K(1−Ki0 )
1−K ≤ ϵ/2. Hence for any n ≥ n0, E[U ] ≤ ϵ

and we obtain the claim.

8.6.2 Upper bound for random walks with small mixing times

In this section we show the following generalized version of Theorem 8.2.3.
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Theorem 8.6.2. Suppose that P (i) is reversible and lazy in R = (d, (G(i))i∈N, (P
(i))i∈N). Let N > 0 be

an arbitrary positive number. If d(i) ≥ thit(i)
N + 2tmix(i) for all i ∈ [n], then E[U ] ≤ 8N + 32.

Proof of Theorem 8.2.3. For all i, it is straight forward to see that

d(i) ≥ Cthit(i)

iγ
+

2Cthit(i)

iγ
≥ thit(i)

nγ/C
+ 2tmix(i)

from assumptions. Taking N = nγ/C in Theorem 8.6.2, we obtain the claim.

To show Theorem 8.6.2, we introduce following two lemmas. The first one generalizes Lemma 8.5.1(i).
The second one is a variant of Lemma 8.6.1.

Lemma 8.6.3. For f, h : N → N and n ∈ N, let

S(n) :=

n∑
k=1

n∏
i=k

(
1 − 1

h(i)

)f(i)

.

Let N > 0 be an arbitrary number. If f(i) ≥ h(i)
N for all i ∈ [n], then S(n) ≤ N .

Proof. It is easy to check that

S(n) ≤
n∑

k=1

n∏
i=k

exp

(
−f(i)

h(i)

)
=

n∑
k=1

exp

(
−

n∑
i=k

f(i)

h(i)

)
≤

n∑
k=1

exp

(
−n+ k − 1

N

)

=

n∑
k=1

exp

(
− k

N

)
≤ e−1/N

1 − e−1/N
=

1

e1/N − 1
≤ N.

Note that we use 1 + x ≤ ex in the first and the last inequalities.

Lemma 8.6.4. For any R = (d, (G(i))i∈N, (P
(i))i∈N) and any function s : N→ N such that s(i) < d(i)

holds for all i, we have

E[U ] ≤
n∑

k=2

n∏
i=k

max
u∈V (i)

 ∑
v∈V (i)

(
(P (i))s(i)

)
u,v

Pr
[
τ (i)vk

> d(i) − s(i)
∣∣∣X(i)

0 = v
] .

Proof. From Lemma 8.6.1, we evaluate

Pr
[
τ (i)vk

> d(i)
∣∣∣X(i)

0 = u
]

=
∑

v∈V (i)

Pr
[
τ (i)vk

> d(i), X
(i)
s(i) = v

∣∣∣X(i)
0 = u

]
.

Fix k ≥ 2 and i satisfying k ≤ i ≤ n. For any u, v ∈ V (i), observe that

Pr
[
τ (i)vk

> d(i), X
(i)
s(i) = v

∣∣∣X(i)
0 = u

]
= Pr

[
τ (i)vk

> d(i)
∣∣∣X(i)

s(i) = v,X
(i)
0 = u, τ (i)vk

> s(i)
]
Pr
[
X

(i)
s(i) = v, τ (i)vk

> s(i)
∣∣∣X(i)

0 = u
]

= Pr
[
τ (i)vk

> d(i) − s(i)
∣∣∣X(i)

0 = v
]
Pr
[
X

(i)
s(i) = v, τ (i)vk

> s(i)
∣∣∣X(i)

0 = u
]

holds. In the second inequality, we used the Markov property. Then, since

Pr
[
X

(i)
s(i) = v, τ (i)vk

> s(i)
∣∣∣X(i)

0 = u
]
≤ Pr

[
X

(i)
s(i) = v

∣∣∣X(i)
0 = u

]
= ((P (i))s(i))u,v,

we obtain

Pr
[
τ (i)vk

> d(i)
∣∣∣X(i)

0 = u
]

=
∑

v∈V (i)

Pr
[
τ (i)vk

> d(i), X
(i)
s(i) = v

∣∣∣X(i)
0 = u

]
≤
∑

v∈V (i)

(
(P (i))s(i)

)
u,v

Pr
[
τ (i)vk

> d(i) − s(i)
∣∣∣X(i)

0 = v
]

(8.12)

for any u ∈ V (i). Combining Lemma 8.6.1 and (8.12), we obtain the claim.
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Proof of Theorem 8.6.2. We use Lemma 8.6.4 with letting s(i) = 2tmix(i). If P (i) is reversible, for any

i ∈ [n] and u, v ∈ V (i), there is a transition matrix P̂ (i) ∈ [0, 1]V
(i)×V (i)

satisfying(
(P (i))2tmix(i)

)
u,v

=
1

4
π(i)(v) +

3

4
(P̂ (i))u,v (8.13)

holds (see, e.g., p.338 of [LP17]). Hence it holds for any u ∈ V (i) that∑
v∈V (i)

(
(P (i))2tmix(i)

)
u,v

Pr
[
τ (i)vk

> d(i) − 2tmix(i)
∣∣∣X(i)

0 = v
]

=
1

4

∑
v∈V (i)

π(i)(v)Pr
[
τ (i)vk

> d(i) − 2tmix(i)
∣∣∣X(i)

0 = v
]

+
3

4

∑
v∈V (i)

(P̂ (i))u,v Pr
[
τ (i)vk

> d(i) − 2tmix(i)
∣∣∣X(i)

0 = v
]

≤ 1

4
exp

(
−d(i) − 2tmix(i)

thit(i)

)
+

3

4
≤ 1

4
exp

(
− 1

N

)
+

3

4
. (8.14)

Here, we used Corollary 8.4.2 in the inequality above. Now, for a positive integer L, consider a random
variable X ∼ Bin(L, 1/4). Here, Bin(m, p) denotes the binomial distribution of m trials with success
probability p. Then, it is straightforward to see that(

1

4
exp

(
− 1

N

)
+

3

4

)L

=

L∑
i=0

(
L
i

)(
1

4
exp

(
− 1

N

))i(
3

4

)L−i

=

L∑
i=0

exp

(
− i

N

)
Pr [X = i]

≤
⌊L/8⌋∑
i=0

exp

(
− i

N

)
Pr [X = i] +

L∑
i=⌈L/8⌉

exp

(
− i

N

)
Pr [X = i]

≤ Pr

[
X ≤ L

8

]
+ exp

(
− L

8N

)
≤ exp

(
− L

32

)
+ exp

(
− L

8N

)
. (8.15)

The last inequality follows since

Pr

[
X ≤ L

8

]
= Pr

[
X ≤ E[X]

2

]
≤ exp

(
−E[X]

8

)
= exp

(
− L

32

)
holds from the Chernoff inequality (Proposition 2.5.5). By combining Lemma 8.6.4 and (8.14) and (8.15),
we obtain

E[U ] ≤
n∑

k=1

(
1

4
exp

(
− 1

N

)
+

3

4

)n−k+1

≤
n∑

k=1

(
exp

(
−n− k + 1

32

)
+ exp

(
−n− k + 1

8N

))

=

n∑
k=1

exp

(
− k

32

)
+

n∑
k=1

exp

(
− k

8N

)
≤ 32 + 8N.

8.6.3 Upper bounds for simple or symmetric random walks

This section is devoted proving Theorem 8.6.5, which is a generalized version of Theorems 8.2.4 and 8.2.5.

Theorem 8.6.5. Suppose that P (i) is reversible and lazy in R = (d, (G(i))i∈N), (P (i))i∈N). Let ri =

maxv∈V (i−1)
π(i−1)(v)
π(i)(v)

for 1 < i ≤ n. Let N be an arbitrary number. If d(i) ≥
(

1
N + i(ri−1)+1

2i

)
t
(i)
hit for all

i, then E[U ] ≤ N
√

max1<i≤n i(ri − 1) + 1.
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Proof of Theorem 8.2.4. Let d
(i)
v denote the degree of a vertex v ∈ V (i) at round i. Then, for all v ∈ V (i),

π(i−1)(v)

π(i)(v)
=

d
(i−1)
v

2|E(i−1)|
2|E(i)|
d
(i)
v

≤ |E(i)|
|E(i−1)|

Note that d
(i−1)
v ≤ d

(i)
v holds from our assumption. Combining the assumptions on d(i) and E(i), we

have d(i) ≥ thit(i)
iγ/C + L+1

2i thit(i) ≥ thit(i)
nγ/C + L+1

2i thit(i). Thus we obtain the claim by taking N = nγ/C in

Theorem 8.6.5.

Proof of Theorem 8.2.5. Since P (i) is symmetric, π(i)(v) = 1
i and thus ri = i

i−1 ≤ 1 + 2
i for all i > 1.

From the assumption of Theorem 8.2.5, d(i) ≥ thit(i)
iγ/C + 2thit(i)

i ≥ thit(i)
nγ/C + thit(i)(2+1)

2i for all i > 1. Thus

we obtain the claim by taking N = nγ/C in Theorem 8.6.5.

For a matrix M ∈ RV×V let λj(M) denote the j-th largest (in absolute value) eigenvalue of M . For

any round 1 < ℓ ≤ n and 0 ≤ t ≤ d(ℓ), define a probability vector ν
(ℓ)
t ∈ [0, 1]V

(ℓ)

by

ν
(ℓ)
t (v) = Pr[X

(ℓ)
t = v] (8.16)

for all v ∈ V (ℓ). For any rounds k, ℓ satisfying k − 1 ≤ ℓ ≤ n− 1, define µ
(ℓ)
vk ∈ [0, 1]V

(ℓ)

by

µ(ℓ)
vk

(v) = Pr

[
n∧

i=ℓ+1

{
τ (i)vk

> d(i)
}∣∣∣∣∣X(ℓ)

d(ℓ) = v

]
(8.17)

for all v ∈ V (ℓ). For ℓ = n, we define µ
(n)
vk := 1

(n). Here, recall the notation of Section 8.4.2. Observe

E[U ] =

n∑
k=2

∑
v∈V (k−1)

ν
(k−1)
d(k−1)(v)µ(k−1)

vk
(v).

Then, combining the Cauchy-Schwarz inequality, (8.5), (8.16) and (8.17), we have

E[U ] =

n∑
k=2

∑
v∈V (k−1)

ν
(k−1)
d(k−1)(v)√
π(k−1)(v)

· µ(k−1)
vk

(v)
√
π(k−1)(v)

≤
n∑

k=2

√√√√ ∑
v∈V (k−1)

ν
(k−1)
d(k−1)(v)2

π(k−1)(v)

∑
v∈V (k−1)

π(k−1)(v)µ
(k−1)
vk (v)2

=

n∑
k=2

∥∥∥∥∥∥ν
(k−1)
d(k−1)

π(k−1)

∥∥∥∥∥∥
2,π(k−1)

∥∥∥µ(k−1)
vk

∥∥∥
2,π(k−1)

(8.18)

=

n∑
k=2

√√√√√1 +

∥∥∥∥∥∥ν
(k−1)
d(k−1)

π(k−1)
− 1(k−1)

∥∥∥∥∥∥
2

2,π(k−1)

∥∥∥µ(k−1)
vk

∥∥∥
2,π(k−1)

. (8.19)

The rest of this section is devoted to proving the following bounds, which imply Theorem 8.6.5.

Lemma 8.6.6. Consider an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N) such that each P (i) is reversible and

lazy. Let ri = maxv∈V (i−1)
π(i−1)(v)
π(i)(v)

for 1 < i ≤ n. If d(i) ≥ i(ri−1)+1
2i(1−λ2(P (i)))

, then

∥∥∥∥ν
(k)

d(k)

π(k) − 1(k)
∥∥∥∥2
2,π(k)

<

max1<i≤n i(ri − 1) for all k ∈ [n].

Lemma 8.6.7. Consider an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N) such that each P (i) is reversible and

lazy. Let ri = maxv∈V (i−1)
π(i−1)(v)
π(i)(v)

for 1 < i ≤ n. Let N be an arbitrary positive number such that

d(i) ≥
(

1
N + ri−1

2

)
thit(i) for all 1 < i ≤ n. Then

∑n
k=2

∥∥∥µ(k−1)
vk

∥∥∥
2,π(k−1)

≤ N.
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Proof of Theorem 8.6.5. Suppose d(i) ≥ thit(i)
N + (i(ri−1)+1)thit(i)

2i for all 1 < i ≤ n. Then, d(i) ≥
i(ri−1)+1

2i(1−λ2(P (i))
from Lemma 8.4.6. Furthermore, d(i) ≥ thit(i)

N + ri−1
2 thit(i). Thus applying Lemmas 8.6.6

and 8.6.7 to (8.19),

E[U ] ≤
n∑

k=2

√
max
1<i≤n

i(ri − 1) + 1
∥∥∥µ(k−1)

vk

∥∥∥
2,π(k−1)

≤ N
√

max
1<i≤n

i(ri − 1) + 1

and we obtain the claim.

Now it suffices to prove Lemmas 8.6.6 and 8.6.7. To this end, we show the following.

Lemma 8.6.8. Consider an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N) such that each P (i) is reversible and

lazy. Let ri = maxv∈V (i−1)
π(i−1)(v)
π(i)(v)

for 1 < i ≤ n. Then for any round 1 ≤ k ≤ n,∥∥∥∥∥∥ν
(k)
d(k)

π(k)
− 1(k)

∥∥∥∥∥∥
2

2,π(k)

≤
k∑

i=2

 k∏
j=i

rjλ2(P (j))2d(j)

(1 − 1

ri

)
.

Proof of Lemma 8.6.8. To obtain the claim, we show the following recurrence inequality:∥∥∥∥∥∥ν
(ℓ)
d(ℓ)

π(ℓ)
− 1(ℓ)

∥∥∥∥∥∥
2

2,π(ℓ)

≤ rℓλ2(P (ℓ))2d(ℓ)

∥∥∥∥∥∥ν
(ℓ−1)
d(ℓ−1)

π(ℓ−1)
− 1(ℓ−1)

∥∥∥∥∥∥
2

2,π(ℓ−1)

+ (rℓ − 1)λ2(P (ℓ))2d(ℓ). (8.20)

Write xℓ =

∥∥∥∥ν
(ℓ)

d(ℓ)

π(ℓ) − 1(ℓ)
∥∥∥∥2
2,π(ℓ)

, cℓ = rℓλ2(P (ℓ))2d(ℓ) and dℓ = (rℓ − 1)λ2(P (ℓ))2d(ℓ) for notational conve-

nience. If (8.20) holds for any ℓ > 1, applying (8.20) repeatedly yields

xk ≤ ckxk−1 + dk ≤ ckck−1xk−2 + ckdk−1 + dk ≤ · · · ≤

(
k∏

i=2

ci

)
x1 +

k∑
i=2

 k∏
j=i+1

cj

 di.

Since x1 =

∥∥∥∥ν
(1)

d(1)

π(1) − 1(1)
∥∥∥∥2
2,π(1)

= 0, we obtain the claim.

Now we show (8.20). From the reversibility of P (ℓ), it is easy to see that, for all v ∈ V (ℓ),(
ν
(ℓ)
t

π(ℓ)

)
(v) =

∑
u∈V (ℓ) ν

(ℓ)
0 (u)

(
(P (ℓ))t

)
u,v

π(ℓ)(v)
=

∑
u∈V (ℓ)

ν
(ℓ)
0 (u)

(
(P (ℓ))t

)
v,u

π(ℓ)(u)
=

(
(P (ℓ))t

ν
(ℓ)
0

π(ℓ)

)
(v). (8.21)

From (8.21) and Lemma 8.4.5, it holds that∥∥∥∥∥∥ν
(ℓ)
d(ℓ)

π(ℓ)
− 1(ℓ)

∥∥∥∥∥∥
2

2,π(ℓ)

≤ λ2(P (ℓ))2d(ℓ)

∥∥∥∥∥ν(ℓ)0

π(ℓ)
− 1(ℓ)

∥∥∥∥∥
2

2,π(ℓ)

= λ2(P (ℓ))2d(ℓ)

∥∥∥∥∥ν(ℓ)0

π(ℓ)

∥∥∥∥∥
2

2,π(ℓ)

− 1

 . (8.22)

Note that, for vℓ ∈ V (ℓ) \ V ℓ−1, it holds that ν
(ℓ)
0 (vℓ) = Pr[X

(ℓ)
0 = vℓ] = 0. Therefore, we have∥∥∥∥∥ν(ℓ)0

π(ℓ)

∥∥∥∥∥
2

2,π(ℓ)

=
∑

v∈V (ℓ−1)

π(ℓ)(v)
ν
(ℓ)
0 (v)2

π(ℓ)(v)2
=

∑
v∈V (ℓ−1)

π(ℓ−1)(v)

π(ℓ)(v)
π(ℓ−1)(v)

ν
(ℓ−1)
d(ℓ−1)(v)2

π(ℓ−1)(v)2

≤ rℓ
∑

v∈V (ℓ−1)

π(ℓ−1)(v)
ν
(ℓ−1)
d(ℓ−1)(v)2

π(ℓ−1)(v)2
= rℓ

∥∥∥∥∥∥ν
(ℓ−1)
d(ℓ−1)

π(ℓ−1)

∥∥∥∥∥∥
2

2,π(ℓ−1)

. (8.23)

The claim (8.20) follows from (8.22) and (8.23).
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Proof of Lemma 8.6.6. Observe that log
(
rj(

j+1
j )
)

= log(1 + (rj − 1)) + log(1 + 1
j ) ≤ (rj − 1) + 1

j and

thus 2d(j) ≥ log(rj( j+1
j ))

1−λ2(P (j))
. Hence we obtain

λ2(P (j))2d(j) ≤
(

1 −
(

1 − λ2(P (j))
)) log(rj(

j+1
j

))
1−λ2(P (j)) ≤ 1

rj
· j

j + 1
.

From Lemma 8.6.8, we have

k∑
i=2

 k∏
j=i

rjλ2(P (j))2d(j)

(1 − 1

ri

)
≤

k∑
i=2

 k∏
j=i

j

j + 1

 ri − 1

ri
≤

k∑
i=2

i

k + 1
(ri − 1)

≤ max
1<i≤n

i(ri − 1)
k − 1

k + 1
< max

1<i≤n
i(ri − 1).

Now we prove Lemma 8.6.7. We begin with showing the following lemma.

Lemma 8.6.9. Consider an RWoGG R = (d, (G(i))i∈N, (P
(i))i∈N) such that each P (i) is reversible and

lazy. Let ri = maxv∈V (i−1)
π(i−1)(v)
π(i)(v)

for 1 < i ≤ n. Then, for any 1 < k ≤ n,

∥∥∥µ(k−1)
vk

∥∥∥
2,π(k−1)

≤
n∏

i=k

√
ri

(
1 − 1

thit(i)

)d(i)

.

Proof. For a transition matrix P ∈ [0, 1]V×V and a vertex w ∈ V , define Pw ∈ [0, 1]V×V by

(Pw)u,v =

{
Pu,v (if u 6= w and v 6= w)

0 (otherwise)
.

In other words, (Pw)u,v = Pu,v1u ̸=w1v ̸=w for u, v ∈ V . Note that Pw is a substochastic matrix, i.e.,∑
v∈V (Pw)u,v ≤ 1 for any u ∈ V . Observe for any u, v ∈ V and T > 0 that

(PT
w )u,v =

∑
v1∈V \{w}

· · ·
∑

vT−1∈V \{w}

1u ̸=wPu,v1
Pv1,v2

· · ·PvT−1,v1v ̸=w

= Pr [τw > T,XT = v|X0 = u] . (8.24)

Here, (Xt)t∈Z≥0
denotes a random walk according to P and τw denotes the hitting time of (Xt)t∈Z≥0

to w. In other words, (PT
w )u,v denotes the probability that the random walk of length T ends up at v

starting from u without visiting w.

Fix k > 1. For ease of notation, we write µ(ℓ) = µ
(ℓ)
vk and Q(ℓ) = (P

(ℓ)
vk

)d(ℓ) for k − 1 ≤ ℓ ≤ n − 1

(see (8.17) for the definition of µ
(ℓ)
vk ). We begin with observing the following recurrence equation: For all

k − 1 ≤ ℓ ≤ n− 1 and v ∈ V (ℓ), it holds that

µ(ℓ)(v) =
(
Q(ℓ+1)µ(ℓ+1)

)
(v). (8.25)

Indeed, for any uℓ ∈ V (ℓ), combining (8.10) and (8.24) yields

µ(ℓ)(uℓ) =
∑

uℓ+1∈V (ℓ+1)

· · ·
∑

un∈V (n)

n∏
i=ℓ+1

(
(P

(i)
vk

)d(i)
)
ui−1,ui

=
∑

uℓ+1∈V (ℓ+1)

Q(ℓ+1)
uℓ,uℓ+1

µ(ℓ+1)(uℓ+1)

=
(
Q(ℓ+1)µ(ℓ+1)

)
(uℓ).
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Using (8.25) and Corollary 8.4.4, we obtain∥∥∥µ(ℓ)
∥∥∥2
2,π(ℓ)

=
∑

v∈V (ℓ)

π(ℓ)(v)µ(ℓ)(v)2 =
∑

v∈V (ℓ)

π(ℓ)(v)

π(ℓ+1)(v)
π(ℓ+1)(v)

(
Q(ℓ+1)µ(ℓ+1)

)
(v)2

≤ rℓ+1

∑
v∈V (ℓ+1)

π(ℓ+1)(v)
(
Q(ℓ+1)µ(ℓ+1)

)
(v)2 = rℓ+1

∥∥∥Q(ℓ+1)µ(ℓ+1)
∥∥∥2
2,π(ℓ+1)

≤ rℓ+1λ1(Q(ℓ+1))2
∥∥∥µ(ℓ+1)

∥∥∥2
2,π(ℓ+1)

. (8.26)

Hence applying (8.26) repeatedly, it holds that∥∥∥µ(ℓ)
∥∥∥2
2,π(ℓ)

≤
n∏

i=ℓ+1

riλ1(Q(i))2. (8.27)

From the definition of Q(i) and P
(i)
vk

, Lemma 8.4.3 implies

λ1(Q(i)) = λ1(P
(i)
vk

)d(i) ≤
(

1 − 1

thit(i)

)d(i)

. (8.28)

Thus we obtain the claim from (8.27) and (8.28).

Proof of Lemma 8.6.7. Since log
√
ri = 1

2 log ri = 1
2 log(1 + (ri − 1)) ≤ ri−1

2 , we have

√
ri

(
1 − 1

thit(i)

)d(i)

≤
(

1 − 1

thit(i)

)d(i)−thit(i) log
√
ri

≤
(

1 − 1

thit(i)

)d(i)− ri−1

2 thit(i)

. (8.29)

Thus combining Lemma 8.6.9 and (8.29),

n∑
k=2

∥∥∥µ(k−1)
vk

∥∥∥
2,π(k−1)

≤
n∑

k=2

n∏
i=k

(
1 − 1

thit(i)

)d(i)− ri−1

2 thit(i)

≤ N.

We invoke Lemma 8.6.3 in the last inequality.

8.7 A Lower Bound for a Growing Path

This section is devoted to the proof of Theorem 8.2.9. We will use the following well-known inequality.

Lemma 8.7.1 (The Kolmogorov inequality; Theorem 2.5.5 of [Dur19]). Let Z1, . . . , Zn be i.i.d. random

variables such that E[Zi] = 0 and Var[Zi] <∞. Let Si :=
∑i

j=1 Zi. Then,

Pr

[
max
1≤j≤n

|Sj | ≥M

]
≤ Var[Sn]

M2
.

Let L,R ∈ [n] be parameters satisfying L < R. For a vertex v ∈ V (n), let E(v) be the event that

v 6∈
⋃n

i=1

⋃d(i)
t=0{X

(i)
t }. In other words, E(v) means that the walker does not visit the vertex v during the

walk. For two vertices vi, vj ∈ V (n), we write vi � vj if i ≤ j. Note that, for any two vertices u � v and

any round k ∈ [n], it holds that Pr[E(v)|X(k)
0 � u] ≥ Pr[E(v)|X(k)

0 = u]. Then, we have

E[U ] =

n∑
k=1

Pr[E(vk)] ≥
n∑

k=R

Pr[E(vk)] ≥
n∑

k=R

Pr
[
E(vk) ∧X(k)

0 � vL

]
=

n∑
k=R

Pr
[
E(vk)

∣∣∣X(k)
0 � vL

]
Pr[X

(k)
0 � vL]

≥ (n−R)Pr
[
E(vR)

∣∣∣X(R)
0 = vL

]
min

R≤k≤n

{
Pr
[
X

(k)
0 � vL

]}
. (8.30)

We will determine the parameters R and L such that n−R = Ω(nγ), Pr
[
E(vR)

∣∣∣X(R)
0 = vL

]
= Ω(1/C)

and Pr[X
(k)
0 ≤ L] = Ω(1) for all R ≤ k ≤ n. This yields the lower bound E[U ] = Ω(nγ/C). For fixed

parameter R, let T :=
∑n

i=R d(i) denote the number of steps of the walk during the last n−R+1 rounds.
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Lemma 8.7.2. Let L,R ∈ N be parameters satisfying L < R and let T :=
∑n

i=R d(i). Then, the
following hold.

(i) Pr
[
E(vR)

∣∣∣X(R)
0 = vL

]
≥ 1 − T

4(R−L)2 , and

(ii) Pr[X
(k)
0 � vL] ≥ 1 − L

n for all k ∈ [n].

Proof of (i). Let (Zt)t∈N be i.i.d. random variables sampled from the uniform distribution over {−1,+1}
and Sc :=

∑c
j=0 Zj denote the sum. For a vertex vi ∈ V (n), let pos(vi) = i denote the position

of vi. Then the complementary event E(vR) conditioned on X
(R)
0 = vL is equivalent to the event

that maxR≤i≤n,0≤j≤d(i){pos(X
(i)
j ) − pos(X

(R)
0 )} ≥ R − L. Moreover, maxR≤i≤n,0≤j≤d(i) |pos(X

(i)
j ) −

pos(X
(R)
0 )| is dominated2 by max1≤c≤T |Sc| (recall T =

∑n
i=R d(i)). This is because the distribution

of pos(X
(i)
j ) − pos(X

(i)
j−1) conditioned on pos(X

(i)
j ) − pos(X

(i)
j−1) 6= 0 is uniform on {−1,+1}. Thus we

obtain

Pr
[
E(vR)

∣∣∣X(R)
0 = vL

]
≤ Pr

[
max

R≤i≤n,0≤j≤d(i)
|pos(X

(i)
j ) − pos(X

(R)
0 )| ≥ R− L

∣∣∣∣X(R)
0 = L

]
≤ Pr[ max

1≤c≤T
|Sc| ≥ R− L]

≤ Var[ST ]

(R− L)2
=

T

4(R− L)2
.

In the last inequality, we used the Kolmogorov inequality (Lemma 8.7.1).

Proof of (ii). It suffices to show that

Pr[X
(k)
0 = vi] ≥ Pr[X

(k)
0 = vi+1] (8.31)

holds for any 1 ≤ i ≤ k − 1. To see this, assuming (8.31), we obtain

Pr[X
(k)
0 � vL]

L
≥ Pr[X

(k)
0 = vL] ≥ 1 −Pr[X

(k)
0 ≤ L]

n− L
,

which implies the claim (ii). Here, in the second inequality, note that Pr[X
(k)
0 = vL] ≥ Pr[X

(k)
0 = vj ]

for all j > L and thus, the average 1
n−L

∑
j>L Pr[X

(k)
0 = vj ] is at most Pr[X

(k)
0 = vL].

Now we prove the inequality (8.31). Let x
(i)
j ∈ [0, 1]Vi denote the distribution of X

(i)
j . To simplify

notations, for a vector y ∈ [0, 1]V
(i)

, we write y[u] for the u-th element of y. We call the distribution

y ∈ [0, 1]V
(i)

monotone if y[vk] ≥ y[vk+1] holds for any 1 ≤ k ≤ i− 1. Our aim here is to prove that x
(k)
0

is monotone, which is equivalent to (8.31).

Indeed, we will prove a stronger statement: x
(i)
j is monotone for any i and j. We prove this statement

inductively. First, the vector x
(1)
j = (1) is obviously monotone. Secondly, if x

(i)
d(i) is monotone, so

does x
(i+1)
0 . To see this, note that x

(i+1)
0 is obtained by concatenating x

(i)
d(i) with 0. More precisely,

x
(i+1)
0 ∈ [0, 1]i+1 satisfies

x
(i+1)
0 [j] =

{
x
(i)
d(i)[j] if 1 ≤ j ≤ i,

0 if j = i+ 1.

Finally, we check that x
(i)
j+1 is monotone if x

(i)
j is monotone. From (8.2), we have

x
(i)
j+1[vk] =


px

(i)
j [v1] + (1 − p)x

(i)
j [v2] if k = 1,

qx
(i)
j [vk−1] + (1 − 2q)x

(i)
j [vk] + qx

(i)
j [vk+1] if 1 < k < i,

(1 − p)x
(i)
j [vi−1] + px

(i)
j [vi] if k = i.

2For two random variables X and Y , we say X dominates Y if, for any r ∈ R, Pr[X ≥ r] ≥ Pr[Y ≥ r] holds.
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By the induction assumption, x
(i)
j is monotone. Now we check that x

(i)
j is monotone. For k = 1, since

p ≥ q, we have

x
(i)
j+1[v1] − x

(i)
j+1[v2] = (p− q)(x

(i)
j [v1] − x

(i)
j [v2]) + q(x

(i)
j [v2] − x

(i)
j [v3]) ≥ 0.

For 1 < k < i− 1, since q ≤ 1
2 , we have

x
(i)
j+1[vi] − x

(i)
j+1[vi+1] = qx

(i)
j [vk−1] + (1 − 3q)x

(i)
j [vk] − (1 − 3q)x

(i)
j [vk+1] − qx

(i)
j [vk+2]

≥ (1 − 2q)(x
(i)
j [vk] − x

(i)
j [vk+1]) ≥ 0.

Finally, for k = i, since p ≥ q, we have

x
(i)
j+1[vi−1] − x

(i)
j+1[vi] = q(x

(i)
j [vi−2] − x

(i)
j [vi−1]) + (p− q)(x

(i)
j [vi−1] − x

(i)
j [vi]) ≥ 0.

Therefore x
(i)
j+1 is monotone.

Now we are ready to prove Corollary 8.2.10. Recall d(i) ≤ Ci2−γ . Fix a small positive constant
ϵ such that ϵ < min{1/C, 0.1}. Set R := n − ϵnγ and L := R − 0.6n ∈ [0.3n, 0.4n]. Then we have
T ≤ (n − R)d(n) ≤ Cϵn2 ≤ n2 and thus 1 − T

4(R−L)2 ≥ 1 − 1
4×0.36 > 0.3 and 1 − L

n ≥ 0.6. Then, from

(8.30) and Lemma 8.7.2, we have

E[U ] ≥ ϵnγ · 0.3 · 0.6 = Ω

(
nγ

C

)
,

which completes the proof of Theorem 8.2.9 (here, we take ϵ > 0 such that ϵ = Ω(1/C)).

8.8 Note on the Initial Round

For a n0 > 0, we consider the case where n0 vertices exist at the first round.

Theorem 8.8.1. Let G(i) = Kn0+i, i.e., the complete graph with n0 + i vertices, and let (P (i))u,v =
1/(n0 + i) for all u, v ∈ V (i) in R = (d, (G(i))∞i=1, (P

(i))∞i=1). Let N be an arbitrary positive number. If
d(i) ≥ 2i/N for all i, then E[U(n)] ≤ 2n0 +N .

Proof. If n ≤ n0, |V (n)| = n0+n ≤ 2n0 and we are done. Suppose that n > n0. Then it is straightforward
to see that

E[U(n)] = n0

n∏
i=1

(
1 − 1

n0 + i

)d(i)

+

n∑
k=1

n∏
i=k

(
1 − 1

n0 + i

)d(i)

≤ n0 + n0 +

n∑
k=n0+1

n∏
i=k

(
1 − 1

n0 + i

)d(i)

≤ 2n0 +

n∑
k=n0+1

n∏
i=k

(
1 − 1

2i

)d(i)

≤ 2n0 +N.

Note that we use Lemma 8.6.3 in the last inequality.



Chapter 9

Average Distance and Diameter

9.1 Results

In this chapter, we consider the average distance and diameter of the random regular graph Gn,d. Recall
that the random regular graph Gn,d is the graph sampled according to the uniform distribution Gn,d of
all n-vetex d-regular graphs. Let AD(G) and diam(G) be the average distance and diameter of a graph
G, respectively (see Section 9.1.3 for the definition). We define AD(G) = diam(G) = ∞ if G is not
connected. The main results of this chapter are the following.

Theorem 9.1.1. For two constants α ∈ (0, 1) and β > 0, let d = (β + o(1))nα be an integer. For every
constant ϵ > 0, it holds a.a.s. that

|AD(Gn,d) − µ| < ϵ,

where

µ =

{
α−1 + exp(−β1/α) if α−1 ∈ N,
dα−1e otherwise.

(9.1)

Theorem 9.1.2. For two constants α ∈ (0, 1) and β > 0, let d = (β + o(1))nα be an integer. It holds
a.a.s. that

diam(Gn,d) = bα−1c + 1.

The diameter of regular graphs has gathered special attention in graph theory [EFH80, HS60, Mv05]
and has an application in designing efficient network topologies. Note that for every vertex v, there
are at most d(d − 1)k vertices having distance k from v. Thus, for every n-vertex d-regular graph G of
diameter D with d ≥ 3, we have

D ≥ min

{
D ∈ N : n ≤ 1 +

D∑
i=1

d(d− 1)i−1

}

=

⌈
logd−1 n+ logd−1

(
1 − 2

d

(
1 − 1

n

))⌉
(9.2)

=
log n

log(d− 1)
− O(1).

We denote by D′ = D′(n, d) the lower bound (9.2), which is known as the Moore bound [Mv05].
From our result Theorem 9.1.2 and the Moore bound (9.2), we have that the random d-regular graph

Gn,d of d = (β + o(1))nα with two arbitrary constants α ∈ (0, 1) and β > 0 a.a.s. satisfies

lim
n→∞

diam(Gn,d) −D′(n, d)) =

{
0 if either α−1 6∈ N or (α−1 ∈ N and β < 1),

1 if α−1 ∈ N and β > 1.
(9.3)

This means that, for example, Gn,d has the minimum possible diameter among all n-vertex d-regular
graphs a.a.s. if α−1 6∈ N.

123
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9.1.1 Background of Gn,d

The study of the random regular graph Gn,d originated from the configuration model introduced by
Bollobás [Bol80]. The configuration model is an algorithm that generates the random d-regular multigraph
(i.e., the genareted graph may contain multiple edges or self-loops). The probability that the graph
generated by the configuration model is simple (i.e., does not contain neither multiple edges nor self-

loops) is (1 + o(1)) exp
(

1−d2

4

)
for fixed d. Therefore, we can study Gn,d by considering the graph

generated by the configuration model conditioned on being simple. Specifically, if Cn,d is the graph
generated by the configuration model, then we can show that, for any graph property P,

Pr[Gn,d satisfies P] = (1 + o(1)) exp

(
d2 − 1

4

)
Pr[Cn,d satisfies P]

This enables us to study Gn,d for a constant d. The case of d = d(n) � 1 is much less understood, though
there is a well-known successful approach called the switching method, introduced by McKay [McK81].
Roughly speaking, the switching method is a framework of algorithms that generates Gn,d. It starts from
Cn,d and repeat eliminating multiple edges and self-loops randomly. See [Wor99] for a detailed survey on
Gn,d. However, since the switching method fails to generate Gn,d with some probability depending on d,
results based on the switching method usually require the condition that d = o(nγ) for some reasonable
constant γ ≤ 1. Therefore, Gn,d of d = (β + o(1))nα with arbitrary constant α ∈ (0, 1) seems to be far
from these methods.

Another recent remarkable approach for the study of Gn,d is to compare Gn,d with the Erdős–Rényi

graph G(n, p) of p = d
n . Recall that the degree is concentrated on np (Example 2.5.6) if p = ω

(
logn
n

)
;

thus we may expect that G(n, p) and Gn,d share several structural properties if d = (1 + o(1))np. For
log n� d� n1/3/(log n)2, Kim and Vu [KV04] presented a coupling of Gn,d and Gn,d of p = (1−o(1)) d

n

such that G(n, p) ⊆ Gn,d holds a.a.s. Dudek, Frieze, Ruciński, and Šileikis [DFRv17] improved this
result by presenting a coupling having the same property for log n � d � n. Their result is called the
embedding theorem. The embedding theorem enables us to bound diam(Gn,d) and AD(Gn,d) from above
by diam(G(n, p)) and AD(G(n, p)), respectively. Very recently, Gao, Isaev, and McKay [GIM20] proved
that there is a coupling of G(n, p) and Gn,d satisfying G(n, p) ⊇ Gn,d if p ≥ Cd logn

n for some constant
C, d = ω(log n) and d = o(n). We can immediately obtain Theorem 9.1.2 by combining the coupling of
[GIM20] and known results cencerning the diameter of G(n, p). However, due to the O(log n) factor in
the condition p ≥ Cd logn

n , Theorem 9.1.1 does not follow from [GIM20] immediately.

To study diam(Gn,d) and AD(Gn,d), we shall look at diam(G(n, p)) and AD(G(n, p)) of p = d
n . It is

well known that G(n, p) of p = (β + o(1))n−1+α has diameter bα−1c + 1 [Bol01, Bol81, FK16]. As for
the average distance, we obtain a concentration result of AD(G(n, p)), which is of independent interest.

Theorem 9.1.3. For two constants α ∈ (0, 1) and β > 0, let p = βn−1+α and

µ :=

{
α−1 + exp(−β1/α) if α−1 ∈ N,
dα−1e otherwise.

Then, there are absolute constants C1, C2 > 0 such that

|AD(G(n, p)) − µ| ≤ C1n
−C2

holds a.a.s.

9.1.2 Related results and trivial bounds

Diameter of G(n, p)

There is a long line of works on the diameter of G(n, p) [KL81, Bol81, CL01, FR07, RW10]. For dense
G(n, p), Bollobas [Bol81] proved the following result.

Theorem 9.1.4 (Theorem 6 of [Bol81]). Fix a positive constant c. Let D = D(n) ≥ 2 be a positive
integer and p = p(n) ∈ [0, 1] be a real number satisfying

pDnD−1 = log(n2/c).
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Suppose that np = ω(log n). Then, G(n, p) satisfies

lim
n→∞

Pr[diam(G(n, p)) = k] =


exp(−c/2) if k = D,

1 − exp(−c/2) if k = D + 1,

0 otherwise.

Corollary 9.1.5. Suppose that p = (β + o(1))n−1+α, where α ∈ (0, 1) and β > 0 are any constants.
Then, diam(G(n, p)) = bα−1c + 1 holds a.a.s.

It should be noted that Corollary 9.1.5 also follows from the main result of Klee and Larman [KL81].
The diameter of G(n, p) of small p has gathered special attention [Bol84, RW10, CL01]. In this line

of work, there is a convention that the diameter of a disconnected graph is the maximum among all
diameters of its connected components. Bollobás [Bol84] proved that diam(G(n, p)) ∈ A holds a.a.s. if
np − log n = ω(1), where A = A(n) ⊆ N satisfies |A| ≤ 4. Chung and Lu [CL01] studied diam(G(n, p))
with 1 < np ≤ c log n where c is some constant. For example, they proved that diam(G(n, p)) =
(1 + o(1)) logn

lognp holds a.a.s. if ω(1) = np < log n. Riordan and Wormald [RW10] strengthened the results

of [CL01], providing the tight estimate for diam(G(n, p)) for 1 + o(1) ≤ np = O(1). For smaller p,
 Luczak [ Luc98] investigated diam(G(n, p)) with np < 1.

Average distance of G(n, p)

The average distance of random graphs with a power law degree sequence has gathered a great deal of
attention in network analysis [KNb+15, NKKB16, BGHJ07, vdHHM05, CL04, vdHH08]. Focusing on
G(n, p) with np = ω(log n), one may observe that AD(G(n, p)) ≈ diam(G(n, p)). More precisely, it is
easy to see that AD(G(n, p)) ≤ diam(G(n, p)) = (1 + o(1)) logn

lognp and AD(G(n, p)) ≥ (1− o(1)) logn
lognp hold

by considering the maximum degree of G(n, p)).
Katzav, Nitzan, ben-Avraham, Krapisky, Künh, Ross, and Biham [KNb+15] presented analytical

results on AD(G(n, p)) for dense G(n, p) that coincide with Theorem 9.1.3. However, to the best of our
knowledge, there are no known results with rigorous proofs for AD(G(n, p)) with np = nΩ(1).

Diameter of Gn,d

For random regular graphs Gn,d, Bollobás and de la Vega [BdlV82] proved that

diam(Gn,d) = D′(n, d) ± O

(
log log n

log(d− 1)

)
holds a.a.s. if the degree d ≥ 3 is a constant. If log n � d ≤ no(1), the embedding theorem of Dudek et
al. [DFRv17] and the lower bound (9.2) together imply that

diam(Gn,d) = (1 + o(1))
log n

log d
= (1 + o(1))D′(n, d)

holds a.a.s.
Suppose that d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are constants. From the embedding

theorem, we have diam(Gn,d) ≤ bα−1c + 1 holds a.a.s., as we will confirm in Section 9.2. On the other
hand, by substituting d = (β + o(1))nα to (9.2), we obtain

lim
n→∞

D′ =


bα−1c + 1 if α−1 6∈ N or (α−1 ∈ N ∧ β < 1),

α−1 if α−1 ∈ N ∧ β > 1,

depends on the term o(1) if α−1 ∈ N ∧ β = 1.

(9.4)

By combining Theorem 9.1.2 and (9.4), we obtain (9.3). As mentioned earlier, Theorem 9.1.1 immedi-
ately follows from the result of Gao, Isaev, and McKay [GIM20]. In this chapter, we prove Theorem 9.1.2
by combining the upper bound from the embedding theorem [DFRv17] and Theorem 9.1.1 (note that
diam(G) ≥ dAD(G)e).
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Average distance of Gn,d

Let Nk be the number of vertex pairs of distance k. We use the same argument as for (9.2) to obtain a
lower bound of AD(G) for any d-regular graph with d ≥ 3. Suppose diam(G) = D′ and thus N1 + · · · +
ND′ =

(
n
2

)
. Moreover, for every k = 1, . . . , D′ − 1, we have Nk ≤ d(d− 1)k−1. Therefore, we obtain

AD(G) =

(
n

2

)−1

(N1 + 2N2 + · · · +D′ND′)

= D′ −
(
n

2

)−1

((D′ − 1)N1 + (D′ − 2)N2 + · · · +ND′−1)

≥ D′ −
(
n

2

)−1 D′−1∑
k=1

(D′ − k)d(d− 1)k−1

= D′ − d(d− 1)D
′

(n− 1)(d− 2)2
+

dD′

(n− 1)(d− 2)
+

d

(n− 1)(d− 2)2
(9.5)

= logd−1 n− O(1).

Let AD′ = AD(n, d) denote the lower bound (9.5). Then, we have

log n

log(d− 1)
− O(1) ≤ AD(Gn,d) ≤ diam(Gn,d).

This implies that

AD(Gn,d) = (1 + o(1))
log n

log(d− 1)

holds a.a.s. if d ≥ 3 is constant or log n� d ≤ no(1).
Suppose that d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are constants. From the lower bound

(9.5), we have

lim
n→∞

AD′ =


bα−1c + 1 if α−1 6∈ N,
α−1 if α−1 ∈ N and β > 1,

α−1 − β1/α + 1 if α−1 ∈ N and β < 1,

depends on the term o(1) otherwise.

(9.6)

9.1.3 Preliminaries

Throughout this chapter, the number of vertices of a graph is denoted by n, and the vertex set is identified
with [n].

For two graphs G and H, let

G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)),

G ∩H = (V (G) ∩ V (H), E(G) ∩ E(H)).

Note that both G and H are labelled graph.
A path is a graph P = ({v0, . . . , vℓ}, {{v0, v1}, . . . , {vℓ−1, vℓ}}) for distinct vertices v0, . . . , vℓ. The

vertices of degree one in a path are called endpoints. We call a path of endpoints s and t an st-path. The
length of a path is the number of edges. For a graph G and its two distinct vertices s and t, the distance
distG(s, t) is the minimum length among all st-paths contained in G. We define distG(s, t) = ∞ if G
does not contain any st-paths. If the graph G is clear from the context, we use dist(s, t) for distG(s, t).

For a graph G = (V,E) of n vertices, the average distance AD(G) of G is

AD(G) =

(
n

2

)−1 ∑
{s,t}∈(V

2)

distG(s, t).

The diameter diam(G) of G is

diam(G) = max
s̸=t

distG(s, t).

Note that diam(G) = AD(G) = ∞ if G is not connected.
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9.1.4 Tools

Lemma 9.1.6 (Multivariate version of Brun’s sieve; Lemma 2.8 of [Wor99]). Let S
(1)
n , . . . , S

(k)
n be random

variables defined on the same space Ωn such that each S
(i)
n can be written as the sum of binary random

variables. Suppose that there exist positive constants λ1, . . . , λk satisfying

lim
n→∞

E

[
k∏

i=1

(S(i)
n )ri

]
=

k∏
i=1

λrii

for every fixed integers r1, . . . , rk ≥ 0.
Then, for any constants j1, . . . , jk ≥ 0, it holds that

lim
n→∞

Pr

[
k∧

i=1

[S(i)
n = ji]

]
=

k∏
i=1

exp(−λi)
λji

ji!
.

Lemma 9.1.7 (Lemma 2.1 of [KSV07]). Suppose that 1 � d� n. For any fixed graph H, it holds that

Pr[H ⊆ Gn,d] = (1 + o(1))

(
d

n

)|E(H)|

.

Let G[n,m] be a graph selected uniformly at random from the set of all graphs of n vertices with
exactly m edges.

Lemma 9.1.8 (The embedding theorem; Theorem 10.10 of [FK16]). There is a constant C > 0 that
satisfies the following. For any real γ = γ(n), integer d = d(n) satisfying

C

((
d

n
+

log n

d

)1/3
)

≤ γ < 1, (9.7)

and m = b(1 − γ)nd/2c, there exists a joint distribution π of G[n,m] and Gn,d such that

lim
n→∞

Pr
π

[G[n,m] ⊆ Gn,d] = 1

holds.

In other words, for log n � d � n, we can choose m = (1 − o(1))nd/2 and couple G[n,m] and Gn,d

such that G[n,m] ⊆ Gn,d holds a.a.s.

9.2 Upper bounds of AD(Gn,d) and diam(Gn,d)

In this section we obtain upper bounds of AD(Gn,d) and diam(Gn,d) using Lemma 9.1.8. As noted
in [DFRv17], in Lemma 9.1.8, one can replace G[n,m] by G(n, p) of p = (1 − 2γ)d/(n− 1). This yields
the following result.

Corollary 9.2.1. For d = d(n) satisfying log n � d � n, there exists p = (1 − o(1)) d
n such that

AD(Gn,d) ≤ AD(G(n, p)) and diam(Gn,d) ≤ diam(G(n, p)) hold a.a.s.

For d = (β + o(1))nα, take γ of Lemma 9.1.8 satisfying γ = o(1), and let p = (1 − 2γ) d
n−1 =

(β + o(1))n−1+α. Then, from Theorem 9.1.3 and Corollary 9.2.1, it holds a.a.s. that

AD(Gn,d) ≤ AD(G(n, p)) ≤ µ+ o(1). (9.8)

Similarly, from Corollaries 9.1.5 and 9.2.1, the random regular graph Gn,d a.a.s. satisfies

diam(Gn,d) ≤ diam(G(n, p)) ≤ bα−1c + 1. (9.9)
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9.3 Lower bounds of AD(Gn,d) and diam(Gn,d)

If α−1 6∈ N, the lower bound (9.6) and the upper bound (9.8) yield that

AD(Gn,d) = bα−1c + 1 − o(1)

holds a.a.s. Now we focus on the case where α−1 ∈ N. This section is devoted to proving the following.

Lemma 9.3.1. Let d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are any constants satisfying α−1 ∈ N.
For any constant ϵ > 0,

lim
n→∞

Pr[AD(Gn,d) ≤ µ− ϵ] = 0,

where µ = α−1 + exp(−β1/α).

Remark 9.3.2. By combining (9.8) and Lemma 9.3.1, we complete the proof of Theorem 9.1.1. More-
over, Lemma 9.3.1 implies

diam(Gn,d) ≥ dAD(Gn,d)e = bα−1c + 1

holds a.a.s., which completes the proof of Theorem 9.1.2.

Proof of Lemma 9.3.1. Note that

AD(Gn,d) =

(
n

2

)−1 ∑
{s,t}∈(V

2)

dist(s, t)

=

∞∑
ℓ=1

(
n

2

)−1 ∑
{s,t}∈(V

2)

1[dist(s,t)≥ℓ]

≥
α−1+1∑
ℓ=1

(
n

2

)−1 ∑
{s,t}∈(V

2)

1[dist(s,t)≥ℓ].

For ℓ ∈ {1, . . . , α−1 + 1}, let pℓ = pℓ(Gn,d) =
(
n
2

)−1∑
{s,t}∈(V

2) 1[dist(s,t)≥ℓ]. We evaluate pℓ using the

following result.

Lemma 9.3.3. Consider Gn,d of d = (β + o(1))nα. Fix two constants α ∈ (0, 1) and β > 0 satisfying
α−1 ∈ N. For any constant k ∈ N, fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk. For any fixed ℓ1, . . . , ℓk ∈
{1, . . . , α−1 + 1}, it holds that

lim
n→∞

Pr

[
k∧

i=1

[dist(si, ti) ≥ ℓi]

]
= exp(−Mβ1/α)

where M = |{i ∈ {1, . . . , k} : ℓi = α−1 + 1}|.

We will prove Lemma 9.3.3 in Section 9.3.1. For ℓ ∈ {1, . . . , α−1 + 1}, let

µℓ =

{
1 if 1 ≤ ℓ ≤ α−1,

exp(−β1/α) if ℓ = α−1 + 1.

From Lemma 9.3.3, we have

E[pℓ] =

(
n

2

)−1 ∑
{s,t}∈(V

2)

Pr[dist(s, t) ≥ ℓ]

= Pr[dist(1, 2) ≥ ℓ] = µ+ o(1)
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and

E[p2ℓ ] =

(
n

2

)−2 ∑
{s,t},{s′,t′}∈(V

2)

Pr[dist(s, t) ≥ ℓ ∧ dist(s′, t′) ≥ ℓ]

=

(
n

2

)−2

O(n3) +
∑

{s,t},{s′,t′}∈(V
2):

{s,t}∩{s′,t′}=∅

Pr[dist(s, t) ≥ ℓ ∧ dist(s′, t′) ≥ ℓ]


= Pr[dist(1, 2) ≥ ℓ ∧ dist(3, 4) ≥ ℓ] + o(1) = µ2 + o(1).

From the Chebyshev inequality, for every constant ϵ > 0, we have

Pr[|pℓ −E[pℓ]| ≥ ϵ] ≤ Var[pℓ]

ϵ2
= o(1).

Thus we obtain

Pr

∣∣∣∣∣∣
α−1+1∑

ℓ=1

pℓ

− µ

∣∣∣∣∣∣ > ϵ

 ≤
α−1+1∑
ℓ=1

Pr
[
|pℓ − µℓ| > ϵ/(α−1 + 1)

]
= o(1).

Therefore, it holds a.a.s. that

AD(Gn,d) ≥
α−1+1∑
ℓ=1

pℓ ≥ µ− o(1),

which completes the proof of Lemma 9.3.1.

9.3.1 Distances of fixed vertex pairs of Gn,d

This part is devoted to proving Lemma 9.3.3. We start with establishing the following result.

Lemma 9.3.4. Consider Gn,d of d = (β + o(1))nα for constants α ∈ (0, 1) and β > 0. For two fixed
distinct vertices s and t, it holds a.a.s. that dist(s, t) ∈ {dα−1e, bα−1c + 1}.

Proof. For two fixed vertices s, t of Gn,d and an integer ℓ, we denote by P the set of paths of length ℓ
connecting s and t in a complete graph. Let Xℓ = Xℓ(Gn,d) be the number of paths P ∈ P contained in
Gn,d, that is,

Xℓ = |{P ∈ P : P ⊆ Gn,d}|. (9.10)

Fix an integer ℓ satisfying ℓα < 1 (or equivalently, ℓ ≤ dα−1e−1). Then, from Lemma 9.1.7, we have

E(Xℓ) =
∑
P∈P

Pr[P ⊆ Gn,d]

= (1 + o(1))nℓ−1

(
d

n

)ℓ

= o(1).

From the Markov’s inequality, we obtain

Pr[dist(s, t) ≤ ℓ] ≤ Pr[X1 + · · · +Xℓ > 0]

≤
ℓ∑

i=1

E(Xi)

= o(1).

In other words, dist(s, t) ≥ ℓ+ 1 ≥ dα−1e holds a.a.s.
On the other hand, from (9.9), we have dist(s, t) ≤ diam(Gn,d) ≤ bα−1c + 1. This completes the

proof of Lemma 9.3.4.
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Proof of Lemma 9.3.3. Fix an integer k > 0 and 2k distinct vertices s1, . . . , sk, t1, . . . , tk of Gn,d,
where d = (β + o(1))nα. From Lemma 9.3.4, it holds a.a.s. that dist(s, t) ∈ {α−1, α−1 + 1}.

Suppose that ℓ1 ≤ α−1 and thus dist(s1, t1) ≥ ℓ1 holds a.a.s. Then we have

Pr

[
k∧

i=2

[dist(si, ti) ≥ ℓi]

]
−Pr[dist(s1, t1) < ℓ1] ≤ Pr

[
k∧

i=1

[dist(si, ti) ≥ ℓi]

]

≤ Pr

[
k∧

i=2

[dist(si, ti) ≥ ℓi]

]

and thus

Pr

[
k∧

i=1

[dist(si, ti) ≥ ℓi]

]
= Pr

[
k∧

i=2

[dist(si, ti) ≥ ℓi]

]
− o(1).

Hence, we may assume that ℓi = α−1 + 1 for all i = 1, . . . , k (i.e., M = k in Lemma 9.3.3).
Let P(i) denote the set of siti-paths of length α−1 contained in the complete graph Kn. Define X(i)

as the number of paths of P(i) contained in Gn,d, that is,

X(i) = |{P ∈ P(i) : P ⊆ G(n, p)|.

Then, we have

Pr

[
k∧

i=1

[dist(si, ti) ≥ α−1 + 1]

]
= Pr

[
k∧

i=1

[dist(si, ti) ≥ α−1] ∧
k∧

i=1

[X(i) = 0]

]

= Pr

[
k∧

i=1

[X(i) = 0]

]
− o(1). (9.11)

We evaluate (9.11) using the following result, which will be shown in Section 9.3.2.

Lemma 9.3.5. Consider Gn,d of d = (β + o(1))nα, where α ∈ (0, 1) and β > 0 are any constants
satisfying α−1 ∈ N. Fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk, where k is any constant. For i =
1, . . . , k, let X(i) denote the number of siti-paths of length α−1 ∈ N contained in G(n, p). Fix arbitrary
nonnegative integers r1, . . . , rk. Then, it holds that

E

[
k∏

i=1

(X(i))ri

]
= (β1/α)R + o(1),

where R = r1 + · · · + rk.

From Lemma 9.3.5 and the Poisson approximation theorem (Lemma 9.1.6), we have

Pr

[
k∧

i=1

[X(i) = 0]

]
= exp(−kβ1/α) + o(1). (9.12)

By combining (9.11) and (9.12), we have

Pr

[
k∧

i=1

[dist(si, ti) ≥ α−1 + 1]

]
= exp(−kβ1/α) − o(1).

This completes the proof of Lemma 9.3.3 and thus Lemma 9.3.1.

9.3.2 Proof of Lemma 9.3.5

We first prove the following result and then show Lemma 9.3.5.
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Lemma 9.3.6. Fix an integer ℓ ≥ 1 and consider G(n, p) satisfying (np)ℓ = Ω(n). Fix 2k distinct
vertices s1, . . . , sk, t1, . . . , tk, where k is arbitrary constant. For i = 1, . . . , k, let X(i) denote the number
of siti-paths of length ℓ ∈ N contained in G(n, p).

Then, for any fixed nonnegative integers r1, . . . , rk,

E

[
k∏

i=1

(
X(i)

)
ri

]
= nR(ℓ−1)pRℓ

(
1 ± O

(
1

np

))
,

where R = r1 + · · · + rk.

Corollary 9.3.7. Consider G(n, p) of p = (β+o(1))n−1+α, where α ∈ (0, 1) and β > 0 are any constants
satisfying α−1 ∈ N. Fix arbitrary nonnegative integers r1, . . . , rk. Then, it holds that

E

[
k∏

i=1

(X(i))ri

]
= (β1/α)R + o(1),

where R = r1 + · · · + rk.

Proof of Lemma 9.3.6. For a positive constant k, fix 2k distinct vertices s1, . . . , sk, t1, . . . , tk. For every
i ∈ {1, . . . , k}, let P(i) denote the set of all siti-paths of length ℓ contained in the complete graph. We
denote by X(i) the number of paths of P(i) contained in G(n, p).

Fix nonnegative integers k, r1, . . . , rk. We may assume that ri > 0 for every i = 1, . . . , k. Let
A = (P(1))r1 × · · · × (P(k))rk . Each element A ∈ A is a tuple

A = ((P
(1)
1 , . . . , P (1)

r1 ), . . . , (P
(k)
1 , . . . , P (k)

rk
)),

where each P
(i)
j ∈ Pi is an siti-path of length ℓ and P

(i)
j 6= P

(i)
j′ holds for every i and j 6= j′. For

notational convention, we write A = (P1, . . . , PR) ∈ A. Since rk > 0, it holds that PR ∈ P(k).
For a tuple A = (P1, . . . , Pt) of t paths, let E(A) =

⋃t
i=1E(Pi) and V (A) =

⋃t
i=1 V (Pi) (we will use

induction on R and hence we assume t ≤ R here). For S ⊆ A, we consider

ΓS =
∑
A∈S

p|E(A)|.

Note that E
[∏k

i=1

(
X(i)

)
ri

]
=
∑

A∈A Pr[E(A) ⊆ E(G(n, p))] = ΓA. We claim

nR(ℓ−1)pRℓ

(
1 − O

(
1

n

))
≤ ΓA ≤ nR(ℓ−1)pRℓ

(
1 + O

(
1

np

))
, (9.13)

which completes the proof of Lemma 9.3.6.
For any A ∈ A, it holds that |E(A)| ≤ Rℓ and the equality holds if and only if any two distinct paths

Pi, Pj of A shares no edges (see Figure 9.1). Let

F = {A ∈ A : |E(A)| < Rℓ}
= {(P1, . . . , PR) ∈ A : ∃i 6= j, E(Pi) ∩ E(Pj) 6= ∅}. (9.14)

Figure 9.2 illustrates an example. Then, ΓA can be decomposed into

ΓA = ΓF + ΓA\F . (9.15)

The second term ΓA\F satisfies

ΓA\F = pRℓ |{A ∈ A : |E(A)| = Rℓ}|
≥ pRℓ |{A ∈ A : |E(A)| = Rℓ and |V (A)| = R(ℓ− 1) + 2k}|
= (n− 2k)R(ℓ−1)p

Rℓ

≥ nR(ℓ−1)pRℓ

(
1 − O

(
1

n

))
.

This implies the lower bound ΓA ≥ ΓA\F ≥ nR(ℓ−1)pRℓ
(
1 − O

(
1
n

))
.
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r1

r3
s3 t3

r2
s2 t2

s1 t1

Figure 9.1: A tuple A ∈ A \ F . Figure 9.2: A tuple A ∈ F .

Now it suffices to bound ΓA from above. Observe that ΓA\F satisfies

ΓA\F = pRℓ |{A ∈ A : |E(A)| = Rℓ}| ≤ nR(ℓ−1)pRℓ. (9.16)

We show that this term is dominating in ΓA. Lemma 9.3.6 immediately follows from (9.15) and (9.16)
and the following result:

Lemma 9.3.8. Suppose that (np)ℓ = Ω(n). Define F as (9.14). It holds that

ΓF = O

(
nR(ℓ−1)pRℓ

np

)
.

Proof. We use induction on R. For the base case of R = 1, we have F = ∅ and thus

ΓA ≤ nℓ−1pℓ,

ΓF = 0.

Suppose that R ≥ 2 and that Lemma 9.3.8 holds for R − 1. Note that Lemma 9.3.6 also holds for
R− 1 since Lemma 9.3.8 implies Lemma 9.3.6. Let

A′ = (P(1))r1 × · · · × (P(k−1))rk−1.

Then, each element A = (P1, . . . , PR) ∈ A can be decomposed into A′ = (P1, . . . , PR−1) ∈ A′ and
PR ∈ P(k). Note that the edge set E(A′) for A′ ∈ A′ are defined in the same way as E(A) and it holds
that |E(A′)| ≤ (R− 1)ℓ. Let

F ′ = {A′ ∈ A′ : |E(A′)| < (R− 1)ℓ}.

By the induction assumption on F ′ and A′, we have

ΓA′ ≤ n(R−1)(ℓ−1)p(R−1)ℓ

(
1 +

C1

np

)
,

ΓF ′ ≤ C2

(
n(R−1)(ℓ−1)p(R−1)ℓ

np

)
for some constants C1, C2 > 0. For A = (P1, . . . , PR) ∈ F , let A′ = (P1, . . . , PR−1) ∈ A′. Since A ∈ F ,
either

(i) E(PR) ∩ E(Pi) 6= ∅ for some 1 ≤ i < R, or

(ii) E(PR) ∩ E(A′) = ∅ and E(Pi) ∩ E(Pj) 6= ∅ for some 1 ≤ i < j < R (thus A′ ∈ F ′)
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holds. Therefore, we have

ΓF =
∑
A∈F

p|E(A)|

≤
∑

A′∈A′

∑
PR∈P(k):

E(A)∩E(PR )̸=∅

p|E(A′)∪E(PR)| +
∑

A′∈F ′

∑
PR∈P(k):

E(PR)∩E(A′)=∅

p|E(A′)∪E(PR)|. (9.17)

From the induction assumption, the second term satisfies∑
A′∈F ′

∑
PR∈P(k):

E(PR)∩E(A′)=∅

p|E(A′)∪E(PR)| =
∑

A′∈F ′

p|E(A′)|
∑

PR∈P(k):
E(PR)∩E(A′)=∅

p|E(PR)|

≤ ΓF ′ · nℓ−1pℓ. (9.18)

The first term can be rewritten as∑
A′∈A′

∑
PR∈P(k):

E(A′)∩E(PR )̸=∅

p|E(A′)∪E(PR)| =
∑

A′∈A′

p|E(A′)|
∑

PR∈P(k):
E(A)∩E(PR )̸=∅

p|E(PR)\E(A′)|.

Fix A′ = (P1, . . . , PR−1) ∈ A′. Let S = {s1, . . . , sk, t1, . . . , tk} be the endpoints of the paths and let
V1 = S ∪ V (P1) ∪ · · · ∪ V (PR−1). To bound the number of PR satisfying the condition (ii), we consider
two cases: E(PR) 6⊆ E(A′) and E(PR) ⊆ E(A′).

Case I. E(PR) 6⊆ E(A′). The edge set E(PR)∩E(A′) forms a forest. Since E(PR) 6⊆ E(A′), this forest
is not connected and thus we have |V (PR) ∩ V1| − |E(PR) ∩ E(A′)| ≥ 2. This yields

|V (PR) \ V1| = |V (PR)| − |V (PR) ∩ V1|
≤ ℓ− |E(PR) ∩ E(A′)| − 1.

Let |E(PR) ∩ E(A′)| = t < ℓ. Then, PR consists of two type of vertices: at most ℓ − t − 1 from V \ V1
and the others from V1. Therefore, there are at most nℓ−t−1|V1|t ≤ Ctnℓ−t−1 candidates for the path
PR satisfying |E(PR) ∩ E(A′)| = t < ℓ, where C = (R − 1)(ℓ + 1) (recall that two endpoints of PR are
fixed and thus they are not taken into account).

Case II. E(PR) ⊆ E(A′). We claim A′ ∈ F ′. If not, it holds that E(Pi)∩E(Pj) = ∅ for any i < j < R.
Hence, E(PR) ⊆ E(A′) implies PR = Pi for some i < R. This contradicts to the definition of A
(Pi 6= Pj for any i < j ≤ R). Moreover, the number of PR ∈ P(k) satisfying E(PR) ⊆ E(A′) is at most
|V1|ℓ−1 ≤ CR(ℓ−1). Therefore, we have∑

A′∈A′

∑
PR∈P(k):

E(A′)∩E(PR )̸=∅

p|E(A′)∪E(PR)|

≤
∑

A′∈A′

p|E(A′)|

ℓ−1∑
t=1

∑
PR∈P(k):

|E(A)∩E(PR)|=t

p|E(PR)\E(A′)|

+
∑

A′∈F ′

p|E(A′)|CR(ℓ−1)

≤
∑

A′∈A′

p|E(A′)| ·
ℓ−1∑
t=1

Ctnℓ−t−1pℓ−t + CR(ℓ−1)ΓF ′

≤ ΓA′ · Cn
ℓ−1pℓ

np

(
1 +

1.01C

np

)
+ CR(ℓ−1)ΓF ′ . (9.19)

From (9.17) to (9.19) and the induction assumption, we have

ΓF ≤ ΓF ′ · nℓ−1pℓ + ΓA′ · Cn
ℓ−1pℓ

np

(
1 +

1.01C

np

)
+ CR(ℓ−1)ΓF ′

≤ O

(
nR(ℓ−1)pRℓ

np

)
.
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This completes the proof of Lemma 9.3.8 and thus Lemma 9.3.6 (Here, we have used the assumption
that (np)ℓ = Ω(n)).

Proof of Lemma 9.3.5. Let d = (1 + o(1))np = (β + o(1))nα. From Lemma 9.1.7, we have Pr[H ⊆
G(n, p)] = (1 + o(1))Pr[H ⊆ Gn,d] for any fixed graph H. Let R = r1 + · · · + rk and A = (P(1))r1 ×
· · · × (P(k))rk . We write each element A ∈ A as a tuple A = (P1, . . . , PR) of R paths. Then, from
Corollary 9.3.7, we have

EGn,d

[
k∏

i=1

(
X(i)

)
ri

]
=

∑
(P1,...,PR)∈A

Pr[E(P1 ∪ · · ·PR) ⊆ Gn,d]

= (1 + o(1))
∑

(P1,...,PR)

Pr[E(P1 ∪ · · ·PR) ⊆ G(n, p)]

= (1 + o(1))EG(n,p)

[
k∏

i=1

(
X(i)

)
ri

]
= (β + o(1))1/α.

9.4 Concentration of AD(G(n, p))

We prove Theorem 9.1.3. We use AD = AD(G(n, p)) and diam = diam(G(n, p)) as random variables.
Let D = dµe = bα−1c + 1. From Corollary 9.1.5, we have

Pr [|AD − µ| > ϵ] ≤ Pr [|AD − µ| > ϵ |diam = D]Pr[diam = D] + Pr[diam 6= D]

≤ Pr [|AD − µ| > ϵ |diam = D] + o(1)

for any ϵ = ϵ(n) > 0. Therefore, we may put the condition that diam = D.
For i = 1, . . . , D, let

Ni =

∣∣∣∣{{s, t} ∈
(
V

2

)
: dist(s, t) = i

}∣∣∣∣ .
We will prove the following result in Section 9.4.1:

Lemma 9.4.1. Let C > 0 be a sufficiently large constant and ϵ = ϵ(n) :=
√

logn
np . Then, |Ni −Mi| ≤

CϵMi holds a.a.s. for all i = 1, . . . , D − 1, where

Mi =

{
(np)i

n

(
n
2

)
if i < α−1,

(1 − exp(−β1/α))
(
n
2

)
if i = α−1 ∈ N.

Upper bound of AD. Conditioned on diam = D, it immediately holds that AD ≤ diam ≤ D. Thus,
if α−1 6∈ N, we have

AD ≤ D = µ

with probability 1 − exp(−nΩ(n)).

Now we focus on the case where α−1 ∈ N. Let ϵ = C
√

logn
np for sufficiently large constant C > 0.

Conditioned on diam = D, Lemma 9.4.1 implies

ND =

(
n

2

)
−N1 − . . .−ND−1

≤ (1 + O(ϵ)) exp(−β1/α)

(
n

2

)
.
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Therefore, conditioned on diam = D, we have(
n

2

)
· AD =

D∑
i=1

iNi

≤ DND + (D − 1)

((
n

2

)
−ND

)
= ND + (D − 1)

(
n

2

)
≤ (1 + O(ϵ))µ

(
n

2

)
.

In other words, AD ≤ µ+ O(ϵ) holds a.a.s.

Lower bound of AD. Conditioned on diam = D, we have N1 + · · · +ND =
(
n
2

)
and thus(

n

2

)
· AD =

D∑
i=1

iNi

= N1 + 2N2 + · · · + (D − 1)ND−1 +D

((
n

2

)
−N1 − · · · −ND−1

)
= D

(
n

2

)
− (D − 1)N1 − (D − 2)N2 − · · · −ND−1

≥ (1 − O(ϵ))µ

(
n

2

)
.

In the last inequality, we used Lemma 9.4.1. This completes the proof of Theorem 9.1.3.

9.4.1 Proof of Lemma 9.4.1

The proof of Lemma 9.4.1 is a slight modification of the proof of Theorem 7.1 of [FK16].
Consider G(n, p) of p = (β + o(1))n−1+α. Let D = bα−1c + 1. We consider the breadth first search

process on G(n, p) from a fixed vertex. Fix a vertex v. For k ≥ 0, let

Nk(v) = {w ∈ V : dist(v, w) = k}.

Note that N0(v) = {v}. For sufficiently large constant C > 0 and ϵ :=
√

logn
np , let Fk be the event of

G(n, p) that ∣∣∣∣|Ni(v)| − 2Mi

n

∣∣∣∣ ≤ CϵMi

n
for all i = 1, . . . , k,

where Mi is given in Lemma 9.4.1. Note that F0 must hold. The degree of v is denoted by deg(v). We
denote by Bin(m, q) the binomial distributed random variable with m trials and success probability q.
Note that, if we are given N0(v), . . . , Nk−1(v), the random variable |Nk(v)| is distributed as a binomial
random variable, that is,

|Nk(v)| ∼ Bin

(
n−

k−1∑
i=0

|Ni(v)|, 1 − (1 − p)|Nk−1(v)|

)
.

Consider E[|Nk(v)| | Fk−1]. For every k = 1, . . . , D − 1, conditioned on Fk−1, we have

n ≥ n−
k−1∑
i=0

|Ni(v)| ≥ (1 − O(ϵ))n

Here, recall that (np)D−1 = O(n). Using the inequality e−
x

1−x ≤ 1 − x ≤ e−x for every x ∈ [0, 1)
(cf. Lemma 21.1 of [FK16]), we obtain

1 − (1 − p)|Nk−1(v)| =

{
(1 ± O(ϵ))p(np)k−1 if k = 1, . . . , D − 2,

(1 ± O(ϵ)) exp(−β1/α) if k = D − 1.
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Therefore, we have

E [|Nk(v)| | Fk−1] =

{
(1 ± O(ϵ))(np)k if k = 1, . . . , D − 2,

(1 ± O(ϵ)) exp(−β1/α)n if k = D − 1

= (1 ± O(ϵ))
2Mk

n
.

From the Chernoff bound (Proposition 2.5.5), we have

Pr[Fk | Fk−1] ≥ 1 − exp
(
−Θ

(
ϵ2(np)k

))
≥ 1 − O(n−2)

if the constant C is sufficiently large (recall that C is the constant in the definition of Fk). Therefore,
FD−1 holds with probability 1 − O(n−2) for sufficiently large C. Taking the union bound, it holds
a.a.s. that |Ni(v)| = (1±O(ϵ)) 2Mi

n for all v. Consequently, we have Ni = 1
2

∑
v∈V |Ni(v)| = (1±O(ϵ))Mi,

which completes the proof of Lemma 9.4.1.



Chapter 10

Conclusion

In this thesis, we have studied the average-case complexity of graph problems and the behavior of
algorithms on random graphs.

In Chapters 3 and 4, we obtained the nearly-tight average-case complexity of counting biclique-
subgraphs in random graphs. This reveals a computational hardness aspect of random graphs. In
Chapter 3, we proved that no na−ϵ-time algorithm counts Ka,b-subgraphs even when the input is a
random bipartite graph for any constant ϵ > 0 under a widely investigated conjecture of worst-case
complexity. On the other hand, we presented an na+o(1)-time algorithm that solves the counting problem
for any input. The main issue in this result was the fraction of hard instances: Actually, the hardness
result above implies that counting biclique-subgraphs on more than a (1 − 1/ polylog(n))-fraction of
instances is hard for any na−ϵ-time algorithms. In other words, it ensures that a 1/polylog(n)-fraction
of random graphs is hard. We handled this issue in Chapter 4 by presenting a general framework of
fine-grained hardness amplification. The core of this framework was a doubly-efficient interactive proof
system with low query complexity. We presented such an interactive proof system for the subgraph
counting problem, which is of independent interest.

The topic of Chapters 5 to 7 was voting processes. In Chapter 5, we introduced the notion of the
functional voting process, which contains several previously-known voting processes. In Chapter 6, we
showed phase transition results of the best-of-two and best-of-three on the stochastic block model. Our
technical contribution here is to present a framework for studying voting processes on the stochastic
block model based on induced dynamical systems. This framework is general and we can apply it to the
analysis of voting processes on graphs having more than two community structures. In Chapter 7, we
introduced the notion of quasi-majority functional voting, which contains several known voting processes
such as the best-of-two and best-of-three. In Chapter 7, we studied quasi-majority functional voting,
which is a wide class of voting processes containing best-of-two and best-of-three as special cases. Then
we obtained upper bounds of the consensus time of the quasi-majority functional voting on expander
graphs. This result generalized and improved several previous works. In particular, we obtained the
tight consensus time of the best-of-two and best-of-three on the Erdős–Rényi graph and random regular
graph.

In Chapter 8, motivated by studying real-world networks, we introduced the model of random walks
on growing graphs (RWoGG). The novelty of the presented model is that the size of the underlying graph
increases over time, which reflects the convention that most real world networks are growing all the time.
We then evaluate the performance of an RWoGG using the expected number of unvisited vertices during
the random walk. We obtained several bounds of this value in terms of hitting and mixing time.

In Chapter 9, we obtained the asymptotic behavior of the average distance and diameter of ran-
dom regular graphs. In particular, we proved that the diameter of dense random regular graphs are
asymptotically optimal if the degree satisfies some mild condition.

This thesis investigated random graphs drawn from simple distributions such as random bipartite
graph, stochastic block model, and random regular graph. However, these kinds of random graphs
usually do not appear in the real-world. Our future direction is the analysis of randomness on real-world
networks such as preferential attachment model.
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[CER14] C. Cooper, R. Elsässer, and T. Radzik. The power of two choices in distributed voting. In
Proceedings of the 41st International Colloquium on Automata, Languages, and Program-
ming (ICALP), 2:435–446, 2014.
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Combinatorics, 6(4):291–302, 1985.

[DF17] R. David and U. Feige. Random walks with the minimum degree local rule haveO(N2) cover
time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1839–1848, 2017.

[DF18] R. David and U. Feige. Random walks with the minimum degree local rule have O(n2)
cover time. SIAM Journal on Computing, 47(3):755–768, 2018.
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