
博士論文

Security Evaluation of Public-Key
Cryptography against Side-Channel

Attacks and Quantum Attacks
（公開鍵暗号に対するサイドチャネル攻撃

および量子攻撃の安全性評価）

大西　健斗



Copyright c⃝ 2020, Kento Oonishi.



Abstract

Public-key cryptography is an indispensable technology for the information society, and
the security of public-key cryptosystems must be guaranteed to use them. The standard
definitions of security are based on computational problems, which take a long time to
solve. However, both side-channel and quantum attacks threaten security. Side-channel
attacks may recover sensitive information using data leaked physically, depending on an
actual implementation. The standard definitions of security do not consider the actual
implementations, and cryptosystems will be insecure even if the security is guaranteed.
Thus, security against side-channel attacks must be considered based on the actual imple-
mentations. In addition to side-channel attacks, threats of quantum computers also exist.
Quantum computers have more computational power than the currently used computers.
Ideal quantum computers break the currently used public-key cryptosystems such as the
RSA scheme. The National Institute of Standards and Technology (NIST) promotes the
standardization of post-quantum cryptography against quantum attacks. We must also
consider the threats of quantum attacks to the currently used public-key cryptosystems
because it takes a long time to migrate to new cryptosystems.

In this thesis, we evaluate the security of public-key cryptosystems against side-channel
and quantum attacks. First, we evaluate the security of the CRT-RSA scheme against
side-channel attacks. The CRT-RSA scheme is a currently used public-key cryptosystem.
We focus on the CRT-RSA scheme using the sliding window method. We evaluate se-
curity against sliding window leakage. Next, we evaluate the security of the Ring-LWE
and Module-LWE based schemes, which are next-generation public-key cryptosystems,
against side-channel attacks. We focus on Lyubashevsky et al.’s cryptosystem, the origin
of these schemes among NIST candidates. We evaluate the security of Lyubashevsky et
al.’s cryptosystem against leakage from a number theoretic transform. Finally, we eval-
uate the security of the RSA scheme against quantum attacks. We reduce the cost of a
controlled modular adder, which is the core arithmetic of Shor’s algorithm. Based on our
construction of a controlled modular adder, we evaluate the security of the RSA scheme.
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Chapter 1

Introduction

1.1 Background
This section introduces the field of public-key cryptography [24]. First, Section 1.1.1 in-
troduces public-key cryptography itself. Then, Section 1.1.2 and 1.1.3 describe threats of
side-channel attacks [56] and quantum attacks [103] on public-key cryptosystems, respec-
tively.

1.1.1 Public-Key Cryptography
Information communication technology is indispensable for the information society. Many
services are developed based on information communication technology. For example, we
communicate through e-mail in everyday life. We often buy goods and use banking services
on the Internet. Moreover, cloud services are widely used to store and manage a large
amount of data. We must provide a significant amount of information to use such services,
including personal information and transactions conveniently. Sensitive information must
be protected from attackers to use these services securely.

However, the risk of exposure to attackers is incurred when we send information using
a communication channel. If attackers wiretap this communication channel, they can
extract the content of the communication. Thus, if we send sensitive information through
a communication channel, it will be leaked to attackers. Moreover, risks are not limited to
information leakage. Attackers can also replace information on a communication channel.
Such risks prevent secure communication, and we must therefore consider countermeasures
for overcoming them.

Cryptography is a technology for dealing with sensitive information in a secure manner.
Sensitive information is protected from attackers owing to the use of cryptography. We
now review public-key encryption and digital signature schemes, which are fundamental
schemes applied in public-key cryptography.

Public-Key Encryption Scheme
The encryption schemes protect sensitive information and are composed of three types of
algorithms:

• Key generation
• Encryption
• Decryption

These three types of algorithms can be described as follows:

• Key Generation. Encryption keys and decryption keys are generated. A sender
has the encryption keys, and the receiver has the decryption keys.
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• Encryption. The sender scrambles a message using the encryption keys and gen-
erates the ciphertext.

• Decryption. The receiver recovers the message in the ciphertext using decryption
keys.

We now describe the symmetric-key and the public-key encryption schemes. These
schemes differ in the way the keys are distributed. Although this thesis focuses on public-
key encryption schemes, we also review the use of the symmetric-key encryption schemes
for comparison.

In the symmetric-key encryption schemes, the encryption keys and the decryption keys
are the same. These keys are called the secret keys. Before applying a symmetric-key
encryption scheme, the sender and the receiver must share the secret keys. This key-
exchange step is the major problem in this type of scheme. If we communicate with
many people, different keys must be generated and exchanged with each individual. The
AES [78] is a currently used symmetric-key encryption scheme.

The public-key encryption schemes employ different keys for the encryption and decryp-
tion keys [24], which is different from the symmetric-key encryption schemes. Although
only an authorized receiver has the decryption keys, everyone can obtain the encryption
keys. The encryption keys are called the public keys, and the decryption keys are called
the secret keys.

In the public-key encryption schemes, anyone can generate a ciphertext, and the autho-
rized receiver only decrypts this ciphertext. The key-exchange used in the public-key en-
cryption schemes is more useful than that used in the symmetric-key encryption schemes.
However, the public-key encryption schemes require a longer time for encryption and
decryption than the symmetric-key encryption schemes. Thus, a public-key encryption
scheme is used for the key-exchange scheme of a symmetric-key encryption scheme [24].
RSA [76, 99] and elliptic curve [55, 74] schemes are currently used public-key encryption
schemes.

Digital Signature Scheme
The digital signature schemes verify whether a sender indeed sent the message and prevent
the forgery of messages. The digital signature schemes are composed of three algorithms:

• Key generation
• Signing
• Verification

These three algorithms are described as follows:

• Key Generation. Signing keys and verification keys are generated. The sender
has the signing keys, and a receiver has the verification keys.

• Signing. The sender generates a signature on the message by using the signing
keys.

• Verification. The receiver verifies the signature on the message by using the
verification keys.

The digital signature schemes verify the integrity of a message and its sender. Thus, the
verification keys are public to everyone, and only an authorized sender has the signing
keys. The signing keys are called the secret keys, and the verification keys are called the
public keys. RSA [76, 99], DSA [79], and elliptic curve [55, 74] schemes are widely used
for digital signature schemes.
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Standard Definitions of Security of Public-Key Cryptosystem
We now focus on the standard definitions of security of public-key cryptosystems. There
are many definitions of security of the public-key encryption schemes and the digital
signature schemes. In both schemes, security is defined based on the following:

• The security level of the public-key cryptosystem
• The model of attackers

Security is guaranteed by proving that the public-key cryptosystem achieves the security
level under the attackers.

A computational problem requiring a long time to solve, e.g., a super-polynomial time,
is used for guaranteeing security. For example, the security of the RSA scheme [99] is
based on the integer factoring problem. For security used in public-key cryptosystems,
the following are performed:

• Guarantee the hardness of breaking the cryptosystem based on the computationally
difficult problem

• Evaluate time complexity for solving the computational problem

We will now describe these in more detail.
First, we focus on guaranteeing the hardness of breaking the cryptosystem. The security

proof tries to solve the computational problem by assuming that the attackers break the
cryptosystem. Then, breaking the cryptosystem is harder than solving the computational
problem. Thus, the security of the cryptosystem is guaranteed.

Second, we focus on evaluating time complexity in solving the computational problem.
As noted above, security is based on a computational problem that is believed to require
a long time to solve. The computational problem must not be solved in a polynomial
time to guarantee the security of a cryptosystem. We must clarify the hardness of the
computational problem. We provide an efficient algorithm for solving the computational
problem to show the hardness. Then, the cryptosystem security is evaluated by the time
complexity for solving the corresponding computational problem. The security is given
as λ-bit security when the corresponding computational problem is solved with 2λ-time.
Development of computational power updates the appropriate value of λ. Then, the
appropriate parameters must be determined both theoretically and experimentally.

Standardization Project of Next-Generation Public-Key Cryptosystem
As noted above, RSA [99] and elliptic curve [55, 74] schemes are widely used. The RSA
and elliptic curve schemes are based on the integer factoring problem and the elliptic
curve discrete logarithm problem. However, quantum computers can solve the integer
factorization problem and the elliptic curve discrete logarithm problem in polynomial
time [103]. The secret keys are then calculated on the currently used public-key cryp-
tosystem, such as the RSA scheme. Thus, currently used cryptosystems are vulnerable to
quantum computers.

Based on this fact, the National Institute of Standards and Technology (NIST) pro-
motes the standardization of next-generation public-key cryptosystems, which provides
resistance for quantum computers [80]. This standardization is in the third round, and
seven candidates survive for the next-generation public-key cryptosystems. These cryp-
tosystems are based on computational problems that are believed to be resistant to quan-
tum computers. Moreover, studies on new security models against quantum computers
are proceeding [44].
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1.1.2 Threat of Side-Channel Attacks on Public-Key Cryptosystems
We now introduce more practical security. We explain side-channel attacks [56] on a
public-key cryptosystem. Side-channel attacks recover the secret keys from physically
leaked data and break the cryptosystem. Physically leaked data is extracted from various
ways. For example, data is leaked as the decryption time [56], power consumption [47, 57],
sound [32], and cache access [10, 50, 89, 119, 120].

It is well known that side-channel attacks are significant threats to cryptosystems used
on computers, smartcards, and other devices. However, threats of side-channel attacks are
not considered in the standard definition of security discussed above because physically
leaked data depends on how the cryptosystems are implemented. Thus, security is not
guaranteed when a cryptosystem is exposed to threats of side-channel attacks. This thesis
focuses on a method for evaluating the security of a public-key cryptosystem against side-
channel attacks.

We now explain the general strategy of previous side-channel attacks on a public-key
cryptosystem. Previous studies on side-channel attacks have mainly focused on extracting
the secret keys of the public-key cryptosystem. These studies have considered methods for
extracting physically leaked data related to the secret keys, and methods for recovering
the secret keys from the extracted data have been proposed.

However, physically leaked data includes various noises. These errors occur because of
measurement errors, an environment of measurement, and other reasons. Most studies
have tried to eliminate such noise by measuring data many times and averaging the
measurement results. Moreover, most studies have researched methods for measuring
and processing data to obtain physically leaked data as accurately as possible. Then, the
security of the public-key cryptosystem against side-channel attacks is evaluated.

However, physically leaked data may not be observed many times because unauthorized
people access a device. It is difficult to eliminate noise in physically leaked data from a few
observations. When attackers treat the data corresponding to each secret key separately,
the entire secret keys will not be recovered because of noise.

Mathematical structure in public-key cryptosystems causes the recovery of the entire
secret keys from noisy data [42, 43, 95]. These methods allow attackers to recover the
secret keys from a few observations. These attacks are serious, and we must evaluate the
threats of these attacks. Previous studies provided a mathematical model on the extracted
data and evaluated security on this model. These studies clarify how much accuracy of
extracted data is required to recover the secret keys.

An efficient implementation may be one of the reasons for attacks using mathematical
structure. Many cryptosystems are attacked based on their efficient implementation. For
example, the following public-key cryptosystems are attacked:

• The RSA scheme [99] using Chinese Remainder Theorem (CRT-RSA) [76]
• Ring-LWE and Module-LWE based schemes

These schemes adopt efficient calculation methods by preparing additional secret keys and
transforming the secret keys, respectively. The same secret keys are inputted multiple
times in these schemes. Thus, the extracted data has redundancy, and the secret keys
are recovered even if there is noise in the extracted data. This thesis focuses on security,
even when noise is present in the extracted data. We now describe previous side-channel
attacks on these schemes.
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Previous Side-Channel Attacks on CRT-RSA Scheme
The CRT-RSA scheme is widely used. In the CRT-RSA scheme, following side-channel
attacks are proposed:

• Attacks on modular exponentiations [56]
• Bit extraction through cold-boot attacks [40]
• Attacks on key generation [15]

This thesis focuses on the first type of attacks. Before describing these attacks, we briefly
explain the second and third attacks for comparison. The second attacks observe the
DRAM data remanence and read the CRT-RSA secret keys. Many studies have developed
methods for the recovery of the CRT-RSA secret keys based on these attacks. Heninger
and Shacham [43] proposed a method for recovering the CRT-RSA secret keys from noisy
CRT-RSA secret keys with random erasure bits. Their method uses the redundancy of
the CRT-RSA secret keys to decrease the number of candidates. Heninger and Shacham
also proposed a recovery method for the CRT-RSA secret key using a binary tree. Based
on their method, many studies have been conducted under various noise conditions. For
example, Henecka et al. [42] considered error bits, and Kunihiro et al. [59] considered both
erasure and error bits. Similarly, recovery methods for the CRT-RSA secret keys have
been extended to more general cases [58, 60, 87]. The third type of attacks [15] focus
on the key-generation step and extract operations during the calculation of the greatest
common divisor using the secret keys.

We now review the first type, i.e., attacks on modular exponentiations. The secret keys
are used as the exponents in modular exponentiations. The modular exponentiations are
implemented using the binary method, the fixed window method, or the sliding window
method. These methods repeat the squaring and multiplication to calculate the modular
exponentiation. With the binary method, only one multiplier is used for each multiplica-
tion. The parameter called window size w is adopted in the other methods. These methods
are composed of precomputing 2w−1 multipliers and calculating the exponentiation. One
multiplier is chosen for each multiplication. When a larger w is used, the exponentiation
is calculated more quickly by reducing multiplications. However, calculating and storing
more precomputed multipliers is required. Thus, an appropriate w is chosen from the
number of bits of an exponent and memory capacity. For example, the currently used
2048-bit CRT-RSA scheme is calculated fastest when w = 6. A smaller w must be used
in devices with a small memory capacity.

We now describe side-channel attacks on modular exponentiations. These side-channel
attacks extract the secret exponent. The first side-channel attack [56] is applied to the
binary method and extracts the implementation time. Messerges et al. [73] then found that
squaring and multiplication are distinguishable. The modular exponentiation is monitored
during the decryption, and the RSA secret keys are extracted as the square-and-multiply
sequence. Based on this fact, many side-channel attacks on the standard RSA and CRT-
RSA schemes have been proposed using extracted square-and-multiply sequences. We
now review side-channel attacks on each modular exponentiation.

In the binary method, the secret exponent is in one-to-one correspondence with the
square-and-multiply sequence. The binary method is therefore vulnerable to side-channel
attacks when the correct square-and-multiply sequences are extracted. The secret expo-
nent cannot be determined immediately only from the square-and-multiply sequence in
fixed or sliding window methods. There are many candidates for the multiplier in each
multiplication. Walter [117] addressed this problem by proposing the Big Mac attack.
This attack obtains the multiplier in each multiplication, and the secret exponent is im-
mediately recovered. Many studies have followed this strategy [31, 47, 50, 89, 120], and the
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authors have discussed how to obtain multipliers as efficiently and correctly as possible.
However, if extracting multiplier is failed, the CRT-RSA secret keys are not immedi-

ately recovered because of 2w−1 candidates in each multiplication. To address this issue,
a method for recovering the CRT-RSA secret keys without knowing the multiplier is
proposed [10]. Their method recovers the CRT-RSA secret keys from the correct square-
and-multiply sequences. This method uses the redundancy of the CRT-RSA secret keys
to decrease the number of candidates of the multiplier by applying Heninger-Shacham’s
method [43]. Their result shows that the CRT-RSA secret keys are recovered in polyno-
mial time when w ≤ 4. Moreover, their method recovers 13% of the CRT-RSA secret keys
when w = 5 for the currently used 2048-bit CRT-RSA scheme. It should be noted that
the CRT-RSA secret keys are not recovered in polynomial time when w = 5, but threats
of side-channel attacks should be discussed.

Unfortunately, previous work [10] has failed to address noisy square-and-multiply se-
quences. The previous method fails to recover the CRT-RSA secret keys because there are
errors in the extracted square-and-multiply sequences. Experiments showed that errors
occur at an average rate of 0.011 in square-and-multiply sequences, which corresponds to
22 errors [10]. They claimed that these errors could be corrected through majority voting
on 20 square-and-multiply sequences. However, there is no guarantee that obtaining 20
square-and-multiply sequences is possible because the decryption or signing process de-
pends on the authorized user. Therefore, we should evaluate the security of the CRT-RSA
scheme based on a single square-and-multiply sequence with errors.

To address a security analysis based on noisy square-and-multiply sequences, Oonishi
and Kunihiro [84] proposed a method for recovering the CRT-RSA secret keys from noisy
square-and-multiply sequences. They proposed a recovering method for w = 1. The CRT-
RSA secret keys are recovered in polynomial time when the error rate is less than 0.058
on square-and-multiply sequences by using their method. However, their method cannot
be applied to w > 1. A recovery method is proposed for a general w [83], although the
analysis is given only for w = 2. Thus, we should evaluate security on a more extensive
range of w.

Previous Side-Channel Attacks on Ring-LWE and Module-LWE Based Scheme
Ring-LWE and Module-LWE based schemes are candidates for lattice-based cryptosys-
tems in the NIST standardization project and are based on the Ring-LWE [66] and the
Module-LWE [12] problems, respectively. These cryptosystems are defined on a polyno-
mial ring. They are efficiently implemented using a number theoretic transform (NTT) [38,
63]. The NTTs reduce the computational cost of the multiplication of two polynomials
and realize a more efficient scheme. Two Module-LWE based cryptosystems survive the
third round of the NIST standardization project, namely, CRYSTALS-KYBER [102] and
CRYSTALS-DILITHIUM [65].

Primas et al. [95] proposed a method for attacking the NTT on the Lyubashevsky
et al.’s cryptosystem (LPR cryptosystem) [67]. The LPR cryptosystem is the basis of
the NIST candidates, and their attack is proposed before the beginning of the NIST
selection. Until now, many side-channel attacks have been proposed for Ring-LWE and
Module-LWE based cryptosystems in the NIST standardization project [3, 5, 7, 90, 96,
97, 118]. Albrecht et al. [3] proposed cold-boot attacks [40] at the secret keys stored
using an NTT on CRYSTALS-KYBER and NewHope [92]. Amiet et al. [5] found a
vulnerability in the message encoding of NewHope. Aysu et al. [7] proposed a method
for attacking the standard polynomial multiplication. Primas and Pessl [90] proposed the
attack on CRYSTALS-KYBER by extending Primas et al.’s attack [95]. Ravi et al. [96]
found a vulnerability in the message decoding of CRYSTALS-KYBER, LAC [64], and
NewHope. Such vulnerability of a message decoding can be combined with leakage at the
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output of the inverse NTT on CRYSTALS-KYBER [118]. Ravi et al. [97] also found a
vulnerability in the error-correction of LAC. This research also found a vulnerability in
the implementation of a Fujisaki-Okamoto transformation [30].

This thesis focuses on Primas et al.’s attack [95] because it causes a severe threat on the
NTTs, which are the core arithmetic for realizing efficient Ring-LWE and Module-LWE
based schemes. The NTTs use a similar structure as a Fast Fourier Transformation. The
Cooley-Tukey NTT and Gentleman-Sande inverse NTT (INTT) [63] are used as NIST
candidates. The NTTs convert a polynomial into another polynomial using butterfly op-
erations composed of addition, subtraction, and multiplication. The NTTs are composed
of a butterfly’s layer. A polynomial is converted into a different polynomial in each layer.

Primas et al.’s attack is a serious threat for Ring-LWE and Module-LWE based schemes
using an NTT because it extracts the same secret with high redundancy. Primas et al.
applied template attacks [16] on all butterfly operations and extracted the information of
addition, subtraction, and multiplication as probability distributions. High redundancy
occurs because probability distributions related to the same polynomial are extracted
from all layers of the NTTs. The secret keys are recovered from these probability distri-
butions by using this redundancy. The authors then evaluated the security of the LPR
cryptosystem.

However, their approach just heuristically provides an evaluation of the security. Their
method adopts an iterative method to recover the secret keys. This iterative method is not
assured to converge to the accurate values, and the property of this iterative method has
not been studied well. Primas et al.’s analysis should be performed by an exact method
to clarify threats on the NTTs.

1.1.3 Threat of Quantum Computers on Public-Key Cryptosystems
In addition to side-channel attacks, threats of quantum computers on public-key cryp-
tosystems must be considered. Quantum computers are new types of computers, although
perfect versions have not been realized. Shor [103] proposed a polynomial-time quantum
algorithm for the integer factoring and elliptic curve discrete logarithm problems. By solv-
ing these problems, the secret keys of the RSA and elliptic curve schemes are calculated.
Thus, the currently used public-key cryptosystems break down when quantum computers
are realized. However, it will take a long time to migrate to next-generation cryptosys-
tems. Thus, the threats of quantum computers must be evaluated on the currently used
cryptosystems.

We now review quantum computers. Quantum computers have more computational
power than currently used computers, which are called classical computers herein. In clas-
sical computers, only 0 and 1 bits are used. In quantum computers, quantum bits (qubits)
are used, which can take not only values of 0 and 1 but also a superposition of 0 and 1.
Specifically, a qubit is represented as

a |0⟩ + b |1⟩

by two complex numbers a and b satisfying |a|2 + |b|2 = 1. When this qubit is measured,
0 is obtained with probability |a|2, and 1 is obtained with probability |b|2. Once a qubit
is measured, the information of the original qubit is lost.

In more general terms, n qubits represent the superposition of 2n states. By using
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|x⟩ = |xn−1⟩ . . . |x0⟩, where x =
n−1∑
i=0

xi2i, the superposition of 2n states is represented as

2n−1∑
x=0

ax |x⟩ , where a0, . . . , a2n−1 ∈ C and
2n−1∑
x=0

|ax|2 = 1.

We now define a as a =
[
a0 . . . a2n−1

]T. A quantum computation realizes the desired
computational results by applying quantum gates on qubits. A quantum gate application
corresponds to calculating Ua, where U is the unitary matrix in 2n dimensions correspond-
ing to the quantum gate. The desired computational results are then given by measuring
the qubits.

We now explain the current development of quantum computers. As noted above,
perfect quantum computers are not realized. However, imperfect but functional quan-
tum computers, called Noisy Intermediate-Scale Quantum (NISQ) computers [94], have
emerged with machines from IBM [19, 48], Google [6], Rigetti [104], IonQ [77], and Hon-
eywell [91], all accessible through the web. The next decade is likely to see a considerable
rise in NISQ computers in the number of qubits and executable circuit sizes.

Unfortunately, NISQ computers have high error rates in each operation. These errors
propagate as the calculation proceeds. The errors then accumulate in each quantum gate’s
output, and the correct result cannot be extracted. Thus, NISQ computers cannot realize
an arbitrary large-scale quantum computation, and the error rate in quantum computers
must be reduced.

To realize a computation with high accuracy, research on Fault-Tolerant Quan-
tum (FTQ) computers is ongoing [23, 93, 106]. In FTQ computers, an accurate qubit
called a logical qubit is realized by applying an error-correction circuit on many qubits
called physical qubits. By using logical qubits, FTQ computers realize large-scale
quantum algorithms such as Shor’s [103] and Grover’s [39] algorithms. Error-correction
circuits are crucial in FTQ computers, and many researchers have studied error-correction
circuits [23, 62, 109].

We now review threats of quantum attacks on the currently used public-key cryptosys-
tems, such as the RSA and elliptic curve schemes. As noted above, Shor’s algorithm [103]
solves the integer factoring and elliptic curve discrete logarithm problems in polynomial-
time. The detailed circuit of Shor’s algorithm must be considered to discuss this threat
more accurately. After the proposal, there are many studies on constructing Shor’s algo-
rithm [8, 9, 22, 27, 28, 35, 41, 68, 88, 100, 113, 114, 116, 121]. The first detailed construc-
tion is given by Vedral et al. [116], and the following research minimized the number of
qubits, the number of gates, or the depth of the quantum circuit. Specifically, the depth
of the quantum circuit provides the time for running the quantum algorithm. Thus, we
must minimize the depth when we evaluate the security against quantum computers.

The quantum circuit is composed of one-qubit gates, two-qubit gates, and Toffoli gates.
The Toffoli gate is one of the three-qubit gates and corresponds to an AND gate in classical
computers. Specifically, Toffoli gates are calculated as

|x⟩ |y⟩ |z⟩ → |x⟩ |y⟩ |z ⊕ (x ∧ y)⟩ ,

which has a one-to-one correspondence between the input and output states. The Tof-
foli gate is composed of one- and two-qubit gates [81] and requires a higher cost than
quantum gates with fewer qubits. The number of Toffoli gates is commonly used as the
computational cost, particularly on FTQ computers [35, 52, 114]. In the most recent
study, Gidney and Ekerå [35] evaluated the computational cost of Shor’s algorithm based
on the number of Toffoli gates. This study is based on the physical construction of Toffoli
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gates, namely, CCZ factories [36, 37] and shows that the 2048-bit RSA scheme can be
broken within eight hours. Thus, this study describes the security of the RSA scheme in
a realistic environment.

Reducing the number of Toffoli gates is one of the strategies for optimization, and an-
other strategy exists. As noted above, the Toffoli gate can be decomposed into quantum
gates with fewer qubits. By decomposing the Toffoli gate, the depth of a quantum circuit
is reduced by reordering and combining quantum gates [71, 88]. Moreover, the depth
of a quantum circuit can be reduced by using relative-phase Toffoli gates [33, 70]. The
relative-phase Toffoli gates do not realize the Toffoli gate entirely. Using relative-phase
Toffoli gates appropriately, the accurate computation is realized in total [70, 111]. Sig-
nificantly, Gidney [33] proposed the relative Toffoli gates optimized on FTQ computers,
and Maslov [70] proposed the relative Toffoli gates optimized on NISQ computers. We
should discuss the computational cost more precisely by the optimal decomposition of
Toffoli gates.

1.2 Our Motivation and Contribution
In this thesis, we apply a security analysis of public-key cryptosystems against side-channel
attacks and quantum attacks. First, we evaluate security against side-channel attacks on
the CRT-RSA scheme [76] which is a currently used public-key cryptosystem. We propose
a new recovery method for the CRT-RSA secret keys when the sliding window leakage
is extracted. Chapter 3 describes the security of the CRT-RSA scheme when the cor-
rect sliding window leakage is extracted. Chapter 4 gives the security analysis of the
CRT-RSA scheme against noisy sliding window leakage. Next, Chapter 5 gives the secu-
rity analysis against the side-channel attacks on the Ring-LWE and Module-LWE based
schemes, which are next-generation public-key cryptosystems. We evaluate the security
of the most basic scheme, namely, the LPR cryptosystem [67]. We focus on the security
of the LPR cryptosystem against leakage from the NTT. Finally, Chapter 6 describes the
computational cost for a controlled modular adder, which is the core arithmetic of Shor’s
algorithm. We evaluate the security of the RSA scheme against quantum computers.

1.2.1 Improved CRT-RSA Secret Key Recovery Method from Sliding Window
Leakage

In the previous research [10], a method for recovering the CRT-RSA secret keys from
the correct square-and-multiply sequences is proposed. Two methods are used to recover
the CRT-RSA secret keys. In the first method, the CRT-RSA secret keys are recovered
partially, after which all bits are recovered. In the second method, the CRT-RSA secret
keys are recovered directly from square-and-multiply sequences. Both of these methods
employ Heninger-Shacham’s method [43] to recover the CRT-RSA secret keys. The second
method recovers more secret keys than the first method. The second method specifically
recovers the CRT-RSA secret keys in polynomial time when w ≤ 4. Moreover, the second
method recovers 13% of the CRT-RSA secret keys when w = 5 at the 2048-bit CRT-RSA
scheme.

Their results might have been more interesting if we focus on information, partially
recovered CRT-RSA secret keys, from the correct square-and-multiply sequences. Their
method deals with two methods separately, but their two methods similarly recover the
CRT-RSA secret keys by Heninger-Shacham’s method. Thus, more secret keys are recov-
ered by combining these two methods. We then aim to recover more secret keys when
w = 5.
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To improve the original method, we study in more depth a technique for recovering bits
of the CRT-RSA secret keys and propose a new recovery method for CRT-RSA secret
keys. First, we give the exact rate of recovered bits of the CRT-RSA secret keys from
only a square-and-multiply sequence in Section 3.3. Next, we propose a new method
for recovering additional bits with high accuracy in Section 3.4. Finally, we propose a
new method for recovering the CRT-RSA secret keys in Section 3.5. In our proposed
method, we combine two original methods [10]. Moreover, we extend the original method
by combining it with Kunihiro et al.’s method [59]. Our method then recovers 21% of
the CRT-RSA secret keys when w = 5, whereas the original method recovers 13% of the
CRT-RSA secret keys.

1.2.2 Recovering CRT-RSA Secret Keys from Noisy Square-and-Multiply Se-
quences

We evaluate the security to be a more realistic situation than previous research [10]. The
previous research constructs the recovery method for the CRT-RSA secret key on the
correct square-and-multiply sequences. This recovery method heavily uses the correctness
of square-and-multiply sequences.

However, in practice, the previous method [10] fails to recover the CRT-RSA secret
keys because there are errors in extracted square-and-multiply sequences. As noted in
Section 1.1.2, Oonishi and Kunihiro [83, 84] consider a noisy case. Their studies only
give the theoretical bound of the error rate when w ≤ 2, and we should give a theoretical
bound on a more extensive w.

We describe a theoretical analysis on recovering the CRT-RSA secret keys from noisy
square-and-multiply sequences. First, we propose a new method for recovering the CRT-
RSA secret keys from noisy square-and-multiply sequences in Section 4.3. Our method is
faster than the previous method [83]. Next, we calculate the number of errors for which
our method is applied in Section 4.4. Specifically, we theoretically show the tolerable
error rates of our methods when w ≤ 4. Finally, we conduct numerical experiments of our
method and verifies that our algorithm matches our analysis in Section 4.5.

1.2.3 Exact Security Analysis of the Ring-LWE and Module-LWE Based
Schemes against NTT Leakage

Section 1.1.2 explained Primas et al.’s attack [95] briefly. Their attack uses a belief propa-
gation to recover the LPR secret keys. More correctly, their attack adopts the loopy belief
propagation in an NTT. Primas et al. then tried to evaluate threats on actual power traces
and simulated power traces generated from the noisy Hamming weight model. Moreover,
they measure how many secret keys are recovered in each trace.

However, the fundamental problem is that convergence of the loopy belief propagation
is not guaranteed. The loopy belief propagation does not always converge to the accurate
values, and the property of the loopy belief propagation is not studied well. Their security
evaluation is then based on the experiments using obtained traces. Thus, we should
provide the exact security analysis to clarify the threats to the NTTs.

We analyze the security of the LPR cryptosystem [67] against side-channel attacks based
on the exact values. We focus on the LPR cryptosystem using the Cooley-Tukey NTT and
the Gentleman-Sande INTT. To analyze the security of the LPR cryptosystem, we adopt
the erasure model on the multiplication. We assume that we fail to obtain the input of the
multiplication with probability δ. First, we propose an algorithm for recovering coefficients
of the secret polynomial in Section 5.3. Next, we analyze our algorithm in Section 5.4. To
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calculate the number of recovered coefficients, we adopt an iterative method, which always
converges. We analyze the full recovery of LPR secret keys in Section 5.5 and show that
our method recovers the secret keys when δ ≤ 0.78 at the current computational power.
Finally, we described the numerical experiments conducted, verifying that our method
recovers the secret keys when δ ≤ 0.78.

1.2.4 Security Evaluation of RSA Scheme under an Efficient Construction of a
Quantum Controlled Modular Adder

We discuss the security of the RSA scheme against quantum attacks. Shor’s algorithm
breaks the RSA scheme, and the computational cost of this algorithm must be evaluated.
In Shor’s algorithm, a modular exponentiation step dominates the total cost. Many studies
on its construction have thus been conducted [8, 9, 22, 28, 35, 68, 88, 113, 114, 116, 121].
One strategy realizes modular exponentiation through the repeated calling of controlled
modular additions. Thus, if the cost of a controlled modular adder is reduced, the total
cost will also be reduced. Therefore, the computational cost of a controlled modular adder
must be accurately evaluated.

We discuss a controlled modular adder with a small depth for FTQ and NISQ computers.
We provide a more efficient construction compared to Van Meter-Itoh’s approach [113]
based on a carry-lookahead adder [26]. In Section 6.3, we propose the constriction of
a new carry-lookahead adder. Our construction realizes the 2/3 depth of the original
construction. In Section 6.4, we discuss the decomposition of a Toffoli gate and reduce
depth for FTQ or NISQ computers, respectively. In Section 6.5, we evaluate the security
of the RSA scheme against quantum attacks. We evaluate the security against FTQ
computers based on our proposed controlled modular adder. By focusing on the executable
depth based on IBM’s plan for the development of quantum computers [49], we estimate
when the RSA scheme will be broken. Our estimation shows that quantum computers
will break the 2048-bit RSA scheme 28.2 years later, which is 1.4 years earlier than Van
Meter-Itoh’s construction.

1.3 Organization of this Thesis
This thesis has seven chapters. In Chapter 2, we describe the preliminaries. In Chapters 3
and 4, we evaluate the security of the CRT-RSA scheme against side-channel attacks. We
propose an improved recovery method for the CRT-RSA secret keys from the correct
sliding window leakage in Chapter 3. We propose the recovery method for the CRT-
RSA secret keys from the noisy sliding window leakage in Chapter 4. In Chapter 5,
we evaluate the security of the Ring-LWE and Module-LWE based schemes against side-
channel attacks. In Chapter 6, we propose an efficient construction of a controlled modular
adder by quantum computers. Moreover, we evaluate the security of the RSA scheme
against quantum attacks. In Chapter 7, we conclude this thesis.
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Chapter 2

Preliminaries

This chapter provides the preliminaries of this thesis. Section 2.1 introduces the prelimi-
naries on the CRT-RSA scheme. Section 2.2 describes the preliminaries on the Ring-LWE
and Module-LWE based schemes. Section 2.3 introduces the preliminaries on Shor’s algo-
rithm. Specifically, we give the decomposition of Shor’s algorithm into quantum controlled
modular adders.

2.1 Preliminaries on the CRT-RSA Scheme
This section describes the preliminaries on security analysis of the CRT-RSA scheme.
Section 2.1.1 introduces the CRT-RSA scheme [76]. Section 2.1.2 explains the left-to-
right sliding window method used in the CRT-RSA scheme.

2.1.1 CRT-RSA Scheme
We now introduce the CRT-RSA scheme, particularly the CRT-RSA encryption and sig-
nature scheme. Before introducing the CRT-RSA encryption and signature scheme, we
introduce the standard RSA scheme [99]. This scheme comprises public keys (N, e) and a
secret key (p, q, d). Here, p and q are n/2 bit prime numbers; in addition, public keys (N, e)
and a secret key d satisfy N = pq and ed ≡ 1 mod (p − 1)(q − 1). In the standard RSA
encryption scheme, a plaintext m is encrypted by calculating c = me mod N , and cipher-
text c is decrypted by calculating m = cd mod N . In the standard RSA signature scheme,
a signature on m is generated by calculating σ = h(m)d mod N , and verify the signature
σ by checking h(m) = σe mod N . In this signature scheme, h is a secure hash function.
These two RSA schemes are composed of two modular exponentiations: xe mod N , using
a public key e, and xd mod N , using a secret key d. Although the small public key e
is used, such as 216 + 1 = 65537, a larger secret key d is also applied. Therefore, the
implementation time may be longer during decryption and signing than encryption and
verification, respectively.

The CRT-RSA scheme [76] realizes faster decryption and signing by applying the Chi-
nese Remainder Theorem (CRT) decomposition on a secret key d. The secret keys
dp := d mod p − 1, dq := d mod q − 1, and qp := q−1 mod p are added into the CRT-
RSA scheme. Encryption is the same as that of the standard RSA scheme. In decryption
or signing, two modular exponentiations, xdp mod p and xdq mod q, are calculated using
secret keys. Then, xd mod N is calculated by applying CRT on these two values. The
calculation of xd mod N is approximately 4-times faster in the CRT-RSA scheme than
the standard RSA scheme because bases and exponents are half of the bits.
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Algorithm 1 Left-to-right sliding window method [72]

Input: c, d = (dt, dt−1, · · · , d0)2, window size w ≥ 1
Output: cd

Step 1: Precomputation
c1 = c, c2 = c2

for i = 1 to 2w−1 − 1
c2i+1 = c2i−1 · c2

end for
Step 2: Exponentiation
A = 1, i = t
while i ≥ 0

if di = 0
A = A2 (Squaring)
i = i− 1

else
Find the longest bit-string di · · · dl such that i− l + 1 ≤ w and dl = 1.
A = A2(i−l+1) · c(di···dl)2

(Squaring and Multiplication)
i = l − 1

end if
end while

return A

Table 2.1: Computational cost of modular exponentiation using 1024-bit exponent
w 1 2 3 4 5 6 7

Precomputation 0 1 3 7 15 31 63
#(Multiplication) Exponentiation 512 341 256 205 171 146 128

Total 512 342 259 212 186 177 191
Memory [KByte] 0.13 0.26 0.51 1.0 2.0 4.1 8.2

2.1.2 Left-to-Right Sliding Window Method
The left-to-right sliding window method is given in Algorithm 1. Before a modular ex-
ponentiation is calculated, the values of ci for odd i values satisfying 1 ≤ i ≤ 2w − 1 are
precomouted. Then, bits are read from the MSB side to the LSB side. If the value of bit
is 0, a squaring (S) is conducted once. If the value of bit is 1, more (w− 1)-bits are read,
and w squarings (S) and one multiplication (M) are conducted. Therefore, the number
of S is the same as the number of bits of the secret exponent d.

In Algorithm 1, the exponentiation given as Step 2 can be calculated with fewer mul-
tiplications for a larger w, whereas the number of squaring operations does not change.
Specifically, when an n-bit exponent is used, the number of multiplications is n/(w + 1).
However, to deal with the bits simultaneously, the precomputation given as Step 1 is
required. Multiple candidate values of ci in memory must be stored, and the number of
stored values grows exponentially large at w. When an n-bit exponent is used, the number
of multiplications is 2w−1 − 1, and the amount of memory used is 2w−1n/8 bytes.

We give an example of the cost of exponentiation using a 1024-bit exponent used in the
2048-bit CRT-RSA scheme. Table 2.1 shows the cost of exponentiation using a 1024-bit
exponent. Table 2.1 describes that the number of multiplications is minimized at w = 6.
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However, a smaller w must be used in devices with small memory, such as a smartcard.

2.2 Preliminaries on the Ring-LWE and Module-LWE Based
Schemes

This section describes preliminaries on the security analysis of the Ring-LWE and Module-
LWE based schemes. Section 2.2.1 introduces notations on the Ring-LWE and Module-
LWE based schemes. Section 2.2.2 provides the lattice problems, the Ring-LWE [66]
and Module-LWE problem [12]. Section 2.2.3 introduces the Lyubashevsky et al.’s cryp-
tosystem (LPR cryptosystem) [67]. Section 2.2.4 describes the construction of a Number
Theoretic Transform (NTT), particularly the Cooley-Tukey NTT and Gentleman-Sande
INTT [63].

2.2.1 Notations
We now introduce the notations. Here, Z is defined as the set of integers, namely, Z =
{0,±1,±2, . . .}. Let q be a positive integer. Zq is defined as the set of remainders of the
division of the elements in Z by q, namely, Zq = {0, 1, . . . , q− 1}. Z and Zq are rings, and
the addition and multiplication are defined on Z and Zq. Additions and multiplications
on elements in Z and Zq will be applied. These operations are conducted after converting
the element in Z into Zq by calculating the remainder of the division by q.

Next, we define the polynomial ring. Let N be a positive integer. Z[x] is defined as the
set of polynomials whose coefficients are in Z. The set of polynomials Z[x]/

⟨
xN + 1

⟩
is

defined as the set of remainders of the division of the elements in Z[x] by xN + 1. In the
following discussion, Z[x]/

⟨
xN + 1

⟩
is simply written as R. R is a ring, and the addition

and multiplication are defined on R. Zq[x] is also defined as the set of polynomials whose
coefficients are in Zq. Zq[x]/

⟨
xN + 1

⟩
is defined as the set of remainders of the division

of the elements in Zq[x] by xN + 1. In the following discussion, Zq[x]/
⟨
xN + 1

⟩
is simply

written as Rq. Rq is also a ring, and the addition and multiplication are defined on Rq.

2.2.2 Lattice Problems
In this subsection, we introduce the Ring-LWE [66] and the Module-LWE [12] problems.
The Ring-LWE and Module-LWE problems are variants of the learning with errors (LWE)
problem [98]. Before introducing the Ring-LWE and Module-LWE problems, we introduce
the LWE problem as Definition 1.

Definition 1 (LWE problem [98]) Let l and m be positive integers, q be a prime number,
and χ be a probability distribution over Z. We then choose s ∈ Zl

q, ai ∈ Zl
q, and ei ∈ Z,

where 1 ≤ i ≤ m. s is chosen uniformly from Zl
q, and ai’s are chosen independently and

uniformly from Zl
q. ei’s are chosen independently according to χ. Let bi = aT

i s+ei mod q,
where T indicates the transpose. The LWE problem is defined as the problem of recovering
s from m pairs of (ai, bi).

In the LWE problem, ei’s are the small error terms. Typically, we set χ as the discrete
Gaussian distribution Dσ defined as Definition 2.

Definition 2 (Discrete Gaussian distribution on Z [98]) Let σ be a positive real number.
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The discrete Gaussian distribution is defined on x ∈ Z as

Dσ(x) =
exp

(
− x2

2σ2

)
∑
y∈Z

exp
(

− y2

2σ2

)
When ei’s are all 0, we can easily recover s. The error terms ei’s are why the LWE problem
is difficult. Many studies have solved the LWE problem using the BKW algorithm [2, 11,
54] or a lattice reduction [17, 61]. Significantly, the LWE problem’s challenge is held [112]
to evaluate the difficulty of the LWE problem.

We now define the Ring-LWE [66] and Module-LWE [12] problems. In the following
discussion, a polynomial is sampled uniformly from Rq by choosing each coefficient inde-
pendently and uniformly from Zq.

The Ring-LWE problem is an extension of the LWE problem on the polynomial ring,
namely, Rq. The Ring-LWE problem is defined as Definition 3.

Definition 3 (Ring-LWE problem [66]) Let m be a positive integer, N be a power of 2,
and q be a prime number. Moreover, let χ be a probability distribution over Z. Then,
we choose s ∈ Rq, ai ∈ Rq, and ei ∈ R, where 1 ≤ i ≤ m. s is chosen uniformly from
Rq, and ai’s are chosen independently and uniformly from Rq. The coefficients of ei’s are
chosen independently according to χ. Then, let bi = ais+ ei. The Ring-LWE problem is
defined as the problem of recovering s from m pairs of (ai, bi).

The Module-LWE problem is a generalization of both the LWE and Ring-LWE prob-
lems. The Module-LWE problem is defined on a vector of polynomials, namely, Rl

q. The
Module-LWE problem is defined as Definition 4.

Definition 4 (Module-LWE problem [12]) Let l and m be positive integers, N be a power
of 2, and q be a prime number. Moreover, let χ be a probability distribution over Z. We
then choose s ∈ Rl

q, ai ∈ Rl
q, and ei ∈ R, where 1 ≤ i ≤ m. Each element of s is chosen

independently and uniformly from Rq. Each element of ai is chosen independently and
uniformly from Rq. Coefficients of ei’s are chosen independently according to χ. Let
bi = aT

i s + ei, where T indicates a transpose. The Module-LWE problem is defined as
the problem of recovering s from m pairs of (ai, bi).

When N = 1, the Module-LWE problem is as same as the LWE problem. When l = 1,
the Module-LWE problem is as same as the Ring-LWE problem.

2.2.3 LPR Cryptosystem [67]
First, we introduce the parameters used for the LPR cryptosystem. In the LPR cryp-
tosystem, three parameters (N, q, σ) are used. Let N be the power of two, namely,
N = 2n (n ∈ N). Then, let q be a prime number satisfying q ≡ 1 mod 2N . Moreover,
let σ be a real positive number Θ

(√
qN−1/4). Based on the parameters, N , q, and σ, we

describe the key generation, encryption, and decryption in the LPR cryptosystem. These
operations are applied on the polynomial ring Rq.

Key Generation. Two polynomials s, e ∈ R are generated by sampling each coefficient
of s and e from the discrete Gaussian distribution Dσ. Then, a polynomial a ∈ Rq is
sampled randomly, and b is computed as e − as. At last, public keys (a, b) and a secret
key s are outputted.
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Encryption. We explain the encryption of a plaintext m ∈ {0, 1}N . The plaintext m
is encoded on the elements in Rq. Encoding is executed using

m̄ =
N∑

i=1

⌊q
2

⌉
mix

i−1,

where ⌊x⌉ is defined as the nearest integer of x, and mi is the i-th bit of m. Then,
polynomials r, e1, and e2 ∈ Rq are sampled. Each coefficient of r, e1, and e2 is sampled
from the discrete Gaussian distribution Dσ. At last, ciphertexts (c1, c2) are computed by
c1 = ar + e1 and c2 = br + e2 + m̄.

Decryption. We explain the decryption of the ciphertext (c1, c2). First, a polynomial
m∗ = c1s+ c2 is calculated. Plaintext m is recovered as follows:

• If ⌈q/4⌉ ≤ m∗
i ≤ ⌊3q/4⌋, mi is set as 1.

• Otherwise, mi is set as 0.

In decryption, m∗ satisfies

m∗ = c1s+ c2 = (ar + e1) s+ (br + e2 + m̄)
= m̄+ re+ e1s+ e2,

and re + e1s + e2 is sufficiently small compared to q. Thus, decryption succeeds with a
sufficiently high probability.

2.2.4 Number Theoretic Transform (NTT)
The Ring-LWE and Module-LWE based cryptosystems employ the multiplication on Rq.
If we conduct a multiplication of polynomials naively, it costsO

(
N2) operations. However,

using an NTT and the inverse of the NTT (INTT), the multiplication of polynomials
a, b ∈ Rq is realized by

ab = INTT(NTT(a) ∗ NTT(b)),

where ∗ is a coefficient-wise multiplication. Because the NTTs are O (N logN) time
transformations, a multiplication of polynomials can be conducted in O (N logN) time.
Moreover, the addition and subtraction of polynomials are calculated as follows: a+ b =
INTT(NTT(a) + NTT(b)), and a− b = INTT(NTT(a) − NTT(b)), respectively.

We now describe NTT and INTT in more detail. To explain the NTT, we introduce
ω and γ satisfying ωN ≡ 1 mod q and γ2 ≡ ω mod q. These ω and γ exist because

q ≡ 1 mod 2N . Then, the NTT of a =
N−1∑
i=0

a[i]xi ∈ Rq is given as NTT(a) =
N−1∑
j=0

â[j]xj ,

where â[j] is

â[j] =
N−1∑
k=0

a[k]γkωjk mod q (0 ≤ j ≤ N − 1).

The inverse of NTT(a) is given as

a[l] = N−1γ−l
N−1∑
j=0

â[j]ω−jl mod q (0 ≤ l ≤ N − 1).
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Algorithm 2 Cooley-Tukey NTT [63]

Input: N , q, a ∈ Rq, and γ
Output: NTT(a) ∈ Rq in bit-reversed order
e = 1, t = N/2
for i = 0 to n− 1
s = 0
for j = 0 to e− 1

Calculate e′, the bit-reversed value of e+ j
for k = s to s+ t− 1

Butterfly Operation
temp[k] = a[k]
temp [k + t] = a [k + t] γe′ mod q
a[k] = temp[k] + temp[k + t] mod q
a[k + t] = temp[k] − temp[k + t] mod q

end for
s = s+ 2t

end for
e = 2e, t = t/2

end for
Return NTT(a) = a

Algorithm 3 Gentleman-Sande INTT [63]

Input: N , q, a ∈ Rq in bit-reversed order, and γ
Output: INTT(a) ∈ Rq

e = N/2, t = 1
for i = n− 1 down to 0
s = 0
for j = 0 to e− 1

Calculate e′, the bit-reversed value of e+ j
for k = s to s+ t− 1

Butterfly Operation
temp[k] = a[k] + a [k + t] mod q
temp [k + t] = a[k] − a [k + t] mod q
a[k] = temp[k]
a[k + t] = temp [k + t] γ−e′ mod q

end for
s = s+ 2t

end for
e = e/2, t = 2t

end for
for k = 0 to N − 1
a[k] = a[k] ·N−1 mod q

end for
Return INTT(a) = a

Next, we describe the implementation of the Cooley-Tukey NTT and Gentleman-Sande
INTT, adopted by NIST candidates. These NTTs are implemented using butterfly oper-
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ations [38, 63] similar to a fast Fourier transformation. Algorithm 2 shows the Cooley-
Tukey NTT, and Algorithm 3 shows the Gentleman-Sande INTT. In the Cooley-Tukey
NTT and Gentleman-Sande INTT, N coefficients of a are inputted. These N values are
renewed in each i by repeating the operation in each butterfly. It should be noted that
the coefficients of an NTT-form polynomial are stored in bit-reversed order to realize
efficient computation. From Algorithms 2 and 3, the NTT and INTT are composed of
(N logN) /2 butterfly operations. As a difference, a multiplication of N−1 mod q occurs
in each coefficient in the INTT.

2.3 Preliminaries on Shor’s Algorithm
This section reviews the decomposition of Shor’s algorithm into controlled modular adders.
Section 2.3.1 introduces the quantum gate set used in this thesis. Section 2.3.2 describes
Shor’s algorithm. Section 2.3.3 details the decomposition of the modular exponentiation
into controlled modular adders.

2.3.1 Quantum Gate Set
This subsection describes the set of quantum gates. A quantum gate set is composed of
the following gates:

• One-qubit gate. X gate, Y gate, Z gate, H gate, S gate, and T gate
• Two-qubit gate. CNOT gate

As noted in Section 1.1.3, these gates can be represented as the unitary matrices. Specif-
ically, the one-qubit gates can be represented as the unitary matrix in two dimensions,
and the two-qubit gates can be represented as the unitary matrix in four dimensions.

One-Qubit Gate
A qubit is represented as a |0⟩ + b |1⟩, and we represent this qubit as the vector

[
a
b

]
. We

now describe the X gate. The corresponding unitary matrix of the X gate is given as

follows:
[
0 1
1 0

]
. When the X gate is applied on a |0⟩ + b |1⟩,

[
0 1
1 0

] [
a
b

]
=
[
b
a

]
,

and b |0⟩ + a |1⟩ is obtained. Thus, |0⟩ and |1⟩ are swapped.
Similar to the X gate, the corresponding unitary matrices of the other gates are given

as follows:

Y =
[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,H = 1√

2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, and T =

1 0

0 exp
(

iπ
4

) .
Two-Qubit Gate
We now describe the CNOT gate. The CNOT gate realizes the following operation:

|x⟩ |y⟩ → |x⟩ |y ⊕ x⟩ .

Specifically, two qubits are represented as

a0 |00⟩ + a1 |01⟩ + a2 |10⟩ + a3 |11⟩ ,
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|x⟩ • |x⟩
|y⟩ |y ⊕ x⟩

Fig. 2.1: CNOT gate. In the CNOT gate, the control bit is the first qubit, and the tar-
get bit is the second qubit.

and the CNOT gate converts these qubits into

a0 |00⟩ + a1 |01⟩ + a3 |10⟩ + a2 |11⟩ .

The corresponding unitary matrix of the CNOT gate is given as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
In this thesis, the CNOT gate is represented as Figure 2.1.

Universal Computation in Quantum Computers
In classical computers, any computation is composed of only NAND gates. Similarly, in
quantum computers, any computation is realized with arbitrary precision by H gates, T
gates, and CNOT gates [81]. It should be noted that S gates are required to realize any
computation in FTQ computers.

We now describe the decomposition of Toffoli gates as an example. Toffoli gates are
useful in quantum computations and realize the following:

|x⟩ |y⟩ |z⟩ → |x⟩ |y⟩ |z ⊕ (x ∧ y)⟩ . (2.1)

In this thesis, the standard Toffoli gate (ST) is represented as Figure 2.2. Specifically, the
corresponding unitary matrix of ST in the computational basis is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (2.2)

The standard Toffoli gate decomposition [81] is given in Figure 2.3. It should be noted
that gates with † indicate their inverse gates.

Cost of Gates in Actual Quantum Computers
In the above discussion, we describe the quantum gate set. However, these gates do not
have the same cost in FTQ or NISQ computers. In FTQ computers, the T gate has a
significantly higher cost than other gates. We describe this in more detail in Section 6.2.1.
In NISQ computers, the CNOT gate has a significantly higher cost because running a
CNOT gate requires a longer time and causes a higher error than other gates [19, 48].
Thus, we should consider these properties in each device. In our results proposed in
Chapter 6, we focus on a reduction of these gates.
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|x⟩ • |x⟩
|y⟩ • |y⟩
|z⟩ |z ⊕ (x ∧ y)⟩

Fig. 2.2: In the Toffoli gate, the control bits are the first and second qubits, and the
target bit is the third qubit.

|x⟩ • • • • T |x⟩

|y⟩ • • T † T † S |y⟩

|z⟩ H T † T T † T H |z ⊕ (x ∧ y)⟩

Fig. 2.3: Standard decomposition of Toffoli gate [81].

2.3.2 Shor’s Algorithm
We now describe Shor’s algorithm [103]. Shor’s algorithm calculates the order defined as
Definition 5.

Definition 5 (Order [81]) Let a and N be the positive integers, which are relatively
prime and a < N . The order of a in modulo N is defined as the smallest positive integer
r satisfying ar mod N = 1.

The order finding problem is defined as the calculating order of a in modulo N . By solving
the order finding problem, the integer factorization and discrete logarithm problems are
solved. Each problem is defined as follows:

Definition 6 (Integer factorization problem) Let N be a product of two distinct prime
numbers p and q. The integer factorization problem is defined as the problem of calculating
p and q when N is given.

Definition 7 (Discrete logarithm problem) Let a and N be positive integers that are
relatively prime, where a < N . Moreover, let b be the positive integer represented as
b = ax mod N with a positive integer x. The discrete logarithm problem is defined as
calculating x when a, b, and N are given.

Moreover, the elliptic curve discrete logarithm problem is solved by extending the order
finding problem to the commutative group. The integer factorization problem is solved
as Algorithm 4. In this algorithm, gcd (a, b) is defined as the common divisor of a and
b. Moreover, quantum computation is only used in finding the order, and the other parts
are conducted in classical computers.

We now explain Shor’s algorithm solving the order finding problem. Figure 2.4 shows
Shor’s algorithm. The first register has ⌈2 logN⌉ qubits, and the second register has
⌈logN⌉ qubits. As Figure 2.4 indicates, Shor’s algorithm is composed of modular expo-
nentiation and the inverse of a quantum Fourier transform. This thesis focuses on modular
exponentiation because the computational cost is dominant.
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Algorithm 4 Solving the integer factorization problem [103]

Input: The composite number N
Output: One of the divisors of N

1: Return 2 if N is an even number.
2: Search c ≥ 1 and d ≥ 2 satisfying N = cd. If we find such c and d, we return c.
3: Choose a satisfying 1 ≤ a ≤ N − 1 randomly. Return gcd (a,N) if gcd (a,N) >

1.
4: Calculate r as the order of a in modulo N by using Shor’s algorithm.
5: Go to 6 if r is an even number and satisfies ar/2 ̸= −1 mod N . Otherwise, go

to 3.
6: Calculate gcd

(
ar/2 − 1, N

)
and gcd

(
ar/2 + 1, N

)
. Return this value if one of

these is not 1. Otherwise, go to 3.

|j⟩
|0⟩ / H⊗⌈2 log N⌉ • IQFT

|1⟩ / ×aj mod N

Fig. 2.4: Block-level Shor’s algorithm [103] calculating the order of a in modulo N .
The first register has ⌈2 logN⌉ qubits, and the second register has ⌈logN⌉ qubits. In
this figure, H⊗⌈2 log N⌉ means that the H gates are applied on all qubits in the first reg-
ister, and the superposition of all values in 0 ≤ j ≤ 2⌈2 log N⌉ − 1 is realized. Here,
aj mod N is conducted based on the first register |j⟩. IQFT indicates the inverse of the
Quantum Fourier Transform.

The above construction is a method for solving the order finding problem. However,
a more efficient method for solving the order finding problem of the integer factorization
problem is proposed [27], and we describe the method with a small modification [35].
In this method, the integer factorization problem is replaced with the discrete logarithm
problem. From Euler’s totient theorem, a(p−1)(q−1) = 1 mod N . Now, the exponent
(p− 1)(q − 1) is divided by r, and

(p− 1)(q − 1) = 0 mod r ⇔ p+ q = N + 1 mod r.

Thus, p + q = N + 1 mod (p − 1)(q − 1). Therefore, ap+q = aN+1 mod N , and p + q
is computed by solving the discrete logarithm problem. The discrete logarithm problem
is solved by the circuit given as Figure 2.5. Now, the values of p and q are calculated
by solving equations x2 − (p + q)x + N = 0. Thus, the integer factorization problem
is solved using the discrete logarithm problem. In this construction, the number of ex-
ponent bits is 3m ∼ 1.5 ⌈logN⌉ qubits, whereas the original construction uses 2 ⌈logN⌉
qubits. Therefore, this construction requires approximately 3/4 of the cost of the original
construction.

2.3.3 Construction of Modular Exponentiation by Controlled Modular Adders
This subsection describes the construction of modular exponentiation by controlled mod-
ular adders. We focus on the efficient construction given in Figure 2.5. Let n be ⌈logN⌉.
The first register then has 1.5n qubits, and the second register has n qubits in Figure 2.5.
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|j⟩
|0⟩ / H⊗2m • IQFT

|k⟩
|0⟩ / H⊗m • IQFT

|1⟩ / ×aj mod N ×b−k mod N

Fig. 2.5: Block-level algorithm solving the discrete logarithm problem given as ap+q =
aN+1 mod N [35]. In this figure, let m be the smallest positive integer satisfying p+ q <
2m. The first register has 2m qubits, and the second register has m qubits. Moreover,
let b be b = aN+1 mod N . In this figure, H⊗2m means that the H gates are applied
on all qubits in the first register and realize the superposition of all values in 0 ≤ j ≤
22m − 1. Similarly, H⊗m means that the H gates are applied on all qubits in the second
register and realize the superposition of all values in 0 ≤ k ≤ 2m − 1. In addition,
ajb−k mod N is applied based on the first register |j⟩ and the second register |k⟩. IQFT
indicates the inverse of the Quantum Fourier Transform.

We describe the decomposition as follows:

• Construction of modular exponentiation by controlled modular multipliers
• Decomposition of a controlled modular multiplier into controlled modular adders

Construction of Modular Exponentiation by Controlled Modular Multipliers
In modular exponentiation, a and N satisfying a < N are input. Moreover, b = aN+1 mod
N is input. Then,

|j⟩ |k⟩ |1⟩ → |j⟩ |k⟩ |ajb−k mod N⟩ (2.3)

is conducted. In addition, |j⟩ is composed of n qubits, and |k⟩ is composed of n/2 qubits.

We rewrite j as j =
n−1∑
l1=0

jl12l1 , where jl1 indicates each qubit in j. Similarly, we rewrite

k as k =
n/2−1∑
l2=0

kl22l2 , where kl2 indicates each qubit in k. Then,

ajb−k mod N =
n−1∏
l1=0

(
a2l1 mod N

)jl1
n/2−1∏
l2=0

(
b−2l2 mod N

)kl2 mod N.

Thus, (2.3) is realized by 1.5n-times controlled modular multipliers. It should be noted
that the value of the multiplier can be precomputed and not contained in qubits.

Decomposition of a Controlled Modular Multiplier into Controlled Modular Adders
We decompose a controlled modular multiplier into controlled modular adders through
the calculation given as (2.5). In a controlled modular multiplier, a and N satisfying
a < N are input, and

|x⟩ |j⟩ → |x⟩ |jax mod N⟩ (2.4)

is applied. |x⟩ is a single qubit, and we multiply the second register by a based on |x⟩.
To realize (2.4), we prepare more n qubits, and conduct the following calculation:

|x⟩ |j⟩ |b⟩ → |x⟩ |j⟩ |b+ xja mod N⟩ . (2.5)
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In (2.5), the third register has n additional qubits. Using (2.5), we calculate the controlled
modular multiplier as

|x⟩ |j⟩ |0⟩ → |x⟩ |j⟩ |xja⟩ → |x⟩ |j − xjaa−1⟩ |xja⟩ ,

where the final state is

|x⟩ |j − xjaa−1⟩ |xja⟩ =

{
|0⟩ |ja0⟩ |0⟩ if x = 0
|1⟩ |0⟩ |ja1⟩ otherwise

.

Thus, we swap the second and third registers when x = 1, and (2.4) is realized. From the
above discussion, the controlled modular multiplier requires two-time calculations, which
is given as (2.5).

We now describe the decomposition of (2.5) into controlled modular adders. |j⟩ is

constructed using n qubit, and we rewrite j as j =
n−1∑
k=0

jk2k, where jk indicates each qubit

in j. Then,

b+ xja mod N = b+
n−1∑
k=0

xjk

(
a2k mod N

)
mod N.

Thus, (2.5) is realized by n-times the controlled modular adders. Specifically, we conduct
a modular adder of a2k mod N with control of |x⟩ and |jk⟩, which can be summarized
using a Toffoli gate. It should be noted that the value of a2k mod N can be precomputed
and not contained in qubits. In conclusion, modular exponentiation is constructed by 3n2

controlled modular adders. Chapter 6 will provide an efficient controlled modular adder
and evaluate the total cost.



24

Chapter 3

Improved CRT-RSA Secret Key
Recovery Method from Sliding Window
Leakage

3.1 Introduction
3.1.1 Background
This chapter focuses on the CRT-RSA scheme [76] implemented using the left-to-right
sliding window method. We propose the new recovery method for the CRT-RSA secret
keys based on the correct square-and-multiply sequences. In a previous study [10], a
way to recover the CRT-RSA secret keys from square-and-multiply sequences without a
multiplier was discussed. The CRT-RSA secret keys are recovered using two methods.
With the first method, the CRT-RSA secret keys are partially recovered, and all secret
keys are recovered by using partially recovered bits. With the second method, the CRT-
RSA secret keys are recovered directly from square-and-multiply sequences. Both of these
methods employ Heninger-Shacham’s method [43] to recover the CRT-RSA secret keys.
We describe these methods in more detail below.

The first method considers how to recover the CRT-RSA secret keys from square-and-
multiply sequences partially. Specifically, a method for recovering bits of partial CRT-
RSA secret keys is proposed. Their method applies Heninger-Shacham’s method to the
recovered bits and recovers the CRT-RSA secret keys. They succeeded in recovering the
secret keys of the 1024-bit CRT-RSA scheme when w = 4.

The second method researched the recovery method of the CRT-RSA secret keys directly
from square-and-multiply sequences. Their algorithm works in polynomial time when
w ≤ 4. Moreover, their method succeeded in recovering 13% of the secret keys of the
2048-bit CRT-RSA scheme when w = 5, which is not a range of polynomial time. Thus,
we must evaluate the security of the CRT-RSA scheme when w = 5.

However, their method for recovering the CRT-RSA secret keys directly from square-
and-multiply sequences is simple. Therefore, by extending their method, there is an
opportunity to recover more CRT-RSA secret keys when w = 5.

To improve their algorithm, we should research why more CRT-RSA secret keys are
recovered from square-and-multiply sequences directly than partially recovered bits. We
need to conduct more research on bit information of a square-and-multiply sequence.
However, this requires more in-depth research. First, the exact behavior for recovering
bits of the partial CRT-RSA secret keys has not been thoroughly researched. Although
it is shown that more bits can be recovered when applying the method repeatedly, this
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situation is discarded owing to rare occurrences. Second, the difference between the two
methods is not discussed thoroughly.

Van Vredendaal [115] addressed these problems. First, an optimal recovery method for
bits of the CRT-RSA secret key is proposed only from a square-and-multiply sequence.
According to this method, bits taking the same value in all candidates are recovered.
Second, a method to calculate the number of input candidates corresponding to a given
square-and-multiply sequence is proposed. However, this result also requires further re-
search to improve the original method.

3.1.2 Our Contribution
In this study, we obtain three results. This chapter is based on our paper published
at the 22nd Annual International Conference on Information Security and Cryptology
(ICISC2019) [82].

First, we calculated the exact rate of recovered bits of the secret exponent from only a
square-and-multiply sequence. For this purpose, we use the renewal reward theorem [105].
A previous attempt was made to calculate the recovery rate of bits of the secret exponent
using the renewal reward theorem [10]. However, only the upper and lower bounds of
the recovery rate were calculated. We revisited their analysis and calculated the exact
recovery rate from only a square-and-multiply sequence.

Second, we extract embedding information from the non-recovered bits. Specifically,
we focus on bits we can determine with high accuracy from among non-recovered bits
from the likelihood of 0 or 1. We developed a random sampling method of bit sequences
corresponding to a given square-and-multiply sequence to calculate this likelihood. We
developed our method based on Van Vredendaal’s approach [115] to calculate the number
of input candidates corresponding to a given square-and-multiply sequence. This calcu-
lation indicates bits with a large bias regarding the likelihood of each bit value among
non-recovered bits.

Finally, we propose a new CRT-RSA secret key recovery algorithm using the likelihood
of each bit value as additional information. With our proposed method, we apply Kuni-
hiro et al.’s algorithm [59] on the obtained likelihood of each bit value. We extend the
original method [10] based on square-and-multiply sequences directly in combination with
Kunihiro et al.’s algorithm. Our new algorithm recovers 21% of the CRT-RSA secret keys
when w = 5. This result is a significant improvement compared to the 13% recovery of
the original method.

3.1.3 Organization of this Chapter
This chapter has six sections. In Section 3.2, we describe the original methods for recover-
ing the CRT-RSA secret keys from square-and-multiply sequences [10]. In Section 3.3, we
analyze the recovery rate of bits of the CRT-RSA secret keys from square-and-multiply
sequences. In Section 3.4, we propose a method for extracting embedding information
from the non-recovered bits. In Section 3.5, we propose a new algorithm for recovering
the CRT-RSA secret keys. In Section 3.6, we conclude this chapter.

3.2 Previous Methods for Recovering the CRT-RSA Secret Keys
This section describes two methods proposed in the original study [10]. Before describing
the original method, we explain Heninger-Shacham’s approach [43] in Section 3.2.1, which
is used in both methods of the original research. We then describe the two methods in
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Section 3.2.2 and 3.2.3, respectively.

3.2.1 Heninger-Shacham’s Method [43]
Heninger and Shacham proposed a method for constructing a CRT-RSA key candidate
tree. They construct a CRT-RSA key candidate tree when the public keys (N, e) and
parameters (kp, kq) ∈ Z2 satisfying edp = 1 + kp(p− 1) and edq = 1 + kq(q− 1) are given.
In addition, (kp, kq) are initially unknown. However, these values satisfy 0 < kp, kq < e.
Moreover, kp and kq satisfy (kp − 1) (kq − 1) ≡ kpkqN mod e [50, 120]. Therefore, the
number of candidates of (kp, kq) is at most e− 1.

After calculating (kp, kq), the Heninger-Shacham’s method recovers the CRT-RSA se-
cret keys from the LSB side. To explain the construction of the candidate tree of the
CRT-RSA secret keys, τ(x) is defined as τ(x) = maxm∈Z2m|x. At each depth of the
CRT-RSA secret key candidate tree, partial LSBs of p, q, dp and dq are stored. These
partial bits are represented as p′, q′, d′

p and d′
q. At the i-th depth, p′ and q′ have (i + 1)

LSBs, d′
p has (i+ 1 + τ (kp)) LSBs, and d′

q has (i+ 1 + τ (kq)) LSBs. Next, we describe
the procedure for constructing the candidate tree.

First, Heninger-Shacham’s method calculates the LSBs of p, q, dp, and dq. Because p
and q are odd numbers, p′ = 1 and q′ = 1. Moreover, d′

p and d′
q are calculated by using

ed′
p ≡ 1 mod 2τ(kp)+1 and ed′

q ≡ 1 mod 2τ(kq)+1, respectively.
Next, we calculate the leaves at the i-th depth of the candidate tree after calculating

the leaves at the (i− 1)-th depth. If the i-th bits from the LSB side of x are denoted as
x[i− 1], the following equations hold.

p[i] + q[i] ≡ (N − p′q′) [i], (3.1)
dp[i+ τ (kp)] + p[i] ≡

(
kp (p′ − 1) + 1 − ed′

p

)
[i+ τ (kp)], (3.2)

dq[i+ τ (kq)] + q[i] ≡
(
kq (q′ − 1) + 1 − ed′

q

)
[i+ τ (kq)]. (3.3)

These simultaneous equations have two solutions of (p[i], q[i], dp[i+ τ (kp)], dq[i+ τ (kq)]).
Therefore, two leaves are generated from one leaf. Redundancy of the CRT-RSA secret
keys is used in these equations. The generation of leaves is repeated until reaching the
(n/2 − 1)-th depth, and there is always one correct leaf, including the correct CRT-RSA
secret keys, out of 2n/2 candidates. However, finding this correct leaf takes a tremendous
amount of time, which increases exponentially with n. Therefore, to search efficiently
for the correct CRT-RSA secret keys, we adopt a bound-and-branch strategy using side-
channel information, such as square-and-multiply sequences, as conducted in the previous
study [10].

3.2.2 Recovering CRT-RSA Secret Keys through Partially Recovered Bits
This subsection describes the method for recovering the CRT-RSA secret keys through
partially recovered bits. With this recovery method, the CRT-RSA secret keys are par-
tially recovered, and the CRT-RSA secret keys are recovered entirely using Heninger-
Shacham’s method. Specifically, once the CRT-RSA secret keys are partially recovered,
the branch-and-bound strategy is given by repeating the following:

1. Calculate new bits using Eqs. (3.1)–(3.3)
2. Discard leaves if the calculated bits differ from the partially recovered bits in the

CRT-RSA secret keys

The secret keys are searched from the final candidates at the (n/2 − 1)-th depth. We now
focus on how to recover bits of the secret exponent from a square-and-multiply sequence.
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Original Method for Recovering Bits of a Secret Exponent [10]
Modular exponentiations are calculated by repeating the squaring (S) and multiplication
(M) applied by the sliding window method. With the CRT-RSA scheme, square-and-
multiply sequences of two modular exponentiations, xdp mod p and xdq mod q, are ex-
tracted using side-channel attacks [10]. However, because there are many candidates of
the multiplier in each M, the CRT-RSA secret keys dp and dq cannot be immediately
determined from square-and-multiply sequences.

As noted above, not all multipliers can be recovered immediately, and bits of a secret
exponent are partially recovered. The method for recovering bits of the secret exponent
comprises the four rules, i.e., Rules 0–3. We describe these rules using an example for
w = 4, as follows.

SSSMSSSSSSMSSSMSSSSSMSMSSSSSSMSSSSSSM

Before applying Rules 0–3, SMs are converted into x, and the remaining Ss are converted
into x. This x and x sequence is a bit sequence with a value of 0 or 1. By applying this
conversion, our example is converted into the following.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The following Rules 0–3 are applied to the given sequence:

• Rule 0: x → 1.
• Rule 1: 1xi1xw−1−i → 1xi10w−1−i for 0 ≤ i ≤ w − 2.
• Rule 2: xw−111 → 1xw−211.
• Rule 3: 1xixw−11 → 10ixw−11 for i > 0.

Their method recovers multiplication bits with Rule 0, trailing zeros with Rule 1, leading
ones with Rule 2, and leading zeros with Rule 3. Note that more bits are recovered by
applying a more extended situation with Rule 1, and this extended Rule 1 is adopted in
the previous method. In the extended Rule 1, 1 is searched from the MSB to the LSB. In
the highest-order 1, if 1 satisfies xi1xw−1−i for 0 ≤ i ≤ w − 2, x is recovered after 1 as
0, namely,

xi1xw−1−i → xi10w−1−i.

In other 1s, if 1 satisfies (0 or 1)xi1xw−1−i for 0 ≤ i ≤ w − 2, x is recovered after the
latter 1 as 0, namely,

(0 or 1)xi1xw−1−i →(0 or 1)xi10w−1−i.

By applying Rules 0–3 in this order, the recovery bits are given as follows:

Applying Rule 0: xx1xxxxx1xx1xxxx11xxxxx1xxxxx1.

Applying Rule 1: xx10xxxx1xx10xxx11000xx10xxxx1.

Applying Rule 2: xx10xxxx1xx101xx11000xx10xxxx1.

Applying Rule 3: xx100xxx1xx101xx11000xx100xxx1.

Optimal Method for Recovering Bits of a Secret Exponent [115]
In the original method, more bits are recovered by repeating the rules. However, addi-
tional recovery is not considered in this study because of a rare occurrence [10]. Van
Vredendaal [115] tackled this problem more rigorously and proposed a new method for
recovering bits of a secret exponent. We now describe recovering bits of a secret exponent
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using a toy example. We consider SSMSSM in w = 2. Bit sequences 0101, 1101, and
1111 do not contradict with SSMSSM. Bits are the same at the second and fourth; thus,
we can recover as x1x1. In this sense, Van Vredendaal’s recovery method for bits of the
secret exponent has optimality.

We now describe Van Vredendaal’s method. First, bits of the secret exponent d are
indexed as dn−1dn−2 . . . d0. The set of indexes of the multiplication bits is defined as
M = {k0, k1, . . . , kl} with k0 > k1 > · · · > kl. In each multiplication bit, kj , a multiplier
widthmkj

is defined as the number of bits used in determining the multiplier. For example,
if the multiplier is 5 = 1012, the multiplier width is 3. Next, we calculate m+

kj
:= maxmkj

in each window from the MSB sides using a greedy algorithm determining each window
as near as MSB sides, which determined each window as being as near as the MSB sides.
Similarly, we calculate m−

kj
:= minmkj in each window from LSB sides. For example,

xx1xxxxx1xx1xxxx11xxxxx1xxxxx1.

In addition, m+
kj

is calculated by dividing the following:

xx1x x xxx1 xx1x xxx1 1xxx xx1x x xxx1,

and m+
k0

= 3,m+
k1

= 4,m+
k2

= 3,m+
k3

= 4,m+
k4

= 1,m+
k5

= 3,m+
k6

= 4. Similarly, m−
kj

is
calculated by dividing the following:

x x1xx xxx1 xx1x xxx1 1xxx xx 1xxx xx 1,

and m−
k0

= 2,m−
k1

= 4,m−
k2

= 3,m−
k3

= 4,m−
k4

= 1,m−
k5

= 1,m−
k6

= 1.
After calculating m+

kj
and m−

kj
, bits of the secret exponent are recovered as follows:

d′
i =


1 if i ∈ M

1 else if kj +m−
kj

− 1 = i = kj +m+
kj

− 1 for some kj ∈ M

x else if kj +m−
kj

− 1 ≤ i ≤ kj +m+
kj

− 1 for some kj ∈ M

0 otherwise

and recovered bits of the secret exponent by Van Vredendaal’s method are given as

xx1001xx11x101xx11000xx100xxx1.

The second 1 corresponds to Rule 2 and last 0 corresponds to Rules 1 and 3.

Optimal Recovery Rules for the Secret Exponent
By considering Van Vredendaal’s method in more detail, the same recovery is realized using
a small modification of Rules 0-3. In particular, some bits of the secret exponent can be
recovered when m+

kj
and m−

kj
are calculated. First, the calculation of m+

kj
corresponds to

Rule 1. Second, the calculation of m−
kj

corresponds to Rule 2. After calculating m+
kj

and
m−

kj
, 0s are recovered. Therefore, Van Vredendaal’s method is realized through a small

modification of Rules 0-3.
Now, Van Vredendaal’s recovery methods are rewritten into Rules 0-3. Rules 0 and 1

are the same as in [10]. In Rule 2, 1 is searched from the LSB to the MSB. If 1 satisfies
xw−1−i10i(1 or 1) for 0 ≤ i ≤ w − 2,

xw−1−i10i(1 or 1) → 1xw−2−i10i(1 or 1).

Note that Rule 2 in [10] only dealt with i = 0 because another event rarely occurred.
Because Rule 2 is modified, we modify Rule 3 corresponding to Rule 2. In Rule 3, 1
is searched from the MSB to the LSB. In the highest-order 1, if 1 satisfies xi1xk1 or
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xixw−11 for i ≥ 0,

xi1xk1 or xixw−11 → 0i1xk1 or 0ixw−11.

In other 1s, if 1 satisfies (0 or 1)xj1xk1 or (0 or 1)xjxw−11,

(0 or 1)xj1xk1 → (0 or 1)0j1xk1,

(0 or 1)xjxw−11 → (0 or 1)0jxw−11.

Note that there are no overlaps in the recovered bits in each rule in the optimal bit
recovery rules, whereas there are overlaps in Rules 1 and 3 in the original rules. By
applying modified Rules 2 and 3, our example is recovered as follows:

Applying Rule 1: xx10xxxx1xx10xxx11000xx10xxxx1.

Applying Modified Rule 2: xx10x1xx11x101xx11000xx10xxxx1.

Applying Modified Rule 3: xx1001xx11x101xx11000xx100xxx1.

The result of the recovery is the same as that of Van Vredendaal’s method. We call these
rules the optimal recovery rules.

3.2.3 Recovery Method for the CRT-RSA Secret Keys from Square-and-
Multiply Sequences Directly [10]

This subsection describes the previous method for recovering the CRT-RSA secret keys
from square-and-multiply sequences directly. With this method, the following are re-
peated:

• Generate some leaves by Heninger-Shacham’s method
• Convert recovered bits into square-and-multiply sequences in each leaf
• Compare with the given square-and-multiply sequence

However, incorrect square-and-multiply sequences may be obtained during the conversion.
The sliding window method calculates exponentiations from the MSB side and summarizes
w bits. However, the secret keys are recovered from the LSB side, and different w bits
are used for the conversion into square-and-multiply sequences. Thus, we must clarify the
position of bits correctly converted into square-and-multiply sequences.

To realize a correct comparison, we focus on S. Initially, we search Ss that are next to
an M or at the beginning of w Ss in the square-and-multiply sequences from the final
operation. If such Ss are found, we count the number of Ss from the final operation and
calculate the leaves until reaching the same depth. We then convert the calculated bits
into a square-and-multiply sequence. If there are mismatches between the given square-
and-multiply sequences and the calculated square-and-multiply sequences, we discard the
leaf. By doing this, the CRT-RSA secret keys are recovered from the correct square-and-
multiply sequences. In theory, the CRT-RSA secret keys are recovered in polynomial time
in n when the window size w is less than or equal to 4.

3.3 Recovery Rate of Bits of CRT-RSA Secret Keys from
Square-and-Multiply Sequences

This section clarifies how many bits of the secret exponent are recovered by Theorem 1,
and we verify this theoretical analysis by the numerical experiments. Section 3.3.1 gives
the theoretical analysis. Section 3.3.2 and 3.3.3 give numerical experiments on random
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exponents and CRT-RSA secret keys, respectively.

3.3.1 Exact Rate of Recovered Bits of the Secret Exponent from Square-and-
Multiply Leakage

We provide the exact rate of recovered bits of the secret exponent only from a square-
and-multiply sequence, which is given by Theorem 1.

Theorem 1 Suppose that a secret exponent is generated randomly. If w ≥ 2, the average
rate of recovered bits of the secret exponent is given by

2
w + 1

+

w−2∑
k=0

fw(k)g(k)

2(w + 1)
+ 2w − 1

2w−1 (2w−1 + 1)
1

3(w + 1)

where

fw(k) = 2
3 · 2k

(
1 − 1

2w−k

)(
1 − 2

2w−k

)
, g(k) = 2

(
1 − 2k

2k+2 − 1

) k∏
j=1

2j−1

2j+1 − 1
.

To prove Theorem 1, we analyze the optimal recovery rules for bits of a secret exponent.
The first term 2/(w + 1) corresponds to Rule 0 and Rule 3, the second term corresponds
to Rule 1, and the third term corresponds to Rule 2.

To prove Theorem 1, we use the renewal reward theorem [105]. This theorem is given
as Theorem 2 with notation in [10].

Theorem 2 (Renewal Reward Theorem [105]) We are given i.i.d. random values (Xi, Yi)

where i ∈ N. Moreover, we define Sn =
n∑

i=1
Xi , Nt =

∞∑
n=1

1 (Sn ≤ t) , and Rt =
Nt∑
i=1

Yi,

where n ∈ N and t is a positive real number. If E [X1] < ∞, E [Y1] < ∞,

lim
t→∞

Rt

t
= E [Y1]
E [X1]

.

In the renewal reward theorem, the time that satisfies some conditions is defined as a
renewal. In Theorem 2, Xi is regarded as the inter-arrival time, Sn as the arrival time
of n-th elements, and Nt as the number of arrivals in time t. Renewal occurs in each
Xi. Moreover, the reward is defined in each renewal. In Theorem 2, Yi is regarded as the
reward in each inter-arrival time Xi. Then, Rt is regarded as the reward in time t. We now
regard the length of the secret exponent as t and that of the recovering bits as reward Rt.
It was attempted to calculate the recovery rate of bits of the secret exponent by using the
renewal reward theorem [105] under the same settings [10]. However, they only calculate
the upper bound and the lower bound of recovering bits of the secret exponent. Thus,
they failed to calculate the exact recovery rate of bits of the secret exponent.

We define i.i.d. (Xi, Yi) in the analysis of each Rule j as follows:

• Xi: The length of bit sequences until the designated bit pattern in Rule j occurs
• Yi: The number of recovered bits in Xi

To define (Xi, Yi) as i.i.d., we determine the definition of Xi in each rule. Specifically,
we define (Xi, Yi) based on the multiple windows, while the original research [10] only
considered one window. We now explain (Xi, Yi) in each Rule 0–3.
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First, we explain (Xi, Yi) in Rule 0. In Rule 0, a multiplication bit is recovered in
each window. Thus, the number of recovered bits is independent between each window.
Therefore, we define Xi as the number of bits until we hit a window.

Next, we explain (Xi, Yi) in Rule 1. In Rule 1, trailing zeros are recovered by the greedy
algorithm calculating m+

kj
. If we focus on one window, the difference between m+

kj
and the

actual mkj
affects the value of m+

kj+1
. Thus, there is dependency on Yj and Yj+1 except

when m+
kj

= mkj
. We now recall the definition of m+

kj
:= maxmkj

. When we hit the
window whose mkj

= w, then m+
kj

= mkj , and Yj and Yj+1 have no dependency. Thus,
we define Xi as the number of bits until we hit window 1x . . . x1, whose mkj

is w.
The same Xi as Rule 1 is used in Rule 3, recovering leading zeros. This is because the

recovery bits are determined based on m+
kj

, and the difference between m+
kj

and the actual
mkj

propagates to the value of m+
kj+1

. Thus, there is dependency on Yj and Yj+1 except
when m+

kj
= mkj

. When mkj
= w, then m+

kj
= mkj

, and we do not need to consider the
dependency with the next window. Therefore, we use the same Xi in Rule 3 as Rule 1.

Finally, we explain (Xi, Yi) in Rule 2. In Rule 2, leading one is recovered when
m+

kj
= m−

kj
during the calculation of m−

kj
. Thus, if m+

kj+1
̸= m−

kj+1
is assured, there

is no dependency between Yj and Yj+1. Especially, if m+
kj+1

̸= mkj+1 is assured, there is
no dependency between Yj and Yj+1. Therefore, we define Xi as the number of bits until
we hit the window that moves certainly.

We now give the proof of Theorem 1. In this proof, we give the exact recovery rate of
the secret exponent in each rule. The recovery rate of the secret exponent on Theorem 1
is given by summing up the following average recovery rate of the secret exponent.

Bit Recovery Rate in Rule 0
We prove the following Lemma 1.

Lemma 1 Suppose that a secret exponent is generated randomly. The average recovery
rate of the secret exponent obtained by Rule 0 is given by 1/(w + 1).

Before we prove Lemma 1, we give an intuition of our proof. In Rule 0, we recover a
multiplication bit in each window, and thus, each window is independent. Therefore,
renewal is defined as the hitting window. We now provide rigorous proof.

First, we define Xi and then calculate E [Xi]. In this proof, we write the windows as
W, which is an abbreviation of Window. We read bits from the MSB side, and define Xi

as the length of the bit sequence until hitting W, namely, the pattern 0 . . . 0W, because
W occurs when we hit 1. When the length of 0s is r (r ≥ 0), Xi = r+w. Now, when we
read bits from MSB side, Pr [0] = 1/2 and Pr [W] = 1/2. Thus,

Pr [Xi = r + w] =
(

1
2

)r 1
2
.

Therefore,

E [Xi] =
∞∑

r=0
(r + w)

(
1
2

)r 1
2

= w + 1.

Next, we calculate E [Yi]. The number of multiplication bits is always 1, and thus, Yi

is always 1. Therefore, E [Yi] = 1.
In conclusion, the average recovery rate of the secret exponent in Rule 0 is

E [Yi]
E [Xi]

= 1
w + 1

.
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This proves Lemma 1. □

Bit Recovery Rate in Rule 1
We prove the following Lemma 2.

Lemma 2 Suppose that a secret exponent is generated randomly. If w ≥ 2, the average
recovery rate of the secret exponent according to Rule 1 is given by

w−2∑
k=0

fw(k)g(k)

2(w + 1)
.

Before we prove Lemma 2, we provide an intuition of our proof. In Rule 1, we consider
the highest-order candidate in each window, and when there are low-order bits compared
to 1, we recover them as 0s. Then, the actual candidate is moved to the highest-order
candidate. When each window is moved to the highest-order candidate, there is a depen-
dency on each window. However, the window 1x . . . x1 does not move because this is
already the highest-order candidate. Thus, we set renewal as the hitting window 1x . . .
x1 and calculate the recovery rate. We now provide rigorous proof.

First, we define Xi and then calculate E [Xi]. In this proof, we write the window 1x
. . . x1 as F, which is an abbreviation of Fixed window. Moreover, a window except for
1x . . . x1 as L, which is an abbreviation of Lifting window to the MSB side. We read
bits from the MSB side, and define Xi as the length of the bit sequence until hitting F.
Then, we read the followings in this order until hitting F:

1. 0 . . . 0L r times (r ≥ 0)
2. 0 . . . 0F

When we read bits from MSB side, Pr [0] = 1/2, Pr [F] = 1/4, and Pr [L] = 1/4. We
now calculate E [Xi] by considering the length and corresponding probability of this bit
sequence.

First, we consider r = 0. Then, the bit sequence is given by 0 . . . 0F. When the length
of 0s in 0 . . . 0F is z (z ≥ 0), Xi = z + w, and the probability is 1/2z+2.

Second, we consider the case of r > 0. We define the length of 0s in 0 . . . 0F as
z (z ≥ 0) and that of 0s in each 0 . . . 0L as zi (zi ≥ 0). Then, Xi is given by

Xi = w(r + 1) + z +
r∑

i=1
zi

and the probability is (
1
4

)r+1(1
2

)z r∏
i=1

(
1
2

)zi

.

From this, we calculate the expectation of Xi as E [Xi] = 2w + 2.
Next, we calculate E [Yi]. When we move each window to the highest-order candidate,

the amount of movement is the minimum of the following two amounts:

• Lower-order bits of 1 in the window.
• (The amount of movement in the neighboring higher-order window)+(The number

of 0s between the windows).

In the first one, the amount of movement is less than w − 1 because the window’s size is
w. In the second one, the upper bound of the movement restricted by the higher-order
window is calculated. Based on these, we calculate E [Yi].
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We now consider the situation where we read the followings in this order until hitting
F:

1. 0 . . . 0L r times (r ≥ 0)
2. 0 . . . 0F

When r = 0, the number of recovery bits is 0. We now consider the case of r > 0. In the
final 0 . . . 0F, the bit is not recovered. Thus, we consider recovering bits in the windows
L. When we focus on a window L, we define pa,b,l as the probability of followings:

• The neighbor higher-order window moves a.
• The current window moves b.
• l bits are recovered in the current window by Rule 1.

Note that this value does not depend on the position of the window. The current window
satisfies 0 ≤ b ≤ w − 1 and 0 ≤ l ≤ w − 1, and these include all patterns. Therefore,

w−1∑
b=0

w−1∑
l=0

pa,b,l = 1
2
. (3.4)

Based on these, when li bits are recovered in each 0 . . . 0L, the number of recovered bits

is
r∑

i=1
li. Then, the probability of this bit sequence is 1

2

r−1∏
j=0

paj ,aj+1,lj+1

 with a0 = 0.

Therefore,

E [Yi] = 1
2

∞∑
r=1

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

(
r∑

i=1
li

)(
r−1∏
i=0

paj ,aj+1,lj+1

)

= 1
2

∞∑
r=1

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

r∑
i=1

(
li

r−1∏
i=0

paj ,aj+1,lj+1

)
(3.5)

In Eq. (3.5), the coefficient 1/2 is the probability of occurrence of the final 0 . . . 0F and
the remaining indicates that the pattern of 0 . . . 0L occurs r times. Now, in each r,

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

r∑
i=1

li r−1∏
j=0

paj ,aj+1,lj+1


≤

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

r∑
i=1

(w − 1)
r−1∏
j=0

paj ,aj+1,lj+1


= (w − 1)r

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

r−1∏
j=0

paj ,aj+1,lj+1

= (w − 1)r
r−1∏
j=0

 w−1∑
aj+1=0

w−1∑
lj+1=0

paj ,aj+1,lj+1


= (w − 1)r

(
1
2

)r

(From the Eq. (3.4)),

thus,

E [Yi] ≤ 1
2

∞∑
r=1

(
(w − 1)r

(
1
2

)r)
≤ w − 1.
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Therefore, E [Yi] is absolute convergence. Therefore, we swap the item in Eq. (3.5) as

E [Yi] = 1
2

∞∑
r=1

r∑
i=1

w−1∑
a1,...,ar=0

w−1∑
l1,...,lr=0

li r−1∏
j=0

paj ,aj+1,lj+1


= 1

2

∞∑
r=1

r∑
i=1

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li
r−1∏

j=i

w−1∑
aj+1=0

w−1∑
lj+1=0

paj ,aj+1,lj+1

 i−1∏
j=0

paj ,aj+1,lj+1


= 1

2

∞∑
r=1

r∑
i=1

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li(1
2

)r−i i−1∏
j=0

paj ,aj+1,lj+1


= 1

2

∞∑
i=1

∞∑
r=i

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li(1
2

)r−i i−1∏
j=0

paj ,aj+1,lj+1


= 1

2

∞∑
i=1

( ∞∑
r=i

(
1
2

)r−i
)

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li i−1∏
j=0

paj ,aj+1,lj+1


=

∞∑
i=1

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li i−1∏
j=0

paj ,aj+1,lj+1

 . (3.6)

We now rewrite Eq. (3.6) as the product of matrices. We define pa,b as pa,b =
w−1∑
l=0

pa,b,l.

Then, we can regard pa,b as the probability of followings:

• The neighboring higher-order window moves a.
• The current window moves b.

This depends on only a and b. We now define A as the matrix in w dimensions whose

(a+ 1, b+ 1) element is pa,b. Moreover, we define Zai−1 as
w−1∑
ai=0

w−1∑
li=0

lipai−1,ai,li . Then,

w−1∑
a1,...,ai=0

w−1∑
l1,...,li=0

li i−1∏
j=0

paj ,aj+1,lj+1

 =
[
1 0 . . . 0

]
Ai−1


Z0
Z1
...

Zw−1

 .
Therefore,

E [Yi] =
[
1 0 . . . 0

]( ∞∑
i=0

Ai

)
Z0
Z1
...

Zw−1

 (3.7)

We now obtain the exact form of matrix A by calculating pa,b. We focus on the value
of b, which is the minimum of the following two amounts:

• Lower-order bits of 1 in window
• (The amount of movement in the neighboring higher-order window)+(The number

of 0s between windows)
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First, we consider a = 0. b = 0 is satisfied when the current window follows the
neighboring higher-order window continuously. Thus, p0,0 = 1/4.

Second, 1 ≤ b ≤ w − 2 is satisfied when one of the following is satisfied:

• The number of 0s between the current and neighboring higher-order windows is b
and that of the lower-order bits of 1 is more than b in the current window.

• The number of 0s between the current and neighboring higher-order windows is
more than b and that of the lower-order bits of 1 is b in the current window.

Then, the probability is given as

p0,b =
(

1
2

)b 1
2b+1 +

(
1
2

)b 1
2b+2 .

Finally, b = w− 1 is satisfied when the number of 0s between the current and the MSB
window is more than w − 1 and the current window is 10 . . . 0; therefore,

p0,w−1 = 1
2w−2

1
2w
.

Next, we consider a > 0. First, pa,0 = 0. Second, 1 ≤ b ≤ a − 1 is satisfied when
the lower-order bit of 1 is b in the current window. Therefore, pa,b = 2/2b+2. Third,
a ≤ b ≤ w − 2 is satisfied when one of the following is satisfied:

• The number of 0s between the current and the neighboring higher-order window is
b− a and that of the lower-order bits of 1 is more than b in the current window.

• The number of 0s between the current and neighboring higher-order windows is
more than b−a and the number of lower-order bits of 1 is b in the current window.

Therefore,

pa,b =
(

1
2

)b−a 1
2b+1 +

(
1
2

)b−a 1
2b+2 .

Finally, b = w − 1 is satisfied when the number of 0s between the current and the
neighboring higher-order window is more than w − 1 − a and the current window is 10
. . . 0; therefore,

pa,w−1 = 1
2w−2−a

1
2w
.

Therefore, for w ≥ 2,

A =



1
4

1
2

1
4

+ 1
2

1
8

1
4

1
8

+ 1
4

1
16

. . .
1

2w−2
1

2w−1 + 1
2w−2

1
2w

1
2w−2

1
2w

0 1
4

+ 1
8

1
2

1
8

+ 1
2

1
16

. . .
1

2w−3
1

2w−1 + 1
2w−3

1
2w

1
2w−3

1
2w

0 2
8

1
8

+ 1
16

. . .
1

2w−4
1

2w−1 + 1
2w−4

1
2w

1
2w−4

1
2w

...
0 2

8
2
16

. . .
2

2w

2
2w


.

Now, the sum of rows in A is less than 1/2 because of (3.4). Thus, ||A||∞ = 1/2. Therefore,
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∞∑
i=0

Ai = (I −A)−1. Hence, from Eq. (3.7),

E [Yi] =
[
1 0 . . . 0

]
(I −A)−1


Z0
Z1
...

Zw−1

 . (3.8)

From Eq. (3.8), we calculate E [Yi] by
[
1 0 . . . 0

]
(I − A)−1 and Zi. Thus, we

calculate these values.
We now calculate [

1 0 . . . 0
]

(I −A)−1,

namely the first row of (I −A)−1. This is given by[
g(0) . . . g(w − 2) 2

w−1∏
j=1

2j−1

2j+1 − 1

]
, (3.9)

and we proof this.
First, we prove that the first row of (I − A)−1 is given by Eq. (3.9) when w = 2. The

matrix A is given as

A =


1
4

1
4

0 2
4

 .
Then,

(I −A)−1 =


4
3

2
3

0 2

 ,

and the first row of (I −A)−1 is

[
g(0) 2

2−1∏
j=1

2j−1

2j+1 − 1

]
.

Next, we prove that the first row of (I −A)−1 is given by Eq. (3.9) when w ≥ 3. I −A
is given as

I −A =



3
4

−1
2

1
4

− 1
2

1
8

. . . − 1
2w−2

1
2w

0 1 − 1
4

− 1
8

. . . − 1
2w−3

1
2w

...
0 −2

8
. . . 1 − 2

2w


.

We now calculate the inner product of g =

[
g(0) 2

w−1∏
j=1

2j−1

2j+1 − 1

]
and each column of

I −A. Then, we prove followings:

• The inner product of g and the first column of I −A is 1.
• Otherwise, 0.
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From g(0) = 4/3, the inner product of g and the first column of I −A is 1.
Next, we focus on the second to (w− 1)-th column in I −A. We now focus on the i-th

column. When we focus on each element of i-th column, the following is satisfied:

• The k-th (1 ≤ k ≤ i− 1) elements are −
(

1
2

)i−k 1
2i

−
(

1
2

)i−k 1
2i+1 .

• The i-th element is 1 − 1
2i

− 1
2i+1 .

• The (i+ 1)-th element to the w-th element are − 2
2i+1 .

Thus, the inner product of g and the i-th column of I −A is

−
i−1∑
k=1

((
1
2

)i−k 1
2i

+
(

1
2

)i−k 1
2i+1

)2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1


+
(

1 − 1
2i

− 1
2i+1

)2
(

1 − 2i−1

2i+1 − 1

) i−1∏
j=1

2j−1

2j+1 − 1


−

w−1∑
k=i+1

2
2i+1

2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

− 2
2i+1 2

w−1∏
j=1

2j−1

2j+1 − 1

= −
i−1∑
k=1

((
1
2

)i−k 1
2i

+
(

1
2

)i−k 1
2i+1

)2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1


+
(

1 − 1
2i

− 1
2i+1

)2
(

1 − 2i−1

2i+1 − 1

) i−1∏
j=1

2j−1

2j+1 − 1

− 4
2i+1

i∏
j=1

2j−1

2j+1 − 1

= −
i−1∑
k=1

((
1
2

)i−k 1
2i

+
(

1
2

)i−k 1
2i+1

)2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1


+
(

1 − 1
2i+1

)2
(

1 − 2i−1

2i+1 − 1

) i−1∏
j=1

2j−1

2j+1 − 1

− 4
2i+1

i−1∏
j=1

2j−1

2j+1 − 1

= −
i−1∑
k=1

((
1
2

)i−k 1
2i

+
(

1
2

)i−k 1
2i+1

)2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1


+

2
(
2i+1 − 2i−1 − 1

)
2i+1

i−1∏
j=1

2j−1

2j+1 − 1
− 4

2i+1

i−1∏
j=1

2j−1

2j+1 − 1

= −
i−1∑
k=1

((
1
2

)i−k 3
2i+1

)2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

+
3
(
2i − 2

)
2i+1

i−1∏
j=1

2j−1

2j+1 − 1

= 3
2i+1

−
i−1∑
k=1

(
1
2

)i−k
2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

+
(
2i − 2

) i−1∏
j=1

2j−1

2j+1 − 1

 .
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We now define z(i) as

z(i) = −
i−1∑
k=1

(
1
2

)i−k
2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

+
(
2i − 2

) i−1∏
j=1

2j−1

2j+1 − 1

If z(i) = 0, the inner product of g and the i-th column of I −A is 0 when i ≥ 2. We now
proof z(i) = 0 by mathematical induction. When i = 2,

z(2) = −
(

1 − 1
3

)
+
(
22 − 2

) 1
3

= 0.

We now assume that z(i) = 0 when i = l (l ≥ 2). When i = l + 1,

z(l + 1) = −
l∑

k=1

(
1
2

)l+1−k
2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

+
(
2l+1 − 2

) l∏
j=1

2j−1

2j+1 − 1

= −1
2

l−1∑
k=1

(
1
2

)l−k
2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1


−
(

1 − 2l−1

2l+1 − 1

) l−1∏
j=1

2j−1

2j+1 − 1
+
(
2l+1 − 2

) l∏
j=1

2j−1

2j+1 − 1

= −2l − 2
2

l−1∏
j=1

2j−1

2j+1 − 1
−
(

1 − 2l−1

2l+1 − 1

) l−1∏
j=1

2j−1

2j+1 − 1

+
(
2l+1 − 2

) 2l−1

2l+1 − 1

l−1∏
j=1

2j−1

2j+1 − 1

=
(

−2l − 2
2

+ −2l+1 + 1 + 2l−1 + 2l+12l−1 − 2l

2l+1 − 1

) l−1∏
j=1

2j−1

2j+1 − 1

=
(

−2l − 2
2

+ 2l−1 − 1
) l−1∏

j=1

2j−1

2j+1 − 1
= 0.

Thus, z(i) = 0 for all i satisfying 2 ≤ i ≤ w − 1. Therefore, the inner product of g and
the i-th column of I −A is 0 when 2 ≤ i ≤ w − 1.

Lastly, the inner product of g and the w-th column of I −A is

−
w−1∑
k=1

1
2w−1−k

1
2w

2
(

1 − 2k−1

2k+1 − 1

) k−1∏
j=1

2j−1

2j+1 − 1

+
(

1 − 2
2w

)
2

w−1∏
j=1

2j−1

2j+1 − 1

= 2z(w)
2w

= 0.

As a result, we proved the followings:

• The inner product of g and the first column of I −A is 1.
• Otherwise, 0.

Therefore, the first row of (I −A)−1 is

[
g(0) . . . g(w − 2) 2

w−1∏
j=1

2j−1

2j+1 − 1

]
.
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We now calculate Zi. We recover j (0 ≤ j ≤ w − i − 1) bits when the neighbor
higher-order window moves i (0 ≤ i ≤ w − 1), the number of 0s between the current and
neighboring higher-order windows is k, and the number of lower-order bits of 1 is i+ j+k
in the current window. Thus,

w−1∑
am=0

pi,am,j =
w−i−j−2∑

k=0

(
1
2

)k 2w−(i+j+k+2)

2w
+
(

1
2

)w−i−j−1 1
2w

= 1
3

(
1
2

)i+j

+ 1
3

1
2w

(
1
2

)w−i−j−1

.

Therefore,

Zi = 1
3 · 2i

w−i−1∑
j=0

j

(
1
2

)j

+ 2i+1

3 · 22w

w−i−1∑
j=0

j2j = fw(i).

Now, because of fw(w − 1) = 0, E [Yi] =
w−2∑
k=0

fw(k)g(k).

In conclusion, the average recovery rate of the secret exponent of Rule 1 is

E [Yi]
E [Xi]

=

w−2∑
k=0

fw(k)g(k)

2(w + 1)
.

This proves Lemma 2. □

Bit Recovery Rate in Rule 2
We prove the following Lemma 3.

Lemma 3 Suppose that we generate a secret exponent randomly. If w ≥ 2, the average
recovery rate of the secret exponent by Rule 2 is given by

2w − 1
2w−1 (2w−1 + 1)

1
3(w + 1)

.

Before we prove Lemma 3, we give the intuition of our proof. In Rule 2, we recover bits
when the position of the neighboring lower-order window is fixed. Thus, if the window’s
position does not move, there is a dependency on nearby windows. However, if the
window’s position moves to the highest-order candidate, there is no dependency on the
nearby windows. Therefore, we set the renewal as the hitting window that moves certainly.
Then, we calculate the recovery rate of the secret exponent. We now provide rigorous
proof.

First, we define Xi and then calculate E [Xi]. In this proof, we write the window 1x
. . . x1 as F and a window except for 1x . . . x1 as L, similar as the proof of Lemma 2.
We define Xi as the length of the bit sequence until

1. 0 . . . 0L occurs, or
2. 0 . . . 0F occurs and continues until 0 . . . 0L occurs with more than one 0s before

L.

Before we explain these conditions, we check that the neighboring higher-order window
moves certainly to the highest-order candidate. In the first condition, the current window
moves certainly to the highest-order candidate, because of the following reasons:
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• The neighboring higher-order window moves to the highest-order candidate.
• There is space for allowing the current window to move to the MSB side.
• A window L can be moved to the MSB side.

We call this condition pattern 1. Next, in the second condition, 0 . . . 0F is always
a highest-order candidate, and this window does not move. Thus, we ensure that the
window certainly moves when satisfying the following two conditions:

• There is space for allowing the current window to move to the MSB side.
• A window L can be moved to the MSB side.

Therefore, only when we hit the bit sequence of 0 . . . 0L with more than one 0s before
L, the window moves certainly. We call this condition pattern 2. We now consider these
patterns.

In pattern 1, when the length of 0s is z (z ≥ 0), Xi = z + w and the probability of
this event is 1/2z+2. Next, we consider pattern 2. We write window without considering
contents as W. Pattern 2 is constructed in the following order:

1. After 0 . . . 0F, W occurs u (u ≥ 0) times.
2. After 0 . . . 0F with more than one 0s, W occurs uj (uj ≥ 0) times. This pattern

occurs r (r ≥ 0) times.
3. 0 . . . 0L with more than one 0s occur.

We now set the number 0s in first 0 . . . 0F as zf (zf ≥ 0), the number of 0s in repeated
0 . . . 0F r times as zj (zj ≥ 1), and the number of 0s in final 0 . . . 0L as zc (zc ≥ 1);
then,

Xi = zf +
r∑

j=1
zj + zc + w

r + 2 + u+
r∑

j=1
uj

 .

The probability of this event is(
1
2

)zf 1
4

(
1
2

)u(1
2

)zc 1
4

r∏
j=1

((
1
2

)zj 1
4

(
1
2

)uj
)
.

From these calculations, we calculate the expectation of Xi as E [Xi] = 3w + 3.
Next, we calculate E [Yi]. We now write 100 . . . 0 window as U, which is the abbrevi-

ation of the Ultra-short window called in the original study. Then, a bit sequence can be
decomposed into the following:

1. 0 . . . 0F
2. W except for U r times, and U (r ≥ 0)
3. W except for U c times (c ≥ 0)
4. 0 . . . 0L

We call these patterns P1, P2, P3, and P4, respectively. By dividing a bit sequence
following P1, P2, P3, and P4 and when we write a bit sequence by the index of the
pattern, we can write a bit sequence as

P1P2 . . .P2P3P1P2 . . .P2P3 . . .P1P2 . . .P2P3P4,

namely, many times P1P2 . . .P2P3 and once P1P2 . . .P2P3P4. In Rule 2, bits are recov-
ered in P1 and P2. Thus, in the bit strings P1P2 . . .P2P3 or P1P2 . . .P2P3P4, followings
are satisfied:

• If the number of P2 represented r is more than one, we recover r + 1 bits.
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• Otherwise, we recover no bits.

We now write P1P2 . . .P2P3 as P1P2P3 omitting the repetition of P2. We set the
repeat count of P1P2P3 without first P1P2P3 as s (s ≥ 0), and set as follows:

• The number of 0s in 0 . . . 0F in the first P1P2P3 as zf (zf ≥ 0)
• The number of P2 in the first P1P2P3 as r (r ≥ 0) and the number of W in each

P2 as cj (cj ≥ 0)
• The number of W in P3 in the first P1P2P3 as ce (ce ≥ 0)
• The number of 0s in 0 . . . 0F except fot the first P1P2P3 as zi (zi ≥ 1)
• The number of P2 except fot the first P1P2P3 as ri (ri ≥ 0), the number of W in

each P2 as ci,j (ci,j ≥ 0)
• The number of W in P3 except fot the first P1P2P3 as ci,e (ci,e ≥ 0)
• The number of 0s in P4 as zc (zc ≥ 1)

Then, the number of recovered bits is given by Rule 2 as

1(r ≥ 1) +
r∑

j=1
cj +

s∑
i=1

1(ri ≥ 1) +
ri∑

j=1
ci,j

 ,

where 1(x) is an indicator function. Then, the probability of the above bit sequences is(
1
2

)zf 1
4

(
1
2

− 1
2w

)ce
(

1
2

)zc 1
4

r∏
j=1

((
1
2

− 1
2w

)cj 1
2w

)

×
s∏

i=1

(1
2

)zi 1
4

(
1
2

− 1
2w

)ci,e ri∏
j=1

((
1
2

− 1
2w

)ci,j 1
2w

) .

Therefore, E [Yi] = 2w − 1
2w−1 (2w−1 + 1)

.

In conclusion, the average recovery rate of the secret exponent of Rule 2 is

E [Yi]
E [Xi]

= 2w − 1
2w−1 (2w−1 + 1)

1
3(w + 1)

.

This proves Lemma 3. □

Bit Recovery Rate in Rule 3
We prove the following Lemma 4.

Lemma 4 Suppose that we generate a secret exponent randomly. The average recovery
rate of the secret exponent by Rule 3 is then given by 1/(w + 1).

Before we prove Lemma 4, we give the intuition of our proof. In Rule 3, we consider the
highest-order candidate in each window and recover bits not included in windows. Then,
we move the actual candidate to the highest-order candidate. Therefore, we consider the
same as that in Rule 1, set the renewal as hitting window 1x . . . x1 and calculate the bit
recovery rate. We now give rigorous proof.

In proof of Lemma 4, we define Xi same as the proof in Lemma 2. Therefore, E [Xi] =
2w + 2.

Next, we calculate E [Yi]. We set the number of 0s in 0 . . . 0F as z (z ≥ 0). Then, the
pattern of window until 0 . . . 0F occurs is one of following:
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Table 3.1: Average recovery rate of secret exponents in each rule
w Rule 0 (%) Rule 1 (%) Rule 2 (%) Rule 3 (%) all (%)

3 (Experimental) 25.01 8.06 2.93 24.96 60.97
3 (Theoretical) 25.00 8.04 2.92 25.00 60.95

4 (Experimental) 20.00 8.41 1.38 19.99 49.78
4 (Theoretical) 20.00 8.42 1.39 20.00 49.81

5 (Experimental) 16.67 7.94 0.63 16.67 41.90
5 (Theoretical) 16.67 7.95 0.63 16.67 41.92

6 (Experimental) 14.29 7.24 0.28 14.29 36.09
6 (Theoretical) 14.29 7.24 0.28 14.29 36.09

7 (Experimental) 12.50 6.49 0.13 12.53 31.65
7 (Theoretical) 12.50 6.52 0.13 12.50 31.65

1. 0 . . . 0L does not occur.
2. 0 . . . 0L occurs r (r ≥ 1) times.

In pattern 1, Yi = z and the probability of the bit sequence is
(

1
2

)z 1
4

. In pattern 2,

when we set the number of zeros in each 0 . . . 0L as z1, . . . , zr (zi ≥ 0), Yi = z +
r∑

i=1
zi

and the probability of bit sequence is
(

1
4

)r+1(1
2

)z r∏
i=1

(
1
2

)zi

. Therefore, E [Yi] = 2.

In conclusion, the average recovery rate of the secret exponent in Rule 3 is

E [Yi]
E [Xi]

= 1
w + 1

.

This proves Lemma 4. □

3.3.2 Numerical Experiment: Calculating the Exact Rate of Recovered Bits of
the Secret Exponent

To check our analysis’s validity, we randomly generated 10000 bits, converted them into
square-and-multiply sequences, and applied the optimal recovery rules for bits of a secret
exponent given in Section 3.2.2. We performed 1000 time experiments. We calculated
the average rate of the recovered bits by each rule. Table 3.1 shows the results of this
experiment. Table 3.1 shows that our analysis matches with the experimental result.

3.3.3 Numerical Experiment: Applying to the CRT-RSA Scheme
We applied the optimal recovery rules on the CRT-RSA secret keys dp and dq. This
experiment checked if the recovery rates are similar between the CRT-RSA secret keys and
random bits. We generated secret keys on the 2048-bit CRT-RSA scheme and generated
square-and-multiply sequences. In each CRT-RSA secret key, we generated square-and-
multiply sequences on (dp, dq), and therefore, obtained two square-and-multiply sequences.
We applied the optimal recovery rules on these two square-and-multiply sequences and
calculated the rates of recovered bits of CRT-RSA secret keys. We repeated the above for
100 CRT-RSA secret keys generated randomly. Then, we averaged all knowable bit rates
over 100 times results. Moreover, we generated 1024 bits randomly 200 times, generated
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Table 3.2: Rates of the recovered bits in the 2048-bit CRT-RSA scheme
w 3 4 5 6 7

CRT-RSA (%) 60.80 49.96 41.84 36.19 31.76
Random Bits (%) 60.97 49.80 41.89 35.98 31.65

square-and-multiply sequences, applied the optimal bit recovery rules, and averaged the
rates of recovered bits of CRT-RSA secret keys over 200 times results.

Table 3.2 shows our experimental results. The recovery rates of bits of the CRT-RSA
secret keys and random bits are almost the same. Therefore, the rates of recovered bits
are similar between the CRT-RSA secret keys and random bits.

3.4 Obtaining More Information on Non-Recovered Bits
The previous section gave the exact rate of recovered bits on the CRT-RSA secret keys.
However, when we only use recovered bits, the CRT-RSA secret keys are not recovered
in polynomial time when w = 4 because the exact rate of recovered bits of the CRT-
RSA secret keys is less than 50% [87]. This result contradicts the previous work that the
CRT-RSA secret keys are recovered in polynomial time when w = 4 [10].

We now focus on non-recovered bits. The additional information is embedded in non-
recovered bits, as dictated in [10, 115]. We capture this additional information by cal-
culating the likelihood of each bit value 0 or 1 in non-recovered bits. For example, we
consider SSMSSM in w = 2. Bit sequences 0101, 1101, and 1111 do not contradict
with SSMSSM. Common bits are the second and fourth ones; thus, the recovered bits
are x1x1. If there is no information on the non-recovered bits, namely the first and third
bits, we have 22 = 4 candidates. However, there are 3 candidates. The likelihoods of bit
values in each non-recovered bit are not the same. Therefore, the additional information
on non-recovered bits is embedded in the likelihood of each bit value.

This section proposes a method for obtaining the likelihood of each bit value in each
non-recovered bit. For this purpose, we adopt a Monte-Carlo approach. First, we choose
many bit sequences uniformly that do not contradict a given square-and-multiply se-
quence. However, the method for uniformly choosing the bit sequences is not trivial. To
construct this random sampling method, we build our method based on Van Vredendaal’s
method [115] to calculate the number of candidates of bit sequence corresponding to the
given square-and-multiply sequence. Van Vredendaal’s method is a straightforward dy-
namic programming approach that calculates the number of candidates of a bit sequence
in each window. We use this information, the number of candidates of a bit sequence, in
our method for obtaining the likelihood of each bit value in each non-recovered bit.

Section 3.4.1 gives a random sampling method to choose a bit sequence uniformly that
does not contradict a given square-and-multiply sequence. Section 3.4.2 shows the result
of the numerical experiments performed for calculating the likelihood of each bit value.

3.4.1 Random Sampling Method Based on a Given Square-and-Multiply Se-
quence

We propose a random sampling method for a bit sequence that does not contradict a given
square-and-multiply sequence. Our random sampling method is given as Algorithm 5.
When we sample many outputs corresponding to the input, we run Step 1 once and
Step 2 many times.
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Algorithm 5 Method for random sampling of a bit sequence corresponding a square-
and-multiply sequence

Input: The window size w, a square-and-multiply sequence
Output: An input candidate that does not contradict the given square-and-
multiply sequence
Step 1: Calculate the Number of Candidates
from The lowest-order window to the highest-order window

for all possible windows
1. Sum of the number of candidates of the neighboring lower-order windows

that does not have common bits with the current window (A).
2. Calculate the number of candidates of the current window (B).
3. Calculate A times B and store it in the current candidate window.

end for
Step 2: Sampling a Bit Sequence
from The highest-order window to the lowest-order window

1. Define X1, X2, . . . , Xk as the number of candidates for all possible current
windows that do not overlap with the neighboring higher-order window.

2. Choose a window with probability Xi/
(∑k

j=1 Xj

)
.

3. Set 0 between the current window and the neighboring higher-order
window.

4. In the current window,
a. Set the MSB bit as 1.
b. Set lower-order bits of 1 as 0.
c. Set nondetermined bits as 0 or 1 randomly.

Step 1 of Algorithm 5 corresponds to Van Vredendaal’s method [115] for calculating the
number of candidates of a bit sequence corresponding to the given square-and-multiply
sequence. Step 1 calculates the number of candidates of a bit sequence in each possible
position of windows from low-order windows. The value A summarizes the information
of low-order windows. The value B calculates the number of candidates of the current
window. We calculate 2b, where b is the number of non-determined bits in the current
window. By storing A times B in each window, we preserve the number of candidates in
each possible position of windows, including the information of low-order windows. When
we finish Step 1, we obtain the number of candidates of the bit sequence corresponding
to the given square-and-multiply sequence.

In Step 2, we sample a bit sequence uniformly corresponding to the given square-and-
multiply sequence. We determine the position of windows from higher windows. When
some windows’ position is determined, we choose the neighboring low-order windows based
on the number of candidates of each window in Step 1. This selection method realizes
sampling uniformly corresponding to the given square-and-multiply sequence. When the
position of a window is determined, we set 0 between the current window and the neigh-
boring higher-order window (leading zeros), set the MSB bit as 1 (leading one), and the
lower-order bits of 1 as 0 (trailing zeros). Moreover, we set the non-determined bits as
0 or 1 randomly because these bits are flat when the current window position is deter-
mined. When we finish Step 2, we sample a bit sequence that does not contradict the
square-and-multiply sequence uniformly.
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Table 3.3: Distribution of likelihood of 1 in 2048-bit CRT-RSA scheme
w 3 4 5 6 7

All 0 0.328 0.285 0.248 0.212 0.189
All 1 0.280 0.214 0.174 0.147 0.127
0-10% 0 0 0 0 0
10-20% 3.38 × 10−4 3.91 × 10−5 4.89 × 10−6 0 0
20-30% 1.02 × 10−2 5.17 × 10−3 2.52 × 10−3 1.41 × 10−3 9.00 × 10−4

30-40% 3.27 × 10−2 2.45 × 10−2 1.93 × 10−2 1.55 × 10−2 1.30 × 10−2

40-50% 7.99 × 10−2 0.104 0.133 0.168 0.199
50-60% 0.143 0.230 0.295 0.338 0.363
60-70% 5.90 × 10−2 6.42 × 10−2 5.86 × 10−2 5.23 × 10−2 4.74 × 10−2

70-80% 3.20 × 10−2 3.13 × 10−2 2.73 × 10−2 2.55 × 10−2 2.23 × 10−2

80-90% 2.31 × 10−2 2.39 × 10−2 2.29 × 10−2 2.02 × 10−2 1.84 × 10−2

90-100% 1.22 × 10−2 1.80 × 10−2 2.00 × 10−2 2.04 × 10−2 1.90 × 10−2

non-recovered 400 512 591 655 699
log2(#Cand.) 350 448 534 608 660

3.4.2 Numerical Experiment: Calculating the Likelihood in Each Non-
Recovered Bit

We calculated the likelihood of each bit in CRT-RSA secret keys using Algorithm 5.
We performed numerical experiments on 3 ≤ w ≤ 7. In each w, we generated the
2048-bit CRT-RSA secret keys 100 times randomly. In each CRT-RSA secret key, we
generated square-and-multiply sequences on (dp, dq), and therefore, obtained two square-
and-multiply sequences. Therefore, we generated 200 square-and-multiply sequences cor-
responding to a 1024-bit number. In each square-and-multiply sequence, we obtained 1000
samples using Algorithm 5 and calculated the likelihood of 1. Moreover, we calculated
the number of non-recovered bits and the number of candidates that are not the same in
1000 samples. Finally, we averaged the above information over 200 square-and-multiply
sequences and calculated the likelihood of 1, the average of the number of non-recovered
bits, and log2(the average of #Candidate). Table 3.3 shows the experimental results. In
Table 3.3 and the following discussion, we represent the average of the number of non-
recovered bits as non-recovered and log2(the average of #Candidate) as log2(#Cand.).
Moreover, we drop fractions in these two values.

Table 3.3 describes that non-recovered and log2(#Cand.) are larger in larger w. This
result agrees with our intuition that it is more difficult to recover the CRT-RSA secret
keys in a larger w. Moreover, the likelihood of 1 gathers at 40-60% in a larger w, which
is why it is more difficult to recover the CRT-RSA secret keys in a larger w.

When w = 4, non-recovered is 512 and log2(#Cand.) is 448. Non-recovered is almost
the same as 1024/2 = 512 and log2(#Cand.) is smaller than 1024/2 = 512. Therefore,
this corresponds to the fact that we can recover the CRT-RSA secret keys when w = 4 in
the original analysis [10].

When w = 5, non-recovered is 591 and log2(#Cand.) is 534. Both non-recovered and
log2(#Cand.) are larger than 1024/2 = 512. Therefore, it is not easy to recover the
CRT-RSA secret keys when w = 5 in polynomial time. However, there are about 2% bits,
which are 1 with high probability. This information corresponds to about 20 bits. In the
next section, we use this information for recovering the CRT-RSA secret keys.



46 Chapter 3 Improved CRT-RSA Secret Key Recovery Method from Sliding Window Leakage

3.5 New Recovering Method for the CRT-RSA Secret Keys
We now propose a new method for recovering CRT-RSA secret keys. Our method is a
combination of the original method [10] and Kunihiro et al.’s method [59]. We propose our
new method in Section 3.5.1, and we show the results of our experiment in Section 3.5.2.

3.5.1 Our Proposed Method
We now explain our proposed method. In our method, we give inputs as follows:

• The square-and-multiply sequences of dp and dq

• r: The number of iteration of the random sampling algorithm proposed in Sec-
tion 3.4

• l: The maximum number of leaves we search
• ε: The parameter for recovering additional bits
• t and c: The parameter for running Kunihiro et al.’s method

Then, we recover the CRT-RSA secret keys.
First, we extract information of dp and dq from square-and-multiply sequences. Specif-

ically, we perform the followings:

• We recover bits partially using the optimal recovery rules for bits of the CRT-RSA
secret keys.

• We run our random sampling algorithm r times on each dp and dq. In each dp and
dq we recover bits as 0 when the likelihood of 1 is less than ε, and 1 when the
likelihood of 1 is more than 1 − ε.

• We record the position of Ss which are next to a M or at the beginning of w Ss in
the square-and-multiply sequences from the final operation as Section 3.2.3. Then
we connect these Ss with bits.

We label each bit by matching the above conditions. Specifically, we define R as the
position of the recovered bits. Next, we define P as the position of the additional recovered
bits. Finally, we define S as the bits’ position connected with Ss.

We now recover the CRT-RSA secret keys. We perform the branch and bound strategy
on bits at the position in P . First, we calculate t-revealed bits of dp and dq at the position
in P . Second, we discard a leaf if there are more than c mismatches between the calculated
and given t bits. Additional to this strategy, we adopt exception handling on the bits at
R or S. First, if we calculate a bit in R, we discard a leaf if there is a mismatch with
the recovered bits. Next, if we calculate a bit in S, we convert calculated bits hitting
S to a square-and-multiply sequence, and we discard a leaf if there are mismatches with
the given square-and-multiply sequence. By doing these, we recover the CRT-RSA secret
keys from square-and-multiply sequences.

We now compare our proposed method to the original method [10] which only used
the information of bits in S. Our method performs more pruning using the additional
information than the original method. Thus, our proposed method generates fewer leaves
while there is a possibility of discarding the correct leaves. Therefore, our method may
recover more CRT-RSA secret keys because fewer leaves are generated than the original
method.
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Table 3.4: Results of our proposed method in the 2048-bit CRT-RSA scheme
ε 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t 1 100 50 33 25 20 16 14 12 11 10

l = 1, 000, 000 Time (s) 8.37 7.71 8.27 7.12 7.23 16.6 8.70 11.3 19.1 14.2 32.9
Success Rate (%) 11 12 11 17 12 14 12 16 9 11 8

Too Many (%) 89 88 89 83 88 86 83 78 86 74 75
Pruning (%) 0 0 0 0 0 0 5 6 5 15 17

l = 2, 000, 000 Time (s) 12.1 11.2 15.9 17.0 14.0 27.8 8.50 12.6 20.4 17.5 12.6
Success Rate (%) 19 16 14 16 19 17 20 21 11 15 10

Too Many (%) 81 84 86 84 80 83 79 74 78 76 73
Pruning (%) 0 0 0 0 1 0 1 5 11 9 17

3.5.2 Numerical Experiments of Our Proposed Method
We now recover the CRT-RSA secret keys using our proposed method. We ran our
algorithm on w = 5 and set the number of random sampling as r = 1000. Moreover, we
set (ε, t, c). If ε = 0, we set t = 1 and c = 0, which corresponds to the combination of two
methods proposed in the original method [10]. In other ε, we set c = 1 and t = ⌊1/ε⌋.
In our experiment, we implemented our algorithm in depth-first search and aborted if we
search l leaves similar to [10]. In each parameter, we generated secret keys of the 2048-bit
CRT-RSA scheme 100 times randomly. We measured average time in successful trials and
success rates when the correct kp and kq were given.

Moreover, we recorded why our proposed method failed. There are two reasons for
failure:

• Generate more than l leaves
• Prune the correct leaf

In the original method, the reason for failure is only the former. However, stated above,
our proposed method may discard the correct leave, and then, our method fails. Table 3.4
gives the result of the experiment. “Too Many” means the failure because of searching
more than l leaves, and “Pruning” means the failure because of pruning the correct leaf.

When l = 1, 000, 000, our method recovers 17% of the CRT-RSA secret keys when
(ε, t, c) = (0.03, 33, 1), while the original method [10] recovers 8.6% of the CRT-RSA
secret keys. When l = 2, 000, 000, our method recovers 21% of the CRT-RSA secret keys
when (ε, t, c) = (0.07, 14, 1), while the original method recovers 13% of the CRT-RSA
secret keys. In almost all parameters, our method recovers more CRT-RSA secret keys
than the original method. Therefore, our method recovers more secret keys compared to
the original method when w = 5.

We now focus on the reason for failure. The probability of too many leaves is 70–
90%, which is much higher than the probability of pruning the correct leaf. This result
occurs because we have a small chance to hit the correct leaf because of too many leaves
originally. In larger ε, the failure probability of too many leaves decreases, especially
ε ≥ 0.09 when l = 1, 000, 000, and ε ≥ 0.06 when l = 2, 000, 000. This result matches
our intuition that our proposed method generates fewer leaves in larger ε. Moreover, in
larger ε, the failure probability of pruning the correct leaf increases, especially ε ≥ 0.06
in both l. This result matches our intuition that our proposed method tends to discard
the correct leaf in a larger ε. When we set ε ≤ 0.05, there is almost no failure because of
pruning the correct leaf. However, when we set ε ≥ 0.08, our method prunes the correct
leaf with high probability. Therefore, the appropriate parameter of our method exists in
0.05 < ε < 0.08.
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3.6 Conclusion and Future Work
We improved the recovery method for the CRT-RSA secret key from the correct square-
and-multiply sequences. First, we calculated the exact rate of recovered bits of the secret
exponent only from a square-and-multiply sequence. Next, we extracted the information
embedded in non-recovered bits by calculating the likelihood of each bit value. Finally, we
proposed a new method for recovering the CRT-RSA secret key and improved the original
method [10] when w = 5. In the future, we should determine the appropriate parameters
in our proposed method.
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Chapter 4

Recovering CRT-RSA Secret Keys from
Noisy Square-and-Multiply Sequences

4.1 Introduction
4.1.1 Background
This chapter focuses on the CRT-RSA encryption or signature scheme [76] when noisy
square-and-multiply sequences are extracted. It is proved that the CRT-RSA secret keys
are recovered in polynomial time from the correct square-and-multiply sequences when
w ≤ 4 [10]. It is also proved that the CRT-RSA secret keys are recovered in polynomial
time from square-and-multiply sequences with errors when w = 1 [84]. These methods are
based on Heninger-Shacham’s method [43] for searching candidates of the CRT-RSA secret
keys. Naturally, it may be possible to recover the CRT-RSA secret keys in polynomial
time from square-and-multiply sequences with errors when w ≤ 4.

Based on these studies, Oonishi and Kunihiro proposed a method for recovering the
CRT-RSA secret keys in a general w [83]. However, this method for recovering the CRT-
RSA secret keys adopts the slower method than Heninger-Shacham’s method for searching
candidates of the CRT-RSA secret keys. The previous method is slow because square-and-
multiply sequences are generated from the MSB side, whereas Heninger-Shacham’s method
recovers the CRT-RSA secret keys from the LSB side. With Heninger-Shacham’s method,
even if we obtain the partially correct LSB bits of the CRT-RSA secret keys, these bits
are not always converted into the correct square-and-multiply sequences. Thus, Oonishi-
Kunihiro’s method [83] recovers the CRT-RSA secret keys from MSB sides, which requires
additional time. Moreover, it is proved that the CRT-RSA secret keys are recovered in
polynomial time from square-and-multiply sequences with errors only when w = 2. Thus,
we tackle the following two questions:

1. How do we recover the CRT-RSA secret keys from square-and-multiply sequences
with errors based on Heninger-Shacham’s method?

2. How many errors are tolerable when we recover the CRT-RSA secret keys?

4.1.2 Our Contribution
This study discusses how to recover the CRT-RSA secret keys from square-and-multiply
sequences with errors in the sliding window method by answering these two questions.
This chapter is written based on our study published at the 25th Australasian Conference
on Information Security and Privacy (ACISP2020) [85].

First, we propose a method for recovering the CRT-RSA secret keys from square-and-
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Table 4.1: Tolerable error rate of our method
w 1 2 3 4

Tolerable Error Rate 0.108 0.067 0.034 0.008

multiply sequences with errors based on Heninger-Shacham’s method, which answers the
first question. Our method is an extension of Oonishi-Kunihiro’s method [83, 84]. Specif-
ically, we focus on obtaining the correct square-and-multiply sequences from the LSBs of
the CRT-RSA secret keys.

Second, we analyze our method, which is the answer to the second question. To analyze
our method, we assume that S flips into M with probability δ, and M flips into S with
probability δ. We show that our method recovers the CRT-RSA secret keys when the
error rate δ is less than the values in Table 4.1. There are no ranges of the error rate δ for
which our method can recover the CRT-RSA secret keys when w ≥ 5. Table 4.1 shows that
our method recovers the CRT-RSA secret keys from square-and-multiply sequences with a
higher error rate than previous research. When w = 1, our method recovers the CRT-RSA
secret keys when δ = 0.108, compared with the maximum error rate of 0.058 reported
in [84]. Moreover, when w = 2, our method recovers the CRT-RSA secret keys when
δ = 0.067, as compared with the maximum error rate of 0.017 reported in [83]. These error
rate values of δ may seem small, but the error rate reported in [10] is δ = 0.011. Therefore,
our method recovers the CRT-RSA secret keys from actual side-channel information.

Finally, we conduct numerical experiments using the proposed method. We first per-
form numerical experiments with a various error rate of δ values in square-and-multiply
sequences. Through these experiments, our method recovers the CRT-RSA secret keys
when δ takes the values given in Table 4.1. Next, we consider the real error δ = 0.011 in
the square-and-multiply sequences, as shown in [10]. From Table 4.1, it is impossible to
recover the CRT-RSA secret keys when w = 4 and δ = 0.011. However, our experiments
show that our method recovers the CRT-RSA secret keys when w = 4 and δ = 0.011.
Therefore, our method recovers CRT-RSA secret keys from actual side-channel informa-
tion in the sliding window method.

4.1.3 Organization of this Chapter
This chapter has six sections. In Section 4.2, we describe previous results on recovering the
CRT-RSA secret keys from square-and-multiply sequences. In Section 4.3, we propose a
recovery method from noisy square-and-multiply sequences. In Section 4.4, we analyze our
proposed recovery method. In Section 4.5, we provide the results of numerical experiments.
In Section 4.6, we conclude this chapter.

4.2 Previous Methods for Recovering the CRT-RSA Secret Keys
This section describes previous studies. First, we describe the method for recovering the
CRT-RSA secret keys directly from the correct square-and-multiply sequences [10]. This
method is detailed in Section 3.2.3, and we provide only an analysis in Section 4.2.1, which
is extended to our approach. Next, we describe the method for recovering the CRT-RSA
secret keys from the noisy square-and-multiply sequences [83, 84] in Section 4.2.2. Finally,
we discuss these methods for constructing an efficient method for recovering the CRT-RSA
secret keys from the noisy square-and-multiply sequences in Section 4.2.3.
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Table 4.2: Collision entropy rate H for each w [13]
w 1 2 3 4 5 6 7
H 1.000 0.786 0.652 0.545 0.460 0.395 0.345

4.2.1 Method for Recovering the CRT-RSA Secret Keys from the Correct
Square-and-Multiply Sequences [10]

In theory, the CRT-RSA secret keys are recovered in polynomial time in n when the
window size w is less than or equal to 4. In the proof, the number of leaves that do
not contradict the given square-and-multiply sequences is evaluated by calculating the
collision entropy rate H. Let us define the collision entropy rate H. Now, st is defined
as the set of all candidate square-and-multiply sequences from t bits. Then, the collision
entropy rate H is defined as

H = lim
t→∞

(
−1
t

log
∑
s∈st

Pr[s]2
)
.

Table 4.2 shows the values of H for each w. Here, 2−tH represents the average probability
of the calculated sequence not contradicting a given square-and-multiply sequence gener-
ated from t bits. This value is less than 2−t/2 when w ≤ 4. Therefore, when we guess
incorrectly at the 1-st depth, the number of leaves generated from this leaf is

n/2−1∑
t=0

2t
(
2−tH

)2 =
n/2−1∑

t=0
2t(1−2H) = 1 − 2n(1−2H)/2

1 − 21−2H
,

and the expected total number of leaves in the candidate tree of the CRT-RSA secret keys
is less than

n

2

(
1 + 1 − 2n(1−2H)/2

1 − 21−2H

)
.

In conclusion, it is possible to recover the CRT-RSA secret keys from the correct square-
and-multiply sequences in polynomial time in n, when window size w is less than or equal
to 4.

A method for calculating collision entropy H is given as follows [14]. First, a Markov
transition matrix M is generated in a square-and-multiply sequence. Matrix M is cal-
culated by regarding the last w sequential operations as one state. In particular, the
position of M is mainly considered; S is skipped when a window is determined to con-
struct a Markov transition matrix M for each bit. Therefore, the information on the total
length of a square-and-multiply sequence is discarded. Second, the given sequence and
the calculated sequence are combined into one state and compose a transition matrix.
This transition matrix is given as the tensor product of M . Third, we erase the row and
column whose input sequence and calculated sequence contradict each other to obtain a
calculated sequence that completely matches the given sequence. This final transition ma-
trix M ′ denotes the hidden Markov model of the square-and-multiply sequence. Finally,
H is calculated as follows:

H = − log λM ′ , (4.1)

where λM ′ is the largest absolute value of the eigenvalues of M ′.
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4.2.2 Method for Recovering the CRT-RSA Secret Keys from the Noisy Square-
and-Multiply Sequences [83, 84]

We described the method for recovering the CRT-RSA secret keys, focusing on the branch-
and-bound step. We now detail the method for recovering the CRT-RSA secret keys in
the binary method, namely, when w = 1 [84]. To calculate the bits of the CRT-RSA
secret keys, we repeat the following until recovering all CRT-RSA secret keys: First, we
calculate t bits of dp and dq using Heninger-Shacham’s method [43]. Second, we convert
these bits into square-and-multiply sequences in dp and dq; 0 is converted into S and 1 into
SM because only the binary method is considered. The square-and-multiply sequences
obtained from 2t new bits and the given square-and-multiply sequences are compared, and
the disagreement rate is calculated. Finally, the leaves, whose disagreement rate is larger
than Y , are discarded. In theory, the CRT-RSA secret keys are recovered in polynomial
time in n when the error rate δ satisfies δ ≤ 0.058. The analysis was conducted through a
mathematical induction, and this proof is a different method from that described in [10].

We now explain the method for recovering the CRT-RSA secret keys in the general
w [83]. This method recovers the CRT-RSA secret keys from the MSB side and does not
use Heninger-Shacham’s method, which recovers the CRT-RSA secret keys from the LSB
side. To calculate a bit in each CRT-RSA secret key, we repeat the following in order
until recovering all CRT-RSA secret keys:

1. Generate all candidates of bits of the CRT-RSA secret keys
2. Discard the candidates that do not satisfy N = pq
3. Calculate the disagreement rate and remaining L leaves with a low disagreement

rate

These calculations require O
(
n2)-time, whereas the corresponding calculations in

Heninger-Shacham’s method require O(n)-time. This difference occurs that we require
additions, subtractions, multiplications, and divisions of two n-bit numbers in [83],
while we only conduct additions and subtractions of two n-bit numbers with Heninger-
Shacham’s method. Thus, the calculation of bits of the CRT-RSA secret keys requires
more time than Heninger-Shacham’s method. We now review the analysis. The CRT-
RSA secret keys are recovered in polynomial time in n only when w ≤ 2. Moreover,
when w = 2, the error rate δ satisfies δ ≤ 0.017. This analysis was performed using a
mathematical induction similar to the analysis in the case of the binary method [84].
However, no analysis is given when w ≥ 3.

4.2.3 Discussion on Previous Methods
The method in [10] depends on the correctness of the square-and-multiply sequences used
when the CRT-RSA secret keys are recovered. When there are errors in the given square-
and-multiply sequences, it is impossible to determine the pruning position. The method
in [84] depends on the one-to-one correspondence between bits and a square-and-multiply
sequence with the binary method. In the sliding window method, if a calculated bit
sequence is converted into a square-and-multiply sequence naively, there is a difference
from the given square-and-multiply sequence even if there are no errors in the calculated
bits. Therefore, we cannot straightforwardly extend these methods to reach our goal. For
an extension to the sliding window method, we use the slower method [83]. We then
want to recover the CRT-RSA secret keys more efficiently by using Heninger-Shacham’s
method.
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4.3 Our Proposed Method for Recovering the CRT-RSA Secret
Keys

We now propose a new method for recovering the CRT-RSA secret keys from square-and-
multiply sequences with errors. Our method adopts a branch-and-bound strategy based
on the Heninger-Shacham’s method [43] at each i-th depth of the candidate tree of the
CRT-RSA secret keys. In our proposed method, we input the followings:

• Noisy square-and-multiply sequences
• L: The maximum number of leaves we store.

First, we calculate each bit in p, q, dp, and dq using Eqs. (3.1)–(3.3). Second, we calculate
the distance between the given sequences and the calculated sequences. Finally, we prune
the leaves whose rank is higher than L, similar to [58, 87]. The difference between our
method and [58, 87] is that our method calculates distance based on square-and-multiply
sequences. We figure out this distance to recover the CRT-RSA secret keys based on
Heninger-Shacham’s method.

We define distance D as the disagreement rate between the given sequences and the
calculated sequences on the LSBs of dp and dq. First, we define Dp,t as the disagreement
rate between the given sequences and the calculated sequences generated from the t LSBs
of dp. Similarly, we define Dq,t as the disagreement rate between the given sequences and
the calculated sequences generated from the t LSBs of dq. Then, D is defined as

D = max
(

min
0≤j≤w−1

Dp,i+τ(kp)+1−j , min
0≤j≤w−1

Dq,i+τ(kq)+1−j

)
.

By defining D as the above, we always consider the correct square-and-multiply sequences.
We define D as the above because a square-and-multiply sequence is divided into partial
sequences generated from at most w-bits. Thus, there are always the starting bits within
the sequential w-bits where we can convert bits into the correct square-and-multiply se-
quence.

We now show an example of w = 3 as in Table 4.3. We consider the situation that the
square-and-multiply sequence of dp is given as SMSSMMS and the square-and-multiply
sequence of dq is given as SSMSMSM. Moreover, we calculate 5 LSBs of dp as 10110
and 5 LSBs of dq as 01101. After converting bits to a square-and-multiply sequence,
we calculate the disagreement rate by comparing it from the final operations for both
sequences. The value of D is 0.25 as shown in Table 4.3.

Remark 1 Intuitively, we calculate D by converting all t calculated bits into square-and-
squaring sequences. However, we can calculate D more efficiently. At the i-th depth of
the candidate tree, we store followings:

• The number of operations in the calculated sequences generated from the i+τ (kp)+
1 − j LSBs of dp as lp,i−j in each j satisfying 0 ≤ j ≤ w − 1

• The number of mismatches between the given sequences and the calculated se-
quences generated from the i+τ (kp)+1−j LSBs of dp as ep,i−j in each j satisfying
0 ≤ j ≤ w − 1

• The number of operations in the calculated sequences generated from the i+τ (kq)+
1 − j LSBs of dq as lq,i−j in each j satisfying 0 ≤ j ≤ w − 1

• The number of mismatches between the given sequences and the calculated se-
quences generated from the i+τ (kq)+1−j LSBs of dq as eq,i−j in each j satisfying
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Table 4.3: Example of calculating distance D when w = 3

j 0 1 2
Bits 10110 0110 110

Calculated Sequence SSSMSMS SSSMS SSMS
dp Given Sequence SMSSMMS SSMMS SMMS

Disagreement Rate 3/7 = 0.429 1/5 = 0.2 1/4 = 0.25
min

t
Dp,t 0.2

Bits 01101 1101 101
Calculated Sequence SSSMSSM SSMSSM SSSM

dq Given Sequence SSMSMSM SMSMSM SMSM
Disagreement Rate 3/7 = 0.429 3/6 = 0.5 1/4 = 0.25

min
t
Dq,t 0.25
D 0.25

0 ≤ j ≤ w − 1

These values can be renewed based on the values of the (i+ τ (kp) + 2)-th bit of dp and
the (i+ τ (kq) + 2)-th bit of dq. Then, we can calculate D as

D = max
(

min
0≤j≤w−1

ep,i−j

lp,i−j
, min

0≤j≤w−1

eq,i−j

lq,i−j

)
.

Remark 2 There are obvious errors in the given sequences, such as subsequent M’s.
When we heuristically correct one of the subsequent M’s, there is a possibility that we
change a correct M into an S, because we do not know which M is wrong. When we
change the correct M into an S, our method discards the correct candidate with a higher
probability. Therefore, our method uses the given sequences just as they are.

4.4 Analysis of Our Proposed Method
We will now analyze our method. The main result is given as the following Theorem 3.

Theorem 3 We use the values of Yw shown in Table 4.1 for each w ≤ 4. Moreover,
we assume that the error rate δ satisfies δ < Yw. If we store L leaves at each level of
the candidate tree of the CRT-RSA secret keys, our method will correctly recover n-bit
CRT-RSA secret keys in max

(
O
(
n2L

)
, O (nL logL)

)
time with probability

1 −

(
w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2)

1 − exp (−2ε2)
L−2ε2 log e

)
for some positive real number ε satisfying ε < Yw − δ and some positive real number αε

depending on δ and ε.

In the previous result [83], time complexity is given as O
(
n2L2). However, by our

recalculation, the time complexity is given as O
(
n3L2) which is different from the previous

result [83]. This time complexity is larger than our result. Moreover, the previous result’s
failure probability is O

(
n2/L

)
, which is larger than ours. Thus, our method is better

than the previous one in both the time complexity and the failure probability.



4.4 Analysis of Our Proposed Method 55

In Theorem 3, the success probability converges to 1 when L → ∞. It intuitively
corresponds to the fact that the correct leaf is not pruned at a larger L. In particular,
the value of L for which our method runs in polynomial time in n is given in Corollary 1.

Corollary 1 Let L = n1+γ (γ > 0) in our proposed method. Then, as n → ∞, the
success probability of our method converges to 1, and the time complexity is given as
O
(
n3+γ logn

)
, which is polynomial time in n.

To prove Theorem 3, we adopt assumptions similar to the original research [10] and
more specific assumptions [13]. The given square-and-multiply sequences are generated
from random bits. Moreover, it is assumed that calculated bits from incorrect leaves are
random on 0 and 1 independently. In addition to these assumptions, assumptions on the
calculated sequences based on the collision entropy H are adopted. These assumptions are
used in the analysis of recovering the CRT-RSA secret keys from the correct square-and-
multiply sequences. However, we consider errors in the analysis of our proposed method.
Therefore, based on assumptions [10, 13], we use following assumptions where d′

p and d′
q

are the incorrect value:

1. The given square-and-multiply sequences are generated from random bits.
2. The calculated bits of dp and dq from incorrect leaves are independent.
3. When (i+ τ (kp) + 1) LSBs of d′

p are the same with dp and the next bit is different
with dp,

Pr
[
Dp,t+τ(kp)+1 ≤ Y

]
≤ 2−(t−i)H

with some constant H ∈ [0, 1].
4. When (i+ τ (kq) + 1) LSBs of d′

q are the same with dq and the next bit is different
with dq,

Pr
[
Dq,t+τ(kq)+1 ≤ Y

]
≤ 2−(t−i)H

with some constant H ∈ [0, 1].

We now present our strategy for proving Theorem 3. First, we analyze the time com-
plexity of our method in Section 4.4.1. Next, we analyze our method’s failure probability
briefly in Section 4.4.2, and we give the detailed proof in Section 4.4.3. Our method fails
when there are more than L leaves whose distance is smaller than the correct leaf. To
analyze the failure probability, we calculate the value of H. Especially, we obtain the
condition of δ and Y satisfying H > 1/2 in Lemma 5, similar as the original result [10].
Then, we analyze the failure probability similar to Kunihiro-Honda’s method [58].

4.4.1 Analysis of Time Complexity
We now evaluate the time complexity of our method. Our method comprises three steps:
generating the root, generating the tree, and searching for the CRT-RSA secret keys. Two
of these steps (generating the root and searching for the CRT-RSA secret keys) can be
analyzed as [43] with small modifications. The time complexity of generating the root is
O ((log e)n). Moreover, searching for the CRT-RSA secret keys is O(L). We now evaluate
the time complexity of generating the tree.

First, we evaluate the time complexity of generating leaves at each depth. We will focus
on one leaf. For one leaf, the simultaneous Eqs. (3.1)–(3.3) are solved in O(n). We convert
the calculated bits into square-and-multiply sequences and calculate the distance in O(w)
for each of the generated leaves. Thus, new leaves are generated from one leaf in O(n).
There are at most L leaves at each depth. Therefore, all leaves are generated in O(nL).
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Then, we evaluate the time complexity of pruning leaves at each depth. There are
at most 2L leaves at each depth. 2L leaves are sorted in O (L logL), and L leaves are
discarded in O(L); therefore, leaves are pruned in O (L logL).

Thus, leaves are generated and pruned at each depth in max (O(nL), O (L logL)). Be-
cause leaves are generated until n/2-th depth, the time complexity of generating the
tree is max

(
O
(
n2L

)
, O (nL logL)

)
. In conclusion, the time complexity of our method is

max
(
O
(
n2L

)
, O (nL logL)

)
.

4.4.2 Evaluation of Failure Probability
We now evaluate the failure probability of the proposed method. Our analysis is divided
into two parts:

1. Obtain the condition of δ and Y satisfying H > 1/2
2. Evaluate the failure probability in a similar way to [58]

We now otain the condition of δ and Y satisfying H > 1/2 by is given by proving
Lemma 5.

Lemma 5 Let the value of Yw be as in Table 4.1 and the value of δ be δ < Yw for w ≤ 4.
We define xt as the randomly chosen t bits and define Cxt

as the square-and-multiply
sequence generated from xt. Moreover, we define O as the given square-and-multiply
sequence generated from random bits and has an added error rate of δ. We define dCxt ,O

as the disagreement rate between Cxt
and the corresponding operations in O. Then, some

positive real values ε and αε exist such that

Pr
[
dCxt ,O ≤ δ + ε

]
= 2−t(1/2+αε).

From Lemma 5, we can estimate the number of leaves at depth t whose distance is less
than δ + ε. As given in the later discussion, the expected number of leaves is less than
w222w−2αε−3/

(
1 − 2−2αε

)
, and this is almost constant because we consider only small w

values, such as w ≤ 4. Therefore, the rough success probability is(
1 − w222w−2αε−3

L (1 − 2−2αε)

)n/2

∼ 1 − w222w−2αε−4

1 − 2−2αε

n

L
.

Thus, our method recover CRT-RSA secret keys with high probability when we use L =
n1+γ (γ > 0) as Corollary 1. Now we give the sketch proof of Lemma 5, and the detailed
proof is shown in Section 4.4.3.

The Sketch Proof of Lemma 5
First, we evaluate the probability pY of the calculated sequence having a disagreement
rate of less than Y when compared with the given square-and-multiply sequence O. We
define random variable lxt

as the length of Cxt
. Then, we define Olxt

as the corresponding
operations in O. We also define random variable ext

as the number of errors found between
Olxt

and Cxt
. Moreover, we define random variable Zxt

as Zxt
= lxt

Y − ext
. It should

be noted that ext
depends on δ, and Zxt

depends on δ and Y , but we omit this in their
notation.

The probability pY of the calculated sequence having a disagreement rate less than Y
is calculated as

pY = Pr
[
ext

lxt

≤ Y

]
= Pr [Zxt

≥ 0]
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Table 4.4: Values of Hs

w 1 2 3 4
Y = δ 0.108 0.067 0.034 0.008
s 1.7 1.9 2.1 3.1
Hs 0.5001 0.5008 0.5002 0.5026

≤ inf
s>0

Pr [exp (sZxt
) ≥ 1] ≤ inf

s>0
E [exp (sZxt

)] . (4.2)

In particular, the final inequality obeys Markov’s inequality.
Now, we can write E [exp (sZxt)] as

E [exp (sZxt
)] = vM t

s

[
11 . . . 1

]T
,

where v is some constant-valued vector, and T means the transpose. The construction of
Ms is shown in Section 4.4.3.

We now calculate the value of E [exp (sZxt
)]. We define Js as the Jordan form of

Ms. Then, a regular matrix Q exists such that Ms = QJsQ
−1. Thus, M t

s = QJ t
sQ

−1.
Therefore,

E [exp (sZxt
)] = vM t

s

[
11 . . . 1

]T
= (vQ) J t

s

(
Q−1 [11 . . . 1

]T)
.

We define λMs
as the largest absolute value of the eigenvalues of Ms. Then, we have

inf
s>0

E [exp (sZxt
)] ∼

(
inf
s>0

λMs

)t

.

We now go back to our original goal, evaluating the probability pY . From equation (4.2),

it holds that pY ≤
(

inf
s>0

λMs

)t

, and we prove Lemma 5 by calculating λMs
.

However, we cannot analytically calculate the value of λMs
. Thus, we numerically

calculate the value of λMs
using Matlab. We use the implemented function for calculating

eigenvalues.
We now explain our numerical analysis method. First, we generate matrix Ms by setting

the values of δ, Y , and s. From this matrix Ms, we calculate Hs = − log λMs
.

We now show that if we set δ < Yw and Y = δ, then Hs > 1/2. First, we set Y = δ
and set s as shown in Table 4.4. Thus, the value of Hs is given as in Table 4.4. For larger
δ, we cannot find any s satisfying Hs > 1/2. We focus only on the bounds of δ, and we
should consider smaller δ. We show these in Section 4.4.3.

We now prove Lemma 5. If δ < Yw and Y = δ, there is an s such that Hs > 1/2,
as shown in Table 4.4. Moreover, because E [exp (sZxt

)] is a continuous function of Y ,
even if we take the larger Y , Hs is larger than 1/2. Then, if we set Y = δ + ε < Yw

with a positive real-valued ε, there is a positive real-valued αε such that Hs ≥ 1/2 + αε.
Therefore, when δ < Yw, there are positive real-valued ε such that pδ+ε ≤ 2−t(1/2+αε).
This proves Lemma 5. □

We now evaluate the failure probability of the proposed method using Lemma 5, in a
similar way to that in [58]. First, we evaluate Pt, which is the probability that a leaf
containing correct information is discarded at the t-th depth of the candidate tree. The
number of leaves generated is 2t at the t-th depth. Then, we define X1 as a leaf containing
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correct information, and we define the other leaves as Xi (2 ≤ i ≤ 2t). Moreover, we define
Ci as the distance of Xi from the given square-and-multiply sequences. Now,

Pt ≤ Pr

 2t∑
i=2

1 [Ci ≤ C1] ≥ L


≤ Pr

 2t∑
i=2

1 [Ci ≤ δ + ε] ≥ L

 ∪ (C1 ≥ δ + ε)


≤ Pr

 2t∑
i=2

1 [Ci ≤ δ + ε] ≥ L

+ Pr [C1 ≥ δ + ε]

≤ 1
L
E

 2t∑
i=2

1 [Ci ≤ δ + ε]

+ Pr [C1 ≥ δ + ε]

≤ 1
L

2t∑
i=2

Pr [Ci ≤ δ + ε] + Pr [C1 ≥ δ + ε] . (4.3)

We now calculate the upper bounds of these two terms.
First, let us focus on the first term of Eq. (4.3). When there are common (i+ τ(kp) + 1)

LSBs with the correct dp and the next bit is different with dp,

Pr
[

min
0≤j≤w−1

Dp,τ(t+kp)+1−j ≤ δ + ε

]
≤ w2w−12−(t−i)(1/2+αε)

because of Lemma 5 and our assumption. Similarly, when there are common
(i+ τ(kq) + 1) LSBs with the correct dq and the next bit is different with dq,

Pr
[

min
0≤j≤w−1

Dq,τ(t+kq)+1−j ≤ δ + ε

]
≤ w2w−12−(t−i)(1/2+αε).

Now, there are 2t−i−1 candidates at depth t satisfying both of followings:

• There are common (i+ τ(kp) + 1) LSBs with the correct dp.
• There are common (i+ τ(kq) + 1) LSBs with the correct dq.

Thus,

1
L

2t∑
i=2

Pr [Ci ≤ δ + ε] ≤ 1
L

t−1∑
i=0

2t−i−1
(
w2w−12−(t−i)(1/2+αε)

)2

= w222w−3

L

t−1∑
i=0

2−2(t−i)αε ≤ w222w−2αε−3

L (1 − 2−2αε)
(4.4)

with some positive real value αε > 0.
Next, we evaluate the second term. For this purpose, we introduce Hoeffding’s theo-

rem [46].

Theorem 4 [46] We define X1, . . . , Xn as i.i.d. random variables with a Bernoulli dis-

tribution with parameter p. If we define random variable X as X =
n∑

i=1
Xi,

Pr[X ≥ n(p+ γ)] ≤ exp
(
−2nγ2) .
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The length of one square-and-multiply sequence corresponding to a leaf at the t-th depth
is more than t−w+ 1. Thus, in each square-and-multiply sequence, the probability that
the disagreement rate is higher than δ + ε is at most exp

(
−2(t− w + 1)ε2). Therefore,

Pr [C1 ≥ δ + ε] ≤ 2 exp
(
−2(t− w + 1)ε2) . (4.5)

We now evaluate Eq. (4.3) by combining Eqs. (4.4) and (4.5):

Pt ≤ w222w−2αε−3

L (1 − 2−2αε)
+ 2 exp

(
−2(t− w + 1)ε2) .

Pruning is performed on (⌊logL⌋ + 1) ≤ t ≤ n/2. Thus, the failure probability P is

P =
n/2∑

t=⌊log L⌋+1

Pt

≤
n/2∑

t=⌊log L⌋+1

(
w222w−2αε−3

L (1 − 2−2αε)
+ 2 exp

(
−2(t− w + 1)ε2))

≤ w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2) exp

(
−2 (⌊logL⌋ + 1) ε2)

1 − exp (−2ε2)

≤ w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2) exp

(
−2ε2 logL

)
1 − exp (−2ε2)

≤ w222w−2αε−4

1 − 2−2αε

n

L
+

2 exp
(
2(w − 1)ε2)

1 − exp (−2ε2)
L−2ε2 log e.

In the above discussion, we give proof of the time complexity and failure probability of
our method. Therefore, Theorem 3 is proven. □

4.4.3 The Remaining Parts of the Proof of Lemma 5
In the above proof of Lemma 5, we do not explain followings:

• The method for constructing the matrix Ms in proving Lemma 5
• The value of Hs in other parameters

Thus, we explain these.

The Method for Constructing the Matrix Ms in Proving Lemma 5
First, E [exp (sZxt)] can be written as

E [exp (sZxt
)] =

∑
xt∈{0,1}t

∑
Olxt

∈{S,M}lxt

(
Pr [xt] Pr

[
Olxt

]
exp (sZxt

)
)
, (4.6)

and we transform Eq. (4.6).
We will now construct a recursive expression on the term in the summation:

Pr [xt] Pr
[
Olxt

]
exp (sZxt

). To construct this recursive expression, we define ∆xt as the
t-th bits of xt and ∆Olxt

as the difference between Olxt−1
and Olxt

. Moreover, we define
∆lxt and ∆ext as ∆lxt = lxt − lxt−1 and ∆ext = ext − ext−1 . ∆Olxt

,∆lxt , and ∆ext as the
additional information based on the additional determined operations on the calculated
square-and-multiply sequences. Then,

Pr [xt] Pr
[
Olxt

]
exp (sZxt

)
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= Pr [xt] Pr
[
Olxt

]
exp (sY lxt

) exp (−sext
)

= Pr [xt−1 ◦ ∆xt] Pr
[
Olxt−1

◦ ∆Olxt

]
exp

(
sY lxt−1

)
exp (sY∆lxt

)

exp
(
−sext−1

)
exp (−s∆ext

)

= Pr [xt−1] Pr
[
Olxt−1

]
exp

(
sZxt−1

)
Pr [∆xt|xt−1] Pr

[
∆Olxt

|xt−1
]

exp (sY∆lxt
) exp (−s∆ext

) . (4.7)

In the above equations, Pr [xt−1] Pr
[
Olxt−1

]
exp

(
sZxt−1

)
can be regarded as a value cal-

culated from xt−1 and Olxt−1
, and the remaining parts can be regarded as the changing

term depending on xt−1. Thus, we calculate this value by transitioning from the (t−1)-th
bit to the t-th bit. To calculate this, we define the finite simultaneous states of xt and
Olxt

. Then, we can write a recursive expression for the value of E [exp (sZxt
)] with a finite

number of states. We can construct a Markov chain on the correct square-and-multiply
sequence [14]. However, we cannot use their construction directly because it discards
the total length of the square-and-multiply sequence. Therefore, we construct a different
Markov chain on the square-and-multiply sequences.

First, let us consider the state of the calculated sequence. If we recover each bit, all
possible states are 0, 1xi (0 ≤ i ≤ w − 1), where x are unknown bits. Thus, the number
of all possible states is 2w. 0 and 1xw−1 can be converted into square-and-multiply
sequences, and the rest are intermediate cases. Therefore, the renewal of the value of
lxt , ext occurs when we hit 0 and 1xw−1. The transition probabilities are given as follows:

• From 0: Pr [0 → 0] = 1
2
,Pr [0 → 1] = 1

2
,

• From 1xi (0 ≤ i ≤ w − 2): Pr
[
1xi → 1xi0

]
= 1

2
, Pr

[
1xi → 1xi1

]
= 1

2
,

• From 1xw−1: Pr
[
1xw−1 → 0

]
= 1

2
,Pr

[
1xw−1 → 1

]
= 1

2
,

and the rest are zero.
Next, we calculate the transition probabilities of the given sequence without errors. For

a window size of w, the following are all the possible states of the operations in the given
sequence:

• S0: An S out of the window
• Sbef,i (1 ≤ i ≤ w): The i-th S in the window and before M
• Saft,i (2 ≤ i ≤ w): The i-th S in the window and after M
• Mi (1 ≤ i ≤ w): The i-th M in the window

The first three, S0, Sbef,i (1 ≤ i ≤ w), and Saft,i (2 ≤ i ≤ w), are S, and Mi (1 ≤ i ≤ w)
is M in the square-and-multiply sequences. Thus, the number of all possible states is

1 + w + (w − 1) + w = 3w.

The transition probabilities are given as

• From S0: Pr [S0 → S0] = 1
2
,Pr [S0 → Sbef,1] = 1

2
,

• From Sbef,1: Pr [Sbef,1 → M1] = 1
2w−1 , Pr [Sbef,1 → Sbef,2] = 2w−1 − 1

2w−1 ,
• From Sbef,i (2 ≤ i ≤ w):

Pr [Sbef,i → Mi] = 2i−2

2w−1 − 2i−2 , Pr [Sbef,i → Sbef,i+1] = 2w−1 − 2i−1

2w−1 − 2i−2 ,
• From Saft,i (2 ≤ i ≤ w − 1): Pr [Saft,i → Saft,i+1] = 1,
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𝑺𝐚𝐟𝐭,𝟐

𝑴𝟏 𝑴𝟐

𝑺𝐛𝐞𝐟,𝟑 𝑴𝟑

𝑺𝐚𝐟𝐭,𝟑

1/2
1/2

1/2

1/2

1/2

1/2

1/4

3/4 2/3 1

1/3

1

1

1

Fig. 4.1: Example of transitions when w = 3

• From Saft,w: Pr [Saft,w → S0] = 1
2
,Pr [Saft,w → Sbef,1] = 1

2
,

• From Mi (1 ≤ i ≤ w − 1): Pr [Mi → Saft,i+1] = 1,
• From Mw: Pr [Mw → S0] = 1

2
,Pr [Mw → Sbef,1] = 1

2
,

and the rest are zero. An example of the transitions when w = 3 is presented in Fig. 4.1.
We can simulate square-and-multiply sequences in the sliding window method by defin-

ing the transition probability as done above. We mainly focus on reading bits from the
MSB side. First, when we hit a 0 bit, then Pr [S0] = 1

2
, and this corresponds to the edges

of S0 having a probability of 1/2. Next, when we hit a 1 bit, then there are 2w−1 random
window candidates, and there is one M in the square-and-multiply sequences. Then, the
probabilities of the square-and-multiply sequences for each position of M are given as
follows:

• Pr [M1] = 1
2w

.

• Pr [Mi] = 1
2w+2−i

(2 ≤ i ≤ w).

We now trace our transition matrix:

Pr [M1] = Pr [S0 → Sbef,1] Pr [Sbef,1 → M1] Pr [M1 → Saft,2]
w−1∏
j=2

Pr [Saft,j → Saft,j+1]

= 1
2

1
2w−1 = 1

2w
,

Pr [Mi] = Pr [S0 → Sbef,1]

i−1∏
j=1

Pr [Sbef,j → Sbef,j+1]

Pr [Sbef,i → Mi] Pr [Mi → Saft,i+1]
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w−1∏

k=i+1

Pr [Saft,k → Saft,k+1]

)

= 1
2

2w−1 − 1
2w−1

i−1∏
j=2

(
2w−1 − 2j−1

2w−1 − 2j−2

) 2i−2

2w−1 − 2i−2 = 1
2w+2−i

(2 ≤ i ≤ w) .

It should be noted that there is no term after Pr [Sbef,i → Mi] when i = w. Therefore, our
transition matrix simulates square-and-multiply sequences in the sliding window method.

These transition probabilities are calculated based on considering all 2w−1 patterns of
square-and-multiply sequences whose lengths are w+ 1. S0 and Saft,w have the following
common properties:

• They are distinguished as S in the square-and-multiply sequences.
• Their distributions of the next operation are the same.
• Their window information is reset in the next operation.

Thus, we summarize them in one operation, S0. Therefore, the transition matrix of the
given sequence without error is given as a square matrix of size 3w − 1(w ≥ 2), where
1(x) is an indicator function.

Using the above information, we can calculate Ms on all the possible pairs of the
states in the given and calculated square-and-multiply sequences as (Scal, Sgiv). That is,
we can calculate the transition probability between (Scal, Sgiv) before the transition and(
S′

cal, S
′
giv
)

after the transition. It should be noted that the number of states in Ms is
2w (3w − 1(w ≥ 2)), namely 6 when w = 1, 20 when w = 2, 64 when w = 3, and 176 when
w = 4. Hereafter, we focus on the transition part in Eq. (4.7),

Pr [∆xt|xt−1] Pr
[
∆Olxt

|xt−1
]

exp (sY∆lxt
) exp (−s∆ext

) ,

based on the state of S′
cal, which is used for changing ∆Olxt

,∆lxt
, and ∆ext

. First,
Pr [∆xt|xt−1] = Pr [Scal → S′

cal] on all states of S′
cal. Next, we consider the remaining

parts. When S′
cal is not 0 or 1xw−1, there is no new operation in the calculated square-

and-multiply sequences. Therefore, Sgiv = S′
giv, the values of ∆lxt

and ∆ext
are zero,

and
Pr
[
∆Olxt

|xt−1
]

exp (sY∆lxt) exp (−s∆ext) = 1.

When S′
cal is 0 or 1xw−1, there are new operations in the calculated square-and-multiply

sequences, and the values of ∆lxt and ∆ext are not zero. We now define Gxt,j and
G′

xt,j as the lxt−1 + j (0 ≤ j ≤ ∆lxt)-th operation in the given square-and-multiply se-
quence before and after considering errors. Similarly, we define Cxt,lxt−1 +j as the lxt−1 +
j (0 ≤ j ≤ ∆lxt

)-th operation in the calculated sequence. Then,

Pr
[
∆Olxt

|xt−1
]

exp (sY∆lxt
) exp (−s∆ext

)

= exp (sY∆lxt
)

∆lxt∏
j=1

(
Pr
[
Glxt−1 −1+j → Glxt−1 +j

]
∑

G′
lxt−1 +j

={S,M}

(
Pr
[
G′

lxt−1 +j |Glxt−1 +j

]
exp

(
−s1

(
G′

lxt−1 +j ̸= Cxt,lxt−1 +j

))) ,

where 1(x) is the indicator function, and the inner states of the summation are considered
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only on {S,M}. The value of ∆lxt
is{

1 if S′
cal = 0,

w + 1 if S′
cal = 1xw−1.

Now, ∑
G′

lxt−1 +j
={S,M}

(
Pr
[
G′

lxt−1 +j |Glxt−1 +j

]
exp

(
−s1

(
G′

lxt−1 +j ̸= Cxt,lxt−1 +j

)))
is {

1 − δ + δ exp(−s) Glxt−1 +j = Cxt,lxt−1 +j ,

(1 − δ) exp(−s) + δ Glxt−1 +j ̸= Cxt,lxt−1 +j ,

and we write these two values as T = 1 − δ + δ exp(−s), F = (1 − δ) exp(−s) + δ. Based
on the above discussion, we calculate the matrix Ms.

We now present a simple example for w = 1. First, the transition probabilities of the
calculated sequence are given as

• From 0, Pr [0 → 0] = 1
2
,Pr [0 → 1] = 1

2
,

• From 1, Pr [1 → 0] = 1
2
,Pr [1 → 1] = 1

2
,

and the rest are zero. Second, the transition probabilities of the given sequence are given
as

• From S0, Pr [S0 → S0] = 1
2
,Pr [S0 → Sbef,1] = 1

2
,

• From Sbef,1, Pr [Sbef,1 → M1] = 1,
• From M1, Pr [M1 → S0] = 1

2
,Pr [M1 → Sbef,1] = 1

2
,

and the rest are zero. We now consider 6 states, (0,S0), (0,Sbef,1), (0,M1), (1,S0),
(1,Sbef,1), and (1,M1). If we consider these states in this order, the matrix Ms is given
as

T

4
exp(sY ) T

4
exp(sY ) 0 TF

8
exp(2sY ) TF

8
exp(2sY ) T 2

4
exp(2sY )

0 0 F

2
exp(sY ) F 2

4
exp(2sY ) F 2

4
exp(2sY ) 0

T

4
exp(sY ) T

4
exp(sY ) 0 TF

8
exp(2sY ) TF

8
exp(2sY ) T 2

4
exp(2sY )

T

4
exp(sY ) T

4
exp(sY ) 0 TF

8
exp(2sY ) TF

8
exp(2sY ) T 2

4
exp(2sY )

0 0 F

2
exp(sY ) F 2

4
exp(2sY ) F 2

4
exp(2sY ) 0

T

4
exp(sY ) T

4
exp(sY ) 0 TF

8
exp(2sY ) TF

8
exp(2sY ) T 2

4
exp(2sY )


.

For example, let us explain the element at (2, 5), which corresponds to the transition from
(0,Sbef,1) to (1,Sbef,1). First,

Pr [∆xt|xt−1] = Pr [1|0] = 1
2
,

and the calculated sequence is SM. The length of the calculated sequence is 2, and
thus ∆lxt

= 2. Next, the only possible transition from Sbef,1 to Sbef,1 in two steps is
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Table 4.5: Hs when w = 1 and s = 1.7
Y = δ 0 0.02 0.04 0.06 0.08 0.1 0.108 0.109
Hs 0.8080 0.7511 0.6942 0.6373 0.5802 0.5231 0.5001 0.4973

Table 4.6: Hs when w = 2 and s = 1.9
Y = δ 0 0.02 0.04 0.06 0.062 0.064 0.066 0.067 0.068
Hs 0.6845 0.6299 0.5751 0.5201 0.5146 0.5091 0.5036 0.5008 0.4981

Table 4.7: Hs when w = 3 and s = 2.1
Y = δ 0 0.01 0.02 0.03 0.031 0.032 0.033 0.034 0.035
Hs 0.5942 0.5667 0.5390 0.5113 0.5085 0.5058 0.5030 0.5002 0.4974

Table 4.8: Hs when w = 4 and s = 3.1
Y = δ 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Hs 0.5346 0.5306 0.5266 0.5226 0.5186 0.5146 0.5106 0.5066 0.5026 0.4985

Sbef,1 → M1 → Sbef,1. Therefore, Pr
[
Glxt−1

→ Glxt−1 +1

]
= Pr [Sbef,1 → M1] = 1, and

Pr
[
Glxt−1 +1 → Glxt−1 +2

]
= Pr [M1 → Sbef,1] = 1

2
. Moreover, both operations are differ-

ent between the given and calculated sequences. Therefore,

Pr [∆xt|xt−1] Pr
[
∆Olxt

|xt−1
]

exp (sY∆lxt
) exp (−s∆ext

)

= 1
2

exp(2sY ) · 1 · 1
2

· F 2 = F 2

4
exp(2sY ).

The Value of Hs in Other Parameters
In the sketch proof, we only focused on the bounds of δ and Y that have an s satisfying
Hs > 1/2. To prove Lemma 5, we set a smaller δ and Y . Tables 4.5–4.8 show the results.

Tables 4.5–4.8 describes that the value of Hs is a monotonic decreasing function of δ
and Y . Moreover, the value of Hs decreases linearly with δ and Y . For example, in
Table 4.5, when δ and Y increase by 0.02, the value of Hs decreases by approximately
0.0569. For larger δ and Y , when δ and Y increase by 0.002, the value of Hs decreases by
approximately 0.0057, and this value is approximately 1/10 of 0.0569. This property is
satisfied in the other values of w. From these results, the value of Hs is an almost linearly
decreasing function of δ when Y = δ and s is fixed.

Remark 3 It should be noted that setting δ and Y as 0 corresponds to no errors, as
in [10], Zxt = −ext and E [exp (sZxt)] is a monotonic decreasing function of s. Because
P0 ≤ inf

s>0
E [exp (sZxt

)], it follows that

P0 ≤ lim
s→∞

E [exp (sZxt)] ∼ lim
s→∞

2−tHs ,

and this equation is similar to that in [10]. If we set s as a sufficiently large number, such
as 10000, the values of Hs are the same as those shown in Table 4.2.



4.5 Numerical Experiments 65

Table 4.9: Experimental results for w = 1
δ 0 0.02 0.04 0.06 0.08 0.09 0.1 0.11 0.12 0.13

n = L = 1024 Success Rate (%) 100 99 88 59 31 19 7 3 1 0
Time (s) 8.76 9.73 8.11 8.63 9.24 10.7 9.13 15.4 10.8 –

n = L = 2048 Success Rate (%) 100 100 77 35 10 6 0
Time (s) 49.7 49.8 53.2 54.2 54.0 66.8 –

4.5 Numerical Experiments
This section shows the results of numerical experiments performed on the proposed
method. In this experiment, we try to recover the CRT-RSA secret keys from square-
and-multiply sequences with the error rate δ values shown in Table 4.1. We performed
these numerical experiments using the NTL library 11.3.2 on C++. Moreover, we as-
sumed that we know the values of kp and kq, and the actual time may be 215 times as
long as these experimental results.

We ran the proposed method on the 1024-bit CRT-RSA and the 2048-bit CRT-RSA,
corresponding to n = 1024 and 2048, respectively. For each n, we set parameters (w, δ, L).
For n = 1024, we set L = 210 from L = n1+γ (γ > 0) based on Corollary 1. Similarly, for
n = 2048, we set L = 211. Moreover, we set (w, δ). For each (n,w, δ, L), we generated 100
CRT-RSA secret keys and measured the success rate and average implementation times
for each successful trial. Tables 4.9–4.12 show the results.

These results describe that our proposed method recovers the CRT-RSA secret keys
when δ is less than that shown in Table 4.1. Moreover, a few CRT-RSA secret keys are
recovered when δ is slightly more than that shown in Table 4.1. Therefore, our analysis
matches these experimental results. However, when w = 4, our method recovered 29% of
the CRT-RSA secret keys for n = 1024 and 9% for n = 2048 when δ = 0.01, although the
theoretical bound is δ = 0.008. Thus, we should perform a more rigorous analysis of this
theoretical bound.

By comparing the results obtained for n = 1024 and n = 2048, we found that the im-
plementation time was approximately 5 or 6 times longer for n = 2048 than for n = 1024.
The obtained implementation times matched our analysis because the time complexity is
O
(
n3) when L = n.

Next, we consider the actual errors δ = 0.011 reported in [10]. We now discuss the
results obtained when using an error rate of δ = 0.011. Tables 4.9–4.11 show that our
method will recover the CRT-RSA secret keys with higher probability when w = 1, 2,
and 3. Moreover, Tables 4.12 shows that our method will recover a few CRT-RSA secret
keys when w = 4. Our method will also recover the CRT-RSA secret keys for smaller L
values when w = 1 and 2. Thus, when w = 1 and 2, we search for the smallest L whose
success rate is 100% in the range of L = 211. In addition, we performed experiments for
w = 3 and 4 with (n,L) =

(
1024, 210) and

(
2048, 211). Table 4.13 shows the experimental

results.
Table 4.13 describes that our method recovers almost all CRT-RSA secret keys when

w = 1 and 2. When w = 3, our method recovers more than 50% of the CRT-RSA secret
keys. Our analysis concluded that our method could recover the CRT-RSA secret keys
with a high probability for these values of w. These results match our analysis. Moreover,
our method recovers a few CRT-RSA secret keys when w = 4. Our method does not
guarantee to recover the CRT-RSA secret keys when w = 4 and δ = 0.011 but recovers
the CRT-RSA secret keys using these parameters. Therefore, our method works on actual
errors.
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Table 4.10: Experimental results for w = 2
δ 0 0.02 0.04 0.06 0.07 0.08 0.09

n = L = 1024 Success Rate (%) 100 89 45 16 6 1 0
Time (s) 10.9 11.2 10.1 9.85 18.5 8.06 –

n = L = 2048 Success Rate (%) 100 73 26 2 1 0
Time (s) 58.8 61.6 55.3 62.8 46.3 –

Table 4.11: Experimental results for w = 3
δ 0 0.01 0.02 0.03 0.035 0.04 0.045 0.05

n = L = 1024 Success Rate (%) 100 84 42 23 15 7 7 0
Time (s) 9.23 9.10 10.0 9.54 19.1 13.0 17.8 –

n = L = 2048 Success Rate (%) 100 61 25 3 1 1 0
Time (s) 62.6 59.4 60.5 57.8 55.9 54.6 –

Table 4.12: Experimental results for w = 4
δ 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

n = L = 1024 Success Rate (%) 100 58 29 7 5 1 2 0
Time (s) 11.5 11.3 11.8 9.92 15.6 8.11 8.10 –

n = L = 2048 Success Rate (%) 100 41 9 1 1 0
Time (s) 71.2 66.0 54.2 55.4 58.5 –

Table 4.13: Experimental results for δ = 0.011
w 1 1 2 2 3 3 4 4
n 1024 2048 1024 2048 1024 2048 1024 2048
L 25 28 210 211 210 211 210 211

Success Rate (%) 100 100 100 96 72 59 18 5
Time (s) 0.359 7.02 10.7 65.0 11.5 51.2 14.9 56.9

4.6 Conclusion and Future Work
We discussed how to recover the CRT-RSA secret keys from square-and-multiply sequences
with errors in the left-to-right sliding window method. First, we proposed a method for
recovering the CRT-RSA secret keys from square-and-multiply sequences with errors.
Second, we analyzed our method and calculated the upper bounds of the error rates δ
in the square-and-multiply sequences, as in Table 4.1. Finally, we performed numerical
experiments using the proposed method.

In the future, we should give a more rigorous analysis when w = 4. Our method does
not guarantee to recover the CRT-RSA secret keys when w = 4 and δ = 0.011, but our
method recovered the CRT-RSA secret keys. We should then give a more rigorous analysis
of the recovery when w = 4 in more detail.

In theory, the CRT-RSA secret keys are not recovered even if there is no error in square-
and-multiply sequences when w = 5, and our method does not work when w = 5 even if
δ = 0. However, in practice, the CRT-RSA secret keys may be recovered as the previous
studies [10] and the content of Chapter 3. Thus, we should consider methods for recovering
the CRT-RSA secret keys from noisy square-and-multiply sequences when w = 5.
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Chapter 5

Exact Security Analysis of the
Ring-LWE and Module-LWE Based
Schemes against NTT Leakage

5.1 Introduction
5.1.1 Background
This chapter focuses on the security of Ring-LWE [66] and Module-LWE [12] based
schemes against side-channel attacks on a Number Theoretic Transform (NTT). We focus
on the Lyubashevsky et al.’s cryptosystem (LPR cryptosystem) [67], which is the most
basic scheme of both Ring-LWE and Module-LWE based schemes. We evaluate the LPR
cryptosystem against NTT leakage.

In previous research, Primas et al. [95] proposed a method for extracting the informa-
tion from addition, subtraction, and multiplication in an NTT. The authors proposed a
method for recovering the secret keys by using an iterative method, namely the loopy
belief propagation. Moreover, they evaluated security through numerical experiments.

However, the convergence of loopy belief propagation is not guaranteed, mentioned by
Primas et al. The loopy belief propagation is employed to calculate the marginal distribu-
tion of secret polynomial. Unfortunately, the loopy belief propagation is not guaranteed to
calculate the accurate marginal distribution. Thus, we should provide the exact security
analysis to clarify the threats of side-channel attacks on NTTs.

5.1.2 Our Contribution
In this chapter, we analyze the exact security of the LPR cryptosystem [67] against side-
channel attacks on an NTT. We focus on the LPR cryptosystem using the Cooley-Tukey
NTT and the Gentleman-Sande INTT. To enable us to evaluate the exact security, we
adopt the erasure model on the multiplication. We assume that the input of the integer
multiplication is extracted with probability δ. Based on this leakage model, we evaluate
the exact security of the LPR cryptosystem.

First, we propose an algorithm for recovering the LPR secret keys via recovering secret
polynomial partially. We mainly focus on how to recover secret polynomial partially.
We then analyze our proposed algorithm based on the number of recovered coefficients
of the secret polynomial. We propose a method for calculating the number of recovered
coefficients. To calculate the number of recovered coefficients, we adopt an iterative
method, which always converges. Moreover, we analyze our algorithm for recovering the
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full LPR secret keys. We show that our method recovers the secret keys when δ ≤ 0.78
at the current computational power. Finally, we perform numerical experiments, and our
method recovers the secret keys when δ ≤ 0.78. We then present a novel solution for
analyzing the threats to the NTTs.

5.1.3 Organization of this Chapter
This chapter has six sections. In Section 5.2, we provide the preliminaries used in this
chapter. In Section 5.3, we describe our leakage model in NTTs and propose an algorithm
for recovering coefficients from the leakage information. In Section 5.4, we give an exact
analysis of the recovery rate of coefficients of a secret polynomial. In Section 5.5, we
propose a method for recovering the full LPR secret keys. In Section 5.6, we conclude
this chapter.

5.2 Preliminaries
In this section, we provide the notations in NTTs described in Section 5.2.1. We then
summarize previous research on recovering LPR secret keys [95] in Section 5.2.2.

5.2.1 Notations in NTTs
We now focus on the values in the following two aspects:

• Global values: N (logN + 1) values in NTTs
• Local values: four values in each butterfly

Here, we introduce notations of the global and local values. Significantly, the Cooley-
Tukey NTT and Gentleman-Sande INTT have the same structure, and we deal with these
NTTs simultaneously in later sections. We define the global values and local values by
considering the structure of these NTTs.

We first define Mi,j as the global values. In the Cooley-Tukey NTT, we define
M0,k (0 ≤ k ≤ N − 1) as the inputs a[k]. Moreover, we define Mi+1,k as a[k] after the
operations of the index i in Algorithm 2, where 0 ≤ i ≤ n − 1 and 0 ≤ k ≤ N − 1.
Using Mi,k, the inputs and outputs of (N logN) /2 butterfly operations are represented
as follows:

• Input: Mi,k and Mi,k+2n−1−i

• Output: Mi+1,k and Mi+1,k+2n−1−i

In the above representation,
⌊
k/2n−1−i

⌋
is even. We then renew a[k] from Mi,k to Mi+1,k

and a[k + t] from Mi,k+2n−1−i to Mi+1,k+2n−1−i . Similar to the Cooley-Tukey NTT, we
define the global values in the Gentleman-Sande INTT. In the Gentleman-Sande INTT,
we define Mlog N,k (0 ≤ k ≤ N − 1) as the inputs a[k]. Moreover, we define Mi,k as a[k]
after the operations of the index i in Algorithm 3, where 0 ≤ i ≤ n−1 and 0 ≤ k ≤ N−1.
Using Mi,k, we can represent the inputs and outputs of (N logN) /2 butterfly operations
as follows:

• Input: Mi+1,k and Mi+1,k+2n−1−i

• Output: Mi,k and Mi,k+2n−1−i

In the above representation,
⌊
k/2n−1−i

⌋
is even. We then renew a[k] from Mi+1,k to Mi,k

and a[k + t] from Mi+1,k+2n−1−i to Mi,k+2n−1−i .
Next, we define mi (1 ≤ i ≤ 4) as the local values. In the following discussion, we write
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the multiplier in each butterfly as λ. In the Cooley-Tukey NTT, we renew a[k] and a[k+t]
as

a[k] = a[k] + λa[k + t] mod q
a[k + t] = a[k] − λa[k + t] mod q

in each butterfly. We then define m1 and m2 as the a[k] and a[k + t] before renewal,
respectively. Moreover, we define m3 and m4 as a[k] and a[k+t] after renewal, respectively.
Similar to the Cooley-Tukey NTT, we define the local values in the Gentleman-Sande
INTT. In the Gentleman-Sande INTT, we renew a[k] and a[k + t] as

a[k] = a[k] + a[k + t] mod q
a[k + t] = λ (a[k] − a[k + t]) mod q

in each butterfly. Then, we definem1 andm2 as a[k] and a[k+t] after renewal, respectively.
Moreover, we define m3 and m4 as a[k] and a[k + t] before renewal, respectively.

In the above discussion, we defined the global and local values. Then, in both of the
Cooley-Tukey NTT and the Gentleman-Sande INTT, each butterfly is constructed by
four values Mi,k, Mi,k+2n−1−i , Mi+1,k, and Mi+1,k+2n−1−i in the global values. Moreover,
these values correspond to m1, m2, m3, and m4, respectively. Then, to define the global
index on each butterfly, we define set I as

I :=
{

(i, k) | (0 ≤ i ≤ logN − 1) ∩
(⌊
k/2n−1−i

⌋
is even.

)}
,

which is the set of indexes of Mi,k corresponding to m1.

5.2.2 Previous Side-Channel Attacks on an NTT [95]
Primas et al. [95] attack an LPR cryptosystem [67] using an NTT with N = 256, q = 7681,
and σ = 4.51. Primas et al. extract side-channel leakage from

c1s+ c2 = INTT (NTT (c1) · NTT(s) + NTT (c2))

in the decryption step. This INTT is calculated similarly as a Cooley-Tukey NTT using
different values as multipliers. Significantly, the Cooley-Tukey NTT merges the power of
ω and γ, whereas the NTT in Primas et al.’s study only considers the power of ω and
considers γ separately. Moreover, the INTT in Primas et al.’s study is realized using
ω−1 mod q instead of ω and has the same structure as the Cooley-Tukey NTT. Thus, by
considering the Cooley-Tukey NTT, we also deal with the INTT in Primas et al.’s study.

Their algorithm recovers the LPR secret keys in the following order:

1. Extracting information from the INTT
2. Recovering Mi,k’s using loopy belief propagation
3. Recovering the LPR secret key s through a lattice reduction algorithm

The second step is a heuristic procedure owing to the use of the loopy belief propagation.
We analyze this part exactly in our contribution. We now review the three steps in more
detail.

Extracting Information from the INTT
We can extract information from (N logN) /2 butterflies through template attacks [16].
The information is extracted from additions, subtractions, and multiplications of two
integers.
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First, we explain the information of additions and subtractions. We now define rADD
and rSUB as follows:

rADD =

{
1 m1 + λm2 ≥ q

0 Otherwise
, rSUB =

{
1 m1 − λm2 < 0
0 Otherwise

.

We then extract the value of rADD and rSUB as the information of an addition and sub-
traction. The information on the additions and subtractions is mostly extracted correctly.
Thus, Primas et al. assumed the correctness of this information.

The multiplication information is extracted from a calculation of λm2 mod q. We then
extract the probability distribution of m2 depending on the values of m2 and λm2 mod q.
Primas et al. gave a simpler model, i.e., the noisy Hamming weight leakage model. In this
model, attackers extract the Hamming weight of the input and output of multiplication
with noise. To describe this model, we denote HW(x) as the Hamming weight function
inputting x. Moreover, we denote N

(
0, σ2

l

)
as a Gaussian distribution with a mean of

0 and standard deviation of σl > 0. We extract the information as HW (m2) + e and
HW (λm2 mod q) + e, where e ∼ N

(
0, σ2

l

)
. We then extract the probability distribution

of m2.

Recovery of Values of Mi,k’s
We now describe the recovery of the Mi,k values. We define the probability functions in
each butterfly based on the information. We then recover Mi,k by maximizing the product
of all probability functions.

First, we define the probability functions in each butterfly. We define fADD (m̃1, m̃2, m̃3),
fSUB (m̃1, m̃2, m̃4), and fMUL (m̃2) as the probability functions representing the addition,
subtraction, and multiplication information, respectively. In addition, fADD (m̃1, m̃2, m̃3)
takes a 0 or 1. Moreover, fADD (m̃1, m̃2, m̃3) = 1 if and only if

• m̃1 + λm̃2 ≡ m̃3 mod q, and
• 0 ≤ m̃1 + (λm̃2 mod q) − qrADD < q.

Similarly, fSUB (m̃1, m̃2, m̃4) takes a 0 or 1. In addition, fSUB (m̃1, m̃2, m̃4) = 1 if and
only if

• m̃1 − λm̃2 ≡ m̃4 mod q, and
• 0 ≤ m̃1 − (λm̃2 mod q) + qrSUB < q.

Finally, fMUL (m̃2) is defined as fMUL (m̃2) = Pr [m2 = m̃2].
We recoverMi,k by using the probability functions fADD (m̃1, m̃2, m̃3), fSUB (m̃1, m̃2, m̃4),

and fMUL (m̃2). We define Z as the product of all probability functions on all
N (logN + 1) values in the NTT, namely,

Z =
∏

(i,k)∈I

(
fADD

(
M̃i,k, M̃i,k+2n−1−i , M̃i+1,k

)
×fSUB

(
M̃i,k, M̃i,k+2n−1−i , M̃i+1,k+2n−1−i

)
× fMUL

(
M̃i,k+2n−1−i

))
We then calculate the marginal distribution Zi,k of value Mi,k through a loopy belief
propagation. Next, we search the low entropy Mi,k, such as the peak in a single value,
and recover such information. Primas et al. do not apply loopy belief propagation to all
Mi,k and obtain a lower entropy of Mi,k. Primas et al.’s algorithm recovers 192 values on
M5,k (32 ≤ k ≤ 127 and 160 ≤ k ≤ 255).
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Recovering the Secret Key s using Lattice Reduction Algorithm
Next, the secret key s is recovered. In this description, polynomial a ∈ Rq is represented
as the vector a = [a[0], a[1], . . . , a[255]]T ∈ Z256

q , where a[i] is the coefficient of xi in a.
In the previous step, 192 values on M5,k are recovered, and r ∈ Z192

q is defined as the
vector containing these values. We now express r using s. From Algorithm 2, r has 192
values out of a[k]s after i = 4, and we obtain c1s+ c2 when we run i = 5, 6, and 7. The
secret value is only s in c1s+ c2. Now, c1s+ c2 can be written as C1s + c2 in the vector,
where C1 is the matrix in Z256×256

q . Each element of C1 is given as follows:

C1,j,k =

{
c1[k − j] if k − j ≥ 0
−c1[k − j + 256] Otherwise,

and the matrix C1 is known. Moreover, the inverse transformations of i = 5, 6, and 7 are
linear mappings. Thus, when we focus only on the 192 values of M5,k, we can represent
r as r = U1s + u2 using the matrix U1 ∈ Z192×256

q and the vector u2 ∈ Z192
q . Thus,

r −u2 = U1s, and only s is unknown. Moreover, we set b = e− as in the key generation,
and this equation is rewritten as b = e−As using the matrix A ∈ Z256×256

q , the elements
of which are given as

Aj,k =

{
a[k − j] if k − j ≥ 0
−a[k − j + 256] Otherwise,

and the vector is b, e ∈ Z256
q . The unknown vectors are s and e. By substituting r−u2 =

U1s into b = e − As we obtain b′ = e − A′s′, where s′ has 64(= 256 − 192) dimensions.
If we obtain s′, we recover s and the secret key s. Now, the norm of e is small. Thus,
Primas et al. used the BKZ algorithm [4] to calculate this short vector e and recover the
LPR secret keys s.

Experimental Results of the Previous Method
By using the above method, we can recover all secret keys from the real trace. Moreover,
using the Hamming weight noisy model, we can recover the secret keys when σl ≤ 0.5.
Thus, the previous method works on the LPR cryptosystem. This attack is extended to
CRYSTALS-KYBER [90].

Primas et al.’s method partially recover coefficients of the secret polynomial, and the
full LPR secret keys are recovered by using a lattice reduction algorithm. Their method
recovers 192 coefficients of the secret polynomial in the above discussion before applying
a lattice reduction algorithm. Primas et al. also experimented on cases in which fewer
values are recovered. From their experiments, the secret keys are practically recovered
when 160 coefficients are recovered. Their method also recovers the secret keys when
150 coefficients are recovered, but it takes a long time. Their method does recover the
secret keys when 146 or fewer coefficients are recovered. Thus, the LPR secret keys are
recovered when more than or equal to 150 coefficients are recovered before applying a
lattice reduction algorithm.

5.3 Our Proposed Method for Recovering Secret Polynomial
from NTT leakage

In this section, we propose our method for recovering the secret polynomial transformed
by the NTT. This recovery corresponds to recovering Mi,k’s in Primas et al.’s method [95].
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We consider a simpler model than Primas et al.’s approach and propose a new method
for recovering the secret polynomial based on our model. First, we describe our leakage
model in Section 5.3.1. Next, we propose two recovery methods in Sections 5.3.2 and 5.3.3,
respectively. The method proposed in Section 5.3.2 is more straightforward than the other,
whereas the method proposed in Section 5.3.3 may be more efficient than the other. For
each method, we show the results of the numerical experiments.

5.3.1 Our Leakage Model
In this study, we assume that the input of multiplication is extracted with probability
1 − δ. If δ = 0, we extract all candidate values are extracted, and if δ = 1, we extract no
information. We focus only on multiplication and do not consider addition or subtraction.
We now consider the leakage model in Cooley-Tukey NTT and Gentleman-Sande INTT
in more detail.

Our Leakage Model in the Cooley-Tukey NTT
In Cooley-Tukey NTT, we extract m2 in each butterfly with probability 1 − δ. When we
consider the entire NTT, we extract Mi,k+2n−i−1 , where (i, k) ∈ I with probability 1 − δ.
We do not extract any other information.

Our Leakage Model in the Gentleman-Sande INTT
In the Gentleman-Sande INTT, we can extract m2 because we renew m2 by m2 =
λ (m3 −m4) mod q. Moreover, we can extract M0,k’s from the final multiplication of
N−1 mod q. Thus, we extract the information in the following manner:

• We extract M0,k (N/2 ≤ k ≤ N − 1) twice from the butterfly and the final multi-
plication of N−1 mod q.

• We extract M0,k (0 ≤ k ≤ N/2 − 1) once from the final multiplication of N−1 mod
q.

• We extract Mi,k+2n−i−1 ((i, k) ∈ I and i ̸= 0) once from the butterfly.
• We do not extract any information in the other variables.

Now, we fail to extract the input of multiplication with probability δ. When we obtain
information twice, we fail to extract information with probability δ2. When we obtain
information once, we fail to extract information with probability δ. Therefore, we extract
the information in the following manner:

• We extract M0,k (N/2 ≤ k ≤ N − 1) with probability 1 − δ2.
• We extract M0,k (0 ≤ k ≤ N/2 − 1) with probability 1 − δ.
• We extract Mi,k+2n−i−1 ((i, k) ∈ I and i ̸= 0) with probability 1 − δ.
• We do not extract any information in the other variables.

Figure 5.1 shows the example of leakage in Gentleman-Sande INTT for N = 4.

5.3.2 Recovering Coefficients of the Secret Polynomial
We now propose the recovery algorithm on the Cooley-Tukey NTT and Gentleman-Sande
INTT. Our recovery algorithm is given in Algorithm 6. Now, we briefly describe our
recovery algorithm.

In our recovery algorithm, we input the extracted m2 and parameters on the NTT.
Moreover, we input the index of the NTT, namely, Inv, as 0 in the Cooley-Tukey NTT and
1 in the Gentleman-Sande INTT. We then output the inputs of the Cooley-Tukey NTT or
the outputs of the Gentleman-Sande INTT, which correspond to M0,k (0 ≤ k ≤ N − 1).
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Fig. 5.1: Our leakage model in Gentleman-Sande INTT when N = 4. The inputs of
all of the multiplications leak out. Thus, M0,0, M0,1, M1,1, and M1,3 are extracted with
probability 1−δ. Moreover, M0,2 and M0,3 are extracted with probability 1−δ2 because
these values are extracted twice. In Cooley-Tukey NTT, multiplications using N−1 are
not performed, and information is not leaked from these multiplications N−1.

Significantly, the information is the same in both the Cooley-Tukey NTT and Gentleman-
Sande INTT. Thus, we can apply our recovery algorithm to both the Cooley-Tukey NTT
and Gentleman-Sande INTT.

To recover M0,k, we propagate all butterfly information. Specifically, in each butterfly,
we calculate the local values m1, m2, m3, and m4 from the following:{

m1 + λm2 ≡ 2Invm3 mod q
m1 − λm2 ≡ 2Invm4 mod q

. (5.1)

From Eq. (5.1), we calculate all values if we know two out of four values. We then apply
the new calculated values to the other butterflies. We repeat the calculation of Mi,k until
we can no longer calculate a new Mi,k.

Our algorithm terminates when no value is recovered. Thus, at least 1 value is recovered
in each iteration. In our algorithm, there are at most N(logN + 1) values. If we conduct
at most N(logN+1)+1 iterations, all values are recovered, and our algorithm terminates.
Therefore, our algorithms terminate within at most N(logN + 1) + 1 iterations.

Results of Numerical Experiments
We now show the results of numerical experiments conducted on the proposed method.
We applied these numerical experiments using the NTL library 11.3.2 on C++.

We ran the proposed method on the parameters from Göttert et al.’s study [38]. In
particular, we used (N, q) = (256, 7681) and (512, 12289), and set the erasure rate δ. For
each (N, q, δ), we randomly generated 100 polynomials and measured the average of the
following:

• Running time
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Algorithm 6 Our algorithm for recovering the polynomial on the NTT

Input: N , q, γ, Inv, and extracted m2
Output: Recovered M0,k’s, which correspond to the coefficients of the non-NTT
form of the secret polynomial
C = 1
While C > 0
C = 0
e = 1, t = N/2
for i = 0 to logN − 1
s = 0
for j = 0 to e− 1

Calculate e′, the bit-reversed value of e+ j
for k = s to s+ t− 1

Calculation of Butterfly: We calculate the values using the following:{
Mi,k + γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k mod q
Mi,k − γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k+2n−1−i mod q

The number of calculated values is added to C
end for
s = s+ 2t

end for
e = 2e, t = t/2

end for
end while
Return Recovered M0,k

• The number of iterations
• The number of recovered M0,k’s

Tables 5.1 and 5.2 show the experimental result of the number of recovered M0,k’s in the
Cooley-Tukey NTT and Gentleman-Sande INTT, respectively.

Tables 5.1 and 5.2 describe that the number of recoveries of M0,k decreases when δ
increases. In particular, the number of recoveries of M0,k decreases by approximately
N/2 from δ = 0.7 to 0.8 in the Cooley-Tukey NTT. Moreover, the number of recoveries of
M0,k decreases by approximately N/2 from δ = 0.75 to 0.8 in the Gentleman-Sande INTT.
The number of iteration is small compared to the worst case for both the Cooley-Tukey
NTT and the Gentleman-Sande INTT.

5.3.3 Variant Algorithm of Recovery of Coefficients of the Secret Polynomial
This subsection presents a variant algorithm for the recovery of the coefficients, which is
given as Algorithm 7. In this algorithm, we focus on a butterfly in two directions, i.e.,
a forward recovery step and a backward recovery step, as indicated in Algorithm 7. By
recovering in two directions, we may propagate the recovered values more efficiently. Now,
we regard the pair of the forward and backward recovery steps as a single iteration. We
repeat the iterations until there is no renewal in the recovery result.
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Algorithm 7 Variants of our algorithm for recovering a secret polynomial for the NTT

Input: N , q, γ, Inv, and extracted m2
Output: Recovered M0,k’s, which correspond to the coefficients of the non-NTT
form of a secret polynomial
C = 1
While C > 0
C = 0
Forward recovery step
e = 1, t = N/2
for i = 0 to logN − 1
s = 0
for j = 0 to e− 1

Calculate e′, the bit-reversed value of e+ j
for k = s to s+ t− 1

Calculation in Butterfly: We calculate the values using the following:{
Mi,k + γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k mod q
Mi,k − γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k+2n−1−i mod q

The number of calculated values is added to C
end for
s = s+ 2t

end for
e = 2e, t = t/2

end for
Backward recovery step
e = N/2, t = 1
for i = logN − 1 down to 0
s = 0
for j = 0 to e− 1

Calculate e′, the bit-reversed value of e+ j
for k = s to s+ t− 1

Calculation of butterfly: We calculate the values using the following:{
Mi,k + γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k mod q
Mi,k − γ(−1)Inve′

Mi,k+2n−1−i ≡ 2InvMi+1,k+2n−1−i mod q

The number of calculated values is added to C
end for
s = s+ 2t

end for
e = e/2, t = 2t

end for
end while
Return Recovered M0,k
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Table 5.1: Experimental result on recovering the coefficients of the secret polynomial
on the Cooley-Tukey NTT using Algorithm 6. “count” means the number of recovered
M0,k’s.

δ
N 256 512

time [ms] #(iterations) count time [ms] #(iterations) count
0 18.7 8 255 36.7 9 511

0.2 16.9 8 254.5 22.8 9 510.6
0.4 17.0 8.04 252.3 26.4 9 509.3
0.6 19.9 11.7 237.9 50.7 11.8 495.1
0.7 32.8 19.0 172.7 55.4 21.3 424.8
0.8 16.2 7.89 45.3 38.6 10.9 89.8
0.9 6.55 3.48 16.7 16.5 4.06 31.7
1 1.42 1 0 3.90 1 0

Table 5.2: Experimental results on recovering the coefficients of the secret polynomial
on the Gentleman-Sande INTT using Algorithm 6. “count” means the number of recov-
ered M0,k’s.

δ
N 256 512

time [ms] #(iterations) count time [ms] #(iterations) count
0 7.44 2 256 13.8 2 512

0.2 14.3 6.61 255.7 22.5 7.60 511.8
0.4 16.2 7.51 255.1 26.9 8.56 511.0
0.6 15.0 9.08 251.6 42.5 9.63 507.6
0.7 28.5 14.8 236.2 39.7 15.3 491.8
0.75 37.3 19.7 192.1 90.0 25.8 438.3
0.8 18.2 10.9 109.6 57.7 16.0 234.0
0.9 7.26 3.79 43.0 18.5 4.50 85.8
1 2.32 1 0 4.08 1 0

Results of Numerical Experiments
We now describe the results of numerical experiments conducted on the variant of our
proposed method. We ran the variant of our proposed method similar to that described
in Section 5.3.2. Tables 5.3 and 5.4 show the experimental results for the number of
recoveries of the secret polynomial in the Cooley-Tukey NTT and Gentleman-Sande INTT,
respectively. One iteration in Tables 5.3 and 5.4 corresponds to two iterations in Tables 5.1
and 5.2. Thus, we include “2×#(iterations)” in Tables 5.3 and 5.4 for comparison with
Tables 5.1 and 5.2.

The number of recovered coefficients and the running time is almost the same as those
in Tables 5.1 and 5.2. However, the number of iterations is different between Tables 5.1
and 5.3. Moreover, the number of iterations is also different between Tables 5.2 and 5.4.
We explain these in more detail.

First, we compare the results of the Cooley-Tukey NTT in Tables 5.1 and 5.3. Ta-
bles 5.1 and 5.3 show that the number of iterations of Algorithm 6 is larger when δ ≤ 0.7.
In particular, the number of iterations in Table 5.3 is approximately 3/4 times that in
Table 5.1 when δ ≤ 0.7. The number of iterations of Algorithm 7 is almost the same as
the number of iterations of Algorithm 6 when δ ≥ 0.8. These results are as follows: When
δ ≤ 0.7, our method recovers many Mi,k’s from the small number of initially recovered
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Table 5.3: Experimental results on recovering the coefficients of the secret polynomial
on the Cooley-Tukey NTT using Algorithm 7. “count” means the number of recovered
M0,k’s. “2×#(iterations)” corresponds to one iteration in Table 5.1.

δ
N 256 512

time [ms] #(iterations) 2×#(iterations) count time [ms] #(iterations) 2×#(iterations) count
0 7.31 2 4 255 20.0 2 4 511

0.2 13.9 3 6 254.7 26.1 3 6 510.5
0.4 14.2 3.11 6.22 252.6 19.4 3.17 6.34 508.6
0.6 19.9 4.81 9.62 238.6 32.8 4.86 9.72 495.7
0.7 29.4 6.82 13.64 175.9 40.2 7.47 14.94 420.8
0.8 15.8 4.21 8.42 43.6 44.1 6.42 12.84 114.9
0.9 8.42 2.49 4.98 16.1 23.9 2.73 5.46 32.9
1 7.63 1 2 0 6.15 1 2 0

Table 5.4: Experimental results on recovering the coefficients of the secret polynomial
on the Gentleman-Sande INTT using Algorithm 7. “count” means the number of recov-
ered M0,k’s. “2×#(iterations)” corresponds to one iteration in Table 5.2.

δ
N 256 512

time [ms] iterations 2×#(iterations) count time [ms] iterations 2×#(iterations) count
0 9.41 2 4 256 24.2 2 4 512

0.2 10.5 2.57 5.14 255.7 26.9 2.69 5.38 511.7
0.4 13.8 3.01 6.02 255.3 18.9 3.01 6.02 511.1
0.6 16.3 4.06 8.12 251.5 27.6 4.05 8.10 507.6
0.7 25.3 5.73 11.46 236.2 33.6 5.95 11.90 489.8
0.75 23.6 7.43 14.86 193.6 59.8 8.97 17.94 438.7
0.8 23.8 5.66 11.32 108.3 67.4 9.82 19.64 311.9
0.9 8.85 2.61 5.22 43.6 26.8 2.91 5.82 84.5
1 2.35 1 2 0 6.27 1 2 0

Mi,k’s. Thus, our method heavily propagates the recovery values of Mi,k’s. Therefore,
two-direction propagation realizes faster convergence, and fewer iterations are required in
Algorithm 7. When δ ≥ 0.8, our method recovers few Mi,k’s, and incurs a small propaga-
tion. Thus, when δ ≥ 0.8, the number of iterations of Algorithm 7 is almost the same as
the number of iterations of Algorithm 6.

Next, we compare the results of the Gentleman-Sande INTT in Tables 5.2 and 5.4.
Tables 5.2 and 5.4 show that the numbers of iterations of Algorithm 6 are almost the
same except when δ = 0.7 and 0.75. In the Gentleman-Sande INTT, we obtain some
values of M0,k’s before applying our method, which causes a small difference in Tables 5.2
and 5.4 except when δ = 0.7 and 0.75. When δ = 0.7 and 0.75, we obtain a fewer number
of M0,k’s before applying our method, which heavily propagates the recovery values of the
Mi,k’s. Thus, our method incurs more propagations when δ = 0.7 and 0.75.

5.3.4 Connection to Recovering LPR Secret Keys
We now focus on the number of non-recovered values in the Gentleman-Sande INTT.
When δ = 0.75, our algorithm does not recover about 64 values when N = 256 and 74
values when N = 512. Based on Primas et al.’s experiment results, 106(= 256 − 150)
non-recovered values are recovered using a lattice reduction algorithm. Therefore, the
LPR secret keys may be recovered when at least δ ≤ 0.75. In the later sections, we give
the bound of δ in more detail.
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5.4 Analysis of Recovery Rate of Coefficients of the Secret
Polynomial

We now analyze the recovery rate of coefficients using our proposed Algorithms 6 and 7.
We analyze our proposed algorithm by renewing the probability of recovery. The difference
in the analysis of Algorithms 6 and 7 is the method for constructing the renewal equations
of the probability of recovery. First, we describe the notations used in this analysis in
Section 5.4.1. Next, we provide an overview of our analysis in Section 5.4.2, followed by an
explanation of the initial probabilities, which are common in the analysis of Algorithms 6
and 7 in Section 5.4.3. We then give an analysis of Algorithms 6 and 7 in Section 5.4.4
and 5.4.5, respectively.

5.4.1 Notations used in Our Analysis
First, we describe the variables representing the probabilities used in our analysis. Our
analysis propagates the probabilities between butterflies by applying the global values
Mi,k. However, in the following explanation, we mainly focus on the renewal equations of
the local values mi. Thus, we define the notations of the probabilities based on both the
global values Mi,k and the local values mi.

We now define the probabilities of the state of recovery in each butterfly, Bl
i,k or bl,

which correspond to the global values of Mi,k or the local values of mi, respectively. The
indexes i and k in Bl

i,k are the global indexes of a butterfly as the elements applied in set
I. The index l shows the state of the recovery of the butterfly, and we explain the state
of recovery of a butterfly in more detail to define Bl

i,k or bl. Each butterfly is composed
of four values, and each has two states, non-recovered or recovered. Thus, the number of
states of a butterfly is 24 = 16. Next, we define the index l by four bits. In this definition,
we count bits from the left to the right side. Then, if the j-th bit of l is 1, the local value
mj is recovered. For example, if l = 0010, we have already recovered m3, and the other
values are not recovered.

Next, we define the probabilities of recovery in each value, P (l)
i,k or p(l)

i , which correspond
to the global values of Mi,k or the local values of mi, respectively. The indexes i and k in
P

(l)
i,k are the indexes of the global values of Mi,k. The index l means the state of recovery,

and we describe the state of recovery in more detail to define P (l)
i,k or p(l)

i . We define three
states for each value as follows:

• State 1: Mi,k is not recovered.
• State 2: Mi,k is newly recovered and not propagated in another butterfly.
• State 3: Mi,k has already been recovered and used in another butterfly.

Here, l corresponds to the index of states 1, 2, or 3. In particular, State 2 is a temporary
state. Moreover, each value Mi,k changes in a one-way direction as State 1 → State 2
→ State 3.

In the following discussion, we call Bl
i,k and P (l)

i,k the global variables, and we call bl and
p

(l)
i the local variables.
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5.4.2 Overview of Our Analysis
In our analysis, we renew probabilities Bl

i,k and P
(l)
i,k based on Algorithm 6. From the

above discussion, the transition of the state is one-way. Thus, Bl
i,k and P

(l)
i,k converges to

a certain value. We calculate the convergence values of Bl
i,k and P

(l)
i,k . To calculate the

convergence values, we calculate the total amount of change in P (l)
i,k during each iteration.

Specifically, we calculate
log N∑
i=0

N−1∑
k=0

3∑
l=1

∣∣∣P (l)′
i,k − P

(l)
i,k

∣∣∣, where P (l)′
i,k is P (l)

i,k after the iteration.

If this value is smaller than the threshold, let 10−7N (logN + 1) in this thesis, we stop our
analysis and output the sum of P (3)

0,k as the recovery rate. We perform these calculations
using Matlab.

5.4.3 Initial Values
We now give the initial values in the analysis. We focus on the global variables in this
subsection.

In the Cooley-Tukey NTT, we set the following:

P
(l)
i,k =


1 if 0 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is even, and l = 1
δ if 0 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is odd, and l = 1
1 − δ if 0 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is odd, and l = 2
0 Otherwise.

The first line corresponds to the local value m1, where we do not extract information.
The second and third lines correspond to the local value m2.

In the Gentleman-Sande INTT, we set the following:

P
(l)
i,k =



δ if i = 0, 0 ≤ k ≤ N/2 − 1 and l = 1
1 − δ if i = 0, 0 ≤ k ≤ N/2 − 1 and l = 2
δ2 if i = 0, N/2 ≤ k ≤ N − 1 and l = 1
1 − δ2 if i = 0, N/2 ≤ k ≤ N − 1 and l = 2
1 if 1 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is even, and l = 1
δ if 1 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is odd, and l = 1
1 − δ if 1 ≤ i ≤ logN − 1, ⌊k/2n−1−i⌋ is odd, and l = 2
0 Otherwise.

The first to fourth lines correspond to the global value M0,k, where we extract more
information than the other values. The remaining lines are the same as the Cooley-Tukey
NTT.

5.4.4 Analysis of Algorithm 6
We explain the renewal probabilities equations in our analysis based on Algorithm 6.
Specifically, when we refer to a butterfly in Algorithm 6, we renew the global variables
included in the butterfly. We then realize the propagation of the probability.
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Equations of Renewal Probabilities
We now focus on the renewal equation in each butterfly by using the local variables, bl
and p(l)

i . First, we give a brief strategy of the renewal of bl and p(l)
i in each butterfly. We

construct the equations of the renewal probabilities based on the transition of states. The
state transition occurs by the following:

• The propagation of the recovery in other butterflies
• The recovery from Eq. (5.1)

Before the recovery using Eq. (5.1), the following are satisfied in mi based on the propa-
gation of the recovery in other butterflies:

• mi is not recovered with probability p(1)
i . (State 1 → State 1)

• mi is newly recovered with probability p(2)
i . (State 1 → State 2)

• mi has been recovered with the probability p(3)
i . (State 3 → State 3)

Then, for mi in State 1, the followings occur in the current butterfly:

• mi is not recovered with the probability p(1)
i /

(
p

(1)
i + p

(2)
i

)
.

• mi is newly recovered with the probability p(2)
i /

(
p

(1)
i + p

(2)
i

)
.

These are propagations from other butterflies.
Based on these propagations, we construct the renewal equation of bl and p

(l)
i . Specif-

ically, we renew bl by considering the change in state of butterfly l. For example, if
l = 0010, we have already recovered m3. Then, we have the following:

• If we do not recover any values, namely, m1, m2, and m4 are all in State 1, the
state of the butterfly is still 0010.

• Otherwise, we recover all values, and the state of the butterfly changes into 1111.

Therefore, we apply the following:

• We add p
(1)
1

p
(1)
1 + p

(2)
1

p
(1)
2

p
(1)
2 + p

(2)
2

p
(1)
4

p
(1)
4 + p

(2)
4

b0010 to b0010.

• We add

(
1 − p

(1)
1

p
(1)
1 + p

(2)
1

p
(1)
2

p
(1)
2 + p

(2)
2

p
(1)
4

p
(1)
4 + p

(2)
4

)
b0010 to b1111.

It should be noted that b1100, b1010, b0110, b1110, b1001, b0101, b1101, b0011, b1011, and
b0111 are 0. Moreover, we renew p

(l)
i . In the above example, m3 has already been recovered

and used, namely, in State 3, and we add b0010 to p(3)
3 . In the other mi’s, we calculate

the transition before and after the renewal. We now have the following:

• If we do not recover any values, m1, m2, and m4 are all in State 1.
• Otherwise,

– State 1 → State 1 → State 2 or
– State 1 → State 2 → State 3,

where the first transition is the propagation of the recovery in other butterflies, and
the second transition is recovered using Eq. (5.1).

We then apply the following:

• We add p
(1)
1

p
(1)
1 + p

(2)
1

p
(1)
2

p
(1)
2 + p

(2)
2

p
(1)
4

p
(1)
4 + p

(2)
4

b0010 to p(1)
i , where i = 1, 2, and 4.
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• We add

(
p

(1)
i

p
(1)
i + p

(2)
i

− p
(1)
1

p
(1)
1 + p

(2)
1

p
(1)
2

p
(1)
2 + p

(2)
2

p
(1)
4

p
(1)
4 + p

(2)
4

)
b0010 to p

(2)
i , where i =

1, 2, and 4.

• We add p
(2)
i

p
(1)
i + p

(2)
i

b0010 to p(3)
i , where i = 1, 2, and 4.

We propagate p(l)
i , namely, P (l)

i,k in the global variables, to the other butterflies.
We now give the renewal equation of bl and p

(l)
i in more detail. The renewal equation

is different in the first iteration and the other iterations. Before the first iteration, we
give the initial values only for p(l)

i ’s. Thus, using p
(l)
i ’s, we calculate the values of bl.

Specifically, we renew bl and p
(l)
i by

b0000 =
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and the other values are all 0. After an iteration, we apply an additional renewal as
follows in 0 ≤ i ≤ N − 1:

P
(2)
log N,i = 0,

P
(3)
log N,i = P

(2)
log N,i + P

(3)
log N,i.

Result of Theoretical Analysis of Algorithm 6
This subsection shows a theoretical analysis of the recovery rate M0,k. First, we show the
results of our analysis. Tables 5.5 and 5.6 gives the theoretical recovery rate of M0,k. From
these tables, the recovery rate decreases suddenly. The value of δ at which the recovery
rate decreases is between δ = 0.7 and 0.8. Thus, our analysis matches the experimental
results, although the recovery rate changes more gradually in the experimental results.

We now connect our theoretical results to previous research [95]. In our analysis, N =
256 and q = 7681 for the Cooley-Tukey NTT are the same as those in the previous study.
Primas et al. calculated the average entropy in each σl. The success rate of Primas et al.’s
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Table 5.5: Theoretical value of average recovery rate of coefficients of the secret polyno-
mial for the Cooley-Tukey NTT

δ
N 256 512 1024 2048

count ratio count ratio count ratio count ratio
0 255 0.9961 511 0.9980 1023 0.9990 2047 0.9995

0.2 254.6 0.9943 510.6 0.9972 1022.6 0.9986 2046.6 0.9993
0.4 252.9 0.9879 508.9 0.9939 1020.9 0.9970 2044.9 0.9985
0.6 243.9 0.9526 499.9 0.9763 1011.9 0.9882 2035.9 0.9941
0.7 216.5 0.8456 472.5 0.9228 984.5 0.9614 2008.5 0.9807
0.71 210.9 0.8240 466.9 0.9120 978.9 0.9560 2002.9 0.9780
0.72 206.2 0.8056 462.2 0.9027 974.2 0.9514 1998.2 0.9757
0.73 200.9 0.7847 456.8 0.8922 968.8 0.9461 1992.8 0.9730
0.74 162.1 0.6332 418.0 0.8164 930.0 0.9082 1954.0 0.9541
0.75 157.0 0.6131 412.8 0.8062 924.8 0.9031 1948.8 0.9515
0.76 57.6 0.2252 313.3 0.6120 825.3 0.8060 1849.3 0.9030
0.77 51.9 0.2029 104.9 0.2049 212.9 0.2079 1236.9 0.6040
0.78 47.5 0.1854 95.3 0.1861 191.1 0.1866 382.9 0.1870
0.79 43.6 0.1702 87.3 0.1705 174.8 0.1707 349.8 0.1708
0.8 40.1 0.1567 80.3 0.1568 160.7 0.1569 321.4 0.1569
0.9 15.7 0.0612 31.3 0.0612 62.6 0.0612 125.3 0.0612
1 0 0 0 0 0 0 0 0

attack drastically decreases when σl = 0.5 compared to σl = 0.6, and no successful cases
are achieved at σl = 0.7. When σl = 0.5, 0.6, and 0.7, the average entropy is almost 9,
9.5, and 10, respectively. Table 5.5 shows that the recovery ratio of the input drastically
decreases for δ = 0.75 to 0.76. Specifically, we recover more than 150 coefficients when
δ = 0.75, whereas we recover only 57.6 coefficients when δ = 0.76. Now, the average
entropy is 0.75 log 7681 = 9.68 and 0.76 log 7681 = 9.81, respectively. Thus, the decrease
is almost the same as that in the previous model and our proposed approach. Previous
research applies the average entropy to the real traces. Therefore, our analysis can be
applied to a real trace.

5.4.5 Analysis of Algorithm 7
We now describe the equations of the renewal probabilities of Algorithm 7. The results
of the analysis are given as the same as Tables 5.5 and 5.6.

We now focus on the renewal equation in each butterfly by using the local variables,
bl and p

(l)
i . First, we give a brief strategy of the renewal of bl and p

(l)
i in each butterfly.

We describe the renewal in the forward recovery step, and the renewal in the backward
recovery step is similarly given. In the forward recovery step, we have renewed p

(l)
1 and

p
(l)
2 in previous butterflies. By using p(l)

1 and p(l)
2 , we renew p

(l)
3 and p(l)

4 . However, we do
not renew p

(l)
1 or p(l)

2 because we do not use newly recovered m1 or m2 immediately in
the forward recovery step, For example, when we consider the renewal l = 1010, we have
already recovered m1 and m3. Then, we have the following:

• If we do not recover m2, we recover m4 from m1 and m3, and the state of the
butterfly changes into 1011.

• Otherwise, we newly recover m2 and m4, and the state of butterfly changes into
1111.
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Table 5.6: Theoretical value of average recovery rate of coefficients of the secret polyno-
mial for the Gentleman-Sande INTT

δ
N 256 512 1024 2048

count ratio count ratio count ratio count ratio
0 256 1 512 1 1024 1 2048 1

0.2 255.7 0.9990 511.7 0.9995 1023.7 0.9997 2047.7 0.9999
0.4 255.2 0.9968 511.2 0.9984 1023.2 0.9992 2047.2 0.9996
0.6 252.9 0.9877 508.9 0.9939 1020.9 0.9969 2044.9 0.9985
0.7 246.9 0.9646 502.9 0.9823 1014.9 0.9911 2038.9 0.9956
0.71 245.6 0.9592 501.6 0.9796 1013.6 0.9898 2037.6 0.9949
0.72 243.9 0.9526 499.9 0.9763 1011.9 0.9882 2035.9 0.9941
0.73 241.9 0.9448 497.9 0.9724 1009.9 0.9862 2033.9 0.9931
0.74 239.5 0.9357 495.5 0.9678 1007.5 0.9839 2031.5 0.9920
0.75 236.6 0.9241 492.6 0.9620 1004.6 0.9810 2028.7 0.9905
0.76 226.8 0.8859 482.8 0.9429 994.8 0.9715 2018.8 0.9857
0.77 221.5 0.8654 477.5 0.9327 989.5 0.9663 2013.5 0.9832
0.78 185.8 0.7256 441.8 0.8628 953.8 0.9314 1977.8 0.9657
0.79 106.6 0.4162 214.2 0.4184 430.2 0.4201 1454.2 0.7100
0.8 98.1 0.3834 196.6 0.3839 393.5 0.3842 787.3 0.3844
0.9 42.3 0.1652 84.6 0.1652 169.2 0.1652 338.3 0.1652
1 0 0 0 0 0 0 0 0

Therefore, we conduct the following:

• We add p
(1)
2

p
(1)
2 + p

(2)
2

b1010 to b1011.

• We add p
(2)
2

p
(1)
2 + p

(2)
2

b1010 to b1111.

Moreover, we renew p
(l)
i . In the above example, m3 has already been recovered and

used, namely, in State 3, and we add b1011 to p(3)
3 . We consistently newly recover m4,

namely, in State 2, and we add b1011 to p
(2)
4 . We propagate p(l)

i , namely, P (l)
i,k in the

global variables, to the other butterflies. We calculate the total change of P (l)
i,k during

each iteration. If this value is smaller than the initially determined threshold, we stop our
analysis and output the sum of P0,k,3 as the recovery rate.

We now give the renewal equation of bl and p
(l)
i in more detail. As the difference from

the analysis in Algorithm 6, we do not renew p
(l)
1 or p(l)

2 in the forward recovery step or
p

(l)
3 or p(l)

4 in the backward recovery step.

Renewal Equation in Forward Recovery Step
The renewal equation in the forward recovery step is different in the first or other itera-
tions. During the first iteration, we renew bl and p

(l)
i using the following:
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and the other values are all 0. In the other iteration, we renew bl and p
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and the other values are all 0. After each iteration, we apply the following additional
renewal in 0 ≤ i ≤ N − 1:

P
(2)
log N,i = 0,

P
(3)
log N,i = P

(2)
log N,i + P

(3)
log N,i.

Renewal Equation in Backward Recovery Step
In the backward recovery step, we input p3,l and p4,l, and do not change these values. We
renew bl and p

(l)
i by the following:
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and the other values are all 0. After an iteration, we apply an additional renewal as
follows in 0 ≤ i ≤ N − 1:

P
(2)
0,i = 0,
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P
(3)
0,i = P

(2)
0,i + P 3

0,i.

5.5 Recovery of the Full LPR Secret Keys
In this section, we analyze the method for recovering the full LPR secret keys. We
construct our method for recovering the full LPR secret keys by replacing the recovery of
Mi,k’s in Primas et al.’s method [95] into our approach for recovering the secret polynomial
proposed in Section 5.3. Then, we analyze the security of the LPR cryptosystem. First,
we give a rough analysis of the recovery of the full LPR secret keys in Section 5.5.1. Next,
we describe the exact analysis of the recovery of the full LPR secret keys in Section 5.5.2.
Finally, we provide the results of our numerical experiments on recovering the full LPR
secret keys in Section 5.5.3.

5.5.1 Rough Analysis of Recovery of the Full LPR Secret Keys
First, we consider how many values are obtained on our leakage model. Our leakage model
focuses on N logN/2 values from butterflies and N values from the final multiplication.
However, redundancy exists in the leakage value. We count M0,k (N/2 ≤ k ≤ N − 1)
twice, and the number of such values is N/2. Moreover, there are butterflies having
redundancy. Specifically, butterfly operations are conducted as follows:

• Input: Mi+1,k and Mi+1,k+2n−1−i

• Output: Mi,k and Mi,k+2n−1−i

In the above,
⌊
k/2n−1−i

⌋
is always even. Because⌊

k + 2n−1−i

2n−2−i

⌋
=
⌊

k

2n−2−i

⌋
+ 2,

the parities of
⌊
k/2n−2−i

⌋
and

⌊(
k + 2n−1−i

)
/2n−2−i

⌋
are the same. Thus, there are

butterflies for which we try to obtain three values. Such butterflies satisfy 0 ≤ i ≤
logN − 2,

⌊
k/2n−1−i

⌋
is even, and

⌊
k/2n−2−i

⌋
is odd. The number of such butterflies is

N (logN − 1) /4, and there is a redundant value in each butterfly. As a result, the number
of redundant values is N (logN − 1) /4 +N/2 = N (logN + 1) /4. Thus, we try to obtain

N logN
2

+N − N (logN + 1)
4

= N (logN + 3)
4

values.
Next, we analyze the bound of δ for which the full LPR secret keys are recovered. Now,

we obtain N (logN + 3) /4 values with probability 1 − δ. From Primas et al.’s study, we
require partial αN (0 ≤ α ≤ 1) coefficients out of N coefficients. Then, we can recover
the full LPR secret keys when

N (1 − δ) (logN + 3)
4

> αN,

and we obtain the rough bound of δ for recovering the LPR secret keys as

δ < 1 − 4α
logN + 3

. (5.2)

We now apply this rough analysis to the actual parameters. When N = 256, the
full LPR secret keys are recovered when 150 coefficients are obtained. These values are
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based on Primas et al.’s experiment. Thus, by substituting N = 256 and α = 150/256
in Eq. (5.2), the rough bound of δ is given as δ < 0.79. Similarly, we consider the case
of N = 512. In N = 256, we may recover the remaining 106(= 256 − 150) coefficients.
Therefore, when N = 512, the full LPR secret keys are recovered when 406(= 512 − 106)
coefficients are obtained. Thus, by substituting N = 512 and α = 406/512 in Eq. (5.2),
the rough bound of δ is given as δ < 0.74.

5.5.2 Exact Analysis of Recovery of the Full LPR Secret Keys Using the Result
of Section 5.4

We now give the bound on recovering the full LPR secret keys. We give the theoretical
bound based on Table 5.6. When N = 256, the full LPR secret keys are recovered when
150 coefficients are obtained. Thus, Table 5.6 describes that the full LPR secret keys are
recovered when δ ≤ 0.78. When N = 512, the full LPR secret keys are recovered when
406 coefficients are obtained. Thus, the full LPR secret keys are recovered when δ ≤ 0.78,
similar to N = 256.

This bound, δ ≤ 0.78, is satisfied in a larger N . When N = 1024, the LPR secret keys
are recovered when 918(= 1024 − 106) coefficients are obtained. Thus, from Table 5.6,
the LPR secret keys are recovered when δ ≤ 0.78. When N = 2048, the LPR secret keys
are recovered when 1942(= 2048 − 106) coefficients are obtained. Thus, the LPR secret
keys are recovered when δ ≤ 0.78.

Therefore, the LPR secret keys are recovered when δ ≤ 0.78 for a larger N . This analysis
is based on the number of non-recovered values by the lattice reduction algorithm. Thus,
if the lattice reduction algorithm recovers more coefficients than the current one, more
secret keys will be recovered. Our analysis based on Table 5.6 can be applied even if the
lattice reduction algorithm improves.

5.5.3 Numerical Experiments on Full Recovery of the LPR Secret Keys
We now show the experiment of recovering the secret keys on the LPR cryptosystem. We
ran the proposed method on (N, q, σ) = (256, 7681, 4.51) and (512, 12289, 4.86), which
were proposed by Göttert et al. [38]. In each parameter set, we set the fraction rate δ,
and generated 100 secret keys for each (N, q, σ, δ).

In this experiment, we recovered the LPR secret keys, which we could recover within
an hour. To realize this, we applied a lattice reduction when we recovered more than 160
coefficients at N = 256 and more than 430 coefficients at N = 512. We outputted failure
in other cases. We then measured the success rate and average implementation times for
each successful trial. Table 5.7 shows the experimental results.

Table 5.7 describes that our method recovers the LPR secret keys completely when
δ ≤ 0.7. When δ = 0.75, our method recovers more than half of the secret keys, which
matches the result in Section 5.3. For a larger δ, the success rate decreases suddenly, and
this result matches our analysis in Section 5.4.

In the above experiment, we recovered the LPR secret keys to recover within an hour.
We calculated the potential recovery rate of the LPR secret keys. We generated 100 poly-
nomials in each (N, q, δ), and counted the number of trials recovering more than 150
coefficients when N = 256 and more than 406 coefficients when N = 512. Table 5.8
shows the experimental results, and we now focus when δ = 0.78. Table 5.8 describes
that our method recovers approximately 1/3 of the LPR secret keys when N = 256 and
approximately 1/10 of the LPR secret keys when N = 512. Therefore, this experiment
validates our analysis.
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Table 5.7: Recovery rate of the LPR secret keys
δ

N 0 0.7 0.75 0.76 0.77 0.78 0.79 0.8
256 success rate (%) 100 100 81 58 34 18 6 0

time [sec] 7.54 35.8 168.0 221.5 334.4 310.8 437.3 –
512 success rate (%) 100 100 62 43 16 2 0 0

time [sec] 58.1 199.0 447.7 516.0 595.7 696.8 – –

Table 5.8: Potential recovery rate of the LPR secret keys
δ

N #(recovered) 0.75 0.76 0.77 0.78 0.79 0.8
150–159 6 16 13 9 4 0

256 160–256 83 59 33 21 8 2
Total 89 75 46 30 12 2

406–429 17 24 9 5 0 0
512 430–512 67 43 17 3 1 0

Total 84 67 26 8 1 0

5.6 Conclusion and Future Work
In this study, we considered applying an erasure model to the inputs of a multiplication.
We assumed that we extract the input of multiplication with the probability of 1 − δ.
We then constructed a recovery algorithm for a secret polynomial that consistently stops.
Next, we analyzed the recovery rate of the coefficients, which has correspondence with the
previous results. Finally, we conducted a security analysis on the LPR cryptosystem and
proved that our method recovers the LPR secret keys when δ ≤ 0.78 under the current
computational power. Then, we applied a concrete analysis method to the threats to an
LPR cryptosystem.

In a future study, we will apply our analysis to side-channel attacks on actual NIST
candidates, i.e., CRYSTALS-KYBER [90]. Specifically, we must consider the difference
in the implementation of the NTT. To realize an accurate computation of CRYSTALS-
KYBER, we use a smaller q satisfying q ≡ 1 mod N , and apply an NTT from i = 0 to
logN − 2 in Algorithm 2. Thus, we must consider this difference in our approach. This
difference will be solved with a small extension. Moreover, our analysis can be connected
with Xu et al.’s attack [118], and we must also consider the security of CRYSTALS-KYBER
by combining our result with such an attack.

We must also analyze the number of iterations in converging our recovery algorithm.
As shown in Tables 5.1 and 5.2, our recovery algorithm terminates much fewer iterations
than the upper-bound N(logN + 1) + 1. By evaluating the number of iterations, we must
clarify the time complexity of our recovery algorithm.

Moreover, we must also consider the time complexity of the lattice reduction algorithm
used in recovering all LPR secret keys. Currently, we are analyzing our method by focusing
on the number of non-recovered coefficients. If the lattice reduction algorithm recovers
more non-recovered coefficients than with the current approach, our method can be applied
to broader situations. Thus, in our case, we must analyze the time complexity of the lattice
reduction algorithm.



93

Chapter 6

Security Evaluation of RSA Scheme
under an Efficient Construction of a
Quantum Controlled Modular Adder

6.1 Introduction
6.1.1 Background
A controlled modular addition is an essential operation for Shor’s algorithm. The optimal
construction of a controlled modular adder is not apparent in quantum computers. A
controlled modular adder is constructed from simple adders [22, 28, 41, 100, 113, 116, 121],
among which there are many types [21, 25, 26, 33, 108, 113, 116]. Although an approximate
controlled modular adder has also been proposed [35, 121], we only focus on accurate
controlled modular adders in this chapter. Now, the previous construction follows a
similar overall structure but differs in detail. We need to determine which combination is
the best.

To evaluate the efficiency of the circuit, we minimize the depth of a controlled modular
adder. A candidate controlled modular adder with a small depth was proposed by Van
Meter and Itoh [113]. Van Meter-Itoh’s construction uses three carry-lookahead adders.
Based on their construction, Van Meter et al. [114] and Jones et al. [52] analyzed the
computational cost of Shor’s algorithm on Fault-Tolerant Quantum (FTQ) computers.
Then, Jones et al. showed that we must assign a large fraction of our total distillation
resources.

Moreover, when the depth is minimized, KQ introduced in [107] is also minimized. KQ
is defined as a product of the number of qubits and the depth of a circuit, and minimizing
KQ benefits both FTQ computers [52] and Noisy Intermediate-Scale Quantum (NISQ)
computers [101]. Mainly, calculation errors occur even in FTQ computers, and errors are
fewer in a circuit with a small KQ.

However, Van Meter-Itoh’s construction has room for further minimization of the num-
ber of T gates. Thapliyal et al. [111] proposed the means of minimizing the number of
T gates in a carry-lookahead adder. This method replaces several Toffoli gates using
Gidney’s relative-phase Toffoli gates [33]. Thus, we may reduce the number of T gates
by applying Gidney’s relative-phase Toffoli gates on the construction developed by Van
Meter and Itoh.

In the above discussion, although we consider executions on FTQ computers, it is also
essential to consider an efficient circuit for NISQ computers because we are currently in
the NISQ era. Currently, NISQ machines have higher error rates on CNOT gates than on
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Fig. 6.1: Abstract of our results. This figure shows the two-level optimization of a con-
trolled modular adder. In the first-level optimization, we optimize the construction of a
controlled modular adder. In the second-level optimization, we minimize the depth for
FTQ or NISQ computers by relative-phase Toffoli gates.

one-qubit gates [19, 48]. Thus, we must reduce the depth based on CNOT gates for NISQ
computers. By using relative-phase Toffoli gates composed of a smaller number of CNOT
gates [70] compared to a standard Toffoli gate, we may reduce the cost of a controlled
modular adder for NISQ computing.

6.1.2 Our Contribution
This study proposes a method for optimizing a controlled modular adder based on a
carry-lookahead adder. We apply two-level optimization on Van Meter-Itoh’s original
construction [113], as described in Figure 6.1. This chapter is written based on our paper
submitted to arXiv preprint [86].

In the first-level optimization, we optimize the construction of a controlled modular
adder. Specifically, we minimize the depth by focusing on the comparator in a carry-
lookahead adder. Then, we reduce some of the controlled operations by taking advantage
of the classicality of a and N .

In the second-level optimization, we minimize the depth for FTQ or NISQ computers
using relative-phase Toffoli gates. This study assumes that all qubits are fully connected
without considering the physical or logical topology [18, 28, 45]. We then reduce the T -
depth in FTQ computing and CNOT-depth in NISQ computing. Instead of the standard
Toffoli gates, we use Gidney’s relative-phase Toffoli gates [33] for FTQ computing and
Maslov’s relative-phase Toffoli gates [70] for NISQ computing.

Our construction also minimizes the KQ. We clarify the definition of KQ in each device
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because the cost of the gates is different between FTQ and NISQ computers. Specifically,
we define KQT and KQCX, which is defined by the product of the number of qubits
and the T -depth or CNOT-depth, respectively. We then minimize KQT and KQCX for
FTQ and NISQ computers. Moreover, we must consider the cost of distillation circuits
for FTQ computers because distillation circuits require a high cost. When we consider
distillation circuits, there is a trade-off between T -depth and the number of T gates
running simultaneously. We show that we can achieve the smallest KQT when we run
Θ
(
n/

√
logn

)
T gates simultaneously.

Finally, we evaluate the security of the RSA scheme against FTQ computers. We evalu-
ate the security based on Jones et al.’s evaluation [52]. We construct a quantum circuit of
Shor’s algorithm based on our controlled modular adder. Then, we estimate the required
time for Shor’s algorithm, based on IBM’s plan for quantum computer development [49].
Our estimation shows that quantum computers will be able to break the 2048-bit RSA
scheme 28.2 years later, which is 1.4 years earlier than Van Meter-Itoh’s construction.

6.1.3 Organization of this Chapter
This chapter has five sections. Section 6.2 provides the preliminaries for this chapter.
Section 6.3 describes the first-level optimization on a controlled modular adder. Section
6.4 details the second-level optimization, particularly in each FTQ or NISQ. Section 6.5
discusses the security of the RSA scheme. Section 6.6 concludes this chapter.

6.2 Preliminaries
This section gives preliminaries on this chapter. First, Section 6.2.1 explains the compu-
tational model of FTQ computers [52]. Next, Section 6.2.2 describes the relative-phase
Toffoli gates, which are used to reduce the computational cost. Then, Section 6.2.3 shows
the general construction of a controlled modular adder. Finally, Section 6.2.4 details the
previous construction of a carry-lookahead adder, which is used in our construction.

6.2.1 The Computational Model of FTQ Computers [52]
As noted in Section 1.1.3, NISQ computers have high error rates in each operation, and
research on FTQ is proceeding. In FTQ, operations are performed on qubits with error-
correction, while operations are performed on physical qubits in NISQ. Jones et al. [52]
considered a method for constructing FTQ computers as a layered architecture. Specifi-
cally, we perform the accurate computation on the Logical layer in FTQ computers, real-
ized by many physical qubits with errors. Then, we explain Jones et al.’s computational
model of the Logical layer in FTQ computers.

In this architecture, we adopt a fundamental gate set consisting of X, Y , Z, CNOT,
and H gates. To run an S gate, we prepare an ancilla qubit |Y ⟩ = (|0⟩ + i |1⟩) /

√
2 and

run the circuit shown in Figure 6.2. An S† gate can be realized by the reverse circuit of
Figure 6.2.

Next, we prepare a T gate. To run a T gate, we prepare an ancilla qubit |A⟩ given as(
|0⟩ + eiπ/4 |1⟩

)
/
√

2 and run the circuit shown in Figure 6.3. To run a T † gate, we apply
a S† gate instead of a S gate.

By Gottesman-Knill theorem [81], we can perform classical simulation on quantum
circuits composed of quantum gate set except for T gates and measurement. However, to
realize the universal quantum computation, we require a T gate that cannot be simulated
classically. Thus, we require additional cost to realize T gates in FTQ computers. We
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|ψ⟩ • • S |ψ⟩
|Y ⟩ H H |Y ⟩

Fig. 6.2: Running a S gate [52]. |Y ⟩ in the second qubit is (|0⟩ + i |1⟩) /
√

2. This sec-
ond qubit preserves before and after this computation.

|ψ⟩ •

|A⟩ S T |ψ⟩

Fig. 6.3: Running a T gate [52]. |A⟩ in the second qubit is
(
|0⟩ + eiπ/4 |1⟩

)
/
√

2.

|A⟩ • |A⟩
|A⟩ • MX

|A⟩ • MX

|A⟩ • MX

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

|A⟩ • MX

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

|A⟩ MZ

Fig. 6.4: A distillation circuit of |A⟩ [29]. By this distillation circuit, we reduce the er-
ror rate of |A⟩ from p to 35p3. In MZ , we perform the measurement. In MX , we mea-
sure after applying a H gate. By using these results of measurement, we perform error-
correction on |A⟩.

realize T gates by distillation [29], which requires a lot of logical qubits and time steps
additionally, and research on optimization of distillation is carried out [36, 37]. Specifically,
preparing |A⟩ is done by a distillation circuit. One of the distillation circuits is shown in
Figure 6.4. This distillation circuit requires 15 qubits and 6 time steps, even assuming
all CNOT gates can be implemented concurrently, but this is not easy to realize. Thus,
a T gate has the highest cost in FTQ computers, and we must reduce the number of
T gates.
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• T †

• T †

H T • T • H S

Fig. 6.5: Gidney’s relative-phase Toffoli gate [33] given by the unitary matrix (6.1). We
call this decomposition GRT. The control bits are the first and second qubits, and the
target bit is the third qubit. This calculation preserves the phase only when we input
|0⟩ at the target qubit.

•
Z

H •

Fig. 6.6: Inverse of Gidney’s relative-phase Toffoli gate [33]. We call this decomposition
IGRT. This calculation preserves the phase when we input |000⟩ , |010⟩ , |100⟩, or |111⟩,
those are output of GRT having valid phase. Control-Z is Clifford gate, and we use no
T gate.

6.2.2 Relative-Phase Toffoli Gates
We now explain relative-phase Toffoli gates. Relative-phase Toffoli gates calculates fol-
lowing with some function f :

|x⟩ |y⟩ |z⟩ → eif(x,y,z) |x⟩ |y⟩ |z ⊕ (x ∧ y)⟩ ,

Then, relative-phase Toffoli gates calculate AND correctly, but the difference from (2.1)
is eif(x,y,z). In the quantum computation, we can reduce the cost of computation by
using relative-phase Toffoli gates [33, 70, 111] and resetting the term eif(x,y,z) in the total
computation.

We now review Gidney’s relative-phase Toffoligates (GRT) and the inverse of
them (IGRT) [33]. These are constructed for FTQ computers. GRT is shown in
Figure 6.5 and the corresponding unitary matrix of GRT in the computational basis is

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 1 0


, (6.1)

and we calculate correctly only when the target bit is |0⟩. IGRT is shown in Figure 6.6.
Next, we review Maslov’s relative-phase Toffoli gates [70]. Maslov proposed relative-

phase Toffoli gates as Figure 6.7 and 6.8. These are constructed for NISQ computers. The
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•
• •

H T T † T T † H

Fig. 6.7: A relative-phase Toffoli gate with 3 CNOT (RT3) [70] given by the unitary
matrix (6.2). This calculation changes the phase when we input |1⟩ |0⟩ |1⟩, |1⟩ |1⟩ |0⟩, and
|1⟩ |1⟩ |1⟩. We call the inverse circuit of RT3 as IRT3.

• •
• •

H T T † T T † H

Fig. 6.8: A relative-phase Toffoli gate with 4 CNOT (RT4) [70] given by the unitary
matrix (6.3). This calculation changes the phase when both control bits are 1. We call
the inverse circuit of RT4 as IRT4.

corresponding unitary matrix of Figure 6.7 in the computational basis is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0


. (6.2)

This calculation changes the phase when we input |1⟩ |0⟩ |1⟩, |1⟩ |1⟩ |0⟩, or |1⟩ |1⟩ |1⟩. We
call this relative-phase Toffoli gate RT3, and we call its inverse IRT3. The corresponding
unitary matrix of Figure 6.8 in the computational basis is

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0


. (6.3)

This calculation changes the phase when both control bits are 1. We call this relative-
phase Toffoli gate RT4, and we call its inverse IRT4.

6.2.3 The General Construction of a Controlled Modular Adder
A controlled modular addition is defined by a control qubit x and n-bit numbers a, b, and
N . a and b satisfy 0 ≤ a, b ≤ N − 1, and a and N are classical numbers. A controlled
modular addition calculates

|x⟩ |b⟩ → |x⟩ |b+ xa mod N⟩ . (6.4)
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|x⟩ • |x⟩

|b⟩ /

M
od

A
D

D

|b+ ax mod N⟩

Fig. 6.9: Overview of a controlled modular adder. The first register has a single qubit,
which is used as a control bit. The second register has n qubits, which are used to store
the result. a and N are n-bit classical numbers.

CTRL |x⟩ • • • |x⟩

|b⟩ /
C

om
p A
dd

C
om

p |b+ ax mod N⟩

COMP |0⟩ • |0⟩

Fig. 6.10: The general construction of a controlled modular adder. Add means an
adder, and Comp means a comparator. CTRL has a single qubit, which is used to hold
the value of the control. |b⟩ has n qubits, which are used to hold the result of a con-
trolled modular addition. COMP has a single qubit, which is used to hold the result of
a comparison. a and N are classical numbers.

An overview is shown in Figure 6.9.
This subsection explains the calculation of

|x⟩ |b⟩ |0⟩ → |x⟩ |b+ xa mod N⟩ |0⟩ ,

and the general construction of this controlled modular adder is shown in Figure 6.10.
The first register has a single qubit, which is used to hold the value of the control. We call
this the CTRL qubit. The second register has n qubits, which are used to hold the result
of a controlled modular addition. The third register has a single qubit, which is used to
hold the result of a comparison temporarily. We call this the COMP qubit. Precisely,
we determine whether we subtract N or not based on COMP. We conduct a comparator
with one control qubit and an adder with two control qubits, and we write these as a
C-comparator and a CC-adder, respectively.

To execute a controlled modular adder, we conduct operations in this order:

1. We compare the second register |b⟩ and the classical value N − a. If b ≥ N − a,
namely a+ b ≥ N , we flip COMP.

2. If both CTRL and COMP are 1, we subtract N − a from the second register. If
CTRL is 1 and COMP is 0, we add a. Otherwise, we add no value.

3. If the second register is strictly less than a, we flip COMP.

6.2.4 Carry-Lookahead Adder [26]
First, we explain the calculation of a+ b when a and b are n-bit numbers. We express a
as an−1an−2 . . . a0 and b as bn−1bn−2 . . . b0, where ai and bi are 0 or 1. To calculate a+ b,
we introduce a carry ci. Carry ci is defined as an overflow from the (i − 1)-th bit to the
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i-th bit. In more detail, we define ci as

ci =

0 if i = 0⌊
ai−1 + bi−1 + ci−1

2

⌋
otherwise

Then, (a+ b)i, the i-th bit of a+ b, is calculated as

(a+ b)i = ai ⊕ bi ⊕ ci.

Thus, we need carries to calculate an addition.
We now give a brief explanation of a carry-lookahead adder. Before calculating an

addition, we determine the propagation of a carry from the i-th bit to the j-th bit as the
following three conditions:

• Propagate: A carry is propagated from the i-th bit to the j-th bit. Namely,
cj = ci.

• Generate: A carry is generated in the j-th bit, namely cj = 1, regardless of the
value of ci.

• Kill: A carry is killed in the j-th bit, namely cj = 0, regardless of the value of ci.

To calculate the propagation, we define two functions p [i, j] , g [i, j] ∈ {0, 1}. p [i, j] is
true when the carry from the i-th bit to the j-th bit should be propagated. Similarly,
g [i, j] is true when the value of the carry at the j-th bit is 1 independent of the carry at
the i-th bit. We do not need a separate function for kill, as its value can be inferred from
p and g. By using these functions, we can calculate the propagation state over a wider
span. Specifically, when i < k < j,

p [i, j] = p [i, k] ∧ p [k, j] , (6.5)
g [i, j] = g [k, j] ⊕ (g [i, k] ∧ p [k, j]) , (6.6)

where ∧ is Boolean AND, and ⊕ is Boolean XOR. By using these properties, we calculate
cj = g [0, j].

We now explain Draper et al.’s carry-lookahead adder for |a⟩ |b⟩ → |a⟩ |b+ a⟩. This
requires an additional n qubits for the carry register |c⟩ and n qubits for register |p⟩,
containing p [i, j]. Thus, a carry-lookahead adder requires 4n qubits.

We now explain the implementation briefly. The detailed construction is given in later.
This implementation consists of five phases, Initialization, P-rounds, G-rounds, C-rounds,
and inverse P-rounds. In each round,

• Initialization: we calculate g [i, i+ 1] in |ci+1⟩ and p [i, i+ 1] in |bi⟩,
• P-rounds: we calculate the p-function and write result in |p⟩,
• G-rounds: we calculate |c2k ⟩ (k ∈ N) by calculating some g-function,
• C-rounds: we calculate all carries |c⟩ by calculating some g-function,

and we clean |p⟩ in inverse P-rounds. After inverse P-rounds, we calculate each bit of
a + b by using these carries |c⟩. In this calculation, we run P-rounds and G-rounds
simultaneously, and we run C-rounds and inverse P-rounds simultaneously. However, the
value of carries remains on |c⟩. Thus, we must clean |c⟩ to |0⟩ except for cn. Draper et al.
found that the value of carries ci except for cn in a+ b is the same in a+ (2n − 1 − a− b).
Therefore, we erase carries by performing the addition a + (2n − 1 − a− b) on the lower
n− 1 qubits. The abstract circuit is shown in Figure 6.11.

As noted above, a carry-lookahead adder is mainly constructed by a calculation of p and
g. We calculate p and g with Eq. (6.5) or (6.6) respectively, and those are implemented
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|a0⟩
|b0⟩ |(a+ b)0⟩
|c1⟩ • |c1⟩
|a1⟩ |a1⟩
|b1⟩ |(a+ b)1⟩
. . . / . . .

|cn−2⟩ • |cn−2⟩
|an−2⟩ |an−2⟩
|bn−2⟩ |(a+ b)n−2⟩
|cn−1⟩ • |cn−1⟩
|an−1⟩ |an−1⟩
|bn−1⟩ |(a+ b)n−1⟩

|cn⟩ |(a+ b)n⟩

Fig. 6.11: An abstract figure of Draper et al.’s carry-lookahead adder. In this figure,
we sort qubits from the lowest qubits to the highest qubits, which is different from Fig-
ure 6.10. |ci⟩ is given as |0⟩ at the beginning of this circuit, and these are cleared as |0⟩
after Erasing Carry.

|p [i, k]⟩ •
|p [k, j]⟩ •

|0⟩ |p [i, j]⟩

(a) A calculation circuit of p[i, j] as Eq. (6.5).

|g [i, k]⟩ •
|p [k, j]⟩ •
|g [k, j]⟩ |g [i, j]⟩

(b) A calculation circuit of g[i, j] as Eq. (6.6).

Fig. 6.12: A calculation circuit of p [i, j] and g [i, j].

by Toffoli gates as shown in Figure 6.12. In total, a carry-lookahead adder requires 10n
Toffoli gates and 4n CNOT gates. Moreover, the Toffoli depth is 4 logn.

Up to this point, we have explained the construction of an adder. Draper et al. also
proposed other operations, such as a subtractor and a comparator, based on their adder.
The number of gates and the depth in a subtractor is almost the same as those in an
adder. In a comparator, the number of gates is 60% of an adder, and the depth is 50%
of an adder. Draper et al. implement a comparator using only Initialization, P-rounds,
G-rounds, and their inverses. More precisely, Draper et al. regard a and b as 2⌈log n⌉-bit
numbers by padding 0 in higher bits, but we do not use these qubits. If we calculate p [i, j]
or g [i, j] when i ≤ n− 1 and j ≥ n, we calculate p [i, n] or g [i, n] respectively. Then, we
calculate g [0, n] after G-rounds.

Detailed Explanation of Quantum Carry-lookahead Adder
Draper et al.’s carry-lookahead adder is given as follows:

Initialization (n Toffoli gates and n CNOT gates)
We calculate g [i, i+ 1] and p [i, i+ 1] (0 ≤ i ≤ n− 1), as follows:

g [i, i+ 1] =

{
1 if ai = bi = 1
0 otherwise

p [i, i+ 1] =

{
1 if ai + bi = 1
0 otherwise
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|ai⟩ • • |ai⟩
|bi⟩ • |p [i, i+ 1]⟩

|ci+1⟩ |0⟩ |g [i, i+ 1]⟩

Fig. 6.13: A calculation circuit of g [i, i+ 1] and p [i, i+ 1] (0 ≤ i ≤ n− 1). We use
|ci+1⟩ as the third qubit. We can run these gates simultaneously for i = 0 to n− 1.

The circuit calculating these is shown in Figure 6.13.
P-rounds (n Toffoli gates and logn Toffoli depth)
We calculate the p-function by using Eq. (6.5). We use a parameter tp representing

the range of the propagation of carry. We increase tp from 1 to ⌊logn⌋ − 1. In each tp,
we calculate p [2tpi, 2tp (i+ 1)] (1 ≤ i ≤ ⌊n/2tp⌋ − 1) by setting |p [2tpi, 2tp (i+ 1/2)]⟩ and
|p [2tp (i+ 1/2) , 2tp (i+ 1)]⟩ as the control qubits in Toffoli gate in Figure 6.12a. These
Toffoli gates are applied simultaneously in each tp.

G-rounds (n Toffoli gates and logn Toffoli depth)
We calculate |c2k ⟩ (k ∈ N) by using Eq. (6.6). We use a parameter tg similar

to the way we used it in P-rounds. We increase tg from 1 to ⌊logn⌋. In each
tg, we calculate g [2tg i, 2tg (i+ 1)] (0 ≤ i ≤ ⌊n/2tg ⌋ − 1) by setting |c2tg i+2tg−1⟩ and
|p [2tg (i+ 1/2), 2tg (i+ 1)]⟩ as the control qubits and |c2tg (i+1)⟩ as the target qubit in
Toffoli gate in Figure 6.12b. These Toffoli gates are applied simultaneously in each tg.
Moreover, G-rounds with tg can be run in parallel with former P-rounds with tg + 1.

C-rounds (n Toffoli gates and logn Toffoli depth)
We calculate all carries |c⟩ by using Eq. (6.6). We use a parameter tc similar to the way

we used it in P-rounds. We decrease tc from ⌊log (2n/3)⌋ to 1. In each tc, we calculate
|c2tc i+2tc−1⟩

(
1 ≤ i ≤

⌊(
n− 2tc−1) /2tc

⌋
− 1
)

by setting |c2tc i⟩ and |p
[
2tci, 2tci+ 2tc−1]⟩

as the control qubits and |c2tc i+2tc−1⟩ as the target qubit in Toffoli gate in Figure 6.12b.
These Toffoli gates are applied simultaneously in each tc.

Inverse P-rounds (n Toffoli gates and logn Toffoli depth)
We apply the same gates as P-rounds in reverse order. Rounds with tp can be run in

parallel with former C-round with tp + 1.
Calculating |a+ b⟩ (n CNOT gates)
We calculate (a+ b)i (0 ≤ i ≤ n− 2) on |bi⟩. We apply CNOT gates with the control

qubit of |ci+1⟩ and the target qubit of |bi+1⟩. These CNOT gates are applied simultane-
ously.

Erasing Carry (5n Toffoli gates, 2n CNOT gates, and 2 logn Toffoli depth)
We erase all carries by applying the inverse circuit of a+ (2n − 1 − a− b) on the lower

n − 1 bits, as shown in Figure 6.14. We apply gates before P-rounds and after inverse
Initialization to erase carries. We call these gates PE-rounds and inverse PE-rounds,
respectively.

We now show the example circuit of Draper et al.’s carry-lookahead adder as given
in Figure 6.15. In this example, we define a and b as 6-bit values, and we calculate
|a⟩ |b⟩ → |a⟩ |a+ b⟩. In Figure 6.15, in constrast to Figure 6.10, qubits are sorted from
low order to high order.

T -count Minimization of a Carry-lookahead Adder
Thapliyal et al. [111] proposed T -count minimization by using relative-phase Toffoli gates.
In the carry-lookahead adder, as in many circuits, we must clean our ancilla qubits,
returning them to a known, disentangled state, typically |0⟩. In this case, we can reduce
our cost by measuring the ancilla on IGRT, assuming the cost of measurement is small.
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|c1⟩
... / ...

|an−2⟩ •
|(a+ b)n−2⟩

|cn−1⟩

|an−1⟩
|(a+ b)n−1⟩

|cn⟩

Fig. 6.14: Erasing |c⟩. We apply gates only on the lower n− 1 qubits of |a⟩, |b⟩, and |c⟩.
We apply the same gates in omitted qubits |ai⟩, |(a+ b)i⟩, and |ci+1⟩. The P-rounds
and inverse C-rounds can be run in parallel, as can the inverse G-rounds and inverse P-
rounds. We define PE-rounds as the gates before P-rounds. Moreover, we define inverse
PE-rounds as the gates after inverse Initialization.

By using GRT and IGRT, the number of T gates is reduced compared to using the only
ST.

Thapliyal et al. proposed two constructions. The first construction replaced Toffoli
gates in Initialization and P-rounds with GRT and Toffoli gates in the inverse rounds with
IGRT. Other Toffoli gates are replaced with ST. Thapliyal et al. call this construction
qubit-optimize. The number of qubits is 4n, and the number of T gates is 40n.

The second construction replaced all Toffoli gates into GRT or IGRT by increasing
ancilla qubits. Thapliyal et al. call this construction T -optimize. Specifically, we replace
Toffoli gates in Initialization, P-rounds, and the inverse of them as the first construction.
Moreover, we replace Toffoli gates in G-rounds and C-rounds by the pair of GRT and
IGRT as in Figure 6.16. We call these gates PGRT, where P is an abbreviation of “pair”.
In this construction, Thapliyal et al. claim that the number of qubits is 6n, and the
number of T gates is 20n. However, we recalculated these results, and our results differ
from the results in [111]. In our result, the number of qubits is 4.5n, and the number of T
gates is 28n. The difference in the number of qubits occurs from our method for preparing
ancilla qubits. Thapliyal et al. prepare new ancilla qubits for G-rounds and C-rounds,
respectively, while recycling ancilla qubits for P-rounds. We apply this to G-rounds and
C-rounds similarly.

6.3 First-Level Optimization: Our Construction of a Controlled
Modular Adder

In this section, we explain the first-level optimization on the original construction [113].
In general construction, a comparator has about 1/2 the depth of a carry-lookahead
adder. Now, a controlled modular adder is composed of two comparators and one adder
in the general construction. Thus, by constructing a carry-lookahead adder using the
same general construction, the depth is about the same as the two adders. In the original
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IP IC IP
Init P G C P IG IInit

|a0⟩ • • • • •
|b0⟩ • • |(a+ b)0⟩

|c1⟩ • • •
|a1⟩ • • • • •
|b1⟩ • • • • |(a+ b)1⟩

|c2⟩ • • • • •
|a2⟩ • • • • •
|b2⟩ • • • • • • • • |(a+ b)2⟩

|p [2, 4]⟩ • •

|c3⟩ • • •
|a3⟩ • • • • •
|b3⟩ • • • • • • • • |(a+ b)3⟩

|c4⟩ • • • •
|a4⟩ • • • • •
|b4⟩ • • • • • • |(a+ b)4⟩

|p [4, 6]⟩ •

|c5⟩ • •
|a5⟩ • •
|b5⟩ • • • • |(a+ b)5⟩

|c6⟩ |(a+ b)6⟩

Fig. 6.15: An example of Draper et al.’s carry-lookahead adder. This circuit adds two
6-bit numbers a and b, namely |a⟩ |b⟩ → |a⟩ |a+ b⟩. In this figure, we sort qubits from
the lowest qubits to the highest qubits. The labels at the top are the rounds, including
Toffoli gates. Init means Initialization. IP, IC, IG, and IInit means Inverse P-rounds,
Inverse C-rounds, Inverse G-rounds, and Inverse Initialization.

GRT IGRT
• •
• •

|0⟩ •

|ci⟩

Fig. 6.16: Replacing Toffoli gates in G-rounds and C-rounds on a T -optimize carry-
lookahead adder. We call this decomposition PGRT. We replace the first Toffoli gate
with GRT and the second Toffoli gate with IGRT. The third qubit is an ancilla qubit.
This qubit is measured in IGRT and be |0⟩ after running PGRT.
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Fig. 6.17: Our construction of a controlled modular adder based on Figure 6.10. A CC-
adder is constructed by embedding, an adder, and resetting. Then, we add the second
register |d⟩ as an n-qubit ancilla for embedding the value based on CTRL. The carry
register |c⟩ with n qubits and the p-function register |p⟩ with n qubits are not repre-
sented in this figure for visibility. In a C-comparator, we do not use the second register.
In total, our controlled modular adder requires 4n+ 2 qubits.

Table 6.1: Gate count and depth of our proposed controlled modular adder. The break-
down of this is shown in Table 6.2.

Count Depth
Operation Toffoli CNOT Toffoli CNOT

C-comparator (twice) 4n n 2 logn O(1)
CC-adder 9.5n 4.75n 4 logn 2 log n

Total 17.5n 6.75n 8 logn 2 log n

construction, we use three adders. Thus, we use only 2/3 of the depth of the original
construction. We then need to give the construction of

• C-comparator (Section 6.3.1)
• CC-adder (Section 6.3.2)

on a carry-lookahead adder. We do not decompose Toffoli gates in this construction
because the decomposition of Toffoli gates is different in FTQ or NISQ computers, re-
spectively. Thus, we leave Toffoli gates as they are, and we consider the decomposition of
Toffoli gates in Section 6.4.

In our construction, we consider the classicality of a and N as described by Malkov and
Saeedi [68] to realize higher efficiency. Moreover, we consider a C-comparator precisely
that is not considered in the original construction. By doing these, we propose a circuit
construction of a controlled modular adder.

Based on Figure 6.10, we construct our circuit as shown in Figure 6.17. We add the sec-
ond n-qubit ancilla register for embedding value with CTRL. In addition to these registers,
we use the carry register |c⟩ with n qubits and the p-function register |p⟩ with n qubits
to realize the carry-lookahead adder, not represented in Figure 6.17. Thus, our controlled
modular adder requires 4n+ 2 qubits. The number of gates and the depth is given in Ta-
ble 6.1, and the breakdown of this is given in Table 6.2. We now explain our construction
of the C-comparator and the CC-adder in Section 6.3.1 and 6.3.2, respectively. We then
give the example circuit of our controlled modular adder in Section 6.3.3.
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Table 6.2: Gate count and depth of our proposed controlled modular adder. We omit
the rounds whose gate count is O(1) and whose depth is O(1).

Count Depth
Operation Rounds Toffoli CNOT Toffoli CNOT

Initialization 0 0.5n 0 O(1)
P n 0 } logn 0C-comparator G n 0

(twice) Inverse G n 0 } logn 0Inverse P n 0
Inverse Initialization 0 0.5n 0 O(1)

Total 4n n 2 logn O(1)
Embedding O(1) 0.75n O(1) logn

Initialization 0.75n 0.75n O(1) O(1)
P n 0 } logn 0G n 0
C n 0 } logn 0Inverse P n 0

Calculating |a+ b⟩ 0 n 0 O(1)
CC-adder PE 0 0.75n 0 O(1)

P n 0 } logn 0Inverse C n 0
Inverse G n 0 } logn 0Inverse P n 0

Inverse Initialization 0.75n 0.75n O(1) O(1)
Resetting O(1) 0.75n O(1) logn

Total 9.5n 4.75n 4 logn 2 log n
Total 17.5n 6.75n 8 logn 2 log n

6.3.1 Construction of a C-comparator
In a C-comparator, only COMP is changed, and other qubits do not change. Thus, to
implement a C-comparator, it is sufficient that we add control operations only on the
gates, including COMP, and we remain other gates.

In our construction of a controlled modular adder, we use two types of C-comparators.
In the first C-comparator, we flip COMP if CTRL is 1 and b ≥ N − a. In the final
C-comparator, we flip COMP if CTRL is 1 and b < a. In both cases, we judge whether
b ≥ d or b < d with a classical value of d.

We construct these operations taking advantage of the classicality of d. The intuitive
explanation of this operation is that we calculate b+ (2n − d) and check whether there is
an overflow in the n-th bit. Specifically,

b+ (2n − d) = 2n + (b− d)

and there is an overflow when b ≥ d. This construction is similar to previous constructions
by Markov and Saeedi [68], but slightly different from them because our construction does
not require X gates on |b⟩. The number of gates and the depth is given in Table 6.1. The
abstract construction of our C-comparator is given in Figure 6.18, and the example circuits
are shown in Figure 6.20 and 6.22.

We now explain the construction of a C-comparator in more detail. In a C-comparator,
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Fig. 6.18: Block-level view of our construction of a C-comparator. We sort qubits from
the low-order qubits to the high-order qubits, top to bottom, in this figure. This circuit
is symmetric about the Toffoli gate surrounded by a dotted box. |ci⟩ is given as |0⟩ at
the beginning of this circuit. Then, these qubits are cleared back to |0⟩ after the compu-
tation. The example circuits are shown in Figure 6.20 or 6.22.

we judge whether b ≥ d, where b is a quantum value and d is a classical value. We conduct
this by calculating the carry out of the entire circuit b + (2n − d). Our construction is
given as follows:

Initialization
If we conduct Initialization naively, we apply a Toffoli gate and a CNOT gate for

each bit. However, the compilation of a quantum algorithm often requires compilation
(selection of the sequence of gates) to be adapted to the specific classical values that
are inputs to the overall algorithm. Because 2n − d is a classical value, we can convert
some Toffoli gates to CNOT gates and eliminate other gates. Then, we calculate each
(2n − d)i (0 ≤ i ≤ n− 1). If (2n − d)i = 1, we apply gates as follows:

1. CNOT gates with the control qubit |bi⟩ and the target qubit |ci+1⟩;
2. X gates with on |bi⟩.

These operations correspond to Toffoli gates or CNOT gates in the Initialization phase in
Draper et al.’s construction, respectively.

P-rounds and G-rounds
We conduct P-rounds and G-rounds, similar to Draper et al.’s construction.
Writing result on the COMP qubit (O(1) gates and O(1) depth)
If we want to flip COMP when b ≥ d, we apply Toffoli gates with the control qubits of

CTRL and |g [0, n]⟩, and with the target qubit of COMP. If we want to flip COMP when
b < d, we apply Toffoli gates similarly to b ≥ d, but we apply NOT gates on |g [0, n]⟩
before and after the Toffoli gate.

Resetting qubits
We conduct inverse G-rounds and inverse P-rounds, similar to Draper et al.’s construc-

tion. Moreover, we conduct the inverse of our Initialization. Then, we reset all qubits
except for COMP as the initial values.

6.3.2 Construction of a CC-adder
In a CC-adder, we embed values before and after an adder, similar to a C-adder [116].
Based on this construction, we apply optimization by considering the classicality of a and
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CTRL • •

|d⟩ / 2n + a−N a

COMP • •

Fig. 6.19: Block-level diagram of the embedding circuit. We omit |b⟩ in Figure 6.17.
We embed 2n + a − N or a on |d⟩ based on CTRL and COMP. The example circuit of
the embedding is shown in Figure 6.21.

N . From this point forward, we mainly focus on embedding on |d⟩. In a CC-adder, we
conduct the following:

• If CTRL is 1 and COMP is 1, we add a and subtract N . This operation can be
realized by adding 2n + a−N and disregarding the calculation of a carry cn.

• If CTRL is 1 and COMP is 0, we add a.
• Otherwise, we add no value.

Thus, the embedding is conducted as in Figure 6.19. The resetting is conducted by
inverting the embedding circuit.

After embedding, we apply a standard adder. Then, we conduct two optimizations as
follows:

• Disregarding gates including |g [0, n]⟩
• Eliminating gates in Initialization where we know the control bit is 0

The number of gates and the depth is given in Table 6.1. Moreover, we give the example
circuit of a CC-adder in Figure 6.21.

We now give the construction of a CC-adder in more detail. First, we explain the
construction of embedding in more detail. We want to embed as follows:

• If CTRL is 1 and COMP is 1, we embed 2n + a−N .
• If CTRL is 1 and COMP is 0, we embed a.
• Otherwise, we embed no value.

Therefore, we embed on the second register on Figure 6.17 as follows:

• If CTRL is 1 and (2n + a−N)i = ai = 1, i-th qubit is |1⟩.
• If CTRL is 1, COMP is 1, (2n + a−N)i = 1, and ai = 0, i-th qubit is |1⟩.
• If CTRL is 1, COMP is 0, (2n + a−N)i = 0, and ai = 1, i-th qubit is |1⟩.
• Otherwise, we do nothing.

In the above condition, the values of (2n + a−N)i and ai are classical information, and
CTRL and COMP are quantum information. Thus, embedding in the first condition can
be realized by CNOT gates with the control qubit of CTRL. Moreover, embedding in
the second and third conditions can be realized by Toffoli gates with the control qubits
of CTRL and COMP. However, the set of i in each classical condition has no overlap.
Therefore, once we embed one of i, we can embed the remaining value as CNOT gates. In
each set, we have average n/4 elements requiring n/4 CNOT gates, O(1) additional gates.
Thus, these embedding can be implemented by 3n/4 CNOT gates. Moreover, because
we can run these simultaneously, embedding requires logn CNOT depth. The reset of
embedding can be implemented similarly.

Next, we explain the optimization in an adder. In our calculation, there is no carry for
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g [0, n] whether we subtract N − a or add a. Thus, we can disregard calculation of carry
qubit g [0, n]. To realize this, we omit calculation of p [i, n] and g [i, n] (i < n). Moreover,
by using the classicality of a and N , we know that we embed no value in average n/4
qubits on the second register of Figure 6.17. In these qubits, we can omit Initialization,
inverse Initialization, and CNOT gates with the control qubit of |ai⟩ and the target qubit
of |bi⟩ in erasing carry. By considering these optimizations, we reduce n/2 Toffoli gates
and 3n/4 CNOT gates.

6.3.3 Example of Our Controlled Modular Adder
We show an example of a 6-bit controlled modular adder when N = 59 and a = 37.
Circuits are given in Figures 6.20–6.22.

In these example figures, registers are shown with low-order qubits at the top, in contrast
to Figure 6.17. In this subsection, the register |b⟩ contains a quantum value.

The algorithm follows in this order:

1. Conduct a C-comparator with the control qubit CTRL. Compare |b⟩ andN−a = 22.
If b ≥ 22, flip COMP. This is implemented by adding 26 − (N − a) = 42 and using
the carry out.

2. Conduct a CC-adder. If both CTRL and COMP are 1, subtract N − a = 22. This
is implemented by adding 26 − (N −a) = 42 without calculating carry c6. If CTRL
is 1 and COMP is 0, add a = 37, otherwise, add no value.

3. Conduct a C-comparator with the control qubit CTRL. Compare |b⟩ and a = 37. If
b < 37, flip COMP. This is implemented by calculating carry of adding 26 −a = 27.

These steps correspond to Figure 6.20, 6.21, and 6.22, respectively.

6.4 Second-Level Optimization: Constructing a Controlled
Modular Adder for FTQ and NISQ

In this section, we explain our second-level optimization. We evaluate the computational
cost for both FTQ on the logical layer and NISQ, focusing on the decomposition of Toffoli
gates. At first, we minimize the depth of our controlled modular adder. Then, we propose
a controlled modular adder that is more efficient than Van Meter and Itoh [113], called
the original construction in this section. For FTQ computers, we minimize the number of
T gates and the T -depth using Gidney’s relative-phase Toffoli gates. For NISQ computers,
we apply Maslov’s relative-phase Toffoli gates with a small number of CNOT gates [70].

Moreover, we consider minimizing KQ. In NISQ computers, KQCX is minimized by our
construction. However, our construction for FTQ computers does not take into consider-
ation the cost of distillation. Then we minimize KQT by taking into account the cost of
distillation by finding the maximal number of T gates which should be run simultaneously.

In the following discussion, we disregard the rounds with O(1) gates. This section
explains the optimization for FTQ computers in Section 6.4.1 and the optimization for
NISQ computers in Section 6.4.2.

6.4.1 Evaluating the Computational Cost of Controlled Modular Addition for
FTQ computers on the Logical Layer

We now consider the optimal circuit for FTQ computers on the Logical layer. First, we
minimize the number of T gates on our controlled modular adder. In our CC-adder, we
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Init P G IG IP IInit
CTRL •

|d0⟩
|b0⟩
|c1⟩ • •
|d1⟩

|b1⟩ • • • •

|c2⟩ • •

|d2⟩
|b2⟩ • •

|p [2, 4]⟩ • •

|c3⟩ • •
|d3⟩

|b3⟩ • • • • • •

|c4⟩ • •

|d4⟩
|b4⟩ • •

|p [4, 6]⟩ • •

|c5⟩ • •
|d5⟩

|b5⟩ • • • • • •

|c6⟩ •

COMP

Fig. 6.20: An example circuit of the first C-comparator for flipping the COMP qubit if
b ≥ 22. To achieve this, We add 26 −22 = 42 = 1010102 and use the COMP qubit as the
carry out of the adder. The Init phase consists of pairs of gates, namely a CNOT and
an X gate, on the second, fourth, and sixth groups of qubits, including |di⟩, |bi⟩, and
|ci+1⟩ from the lowest bit. This circuit is symmetric about the Toffoli gate surrounded
by a dotted box. Init, IP, IG, and IInit mean Initialization, Inverse P-rounds, Inverse
C-rounds, Inverse G-rounds, and Inverse Initialization.
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Embedding Resetting

CTRL • • • • • •

|d0⟩ • • • • • • •

|b0⟩ • •

|c1⟩ • • •

|d1⟩ • • • • • • •

|b1⟩ • • • •

|c2⟩ • • • • •

|d2⟩ • • • • •

|b2⟩ • • • • • • • •

|p [2, 4]⟩ • •

|c3⟩ • • •

|d3⟩ • • • • •

|b3⟩ • • • • • • • •

|c4⟩ • • •

|d4⟩

|b4⟩ • •

|p [4, 6]⟩

|c5⟩ •

|d5⟩ •

|b5⟩

|c6⟩

COMP • • • •

Fig. 6.21: An example of the CC-adder. If both CTRL and COMP are 1, we subtract
N − a = 22. This is implemented by adding 26 − (N − a) = 42 = 1010102 without
calculating carry c6. If CTRL is 1 and COMP is 0, we add a = 37 = 1001012. Based
on these, we conduct embedding and resetting. The remaining part is an adder, and we
omit the calculation of p[i, 6] and g[i, 6] (i < 6).
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Init P G IG IP IInit
CTRL •

|d0⟩

|b0⟩ • •

|c1⟩ • •

|d1⟩

|b1⟩ • • • •

|c2⟩ • •

|d2⟩
|b2⟩ • •

|p [2, 4]⟩ • •

|c3⟩ • •
|d3⟩

|b3⟩ • • • • • •

|c4⟩ • •

|d4⟩

|b4⟩ • • • •

|p [4, 6]⟩ • •

|c5⟩ • •

|d5⟩
|b5⟩ • • • •

|c6⟩ •

COMP

Fig. 6.22: An example of the last C-comparator. We flip the COMP qubit if b < 37.
This is achieved by adding 26 − 37 = 27 = 0110112 and using the carry out. First,
we apply pairs of gates, namely a CNOT and an X gate, on the first, second, fourth,
and fifth groups of qubits. In contrast to Figure 6.20, we apply X gates before and after
the center Toffoli gate. This circuit is symmetric about the Toffoli gate surrounded by
a dotted box. Init, IP, IG, and IInit means Initialization, Inverse P-rounds, Inverse C-
rounds, Inverse G-rounds, and Inverse Initialization.
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G inverse G
GRT IGRT

• ... •
• ... •

|0⟩ • ... •
|ci⟩ ...

Fig. 6.23: Our construction of G-rounds and inverse G-rounds in a C-comparator. In
Figure 6.16, we apply IGRT after the first CNOT gate immediately in G-rounds and in-
verse G-rounds. In our construction, we calculate the result of GRT in the third ancilla
qubit and preserve this qubit until the corresponding Toffoli gate in inverse G-rounds.
Then, we clear this ancilla qubit by IGRT.

Table 6.3: T -count of our controlled modular adder and prior work. The latter four
constructions are based on our construction proposed in Section 6.3. The breakdown of
the latter four constructions is shown in Table 6.5.

Construction #comparators #adders Total T -count
Van Meter and Itoh [113] 0 3 210n

Draper et al. [26] 2 1 122.5n
Thapliyal et al. (qubit-optimize) [111] 2 1 75n

Thapliyal et al. (T -optimize) [111] 2 1 51n
Ours 2 1 43n

Table 6.4: T -depth of our controlled modular adder and prior work. The latter four
constructions are based on our construction proposed in Section 6.3. The breakdown of
the latter four constructions is shown in Table 6.6.

Construction #comparators #adders Total T -count
Van Meter and Itoh [113] 0 3 72 log n

Draper et al. [26] 2 1 48 log n
Thapliyal et al. (qubit-optimize) [111] 2 1 48 log n

Thapliyal et al. (T -optimize) [111] 2 1 16 log n
Ours 2 1 12 log n

adopt construction similar to Thapliyal et al., replacing Toffoli gates in G-rounds and
C-rounds with PGRT especially. We minimize the number of T gates in a C-comparator.
In a C-comparator, we replace Toffoli gates in Initialization and P-rounds with GRT and
Toffoli gates in the inverse rounds with IGRT as the same as Thapliyal et al.’s construction.
We focus on G-rounds. The abstract circuit of a C-comparator is shown in Figure 6.18,
and we give example circuit as Figure 6.20 or 6.22. In these figures, Toffoli gates in
G-rounds and inverse G-rounds are symmetric about the Toffoli gate surrounded by a
dotted box. The control qubits of corresponding Toffoli gates in G-rounds and inverse
G-rounds are the same. Therefore, we calculate with an accurate phase as Figure 6.23.
This construction requires an additional n qubits to preserve. Fortunately, we do not use
n qubits for |d⟩ in Figure 6.17. Thus, we realize this construction without an overhead of
qubits.
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The computational cost of our controlled modular adder is shown in Table 6.3, and 6.4.
The breakdown of those based on our construction are shown in Table 6.5 and 6.6.

From Table 6.3 and 6.4, our construction is better in terms of both the number of T
gates and T -depth. We now compare our circuit to the original construction.

First, we compare the number of T gates. The original construction requires 30n
Toffoli gates implemented by ST requiring 7 T gates and 210n T gates in total. Thus, our
construction requires 20% of the number of T gates of the original construction.

Next, we compare the T -depth. The original construction requires 12 log n Toffoli depth
implemented by ST requiring 6 T -depth and 72 log n T gates in total. Thus, our construc-
tion requires 17% of the number of T -depth of the original construction.

We now focus on KQ of our controlled modular adder. In this circuit, we use O(n)
qubits and O(logn) depth, giving a KQ of O(n logn). However, we do not consider the
computational costs for distillation in this calculation. We can trade space for time, with
substantial flexibility, by allocating more qubits to ancilla “factories”, corresponding to
increasing the number of T gates that are in concurrent execution [106, 114]. For an
accurate estimate of the cost, and to enable fair comparison with prior research, we must
consider the T gate costs, including the space for distillation [51, 52]. Thus, we must
consider distillation costs in the calculation of KQ similarly.

However, it is not easy to calculate computational costs for distillation precisely because
the cost depends on many architecture-specific parameters. Instead of KQ, we define a
new index KQT as the product of the number of logical qubits and the T -depth. Moreover,
we define nT as the T -width, the upper-bound of the number of T gates running simulta-
neously. We assume that we require a constant cg logical qubits for the distillation step.
By calculating nT minimizing KQT , we reduce the computational cost of our controlled
modular adder.

Our controlled modular adder uses 4n + 2 qubits for calculation, as explained in Sec-
tion 6.3. Also, we require ancilla qubits for running nT T gates. Specifically, to run one
T gate, we require one qubit |Y ⟩ for running S gates and cg qubits for generating |A⟩.
Thus, when we run nT T gates simultaneously, we use the following qubits:

• |y⟩ (Contains |Y ⟩ states), nT qubits
• |g⟩ (Generates |A⟩ states), cgnT qubits

The number of qubits in |y⟩ is given as nT , because we consume one S gate in each T
gate. Then, the number of qubits is

4n+ (cg + 1)nT + 2. (6.7)
We now calculate the T -depth of our controlled modular adder. To calculate the T -

depth, we assume that we run GRT with the same timing, and each GRT has 2 T -depth
from Figure 6.5. We focus on the parts of running simultaneously.

Except for Initialization, we run

• P-rounds and G-rounds simultaneously
• C-rounds and inverse P-rounds simultaneously
• P-rounds and inverse C-rounds simultaneously
• Inverse G-rounds and inverse P-rounds simultaneously

In the first and third steps, we run many T gates simultaneously at the start. Then, we
run fewer T gates as the calculation progresses. In the second and fourth steps, we run
only a few T gates simultaneously initially. Then, we run more T gates as the calculation
progresses. Thus, there is a difference for T gates we can run simultaneously.

As noted in the above discussion, we define nT as the upper-bound of the number of
T gates running simultaneously, and we calculate T -depth based on nT as in Figure 6.24.
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There are parts where we can run more than nT T gates in each round. However, by
setting nT , we separately run these T gates. Compared to this, in the parts having less
than nT T gates, we can run these T gates simultaneously.
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Fig. 6.24: Calculating T -depth. Distill means distillation circuits. In the naive con-
struction, we run as many T gates as possible. In our construction, we restrict the
upper-bound of the number of simultaneous T gates to nT . When we reduce nT , the
total number of qubits is smaller, and the T -depth increases.

First, we consider the parts having fewer than nT T gates, which happens when we run
P-rounds and G-rounds simultaneously, C-rounds and inverse P-rounds simultaneously, P-
rounds and inverse C-rounds simultaneously, and inverse G-rounds and inverse P-rounds
simultaneously. In these rounds, if we have no restriction on running T gates, patterns
are given as follows:

• In the first and the third cases, the number of T gates we can run simultaneously
decreases by one half as the calculation progresses. Thus, in the latter part of the
calculation, we run fewer than nT T gates simultaneously. This part has T -depth
2 log nT and nT T gates in total.

• In the second and the fourth cases, the number of T gates we can run simultaneously
doubles as the calculation progresses. Thus, in the former part of the calculation,
we run less than nT T gates simultaneously. This part has T -depth 2 lognT and
nT T gates in total.

We have 6 parts, each with a small number of T gates, as follows:

• P-rounds and G-rounds in the first C-comparator
• P-rounds and G-rounds in the CC-adder
• C-rounds and inverse P-rounds in the CC-adder
• P-rounds and inverse C-rounds in the CC-adder
• Inverse G-rounds and inverse P-rounds in the CC-adder
• P-rounds and G-rounds in the final C-comparator

Thus, we consume 12 log nT T -depth and 6nT T gates in these.
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Next, we consider the remaining parts. In these parts, we run T gates nT each. The
number of total T gates is 43n from Table 6.3, and we run 43n− 6nT T gates.

Thus, T -depth of this part is given by

2 (43n− 6nT )
nT

= 86n
nT

− 12.

In conclusion, T -depth is given by

86n
nT

+ 12 log nT − 12. (6.8)

We now minimize KQT on nT . From Eqs. (6.7) and (6.8), KQT is

(4n+ (cg + 1)nT + 2)
(

86n
nT

+ 12 log nT − 12
)
. (6.9)

We minimize this on nT > 0.
Letting the expression in Eq. (6.9) be f (nT ), we see that

d2f (nT )
dn2

T

> 0

in nT > 0. Thus, f (nT ) is a convex function and it is sufficient to search for only one
optimal value of nT . Then, the optimal value of nT is given as

nT =

√
86

3(cg + 1)
n√

logn
(6.10)

Thus, O
(

n√
logn

)
T -width minimizes KQT . Substituting the value of nT in Eq. (6.10)

into Eq. (6.9),

4n+ (cg + 1)nT + 2 ∼ 4n
86n
nT

+ 12 log nT − 12 ∼ 12 logn

Therefore, the dominant term of KQT is 48n logn.

6.4.2 Optimization of a Controlled Modular Adder for NISQ Computers
We now propose the controlled modular adder reducing CNOT gates. We use relative-
phase Toffoli gates with differences in phase as in Figures 6.7 and 6.8, proposed by
Maslov [70]. By using these relative-phase Toffoli gates, we reduce the number of CNOT
gates. We now consider which Toffoli gates can be replaced into relative-phase Toffoli
gates.

First, we consider which Toffoli gates can be replaced in a C-comparator. The structure
of a C-comparator is shown in Figure 6.18, and we give an example circuit as in Figure 6.20
or 6.22. In these figures, all Toffoli gates are symmetric about the Toffoli gate surrounded
by a dotted box in the middle of the circuit. We replace the Toffoli gates on the left and
right side by RT3 and IRT3. Thus, we can replace all of the Toffoli gates except for this
middle one with RT3 or IRT3.
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Table 6.7: CNOT count of our controlled modular adder and prior work. The latter
four constructions are based on our construction proposed in Section 6.3. The break-
down of the latter four constructions is shown in Table 6.9.

Construction #comparators #adders Total CNOT count
Van Meter and Itoh [113] 0 3 184.5n

Draper et al. [26] 2 1 111.75n
Thapliyal et al. (qubit-optimize) [111] 2 1 88n

Thapliyal et al. (T -optimize) [111] 2 1 104n
Ours 2 1 64.75n

Table 6.8: CNOT-depth and KQCX of our controlled modular adder and prior work.
The latter four constructions are based on our construction proposed in Section 6.3.
The breakdown of the latter four constructions is shown in Table 6.10.

Construction #qubits The depth of the circuit KQCX
Van Meter and Itoh [113] 4n 78 log n 312n logn

Draper et al. [26] 4n 50 log n 200n logn
Thapliyal et al. (qubit-optimize) [111] 4n 50 log n 200n logn

Thapliyal et al. (T -optimize) [111] 4.5n 66 log n 297n logn
Ours 4n 30 log n 120n logn

Next, we address which Toffoli gates can be replaced in a CC-adder. We find that those
in P-rounds can be replaced by RT3 and those in inverse P-rounds by IRT3. The other
Toffoli gates are used to calculate the value of carries. The values of the control bits
are different between calculating a carry and erasing it. It would seem to rule out using
anything but pure Toffoli gates. However, looking more closely, we see that the value of a
carry changes at most once, namely when both control bits are |1⟩. Thus, if we calculate
correctly in other situations, we can calculate and clear carries correctly. RT4 satisfies
this. Therefore, we can replace Toffoli gates by RT4 in the Initialization, G-rounds, and
C-rounds, and we can replace Toffoli gates by IRT4 in the inverse rounds.

As a result, the cost of our controlled modular adder is shown in Table 6.7 and 6.8. The
breakdown of those based on our construction are shown in Table 6.9 and 6.10.

From Table 6.7 and 6.8, our construction is better in terms of both the number of
CNOT gates and CNOT-depth. We now compare our circuit to the original construction.

First, we compare the CNOT count. Our construction requires 64.75n CNOT gates.
The original construction requires 30n Toffoli gates implemented by ST using 6 CNOT
gates, and we use an additional 4.5n CNOT gates in embedding or resetting. Thus, the
original construction requires 184.5n CNOT gates in total. Therefore, our construction
reduces the number of CNOT gates to only 35% of the original.

Next, we compare CNOT-depth. Our construction requires 30 log n CNOT-depth. The
original construction requires 12 log n Toffoli depth implemented by ST requiring 6 CNOT-
depth, and we require 6 logn CNOT-depth for the embedding step. Thus, the original
construction requires 78 log n CNOT-depth. Therefore, our construction requires the only
38% of the CNOT-depth of the original construction. We now focus on KQ by using
KQCX, defined as the product of the number of qubits and CNOT-depth. Then, our
construction requires the only 38% of the KQCX of the original construction.
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6.5 Security of RSA Scheme against FTQ computers
In this section, we evaluate the security of the RSA scheme against FTQ computers. We
evaluate the required time for modular exponentiation similar to the previous research [52].
Moreover, we estimate the period during which our construction breaks the RSA scheme
by focusing on the executable depth.

Before evaluating the computational cost, we discuss the ancilla qubits for modular
exponentiation. As indicated in Section 2.2.3, the following qubits are required for con-
structing modular exponentiation:

• n qubits for multipliers
• 1.5n qubits for the exponent

Only one qubit is required for an exponent using a qubit recycling technique [69]. Thus, we
require 5n+O(1) qubits to construct modular exponentiation based on our construction.

We now evaluate the computational time of our construction based on the previous
analysis [52]. The Toffoli-depth of the previous construction is 16n2 logn, and this corre-
sponds to 96n2 logn T -depth. It should be noted that the original construction reduces
the number of controlled modular adders by the following optimizations:

• Summarizing two controlled modular adders
• Allowing approximate calculation

These optimizations will require more consideration to apply our construction in a future
study; we evaluate our construction without these optimizations.

We then estimate the period during which our construction breaks the RSA scheme.
From the IBM roadmap [49], the number of qubits increases as follows:

• 2019: 27 qubits (released)
• 2020: 65 qubits (released)
• 2021: 127 qubits
• 2022: 433 qubits
• 2023: 1121 qubits

Following the plan developed by IBM, the number of qubits will double per year, and
the number of qubits may reach 65 × 2t in t years. However, an accurate computation
is not realized on all qubits, and the number of qubits is not the only index representing
the machine power of quantum computers. To evaluate the machine power of quantum
computers, the quantum volume (QV) [20] has been adopted. In brief, QV is defined by
2min(m,d), where m and d are the numbers of qubits and the CNOT-depth of a quantum
circuit based on most accurate calculations. The correctness is verified by solving the
heavy output generation problem [1] on each machine. In this experiment, the heavy
output is defined as the 2m−1 outputs with high probability. We regard a quantum
computation as successful when the machine outputs a heavy output with a probability
of 2/3. In an experiment conducted by IBM, m and d are set to the same values. Here, a
27 qubit machine from IBM achieves an almost correct calculation when m = d = 6 [53],
and the machine has a QV of 64.

Currently, some of the qubits are used correctly in the current machines. As technology
improves, all qubits may be used correctly. The executable depth will also develop toward
increasing the number of qubits. However, the executable depth, especially the executable
T -depth, will be limited because it requires much CNOT-depth.

Based on these estimation, we now describe an assumption based on the executable
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depth in estimating the period when the RSA scheme is broken. First, we assume that the
executable CNOT-depth is the same as the number of qubits because quantum computers’
current development focuses on maximizing QV. Then, the executable CNOT-depth is
65 × 2t in t years later. Next, we assume that CNOT-depth required for generating one T
gate is 12. In the previous result [52], the distillation circuit shown in Figure 6.4 requires
6 time steps, namely 5 CNOT-depth and 1 measurement. Similar to the previous result,
we deal with these gates similarly. Moreover, the previous study employs the distillation
circuit twice for one T gate. Based on the above discussion, the CNOT-depth required
for generating one T gate is 12.

We now review the previous construction. In the 1024-bit RSA scheme, the previous
construction uses 1.01 × 109 T -depth and requires 1.81 days to break the 1024-bit RSA
scheme, and 1.01 × 109 T -depth corresponds to 1.21 × 1010 CNOT-depth. This CNOT-
depth is realized 27.5 years later based on our assumption. Moreover, in the 2048-bit RSA
scheme, the previous construction uses 4.43 × 109 T -depth and 5.32 × 1010 CNOT-depth.
The required time is

1.81 × 4.43 × 109

1.01 × 109 = 7.94 [days].

Moreover, this CNOT-depth is realized 29.6 years later based on our assumption.
We now evaluate the security of the RSA scheme based on our construction. We con-

sume 12 log n T -depth in a controlled modular adder. Thus, 3n2 controlled modular adders
are called, and the total T -depth is 36n2 logn.

First, we evaluate the security on a 1024-bit RSA scheme, namely, n = 1024. When
n = 1024, the T -depth is 36n2 logn = 3.77 × 108. Thus, the required time is

1.81 × 3.77 × 108

1.01 × 109 = 0.68 [days],

which corresponds to 16.2 hours. Now, CNOT-depth is 4.52 × 109, and this depth will be
realized 26.1 years later, which is 1.4 years faster than the original construction. Thus,
the 1024-bit RSA scheme can be broken in 2046.

Next, we evaluate the security on a 2048-bit RSA scheme, namely, n = 2048. When
n = 2048, the T -depth is 36n2 logn = 1.66 × 109. Thus, the required time is

1.81 × 1.66 × 109

1.01 × 109 = 2.97 [days].

Now, CNOT-depth is 1.99 × 1010, and this depth will be realized 28.2 years later, which
is 1.4 years faster than the original construction. Thus, the 2048-bit RSA scheme can be
broken in 2048.

6.6 Conclusion and Future Work
In this study, we proposed a method for optimizing a controlled modular adder based on
a carry-lookahead adder [26] and Van Meter-Itoh’s construction [113]. First, we showed
that the general construction given in Figure 6.10 has approximately 2/3 of the depth
of the original construction. We then constructed a more efficient circuit. We evaluated
the computational cost for use in FTQ computing. Then, we showed that our circuit
requires the only 20% of the T gates and 17% of the T -depth of the original. Moreover,

we showed that our circuit achieves its minimum KQT when we run Θ
(

n√
logn

)
T gates

simultaneously. We also proposed an efficient circuit for use in the NISQ era. We showed
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that our circuit requires the only 35% of the CNOT gates and 38% of the CNOT-depth of
the original. Finally, we evaluated the security of the RSA scheme against FTQ computers.
We estimated that the 2048-bit RSA scheme can be broken 28.2 years later based on IBM’s
plan [49] which is 1.4 years earlier than Van Meter-Itoh’s construction.

In this study, we focused on optimizing the Toffoli gates using relative-phase Toffoli
gates. However, in previous studies [75, 110], other researchers have used gates such as
Fredkin and Peres gates. These gates may also be simplified by replacing them with
relative-phase gates. Thus, we expect that those circuits will also show an improvement
when applying these techniques.

We considered only a single controlled modular adder and evaluated the security of
the RSA scheme. However, to realize a more efficient circuit, we must consider more
optimization to construct a controlled modular multiplier and modular exponentiation.
Mainly, more optimization is applied in the previous constructions [35, 113]. With these
constructions, the following optimizations are adopted:

• A summarization of many controlled modular adders
• The allowance of an approximate calculation

The first optimization, called window arithmetic [34], can be applied to our construction
with a small modification. However, this optimization uses fewer T gates instead of
consuming many more CNOT gates. In particular, the construction of Gidney and Ekerå
gates reduces the Toffoli count to 0.3n3 + 0.0005n3 logn and the Toffoli-depth to 500n2 +
n2 logn. Then, the T -count is O

(
n3 logn

)
and the T -depth is O

(
n2 logn

)
. The number

of CNOT gates is O
(
n4) and the CNOT-depth is O

(
n3). Thus, the CNOT gate is

the dominant cost in this construction. Therefore, to use window arithmetic, we must
not reduce only the T gates while maintaining the number of CNOT gates. The second
optimization is summarizing multiple modular arithmetic operations. The number of
controlled modular additions decreases by such summarization, although small errors are
incurred from the expected result. In particular, Gidney and Ekerå’s construction is faster
than our approach due to this approximate calculation. Thus, we should also consider
decreasing the calculation costs by allowing an approximate calculation. Also, it is crucial
to minimize the depth by reordering the gates [71, 88].

Our construction does not consider a linear nearest neighbor architecture of the quan-
tum computers [18, 28, 45]. Thus, we will consider the appropriate architecture and
additional costs incurred for our construction in the next stage.

Finally, we focused only on the logical layer of FTQ computers in this study. In a future
study, we must consider the mapping to physical qubits and the distillation protocols.
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Chapter 7

Conclusion

This thesis focuses on the security of public-key cryptosystems against side-channel and
quantum attacks.

Chapter 3 described the security against side-channel attacks recovering the CRT-RSA
secret keys from the correct sliding window leakage. We improved the side-channel attacks
on the CRT-RSA scheme implemented using the left-to-right sliding window method.
We proposed a new secret key recovery algorithm from the correct square-and-multiply
sequences. As a result, we recover 21% of the CRT-RSA secret keys in our proposed
method compared to 13% of the secret keys in the previous method for a 2048-bit CRT-
RSA when the window size w is 5.

Next, Chapter 4 gave the security analysis against side-channel attacks recovering the
CRT-RSA secret keys from noisy sliding window leakage. We proposed a new algorithm
for recovering the CRT-RSA secret keys from noisy sliding window leakage. Moreover, we
calculated the amount of error our method recovers for the CRT-RSA secret keys. Then,
we verified that our method can be applied to 1.1% actual errors when the window size
w is less than or equal to 4 based on numerical experiments.

Next, Chapter 5 gave the security analysis against side-channel attacks on Ring-LWE
and Module-LWE based schemes. We provided the exact security analysis on the LPR
cryptosystem against NTT leakage. We evaluated the number of recovered coefficients
of the secret polynomial based on an erasure model for the multiplication. We assumed
that we extract an input of multiplication with a probability of 1 − δ. Then, we analyzed
the recovery algorithm of LPR secret keys and showed that our method recovers the LPR
secret keys when δ ≤ 0.78 under the currently available computational power.

Finally, Chapter 6 described the security of the RSA scheme against quantum attacks.
We proposed an efficient controlled modular adder, which is the core arithmetic of Shor’s
algorithm. We provided a more efficient construction than Van Meter-Itoh’s approach
based on a carry-lookahead adder [113] by using relative-phase Toffoli gates. Moreover, we
described an efficient construction assuming actual devices, i.e., FTQ or NISQ computers.
To minimize the computational cost in FTQ computers, we reduced the number of T gates
in our controlled modular adder. Then, we showed that our circuit requires the only 20%
of the T gates and 17% of the T -depth of the original. Moreover, taking the distillation
into consideration, we found that we can minimize KQT by running Θ

(
n/

√
logn

)
T

gates simultaneously. We then proposed an efficient circuit for use in the NISQ era and
demonstrated that our circuit requires the only 35% of the CNOT gates and 38% of
the CNOT-depth of the original. Finally, we evaluated the security of the RSA scheme
against FTQ computers. We estimated that the 2048-bit RSA scheme will be broken 28.2
years later based on the plan developed by IBM [49] which is 1.4 years earlier than Van
Meter-Itoh’s construction.
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