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Preface

Degrees of determinants of polynomial matrices often appear as algebraic formulations of
weighted combinatorial optimization problems. For example, weighted Edmonds’ prob-
lem (WEP), which is to compute the degree of the determinant of a polynomial matrix
having symbols, reduces to the weighted bipartite matching problem and the weighted lin-
ear matroid intersection and parity problems depending on symbols’ pattern. Conversely,
the degree of the determinant of an arbitrary polynomial matrix serves as a lower bound
on the maximum weight of a perfect matching in the associated edge-weighted bipartite
graph. Based on this relation, the combinatorial relaxation algorithm of Murota (1995)
computes the degree of the determinant of a polynomial matrix by iteratively solving the
weighted bipartite matching problem.

The above property on degrees of determinants extends to valuations of determinants
of matrices over valuation fields, or more generally, to valuations of the Dieudonné deter-
minants of matrices over valuation skew fields. In combinatorial optimization, valuations
of the Dieudonné determinants arise from a noncommutative version of WEP (nc-WEP).
An algebraic abstraction of linear differential and difference equations gives rise to skew
polynomials, which are a noncommutative generalization of polynomials. Valuations of
Dieudonné determinants of skew polynomial matrices provide information on dimensions
of solution spaces of linear differential and difference equations.

The combinatorial relaxation is of importance to preprocessing of differential-algebraic
equations (DAEs). In numerical analysis of DAEs, consistent initialization and index
reduction are necessary preprocessing prior to the numerical integration. Popular pre-
processing methods of Pantelides (1988), Mattsson–Söderlind (1993), and Pryce (2001)
are based on the assignment problem on a bipartite graph that represents variable occur-
rences in equations. The structural methods, however, fail for some DAEs due to inherent
numerical or symbolic cancellations. The combinatorial relaxation provides a framework
of modifying a DAE into another DAE to which the structural methods are applicable,
whereas modification method used in the framework should be appropriately chosen ac-
cording to the target DAEs.

In the first half of this thesis, we propose two algorithms for computing valuations
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of the Dieudonné determinants of matrices over valuation skew fields. The algorithms
are extensions of the combinatorial relaxation of Murota and the matrix expansion by
Moriyama–Murota (2013), both of which are based on combinatorial optimization. We
show that the skew polynomials arise as the most general algebraic structure to which
these algorithms admit natural extensions. Applications are presented for the nc-WEP
and analysis of linear differential and difference equations.

The last half of this thesis is devoted to DAEs’ modification methods based on the
combinatorial relaxation. This thesis presents three methods for modifying DAEs into
other DAEs to which the preprocessing methods can be applied. One method is for linear
DAEs whose coefficient matrices are mixed matrices, which are matrices having symbols
representing physical quantities. We develop an efficient algorithm that relies on graph
and matroid algorithms but not on symbolic computation. Other two deal with general
nonlinear DAEs with the aid of symbolic computation engines to manipulate nonlinear
formulas. In addition to theoretical guarantees, we conduct numerical experiments on real
instances to present practical efficiency.
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Chapter 1

Introduction

Edmonds [23] observed that the rank of a matrix does not exceed the maximum size of a
matching in the associated bipartite graph. The weighted version of this relation holds in
the following sense: the degree of the determinant of a polynomial matrix serves as a lower
bound on the maximum weight of a perfect matching in the edge-weighted bipartite graph
associated with the matrix. This relation leads us to an efficient deg-det computation
algorithm, the combinatorial relaxation of Murota [67].

The first half of this thesis focuses on generalizing “degrees of determinants” in two di-
rections: “degrees” to “valuations” and “determinants” to “the Dieudonné determinants”,
which are a noncommutative generalization of determinants by Dieudonné [19]. Valuations
of the Dieudonné determinants arise from combinatorial optimization and analysis of linear
differential and difference equations. We generalize two combinatorial algorithms for the
deg-det computation, including the combinatorial relaxation, to the setting of valuations
of the Dieudonné determinants.

The latter half of this thesis is attributed to modification methods for differential-
algebraic equations (DAEs). The combinatorial relaxation has been used as a framework
to modify DAEs into other DAEs that are more amenable to preprocessing methods prior
to numerical integration. Based on the combinatorial relaxation, we develop modification
methods for DAEs making use of combinatorial optimization algorithms, sometimes with
symbolic computation support.

In what follows, we present the backgrounds and contributions of this thesis. In Sec-
tion 1.1, we introduce basic notions of matrices and valuations over skew fields and how
valuations of the Dieudonné determinants arise from applications. Next in Section 1.2, we
describe the combinatorial relaxation algorithm for computing degrees of determinants.
In Section 1.3, we introduce DAEs and structural preprocessing methods. In Section 1.4,
we summarize our contributions presented in this thesis. The organization of this thesis
is explained in Section 1.5.



2 Introduction

1.1 Matrices and Valuations

1.1.1 Ranks and Determinants

We start with matrices over fields. Let A be an n × n′ matrix over a field F . There are
a large number of equivalent definitions of the rank of A. One definition is the dimension
of the linear space spanned by row vectors of A. Another definition is the minimum
nonnegative integer r such that A is decomposed as the product of two matrices of size
n× r and r × n′. The third definition is the maximum size of a nonsingular submatrix of
A. Nonsingularity is equivalent to the nonzero-ness of the determinant.

This thesis deals with matrices over skew fields. A skew field, or a division ring is a
ring F such that every nonzero element has a multiplicative inverse in F . The above three
definitions of the rank are valid even for matrices over skew fields (by changing “dimension
of the linear space” with “rank of the left F -module”).

The determinant concept cannot be naturally extended to square matrices over non-
commutative rings. Nevertheless, Dieudonné [19] defined the Dieudonné determinant for
square matrices over skew fields as a noncommutative generalization of the usual de-
terminant. While the Dieudonné determinant of A ∈ Fn×n, denoted as DetA, is no
longer an element in F , it retains useful properties of the usual determinant such as
DetAB = DetADetB.

Let A be a matrix over a skew field F with row set R and column set C. We associate
A with the bipartite graph G = (R∪C,E) such that {i, j} is in E if and only if the (i, j)th
entry of A is nonzero for every i ∈ R and j ∈ C. When F is a field and A is square, the
determinant of A is the sum over all perfect matchings of G except that each matching
has an associated sign. This means that G has a perfect matching only if A is nonsingular.
More generally, the maximum size of a matching of G is an upper bound on the rank of A.
This relation can also be shown for matrices over skew fields using the min-max theorem
for bipartite matchings (see [27]).

1.1.2 Valuations of Determinants

Let F be a skew field. A (real, non-archimedean) valuation [101, Chapter IV] on F is a
map v : F → R ∪ {+∞} satisfying

(V1) v(ab) = v(a) + v(b) for a, b ∈ F ,

(V2) v(a+ b) ≥ min{v(a), v(b)} for a, b ∈ F ,

(V3) v(1) = 0,

(V4) v(0) = +∞.

The value v(a) is called the valuation of a ∈ F . A valuation is called discrete if its image
is a subset of Z ∪ {+∞}. A (discrete) valuation (skew) field is a (skew) field equipped
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with a (discrete) valuation. Discrete valuation skew fields and discrete valuation fields are
abbreviated as DVSFs and DVFs, respectively.

The most basic example of a discrete valuation is the minus of the degree on the
rational function field K(s) over a skew field K. This is generalized to the degree on
the skew rational function field, explained in Section 1.1.5. The p-adic valuation of the
rational numbers is also a famous example of discrete valuations.

Let A be a square matrix over a DVF. The valuation of the determinant deserves to
be the “weighted version” of ranks of matrices in the following sense. For every edge {i, j}
of the associate graph G with A, we set its weight as the valuation of the (i, j)th entry
in A. By the definition of detA and the axioms of valuations, the minimum weight of a
perfect matching of G serves as a lower bound on the valuation of the determinant of A.

For a square matrix over a DVSF, the valuation of the Dieudonné determinant of A
is well-defined. The inequality between the valuation of DetA and the weighted bipartite
matchings still hold.

In the rest of this section, we describe how valuations of the Dieudonné determi-
nants arise in the study of combinatorial optimization and analysis of linear differen-
tial/difference equations.

1.1.3 Edmonds’ Problem

In 1967, Edmonds [23] posed a question whether there exists a polynomial-time algorithm
to compute the rank of a linear (symbolic) matrix B over a field K, which is in the form

B = B0 +B1x1 + · · ·+Bmxm,

where B0, B1 . . . , Bm are matrices over K and x1, . . . , xm are commutative symbols. Here,
B is regarded as a matrix over the polynomial ring K[x1, . . . , xm] or the rational function
fieldK(x1, . . . , xm). If each Bi has only one nonzero entry, the rank computation for B cor-
responds to the bipartite matching problem. Similarly, Edmonds’ problem coincides with
the general matching problem if each Bi is skew-symmetric and of rank 2. More generally,
Edmonds’ problem is equivalent to the linear matroid intersection problem if all Bi are of
rank 1, and to the linear matroid parity problem if all Bi are skew-symmetric matrices of
rank 2; see Lovász [59]. Edmonds’ problem is solvable in deterministic polynomial-time for
these instances. It is known that these conditions on Bi can be eliminated for B0 [31, 44,
72, 92]. As an other direction, Hirai–Iwamasa [41] gave a combinatorial algorithm when B
is a 2× 2 partitioned matrix. For general linear matrices, the celebrated Schwartz–Zippel
lemma [88] provides a simple randomized algorithm if |K| is large enough [59]. However,
no deterministic polynomial-time algorithm still has been known; the existence of such an
algorithm would imply nontrivial circuit complexity lower bounds [50, 95].

Hirai [39] introduced weighted versions of commutative and noncommutative Edmonds’
problems. First, consider commutative symbols x1, . . . , xm and an extra commutative
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symbol s. Define a matrix

A = A0 +A1s+ · · ·+A`s
`, (1.1)

where Ad = Ad,0 + Ad,1x1 + · · · + Ad,mxm is a linear matrix over K for d = 0, . . . , `. We
call (1.1) a linear polynomial matrix over K. Weighted Edmonds’ problem (WEP) is the
problem of computing the degree (in s) of the determinant of A. Analogously to Edmonds’
problem, the WEP includes a bunch of weighted combinatorial optimization problems as
special cases, such as a maximum weighted perfect matching problem, a weighted linear
matroid intersection problem, and a weighted linear matroid parity problem; see [39].

Mixed matrix and mixed polynomial matrices are important subclasses of linear ma-
trices and linear polynomial matrices, respectively. A linear matrix B is called a mixed
matrix if the constant term B0 is arbitrary and each Bi with i = 1, . . . ,m has only one
nonzero entry; namely, each symbol xi appears exactly once in entries of B. Mixed matri-
ces were first introduced by Murota–Iri [72] as a faithful description of dynamical systems.
In this use, entries in B0 are “accurate constants” such as coefficients of conservation laws
like Kirchhoff’s law, and each symbol xi is an “independent parameter” representing a
physical quantity such as resistance values coming from Ohm’s law. Mixed polynomial
matrices are similarly defined. In systems analysis, mixed polynomial matrices appear as
the transfer function matrices of linear systems. See [71] for details.

Efficient combinatorial algorithms have been given for dealing with mixed matrices
and mixed polynomial matrices. Murota [65] showed that the rank computation of mixed
matrices reduces to independent matching problem on linear matroids, which is equivalent
to the (linear) matroid intersection problem. Murota [69] also gave a reduction of the
deg-det computation for mixed polynomial matrices to the valuated matroid intersection
problem, which is a generalization of the matroid intersection problem to valuated matroids.
Subsequently, Iwata–Takamatsu [46] presented another deg-det computation algorithm for
mixed polynomial matrices, which is based on the combinatorial relaxation.

1.1.4 Noncommutative Edmonds’ Problem

Recent studies [28, 37, 43] address the noncommutative version of Edmonds’ problem (nc-
Edmonds’ problem). This is a problem of computing the noncommutative rank (nc-rank)
of B, which is the rank defined by regarding x1, . . . , xm as pairwise noncommutative, i.e.,
xixj 6= xjxi if i 6= j. In this way, B is viewed as a matrix over the free ring K〈x1, . . . , xm〉
generated by noncommutative symbols x1, . . . , xm. The nc-rank of B is precisely the rank
of B over a skew (noncommutative) field K<(x1, . . . , xm>) , called a free skew field, which
is the quotient of K〈x1, . . . , xm〉 defined by Amitsur [2]. We call a linear matrix over
K having noncommutative symbols an nc-linear matrix over K. The recent studies [28,
37, 43] revealed that nc-Edmonds’ problem is deterministically tractable. For the case
where K is the set Q of rational numbers, Garg et al. [28] proved that Gurvits’ operator
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scaling algorithm [35] deterministically computes the nc-rank of B in poly(n,m) arithmetic
operations on Q. Algorithms over a general field K were later given by Ivanyos et al. [43]
and Hamada–Hirai [37] exploiting the min-max theorem established for nc-rank.

We next define noncommutative weighted Edmonds’ problem (nc-WEP). Let x1, . . . , xm
be noncommutative symbols and s an extra symbol that commutes with any element in
K〈x1, . . . , xm〉. An nc-linear polynomial matrix A over K is a matrix in the form of (1.1)
with each Ad regarded as an nc-linear matrix. Then A can be viewed as a matrix over the
rational function (skew) field F (s) over F := K<(x1, . . . , xm>) . The nc-WEP is the problem
of computing deg Det of a given nc-linear polynomial matrix. Hirai [39] formulated the
dual problem of the nc-WEP as the minimization of an L-convex function on a uniform
modular lattice, and gave an algorithm based on the steepest gradient descent. Hirai’s
algorithm can also be regarded as a variant of combinatorial relaxation algorithms. While
Hirai’s algorithm uses only polynomially many arithmetic operations on K with respect to
the matrix size, the number of symbols m, and the degree `, no bit-length bound has been
given for K = Q. Very recently, Hirai–Ikeda [40] presented a strongly polynomial-time
algorithm of the nc-WEP for a special class of “sparse” nc-linear polynomial matrices.

1.1.5 Linear Differential and Difference Equations

Consider a linear differential equation A0y(t) + A1ẏ(t) + · · · + A`y
(`)(t) = 0, where

A0, . . . , A` are n × n matrices over C. The number of initial values needed to uniquely
determine a solution coincides with the dimension of the solution space (over C). Chrys-
tal’s theorem [12] states that this dimension is equal to the degree of the determinant of
A := ∑`

d=0Ads
d ∈ C[s]n×n. We see an algebraic extension of this relation for time-varying

linear differential and difference equation systems.
Let K be a field and δ : K → K a derivation on K; that is, it satisfies δ(a + b) =

δ(a) + δ(b) and δ(ab) = δ(a)b+ aδ(b) for any a, b ∈ K. A typical setting is K = C(t) and
δ is the usual differentiation along t. An `th-order (ordinary, matrix) linear differential
equation over F for an n-dimensional vector y is

A0y +A1δ(y) +A2δ
2(y) + · · ·+A`δ

`(y) = f,

where A0, . . . , A` ∈ Kn×n and f ∈ Kn. This equation can be expressed as A•y = f , where
A := A0 +A1s+ · · ·+A`s

` is a matrix over polynomials in the differential operator s that
acts on K as s •a = δ(a). Since (sa) • b = s • (ab) = δ(ab) = aδ(b) + δ(a)b = (as+ δ(a)) • b
for a, b ∈ K, the operator s satisfies sa = as+ δ(a) for a ∈ K.

Similarly, let K be a field and σ : K → K a field automorphism on K, called a
difference operator. A typical setting is K = C(t) and σ is the C-automorphism that maps
t to t + 1. An `th-order (matrix) linear difference equation over K for an n-dimensional
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vector y is

A0y +A1σ(y) +A2σ
2(y) + · · ·+A`σ

`(y) = f, (1.2)

where A0, . . . , A` ∈ Kn×n and f ∈ Kn. In the same way as the differential equation, (1.2)
is expressed as A • y = f , where A := A0 +A1s+ · · ·+A`s

` is a matrix over polynomials
in the difference operator s. By (sa) • b = s • (ab) = σ(ab) = σ(a)σ(b) = (σ(a)s) • b for
a, b ∈ K, it holds sa = σ(a)s for a ∈ K.

Polynomials in differential and difference operators can be treated in a unified way by
skew polynomials, which were introduced by Ore [76]. LetK be a (skew) field, σ : K → K a
ring automorphism, and δ : K → K a σ-derivation; that is, it satisfies δ(a+b) = δ(a)+δ(b)
and δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ K. The skew polynomial over (K,σ, δ) in
indeterminate s is a polynomial overK with the usual addition and a twisted multiplication
defined by the commutation rule

sa = σ(a)s+ δ(a) (1.3)

for all a ∈ K. As we have seen above, s corresponds to the differential operator when σ is
the identity map, and to the difference operator when δ = 0.

Since both sides of (1.3) are of “degree one” with respect to s, the degree of a skew
polynomial is well-defined. The degree can be extended to skew rational functions, the
fractionals of skew polynomial rings. Then the skew field of skew rational functions forms
a DVSF with valuation −deg.

Taelman [93] showed that the dimension of the solution space of a homogeneous linear
differential equation Ay = 0 is bounded by the degree of the Dieudonné determinant of
A, where the equality is attained in the Picard–Vessiot extension of K. In this thesis, we
extend Taelman’s result to an inhomogeneous linear differential equation Ay = f and to
linear difference equations. This is how the computation of valuations of the Dieudonné
determinants can be applied to linear differential/difference equations analysis.

1.2 Combinatorial Relaxation

The combinatorial relaxation, introduced by Murota [64, 67], is a framework of algorithms
to compute the degrees of the determinants of polynomial matrices over fields. The com-
binatorial relaxation was first invented for computing the Newton polygon of the Puiseux
series solutions of determinantal equations [64] and was later applied to deg det computa-
tion [67].

We introduce some notions to describe the combinatorial relaxation. Let A ∈ K[s]n×n

be a matrix over a field K and G the bipartite graph associated with A. We set a weight
of each edge in G as the degree of the corresponding entry in A. Put d(A) := deg detA
and define d̂(A) as the maximum weight of a perfect matching in G. Since −deg is a
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valuation, we have d(A) ≤ d̂(A) as indicated in Section 1.1.2. We say that A is upper-tight
if d(A) = d̂(A).

The upper-tightness of A is characterized by the tight coefficient matrix, which is a
matrix A# over K defined from A and a dual feasible solution of the linear programming
relaxation of the weighted matching problem. By the complementary theorem, the bi-
partite graph associated with A# has a perfect matching if and only if the dual solution
corresponding to A# is optimal. Moreover, A is upper-tight if and only if the tight co-
efficient matrix with respect to a dual optimal solution is nonsingular. These mean that
numerical cancellations in A# make A non-upper-tight.

The combinatorial relaxation consists of the following three phases:

Combinatorial Relaxation

Phase 1. Compute d̂(A) by solving the maximum-weight perfect bipartite matching
problem. If d(A) < 0, output −∞ and halt.

Phase 2. If A is upper-tight, output d̂(A) and halt.

Phase 3. Modify A into Ā such that d(A) = d(Ā) and d̂(A) < d̂(Ā). Go back to
Phase 1.

Since d(A) and d̂(A) are integral, the gap between d(A) and d̂(A) decreases by at least
1 for each iteration (unless d(A) = −∞). Thus, the combinatorial relaxation terminates
in at most d̂(A) iterations. The upper-tightness testing in Phase 2 can be done without
knowing d(A) by checking the nonsingularity of the tight coefficient matrix.

Different modification methods in Phase 3 yield different combinatorial relaxation al-
gorithms. The original algorithm by Murota [67] uses the unimodular transformation
A 7→ UA, where U ∈ K[s]n×n is a unimodular matrix, i.e., a polynomial matrix whose de-
terminant is inK\{0}. Murota [66] presented another modification method by the biproper
transformation, which is the multiplication by a biproper matrix: an invertible matrix over
K
[
s−1]. Combinatorial relaxation algorithms by biproper transformations have a merit

in that they can be applied to computing the maximum degree of subdeterminants. For
a matrix pencil A = A0 + A1s with A0, A1 ∈ Kn×n, the algorithm of Iwata [47] modifies
A by the strict equivalence transformation A 7→ UAV , where U and V are nonsingular
matrices over K. The combinatorial relaxation algorithm by Iwata–Takamatsu [46] for
mixed polynomial matrices uses biproper transformations.

1.3 Differential-Algebraic Equations

Let T ⊆ R be a nonempty open interval and Ω ⊆ R(`+1)n a nonempty open set. An
`th-order differential-algebraic equation (DAE), which was introduced by Gear [29], is the
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following equation

F
(
t, x(t), ẋ(t), . . . , x(`)(t)

)
= 0 (1.4)

for x : T → Rn, where F : T × Ω → Rn is a sufficiently smooth function. DAEs have
aspects of both ordinary differential equations (ODEs)

ẋ(t) = ϕ(t, x(t)) (1.5)

and algebraic equations G(t, x(t)) = 0. DAEs are widely used for modeling dynamical
systems such as mechanical systems, electrical circuits, and chemical reaction plants.

1.3.1 Consistent Initialization and Index Reduction

A fundamental and important problem in the study of DAEs is an initial value problem,
which is to find a smooth trajectory x : T → Rn satisfying (1.4) with a specified initial
value condition

x(t∗) = x∗(0), ẋ(t∗) = x∗(1), . . . , x(`−1)(t∗) = x∗(`−1), (1.6)

where t∗ ∈ T and x∗(0), x
∗
(1), . . . , x

∗
(`−1) ∈ Rn. Unlike ODEs, an initial value problem for

a DAE may not have a solution because the DAE can involve algebraic constraints. The
solution must satisfy not only the explicit constraints but also their differentiations, called
hidden constraints. While giving a consistent initial value of a DAE is a crucial process
prior to numerical integration, this is known to be a nontrivial task [4, 79, 89].

Another important preprocessing of the numerical simulation of DAEs is an index
reduction, which is a process of reducing the differentiation index [9] of a DAE. The
differentiation index of a first-order DAE

F (t, x(t), ẋ(t)) = 0 (1.7)

is the minimum nonnegative integer ν such that the system of equations

F (t, x(t), ẋ(t)) = 0, d
dtF (t, x(t), ẋ(t)) = 0, . . . ,

dν
dtν F (t, x(t), ẋ(t)) = 0

can determine ẋ as a function of t and x. In other words, ν is the number of times one has to
differentiate the DAE (1.7) to get an ODE. Intuitively, the differentiation index represents
how far the DAE is from ODEs. The differentiation index of an `th-order DAE (1.4) is
defined as that of the first-order DAE obtained by replacing higher-order derivatives of x
with newly introduced variables. It is generally considered difficult to numerically solve
high (≥ 2) index DAEs [4, 36, 89]. Therefore, it is important for accurate simulation of
dynamical systems to convert a given DAE into a low (≤ 1) index DAE.
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1.3.2 Structural Preprocessing Methods

Today, most simulation software libraries for dynamical systems, such as Dymola, Open-
Modelica, MapleSim, and Simulink, are equipped with graph-based preprocessing meth-
ods, which we call structural preprocessing methods. These methods were first presented
by Pantelides [79] for consistent initialization of DAEs and was subsequently applied to
an index reduction method by dummy derivative approach of Mattsson–Söderlind [60].
Pryce [82] proposed a consistent initialization method for DAEs, called the Σ-method,
based on a variant of Pantelides’ method. These structural preprocessing methods con-
struct an edge-weighted bipartite graph from DAEs’ structural information and solve the
weighted bipartite matching problem.

These structural preprocessing methods, however, do not work for some DAEs. To
explain this, consider a linear DAE with constant coefficients

∑̀
d=0

Adx(t) = f(t), (1.8)

where A0, . . . , A` ∈ Rn×n and f : R → Rn is a smooth function. For the DAE (1.8), the
structural methods construct the bipartite graph G, described in Section 1.2, associated
with a polynomial matrix

A :=
∑̀
d=0

Ads
d ∈ R[s]n×n. (1.9)

Then the structural methods run assuming that the dimension N of the solution space
of (1.8) is equal to the maximum weight of a perfect matching in G, whereas the correct
statement is N = deg detA as explained in Section 1.1.5. Hence the structural preprocess-
ing methods might fail if A is not upper-tight. Since the upper-tightness of A is equivalent
to the nonsingularity of the tight coefficient matrix A# of A, the structural methods works
for (1.8) if A# is nonsingular.

Tight coefficient matrices are generalized for nonlinear DAEs as the system Jacobian,
which is a kind of Jacobian matrices. The structural methods succeeds if the system
Jacobian is singular and might fail if not.

1.3.3 DAE Modification via Combinatorial Relaxation

In order to overcome the above issue of structural preprocessing methods, we consider
modifying a DAE into an equivalent DAE having nonsingular system Jacobian. Here,
“equivalent” means that the modified DAE has the same solution set as the original DAE.
For a linear DAE (1.8), the structural methods work if A in (1.9) is upper-tight. On the
other hand, the combinatorial relaxation modifies A into an upper-tight matrix. Therefore,
if a modification for A can be translated into an equivalent modification for the DAE (1.8),
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one can make use of the combinatorial relaxation algorithm as a modification method for
the DAE. Indeed, unimodular transformations and strict equivalence transformations are
such modifications, whereas biproper transformations are not. Hence the combinatorial
relaxation algorithm by Murota [67] and by Iwata [47] can be applied to the modification
of linear DAEs with constant coefficients; see Wu et al. [103].

For nonlinear DAEs, Tan et al. [94] presented combinatorial-relaxation based modifica-
tion methods, called the linear combination (LC) method and the expression substitution
(ES) method. However, even the LC and ES-methods are not applicable to “highly non-
linear” DAEs, which are also included in the standard test set for DAE solvers [61].

1.4 Contributions

This thesis contains three results summarized below.

Computing Valuations of the Dieudonné Determinant. We develop two combi-
natorial algorithms to compute the valuations of the Dieudonné determinants of matrices
over a certain type of DVSFs, called split [22]. The first algorithm is a generalization of
the combinatorial relaxation. The second algorithm generalizes the matrix expansion by
Van Dooren et al. [98] for deg det of real rational function matrices and by Moriyama–
Murota [62] for deg det of polynomial matrices over fields. The matrix expansion algorithm
essentially relies on the Legendre conjugacy between integer sequences of the valuations of
minors and of ranks of matrices obtained by arranging coefficient matrices. The Legen-
dre conjugacy is an important duality relation on discrete convex and concave functions
treated in discrete convex analysis [70].

We carefully carry an argument so that algorithms can be applied as widely as pos-
sible. The splitness condition arises from natural requirements in dealing with DVSFs
on computers. In commutative case, split DVSFs are nothing but subfields of the formal
Laurent series fields. In general noncommutative case, split DVSFs are isomorphic to skew
subfields of formal Laurent series (skew) fields having a commutation rule designated by
a family of maps called higher σ-derivations [84]. Our algorithms additionally require an
upper bound on the output. We show that matrices over a split DVSF have natural upper
bounds if and only if the DVSF is obtained from skew polynomial rings. This gives a new
characterization of skew polynomial rings as the most general ring structure that admits
natural extensions of the combinatorial relaxation and matrix expansion algorithms.

Our algorithms can be applied to the computation of the dimension of the solution
spaces of linear differential/difference equations and to the commutative and noncommu-
tative WEP. In particular, we give the first deterministic polynomial-time algorithm for
the nc-WEP over Q with bounded bit complexity.
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Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5

Chapter 6 Chapter 7

Chapter 8

Chapter 9

Figure 1.1: The dependence structure of chapters.

Structural Modification for Linear DAEs with Mixed Matrices. The second
result is to develop a modification algorithm for linear DAEs whose coefficient matrices
are mixed matrices; such DAEs naturally arise from dynamical systems. Based on the
combinatorial relaxation framework, our algorithm transforms a DAE into an equivalent
DAE whose tight coefficient matrix is nonsingular, i.e., the structural preprocessing meth-
ods are applicable. Technically, our contribution is to present a combinatorial relaxation
algorithm for mixed polynomial matrices that uses unimodular transformations, whereas
the algorithm of Iwata–Takamatsu [46] uses biproper transformations. Our algorithm
does not rely on symbolic manipulations but fast combinatorial algorithms on graphs and
matroids. We further provide an improved algorithm under an assumption based on di-
mensional analysis of dynamical systems. Through numerical experiments, it is confirmed
that our algorithms run fast for large scale DAEs.

Structural Modification for Nonlinear DAEs. The third result is to present two
combinatorial-relaxation based modification methods for nonlinear DAEs: the substitution
method and the augmentation method. Both methods are aided by algebraic computation
engines in manipulating mathematical formulations and are applicable to a large class of
nonlinear DAEs. The substitution method symbolically solves equations for some deriva-
tives based on the implicit function theorem and substitutes the solution back into the
system. The augmentation method modifies DAEs by appending new variables and equa-
tions instead of solving equations. The augmentation method has advantages that the
equation solving is not needed, and the sparsity of DAEs is retained.

Our methods are implemented as a MATLAB library using the MuPAD language,
which is a core system of the Symbolic Math Toolbox in MATLAB. Through the appli-
cation of it to practical DAEs, we show that our methods can be used as a promising
preprocessing of DAEs that the index reduction procedure in MATLAB cannot handle.

1.5 Organization

Figure 1.1 illustrates the structure of this thesis. In Chapters 2 and 3, we introduce nec-
essary preliminaries on algebra and combinatorial optimization, respectively. We present
algorithms to computes valuations of the Dieudonné determinants in Chapter 4 and their
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applications in Chapter 5.
Chapters 6–8 deal with topics of differential equations. In Chapter 6, we describe

structural analysis for linear differential/difference equations and for DAEs. The first one
is to provide an application of algorithms given in Chapter 4 and the latter one is to explain
backgrounds and preliminaries of the subsequent chapters We then present modification
methods for linear DAEs with mixed matrices in Chapter 7 and for nonlinear DAEs in
Chapter 8.

Finally, we conclude this thesis in Chapter 9.
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Chapter 2

Preliminaries on
Valuated Skew Fields

We first mention basic notations and conventions used throughout this thesis. Let N, Z,
Q, R, C denote the sets of nonnegative integers, integers, rationals, reals, and complex
numbers, respectively. For n ∈ N, define [n] := {1, 2, . . . , n} and [0, n] := {0, 1, 2, . . . , n}.
We sometimes make use of a special element +∞ such that a+∞ = +∞+∞ = +∞ and
a < +∞ for all a ∈ R.

All rings are assumed to have the multiplicative identity. We denote the multiplicative
group of a ring R by R×. The characteristic ch(R) of a ring R is the minimum positive
integer n such that 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0. If such n does not exist, we define ch(R) := 0.

2.1 Valuations

2.1.1 Real Valuations

A skew field, or a division ring is a ring F such that every nonzero element has a multi-
plicative inverse in F . A (real) valuation skew field [101, Chapter IV] is a skew field F

endowed with a (real) valuation, that is, a map v : F → R ∪ {+∞} satisfying (V1)–(V4).
A valuation skew field is called a valuation field if it is a field. The value v(a) for a ∈ F
is called the valuation of a.

By (V1) and (V3), it holds v(−a) = v(a) and v
(
a−1) = −v(a) for all a ∈ F×, where

F× = F \ {0} is the multiplicative group of F . In particular, we have v(a) < +∞ for
a ∈ F×. The equality in (V2) is attained whenever v(a) 6= v(b); otherwise, if v(a) < v(a+b)
and v(a) < v(b), it holds

v(a) = v((a+ b)− b) ≥ min{v(a+ b), v(−b)} = min{v(a+ b), v(b)} > v(a),

a contradiction.
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The (invariant) valuation ring of a valuation skew field F with respect to a valuation
v is a set

R := {a ∈ F | v(a) ≥ 0}.

Then R is a subring of F by (V1) and (V2), and is a domain, i.e., R has no zero-divisors.
It also satisfies the following [54, Chapter 1]:

(VR1) either a ∈ R or a−1 ∈ R for a ∈ F×,

(VR2) aR = Ra for a ∈ F×.

In addition, R is a local ring, i.e., it has a unique maximal right (and indeed a unique
maximal left) ideal J(R), which coincides with R \ R× with R× = {a ∈ F | v(a) = 0}.
Namely, it holds

J(R) = {a ∈ F | v(a) > 0}. (2.1)

The quotient ring R / J(R) forms a skew field, called the residue skew field of F (or a
residue field if it is a field).

A representative set of F is a subset Q of R such that 0 ∈ Q and the restriction to Q of
the canonical homomorphism from R to the residue skew field K := R/J(R) is a bijection
from Q to K. Then for a ∈ R, there uniquely exists a0 ∈ Q such that a ∈ a0 + J(R).
Hence a− a0 ∈ J(R), which means:
Proposition 2.1. Let F be a valuation skew field with valuation v, valuation ring R, and
representative set Q. Then any a ∈ R is uniquely expressed as a = a0 + ã, where a0 ∈ Q
and ã ∈ J(R).

2.1.2 Discrete Valuations

Let F be a valuation skew field with valuation v. The value group of v is the additive
subgroup v(F×) of R. A discrete valuation is a valuation F whose value group is Z. A
valuation skew field equipped with a discrete valuation is called a discrete valuation skew
field (DVSF), which is of the main interest of this thesis. If F is a field, we call F a discrete
valuation field (DVF).

Let F be a DVSF with discrete valuation v and the valuation ring R. Then (2.1) is

J(R) = {a ∈ F | v(a) ≥ 1}. (2.2)

Any element π ∈ R with v(π) = 1 is called a uniformizer or a prime element of F . In
addition to (VR1) and (VR2), R enjoys the following properties [54, Chapter 1]:

(DVR1) J(R) = πR = Rπ,
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(DVR2)
∞⋂
d=1

J(R)d = {0}.

Note that it holds

J(R)d = πdR = Rπd = {a ∈ F | v(a) ≥ d} (2.3)

by (2.2) and (DVR1) for d ∈ N. In addition, any right ideal and left ideal of R are
two-sided and are in the form of (2.3). This mean that R is a (right and left) principal
ideal domain (PID), which is a domain whose every (right and left) ideal is generated by
one element. More strongly, any DVR is a (right and left) Euclidean domain [7] as is
well-known for commutative DVRs. Here, a domain R is said to be Euclidean if there
exists a map f : R → N ∪ {−∞}, called an Euclidean map, such that for every a, b ∈ R
with b 6= 0, there exist q, r, q′, r′ ∈ R such that a = bq+ r = q′b+ r′ and f(r), f(r′) < f(b).
In case of a valuation ring of a DVSF, −v serves as an Euclidean map. We remark that
Euclidean domains are proper subclass of PIDs even for noncommutative rings [7].
Remark 2.2. In general, a local ring R satisfying (DVR1) and (DVR2) for some non-
nilpotent element π ∈ R is called a discrete (invariant) valuation ring (DVR). Here, an
element a ∈ R is said to be nilpotent if ak = 0 for some k ∈ N and non-nilpotent if not.
The valuation ring of any DVSF is a DVR as described above. Indeed, any DVR R is the
valuation ring of some DVSF [54]; here we give a construction of the DVSF briefly. First,
it follows from (DVR1) and (DVR2) that R is a PID. Then R is also a (right and left) Ore
domain, which is a domain such that for each s, t ∈ R \ {0}, there exist x, y, z, w ∈ R \ {0}
satisfying sx = ty and zs = wt [33, Corollarly 6.7]. This property enables for R to have
the Ore quotient skew field F , which is a skew field of fractions each of whose elements
a ∈ F is expressed as a = sx−1 = y−1t for some s, t ∈ R and x, y ∈ R \ {0}. In particular,
a ∈ F× can be uniquely expressed as a = πkp = qπk for some p, q ∈ R× and k ∈ Z.
Denote this k by v(a) for a ∈ F× and let v(0) := +∞. Then v : F → Z ∪ {+∞} is a
discrete valuation on F , whose valuation ring coincides with R. We refer to the restriction
of v onto R as the valuation of R and a representative set of R means that of F . See [54,
Chapter 1] for details of DVRs and [33, Chapter 6] for Ore domains and quotient skew
fields.

Let F be a DVSF with valuation v and uniformizer π. For an arbitrary real number
c > 1, we define d : F × F → R as

d(a, b) := c−v(a−b)

for a, b ∈ F (where c−∞ := 0). Then d forms a metric on F . The π-adic topology is the
ring topology on F induced by d, which does not depend on the choice of c. On this
topology,

{
a+ J(R)k

∣∣ k ∈ N
}
is an open neighborhood system of a ∈ F by (2.3). A

DVSF is said to be complete if it is complete as a metric space. Then any DVSF can be
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extended to a complete DVSF as follows.
Theorem 2.3 ([101, Theorem 17.2]). Let F be a DVSF with discrete valuation v. Then
there uniquely exists a complete DVSF F̂ with discrete valuation v̂ such that F̂ contains F
as a dense subring and v̂ extends v. In addition, the residue skew field of F̂ is isomorphic
to that of F .

The complete DVSF F̂ in Theorem 2.3 is called the completion of F . By Theorem 2.3,
it is convenient to consider complete DVSFs from the beginning. See [101] for details of
topological rings and the π-adic topology.

Let F be a DVSF with uniformizer π, valuation ring R, and representative set Q. By
Proposition 2.1 and (DVR1), we can express a ∈ R as a = a0 + a′π by some a0 ∈ Q

and a′ ∈ R. By the same argument, there are unique a1 ∈ Q and a′′ ∈ R such that
a′ = a1 + a′′π. Therefore, we have a = a0 + a1π+ a′′π2. Repeating this argument, we can
represent a as a power series in π with coefficient Q, which is formally stated as follows.
Proposition 2.4 ([101, Theorem 18.5]). Let F be a DVSF with discrete valuation v and
let π and Q be a uniformizer and a representative set of F , respectively.

(1) For every a ∈ F , there uniquely exists a sequence (ad)d∈Z of elements in Q such
that ad = 0 for all but finitely many d < 0 and a power series∑

d∈Z
adπ

d (2.4)

converges to a in the π-adic topology. If ` := v(a) ∈ Z, then ad = 0 for d < ` and
a` 6= 0.

(2) If F is complete and (ad)d∈Z is a sequence of elements in Q such that ad = 0 for
all but finitely many d < 0, the power series (2.4) converges to an element a of F .
Its valuation v(a) is equal to the minimum ` ∈ Z such that ad = 0 for d < ` and
a` 6= 0.

We call (2.4) the π-adic expansion of a ∈ F .

2.1.3 Examples

We present several examples of valuation skew fields. All examples are DVSFs except for
Example 2.6.
Example 2.5 (formal Laurent series). Let K be a skew field. Denote by K[s] the poly-
nomial ring over K in indeterminate s that commutes with any element of K. Since K[s]
is an Ore domain, it has the quotient skew field K(s), called the rational function (skew)
field. The order ord p of p ∈ K[s] \ {0} is the minimum d ∈ N such that the coefficient of
sd in p is nonzero. We also define ord f for f ∈ K(s) \ {0} as ord f := ord p− ord q, where
f = p/q with p, q ∈ K[s] \ {0}. Set ord 0 := +∞. Then it is well-known that the order is a
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discrete valuation on K(s) and the residue skew field is K. A canonical (but not unique)
choice of a uniformizer is s. The completion of K(s) is the formal Laurent series (skew)
field K((s)) over K in s, whose each element is expressed as

f =
∞∑
d=`

ads
d (2.5)

with ` ∈ Z and a`, a`+1, . . . ∈ K. If a` 6= 0, then ` = ord f . The valuation ring of K((s))
is called the formal power series (skew) field K[[s]] over K in s, which is the subring of
K((s)) consisting of formal power series

f =
∞∑
d=0

ads
d (2.6)

with a0, a1, . . . ∈ K.
Similarly, the degree deg p of p ∈ K[s] \ {0} is defined by replacing “minimum” with

“maximum” in the definition of ord p. Define deg f for f = p/q ∈ K(s)× with p, q ∈
K[s]\{0} as deg f := deg p−deg q and deg 0 := −∞ as well. Since deg f(s) = − ord f

(
s−1),

the minus of the degree is a discrete valuation on K(s) with uniformizer s−1 and residue
skew field K. The completion of K(s) with respect to the minus degree is K

((
s−1)), which

is a field isomorphic to K((s)).
Example 2.6 (formal Laurent series with real exponents). Let K be a skew field. A
subset X of R is said to be well-ordered if any nonempty subset of X has the minimum
element. We consider formal Laurent series with real exponents, each of which is in the
following form

f =
∑
x∈X

axs
x, (2.7)

where X ( R is well-ordered, ax ∈ K× for x ∈ X, and s is a formal “indeterminate” that
satisfies sx+y = sxsy and asx = sxa for x, y ∈ R and a ∈ K. Addition on these series is
naturally defined, and the multiplication of f = ∑

x∈X axs
x and g = ∑

y∈Y bys
y is given

by

fg :=
∑
z∈R

 ∑
x∈X,y∈Y
x+y=z

axby

sz.
For every z ∈ R, the number of (x, y) ∈ X × Y satisfying x + y = z is finite from the
assumption that X and Y are well-ordered, and the set

{z ∈ R | the coefficient of sz in fg is nonzero}
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is well-ordered as well. Hence fg is a formal Laurent series again in the sense defined
above. By these operations, the set Σ of formal Laurent series with real exponents forms
a skew field [74, Theorem 5.7].

Define the order ord f of (2.7) as the minimum x ∈ X. We also define ord 0 := +∞.
Then as Neumann [74] indicated, ord is a valuation on Σ that is not discrete. The residue
skew field of Σ is K. The skew field Σ contains K((s)) as a subfield, and the restrictions
of the order onto K((s)) coincides that on K((s)). Reversing the ordering of R, we can
also define deg f consistent with K

((
s−1)) in the completely analogous way.

Example 2.7 (p-adic numbers). Let p be a prime number. The p-adic valuation vp(n)
of n ∈ Z \ {0} is the maximum k ∈ N such that pk divides n, and is extended to Q×

as vp(x) := vp(n) − vp(m) for x = n/m ∈ Q× with n,m ∈ Z \ {0}. Also we define
vp(0) := +∞. Then vp is a discrete valuation on Q with uniformizer p. The residue field
is Fp. The completion of Q with respect to vp is the field Qp of p-adic numbers.
Example 2.8 (skew (inverse) Laurent series). Let K be a skew field, σ : K → K a ring
automorphism, and δ : K → K a left σ-derivation; that is, it is additive, i.e., δ(a + b) =
δ(a) + δ(b), and it satisfies δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ K. The (left) skew
polynomial ring, or the Ore polynomial ring due to Ore [76] over (K,σ, δ) in indeterminate
s, which is denoted by K[s;σ, δ], is a polynomial ring over K with the usual addition
and a twisted multiplication defined by the commutation rule (1.3). Elements in K[s;σ, δ]
are called skew polynomials. If δ = 0, then K[s;σ, 0] is denoted by K[s;σ]. When σ is
the identity map id and δ = 0, the skew polynomial ring is nothing but the polynomial
ring K[s], which means K[s] = K[s; id]. A typical nontrivial example of skew polynomial
rings is the ring C(t)[∂; id,′ ] of differential operators, where ′ : C(t) → C(t) is the usual
differentiation. Another example of skew polynomial rings the ring C(t)[S; τ ] of shift
operators, where τ : C(t)→ C(t) is defined by f(t) 7→ f(t+ 1) for f ∈ C(t).

Applying the commutation rule (1.3) iteratively, we can uniquely represent any skew
polynomial p ∈ K[s;σ, δ]\{0} as p = a0 +a1s+ · · ·+a`s

`, where ` ∈ N and a0, . . . , a` ∈ K
with a` 6= 0. This ` is called the degree of p and is denoted by deg p. We set deg 0 := −∞.
Since a skew polynomial ringK[s;σ, δ] is an Ore domain (see, e.g., [33, Exercise 6F]), it has
the quotient skew field K(s;σ, δ), called the skew rational function field. Its element f ∈
K(s;σ, δ), called a skew rational function, has the degree defined by deg f := deg p−deg q
with f = pq−1 and p, q ∈ K[s;σ, δ]. Then −deg is a discrete valuation on K(s;σ, δ) with
residue skew field K. Its completion is the skew inverse Laurent series field K

((
s−1;σ, δ

))
,

which is the skew field of formal power series over K in the form of

f =
∞∑
d=`

ads
−d

for some ` ∈ Z and a`, a`+1, . . . ∈ K [16, Section 2.3]. This skew field has the natural
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addition and a multiplication defined by (1.3) and

s−1a =
∞∑
d=0

δd(a)s−(d+1)

for a ∈ K, where

δd := σ−1(−δσ−1)d (2.8)

for d ∈ N (the multiplication of maps means the composition) [80]. This is determined so
that ss−1a = a.

One can define the order ord p of a skew polynomial p ∈ K[s;σ, δ] similarly to the
usual polynomials, i.e., ord p is the minimum ` ∈ N such that p is represented as p =
a`s

` + · · · + aLs
L for some L ∈ N and a`, . . . , aL ∈ K with a` 6= 0. Set ord 0 := +∞

in the same way. However, if a ∈ K× satisfies δ(a) 6= 0, then ord s = 1, ord a = 0 and
ord sa = ord(σ(a)s + δ(a)) = 0, which violate (V1). Thus ord cannot be extended to a
discrete valuation on K(s;σ, δ). Nevertheless, in case of δ = 0, the order satisfies (V1)–
(V3) and thus K(s;σ) := K(s;σ, 0) becomes a DVSF equipped with a discrete valuation
ord f := ord p−ord q for f = pq−1 ∈ K(s;σ) with p, q ∈ K[s;σ]. This is because the change
of variable ϕ : f(s) 7→ f

(
s−1) provides an isomorphism between K(s;σ) and K(s;σ−1)

and ord f = −degϕ(f) for f ∈ K(s;σ). The completion of K(s;σ) with respect to ord is
the skew Laurent series field K((s;σ)), whose elements are represented as formal Laurent
series (2.5) [16, Section 2.3]. The residue skew field of K((s;σ)) is clearly K.

See [16, Chapter 2], [17, Section 7.3], and [33, Chapter 2] for details of skew poly-
nomials, [80] for skew inverse Laurent series fields and Section 5.2 for the connection to
differential and difference equations.

2.2 Matrices

2.2.1 Basic Notions and Notations

For a ring R and n, n′ ∈ N, we denote the ring of n × n′ matrices over R by Rn×n′ . We
also denote by Qn×n′ the set of all n× n′ matrices over a subset Q of R. A square matrix
A ∈ Rn×n is said to be invertible if there (uniquely) exists an n×n matrix over R, denoted
by A−1, such that AA−1 = A−1A = In, where In is the identity matrix of order n. When
R can be extended to a skew field F , we call A nonsingular if A is invertible over F and
singular if not; the nonsingularity does not depend on the choice of F . We denote by
GLn(R) the group of n× n invertible matrices over R, i.e., GLn(R) := (Rn×n)×.

For a ∈ R× and α = (αi)i∈[n] ∈ Zn, we define D(aα) := diag
(
aαi
)
i∈[n], where diag

denotes the diagonal matrix. For an additive map ϕ : R → R and A ∈ Rn×n′ , let ϕ(A)
denote the n× n′ matrix over R obtained by applying ϕ to each entry in A.
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For a matrix A ∈ Rn×n′ , let Row(A) and Col(A) denote the row and column sets of
A, respectively. For I ⊆ Row(A) and J ⊆ Col(A), we denote by A[I, J ] the submatrix
of A consisting of rows I and columns J . When I = Row(A), we simply write A[J ] :=
A[Row(A), J ].

Let R be a commutative ring. The determinant of a square matrix A = (Ai,j) ∈ Rn×n
is defined as

detA :=
∑
σ∈Sn

sgn σ
n∏
i=1

Ai,σ(i), (2.9)

where Sn is the group of all permutations on [n] and sgn σ denotes the sign of a permu-
tation σ ∈ Sn. It is well-known that detAB = detA detB and detA 6= 0 if and only if A
is invertible for A,B ∈ Rn×n.

2.2.2 Matrices over Skew Fields

We consider matrices over a skew field F . A right (left) F -module is especially called a
right (left) F -vector space. The dimension of a right (left) F -vector space V is defined as
the rank of V as a module, that is, the cardinality of any basis of V . The usual facts from
linear algebra on independent sets and generating sets in vector spaces are valid even on
skew fields [57].

The rank rankA of a matrix A ∈ Fn×n′ is the dimension of the right F -vector space
spanned by the column vectors of A, and is equal to the dimension of the left F -vector space
spanned by the row vectors of A. The rank is invariant under (right and left) multiplication
of nonsingular matrices. It is observed that a square matrix A ∈ Fn×n is nonsingular if
and only if rankA = n. The rank of A ∈ Fn×n′ is equal to the minimum r ∈ N such that
there exists a decomposition A = BC by some B ∈ Fn×r and C ∈ F r×n′ [15]. Here we
give another characterization of the rank, which is well-known on the commutative case.
Proposition 2.9. The rank of a matrix A ∈ Fn×n

′ over a skew field F is equal to the
maximum r ∈ N such that A has a nonsingular r × r submatrix. In addition, A has a
nonsingular k × k submatrix for all k ∈ [0, r].
Proof. We first show the latter part. For k ∈ [0, rankA], we can take a column subset
J ⊆ Col(A) of cardinality k such that the column vectors of A[J ] are linearly independent.
Since rankA[J ] = k, there must be I ⊆ Row(A) of cardinality k such that the row vectors
of A[I, J ] is linearly independent. Then A[I, J ] is a k× k nonsingular submatrix of A due
to rankA[I, J ] = k.

The former part is shown as follows. Let r ∈ N be the maximum size of a nonsingular
submatrix of A. It holds rankA ≤ r by the latter part of the claim. To show rankA ≥ r,
take an r×r nonsingular submatrix A[I, J ] of A. Since rankA[I, J ] = r, the set of column
vectors of A indexed by J is linearly independent. Thus we have rankA ≥ r.
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We next define the Dieudonné determinant for nonsingular matrices over a skew field.
To describe this, we introduce the Bruhat decomposition as follows. A lower (upper)
unitriangular matrix is a lower (resp. upper) triangular matrix whose diagonal entries are
1.
Proposition 2.10 (Bruhat decomposition [17, Theorem 9.2.2]). A square matrix A ∈
Fn×n over a skew field F can be decomposed as A = LDPU , where L is lower unitrian-
gular, D is diagonal, P is a permutation matrix, and U is upper unitriangular. If A is
nonsingular, this decomposition is unique.

Let F×ab := F× / [F×, F×] denote the abelianization of F×, where
[
F×, F×

]
:=
〈{
aba−1b−1 ∣∣ a, b ∈ F×}〉

is the commutator subgroup of F×. The Dieudonné determinant DetA of A ∈ GLn(F ),
which is decomposed as A = LDPU by Proposition 2.10, is an element of F×ab defined by

DetA := sgn(P )
n∏
i=1

di mod
[
F×, F×

]
,

where sgn(P ) ∈ {+1,−1} is the sign of the permutation P and di ∈ F× is the ith diagonal
entry of D for i ∈ [n] [19]. In case where F is commutative, the Dieudonné determinant
coincides with the usual determinant.

An elementary matrix over F is a unitriangular matrix En(i, j; a) ∈ GLn(F ) whose
(i, j)th entry (i 6= j) is a ∈ F and other off-diagonal entries are 0. An elementary op-
eration on A ∈ Fn×n

′ is the (left or right) multiplication of A by an elementary ma-
trix, which corresponds to adding a left (right) multiple of a row (resp. column) to an-
other row (resp. column) of A. Denote by En(F ) the subgroup of GLn(F ) generated
by elementary matrices. If F is a field, En(F ) is nothing but the special linear group
SLn(F ) := {A ∈ GLn(F ) | detA = 1} [17, Theorem 3.5.1]. This can be extended to the
Dieudonné determinant as follows:
Theorem 2.11 ([17, Theorem 9.2.6]). For a skew field F and n ∈ N, the Dieudonné
determinant gives rise to an exact sequence of groups

1 −→ En(F ) −→ GLn(F ) Det−→ F×ab −→ 1.

Namely, Det : GLn(F )→ F×ab is a surjective map satisfying

(D1) DetAB = DetADetB for A,B ∈ GLn(F ),

(D2) DetA = 1 for A ∈ En(F ),

where the inverse of (D2) also holds, i.e., En(F ) = {A ∈ GLn(F ) | DetA = 1}. It further
follows immediately from the definition of Det that
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(D3) Det diag(d1, . . . , dn) =
n∏
i=1

di mod
[
F×, F×

]
for d1, . . . , dn ∈ F×.

Indeed, Det is the unique map satisfying (D1)–(D3) since unitriangular matrices are in
En(F ) and any permutation matrix P can be brought into diag(sgn(P ), 1, . . . , 1) by ele-
mentary operations.

2.2.3 Matrix Valuations

Let F be a valuation skew field with valuation v. For any A ∈ GLn(F ), we denote by ζ(A)
the valuation of any representative of DetA; this is well-defined because all commutators
of F× have valuation 0. We also define ζ(A) := +∞ for singular A ∈ Fn×n. By (V1), (V3)
and (D1)–(D3), it holds

(VD1) ζ(AB) = ζ(A) + ζ(B) for A,B ∈ Fn×n,

(VD2) ζ(A) = 0 for A ∈ En(F ),

(VD3) ζ(diag(d1, . . . , dn)) =
n∑
i=1

v(di) for d1, . . . , dn ∈ F .

By the Bruhat decomposition, ζ : Fn×n → R ∪ {+∞} is the unique map satisfying (VD1)–
(VD3), as Taelman [93] observed for deg Det of skew polynomials.

Let M(F ) denote the set of all square matrices of finite order over F . If we see ζ as
a function on M(F ), it satisfies the (real) matrix valuation axioms. To describe this, we
shall define the determinantal sum for two matrices A,B ∈ Fn×n′ such that their columns
are identical except for the first columns. The determinantal sum of A and B with respect
to the first column is an n × n′ matrix over F whose first column is the sum of those of
A and B, and other columns are the same as A. The determinantal sums with respect to
other columns and rows are also defined. We denote the determinantal sum of A and B
(with respect to an appropriate column or row) by A∇B.

A (real) matrix valuation [38] on a skew field F is a map V : M(F )→ R ∪ {+∞} that
satisfies

(MV1) V
(
A O

O B

)
= V (A)+V (B) for A,B ∈ M(F ), where O denotes the zero matrix

of appropriate size,

(MV2) V (A∇B) ≥ min{V (A), V (B)} for A,B ∈ M(F ) such that A∇B is defined,

(MV3) V (1) = 0,

(MV4) V (A) = +∞ for singular A ∈ M(F ),

(MV5) V (A) is unchanged if a column or a row of A is multiplied by −1.
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These axioms derive extra useful formulas as follows.
Proposition 2.12 ([38]). For a matrix valuation V on a skew field F , the following hold:

(1) V (AB) = V (A) + V (B) for A,B ∈ Fn×n.

(2) V
(
A ∗
O B

)
= V

(
A O

∗ B

)
= V (A) + V (B) for A,B ∈ M(F ), where ∗ denotes any

matrix of appropriate size.

(3) The equality in (MV2) holds whenever V (A) 6= V (B).

By Proposition 2.12 (1) and (MV2)–(MV4), a matrix valuation V restricted to F

(1 × 1 matrices) is exactly a valuation v on F . This can be extended to M(F ) as ζ, i.e.,
V = ζ holds. In general, for any valuation v of F , ζ is a matrix valuation on F [38];
the correspondence between v and V is clearly bijective. Therefore, a matrix valuation is
nothing but a valuation of the Dieudonné determinant. See also [16, Section 9.3].

For a matrix A ∈ Fn×n′ over a valuation skew field F with valuation v, we define

ζk(A) := min{ζ(A[I, J ]) | I ⊆ Row(A), J ⊆ Col(A), |I| = |J | = k} (2.10)

for k ∈ [0,min{n, n′}]. Note that ζ0(A) = 0, ζ1(A) is equal to the minimum of the
valuation of an entry in A, and ζn(A) = ζ(A) for A ∈ Fn×n. In addition, ζk(A) 6= +∞ if
and only if k ≤ rankA by Proposition 2.9.

Propositions 2.1 and 2.4 are naturally extended to matrices over valuation skew fields
and DVSFs as follows.
Proposition 2.13. Let F be a valuation skew field with valuation v, valuation ring R,
and representative set Q. Then any A ∈ Rn×n

′ is uniquely expressed as A = A0 + Ã,
where A0 ∈ Qn×n

′ and Ã ∈ J(R)n×n
′
.

Proposition 2.14. Let F be a DVSF with discrete valuation v and let π and Q be a
uniformizer and a representative set of F , respectively.

(1) For every A ∈ Fn×n′, there uniquely exists a sequence (Ad)d∈Z of n× n′ matrices
over Q such that Ad = O for all but finitely many d < 0 and

A =
∑
d∈Z

Adπ
d (2.11)

in the π-adic topology. If ` := ζ1(A) ∈ Z, then Ad = O for d < ` and A` 6= O.

(2) If F is complete and (Ad)d∈Z is a sequence of elements in Q such that Ad = O for
all but finitely many d < 0, the power series (2.4) converges to an n × n′ matrix
A over F .

For a matrix A over a DVR, the matrices A0 in Propositions 2.13 and 2.14 are the
same. As in the scalar case, we call (2.11) the π-adic expansion of A.
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2.2.4 Smith–McMillan Form

Let F be a valuation skew field with valuation ring R. A matrix over F is called proper
if its entries are in R. A proper matrix A ∈ Fn×n is particularly called biproper if
it is nonsingular and its inverse is also proper, i.e., A ∈ GLn(R). The (right or left)
multiplication by biproper matrices are called biproper transformations. We establish
the Smith–McMillan form of matrices over F , which is a canonical form under biproper
transformations. This is well-known for matrices over C(s) as the Smith–McMillan form
at infinity [71, 99] in the context of control theory.
Proposition 2.15 (Smith–McMillan form). Let F be a valuation skew field with valuation
v and valuation ring R. For A ∈ Fn×n′ of rank r, there exist S ∈ GLn(R), T ∈ GLn′(R)
and d1, . . . , dr ∈ F× such that v(d1) ≤ · · · ≤ v(dr) and

SAT =
(

diag(d1, . . . , dr) O

O O

)
. (2.12)

In addition, the element di for i ∈ [r] is unique up to multiplication by a unit of R and its
valuation satisfies

v(di) = ζi(A)− ζi−1(A). (2.13)

Proof. We first construct the desired diagonalization. Suppose that A 6= O and d1 ∈ F× is
an entry in A such that v(d1) = ζ1(A). Multiplying permutation matrices to A from left
and right, we move d1 to the top-left entry. Note that permutation matrices are clearly
biproper. Then we eliminate the first column of A other than the top entry using d1. This
can be achieved by multiplying an elementary matrix En

(
1, i; ad1

−1) to A from left for
i = 2, . . . , n, where a is the (i, 1)st entry of A. Since ad1

−1 ∈ R by v(d1) ≤ v(a), this
elementary matrix is biproper. We similarly eliminate the first row of A other than the
left entry. Now A is in the form

(
d1 0
0 B

)
with B ∈ F (n−1)×(n′−1). Iteratively applying the

same operation for B as long as B 6= O, we obtain the decomposition (2.12). Note that
ζ1(A) ≤ ζ1(B) by (V1) and (V2) and hence v(d1) ≤ · · · ≤ v(dr).

We next show the uniqueness part. Since units of R has valuation 0, the formula (2.13)
implies the uniqueness of v(d1), . . . , v(dr). LetD be the diagonal matrix constructed above.
By the ordering of d1, . . . , dr, it holds v(di) = ζi(D) − ζi−1(D). Therefore, it suffices to
show that ζk(A) is invariant throughout the above procedure for k ∈ [0, r]. It is clear
that ζk(A) does not change by row and column permutations. Consider multiplying an
elementary matrix En(i, j; a) to A from left, where i, j ∈ Row(A) with i 6= j and a ∈ R.
This corresponds to the operation of adding the ith row multiplied by a to the jth row.
Put A′ := En(i, j; e)A and consider a submatrix with rows I ⊆ Row(A) and columns
J ⊆ Col(A) of cardinality k. If j /∈ I, then A′[I, J ] = A[I, J ]. If i, j ∈ I, then A[I, J ] =
EA[I, J ] for some elementary matrix E of order k, which means ζ(A′[I, J ]) = ζ(A[I, J ])
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by (VD1) and (VD2). In the remaining case, i.e., i /∈ I 3 j, we have

A′[I, J ] = A[I, J ]∇ (FA[I ′, J ]),

where I ′ := (I ∪ {i}) \ {j} and C ∈ Fn×n is the diagonal matrix having a for the ith
diagonal entry and 1 for other diagonals. By (MV2), it holds

ζ
(
A′[I, J ]

)
≥ min

{
ζ(A[I, J ]), ζ

(
CA[I ′, J ]

)}
(2.14)

= min
{
ζ(A[I, J ]), ζ

(
A[I ′, J ]

)
+ v(a)

}
.

Since a ∈ R, we have ζ(A′[I, J ]) ≥ ζk(A). Suppose ζk(A) = ζ(A[I, J ]). If ζk(A) >

ζ(A[I ′, J ]) + v(a), the equality of (2.14) is attained. If ζk(A) = ζ(A[I ′, J ]) + v(a),
then ζk(A) = ζ(A[I ′, J ]) by v(a) ≥ 0 and ζ(A[I ′, J ]) ≥ ζk(A). In addition, we have
ζ(A′[I ′, J ]) = ζ(A[I ′, J ]) from j /∈ I ′, which means ζ(A′[I ′, J ]) = ζk(A). Hence we have
ζk(A′) = ζk(A) in all cases. The proof of the right multiplication of elementary matrices
is the same.

Solving (2.13) for ζk(A), we have

ζk(A) =
k∑
i=1

v(di) (2.15)

for k ∈ [0, rankA]. It is worth mentioning that v(di) ≥ 0 for any A ∈ Rn×n
′ and i ∈

[rankA] since v(d1) = ζ1(A) ≥ 0.
If A is a matrix over a DVSF F , diagonal entries of the Smith–McMillan form of A

can be taken as powers of a uniformizer of F as follows.
Proposition 2.16 (Smith–McMillan form for DVSFs). Let F be a DVSF with valuation
ring R and uniformizer π. For A ∈ Fn×n′ of rank r, there exist S ∈ GLn(R), T ∈ GLn′(R),
and unique α = (αi)i∈[r] ∈ Zr such that α1 ≤ · · · ≤ αr and

SAT =
(
D(πα) O

O O

)
. (2.16)

For i ∈ [r], the integer αi is determined by

αi = ζi(A)− ζi−1(A). (2.17)

Proof. Let D = S′AT be the Smith–McMillan form of A given in Proposition 2.15. For
i ∈ [r], we define αi as the valuation of the ith diagonal entry di of D. Then (2.17) follows
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from (2.13). Define a biproper matrix

W :=
(

diag
(
πα1d1

−1, . . . , παrdr
−1) O

O In−r

)
∈ GLn(R).

Then WD = WS′AT = UAV with S := WS′ is equal to the right hand side of (2.16), as
required.

The equation (2.15) is rewritten as

ζk(A) =
k∑
i=1

αi (2.18)

for k ∈ [0, rankA]. This equation plays an important role in Section 4.3.1.
We present two propositions for matrices over R which are obtained as corollaries of

the Smith–McMillan form. The first one claims that ζk(A) is nonnegative for any proper
matrix A ∈ Rn×n′ .
Proposition 2.17. Let R be the valuation ring of a valuation skew field. For A ∈ Rn×n′

and k ∈ [0,min{n, n′}], it holds ζk(A) ≥ 0.
Proof. If k > r with r := rankA, we have ζk(A) = +∞ > 0. If k ≤ r, the claim holds
from (2.15) and v(d1), . . . , v(dr) ≥ 0.

The second proposition is a characterization of biproper matrices.
Proposition 2.18. Let F be a valuation skew field with valuation ring R, residue skew
field K, and representative set Q, and let ϕ : R→ K be the natural homomorphism. Also,
let A ∈ Rn×n be a square proper matrix and A0 ∈ Qn×n the matrix in Proposition 2.13
with respect to A. Then the following are equivalent:

(1) A is biproper.

(2) ζ(A) = 0.

(3) ϕ(A0) is nonsingular.

Proof. Let SAT = D := diag(d1, . . . , dn) be the Smith–McMillan form of A. Since S and
T are biproper, A is biproper if and only if so is D. This is equivalent to v(di) = 0 for all
i ∈ [n], where v is the valuation of F . Since v(di) is nonnegative for i ∈ [n], this condition
is further equivalent to ζ(A) = ∑n

i=1 v(di) = 0, where the first equality is from (2.15).
Thus (1) and (2) are equivalent.

We next consider (3). Let D0 ∈ Qn×n be the matrix obtained from D by Propo-
sition 2.13. By the above argument, A is biproper if and only if v(di) = 0 for every
i ∈ [n]. This is equivalent to the nonsingularity of ϕ(D) because for i ∈ [n], the ith
diagonal of ϕ(D) is nonzero if and only if v(di) = 0. Applying ϕ to D = SAT and
A = S−1DT−1, we obtain ϕ(D) = ϕ(S)ϕ(A)ϕ(T ) and ϕ(A) = ϕ

(
S−1)ϕ(D)ϕ

(
T−1). These
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imply rankϕ(D) = rankϕ(A). In addition, it holds ϕ(A) = ϕ(A0) and ϕ(D) = ϕ(D0)
from A−A0, D−D0 ∈ J(R)n×n. Thus all the statements in Proposition 2.18 are equiva-
lent.

2.2.5 Jacobson Normal Form

Any DVR is a PID as stated in Section 2.1.2. For a commutative PID R, the Smith
normal form is a celebrated canonical form of matrices over R under transformations by
GLn(R). The Jacobson normal form [49] is its generalization to general noncommutative
PIDs. It can also be seen as a generalization of the Smith–McMillan form over DVRs.
Recall from [17, 49] that a nonzero element c of a domain R is said to be invariant if
cR = Rc and a ∈ R \ {0} is called a total divisor of b ∈ R \ {0} if there exists invariant
c ∈ R such that bR ⊆ cR ⊆ aR.
Proposition 2.19 (Jacobson normal form [49, Theorem 16 in Chapter 3]; see [17, Theo-
rem 7.2.1]). Let A ∈ Rn×m be a matrix of rank r over a PID R1. There exist U ∈ GLn(R),
V ∈ GLm(R) and e1, . . . , er ∈ R \ {0} such that ei is a total divisor of ei+1 for i ∈ [r − 1]
and

UAV =
(

diag(e1, . . . , er) O

O O

)
.

We can also prove Proposition 2.16 by using Proposition 2.19. Namely, the Smith–
McMillan form over a DVR R can also be seen as a variant of the Jacobson normal form
over R regarded as a PID.

1As explained in Section 2.1.1, any PID is an Ore domain, i.e., R can be extended to a skew field F .
Thus the rank of A can be defined as that of a matrix over F .
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Chapter 3

Preliminaries on
Discrete Convex Analysis

In this chapter, we present preliminaries on bipartite matchings, matroids, and two kinds
of discrete convex functions used in this thesis. All they are specific topics of discrete
convex analysis, which is a field of combinatorial optimization.

3.1 Bipartite Matchings

Let G = (V,E) be an undirected graph. In this thesis, all undirected and directed graphs
are finite. A matching of G is an edge subsetM ⊆ E such that no two distinct edges inM
share the same end. A matching M is said to be perfect if every vertex of G is covered by
some edge in G. The matching problem on G is to find a maximum-cardinality matching
of M . Given an edge weight w : E → R, the minimum-weight perfect matching problem,
or simply the weighted matching problem, on G with respect to w is defined as the problem
of finding a perfect matchingM of G having the minimum weight w(M) among all perfect
matchings of G.

3.1.1 Unweighted Bipartite Matching

An undirected graph is called bipartite if there exists a bipartition of vertices such that
every edge is between different parts in the bipartition. The bipartite matching problem
is one of the fundamental and central problem in combinatorial optimization. It admits
polynomial-time algorithms [42, 52, 55] and a min-max theorem [52], called the Kőnig–
Egerváry theorem. To describe the formula, we shall define a vertex cover of a graph G as
a vertex subset that includes at least one end of every edge of G.
Theorem 3.1 (Kőnig–Egerváry theorem [52]; see [87, Theorem 16.2]). The maximum size
of a matching in a bipartite graph G is equal to the minimum size of a vertex cover of G.

Bipartite matching and ranks of matrices are closely related. Let A = (Ai,j) ∈ Fn×n
′
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be a matrix over a skew field F and put R := Row(A) and C := Col(A). We associate to
A a bipartite graph G(A) with vertex set R ∪ C and edge set

E(A) := {{i, j} | i ∈ R, j ∈ C, Ai,j 6= 0}

The term-rank of A, introduced by Ore [77], is the maximum size of a matching in G(A).
We denote the term-rank of A by t-rankA. By Theorem 3.1, t-rankA is equal to the
optimal value of the following problem:

minimize n+ n′ − s− t
subject to A has a zero block of size s× t,

s ∈ [0, n], t ∈
[
0, n′

]
.

Indeed, t-rankA serves as a combinatorial upper bound on rankA as we well see below.
When F is a field, this is well-known from the definition (2.9) of the determinant.
Proposition 3.2. Let A ∈ Fn×n′ be a matrix over a skew field F . Then it holds rankA ≤
t-rankA.
Proof. Permuting rows and columns of A, we assume that A is in form of A =

(
X Y
Z O

)
,

where O is the zero matrix of size s × t and t-rankA = n + n′ − s − t. Then we can
decompose A as

A =
(
X Y

Z O

)
=
(
X In′−t
Z O

)(
In−s O

O Y

)
. (3.1)

The size of matrices in the right hand side of (3.1) is n× p and p× n′ with p := t-rankA.
Hence rankA ≤ t-rankA by the characterization of rankA (see Section 2.2.2).

3.1.2 Weighted Bipartite Matching

We next consider the weighted bipartite matching problem, which is also called the assign-
ment problem. This is solvable in strongly polynomial-time by the Hungarian method [55]
for example. Let G = (U ∪ V,E) be a bipartite graph with n := |U | = |V | and w : E → R
an edge weight. The dual problem of the LP relaxation of the minimum-weight perfect
bipartite matching problem on G is the following (see [87, Theorem 17.5]):

maximize
∑
i∈U

pi +
∑
j∈V

qj

subject to pi + qj ≤ w(e) (i ∈ U, j ∈ V, e = {i, j} ∈ E),
pi, qj ∈ R (i ∈ U, j ∈ V ).

By the strong duality of linear programming, the optimal value of the dual problem is equal
to the minimum-weight of a perfect matching in G. In addition, if w is integer-valued,
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then we can take optimal (p, q) as integer vectors.
The following complementarity theorem plays an important role in this thesis. Let

G = (U ∪V,E) be a bipartite graph equipped with an edge weight w : E → R. For a dual
feasible solution (p, q), we define a bipartite graph G# = (U ∪ V,E#) by

E# := {e ∈ E | pi + qj = w(e) with e = {i, j}, i ∈ U, j ∈ V }. (3.2)

Namely, G# is the subgraph of G obtained by collecting only the “tight” edges. Then the
following holds from the complementarity theorem of linear programming.
Proposition 3.3 (complementarity theorem; see [67, Lemma 2.6]). Under the above set-
ting, (p, q) is optimal if and only if G# has a perfect matching.

Analogously to the relation between the bipartite matching problem and the rank
computation, solving the weighted bipartite matching problem corresponds to computing
the valuation of the Dieudonné determinant. Let A = (Ai,j) ∈ Fn×n be a square matrix
over a valuation skew field F with valuation v. Recall from Section 2.2.3 that ζ(A) denotes
the valuation of the Dieudonné determinant of A. For the bipartite graph G(A) associated
with A, we set an edge weight w : E(A) → R as w(e) := v(Ai,j) for e = {i, j} ∈ E(A).
We denote by ζ̂(A) the minimum-weight of a perfect matching in G(A) with respect to
the edge weight w. If G(A) has no perfect matching, put ζ̂(A) := +∞. If F is a field,
then ζ̂(A) ≤ ζ(A) by the definition (2.9) of the determinant and the axioms (V1), (V2) of
valuations. This inequality is indeed valid even for noncommutative matrices:
Proposition 3.4. Let A ∈ Fn×n be a square matrix over a valuation skew field F . Then
it holds ζ̂(A) ≤ ζ(A).
Proof. By Proposition 3.2, ζ̂(A) = +∞ implies ζ(A) = +∞. Suppose ζ̂(A) < +∞, i.e.,
G(A) has a perfect matching. Let (p, q) be a dual optimal solution of the maximum-weight
perfect matching problem on A. We take diagonal matrices P,Q ∈ GLn(F ) such that the
valuation of the ith and the jth diagonal entries of P and Q are pi and qj , respectively,
for every i ∈ Row(A) and j ∈ Col(A)1. Put B := P−1AQ−1. Then the valuation of the
(i, j)th entry of B is w({i, j})− pi − qj ≥ 0 for all {i, j} ∈ E(A). Thus B is a matrix over
the valuation ring of F , and hence ζ(B) ≥ 0 by Proposition 2.17. By ζ(B) = ζ(A)− ζ̂(A),
the desired inequality is proved.

3.2 Matroids

1By the existence of augmenting path algorithms for the weighted matching problem, we can assume
that every component of p and q are integer combination of edge weights. Therefore, for every i ∈ Row(A)
and j ∈ Col(A), there must exist a, b ∈ F such that v(a) = pi and v(b) = qj , where v is the valuation on
F . The matrices P and Q are obtained by arranging these elements in diagonals.
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3.2.1 Definitions and Properties

A matroid is a pair M = (E, I) of a finite set E and a family I ⊆ 2E such that

(I1) ∅ ∈ I,

(I2) for each I ⊆ J ⊆ E, if J ∈ I, then I ∈ J ,

(I3) for each I, J ∈ I with |I| < |J |, there exists x ∈ J \ I such that I ∪ {x} ∈ I.

The set E is called a ground set and I ∈ I is an independent set of M.
A base of M is an independent set that is maximal with respect to inclusion. Let B

denote the family of bases. Then B is a nonempty set family which satisfies the following:

(BM−) for each B,B′ ∈ B and x ∈ B \ B′, there exists y ∈ B′ \ B such that (B \
{x}) ∪ {y} ∈ B.

This property shows that any base of M has the same cardinality, which is called the rank
of M. Conversely, a nonempty set family B ⊆ 2E satisfying (BM−) is the base family of
the matroidM = (E, I) given by

I := {I ⊆ E | there exists B ∈ B containing I}.

We thus use both notations M = (E, I) and M = (E,B) to designate a matroid whenever
convenient. See [71, 78] for proofs.

The rank function ρ : 2E → N of a matroid M = (E, I) is defined by

ρ(X) := max{|I| | I ⊆ X, I ∈ I}

for X ⊆ E.

3.2.2 Examples

In this section, we enumerate several examples of matroids.
Example 3.5 (linear matroid). Let A ∈ F r×n be a matrix over a field F and put E :=
Col(A). Define

B(A) := {B ⊆ E | |B| = r, A[B] is nonsingular}.

If A is of row-full rank, M(A) := (E,B(A)) forms a matroid, called a linear matroid
represented by A. We refer to each element of B(A) as a base of A. The independent set
family I and the rank function ρ on M(A) are given by

I = {J ⊆ E | A[J ] is of column-full rank},
ρ(J) = rankA[J ]
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for J ⊆ E.
Example 3.6 (free matroid). Let E be a finite set and put I := 2E . Then (E, I) is a
matroid called the free matroid on E. We have ρ(X) = |X| for X ⊆ E. The free matroid
is the regular matroid represented by the identity matrix In with n := |E|.
Example 3.7 (transversal matroid). Let G = (U ∪ V,E) be a bipartite graph. Define

I := {I ⊆ U | there exists a matching of G covering I}.

Then (U, I) forms a matroid, called a transversal matroid.

3.2.3 Matroid Intersection Problem

The matroid intersection problem introduced by Edmonds [24, 25] is the following: given
two matroids M1 = (E, I1) and M2 = (E, I2) over the same ground set E, we find a
common independent set I ∈ I1 ∩I2 of maximum size. When both matroids are partition
matroids, the matroid intersection problem coincides with the bipartite matching problem.

We can solve the matroid intersection problem in polynomial-time [24, 25], where we
assumed that one can access given matroids via membership oracles of their independence
sets. The matroid intersection problem admits the following min-max theorem.
Theorem 3.8 ([25]). Let M1 = (E, I1) and M2 = (E, I2) be matroids over the same
ground set E, and ρ1 and ρ2 the rank functions of M1 and M2, respectively. Then it holds

max{|I| | I ∈ I1 ∩ I2} = min{ρ1(X) + ρ2(E \X) | X ⊆ E}.

When both the matroids M1 and M2 are linear and given as matrices A1, A2 with
Col(A1) = Col(A2) over the same field, the matroid intersection problem on M1 and M2
are called the linear matroid intersection problem.

3.3 Discrete Convex Functions

In this section, we introduce two types of discrete convex functions: valuated matroids
and 1-dimensional discrete convex functions. The former one is defined on a set family,
which is identified with {0, 1}n, and the latter one is on Z. They are unified as M\-convex
(concave) functions in discrete convex analysis [70], though it is beyond the scope of this
thesis.

3.3.1 Valuated Matroids

A valuated matroid, introduced by Dress–Wenzel [20, 21], on a finite set E is a function
ω : 2E → R ∪ {−∞} satisfying the following condition:
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(VM) For any j ∈ X \ Y , there exists j′ ∈ Y \ X such that ω(X) + ω(Y ) ≤ ω(X ∪
{j′} \ {j}) + ω(Y ∪ {j} \ {j′}).

It is easily confirmed that the family {X ⊆ E | ω(X) > −∞} forms a base family of a
matroid over E (assuming the family is nonempty), which means that valuated matroids
are a generalization of matroids. In addition, valuated matroids can be maximized by a
greedy algorithm. Conversely, ω : 2E → R ∪ {−∞} is a valuated matroid if and only if ω+p
is maximized by the greedy algorithm for any linear function p : 2E → R ∪ {−∞} [20]. In
this way, valuated matroids are recognized as a kind of “concave function” on 2E ' {0, 1}n.

A typical example of valuated matroids arises from the valuation of determinants of
matrices over a valuation field [20, 21]. Since the proof essentially relies on the Grassmann–
Plücker identity, which is an expansion formula of determinants, it cannot be directly ap-
plied to valuation skew fields. Nevertheless, Hirai [39, Proposition 2.12] presented another
proof which is valid for the degree of rational functions over skew fields. This can be
straightforwardly extended to general valuation skew fields as follows.
Proposition 3.9. Let A ∈ Fn×n

′ be a matrix over a valuation skew field F and put
E := Col(A). The function ω : 2E → R ∪ {−∞} given by

ω(J) :=

−ζ(A[X]) (|J | = n),
−∞ (otherwise)

for X ⊆ E is a valuated matroid on E.
Proof. A local characterization [71, Theorem 5.2.25] of valuated matroids claims that ω
is a valuated matroid if and only if (i) {X ⊆ E | ω(X) 6= −∞} forms a base family of a
matroid and (ii) ω satisfies (VM) for X,Y ⊆ E with |X \Y | = |Y \X| = 2. The condition
(i) holds since the linear independence of column vectors of A defines a matroid.

We show the condition (ii). Let X,Y ⊆ E with ω(X), ω(Y ) 6= −∞ and |X \ Y | =
|Y \ X| = 2. Put A′ := A[X ∪ Y ]. By a column permutation, we arrange columns of
X ∩Y in the left n− 2 columns of A′ without changing ω. In addition, by elementary row
operations, we can assume without changing ω that A′ is in the form of

(
S T
O U

)
, where S is

a nonsingular (n− 2)× (n− 2) matrix, T is an (n− 2)× 4 matrix, and U is a 2× 4 matrix.
Assume that X \Y = {1, 2} and Y \X = {3, 4}. For distinct j, j′ ∈ {1, 2, 3, 4}, define uj,j′
as the valuation of the Dieudonné determinant of the 2 × 2 submatrix of U with column
set {j, j′}. Then ω((X ∩ Y ) ∪ {j, j′}) = −ζ(S) − uj,j′ for any distinct j, j′ ∈ {1, 2, 3, 4}.
Hence (VM) is equivalent to the following:

(4PT) The minimum value of u1,2 + u3,4, u1,3 + u2,4, u1,4 + u2,3 is attained at least
twice.

Now u1,2 6= −∞ by ω(X) 6= −∞. By a column permutation, we assume that the
(1, 1)st entry of U is nonzero. In addition, we make the (2, 1)st entry of U zero using an



34 Preliminaries on Discrete Convex Analysis

elementary row operation. If the (2, 3)rd entry is nonzero, make the (1, 3)rd entry zero in
the same way. Then U is in form of either

U =
(
a c d e

0 b 0 f

)
or

(
a c 0 e

0 b d f

)
.

In the left case, u1,2+u3,4 = u1,4+u2,3 = v(a)+v(b)+v(d)+v(f) and u1,3+u2,4 = +∞,
where v is the valuation of F . In the right case, u1,2 + u3,4 = v(a) + v(b) + v(d) + v(e),
u1,4 + u2,3 = v(a) + v(f) + v(c) + v(d) and u1,3 + u2,4 = v(a) + v(d) + ζ( c eb f ) ≥ v(a) +
v(d) + max{v(c) + v(f), v(b) + v(e)} by Proposition 2.12 (3). The equality is attained if
v(c) + v(f) 6= v(b) + v(e). Hence (4PT) is satisfied for all cases.

Let R and C be finite sets. Murota [68] introduced a valuated bimatroid over (R,C)
as a function w : 2R × 2C → R ∪ {−∞} satisfying the following conditions:

(VBM1) For any i′ ∈ I ′ \ I, at least one of the following holds:

(a1) ∃j′ ∈ J ′ \ J : w(I, J) +w(I ′, J ′) ≤ w(I ∪ {i′}, J ∪ {j′}) +w(I ′ \ {i′}, J ′ \ {j′}),

(b1) ∃i ∈ I \ I ′: w(I, J) + w(I ′, J ′) ≤ w(I ∪ {i′} \ {i}, J) + w(I ∪ {i} \ {i′}, J ′).

(VBM2) For any j′ ∈ J ′ \ J , at least one of the following holds:

(a2) ∃i ∈ I \ I ′: w(I, J) + w(I ′, J ′) ≤ w(I \ {i}, J \ {j}) + w(I ′ ∪ {i}, J ′ ∪ {j}),

(b2) ∃j′ ∈ J ′ \ J : w(I, J) + w(I ′, J ′) ≤ w(I, J ∪ {j′} \ {j}) + w(I ′, J ∪ {j} \ {j′}).

The following is a noncommutative generalization of [68, Remark 2].
Proposition 3.10. Let A ∈ Fn×n′ be a matrix over a valuation skew field F with rows
R := Row(A) and columns C := Col(A). Define w : 2R × 2C → R ∪ {−∞} as

w(I, J) :=

−ζ(A[I, J ]) (|I| = |J |),
−∞ (otherwise)

(3.3)

for I ⊆ R and J ⊆ C. Then w is a valuated bimatroid.
Proof. Consider an n × (n + n′) skew function matrix B :=

(
In A

)
with row set R and

column set E := R ∪ C. Then there is a one-to-one correspondence between a submatrix
of A and a submatrix of B with row set R given by 2R × 2C 3 (I, J) 7→ (R, (R \ I)∪ J) ∈
2R × 2E . In particular, if |I| = |J | =: k, then |R| = |(R \ I) ∪ J | and

ζ(B[(R \ I) ∪ J ]) = ζ

(
Ik A[R \ I, J ]
O A[I, J ]

)
= ζ(A[I, J ]) = −w(I, J).



3.3. Discrete Convex Functions 35

Define a map ω : E → R ∪ {−∞} by

ω(X) :=

−ζ(B[X]) (= w(R \X,X ∩ C)) (|X| = n),
−∞ (otherwise)

for X ⊆ E. Then w satisfies (VBM1) and (VBM2) if and only if ω is a valuated matroid,
which was already shown in Proposition 3.9.

By a kind of greedy algorithm, one can obtain sequences ∅ = I0 ⊆ I1 ⊆ · · · In∗ ⊆ R

and ∅ = J0 ⊆ J1 ⊆ · · · Jn∗ ⊆ C with n∗ := min{|R|, |C|} such that (Ik, Jk) is a maximizer
of the right-hand side in

dk := {w(I, J) | |I| = |J | = k} (3.4)

for every k ∈ [0, n∗] [68]. Therefore, from Proposition 3.10, any algorithm to compute val-
uations of the Dieudonné determinants can be applied to compute ζk(A) defined by (2.10).

3.3.2 Univariate Discrete Convex Functions

A univariate discrete function, or a discrete function for short, is a function f : Z →
R ∪ {+∞,−∞}. A discrete function f : Z→ R ∪ {+∞} is said to be convex if

f(x− 1) + f(x+ 1) ≥ 2f(x)

for all x ∈ Z. We call a function g : Z→ R ∪ {−∞} concave if −g is convex.
Let f : Z→ R ∪ {+∞} be a function such that f(x) ∈ R for some x ∈ Z. The concave

conjugate of f is a function f◦ : R→ R ∪ {−∞} defined by

f◦(y) := inf
x∈R

(f(x)− xy)

for y ∈ R. Similarly, for a function g : Z→ R ∪ {−∞} with g(y) ∈ R for some y ∈ R, the
convex conjugate of g is a function g• : R→ R ∪ {+∞} given by

g•(x) := sup
y∈R

(g(y) + xy)

for x ∈ R. The maps f 7→ f◦ and g 7→ g• are referred to as the concave and convex
discrete Legendre transform, respectively.

Suppose that f and g are integer-valued. Then f◦ and g• can be regarded as f◦ :
Z→ Z ∪ {−∞} and g• : Z→ Z ∪ {+∞}. In this case, f◦ and g• are discrete concave and
convex functions, respectively. If f is convex and g is concave,

(f◦)• = f, (g•)◦ = g (3.5)
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hold. Hence the Legendre transformation establishes a one-to-one correspondence be-
tween integer-valued discrete convex and concave functions. See [70] for details of discrete
convex/concave functions and their Legendre transform.
Example 3.11. Let w be a valuated bimatroid over (R,C) and dk be defined by (3.4)
for k ∈ [0, n∗] with n∗ := min{|R|, |C|}. We identify a sequence (d0, . . . , dn∗) with a
function ď : Z → R ∪ {−∞} defined by ď(k) := dk if k ∈ [0, n∗] and −∞ otherwise. If w
is obtained from a matrix A over a valuation skew field F by (3.3), then dk = −ζk(A).
From (2.13), the difference ζk(A) − ζk−1(A) is non-decreasing with respect to k, which
means ζk−1(A) + ζk+1(A) ≥ 2ζk(A). Hence (d0, . . . , dn∗) is concave in this case. Indeed,
the sequence is concave for any valuated bimatroid [68, Theorem 1].

When w comes from a matrix over a DVSF, then (d0, . . . , dk) is integer-valued. We
will encounter the Legendre conjugate of this sequence in Section 4.3.
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Chapter 4

Computing Valuations of the
Dieudonné Determinants

In this chapter, we address the problem of computing valuations of the Dieudonné deter-
minants of matrices over DVSFs. From natural requirements in dealing with a DVSF in
computers, we need to assume that the DVSF satisfies a certain condition; such a DVSF
is called split. Section 4.1 explains the problem of computational models and introduces
properties of split DVSFs. We show in Sections 4.2 and 4.3 that two existing algorithms
for computing the degree of determinants, the combinatorial relaxation and the matrix
expansion, can be extended to matrices over split DVSFs.

These algorithms require an upper bound on the valuation of the Dieudonné deter-
minant as a previous knowledge. Section 4.4 shows that the inverse skew Laurent series
rings, which are the completion of the quotient of the skew polynomial rings, characterize
DVSFs on which the upper bound can be easily estimated.

4.1 Computational Model of DVSFs

Let A ∈ Fn×n be a square matrix over a DVSF F with valuation v. Before discussing
algorithms to compute ζ(A) (:= vDetA), we need to clarify a computational model to
deal with representation and operations on F .

The simplest model is the arithmetic model on F , i.e., an element in F is stored in a
unit memory cell and we can perform arithmetic operations on F in constant time. In this
model, one can compute ζ(A) in O(nω)-time by the Gaussian elimination, where ω is the
exponent in the time complexity of multiplying two matrices. However, this model is too
simplified and cannot catch the computational cost needed in the standard representation
of some DVSF like the rational function field K(s) over a field K.

In this chapter, we represent each element in F as the form of the π-adic expan-
sion (2.11), where π is a uniformizer of F . By shifting valuations of matrix entries to
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nonnegative numbers, we assume that A is given as

A =
∑̀
d=0

Adπ
d, (4.1)

where ` ∈ N and A0, . . . , A` are matrices over a representative set Q of F . Note that A is
a matrix over the valuation ring R of F .

We would like to adopt the “arithmetic model over Q”. Now one difficulty arises: Q
might not be a skew field, i.e., arithmetic operations on Q might not be closed. We thus
require F to have a representative set that is a skew subfield of the valuation ring of F .
Such a DVSF is called split [22].

4.1.1 Split DVSFs

A DVSF F is said to be spilt if it has a representative set Q such that it is a subring of the
valuation ring R of F . Similarly, a DVR R is called split if its quotient skew field F (see
Remark 2.2) is split. Such Q is called a coefficient skew subfield or a Cohen skew subfield
of F and of R.

Let F be a split DVSF with coefficient skew subfield Q and residue skew field K. Since
elements in Q and K correspond bijectively, Q and K must be isomorphic skew fields. We
thus call Q “the” coefficient skew subfield of F . This observation also implies that F could
be split only if F is equicharacteristic, i.e., F and K have the same characteristic. For
example, the field of p-adic numbers is not split as the characteristics of Q and Fp are
different. Indeed, if F is a field, then F is split if and only if F is equicharacteristic [13,
Theorem 9]. Therefore, by Proposition 2.4, a complete split DVF F is isomorphic to the
Laurent series field K((s)) over the residue field K of F . This is a special case of the
Cohen structure theorem for complete commutative Noetherian local rings [13].

The situation is much more complicated in the general noncommutative case. No
characterization of a DVSF to be split is yet known; Vidal [100] gave an equicharacteristic
but non-split example of a DVSF. Nevertheless, as we have seen in Section 2.1.3, a skew
inverse Laurent series field K

((
s−1;σ, δ

))
and a skew Laurent series field K((s;σ)) over a

skew field K are split, where their coefficient skew subfields are both K.
Let F be a complete split DVSF, K the coefficient skew subfield and π a uniformizer.

Then Proposition 2.4 implies that the commutation rule between π and each a ∈ K

completely determines the ring structure of F . The element πa can be uniquely expressed
as

πa =
∞∑
d=0

δd(a)πd+1, (4.2)

where δd : K → K is some map for all d ∈ N. The family of maps (δd)d∈N satisfies the
following [84]:



4.1. Computational Model of DVSFs 39

(HD1) δd is additive for d ∈ N.

(HD2) δd(ab) =
d∑
i=0

δi(a)∆d
i (b) for d ∈ N and a, b ∈ K, where ∆d

i : K → K is defined

by

∆d
i :=

∑
j0,...,ji∈N

j0+···+ji=d−i

δj0 · · · δji

for d ∈ N and i ∈ [0, d].

(HD3) δ0 is an automorphism on K.

In fact, (HD1) and (HD2) are derived from the distributive law π(a+ b) = πa+πb and
the associative law π(ab) = (πa)b, respectively [26, 91]. From (HD1), (HD2) for d = 0,
and δ0(1) = 1 by π1 = 1π, the leading map δ0 must be a homomorphism on K. It further
must be surjective by (DVR1), which implies (HD3).

Generally, a sequence (δd)d∈N of maps on a skew fieldK is called a higher σ-derivation [26,
91] of K (with σ := δ0) if it satisfies (HD1)–(HD3). For a higher σ-derivation (δd)d∈N,
we denote by K[[s; (δd)]] the ring of formal power series over K in indeterminate s, whose
every element f is uniquely expressed as (2.6). The addition on K[[s; (δd)]] is naturally
defined and the multiplication is induced from

sa =
∞∑
d=0

δd(a)sd+1

for a ∈ K. This ring is an Ore domain and thus has a quotient skew field K((s; (δd))).
As the usual formal power series ring, each f ∈ K((s; (δd))) is represented as a formal
Laurent series

f =
∞∑
d=`

ads
d

with ad ∈ K for every d ∈ Z. Defining the order of f ∈ K((s; (δd))) as the minimum ` ∈ N
with a` 6= 0, the skew field K((s; (δd))) becomes a complete split DVSF with respect to
the order [84]; its valuation ring is K[[s; (δd)]], its (one choice of a) uniformizer is s, and
its coefficient skew subfield is K. Conversely, as seen above, we have:
Proposition 4.1 ([84, Proposition 1.6 in p. 292]). Let F be a complete split DVSF with
coefficient skew subfield K. Then F is isomorphic to K((s; (δd))), where (δd)d∈N is the
higher δ0-derivation of K determined by (4.2).
Corollary 4.2. Let R be a complete split DVR with coefficient skew subfield K. Then R
is isomorphic to K[[s; (δd)]], where (δd)d∈N is the higher δ0-derivation of K determined
by (4.2).
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Note that since any split DVSF F and DVR R are a skew subfield and a subring of
a complete split DVSF and DVR (see Theorem 2.3, F and R are isomorphic to a skew
subfield of K((s; (δd))) and a subring of K((s; (δd))), respectively.
Example 4.3. We give some examples of higher σ-derivations and corresponding complete
split DVSFs. Let K be a skew field and σ an automorphism on K. Then (σ, 0, 0, . . . ) is
a higher σ-derivation and K((s; (σ, 0, 0, . . . ))) = K((s;σ)). In particular, the case when
K is a field and σ = id corresponds to the representation of complete equicharacteristic
DVFs described above. More generally, let δ be a right σ-derivation, i.e., an additive
map satisfying δ(ab) = δ(a)σ(b) + aδ(b) for a, b ∈ K. Then

(
σ, σδ, σδ2, . . .

)
is a higher

σ-derivation [14, Section 2.1]. If δ is a left σ-derivation instead of the right one, −σ−1δ

is a right σ−1-derivation, and hence (δd)d∈N defined by (2.8) is a higher σ−1-derivation;
this is consistent with the fact that K

((
s−1;σ, δ

))
is isomorphic to K((t; (δd))). Another

type of a higher σ-derivation is given in [8]. Dumas [22] provides a survey for higher
σ-derivations.

The following lemma provides a relation between coefficients in the π-adic expansions
of a ∈ R and πa.
Lemma 4.4. Let R be a split DVR with coefficient skew subfield K and uniformizer π, and
(δd) the higher δ0-derivation such that R is isomorphic to K[[s; (δd)]] For a = ∑∞

d=0 adπ
d ∈

R with a0, a1, . . . ∈ K, the coefficient bd of πd in the π-adic expansion of πa satisfies

bd =


d−1∑
k=0

δk(ad−k−1) (d ≥ 1),

0 (d = 0).
(4.3)

Proof. Using (4.2), we can rewrite πa as

πa =
∞∑
d=0

πadπ
d =

∞∑
d=0

( ∞∑
k=0

δk(ad)πk+1
)
πd =

∞∑
d=1

(
d−1∑
k=0

δk(ad−k−1)
)
πd

as required.
Let F be a split DVSF with coefficient skew subfield K and associated higher δ0-

derivative (δd)d∈N. As a computational model, we adopt the arithmetic model on K and
assume that one can compute δd(a) for every d ∈ N and a ∈ K in constant time. In this
model, if we know the leading M + 1 coefficients a0, . . . , aM in the π-adic expansion of
a ∈ K, we can compute those of πa in O

(
M2)-time by (4.3).

4.1.2 Truncating Higher-Valuation Terms

Each entry in the input matrix A in (4.1) has only `+1 terms. However, once we multiply
π from left to A, then the number of terms in each entry becomes +∞ by (4.2). The
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following proposition states that one can truncate the higher-valuation terms without
changing ζ(A) drastically.
Proposition 4.5. Let F be a DVSF with uniformizer π and let A = ∑`

d=0Adπ
d ∈ Fn×n

be a matrix in form of (4.1). For any M ∈ N and Ã := ∑M
d=0Adπ

d, the following hold:

(1) If ζ(A) ≤M , then ζ(A) = ζ(Ã).

(2) If ζ(A) > M , then ζ(Ã) > M .

Proof. Let v and R be the valuation and the valuation ring of F , respectively. Recall
J(R) = πR = Rπ from (DVR1) and let ϕ : R → R/J(R)M+1 be the natural homomor-
phism. It is easily checked that ϕ(a) 6= 0 if and only if v(a) ≤ M and ϕ(a) = ϕ(b) 6= 0
implies v(a) = v(b) ≤M for a, b ∈ R.

Let P = (Pi,j), Q = (Qi,j) ∈ Rn×n be any square matrices over R with ϕ(P ) = ϕ(Q).
Let D and E be the Smith–McMillan forms of P and Q, respectively. We show ϕ(D) =
ϕ(E) by tracing the procedure to obtain the Smith–McMillan forms D,E given in the
proof of Proposition 2.15. First, we find a matrix entry having the minimum valuation
of each P and Q, and move it to the top-left. If the minimum valuation ζ1(P ) of an
entry in P is larger than M , then ϕ(P ) = O and thus ϕ(Q) = O by ϕ(P ) = ϕ(Q). Thus
ϕ(D) = ϕ(E) = O in this case. Suppose v(Pi,j) = ζ1(P ) ≤ M . By ϕ(Pi,j) = ϕ(Qi,j) 6= 0,
it holds v(Pi,j) = v(Qi,j) and ζ1(P ) = ζ1(Q). Hence the top-left entries of ϕ(D) and ϕ(E)
are the same. After moving the (i, j)th entries in P and Q to the top-left, we eliminate the
first row and columns except for the top-left entries. Since ϕ is a homomorphism, ϕ(P )
remains to be the same as ϕ(Q) after this elimination. Applying the above arguments to
the bottom-right (n− 1)× (n− 1) submatrix recursively, we have ϕ(D) = ϕ(E).

Let diag(d1, . . . , dn) and diag
(
d̃1, . . . , d̃n

)
be the Smith–McMillan forms of A and Ã,

respectively. By ϕ(A) = ϕ(Ã) and the above arguments, the images of their Smith–
McMillan forms by ϕ are the same, i.e., ϕ(di) = ϕ

(
d̃i
)
for i ∈ [n].

Suppose that ζ(A) ≤ M . From ∑n
i=1 v(di) = ζ(A) ≤ M and v(di) ≥ 0 for i ∈ [n], it

holds v(di) ≤M and thus ϕ
(
d̃i
)

= ϕ(di) 6= 0. This means v(di) = v
(
d̃i
)
for i ∈ [n]. Hence

ζ(A) = ∑n
i=1 v(di) = ∑n

i=1 v
(
d̃i
)

= ζ(Ã)
Next, suppose that ζ(A) > M . If v(di) ≤ M for all i ∈ [n], then v(di) = v(d̃i) and

ζ(Ã) = ζ(A) > M in the same way as above. If v(dn) > M , then ϕ
(
d̃n
)

= ϕ(dn) = 0,
which implies ζ(Ã) ≥ v

(
d̃n
)
> M .

By technical reasons, our algorithms assume that A is singular or an upper bound
M on ζ(A) is given. From Proposition 4.5, we can compute ζ(A) by computing it for
Ã := ∑M

d=0Adπ
d instead of A. Hence we can assume ` = O(M) by truncating higher-

valuation terms in A if needed.
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4.2 Combinatorial Relaxation Algorithm

This section presents the combinatorial relaxation algorithm for computing valuations of
the Dieudonné determinants of matrices over DVSFs. First, Section 4.2.1 reviews the
classical combinatorial relaxation algorithm of Murota [67] for polynomial matrices over
fields. Then Section 4.2.2 describes an algorithm which is faithful to the original framework
of the combinatorial relaxation described in Section 1.2. However, a naive implementation
of the faithful algorithm requires an additional oracle that was not assumed in Section 4.1.
We present in Section 4.2.3 an improved algorithm to avoid this problem and estimate time
complexity.

4.2.1 Classical Algorithm for Polynomial Matrices

In this section, we review the classical combinatorial relaxation algorithm of Murota [67]
to compute deg detA for a polynomial matrix A = (Ai,j) ∈ K[s]n×n over a field K. Algo-
rithm’s outline was described in Section 1.2 and here we give more concrete descriptions.

We begin with some preliminaries. Let G(A) = (R ∪ C,E(A)) be the bipartite graph
associated with A, where R := Row(A) and C := Col(A). We set a weight of an edge
e = {i, j} ∈ E(A) by ce = ci,j := degAi,j . Put

d(A) := deg detA,
d̂(A) := the maximum weight of a perfect matching in G(A).

Since −deg is a valuation on R(s), it holds d(A) ≤ d̂(A) by Proposition 3.4. We say that
A is upper-tight if d(A) = d̂(A).

Consider the following dual problem of the linear relaxation of the maximum-weight
bipartite matching problem on G(A):

D(A)

minimize
∑
j∈C

qj −
∑
i∈R

pi

subject to qj − pi ≥ ci,j (i ∈ R, j ∈ C, {i, j} ∈ E(A)),
pi, qj ∈ N (i ∈ R, j ∈ C).

Note that the problem D(A) slightly differs from the dual problem given in Section 3.1.2,
though they are essentially equivalent. Let (p, q) be a feasible solution of D(A). The tight
coefficient matrix of A with respect to (p, q) is a matrix A# =

(
A#
i,j

)
∈ Kn×n defined by

A#
i,j := the coefficient of sqj−pi in Ai,j

for i ∈ R and j ∈ C. Since G(A#) coincides with the bipartite graph G# obtained by
collecting the tight edges, the following holds as a restatement of Proposition 3.3:
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Proposition 4.6 ([67, Proposition 2.4]). Let A# be the tight coefficient matrix of A
with respect to a feasible solution (p, q) of D(A). Then (p, q) is optimal if and only if
t-rankA# = n.

Let A# be the tight coefficient matrix with respect to a dual optimal solution (p, q).
By the definition of the determinant, detA# coincides with the coefficient of sd̂(A) in detA.
This means:
Proposition 4.7 ([67, Proposition 2.6]). A polynomial matrix A is upper-tight if and only
if it has a nonsingular tight coefficient matrix.

The combinatorial relaxation algorithm for A runs in accordance with the outline given
in Section 1.2. Since d(A) and d̂(A) are integral, the gap between d(A) and d̂(A) decreases
by at least 1 for each iteration (unless d(A) = +∞). Thus, the algorithm terminates in at
most d̂(A) ≤ `n iterations, where ` is the maximum degree of an entry in A.

By Proposition 4.7, check of upper-tightness in Phase 2 can be done by testing the
nonsingularity of the tight coefficient matrix A# with respect to a dual optimal solution.

One example of the modification in Phase 3 is as follows. Suppose that A is not upper-
tight and let A# be the tight coefficient matrix with respect to a dual optimal solution
(p, q). By Proposition 4.7, A# is singular. Hence we can take U ∈ GLn(K) such that
t-rankUA# = rankUA# = rankA < n. Then Ā := U ′A with U ′ := D(sp)UD(s−p)
satisfies d(Ā) = d(A) and d̂(Ā) ≤ d(A)− 1, as required. If we sort R in ascending order of
p and take U upper-triangular, then U ′ is unimodular, i.e., U ′ ∈ GLn(K[s]). We remark
that the modification in Phase 3 is not restricted to this algorithm; see Section 1.2.

4.2.2 Faithful Algorithm for Matrices over DVSFs

This section extends the combinatorial relaxation algorithm to matrices over split DVSFs.
Let F be a split DVSF and (δd)d∈N the higher δ0-derivations associated with F . Let
A = (Ai,j) ∈ Fn×n be a square matrix in form (4.1) and M be an upper bound on ζ(A)
which is valid when A is nonsingular.

Recall from Section 3.1.2 that A is associated with the bipartite graph G(A) equipped
with an integral edge weight and ζ̂(A) denotes the minimum weight of a perfect matching
in G(A). By Proposition 3.4, ζ̂(A) serves as a lower bound on ζ(A). We say that A is
upper-tight if ζ̂(A) = ζ(A). The combinatorial relaxation framework to compute ζ(A) is
the following:

Faithful Combinatorial Relaxation Algorithm over DVSFs

Phase 1a. Compute ζ̂(A) by solving the minimum-weight perfect matching problem.
If ζ̂(A) > M , output +∞ and halt.

Phase 2a. If A is upper-tight, output ζ̂(A) and halt.
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Phase 3a. Modify A into Ā such that ζ(A) = ζ(Ā) and ζ̂(A) < ζ̂(Ā). Go back to
Phase 1a.

Since the input matrix A is over the valuation ring R of F , each edge in G(A) has
a nonnegative weight, from which ζ̂(A) ≥ 0 holds. Therefore, as in the classical com-
binatorial relaxation algorithm, the number of iterations is at most ζ(A) ≤ M . In the
remaining of this section, we explain how the upper-testing testing in Phase 2a and the
matrix modification in Phase 3a are generalized to matrices over DVSFs.

First, we consider Phase 2a. Let v be the valuation and π a uniformizer of F . Denote
by D(A) the dual problem of the minimum-weight perfect matching problem on G(A)
given in Section 3.1.2. For p, q ∈ Zn, put

C =
(
Ci,j

)
:= D

(
π−p

)
AD

(
π−q

)
. (4.4)

Then for every i ∈ Row(A) and j ∈ Col(A), we have

v
(
Ci,j

)
= v

(
π−piAi,jπ

−qj
)

= v
(
Ai,j

)
− pi − qj ,

which is nonnegative if (p, q) is feasible to D(A). In particular, if (p, q) is feasible, then
C ∈ Rn×n.

The tight coefficient matrix of A with respect to a feasible solution (p, q) of D(A) is
the coefficient matrix C0 of π0 in the π-adic expansion of C. In particular, when F is a
field, the (i, j)th entry of the tight coefficient matrix is equal to the coefficient of πpi+qj

in the π-adic expansion of Ai,j for i ∈ Row(A) and j ∈ Col(A). Note that C0 depends on
(p, q). Then the following is a generalization of Proposition 4.6:
Proposition 4.8. Let C0 be the tight coefficient matrix of A with respect to an integral
feasible solution (p, q) of D(A). Then (p, q) is optimal if and only if t-rankC0 = n.
Proof. For i ∈ Row(A) and j ∈ Col(A), the (i, j)th entry in C0 is nonzero if and only
if v(Ci,j) = 0, which is equivalent to v(Ai,j) = pi + qj . Thus G(C0) coincides with the
subgraph G# of G(A) defined by (3.2) with respect to (p, q). By Proposition 3.3, having
a perfect matching for G(C0) is equivalent to the optimality of (p, q).

Proposition 4.7 is also generalized as follows:
Proposition 4.9. Let C0 be the tight coefficient matrix of A with respect to an optimal
solution of D(A). Then A is upper-tight if and only if C0 is nonsingular.
Proof. Since ζ(C) = ζ(A)− ζ̂(A), the matrix A is upper-tight if and only if ζ(C) = 0. This
is equivalent to the nonsingularity of C0 by Proposition 2.18.

By Proposition 4.9, we can check the upper-tightness of A just by checking the non-
singularity of C0.

Modification in Phase 3a is almost the same as the classical algorithm described in
Section 4.2.1. Suppose that A is not upper-tight. Since the tight coefficient matrix C0
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with respect to an integral dual optimal solution (p, q) is singular by Proposition 4.9, there
exists U ∈ GLn(K) such that

t-rankUC0 = rankUC0 = rankC0 < n. (4.5)

This U can be obtained by the Gaussian elimination applied to C0. We modify A into
Ā := U ′A, where U ′ := D(πp)UD(π−p).
Lemma 4.10. It holds ζ(A) = ζ(Ā) and ζ̂(A) < ζ̂(Ā).
Proof. We have

ζ(U ′) = ζ(D(πp)) + ζ(U) + ζ
(
D
(
π−p

))
= ζ(U) = 0

and hence ζ(A) = ζ(Ā).
To prove ζ̂(A) < ζ̂(Ā), it suffices to show that (p, q) is feasible but not optimal to

D(Ā). We first show the feasibility. Using C defined by (4.4), we can rewrite Ā as

Ā = U ′A = D(πp)UD
(
π−p

)
D(πp)CD(πq) = D(πp)UCD(πq). (4.6)

Since U,C ∈ Rn×n, the matrix UC is also over R. Thus, the valuation of the (i, j)th entry
of Ā is at least pi + qj . Hence (p, q) is feasible to D(Ā).

We next show the non-optimality of (p, q). By (4.6), the tight coefficient matrix T of
Ā with respect to (p, q) is the coefficient matrix of π0 in the π-adic expansion of UC. We
thus have T = UC0 and hence t-rank T = t-rankUC0 < n. By Proposition 4.8, (p, q) is
not optimal to D(Ā).

4.2.3 Improved Algorithm

To compute Ā in Phase 3a, we need to multiply D(π−p), U , and D(πp) in this order
from left to A. This operation includes the computation of the coefficients in the π-adic
expansion of π−1a for a ∈ R. This, however, is impossible for the computational model
assumed in Section 4.1 because the oracle of computing the inverse of δ0 is needed.

To avoid left-multiplying π−1, we slightly improve the above faithful procedure of
combinatorial relaxation. The improved algorithm does not modify the input matrix
directly. Instead, the algorithm keeps track of γ := ζ̂(A) and the matrix C ∈ Rn×n

defined by (4.4). The improved algorithm is outlined as follows.

Improved Combinatorial Relaxation Algorithm over DVSFs

Phase 0b. Set γ ← 0 and C ← A.

Phase 1b. Compute an integral optimal solution (∆p,∆q) of D(C) such that ∆p is
nonpositive. Set γ ← γ + ζ̂(C). If γ > M , report ζ(A) = +∞ and halt.
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Set C ← D
(
π−∆p)CD(π−∆q).

Phase 2b. If C0 is nonsingular, report ζ(A) = γ and halt.

Phase 3b. Take U ∈ GLn(K) satisfying (4.5) and modify C into UC. Go back to
Phase 1b.

The validity of the improved algorithm is guaranteed by the following lemma. We
denote by Π(p, q) the objective function of the dual of the bipartite matching problem,
i.e.,

Π(p, q) :=
∑

i∈Row(A)
pi +

∑
j∈Col(A)

qj .

Lemma 4.11. Let A be the matrix at the beginning of the kth iteration of the faithful
combinatorial relaxation algorithm. Let γ and C be the value and the matrix in the im-
proved algorithm when Phase 1b at the kth iteration has just finished. Then γ = Π(p, q)
and C = D(π−p)AD(π−q) hold for some optimal solution (p, q) of D(A).
Proof. We show the claim by induction on k. The claim is clear when k = 1. Suppose
that the claim holds the case when k = m. Let A be the matrices at Phase 3a in the mth
iteration of the faithful algorithm. Similarly, let γ and C be the values in the improved
algorithm when the mth Phase 1b has just finished. By the inductive assumption, γ =
Π(p, q) and C = D(π−p)AD(π−q) hold for some optimal solution (p, q) of D(A).

Denote by Ā, γ̄, and C̄ the values of A, γ, and C in the next iteration, i.e., k = m+ 1.
It holds Ā = D(πp)UD(π−p)A, where U ∈ GLn(K) is a matrix satisfying (4.5). Let
(∆p,∆q) be an optimal solution of D(UC) and put p̄ := p+ ∆p and q̄ := q + ∆q. Then

UC = UD
(
π−p

)
AD

(
π−q

)
= D

(
π−p

)
ĀD

(
π−q

)
,

which means that G(UC) = G(Ā) and edge weights wUC(e) and wĀ(e) for e = {i, j} ∈
E(UC) = E(Ā) satisfies

wUC(e) = wĀ(e)− pi − qj

for i ∈ Row(A) and j ∈ Col(A). Therefore, (p̄, q̄) is optimal to D(Ā) if and only if (∆p,∆q)
is optimal to D(UC). We have

γ̄ = γ + ζ̂(UC) = γ + Π(∆p,∆q) = Π(p̄, q̄)
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and
C̄ = D

(
π−∆p)UCD(π−∆q)

= D
(
π−∆p)UD(π−p)AD(π−q)D(π−∆q)

= D
(
π−∆p)D(π−p)ĀD(π−q)D(π−∆q)

= D
(
π−p̄

)
ĀD

(
π−q̄

)
,

as required.
Corollary 4.12. The improved combinatorial relaxation algorithm correctly outputs ζ(A).
Proof. Follows from Propositions 3.4 and 4.9 and Lemmas 4.10 and 4.11, and the assump-
tion on M .

We require ∆p in Phase 1b to be nonpositive so that we can avoid left-multiplying
π−1 in the modification C ← D

(
π−∆p)CD(π−∆q). Here we describe how we can obtain

such an optimal solution (∆p,∆q) of D(C). First, we initialize ∆p and ∆q as zero vectors,
which is feasible to D(C) as the edge weight is nonnegative. We then iterate the following
procedure. Construct the subgraph G# of G(C) defined by (3.2) with respect to (∆p,∆q).
If G# has a perfect matching, then (∆p,∆q) is optimal from Proposition 3.3 and we are
done. Otherwise, by Theorem 3.1, there exists a vertex cover W ⊆ Row(A) ∪ Col(A) of
G# such that |W | < n. We change (∆p,∆q) into (∆p′,∆q′) by

∆p′i :=

∆pi − 1 (i ∈ Row(A) ∩W ),
∆pi (i ∈ Row(A) \W ),

∆q′j :=

∆qj (j ∈ Col(A) ∩W ),
∆qj + 1 (j ∈ Col(A) \W ).

(4.7)

Note that ∆p′i ≤ 0 if ∆pi ≤ 0 for i ∈ Row(A). The following lemma is well-known:
Lemma 4.13 ([55]). Let (∆p,∆q) be a feasible but not optimal dual solution. Then
(∆p′,∆q′) given by (4.7) is also feasible and Π(∆p,∆q) < Π(∆p′,∆q′).

By Lemma 4.13, the updated (∆p,∆q) is an improved feasible solution of D(C). If
γ + Π(∆p,∆q) > M , then report ζ(A) = +∞ and halt immediately. Otherwise, go back
to the construction of G# with respect to the updated (∆p,∆q).

One more implementation issue is left: since the π-adic expansions of entries in C̄ might
have infinitely many terms, we cannot store all of them. We thus truncate higher-valuation
terms relying on Proposition 4.5. Let

C̃ :=
M−γ∑
d=0

C̄dπ
d, (4.8)

where C̄d ∈ Kn×n is the coefficient matrix of πd in the π-adic expansion of C̄ for d ∈ N.
We update C into C̃ instead of C̄ in Phase 3b.
Lemma 4.14. The improved algorithm returns ζ(A) even if the above truncation procedure
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is executed.
Proof. We assume that C is truncated only once at the kth iteration; the general statement
follows from this by induction. Let γ and C be the values in the improved algorithm when
the kth Phase 1b has just finished. Let C̃ be the truncation (4.8) of C. From Corollary 4.12,
if we replace C with C̃ at this point, the algorithm outputs ζ(C̃) + γ if ζ(C̃) + γ < M and
+∞ otherwise.

Suppose ζ(A) < M . Since ζ(A) = ζ(C) + γ by Lemma 4.11, it holds ζ(C) ≤ M − γ.
This means ζ(C̃) = ζ(C) by Proposition 4.5. Thus, the output of the improved algorithm
with truncation coincides with ζ(A). Conversely, suppose ζ(A) = +∞. Then we have
ζ(C) = +∞ > M − γ, which implies ζ(C̃) > M − γ by Proposition 4.5 again. Thus, the
improved algorithm with truncation outputs +∞.

The time complexity is analyzed as follows. Here, ω denotes the exponent in the time
complexity to multiply two matrices over K.
Theorem 4.15. Let A ∈ Fn×n be a square matrix over a split DVSF F in form of (4.1)
and M ∈ N be an upper bound on ζ(A) valid when A is nonsingular. Then the improved
combinatorial relaxation algorithm with truncation computes ζ(A) in O

(
M3n2 +M2nω +

Mn2.5)-time.
Proof. The validity of the algorithm follows from Lemma 4.14. We analyze the running
time. Let m be the number of times the algorithm applied (4.7) in total. It holds m ≤
M because one application increases γ at least by 1. In each application, we solve the
bipartite matching problem, which can be solved in O

(
n2.5)-time by the Hopcroft–Karp

algorithm [42]. Thus the total time complexity of this part is O
(
mn2.5) = O

(
Mn2.5).

Each entry in C is multiplied by π from left at most m times because one application
of (4.7) increases each ∆pi by at most 1. For d ∈ [0,M − γ], we compute the coefficient
of πd in each entry of πC by calling the higher δ0-derivative (δd)d∈N. This can be done
in O(M2)-time by (4.3). Since C has n2 entries, the total running time of this process is
O
(
mM2n2) = O

(
M3n2).

Matrix computations in Phase 2b and Phase 3b can be done in O(Mnω)-time per
each iteration as C contains O(M) terms. Summing it over O(M) iterations, we obtain
O
(
M2nω

)
-time in total. Thus the desired time complexity is attained.

4.3 Matrix Expansion Algorithm

In this section, we describe another algorithm, the matrix expansion, for computing val-
uations of the Dieudonné determinants of matrices over DVSFs. First, Section 4.3.1 in-
troduces expanded matrices, which is a key of the matrix expansion algorithm. Then
Section 4.3.2 gives a formula connecting integer sequences of ranks of expanded matrices
and valuations of subdeterminants, using the notion of Legendre conjugacy. Based on this
formula, Section 4.3.3 describes an algorithm and time complexity analysis.



4.3. Matrix Expansion Algorithm 49

4.3.1 Expanded Matrices

Let F be a split DVSF with valuation ring R and coefficient skew subfield K such that the
completion of F is isomorphic to K((s; (δd))). Let A = (Ai,j) ∈ Fn×n be a square matrix
in form (4.1) and M be an upper bound on ζ(A) which is valid when A is nonsingular.

For i, d ∈ N, let A(i)
d ∈ Kn×n denote the coefficient matrix of πd in the π-adic expansion

of πiA. Namely, for i ∈ N, the matrix πiA is written as

πiA =
∞∑
d=0

A
(i)
d π

d.

Note that A(i)
d = O for d < i as the valuations of entries in πiA are at least i. For µ ∈ N,

we define the µth-order expanded matrix Ωµ(A) of A as the following µn×µn block matrix

Ωµ(A) :=



A
(0)
0 A

(0)
1 A

(0)
µ−1

O A
(1)
1 A

(1)
2 A

(1)
µ−1

A
(µ−2)
µ−2 A

(µ−2)
µ−1

O O A
(µ−1)
µ−1


∈ Kµn×µn. (4.9)

Expanded matrices satisfy the multiplicativity as follows (see also [22, Section 1.2]). This
is an extension of the result in [98] for rational function matrices over C.
Lemma 4.16. Let A ∈ Rn×n and B ∈ Rn×n be matrices over a split DVR R. Then it
holds

Ωµ(AB) = Ωµ(A)Ωµ(B)

for µ ∈ N.
Proof. Fix i ∈ [0, µ− 1] and let πiA = ∑∞

d=0A
(i)
d π

d be the π-adic expansion of πiA, where
π is a uniformizer of R. Similarly, for d ∈ [0, µ− 1], let πdB = ∑∞

j=0B
(d)
j πj be the π-adic

expansion of πdB. Then it holds

πiAB =
( ∞∑
d=0

A
(i)
d π

d

)
B =

∞∑
d=0

A
(i)
d

 ∞∑
j=0

B
(d)
j πj

 =
∞∑
j=0

 j∑
d=0

A
(i)
d B

(d)
j

πj , (4.10)

where the inner sum of the last term stops at d = j by B
(d)
j = O for j < d. The

equality (4.10) implies that the coefficient matrix of πj in the π-adic expansion of πiAB
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is
j∑

d=0
A

(i)
d B

(d)
j =

µ−1∑
d=0

A
(i)
d B

(d)
j

for j < µ, which is equal to the (i+ 1, j + 1)st entry of Ωµ(A)Ωµ(B).
Let ωµ(A) denote the rank of Ωµ(A). The following lemma claims that ωµ(A) coincides

with that of the Smith–McMillan form (see Proposition 2.16) of A.
Lemma 4.17. Let A ∈ Rn×n be a matrix over a split DVR R. Then it holds ωµ(A) =
ωµ(D) for µ ∈ N, where D is the Smith–McMillan form of A.
Proof. Let S ∈ Rn×n and T ∈ Rn×n be biproper matrices such that SAT = D. From
Lemma 4.16, we have

ωµ(D) = rank Ωµ(SAT ) = rank Ωµ(S)Ωµ(A)Ωµ(T ).

For i ∈ N, let S(i)
i be the coefficient matrix of πi in the π-adic expansion of πiS, where

π is a uniformizer of R. Then S
(i)
i is equal to the coefficient matrix of π0 in the π-adic

expansion of π−iSπi. Now π−iSπi is biproper by
(
π−iSπi

)−1 = π−iS−1πi. Thus, S(i)
i

is nonsingular from Proposition 2.18. Since Ωµ(S) is a block triangular matrix having
S

(i)
i for the (i + 1)st diagonal block, it is nonsingular. Similarly, Ωµ(T ) is nonsingular.

Therefore, we have ωµ(D) = ωµ(A).
Let 0 ≤ α1 ≤ · · · ≤ αr be the exponents of the Smith–McMillan form of A ∈ Rn×n

with r := rankA. Put

Nd := |{i ∈ [r] | αi ≤ d}| (4.11)

for d ∈ N. Lemma 4.17 leads us to the following lemma; a similar result based on the
Kronecker canonical form is also known for matrix pencils over a field [45, Theorem 2.3].
Lemma 4.18. Let A ∈ Rn×n be a matrix over a split DVR R. For µ ∈ N, it holds

ωµ(A) =
µ−1∑
d=0

Nd, (4.12)

where Nd is defined by (4.11).
Proof. Let D be the Smith–McMillan form of A and D

(i)
d ∈ Rn×n the coefficient matrix

of πd in the π-adic expansion of πiD for i, d ∈ N. Since entries of D are powers of π, the
matrix D commutes with π. This implies D(i)

d = D
(0)
d−i =: Dd−i for d ≥ i. Now Ωµ(D) is
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in the form

Ωµ(D) =



D0 D1 Dµ−2 Dµ−1

O Dµ−2

D1
O O D0


. (4.13)

Let α1, . . . , αr be the exponents of the Smith–McMillan form D, where r := rankA. The
ith diagonal entry of Dd is 1 if i ≤ r and αi = d, and 0 otherwise. Thus from (4.13),
each row and column in Ωµ(D) has at most one nonzero entry. Hence ωµ(D), which is
equal to ωµ(A) by Lemma 4.17, is equal to the number of nonzero entries in Ωµ(D). It
is easily checked that the (µ − d)th block row of Ωµ(D) contains Nd nonzero entries for
d ∈ [0, µ− 1].

The equality (4.12) is a key identity that connects ωµ(A) and the Smith–McMillan
form of A. We remark that (4.12) can be rewritten as

Nd = ωd+1(A)− ωd(A) (4.14)

for d ∈ N.

4.3.2 Legendre Conjugacy of ζk(A) and ωµ(A)

Let A ∈ Rn×n be a matrix of rank r and put ζk := ζk(A) for k = [0, r], where ζk(A) is
defined by (2.10). As observed in Example 3.11, the integer sequence (ζ0, . . . , ζr) is convex
in the sense described in Section 3.3.2. In addition, for µ ∈ N put ωµ := ωµ(A) and define
Nµ by (4.11). From Nµ−1 ≤ Nµ and (4.14), we have ωµ−1 + ωµ+1 ≥ 2ωµ for all µ ≥ 1.
This inequality also indicates the convexity of ωµ

Indeed, the sequences of ζk and −ωµ are in the relation of Legendre conjugate. This
can be shown from the key identities (2.18) and (4.12) that connect ζk(A) and ωµ(A)
through the Smith–McMillan form of A.
Theorem 4.19. Let A ∈ Rn×n be a matrix of rank r over a split DVR R. Then it holds

ζk(A) = max
µ≥0

(kµ− ωµ(A)) (0 ≤ k ≤ r), (4.15)

ωµ(A) = max
0≤k≤r

(kµ− ζk(A)) (µ ≥ 0). (4.16)

Proof. Put ζk := ζk(A) for k ∈ [0, r] and ωµ := ωµ(A) for µ ∈ N. Since (ζ0, ζ1, . . . , ζr) is
convex and (−ω0,−ω1,−ω2, . . . ) is concave, (4.15) and (4.16) are equivalent by (3.5). We
show (4.16) as follows.



52 Computing Valuations of the Dieudonné Determinants

x

y

µ

α1

α2

αr−1

αr

O 1 2 r − 1 r· · ·

ωµ

∑r
i=1 min{αi, µ}

Figure 4.1: Graphic explanation of (4.17).

First we give an equality

ωµ = rµ−
r∑
i=1

min{αi, µ} (4.17)

for µ ∈ N, where α1 ≤ · · · ≤ αr are the exponents of the Smith–McMillan form of A.
Figure 4.1 graphically shows this equality. Let x and y be the coordinates along the
horizontal and vertical axes in Figure 4.1, respectively. For i ∈ [r], the height of the
dotted rectangle with i− 1 ≤ x < i is min{αi, µ}. Hence the area of the dotted region is
equal to∑r

i=1 min{αi, µ}. In addition, the width of the white rectangle with d ≤ y < d+1
is equal to Nd for d = 0, . . . , µ − 1, where Nd is defined by (4.11). Hence the area of the
white stepped region is equal to N0 + · · · + Nµ−1 = ωµ by (4.12). Now we have (4.17)
since the sum of the areas of these two regions is rµ.

Substituting (2.18) into the right hand side of (4.16), we have

max
0≤k≤r

(kµ− ζk) = max
0≤k≤r

k∑
i=1

(µ− αi) = k∗µ−
k∗∑
i=1

αi, (4.18)

where k∗ is the maximum 0 ≤ k ≤ r such that αk ≤ µ. Since min{αi, µ} is αi if i ≤ k∗

and µ if i > k∗, it holds

r∑
i=1

min{αi, µ} = (r − k∗)µ+
k∗∑
i=1

αi. (4.19)

From (4.18) and (4.19), we have

max
0≤k≤r

(kµ− ζk) = rµ−
r∑
i=1

min{αi, µ},
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in which the right hand side is equal to ωµ by (4.17).

4.3.3 Reductions and Algorithms

We finally apply Theorem 4.19 to the computation of ζ(A) via the following lemma.
Lemma 4.20. Let A ∈ Fn×n be a matrix (4.1) of rank r over a split DVSF F such that
ζ(A) ≤M or ζ(A) = +∞. Then A is nonsingular if and only if ωM+1(A)− ωM (A) = n.
Furthermore, if A is nonsingular, then it holds

ζ(A) = Mn− ωM (A). (4.20)

Proof. It holds ωM+1(A) − ωM (A) = NM ≤ n by (4.14). If A is singular, then NM must
be less than n. If A is nonsingular, then αi is at most M for all i ∈ [r], which means
NM = n.

Suppose that A is nonsingular. From (4.12) and (4.15), it holds

ζ(A) = max
µ≥0

µ−1∑
d=0

(n−Nd). (4.21)

Since N0 ≤ N1 ≤ · · · ≤ NM = NM+1 = · · · = n, the maximum value of the right hand
side of (4.21) is attained by µ = M . Thus we have (4.20).

From Lemma 4.20, we can compute ζ(A) just by calculating ωM (A) and ωM+1(A); we
call this the matrix expansion algorithm. These matrices can be constructed in O

(
M3n2)-

time by repeatedly applying (4.3) and the rank computation can be done in O(Mωnω)
arithmetic operations on K. Thus we have:
Theorem 4.21. Let A ∈ Rn×n be a square matrix over a split DVSF F in form of (4.1)
and M ∈ N be an upper bound on ζ(A) valid when A is nonsingular. Then the matrix
expansion algorithm computes ζ(A) in O

(
M3n2 +Mωnω

)
-time.

4.4 Estimating Upper Bounds

4.4.1 Bounds for Skew Polynomial Rings

Let R be a split DVR with coefficient skew subfield K. In the algorithms presented in
Sections 4.2 and 4.3, we assume that an upper bound M of ζ(A) is known beforehand
(or ζ(A) = +∞) for A ∈ Rn×n. How can we know such M? Recall that entries in the
input matrix A ∈ Rn×n in (4.1) contain terms having valuations at most `. One optimistic
estimation of the upper bound is `n. From the definition of the determinant (2.9), this is
valid when R is commutative, or equivalently, R is isomorphic to a subring of K[[s]]. This
can be extended to the case of skew polynomial rings (see Example 2.8) as follows.

Let K be a skew field equipped with an automorphism σ and a left σ-derivation
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δ. As stated in Example 2.8, the skew inverse Laurent series field K
((
s−1;σ, δ

))
forms a

complete split DVR with valuation−deg and uniformizer s−1. We denote byK
[[
s−1;σ, δ

]]
the valuation ring of K

((
s−1;σ, δ

))
. From Example 4.3, K

[[
s−1;σ, δ

]]
is isomorphic to

K
[[
t; (δd)

]]
by an isomorphism s−1 7→ t, where δd is given by (2.8) for d ∈ N.

Proposition 4.22. Let F := K
((
s−1;σ, δ

))
be a skew inverse Laurent field over a skew

field K. For a nonsingular matrix A = ∑`
d=0Ads

−d ∈ Fn×n with A0, . . . , A` ∈ Kn×n, it
holds ζ(A) = −deg DetA ≤ `n.
Proof. Consider

B := As` =
∑̀
d=0

A`−ds
d ∈ K[s;σ, δ]n×n.

Since ζ(B) = ζ(A) + ζ(Ins`) = ζ(A) + n`, it suffices to show −ζ(B) = deg DetB ≥ 0.
The skew polynomial ring K[s;σ, δ] is known to be a (left and right) PID [33, The-

orem 2.8] as the usual polynomial ring K[s]. Let D = UBV be the Jacobson normal
form of B (see Proposition 2.19). Here, U, V ∈ GLn(K[s;σ, δ]) ⊆ GLn(K

[[
s−1;σ, δ

]]
) are

biproper matrices. By Proposition 2.18, we have ζ(D) = ζ(U) + ζ(B) + ζ(V ) = ζ(B).
Since diagonal entries in D are nonzero skew polynomials, they have nonnegative degrees.
Thus we have ζ(B) = ζ(D) ≥ 0.

A skew polynomial matrix over K refers to a matrix over a skew polynomial ring over
K. As we have shown in the proof of Proposition 4.22, for a skew polynomial matrix
A = ∑`

d=0A`−ds
` ∈ K[s;σ, δ]n×n, we can reduce the computation of deg DetA into that

of −det DetAs−`, where

As−` =
∑̀
d=0

Ads
−d ∈ K

((
s−1;σ, δ

))n×n
.

From Proposition 4.22, we can set M := `n for As−`. In addition, the coefficients of s−1a

satisfy the following recursion formula.
Lemma 4.23. Let a = ∑∞

d=0 ads
−d ∈ K

[[
s−1;σ, δ

]]
with ad ∈ K for d ∈ N. The coeffi-

cient bd of s−d in s−1a satisfies

bd =

σ−1(ad−1 − δ(bd−1)) (d ≥ 1),
0 (d = 0).

(4.22)
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Proof. By (1.3), we have

a = s
(
s−1a

)
= s

∞∑
d=0

bds
−d =

∞∑
d=0

(σ(bd)s+ δ(bd))s−d (4.23)

= σ(b0)s+
∞∑
d=0

(σ(bd+1) + δ(bd))s−d.

By (4.23), it holds σ(b0) = 0 and σ(bd+1) + δ(bd) = ad for d ∈ N, which imply (4.22).
From (4.22), we can compute the leading M coefficients of s−1a by O(M) applications

of σ−1 and δ. This is improved from O
(
M2) based on (4.3). Applying this improvement

and plugging `n into M in the time complexities in Theorem 4.15 and Theorem 4.21, we
obtain the following.
Theorem 4.24. Let B = ∑`

d=0A`−ds
d ∈ K[s;σ, δ]n×n be a square skew polynomial matrix

over a skew field K. Suppose that arithmetic operations on K and applications of σ−1, δ

can be executed in constant time. Then we can compute deg DetB in O
(
`2nω+2 + `n4.5)-

time by the combinatorial relaxation algorithm and in O
(
`ωn2ω)-time by the matrix expan-

sion algorithm.
Similarly, we can compute ord Det of matrices over K[s;σ] in the same time com-

plexities as Theorem 4.24. See Section 5.2 for an application of these computations to
differential equations.

Comparison to Existing Algorithms. In computer algebra, algorithms were pro-
posed for computing various kinds of canonical forms of a skew polynomial matrix A ∈
K[s;σ, δ]n×n such as the Jacobson normal form [58] (see Section 2.2.5), the Hermite nor-
mal form [32], the Popov normal form [51] and their weaker form called a row-reduced
form [1, 3]. One can use these algorithms to calculate deg DetA since it is immediately
obtained from the canonical forms of A. These algorithms iteratively solve systems of lin-
ear equations over K whose coefficient matrices are variants of expanded matrices Ωµ(A)
under the name of “linearized matrices” [51] or “striped Krylov matrices” [3].

Our algorithms are faster than the existing algorithms. The fastest known algorithm
given by Giesbrecht–Kim [32] runs in O

(
`ωn2ω+2`n

)
time, whereas our two algorithms

require only O
(
`2nω+2 + `n4.5)-time and O

(
`ωn2ω)-time as shown in Theorem 4.24.

4.4.2 Characterizing Split DVSFs with Bounds

In Section 4.4.1, we described that the valuation of the Dieudonné determinant of nonsin-
gular A = ∑`

d=0Adπ
d ∈ Fn×n is bounded by `n when F is a skew inverse Laurent series

field. Indeed, the converse also holds in the following sense.
Theorem 4.25. Let F be a complete split DVSF with coefficient skew subfield K and
uniformizer π. Then every A = ∑`

d=0Adπ
` ∈ GLn(F ) with A0, . . . , Ad ∈ Kn×n satisfies
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ζ(A) ≤ `n if and only if F is isomorphic to K
((
s−1;σ, δ

))
with some automorphism σ and

left σ-derivation δ.
Proof. The “if” part was shown in Proposition 4.22. We show the “only if” part. Let
(δd)d∈N be the higher δ0-derivatives corresponding to F . If F is isomorphic toK

((
s−1;σ, δ

))
,

then σ = δ0
−1 and δ = −δ0

−1δ1δ0
−1 by (2.8). Hence we put σ := δ0

−1 and δ :=
−δ0

−1δ1δ0
−1. This σ is an automorphism and δ is a left σ-derivation.

For a ∈ K, we put π−1aπ =: a′ = ∑∞
d=0 a

′
dπ

d with a′0, a′1, . . . ∈ K. We first show that
if a′d = 0 for any a ∈ K and d ≥ 2, then F is isomorphic to K

((
s−1;σ, δ

))
. Suppose that

F satisfies this assumption and put s := π−1. Then it holds

sa = π−1a = a′π−1 = a′0π
−1 + a′1 = a′0s+ a′1 (4.24)

for a ∈ K. From a = πa′π−1 and (4.3) for d = 0, 1, we have a = δ0
(
a′0
)
and 0 =

δ0
(
a′1
)

+ δ1
(
a′0
)
. Solving these qualities for a′0 and a′1, we obtain

a′0 = δ0
−1(a) = σ(a), (4.25)

a′1 = δ0
−1(−δ1

(
a′0
))

= −
(
δ0
−1δ1δ0

−1)(a) = δ(a). (4.26)

Substituting (4.25) and (4.26) into (4.24), we have

sa = σ(a)s+ δ(a),

which is nothing but the commutation rule (1.3) of the skew polynomial ring K[s;σ, δ].
Hence the ring generated by π−1 over K, its Ore quotient skew field, and its comple-
tion F with respect to the π-adic topology are isomorphic to K[s;σ, δ], K(s;σ, δ), and
K
((
s−1;σ, δ

))
, respectively.

Next, suppose that F is not isomorphic to K
((
s−1;σ, δ

))
. From the contraposition of

the above proof, there exists a ∈ K such that a′d 6= 0 for some d ≥ 2; take such a and let
k ≥ 2 be the minimum number with a′k 6= 0. Consider

A :=
(

0 0
1 a′0

)
+
(

1 a

0 a′1

)
π =

(
π aπ

1 a′0 + a′1π

)
∈ F 2×2.

The values of ` and n for A are ` = 1 and n = 2. Multiplying an elementary matrix, we
can transform A into

B :=
(

1 0
−π−1 1

)
A =

(
π aπ

0 a′0 + a′1π − π−1aπ

)
=
(
π aπ

0 −
∑∞
d=k a

′
dπ

d

)
.
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Thus, A is nonsingular and it holds

ζ(A) = ζ(B) = v(π) + v

( ∞∑
d=k

a′dπ
d

)
= 1 + k > 2 = `n,

where v is the valuation on F .
Theorem 4.25 means that the condition “ζ(A) ≤ `n for any A = ∑`

d=0Adπ
d ∈ GLn(F )”

serves as a characterization of skew inverse Laurent series fields. In this way, skew polyno-
mials arise not only from an algebraic abstraction of linear differential/difference equations
but also from the most natural condition for which the combinatorial relaxation and the
matrix expansion algorithms are applicable.
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Chapter 5

Applications of Valuations of the
Dieudonné Determinants

This chapter describes two applications of the computation of valuations of the Dieudonné
determinants. First, Section 5.1 considers weighted Edmonds’ problem (WEP). We show
that both the combinatorial relaxation and matrix expansion algorithms can be applied for
reducing the noncommutative WEP (nc-WEP) to the unweighted problem. In particular,
the matrix expansion algorithm is also applicable to the commutative problem, and further
yields a polynomial-time algorithm for the nc-WEP with bounded bit complexity. We also
discuss the WEP for sparse matrices.

Second, Section 5.2 deals with linear differential and difference equations from alge-
braic viewpoint. These equations can be integrally handled as σ-differential equations by
making use of the skew polynomials. We show that the dimension of the solution spaces of
simultaneous σ-differential equations can be characterized by the degree (and the order)
of the Dieudonné determinant.

5.1 Weighted Edmonds’ Problem

5.1.1 Problem Definition

We briefly repeat definitions needed to explain Edmonds’ problem. See Section 1.1.3 for
more backgrounds.

Let K be a field. A linear matrix B over K is a matrix in the form

B = B0 +
m∑
k=1

Bkxk, (5.1)

where B0, . . . , Bm ∈ Kn×n′ and x1, . . . , xm are symbols which are commutative with any
element in K. The linear matrix B is called commutative if x1, . . . , xm are pairwise com-
mutative and noncommutative (nc) if they are pairwise noncommutative. Commutative
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linear matrices are regarded as matrices over the rational function field K(x1, . . . , xm) and
nc-linear matrices are over the free skew field K<(x1, . . . , xm>) . Commutative and noncom-
mutative Edmonds’ problem [23] over K are to compute the rank of given commutative
and noncommutative linear matrices over K, respectively.

A linear polynomial matrix A over K is a matrix

A =
∑̀
d=0

A`−ds
d, (5.2)

where Ad = Ad,0 +∑m
k=1Ad,kxk is a linear matrix over K for d ∈ [0, `] and s is a symbol

that commutes with any element in K ∪ {x0, . . . , xm}. The matrix A is also called com-
mutative or noncommutative according to the commutativity of x1, . . . , xm. Commutative
linear polynomial matrices are over K(x1, . . . , xm)(s) and nc-linear polynomial matrices
are over K<(x1, . . . , xm>) (s). The minus of the degree with respect to s serves as valua-
tions on K(x1, . . . , xm)(s) and K<(x1, . . . , xm>) (s) (see Example 2.5). Commutative and
noncommutative weighted Edmonds’ problem (WEP) [39] over K are to compute the de-
gree of the Dieudonné determinant of a given commutative and noncommutative linear
polynomial matrices over K, respectively.

5.1.2 Solving Weighted Edmonds’ Problem

Our algorithms can be applied for reducing the nc-WEP into nc-Edmonds’ problem over
a field K, where we assume the arithmetic model on K. Put L := K<(x1, . . . , xm>) and let
R be the valuation ring of L(s) with respect to the valuation −deg. Instead of an n× n
nc-linear polynomial matrix A ∈ L(s) given in (5.1), we consider

As−` =
∑̀
d=0

Ads
−d.

Then we can compute ζ(A) = −deg DetA from ζ(As−`) by ζ(A) = ζ(As−`) − `n. Since
L(s) is a special case of skew rational function fields over L, i.e., L(s) = L(s; id, 0), it holds
ζ(As−`) ≤ `n when A is nonsingular by Proposition 4.22.

First, consider the combinatorial relaxation algorithm presented in Section 4.2. Since
one cannot perform arithmetic operations on L efficiently, it is not immediate to apply
the combinatorial relaxation algorithm to As−`. In particular, the procedure of finding
the matrix U ∈ GLn(L) in Phase 3b based on the Gaussian elimination on L requires
exponential number of arithmetic operations on K. Nevertheless, we can make use of the
following property on nc-linear matrices given by Fortin–Reutenauer [27].
Theorem 5.1 ([27, Theorem 1]). For an nc-linear matrix B ∈ K<(x1, . . . , xm>) n×n

′
over

a field K, there exist U ∈ GLn(K) and V ∈ GLn′(K) such that t-rankUBV = rankB.
The problem of finding U and V satisfying t-rankUBV = rankB, which is a variant of
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nc-Edmonds’ problem by Theorem 5.1, is called the maximum vanishing subspace problem
(MVSP) due to Hamada–Hirai [37]. The MVSP can be solved in deterministic polynomial-
time [37, 43]. Therefore, by using the algorithms in [37, 43] as oracles, we obtain a
deterministic polynomial-time algorithm for the nc-WEP. This algorithm indeed coincides
with the steepest gradient descent algorithm given by Hirai [39].
Theorem 5.2 ([39, Theorem 4.4]). The nc-WEP for (5.2) over a field K can be solved
in deterministic O

(
`2mnω+2 +TMVSP(n,m)`n

)
-time, where TMVSP(n,m) denotes the time

needed to solve the MVSP for an n× n nc-linear matrix with m symbols over K.
Proof. In Phase 3b of each iteration, we solve the MVSP to obtain U, V ∈ GLn(K) and
update C into UCV . This matrix multiplication can be done in O

(
`mnω+1) arithmetic

operations on K because C is expanded as ∑`n
d=0Cds

−d and each Cd is an nc-linear ma-
trix of m symbols. Since the number of iterations is O(`n), we obtain the desired time
complexity.

We remark that the time complexity in Theorem 5.2 is in terms of the arithmetic
model on K. In case of K = Q, the bit-lengths of intermediate numbers are not bounded,
even if an algorithm for MVSP guarantees the bounded bit-length. In addition, since
Theorem 5.2 relies on Theorem 5.1, we cannot apply the combinatorial relaxation for the
commutative problem.

We next apply the matrix expansion algorithm in Section 4.3 to the WEP. This appli-
cation is rather immediate than that of the combinatorial relaxation algorithm. Namely, if
A is a commutative (noncommutative) linear polynomial matrix (5.2) over a field K, then
the expanded matrix Ωµ(As−`) given by (4.9) is a commutative (resp. noncommutative)
linear matrix. Hence the rank computation of Ωµ(As−`) is nothing but solving the commu-
tative (resp. noncommutative) Edmonds’ problem. By Lemma 4.20 and Proposition 4.22,
we obtain the following:
Theorem 5.3. The commutative (noncommutative) WEP for (5.2) over a field K can be
solved in deterministic O

(
TEP(`n2,m)

)
-time, where TEP(n,m) denotes the time needed to

solve commutative (resp. noncommutative) Edmonds’ problem for an n × n commutative
(resp. noncommutative) linear matrix with m symbols over K.

The algorithms of Gurvits [35] and Ivanyos et al. [43] deterministically solve nc-
Edmonds’ problem with polynomially bounded bit complexity when K = Q. Using these
algorithm as oracles, we obtain:
Theorem 5.4. The nc-WEP over a field K can be deterministically solved using poly-
nomially many arithmetic operations on K. When K = Q, the algorithm runs in time
polynomial in the binary encoding length of the input.
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5.1.3 Weighted Edmonds’ Problem for Sparse Matrices

In view of combinatorial optimization, the algorithm given in Theorem 5.4 is regarded as
pseudo-polynomial time algorithms since the running time depends on a polynomial of
the maximum exponent ` of s instead of poly(log `). Recently, Hirai–Ikeda [40] presented
algorithms to solve the nc-WEP over K for an nc-linear polynomial matrix in form of

A =
m∑
k=0

Akxks
wk , (5.3)

where A1, . . . , Am ∈ Kn×n and w1, . . . , wm ∈ Z. The nc-WEP for (5.3) includes the
weighted linear matroid intersection problem. An algorithm of Hirai–Ikeda runs in strongly
polynomial time, i.e., it runs in time polynomial of n and m.

As an extension of a different direction, it is natural to try to solve the (commutative)
WEP for

A =
m∑
k=0

Aks
wk , (5.4)

where A1, . . . , Am ∈ Kn×n and w1, . . . , wm ∈ Z. However, setting wk := (n + 1)k for
k ∈ [m] would make the rank of (5.4) the same as that of a linear matrix ∑m

k=0Akxk ∈
K[x1, . . . , xm]n×n (the Kronecker substitution). Since giving a deterministic polynomial-
time algorithm for Edmonds’ problem has been open for more than half a century, com-
puting deg det of (5.4) is also quite challenging.

5.2 Linear Differential and Difference Equations

5.2.1 σ-Differential Equations

Let R be a commutative ring endowed with a ring automorphism σ : R → R and a left
σ-derivation δ : R → R (see Example 2.8). A σ-differential ring is the triple (R, σ, δ), or
R itself when σ and δ are clear. A σ-differential field is a σ-differential ring which is a
field. If σ = id, then σ-differential rings and fields are simply called differential rings and
fields. Similarly, σ-differential rings and fields with δ = 0 are called difference rings and
fields.

A constant of a σ-differential ring (R, σ, δ) is an element a ∈ R such that σ(a) = a and
δ(a) = 0. The set of all constants of (R, σ, δ) is denoted by Constσ,δ(R) or by Const(R).
It is easily checked that Const(R) is a subring of R, and if R is a field, so is Const(R).

An additive map θ : R→ R is said to be pseudo-linear if it satisfies

θ(ab) = σ(a)θ(b) + δ(a)b (5.5)
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for all a, b ∈ R. Recall from Example 2.8 that R[s;σ, δ] denotes the skew polynomial ring
over (R, σ, δ). Then θ induces a left R[s;σ, δ]-module structure on R, where the action
• : R[s;σ, δ]×R→ R is defined by(∑̀

d=0
ads

d

)
• b :=

∑̀
d=0

adθ
d(b) (5.6)

for a0, . . . , a`, b ∈ R. It can be checked that • satisfies the axioms of actions; for example,
by (1.3) and (5.5), it holds

(sa) • b = (σ(a)s+ δ(a)) • b = σ(a)θ(b) + δ(a)b = θ(ab) = s • (ab)

for a, b ∈ R. Abusing notations, we represent by θ in place of s the indeterminate of the
skew polynomial ring that acts on R by (5.6). We also write p • b as p(b) for p ∈ R[θ;σ, δ].

An `th-order (scalar) linear σ-differential equation over R is an equation for y ∈ R in
the form of

a0y + a1θ(y) + · · ·+ a`−1θ
`−1(y) + a`θ

`(y) = f, (5.7)

where a0, . . . , a`, f ∈ R. The equation (5.7) can be written as p(y) = f by using a skew
polynomial p := a0 + a1θ + · · · + a`θ

` ∈ R[θ;σ, δ]. We call θ in (5.7) the σ-differential
operator. If σ = id and θ = δ, then σ-differential equations are called linear differential
equations. Similarly, if δ = 0 and θ = σ, then σ-differential equations are said to be
linear difference equations. The equation (5.7) is said to be homogeneous when f = 0 and
inhomogeneous when f 6= 0.

Recall from Section 2.2.1 that θ(y) denotes (θ(yi))i∈[n] for y = (yi)i∈[n] ∈ Rn. An
`th-order n-dimensional (matrix) linear σ-differential equation over R is an equation for
y ∈ Rn in form of

A0y +A1θ(y) + · · ·+A`−1θ
`−1(y) +A`θ

`(y) = f, (5.8)

where A0, . . . , A` ∈ Rn×n and f ∈ Rn. Using a skew polynomial matrix A := A0 +A1θ +
· · ·+A`θ

` ∈ R[θ;σ, δ]n×n, the equation (5.8) is simply expressed as

A(y) = f. (5.9)

The solution space of (5.9) is defined as V := {y ∈ Rn | A(y) = f}. It is easily checked
that V forms an affine module1 over Const(R) unless V = ∅.

Suppose that R is a field K. Indeed, any σ-differential equation over a σ-differential
field is essentially either a (usual) differential or difference equation. This follows from the

1Affine modules are a generalization of affine spaces obtained by replacing tangent vector spaces with
modules. They are nothing but affine spaces if Const(R) is a field.
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following facts.
Proposition 5.5 ([5, Lemma 5], [6, Lemma 1]). Let (K,σ, δ) be a σ-differential field.
Then the following hold:

(1) An additive map θ : K → K is pseudo-linear if and only if it is in the form of
γσ + δ for some γ ∈ K.

(2) If σ 6= id, then there exists α ∈ K such that δ = α(σ − id).

By Proposition 5.5, a pseudo-linear map θ can be written as θ = δ + γ if α = id and
as θ = (α + γ)σ + α if σ 6= id. Expanding θd for d = 1, . . . , ` using these equations, any
σ-differential equation p(y) = 0 with p ∈ K[θ;σ, δ] is represented as q(y) = 0 for some
q ∈ K[δ; id, δ] if σ = id and as q′(y) = 0 for some q′ ∈ K[σ;σ, 0] if σ 6= id. A typical example
of this reduction is the replacement of the difference operator in a difference equation by
the shift operator. Therefore, it essentially suffices to consider only differential equations
(θ = δ) over a differential field and difference equations (θ = σ) over a difference field.
Nonetheless, we make use of the notion of σ-differential equations whenever possible since
it provides a useful framework unifying differential and difference equations.

5.2.2 Dimensions of Solution Spaces

Let (K,σ, δ) be a differential (σ = id) or difference (δ = 0) field. We put θ := δ in the
differential case and θ := σ in the difference case. Consider a differential or difference
equation (5.9) over K and suppose that (5.9) has at least one solution. The solution space
V of (5.9) forms an affine space over C := Const(K) as stated above. Now our question is
how large the dimension dimC V of V over C is. This quantity is rephrased as the number
of values we must designate to determine a solution of (5.9) uniquely. An upper bound
on dimC V is given in terms of deg Det and ord Det of A as follows. This is partially given
in [97, Lemma 1.10], [90, Corollary 4.9], [1, Theorem 6], and [93, Corollary 2.2], whereas
they assume ch(K) = 0 which is not needed to show the following. Here, we describe
complete a proof based on their proofs.
Proposition 5.6. Let (K,σ, δ) be a differential or difference field with C := Const(K).
Let V be the solution space of A(y) = f with A ∈ K[θ;σ, δ]n×n and f ∈ Kn and suppose
V 6= ∅. Then the following hold:

(1) If the field extension K / C is infinite, then dimC V is finite if and only if A is
nonsingular.

(2) If A is nonsingular, it holds dimC V ≤ deg DetA in the differential case and
dimC V ≤ deg DetA− ord DetA in the difference case.

Proof. For any v ∈ V , the C-vector space V − v := {y − v | y ∈ V } is the solution space of
A(y) = 0. Hence it suffices to consider only homogeneous equations. Our proof consists of
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three steps: we show the claims for first-order homogeneous equations in Step 1, for scalar
homogeneous equations in Step 2, and for general homogeneous equations in Step 3.

(Step 1) Consider the case when A = A0 +Inθ and f = 0, i.e., the corresponding linear
σ-differential equation is

θ(y) = −A0y. (5.10)

We further require A0 to be nonsingular only in the difference case. Since A is nonsingular,
it suffices to show only (2). Then Aθ−1 = A0θ

−1 + In is proper as a matrix over K(θ;σ, δ)
with valuation −deg. Since In is nonsingular, it holds deg DetAθ−1 = 0 by Proposi-
tion 2.18 and thus deg DetA = n. Similarly, in the difference case, it holds ord DetA = 0
by the nonsingularity of A0. Therefore, our goal is to show dimC V ≤ n in both cases.
Since dimK V ≤ n is clear, it suffices to prove dimK V = dimC V .

Let v1, . . . , vm ∈ V be solutions of (5.10) that are linearly dependent over K. We
show that they are also dependent over C, which implies dimK V = dimC V . Without
loss of generality, we assume that v2, . . . , vm are linearly independent over K. Then there
uniquely exists c2, . . . , cm ∈ K such that v1 = ∑m

i=2 civi. Then it holds

0 = θ

(
v1 −

m∑
i=2

civi

)
= θ(v1)−

m∑
i=2

θ(civi)

= −A0v1 −
m∑
i=2

(σ(ci)θ(vi) + δ(ci)vi)

= −A0

m∑
i=2

civi −
m∑
i=2

(−σ(ci)A0vi + δ(ci)vi)

= A0

m∑
i=2

(σ(ci)− ci)vi −
m∑
i=2

δ(ci)vi.

In the differential case, we have 0 = −∑m
i=2 δ(ci)vi by σ = id. From the independence of

v2, . . . , vm, it must holds δ(ci) = 0, which means ci ∈ C for i = 2, . . . ,m. In the difference
case, we have 0 = ∑m

i=2(σ(ci)−ci)vi from δ = 0 and the assumption that A0 is nonsingular.
Hence we obtain σ(ci) = ci and thus ci ∈ C for i = 2, . . . ,m. Thus v1, . . . , vm are also
linearly dependent over C in both cases.

(Step 2) Consider a scalar homogeneous linear differential or difference equation p(y) =
0 with p = ∑`

d=0 adθ
d ∈ K[θ;σ, δ]. When p = 0, the solution space V coincides with K.

Thus dimC V = dimC K is infinite when K / C is infinite. Suppose that p 6= 0 and
deg p = `, i.e., a` 6= 0. In the difference case, as θ = σ is bijective, p(y) = 0 and p′(y) = 0
with p′ := θ− ord pp have the same solution spaces. Moreover, by deg p′ = deg p− ord p and
ord p′ = 0, it holds deg p′−ord p′ = deg p−ord p. Therefore, in the difference case, we can
assume ord p = 0 (i.e., a0 6= 0) without loss of generality.

We construct the following `-dimensional matrix linear differential or difference equa-
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tion:

θ



y0
y1
...

y`−2
y`−1


=



0 1 0 0

0
0 0 1
−a0
a`
−a1
a`

−a`−2
a`

−a`−1
a`





y0
y1

y`−2
y`−1


. (5.11)

If y ∈ K is a solution of p(y) = 0, then
(
y, θ(y), . . . , θ`−1(y)

)> ∈ Kn is a solution of (5.11).
Conversely, any solution of (5.11) is obtained in this way. Therefore, the solution space
W of (5.11) is isomorphic to V as C-vector spaces. In the differential case, dimCW = ` =
deg p by the above proof of Step 1. In the difference case, the matrix in the right-hand
side of (5.11) is nonsingular by a0 6= 0. Hence dimCW = ` = deg p − ord p again from
Step 1.

(Step 3) Consider a matrix homogeneous differential or difference equation A(y) = 0
with A ∈ K[θ;σ, δ]n×n. Let D = UAW = diag(d1, . . . , dn) be the Jacobson normal form
of A over K[θ;σ, δ]. Putting z = (z1, . . . , zn) := W (y), the solution space sof A(y) = 0
and D(z) = 0 are isomorphic as C-vector spaces. Since D is diagonal, the solution space
of D(z) = 0 is the direct sum of the solution space Vi of di(zi) = 0 for i ∈ [n]. Namely, it
holds

dimC V =
n∑
i=1

dimC Vi. (5.12)

If A (and thus D) is singular, there exists i ∈ [n] such that di = 0. Thus dimC V

is infinite when K / C is infinite by the above Step 2 and (5.12). Suppose that A is
nonsingular. Since U andW are invertible over K[θ;σ, δ], they are biproper over K(θ;σ, δ)
with valuation deg and over K(θ;σ, 0) with valuation ord in the difference case. Thus
deg Det of U and W are 0, which means deg DetA = deg DetD = ∑n

i=1 deg di. Therefore,
by Step 2 and (5.12), we have dimC V ≤ deg DetA in the differential case, as desired. The
completely analog holds in the difference case by replacing deg Det with deg Det− ord Det.

The upper bound on dimC V given in Proposition 5.6 may not be attained on some
equations. For example, consider a first-order linear differential equation y′ + y = 0 over
C(t) with the usual differentiation ′. The solution of this equation over C(t) is only y = 0
and thus the dimension of the solution space is 0. However, if the differential field C(t) is
extended to C(t, et), the solution space becomes V :=

{
ce−t

∣∣ c ∈ C
}
, which has dimension

1 over C. This is analogous to the situation of extending a field to its algebraic closure in
order for nth-order algebraic equations to have n solutions. We explain such an extension
briefly.
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Let (K,σ, δ) be a differential or difference field. A differential or difference ring (R, σ̄, δ̄)
is called a differential or difference extension of K if K is a subring of R and σ̄ and δ̄

coincides with σ and δ on K, respectively. A differential or difference equation A(y) = f

over K is naturally extended to that over R. Following [1], we call an extension R of K
adequate if it satisfies the following:

(AE1) C := Const(R) is a field.

(AE2) Any scalar homogeneous differential or difference equation p(y) = 0 with p ∈
K[θ;σ, δ] \ {0} has the solution space V over R such that dimC V = deg p in
the differential case and dimC V = deg p− ord p in the difference case.

Let K be a differential field. If Const(K) is algebraically closed, then there exists
an adequate extension R of K such that Const(R) = Const(K), called the universal
(differential) Picard–Vessiot ring of K [97, Section 3.2]. In addition, any differential field
K of characteristic 0 has a difference extension whose constant field is the algebraic closure
of Const(K) [1]; see also [97, Exercise 1.5, 2:(c), (d), 3:(c)]. Therefore, there always exists
an adequate extension of any differential field of characteristic 0.

Next, suppose that K is a difference field. If Const(K) is algebraically closed, there
exists an adequate extension R of K such that Const(R) = Const(K), called the universal
(difference) Picard–Vessiot ring of K [96, Section 1.4]. Indeed, for any difference field
K of characteristic 0, an adequate difference extension R can be easily constructed [1,
Proposition 4], while Const(R) = Const(K) is no longer guaranteed.

We then turn to matrix, inhomogeneous equations. As we will see below, (AE2) is
indeed equivalent to the following:

(AE2’) Any matrix differential or difference equationA(y) = f withA ∈ GLn(K[θ;σ, δ])
and f ∈ Kn has the solution space V over R such that dimC V = deg DetA
in the differential case and dimC V = deg DetA − ord DetA in the difference
case.

Lemma 5.7. (AE2) and (AE2’) are equivalent.
Proof. It is clear that (AE2’) implies (AE2); we show the converse holds. Let (K,σ, δ) be
a differential or difference field and R its extension satisfying (AE1) and (AE2). As stated
in the proof of Proposition 5.6, a matrix differential and difference equation is essentially
reduced to n scalar equations by considering the Jacobson normal form. This means that it
suffices to consider only a scalar inhomogeneous equation p(y) = f with p ∈ K[θ;σ, δ]\{0}
and f ∈ K \ {0}. In addition, the solution space of p(y) = f over R is the translation of
the solution space of p(y) = 0 over R by any solution of p(y) = f . Therefore, our goal is
to show that p(y) = f has at least one solution over R.

We first deal with the differential case. Let q := θf−1p. Then any solution y ∈ R of
q(y) = 0 is also a solution of p(y) = cf for some c ∈ C := Const(R) (see [97, Exercise 1.14,
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1]). By (AE2), the dimension of the solution space W of q(y) = 0 is deg q = deg p + 1,
whereas that of p(y) = 0 is deg p < deg q. Therefore, there exists v ∈ W that is not a
solution of p(v) = 0, i.e., p(v) = cf for some nonzero c ∈ C×. Then c−1v is a solution
of p(y) = f , as required. The difference case can be in the same way by considering
q := (θ − 1)

(
f−1p

)
= θf−1p− f−1p.

Proposition 5.6 and Lemma 5.7 lead us to the following consequence.
Theorem 5.8. Let (K,σ, δ) be a differential or difference field, R its adequate exten-
sion, and C := Const(R). Let V be the solution space of A(y) = f over R with A ∈
GLn(K[θ;σ, δ]) and f ∈ Kn. Then it holds dimC V = deg DetA in the differential case
and dimC V = deg DetA− ord DetA in the difference case.

Since deg and ord are discrete valuations, we can apply our algorithms given in Chap-
ter 4 to compute the dimension of solution spaces of linear differential or difference equa-
tions over an adequate extension.
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Chapter 6

Structural Methods for
Differential-Algebraic Equations

This chapter reviews the literature of the structural preprocessing methods for differential-
algebraic equations (DAEs). In Section 6.1, we introduce DAEs with some examples
and explain two preprocessing processes, consistent initialization and index reduction,
needed prior to numerical integration. In Section 6.2, we describe structural preprocessing
methods for DAEs that are based on the assignment problem. While structural methods
are efficient, they fail for some DAEs; we analyze the failures in Section 6.3. Finally,
Section 6.4 describes that the combinatorial relaxation provides a framework of overcome
the structural methods’ failure.

6.1 Differential-Algebraic Equations

Let T ⊆ R be a nonempty open interval and Ω ⊆ R(`+1)n a nonempty open set. An `th-
order differential-algebraic equation (DAE) of size n for x : T→ Rn is the equation (1.4),
where F : T× Ω→ Rn is a sufficiently smooth function.

6.1.1 DAE Examples from Dynamical Systems

DAEs are widely accepted as a mathematical model of dynamical systems since the pio-
neering work of Gear [29] and subsequent developments of theory and numerical methods.
In this section, we demonstrate two examples of DAEs arising in dynamical systems:
mechanical systems and electrical networks.
Example 6.1 (simple pendulumn). Consider a simple planar pendulum illustrated in
Figure 6.1, where a point of unit mass is suspended by a massless cord of length L from
a pivot without friction. We take the Cartesian coordinate, in which the x1-axis is in the
horizontal direction and the x2-axis is in the downward direction.

The (twice of) Lagrangian of this system is L = ẋ1
2 + ẋ2

2 + gy, where g is (twice of)
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Figure 6.1: Simple pendulum.
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Figure 6.2: Simple RLC network.

the gravitational constant. According to the principle of least action in the Lagrangian
mechanics, the motion from the time t0 to t1 minimizes the action

∫ t1
t0
L(t)dt. Thus, by

solving the Euler–Lagrange equation with constraint x1
2 + x2

2 − L2 = 0, we obtain an
equation of motion 

ẍ1 + x1x3 = 0,
ẍ2 + x2x3 − g = 0,
x1

2 + x2
2 − L2 = 0

(6.1)

with Lagrange multiplier x3. The equation system (6.1) is a DAE consisting of two differ-
ential equations and one purely algebraic equation with unknown functions x1(t), x2(t),
and x3(t).
Example 6.2 (RLC network). Consider an electrical network illustrated in Figure 6.2,
which is given in [71, Section 1.1]. The network consists of a voltage source of time-varying
voltage V (t), two resistances R1 and R2, an inductor L, and a capacitor C. State variables
of this network is currents ξ1, . . . , ξ5 and voltages η1, . . . , η5 shown in Figure 6.2. One of
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the equation systems representing this network is given by

−ξ1 − ξ4 + ξ5 = 0,
ξ2 + ξ3 + ξ4 − ξ5 = 0,

η1 + η3 − η5 = 0,
−η1 − η2 + η4 = 0,

η2 − η3 = 0,
R1ξ1 − η1 = 0,
R2ξ2 − η2 = 0,
Lξ̇3 − η3 = 0,
−ξ4 + Cη̇4 = 0,

η5 = V (t).

(6.2)

In this system (6.2), the first two equations come from Kirchhoff’s current law (KCL), and
the following three equations come from Kirchhoff’s voltage law (KVL). These equations,
which are called structural equations, are purely algebraic. On the other hand, the last
five equations, called constitutive equations, represent the element characteristics coming
from Ohm’s law, the capacitor’s differential equation and the inductor’s one.

6.1.2 Consistency of Initial Values

The initial value problem for a DAE (1.4) is to find a solution x(t) of (1.4) satisfying the
initial value condition (1.6) for given t∗ ∈ T and initial values x∗(0), x

∗
(1), . . . , x

∗
(`−1) ∈ Rn.

Initial values are called consistent if there uniquely exists a smooth solution x(t) of (1.4)
in a neighborhood of the initial value on T × Ω. Any initial values are consistent for an
ordinary differential equation (ODE) in form of (1.5) under the smoothness assumption
on ϕ. For DAEs, the initial value problem may not have a solution because DAEs can
involve algebraic constraints.
Example 6.3. Consider the problem of giving a consistent initial value at t∗ = 0 for the
DAE (6.1) representing the simple pendulum. First, by the constraint x1

2 +x2
2−L2 = 0,

one may choose

x1(0) = x2(0) = L√
2
.

From the first and second equations in (6.1), we must set ẍ1(0), ẍ2(0) and x3(0) so that
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they satisfy

ẍ1(0) = −x1(0)x3(0) = − L√
2
x3(0),

ẍ2(0) = −x2(0)x3(0) + g = − L√
2
x3(0) + g.

One possibility is

x3(0) = 1, ẍ1(0) = − L√
2
, ẍ2(0) = − L

√
g

+ g.

We here try to set an initial velocity ẋ1(0) and ẋ2(0) as ẋ1(0) = ẋ2(0) = 1 since there are
no equations in (6.1) constraining them. Now these initial values satisfy all the equations
in (6.1).

Unfortunately, the DAE (6.1) has no solution with the above initial values because all
solutions are subject to the differentiation 2x1ẋ1 + 2x2ẋ2 = 0 of the constraint x1

2 +x2
2−

L2 = 0, though the above initial value does not meet it.
As seen in Example 6.3, consistent initial values must satisfy not only algebraic equa-

tions but also their differentiations, called hidden constraints. Hence the consistent ini-
tialization, the problem to give a consistent initial value, is not trivial for DAEs.

6.1.3 Differentiation Index

The index concept plays an important role in stability analysis for numerical analysis of
DAEs. For a first-order DAE (1.7) and k ∈ N, define

Fk
(
t, x, ẋ, . . . , x(k+1)) :=


F
(
t, x(t), ẋ(t)

)
d
dtF

(
t, x(t), ẋ(t)

)
...

dk

dtkF
(
t, x(t), ẋ(t)

)

 .

The differentiation index, or the index for short, of a first-order DAE (1.7) is the mini-
mum ν ∈ N (if it exists) meeting the following: for each (t, x(0)) ∈ R1+n, if there exists(
x(1), . . . , x(ν+1)

)
∈ Rnµ satisfying Fν

(
t, x(0), . . . , x(ν+1)

)
= 0, then such x(1) is unique [9].

Loosely speaking, the differentiation index is the minimum nonnegative integer ν such
that the equation Fν = 0 can determine ẋ as a function of t and x. In this sense, the
differentiation index measures how far the DAE is from ODEs.
Example 6.4. An ODE (1.5) has differentiation index 0 because ẋ is always determined
from t and x by ϕ. An algebraic equation F (t, x(t)) = 0 with nonsingular Jacobian matrix
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∂F
∂x =

(
∂Fi
∂xj

)
i,j∈[n]

has differentiation index 1 because

d
dtF (t, x(t)) = ∂F

∂t
(t, x(t)) + ∂F

∂x
(t, x(t))ẋ(t) = 0

implies

ẋ(t) = −
(
∂F

∂x
(t, x(t))

)−1∂F

∂t
(t, x(t)),

from which ẋ(t) is determined from t and x(t) by F1(t, x, ẋ) = 0.
For a higher-order DAE, we define its differentiation index as as that of the first-order

DAE obtained by replacing higher-order derivatives with newly introduced variables.
Example 6.5. The DAE (6.1) for the simple pendulum is converted into the following
first-order DAE 

ẋ4 + x1x3 = 0,
ẋ5 + x2x3 − g = 0,
x1

2 + x2
2 − L2= 0,

ẋ1 − x4 = 0,
ẋ2 − x5 = 0,

(6.3)

where x4 and x5 represent ẋ1 and ẋ2, respectively. We consider the system of 7 equations
obtained by replacing the third equation in (6.3) with

2x1ẍ4 + 6x4ẋ4 + 2x2ẍ5 + 6x5ẋ5 = 0 (6.4)

and appending two extra equations{
ẍ4 + x4x3 + x1ẋ3 = 0,
ẍ5 + x5x3 + x2ẋ3 = 0.

(6.5)

Here, (6.4) is the second-order differentiation of the original third equation and (6.5) is
the first-order differentiations of the first and second equations (with ẋ1 and ẋ2 replaced
with x4 and x5). The resulting system is a subsystem of F3 = 0 for (6.3).
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The Jacobian matrix D of this system with respect to (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẍ4, ẍ5) is

D =



1
1

6x4 6x5 2x1 2x2
1

1
x1 1
x2 1


, (6.6)

where empty entries indicate 0. Now we have

detD = −2x1
2 − 2x2

2 = −2L2 6= 0 (6.7)

for any consistent point. Thus, by the implicit function theorem, we can solve the system
for (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẍ4, ẍ5) as a smooth function of (x1, x2, x3, x4, x5). This means that
the differentiation indices of (6.3) and of (6.1) are at most 3, and are actually 3 [56].

The differentiation index often appears in validity conditions and convergence results
of numerical methods for DAEs. For example, the code DASSL of Petzold [81] and the DAE
solver ode15i in MATLAB, both of which are based on the backward differentiation for-
mula (BDF), can handle only index-1 DAEs [4]. The code RADAU5 of Hairer–Wanner [36],
using the implicit Runge–Kutta (IRK) method, is applicable to DAEs of index less than
4. With regard to the convergence rate of numerical methods, for example, Gear et
al. [30] showed that the global error in the numerical solution for k-step variable step-
size BDF applied to an index-ν linear DAE with constant coefficient is O(hmax

q), where
q := min{k, k − ν + 2} and hmax is the maximum ratio of adjacent step size. It is gen-
erally considered that only index 0 or 1 DAEs can be numerically solved in practical
accuracy. Therefore, the index reduction, which is a process to convert higher-index DAEs
into lower-index ones, is important for accurate simulation of dynamical systems.

6.2 Structural Preprocessing Methods

Structural preprocessing methods for DAEs are popular methods of consistent initialization
and index reduction prior to numerical integration. They make use of the assignment
problem (weighted bipartite matching problem) on a bipartite graph constructed from
a DAE. In this section, after introducing preliminaries and the assignment problem for
DAEs, we explain two structural preprocessing methods: the Σ-method for consistent
initialization and the Mattsson–Söderlind method for index reduction.
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6.2.1 Griewank’s Lemma

Structural methods utilize information on which variable each equation depends. We first
introduce notations and a proposition to describe the structural preprocessing methods.

Let T ⊆ R be a nonempty open interval and Ω ⊆ R(`+1)n a nonempty open set having
coordinates

(
x, ẋ, . . . , x(`)), where x(k) =

(
x

(k)
j

)
j∈C ∈ Rn for k ∈ [0, `]. Here C is the set

of indices with |C| = n. In the subsequent discussion, each x
(k)
j is regarded not as the

kth-order derivative of some trajectory but as an independent variable.
Let f : T× Ω → R be a smooth function. For j ∈ C and k ∈ [0, `], the function f is

said to depend on x(k)
j if the partial derivative ∂f

∂x
(k)
j

is not identically zero on the domain

T×Ω of f . We denote the maximum nonnegative integer k such that f depends on x(k)
j by

σ(f, xj). If f does not depend on x(k)
j for any k, we assign σ(f, xj) := −∞ for convenience.

The derivative ḟ of f with respect to t is defined by

ḟ
(
t, x, ẋ, . . . , x(`+1)) := ∂f

∂t

(
t, x, ẋ, . . . , x(`))+

∑̀
k=0

∂f

∂x(k)
(
t, x, ẋ, . . . , x(`))x(k+1).

For d ∈ N, the dth-order derivative f (d) of f is recursively defined by f (0) := f and
f (d) := ḟ (d−1) for d ≥ 1. It should be noted that the domain of ḟ is not T × Ω but
T×Ω×Rn because ḟ (linearly) depends on x(`+1). Similarly, for a nonnegative integer d,
we regard the domain of f (d) as T× Ω(d), where Ω(d) := Ω× Rdn.

The following simple proposition plays an important role in structural preprocessing
methods for DAEs.
Proposition 6.6 (Griewank’s lemma [34, Section 2.2],[82, Lemma 3.7]). Let f : T× Ω→
R be a smooth function. For j ∈ C and a nonnegative integer d, if σ(f, xj) ≤ c, then

∂f

∂x
(c)
j

(
t, x, ẋ, . . . , x(`)) = ∂f (d)

∂x
(c+d)
j

(
t, x, ẋ, . . . , x(`+d)) (6.8)

holds for all
(
t, x, ẋ, . . . , x(`+d)) ∈ T× Ω(d).

We sometimes regard the domain of ∂f (d)

∂x
(c+d)
j

not as T × Ω(d) but as T × Ω to simply

write the equality (6.8) as ∂f

∂x
(c)
j

= ∂f (d)

∂x
(c+d)
j

. In addition, it follows from Proposition 6.6 that

σ
(
f (d), xj

)
= σ(f, xj) + d

holds for j ∈ C and a nonnegative integer d.
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6.2.2 Assignment Problem

Pryce [82] introduced an assignment problem for a reinterpretation of Pantelides’ algo-
rithm [79] as follows. Consider a DAE (1.4) of size n with equation index set R and
variable index set C. Let G(F ) denote the bipartite graph with vertex set R∪C and edge
set

E(F ) := {{i, j} | i ∈ R, j ∈ C, σ(Fi, xj) > −∞}.

We set the weight ce of an edge e = (i, j) ∈ E(F ) by ce = ci,j = σ(Fi, xj). Denote the
maximum-weight perfect matching problem on G(F ) by P(F ) and consider the following
formulation of the dual of P(F ):

D(F )

minimize
∑
j∈C

qj −
∑
i∈R

pi

subject to qj − pi ≥ ci,j (i ∈ R, j ∈ C, {i, j} ∈ E(F )),
pi, qj ∈ N (i ∈ R, j ∈ C).

Define

d̂(F ) := the optimal value of the problem D(F ).

For a dual feasible solution (p, q), the system Jacobian D = (Di,j)i∈R,j∈C : T× Ω →
Rn×n of F with respect to (p, q) is a matrix defined by

Di,j := ∂F
(pi)
i

∂x
(qj)
j

= ∂Fi

∂x
(qj−pi)
j

(6.9)

for each i ∈ R and j ∈ C. The last equality in (6.9) for (i, j) with qj − pi ≥ 0 is due to
Proposition 6.6. The equality also holds for (i, j) with qj − pi < 0 by regarding ∂Fi

∂x
(qj−pi)
j

as an identically zero function. By qj − pi ≥ ci,j , the entry Di,j is nonzero if and only if
qj − pi = ci,j . Therefore, the following holds as a restatement of Proposition 3.3.
Proposition 6.7. For a DAE (1.4) of size n, let D be a system Jacobian of the DAE
with respect to a feasible solution (p, q) of D(F ). Then (p, q) is optimal if and only if
t-rankD = n.
Example 6.8. Let F = 0 be the DAE (6.1) representing the simple pendulum. The
weight of edges in G(F ) is shown in the following matrix: 2 −∞ 0

−∞ 2 0
0 0 −∞

 ,
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whose the (i, j)th entry indicates the weight of {i, j} ∈ E(F ) (−∞ means {i, j} /∈ E(F ))
for i ∈ R and j ∈ C. One choice of an optimal solution of D(F ) is p = (0, 0, 2) and
q = (2, 2, 0), which means d̂(F ) = 2. The corresponding system Jacobian is

D =

 1 x1
1 x2

2x1 2x2

 ,
which is nonsingular at any consistent point by detD = −2x1

2 − 2x2
2 = −L2 6= 0.

Example 6.9 (linear DAEs with constant coefficients). Let F = 0 be a linear DAE with
constant coefficients defined by (1.8), where A0, . . . , A` ∈ Rn×n and f : R → Rn is a
smooth function. Applying the Laplace transformation, the DAE (1.8) is written as

A(s)x̃(s) = f̃(s), (6.10)
where

A = A(s) :=
∑̀
d=0

Asd ∈ R[s]n×n

and x̃(s) and f̃(s) are the Laplace transforms of x(t) and f(t), respectively (assuming
x(d)(0) = 0 for all d ∈ N for simplicity). From the algebraic viewpoint as in Section 5.2,
we can also regard (6.10) as a DAE itself by regarding s as the differentiation operator.

Recall from Section 4.2.1 that the problem D(A) is defined for the polynomial matrix A.
It is easily seen that D(F ) and D(A) are the same problem. Moreover, the system Jacobian
of (6.10) coincides with the tight coefficient matrix A# of A defined in Section 4.2.1. In
this sense, the system Jacobian can be seen as a nonlinear generalization of the tight
coefficient matrix for polynomial matrices.

6.2.3 Consistent Initialization by the Σ-Method

Pryce’s Σ-method [82] is a structural preprocessing method for finding a consistent initial
value of a DAE (1.4) at a given initial time t∗ ∈ T. The Σ-method is outlined as follows.

Σ-Method

Step 1. Compute an optimal solution (p, q) of D(F ). If D(F ) has no optimal solution,
then the Σ-method terminates with failure.
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Step 2. Collect M := ∑
i∈R pi + n equations

F1 = 0, Ḟ1 = 0, . . . , F
(p1)
1 = 0,

F2 = 0, Ḟ2 = 0, . . . , F
(p2)
2 = 0,

...
Fn = 0, Ḟn = 0, . . . , F (pn)

n = 0.

(6.11)

Solve (6.11) as a system of algebraic equations for N := ∑
j∈C qj+n unknown

variables

X :=
(
x1, ẋ1, . . . , x

(q1)
1 , x2, ẋ2, . . . , x

(q2)
2 , . . . , xn, ẋn, . . . , x

(qn)
n

)
to obtain an initial value (t∗, X∗).

Step 3. If the Σ-JacobianD with respect to (p, q) is singular at (t∗, X∗), the Σ-method
terminates with failure. Otherwise, return (t∗, X∗).

Theorem 6.10 ([82, Theorem 4.2]). Let F (t, x, ẋ, . . .) = F (t,X) = 0 be a DAE with
equation index set R and variable index set C. Suppose that D(F ) has an optimal solu-
tion (p, q) and let D be the Σ-Jacobian with respect to (p, q). If the Σ-method finds an
initial value (t∗, X∗) at which D is nonsingular, then (t∗, X∗) is consistent. Moreover, the
differentiation index of the DAE is locally bounded by

max
i∈R

pi +

0 (qj > 0 for all j ∈ C),
1 (otherwise).

Example 6.11. Consider the DAE (6.1) representing the simple pendulum again. In
Step 1, we obtain p = (0, 0, 2) and q = (2, 2, 0). In Step 2, we solve the following system

ẍ1 + x1x3 = 0,
ẍ2 + x2x3 − g = 0,
x1

2 + x2
2 − L2 = 0,

2x1ẋ1 + 2x2ẋ2 = 0,
2ẋ1

2 + 2x1ẍ1 + 2ẋ2
2 + 2x2ẍ2 = 0

as an algebraic equation system for x1, ẋ1, ẍ1, x2, ẋ2, ẍ2, and x3 to obtain an initial value.
One solution (for t∗ = 0) is

x∗1 = L, x∗2 = ẋ∗1 = ẋ∗2 = ẍ∗1 = 0, ẍ∗2 = g. (6.12)

The Σ-Jacobian of (6.1) with respect to (p, q) is the matrix defined by (6.6). Since
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detD = −L by (6.7), the Σ-method succeeds. From Theorem 6.10, the index of (6.1) is
at most 3, which agrees with the consequence of Example 6.5.

Theorem 6.10 also gives an information on the dimension of the solution manifold.
Suppose that the Σ-method succeeds for a DAE F = 0 at (t∗, X∗). Then Theorem 6.10
indicates that one can determine a solution by solving M := ∑

i∈R pi + n equations for
N := ∑

j∈C qj + n variables, where (p, q) is a dual optimal solution. This means that
the dimension of the solution manifold, or solutions’ degree of freedom, is M − N =∑
i∈R pi −

∑
j∈C qj = d̂(F ). Hence we have:

Theorem 6.12 ([82]). For a DAE (1.4), suppose that D(F ) has an optimal solution (p, q)
and let D be the system Jacobian of (1.4) with respect to (p, q). If D is nonsingular at a
consistent point (t∗, X∗) of (1.4), then the dimension of the solution manifold of (1.4) in
a neighborhood of (t∗, X∗) is d̂(F ).
Example 6.13. Consider the DAE (6.1) representing the simple pendulum. As we have
seen in Example 6.8, the DAE has a nonsingular system Jacobian. Thus by Theorem 6.12,
the dimension of its solution manifold is d̂(F ) = 2. This agrees with the fact that the
state of the simple pendulum is determined from (i) the angle between the cord and the
x2-axis and (ii) the velocity of the mass along the normal direction of the cord.
Example 6.14. Consider a linear DAE (6.10) with constant coefficients and let A# ∈
Rn×n be the system Jacobian of (6.10) with respect to an optimal solution of D(F )
for (6.10). By Proposition 4.7, if A# is nonsingular, then A is upper-tight, i.e., deg detA =
d̂(F ). On the other hand, Chrystal’s theorem [12] (and Theorem 5.8) state that the di-
mension of the solution space of (6.10) is equal to deg detA. Thus, d̂(F ) coincides with
the dimension if A is upper-tight. This is a special case of Theorem 6.12.

6.2.4 Index Reduction by the Mattsson–Söderlind Method

We next review the Mattsson–Söderlind index reduction method [60] (MS-method). For
an optimal solution (p, q) of D(F ) and h ∈ Z, define

Rh := {i ∈ R | pi = h}, R≥h := {i ∈ R | pi ≥ h},
Ch := {j ∈ C | qj = h}, C≥h := {j ∈ C | qj ≥ h}.

The input of the MS-method is a DAE and its consistent initial value (t∗, X∗). The
MS-method is outlined as follows [60, Section 3.1].

Mattsson–Söderlind Index Reduction Method

Step 1. Compute an optimal solution (p, q) of D(F ). If D(F ) has no optimal solution,
or the Σ-Jacobian D with respect to (p, q) is singular at (t∗, X∗), then the
algorithm terminates in failure.
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Step 2. For each h ∈ [0, η + 1]
(
η := max

i∈R
pi
)
, obtain Jh ⊆ C≥h such that D[R≥h, Jh]

is nonsingular at (t∗, X∗) and

C = J0 ⊇ J1 ⊇ J2 ⊇ · · · ⊇ Jη ⊇ Jη+1 = ∅.

Step 3. For each j ∈ C, let kj be an integer such that j ∈ Jkj
and j /∈ Jkj+1.

Introduce kj dummy variables z[qj ]
j , z

[qj−1]
j , . . . , z

[qj−kj+1]
j corresponding to

x
(qj)
j , x

(qj−1)
j , . . . , x

(qj−kj+1)
j , respectively.

Step 4. For each i ∈ R, collect the 0th-, 1st-, ..., pith-order derivatives of the ith
equation Fi(t, x, ẋ, . . .) = 0. Replace variables in the collected system with
the corresponding dummy variables.

Proposition 6.15 ([60, Section 3.2]). For a DAE F = 0, suppose that D(F ) has an opti-
mal solution (p, q) and let D be the Σ-Jacobian with respect to (p, q). If D is nonsingular
at a given consistent initial value, then the MS-method returns an equivalent DAE whose
index is locally at most 1.

Here, the term “equivalent” in Proposition 6.15 means that there is a trivial one-to-
one correspondence between solutions of the original DAE and the returned DAE by the
MS-method. Namely, for every solution x of the original DAE, there uniquely exists a
function z corresponding to dummy variables such that (x, z) is a solution of the returned
DAE, and conversely, for every solution (x, z) of the returned DAE, x is a solution of the
original DAE.
Example 6.16. Consider the DAE (6.1) on the simple pendulum with consistent initial
value given in (6.12). We find p = (0, 0, 2) and q = (2, 2, 0) in Step 1 of the MS-method.
In Step 2, we choose J0, . . . , J3 as

D[R≥0, J0] =

 1 x1
1 x2

2x1 2x2

 , D[R≥1, J1] = D[R≥2, J2] =
(
2x1

)
,

and D[R≥3, J3] is the 0× 0 matrix. In Step 3, we introduce two dummy variables z[1]
1 and

z
[2]
1 corresponding to ẋ1 and ẍ2, respectively. Finally, we obtain a DAE

z[2] + x1x3 = 0,
ẍ2 + x2x3 − g = 0,

z
[2]
1 + x2

1 − L2 = 0,

2x1z
[1]
1 + 2x2ẋ2 = 0,

2
(
z

[1]
1

)2
+ 2x1z

[2]
1 + 2ẋ2

2 + 2x2ẍ2 = 0,
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which is of index-1 as required.

6.3 Failures of Structural Preprocessing Methods

As we have seen in Section 6.2, structural methods run only for DAEs having nonsingular
system Jacobian. In practice, this is satisfied on many DAEs of real instances. For
example, Pryce [82] showed that the Σ-method can be applied to any DAE which is of index
0, in standard canonical form, in Hessenberg form, a constrained mechanical system, or a
triangular chain of systems for which the method works [82, Theorem 5.3]. The structural
preprocessing methods succeed for seven instances out of nine DAE problems in the test
set for IVP (initial value problem) solvers collected by Mazzia and Magherini [61].

However, it is also true that the structural preprocessing methods do not work for two
DAEs in the test set, which model electrical circuits describing the behavior of a transistor
amplifier and a ring modulator. Scholz [86] reports that the structural preprocessing
methods fail even for a DAE modeling a simple RLC circuit.

Here we investigate how the structural preprocessing methods fail. The failures are
classified into the following three scenarios:

(F1) The bipartite graph G(F ) has no perfect matching, or equivalently, the dual
problem D(F ) has no optimal solution.

(F2) The system Jacobian D with respect to an optimal solution of D(F ) is not iden-
tically singular on T× Ω but singular at all consistent points.

(F3) D is identically singular.

Example DAEs of the failures are shown in the following.
Example 6.17. Consider the following DAE:{

x1
2 + x2

2 = 0,
0 = 0.

(6.13)

The DAE (6.13) has a unique solution x1(t) = 0 and x2(t) = 0 for all t ∈ R. However, since
the bipartite graph G(F ) corresponding to (6.13) has no perfect matching, the structural
preprocessing methods cannot be applied to (6.13) due to (F1).
Remark 6.18. If we allow x1(t) and x2(t) to be complex-valued, solutions of the DAE (6.13)
becomes x1(t) = c(t) and x2(t) = s(t)c(t) for an arbitrary s : T→ {+i,−i} and c : T→ C.
This means that the solution set of the DAE (6.13) over C has the infinite degree of free-
dom. We conjecture that this happens for any DAEs over C with (F1). This is true for
(possibly time-varying) linear DAEs due to Proposition 5.6.
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Example 6.19. Consider the following DAE:{
x1

2 = 0,
x2

2 = 0.
(6.14)

The solution of (6.14) is the same as that of (6.13). The system Jacobian D with respect
to a dual optimal solution p = (0, 0) and q = (0, 0) is

D =
(

2x1 0
0 2x2

)
,

which is not identically singular on Ω = {(x1, x2) | x1, x2 ∈ R}. However, D is singular
at the unique consistent point (0, 0) of (6.14). Hence (6.14) does not satisfy the validity
condition of the Σ-method (and the MS-method) due to (F2).
Example 6.20. Consider the following DAE

ẋ1 + ẋ2 + x3 = 0,
ẋ1 + ẋ2 = 0,

x2 + ẋ3 = 0.
(6.15)

The system Jacobian D corresponding to a dual optimal solution p = (0, 0, 0) and q =
(1, 1, 1) is a singular constant matrix

D =

1 1 0
1 1 0
0 0 1

 .
Thus the DAE (6.15) is in the case of (F3).
Example 6.21. Consider the following index-1 nonlinear DAEF1 : ẋ1ẋ2 − 2 cos2 t = 0,

F2 : ẋ1
2ẋ2

2 + x1 + x2 − 4 cos4 t− 3 sin t− 2 = 0
(6.16)

given in [94, Section 5.3]. On this DAE, it holds d̂(F ) = 2. The system Jacobian with
respect to a dual optimal solution p = (0, 0) and q = (1, 1) is

D =
(

ẋ2 ẋ1
2ẋ1ẋ2

2 2ẋ1
2ẋ2

)
, (6.17)

which is identically singular. Hence (6.16) is also an example of (F3).
The structural preprocessing methods indeed fail for the DAE (6.2) representing the
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electrical network due to (F3). In this theses, we focus on (F3). The failure (F3) is
attributed to the fact that the structural preprocessing methods use only combinato-
rial information and ignore numerical and symbolic information of DAEs assuming that
nonzero entries in Jacobian matrices are generic. Then numerical or symbolic cancellations
inherent in the DAEs make the system Jacobian identically singular.

6.4 DAE Modification via Combinatorial Relaxation

This section explains methods to modify a DAE into an equivalent DAE without (F3), i.e.,
the system Jacobian is not identically singular. All methods are based on the combinatorial
relaxation framework.

6.4.1 Combinatorial Relaxation for Linear DAEs

Consider a linear DAE with constant coefficients A(s)x̃(s) = f̃(s) given in (6.10). As
seen in Example 6.9, the failure (F3) for this DAE is equivalent to the fact that A has a
singular tight coefficient matrix. Combinatorial relaxation algorithms for A modify A into
another polynomial matrix which is upper-tight (see Sections 1.2 and 4.2.1). Therefore, if
the modification on A can be translated into a modification on the DAE which preserves
the solution set, one can use the combinatorial relaxation algorithm for modifying DAEs
to resolve (F3).

We consider the following three types of equivalent operations for linear DAEs: (i)
multiplying a nonzero constant to an equation in the DAE, (ii) swapping two equations,
and (iii) adding an equation in the DAE or its (possibly higher-order) derivative multiplied
by a constant to another equation. The composition of these operations corresponds to a
unimodular transformation in the form of

U(s)A(s)x̃(s) = U(s)f̃(s),

where U(s) is a unimodular matrix, that is, an invertible matrix over R[s].
The original combinatorial relaxation algorithm by Murota [67] modifies A(s) into

U(s)A(s) for some unimodular matrix U(s). Therefore, by the above argument, Murota’s
algorithm can be used to modify linear DAEs to resolve (F3). Another combinatorial
relaxation algorithm by Murota [66] uses a modification A(s) 7→ U(s)A(s) with biproper
matrix U(s), which is an invertible matrix over R

[
s−1]. Since multiplying by biproper

matrices is an equivalent transformation of linear DAEs, the algorithm of [66] cannot be
applied to modify DAEs. Wu et al. [103] indicated that first-order linear DAEs can be
modified by the combinatorial relaxation algorithm of Iwata [47], which modifies A(s) :=
A0+A1s into UA(s)V for some U, V ∈ GLn(R). The right-multiplication of V is translated
in DAEs as a change of variable coordinates.
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6.4.2 Combinatorial Relaxation for Nonlinear DAEs

Tan et al. [94] observed that the modification method by the combinatorial relaxation can
be generalized to nonlinear DAEs as follows:

Combinatorial Relaxation for DAEs

Phase 1d. Compute an optimal solution (p, q) of D(F ). If D(F ) has no optimal
solution, the algorithm terminates with failure.

Phase 2d. If the system Jacobian D with respect to (p, q) is not identically singular,
return the DAE F = 0 and halt.

Phase 3d. Modify the DAE F = 0 into an equivalent DAE F̄ = 0 such that d̂(F̄ ) ≤
d̂(F )− 1. Go back to Phase 1d.

Since D(F ) has an optimal solution if and only if d̂(F ) ≥ 0, the above process ends
in at most d̂(F ) ≤ `n iterations. Therefore, given a DAE with (F3), the combinatorial
relaxation method returns an equivalent DAE without (F3) (or with (F1) if the method
has failed in Phase 1d; see Remark 6.18).

As an equivalent transformation for nonlinear DAEs in Phase 3d, the linear combina-
tion method (LC-method) of Tan et al. [94] replaces an equation in the DAE with a linear
combination of (differentiations of) other equations. We review the LC-method as follows.

Suppose that we have a DAE (1.4) and its dual optimal solution (p, q) such that the
system Jacobian D with respect to (p, q) is identically singular. First, we find a nonzero
vector u(t, x, ẋ, . . . ) = (ui)i∈R in the cokernel of D, namely, u is a row vector such that
uD is identically zero. Let suppu denote the support of u, i.e.,

suppu := {i ∈ R | ui is not identically zero}.

Take r ∈ suppu such that pr ≤ pi for all i ∈ suppu and put I := suppu \ {r}. Then we
replace the rth equation Fr = 0 of the DAE by F̄LC

r = 0, where

F̄LC
r := urFr +

∑
i∈I

uiF
(pi−pr)
i .

It is shown that this modification decreases the value of δ̂ if

σ(ui, xj) < qj − pr (6.18)

for all i ∈ R and j ∈ C [94, Theorem 4.1]. Intuitively, the condition (6.18) means that
the highest-order derivatives appear linearly in DAEs. For (possibly time-varying) linear
DAEs, (6.18) trivially holds since σ(ui, xj) = −∞ for all i, j.
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However, there still exist DAEs that violate the condition (6.18). Indeed, the DAE (6.16)
is such an example as shown in [94, Section 5.3]. While [94] also presents another modifica-
tion method called the expression substitution method (ES-method), it is also inapplicable
to (6.16).
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Chapter 7

Structural Modification for
Linear DAEs with Mixed Matrices

Linear DAEs arising from dynamical systems are naturally modeled by means of mixed
matrices, which distinguish between accurate constants and algebraically independent pa-
rameters. This chapter presents a combinatorial-relaxation based modification algorithm
for a linear DAE (6.10) such that A(s) is a mixed polynomial matrix. For such DAEs, we
need to carefully design a modification algorithm avoiding arithmetic operations on the
parameters.

In Section 7.1, we introduce an overview of mixed matrix theory. Then Section 7.2
presents our modification algorithm. Section 7.3 presents an improve algorithm for DAEs
with dimensionally consistent mixed polynomial matrices. The dimensional consistency
is a mathematical assumption on mixed matrices reflecting the principle of dimensional
homogeneity in physical systems. Section 7.4 illustrates two examples. Section 7.5 shows
results of numerical experiments. Finally, in Section 7.6, we discuss an application of the
presented algorithms to nonlinear DAEs.

7.1 DAEs with Mixed Matrices

Mixed matrices and mixed polynomial matrices are mathematical tools introduced by
Murota–Iri [72] for faithful model description in structural approach to systems analysis.
Based on matroid theory, efficient algorithms are provided to compute the rank of mixed
matrices and degree of minors of mixed polynomial matrices.

7.1.1 Mixed Matrices and Mixed Polynomial Matrices

Let L be a field and K a subfield of L. A typical setting in the context of DAEs is K = Q
and L is the extension field of Q obtained by adjoining the set of independent physical
parameters. A matrix T over L is said to be generic if the set of nonzero entries of T is
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algebraically independent over K. A mixed matrix with respect to L / K is a matrix in
the form of Q+T , where Q is a matrix over K and T is a generic matrix. A mixed matrix
A = Q + T is called a layered mixed matrix (or LM-matrix) if there exists a bipartition
{RQ, RT } of Row(A) such that all nonzero entries of Q and T are in rows RQ and RT ,
respectively. An LM-matrix can is expressed as A =

(
Q
T

)
.

A polynomial matrix A(s) = ∑`
d=0Ads

d over L is called a mixed polynomial matrix if
Ad is expressed as Ad = Qd + Td with Qd and Td satisfying the following:

(MP-Q) Each Qd is a matrix over K.

(MP-T) The set of nonzero entries of T0, . . . , T` is algebraically independent over K.

A layered mixed polynomial matrix (LM-polynomial matrix) is a mixed polynomial
matrix such that nonzero rows of Q(s) = ∑`

d=0Qds
d and T (s) = ∑`

d=0 Tds
d are disjoint.

An LM-polynomial matrix is expressed as A(s) =
(
Q(s)
T (s)

)
.

Example 7.1. Consider the linear DAE (6.2) representing the electrical network illus-
trated in Figure 6.2. The Laplace transform of (6.2) is given by

−1 −1 1
1 1 1 −1

1 1 −1
−1 −1 1

1 −1
R1 −1

R2 −1
sL −1

−1 sC

1





ξ̃1(s)
ξ̃2(s)
ξ̃3(s)
ξ̃4(s)
ξ̃5(s)
η̃1(s)
η̃2(s)
η̃3(s)
η̃4(s)
η̃5(s)



=



0
0
0
0
0
0
0
0
0

Ṽ (s)



. (7.1)

Here, x̃ =
(
ξ̃1, . . . , ξ̃5, η̃1, . . . , η̃5

)> is the Laplace transform of the vector
(
ξ1, . . . , ξ5, η1, . . . , η5

)>
of variables and Ṽ (s) is the Laplace transform of V (t) (we assumed that all state variables
and their derivatives were equal to 0 at t = 0 for simplicity). The coefficient matrix in (7.1)
is naturally regarded as a mixed polynomial matrix with independent parameters R1, R2,
L, and C since values of the parameters are supposed to be inaccurate.

7.1.2 Rank of LM-matrices

Let A =
(
Q
T

)
be an LM-matrix. If A has no accurate constants, i.e., A is a generic

matrix T , it holds that rank T = t-rank T from the independence of nonzero entries. From
this equality, we can compute rank T by solving a maximum matching problem on the
associated bipartite graph G(T ). For general LM-matrices, the following holds from the
generalized Laplace expansion.
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Proposition 7.2 ([73, Theorem 3.1]). For an LM-matrix A =
(
Q
T

)
with RQ = Row(Q),

RT = Row(T ) and C = Col(A), the following rank identity holds:

rankA = max{rankQ[RQ, J ] + t-rank T [RT , C \ J ] | J ⊆ C}. (7.2)

The problem of maximizing the right-hand side of (7.2) can be reduced to an inde-
pendent matching problem on a linear matroid (Example 3.5) and a free matroid (Exam-
ple 3.6), which is equivalent to the matroid intersection problem on a linear matroid and a
transversal matroid (Example 3.7); see [71, Section 4.2] for detail. The following identity
is obtained from Theorem 3.8.
Proposition 7.3 ([73, Theorem 3.1]). For an LM-matrix A =

(
Q
T

)
with RQ = Row(Q),

RT = Row(T ) and C = Col(A), the following rank identity holds:

rankA = min{rankQ[RQ, J ] + t-rank T [RT , J ] + |C \ J | | J ⊆ C}. (7.3)

Similarly, we give the following term-rank identity for LM-matrices, which will be used
later in the proof of Lemma 7.12.
Proposition 7.4. For an LM-matrix A =

(
Q
T

)
with RQ = Row(Q), RT = Row(T ) and

C = Col(A), the following term-rank identity holds:

t-rankA = min{t-rankQ[RQ, J ] + t-rank T [RT , J ] + |C \ J | | J ⊆ C}.

Proof. This immediately follows from the well-known rank formula of a union matroid [24]
and the fact that the union of transversal matroids is also a transversal matroid [78,
Corollary 11.3.8].

7.1.3 Dimensional Consistency

The principle of dimensional homogeneity claims that any equation describing a physical
phenomenon must be consistent with respect to physical dimensions. In order to reflect
the dimensional consistency in conservation laws of dynamical systems, Murota [63] intro-
duced a class of mixed polynomial matrices A(s) = Q(s) + T (s) that satisfy the following
condition.

(MP-DC) Q(s) is written as

Q(s) = diag(s−λ1 , . . . , s−λm)Q(1) diag(sµ1 , . . . , sµn) (7.4)

for some integers λ1, . . . , λm and µ1, . . . , µn.

A mixed polynomial matrix satisfying 7.1.3 is said to be dimensionally consistent. We ab-
breviate a dimensionally consistent mixed polynomial matrix and a dimensionally consis-
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tent LM-polynomial matrix to a DCM-polynomial matrix and a DCLM-polynomial matrix,
respectively.
Example 7.5. Let A(s) = Q(s) + T (s) be the coefficient matrix of the DAE (7.1). Since
Q(s) is a constant matrix, A(s) is a DCM-polynomial matrix with all λi and µj being 0.
Note that (λ, µ) is not uniquely determined; the values

λ = (0, 0,−3,−3,−3,−3,−3,−3, 0,−3), µ = (0, 0, 0, 0, 0,−3,−3,−3,−3,−3) (7.5)

also satisfy (7.4).
The condition 7.1.3 can be “derived” from physical observations as follows. Suppose

that a DAE A(s)x̃(s) = f̃(s) arises from a dynamical system and the ith equation and
the jth variable have physical dimensions Xi and Yj , respectively. For example, in the
DAE (7.1), the first, second, and ninth equations have the dimension of current and others
have the dimension of voltage. Similarly, the first five variables ξ̃1, . . . , ξ̃5 of (7.1) have the
dimension of current and the last five variables η̃1, . . . , η̃5 have the dimension of voltage.
Then the dimension of each nonzero entry Ai,j(s) of A(s) must be XiY

−1
j according to

the principle of dimensional homogeneity. An important physical observation here is that
all the nonzero coefficients of entries in Q(s) are naturally regarded as dimensionless
because they typically represent coefficients of conservation laws. In addition, since the
indeterminate s corresponds to the time derivative, its dimension is the inverse T−1 of the
dimension T of time. Thus if Qi,j(s) 6= 0, then Qi,j(s) must be a monomial Qi,j(1)sdi,j

of dimension T−di,j with di,j = degQi,j(s). Let λi, µj ∈ Q such that Xi and Yj are
decomposed asXi = TλiX ′i and Yj = TµjY ′j , whereX ′i and Y ′j are physical dimensions that
are not relevant to T in a using system of measurement. Now it holds T−di,j = XiY

−1
j =

Tλi−µjX ′iY
′−1
j for i ∈ R and j ∈ C with Qi,j(s) 6= 0. This implies di,j = −λi+µj and thus

we have Qi,j(s) = Qi,j(1)s−λi+µj for all i ∈ R and j ∈ C. This is equivalent to 7.1.3 if
every λi and µj are integral. Even if not, we can take integral (λ′, µ′) satisfying (7.4) [71,
Theorem 2.2.35(2)]. See [71, Section 3] for more detail.

As described above, λi and µj can be taken as the exponents of T in the physical
dimensions of the ith equation and the jth variable (if they are integral). In fact, the
value (7.5) is taken from the DAE (7.1) in this way as the dimension of voltage is expressed
as L2T−3MI−1 by the SI base units, where L,M, and I are dimensions of length, mass, and
current, respectively.

7.2 Algorithm Description

7.2.1 Overview

Consider a linear DAE (6.10) such that A(s) is a nonsingular mixed polynomial matrix.
As described in Section 6.4.1, our goal is to find a unimodular matrix U(s) such that



7.2. Algorithm Description 89

Ā(s) := U(s)A(s) is upper-tight. We emphasize again that the combinatorial relaxation
algorithm by Iwata–Takamatsu [46] for mixed polynomial matrices cannot be used as a
DAE modification because their algorithm modify matrices by biproper transformations.

Our first step is to convert a given DAE into another DAE whose coefficient matrix
A(s) is an LM-polynomial matrix expressed as A(s) =

(
Q(s)
T (s)

)
. Then we can transform

A(s) to

Ā(s) :=
(
UQ(s) O

O ImT

)(
Q(s)
T (s)

)
, (7.6)

where UQ(s) is a unimodular matrix. Note that we are allowed to perform row operations
only on Q(s) even for an LM-polynomial matrix A(s) =

(
Q(s)
T (s)

)
, and thus we cannot

always reduce the index to 1 only by row operations on Q(s). We describe this conversion
process from mixed polynomial matrices into LM-polynomial matrices in Section 7.2.2.

We then apply the combinatorial relaxation algorithm to A(s) in accordance with
the phases given in Sections 1.2 and 4.2.1. First, we obtain a nonnegative dual optimal
solution (p, q) whose each entry is bounded by `n; we describe an algorithm to obtain such
(p, q) in Section 7.2.3. In Phase 2, we check the upper-tightness of A(s) by checking the
nonsingularity of the tight coefficient matrix by Proposition 4.7. Since the tight coefficient
matrix of A(s) is an LM-matrix, we can compute its rank by solving an independent
matching problem [73]. The matrix modification and an update procedure of (p, q) in
Phase 3 are explained in Sections 7.2.4 and 7.2.5, respectively. Finally, Section 7.2.6
analyzes the time complexity of our algorithm.

7.2.2 Reduction to LM-polynomial Matrices

We first convert the DAE (6.10) of size n with a mixed polynomial coefficient matrix
A(s) = Q(s) + T (s) into the following augmented DAE(

In Q(s)
−D DT (s)

)(
ỹ(s)
z̃(s)

)
=
(
f̃(s)

0

)
, (7.7)

whereD is the diagonal matrix whose diagonal entries are independent parameters τ1, . . . , τn.
Note that the coefficient matrix of the augmented DAE (7.7) can be regarded as an LM-
polynomial matrix as the set of nonzero coefficients of entries in −D and DT (s) is alge-
braically independent.
Proposition 7.6. Let

(
ỹ(s)
z̃(s)

)
be a solution of the DAE (7.7). Then z̃(s) is a solution of

the DAE (6.10).
Proof. By left-multiplying both sides of (7.7) by a nonsingular constant matrix

(
In O
In D−1

)
,
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we obtain (
In Q(s)
O A(s)

)(
ỹ(s)
z̃(s)

)
=
(
f̃(s)
f̃(s)

)
.

Thus it holds A(s)z̃(s) = f̃(s), which implies that z̃(s) is a solution of the DAE (6.10).
After preprocessing, we need to fill independent parameters by real numbers to start

numerical methods. Indeed, we can substitute 1 for each diagonal entry τi of D, i.e.,
D = In. To explain this fact, let

B(s) :=
(
Q1(s) Q2(s)
−D DT (s)

)
(7.8)

be the coefficient matrix of a DAE that our algorithm returns for the augmented DAE (7.7),
where Q1(s) and Q2(s) are some polynomial matrices. By substituting the identity matrix
to D, we obtain

B̄(s) :=
(
Q1(s) Q2(s)
−In T (s)

)
. (7.9)

Though B̄(s) is no longer an LM-polynomial matrix, the following lemma guarantees the
upper-tightness of B̄(s).
Lemma 7.7. Let Q1(s), Q2(s), and T (s) are polynomial matrices and D a nonsingular
diagonal matrix. Then B(s) in (7.8) is upper-tight if and only if B̄(s) in (7.9) is upper-
tight.
Proof. Using P :=

(
In O
O D−1

)
, we have B̄(s) = PB(s). Since P is a nonsingular constant

matrix, d(B) = d(B̄) holds. In addition, since P is nonsingular, diagonal, and constant,
the row transformation by P does not change the bipartite graph G(B) and its edge weight
ce associated with B(s). This fact implies that d̂(B) = d̂(B̄). Thus the upper-tightness of
B(s) and B̄(s) are equivalent.

From this lemma, we can “forget” the existence of D in the augmented DAE (7.7).
That is, to modify the DAE (6.10) with A(s) = Q(s) + T (s), it suffices to apply our
algorithm to a DAE (

In Q(s)
−In T (s)

)(
ỹ(s)
z̃(s)

)
=
(
f̃(s)

0

)
(7.10)

as if the set of nonzero coefficients of entries in
(
−In T (s)

)
were independent.
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Example 7.8. Consider the index-2 DAE(
1 s+ α1
−1 −s+ α2

)(
x̃1(s)
x̃2(s)

)
=
(
f̃1(s)
f̃2(s)

)
, (7.11)

where α1 and α2 are independent parameters. Following (7.10), we convert this DAE into
1 1 s

1 −1 −s
−1 α1

−1 α2



ỹ1(s)
ỹ2(s)
z̃1(s)
z̃2(s)

 =


f̃1(s)
f̃2(s)

0
0

 . (7.12)

Then we can obtain a solution (x̃1(s), x̃2(s)) of (7.11) by solving the augmented DAE (7.12).
While the index of (7.12) is also 3, in general this conversion does not preserve the index
of DAEs.

7.2.3 Construction of Dual Optimal Solution

Let A(s) be an n × n nonsingular LM-polynomial matrix with R = Row(A) and C =
Col(A), and let ` be the maximum degree of an entry in A(s). An optimal solution (p, q)
of DA satisfying 0 ≤ pi ≤ `n and 0 ≤ qj ≤ `n for all i ∈ R and j ∈ C is constructed as
follows.

Let G(A) = (R ∪ C,E(A)) be the bipartite graph given in Section 4.2.1 and ce = ci,j
be the weight of an edge e = {i, j} ∈ E(A). First, we obtain a maximum-weight perfect
matching M ⊆ E(A) in G(A) by the Hungarian method [55]. Next, construct a residual
graph GM = (W,EM ) with W = R ∪ C ∪ {r} and EM = E◦ ∪M ∪ Z, where r is a new
vertex, E◦ = {(j, i) | (i, j) ∈ E(A)}, and Z = {(r, i) | i ∈ R}. The arc length γ : EM → Z
of GM is defined by

γ(i, j) :=


−cj,i ((i, j) ∈ E◦),
+ci,j ((i, j) ∈M),
0 ((i, j) ∈ Z)

for each (i, j) ∈ EM .
Lemma 7.9. For the residual graph GM defined above, the following hold:

(1) All vertices are reachable from r.

(2) There is no negative-weight directed cycle with respect to γ.

Proof. (1) Every vertex i ∈ R is reachable from r through an edge (r, i) ∈ Z. In addition,
since G(A) has a perfect matching M , every vertex j ∈ C is also reachable from r via
i ∈ R through edges (r, i) ∈ Z and (i, j) ∈M ⊆ E(A).
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(2) This immediately follows from an optimality criterion [53, Theorem 9.6] of the
minimum cost flow problem.

For i, j ∈ W such that i is reachable to j, let d(i, j) denote the length of a shortest
path from i to j with respect to the arc length γ in GM . Lemma 4.4 guarantees that
d(r, v) is defined for all v ∈W . Using d, we define

pi := d(r, i)− min
i∗∈R

d(r, i∗), (7.13)

qj := d(r, j)− min
i∗∈R

d(r, i∗) (7.14)

for each i ∈ R and j ∈ C.
The next lemma is easily shown in almost the same way as the case for ` = 1 in [48,

Lemma 2.2].
Lemma 7.10. Let (p, q) be defined in (7.13) and (7.14). Then (p, q) is an optimal solution
of D(A) satisfying 0 ≤ pi ≤ `n for each i ∈ R and 0 ≤ qj ≤ `n for each j ∈ C.
Proof. First, we prove that (p, q) is a feasible solution of DA. By the definition of (p, q),
every pi (i ∈ R) and qj (j ∈ C) are clearly integer. For each (i, j) ∈ E(A), it holds
d(r, i) ≤ d(r, j)− ci,j . Thus

qj − pi = d(r, j)− d(r, i) ≥ ci,j

and this implies that (p, q) is a feasible solution of DA.
We second show the optimality of (p, q). For each (i, j) ∈ M , since (i, j) ∈ EM and

(j, i) ∈ EM , we obtain

qj − pi = d(r, j)− d(r, i) = ci,j .

Thus it holds that∑
j∈C

qj −
∑
i∈R

pi =
∑
j∈C

d(r, j)−
∑
i∈R

d(r, i) =
∑

(i,j)∈M
(d(r, j)− d(r, i)) =

∑
(i,j)∈M

ci,j

which implies that (p, q) is optimal to D(A).
Finally, we give the lower and upper bounds on pi and qj . The non-negativity of pi

clearly follows from the definition of pi. In addition, since G(A) has a perfect matching,
each j ∈ C is incident to at least one vertex i ∈ R on G(A). Thus we obtain qj ≥
pi + ci,j ≥ 0 by pi, ci,j ≥ 0. Let i∗ ∈ R denote a vertex such that d(r, i∗) ≤ d(r, i) for
all i ∈ R. Fix j ∈ C. Let Pj ⊆ EM and Pi∗ ⊆ EM be shortest paths from r to j and
i∗, respectively. Let v ∈ W be the last common vertex in Pj and Pi∗ . Then it holds
qj = d(r, j) − d(r, i∗) = d(v, j) − d(v, i∗). Let Qj ⊆ Pj and Qi∗ ⊆ Pi∗ denote subpaths
from v to j and i∗, respectively. Note that d(v, j) is at most ` times the number of edges
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in E(A) on Qj , whereas −d(v, i∗) is at most ` times the number of edges in M◦ on Qi∗ .
The sum of these upper bounds is at most `n since Qi∗ and Qj do not share the same
vertex besides v. Thus qj ≤ `n holds for each j ∈ C. In addition, for each i ∈ R, we have
pi ≤ qj − ci,j ≤ qj ≤ `n, where j ∈ C is incident to i in M .
Example 7.11. Consider the coefficient matrix

A(s) =


1 1 s

1 −1 −s
−1 α1

−1 α2

 (7.15)

in the DAE (7.12). An optimal solution of the assignment problem P(A) is given by

M = {(1, 3), (2, 4), (3, 1), (4, 2)}

with optimal value d̂(A) = 1. According to (7.13) and (7.14), a dual optimal solution
(p, q) is calculated as p = (0, 0, 0, 0) and q = (0, 0, 0, 1).

7.2.4 Matrix Modification

Let A(s) =
(
Q(s)
T (s)

)
be an n × n nonsingular LM-polynomial matrix that is not upper-

tight. Let A# =
(
Q#

T#

)
be the tight coefficient matrix with respect to an optimal solution

(p, q) of D(A). Without loss of generality, we assume that Row(Q) = RQ = [mQ] and
p1 ≤ · · · ≤ pmQ , where mQ := |RQ|.

Recall the rank identity (7.3). Let J∗ ⊆ C be a column subset that minimizes the
right-hand side of the identity for A#, i.e., it holds

rankA# = rankQ#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|. (7.16)

Such J∗ is called a minimizer of (7.3). By a row transformation of Q#, we obtain a matrix
Q̄# = UQ# such that

rank Q̄#[RQ, J∗] = t-rank Q̄#[RQ, J∗]. (7.17)

In particular, this transformation can be accomplished only by operations of adding a
scalar multiple of a row i ∈ RQ to another row j ∈ RQ with pi > pj . Then the matrix
U is upper-triangular due to the order of rows in RQ. This is the forward elimination on
Q̄#[RQ, J∗] with the order of the rows reversed. Consider

UQ(s) = diag
(
s−p1 , . . . , s−pmQ

)
U diag

(
sp1 , . . . , spmQ

)
, (7.18)

where diag(a1, . . . , an) denotes a diagonal matrix with diagonal entries a1, . . . , an. Note
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that each entry in UQ(s) is a polynomial because U is upper-triangular. In addition, since
detUQ(s) = detU is a nonzero constant, UQ(s) is unimodular.

Recall that D(sp) = diag(sp1 , . . . , spn) and D(sq) = diag(sq1 , . . . , sqn). Using UQ(s),
we update A(s) to Ā(s) as in (7.6):

Ā(s) =
(
UQ(s) O

O ImT

)
A(s) = D

(
s−p

)(U O

O ImT

)
D(sp)A(s), (7.19)

where mT := |Row(T )|.
Lemma 7.12. Let A(s) =

(
Q(s)
T (s)

)
be an n× n nonsingular LM-polynomial matrix that is

not upper-tight, and A# =
(
Q#

T#

)
the tight coefficient matrix with respect to an optimal

solution (p, q) of D(A). Then for the LM-polynomial matrix Ā(s) defined in (7.19), the
value (p, q) is feasible on D(Ā) but not optimal.
Proof. Consider a rational function matrix

H(s) := D(sp)Ā(s)D
(
s−q

)
. (7.20)

For each i ∈ R and j ∈ C, it holds that degHi,j(s) = c̄i,j +pi−qj , where c̄i,j = deg Āi,j(s).
By substituting (7.19) into (7.20), we obtain

H(s) =
(
U O

O ImT

)
D(sp)A(s)D

(
s−q

)
=
(
U O

O ImT

)(
A# +A∞(s)

)
,

where A∞(s) is a matrix whose entries are polynomials in s−1 without constant terms.
Hence for each i ∈ R and j ∈ C, it holds degHi,j(s) ≤ 0, which implies c̄i,j ≤ qj − pi.
Therefore (p, q) is feasible on D(Ā).

Next, we show that (p, q) is not optimal to D(Ā). From (7.19), the tight coefficient
matrix Ā# of Ā(s) with respect to (p, q) is

Ā# =
(
U O

O ImT

)
A# =

(
Q̄#

T#

)
, (7.21)

where Q̄# = UQ#. From Proposition 7.4 and (7.17), it holds

t-rank Ā# = min
{
t-rank Q̄#[RQ, J ] + t-rank T#[RT , J ] + |C \ J |

∣∣ J ⊆ C}
≤ t-rank Q̄#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|
= rank Q̄#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗|.

Now since Q#[RQ, J∗] and Q̄#[RQ, J∗] = UQ#[RQ, J∗] have the same rank, we obtain

t-rank Ā# ≤ rankQ#[RQ, J∗] + t-rank T#[RT , J∗] + |C \ J∗| = rankA#,
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where the last equality comes from (7.16). In addition, since rank Ā# = rankA# from (7.21),
we have t-rank Ā# ≤ rank Ā#, which implies t-rank Ā# = rank Ā# = rankA#. Further-
more, since A(s) is not upper-tight, we have rankA# < n by Proposition 6.7. Thus,
t-rankA# = rankA# < n holds. It then follows from Proposition 6.7 again that (p, q) is
not optimal to D(Ā).

From Lemma 7.12 and the unimodularity of UQ(s), we obtain the following.
Corollary 7.13. Let A(s) =

(
Q(s)
T (s)

)
be an n× n nonsingular LM-polynomial matrix that

is not upper-tight, and Ā(s) the LM-polynomial matrix defined in (7.19). Then d̂(Ā) ≤
d̂(A)− 1 and d(A) = d(Ā) hold.
Example 7.14. Consider the LM-polynomial matrix (7.15) again. The tight coefficient
matrix A# with respect to p = (0, 0, 0, 0) and q = (0, 0, 0, 1) is

A# =
(
Q#

T#

)
=


1 1 1

1 −1 −1
−1

−1

 ,

where the row sets RQ of Q# and RT of T# correspond to the first and last two rows in
A#, respectively. A minimizer J∗ ⊆ C is the set of the right two columns as follows:

A# =

C\J∗︷ ︸︸ ︷ J∗︷ ︸︸ ︷


1 1 1
}
RQ1 −1 −1

−1
}
RT−1

.

Then the rank of A# is calculated by (7.16) as Q#[RQ, J∗] + T#[RT , J∗] + |C \ J∗| =
1 + 0 + 2 = 3. Since A# is not upper-tight, we need to modify A(s). By performing

Gaussian elimination on Q#[RQ, J∗] =
(

1 1
−1 −1

)
, we obtain

Q̄#[RQ, J∗] = UQ#[RQ, J∗] =
(
−1 −1

)
,

where U =
(

1 1
1

)
. The unimodular matrix UQ(s) defined by (7.18) coincides with U
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since all pi are 0. According to (7.19), we update A(s) into

Ā(s) =
(
UQ(s) O

O ImT

)
A(s) (7.22)

=


1 1

1
1

1




1 1 s

1 −1 −s
−1 α1

−1 α2

 =


1 1

1 −1 −s
−1 α1

−1 α2

 .

7.2.5 Dual Updates

Let (p, q) be a feasible solution of D(Ā). We obtain an optimal solution of D(Ā) by
iterating the following procedure.

Let Ā# be the tight coefficient matrix of Ā(s) with respect to (p, q). First we check
t-rank Ā# = n or not. If it is, (p, q) is an optimal solution of D(Ā) from Proposition 4.6
and we are done. Otherwise, we construct a feasible solution (p′, q′) of D(Ā) such that the
difference of the objective values is negative. Let G# := G

(
A#) be the associated bipartite

graph with A#. Since (p, q) is not optimal, G# has no perfect matching by Proposition 3.3.
This means that G# has a vertex cover S ⊆ R ∪ C with |S| < n by Theorem 3.1. Using
this S, we define (p′, q′) as follows:

p′i :=

pi (i ∈ R ∩ S)
pi + 1 (i ∈ R \ S)

, q′j :=

qj + 1 (j ∈ C ∩ S)
qj (j ∈ C \ S)

(7.23)

for i ∈ R and j ∈ C. The following lemma is a version of Lemma 4.13.
Lemma 7.15. Let (p, q) be a feasible but not optimal solution of D(Ā) and (p′, q′) defined
in (7.23). Then (p′q′) is feasible to D(Ā) and the objective value of (p′, q′) is less than that
of (p, q).

We update (p, q) to (p′, q′), and go back to the optimality checking. From Lemma 7.15,
it is guaranteed that (p, q) becomes an optimal solution of D(Ā) by iterating the update
process above.
Example 7.16. Consider the modified LM-polynomial matrix (7.22). The tight coefficient
matrix Ā# of Ā(s) with respect to p = (0, 0, 0, 0) and q = (0, 0, 0, 1) is

A# =


1 1

1 −1 −1
−1

−1

 .

Let S be the set of the first and second columns and the second row of A#. Then S is
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a vertex cover of G# with |S| < 4. Following (7.23), we update (p, q) to p′ = (1, 0, 1, 1)
and q′ = (1, 1, 0, 1). We then go back to Phase 2 for Ā(s). It is indeed confirmed in the
next iteration that Ā(s) is upper-tight, and thus the iteration ends at this point. We can
obtain a low-index DAE by applying the MS-algorithm.

7.2.6 Complexity Analysis

This section is devoted to complexity analysis. The dominating part in our algorithm is
the matrix multiplications in (7.19).

Let A(s) be an n× n nonsingular LM-polynomial matrix and A# the tight coefficient
matrix with respect to an optimal solution (p, q) of D(A). From the definition of A#, we
can express A(s) as

A(s) = D
(
s−p

)(
A# +

K∑
k=1

s−kVk

)
D(sq) (7.24)

for some K matrices V1, V2, . . . , VK with VK 6= O. By (7.19) and (7.24), we have

Ā(s) = D
(
s−q

)(U O

O ImT

)(
A# +

K∑
k=1

s−kVk

)
D(sq).

Therefore, we can compute Ā(s) by performing K + 1 constant matrix multiplications.
By VK 6= O, there exist i ∈ R and j ∈ C such that the (i, j) entry in VK is nonzero.

Then the degree of the corresponding term in Ai,j(s) is equal to qj − pi−K. Since Ai,j(s)
is a polynomial, we have qj − pi −K ≥ 0, which implies K ≤ qj − pi ≤ qj . The following
lemma bounds pi and qj at any iteration of our algorithm.
Lemma 7.17. During the algorithm, the values pi and qj are at most 2`n for i ∈ R and
j ∈ C, where ` is the maximum degree of an entry in A(s).
Proof. From Lemma 7.10, the initial values of pi and qj are bounded by `n. In every
update of (p, q), the values pi and qj increase by at most one from the update rule (7.23).
In addition, (p, q) is updated at most d̂(A)− d(A) ≤ `n times because the objective value∑
j∈C qj−

∑
i∈R pi of the dual problem decreases by at least one in every update. Therefore,

at any iteration of the algorithm, it holds pi, qj ≤ `n+ d̂A ≤ `n+ `n = 2`n.
The time complexity of our algorithm is as follows. Recall that ω denotes the exponent

of the time complexity of matrix multiplication.
Theorem 7.18. Let A(s) be an n× n nonsingular LM-polynomial matrix and ` the max-
imum degree of an entry in A(s). Then our algorithm runs in O

(
`2nω+2)-time.

Proof. Phase 1 can be done in O
(
n3)-time by the Hungarian method [55] and shortest

path algorithms such as the Bellman–Ford algorithm. Consider the time complexity in
every iteration of Phases 2 and 3. In Phase 2, the nonsingularity of the tight coefficient
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matrix A# can be checked via the rank identity (7.3). Thus an efficient way is to obtain
a minimizer J∗ of (7.3) before Phase 2, and then check the nonsingularity of A# by (7.3).
The minimizer J∗ can be found from a residual graph constructed by an augmenting
path type algorithm [73], which runs in O

(
n3 logn

)
-time [18]. The computation of Ā(s)

in Phase 3 can be done in O(Nnω) = O
(
maxj∈C qjnω

)
= O

(
`nω+1)-time from Lemma 7.17,

where (p, q) is a dual optimal solution of D(A) and N is in (7.24). In addition, since the
number of iterations of Phases 2 and 3 is at most d̂(A)− d(A) ≤ `n, the running time in
Phases 2 and 3 is O

(
`2nω+2). Finally, the updates of (p, q) run in O

(
`n4)-time: (p, q) is

updated at most d̂(A) ≤ `n times, and in every update, we can find a vertex cover in O
(
n3)-

time by the Ford–Fulkerson algorithm. Thus the total running time is O
(
`2nω+2).

7.3 Exploiting Dimensional Consistency

This section improves the matrix modification procedure in Phase 3 for DCLM-polynomial
matrices preserving their dimensional consistency.

Let A(s) =
(
Q(s)
T (s)

)
be a DCLM-polynomial matrix with RQ = Row(Q), RT = Row(T )

and C = Col(A). Let (p, q) be an optimal solution of D(A). For k ∈ Z, let

Rk = {i ∈ RQ | pi − λi = k}, Ck = {j ∈ C | qj − µj = k}. (7.25)

If Qi,j(s) 6= 0, then we have ci,j ≤ qj − pi from the feasibility of (p, q) and ci,j = µj − λi
by (7.4). Hence pi − λi ≤ qj − µj follows, which implies i ∈ Rh if and only if j ∈ Ck with
h ≤ k. Thus, it holds Q(s)[Rh, Ck] = O for integers h, k ∈ Z with h > k. Namely, Q(s)
forms a block triangular matrix.

Let A# =
(
Q#

T#

)
denote the tight coefficient matrix with respect to (p, q). From the

definition of the tight coefficient matrix, Q# forms a block diagonal matrix as

Q# =



C−1 C0 C1 C2
. . .

R−1 Q#
−1

R0 Q#
0

R1 Q#
1

R2 Q#
2

. . .


,

where Q#
k = Q#[Rk, Ck] for k ∈ Z.

Let J∗ ⊆ C be a minimizer of the rank identity (7.3) for A#. Sorting rows in ascending
order of p, the matrix modification process described in Section 7.2.4 finds a nonsingular
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upper-triangular matrix U such that

rankUQ#[RQ, J∗] = t-rankUQ#[RQ, J∗]. (7.26)

For a DCLM-polynomial matrix, supposing that rows in Rk are sorted in ascending order
of p, we find a nonsingular upper-triangular matrix Uk such that

rankUkQ#
k [Rk, Ck ∩ J∗] = t-rankUkQ#

k [Rk, Ck ∩ J∗]

for k ∈ Z. Then U = diag(. . . , U−1, U0, U1, U2, . . .) satisfies (7.26).
For k ∈ Z, let Pk(s) be a diagonal polynomial matrix with Row(Pk) = Col(Pk) = Rk

whose (i, i) entry is spi for each i ∈ Rk. Then we have

D(sp) = diag(. . . , P−1(s), P0(s), P1(s), P2(s), . . .).

Now the unimodular matrix UQ(s) defined in (7.18) can be written as

UQ(s) = D
(
s−p

)
diag(. . . , U−1, U0, U1, U2, . . .)D(sp)

= D
(
s−p

)
diag(. . . , U−1P−1(s), U0P0(s), U1P1(s), U2P2(s), . . .). (7.27)

Then we update A(s) into Ā(s) =
(
UQ(s)Q(s)

T (s)

)
as written in (7.19).

Lemma 7.19. Let A(s) =
(
Q(s)
T (s)

)
be an n × n DCLM-polynomial matrix. Then Ā(s) =(

UQ(s)Q(s)
T (s)

)
is also dimensionally consistent.

Proof. Let λ1, . . . , λmQ and µ1, . . . , µn defined in (7.4) for A(s), wheremQ = |Row(Q|). For
k ∈ Z, let Rk and Ck defined in (7.25), and let Λk(s) denote a diagonal polynomial matrix
with Row(Λk) = Col(Λk) = Rk whose (i, i) entry is sλi for each i ∈ Rk, and D(sµ) =
diag(sµ1 , . . . , sµn). Then the condition (7.4) for dimensional consistency is written as

Q(s) = diag
(
. . . ,Λ−1

−1(s),Λ−1
0 (s),Λ−1

1 (s),Λ−1
2 (s), . . .

)
Q(1)D(sµ). (7.28)

Combining (7.27) and (7.28), we obtain

UQ(s)Q(s)
= P−1(s) diag

(
. . . , U−1P−1(s)Λ−1

−1(s), U0P0(s)Λ−1
0 (s), U1P1(s)Λ−1

1 (s), . . .
)
Q(1)D(sµ)

= P−1(s) diag
(
. . . , s−1U−1, U0, sU1, s

2U2, . . .
)
Q(1)D(sµ)

= diag
(
. . . , s−1P−1

−1 (s), P−1
0 (s), sP−1

1 (s), s2P−1
2 (s), . . .

)
UQ(1)D(sµ), (7.29)

where we used Pk(s)Λ−1
k (s) = skI for k ∈ Z. From (7.29), Ā(s) is also dimensionally

consistent.
For a DCLM-polynomial matrix A(s), we can compute Ā(s) = U(s)A(s) only by
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one constant matrix multiplication UQ(1) from (7.29), whereas a general LM-polynomial
matrix needs O(`n) multiplications. This improves the total running time as follows.
Theorem 7.20. Let A(s) be an n × n nonsingular DCLM-polynomial matrix and ` the
maximum degree of an entry in A(s). Then our algorithm for A(s) runs in O

(
`n4 logn

)
-

time.
Proof. For each iteration of Phases 2 and 3, the computation of Ā(s) in Phase 3 can be
done in O(nω)-time. The most expensive part is the nonsingularity checking for a tight
coefficient matrix in Phase 2, which requires O

(
n3 logn

)
-time [18, 73]. Since the number

of iterations of Phases 2 and 3 is at most d̂(A)− d(A) ≤ `n, the running time of Phases 2
and 3 is O

(
`n4 logn

)
. We can check that other processes run in O

(
`n4 logn

)
-time as in

the proof of Theorem 7.18.

7.4 Examples

We give two examples below. The first example is a simple index-4 DAE and the sec-
ond example is the DAE (7.1) representing the electrical network shown in Figure 6.2.
Throughout the execution of our algorithm, it is emphasized that: (i) we only use combi-
natorial operations and numerical calculations over rational numbers (over integers in the
following examples), and (ii) we do not reference values of physical quantities.

7.4.1 Example of High-index DAE

The first example is the following index-4 DAE

ẍ1 − ẋ1 + ẍ2 − ẋ2 + x4 = f1(t),
ẍ1 + ẍ2 + x3 = f2(t),

α1x2 + α2ẍ3 + α3ẋ4 = f3(t),
α4x3 + α5ẋ4 = f4(t)

(7.30)

with independent parameters α1, . . . , α5 and smooth functions f1, . . . , f4. The coefficient
matrix A(s) =

(
Q(s)
T (s)

)
corresponding to (7.30) is an LM-polynomial matrix given by

A(s) =


s2 − s s2 − s 1
s2 s2 1

α1 α2s
2 α3s

α4 α5s

 . (7.31)

The row sets RQ of Q(s) and RT of T (s) correspond to the first and last two rows in
A(s), respectively. Since d(A) = deg

(
−α1α5s

3 − α1α4s
2 + α1α5s

2) = 3 and d̂(A) = 7, the
structural preprocessing methods are not applicable to the DAE. This fact will be verified
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in our algorithm.
Let us apply our algorithm to (7.31). First, we find a dual optimal solution p =

(0, 0, 0, 0) and q = (2, 2, 2, 1). The corresponding tight coefficient matrix A# =
(
Q#

T#

)
is

A# =


1 1
1 1

α2 α3
α5

 .

A minimizer J∗ of (7.3) for A# is a set of the first two columns as follows:

A# =

J∗︷ ︸︸ ︷ C\J∗︷ ︸︸ ︷


1 1
}
RQ1 1

α2 α3
}
RT

α5

.

Then we can check that rankA# = Q#[RQ, J∗] + T#[RT , J∗] + |C \ J∗| = 1 + 0 + 2 =
3 < 4, which implies that A(s) is not upper-tight. We convert Q#[RQ, J∗] = ( 1 1

1 1 ) by the
backward elimination into

Q̄#[RQ, J∗] = UQ#[RQ, J∗] =
(

1 1

)
,

where U =
( 1 −1

1
)
. Using UQ(s) = U , the LM-polynomial matrix A(s) is modified to

A′(s) =


1 −1

1
1

1

A(s) =


−s −s −1 1
s2 s2 1

α1 α2s
2 α3s

α4 α5s

 .

The dual solution is updated to p′ = (1, 0, 0, 1) and q′ = (2, 2, 2, 2), and the corresponding
tight coefficient matrix A′# =

(
Q′#

T ′#

)
of A′(s) is

A′# =


−1 −1
1 1

α2
α5

 .

The minimizer J∗ that we used above also minimizes the right-hand side of the rank
identity (7.3) for A′#. Since A′# is still singular, we go on the modification. Noting the
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order of rows, we transform Q′#[RQ, J∗] =
(−1 −1

1 1
)
by U ′ = ( 1

1 1 ) into

Q̄′#[RQ, J∗] = U ′Q′#[RQ, J∗] =
(
−1 −1

)
.

We have U ′Q(s) = diag
(
s−1, 1

)
U ′ diag(s, 1) = ( 1

s 1 ), and modify A′(s) to

A′′(s) =


1
s 1

1
1

A′(s) =


−s −s −1 1

−s+ 1 s

α1 α2s
2 α3s

α4 α5s

 .

The dual solution is updated to p′′ = (1, 3, 2, 3) and q′′ = (2, 2, 4, 4). Our algorithm halts
at this point since A′′(s) is upper-tight, which can be checked through the nonsingularity
of the tight coefficient matrix A′′# again. Now d(A) is computed as d(A) = d(A′′) =
d̂(A′′) = 3. The resulting DAE is

−ẋ1 − ẋ2 − x3 + x4 = f1(t)− f2(t),
−ẋ3 + x3 + ẋ4 = ḟ1(t)− ḟ2(t) + f2(t),

α1x2 + α2ẍ3 + α3ẋ4 = f3(t),
α4x3 + α5ẋ4 = f4(t),

(7.32)

which is index 2. An index-1 DAE is obtained by applying the MS-algorithm to the
DAE (7.32).

7.4.2 Example from Electrical Network

The next example is the DAE (7.1) representing the electrical network in Figure 6.2. Since
the coefficient matrix A(s) is not LM-polynomial, it seems that we cannot directly apply
our algorithm to A(s). However, since each of the last five rows in A(s) do not contain
two or more accurate constants, we can convert A(s) into an LM-polynomial matrix by
multiplying an independent parameter to each of the rows. In addition, by the same logic to
Lemma 7.7, our algorithm works without actually multiplying the independent parameters
by regarding nonzero entries in the last five rows as independent parameters. Thus we see
A(s) as an LM-polynomial matrix A(s) =

(
Q(s)
T (s)

)
, where Q(s) and T (s) correspond to the

first and last five rows in A(s), respectively. The matrix A(s) meets the condition 7.1.3
for DCLM-polynomial matrices with λ = (0, 0, 0, 0, 0) and µ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We are now ready for applying our algorithm to A(s). In Phase 1, a dual optimal
solution is obtained as p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and q = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0), which
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implies d̂(A) = 2. The corresponding tight coefficient matrix A# =
(
Q#

T#

)
is given by

A# =



−1 −1 1
1 1 −1

1 1 −1
−1 −1

1 −1
R1 −1

R2 −1
L −1
−1 C

1




RQ


RT

.

A minimizer J∗ of the rank identity (7.3) for A# is the set of nine columns other than the
rightmost column corresponding to the variable ṽ5. Thus we can check

rankA# = Q#[RQ, J∗] + T#[RT , J∗] + |C \ J∗| = 4 + 4 + 1 = 9 < 10,

which implies that A(s) is not upper-tight. We proceed to the matrix modification process
for DCLM-polynomial matrices that we described in Section 7.3.

The row set Rk and the column set Ck for k ∈ Z defined in (7.25) are the following:

J∗︷ ︸︸ ︷
C0︷ ︸︸ ︷ C1︷︸︸︷ C0︷ ︸︸ ︷ C1︷︸︸︷ C0︷︸︸︷


−1 −1 1


R0.

1 1 −1
Q# = 1 1 −1

−1 −1
1 −1

Now Q# can be seen as a block diagonal matrix consisting of one diagonal block Q#
0 =

Q#[R0, C0] by Q#[R0, C1] = O. We transform

Q#
0 [R0, C0 ∩ J∗] =


−1 −1 1

1 1 −1
1 1
−1 −1

1 −1


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into

UQ#
0 [R0, C0 ∩ J∗] =


−1 −1 1

1 1 −1

−1 −1
1 −1

,

where U =


1

1
1 1 1

1
1

. Using UQ(s) = U , we modify A(s) to

A′(s) =



−1 −1 1
1 1 1 −1

1 −1
−1 −1 1

1 −1
R1 −1

R2 −1
Ls −1

−1 Cs

1



,

where the third row is different between A(s) and A′(s). The dual solution is updated
to p′ = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1) and q′ = (0, 0, 1, 0, 0, 0, 0, 0, 1, 1). Since the corresponding
tight coefficient matrix of A′(s) is nonsingular, we stop the algorithm. The index of the
modified DAE remains at 2. Applying the MS-algorithm, we can reduce the index of the
modified DAE to 1.

7.5 Numerical Experiments

We conduct numerical experiments to reduce the index comparing our algorithm with the
LC-method by Tan et al. [94]. Recall that the LC-method works for linear DAEs whose
associated polynomial matrix A(s) has only constants, whereas our algorithm can treat a
DAE containing independent parameters.
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Figure 7.1: Butterworth filter via the K-th Cauer topology.

7.5.1 Experiment Description

For an even positive integer K, the Butterworth filter via the K-th Cauer topology is
an electrical circuit shown in Figure 7.1. This circuit has n := 2K + 4 state variables
ξ0, ξ1, . . . , ξK+1, η0, η1, . . . , ηK+1, where ξj is a current shown in Figure 7.1 and ηj is a
voltage across the branch carrying the current ξj for j ∈ [0,K + 1].

A DAE representing the circuit is given by

−ξk−1 + ξk + ξk+1 = 0 (k = 1, 3, 5, . . . ,K − 1),
−ξ0 + ξ1 + ξ3 + · · ·+ ξK+1 = 0,

η0 + η2 + η4 + · · ·+ ηK + ηK+1 = 0,
−ηk−1 + ηk + ηk+1 = 0 (k = 2, 4, 6, . . . ,K),

η0 = V (t),
−ξk + Ckη̇k = 0 (k = 1, 3, 5, . . . ,K − 1),
Lkξ̇k − ηk = 0 (k = 2, 4, 6, . . . ,K),

RξK+1 − ηK+1 = 0.

(7.33)

The index of the DAE (7.33) is 2 and the associated polynomial matrix A(s) is a sparse
matrix having 6K + 7 nonzero coefficients. Though it suffices to use simpler equations
−ξK + ξK+1 = 0 and η0 + η1 = 0 instead of the second and the third equations in (7.33),
respectively, we use them to make the tight coefficient matrix singular.

We apply our algorithm and the LC-method to the DAE (7.33) using the following
two ways of implementations:

Dense Matrix Implementation, which stores a matrix in the memory as a two-
dimensional array. While this implementation always requires O(nm) space for a
matrix of size m×n, it has less overhead than the sparse matrix implementation if the
matrix is dense.

Sparse Matrix Implementation, which stores only nonzero entries of a matrix. A
typical implementation of this type is in formats called the compressed sparse column
(CSC) or the compressed sparse row (CSR). We adopt the CSR in our experiments.
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Table 7.1: Running time (sec) of dense implementations for K = 211.

LC-method Proposed
Phase 1 1.80× 10−2 (0.00%) 1.70× 10−2 (0.00%)
Phase 2 6.69× 102 (29.61%) 9.69× 101 (19.54%)
Phase 3 1.59× 103 (70.26%) 3.97× 102 (79.98%)

MS-algorithm 1.02× 100 (0.04%) 7.28× 10−1 (0.15%)
Total 2.26× 103 (100.00%) 4.96× 102 (100.00%)

Table 7.2: Running time (sec) of sparse implementations for K = 211.

LC-method Proposed
Phase 1 1.55× 10−2 (4.88%) 1.58× 10−2 (3.32%)
Phase 2 1.33× 10−1 (41.87%) 3.82× 10−1 (80.07%)
Phase 3 1.25× 10−1 (39.40%) 39.2× 10−2 (8.21%)

MS-algorithm 2.54× 10−2 (7.98%) 2.47× 10−2 (5.17%)
Total 3.18× 10−1 (100.00%) 4.78× 10−1 (100.00%)

The sparse matrix implementation has an advantage that it consumes only the space
proportional to the number of nonzero entries, and thus algorithms using this imple-
mentation are expected to run efficiently for sparse matrices.

In our algorithm, we treat the coefficients R, Ck, Lk, and ‘±1’s in the last four
equations in (7.33) as independent parameters similarly to the example in Section 7.4.2.
Then the associated polynomial matrix A(s) =

(
Q(s)
T (s)

)
is dimensionally consistent, where

|RowQ(s)| = |Row T (s)| = K + 2. In the LC-method, we substitute the following real
numbers:

Ck = 2 sin 2k − 1
2K π (k = 1, 3, 5, . . . ,K − 1),

Lk = 2 sin 2k − 1
2K π (k = 2, 4, 6, . . . ,K),

R = π.

Under this setting, we compare the running time for K = 2, 4, 8, 16, . . . , 216. We im-
plemented all algorithms in C++ using the library Eigen3 for matrix computation. It is
emphasized again that we do not rely on symbolic computation. The experiments are
conducted on a laptop with Core i7 1.7 GHz CPU and 8 GB memory.
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Figure 7.2: Log-log plot of the experimental result: K versus the running time.

(a) LC-method
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(b) Our algorithm for DCLM-polynomial matri-
ces

Figure 7.3: Hatched regions indicate submatrices in a polynomial matrix A(s) to be mod-
ified by algorithms. In (b), we use notations given in Section 7.3.
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7.5.2 Experimental Results

Tables 7.1 and 7.2 and Figure 7.2 show the running time of the algorithms. On the dense
matrix implementations, both algorithms did not run for K ≥ 212 due to the lack of
memory capacity. The reasons are as follows. Our implementations express a polynomial
as an array of coefficients using std::vector<int> or std::vector<float> in C++, and
it consumes 32 bytes even for the zero polynomial. Since the number of entries in the
input polynomial matrix A(s) for K = 212 is n2 = (2K + 4)2 ≥ 226, we need at least
226 × 32 bytes = 2 GB to hold A(s). Besides the input matrix, our implementations
construct several constant and polynomial matrices of similar or larger size, such as a
tight coefficient matrix A#, a unimodular matrix U(s) for modification in Phase 3, and
an output matrix. Thus, 212 is near the borderline of the maximum K for which our
implementations run on our laptop with 8 GB memory.

It can be seen from Figure 7.2 that our algorithm is faster than the LC-method on
their dense matrix implementations, and it is converse for their sparse ones. This is
attributed to the fact that in the process of multiplying polynomial matrices in (7.19) at
Phase 3, the LC-method multiplies the entire of the given polynomial matrix A(s) whereas
our algorithm multiplies only submatrices of A(s) as illustrated in Figure 7.3. Since this
process is dominant on the dense matrix implementations as Table 7.1 indicates, the
difference between the sizes of matrices to be multiplied directly affects the difference
of the running times. This process, however, does not cost much in the sparse matrix
implementations, and thus Phase 2 becomes relatively expensive. As a result, the difference
between the running times on sparse matrix implementations reflect the difference between
that of the independent matching algorithm and the Gaussian elimination used by our
algorithm and the LC-method in Phase 2, respectively.

Recalling that the size of the DAE is n = O(K), Figure 7.2 shows that the running time
of our algorithm grows proportionally to O

(
n2.84) in the dense matrix implementation and

O
(
n1.97) in the sparse one for K ≥ 28. Both are much faster than the theoretical guarantee

O
(
n4 logn

)
given in Theorem 7.20.

7.6 Application to Nonlinear DAEs

In this section, we discuss the application of our algorithm to nonlinear DAEs. The σν-
method [11], which is implemented in Mathematica [102], adopts a strategy of treating
nonlinear or time-varying terms as independent parameters in the Jacobian matrices of
DAEs. We first describe the σν-method briefly.
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Consider an index-2 nonlinear DAE
F1 : ẋ1 + g(x2) = f1(t),
F2 : ẋ1 + x1 + x3 = f2(t),
F3 : ẋ1 + x3 = f3(t),

(7.34)

where g : R→ R is a smooth nonlinear function. The σν-method constructs two kinds of
Jacobian matrices JD and JV as follows:

JD =
(
∂Fi
∂ẋj

)
i,j

=

1 0 0
1 0 0
1 0 0

 , JV =
(
∂Fi
∂xj

)
i,j

=

0 dg/dx2 0
1 0 1
0 0 1

 .
If JD is nonsingular, the DAE is index 0 from the implicit function theorem. Otherwise,
the method performs Gaussian elimination on JD (and JV simultaneously) to make the
bottom row of JD zero. Then the method differentiates the equation corresponding to
the bottom row, and checks the nonsingularity of JD again. The main feature of the
σν-method is to treat nonlinear or time-varying terms as “independent parameters” to
avoid complicated symbolic manipulations. The method works according to the rule that
arithmetic operations and the differentiation of independent parameters generate new
independent parameters.

The σν-method may fail due to this rule. For example, let α1 be an independent
parameter representing dg/dx2 in JV. By subtracting the first row from the second and
third ones, we obtain

JD =

1 0 0
0 0 0
0 0 0

 , JV =

0 α1 0
1 α2 1
0 α3 1

 ,
where α2 = 0 − α1 and α3 = 0 − α1 are newly generated parameters by the rule of
arithmetic operations. We differentiate the second and third rows. Then JD and JV are

JD =

1 0 0
1 α2 1
0 α3 1

 , JV =

0 α1 0
0 α4 0
0 α5 0

 ,
where α4 and α5 are parameters corresponding to the derivatives of α2 and α3, respectively.
Although the Jacobian matrix JD is indeed singular due to α2 = α3, the σν-method halts
at this point as the method regards α2 and α3 as independent. This failure originates from
the elimination of matrices involving the independent parameter α1. We have confirmed
that the implementation in Mathematica actually fails on this DAE.
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Our algorithm is applied to the same DAE (7.34) as follows. Let

A(s) =

 s α

s+ 1 1
s 1

 ,
where α is an independent parameter representing dg/dx2. The tight coefficient matrix
corresponding to a dual optimal solution p = (0, 0, 0) and q = (1, 0, 0) is

A# =

1 α

1 1
1 1

 ,
which is singular. Thus we need to modify the matrix. By the same logic as the discussion
in Section 7.4.2, we can regard A(s) as an LM-polynomial matrix A(s) =

(
T (s)
Q(s)

)
, where

T (s) corresponds to the first row and Q(s) corresponds to the other two ones in A(s).
Then our algorithm modifies A(s) to

A′(s) =

s α

1
s 1

 ,
which is upper-tight (we omit the detail of this modification).

This example shows that our algorithm works for a DAE to which the existing index
reduction algorithm cannot be applied. Our algorithm is expected to rarely cause can-
cellations between nonlinear terms as it does not perform the row operations involving
independent parameters. In particular, our algorithm can be applied to nonlinear DAEs
in which cancellations occur only between linear terms like the transistor amplifier DAE
in [61]; such DAEs often appear in practice. Therefore, although the application to non-
linear DAEs remains at the stage of a heuristic, it is anticipated that the proposed method
can be useful for index reduction of nonlinear DAEs.
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Chapter 8

Structural Modification for
Nonlinear DAEs

In this chapter, we propose two modification methods for nonlinear DAEs: the substitution
method in Section 8.1 and the augmentation method in Section 8.2. Both methods sym-
bolically manipulate formulations of DAEs using a symbolic computation engine. We give
an application example in Section 8.3 and conduct numerical experiments in Section 8.4.

8.1 Substitution Method

8.1.1 Outline of Method

In this section, we describe a new modification method for nonlinear DAEs, called the
substitution method. This method is used in Phase 3d of the combinatorial relaxation
framework.

Let T ⊆ R be a nonempty open interval and Ω ⊆ R(`+1)n a nonempty open set. The
input of the substitution method is a DAE (1.4) of size n with real analytic function
F : T× Ω→ Rn such that

(I1) G(F ) has a perfect matching,

(I2) for any square submatrix D[I, J ] of the system Jacobian D with respect to a dual
optimal solution, if D[I, J ] is not identically singular on T× Ω, then there exists
a consistent point of (1.4) at which D[I, J ] is nonsingular,

(I3) D is identically singular.

The smoothness assumption on F is needed to avoid technical difficulties. We remark
that (I2) is just a part of a sufficient condition for which the substitution method works,
and it suffices in practice to check the condition only for a few submatrices of D that are
used as pivots in the method.
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The substitution method modifies the DAE (1.4) into another DAE

F̄ sub(t, x, ẋ, . . . , x(`+κ)) = 0 (8.1)

of size n such that

(S1) F̄ sub is a real analytic function defined on a nonempty open subset T̄sub× Ω̄sub ⊆
T× Ω(κ) with κ ≤ `n,

(S2) the resulting DAE (8.1) is locally equivalent to the input DAE (1.4),

(S3) d̂(F̄ sub) ≤ d̂(F )− 1.

See Lemma 8.8 for the precise meaning of “locally equivalent” in (S2).
We first introduce notations needed to describe the method. Let R and C be the

equation index set and the variable index set of the DAE (1.4), respectively. For I ⊆ R,
let FI denote a “subvector” (Fi)i∈I of F indexed by I. Similarly, for J ⊆ C, let xJ denote
a subvector (xj)j∈J of x indexed by J . Let p and q be the vectors of variables in D(F ).
In addition, we use the following notations

F
(p)
I :=

(
F

(pi)
i

)
i∈I
, x

(q)
J :=

(
x

(qj)
j

)
j∈J

,
∂F

(p)
I

∂x
(q)
J

:=

∂F (pi)
i

∂x
(qj)
j


i∈I,j∈J

for I ⊆ R and J ⊆ C.
Here we start to describe the method. Let D be the system Jacobian of (1.4) with

respect to an optimal solution (p, q) of D(F ) and suppose that D is identically singular.
We regard D as a matrix over the quotient field K of the ring of real analytic functions
on T × Ω. The substitution method first finds r ∈ R, I ⊆ R \ {r} and J ⊆ C with
|I| = |J | =: m such that

(C1) D[I, J ] is nonsingular,

(C2) rankD[I ∪ {r}, C] = m,

(C3) pr ≤ pi for i ∈ I.

Here, both the nonsingularity in (C1) and the rank in (C2) are in the sense of those of
matrices over K. Namely, these conditions can be rewritten as

(C1∗) D[I, J ] is not identically singular, and

(C2∗) the maximum size of a submatrix in D[I∪{r}, C] that is not identically singular
is m.

The existence of (r, I, J) satisfying (C1)–(C3) is guaranteed through the algorithm ex-
plained in Section 8.1.2.
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Example 8.1. Consider the DAE (6.16). We have seen in Example 6.21 that its system
Jacobian D, which is (6.17), is identically singular. We can choose r = 2, I = {1}, and
J = {1}. Then D[I, J ] = ẋ2 is nonsingular, rankD[I ∪ {r}, {1, 2}] = rankD = 1, and
p2 ≤ p1 since p = (0, 0). Hence this (r, I, J) satisfies (C1)–(C3).

Let (r, I, J) be a triple satisfying the conditions (C1)–(C3). Define S = R \ (I ∪ {r})
and T = C \ J . Then the DAE (1.4) is divided into three subsystems as follows:

Fr
(
t, x, ẋ, . . . , x(`)) = 0,

FI
(
t, x, ẋ, . . . , x(`)) = 0,

FS
(
t, x, ẋ, . . . , x(`)) = 0.

(8.2)

The system Jacobian D with respect to (p, q) forms a block matrix as follows:

D =

J T


{r} ∂F

(pr)
r

∂x
(q)
J

∂F
(pr)
r

∂x
(q)
T

I
∂F

(p)
I

∂x
(q)
J

∂F
(p)
I

∂x
(q)
T

S
∂F

(p)
S

∂x
(q)
J

∂F
(p)
S

∂x
(q)
T

.

By the condition (C3) and Proposition 6.6, it holds that

∂F
(p)
I

∂x
(q)
J

=

∂F (pi)
i

∂x
(qj)
j


i∈I,j∈J

=

∂F (pi−pr)
i

∂x
(qj−pr)
j


i∈I,j∈J

= ∂F
(p−pr1)
I

∂x
(q−pr1)
J

,

where 1 is the vector of ones with appropriate dimension. In addition, from the condi-
tion (C1), the submatrix D[I, J ] = ∂F

(p)
I

∂x
(q)
J

= ∂F
(p−pr1)
I

∂x
(q−pr1)
J

is not identically singular on T× Ω.

Therefore, by (I2), there exists a point (t̂, X̂) ∈ T×Ω(κ) such that F (p−pr1)
I (t̂, X̂) = 0 and

∂F
(p−pr1)
I

∂x(q−pr1) (t̂, X̂) is nonsingular, where

κ := max
i∈I

pi − pr. (8.3)

Then via the IFT, we can solve an equation

F
(p−pr1)
I

(
t, x, ẋ, . . . , x(`+κ)) = 0 (8.4)

for x(q−pr1)
J as

x
(q−pr1)
J = ϕ

(
t, x, ẋ, . . . , x(`+κ)), (8.5)
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where ϕ is a function that does not depend on x(q−pr1)
J . See Section 8.1.3 for a rigorous

description of this part.
Example 8.2 (Continued from Example 8.1). Since p1 − p2 = 0 and q1 − p2 = 1, the
equation (8.4) on the DAE (6.16) is

F1 : ẋ1ẋ2 − 2 cos2 t = 0 (8.6)

for ẋ1. Solving (8.6) for ẋ1, we obtain

ẋ1 = −2 cos2 t

ẋ2
(8.7)

unless ẋ2 = 0. The equation (8.7) corresponds to (8.5).
Finally, we substitute the right-hand side of (8.5) into x(q−pr1)

J in the first equation
Fr = 0 of (8.2). The modified DAE (8.1) is

F̄ sub
r

(
t, x, ẋ, . . . , x(`+κ)) = 0,
FI
(
t, x, ẋ, . . . , x(`)) = 0,

FS
(
t, x, ẋ, . . . , x(`)) = 0,

(8.8)

where F̄ sub
r is a function obtained from Fr by substituting (8.5).

Example 8.3 (Continued from Example 8.2). We substitute (8.7) into F2 in (6.16). The
resulting DAE is {

F1 : ẋ1ẋ2 − 2 cos2 t = 0,
F̄ sub

2 : x1 + x2 − 3 sin t− 2 = 0.
(8.9)

and the substitution method is done.
According to the procedure of combinatorial relaxation, we go back to Phase 1d and

check the nonsingularity of the system Jacobian again. It can be confirmed that δ̂ of (8.9)
is 1, which is less than that of (6.16). The system Jacobian D′ of (8.9) corresponding to
a dual optimal solution p′ = (0, 1), q′ = (1, 1) is

D′ =
(
ẋ2 ẋ1
1 1

)
.

Since D′ is not identically singular, the combinatorial relaxation is done.
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8.1.2 Algorithm for Finding (r, I, J)

Let D be a singular n× n matrix over a field K with row index set R and column index
set C, and p = (pi)i∈R an integer vector indexed by R. On the setting in Section 8.1.1,
K is the quotient field of the ring of analytic functions on T× Ω. We give an algorithm,
which uses arithmetic operations over K, to find r ∈ R, I ⊆ R \ {r} and J ⊆ C satisfying
the conditions (C1)–(C3).

First, by column operations, we transform D into D′ =
(
D′i,j

)
i∈R,j∈C in the form

D′ =

B C \B( )
H Ik O

R \H ∗ O
, (8.10)

where H ⊆ R and B ⊆ C with k := |H| = |B| = rankD. Here, “∗” indicates an arbitrary
matrix. Let h : B → H denote the natural bijection represented by the top left block
D′[H,B] in (8.10). Namely, h(j) = i if and only if D′i,j 6= 0 for j ∈ B and i ∈ H.

Next, we choose l ∈ R \ H arbitrarily. Note that R \ H is nonempty because D′ is
singular. Put

Z := {l} ∪
{
h(j)

∣∣ j ∈ B,D′l,j 6= 0
}
⊆ R. (8.11)

Finally, we take r ∈ Z such that pr ≤ pi for all i ∈ Z. Put I := Z \ {r} and choose J ⊆ C
such that D[I, J ] is nonsingular. The existence of J is guaranteed by the following lemma.
Lemma 8.4. Let D ∈ Kn×n be a singular matrix and Z ⊆ R defined in (8.11). Then
D[Z,C] is not of full-row rank and D[I, C] is of full-row rank for any proper subset I ( Z.
Proof. Since D′ in (8.10) is a matrix obtained from D by column operations, it suffices to
show the statement for D′. By the definition of Z, it holds

D′[{l}, C]−
∑

i∈Z\{l}
D′[{i}, C] = 0.

This implies that D′[Z,C] is not of full-row rank.
We next show that D′[I, C] is of full-row rank for I ( Z. This is trivial if l /∈ I since

I ( Z ⊆ {l} ∪ H and D′[H,C] is of full-row rank. Suppose that l ∈ I. Then we can
take i ∈ Z \ I. From the definition of Z, D′[(Z \ {i}) ∪ {l}, C] is of full-row rank. Since
I ⊆ (Z \ {i}) ∪ {l}, D′[I, C] is also of full-row rank.

The following theorem holds from the construction of (r, I, J) together with Lemma 8.4.
Theorem 8.5. For a singular matrix D ∈ Kn×n, the above algorithm returns (r, I, J)
satisfying the conditions (C1)–(C3).

This algorithm uses O(n3) arithmetic operations on K.
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8.1.3 Application of Implicit Function Theorem

This section gives a mathematically rigorous description of the application of the IFT
to (8.4). The description in this section is used in proofs of the substitution method later.

We introduce additional notations. Let C ⊆ C × {0, 1, 2, . . . , `} be a finite set of index
pairs such that (j, k) ∈ C indicates an argument x(k)

j of F in (1.4). Let RC denote a |C|-
dimensional real vector space with index set C. For X ∈ RC and J ⊆ C, let XJ designate
a subvector of X with index set J .

The following is a version of the IFT which we use.
Theorem 8.6 (Implicit Function Theorem; IFT). Let U ⊆ Rn+m be an open set having
coordinates (x, y) with x ∈ Rn and y ∈ Rm. Let f : U → Rm be a real analytic function.
Fix a point (ξ, η) ∈ U such that f(ξ, η) = 0 and ∂f

∂y (ξ, η) is nonsingular. Then there exist
open sets V ⊆ Rn and W ⊆ Rm with (ξ, η) ∈ V ×W ⊆ U and a real analytic function
ϕ : V →W such that

(1) ϕ(ξ) = η,

(2) f(x, y) = 0 if and only if y = ϕ(x) for all (x, y) ∈ V ×W , and

(3) ∂f
∂y (x, ϕ(x)) is nonsingular and

dϕ
dx (x) = −

(
∂f

∂y
(x, ϕ(x))

)−1∂f

∂x
(x, ϕ(x)) (8.12)

for all x ∈ V .

The function ϕ in the IFT is called an explicit function. The formula (8.12) is called
the implicit differentiation formula.

Let us start the description of the application of the implicit function theorem. Let
(p, q) be an optimal solution of D(F ) and (r, I, J) triple satisfying the conditions (C1)–
(C3). Put

C := {(j, k) | j ∈ C, 0 ≤ k ≤ qj − pr}. (8.13)

From Proposition 6.6 and the feasibility of (p, q), it holds that

σ(F (pi−pr)
i , xj) = σ(Fi, xj) + pi − pr = ci,j + pi − pr ≤ qj − pr (8.14)

for i ∈ I ∪ {r} and j ∈ J with σ(Fi, xj) > −∞. Thus we regard both Fr and F (pI−pr1)
I as

functions defined on T× U , where U is an open subset of RC .
Take (t̂, X̂) ∈ T × U such that F (p−pr1)

I (t̂, X̂) = 0 and ∂F
(p−pr1)
I

∂x
(q−pr1)
J

(t̂, X̂) is nonsingular.
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Let

J := {(j, qj − pr) | j ∈ J} ⊆ C. (8.15)

Then the components of X̂ is bipartitioned by J as X̂ = (X̂C\J , X̂J ). Thus by the
implicit function theorem, there exist open sets T̄sub ⊆ T, V ⊆ RC\J and W ⊆ RJ with
(t̂, X̂C\J , X̂J ) ∈ T̄sub × V ×W ⊆ T × U and a real analytic function ϕ : T̄sub × V → W

such that X̂J = ϕ
(
t̂, X̂C\J

)
and

F
(p−pr1)
I

(
t,XC\J , ϕ

(
t,XC\J

))
= 0 (8.16)

for every (t,XC\J ) ∈ V . In addition, all zeros of F (p−pr1)
I in T̄sub×V ×W are in the form

of (8.16). Using ϕ, the modified function F̄ sub
r : T̄sub × V → R can be expressed as

F̄ sub
r (t,XC\J ) = Fr

(
t,XC\J , ϕ

(
t,XC\J

))
(8.17)

for (t,XC\J ) ∈ T̄sub × V . Since both Fr and ϕ are real analytic, so is F̄ sub
r .

We remark about the domain of the resulting system of functions F̄ in (8.8). In the
above argument, we treated the domain of F (p−pr1)

I as T× U , which is an open subset of
T × RC . However, the domain of F (p−pr1)

I can also be represented as T × Ω(κ), where κ
is defined by (8.3) (indeed, U is the projection of Ω(κ) onto RC). Since F̄r is a function
obtained from F

(p−pr1)
I and Fr by the above transformation, the domain of F̄r (and thus

of F̄ ) can also be regarded as T̄sub × Ω̄sub, where Ω̄sub is a nonempty open subset of Ω(κ).

8.1.4 Proofs

This section is devoted to the validity proofs of our method.
We first show (S1). In Section 8.1.3, we have already shown that Fr is a real analytic

function defined on T̄sub × Ω̄sub. Thus, what we should give is only the bound on κ.
Applying the algorithm given in Section 7.2.3, we can obtain (p, q) such that pi ≤ `n for
any i ∈ R. Then the following lemma immediately follows.
Lemma 8.7. In the substitution method, κ defined in (8.3) is at most `n.

Next, we focus on (S2), which claims about the equivalence of the original DAE and
the modified DAE.
Lemma 8.8. Consider a DAE (1.4) satisfying (I1)–(I3). Let x : T̄sub → Rn be a
sufficiently smooth trajectory satisfying the initial value condition (1.6) for (t∗, X∗) ∈
T̄sub × Ω̄sub. Then there exists an open subinterval I ⊆ T̄sub containing t∗ such that x is
a solution of (1.4) on I if and only if x is a solution of (8.8) on I.
Proof. We show both the “if” and “only if” parts simultaneously. Suppose that there exists
an open subinterval I ⊆ T̄sub with t∗ ∈ I such that x is a solution of (1.4) or (8.8) on I.
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Then x satisfies FI
(
t, x(t), ẋ(t), . . . , x(`)(t)

)
= 0 on I, which is a subsystem of both (8.2)

and (8.8). Thus x also satisfies (8.4) on I.
We rewrite the equation (8.4) for x(t) using C and J defined by (8.13) and (8.15),

respectively. Let DC denote the differentiation operator that maps x to a trajectory DCx :
T̄sub → RC such that

(
DCx(t)

)
(j,k) = x

(k)
j (t)

for t ∈ T̄sub and (j, k) ∈ C. Then the initial value condition (1.6) can be represented as
DCx(t∗) = X∗C . Since the domain of F (p−pr1)

I is an open subset of T×RC , the equation (8.4)
for x(t) can also be represented as

F
(p−pr1)
I

(
t,DCx(t)

)
= 0

or

F
(p−pr1)
I

(
t,DC\J x(t),DJ x(t)

)
= 0 (8.18)

for t ∈ I, where DC\J and DJ are differentiation operators defined in the same way as DC .
Let U ⊆ RC , V ⊆ RC\J and W ⊆ RJ be open sets defined in Section 8.1.3. Here,

since x is smooth, U is open and DCx(t∗) = X∗C ∈ U , it holds DCx(t) ∈ U for all t ∈ I by
taking I sufficiently small. This implies that DC\J x(t) ∈ V and DJ x(t) ∈ W for t ∈ I.
Comparing (8.16) and (8.18), we obtain

DJ x(t) = ϕ
(
t,DC\J x(t)

)
for t ∈ I. Therefore, we have

Fr
(
t, x(t), ẋ(t), . . . , x(`)(t)

)
= Fr

(
t,DC\J x(t),DJ x(t)

)
= Fr

(
t,DC\J x(t), ϕ

(
t,DC\J x(t)

))
= F̄ sub

r

(
t,DC\J x(t)

)
= F̄ sub

r

(
t, x(t), ẋ(t), . . . , x(`+κ)(t)

)
,

which means that x is a solution of (8.8) if x is a solution of (1.4), and vice versa.
We finally show that the modified DAE satisfies (S3). In order to show (S3), it suffices

to show that (p, q) is a feasible solution of D(F̄ sub) but not an optimal solution. The
feasibility is easily shown as follows.
Lemma 8.9. Consider a DAE (1.4) satisfying (I1)–(I3) and let (p, q) be an optimal solu-
tion of D(F ). Then (p, q) is feasible on D(F̄ sub).
Proof. Let (r, I, J) be a triple satisfying the conditions (C1)–(C3). Consider the explicit
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function ϕ in (8.5). For i ∈ I and j ∈ C, we have

σ(ϕ, xj) ≤ σ
(
F

(pi−pr)
i , xj

)
≤ qj − pr,

where we used (8.14) in the last inequality. Because F̄ sub
r is a function obtained from Fr

by substituting (8.5), it holds

σ
(
F̄ sub
r , xj

)
≤ max{σ(Fr, xj), σ(ϕ, xj)} ≤ qj − pr

for every j ∈ C. Thus (p, q) is feasible on D(F̄ sub).
We finally focus on the non-optimality of (p, q) on D(F̄ sub). By Proposition 6.7, our

goal is to show that t-rank D̄ < n holds, where D̄ be the system Jacobian of (8.1) with
respect to (p, q). This is shown by the following lemma.
Lemma 8.10. Consider a DAE (1.4) satisfying (I1)–(I3). Let (p, q) be an optimal solution
of D(F ) and (r, I, J) a triple satisfying (C1)–(C3). Then the modified function F̄r in (8.8)
does not depend on x(qj−pr)

j for all j ∈ C.

Proof. The claim is easy to see for j ∈ J because we have eliminated x
(qj−pr)
j from Fr

by substituting (8.5). Consider the variable x(q−pr1)
T with T = C \ J . Let C and J be

index sets defined in (8.13) and (8.15), respectively. For (t,X) ∈ T̄sub × Ω̄sub, we denote
(t,XC\J , ϕ(t,XC\J )) by At,X for short, where ϕ is the explicit function given by (8.5).
From the chain rule, the implicit differentiation formula (8.12) and Proposition 6.6, we
obtain

∂F̄ sub
r

∂x(q−pr1) (t,XC\J )

= ∂Fr

∂x
(q−pr1)
T

(At,X) + ∂Fr

∂x
(q−pr1)
J

(At,X) ∂ϕ

∂x
(q−pr1)
T

(t,XC\J )

= ∂Fr

∂x
(q−pr1)
T

(At,X)− ∂Fr

∂x
(q−pr1)
J

(At,X)
(
∂F

(p−pr1)
I

∂x
(q−pr1)
J

(At,X)
)−1

∂F
(p−pr1)
I

∂x
(q−pr1)
T

(At,X)

= ∂F
(pr)
r

∂x
(q)
T

(At,X)− ∂F
(pr)
r

∂x
(q)
J

(At,X)
(
∂F

(p)
I

∂x
(q)
J

(At,X)
)−1

∂F
(p)
I

∂x(q) (At,X) (8.19)

for (t,X) ∈ T̄sub×Ω̄sub. The right hand side of (8.19) coincides with the Schur complement
of ∂F

(p)
I

∂x
(q)
J

(At,X) in the following matrix

D̃(t,XC\J ) :=


∂F

(pr)
r

∂x
(q)
J

(At,X) ∂F
(pr)
r

∂x
(q)
T

(At,X)
∂F

(p)
I

∂x
(q)
J

(At,X) ∂F
(p)
I

∂x
(q)
T

(At,X)

 .
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Thus, we have

rank D̃(t,XC\J ) = rank ∂F
(p)
I

∂x
(q)
J

(At,X) + rank ∂F̄ sub
r

∂x
(q−pr1)
T

(t,XC\J ) (8.20)

for all (t,X) ∈ T̄sub × Ω̄sub. Let D be a system Jacobian of F with respect to (p, q).
Note that D̃ is a matrix obtained from D[I ∪ {r}, C] by substituting ϕ(t,XC\J ) into XJ .
Hence it holds rank D̃(t,XC\J ) ≤ rankD[I ∪ {r}, C](t,X) ≤ rankD[I ∪ {r}, C] = m with

m = |I|, where the last equality comes from (C2). In addition, the rank of ∂F
(p)
I

∂x
(q)
J

(At,X)

is m due to the invertibility. Therefore, the rank of ∂F̄ sub
r

∂x
(q−pr1)
T

(t,XC\J ) is zero from (8.20),

which means that ∂F̄ sub
r

∂x
(q−pr1)
T

is identically zero on T̄sub × Ω̄sub. Thus F̄ sub
r does not depend

on x(qj−pr)
j for j ∈ T .

Corollary 8.11. For a DAE (1.4) satisfying (I1)–(I3), it holds d̂(F̄ sub) ≤ d̂(F )− 1.
Proof. Let (p, q) be an optimal solution of D(F ) and (r, I, J) a triple satisfying the con-
ditions (C1)–(C3). Let D̄ be the system Jacobian of (8.8) with respect to (p, q). By
Proposition 6.6, it holds

D̄[{r}, C] = ∂F̄
(pr)
r

∂x(q) = ∂F̄r
∂x(q−pr1) ,

whereas the right-hand side is identically zero from Lemma 8.10. Thus t-rank D̄ is less
than n, and from Proposition 6.7, (p, q) is not an optimal solution of D(F̄ sub). This
concludes the proof.

We conclude this section with the following theorem.
Theorem 8.12. For a DAE (1.4) satisfying (I1)–(I3), the substitution method outputs a
DAE (8.1) satisfying (S1)–(S3).

8.2 Augmentation Method

8.2.1 Method Description

This section describes another proposed modification method for nonlinear DAEs, which
we call an augmentation method. The input of the augmentation method is a nonlinear
DAE (1.4) of size n satisfying the conditions (I1)–(I3), where F : T× Ω → Rn is a
real analytic function again. Instead of solving equations symbolically, the augmentation
method augments the size of the DAE by introducing a new variable vector y and attaching
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new equations. Formally, the augmentation method modifies (1.4) into a DAE

F̄ aug(t, x, ẋ, . . . , x(`+κ), y
)

= 0 (8.21)

of size n+m such that

(A1) F̄ aug is a real analytic function defined on a nonempty open subset T̄aug× Ω̄aug×
Y ⊆ T× Ω(κ) × Rm with κ ≤ `n and m ≤ n− 1,

(A2) the resulting DAE (8.21) is locally equivalent to (1.4),

(A3) d̂(F̄ aug) ≤ d̂(F )− 1.

See Lemma 8.15 for the precise meaning of “locally equivalent” in (A2).
The substitution method and the augmentation method are the same except for the

last modification process. The overlapping part is described here briefly. Let R and C

be the equation index set and the variable index set of the input DAE (1.4), respectively.
Let (p, q) be an optimal solution of D(F ) and D denote the system Jacobian with respect
to (p, q). We first find r ∈ R, I ⊆ R \ {r} and J ⊆ C satisfying the conditions (C1)–(C3)
described in Section 8.1.1. Define κ := max

i∈I
pi − pr,m := |I|, S := R \ (I ∪ {r}) and

T := C \ J .
The following modification step differs from the substitution method. Let I ′ = {i′ | i ∈

I} and J ′ = {j′ | j ∈ J} be copies of I and J , respectively. Take a point (τ,Ξ) arbitrary
from the domain T̄sub × Ω̄sub ⊆ T × Ω(κ) of the resultant DAE F̄ sub of the substitution
method. We regard Ω(κ) as a subset of RC hereafter, where C := C × {0, 1, 2, . . . , ` + κ}.
For X ∈ RC and a vector y =

(
yj′
)
j′∈J ′ with index set J ′, let ψΞ(X, y) be a vector of RC

such that

(ψΞ(X, y))(j,k) :=


yj′ (j ∈ J, k = qj − pr),
Ξ(j,k) (j ∈ T, k = qj − pr),
X(j,k) (otherwise)

for (j, k) ∈ C. For each i ∈ I, we define a function

F̄ aug
i′
(
t, x, ẋ, . . . , x(`+κ), y

)
:= F

(pi−pr)
i (t, ψΞ(X, y)),

where X =
(
x, ẋ, . . . , x(`+κ)). Namely, F̄ aug

i′ is obtained by replacing x(qj−pr)
j in F (pi−pr)

i

with a variable yj′ for j ∈ J and with a constant Ξ(j,qj−pr) for j ∈ T . Put F̄ aug
I′ :=(

F̄ aug
i′

)
i′∈I′

. We also define

F̄ aug
r

(
t, x, ẋ, . . . , x(`+κ), y

)
:= Fr(t, ψΞ(X, y))

in the same way.
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The output (8.21) of the augmentation method is the following DAE

F̄ aug
r

(
t, x, ẋ, . . . , x(`+κ), y

)
= 0,

FI
(
t, x, ẋ, . . . , x(`)) = 0,

FS
(
t, x, ẋ, . . . , x(`)) = 0,

F̄ aug
I′
(
t, x, ẋ, . . . , x(`+κ), y

)
= 0

(8.22)

with unknown function (x(t), y(t)) of t. The domain T̄aug × Ω̄aug of (8.22) is given by
T̄aug := T̄sub and Ω̄aug :=

{
(X, y) ∈ Ω̄sub × Rm

∣∣ ψΞ(X, y) ∈ Ω̄sub}.
Example 8.13 (Continued from Example 8.1). The modified function F̄ aug

1′ is obtained
from F1 by replacing x(q1−p2)

1 = ẋ1 with a new variable y1′ and x
(q2−p2)
2 = ẋ2 with an

arbitrary nonzero constant ξ ∈ R. The function F̄ aug
r = F̄ aug

2 is obtained in the same
manner. The output (8.22) of the augmentation method applied to (6.16) is

F1 : ẋ1ẋ2 − 2 cos2 t = 0,
F̄ aug

2 : y1′
2ξ2 + x1 + x2 − 4 cos4 t− 3 sin t− 2 = 0,

F̄ aug
1′ : y1′ξ − 2 cos2 t = 0

(8.23)

with unknown function (x1, x2, y1′). We can confirm that δ̂ of (8.23) is 1 and (8.23) has a
nonsingular system Jacobian.

The DAE (8.22) is obtained by copying some equations (or their derivatives), rela-
belling variables and substituting constants. Hence if the original DAE contains only a
few variables in each equation, so does (8.22). Thus the augmentation method retains the
sparsity of DAEs.

8.2.2 Proofs

Validity proofs of the augmentation method are given in this section. We first show (A1).
Lemma 8.14. For a DAE (1.4) satisfying (I1)–(I3), the resulting DAE F̄ aug = 0 satis-
fies (A1).
Proof. It is clear that F̄ aug is real analytic from its construction, which is a combination
of variable relabelling and partial substitution of constants on F . Let η =

(
ηj′
)
j′∈J ′

be a vector defined by ηj′ = Ξ(j,qj−pr) for j′ ∈ J ′. Then it holds (Ξ, η) ∈ Ω̄aug from
ψΞ(Ξ, η) = Ξ ∈ Ω̄sub. Hence Ω̄aug is nonempty. In addition, since ψΞ is a continuous map
and Ω̄sub is an open set, Ω̄aug is also open. Therefore the domain T̄aug × Ω̄aug of F̄ aug is a
nonempty open set.

The bounds on κ and m are given by Lemma 8.7 and m = |I| ≤ n− 1.
We next show (A2) in the sense of the following lemma.

Lemma 8.15. Consider a DAE (1.4) satisfying (I1)–(I3). Let x : T̄aug → Rn be a
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sufficiently smooth trajectory satisfying the initial value condition (1.6) for (t∗, X∗) ∈
T̄aug × Ω̄aug. Then there exists an open subinterval I ⊆ T̄aug containing t∗ such that the
following two statements are equivalent:

(1) x is a solution of (1.4) on I, and

(2) there uniquely exists a trajectory y : I→ Rm such that (x, y) is a solution of (8.22)
on I.

Proof. From the argument on the substitution method, the last equation

F̄ aug
I′
(
t, x, ẋ, . . . , x(`+κ), y

)
= 0

in (8.22) can be solved for y on the domain of F̄ aug as

y = ϕ̄aug(t, x, ẋ, . . . , x(`+κ)),
where ϕ̄aug is a function obtained by replacing x(qj−pr)

j of ϕ in (8.5) with the constant
Ξ(j,qj−pr) for j ∈ T . Therefore, (8.22) is equivalent to

F̄ aug
r

(
t, x, ẋ, . . . , , x(`+κ), ϕ̄aug(t, x, ẋ, . . . , x(`+κ))) = 0,

FI
(
t, x, ẋ, . . . , x(`)) = 0,

FS
(
t, x, ẋ, . . . , x(`)) = 0,

y = ϕ̄aug(t, x, ẋ, . . . , x(`+κ)).
(8.24)

It can be seen from (8.17) that the left-hand side of the first equation in (8.24) is a function
obtained by replacing x(qj−pr)

j of F̄ sub
r with the constant Ξ(j,qj−pr) for j ∈ T . On the other

hand, F̄ sub
r does not depend on x(qj−pr)

j for all j ∈ T from Lemma 8.10. Therefore, the first
equation in (8.24) is equivalent to F̄ sub

r

(
t, x, ẋ, . . . , x(`+κ)) = 0. Thus the system (8.24) is

equivalent to F̄
sub(t, x, ẋ, . . . , x(`+κ)) = 0,

y = ϕ̄aug(t, x, ẋ, . . . , x(`+κ)). (8.25)

The statement of this lemma is shown by (8.25) together with Lemma 8.8.
Let R̄ := R ∪ I ′ and C̄ := C ∪ J ′. We finally show (A3) as a corollary of the following

lemma.
Lemma 8.16. Consider a DAE (1.4) satisfying (I1)–(I3) and let (p, q) be a dual optimal
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solution. Define

p̄i :=

pi (i ∈ R),
pr (i ∈ I ′),

q̄j :=

qj (j ∈ C),
pr (j ∈ J ′)

(8.26)

for i ∈ R̄ and j ∈ C̄. Then (p̄, q̄) is feasible but not optimal to D(F̄ aug).
Proof. We first prove

σ
(
F̄ aug
i′ , xj

)
< qj − pr (8.27)

for i′ ∈ I ′ ∪ {r} and j ∈ C. Since x(qj−pr)
j in F̄ aug

i′ has been replaced with a dummy
variable or a constant, it holds σ

(
F̄ aug
i′ , xj

)
< σ

(
F

(pi−pr)
i , xj

)
, where i = r if i′ = r here.

In addition, σ
(
F

(pi−pr)
i , xj

)
= σ(Fi, xj) + pi − pr ≤ qj − pr holds, where the first equality

comes from Proposition 6.6 and the second inequality is due to the feasibility of (p, q) on
D(F ). Thus (8.27) is true.

We next show the feasibility of (p̄, q̄) on D(F̄ aug). For i ∈ R \ {r} and j ∈ C, it holds
σ
(
F̄ aug
i , xj

)
= σ(Fi, xj) ≤ qj − pi = q̄j − p̄i from the feasibility of (p, q) on D(F ). For

i ∈ R \{r} and j′ ∈ J ′, we have σ
(
F̄ aug
i , yj′

)
= σ(Fi, yj′) = −∞ ≤ q̄j − p̄i. For i′ ∈ I ′∪{r}

and j ∈ C, it holds σ
(
F̄ aug
i′ , xj

)
< qj − pr = q̄j − p̄i′ from (8.27). In the last case with

i′ ∈ I ′ ∪ {r} and j′ ∈ J ′, we have σ
(
F̄ aug
i′ , yj′

)
= 0 = pr − pr = p̄i′ − q̄j′ . Thus (p̄, q̄) is

feasible on D(F̄ aug).
Finally, we show the non-optimality of (p̄, q̄) on D(F̄ aug). From Proposition 6.7, it

suffices to show t-rank D̄ < n+m, where D̄ is the system Jacobian of (8.22) with respect
to (p̄, q̄). Here, D̄i′,j is identically zero for i′ ∈ I ′∪{r} and j ∈ C due to (8.27). Figure 8.1
shows the zero/nonzero pattern of D̄, where D̄[I, J ′] = O and D̄[S, J ′] = O can also be
checked from the definition of F̄ aug. Therefore, I ∪S ∪J ′ is a vertex cover in the bipartite
graph G(D) = (R̄∪ C̄, E(D)) associated with D. By the König–Egeváry theorem, we have

t-rank D̄ ≤
∣∣I ∪ S ∪ J ′∣∣ = m+ (n−m− 1) +m = n+m− 1,

which completes the proof.

Corollary 8.17. For a DAE (1.4) satisfying (I1)–(I3), the resulting DAE F̄ aug = 0 sat-
isfies (A3).
Proof. Let (p, q) be a dual optimal solution on D(F ) and (p̄, q̄) defined by (8.26). From
Lemma 8.16, it holds that

d̂(F̄ aug) <
∑
j∈C̄

q̄j −
∑
i∈R̄

p̄i =

mpr +
∑
j∈C

qj

− (mpr +
∑
i∈R

pi

)
=
∑
j∈C

qj −
∑
i∈R

pi

= d̂(F )
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Figure 8.1: The zero/nonzero pattern of the system Jacobian D̄ of F̄ aug. The hatched
region may contain nonzero elements.

as required.
The above lemmas are summed up in the following theorem.

Theorem 8.18. For a DAE (1.4) satisfying (I1)–(I3), the augmentation method returns
a DAE (8.21) satisfying (A1)–(A3).

8.3 More Example

We demonstrate our methods using an extra example arising from a real problem, a
transistor amplifier problem on an electrical network [61]. The problem is described by an
index-1 DAE in the following form

F1 : C1(ẋ1 − ẋ2) + (x1 − Ue(t))/R0 = 0,
F2 : −C1(ẋ1 − ẋ2)− Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) = 0,
F3 : C2ẋ3 + x3/R3 − g(x2 − x3) = 0,
F4 : C3(ẋ4 − ẋ5) + (x4 − Ub)/R4 + αg(x2 − x3) = 0,
F5 : −C3(ẋ4 − ẋ5)− Ub/R6 + x5(1/R5 + 1/R6)− (α− 1)g(x5 − x6) = 0,
F6 : C4ẋ6 + x6/R7 − g(x5 − x6) = 0,
F7 : C5(ẋ7 − ẋ8) + (x7 − Ub)/R8 + αg(x5 − x6) = 0,
F8 : −C5(ẋ7 − ẋ8) + x8/R9 = 0,

(8.28)

where g(x) = β(exp(x/UF ) − 1) and Ue(t) = 0.1 sin(200πt) with nonzero parameters Ub,
UF , α, β, R0, R1, . . . , R9, and C1, . . . , C5.

A dual optimal solution on (8.28) is given by p = (0, . . . , 0) and q = (1, . . . , 1) ∈ Z8.
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The system Jacobian corresponding (p, q) is a singular constant matrix

D =



C1 −C1 0 0 0 0 0 0
−C1 C1 0 0 0 0 0 0

0 0 C2 0 0 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 0 0 C4 0 0
0 0 0 0 0 0 C5 −C5
0 0 0 0 0 0 −C5 C5


.

One possible selection of (r, I, J) is r = 1, I = {2} and J = {1}.
On the substitution method, we solve F2 = 0 for ẋ1 to get

ẋ1 = ẋ2 + (−Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3))/C1 (8.29)

and substitute (8.29) into F1 = 0. Then the first equation is modified into

F̄ sub
1 : −Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) + (x1 − Ue(t))/R0 = 0

and the dual optimal solution is updated to p′ = (1, 0, 0, 0, 0, 0, 0, 1) and q′ = q. The
substitution method modifies the DAE twice more in the same manner for (r, I, J) =
(4, {5}, {4}) and (7, {8}, {7}), and outputs the following DAE

F̄ sub
1 : −Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) + (x1 − Ue(t))/R0 = 0,
F2 : −C1(ẋ1 − ẋ2)− Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) = 0,
F3 : C2ẋ3 + x3/R3 − g(x2 − x3) = 0,
F̄ sub

4 : −Ub/R6 + x5(1/R5 + 1/R6)− (α− 1)g(x5 − x6)
+ (x4 − Ub)/R4 + αg(x2 − x3) = 0,

F5 : −C3(ẋ4 − ẋ5)− Ub/R6 + x5(1/R5 + 1/R6)− (α− 1)g(x5 − x6) = 0,
F6 : C4ẋ6 + x6/R7 − g(x5 − x6) = 0,
F̄ sub

7 : x8/R9 + (x7 − Ub)/R8 + αg(x5 − x6) = 0,
F8 : −C5(ẋ7 − ẋ8) + x8/R9 = 0,

(8.30)

which has a nonsingular system Jacobian.
The augmentation method also modifies the DAE (8.28) three times for (r, I, J) =

(1, {2}, {1}), (4, {5}, {4}), and (7, {8}, {7}). Due to limitations of space, we just describe
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the resulting DAE in the following:

F̄ aug
1 : C1(y1 − ξ2) + (x1 − Ue(t))/R0 = 0,
F2 : −C1(ẋ1 − ẋ2)− Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) = 0,
F̄ aug

2′ : −C1(y1 − ξ2)− Ub/R2 + x2(1/R1 + 1/R2)− (α− 1)g(x2 − x3) = 0,
F3 : C2ẋ3 + x3/R3 − g(x2 − x3) = 0,
F̄ aug

4 : C3(y4 − ξ5) + (x4 − Ub)/R4 + αg(x2 − x3) = 0,
F5 : −C3(ẋ4 − ẋ5)− Ub/R6 + x5(1/R5 + 1/R6)− (α− 1)g(x5 − x6) = 0,
F̄ aug

5′ : −C3(y4 − ξ5)− Ub/R6 + x5(1/R5 + 1/R6)− (α− 1)g(x5 − x6) = 0,
F6 : C4ẋ6 + x6/R7 − g(x5 − x6) = 0,
F̄ aug

7 : C5(y7 − ξ8) + (x7 − Ub)/R8 + αg(x5 − x6) = 0,
F8 : −C5(ẋ7 − ẋ8) + x8/R9 = 0,
F̄ aug

8′ : −C5(y7 − ξ8) + x8/R9 = 0,

where y1, y4, and y7 are new variables corresponding to ẋ1, ẋ4, and ẋ7, respectively, and
ξ2, ξ5, and ξ8 are arbitrary constants corresponding to ẋ2, ẋ5, and ẋ8, respectively.

Indeed, the LC-method can also modify the DAE (8.28) into (8.30). In general, the
substitution method and the LC-method return the same DAE under some reasonable
restrictions; see the appendix for details.

8.4 Experiments

We have implemented combinatorial relaxation procedure equipped with our modification
methods as a MATLAB library; our library is available at [75]. The most part of our
method is implemented in the MuPAD language: a core system of the Symbolic Math
Toolbox in MATLAB. For the rank computation of system Jacobian and the process
of finding (r, I, J), we used the function linalg::gaussJordan in MuPAD (equivalent
to rref in MATLAB applied to symbolic matrices). This function is based on the fast
symbolic Gaussian elimination algorithm by Sasaki–Murao [85]. For solving symbolic
equations in the substitution method, our library just applies solve in MuPAD (the same
as that of MATLAB). On executing the augmentation method, our library introduces sym-
bols that represent the constant (τ,Ξ) in modified DAEs. The experiments are conducted
on a laptop with Core i7 2.8 GHz CPU and 16 GB memory.

8.4.1 Experiment Settings

We applied our library in practice to the following four DAEs. The DAEs have identically
singular system Jacobian, and thus the MS-method, which is the index reduction method
adopted by MATLAB, cannot be applied to them.



128 Structural Modification for Nonlinear DAEs

(a) Nonlinearly modified pendulum (index-3):

ẋ4 − x1x2 cosx3 = 0,
ẋ5 − x2

2 cosx3 sin x3 + g = 0,
x1

2 + x2
2 sin2 x3 − 1 = 0,

tanh(ẋ1 − x4) = 0,
ẋ2 sin x3 + x2ẋ3 cosx3 − x5 = 0

with parameter g. This DAE is obtained by nonlinearly changing the variable
(y, z, λ, vy, vz) of a simple pendulum DAE

v̇y − yλ = 0,
v̇z − zλ+ g = 0,
y2 + z2 − 1 = 0,

ẏ − vy = 0,
ż − vz = 0

by (y, z, λ, vy, vz) = (x1, x2 sin x3, x2 cosx3, x4, x5). In addition, we equivalently
changed the fourth equation ẋ1 − x4 = 0 to tanh(ẋ1 − x4) = 0.

(b) Robotic arm (index-5):

ẍ1 − 2c(x3)(ẋ1 + ẋ3)2 − ẋ1
2d(x3) + (x2 − 2x3)(a(x3) + 2b(x3))

− a(x3)(x4 − x5) = 0,
ẍ2 + 2c(x3)(ẋ1 + ẋ3)2 + ẋ1

2d(x3) + (x2 − 2x3)(1− 3a(x3)− 2b(x3))
+ a(x3)(x4 − x5) + x5 = 0,

ẍ3 + 2c(x3)(ẋ1 + ẋ3)2 + ẋ1
2d(x3) + (x2 − 2x3)(a(x3)− 9b(x3))

+ 2ẋ2
1c(x3) + d(x3)(ẋ1 + ẋ3)2 + (a(x3) + b(x3))(x1 − x2) = 0,

cosx1 + cos(x1 + x3)− p1(t) = 0,
sin x1 + sin(x1 + x3)− p2(t) = 0,

where

p1(t) = cos(1− et) + cos(1− t), p2(t) = sin(1− et) + sin(1− t),

a(s) = 2
2− cos2 s

, b(s) = cos s
2− cos2 s

, c(s) = sin s
2− cos2 s

, d(s) = sin s cos s
2− cos2 s

.

The robotic arm DAE arises from the path control of a two-link, flexible joint
and planar robotic arm [10]. The above formulation is a slightly modified version
given in the preliminary paper of [94] available on arXiv.
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(c) Transistor amplifier (index-1): the DAE (8.28).

(d) Ring modulator (index-2):

ẋ1 + (x1/R− x8 + 0.5x10 − 0.5x11 − x14)/C = 0,
ẋ2 + (x2/R− x9 + 0.5x12 − 0.5x13 − x15)/C = 0,

x10 − q(UD1) + q(UD4) = 0,
x11 − q(UD2) + q(UD3) = 0,
x12 + q(UD1)− q(UD3) = 0,
x13 + q(UD2)− q(UD4) = 0,

ẋ7 + (x7/Rp − q(UD1)− q(UD2) + q(UD3) + q(UD4))/Cp = 0,
ẋ8 + x1/Lh = 0,
ẋ9 + x2/Lh = 0,

ẋ10 + (−0.5x1 + x3 +Rg2x10)/Ls2 = 0,
ẋ11 + (0.5x1 − x4 +Rg3x11)/Ls3 = 0,

ẋ12 + (−0.5x2 + x5 +Rg2x12)/Ls2 = 0,
ẋ13 + (0.5x2 − x6 +Rg3x13)/Ls3 = 0,

ẋ14 + (x1 + (Rg1 +Ri)x14 − Uin1(t))/Ls1 = 0,
ẋ15 + (x2 + (Rc +Rg1)x15)/Ls1 = 0,

where

UD1 = x3 − x5 − x7 − Uin2(t), UD2 = −x4 + x6 − x7 − Uin2(t),
UD3 = x4 + x5 + x7 + Uin2(t), UD4 = −x3 − x6 + x7 + Uin2(t),
q(U) = γ

(
eδU − 1

)
, Uin1(t) = 0.5 sin 2000πt, Uin2(t) = 2 sin 20000πt

with parameters C,Cp, Lh, Ls1, Ls2, Ls3, γ, δ, R,Rp, Rg1, Rg2, Rg3, Ri, and Rc. The
DAE represents an electrical network describing the behavior of a ring modula-
tor [61]. The above formulation is obtained by setting Cs = 0 in the original
problem.

8.4.2 Experimental Results

Table 8.1 shows the running time of our implementation and the size of output DAEs.
Except for the substitution method applied to the DAE (c), the substitution and the aug-
mentation methods successfully modified the DAEs (a)–(d) within 1 second. We confirmed
that the MS-method is applicable to all the resulting DAEs.

The reason of freezing of the substitution method for (d) is the following. Let Fi = 0
be the ith equation of (d) for i = 1, . . . , 15. Our library first finds the following values of
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Table 8.1: Experimental results.

DAE DAE size Modification method Time (sec) Modified DAE size
(a) 5 Substitution 0.1713 5
(a) 5 Augmentation 0.2290 13
(b) 5 Substitution 0.4334 5
(b) 5 Augmentation 0.1682 8
(c) 8 Substitution 0.2767 8
(c) 8 Augmentation 0.1819 11
(d) 15 Substitution (more than 1 hour) —
(d) 15 Augmentation 0.5114 18

(p, q, r, I, J):

p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
q = (1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1), (8.31)
r = 5, I = {3, 4, 6}, J = {3, 4, 5}.

Then the substitution method requires to solve the equation system
F3 : x10 − γeδ(x3−x5−x7−Uin2(t)) + γeδ(−x3−x6+x7+Uin2(t)) = 0,
F4 : x11 − γeδ(−x4+x6−x7−Uin2(t)) + γeδ(x4+x5+x7+Uin2(t)) = 0,
F6 : x13 + γeδ(−x4+x6−x7−Uin2(t)) − γeδ(−x3−x6+x7+Uin2(t)) = 0

(8.32)

for (x3, x4, x6) and substitute back it into F5 = 0 to eliminate x(qj)
j for j = 1, . . . , 15. As

we can see, however, solving the system (8.32) for (x3, x4, x6) is not an easy task; the
solution cannot be represented by a combination of the elementary functions. Hence the
equation-solving engine in MuPAD could not accomplish the task to solve (8.32).

Indeed, while solving (8.32) for (x3, x4, x6) is complicated, the modified 5th equation
F̄ sub

5 = 0 is quite simple; it coincides with the sum of the 3–6th equations, i.e.,

F̄ sub
5 : x10 + x11 + x12 + x13 = 0.

Detecting and utilizing such a simple dependence structure is left for future investigation.
On the DAE (d), there exists another possible values of (p, q, r, I, J) as follows:

p = (0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
q = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (8.33)
r = 11, I = {3, 4, 5, 6, 10, 12, 13}, J = {3, 5, 6, 10, 11, 12, 13}.



8.4. Experiments 131

Since the equation system corresponding to (8.33) is linear, the substitution method would
have gone on if our library had chosen not (8.31) but (8.33). This means that the success
of the substitution method depends on the choice of (p, q, r, I, J). The experimental result
shows that the augmentation method successfully serves as a remedy for this issue.
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Chapter 9

Conclusion

In this thesis, we have considered computations of valuations of Dieudonné determinants
and modifications of differential-algebraic equations (DAEs). We now conclude this thesis
with a brief summary and discussions of prospective research directions.

In Chapter 4, we have presented two efficient algorithms to compute valuations of the
Dieudonné determinants of matrices over split DVSFs. Both algorithms, the combinato-
rial relaxation and matrix expansion algorithms, are based on combinatorial optimization
theory. We have shown that skew inverse Laurent fields are the most general DVSFs for
which these algorithms are naturally applicable, in that the valuation of the Dieudonné
determinant of a matrix admits a trivial upper bound if and only if the matrix is over a
skew inverse Laurent field.

In Chapter 5, we have given two applications our algorithms for the weighted Edmonds’
problem (WEP) and for linear differential/difference equations. In particular, the matrix
expansion algorithm yields the first deterministic polynomial-time algorithm for the non-
commutative WEP with polynomially bounded bit complexity when the base field is Q,
and is also applicable to the reduction of commutative problems. We have also shown
that the dimension of the solution spaces of linear differential and difference equations
can be calculated from degrees/orders of the Dieudonné determinants of skew polynomial
matrices.

Chapters 6–8 have dealt with modification methods for DAEs. To give a consistent
initial value and reduce the differentiation index of DAEs, most of the existing software
libraries provide structural preprocessing methods based on the assignment problem. The
structural methods, however, fail if the DAE has a singular system Jacobian. We thus
consider modifying a DAE into an equivalent DAE whose system Jacobian is nonsingular.
The combinatorial relaxation framework can be used for this modification, in which one
needs to modify DAEs preserving their solution sets. For linear DAEs, we can use the
combinatorial relaxation algorithm by Murota [67] that uses unimodular transformations.
Tan et al. [94] generalized this to nonlinear DAEs, while their algorithms are rather limited
to almost linear DAEs.
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In Chapter 7, we have proposed a modification algorithm for linear DAEs whose co-
efficient matrices are mixed matrices. Technically, we have presented a combinatorial
relaxation algorithm for LM-polynomial matrices that uses only unimodular transforma-
tions. Since mixed matrices represent physical quantities as independent parameters, one
can avoid issues arising from measurement or numerical errors. Though our algorithm
deals with matrices containing independent symbols, it does not depend on symbolic com-
putation by making use of graph and matroid algorithms. We have also developed a faster
algorithm for DAEs whose coefficient matrices are consistent with dimensional analysis.
We also have confirmed through numerical experiments that our algorithm runs sufficiently
fast for large scale DAEs.

A limitation of our algorithm is that it can handle only time-invariant systems. Gen-
eralizing mixed matrix theory to a time-varying setting is a promising future direction.
Representing the differential operator as an indeterminate of skew polynomials, one can
regard a time-varying linear DAE as an equation whose coefficient is a skew polynomial
matrix. We can also consider adjoining independent parameters into skew polynomials,
which result in a matrix something like “mixed skew polynomial matrix”. There must be
much work left for this type of matrices, such as giving efficient algorithms to compute
characteristic quantities like the degrees of the Dieudonné determinants, properly extend-
ing the dimensional consistency reflecting the dimension of the differential operator, and
of course, devising modification algorithms for a linear DAE having the matrix as the
coefficient.

In Chapter 8, we have presented two modification methods for nonlinear DAEs, called
the substitution method and the augmentation method. Using a symbolic computation
engine as a black-box, both methods modify DAEs into other DAEs for which the struc-
tural preprocessing methods work. Both methods can be applied to “highly nonlinear
DAEs” that the existing modification methods of Tan et al. [94] cannot handle. The
substitution method modifies DAEs based on the implicit function theorem and has a
merit that it retains the size of DAEs. The augmentation method modifies DAEs by ap-
pending new variables and equations, and is advantageous in that it does not require an
equation-solving engine and keeps DAEs’ sparsity.

Both (and all existing) methods cannot deal with DAEs which are nonsmooth or
with (F1) or (F2); modifying such DAEs seems to require a new approach other than com-
binatorial relaxation. In addition, all methods require the symbolic Gaussian elimination
for computing the rank of system Jacobian. In theory, this computation, or more specifi-
cally, testing if a mathematical formula is identically zero, is undecidable, i.e., there is no
algorithm to solve the problem [83]. Symbolic computation engines implement heuristic
algorithms for the zero testing problem, and they tend to get drastically slow or unreliable
with respect to the growth of the size of mathematical formulas. Thus applications of both
methods are limited to middle-sized DAEs. To keep parts in matrices that are eliminated
smaller, dividing a DAE system into small subsystems according to the system Jacobian’s
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structure would be a promising future direction.
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