
博士論文

Analysis of Deep Learning

from the Viewpoint of Model Structures

（モデル構造的見地からの深層学習解析）

大野健太

Copyright c© 2020, Kenta Oono

Abstract

Machine learning (ML) models are designed to make full use of knowledge inherent in tasks.
In Deep Learning (DL), which has become a significant movement in the ML community from
the late 2000s, predictive models reflect the task knowledge to their structures, specifically com-
putational units in computational graphs and the graphs’ topology. For example, Convolutional
Neural Network (CNN) and Graph Neural Network (GNN) are standard DL models for images
and graph-structured data, respectively. They are intentionally designed to exploit the inductive
bias of structures in data and show superior empirical performance. Many studies have clarified
the strength of DL theoretically. However, their focus was mostly on Fully-connected Neural
Networks (FNN), the most general architecture in DL, and less attention has been paid to the
theoretical analysis of DL models with such specific structures.

In this study, we study how structures in DL models affect their theoretical characteristics,
such as expressive power, optimization ability, and generalization ability. In particular, we pay
attention to the following three structures: skip connections in CNNs, node aggregation operations
of GNNs, and multi-scale GNNs.

First, we analyze the expressive power and generalization ability of CNNs with skip connec-
tions. Skip connections bypass intermediate computational units and directly feed the outputs of
a unit to non-direct descendants. Residual Network (ResNet), a specific type of CNNs with skip
connections, enabled us to stack more than 100 layers in image recognition tasks thanks to its
special computational graph topology induced by skip connections. We theoretically analyze the
effectiveness of skip connections from the viewpoint of sparsity. Specifically, we derive the esti-
mation error rates of ResNet-type CNNs in non-parametric regression problems. As a corollary,
we show the minimax optimality of dense ResNet-type CNNs in a particular setting, which has not
been known for FNNs without unrealistic assumptions on model sparsity. The key of our analysis
is to associate the expressive power of a ResNet-type CNNs with that of an FNN with special
sparse structures that we coin a block-sparse FNN. Our result implies that skip connections in
CNNs induce implicit sparse structures and promote their theoretical performance.

Next, we elucidate the expressive power of (single-scale) GNNs. Many GNN models have
node aggregation operations in their architecture. These operations nicely reflect the inductive
bias of graph learning tasks that neighboring nodes are highly correlated. However, they cause a
side effect at the same time known as over-smoothing, in which deep GNNs with many node ag-
gregations degenerate predictive performance. We investigate the expressive power of non-linear
Graph Convolution Network (GCN), which is one of the most popular GNN models, with ReLU
activation functions. We interpret the forward propagation of a GCN as discrete-time dynamics

1

and explain the over-smoothing as a distance to an invariant space that is "information-less" for
node prediction tasks. We prove the convergence rate of a ReLU-GCN to the invariance space is
the same as that of the corresponding linear GCN, a GCN without ReLU functions. It suggests
that non-linearity in the model does not help to mitigate the over-smoothing problem of GNNs.

Finally, we develop optimization and learning theories for multi-scale GNNs. Multi-scale
GNNs directly connect the output of intermediate layers to the final output using skip connections.
They reflect the inductive bias that subgraphs with various radii contribute to the prediction of the
center node. Our idea is to interpret a multi-scale GNN as an ensemble of single-scale GNNs and
apply boosting theory. We derive the optimization and generalization bounds of a particular type of
multi-scale GNNs in transductive learning settings under a weak-learning-type assumption, which
is a standard condition in boosting theory that we can adequately train weak learners (i.e., a GNN
with a specified scale). In particular, AdaBoost-like test error bounds are obtained, which advance
our understanding of the role of skip connections in multi-scale GNNs as a countermeasure against
the loss of expressive power caused by the over-smoothing.

Our analysis gives theoretical justifications for architectural choices of practically successful
DL models and principled guidance for their further improvements.

2

Acknowledgment

Many people have supported my Ph.D. activities in various ways. I could not have accomplished it
without their support. Since I cannot list them all, I only mention those to whom I am particularly
thankful. However, I appreciate all people who have kindly encouraged and support my activities.

First and foremost, I would like to express my gratitude to my supervisor Dr. Taiji Suzuki,
Associate Professor of the University of Tokyo, for his continuous help and encouragement during
my Ph.D. activities. I am always impressed by his extraordinary knowledge and insightful sug-
gestions. His professional attitude toward research has motivated me to achieve higher goals. I
would appreciate Dr. Kenji Yamanishi, Professor of the University of Tokyo, for giving me guid-
ance on my Ph.D. study. His critical comments rooted in his profound research experience have
significantly improved my research work.

I thank my colleagues at the university. Especially, I thank Dr. Atsushi Nitanda and Dr. Sho
Sonoda. The quality of my Ph.D. study has been greatly improved through many discussions with
them. I also thank Maki Norikane for supporting me to do paperwork related to the Ph.D. activities
fluently.

I conducted my Ph.D. study while working at Preferred Networks, Inc., Japan, as an engi-
neer. I appreciate Toru Nishikawa, Chief Executive Officer, and Dr. Daisuke Okanohara, Chief
Operating Officer, for kindly allowing me to pursue my career for the Ph.D. course. I also thank
my colleagues at the company. I especially thank Dr. Kohei Hayashi, Shohei Hido, Dr. Masanori
Koyama, Dr. Kentaro Minami, and Dr. Kazue Mizuno. My research activity in the doctoral course
would not be possible without their support.

I thank anonymous reviewers and research collaborators for giving us insightful feedback and
comments on my studies. I especially thank Dr. Masahiro Ikeda, Dr. Masaaki Imaizumi, Dr. Isao
Ishikawa, Takeshi Teshima, and Dr. Koichi Tojo.

Finally, I am grateful for my family. My parents Etsuko Oono and Ryuichi Oono, gave me
ample opportunity for education. I would like to express my deepest gratitude and love to my wife,
Haru Negami Oono, whom I respect as a family member and a mathematical science researcher.

3

Contents

1 Introduction 11
1.1 Structures in Deep Learning Models . 11
1.2 Residual Networks (ResNets) . 13
1.3 Graph Neural Networks (GNNs) . 14
1.4 Over-smoothing of GNNs . 14
1.5 GNNs with Skip Connections . 15
1.6 Organization of Dissertation . 16
1.7 Notation . 18

2 Background 22
2.1 ResNet-type CNNs . 22

2.1.1 Convolution Operation . 22
2.1.2 Vanishing and Exploding Gradient Problems 23
2.1.3 Residual Networks . 24
2.1.4 Representative Models . 25

2.2 Machine Learning on Graphs . 27
2.2.1 Graph Types . 27
2.2.2 Task Types . 30
2.2.3 Transductive Learning . 32
2.2.4 Application Fields . 33
2.2.5 Challenges . 35

2.3 GNNs Overview . 37
2.3.1 Role of GNNs . 37
2.3.2 MPNN-type GNNs . 37
2.3.3 GraphNet . 39
2.3.4 Pooling . 40

2.4 Spectral Graph Theory . 41
2.4.1 Definition . 41
2.4.2 Graph Fourier Transform . 42
2.4.3 Graph Convolution Operator . 42

2.5 Convolution-based GNNs . 43
2.5.1 General Form . 43
2.5.2 Variants . 44

4

CONTENTS

2.5.3 Over-smoothing of Linear GNNs . 47
2.5.4 GCN variants for Heterogeneous Graphs 47

2.6 GNNs with Skip Connections . 47
2.6.1 ResNet-type GNNs . 48
2.6.2 Multi-scale GNNs . 50

2.7 Statistical Learning Theory . 51
2.7.1 Inductive Learning Setting . 51
2.7.2 ERM estimator . 52
2.7.3 Uniform Bound via Model Complexity 53
2.7.4 Fast Rate . 55
2.7.5 Minimax Optimality . 55
2.7.6 Transductive Learning Setting . 56

3 Approximation and Non-parametric Estimation Analysis of ResNet-type Convolu-
tional Neural Networks 58
3.1 Introduction . 58
3.2 Related Work . 61
3.3 Problem Settings . 62

3.3.1 Empirical Risk Minimization . 62
3.3.2 Convolutional Neural Networks . 63
3.3.3 Block-sparse Fully-connected Neural Networks 65

3.4 Main Theorems . 67
3.4.1 Approximation . 67
3.4.2 Estimation . 67

3.5 Applications . 68
3.5.1 Barron Class . 68
3.5.2 Hölder Class . 69

3.6 Discussion . 70
3.7 Chapter Conclusion . 71
3.A Proofs . 72

3.A.1 Definitions of General CNNs and FNNs 72
3.A.2 Proof of Theorem 3.1 . 73
3.A.3 Proof of Theorem 3.2 . 81
3.A.4 Proofs of Corollary 3.2 and Corollary 3.3 89
3.A.5 Proofs of Corollary 3.4 and Corollary 3.5 89
3.A.6 Proofs of Theorem 3.3 and Theorem 3.4 92

4 Over-smoothing of Non-linear Graph Neural Networks 95
4.1 Introduction . 95
4.2 Related Work . 97
4.3 Problem Settings . 98
4.4 Main Results . 99

4.4.1 Convergence of Dynamical System . 99
4.4.2 Convergence to Trivial Fixed Point . 100

5

CONTENTS

4.4.3 Strictness of Main Theorem . 100
4.4.4 Relation to Markov Process . 100

4.5 Application to Graph Neural Networks . 101
4.5.1 GCNs . 101
4.5.2 Asymptotic Behavior of GCNs on Erdős – Rényi Graphs 102
4.5.3 GCNs Defined by Normalized Laplacian 103
4.5.4 Over-smoothing in Link Prediction Tasks 104
4.5.5 Remark on Previous Study about Over-smoothing for Non-linear GNNs . 104

4.6 Experiments . 105
4.6.1 Synthesis Data: One-step Transition . 105
4.6.2 Synthesis Data: Distance to Invariant Space 106
4.6.3 Real Data: Effect of Maximum Singular Values on Performance 107
4.6.4 Real Data: Effect of Signal Component Perpendicular To Invariant Space 107

4.7 Discussion . 108
4.8 Chapter Conclusion . 110
4.A Proofs . 110

4.A.1 Proof of Proposition 4.1 . 110
4.A.2 Proof of Theorem 4.1 . 110
4.A.3 Proof of Proposition 4.2 . 114
4.A.4 Proofs of Proposition 4.3 and Proposition 4.4 114
4.A.5 Proof of Theorem 4.3 . 114
4.A.6 Proof of Proposition 4.5 . 118

4.B Experiment Settings . 120
4.B.1 Experiments in Section 4.6.1 . 120
4.B.2 Experiments in Section 4.6.2 . 120
4.B.3 Experiments in Section 4.6.3 . 121
4.B.4 Experiments in Section 4.6.4 . 124

4.C Additional Experiment Results . 125
4.C.1 Experiments in Section 4.6.1 . 125
4.C.2 Experiments in Section 4.6.2 . 125
4.C.3 Experiments in Section 4.6.3 . 125
4.C.4 Experiments in Section 4.6.4 . 125

5 Optimization and Generalization Analysis of Multi-scale Graph Neural Networks
through Gradient Boosting 136
5.1 Introduction . 136
5.2 Related Work . 138
5.3 Problem Settings . 139

5.3.1 Transductive Learning . 139
5.3.2 Gradient Boosting . 140
5.3.3 Models . 140

5.4 Main Theorems . 141
5.4.1 Optimization . 141

6

CONTENTS

5.4.2 Generalization . 142
5.5 Application to Multi-scale GNNs . 143
5.6 Practical Improvements . 145
5.7 Experiments . 146

5.7.1 Node Prediction Tasks . 146
5.7.2 Link Prediction Tasks . 148

5.8 Discussion . 148
5.9 Chapter Conclusion . 149
5.A Proof of Theorems and Propositions . 150

5.A.1 Proof of Proposition 5.1 . 150
5.A.2 Proof of Theorem 5.1 . 152
5.A.3 Proof of Proposition 5.2 . 154
5.A.4 Proof of Proposition 5.3 . 156
5.A.5 Proof of Theorem 5.2 . 159
5.A.6 Proof of Proposition 5.4 . 160
5.A.7 Proof of Proposition 5.5 . 161

5.B Provable Satisfiability of Weak Learning Condition using Over-parameterized
Models . 161

5.C Experiment Settings . 163
5.C.1 Experiments in Section 5.7.1 (Node Prediction Tasks) 163
5.C.2 Experiments in Section 5.7.2 (Link Prediction Tasks) 166

5.D Additional Experiment Results . 167
5.D.1 More Results for Model Variants . 167
5.D.2 Performance Comparison with Existing GNN Models 168

Conclusion 174

7

List of Tables

1.1 Experiment Code URL . 18
1.2 Notation Table (Common). 19
1.3 Notation Table (Chapter 3). 20
1.4 Notation Table (Chapter 4). 20
1.5 Notation Table (Chapter 5). 21

2.1 ResNet-type CNNs examples . 25
2.2 Classification of ML tasks on graphs . 30
2.3 Graph generative models . 31
2.4 Representative GNN models. 38
2.5 GNN models for relational and heterogeneous graphs 48

3.1 Comparison of CNN architectures . 61

4.1 Dataset specifications (original citation networks) 121
4.2 Dataset specifications (noisy citation networks) 122
4.3 Hyperparameters of the experiment in Section 4.6.3 124
4.4 Accuracy in terms of maximum singular value and layer size 128

5.1 Accuracy of GB-GNN for node classification tasks 147
5.2 ROC-AUC of GB-GNN for link prediction tasks 148
5.3 Dataset specifications. 163
5.4 Hyperparameters of node prediction experiments in Section 5.7.1 165
5.5 Hyperparameters of link prediction experiments in Section 5.7.2 168
5.6 Accuracy of GB-GNN variants in node classification tasks 172
5.7 Accuracy comparison with baseline GNN models 173

8

List of Figures

1.1 Computational graph of a two-layered FNN. 13
1.2 Computational graph of a resblock . 14
1.3 GNN overview. 15
1.4 Single-scale GNN and mutli-scale GNN. 16

2.1 Scehmatic view of U-Net . 27
2.2 Transductive learning for a node classification task. 32
2.3 Scene graph example. 35
2.4 Invariance and equivariance. 36
2.5 Interpretation of a graph neural network as graph signal processing. 44
2.6 Schematic view of a convolution-based GNN. 44

3.1 Schematic view of a ResNet-type CNN . 64
3.2 Schematic view of a block-sparse FNN . 66
3.3 Schematic view of a general ResNet-type CNN 73
3.4 Schematic view of a general block-sparse FNN 74

4.1 Vector field induced by the one-step transition 106
4.2 Distances to the invariant spaceM and their upper bounds. 106
4.3 Node prediction results on Noisy Cora . 107
4.4 Relative perpendicular component and prediction accuracy on Noisy Cora 108
4.5 Spectral distribution of Laplacian for the citation network datasets 123
4.6 Induced vector field for various weights (Case 1) 126
4.7 Induced vector field for various weights (Case 2) 127
4.8 Distance dM to the invariant spaceM and the upper bound 129
4.9 Maximum singular values of weights and predictive performance 130
4.10 Transition of maximum singular values of GCN (Noisy Cora 2500) 131
4.11 Transition of maximum singular values of GCN (Noisy Cora 5000) 132
4.12 Transition of maximum singular values of GCN (Noisy CiteSeer) 133
4.13 Transition of maximum singular values of GCN (Noisy PubMed) 134
4.14 Relative perpendicular component and prediction accuracy 135

5.1 Schematic view of the model . 140
5.2 Train and test losses and direction of weak learners 147

9

LIST OF FIGURES

5.3 Train loss transition of GB-GNN-adj . 169
5.4 Test loss transition of GB-GNN-adj . 170
5.5 Direction of weak learners for GB-GNN-adj. 171

10

Chapter 1

Introduction

1.1 Structures in Deep Learning Models

Machine learning (ML) is a technology for having machines recognize, decide, and act intellectu-
ally by making full use of knowledge inherent in data. With the increase of data generated in the
world, the importance of ML technology is rapidly growing as a way of exploiting data.

ML theory has shown several limitations of learning without prior information about data.
For example, informally speaking, the no-free lunch theorem [Wolpert, 1996] showed that no
ML models perform universally well for any data distribution. It implies that we need to narrow
down data distributions that are likely to happen using prior information about the task and adopt
ML models tailored to these distributions. Such theoretical limitations motivated us to explore
methodologies for effectively reflecting biases of specific tasks (known as inductive bias) into ML
models.

Deep Learning (DL) has become a great movement in the ML community since the late
2000s [Hinton et al., 2006, Salakhutdinov and Hinton, 2009]. For example, in 2012, DL methods
won first place in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competi-
tion, one of the largest image recognition competitions [Krizhevsky et al., 2012, 2017]. In speech
recognition tasks, a seminal paper [Hinton et al., 2012] employed DL models and outperformed
conventional methods.

DL models are often represented as a computational graph consisting of differentiable com-
putation units. For example, Figure 1.1 is a computational of graph of Fully-connected Neural
Network (FNN), also known as Multi-layer Perceptron (MLP), which is the most standard DL
model. It represents the following computational procedures:

h1 = Affine(x;W1, b1) = W1x+ b1,

a1 = ReLU(h1),

h2 = Affine(a1;W2, b2) = W2a1 + b2,

p = Softmax(h2),

l = CrossEntropy(p, t).

Here, Affine, ReLU, Softmax, CrossEntropy are arithmetic operations, represented as compu-

11

1. Introduction

tational units. Each operation is differentiable with respect to its input variables. Thanks to this
property, we can train the whole model in an end-to-end manner using the combination of the
backpropagation algorithm and stochastic gradient descent (see, e.g., Goodfellow et al. [2016] for
the training algorithms of DL models.)

Most practically successful DL models are designed to reflect the inductive bias of problems
to their structures, that is, the topology of the computational graph or computational units therein.
For example, Convolutional Neural Network (CNN) is a popular DL model, tracing back the
origin at least to the 1980s as Neocognitron [Fukushima and Miyake, 1982]. CNN is a de-facto
model for analyzing grid-like objects such as sequences (1D), images represented by pixels (2D),
and spatial objects represented by voxels (3D). The essence of modern CNN architectures comes
from LeNet5 [LeCun et al., 1998], whose building blocks are a convolutional layer, pooling layer,
and fully-connected layer. These layers are designed to reflect the inductive biases of grid-like
objects. Specifically, the convolutional layer captures the translational invariance of the data, and
the pooling layer captures the robustness of the image semantics to small perturbation by noise
injection (see Section 2.1.1 for the mathematical definition of convolution operations).

Structures in DL models are critical factors of the practical success of DL. However, we would
argue that there is a considerable gap between their empirical effectiveness and theoretical under-
standing of their role. On the one hand, researchers and engineers worldwide deeply analyze their
models and tasks using their creativity every day and work out novel DL models with unique struc-
tures capturing the tasks’ inductive bias. However, their justification is made mostly only through
the empirical evaluation and is not examined via rigorous theory. On the other hand, many stud-
ies have clarified the strength of DL theoretically using various mathematical and statistical tools.
However, since their main focus was mostly on FNN, the most general architecture in DL, they
have limitations in understanding the power of practically successful DL models with specific
structures. This situation motivates us to pose the following research question:

Research Question. How do structures in DL models affect their theoretical characteristics?

Filling the gap between practice and theory of DL is a critical issue we must address. In science
and engineering, it often happens that theoretical justification lags behind practical usefulness.
However, without theory, practitioners must rely on the tacit knowledge of domain experts. This
problem is particularly critical for DL because DL is notoriously hard for tuning hyperparameters.
Theory clarifies the essential enablers and limiting factors of the technology. It provides us trustful
guidance on how to tame the technology and develop it further. The rigorous theory also makes
the technology trustworthy because we can identify its potential pitfalls, even domain experts
are not aware of. Therefore, we believe that the theoretical understanding of models’ structures
contributes to spreading the DL technology to the real-world.

There are numerous DL structures to date. Among others, we focus on the following three
structures because they are empirically particularly important, but their theoretical understanding
is insufficient: skip connections in CNNs, node aggregation operation of Graph Neural Networks
(GNNs), and skip connections in multi-scale GNNs. We explain these structures and their research
questions one by one in the following sections.

12

1. Introduction

x Affine

W1 b1

h1 ReLU a1 Affine

W2 b2

h2
Soft
max prob

Cross
Entropy loss

t

Figure 1.1: Computational graph of a two-layered FNN. Circles and rectangles in the figure rep-
resent variables and computational units, respectively.

1.2 Residual Networks (ResNets)

Training of deep CNNs has several difficulties, such as vanishing and exploding gradient prob-
lems. These problems limited the depth of classical CNNs to at most twenty layers. For example,
AlexNet [Krizhevsky et al., 2012, 2017], an early CNN model that sparked the latest DL boom,
had eleven layers. Activation normalization methods (such as Batch Normalization [Ioffe and
Szegedy, 2015]) or weight initialization methods (such as the Xavier initialization [Glorot and
Bengio, 2010] and the He initialization [He et al., 2015]) could mitigate these problems. How-
ever, it has been known that even though such methods enabled to converge the training of deep
models, the performance was degraded compared to shallow counterparts [He et al., 2016]. See
Section 2.1.2 for details about the vanishing and exploding gradient problems.

Residual Network (ResNet) [He et al., 2016] was designed to solve the performance degrade
of deep CNNs. The architecture of ResNet is based on the hypothesis that it is easier for a model to
learn residuals of the target function that are not accounted for in the upstream part of the model,
rather than learning the whole function [He et al., 2016]. To realize this, ResNet consisted of sub-
networks representing functions of the form id+F and concatenated them in series. Here, id is the
identity function and F is a dense (and typically shallow) subnetwork called a residual block, or
resblock. ResNet employed a skip connection which bypassed the network F to realize the iden-
tity function (Figure 1.2). This architectural trick enabled us to learn ResNets with more than 100
layers and won the ILSVRC competition in 2015. Inspired by the success of ResNet, many CNN
models with skip connections have been proposed. For example, the Squeeze-and-Excitation Net-
work (SENet) [Hu et al., 2018, 2020a], which is the winner of the ILSVRC competition in 2017,
employed skip connections for better performance (see Section 2.1.4 for representative models of
ResNet-type CNNs.)

Many studies have focused on understanding the success of ResNet-type CNNs theoretically
and explained the practical effectiveness of skip connections, such as Veit et al. [2016], Zhou
[2018], to name a few. However, to the best of our knowledge, few of them have given explanations
from the viewpoint of statistical learning theory.

Problem 1. Why do skip connections promote predictive performance of CNNs?

In Chapter 3, we answer this question from the viewpoint of sparsity. We propose to hy-
pothesize that the architecture of ResNet inherits a special type of sparse structures, we call a
block-sparse structure and that this structure promotes theoretical superiority over classical CNNs.

13

1. Introduction

𝑋(#) 𝐹(#) + 𝑋(#'()

Figure 1.2: Computational graph of a resblock. X(l) represents the output of the l-th resblock and
F (l) is the l-th resblock.

1.3 Graph Neural Networks (GNNs)

Graphs are a universal data structure representing relationships between entities. We can represent
many data types as a graph, from small graphs such as chemical compounds to gigantic graphs
such as social networks. Inspired by the success of DL, there has been a movement to apply DL
models to structured data whose topology is more complex than that of image or sequential data.
Applying ML models to graphs has several difficulties, such as node order invariance and inhomo-
geneous neighborhood structures (see Section 2.2.5). Graph Neural Networks (GNNs), pioneered
by Gori et al. [2005], Scarselli et al. [2009], are a collective term of DL models for graph-structured
data that solved these problems (Figure 1.3). GNNs have benefits in common with classical DL
models such as FNNs and CNNs. For example, since a GNN consist of differentiable operators
with respect to input variables and learnable parameters, we can train the whole model in an end-
to-end manner. Also, similar to convolution operators in a CNN, GNNs can apply to graphs with
different sizes. GNNs have been empirically successful for data analysis in various fields such as
biochemistry [Duvenaud et al., 2015], computer vision [Yang et al., 2018], and knowledge graph
analysis [Schlichtkrull et al., 2018].

Message Passing Neural Network (MPNN) [Gilmer et al., 2017] is a subtype of GNNs. Its
architecture consists of interleaving of two types of operations: node aggregation and node update
operations. Given representations for each node on a graph, each node collects representations
of its neighboring nodes in the aggregation operation. Then, each node renews its representa-
tion using the collected information in the update operation. MPNN-type GNNs are popular due
to its empirical performance and implementation simplicity. Among others, Graph Convolution
Networks (GCN) [Kipf and Welling, 2017] is the most standard MPNN-type GNNs and has been
applied in wide fields. See Section 2.3.2 for more details about MPNN-type GNNs.

1.4 Over-smoothing of GNNs

Node aggregation operations in GCNs resemble convolution operations of CNNs (see Sec-
tion 2.4.3). However, as opposed to CNNs, deep GCNs (for example, more than ten layers) cannot
perform better than shallow ones in practical situations [Kipf and Welling, 2017, Zhang et al.,
2020]. Rong et al. [2020] reported that Graph Attention Network (GAT) [Veličković et al., 2018],
another MPNN-type GNN variant, also suffered from the performance degradation.

Li et al. [2018b] attributed the performance degradation of a deep GCN to the degeneration of
node representations, a phenomenon they coined over-smoothing. We can understand the over-
smoothing phenomenon intuitively as follows. When we apply the aggregation operation, it

14

1. Introduction

𝑣"

𝑣#

…

Downstream
models

(e.g.,	MLP/SVM/GNN)

Graph
representation

For	graph
classification	tasks

Node
representations

Downstream
modelsFor	node

classification	tasks

GNN𝑣"

𝑣#

…Node
features

…

𝑒"

𝑒G

…Edge
features

…

Graph
structures

𝐺

𝐺

Figure 1.3: GNN overview.

smoothens node representations and makes them close to each other. Finally, node representa-
tions go indistinguishable when we repeat it many times. That is, node representations are over-
smoothened. We can think of the over-smoothing phenomenon as a side effect of the architectural
design of GNNs. For linear GNNs, that is, GNNs whose activation functions are the identity func-
tions, several studies have proven that this intuition is correct [Li et al., 2018b, Zhang, 2019, Zhao
and Akoglu, 2020] (see Section 2.5.3).

In classical DL models such as FNNs and CNNs, non-linearity introduced by activation func-
tions can contribute to the theoretical and empirical performance. For example, an FNN with a
single hidden layer with a sigmoid or ReLU activation function is a universal approximator for
continuous functions, that is, it is sufficiently expressive so that it can arbitrarily approximate
any continuous functions thanks to the non-linearity [Cybenko, 1989, Sonoda and Murata, 2017].
Given that, one may hope that non-linearity can be beneficial to GNNs, too. However, to the best
of our knowledge, there has been little theoretical explanation for the over-smoothing of non-linear
GNNs.

Problem 2. Can non-linearity mitigate over-smoothing of GNNs caused by node aggregations?

In Chapter 4, we answer this question negatively in a specific situation. We interpret the
forward propagation of a GNN as a discrete-time dynamical system and characterize the over-
smoothing as the convergence to an invariance space of the dynamics that is “information-less"
for node prediction tasks (see Section 2.2.2 for the overview of graph ML tasks including node
prediction tasks). We prove that the convergence rate to the invariant space for ReLU GCNs is
the same as that for their linear counterparts, implying that ReLU GCNs are as vulnerable to
over-smoothing as linear GCNs.

1.5 GNNs with Skip Connections

Over-smoothened GNNs are not appropriate for node prediction tasks because loss of their ex-
pressive power can cause under-fitting. As we saw in Section 1.2, skip connections enable us to
stack many layers in the case of CNNs. Therefore, it is natural to think that we may solve the over-
smoothing problem by introducing skip connections to GNNs. Several studies have shown that

15

1. Introduction

×𝐴 ×𝐴 ×𝐴… ×𝐴 ×𝐴 ×𝐴…

+ + + +…

Figure 1.4: Single-scale GNN and mutli-scale GNN.×A and + represents a node aggregation and
an addition operations, respectively. We omit ndoe update operations for simplicity.

skip connections are practically useful to some extent. Among others, it is notable that in the paper
of GCN, the authors reported that the performance degradation of deep GCNs is mitigated by skip
connections (see Kipf and Welling [2017, Appendix B]). However, to the best of our knowledge,
it has not been known for the theoretical explanations.

Problem 3. What is the role of skip connections in GNNs? How do they affect the over-smoothing?

In Chapter 5, we focus on multi-scale GNNs (e.g., Xu et al. [2018]) to answer this question.
The idea of multi-scale GNNs is to exploit the inductive bias of tasks that subgraphs of various
scales are beneficial for predicting nodes’ properties. The most standard approach for realizing
it is to connect intermediate outputs of a model to its final output directly using skip connections
(Figure 1.4). For example, given a graph of size N , the following model is a simple example of
multi-scale GNNs:

Z(l+1) = σ(AZ(l)W (l)) (l = 1, . . . L)

Z =
L+1∑
l=1

Z(l).

Here, Z(l) ∈ RN×C is concatenation of node representations at the l-th layer, where C is the
dimension of node representations. Z ∈ RN×C is the final node representations. A ∈ RN×N is
the (normalized) adjacency matrix of the graph (see Section 2.4). W (l) ∈ RC×C is a learnable
weight matrix at the l-th block. σ : R → R is an activation function, applied in an element-wise
manner. We can realize the summation functions above using skip connections. See Section 2.6.2
for representative models of multi-scale GNNs.

Our analysis key is that we can interpret a multi-scale GNN as an ensemble of single-scale
GNNs. This interpretation enables us to apply the boosting theory. We derive optimization and
generalization bounds for multi-scale GNNs in node prediction tasks. These bounds give us in-
sights when multi-scale structures induced by skip connections are effective as a countermeasure
of the over-smoothing problem.

1.6 Organization of Dissertation

In Chapter 2, we introduce the backgrounds of the following chapters. First, we explain the ar-
chitecture of ResNet to explain its design intent. Then, we provide representative variants of
ResNet-type CNNs. Regarding the basics of GNNs, we first overview ML tasks on graphs, in

16

1. Introduction

particular, classification of graph types and task types to clarify problem settings on which we
focus. Among others, we mainly focus on node prediction tasks on a graph and formulate it as
semi-supervised learning problems (more specifically, transductive learning problems). After that,
we showcase representative models of GNNs, including convolution-based GNNs and multi-scale
GNNs. Finally, we briefly explain statistical learning theories of supervised learning problems for
ResNet-type CNNs and transductive learning problems for GNNs.

In Chapter 3, we analyze the approximation and estimation errors in non-parametric regression
problems using ResNet-type CNNs, toward the goal of clarifying the role of skip connections in
ResNet-type CNNs. The analysis key is FNNs with special sparse structures, which we coin
block-sparse FNNs, that have statistically favorable properties. By associating the expressive
power of ResNet-type CNNs with that of block-sparse FNNs, we derive the approximation and
estimation bounds of ResNet-type CNNs, which inherit the favorable properties of block-sparse
FNNs. In particular, we show that, ResNet-type CNNs can achieve optimality in the sense of
minimax optimal (ignoring log factors) without unrealistic constraints on sparsity when the true
function is in the Hölder class. From this result, we hypothesize that the skip connections of
ResNet-type CNNs implicitly induce special sparse structures, which contribute to their excellent
performance.

In Chapter 4, we analyze the expressive power of ReLU GCNs in node classifications tasks
to explain the over-soothing phenomenon when we introduce non-linearity to GNNs. Our theory
associates the representation power with underlying graph spectra. The key idea is to interpret the
ReLU function as a projection on the cone {X ≥ 0}. This fact works well with the underlying
graph Laplacian (see Section 2.4.1 for the basics of spectral graph theory). We prove that the con-
vergence rate of the ReLU GCN to the invariant space that is information-less for node prediction
tasks is the same as that of the linear counterparts. From this result, we suggest that in the case of
ReLU GCNs, non-linear activation functions do not help mitigate the over-smoothing phenomena.

In Chapter 5, we study the optimization and generalization performance of multi-scale GNNs
to investigate how skip connections affect the performance of GNNs. The key to the analysis
is that by interpreting a multi-scale GNN as an ensemble of single-scale GNNs, we can train it
using boosting algorithms. Under a weak learning condition (w.l.c.), which is a standard type of
assumptions in the boosting theory, we derive an AdaBoost-like optimization and generalization
performance bounds for multi-scale GNNs trained using boosting algorithms. In particular, when
the model satisfies w.l.c. with "good" parameters, the performance of multi-scale GNNs is mono-
tonically increasing as the depth (the number of node aggregations) increases, as opposed to the
over-smoothing problem of single-scale GNNs we observe in Chapter 4. Our results advance the
understanding of multi-scale structures induced by skip connections to counter the over-smoothing
problems.

In the final chapter, we summarize each chapter and discuss future directions. We point out
that analyzing continuous models, that is, the continuity limit of discrete models, is a promising
approach for highlighting structures’ characteristics. We conclude this dissertation by emphasizing
the importance of unified theory for various architectures to understand the role of structures in
DL models.

Chapter 3 is based on the study of Oono and Suzuki [2019], Chapter 4 is based on the study
of Oono and Suzuki [2020a], and Chapter 5 is based on the study of Oono and Suzuki [2020b],

17

1. Introduction

Table 1.1: Experiment Code URL

Chapter URL

Chapter 4 https://github.com/delta2323/gnn-asymptotics
Chapter 5 https://github.com/delta2323/GB-GNN

respectively. The author also contributed to the work of Teshima et al. [2020]. Experiment code is
available from the URLs in Table 1.1.

1.7 Notation

We denote the set of non-negative integers by N, and the set of positive integers by N+ :=
{1, 2, . . .}. For M ∈ N+, the set of positive integers less than or equal to M by [M] :=
{1, . . . ,M}. Let a, b ∈ R be scalars. We define a ∨ b := max(a, b), a ∧ b := min(a, b) for
a, b ∈ R, respectively. We define the sign function by sign(a) = 1 if a ≥ 0 and −1 otherwise.
For a proposition P , 1{P} equals 1 when P is true and 0 otherwise. For y ∈ {0, 1}, we write
y♯ := 2y−1 ∈ {±1}. For a sequence w = (w(1), . . . , w(L)) and l ≤ l′, we denote its subsequence
from the l-th to l′-th elements by w[l : l′] := (w(l), . . . , w(l′)).

All vectors are column vectors. Let u, v ∈ RN and w ∈ RC be vectors and X,Y ∈ RN×C be
matrices. v⊗w ∈ RN×C denotes the Kronecker product of v and w defined by (v⊗w)nc := vnwc.
diag(v) := (vnδnm)n,m∈[N] ∈ RN×N denotes the diagonalization of v. We write v ≥ 0 if and
only if vn ≥ 0 for all n ∈ [N]. Similarly, for a matrix X ∈ RN×C , we write X ≥ 0 if and
only if Xnc ≥ 0 for all n ∈ [N] and c ∈ [C]. We say such a vector and matrix is non-negative.
IN ∈ RN×N denotes the identity matrix of size N .
〈·, ·〉 denotes the inner product of vectors or matrices, depending on the context: 〈u, v〉 := u⊤v

for vectors and 〈X,Y 〉 := tr(XTY) and matrices. For p ≥ 1, we denote the p-norm of v by

‖v‖pp :=
∑N

n=1 v
p
n, (2, p)-norm of X by ‖X‖p2,p :=

∑C
c=1

(∑N
n=1X

2
nc

) p
2 , the Frobenius norm

of X by ‖X‖F := ‖X‖2,2. For normed spaces (V, ‖ · ‖V), (W, ‖ · ‖W) and a linear operator
T : V → W we denote the operator norm of T by ‖T‖op := sup∥v∥V =1 ‖Tv‖W . For a subset
V ′ ⊂ V , we denote the restriction of T to V ′ by P |V ′ .

For a tensor a, we define the positive part of a by a+ := a ∨ 0 where the maximum operation
is performed in element-wise manner. Similarly the negative part of a is defined as a− := −a∨ 0.
Note that a = a+− a− holds for any tensor a. For two tensors a, b of the same size, we define the
Hadamard product a⊗ b by the element-wise multiplication of two tensors.

We employ the Landau notations o(·), O(·), Ω(·), and Θ(·) to describe asymptotic growth
rates. oP (·), OP (·), ΩP (·), and ΘP (·) denote the corresponding O-notation in probability. õ(·),
Õ(·), õP (·), and ÕP (·) ignore logarithmic factors.

Tables 1.2–1.5 show the list of symbols used in special meanings in each chapter. We define
other symbols when they appear for the first time.

18

https://github.com/delta2323/gnn-asymptotics
https://github.com/delta2323/GB-GNN

1. Introduction

Table 1.2: Notation Table (Common).

Symbol Description

X Domain of feature vectors. e.g., X = RC (C ∈ N+).
Y Domain of target values. e.g., Y = {0, 1}, R.
Ŷ Range of predictors. e.g., Ŷ = R.
f◦ : X → Y (Unknown) true function.
f̂ : X → Ŷ Estimator function.
Ŷ ∈ ŶN Collection of predictions.
N (inductive setting) Training sample size.
N (transductive setting) Total sample size.
M (transductive setting) Training sample size.
U (transductive setting) Test sample size.
C,C ′, C∗

∗ etc. Channel size.
L,L′, L∗, L

∗
∗ etc. Depth.

D Input dimension.
K Filter size.
W,W ∗,W ∗

∗ etc. Weight matrices.
R̂(f), L̂(f), R̂(Y), L̂(Y) Training Error of f : X → Y or Y ∈ ŶN .
R(f), L(f),R(Y), L(Y) Test Error of f : X → Y or Y ∈ ŶN .
D Training dataset.
P (Unknown) true distribution over X × Y in inductive settings.
PX Marginalized distribution of P over X .
L2(PX) Set of real-valued functions over X

that is square-integrable with respect to PX .

19

1. Introduction

Table 1.3: Notation Table (Chapter 3).

Symbol Description

C = (C1, . . . , CL) Sequence of channels.
W = (W1, . . . ,WM) Sequence of weights.
b = (b1, . . . , bM) Sequence of biases.
θ Learnable parameters of an FNN or a CNN.
FCσ

W,b : RD′ → RD′′
Fully connected layer with weight matrix W and bias b.

ConvσW,b : RD×C′ → RD×C′′
Convolution layer with filter weight W and bias b.

FCσ
W ,b : RD′ → RD′′

= FCσ
WM ,bM

◦ · · · ◦ FCσ
W1,b1

ConvσW ,b : RD×C′ → RD×C′′
= ConvσWM ,bM

◦ · · · ◦ ConvσW1,b1

FNNσ
θ : X → Ŷ FNN with learnable parameter set θ and activation function σ.

CNNσ
θ : X → Ŷ ResNet-type CNN with θ and σ.

mCNNσ
θ : X → Ŷ Masked CNNs with θ and σ.

F (FNN) = F (FNN)
∗,∗,... ⊂ {X → Y} Hypothesis space of FNNs with a specified architecture

(asterisks denote architectural parameters).
F (CNN) = F (CNN)

∗,∗,... ⊂ {X → Y} Hypothesis space of ResNet-CNNs.
G = G∗,∗,... ⊂ {X → Y} Hypothesis space consisting of masked CNNs.
N (ε,M, d) (External) convering number.
‖ · ‖β β-Hölder norm.

Table 1.4: Notation Table (Chapter 4).

Symbol Description

G = (V,E) Simple graph with node set V and edge set E.
G̃ Augmented graph of G
A = A(G) Normalized adjacency matrix.
D = D(G) Degree matrix.
∆ = ∆(G) Unnormalized graph Laplacian.
L = L(G) Normalized garph Laplacian.
Ã = Ã(G) Augmented normalized adjacency matrix (= A(G̃).)
D̃ = D̃(G) Degree matrix for autmented graph G̃ (= D(G̃).)
X Collection of feature verctors on nodes on a graph.
M The information-less invariant space. (see Chapter 4).
dM(X) The distance from X to an invariant subspaceM with respect to the Frobenius norm.
s, s∗ etc. Singular values of a weight matrix.
GN,p Erdos-Renyi graph of parameters N (node size) and p (edge probability).

20

1. Introduction

Table 1.5: Notation Table (Chapter 5).

Symbol Description

R̂,R Training and test errors for δ-margin loss.
L̂, L Training and test errors for sigmoid cross entropy loss.
G, G(t) ⊂ {X → X} Set of aggregation functions at t-th iteration.
B, B(t) ⊂ {X → Y} Set of transformation functions at t-th iteration.
X(t) Collection of representations on nodes at t-th iteration.
Ŷ (t) Collection of predictions at the t-th iteration.
F (t) Hypothesis space of weak learners at t-th iteration
f (t) Weak learner at t-th iteration.
αt, βt Parameters for weak learning condition at t-th iteration.
ℓδ δ-margin loss (0–1 loss when δ = 0.)
ℓσ Sigmoid cross entropy loss.
R(F) (Unsymmetrized) Transductive Rademacher complexity

of the fuction class F .
R(F) Symmetrized Transductive Rademacher complexity.
R̂ind(F ;Z) Empirical Inductive Rademacher complexity of F conditioned on Z.

21

Chapter 2

Background

In this chapter, we describe the backgrounds of the following chapters. First, we introduce Resid-
ual Network (ResNet) and its variants (Section 2.1). Next, we overview graph ML tasks (Sec-
tion 2.2) and Graph Neural Networks (GNN) as algorithms for graph ML tasks (Section 2.3).
Then, we introduce two subtypes of GNNs: (1) convolution-based GNNs (Section 2.5), which is
a subtype of MPNN-type GNNs, and (2) GNNs with skip connections (Section 2.6), which are
further divided into two types (ResNet-type GNNs and multi-scale GNNs). Finally, we explain
the problem formulation of statistical learning theory for supervised (inductive) and transductive
learning settings (Section 2.7).

Chapter 3 is mainly related to Section 2.1 and 2.7, Chapter 4 is mainly related to Sec-
tion 2.2, 2.3, and 2.5, and Chapter 5 is mainly related to Section 2.2, 2.3, 2.6, and 2.7.

2.1 ResNet-type CNNs

In this section, we explain the architecture of ResNet and the motivation of its design. We also
explain examples of ResNet-type CNNs.

2.1.1 Convolution Operation

We define a convolution operation for images, i.e., the convolution operation for tensors with
spatial dimension two1. We can define it for other spatial dimensions analogously.

Let K1,K2 ∈ N+ be a filter size for the first and second spatial dimensions, respectively,
C,C ′ ∈ N+ be the input and output channel size. The convolution operator has a parameter
W ∈ RK1×K2×C′×C called the weight tensor. The weight tensor is also referred to as a kernel
in some literature. Accordingly, the filter size is also called the kernel size. PL

1 , P
R
1 , PL

2 , P
R
2 ∈

N≥0 be padding parameters and S1, S2 ∈ N be stride parameters. Usually, we treat the weight
parameter as a parameter learned through training and kernel size, padding size, and stride size as
hyperparameters. Given an input x ∈ RD1×D2×C (D1, D2 ∈ N+), the output y of the convolution

1In some literature, especially in Mathematics, this operation is referred to as correlation or cross-correlation.
However, we follow the convention of ML literature and call this operation convolution.

22

2. Background

operation is an order-three tensor of size O1 ×O2 × C ′ (i.e., y ∈ RO1×O2×C′
) where

Oi =

⌊
Di + PL

i + PR
i −Ki

Si

⌋
+ 1 (i = 1, 2)

so that −PL
i +Ki + Si(o− 1) ≤ Di + PR

i for o = 1, . . . , Oi. The component of the output y is
calculated as

yo1o2c′ = 〈xs1:e1,s2:e2,1:C ,W::c′:〉 (c′ = 1, . . . , C ′), (2.1)

where si = −Pi+1+Si(oi− 1) and ei = −Pi+Ki+Si(oi− 1) for i = 1, 2 (we conventionally
define xijk = 0 when either of i, j is non-positive.) Note that xs1:e1,s2:e2,1:C is a subtensor of x that
has the same size as W::c′ . A typical choice of hyperparameters is Si = 1 and PL

i = PR
i = bKi+1

2 c
for i = 1, 2 so that the output size is the same as the input size (i.e., Di = Oi). We call this
configuration the equal-padding setting in this paper2.

Remark 2.1. Although the equal-padding setting is standard, we shall employ another configu-
ration to simplify the analysis (especially in Chapter 3). Specifically, we set Si = 1, PL

i = 0 and
PR
i = Ki − 1 so that we add the zero-padding to only one side for each spatial dimension. We

call it the one-side padding. Similarly to the equal-padding setting, the one-side padding does not
change the spatial dimension of input tensors. Our analysis can extend to the equal-padding case
(see Section 3.3.2 Remark 3.1). In addition, we consider 1-dimensional convolution in this study,
especially analysis in Chapter 3. Our analysis can generalize to multi-dimensional convolution.

Remark 2.2. We can define typical pooling operations analogous to the convolution operation by
replacing the inner product Equation (2.1) with a parameter-free function. Take the max-pooling
for example, we set the the output channel size to be the same as the input one (i.e., C = C ′) and
use the maximum value of the subtensor:

yo1o2c = max
i1∈[s1:e1],i2∈[s2:e2]

x′i1i2c (c = 1, . . . , C), (2.2)

We typically choose the hyperparameter as S1 = K1 and S2 = K2. This choice reduces the output
to approximately Si times smaller than the input. We can define the average pooling by using the
mean function in place of the max function.

2.1.2 Vanishing and Exploding Gradient Problems

Vanishing and exploding gradient problems occur when a CNN has many layers, and the scale of
gradients become small (vanishing) or large (exploding). We describe the problems informally in
this section. Let W (l) ∈ RK(l)×C(l+1)×C(l)

and b(l) ∈ RC(l+1)
be a weight matrix and a bias vector

at the l-th layer, respectively. We denote X(l) ∈ RD(l)×C(l)
be the input of the l-th. Then, the

convolution operator at the l-the layer is defined as

X(l+1) := σ(LW (l)
(X(l)) + 1⊗ b(l)).

2We do not know the common name for referring to this configuration. This naming is specific to this paper.

23

2. Background

Here, LW (l) is the convolution operation defined by W (l) (see Section 2.1.1), σ : R → R is a
scalar function, which is typically non-linear. Representative examples are the sigmoid function
σ(z) = (1 + exp(−z))−1 or ReLU function [Krizhevsky et al., 2012, 2017] defined by σ(z) =
max(z, 0). Since these operations are differentiable with respect to both input X(l) and weight
w(l), we can train the model in an end-to-end manner using backpropagation.

Let L be a loss function, then the gradient of the loss function with respect to the intermediate
value X(l) are related as

∂L
∂X(l)

= σ′(Z(l))(LW (l)
)⊤

∂L
∂X(l+1)

,

where Z(l) = LW (l)
(X(l)) + 1 ⊗ b(l) and (LW (l)

)⊤ is treated as a linear operator from
RD(l+1)×C(l+1)

to RD(l)×C(l)
. We assume that the activation function σ is 1-Lipschitz continuous.

Sigmoid and ReLU functions mentioned above satisfy this assumption. Then, roughly speaking,
we have ∥∥∥∥ ∂L

∂X(l)

∥∥∥∥
F

≈ ‖LW (l)‖op
∥∥∥∥ ∂L
∂X(l+1)

∥∥∥∥
F

.

The vanishing gradient problem is a phenomenon that the norm ‖LW (l)‖op is smaller than 1 for
most layer l. When it happens, the gradient scale gets smaller and smaller as we go back to lay-
ers close to the input by backpropagation. Then, since prediction errors are not propagated to
input layers, we cannot train their parameters using gradient-based optimization methods such
as stochastic gradient descent (SGD). On the contrary, the exploding gradient problem is a phe-
nomenon the norm of ‖LW (l)‖ is larger than 1 for most layer l. Since the scale of layers close to
inputs is significantly large, training these layers is likely to be unstable.

From these observations, we see that the norm of convolution operations should be close to 1,
and the scale of gradients is approximately the same for all layers for the stable training of deep
CNNs.

2.1.3 Residual Networks

ResNet [He et al., 2016] is a CNN model consisting of computation units of the form X(l+1) =
F (l)(X(l)) +X(l). It corresponds to adding a skip connection for bypassing the block F (l), called
residual block, or resblock (see Figure 1.2). In the original ResNet, F (l) is a two-layered shallow
network consisting of two 3x3 convolution operations and the non-linearity. Let L be a loss
function. Then, by direct computation, we have

∂L
∂X(l)

=

(
1 +

∂F (l)

∂X(l)

)
∂L

∂X(l+1)
.

To avoid the vanishing and exploding gradient problems, we should control the scale of gradients
through the scale of F (l). Empirically, Zaeemzadeh et al. [2020] confirmed that the norm convo-
lution operations of trained deep ResNets are close to 1. They have proposed a training method
which promoted the norm preservation in all layers and shown that it contributed to the empirical
performance of ResNets. Another empirical evidence is given by Li et al. [2018a]. They visualized
the loss landscapes of CNNs with and without skip connections and showed that skip connections

24

2. Background

Table 2.1: ResNet-type CNNs examples in Section 2.1.4.

Model Reference

Highway Network Srivastava et al. [2015]
ResNet He et al. [2016]
WideResNet Zagoruyko and Komodakis [2016]
PyramidNet Han et al. [2017]
Inception-ResNet Szegedy et al. [2017]
ResNeXt Xie et al. [2017]
DenseNet Huang et al. [2017]
SENet Hu et al. [2018, 2020a]
U-Net Ronneberger et al. [2015]

prevented the landscape from being chaotic. The authors hypothesized that it helped to train deep
models efficiently.

2.1.4 Representative Models

Inspired by the success of ResNet, many CNN architectures with residual connections have been
proposed. Table 2.1 shows representative ResNet-type CNN models we explain in this section.
Since the exploration of improved ResNet architectures is an active research area, it is beyond
our ability to mention all architectures to date. This table is far from a comprehensive list of
ResNet-type CNNs and may miss some popular models.

Highway Network Highway Network [Srivastava et al., 2015] was a pioneering CNN model
with bypass connections. Although we categorize Highway Network as an example of ResNet-
type CNN, we note that Srivastava et al. [2015] proposed Highway Network before ResNet.

While ResNet directly adds the previous layer’s output using skip connection, Highway Net-
work uses the gating mechanism to "skip" computation blocks. Specifically, the l-th computation
block of Highway Network has the following form:

α(l) = T (l)(Z(l),W (l)) (2.3)

Z(l+1) = (1− α(l))Z(l) + α(l)F (l)(Z(l)). (2.4)

Here, T (l) is a function called a transform gate, and F (l) is a function corresponding to the l-th
layer of a plain CNN. Typically these functions are modeled using shallow neural networks. On
the one hand, when α(l) equals to 0, the l-th block equals to the identity function. On the other
hand, when α(l) equals 1, the l-th block reduces to one layer of usual CNNs.

WideResNet In Zagoruyko and Komodakis [2016], the authors examined the architecture of
ResNet and conducted extensive studies on their architecture variants. The authors hypothesized
that the excessive depth of ResNet could be harmful to performance and proposed WideResNet,

25

2. Background

which increased channels of residual blocks and decreased the model depth. They showed that
WideResNet outperformed very thin and deep counterparts in several benchmark image recogni-
tion tasks.

PyramidNet The original ResNet architecture keeps the channel size (i.e., input and output
channel sizes are the same) in most residual blocks and doubles the channel size at a few residual
blocks. Veit et al. [2016] pointed out that these exceptional blocks are the performance bottlenecks
in the sense that the removal of these blocks has more effect on performance degradation than other
blocks. PyramidNet [Han et al., 2017] addresses this problem by gradually increasing channel size
block by block.

Inception-ResNet and ResNeXt Inception-ResNet [Szegedy et al., 2017] and ResNeXt [Xie
et al., 2017] employed a sub-network called an inception module as a residual block. The typical
inception block feeds the same input to convolution layers with various filter sizes (e.g., three
layers with filter size one, three, and five, respectively), optionally along with the max-pooling
layer. To further reduce the computational cost, filter-size-one convolution (usually called 1 × 1
convolution) layers are added to inception blocks to reduce channel size and hence computational
cost.

GoogleNet [Szegedy et al., 2015] (also known as Inception-v1), which won the ILSVRC com-
petition in 2014, first introduced the inception blocks to approximate and sparsified dense convo-
lutions layers intending to reduce the computational cost. This design aligned with the intuition
that the inception module processes visual information at various scales and aggregates them.
GoogleNet has 12 times as fewer parameters as AlexNet [Krizhevsky et al., 2012, 2017], which
won the ILSVRC competition in 2012.

Inception-ResNet used the inception block as a residual block. Its architecture is roughly
comparable with Inception-v4 with residual connections. ResNeXt also employed the idea of
using inception blocks as a residual block. The residual block of ResNeXt has another form
equivalent to the inception-style architecture using grouped convolutions [Krizhevsky et al., 2012,
2017].

DenseNet DenseNet [Huang et al., 2017] consists of serialized computational blocks called
dense block, connected by a transition layer. DenseNet maximizes the inter-dependency of layers
within a dense block for efficient information propagation. The input of a layer in a dense block
is the output of all previous layers in the same block. Schematically, the computation of the l-th
dense block is modelled as

Z(l+1) = F (l)(Z(1), . . . , Z(l−1)), (2.5)

where F (l) is a shallow network. We can optionally add 1x1 convolutions to reduce learnable
parameters, known as a bottleneck structure.

SENet ResNet adds the output of a resblock directly to the output of the previous layer. It means
that the importance of each output channel of the resblock is the same. Squeeze-and-Excitation

26

2. Background

P
o
o
l

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

U
n
p
o
o
l

C
o
n
c
a
t

C
o
n
v

C
o
n
v

U
n
p
o
o
l

C
o
n
c
a
t

C
o
n
v

C
o
n
v

U
n
p
o
o
l

C
o
n
c
a
t

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

Skip
connection

Skip
connection

C
o
n
v

Skip
connection

Figure 2.1: Scehmatic view of U-Net. Note that the number of stages and convolution layers are
different from that of the original U-Net architecture in Ronneberger et al. [2015] for simplicity.

Network (SENet) [Hu et al., 2018, 2020a] computes the importance weight of each channel in a
data dependent manner:

α(l) = G(l)(Z(l)), (2.6)

Z(l+1) = Z(l) + α(l) � F (l)(Z(l)). (2.7)

U-Net U-Net [Ronneberger et al., 2015] used CNNs with skip connections for tasks that require
structured outputs such as segmentation tasks. Figure 2.1 shows the schematic view of U-Net.
U-Net consists of an encoder and decoder, each of which has multiple stages. At stage transitions,
the encoder applies a pooling operation to halves the spatial size and the decoder an unpooling
operation to double the spatial size. Skip connections wire intermediate layers of the encoder and
decoder at the same stage.

2.2 Machine Learning on Graphs

In this section, we introduce the basic terminologies of graphs and overview ML tasks on graphs.

2.2.1 Graph Types

In the simplest form, a graph is mathematically define as a pair (V, E), where V is a set and E is
a subset of V × V . We call an element of V a node and an element of E an edge, respectively.
For example, we can cast a compound’s chemical formula to a graph whose nodes are atoms and
edges are chemical bonds. In this study, we only consider a finite graph, that is, a graph with finite
number of nodes: N := |V| < ∞. An ordering σ of the node set V is a bijection σ : V → [N].
By imposing some order on the node set V , we can identify V with [N].

Weighted Graph We can optionally associate each edge with a positive scalar value called
weight. A graph with weights is called a weighted graph. Weights typically represent the edge’s

27

2. Background

importance, cost, and length. By assuming some order on nodes, we can represent a weighted
graph by the adjacency matrix A ∈ RN×N defined by

Aij =

{
w((i, j)) if (i, j) ∈ E ,
0 if (i, j) 6∈ E ,

(2.8)

where w : E → R+ is the weight function. Equivalently, we can think of w as a real-valued
function on V × V such that w(i, j) = 0 if and only if (i, j) 6∈ E . We can think of an unweighted
graph as a weighted by assigning a constant weight (e.g., 1) to each edge.

Remark 2.3. Weights can have non-positive value depending on the tasks. In this case, we usually
require that w((i, j)) = 0 if and only if (i, j) 6∈ E , that w((i, j)) = 0 and (i, j) 6∈ E have the same
effect on the task. We imposed the positivity to weights due to the simplification of the presentation.

Directed Graph A directed graph is a graph whose edges have a direction. The definition of a
graph above is directed because, for an edge (u, v) ∈ E , we can think the first element u (resp.
second element v) as the head (resp. tail) of the edge (or the other way round). A graph that
does not have direction is called an undirected graph. We can represent an undirected graph by
requiring the set of edges E to satisfy that (u, v) ∈ E if and only if (v, u) ∈ E for any u, v ∈ V .
We can represent the adjacency matrix of an undirected graph with a symmetric matrix.

Multigraph A multigraph is a graph that allows multiple edges between the same node pair.
Mathematically, a (directd) multigraph is a three-tuple (V, E , ϕ), where V and E are the set of
nodes and edges, respectively, and ϕ : E → V × V is assignment of an edge to its head and
tail. We can define an undirected multigraph analogously. When ϕ is injective, we can identify E
with a subset of V × V . Hence, the definition of a multigraph is reduced to the original definition
of a graph, a graph with no multi edges (i.e., every node pair has at most one edge). A simple
graph is an undirected graph that does not have multi-edges. Knowledge graph is an example of a
multigraph where two entities (nodes) can have more than one relationship (an edge with an edge
type) (see Section 2.2.4).

Graph with Features When we are only interested in the topology of a graph (i.e., how nodes
are connected), the pair (V, E) is sufficient as a definition of a graph. Such a graph is homogeneous
in the sense that all nodes and edges are the same type respectively and that they themselves do
not have any further information. However, in typical ML tasks, we often have more information
about graphs. For example, for chemical compounds, each node (atom) has information such as
an atom type, 3D coordinates, and electric charge. Similarly, each edge is associated with the
bond types (e.g., single/double/triple bonds) and geometric distances. Such information is often
referred to as node or edge features, respectively.

One way to represent such information is to augment a graph with functions ϕV : V → XV
and ϕE : E → XE , where XV and XE are the domains of node and edge features. Node and edge
features can be either discrete, continuous, or their mixture. Weighted graphs are a special type of
graphs with scalar edge features (i.e., ϕE : E → R).

28

2. Background

We can compactly represent node and edge features along with the graph topology using an
order-three tensor A. Suppose the node and features are vectors of size DV and DE , respectively
(i.e., XV = RDV , XE = RDE). Then, A is a tensor of size N ×N × (DV +DE + 1) defined by

Aijk =

1[(i, j) ∈ E] if k = 1,
ϕV(i) if i = j and k = 2, . . . DV + 1,
ϕE((i, j)) if (i, j) ∈ E and k = DV + 2, . . . , DV +DE + 1,
0 otherwise.

(2.9)

In the following, we give three particular types of graphs with features: homogeneous graph
with node features, heterogeneous graph, and multiplex graphs.

Homogeneous Graph with Node Features When we have node features only, we can represent
the graph data as a three-tuple (V, E , X) where V and E are the node and edge sets and X ∈
RN×DV is a collection of node features. Homogeneous graphs with node features are the typical
input of GNNs for homogeneous graphs (see Section 2.5).

Heterogeneous Graph A heterogeneous graph is a graph whose node is associated with one of
K node types (K ∈ N+). It corresponds to setting the domain of node features as XV = [K] or
one dimension of node features takes value in [K]. We can partition the node set using the node
type: V =

⊔K
k=1 Vk where Vk is the set of nodes with type k ∈ [K]. Typically, edges satisfy

some constraints that they connect specific pairs of node types. The DBLP dataset used in Wang
et al. [2019b] is an example of a heterogeneous graph, with four node types: 14,328 papers,
4,057 authors, 20 conferences, and 8,789 terms. Paper-author, paper-conference, and paper-term
relationships are represented as edges.

Multiplex Graph A multiplex graph is a graph with multiple (typically finite number of) adja-
cency matrices. For example, consider a graph of airports in which two airports are connected at
the k-th adjacency matrix if an airline company with an index k has flights between them. Then,
we can represent the flight information of whole companies as a single multiplex graph. By con-
catenating adjacency matrices, we can represent the graph as an adjacency tensor A ∈ RN×N×K .
We can alternatively represent a multiplex graph with K layers as a multigraph whose edges have
one of K edge types.

Remark 2.4. Logically, a homogeneous graph with node features is a special case of a heteroge-
neous graph. When we use the term heterogeneous graphs, we often implicitly assume that nodes
with different node types have different attribute sets.

Remark 2.5 (Note on terminology). There is no standard notion for a graph with features and
their special cases to the best of our knowledge. We have mainly followed the definition of Hamil-
ton [2020]. Different researchers can use the same terms in different ways. In Yao and Jiliang
[2020], the authors used the term a heterogeneous graph to refer to a graph with the node feature
ϕV and edge feature ϕE (the most general concept of graphs with features in our definition). In

29

2. Background

Table 2.2: Classification of ML tasks on graphs

Prediction task Graph Node Link

Dataset Set of (small) graphs (Large) graph(s) (Large) graph(s)
Data Point Graph Node Node pair

Application examples
Molecule Social network User–item graph

Scene graph Biological network Interaction network

the document of DGL3, the authors define heterogeneous graphs by graphs that contain different
types of nodes and edges. Therefore, they also employed the definition similar to that of Yao and
Jiliang [2020].

Regarding the multiplex graph, some literature called it differently. such as a multidimen-
sional, multilayer, For example, on the one hand, Yao and Jiliang [2020] referred to this type of
graphs as multidimensional graphs. Another literature calls it a multi-relational graph. How-
ever, Hamilton [2020] used a multi-relational graph to indicate whose a graph with (finite) edge
types.

2.2.2 Task Types

Supervised and Semi-supervised Learning

Typical ML tasks on graphs are classified into a graph prediction task, a node prediction task,
and a link prediction task, depending on what each data point is in a graph or a set of graphs
(Table 2.2). In a graph prediction task, a dataset consists of a set of (typically small) graphs. Each
graph represents one data point. The objective of graph prediction tasks is to predict the properties
of whole graphs. In a node prediction task, we are given a single (typically large) graph or a small
number of graphs. Each data point is a node in a graph (or graphs). The task is to predict nodes’
properties from the information of nodes and connection information of nodes. Similar to node
prediction tasks, in a link prediction task, we are given a single graph or a small number of graphs.
Each data point is represented as a pair of nodes. The task is to predict whether given two nodes
likely have an edge between them. In this study, when we consider GNN models, we mainly focus
on node prediction tasks on a graph.

Graph Generation

In a graph generation task, we want to generate a graph that has desired properties. Take drug
discovery as an example. We want to find candidate molecules from existing databases and, at the
same time, explore molecules that are not in the databases. Table 2.3 shows representative graph
generative models classified by what is a base generative model and how we represent generated
graphs. There is a wider variety of strategies compared to graph encoding models explained in

3https://docs.dgl.ai/en/0.4.x/index.html (Retrieved on October 11, 2020)

30

https://docs.dgl.ai/en/0.4.x/index.html

2. Background

Table 2.3: Graph generative models. VAE: Variational Auto Encoder, RL: Reinforcement Learn-
ing, GAN: Generative Adversarial Network, SMILES: Simplified Molecular Input Line Entry
System.

Model Reference Base model Output

Chemical VAE [Gómez-Bombarelli et al., 2018] VAE SMILES
VGAE [Kipf and Welling, 2016] VAE Adjacency matrix
Graph VAE [Simonovsky and Komodakis, 2018] VAE Adjacency matrix
Graphite [Grover et al., 2019] VAE Adjacency matrix
Grammar VAE [Kusner et al., 2017] VAE Syntax tree
SD-VAE [Dai et al., 2018b] VAE Syntax tree
JT-VAE [Jin et al., 2018] VAE Molecular tree
GraphRNN [You et al., 2018] Autoregressive Nodes and edges
GRAN [Liao et al., 2019a] Autoregressive Adjacency matrix
ORGAN [Guimaraes et al., 2017] RL + GAN SMILES
ORGANIC [Sanchez-Lengeling et al., 2017] RL + GAN SMILES
MolGAN [De Cao and Kipf, 2018] RL + GAN SMILES
GraphNVP [Madhawa et al., 2019] Invertible flow Adjacency matrix
GRF [Honda et al., 2019] Invertible flow Adjacency matrix
MoFlow [Zang and Wang, 2020] Invertible flow Adjacency matrix

Section 2.3.1. Graph generation tasks must overcome the discrete and inhomogeneous nature of
graphs (see Section 2.2.5). These models mainly differ in how they overcome these difficulties.

Adversarial Attack and Defense on Graphs

Adversarial attack is to add intentional small noises to inputs to mislead a model to incorrect
prediction. It has been reported that classical deep models, such as FNNs and CNNs are vulner-
able to adversarial attack [Szegedy et al., 2014, Goodfellow et al., 2015]. GNNs also inherit this
property [Dai et al., 2018a, Zügner et al., 2018].

One characteristic of adversarial attack and defense research is the variety of problem settings,
depending on applications the task assumes. Jin et al. [2020] classified adversarial attack problems
based on the following axes:

1. When attacks happen (before or after training)?

2. Which components in graphs attackers modify?

3. Whether the attackers’ target is specified nodes or not (targeted or non-targeted)?

4. What attackers know about the victim models (black box, gray box, or white box)?

Also, it depends on tasks on how to define the "small noise" of a graph. For example, Dai et al.
[2018a] defined it as a perturbation of a graph by adding or deleting a few edges to change classi-
fication results either at the node level or graph level.

31

2. Background

Training	(Positive)
Training	(Negative)
Test

Figure 2.2: Transductive learning for a node classification task.

Similarly to the graph generation task (Section 2.2.2), attack and defence algorithms takes
various strategies for overcomeing the discrete and inhomogeneous structures of graphs (Sec-
tion 2.2.5). For example, Dai et al. [2018a] proposed three attack types: RL-based (Reinforcement
Learning) approach (RL-S2V), gradient-based approach (GradArgmax), and evolutionary compu-
tation approach (GeneticAlg). Several strategies have been proposed regarding defense against
attacks, such as adversarial training, graph purifying, and attention mechanism. See the com-
prehensive reviews [Sun et al., 2018, Xu et al., 2020b, Chen et al., 2020a, Jin et al., 2020] for
representative attack and defense methods (e.g., Jin et al. [2020, Table 2, 5])4. Regarding imple-
mentation, DeepRobust [Li et al., 2020b, Xu et al., 2020a] provides a wide variety of off-the-shelf
attack and defense methods on graphs.

2.2.3 Transductive Learning

When we treat a node as a data point, we can formulate a node prediction task on a graph as a
transductive learning (Figure 2.2). Transductive learning is a type of semi-supervised learning.
In a conventional supervised learning setting, the task is to build an ML model that can make
predictions well to unseen (typically infinite) data points. Differently from it, in a transductive
learning setting, the test sample (which typically has finite data points) is known in advance to
training. The task is to make a model that predicts well on the given test sample. Therefore,
we can use feature-label pairs of the training sample and feature vectors of the test sample. The
ordinal supervised setting is sometimes referred to as inductive setting when we contrast it with a
transductive setting. Similarly to the inductive setting, we have learning theory for a trusductive
learning setting (see Section 2.7.6).

4We have retrieved the list of survey papers from the repository by Jin (https://github.com/
ChandlerBang/awesome-graph-attack-papers) (Retrieved on October 24, 2020)

32

https://github.com/ChandlerBang/awesome-graph-attack-papers
https://github.com/ChandlerBang/awesome-graph-attack-papers

2. Background

2.2.4 Application Fields

In this section, we discuss application fields of graph data analysis. Among others, we take social
network analysis and chemo- and bio-informatics, and information retrieval, and computer vision
as examples. We choose these fields as they have typical examples of task types (graph, node, and
link prediction tasks) presented in Section 2.2.2.

Social Network Analysis

Social network analysis is a methodology in sociology in which we represent some social struc-
tures as graphs and analyze them. Since we deal with a single large graph (or a small number of
graphs) are often interested in characteristics of nodes or edges in a graph(s), we often formulate
ML tasks on such networks as a node prediction or link prediction task. From the viewpoint of
graph theory, networks studied in social network analysis often have graph-theoretical character-
istics such as scale-free-ness or small-world-ness.

Citation networks are a typical example of social networks, representing academic collabora-
tions between researchers. A network represents a paper as a node and a citation relationship as
an edge. The typical task is to predict a paper’s genre from the citation relationships and word
occurrence of the paper. This network type is the most standard benchmarks datasets for node
classification tasks, such as Cora [McCallum et al., 2000, Sen et al., 2008], CiteSeer [Giles et al.,
1998, Sen et al., 2008], and PubMed[Sen et al., 2008].

Social Networking Service (SNS) is another type of social network, in which each user at-
tending to the service is represented as a node, and relations between users (e.g., friendship) are
edges.

Chemoinformatics and Bioinformatics

The advance of measurement equipment has increased the chemistry and biological data and moti-
vated their better use. To explain it more concretely, take drug discovery for an example. We want
to know the properties of molecules that are the candidate of drug in silico (i.e., on computers).
Such an analysis is sometimes called Quantitative Structure-Activity Relationship (QSAR). The
process of drug discovery takes several steps. In the early drug discovery stage, we want to find
candidates of drugs to target diseases, known as lead compounds. Such candidates are promoted to
further analyses, such as clinical trials on animals or humans. High-throughput screening (HTS) is
a technology for automatically assessing the in vitro activity of a massive number of compounds.
Since this process generates a massive amount of data, it motivates the better use of such a dataset
for constructing predictive models of molecular properties for selecting lead compounds within
computers (thus, known as virtual screening).

Another example of a data explosion in biology is the emergence of the next-generation se-
quencer (NGS) for reading nucleic acid sequences. It is reported that the decrease speed of the cost
of NGS has been exceeding Moore’s law 5. NGS has revolutionized the methodologies in Bioin-
formatics. For example, to analyze which genes are related to observable traits of living organisms

5K. A. Wetterstrand, The Cost of Sequencing a Human Genome, August 25, 2020 (Retrieved on October 29, 2020),
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

33

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost

2. Background

(called phenotypes), researchers classically selected a small number of genes and measured their
expression levels. NGS has enabled us to measure the expression level comprehensively, leading
to new methodology such as Genome-wide Association study (GWAS).

Investigation of molecules is the most standard application of the graph ML methodologies in
chemistry and biology. The most standard representation of molecular graphs is to interpret each
atom as a node and each covalent bond as an edge (Of course, this is not the representation of a
molecule as a graph. See Section 2.2.5). In most cases, we are interested in a molecule’s properties
as a whole such as toxicity or solvency of a molecule. Therefore, a task on molecules is usually
formulated as a graph prediction task.

Another example of networks in Biology is interactomes, which is a network of substances
such as DNA, RNA, protein, and drugs in a body. For example, genes’ expression is regularized
with each other via proteins or genetic substances such as micro RNAs. Gene regulatory network
is a typical example of the interactome that gives a holistic picture of gene interactions in a system.
One way to represent to this network is to represent each gene as a node and an interaction between
genes as an edge. Similarly, interactions between proteins are represented as a protein-protein
interaction (PPI) network. Another example of gene regulatory networks is a heterogeneous graph
(Section 2.2) whose nodes are genes and substances that mediate gene interactions.

An application of interactomes includes the discovery of signaling pathways and (side) effects
of drugs. We can formulate such tasks as a link prediction task. For example, in Zitnik et al. [2018],
the authors applied their proposed GNN model, Decagon, to protein-drug interaction networks,
which are heterogeneous networks consisting of proteins and drugs to model polypharmacy side
effects.

Information Retrieval

Knowledge bases are a collection of factual knowledge of interest. In natural language processing
(NLP), relationships between words (technically called synonym sets or synsets) as a knowledge
base. We can use it for various NLP tasks, such as logical reasoning, entity recognition, and sen-
timent analysis. For example, WordNet [Miller, 1995] is a lexical database consisting of approxi-
mately 117,000 synsets. In web science, information on the Internet is represented as a knowledge
graph. Google’s Knowledge Graph6 is an example of commercialized knowledge graphs used for
semantic web search.

Typically, a knowledge base represents a fact as a 3-tuple of the form (subject, predicate, ob-
ject). Therefore, it is convenient that we represent knowledge base as a directed multigraph (Sec-
tion 2.2), called knowledge graph, where nodes are subjects or objects and edges are predicates
with relation types7.

Computer Vision

Relationships between objects detected in an image are represented as a relational graph called a
scene graph [Johnson et al., 2015, 2018]. Figure 2.3 represents a typical example of a scene graph.

6A. Singhal, Introducing the Knowledge Graph: things, not strings, May 16, 2012 (Retrieved on October 24, 2020)
https://blog.google/products/search/introducing-knowledge-graph-things-not/,

7Schlichtkrull et al. [2018] called such a graph a relational graph.

34

https://blog.google/products/search/introducing-knowledge-graph-things-not/

2. Background

Child Shirt

Pants

Tree
is	behind wears

wears

Figure 2.3: Scene graph example.

It is made from a child’s picture in a shirt and pants standing in front of a tree. Scene graphs are
used for image recognition tasks such as image search and caption generation.

Surfaces of 3D objects are represented as a triangulated mesh, forming a graph. We can think
of polygon as a discretization of a manifold, informally speaking, a curved surface. Therefore,
the application of deep models such as GNNs to such non-Euclidean data is often referred to as
geometric deep learning [Bronstein et al., 2017].

2.2.5 Challenges

When we apply ML models to graph-structured data, we have several challenges that do not appear
in grid-like data such as images or sequences, which are the main scope of classical DL models.
Among others, we explain three challenges: order invariance/equivariance, inhomogeneous neigh-
borhood structure, and data abstraction.

Order Invariance and Equivariance Roughly speaking, the order-invariance of a model is
the characteristics that the model output is independent of the node-ordering of an input graph
(Section 2.2). The concept of the order-invariance is typically used in graph prediction tasks (Sec-
tion 2.2.2). Similarly, we call a model is order-equivariant if when we permute the node order of
an input graph, the output of the model is also permuted consistently. When we discuss equivari-
ance, we usually assume the ML model outputs a vector for each node in a graph. Therefore, we
often use the concept of the order equivariance in node or edge prediction tasks.

We can formulate the invariance and equivariance of the function mathematically as follows
(Figure 2.4). Let SN be the permutation group of order N . That is SN is the set of bijective
function from [N] to itself: SN := {σ : [N] → [N] | σ is bijective.}. SN acts on the set of
order-(K + 1) tensors RNK×C by

σ · ai1···iKc := aσ(i1)···σ(iK)c.

For example, when the input tensor is a matrix (i.e., K = 2 and C = 1), the action of SN is the
simultaneous permutation of rows and columns. We say a function f : RNK×C → RC′

is order
invariant when for any σ ∈ SN , we have

f ◦ σ = f.

35

2. Background

𝑓

𝑓
𝜎

𝑓

𝑓

𝜎 𝜎

Figure 2.4: Invariance (left) and equivariance (right).

Similarly, we say a function f : RNK×C → RNK′×C′
is order equivariant when for any σ ∈ SN ,

we have
f ◦ σ = σ ◦ f.

Note that the order invariance is the special case of the order equivariance where K = 0.
A naïve idea to apply ordinal FNNs or CNNs to a graph with node features (Section 2.2.1) is

to give an arbitrary order to the node-set of the graph and represent the data such as the adjacent
matrix or an adjacent tensor. However, this idea fails to satisfy the requirement of the order
invariance. For example, consider the graph prediction task (Section 2.2.2), where we assume that
each data point is a graph of the same size N . By imposing a node order to an input graph, we can
represent it is an adjacency tensor of size M ×M × N for some M ∈ N+. We can apply a 3D
CNN, at least formally, to obtain the representation for a whole graph. Next, we consider another
node order of the graph. We have another order-three tensor, which is different from the former
tensor in general. Since the node ordering is not an intrinsic property of the graph data, we want
ML models to output the same value to the two tensors made from different orders. However, we
cannot ensure it because usual FNNs nor CNNs do not have such characteristics.

Inhomogeneous Neighborhood Structure Image and sequence data can be seen as a signal
on a grid graph. They have a homogeneous structure that each node has the same neighborhood
structures. For example, when we think of an image as a 2-dimensional grid graph whose nodes are
pixels, each node has four adjacent nodes except nodes on borders. Such a homogeneous structure
enables us to define the convolutional operations of a CNN (Section 2.1.1). However, arbitrary
graphs do not have such structures. For example, each user in a social network has a different
number of followers in general. Therefore this inhomogeneity prevents us from extending the
operation of CNNs to arbitrary graphs.

Data Abstraction How to represent an object as a graph is not a trivial problem. When we
represent an object as a graph, we lose some information. For example, if we represent a chem-
ical compound as a graph whose nodes are atoms and whose edges are covalent bonds. Even if
we introduce covalent bond types such as single/double/triple bonds, it loses some 3D structure
information.

36

2. Background

Although this is an important problem, we do not pursue this direction because we are mainly
interested in how structures of ML models affect their theoretical performance. We assume that
data points are represented as a graph using some preprocessing procedures.

2.3 GNNs Overview

In this section, we give an overview of GNN models. First, we explain the general role of GNNs,
along with the list of representative models. Then, we give two unified formulations of GNNs:
Message Passing Neural Network (MPNN) by Gilmer et al. [2017] and GraphNet by Battaglia
et al. [2018]. Finally we briefly introduce pooling operations for GNNs.

2.3.1 Role of GNNs

Graph Neural Network, or GNN in short, pioneered by the work by Gori et al. [2005], Scarselli
et al. [2009], is a collective term of DL models applied to graph-structured data. Typically, a
GNN model gives representations of a whole graph or their components such as nodes and edges.
By doing so, GNNs work as a (learnable) interface that converts graph-structured data to non-
structured tensors and feeds them to ML models which do not assume structures (see Figure 1.3 in
Section 1.3). To which components a GNN gives representations usually depends on task types we
want to solve (Section 2.2.2). When we solve a graph (resp. node, edge) prediction task, typically
the output of a GNN is a representation for a whole graph (resp. each node, each edge) that is
order-invariant (resp. order-equivariant) (Section 2.2.5).

We can make graph and edge representations from node representations. Therefore, most
GNNs are designed to produce node representations. A graph representation is obtained by aggre-
gating all nodes’ representations by some aggregation function. To make the graph representation
order-invariant, we typically impose the aggregation function to be order-invariant such as the
summation, aggregation, maximum, or concatenation function. Similarly, we can make edge rep-
resentations by representations of end nodes. Of course, this is not the only way to make graph and
edge representations. Several GNN models employ algorithms tailored to these representations.

Many GNN variants have been proposed depending on, which graph and task types (Sec-
tion 2.2.2) a model deals with, and how the model overcomes the difficulties of graph ML tasks
(Section 2.2.5). Table 2.4 shows the representative GNN models we feature in this paper.

2.3.2 MPNN-type GNNs

Message Passing Neural Network (MPNN) [Gilmer et al., 2017] is a unified framework of GNN
models. The architecture of MPNN-type GNNs assumes that the data has homophily, an inductive
bias that properties of neighbouring nodes are highly correlated. Therefore, their design intends
that for predicting a node’s properties, they make use of not only features of the node itself but
also those of its neighboring nodes.

Many GNNs fall into this formulation, including GNN models proposed before, such as NFP
(Neural Fingerprint) [Duvenaud et al., 2015], GGNN (Gated Graph Neural Network) [Li et al.,
2016], and GCN (Graph Convolution Network) [Kipf and Welling, 2017]. The advantage of

37

2. Background

Table 2.4: Representative GNN models.

Type Model Reference]

Early Model – [Gori et al., 2005]
– [Scarselli et al., 2009]

Graph Convolution – [Bruna et al., 2014]
(Section 2.5.2) – [Defferrard et al., 2016]

NFP [Duvenaud et al., 2015]
GCN [Kipf and Welling, 2017]
SGC [Wu et al., 2019a]
GIN [Xu et al., 2019]
GAT [Veličković et al., 2018]

ResNet-type GNN GResNet [Zhang, 2019]
(Section 2.6.1) DeepGCN [Li et al., 2019]

DeeperGCN [Li et al., 2020a]
APPNP [Klicpera et al., 2019]
GCNII [Chen et al., 2020b]
CGNN [Xhonneux et al., 2020]

Multi-scale GNN JK-Net [Xu et al., 2018]
(Section 2.6.2) DCNN [Atwood and Towsley, 2016]

DCRNN [Li et al., 2018c]
MixHop [Abu-El-Haija et al., 2019a]
N-GCN [Abu-El-Haija et al., 2019b]

38

2. Background

MPNN-type GNNs is the simplicity of implementation. There are several graph libraries im-
plementing GNNs such as PyTorch Geometric [Fey and Lenssen, 2019], DGL (Deep Graph Li-
brary) [Wang et al., 2019a], and Chainer Chemistry8. MPNN-type GNNs are the primary type
implemented in these libraries. Another advantage is that it is computationally lighter than the
method using the graph Fourier transform (see Section 2.4 for more details).

To make a node representation of a graph, an MPNN-type GNN iteratively conducts two op-
erations: aggregation and update operations. In the aggregation operation, each node gathers
information (called message) of neighboring nodes using the underlying graph structures. In the
update operation, each node makes a new representation using its old representation and incoming
messages. The general form of an L-layered MPNN-type GNN at the node i is as follows.

m
(l+1)
i = AGGREGATE({M (l)(Z

(l)
i , Z

(l)
j , ei,j) | j ∈ N (vi)}),

Z
(l+1)
i = UPDATE(Z

(l)
i ,m

(l+1)
i) (l = 1, . . . , L)

with appropriate initialization of h
(1)
i for each i. Here, N (i) is the set of nodes adjacent to i.

Intuitively, the function M (l) incorporates the information of the neighbor node j to the node i as a
message via an edge (i, j). The aggregation function AGGREGATE is a variadic function (i.e., a
function which takes an arbitrary number of arguments) for collecting messages from neighboring
nodes. Usually, we impose that the aggregate function is invariant under the permutation of any
pair of arguments to obtain order-equivariant representations. In other words, AGGREGATE can
be interpreted as a function of a multi-set. For example, the summation and mean functions are
typical aggregation operations. The UPDATE function updates each node representation using
the old representation h

(l)
i and aggregated messages m

(l+1)
i . Typically, the update function is a

learnable function common to all nodes, such as a multi-layer perceptron. Some models use LSTM
(Long short-term memory) [Hochreiter and Schmidhuber, 1997] as an update function [Ishiguro
et al., 2019]. By iterating these procedures, we obtain the node representations Z

(L+1)
i for each

node i.
We can use an MPNN-type GNN for graph prediction tasks by further aggregating node rep-

resentations. This function is often called the readout function:

y = READOUT({Z(L+1)
i | i ∈ V}).

Similar to the aggregate function, we usually impose the readout function to be symmetric, such
as the summation, mean, and maximum function.

We elaborate on a more specific MPNN-type GNNs, including GCN and its variants in Sec-
tion 2.5 and 2.6.2.

2.3.3 GraphNet

GraphNet (GN) [Battaglia et al., 2018] is another unified formulation of GNNs. This formulation
is different from MPNN (Section 2.3.2) in that a graph is allowed to have a global representation9

8https://github.com/chainer/chainer-chemistry (Retrieved on October 30, 2020)
9In Battaglia et al. [2018], the authors referred to the graph representation as a global attribute. Since we use the term

graph/node/edge representations to indicate features associated with graph components, we employ this terminology
for consistency.

39

https://github.com/chainer/chainer-chemistry

2. Background

that have the whole graph’s global information. GN can utilize it to update node and edge repre-
sentations. One computational unit, called a GN block, consists of edge, node, and global blocks.
Given node representations {Zv

i } (i ∈ V), edge representations {Ze
k} (k ∈ E), and the global

representation Zu, the GN block makes the updated representations, denoted by Z̃v
i , Z̃e

k, and Z̃u

respectively, as follows:

Edge Block

Z̃e
k = ϕe(Ze

k, Z
v
rk
, Zv

sk
, Zu) (k = (rk, sk) ∈ E).

Node Block

ei = ρe→v({Z̃e
k | k = (rk, sk) ∈ E , rk = i}) (i ∈ V),

Z̃v
i = ϕv(ei, Z

v
i , Z

u)

Global Block

e = ρe→u({Z̃k | k ∈ E}),
v = ρv→u({Z̃i | i ∈ V}),

Z̃u = ϕu(e,v, Zu).

Here, ρe→v, ρe→u, and ρv→u are aggregation functions for creating messages from edges to nodes,
from edges to global, and from nodes to global, respectively. These functions are required to
be order-invariant in order to make the GN block order-equivariant. ϕe, ϕv, and ϕu are update
functions for renewing representations for edges, nodes, and global representations, respectively.

The MPNN formulation is the special case of GN, where we set ϕe, and ϕv does not depend
on the global representation Zu.

2.3.4 Pooling

Like CNNs, several works have proposed pooling operations for GNNs [Defferrard et al., 2016,
Ying et al., 2018, Ma et al., 2019]. In either case, a pooling layer inputs a graph, optionally along
with node and edge representations, and outputs a graph typically smaller than the original graph,
associated with updated (node, edge) representations. Roughly speaking, pooling operations are
categorized into two types depending on how to make the output graph: node coarsening and
node sampling. On the one hand, in a node coarsening approach, a pooling operation partitions a
set of nodes into groups and make a supernode per group. On the other hand, in a node sampling
approach, a pooling operation selects a subset of nodes that are informative and discards the others.

Pooling operations are typically used for graph classification tasks since pooling operations
reduce the number of nodes. By appropriating unpooling operations, we can use pooling oper-
ations for node prediction tasks, too. For example, Graph U-Net [Gao and Ji, 2019] proposed
an unpooling operation (gUnpool) for restoring the original graph topology discarded by pooling
operations.

40

2. Background

2.4 Spectral Graph Theory

This section explains the spectral graph theory, particularly graph convolution operation via graph
Fourier transform. Spectral graph theory studies various properties of graphs via their spec-
tral information, such as the set of eigenpairs of adjacency matrices or graph Laplacians (Sec-
tion 2.4.1). This section aims to introduce the graph convolution operator, which is a building
block of convolution-based GNNs. We give a minimal explanation of the spectral graph theory
needed for our purpose. Please refer to Chung and Graham [1997] for more details of the theory.

2.4.1 Definition

Let G = (V, E) be a simple graph (Section 2.2.1) with N nodes. We assume some order on the set
of nodes and identify V with [N]. We denote its adjacency matrix by A(G) ∈ RN×N . We define
the degree matrix of G by

D(G)ij =

{
deg(i) if i = j,

0 otherwise.

Here, deg is a node degree defined by deg(i) := |{j ∈ V | (i, j) ∈ E}|. By definition, we have
⃗D(G) := diagA1. We define the (unnormalized) graph Laplacian by L(G) := D(G) − A(G).

We define D− 1
2 ∈ RN×N by

D(G)
− 1

2
ij =

{
deg(i)−

1
2 if i = j and deg(i) 6= 0

0 otherwise,

and define the normalized adjacency matrix and the normalized Laplacian

Ā(G) := D(G)−
1
2A(G)D(G)−

1
2 ,

L̄(G) := D(G)−
1
2L(G)D(G)−

1
2 .

In particular, when G is connected, we have L̄(G) = IN−Ā(G). For GCN, we use the augmented
version of the adjacency matrix and graph Laplacian. We define its augmented version G̃ by
adding a single self-loop to each node for a graph G. By definition, we have A(G̃) = A(G)+ IN .
Correspondingly, we define the augmented normalized adjacency matrix and augmented normal-
ized Laplacian of G as the ones for augmented graph G̃. Specifically, the augmented normalized
adjacency matrix Ã(G) and augmented normalized Laplacian L̃(G) is defined by

Ã(G) := Ā(G̃) = (D(G) + IN)−
1
2 (A(G) + IN)(D(G) + IN)−

1
2 ,

∆̃(G) := ∆̄(G̃) = (D(G) + IN)−
1
2 (L(G) + IN)(D(G) + IN)−

1
2 .

If the underlying graph G is obvious from the context, we omit G and denote A, Ã,∆, and Ã,
respectively for simplicity.

When G is connected, for x ∈ RN , we have

x⊤∆̄x =
1

2

∑
i,j

aij

(
xi√
di
− xj√

dj

)2

.

41

2. Background

Note that this equation is valid for an unconneted graph G by treating the summand in the right
hand side as 0 when either i or j is an isolated node. From this equation, we see that ∆̄ is positive
semi-definite.

2.4.2 Graph Fourier Transform

We define the graph Fourier transform and inverse graph Fourier transform using the normalized
adjacency matrix Ā. We can define the graph Fourier transform using the augmented normalized
adjacency matrix ∆̃ analogously.

The eigenvalues of Ā is real because Ā is a symmetric matrix (since G is simple, hence undi-
rected). Let λ1 ≤ · · · ≤ λN be the eigenvalues of ∆̄, sorted by ascending order and (ei)i∈[N]

(ei ∈ RN) be the basis consisting of the corresponding eigenvector associated with eigenvalues
µi. We define the collection

U =
[
e1 · · · eN

]⊤ ∈ RN×N . (2.10)

Since (ei)i∈[N] are orthonormal, U is an orthogonal matrix (i.e., U ∈ O(N)). We define the
Fourier transform F̂ : RN×C → RN×C and the inverse Fourier transform F̌ : RN×C → RN×C

by F̂(X) := UX and F̌(X) := U⊤X , respectively. Since U ∈ O(N), F̌ is actually the inverse
of F̂ .

2.4.3 Graph Convolution Operator

The idea of spectral graph convolution is to make the filtering function learnable [Bruna et al.,
2014]. For X ∈ RN×C and W ∈ RN , we define

ConvW (X) := F̌(F̂(X)�W), (2.11)

where W =
[
w1 · · · wN

]⊤ is a matrix to be learned (Figure 2.5). If we decompose a signal
X ∈ RN×C into frequency components as

X:c =

N∑
i=1

aicei (2.12)

where aic = e⊤i X:c ∈ R, then, we have

[ConvW (X)]:c :=
N∑
i=1

wiaicei. (2.13)

The model proposed in Bruna et al. [2014] the cubic B-spline function to parameterize the learn-
able parameter W . Since ConvW is differentiable with respect to the input X and parameter W ,
we can train the model in an end-to-end manner using backpropagation.

Although the operation successfully extends convolution operations from grid graphs to arbi-
trary ones, this model has two drawbacks. First, since the Fourier transform needs the eigenvalue
decomposition to obtain the matrix U , the computational cost is prohibitive. Second, since the

42

2. Background

convolution operation has N learnable parameters, which is the same as the node size, we cannot
apply it to graphs whose node is other than N .

To overcome this problem, we consider a different parametrization of the graph convolution
operator. For a function g : R → R, we define g(Ā) = U⊤g(Λ)U where g(Λ) ∈ RN×N is a
diagonal matrix defined by g(Λ)ii = g(λi). Using the same decomposition as Equation (2.12), we
have

[g(Ā)X]:c =
N∑
i=1

g(λi)aicei. (2.14)

Note that when g is a polynomial g(µ) =
∑K

k=1 bkµ
k, then we have

g(Ā) =

K∑
k=1

bkĀ
k, (2.15)

Hence the notation the notation g(Ā) is justified. By comparing and Equation (2.13) with Equa-
tion (2.14), we see that a filter g(Ā) works as a convolution operator with weight W =[
g(λ1) · · · g(λN)

]⊤.
This observation motivates us to parameterize the function g instead of W (i.e., g = gθ for

some parameter θ). When g is a polynomial, we can compute g(∆̄) efficiently because there is
no need for the eigenvalue decomposition, as we saw in Equation (2.15). Inspired by the approxi-
mation techniques of wavelet kernels by Chebyshev polynomials used in graph signal processing
research [Hammond et al., 2011], Defferrard et al. [2016] used the weighted sum of Chebyshev
polynomials with learnable weights.

Remark 2.6. Since Ā and ∆̄ are related via Ā = IN − ∆̄, we can use a function of ∆̄ instead of
Ā as a parameterized function g. This is a standard convention for GNNs using graph convolution
operators (e.g., Kipf and Welling [2017]).

2.5 Convolution-based GNNs

This section introduces the overview of convolution-based GNNs, which use (a function of) an
adjacency matrix. First, we introduce a general form of convolution-based GNN and its instan-
tiation, including GCN and its variants. Then, we explain the over-smoothing problem of linear
convolution-based GNNs, which motivates the study of Chapter 4. We assume that input graphs
are homogeneous graphs with node features (Section2.2) unless explicitly mentioned.

2.5.1 General Form

Figure 2.6 shows the graphical view of operations of GNNs using convolution operators as aggre-
gation functions. Each layer has the following function form:

f (l)(X) = F (l)(g(Ā)X) : RN×C → RN×C′
. (2.16)

43

2. Background

Frequency

𝒙

𝒙’

・・・・・・・

Fr
eq
ue
nc
y	
co
m
po
ne
nt ×𝑤1

×𝑤2

×𝑤3𝑎1
𝑎2

𝑎3
𝑎5

×𝑤5

Figure 2.5: Interpretation of a graph neural network as graph signal processing. We denote the
input by x ∈ RN and the output by x′ = ConvW (x) := F−1(F(x) �W) ∈ RN where W =[
w1 · · · wN

]⊤ ∈ RN .

MLP(%)
𝑣

MLP(%)
MLP(%)

MLP(%)

MLP(%)

𝑋)*+,

𝑋)
𝑋-

𝑢

𝑣

𝑋)*+,

Figure 2.6: Schematic view of a convolution-based GNN f (l)(X) = MLP(l)(AX).

Here, Ā is the normalized adjacency matrix, g : R→ RN is a function, and F (l) : RC → RC′
is a

function for updating node representations. We apply the same function F (l) to all nodes (i.e., the
row-wise application to an input matrix). Both of g(l) and and F (l) can be learnable functions.

For example, GCN used the augmented normalized adjacency matrix g(A) = Ã (Sec-
tion 2.4.1). LanczosNet [Liao et al., 2019b] used the the polynomial of A or Ã as g(A). For the
function F (l), GCN uses the learnable matrix W (l) ∈ RC′×C followed by a non-linear transfor-
mation σ: F (l)(Z) = σ(ZW (l)). GIN (Graph Isomorphism Network) [Xu et al., 2019] extended
GCN by replacing one-layer MLP with an MLP with a single hidden layer.

2.5.2 Variants

We show concrete examples of GNN models that use the graph convolution operations. In this
section, we denote the collection of node representations on a graph G by X ∈ RN×C(1)

and the

44

2. Background

output of the l-th layer node representation by Z(l)RN×C(l)
where C(l) ∈ N+ is the channel size

at the l-th layer.

GCN GCN (Graph Convolution Network) [Kipf and Welling, 2017] is one of the most standard
GNNs. GCN iteratively computes node representations as follows:

Z(1) = X,

Z(l+1) = σ(ÃZ(l)W (l)). (2.17)

Here, Ã is the augmented normalized adjacency matrix of the underlying graph and W (l) ∈
RC(l+1)×C(l)

. We often omit the activation function of the last layer, in the same way as FNNs.
When a GCN is applied to a grid graph (say a two-dimensional grid graph), one layer of the

GNN resembles a 3×3 convolution with fixed weight parameters, followed by a 1×1 convolution
with learnable parameters and the non-linear activation function σ. This architecture is similar to
the depth-wise separable convolution adopted by Xception [Chollet, 2017]. As we show in this
and the following sections (Section 2.6.2), several GNN models have been proposed based on
GCN’s architecture.

We can think of GCN as a simplification of the model of Defferrard et al. [2016]. Despite of the
simplification, GCN performed better than previous graph ML models, such as DeepWalk [Perozzi
et al., 2014], or graph-based semi-supervised learning algorithms, such as Label Propagation Zhou
et al. [2004], in node classification tasks on citation networks.

SGC The L-layered GCN is the following form

Z(L) = Ãσ(Ã · · ·σ(ÃXW (1)) · · ·W (L−1))W (L)).

Wu et al. [2019a] questioned the role of the non-linearity σ and removed them from the model.
They further concatenated all weights W (l), resulting in the following SGC (Simpifying Graph
Convolution) model:

Z(L+1) = ÃLXW.

We introduce the non-linearity on top of it. For example, if we solve a node classification problem,
we add the softmax function, which is non-linear.

GIN The original GCN employed the affine transformation plus ReLU non-linearity as the up-
date function. GIN [Xu et al., 2019] replaced the update with an MLP applied to all nodes simul-
taneously:

Z(1) = X

Z(l+1) = MLP(l)(ÃZ(l))

Theoretically, it is shown in Xu et al. [2019] that the expressive power of MPNN-type GNNs are
bounded by 1-WL algorithm for solving the graph isomorphism problem. Using the universal
approximation property of FNNs, Xu et al. [2019] also showed that GIN is approximately as

45

2. Background

powerful as the 1-WL algorithm. That is, it attains the theoretical upper bound of the expressive
power of MPNN-type GNNs. In practice, the authors proposed to use an MLP with a single hidden
layer.

GAT The node aggregation of a GCN multiplies the (augmented normalized) adjacency ma-
trix to node representations (Equation (2.17)). It implicitly means that GCN sums up neigh-
boring nodes’ representations by assigning fixed weights to them. GAT (Graph Attention Net-
work) [Veličković et al., 2018] determined the weights of neighboring nodes in a data-dependent
manner by introducing the attention mechanism [Vaswani et al., 2017] to GNNs.

Z(l+1) = σ(A
(l)
attZ

(l)W (l)),

[A
(l)
att]ij =

{
[softmaxi(α

(l)
i)]j if (i, j) ∈ E

0 if (i, j) 6∈ E
,

α
(l)
ij = a(l)(Z

(l)
i , Z

(l)
j),

Here, softmax is a row-wise softmax function defined by

[softmaxi(α
(l)
i)]j :=

exp(α
(l)
ij)∑

k∈N (i) exp(α
(l)
ik)

,

W (l) ∈ RC×C′
is a learnable matrix, a(l) : RC × RC → R is an learnable attention function that

determines the relative importance of neighbor nodes, and A
(l)
att ∈ RN×N is the resulting relative

importance values. The (single-head) GAT used the following attention function:

a(l)(z, z′) := LeakyReLU

(
a(l)⊤

[
W

(l)
attz

W
(l)
attz

′

])
,

where a(l) ∈ R2C′
and W

(l)
att ∈ RC′×C are learnable weight matrices, and LeakyReLU : R → R

is the LeakyReLU activation function defined by

LeakyReLU(b) :=

{
b if b ≥ 0,

−kb if b < 0,

for some hyperparameter k > 0, applied in an element-wise manner.
Similar to the original paper [Vaswani et al., 2017], GAT employed multiple attention

functions in one layer and concatenated their outputs (called the multi-head attention mecha-
nism). While GAT concatenates all heads of multi-head attention, GaAN (Gated Attention Net-
work) [Zhang et al., 2018] adaptively computed each head’s weight and summed them up.

Several researches apply GNNs with attention mechanism with more complex graphs such as
relational and heterogeneous graphs (Section 2.5.4) [Busbridge et al., 2019, Wang et al., 2019b].
The attention mechanism of GAT is local in the sense that the aggregation operation pulls repre-
sentations from direct neighborhoods. Yun et al. [2019] and Choi et al. [2020] have introduced
transformer-like global attention mechanisms to GNNs.

46

2. Background

2.5.3 Over-smoothing of Linear GNNs

Although many GNN models perform well practically, it has been known that some of them do
not perform well when we stack many layers to them. For example, in the paper of GCN [Gilmer
et al., 2017], the authors reported that in node classification tasks on standard citation networks
datasets (see Section 2.2.2), the prediction performance of GCNs degrades significantly when their
depth increases to ten layers (See Appendix B of Gilmer et al. [2017]). Li et al. [2018b] visually
showed that when we apply a GCN to the Karate dataset [Zachary, 1977] consisting of 34 nodes
and 78 edges, the set of node representations shrank when we put more than three layers.

We can explain the over-smoothing of linear GNNs, that is, when their activation functions are
the identity function, using the convergence of matrix powers. Li et al. [2018b], Zhang [2019],
Zhao and Akoglu [2020] did a similar analysis. Let P ∈ RN×N be a symmetric matrix whose
eigenvalues λi (i ∈ [N]) satisfies −1 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 < λN = 1. For example,
the augmented normalized adjacency matrix (Section 2.4.1) satisfies this assumption. The (usual)
normalized adjacency matrix also satisfies the assumption when the graph is not connected and
does not have a bipartite component. Let µ := mini∈[N−1] |λi|(= max(|λ1|, |λN−1|)) and e be
the eigenvector associated with the largest eigenvalue λN , which is unique up to its sign. Then,
for any v ∈ RN , we have

‖PLv − ae‖2 ≤ eµL‖v − ae‖2 (2.18)

where a = v⊤e. When P is the normalized adjacency matrix, e is proportional to half the degree
vector: ei = deg(i)1/2. Therefore, for two nodes i and j that have the same node degree, we have
vi = vj(= deg(i)1/2). That means the initial vector v exponentially converges to a vector from
which we cannot distinguish nodes with the same degree.

Intuitively, the aggregation function (corresponding to the multiplication by P) smoothens
node representations and make them close to each other until node representations go indistin-
guishable when we repeat the function application. In Chapter 4, we consider the effect of non-
linearity activation function σ and show that in the case of ReLU, the non-linearity does not help
to mitigate the over-smoothing phenomena in the above sense.

2.5.4 GCN variants for Heterogeneous Graphs

Although we mainly focus on GNN models that take homogeneous graphs with node features.
Several research, especially in the field of information retrieval (Section 2.2), extended the plain
GCN model so that it can apply to heterogeneous graphs. Table 2.5 shows representative hetero-
geneous GNN models (Section 2.2). See also the repository10 by Ji that curates resources about
the representation learning on heterogeneous graphs.

2.6 GNNs with Skip Connections

This section explains the two types of GNN models with skip connections. The first one is a
ResNet-type GNNs, in which skip connects middle layers. The second one is a multi-scale GNNs,

10https://github.com/Jhy1993/Representation-Learning-on-Heterogeneous-Graph
(Retrieved on October 30, 2020)

47

https://github.com/Jhy1993/Representation-Learning-on-Heterogeneous-Graph

2. Background

Table 2.5: GNN models for relational and heterogeneous graphs

Model Reference Base Models Graph Type

R-GCN [Schlichtkrull et al., 2018] GCN Relational
RGAT [Busbridge et al., 2019] GAT Relational
GTN [Yun et al., 2019] GCN + Transformer Heterogeneous
HAN [Wang et al., 2019b] GAT Heterogeneous
HetGNN [Zhang et al., 2019] Bi-LSTM + Attention Heterogeneous
GEM [Liu et al., 2018] Graph Conv. + Residual + Attention Heterogeneous

which connects middle layers to the final layer.

2.6.1 ResNet-type GNNs

GResNet Zhang [2019] evaluated the empirical performance of GCNs with four architectural
variants of skip connection patterns.

Z(l+1) = σ(ÃZ(l)W (l) + Z(l)), (GResNet (naïve))

Z(l+1) = σ(Ã(Z(l)W (l) + Z(l))), (GResNet graph-naïve))

Z(l+1) = σ(ÃZ(l)W (l) + Z(1)), (GResNet (raw))

Z(l+1) = σ(Ã(Z(l)W (l) + Z(1))), (GResNet (graph-raw))

with the node representation initialization Z(1) = X . It is worth noting that, according to Zhang
[2019], the raw-residual pattern achieved better overall performance than the naive residual pat-
terns.

DeepGCN and DeeperGCN DeepGCN [Li et al., 2019] successfully trained GCN-based GNN
with 56 layers using skip connections and dilated convolution using in point cloud semantic seg-
mentation tasks. Since point clouds do not have graph structures a priori, they create a k-nearest
neighbor graph based on their geometric distances. In their follow-up work [Li et al., 2020a], the
authors proposed DeeperGCN, an improved architecture of DeepGCN, which had the message
normalization layer and reported that its prediction performance increased as layer size increases
up to 112 layers in experiments on the Open Graph Benchmark [Hu et al., 2020b] dataset.

APPNP APPNP (Approximate Personalized Propagation of Neural Predictions) [Klicpera et al.,
2019] is a GNN model that aggregates representations using Personalized Page Rank [Page et al.,
1999] (also known as Markov Chain with restarts):

Z(1) = MLP(X),

Z(l+1) = (1− α)ÃZ(l) + αZ(1). (2.19)

48

2. Background

α ∈ [0, 1] is a hyperparameter corresponding to the teleportation probability of the Personalized
Page Rank algorithm. One notable point of APPNP is that it separates node aggregation operations
from non-linear operations and does not introduce non-linearity between node aggregations. It is
different from GCN-like models, which interleave node aggregation operations Z 7→ ÃZ and
non-linear operations Z 7→ σ(ZW).

CGNN CGNN (Continuous Graph Neural Network) [Xhonneux et al., 2020] is an extension
of APPNP to a continuous-time scheme. Similarly to NODE (Neural Ordinal Differential Equa-
tion) [Chen et al., 2018c], CGCN evolves the node representation using the ordinal differential
equation (ODE) with learnable parameters to update node representations. Let Zt ∈ RN×C be a
collection of node representations at time t ∈ [0, T] (T > 0). Zt evolves by the ordinal differential
equation:

Z0 = MLP(X)

Żt = −(I − Ã)Zt + Z0

= −∆̃Zt + Z0.

This ODE has the following analytical solution:

Zt = −∆̃−1(e∆̃t − I)Z0 + e−∆̃tZ0. (2.20)

We can think CGNN as the continuous version of APPNP as follows11. For when ∆t is small, by
Taylor extension.

Zt+∆t ≈ Zt +∆tŻ

= Zt +∆t(−∆̃)Zt + Z0

= (1−∆t∆̃)Zt +∆tZ0. (2.21)

By formally assigning ∆t = 1 to Equation (2.21), we have the same formula as APPNP with the
correspondence Z(l+1) ← Zt.

GCNII GCNII (Graph Convolutional Network via Initial residual and Identity mapping) [Chen
et al., 2020b]) adds two types of residual mechanisms to node aggregations and the linear transfor-
mation common to all nodes separately. They proposed the following two variants, which differ
in the order of skip connections:

Z(l+1) = σ
(
((1− αl)ÃZ

(l) + αlZ
(1))((1− βl)I + βlW

(l))
)

(GCNII)

Z(l+1) = σ
(
(1− αl)ÃZ(l)((1− βl)I + βlW

(l)
1) + αlZ

(l)((1− βl)I + βlW
(l)
2)
)

(GCNII*)

with initialization Z(1) = X . W (l), W (l)
1 , W (l)

2 are learnable weight parameters and αl, βl are
hypereparameters at the l-th layer. Similarly to GResNet (raw) and APPNP, they employed initial
residual connections.

11In the original paper [Xhonneux et al., 2020], the authors employed another derivation.

49

2. Background

2.6.2 Multi-scale GNNs

Multi-scale GNNs are designed to use the inductive bias of a problem that the information of
subgraphs at various scales are useful for prediction by connecting outputs of intermediate layers
to the final output directly using skip connections. Hence, the general form of a multi-scale GNN
is as follows:

Z(l) = f (l)(Ã, Z(l−1)), (l = 1, . . . , L)

Z = F (Z(1), . . . , Z(L)),

where f (l) and F are learnable functions. Intuitively, Z(l) carries the information of subgraphs
with radius l. Hence, the function F use the multi-scale information via Z(l).

We can think of Z as the ensemble of the sub-architectures f (l), especially when F is the sum-
mation function. This interpretation motivates us to adopt boosting theory to multi-scale GNNs.
We analyze a particular type of multi-scale GNNs from this perspective in Chapter 5.

DCNN and DCRNN DCNN [Atwood and Towsley, 2016] is a pioneering work of multi-scale
GNN, which has the following architecutre:

Z(l+1) = σ(W (l) � PX),

Z =
L+1

||
l=1

Z(l)

where || is the concatenation operator along the channel axis and P = D−1A is the transition
matrix. DCRNN [Li et al., 2018c] used the summation function instead of concatenation for
aggregating middle representations:

Z(l+1) = σ(PXW (l)),

Z =
L+1∑
l=1

Z(l).

JK-Net JK-Net (Jumping Knowledge Network) [Xu et al., 2018] is a first multi-scale GNN
model that was designed to overcome the over-smoothing problem by aggregating the subgraph
information at various scale.

Z(1) = X

Z(l+1) = σ(ÃZ(l)W (l)) (l = 0, . . . , L− 1)

Z = AGGREGATE(Z(1), . . . , Z(L+1)).

Here, AGGREGATE is an aggregation function such as concatenation, summation, and maxi-
mum operations.

50

2. Background

Mixhop and N-GCN MixHop [Abu-El-Haija et al., 2019a] make use of multi-scale information
at one layer. Specifically, one layer of MixHop is a concatenation of GCN-like transformation
using Ak in place of A:

Z(l+1) =
Kl

||
k=1

σ(AjZ(l)W
(l)
j).

One layer of MixHop can be think of concatenation of GCN layer with different power of an
adjacency matrix. N-GCN [Abu-El-Haija et al., 2019b] is a GNN concatenation of GCNs with
different power of the adjacency matrix.

Multi-scale Structure of Input Residual GNNs We can interpret that GNN models with initial
residual connections, such as GResNet, APPNP, and CGCN (Section 2.6.1), has implicit multi-
scale structures. To explain this, let us take APPNP as an example. The fixed point Z(∞) of the
update function of APPNP (Equation (2.19)) is

Z(∞) = (1− α)AZ(∞) + αZ(1)

⇐⇒Z(∞) = α(I − (1− α)A)−1Z(1).

Therefore, under the condition ‖A‖op < (1− α)−1, we expand the inverse and obtain

Z(∞) =

∞∑
l=0

α(1− α)lAlZ(1).

Therefore, we can interpret a deep APPNP as a multi-scale GNN whose mixture ratio of represen-
tations is fixed. This interpretation is one reason that motivates us to analyze multi-scale GNNs
instead of ResNet-type GNNs in this study (especially, in Chapter 5).

2.7 Statistical Learning Theory

In this section, we overview the problem formulation of machine learning tasks for both inductive
and transductive settings (Section 5.C.1) from the viewpoint of statistical learning theory. We
explain general strategies for evaluating generalization gaps. On the way, we introduce analysis
tools such as the Rademacher complexity and the covering number. We also briefly explain how
to obtain a faster rate. The concept of minimax optimality is also introduced as an optimality
condition of training algorithms.

2.7.1 Inductive Learning Setting

Let X and Y be measurable spaces, representing the space of features and target values, respec-
tively. Let N ∈ N+ be the sample size and D = ((x1, y1), . . . , (xN , yN)) ∈ (X × Y)N be the
training sample of size N . We assume that D is independently and identically sampled from some
probability distribution P on X × Y , which is unknown to training algorithms: (xi, yi)

i.i.d.∼ P
(or equivalently D ∼ P⊗N). For example, in Chapter 3, we assume a (unknown) true function

51

2. Background

f◦ : X → Y and the target value is generated by the formula Y = f◦(X) + ξ. Here, X is the
random variable on X , and ξ is a random noise independent of X , such as Gaussian noise with a
constant variance. We shall impose some smoothness on the true function f◦ such as the Hölder
or Barron class.

Let Ŷ be a measurable space representing the range of ML models. We set the collection
of possible models F ⊂ {X → Ŷ}, called the hypothesis space. For example, consider an
architecture (e.g., FNN, CNN, GNN) with specified architectural parameters (e.g., width, depth,
channel size, and the maximum norm of parameters). We can define F by the set of functions that
the architecture can represent by appropriately choosing learnable parameters. We can think of a
training algorithm as an assignment A from the training dataset D from a function in F , called
an estimator. The training algorithm A can be deterministic (A : X × Y → F) or stochastic
(A : (X × Y)× Ω→ F for some probability space Ω. The Empirical Risk Minimization (ERM)
(Section 2.7.2) and Stochastic Gradient Descent (SGD) are typical examples of deterministic and
stochastic training algorithms, respectively. Note that f̂ is a random variable for the training set D
and the algorithmA (if it is stochastic). We denote the training algorithm’s output as f̂ and do not
write the dependence on them for simplicity.

An inductive learning task aims to find an estimator f̂ that can make an accurate prediction to
unseen data points. Typically, we define a loss function ℓ : Ŷ × Y → R and evaluate how bad a
predictor f : X → Ŷ is using the test errorRℓ defined by

Rℓ(f)(= Rℓ(f,P)) := E(x,y)∼P [ℓ(f(x), y)].

When the loss function ℓ is obvious, we omit the subscript ℓ and write asRℓ = R.

2.7.2 ERM estimator

The Empirical Risk Minimization (ERM) estimator is one of the most standard estimators. We
cannot directly minimize the test error R because the underlying distribution P is unknown. In-
stead, we use a quantity computable from the training set as a proxy of the test error. We define
training error Rℓ of the loss function ℓ by

R̂ℓ(f) =
1

N

N∑
n=1

ℓ(f(xn), yn),

where, again f : X → Ŷ . The ERM estimator is the function that minimizes the training error:

f̂ ∈ inf
f∈F
R̂ℓ(f). (2.22)

Similar to the test error, we omit the subscript ℓ if it is obvious from the context: Rℓ = R.
Note that f̂(xi) can depend not only on i but also j (j 6= i) because f̂ can depend on j via the
training sample D. In Chapter 3, we consider the test error bound of the ERM estimator (strictly
speaking, the variant of the ERM estimator whose output is clipped to a bounded range). If more
than one function achieves the infimum, we pick an arbitrary one among the minimizers (either
deterministically or stochastically). We can check that results of this study hold independent of
the tie-breaking.

52

2. Background

Remark 2.7. In this study, we consider problem settings in which a function that achieves the
infimum of Equation (2.22) exists. For example the following setting satisfies the assumption: X
is a compact set, F is continuously parameterized by a parameter on a compact set, and the loss
function ℓ is continuous with respect to the first variable.

2.7.3 Uniform Bound via Model Complexity

Decomposition of Test Error We consider the ERM estimator (Section 2.7.2) as an estimator f̂
in this section. The standard approach to evaluate the test error is to decompose it as follows and
evaluate each term:

R(f̂) = [R(f̂)−R(f∗)] + [R(f∗)−R(f◦)] +R(f◦). (2.23)

Here, f∗ is the minimizer of the test error among F , whose existence we assume for simplicity
of explanation: f∗ ∈ inff∈F R(f). Each term in Equation (2.23) is called the excess risk and
approximation error, respectively. We can further decompose the first term as follows:

R(f̂)−R(f∗) = [R(f̂)− R̂(f̂)] + [R̂(f̂)− R̂(f∗)] + [R̂(f∗)−R(f∗)]

≤ [R(f̂)− R̂(f̂)] + [R̂(f∗)−R(f∗)]

≤ 2 sup
f∈F
|R̂(f)−R(f)| =: 2∆(F). (2.24)

In the first inequality above, we used the inequality R̂(f̂) ≤ R̂(f∗), which comes from the fact
that f̂ is the minimizer of the training error. We assume that ∆(F) is a random variable (i.e., it is
measurable with respect to the underlying probability distribution) in the remaining discussion of
this section.

Therefore, the problem of bounding the test error is reduced to the evaluation of the quantity
∆(F). Model complexity, which measures the "size" of a hypothesis space F , is a standard tool
upper bound this quantity. In the next two paragraph, we give two examples of model complexity:
the Rademacher complexity and covering number.

Rademacher Complexity We evaluate the expected value of ∆(F) and deviation of ∆(F) from
the expected value, respectively. Using the technique known as symmetrization, we obtain the
following inequality:

Fact 2.1 (Symmetrization).

ED∼P⊗N [∆(F)] ≤ 2ED∼P⊗N

[
sup
f∈F

E(σi)i∈[N]

[
1

N

∣∣∣∣∣
N∑
i=1

σil(f(xi), yi)

∣∣∣∣∣
]]

.

Here, σi’s are independent random variables defined by P(σi = 1) = P(σi = −1) = 1/2, which
are also independent of the training dataset D.

53

2. Background

For notational simplicity, we denote Z := X × Y and zi = (xi, yi) for i ∈ [N]. Motivated by
the above inequality, we define the (inductive) Rademacher complexity Rind(G) for G ⊂ {Z →
R} by

Rind(G) := ED∼P⊗N

[
sup
g∈G

E(σi)i∈[N]

[
1

N

∣∣∣∣∣
N∑
i=1

σig(zi)

∣∣∣∣∣
]]

,

where, again σi’s are the Rademacher variables12. In conclusion, the expected value of the right
hand side of Equation (2.24) is bounded by the Rademacher complexity of l ◦ F := {Z 3 z =
(x, y) 7→ l(f(x), y) | f ∈ F}.

Regarding the variance of ∆(F), we can evaluate it using the following uniform law of large
numbers (e.g., Giné and Nickl [2015, Theorem 3.4.5], Wainwright [2019, Chapter 4]):

Fact 2.2 (Uniform Law of Large Numbers). Suppose the loss function l is bounded to [0, 1], there
exists a universal constant C > 0 such that for any δ > 0, with probability at least 1− δ, we have

∆(F) ≤ C

(
Rind(l ◦ F) +

√
log(1/δ)

N

)
.

It is often easier to evaluate the Rademacher complexity than the quantity ∆(F). For example,
by the Talagrand’s contraction lemma (e.g., Ledoux and Talagrand [2013]), when the loss function
l is Lipschitz-bounded, we can compute the Rademacher complexity of l ◦ F using that of F .
In addition, it is known that taking the convex hull of a hypothesis class does not change the
Rademacher complexity’s value.

Covering Number Covering number is another model complexity for measuring hypothesis
spaces. Let be (M0, d) a metric space. For M ⊂ M0 and ε > 0, we define the (external)
covering number N (ε,M, d) by

N (ε,M, d) := min
{
J ∈ N | ∃g1, . . . , gJ ∈M0 s.t.M⊂ ∪Jj=1Bd(gj , ε)

}
.

Here, Bd(g, ε) := {g′ ∈ F | d(g, g′) ≤ ε} is the ε-ball of M centered at f with respect to d.
The logarithm of the covering number is called the metric entropy. The technique known as the
chaining argument, also known as Dudley’s entropy integral [Dudley, 1967], relate the quantity
∆(F) or the Rademacher complexity Rind(l◦F) with the covering number of l◦F (see, e.g., Giné
and Nickl [2015, Theorem 3.5.1], Wainwright [2019, Chapter 5]):

Fact 2.3 (Dudley’s Entropy Integral). Let G ⊂ {Z → R}. Suppose G is countable and 0 ∈ G,
then, there exists a universal constant C > 0 such that the following inequality holds:

Rind(G) ≤
C√
N

ED∼P⊗N

[∫ ∞

α

√
logN (ε,G, ‖ · ‖N)dε

]
.

Here, we define ‖g‖2N := 1
N

∑N
i=1 g

2(zi) for g ∈ G.
12In this study, we call the symmetrized inductive Rademacher complexity (Definition 5.4). In Chapter 5, we consider

its unsymmetrized variant that does not take the absolute value in the definition (see Definition 5.5).

54

2. Background

Bias-Variance Trade-off There is a trade-off between the approximation error (bias) and the
model complexity (variance), such as the Rademacher complexity and covering number. On the
one hand, when F is large in terms of model complexity, the approximation error is small. How-
ever, the model complexity is large. This situation corresponds to over-fitting. On the other hand,
whenF is small, the converse is true, that is, the under-fitting occurs. Therefore, to get the best test
error bound, we need to control the size of F appropriately to balance the approximation error and
model complexity. When F is realized by DL models, it corresponds to determining architectural
parameters of the models.

2.7.4 Fast Rate

Although we can obtain test error bounds by the procedure in the previous section (Section 2.7.3),
these bounds sometimes fail to be optimal, for example, in the sense of the minimax optimality we
explain later (Section 2.7.5). There are several strategies for obtaining tighter test error bounds,
which is often called the fast rate.

The local Rademacher complexity [Mendelson, 2002, Bartlett et al., 2005, Koltchinskii, 2006]
is the most standard approach of deriving fast rates. We have evaluated the difference of training
and test errors uniformly for all f ∈ F in Equation (2.24). In that sense, the bound is uniform for
the hypothesis class. This evaluation could make the bound loose. The idea of local Rademacher
complexity is that when an estimator is likely to be near the optimal one (e.g., the Bayes classifier
in the classification problem), we can effectively shrink the hypothesis class by putting higher
weights to hypotheses close to the optimal.

For a more specfic situation, we can use a more direct approach. For example, Schmidt-Hieber
[2020] derived a fast test error bound using Bernstein’s inequality when the loss function is the
squared loss and the noise is the Gaussian distribution. We employ this strategy in Chapter 3 to
derive bounds for ResNet-type CNNs.

2.7.5 Minimax Optimality

We have seen a general strategy for deriving test error bounds. The natural question is whether
the obtained bounds are optimal in some sense. minimax optimality gives a standard criterion
of optimality. Informally, the minimax optimal rate is the best test error bound achieved in the
worst situation. We are given a collection P of probabilities on X × Y from which the true data
distribution is drawn. Recall that we define a test errorR(f̂ ,P) for a true distribution P ∈ P and
an estimator f̂ (Section 2.7.1). We say a function ϕ : N+ → R is the (asymptotically) minimax
optimal rate if

sup
P∈P

inf
f̂
R(f̂ ,P) = Θ(ϕ(N)). (2.25)

Here, f̂ = f̂(D) : X → Ŷ runs all (mesurable) estimators made by N i.i.d. data points drawn
from P13.

13We can define minimax optimality in more general settings. However, the above definition is sufficient for our
purpose.

55

2. Background

For example, consider the problem setting in Section 2.7.1. When true function f◦ is a D-
variate β-Hölder function on a compact domain, it is known that the minimax estimation test

error rate is ϕ(N) = OP (N
− 2β

2β+D) (e.g., [Tsybakov, 2008]). Several methods, such as linear
estimators and kernel methods, can achieve the minimax optimal rate in this setting. For deep
learning, it is known that FNNs can achieve the minimax optimal test error rate up to logarithmic
factors [Yarotsky, 2018, Schmidt-Hieber, 2020].

2.7.6 Transductive Learning Setting

In this section, we formulate a learning problem in transductive settings (Section 5.C.1). The task
we consider in Chapter 5 falls into this formulation. We continue to denote the space of feature
vectors, target values, and output of predictors by X , Y , and Ŷ , respectively.

Let N be the sample size and V be the sample of size N . We identify V with [N]. Let
(xi, yi) ∈ X × Y be the feature-label pair of the data point i ∈ [N]. Differently from inductive
settings (Section 2.7.1), we do not assume the underlying distribution over X ×Y from which we
assume to draw the sample. Let Vtrain,Vtest ⊂ V be the partition of the sample into the training
and test samples. That is, Vtrain and Vtest satisfy Vtrain ∩Vtest = ∅ and Vtrain ∪Vtest = V . We fix
one partition tentatively. Later, we consider various partitions of V into Vtrain and Vtest.

Next, we set a hypothesis space. In a transductive learning setting, it is often the case that
the model’s prediction for the data point i depends not only on xi but also the feature vector xj
for other data point j (j 6= i) directly. For example, we see from the one layer transformation
of a GCN (Equation (2.17)) that it updates the representation for the node i from those of nodes
adjacent to i. Therefore, a model for a transductive learning is a function F as F : XN → ŶN .
In addition, we assume that samples are given a priori and the goal of transductive learning is to
complete predictions for the sample. That means we do not have to consider any point x ∈ X
not included in the dataset. Therefore, considering F : XN → ŶN is equivalent to considering
F (X) ∈ Ŷ where X = (x1, . . . , xN). In conclusion, it is appropriate to set the hypothesis space
F as a subset of ŶN .

A training algorithm A takes feature-label pairs of the training sample and features of the test
sample and outputs the collection of predictions for the whole sample. That is, a (deterministic)
training algorithm is a mapping of the form:

A : ((xi)i∈V , (yi)i∈Vtrain) 7→ Ŷ ∈ ŶN .

Similar to the inductive case, we can also consider the stochastic version of the training algorithm.
For a loss function ℓ : Ŷ ×Y → R, we define the training error R̂ = R̂ℓ and test errorR = Rℓ

by

R̂(Ŷ) =
1

M

∑
i∈Vtrain

ℓ(ŷi, yi),

R(Ŷ) =
1

U

∑
i∈Vtest

ℓ(ŷi, yi).

Here, Ŷ ∈ ŶN is an estimator, M = |Vtrain| is the training sample size, and U = |Vtest| is the test
sample size.

56

2. Background

We want to formalize learning guarantees as upper bounds ofR(Ŷ). However, since we do not
assume any relationship between training and test sets so far, it is hopeless that we can obtain any
meaningful guarantee. We employ the problem setting proposed in Vapnik [1982] (also employed
in El-Yaniv and Pechyony [2009].) We define the generalization gap as the discrepancy between
the training and test errors in terms of the random partition of the full sample into training and test
datasets. More precisely, for a fixed M ∈ N+, we create a training set by uniformly randomly
drawing M sample points without replacement from V . We treat the remaining U sample points
as a test set. We think of training and test errors as random variables with respect to the random
partition of V . Sampling without replacement causes dependency between the training and test
samples. El-Yaniv and Pechyony [2009] derived the generalization gap for this setting using the
concentration inequalities for the sampling without replacement. Similarly to the inductive case,
we can obtain faster rates using the localized version of transductive Rademacher complexity [Tol-
stikhin et al., 2014].

57

Chapter 3

Approximation and Non-parametric
Estimation Analysis of ResNet-type
Convolutional Neural Networks

In this chapter, we explore the role of skip connections in Convolutional Neural Networks (CNNs)
from the viewpoint of statistical learning theory. CNNs have been shown to achieve optimal
approximation and estimation error rates (in minimax sense) in several function classes. However,
previous analyzed optimal CNNs are unrealistically wide and difficult to obtain via optimization
due to sparse constraints in important function classes, including the Hölder class. We show a
ResNet-type CNN can attain the minimax optimal error rates in these classes in more plausible
situations – it can be dense, and its width, channel size, and filter size are constant with respect to
sample size. The key idea is that we can replicate the learning ability of Fully-connected Neural
Networks (FNNs) by tailored CNNs, as long as the FNNs have block-sparse structures. Our theory
is general in a sense that we can automatically translate any approximation rate achieved by block-
sparse FNNs into that by CNNs. As an application, we derive approximation and estimation error
rates of the aformentioned type of CNNs for the Barron and Hölder classes with the same strategy.

3.1 Introduction

Convolutional Neural Network (CNN) is one of the most popular architectures in deep learning
research, with various applications such as computer vision [Krizhevsky et al., 2012, 2017], natural
language processing [Wu et al., 2016], and sequence analysis in bioinformatics [Alipanahi et al.,
2015, Zhou and Troyanskaya, 2015]. Despite practical popularity, theoretical justification for the
power of CNNs is still scarce from the viewpoint of statistical learning theory.

For fully-connected Neural Networks (FNNs), there is a lot of existing work, dating back to
the 80’s, for theoretical explanation regarding their approximation ability [Cybenko, 1989, Bar-
ron, 1993, Lu et al., 2017, Yarotsky, 2017, Lee et al., 2017, Petersen and Voigtlaender, 2018b]
and generalization power [Barron, 1994, Arora et al., 2018, Suzuki, 2018]. See also surveys of
earlier work by Pinkus [2005] and Kainen et al. [2013]. Although less common compared to

58

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

FNNs, recently, statistical learning theories for CNNs have been studied both about approxima-
tion ability [Zhou, 2018, Yarotsky, 2018, Petersen and Voigtlaender, 2018a] and generalization
power [Zhou and Feng, 2018]. Among others, Petersen and Voigtlaender [2018a] showed any
function realizable by an FNN is representable with an (equivariant) CNN that has the same order
of parameters. This fact means virtually any approximation and estimation error rates achieved by
FNNs can be achieved by CNNs, too. In particular, because FNNs are optimal in minimax sense
[Tsybakov, 2008, Giné and Nickl, 2015] for several important function classes such as the Hölder
class [Yarotsky, 2017, Schmidt-Hieber, 2020], CNNs are also minimax optimal for these classes.

However, the optimal CNN obtained by the result of [Petersen and Voigtlaender, 2018b] can
be unrealistically wide: for D variate β-Hölder case (see Definition 3.4), its depth is O(logN),

while its channel size is as large as O(N
D

2β+D) where N is sample size. To the best of our knowl-
edge, no CNNs that achieve the minimax optimal rate in important function classes, including the
Hölder class, can keep the number of units per layer constant with respect to N . Thanks to recent
techniques such as skip connections [He et al., 2016, Huang et al., 2018], sophisticated initializa-
tion schemes [He et al., 2015, Chen et al., 2018b], and normalization methods [Ioffe and Szegedy,
2015, Miyato et al., 2018], architectures that are considerably deep and moderate channel size
and width have become feasible. Therefore, we would argue that there are growing demands for
theories which can accommodate such constant-size architectures.

The other issue is impractical sparsity constraints imposed on neural networks. Existing liter-
ature [Schmidt-Hieber, 2020, Suzuki, 2019, Imaizumi and Fukumizu, 2019] proved the minimax
optimal property of FNNs for several function classes. However, they picked an estimator from
a set of functions realizable by FNNs with a given number of non-zero parameters. For exam-
ple, Schmidt-Hieber [2020] constructed an optimal FNN that has depth O(logN), width O(Nα),
and O(Nα logN) non-zero parameters when the true function is D variate β-Hölder. Here, N is
the sample size and α = D

2β+D . It means the ratio of non-zero parameters (i.e., the number of
non-zero parameters divided by the number of all parameters) is Õ(N−α). To obtain such neural
networks, we need to consider impractical combinatorial problems such as L0 norm optimiza-
tion. Although we can obtain minimax optimal CNNs using the equivalence of CNNs and FNNs
explained before, these CNNs have the same order of sparsity, too.

In this chapter, we show that ResNet-type (Residual Network) CNNs [He et al., 2016] with
ReLU activation functions can achieve minimax optimal approximation and estimation error rates,
even they have more plausible architectures. Specifically, the optimal CNNs can be dense and have
constant width, channel size, and filter size against the sample size.

Our strategy is to emulate FNNs by constructing tailored ResNet-type CNNs in a similar spirit
to Zhou [2018] and Petersen and Voigtlaender [2018a]. The unique point of our method is to pay
attention to a block-sparse structure of an FNN, which roughly means a linear combination of
multiple possibly dense FNNs. We first prove that if an FNN is block-sparse with M blocks, we
can realize the FNN with a ResNet-type CNN with O(M) additional parameters (Theorem 3.1).
In particular, if blocks in the FNN are dense, which is often true in typical settings, the increase
of parameters in number is negligible. Block-sparseness decreases the model complexity coming
from the combinatorial sparsity patterns and promotes better bounds, a technique utilized in ap-
proximation and learning theories of FNNs implicitly or explicitly in previous studies [Yarotsky,
2018, Bölcskei et al., 2019].

59

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Using this theorem, we next prove that the order of approximation rate of CNNs is the same as
that of FNNs, and hence we show that the CNNs can achieve the same estimation error rate as the
FNNs, without sparse structures in general (Theorem 3.2). Although our primary interest is the
Hölder class, this result is general in the sense that it is not restricted to a specific function class,
as long as we can approximate it using block-sparse FNNs.

To demonstrate the broad applicability of our methods, we derive approximation and estima-
tion errors for two types of function classes with the same strategy: the Barron class (of parameter
s = 2, see Definition 3.3) and Hölder class. We prove, as corollaries, that our CNNs can achieve
the approximation error of order Õ(M−D+2

2D) for the Barron class (Corollary 3.2) and Õ(M− β
D)

for the β-Hölder class (Corollary 3.4) and the estimation error of order ÕP (N
− D+2

2(D+1)) for the

Barron class (Corollary 3.3) and ÕP (N
− 2β

2β+D) for the β-Hölder class (Corollary 3.5) Here, M
is the number of parameters (we used M , which is same as the number of blocks, to indicate the
parameter count because it will turn out that CNNs have Ω(M) blocks for these cases), N is the
sample size, and D is the input dimension. These rates are same as the ones for FNNs ever known
in existing literature. An important consequence of our theory is that the ResNet-type CNN can
achieve the minimax optimal estimation error (up to logarithmic factors) for the Hölder class even
if it can be dense, and its width, filter size, and channel size are constant against sample size. This
fact is in contrast to existing work, where optimal FNNs or CNNs are inevitably sparse and have
width or channel size going to infinity as N →∞.

Finally, we prove minimax optimal CNNs can have constant-depth residual blocks for the
Hölder case, if we introduce signal scaling mechanisms to CNNs (see Definition 3.5 for the defi-
nition and Theorem 3.4 for the statements).

In summary, the contributions in this chapter are as follows:

• We develop general approximation theories for CNNs via ResNet-type architectures. If
we can approximate a function with a block-sparse FNN with M dense blocks, we can
approximate the function with a ResNet-type CNN at the same rate, too (Theorem 3.1). The
CNN is dense in general and is not assumed to have unrealistic sparse structures.

• We derive the upper bound of the estimation error of ResNet-type CNNs (Theorem 3.2). It
gives a sufficient condition to obtain the same estimation error rate as that of FNNs (Corol-
lary 3.1).

• We apply our theory to the Barron and Hölder classes and derive the approximation (Corol-
lary 3.2 and 3.4) and estimation (Corollary3.3 and 3.5) error rates, which are identical to
those for FNNs, even if the CNNs are dense and have constant width, channel size, and
filter size with respect to sample size. This rate is minimax optimal for the Hölder case.

• For the Hölder case, the optimal CNNs can additionally have constant-depth residual blocks
if we introduce scaling mechanism to skip connections (Theorem 3.3 and 3.4).

60

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Table 3.1: Comparison of CNN architectures. Function type: The function type CNNs can ap-
proximate. “(Block-sparse) FNNs" means any function (blocks-sparse) FNNs can realize. Chan-
nel size: the number of channles needed to approximate a β-Hölder function with accuracy ε
measured by the sup norm. Sparsity: the ratio of non-zero parameters of optimal FNNs when true
function is β-Hölder (N is the sample size).

Zhou [2018]
Petersen & Voigtlaender

Ours
[2018a]

CNN type Conventional Conventional ResNet

Function type Barron (s = 2) FNNs Block-sparse FNNs

Channel size N.A. Õ(ε
−D

β) O(1)

Sparsity N.A. Õ(N
− D

2β+D) O(1)

3.2 Related Work

In Table 3.1, we highlight differences in CNN architectures between our work and work done
by Zhou [2018] and by Petersen and Voigtlaender [2018a], which established approximation
theories of CNNs via FNNs.

First and foremost, Zhou only considered a specific function class — the Barron class — as a
target function class, although we can apply their method to any function class realizable by a 2-
layered ReLU FNN (i.e., a ReLU FNN with a single hidden layer). Regarding architectures, they
considered CNNs with a single channel and whose width is “linearly increasing" [Zhou, 2018]
layer by layer. For regression or classification problems, it is rare to use such an architecture.
Besides, since they did not bound the norm of parameters in approximating CNNs, we cannot
derive the estimation error from their result.

Petersen and Voigtlaender [2018a] fully utilized a group invariance structure of underlying
input spaces to construct CNNs. Such a structure makes theoretical analysis easier, especially for
investigating the equivariance properties of CNNs because it enables us to incorporate mathemat-
ical tools such as group theory, Fourier analysis, and representation theory [Cohen et al., 2018].
Although their results are quite general in a sense that we can apply it to any function that can be
approximated by FNNs, their assumption on group structures excludes the padding convolution
layer, a popular type of convolution operations. Secondly, if we simply combine their result with
the approximation result of Yarotsky [2017], the CNN which optimally approximates β-Hölder
function by the accuracy ε (with respect to the sup-norm) has Õ(ε

−D
β) channels, which grows as

ε → 0 (D is the input dimension). Finally, the ratio of non-zero parameters of optimal CNNs is
Õ(N

− D
2β+D). That means the optimal CNNs gets incredibly sparse as the sample size N increases.

One of the reasons for the large channel size and sparse structure is that their construction was not
aware of the sparse internal structure of approximating FNNs, which motivates us to consider

61

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

special structures of FNNs, the block-sparse structure.
As opposed to these two studies, we employ padding- and ResNet-type CNNs which have

multiple channels, fixed-sized filters, and constant width. Like Petersen and Voigtlaender [2018a],
we can apply our result to any function, as long as FNNs to be approximated are block-sparse,
including the Barron and Hölder cases. If we apply our theorem to these classes, we can show that
the optimal CNNs can achieve the same approximation and estimation rates as FNNs, while they
are dense and the number of channels is independent of the sample size.

Finite-width neural networks have been studied in earlier work [Lu et al., 2017, Perekrestenko
et al., 2018, Fan et al., 2018]. However, they only derived approximation abilities. For finite-
width networks, it is far from trivial to derive optimal estimation error rates from approximation
results: if a network approximates a true function more accurately while restricting its capacity
per layer, the neural network inevitably gets deeper. Then, the model complexity of networks
explodes typically exponentially as their depth increases, which makes difficult to derive optimal
estimation bounds. We overcome this problem by sophisticated evaluation of model complexity
using parameter rescaling techniques (see Section 3.5.1).

Due to its practical success, theoretical analysis for ResNet has been explored recently [Lin and
Jegelka, 2018, Lu et al., 2018, Nitanda and Suzuki, 2018, Huang et al., 2018]. From the viewpoint
of statistical learning theory, Nitanda and Suzuki [2018] and Huang et al. [2018] investigated
generalization power of ResNet from the perspective of boosting interpretation. However, they
did not derive precise estimation error rates for concrete function classes. To the best of our
knowledge, our theory is the first work to provide the estimation error rate of CNN classes that
can accommodate the ResNet-type ones.

We import the approximation theories for FNNs, especially ones for the Barron and Hölder
classes. Originally Barron [1993] considered the Barron class with a parameter s = 1 and an
activation function σ satisfying σ(z) → 1 as z → ∞ and σ(z) → 0 as z → −∞. Using this
result, Lee et al. [2017] proved that the composition of n Barron functions with s = 1 can be ap-
proximated by an FNN with n+1 layers. Klusowski and Barron [2018] studied its approximation
theory with s = 2 and proved that 2-layered ReLU FNNs with M hidden units can approxi-
mate functions of this class with the order of Õ(M−D+2

2D). Yarotsky [2017] proved FNNs with S
non-zero parameters can approximate D variate β-Hölder continuous functions with the order of
Õ(S− β

D). Using this bound, Schmidt-Hieber [2020] proved that the estimation error of the ERM

estimator is Õ(N
− 2β

2β+D), which is minimax optimal up to logarithmic factors (see, e.g., Tsybakov
[2008]).

3.3 Problem Settings

3.3.1 Empirical Risk Minimization

We consider a regression task in this chapter. Let X be a [−1, 1]D-valued random variable with
an unknown probability distribution PX and ξ be an independent random noise drawn from the
Gaussian distribution with an unknown variance σ2 (σ > 0): ξ ∼ N (0, σ2). Let f◦ be an unknown
deterministic function f◦ : [−1, 1]D → R (we will characterize f◦ rigorously later). We define a
random variable Y by Y := f◦(X)+ξ. We denote the joint distribution of (X,Y) by P . Suppose

62

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

we are given a dataset D = ((x1, y1), . . . , (xN , yN)) independently and identically sampled from
the distribution P , we want to estimate the true function f◦ from D.

We evaluate the performance of an estimator by the squared error. For a measurable function
f : [−1, 1]D → R, we define the empirical error of f by R̂D(f) :=

1
N

∑N
n=1(yn − f(xn))

2 and
the estimation error byR(f) := EX,Y

[
(f(X)− Y)2

]
. Given a subsetF of measurable functions

from [−1, 1]D to R, we consider the clipped empirical risk minimization (ERM) estimator f̂ of F
that satisfies

f̂ := clip[fmin] where fmin ∈ argmin
f∈F

R̂D(clip[f]).

Here, clip is a clipping operator defined by clip[f] := (f ∨−‖f◦‖∞)∧ ‖f◦‖∞. For a measurable
function f : [−1, 1]D → R, we define the L2-norm (weighted by PX) and the sup norm of f

by ‖f‖L2(PX) :=
(∫

[−1,1]D f2(x)dPX(x)
) 1

2 and ‖f‖∞ := supx∈[−1,1]D |f(x)|, respectively. Let

L2(PX) be the set of measurable functions f such that ‖f‖L2(PX) <∞ with the norm ‖·‖L2(PX).
The task is to estimate the approximation error inff∈F ‖f − f◦‖∞ and the estimation error of the
clipped ERM estimator: R(f̂)−R(f◦). Note that the estimation error is a random variable with
respect the choice of the training dataset D. By the definition of R and the independence of X
and ξ, the estimation error equals to ‖f̂ − f◦‖2L2(PX).

3.3.2 Convolutional Neural Networks

In this section, we define CNNs used in this chapter. Let K,C,C ′ ∈ N+ be a filter size, input
channel size, and output channel size, respectively. For a filter w = (wn,j,i)n∈[K],j∈[C′],i∈[C] ∈
RK×C′×C , we define the one-sided padding and stride-one convolution1 by w as an order-4 tensor
Lw
D = ((Lw

D)
β,j
α,i) ∈ RD×D×C′×C defined by

(Lw
D)

β,j
α,i :=

{
w(α−β+1),j,i if 0 ≤ α− β ≤ K − 1,

0 otherwise.

Here, i (resp. j) runs through 1 to C (resp. C ′) and α and β through 1 to D. Since we fix the
input dimension D throughout the paper, we omit the subscript D and write as Lw if it is obvious
from the context. We can interpret Lw as a linear mapping from RD×C to RD×C′

. Specifically,
for x = (xα,i)α,i ∈ RD×C , we define (yβ,j)β,j = Lw(x) ∈ RD×C′

by

yβ,j :=
∑
i,α

(Lw)β,jα,i xα,i.

Next, we define building blocks of CNNs: convolutional layers and fully-connected layers.
Let K,C,C ′ ∈ N+. For a weight tensor w ∈ RK×C′×C , a bias vector b ∈ RC′

, and an acti-
vation function σ : R → R, we define the convolutional layer Convσw,b : RD×C → RD×C′

by
Convσw,b(x) := σ(Lw(x)−1D⊗b), where 1D is a D dimensional vector consisting of 1’s,⊗ is the

1we discuss the difference of one-sided padding and two-sided padding in Remark 3.1.

63

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

+ +D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

id
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

id
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> FCid

W,b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Conv�w1,b1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Conv�wM ,bM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3.1: Schematic view of a ResNet-type CNN. Variables are as in Definition 3.1.

outer product of vectors, and σ is applied in element-wise manner. Similarly, let W ∈ RC′×DC ,
b ∈ RC′

, and σ : R → R, we define the fully-connected layer FCσ
W,b : RD×C → RC′

by
FCσ

W,b(a) = σ(Wvec(a)− b). Here, vec(·) is the vectorization operator that flattens a matrix into
a vector.

Finally, we define the ResNet-type CNN as a sequential concatenation of one convolution
block, M residual blocks, and one fully-connected layer. Figure 3.1 is the schematic view of the
CNN we adopt.

Definition 3.1 (Convolutional Neural Networks (CNNs)). Let M,L,C,K ∈ N+, which will be
the number of residual blocks and depth, channel size, and filter size of blocks, respectively. For
m ∈ [M] and l ∈ [L], let w(l)

m ∈ RK×C×C and b
(l)
m ∈ RC be a weight tensor and bias of the

l-th layer of the m-th block in the convolution part, respectively. Finally, let W ∈ RDC×1 and
b ∈ R be a weight matrix and a bias for the fully-connected layer part, respectively. For θ :=

((w
(l)
m)m,l, (b

(l)
m)m,l,W, b) and an activation function σ : R → R, we define CNNσ

θ : RD → RD,
the CNN constructed from θ, by

CNNσ
θ := FCid

W,b ◦ (ConvσwM ,bM
+ id) ◦ · · · ◦ (Convσw1,b1 + id) ◦ P,

where Convσwm,bm := Convσ
w

(L)
m ,b

(L)
m
◦ · · · ◦ Convσ

w
(1)
m ,b

(1)
m

, id : RD×C → RD×C is the identity

function, and P : RD → RD×C ;x 7→
[
x 0 · · · 0

]
is a padding operation that adds zeros to

align the number of channels2.

We say a linear convolutional layer or a linear CNN when the activation function σ is the
identity function and a ReLU convolution layer or a ReLU CNN when σ is ReLU, which is defined
by ReLU(x) := x ∨ 0. We call Convσwm,bm (m > 0) and id in the above definition the m-th
residual block and skip connection, respectively. We say θ is compatible with (C,K) when each
component of θ satisfies the aforementioned dimension conditions.

2Although CNNσ
θ in this definition has a fully-connected layer, we refer to a stack of convolutional layers both with

or without the final fully-connect layer as a CNN.

64

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

For the number of blocks M , depth of residual blocks L, channel size C, filter size K, and
norm parameters for convolution layers B(conv) > 0 and for a fully-connected layer B(fc) > 0, we
define F (CNN)

M,L,C,K,B(conv),B(fc) , the hypothesis class consisting of ReLU CNNs as

F (CNN)

M,L,C,K,B(conv),B(fc) =

CNNReLU

θ

CNNReLU
θ has M residual blocks,

depth of each residual block is L,
θ is compatible with (C,K),
maxm,l ‖w

(l)
m ‖∞ ∨ ‖b(l)m ‖∞ ≤ B(conv),

‖W‖∞ ∨ ‖b‖∞ ≤ B(fc)

.

Here, the domain of CNNs is restricted to [−1, 1]D. Note that we impose norm constraints to the
convolution and fully-connected part separately. We emphasize that we do not impose any sparse
constraints (e.g., restricting the number of non-zero parameters in a CNN to some fixed value) on
CNNs, as opposed to previous literature [Yarotsky, 2017, Schmidt-Hieber, 2020, Imaizumi and
Fukumizu, 2019].

Remark 3.1 (One-sided padding vs. Equal-padding). In this study, we adopted one-sided padding,
which is not used so often practically, in order to make proofs simple. However, with slight mod-
ifications, all statements are true for equally-padded convolutions, a widely employed padding
style which adds (approximately) same numbers of zeros to both ends of an input signal, with the
exception that the filter size K is restricted to K ≤

⌊
D
2

⌋
instead of K ≤ D.

Remark 3.2 (Difference between Original ResNet and Ours). There are several differences be-
tween the CNN in this chapter and the original ResNet [He et al., 2016], aside from the number
of layers. The most critical one is that our CNN does not have pooling nor Batch Normalization
layers [Ioffe and Szegedy, 2015]. We will consider a scaling scheme simpler than Batch Normal-
ization to derive optimality of CNNs with constant-depth residual blocks (see Definition 3.5). It
is left for future research whether our result can extend to the ResNet-type CNNs with pooling or
other scaling layers such as Batch Normalization.

3.3.3 Block-sparse Fully-connected Neural Networks

In this section, we mathematically define FNNs we consider in this chapter, in parallel with the
CNN case. Our FNN, which we coin a block-sparse FNN, consists of M possibly dense FNNs
(blocks) concatenated in parallel, followed by a single fully-connected layer. We sketch the archi-
tecture of a block-sparse FNN in Figure 3.2.

Definition 3.2 (Fully-connected Neural Networks (FNNs)). Let M,L,C ∈ N+ be the number of
blocks in an FNN, the depth and width of blocks, respectively. Let W (l)

m ∈ RC×C and b
(l)
m ∈ RC

be a weight matrix and a bias of the l-th layer of the m-th block for m ∈ [M] and l ∈ [L],
with the exception that W (1)

m ∈ RC×D. Let wm ∈ RC be a weight (sub)vector of the final fully-
connected layer corresponding to the m-th block and b ∈ R be a bias for the fully-connected
layer. For θ = ((W

(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b) and an activation function σ : R → R, we define

65

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC�
W1,b1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC�
WM ,bM

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

w1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Forward
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3.2: Schematic view of a block-sparse FNN. Variables are as in Definition 3.2.

FNNσ
θ : RD → R, the block-sparse FNN constructed from θ, by

FNNσ
θ :=

M∑
m=1

w⊤
mFCσ

Wm,bm(·)− b,

where FCσ
Wm,bm := FCσ

W
(L)
m ,b

(L)
m
◦ · · · ◦ FCσ

W
(1)
m ,b

(1)
m

.

We say θ is compatible with C when each component of θ matches the dimension con-
ditions determined by the width parameter C, as we did in the CNN case. When L = 1,
a block-sparse FNN is a 2-layered neural network with C ′ := MC hidden units of the form
f(x) =

∑C′

c=1 bcσ(a
⊤
c x− tc)− b where ac ∈ RD and bc, tc, b ∈ R.

For the number of blocks M , depth L and width C of blocks, and norm parameters for the
block part B(bs) > 0 and for the final layer B(fin) > 0, we define F (FNN)

M,L,C,B(bs),B(fin) , the set of
functions realizable by FNNs as

F (FNN)

M,L,C,B(bs),B(fin) =

FNNReLU

θ

FNNReLU
θ has M blocks,

depth of each block is L,
θ is compatible with C,
maxm,l ‖W

(l)
m ‖∞ ∨ ‖b(l)m ‖∞ ≤ B(bs),

maxm ‖wm‖∞ ∨ |b| ≤ B(fin).

,

where the domain is again restricted to [−1, 1]D.

66

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

3.4 Main Theorems

With the preparation in previous sections, we state our main results of this paper. We only describe
statements of theorems and corollaries in the main article. All complete proofs are deferred to the
supplemental material.

3.4.1 Approximation

Our first theorem claims that any block-sparse FNN with M blocks is realizable by a ResNet-type
CNN with fixed-sized channels and filters by adding O(M) parameters.

Theorem 3.1. Let M,L,C ∈ N+, K ∈ {2, . . . D} and L0 :=
⌈
D−1
K−1

⌉
. Then, there exist L′ ≤ L+

L0, C ′ ≤ 4C, and K ′ ≤ K such that, for any B(bs), B(fin) > 0, any FNN inF (FNN)

M,L,C,B(bs),B(fin) can

be realized by a CNN in F (CNN)

M,L′,C′,K′,B(conv),B(fc) . Here, B(conv) = B(bs) and B(fc) = B(fin)(1 ∨
(B(bs))−1).

In particular, if we can approximate a function with a block-sparse FNN with O(M) param-
eters, we can approximate the function with a ResNet-type CNN at the same rate, too. By the
definition of F (CNN)

M,L′,C′,K′,B(conv) , the CNN emulating the block-sparse FNN is dense and does not
have sparse structures in general.

3.4.2 Estimation

Our second theorem bounds the estimation error of the clipped ERM estimator. We denote
F (FNN) = F (FNN)

M,L,C,B(bs),B(fin) and F (CNN) = F (CNN)

M,L′,C′,K′,B(conv),B(fc) in short.

Theorem 3.2. Let f◦ : RD → R be a measurable function and B(bs), B(fin) > 0. Let M , L, C,
K, and L0 as in Theorem 3.1. Suppose L′, C ′,K ′, B(conv) and B(fc) satisfy F (FNN) ⊂ F (CNN)

(their existence is ensured by Theorem 3.1). Suppose that the covering nubmer ofF (CNN) is larger
than 2. Then, the clipped ERM estimator f̂ of F := {clip[f] | f ∈ F (CNN)} satisfies

ED‖f̂ − f◦‖2L2(PX) ≤ C0

(
inf
f
‖f − f◦‖2∞ +

F̃ 2

N
Λ2 log(2Λ1BN)

)
. (3.1)

Here, f ranges over F (FNN), C0 > 0 is a universal constant, F̃ := ∥f◦∥∞
σ ∨ 1

2 , and B :=

B(conv) ∨B(fc). Λ1 = Λ1(F (CNN)) and Λ2 = Λ2(F (CNN)) are defined by

Λ1 := (2M + 3)C ′D(1 ∨B(fc))(1 ∨B(conv))ϱϱ+,

Λ2 := ML′
(
C ′2K ′ + C ′

)
+ C ′D + 1,

where ϱ := (1+ρ)M , ϱ+ := 1+ML′ρ+, ρ := (C ′K ′B(conv))L
′
, and ρ+ := (1∨C ′K ′B(conv))L

′
.

67

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

The first term of (3.1) is the approximation error achieved by F (FNN). On the other hand, the
second term of (3.1) represents the model complexity of F (CNN) since Λ1 and Λ2 are determined
by the architectural parameters of F (CNN) — Λ1 corresponds to the Lipschitz constant of a func-
tion realized by a CNN and Λ2 is the number of parameters, including zeros, of a CNN. There
is a trade-off between these two terms. Using appropriately chosen M to balance them, we can
evaluate the order of estimation error with respect to the sample size N .

Corollary 3.1. Under the same assumptions as Theorem 3.2, suppose further log Λ1B = Õ(1) as
a function of M . If inff∈F(FNN) ‖f − f◦‖2∞ = Õ(M−γ1) and Λ2 = Õ(Mγ2) for some constants
γ1, γ2 > 0 independent of M , then, the clipped ERM estimator f̂ of F achieves the estimation

error ‖f◦ − f̂‖2L2(PX) = ÕP (N
− 2γ1

2γ1+γ2).

3.5 Applications

3.5.1 Barron Class

The Barron class is an example of the function class that can be approximated by block-sparse
FNNs. We employ the definition of Barron functions used in Klusowski and Barron [2018].

Definition 3.3 (Barron class). We call a measurable function f◦ : [−1, 1]D → R a Barron func-
tion of a parameter s > 0 if f◦ admits the Fourier representation (i.e., f◦(x) = F̌F [f◦]) and∫
RD ‖w‖s2 |F [f◦](w)|dw < ∞. Here, F and F̌ are the Fourier and inverse Fourier transforma-

tion, respectively.

Klusowski and Barron [2018] studied approximation of the Barron function f◦ with the pa-
rameter s = 2 by a linear combination of M ridge functions (i.e., a 2-layered ReLU FNN).
Specifically, they showed that there exists a function fM of the form

fM := f◦(0) +∇f◦⊤(0)x+
1

M

M∑
m=1

bm(a⊤mx− tm)+ (3.2)

with |bm| ≤ 1, ‖am‖1 = 1, and |tm| ≤ 1, such that ‖f◦ − fM‖∞ = Õ(M−(1
2
+ 1

D)). Using this
approximator fM , we can derive the same approximation order using CNNs by applying Theorem
3.1 with L = 1 and C = 1.

Corollary 3.2. Let f◦ : [−1, 1]D → R be a Barron function with the parameter s = 2 such that
f◦(0) = 0 and ∇f◦(0) = 0D. Then, for any K ∈ {2, . . . , D}, there exists a CNN f (CNN) with
M residual blocks, each of which has depth O(1) and at most 4 channels, and whose filter size is
at most K, such that ‖f◦ − f (CNN)‖∞ = Õ(M−(1

2
+ 1

D)).

Note that this rate is same as the one obtained for FNNs [Klusowski and Barron, 2018].
We have one design choice when we apply Corollary 3.1 in order to derive the estimation error:

how to set B(bs) and B(fin)? Looking at the definition of fM , a naive choice would be B(bs) := 1
and B(fin) := M−1. However, this cannot satisfy the assumption on Λ1 of Corollary 3.1, due to

68

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

the term ϱ = (1 + ρ)M . We want the logarithm of Λ1 to be Õ(1) as a function of M . In order
to do that, we change the relative scale between parameters in the block-sparse part and the fully-
connected part using the homogeneous property of the ReLU function: ReLU(ax) = aReLU(x)
for a > 0. The rescaling operation enables us to choose B(bs) := M−1 and B(fin) = 1 to meet the
assumption of Corollary 3.1. By setting γ1 =

1
2 +

1
D and γ2 = 1, we obtain the desired estimation

error.

Corollary 3.3. Let f◦ : [−1, 1]D → R be a Barron function with the parameter s = 2 such
that f◦(0) = 0 and ∇f◦(0) = 0D. Let K ∈ {2, . . . , D}. There exist the number of residual
blocks M = O(N

D
2+2D), depth of each residual block L = O(1), channel size C = O(1), and

norm bounds B(conv), B(fc) > 0 such that for sufficiently large N , the clipped ERM estimator
f̂ of {clip[f] | f ∈ F (CNN)

M,L,C,K,B(conv),B(fc)} achieves the estimation error ‖f◦ − f̂‖2L2(PX) =

ÕP (N
− D+2

2(D+1)).

3.5.2 Hölder Class

We next consider the approximation and error rates of CNNs when the true function f◦ is a Hölder
function.

Definition 3.4 (Hölder class). Let β > 0. A function f◦ : [−1, 1]D → R is called a β-Hölder
function if

‖f◦‖β :=
∑

0≤|α|<⌊β⌋

‖∂αf◦‖∞ +
∑

|α|=⌊β⌋

sup
x ̸=y

|∂αf◦(x)− ∂αf◦(y)|
|x− y|β−⌊β⌋ <∞.

Here, α = (α1, . . . , αD) is a multi-index. That is, ∂αf := ∂|α|f
∂x

α1
1 ···∂xαD

D

and |α| :=
∑D

d=1 αd.

Yarotsky [2017] showed that FNNs with S non-zero parameters can approximate any D variate
β-Hölder function with the order of Õ(S− β

D). Schmidt-Hieber [2020] also proved a similar state-
ment using a different construction method. They only specified the width3, depth, and non-zero
parameter counts of the approximating FNN and did not write in detail how non-zero parame-
ters are distributed in the statements explicitly (see Theorem 1 of Yarotsky [2017] and Theorem
5 of Schmidt-Hieber [2020]). However, if we carefully look at their proofs, we find that we can
transform the FNNs they constructed into block-sparse ones (see Lemma 3.7 of the supplemental
material). Therefore, we can apply Theorem 3.1 to these FNNs. To meet the assumption of Corol-
lary 3.1, we again rescale the parameters of the FNNs, as we did in the Barron-class case, so that
log Λ1 = Õ(1). We can derive the approximation and estimation errors by setting γ1 = β

D and
γ2 = 1.

Corollary 3.4. Let β > 0 and f◦ : [−1, 1]D → R be a β-Hölder function. Then, for any
K ∈ {2, . . . , D}, there exists a CNN f (CNN) with O(M) residual blocks, each of which has depth
O(logM) and O(1) channels, and whose filter size is at most K, such that ‖f◦ − f (CNN)‖∞ =

Õ(M− β
D).

3Yarotsky [2017] didn’t specified the width of FNNs.

69

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Corollary 3.5. Let β > 0 and f◦ : [−1, 1]D → R be a β-Hölder function. For any K ∈
{2, . . . , D}, there exist the number of residual blocks M = O(N

D
2β+D), depth of each residual

block L = O(logN), channel size C = O(1), and norm bounds B(conv), B(fc) > 0 such that
for sufficiently large N , the clipped ERM estimator f̂ of {clip[f] | f ∈ F (CNN)

M,L,C,K,B(conv),B(fc)}

achieves the estimation error ‖f◦ − f̂‖2L2(PX) = ÕP (N
− 2β

2β+D).

Since the estimation error rate of the β-Hölder class is OP (N
− 2β

2β+D) (see, e.g., Tsybakov
[2008]), Corollary 3.5 implies that our CNN can achieve the minimax optimal rate up to logarith-
mic factors even though it can be dense and its width D, channel size C, and filter size K are
constant with respect to the sample size N .

3.6 Discussion

Optimal CNNs with Constant-depth Blocks

In the previous section, we proved the optimality of dense and narrow ResNet-type CNNs for the
Hölder class. However, the constructed CNN can have residual blocks whose depth is as large
as O(logN). Such an architecture is different from practically successful ResNets because they
usually have relatively shallow (e.g., 2- or 3-layered) networks as residual blocks. We hypothesize
that the essence of the problem resides in the difference of scales between skip connections and
residual blocks. Therefore, we consider another type of CNNs that admits scaling schemes of
intermediate signals in order to overcome this problem. Among others, we consider the simplest
scaling method, which zeros out some channels in skip connections.

Definition 3.5 (Masked CNNs). Let M,L,C,K ∈ N+. Let w(l)
m ∈ RK×C×C , b(l)m ∈ RC , W ∈

RDC×1 and b ∈ R be parameters of CNNs for m ∈ [M] and l ∈ [L]. Let zm = (zm,1, . . . , zm,C) ∈
{0, 1}C be a mask for the m-th skip connection. For θ := ((w

(l)
m)m,l, (b

(l)
m)m,l,W, b, (zm)m) and

an activation function σ : R→ R, we define mCNNσ
θ : RD → RD, the masked CNN constructed

from θ, by

mCNNσ
θ := FCid

W,b ◦ (ConvσwM ,bM
+ JM) ◦ · · · ◦ (Convσw1,b1 + J1) ◦ P,

where Jm : RD×C → RD×C is a channel wise mask operation defined by [x1 · · · xC] 7→
[zm,1x1 · · · zm,CxC].

By definition, plain ResNet-type CNNs in Definition 3.1 are a special case of masked CNNs.
Note that we do not restrict the number of non-zero mask elements. Therefore, although masks
take discrete values, we can obtain approximated ERM estimators via sparse optimization tech-
niques. We say θ is compatible with (C,K) when θ satisfies the dimension conditions as we did

70

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

in Definition 3.1. We define GM,L,C,K,B(conv),B(fc) by

GM,L,C,K,B(conv),B(fc) =

mCNNReLU

θ

mCNNReLU
θ has M residual blocks,

depth of each residual block is L,
θ is compatible with (C,K),
maxm,l ‖w

(l)
m ‖∞ ∨ ‖b(l)m ‖∞ ≤ B(conv),

‖W‖∞ ∨ ‖b‖∞ ≤ B(fc)

.

In the above definition, we treat the mask pattern z = (zm)m as learnable parameters. We can
also treat z as fixed during training and search for best z as architecture search. The following
theorems show that masked CNNs can approximate and estimate any Hölder function optimally
even if the depth of residual blocks is specified a priori. We treat L as a constant against M in the
theorems.

Theorem 3.3. Let f◦ : [−1, 1]D → R be a β-Hölder function. For any K ∈ {2, . . . , D} and
L ∈ N+, there exists a CNN f (CNN) with O(M logM) residual blocks, each of which has depth
L and O(1) channels, and whose filter size is at most K, such that ‖f◦−f (CNN)‖∞ = Õ(M− β

D).

Theorem 3.4. Let f◦ : [−1, 1]D → R be a β-Hölder function. For any K ∈ {2, . . . , D} and L ∈
N+, there exist the number of residual blocks M̃ = O(N

D
2β+D logN), channel size C = O(1),

and norm bounds B(conv), B(fc) > 0 such that for sufficiently large N , the clipped ERM estimator
f̂ of {clip[f] | f ∈ GM̃,L,C,K,B(conv),B(fc)} achieves the estimation error ‖f◦ − f̂‖2L2(PX) =

ÕP (N
− 2β

2β+D).

3.7 Chapter Conclusion

In this chapter, we established new approximation and statistical learning theories for ResNet-type
CNNs by utilizing the block-sparse structure of FNNs to understand the role of skip connections
in CNNs. We proved that any block-sparse FNN with M blocks is realizable by a CNN that has
O(M) additional parameters. Then, we derived the approximation and estimation error rates for
CNNs from those for block-sparse FNNs. Our theory is general in a sense that it does not depend
on a specific function class, as long as we can approximate it with block-sparse FNNs. Using this
theory, we derived approximation and error rates for the Barron and Hölder classes in almost the
same manner and showed that the estimation error of CNNs is same as that of FNNs, even if CNNs
are dense and have constant channel size, filter size, and width with respect to the sample size. We
can additionally make the depth of residual blocks constant if we allowed skip connections to
have scaling schemes. The key techniques were careful evaluations of the Lipschitz constant and
non-trivial weight parameter rescaling of NNs.

One of the interesting open questions is the role of the weight rescaling. We critically use
the homogeneous property of the ReLU to change the relative scale between the block-sparse and
fully-connected part, if it were not for this property, the estimation error rate would be worse. The
general theory for rescaling, not restricted to the Barron nor Hölder classes would be beneficial for
deeper understanding of the relationship between the approximation and estimation capabilities of
FNNs and CNNs.

71

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Another question is when the approximation and estimation error rates of CNNs can exceed
that of FNNs. We can derive the same rates as FNNs essentially because we can realize block-
sparse FNNs using CNNs that have the same order of parameters (see Theorem 3.1). If we can find
some special structures of FNNs – like repetition, then, the CNNs might need fewer parameters
and can achieve better estimation error rate. Note that there is no hope for enhancement for the
Hölder case since the estimation rate using FNNs is already minimax optimal (up to logarithmic
factors). It is left for future research which function classes and constraints of FNNs, like block-
sparseness, we should choose.

3.A Proofs

3.A.1 Definitions of General CNNs and FNNs

We prove Theorem 3.1 and Theorem 3.2 in more general form. Specifically, we allow CNNs
to have residual blocks with different depth and each residual block to have varying numbers of
channels and filter sizes. Similarly, FNNs can have blocks with different depth, and the width of a
block can be non-constant.

Definition 3.6 (Convolutional Neural Networks (CNNs)). Let M ∈ N+ and Lm ∈ N+, which
will be the number of residual blocks and the depth of m-th block, respectively. Let C(l)

m ,K
(l)
m be

the channel size and filter size of the l-th layer of the m-th block for m ∈ [M] and l ∈ [Lm]. We

assume C(L1)
1 = · · · = C

(LM)
M and denote it by C(0). Let w(l)

m ∈ RK
(l)
m ×C

(l)
m ×C

(l−1)
m and b

(l)
m ∈ R be

the weight tensors and biases of l-th layer of the m-th block in the convolution part, respectively.
Here C

(0)
m is defined as C(0). Finally, let W ∈ RD×C

(L0)
0 and b ∈ R be the weight matrix and the

bias for the fully-connected layer part, respectively. For θ := ((w
(l)
m)m,l, (b

(l)
m)m,l,W, b) and an

activation function σ : R→ R, we define CNNσ
θ : RD → RD, the CNN constructed from θ, by

CNNσ
θ := FCid

W,b ◦ (ConvσwM ,bM
+ id) ◦ · · · ◦ (Convσw1,b1 + id) ◦ P,

where Convσwm,bm := Convσ
w

(Lm)
m ,b

(Lm)
m

◦ · · · ◦ Convσ
w

(1)
m ,b

(1)
m

, id : RD×C(0) → RD×C(0)
is the

identity function, and P : RD → RD×C(0)
;x 7→

[
x 0 · · · 0

]
is a padding operation that adds

zeros to align the number of channels.

Definition 3.7 (Fully-connected Neural Networks (FNNs)). Let M ∈ N+ be the number of blocks
in an FNN. Let Dm = (D

(1)
m , . . . , D

(Lm)
m) ∈ NLm

+ be the sequence of intermediate dimensions

of the m-th block, where Lm ∈ N+ is the depth of the m-th block for m ∈ [M]. Let W (l)
m ∈

RD
(l)
m ×D

(l−1)
m and b

(l)
m ∈ RD

(l)
m be the weight matrix and the bias of the l-th layer of m-th block

(with the convention D
(0)
m = D). Let wm ∈ RD

(Lm)
m be the weight (sub)vector of the final fully-

connected layer corresponding to the m-th block and b ∈ R be the bias for the last layer. For
θ = ((W

(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b) and an activation function σ : R → R, we define FNNσ

θ :
RD → R, the block-sparse FNN constructed from θ, by

FNNσ
θ :=

M∑
m=1

w⊤
mFCσ

Wm,bm(·)− b,

72

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

+ +D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

id
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

id
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FCid
W,b

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Conv�w1,b1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Conv�wM ,bM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C(0)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C(0)
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C(L1)
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C(LM)
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C(0)
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3.3: Schematic view of a general ResNet-type CNN. Variables are as in Definition 3.6.

where FCσ
Wm,bm := FCσ

W
(Lm)
m ,b

(Lm)
m
◦ · · ·FCσ

W
(1)
m ,b

(1)
m

.

Figure 3.3 shows the schematic view of a ResNet-type CNNs defined in Definition 3.6 and
Figure 3.4 shows that of Definition 3.7. Definition 3.6 is reduced to Definition 3.1 by setting
Lm = L, C = (C)m,l and K = (K)m,l. Similarly, Definition 3.2 is a special case of Definition
3.7 where Lm = L and D = (C)m,l. Correspondingly, we denote the set of functions realizable
by CNNs and FNNs by F (CNN)

C,K,B(conv),B(fc) and F (FNN)

D,B(bs),B(fin) , respectively 4.

3.A.2 Proof of Theorem 3.1

We restate Theorem 3.1 in more general form. Note that Theorem 3.1 is a special case of Theorem
3.5 where width, depth, channel sizes and filter sizes are same among blocks.

Theorem 3.5. Let M ∈ N+, K ∈ {2, . . . D}, and L0 :=
⌈
D−1
K−1

⌉
. Let Lm, D

(l)
m ∈ N+ and

D = (D
(l)
m)m,l for m ∈ [M] and l ∈ [Lm]. Then, there exist L′

m ∈ N+, C = (C
(l)
m)m,l, and

K = (K
(l)
m)m,l (m ∈ [M], l ∈ [L′

m]) satisfying the following properties:

1. L′
m ≤ Lm + L0 (∀m ∈ [M]),

2. max
l∈[L′

m]
C(l)
m ≤ 4 max

l∈[Lm]
D(l)

m (∀m ∈ [M]), and

3. max
l∈[L′

m]
K(l)

m ≤ K (∀m ∈ [M], ∀l ∈ [L′
m])

such that for any B(bs), B(fin) > 0, any FNN in F (FNN)

D,B(bs),B(fin) can be realized by a CNN in

F (CNN)

C,K,B(conv),B(fc) . Here, B(conv) = B(bs) and B(fc) = B(fin)(1 ∨ (B(bs))−1). Further, if L1 =

· · · = LM , then we can choose L′
m to be a same value.

4Note that information of M and Lm are included in C, K, and D. Therefore, we do not have to put them as
subscripts

73

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC�
W1,b1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC�
WM ,bM

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

w1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

wM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Forward
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(LM)
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(1)
M

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

L1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(1)
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D(L1)
1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3.4: Schematic view of a general block-sparse FNN. Variables are as in Definition 3.7.

Remark 3.3. For K ≤ K ′, we can embed RK into RK′
by inserting zeros: w = (w1, . . . , wK) 7→

w′ = (w1, . . . , wK , 0, . . . , 0). It is easy to show Lw = Lw′
. Using this equality, we can expand

a size-K filter to size-K ′. Furthermore, we can arbitrary increase the number of output channels
of a convolution layer by adding filters consisting of zeros. Therefore, although properties 2 and
3 allow C

(l)
m and K

(l)
m to be different values, we can choose C

(l)
m and K

(l)
m so that inequalities in

properties 2 and 3 are actually equals by adding filters consisting of zeros. In particular, when
D

(l)
m ’s are same value, we can choose C

(l)
m to be same.

Proof Overview

For f (FNN) ∈ F (FNN), we realize a CNN f (CNN) using M residual blocks by “serializing" blocks
in the FNN and converting them into convolution layers.

First we multiply the channel size by three using the first padding operation. We will use
the first channel for storing the original input signal for feeding to downstream blocks and
the second and third ones for accumulating properly scaled outputs of each blocks, that is,∑m′

m=1w
⊤
mFCReLU

Wm,bm(x) where wm is the weight of the final fully-connected layer correspond-
ing to the m-th block.

For m = 1, . . . ,M , we create the m-th residual block from the m-th block of f (FNN). First,
we show that for any a ∈ RD and t ∈ R, there exists L0-layered 4-channel ReLU CNN with O(D)
parameters whose first output coordinate equals to a ridge function x 7→ (a⊤x− t)+ (Lemma 3.1
and Lemma 3.2). Since the first layer of m-th block is concatenation of C hinge functions, it is
realizable by a 4C-channel ReLU CNN with L0-layers.

74

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

For the l-th layer of the m-th block (m ∈ [M], l = 2, . . . , L′
m), we prepare C size-1 filters

made from the weight parameters of the corresponding layer of the FNN. Observing that the
convolution operation with size-1 filter is equivalent to a dimension-wise affine transformation,
the first coordinate of the output of l-th layer of the CNN is inductively same as that of the m-th
block of the FNN. After computing the m-th block FNN using convolutions, we add its output to
the accumulating channel in the skip connection.

Finally, we pick the first coordinate of the accumulating channel and subtract the bias term
using the final affine transformation.

Decomposition of Affine Transformation

The following lemma shows that any affine transformation is realizable with a
⌈
D−1
K−1

⌉
-layered

linear conventional CNN (without the final fully-connect layer).

Lemma 3.1. Let a ∈ RD, t ∈ R, K ∈ {2, . . . , D − 1}, and L0 :=
⌈
D−1
K−1

⌉
. Then, there exists

w(l) ∈

RK×2×1 (for l = 1)
RK×2×2 (for l = 2, . . . , L0 − 1)
RK×1×2 (for l = L0)

and b ∈ R such that

1. max
l∈[Lo]

‖wm‖∞ = ‖a‖∞, max
l∈[L0]

‖b(l)‖∞ = |t|, and

2. Convidw,b : RD → RD satisfies Convidw,b(x) = a⊤x− t for any x ∈ [−1, 1]D.

Proof. First, observe that the convolutional layer constructed from u =
[
u1 . . . uK

]⊤ ∈
RK×1×1 takes the inner product with the first K elements of the input signal: Lu(x) =∑K

k=1 ukxk. In particular, u =
[
0 . . . 0 1

]⊤ ∈ RK×1×1 works as the “left-translation" by
K − 1. Therefore, we should define w so that it takes the inner product with the K left-most ele-
ments in the first channel and shift the input signal by K−1 with the second channel. Specifically,
we define w = (w(1), . . . , w(L0)) by

(w(1)):,1,: =

 a1
...

aK

 , (w(1)):,2,: =

0
...
0
1

 ,

(w(l)):,1,: =

0 a(l−1)K+1
...

...
0 alK

 , (w(l)):,2,: =

0 0
...

...
0 0
1 0

 ,

75

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

(w(L0)):,1,: =

0 a(L0−1)K+1
...

...
0 aD
0 0
...

...
0 0

.

We set b := (0, . . . , 0︸ ︷︷ ︸
L0 − 1 times

, t). Then, w and b satisfy the condition of the lemma.

Transformation of a Linear CNN into a ReLU CNN

The following lemma shows that we can convert any linear CNN to a ReLU CNN that has approx-
imately 4 times larger parameters. This type of lemma is also found in Petersen and Voigtlaender
[2018b, Lemma 2.3]. The constructed network resembles to a CNN with CReLU activation [Shang
et al., 2016].

Lemma 3.2. Let C = (C(1), . . . , C(L)) ∈ NL
+ be channel sizes K = (K(1), . . . ,K(L)) ∈ NL

+

be filter sizes. Let w(l) ∈ RK(l)×Cl×C(l)
and b(l) ∈ R(l). Consider the linear convolution layers

constructed from w and b: fid := Convidw,b : RD → RD×C(L)NL
+ where w = (w(l))l and b =

(b(l))l . Then, there exists a pair w̃ = (w̃(l))l∈[L], b̃ = (b̃(l))l∈[L] where w̃(l) ∈ RK(l)×2C(l)×2C(l−1)

and b̃(l) ∈ R2C(l)
such that

1. max
l∈[L]
‖w̃(l)‖∞ = max

l∈[L]
‖w(l)‖∞, max

l∈[L]
‖b̃(l)‖∞ = max

l∈[L]
‖b(l)‖∞, and

2. fReLU := ConvReLU
w̃,b̃

: RD → RD×2C(L)
, satisfies fReLU(·) = (fid(·)+, fid(·)−).

Proof. We define w̃ and b̃ as follows:

(w̃(1))k,:,: =

[
(w(1))k,:,:
−(w(1))k,:,:

]
for k = 1, . . . ,K(1),

(w̃(l))k,:,: =

[
(w(l))k,:,: −(w(l))k,:,:
−(w(l))k,:,: (w(l))k,:,:

]
for k = 1, · · ·K(l),

b̃(l) =

[
b(l)

−b(l)

]
By definition, a pair (w̃, b̃) satisfies the conditions (1) and (2). For any x ∈ RD, we set y(l) :=

Convidw[1:l],b[1:l](x) ∈ RC(l)×D. We will prove

ConvReLU
w̃[1:l],b̃[1:l]

(x) =
[
y
(l)
+ y

(l)
−

]⊤
(3.3)

76

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

for l = 1, . . . , L by induction. Note that we obtain fReLU(·) = (fid+(·), fid−(·)) by setting l = L.
For l = 1, by definition of w̃(1) we have,

(w̃(1))α,:,:x
β,: =

[
(w(1))α,:,:x

β,:

−(w(1))α,:,:x
β,:

]

for any α, β ∈ [D]. Summing them up and using the definition of b̃(1) yield

[Lw̃(1)
(x)− 1D ⊗ b̃(1)]⊤ =

[
Lw(1)

(x)− 1D ⊗ b(1)

−
(
Lw(1)

(x)− 1D ⊗ b(1)
)]⊤

Suppose (3.3) holds up to l (l < L), by the definition of w̃(l+1),

(w̃(l+1))α,:,:

[
(y

(l)
+)β,:

(y
(l)
−)β,:

]
=

[
(w(l+1))α,:,: −(w(l+1))α,:,:
−(w(l+1))α,:,: (w(l+1))α,:,:

][
(y

(l)
+)β,:

(y
(l)
−)β,:

]

=

 (w(l+1))α,:,:

(
(y

(l)
+)β,: − (y

(l)
−)β,:

)
−(w(l+1))α,:,:

(
(y

(l)
+)β,: − (y

(l)
−)β,:

)
=

[
(w(l+1))α,:,:(y

(l))β,:

−(w(l+1))α,:,:(y
(l))β,:

]

for any α, β ∈ [D]. Again, by taking the summation and using the definition of b̃(l+1), we get

[Lw̃(l+1)
([y

(l)
+ , y

(l)
−])− 1D ⊗ b̃(1)]⊤ =

[
Lw(l+1)

(y(l))− 1D ⊗ b(l+1)

−
(
Lw(l+1)

(y(l))− 1D ⊗ b(l+1)
)]⊤ .

By applying ReLU, we get

ConvReLU
w̃(l+1),b̃(l+1)

(
[y

(l)
+ , y

(l)
−]
)
= ReLU

(
[y(l+1),−y(l+1)]

)
. (3.4)

By using the induction hypothesis, we get

ConvReLU
w̃[1:(l+1)],b̃[1:(l+1)]

(x) = ConvReLU
w̃(l+1),b̃(l+1)

(
[y

(l)
+ , y

(l)
−]
)

= ReLU
(
[y(l+1),−y(l+1)]

)
= [y

(l+1)
+ ,−y(l+1)

−]

Therefore, the claim holds for l + 1. By induction, the claim holds for L, which is what we want
to prove.

77

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Concatenation of CNNs

We can concatenate two CNNs with the same depths and filter sizes in parallel. Although it is
almost trivial, we state it formally as a proposition. In the following proposition, C(0) and C ′(0)

are not necessarily one.

Proposition 3.1. Let C = (C(l))l∈[L], C ′ = (C ′(l))l∈[L], and K = (K(l))l∈[L] ∈ NL
+. Let w(l) ∈

RK(l)×C(l)×C(l−1)
, b ∈ RC(l)

and denote w = (w(l))l and b = (b(l))l. We define w′ and b′ in the
same way, with the exception that C(l) is replaced with C ′(l). We define w̃ = (w̃(1), . . . , w̃(L))
and b̃ = (b̃(1), . . . , b̃(L)) by

(w̃(l))k,:,: :=

[
w(l) 0

0 w′(l)

]
∈ R(C(l)+C′(l))×(C(l−1)+C′(l−1))

b̃(l) :=

[
b(l)

b′(l)

]
∈ R(C(l)+C′(l))

for l ∈ [L] and k ∈ [K(l)]. Then, we have,

Convσ
w̃,b̃

(
[
x x′

]
) =

[
Convσw,b(x) Convσw′,b′(x

′)
]

for any x, x′ ∈ RD×C(0)
and any σ : R→ R.

Note that by the definition of ‖ · ‖0 and ‖ · ‖∞, we have

max
l∈[L]
‖w̃(l)‖∞ = max

l∈[L]
‖w(l)‖∞ ∨ ‖w′(l)‖∞,

max
l∈[L]
‖b̃(l)‖∞ = max

l∈[L]
‖b(l)‖∞ ∨ ‖b′(l)‖∞.

Proof of Theorem 3.5

By the definition of F (FNN)

D,B(bs),B(fin) , there exists a 4-tuple θ = ((W
(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b)

compatible with (D
(l)
m)m,l (m ∈ [M] and l ∈ [Lm]) such that

max
m∈[M],l∈[Lm]

(‖W (l)
m ‖∞ ∨ ‖b(l)m ‖∞) ≤ B(bs),

max
m∈[M]

‖wm‖∞ ∨ |b| ≤ B(fin),

and f (FNN) = FNNReLU
θ . We will construct the desired CNN consisting of M residual blocks,

whose m-th residual block is made from the ingredients of the corresponding m-th block in f (FNN)

(specifically, Wm := (W
(l)
m)l∈[Lm], bm := (b

(l)
m)l∈[Lm], and wm).

Padding Block We prepare the padding operation P that multiply the channel size by 3 (i.e., we
set C(0) = 3).

78

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

m = 1, . . . ,M Blocks For fixed m ∈ [M], we first create a CNN realizing FCReLU
Wm,bm . We

treat the first layer (i.e. l = 1) of FCReLU
Wm,bm as concatenation of D(1)

m hinge functions RD 3 x 7→
fd(x) := ((W

(1)
m)dx − b

(1)
m)+ for d ∈ [D

(1)
m]. Here, (W (1)

m)d ∈ R1×D is the d-th row of the
matrix W

(1)
m ∈ RD

(1)
m ×D. We apply Lemma 3.1 and Lemma 3.2 and obtain ReLU CNNs realizing

the hinge functions. By combining them in parallel using Proposition 3.1, we have a learnable
parameter θ(1)

m such that the ReLU CNN ConvReLU

θ
(1)
m

: RD×2 → RD×2D
(1)
m constructed from θ

(1)
m

satisfies

ConvReLU

θ
(1)
m

(
[
x x′

]⊤
)1 =

[
f1(x) ∗ · · · f

D
(1)
m
(x) ∗

]⊤
.

Since we double the channel size in the m = 0 part, the skip connection has 2 channels. Therefore,
we made ConvReLU

θ
(1)
m

so that it has 2 input channels and neglects the input signals coming from the
second one. This is possible by adding filters consisting of zeros appropriately.

Next, for l-th layer (l = 2, . . . , Lm), we prepare size-1 filters w(2)
m ∈ R1×D

(2)
m ×2D(1)

m for l = 2

and w
(l)
m ∈ R1×D

(l)
m ×2D

(l−1)
m for l = 3, . . . , D

(Lm)
m defined by

(w(l)
m)1,:,: :=

{
W

(2)
m ⊗

[
1 0

]
if l = 2

W
(l)
m if l = 3, . . . , D

(Lm)
m ,

where ⊗ is the Kronecker product of matrices. Intuitively, the l = 2 layer will pick all odd
indices of the output of ConvReLU

θ
(1)
m

and apply the fully-connected layer. We construct CNNs from

θ
(l)
m := (w

(l)
m , b

(l)
m) (l ≥ 2) and concatenate them along with ConvReLU

θ
(1)
m

:

Convm := ConvReLU

θ
(Lm)
m
◦ · · · ◦ ConvReLU

θ
(2)
m
◦ ConvReLU

θ
(1)
m

.

Note that ConvReLU

θ
(l)
m

(l ≥ 2) just rearranges parameters of FCReLU
Wm,bm . The output dimension of

Convm is either RD×2D
(Lm)
m (if Lm = 1) or RD×D

(Lm)
m (if Lm ≥ 2)., We denote the output

channel size (either 2D(Lm)
m or D(Lm)

m) by D
(out)
m . By the inductive calculation, we have

Convm(x)1 =

{
FCReLU

Wm,bm(x)⊗
[
1 0

]
if Lm = 1

FCReLU
Wm,bm(x) if Lm ≥ 2

.

By definition, Convm has L0 + Lm − 1 layers and at most 4D
(1)
m ∨ maxl=2,...Lm D

(l)
m ≤

4maxl∈[Lm]D
(l)
m channels. The ∞-norm of its parameters does not exceed that of parameters

in FCReLU
Wm,bm .

79

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Next, we consider the filter w̃m ∈ R1×3×D
(out)
m defined by

(w̃m)1,:,: =
B(bs)

B(fin)

0 · · · 0

wm ⊗
[
0 1

]
−wm ⊗

[
0 1

]
 if Lm = 1

0 · · · 0

wm

−wm

 if Lm ≥ 2

,

Then, Conv′m := ConvReLU
w̃m,0 adds the output of m-th residual block, weighted by wm, to the

second channel in the skip connections, while keeping the first channel intact. Note that the final
layer of each residual block does not have the ReLU activation. By definition, Conv′m has D(Lm)

m

parameters.
Given Convm and Conv′m for each m ∈ [M], we construct a CNN realizing FNNReLU

θ . Let
f (conv) : RD → RD×3 be the sequential interleaving concatenation of Convm and Conv′m, that
is,

f (conv) := (Conv′M ◦ ConvM + I) ◦ · · · ◦ (Conv′1 ◦ Conv1 + I) ◦ P.

Then, we have

f
(conv)
1,: =

[
0 z1 z2

]
∈ R3

where z1 =
B(bs)

B(fin)

∑M
m=1

(
w⊤
mFCReLU

Wm,bm

)
+

and z2 =
B(bs)

B(fin)

∑M
m=1

(
w⊤
mFCReLU

Wm,bm

)
−.

Final Fully-connected Layer Finally, we set

w :=

 0 0 · · · 0
B(fin)

B(bs) 0 · · · 0

−B(fin)

B(bs) 0 · · · 0

 ∈ RD×3

and put FCid
w,b on top of f (conv) to pick the first coordinate of f (conv) and subtract the bias term.

By definition, f (CNN) := FCid
w,b ◦ f (conv) satisfies f (CNN) = f (FNN).

Property Check We will check f (FNN) satisfies the desired properties. (Property 1): Since
Convm and Conv′m has L0 + Lm − 1 and 1 layers, respectively, the m(≥ 1)-th residual block
of f (CNN) has L′

m = L0 + Lm layers. In particular, if Lm’s are same, we can choose L′
m to

be the same value L0 + Lm. (Property 2): Convm has at most 4maxl∈[Lm]D
(l)
m channels and

Conv′m has at most 2 channels, respectively. Therefore, the channel size of the m-th block is at
most 4maxl∈[Lm]D

(l)
m . (Property 3): Since each filter of Convm and Conv′m is at most K, the

filter size of CNN is also at most K. (Properties on B(conv) and B(fin)): Parameters of f (conv)

80

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

are either 0, or parameters of FCReLU
Wm,Wm

, whose absolute value is bounded by B(bs) or B(bs)

B(fin)wm.
Since we have ‖wm‖∞ ≤ B(fin), the∞-norm of parameters in f (CNN) is bounded by B(bs). The
parameters of the final fully-connected layer FCw,b is either B(fin)

B(bs) , 0, or b, therefore their norm is

bounded by B(fin)

B(bs) ∨B(fin).
As discussed in the beginning of this section, Theorem 3.1 is the special case of Theorem 3.5.

Remark 3.4. Another way to construct a CNN which is identical (as a function) to a given FNN
is as follows. First, we use a “rotation" convolution with D filters, each of which has a size D, to
serialize all input signals to channels of a single input dimension. Then, apply size-1 convolution
layers, whose l-th layer consisting of appropriately arranged weight parameters of the l-th layer
of the FNN. This is essentially what Petersen and Voigtlaender [2018a] did to prove the existence
of a CNN equivalent to a given FNN. To restrict the size of filters to K, we should further replace
the the first convolution layer with O(D/K) convolution layers with size-K filters. We can show
essentially same statement using this construction method.

3.A.3 Proof of Theorem 3.2

Same as Theorem 3.1, we restate Theorem 3.2 in more general form. We denote F (CNN) :=

F (CNN)

C,K,B(conv),B(fc) and F (FNN) := F (FNN)

D,B(bs),B(fin) in shorthand.

Theorem 3.6. Let f◦ : RD → R be a measurable function and B(bs), B(fin) > 0. Let M , K, L0,
Lm, and D as in Theorem 3.5. Suppose L′

m,C,K, B(conv) and B(fc) satisfy F (FNN) ⊂ F (CNN)

for B(bs) and B(fin) (their existence is ensured for any B(bs) and B(fin) by Theorem 3.5). Suppose
that the covering nubmer of F (CNN) is larger than 3. Then, the clipped ERM estimator f̂ in
F := {clip[f] | f ∈ F (CNN)} satisfies

ED‖f̂ − f◦‖2L2(PX) ≤ C

(
inf
f
‖f − f◦‖2∞ +

F̃ 2

N
Λ2 log(2Λ1BN)

)
. (3.5)

Here, f ranges over F (FNN), C0 > 0 is a universal constant, F̃ := ∥f◦∥∞
σ ∨ 1

2 , and B =

B(conv) ∨B(fc). Λ1 = Λ1(F (CNN)) and Λ2 = Λ2(F (CNN)) are defined by

Λ1 := (2M + 3)C(0)D(1 ∨B(fc))(1 ∨B(conv))ϱϱ+

Λ2 :=
M∑

m=1

L′
m∑

l=1

(
C(l−1)
m C(l)

m K(l)
m + C(l)

m

)
+ C(0)D + 1,

where ϱ =
∏M

m=1(1 + ρm), ϱ+ = 1 +
∑M

m=1 L
′
mρ+m, ρm :=

∏L′
m

l=1C
(l−1)
m K

(l)
m B(conv) and

ρ+m :=
∏L′

m
l=1(1 ∨ C

(l−1)
m K

(l)
m B(conv)).

Again, Theorem 3.2 is a special case of Theorem 3.6 where width, depth, channel sizes and
filter sizes are same among blocks. Note that the definitions of Λ1, Λ2, ρ, ρ+, ϱ, and ϱ+ in
Theorem 3.2 and Theorem 3.6 are consistent by this specialization.

81

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Proof Overview

We relate the approximation error of Theorem 3.2 with the estimation error using the covering
number of the hypothesis class F (CNN). Although there are several theorems of this type, we
employ the one in Schmidt-Hieber [2020] due to its convenient form (Lemma 3.5). We can prove
that the logarithm of the covering number is upper bounded by Λ2 log((B

(conv) ∨ B(fc))Λ1/ε)
(Lemma 3.4) using the similar techniques to the one in Schmidt-Hieber [2020]. Theorem 3.2 is
the immediate consequence of these two lemmas.

To prove Corollary 3.1, we set M = O(Nα) for some α > 0. Then, under the assumption of
the corolarry, we have ‖f◦ − f̂‖2L2(Px)

= Õ
(
max

(
N−2αγ1 , Nαγ2−1

))
from Theorem 3.2. The

order of the right hand side with respect to N is minimized when α = 1
2γ1+γ2

. By substituting α,
we can prove Corollary 3.1.

Covering Number of CNNs

The goal of this section is to prove Lemma 3.4, stated in Section 3.A.3, that evaluates the covering
number of the set of functions realized by CNNs.

Bounds for convolutional layers

We assume w,w′ ∈ RK×J×I , b, b′ ∈ R, and x ∈ RD×I unless specified. We have in mind that
the activation function σ is either the ReLU function or the identity function id. But the following
proposition holds for any 1-Lipschitz function such that σ(0) = 0. Remember that we can treat
Lw as a linear operator from RD×I to RD×J . We endow RD×I and RD×J with the sup norm and
denote the operator norm Lw by ‖Lw‖op.

Proposition 3.2. It holds that ‖Lw‖op ≤ IK‖w‖∞.

Proof. Write w = (wkji)k∈[K],j∈[J],i∈[I], Lw = ((Lw)β,jα,i)α,β∈[D],j∈[J],i∈[I]. For any x =

(xα,i)α∈[D],i∈[I] ∈ RD×I , the sup norm of y := (yβj)β∈[D]j∈[J] = Lw(x) is evaluated as fol-
lows:

‖y‖∞ = max
β,j
|yβ,j | ≤ max

β,j

∑
α,i

|(Lw)β,jα,i ||xα,i|

≤ max
β,j

∑
α,i

|(Lw)β,jα,i |‖x‖∞

= max
β,j

∑
α,i

|w(α−β+1),j,i|‖x‖∞

≤ IK‖w‖∞‖x‖∞

Proposition 3.3. It holds that ‖Convσw,b(x)‖∞ ≤ ‖Lw‖op‖x‖∞ + |b|.

82

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Proof.

‖Convσw,b(x)‖∞ ≤ ‖σ(Lw(x)− 1D ⊗ b)‖∞
≤ ‖Lw(x)− 1D ⊗ b‖∞
≤ ‖Lw(x)‖∞ + ‖1D ⊗ b‖∞
≤ ‖Lw‖op‖x‖∞ + |b|.

Proposition 3.4. The Lipschitz constant of Convσw,b is bounded by ‖Lw‖op.

Proof. For any x, x′ ∈ RD×I ,

‖Convσw,b(x)− Convσw,b(x
′)‖∞ = ‖σ (Lw(x)− 1D ⊗ b)− σ

(
Lw(x′)− 1D ⊗ b

)
‖∞

≤ ‖ (Lw(x)− 1D ⊗ b)−
(
Lw(x′)− 1D ⊗ b

)
‖∞

≤ ‖Lw(x− x′)‖∞
≤ ‖Lw‖op‖x− x′‖∞.

Note that the first inequality holds because the ReLU function is 1-Lipschitz.

Proposition 3.5. It holds that ‖Convσw,b(x)− Convσw′,b′(x)‖ ≤ ‖Lw−w′‖op‖x‖∞ + |b− b′|.

Proof.

‖Convσw,b(x)− Convσw′,b′(x)‖∞ = ‖σ(Lw(x)− 1D ⊗ b)− σ(Lw′
(x)− 1D ⊗ b′)‖∞

≤ ‖(Lw(x)− 1D ⊗ b)− (Lw′
(x)− 1D ⊗ b′)‖

= ‖Lw(x)− Lw′
(x)‖+ ‖1D ⊗ (b− b′)‖∞

≤ ‖Lw−w′‖op‖x‖∞ + |b− b′|

Bounds for fully-connected layers

In the following propositions in this subsection, we assume W,W ′ ∈ RDC×C′
, b, b′ ∈ RC′

, and
x ∈ RD×C . Again, these propositions hold for any 1-Lipschitz function σ : R → R such that
σ(0) = 0. But σ = ReLU or id is enough for us.

Proposition 3.6. It holds that ‖FCσ
W,b(x)‖∞ ≤ ‖W‖0‖W‖∞‖x‖∞ + ‖b‖∞.

Proof.

‖FCσ
W,b(x)‖∞ ≤ ‖Wvec(x)− b‖∞

≤ ‖Wvec(x)‖∞ + ‖b‖∞
≤ max

j

∑
α,i

∣∣Wα,i,jx
α,i
∣∣+ ‖b‖∞.

The number of non-zero summand in the summation is at most ‖W‖0 and each summand is
bounded by ‖W‖∞‖x‖∞ Therefore, we have ‖FCσ

W,b(x)‖∞ ≤ ‖W‖0‖W‖∞‖x‖∞ + ‖b‖∞.

83

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Proposition 3.7. The Lipschitz constant of FCσ
W,b is bounded by ‖W‖0‖W‖∞.

Proof. For any x, x′ ∈ RD×C ,

‖FCσ
W,b(x)− FCσ

W,b(x
′)‖∞ ≤ ‖(Wvec(x)− b)− (Wvec(x′)− b)‖∞

≤ ‖W (vec(x)− vec(x′))‖∞
≤ ‖W‖0‖W‖∞‖vec(x)− vec(x′)‖∞.

Proposition 3.8. It holds that ‖FCσ
W,b(x) − FCσ

W ′,b′(x)‖∞ ≤ (‖W‖0 + ‖W ′‖0)‖W −
W ′‖∞‖x‖∞ + ‖b− b′‖∞.

Proof.

‖FCσ
W,b(x)− FCσ

W ′,b′(x)‖∞ ≤ ‖(Wvec(x)− b)− (W ′vec(x)− b′)‖∞
= ‖((W −W ′)vec(x)− (b− b′)‖∞
≤ ‖(W −W ′)vec(x)|+ ‖b− b′‖∞
≤ ‖W −W ′‖0‖W −W ′‖∞‖x‖∞ + ‖b− b′‖∞
≤ (‖W‖0 + ‖W ′‖0)‖W −W ′‖∞‖x‖∞ + ‖b− b′‖∞

Bounds for residual blocks

In this section, we denote the architecture of CNNs by C = (C(l))l∈[L] ∈ NL
+ and K =

(K(l))l∈[L] ∈ NL
+ and the norm constraint on the convolution part by B(conv) (C(0) need not

equal to 1 in this section). Let w(l), w′(l) ∈ RK(l)×C(l)×C(l−1)
and b(l), b′(l) ∈ R. We denote

w := (w(l))l∈[L], b := (b(l))l∈[L], w′ := (w′(l))l∈[L], and b := (b(l))l∈[L].

For 1 ≤ l ≤ l′ ≤ L, we denote ρ(l, l′) :=
∏l′

i=l(C
(i−1)K(i)B(conv)) and ρ+(l, l′) :=

∏l′

i=l 1∨
(C(i−1)K(i)B(conv)).

Proposition 3.9. Let l ∈ [L]. We assume maxl∈[L] ‖w(l)‖∞ ∨ ‖b(l)‖∞ ≤ B(conv). Then, for any

x ∈ [−1, 1]D×C(0)
, we have ‖Convσw[1:l],b[1:l](x)‖∞ ≤ ρ(1, l)‖x‖∞ +B(conv)lρ+(1, l).

Proof. We write in shorthand as C[s:t] := Convσw[s:t],b[s:t]. Using Proposition 3.3 recursively, we
get

‖C[1:l](x)‖∞ ≤ ‖Lw(l)‖op‖C[1:l−1](x)‖∞ + ‖b(l)‖∞
. . .

≤ ‖x‖∞
l∏

i=1

‖Lw(i)‖op +
l∑

i=2

‖b(i−1)‖∞
l∏

j=i

‖Lw(j)‖op + ‖b(l)‖∞.

84

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

By Proposition 3.2 and assumptions ‖w(i)‖∞ ≤ B(conv) and ‖b(i)‖∞ ≤ B(conv), it is further
bounded by

‖x‖∞
l∏

i=1

(C(i−1)K(i)B(conv)) +B(conv)
l∑

i=2

l∏
j=i

(C(j−1)K(j)B(conv)) +B(conv)

≤ ρ(1, l)‖x‖∞ +B(conv)lρ+(1, l)

Proposition 3.10. Let ε > 0, suppose maxl∈[L] ‖w(l) − w′(l)‖∞ ≤ ε and maxl∈[L] ‖b(l) −
b′(l)‖∞ ≤ ε, then ‖C[1:L] − C ′

[1:L](x)‖∞ ≤ (Lρ(1, L)‖x‖∞ + (1 ∨ B(conv))L2ρ+(1, L))ε for

any x ∈ RD×C(0)
.

Proof. For any l ∈ [L], we have∣∣∣C ′
[l+1:L] ◦ (Cl − C ′

l) ◦ C[1:l−1](x)
∣∣∣

≤ ‖C ′
[l+1:L] ◦ (Cl − C ′

l) ◦ C[1:l−1](x)‖∞
≤ ρ(l + 1, L)

∥∥(Cl − C ′
l) ◦ C[1:l−1](x)

∥∥
∞ (by Proposition 3.2 and 3.4)

≤ ρ(l + 1, L)
(
ρ(l, l)‖C[1:l−1]‖∞ε+ ε

)
(by Proposition 3.2 and 3.5)

≤ ρ(l + 1, L)
(
ρ(l, l)(ρ(1, l − 1)‖x‖∞ +B(conv)(l − 1)ρ+(1, l − 1)) + 1

)
ε

(by Proposition 3.9)

=
(
ρ(1, L)‖x‖∞ + (1 ∨B(conv))Lρ+(1, L)

)
ε (3.6)

Therefore,

‖C[1:L](x)− C ′
[1:L](x)‖∞ ≤

L∑
l=1

‖C[l+1:L] ◦ (Cl − C ′
l) ◦ C[1:l−1](x)‖∞

≤ (Lρ(1, L)‖x‖∞ + (1 ∨B(conv))L2ρ+(1, L))ε

Putting them all

Let M,Lm, C
(l)
m ,K

(l)
m ∈ N+, C := (C

(l)
m)m,l, and K := (K

(l)
m)m,l for m ∈ [M] and l ∈ [Lm].

Let θ = ((w
(l)
m)m,l, (b

(l)
m)m,l,W, b) and θ′ = ((w′(l)

m)m,l, (b
′(l)
m)m,l,W

′, b′) be tuples compatible
with (C,K) such that CNNReLU

θ , CNNReLU
θ′ ∈ F (CNN)

C,K,B(conv),B(fc) for some B(conv), B(fc) > 0.

We denote the l-th convolution layer of the m-th block by C
(l)
m and the m-th residual block of by

Cm:

C(l)
m :=

Convid
w

(l)
m

(if l = Lm)

ConvReLU

w
(l)
m

(otherwise)

85

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Cm := C(Lm)
m ◦ · · · ◦ C(1)

m .

Also, we denote by C[m:m′] the subnetwork of ConvReLU
θ between the m-th and m′-th block. That

is,

C[m:m′] :=

{
(Cm′ + I) ◦ · · · ◦ (Cm + I) (if m ≥ 1)

(Cm′ + I) ◦ · · · ◦ (C1 + I) ◦ P (if m = 0)

for m,m′ = 0, . . . ,M . We define C ′(l)
m , C ′

m and C ′
[m:m′] similarly for θ′.

Proposition 3.11. For m ∈ [M] and x ∈ [−1, 1]D, we have ‖C[0:m](x)‖∞ ≤ (1∨B(conv))ϱmϱ+m.
Here, ϱm = (

∏m
i=1(1 + ρi)) and ϱ+m =

(
1 +

∑m
i=1 Liρ

+
i

)
(ρm and ρ+m are constants defined in

Theorem 3.6).

Proof. By using Proposition 3.9 inductively, we have

‖C[0:m](x)‖∞ ≤ ‖Cm(C[0:m−1](x)) + C[0:m−1](x)‖∞
≤ ‖(1 + ρm)C[0:m−1](x) +B(conv)Lmρ+m)‖∞
≤ (1 + ρm)‖C[0:m−1](x)‖∞ +B(conv)Lmρ+m

· · ·

≤ ‖P (x)‖∞
m∏
i=1

(1 + ρi) +B(conv)
m∑
i=1

Liρ
+
i

m∏
j=i+1

(1 + ρj)

≤
m∏
i=1

(1 + ρi) +B(conv)
m∑
i=1

Liρ
+
i

m∏
j=i+1

(1 + ρj)

≤ (1 ∨B(conv))ϱmϱ+m.

Lemma 3.3. Let ε > 0. Suppose θ and θ′ are within distance ε, that is, maxm,l ‖w
(l)
m −w′(l)

m ‖∞ ≤
ε, ‖b(l)m −b′(l)m ‖∞ ≤ ε, ‖W−W ′‖∞ ≤ ε, and ‖b−b′‖∞ ≤ ε. Then, ‖CNNReLU

θ −CNNReLU
θ′ ‖∞ ≤

Λ1ε where Λ1 is the constant defined in Theorem 3.6.

Proof. For any x ∈ [−1, 1]D, we have∣∣CNNReLU
θ (x)− CNNReLU

θ′ (x)
∣∣

=
∣∣∣FCid

W,b ◦ C[0:M](x)− FCid
W ′,b′ ◦ C ′

[0:M](x)
∣∣∣

=
∣∣∣(FCid

W,b − FCid
W ′,b′

)
◦ C[0:M](x)

∣∣∣+ M∑
m=1

∣∣∣FCid
W ′,b′ ◦ C[m+1:M] ◦

(
Cm − C ′

m

)
◦ C ′

[0:m−1](x)
∣∣∣ .

(3.7)

We will bound each term of (3.7). By Proposition 3.8 and Proposition 3.11,∣∣∣(FCid
W,b − FCid

W ′,b′

)
◦ C[0:M](x)

∣∣∣
86

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

≤ (‖W‖0 + ‖W ′‖0)‖W −W ′‖∞‖C[0:M](x)‖∞ + ‖b− b′‖∞
≤ 2C

(L0)
0 D‖C[0:M](x)‖∞ε+ ε

≤ 2C
(L0)
0 D(1 ∨B(conv))ϱMϱ+Mε+ ε

≤ 3C
(L0)
0 D(1 ∨B(conv))ϱMϱ+Mε. (3.8)

On the other hand, for m ∈ [M],∣∣∣FCid
W ′,b′ ◦ C ′

[m+1:M] ◦ (Cm − C ′
m) ◦ C[0:m−1](x)

∣∣∣
≤ ‖W ′‖0‖W ′‖∞‖C ′

[m+1:M] ◦ (Cm − C ′
m) ◦ C[1:m−1](x)‖∞ (by Proposition 3.7)

≤ C
(L0)
0 DB(fc)‖C ′

[m+1:M] ◦ (Cm − C ′
m) ◦ C[0:m−1](x)‖∞

≤ C
(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)∥∥(Cm − C ′
m) ◦ C[0:m−1](x)

∥∥
∞ (by Proposition 3.2 and 3.4)

≤ C
(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)(
ρm‖C[0:m−1]‖∞ε+ ε

)
(by Proposition 3.2 and 3.5)

≤ C
(L0)
0 DB(fc)

(
M∏

i=m+1

ρi

)(
ρm(1 ∨B(conv))ϱm−1ϱ

+
m−1 + 1

)
ε (by Proposition 3.9)

≤ 2C
(L0)
0 DB(fc)(1 ∨B(conv))ϱMϱ+Mε (3.9)

By applying (3.8) and (3.9) to (3.7), we have

|CNNReLU
θ (x)− CNNReLU

θ′ (x)|

≤ 3C
(L0)
0 D(1 ∨B(conv))ϱMϱ+Mε+ 2MC

(L0)
0 DB(fc)(1 ∨B(conv))ϱMϱ+Mε

≤ (2M + 3)C
(L0)
0 D(1 ∨B(fc))(1 ∨B(conv))ϱMϱ+Mε

= Λ1ε.

Bounds for covering number of CNNs

For a metric space (M0, d) and ε > 0, we denote the (external) covering number of M ⊂
M0 by N (ε,M, d): N (ε,M, d) := inf{N ∈ N | ∃f1, . . . , fN ∈ M0 s.t. ∀f ∈ M, ∃n ∈
[N] s.t. d(f, fn) ≤ ε}.

Lemma 3.4. Let B := B(conv) ∨ B(fc). For ε > 0, we have N (ε,F (CNN), ‖ · ‖∞) ≤(
2BΛ1ε

−1
)Λ2 .

Proof. The idea of the proof is same as that of Lemma 5 of Schmidt-Hieber [2020]. We divide the
interval of each parameter range ([−B(conv), B(conv)] or [−B(fc), B(fc)]) into bins with width Λ−1

1 ε
(i.e., 2B(conv)Λ1ε

−1 or 2B(fc)Λ1ε
−1 bins for each interval). If f, f ′ ∈ F (CNN) can be realized by

87

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

parameters such that every pair of corresponding parameters are in a same bin, then, ‖f−f ′‖∞ ≤ ε
by Lemma 3.3. We make a subset F0 of F (CNN) by picking up every combination of bins for Λ2

parameters. Then, for each f ∈ F (CNN), there exists f0 ∈ F0 such that ‖f −f0‖∞ ≤ ε. There are
at most 2BΛ1ε

−1 choices of bins for each parameter. Therefore, the cardinality of F0 is at most(
2BΛ1ε

−1
)Λ2 .

Proofs of Theorem 3.2 and Corollary 3.1

We use the lemma in Schmidt-Hieber [2020] to bound the estimation error of the clipped ERM
estimator f̂ . Since our problem setting is slightly different from one in the paper, we restate the
statement.

Lemma 3.5 (cf. Schmidt-Hieber [2020] Lemma 4). Let F be a family of measurable functions
from [−1, 1]D to R. Let f̂ be the clipped ERM estimator of the regression problem described in
Section 3.3.1. Suppose the covering number of F satisfies N (N−1,F , ‖ · ‖∞) ≥ 3. Then,

ED‖f◦ − f̂‖2L2(PX) ≤ C

(
inf
f∈F
‖f − f◦‖2L2(PX) + logN

(
1

N
,F , ‖ · ‖∞

)
F̃ 2

N

)
,

where C > 0 is a universal constant, F̃ := RF
σ ∨

∥f◦∥∞
σ ∨ 1

2 and RF := sup{‖f‖∞ | f ∈ F}.
Proof. Basically, we convert our problem setting so that it fits to the assumptions of Schmidt-
Hieber [2020, Lemma 4] and apply the lemma to it. For f : [−1, 1]D → [−σF̃ , σF̃], we define
A[f] : [0, 1]D → [0, 2F̃] by A[f](x′) := 1

σf(2x
′ − 1) + F̃ . Let f̂1 be the (non-clipped) ERM

etimator of F . We define X ′ := 1
2(X + 1), f ′◦ := A[f◦], Y ′ := f ′◦(X) + ξ′, F ′ := {A[f] |

f ∈ F}, f̂ ′
1 := A[f̂1], and D′ := ((x′n, y

′
n))n∈[N] where x′n := 1

2(xn + 1) and y′n := f ′◦(x′n) +
1
σ (yn − f◦(xn)). Then, the probability that D′ is drawn from P ′⊗N is same as the probability
that D is drawn from P⊗N where P ′ is the joint distribution of (X ′, Y ′). Also, we can show
that f̂ ′ is the ERM estimator of the regression problem Y ′ = f ′◦ + ξ′ using the dataset D′:
f̂ ′
1 ∈ argminf ′∈F ′ R̂D′(f ′). We apply Schmidt-Hieber [2020, Lemma 4] with n ← N , d ← D,
ε← 1, δ ← 1

N , ∆n ← 0, F ′ ← F , F ← 2F̃ , f̂ ← f̂ ′
1 and use the fact that the estimation error of

the clipped ERM estimator is no worse than that of the ERM estimator, that is, ‖f◦− f̂‖2L2(PX) ≤
‖f◦ − f̂1‖2L2(PX) to conclude.

Proof of Theorem 3.6. By Lemma 3.4, we have logN := logN (N−1,F (CNN), ‖ · ‖∞) ≤
Λ2 log(2BΛ1N), where B = B(conv) ∨B(fc). Therefore, by Lemma 3.5,

‖f◦ − f̂‖2L2(PX) ≤ C0

(
inf
f∈F
‖f − f◦‖2L2(PX) + logN F̃ 2

N

)

≤ C1

(
inf

f∈F(FNN)
‖f − f◦‖2∞ +

F̃ 2

N
Λ2 log(2BΛ1N)

)
,

where C0, C1 > 0 are universal constants. We used in the last inequality the fact ‖clip[f] −
f◦‖L2(PX) ≤ ‖clip[f] − f◦‖∞ ≤ ‖f − f◦‖∞ any f ∈ F (CNN) and the assumption F (FNN) ⊂
F (CNN).

88

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

As discussed in the beginning of this section, Theorem 3.2 is the special case of Theorem 3.6.

Proof of Corollay 3.1. We only care the order with respect to N in the O-notation. Set M = bNαc
for α > 0. Using the assumptions of the corollary, the estimation error is

‖f◦ − f̂‖2L2(Px)
= Õ

(
max

(
N−2αγ1 , Nαγ2−1

))
by Theorem 3.2. The order of the right hand side with respect to N is minimized when α =

1
2γ1+γ2

. By substituting α, we can derive Corollary 3.1.

3.A.4 Proofs of Corollary 3.2 and Corollary 3.3

By Klusowski and Barron [2018, Theorem 2], for each M ∈ N+, there exists

f (FNN) :=
1

M

M∑
m=1

bm(a⊤mx− tm)+ =

M∑
m=1

bm

(
a⊤m
M

x− tm
M

)
+

with |bm| ≤ 1, ‖am‖1 = 1, and |tm| ≤ 1 such that ‖f◦ − f (FNN)‖∞ ≤
Cvf◦

√
logM +DM− 1

2
− 1

D where vf◦ :=
∫
RD ‖w‖s2 |F [f◦](w)| dw and C > 0 is a universal

constant. We set Lm ← 1, D(1)
m ← 1, B(bs) ← 1

M , B(fin) ← 1 (m ∈ [M]) in the Theorem

3.5, then, we have f (FNN) ∈ F (FNN)

D1,B(bs),B(fin) . By applying Theorem 3.5, there exists a CNN

f (CNN) ∈ F (CNN)

C,K,B(conv),B(fc) such that f (FNN) = f (CNN). Here, C = (C
(1)
m)m with C

(1)
m = 4,

K = (K
(1)
m)m with K

(1)
m = K, B(conv) = 1

M , and B(fc) = M . This proves Corollary 3.2.
With these evaluations, we have Λ1 = O(M3) (note that since B(conv) = 1

M , we have∏M
m=0(1 + ρm) = O(1)). In addition, B(conv) is O(1) and B(fc) is O(M). Therefore, we have

log Λ1B = Õ(1). Since Λ2 = O(M), we can use Corollary 3.1 with γ1 =
1
2 + 1

D , γ2 = 1.

3.A.5 Proofs of Corollary 3.4 and Corollary 3.5

We first prove the scaling property of the FNN class.

Lemma 3.6. Let M ∈ N+, Lm ∈ N+, and D
(l)
m ∈ N+ for m ∈ [M] and l ∈ [Lm]. Let

B(bs), B(fin) > 0. Then, for any k ≥ 1, we have F (FNN)

D,B(bs),B(fin) ⊂ F
(FNN)

D,k−1B(bs),kLB(fin) where
L := maxm∈[M] Lm is the maximum depth of the blocks.

Proof. Let θ = ((W
(l)
m)m,l, (b

(l)
m)m,l, (wm)m, b) be the parameter of an FNN and suppose that

FNNReLU
θ ∈ F (FNN)

D,B(bs),B(fin) . We define θ′ := ((W ′(l)
m)m,l, (b

′(l)
m)m,l, (w

′
m)m, b′) by

W ′(l)
m := k−

L
Lm W (l)

m , b′
(l)
m := k−l L

Lm b(l)m , w′
m := kLwm, b′ := b.

Since k ≥ 1, we have FNNReLU
θ′ ∈ F (FNN)

D,k−1B(bs),kLB(fin) . Also, by the homogeneous property of

the ReLU function (i.e., ReLU(ax) = aReLU(x) for a > 0), we have FNNReLU
θ = FNNReLU

θ′ .

89

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Next, we prove the existence of a block-sparse FNN with constant-width blocks that optimally
approximates a given β-Hölder function. It is almost same as the proof appeared in Schmidt-
Hieber [2020]. However, we need to construct the FNN so that it has a block-sparse structure.

Lemma 3.7 (cf. Schmidt-Hieber [2020] Theorem 5). Let β > 0, M ∈ N+ and f◦ : [−1, 1]D → R
be a β-Hölder function. Then, there exists D′ = O(1), L′ = O(logM), and a block-sparse FNN
f (FNN) ∈ F (FNN)

D,1,2M∥f◦∥β such that ‖f◦ − f (FNN)‖∞ = Õ(M− β
D). Here, we set Lm := L′ and

D
(l)
m := D′ for all m ∈ [M] and l ∈ [Lm] and define D := (D

(l)
m)m,l.

Proof. First, we prove the lemma when the domain of f◦ is [0, 1]D. Let M ′ be the largest interger
satisfying (M ′+1)D ≤M . Let Γ(M ′) =

(Z
M ′

)D ∩ [0, 1]D = {m′

M ′ | m′ ∈ {0, . . . ,M ′}D} be the
set of lattice points in [0, 1]D5. Note that the cardinality of Γ(M ′) is (M ′ + 1)D. Let P β

a f◦ be the
Taylor expansion of f◦ up to order bβc at a ∈ [0, 1]D:

(P β
a f

◦)(x) =
∑

0≤|α|<β

(∂αf◦)(a)

α!
(x− a)α.

For a ∈ [0, 1]D, we define a hat-shaped function Ha : [0, 1]D → [0, 1] by

Ha(x) :=
D∏
j=1

(M ′−1 − |xj − aj |+).

Note that we have
∑

a∈Γ(M ′)Ha(x) = 1, i.e., they are a partition of unity. Let P βf◦ be the
weighted sum of the Taylor expansions at lattice points of Γ(M ′):

(P βf◦)(x) := M ′D
∑

a∈D(M ′)

(P β
a f

◦)(x)Ha(x).

By Schmidt-Hieber [2020, Lemma B.1], we have

‖P βf◦ − f◦‖∞ ≤ ‖f◦‖βM ′−β
.

Let m be an interger specified later and set L∗ := (m + 5)dlog2De. By the proof of Schmidt-
Hieber [2020, Lemma B.2], for any a ∈ Γ(M ′), there exists an FNN Hata : [0, 1]D → [0, 1]
whose depth and width are at most 2 + L∗ and 6D, respectively and whose parameters have sup-
norm 1, such that

‖Hata −Ha‖∞ ≤ 3D2−m.

Next, let B := 2‖f◦‖β and CD,β be the number of distinct D-variate monomials of degree up
to bβc. By Schmidt-Hieber [2020, Equation (7.11)], for any a ∈ Γ(M), there exists an FNN

5Schmidt-Hieber [2020] used D(M ′) to denote this set of lattice points. We used different character to avoid
notational conflict.

90

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

Qa : [0, 1]D → [0, 1] 6 whose depth and width are 1 + L∗ and 6DCD,β respectively and whose
parameters have sup-norm 1, such that∥∥∥∥∥Qa −

(
P β
a f◦

B
+

1

2

)∥∥∥∥∥
∞

≤ 3D2−m.

Thirdly, by Schmidt-Hieber [2020, Lemma A.2], there exists an FNN Mult : [0, 1]2 → [0, 1],
whose depth and width are m+4 and 6, respectively and whose parameters have sup-norm 1 such
that

|Mult(x, y)− xy| ≤ 2−m

for any x, y ∈ [0, 1]. For each a ∈ Γ(M ′), we combine Hata and Qa using Mult and constitute
a block of the block-sparse FNN corresponding to a ∈ Γ(M) by FCa := Mult(Qa(·),Hata(·)).
Then, we have∥∥∥∥∥FCa −

(
P β
a f◦

B
+

1

2

)
Ha

∥∥∥∥∥
∞

≤ 2−m + 3D2−m + 3D2−m ≤ 3D+12−m.

We define f (FNN)(x) :=
∑

a∈Γ(M)(BM ′DFCa(x)) − B
2 . By construction, f (FNN) is a block-

sparse FNN with (M ′ + 1)D(≤ M) blocks each of which has depth and width at most L′ :=
2+L∗+(m+4) and D′ := 6(CD,β +1)D, respectively. The norms of the block-sparse part and
the finally fully-connected layer are 1 and BM ′D(≤ BM), respectively. In addition, we have

|f (FNN)(x)− (P βf◦)(x)|

≤
∑

a∈Γ(M)

BM ′D
∣∣∣∣∣FCa(x)−

(
(P β

a f◦)(x)

B
+

1

2

)
Ha(x)

∣∣∣∣∣+ B

2

∣∣∣∣∣∣1−M ′D
∑

a∈Γ(M ′)

Ha(x)

∣∣∣∣∣∣
≤ (M ′ + 1)D ×BM ′D3D+12−m

≤ 3D+12−mBM2

for any x ∈ [0, 1]D. Therefore,

|f (FNN)(x)− f◦(x)| ≤ |f (FNN) − (P βf◦)(x)|+ |(P βf◦)(x)− f◦(x)|

≤ 3D+12−mBM2 + ‖f◦‖βM ′−β

≤ 2 · 3D+12−m‖f◦‖βM2 + ‖f◦‖βM− β
D .

We set m = dlog2M2+ β
D e, then, we have L′ = O(logM), D′ = O(1), and

‖f (FNN) − f◦‖ ≤ ‖f◦‖β(2 · 3D+1 + 2β)M− β
D .

6We prepare Qa for each a ∈ Γ(M) as opposed to the original proof of Schmidt-Hieber [2020], in which Qa’s
shared the layers the except the final one and were collectively denoted by Q1.

91

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

By the defnition of f (FNN) we have f (FNN) ∈ F (FNN)
D,1,2∥f◦∥βM .

When the domain of f◦ is [−1, 1]D, we should add the function x 7→ 1
2(x + 1) = 1

2(x +
1)+ − 1

2(−x− 1)+ as a first layer of each block to fit the range into [0, 1]D. Specifically, suppose
the first layer of m-th block in f (FNN) is x 7→ ReLU(Wx − b), then the first two layers become
x 7→ ReLU(

[
1
2(x+ 1) −1

2(x+ 1)
]
) and

[
y1 y2

]
7→ ReLU(Wy1 −Wy2 − b), respectively.

Since this transformation does not change the maximum sup norm of parameters in the block-
sparse and the order of L′ and D′, the resulting FNN still belongs to F (FNN)

D,1,2∥f◦∥M .

Proofs of Corollary 3.4 and Corollary 3.5. In this proof, we only care the dependence on M in
the O-notation. Let M̃ := 2‖f◦‖βM . By Lemma 3.7, there exists f (FNN) ∈ F (FNN)

D,1,M̃
such that

‖f (FNN)−f◦‖∞ = O(M− β
D) (L′, D′, and D as in Lemma 3.7). Let k := 16D′K(M

1
L′ ∧1)−1 =

16D′K(e
1
C′ ∧ 1)−1 ≥ 1 where C ′ is a constant such that L′ = C ′ logM . Using Lemma 3.6, there

exists f̃ (FNN) ∈ F (FNN)

D,k−1,kL′M̃
such that f̃ (FNN) = f (FNN). We apply Theorem 3.5 toF (FNN)

D,k−1,kL′M̃

and find f (CNN) ∈ F (CNN)

C,K,B(conv),B(fc) such that L ≤ M(L′ + L0), C := (C
(l)
m)m∈[M],l∈[Lm] with

C
(l)
m ≤ 4D′, K := (K

(l)
m)m∈[M],l∈[Lm] with K

(l)
m ≤ K, B(conv) = k−1, B(fc) = kL

′
(k ∨ 1)M̃ =

kL
′+1M̃ , and f (CNN) = f̃ (FNN). This proves Corollary 3.4 (note that by definition, we have

B(conv) = k−1 = O(1) and logB(fc) = (L′ + 1)k + log(M̃) = O(logM)).

By the definition of k and the bound on C
(l)
m and K

(l)
m , we have C

(l−1)
m K

(l)
m k−1 ≤ 1

4M
− 1

L′ .

Therefore, we have ρm ≤
∏L′

l=1(C
(l−1)
m K

(l)
m k−1) ≤ M−1 and hence

∏M
m=0(1 + ρm) = O(1).

Since C
(l−1)
m K

(l)
m k−1 ≤ 1

2 for sufficiently large M , we have ρ+m = 1 for sufficiently large M . In
addition, we have log(B(conv) ∨ B(fc)) = Õ(1). Combining them, we have log Λ1 = Õ(1) and
hence log Λ1(B

(conv) ∨ B(fc)) = Õ(1). For Λ2, we can bound it by Λ2 = O(M logM) using
bounds for C(l)

m , K(l)
m and L′. Therefore, we can apply Corollary 3.2 with γ1 = β

D , γ2 = 1 and

obtain the desired estimation error. Since we have M = O(N
1

2γ1+γ2) by the proof of Corollary
3.1, we can derive the bounds for Lm with respect to N .

3.A.6 Proofs of Theorem 3.3 and Theorem 3.4

Lemma 3.8. Let L,L′, C ′,K ′ ∈ N+ and B > 0. Suppose we can realize f + id : RD×C′ →
RD×C′

with a residual block with an skip connection whose depth, channel size, and filter size are
L′, C ′, and K ′, respectively and whose parameter norm is bounded by B. Let S0 = dL′

L e. Then,
there exist S = 2S0 − 1 functions f̃1, . . . , f̃S : RD×3C′ → RD×3C′

and S masks z1, . . . , zS ∈
{0, 1}3C′

, such that fs is realizable by a residual block whose depth, channel size, filter size, and
parameter norm bound are L, 3C ′, K ′, and B, respectively and f̃ := (f̃S +JS) ◦ · · · ◦ (f̃1+J1) :
RD×3C′ → RD×3C′

satisfies f̃(
[
x 0 0

]
) =

[
f(x) 0 0

]
. Here Js is a channel-wise mask

operation made from zs.

Proof. We divide the residual block representing f into S0 CNNs with depth at most L and denote
them sequentially by g1, . . . , gS0 so that f = gS0 ◦ · · · ◦ g1. We define g̃s : RD×3C′ → RD×3C′

92

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

(s ∈ [S0]) from gs by

g̃s([x1 x2 x3]) =

[0 y1 0] (if s = 1)
[0 y3 0] (if s 6= 1, S0 and odd)
[0 0 y2] (if s 6= 1, S0 and even)
[y3 0 0] (if s = S0 and odd)
[y2 0 0] (if s = S0 and even)

,

where yi = gs(xi) (i = 1, 2, 3). Note that we can construct g̃s by a residual block with depth L,
channel size 3C ′, filter size K ′, and parameter norm B. Next, we define us (s ∈ [S0 − 1]) by

us =

[
1 1 0

]⊤
(if s: odd)[

1 0 1
]⊤

(if s: even)

Then, we define f̃ := (g̃S0 + id) ◦ (0 + J ′
S0−1) ◦ (g̃S0−1 + id) ◦ (0 + J ′

1) ◦ (f̃1 + id) where
J ′
s is a channel-wise mask constructed from us and 0 : RD×3C′ → RD×3C′

is a constant zero
function, which is obviously representable by a residual block. By definition, f̃ is realizable by
S residual blocks with channel-wise masking skip connections and satisfy the conditions on the
depth, channel size, filter size, and norm bound.

Proof of Theorem 3.3. The first part of the proof is same as that of Corollary 3.4, except that we
define k using L instead of L′: k = 16D′K(M

1
L ∧ 1)−1. Here, D′ is a constant satisfying

D′ = O(1) as a function of M . Then, there exists a CNN f̃ (CNN) ∈ F (CNN)

M,L′,C′,K′,B(conv),B(fin) such

that ‖f̃ (CNN)−f◦‖ = O(M− β
D). Parameter of the set of CNNs satisfy L′ = O(logM)C ′ ≤ 4D′,

K ′ ≤ K, B(conv) = k−1, and B(fc) = 2‖f◦‖βkL
′
M . We apply Lemma 3.8 to each residual block

of f̃ (CNN). Then, there exists f (CNN) ∈ GM̃,L,C,K,B(conv),B(fin) such that f (CNN) = f̃ (CNN) and

M̃ = MdL′

L e, C ≤ 3C ′, K ′ ≤ K, B(conv) = k−1, and B(fin) = 2‖f◦‖βkL
′+1M .

Before going to the proof of Theorem 3.4, we first note that the definitions of Λ1 and Λ2 in
Theorem 3.2 are valid even if we replace F (CNN)

M̃,L,C,K,B(conv),B(fin)
with G = GM̃,L,C,K,B(conv),B(fin) .

Lemma 3.9. Let M̃, L,C,K ∈ N+ and B(conv), B(fin), ε > 0. Set B = B(conv)∨B(fin). Then, the
covering number of G with respect to the sup-normN (ε,G, ‖ · ‖∞) is bounded by (2BΛ1ε

−1)Λ2 ·
2CM̃L, where Λ1 = Λ1(G) and Λ2 = Λ2(G) are ones defined in Theorem 3.2, except that F (CNN)

is replaced with G.

Proof. First we note that we can apply same inequalities in Section 3.A.3 – 3.A.3 and Proposition
3.11 to CNNs in G. Therefore, if two masked CNNs f, g ∈ G have same masking patterns in skip
connections and distance of each pair of corresponding parameters in residual blocks is at most
ε, then, we can show ‖f − g‖∞ ≤ Λ1ε in the same way as Lemma 3.3. Therefore, by the same
argument of Lemma 3.4, the covering number of the subset of G consisting of CNNs with a specific
masking pattern is bounded by (2BΛ1ε

−1)Λ2 . Since each CNN in G has CM̃L parameters in skip

93

3. Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural
Networks

connections which take values in {0, 1}, there are 2CM̃L masking patterns. Therefore, we have
N (ε,G, ‖ · ‖∞) ≤ (2BΛ1ε

−1)Λ2 · 2CM̃L.

The strategy for the proof of Theorem 3.4 is almost same as the proofs for Theorem 3.6 and
Corollary 3.5, except that we should replace Λ2 log(2BΛ1N) in (3.5) with Λ2 log(2BΛ1N) +
CM̃L log 2 (and Λ1 and Λ2 are defined via G instead of F (CNN)). However, the second term is at
most as same order (upto logarithmic factors) as the first one in our situation. Therefore, we can
derive the same estimation error rate.

Proof of Theorem 3.4. Take G as in the proof of Theorem 3.3. Let logN := logN (N−1,G, ‖ ·
‖∞). By Lemma 3.5, we have

‖f◦ − f̂‖2L2(PX) ≤ C0

(
inf

f∈F(FNN)
‖f − f◦‖2∞ +

F̃ 2

N

(
Λ2 log(2BΛ1N) + CM̃L log 2

))
,

where C0 > 0 is a universal constant. The first term in the outer-most parenthesis is O(M− β
D) by

Lemma 3.7. We will evaluate the order of the second term. First, we have Λ2 = O(M̃) = Õ(M)
by the definition of Λ2. By the definition of k, we have ρ ≤M−1 and ρ+ = 1 for sufficiently large
M therefore, ϱ = O(1) and ϱ+ = O(M) for sufficiently large M . Again, by the definition of k, we
have B(conv) = O(1) and B(fc) = O(M). Therefore, we have Λ1 = O(M3) and B = O(M) and
hence Λ2 log(2BΛ1N) = Õ(MN). On the other hand, since C = O(1), M̃ = Õ(M), L = O(1),
we have CM̃L log 2 = Õ(M).

Therefore, by setting M = bNαc for α > 0, the estimation error is

‖f◦ − f̂‖2L2(Px)
= Õ

(
max

(
N−2αγ1 , Nαγ2−1

))
,

where γ1 =
β
D and γ2 = 1. The order of the right hand side with respect to N is minimized when

α = 1
2γ1+γ2

. By substituting α, we can derive the theorem.

94

Chapter 4

Over-smoothing of Non-linear Graph
Neural Networks

In this chapter, we focus on node aggregation operations in Graph Neural Networks (GNNs).
GNNs are a promising deep learning approach for analyzing graph-structured data. However,
it is known that they do not improve (or sometimes worsen) their predictive performance as we
pile up many layers and add non-lineality. To tackle this problem, we investigate the expressive
power of GNNs via their asymptotic behaviors as the layer size tends to infinity. Our strategy
is to generalize the forward propagation of a GNN as a specific discrete-time dynamical sys-
tem. In the case of Graph Convolutional Networks (GCN), which is a popular GNN variant, we
show that when its weights satisfy the conditions determined by the spectra of the (augmented)
normalized Laplacian, its output exponentially approaches the set of signals that carry informa-
tion of the connected components and node degrees only for distinguishing nodes. Our theory
enables us to relate the expressive power of GCNs with the topological information of the under-
lying graphs inherent in the graph spectra. To demonstrate this, we characterize the asymptotic
behavior of GCNs on the Erdős – Rényi graph. We show that when the Erdős – Rényi graph
is sufficiently dense and large, a broad range of GCNs on it suffers from the “information loss"
in the limit of infinite layers with high probability. Based on the theory, we provide a princi-
pled guideline for weight normalization of GNNs. We experimentally confirm that the proposed
weight scaling enhances the predictive performance of GCNs in real data. Code is available at
https://github.com/delta2323/gnn-asymptotics.

4.1 Introduction

Motivated by the success of Deep Learning (DL), several attempts have been made to apply DL
models to non-Euclidean data, particularly, graph-structured data such as chemical compounds,
social networks, and polygons. Recently, Graph Neural Networks (GNNs) [Duvenaud et al., 2015,
Li et al., 2016, Gilmer et al., 2017, Hamilton et al., 2017, Kipf and Welling, 2017, Nguyen et al.,
2017, Schlichtkrull et al., 2018, Battaglia et al., 2018, Xu et al., 2019, Wu et al., 2019a] have
emerged as a promising approach. However, despite their practical popularity, theoretical research

95

https://github.com/delta2323/gnn-asymptotics

4. Over-smoothing of Non-linear Graph Neural Networks

of GNNs has not been explored extensively.
The characterization of DL model expressive power, i.e., to identify what function classes

DL models can (approximately) represent, is a fundamental question in theoretical research of
DL. Many studies have been conducted for Fully Connected Neural Networks (FNNs) [Cybenko,
1989, Hornik, 1991, Hornik et al., 1989, Barron, 1993, Mhaskar, 1993, Sonoda and Murata, 2017,
Yarotsky, 2017] and Convolutional Neural Networks (CNNs) [Petersen and Voigtlaender, 2018a,
Zhou, 2018, Oono and Suzuki, 2019]. For such models, we have theoretical and empirical justifi-
cation that deep and non-linear architectures can enhance representation power [Telgarsky, 2016,
Chen et al., 2018b, Zhou and Feng, 2018]. However, for GNNs, several papers have reported that
node representations go indistinguishable (known as over-smoothing) and prediction performances
severely degrade when we stack many layers [Kipf and Welling, 2017, Wu et al., 2019b, Li et al.,
2018b]. Besides, Wu et al. [2019a] reported that GNNs achieved comparable performance even if
they removed intermediate non-linear functions. These studies posed a question about the current
architecture and made us aware of the need for the theoretical analysis of the GNN expressive
power.

In this chapter, we investigate the expressive power of GNNs by analyzing their asymptotic
behaviors as the layer size goes to infinity. Our theory gives new theoretical conditions under
which neither layer stacking nor non-linearity contributes to improving expressive power. We
consider a specific dynamics that includes a transition defining a Markov process and the forward
propagation of a Graph Convolutional Network (GCN) [Kipf and Welling, 2017], which is one
of the most popular GNN variants, as special cases. We prove that under certain conditions, the
dynamics exponentially approaches a subspace that is invariant under the dynamics. In the case
of GCN, the invariant space is a set of signals that correspond to the lowest frequency of graph
spectra and that have “no information" other than connected components and node degrees for
a node classification task whose goal is to predict the nodes’ properties in a graph. The rate of
the distance between the output and the invariant space is O((sλ)L) where s is the maximum
singular values of weights, λ is typically a quantity determined by the spectra of the (augmented)
normalized Laplacian, and L is the layer size. See Sections 4.4.1 (general case) and 4.5 (GCN
case) for precise statements.

We can interpret our theorem as the generalization of the well-known property that if a fi-
nite and discrete Markov process is irreducible and aperiodic, it exponentially converges to a
unique equilibrium and the eigenvalues of its transition matrix determine the convergence rate
(see, e.g., Chung and Graham [1997]). Different from the Markov process case, which is linear,
the existence of intermediate non-linear functions complicates the analysis. We overcame this
problem by leveraging the combination of the ReLU activation function [Krizhevsky et al., 2012,
2017] and the positivity of eigenvectors of the Laplacian associated with the smallest positive
eigenvalues.

Our theory enables us to investigate asymptotic behaviors of GNNs via the spectral distribution
of the underlying graphs. To demonstrate this, we take GCNs defined on the Erdős – Rényi graph
GN,p, which has N nodes and each edge appears independently with probability p, for an example.
We prove that if logN

pN = o(1) as a function of N , any GCN whose weights have maximum singular

values at most C
√

Np
log(N/ε) approaches the “information-less" invariant space with probability at

least 1− ε, where C is a universal constant. Intuitively, if the graph on which we define GNNs is

96

4. Over-smoothing of Non-linear Graph Neural Networks

sufficiently dense, graph-convolution operations mix signals on nodes fast and hence the feature
maps lose information for distinguishing nodes quickly.

Our contributions in this chapter are as follows:

• We relate asymptotic behaviors of GNNs with the topological information of underlying
graphs via the spectral distribution of the (augmented) normalized Laplacian.

• We prove that if the weights of a GCN satisfy conditions determined by the graph spectra,
the output of the GCN carries no information other than the node degrees and connected
components for discriminating nodes when the layer size goes to infinity (Theorems 4.1,
4.2).

• We apply our theory to Erdős – Rényi graphs as an example and show that when the graph
is sufficiently dense and large, many GCNs suffer from the information loss (Theorem 4.3).

• We propose a principled guideline for weight normalization of GNNs and empirically con-
firm it using real data.

4.2 Related Work

MPNN-type GNNs Since many GNN variants have been proposed, there are several unified
formulations of GNNs [Gilmer et al., 2017, Battaglia et al., 2018]. Our approach is the closest to
the formulation of Message Passing Neural Network (MPNN) [Gilmer et al., 2017], which unified
GNNs in terms of the update and readout operations. Many GNNs fall into this formulation such as
Duvenaud et al. [2015], Li et al. [2016], and Veličković et al. [2018]. Among others, GCN [Kipf
and Welling, 2017] is an important application of our theory because it is one of the most widely
used GNNs. In addition, GCNs are interesting from a theoretical research perspective because,
in addition to an MPNN-type GNN, we can interpret GCNs as a simplification of spectral-type
GNNs [Henaff et al., 2015, Defferrard et al., 2016], that make use of the graph Laplacian.

Our approach, which considers the asymptotic behaviors GNNs as the layer size goes to infin-
ity, is similar to Scarselli et al. [2009], one of the earliest works about GNNs. They obtained node
representations by iterating message passing between nodes until convergence. Their formulation
is general in that we can use any local aggregation operation as long as it is a contraction map.
Our theory differs from theirs in that we proved that the output of a GNN approaches a certain
space even if the local aggregation function is not necessarily a contraction map.

Expressive Power of GNNs Several studies have focused on theoretical analysis and the im-
provement of GNN expressive power. For example, Xu et al. [2019] proved that GNNs are no
more powerful than the Weisfeiler – Lehman (WL) isomorphism test [Weisfeiler and A.A., 1968]
and proposed a Graph Isomorphism Network (GIN), that is approximately as powerful as the WL
test. Although they experimentally showed that GIN has improved accuracy in supervised learning
tasks, their analysis was restricted to the graph isomorphism problem. Xu et al. [2018] analyzed
the non-asymptotic properties of GCNs through the lens of random walk theory. They proved the
limitations of GCNs in expander-like graphs and proposed a Jumping Knowledge Network (JK-
Net) to address the issue. To handle the non-linearity, they linearized networks by a randomization

97

4. Over-smoothing of Non-linear Graph Neural Networks

assumption [Choromanska et al., 2015]. We take a different strategy and make use of the interpre-
tation of ReLU as a projection onto a cone. Recently, NT and Maehara [2019] showed that a GCN
approximately works as a low-pass filter plus an MLP in a certain setting. Although they analyzed
finite-depth GCNs, our theory has similar spirits with theirs because our “information-less" space
corresponds to the lowest frequency of a graph Laplacian. Another point is that they imposed as-
sumptions that input signals consist of low-frequent true signals and high-frequent noise, whereas
we need not such an assumption.

Role of Deep and Non-linear Structures For ordinal DL models such as FNNs and CNNs, we
have both theoretical and empirical justification of deep and non-linear architectures for enhanc-
ing of the expressive power (e.g., Telgarsky [2016], Petersen and Voigtlaender [2018a], Oono and
Suzuki [2019]). In contrast, several studies have witnessed severe performance degradation when
stacking many layers on GNNs [Kipf and Welling, 2017, Wu et al., 2019b]. Li et al. [2018b]
reported that feature vectors on nodes in a graph go indistinguishable as we increase layers in
several tasks. They named this phenomenon over-smoothing. Regarding non-linearity, Wu et al.
[2019a] empirically showed that GNNs achieve comparable performance even if we omit inter-
mediate non-linearity. These observations gave us questions about the current models of deep
GNNs in terms of their expressive power. Several studies gave theoretical explanations of the
over-smoothing phenomena for linear GNNs [Li et al., 2018b, Zhang, 2019, Zhao and Akoglu,
2020]. We can think of our theory as an extension of their results to non-linear GNNs.

4.3 Problem Settings

Although we are mainly interested in GCNs, we develop our theory more generally using dynam-
ical systems. We will specialize to the GCNs in Section 4.5.

For N,C,Hl ∈ N+ (l ∈ N+), let P ∈ RN×N be a symmetric matrix and Wlh ∈ RC×C for
l ∈ N+ and h ∈ [Hl]. We define fl : RN×C → RN×C by fl(X) := MLPl(PX). Here, MLPl :
RN×C → RN×C is the l-th multi-layer perceptron common to all nodes [Xu et al., 2019] and
is defined by MLPl(X) := σ(· · ·σ(σ(X)Wl1)Wl2 · · ·WlHl

), where σ : RN×C → RN×C is an
element-wise ReLU function [Krizhevsky et al., 2012, 2017] defined by σ(X)nc := max(Xnc, 0)
for n ∈ [N], c ∈ [C]. We consider the dynamics X(l+1) := fl(X

(l)) with some initial value
X(0) ∈ RN×C . We are interested in the asymptotic behavior of X(l) as l→∞.

For M ≤ N , let U be a M -dimensional subspace of RN . We assume that U and P satisfy the
following properties that generalize the situation where U is the eigenspace associated with the
smallest eigenvalue of a (normalized) graph Laplacian ∆ (that is, zero) and P is a polynomial of
∆.

Assumption 4.1. U has an orthonormal basis (em)m∈[M] that consists of non-negative vectors.

Assumption 4.2. U is invariant under P , i.e., if u ∈ U , then Pu ∈ U .

We endow RN with the ordinal inner product and denote the orthogonal complement of U by
U⊥ := {u ∈ RN | 〈u, v〉 = 0,∀v ∈ U}. By the symmetry of P , we can show that U⊥ is invariant
under P , too as we see in the following proposition (see Section 4.A.1 for the proof).

98

4. Over-smoothing of Non-linear Graph Neural Networks

Proposition 4.1. Let P ∈ RN×N be a symmetric matrix, treated as a linear operator P : RN →
RN . If a subspace U ⊂ RN is invariant under P (i.e., if u ∈ U , then Pu ∈ U), then, U⊥ is
invariant under P , too.

Therefore, we can regard P |U⊥ as a linear mapping from U⊥ to itself: P |U⊥ : U⊥ → U⊥. We
denote the operator norm of P |U⊥ by λ. When U is the eigenspace associated with the smallest
eigenvalue of ∆ and P is g(∆) where g is a polynomial, then, λ corresponds to λ = supµ |g(µ)|
where sup ranges over all eigenvalues except the smallest one.

4.4 Main Results

4.4.1 Convergence of Dynamical System

We define the subspace M of RN×C by M := U ⊗ RC = {
∑M

m=1 em ⊗ wm | wm ∈ RC}
where (em)m∈[M] is the orthonormal basis of U appeared in Assumption 4.1. For X ∈ RN×C ,
we denote the distance between X andM by dM(X) := inf{‖X − Y ‖F | Y ∈ M}. We denote
the maximum singular value of Wlh by slh and set sl :=

∏Hl
h=1 slh. With these preparations, we

introduce the main theorem of the paper.

Theorem 4.1. Under Assumptions 4.1 and 4.2, we have dM(fl(X)) ≤ slλdM(X) for any l ∈ N+

and X ∈ RN×C .

The proof key is that the non-linear operation σ decreases the distance dM, that is,
dM(σ(X)) ≤ dM(X). We use the non-negativity of em to prove this claim. See Appendix
4.A.2 for the complete proof. We discuss the strictness of Theorem 4.1 in Section 4.4.3.

By setting dM(X) = 0, this theorem implies that M is invariant under fl. In addition,
if the maximum value of singular values are small, X(l) asymptotically approaches M in the
sense of Johnson [1973] for any initial value X(0). That is, the following corollaries hold under
Assumptions 4.1 and 4.2.

Corollary 4.1. M is invariant under fl for any l ∈ N+, that is, if X ∈ M, then we have
fl(X) ∈M.

Corollary 4.2. Let s := supl∈N+
sl. We have dM(X(l)) = O((sλ)l). In particular, if sλ < 1,

then Xl exponentially approachesM as l→∞ for any initial value X(0).

Suppose the operator norm of P |U : U → U is no larger than λ, then, under the assumption
of sλ < 1, X(l) converges to 0, the trivial fixed point (see Proposition 4.2 below) Therefore, we
are mainly interested in the case where the operator norm of P |U is strictly larger than λ (see
Proposition 4.1). Finally, we restate Theorem 4.1 specialized to the situation where U is the direct
sum of eigenspaces associated with the largest M eigenvalues of P . Note that the eigenvalues of
P is real since P is symmetric.

Corollary 4.3. Let λ1 ≤ · · · ≤ λN be the eigenvalue of P , sorted in ascending order. Suppose
the multiplicity of the largest eigenvalue λN is M(≤ N), i.e., λN−M < λN−M+1 = · · · = λN .
We define λ := maxn∈[N−M] |λn| and U by the eigenspace associated with λN . Then, we have
dM(X(l+1)) ≤ slλdM(X(l)).

99

4. Over-smoothing of Non-linear Graph Neural Networks

4.4.2 Convergence to Trivial Fixed Point

Let P ∈ RN×N be a symmetric matrix, Wl ∈ RC×C , sl be the maximum singular value of Wl for
l ∈ N+. We define fl : RN×C → RN×C by fl(X) := σ(PXWl) where σ is the element-wise
ReLU function. The following proposition shows that the dynamical system converges to a trivial
fixed point when weight scales are too small. See Appendix 4.A.3 for the proof.

Proposition 4.2. Suppose that the operator norm of P is no larger than λ, then we have
‖fl(X)‖F ≤ slλ‖X‖F for any l ∈ N+. In particular, let s := supl∈N+

sl. If sλ < 1, then,
Xl exponentially approaches 0 as l→∞.

4.4.3 Strictness of Main Theorem

Theorem 4.1 implies that if sλ ≤ 1, then, one-step transition fl does not increase the distance to
M. In this section, we first prove that this theorem is strict in the sense that, there exists a situation
in which slλ > 1 holds and the distance dM increases by one-step transition fl at some point X .
See Appendix 4.A.4 for the proof of the propositions in this section.

Set N ← 2, C ← 1, and M ← 1 in Section 4.3. For µ, λ > 0, we set

P ←
[
µ 0
0 λ

]
, e←

[
1
0

]
, U ←

{[
x
y

]
| y = 0

}
.

Then, by definition, we can check that the 3-tuple (P, e, U) satisfies the Assumptions 4.1 and 4.2.
SetM := U ⊗R = U and choose W ∈ R so that W > λ−1. Finally define f : RN×C → RN×C

by f(X) := σ(PXW) where σ is the element-wise ReLU function.

Proposition 4.3. We have dM(f(X)) > dM(X) for any X =
[
x1 x2

]⊤ ∈ R2 such that x2 > 0.

Next, we prove the non-strictness of Theorem 4.1 in the sense that there exists a situation in
which slλ > 1 holds and the distance dM uniformly decreases by fl. Again, we set Set N ← 2,
C ← 1, and M ← 1. Let λ ∈ (1, 2) and set

P ← λ

2

[
1 −1
−1 1

]
, e← 1√

2

[
1
1

]
, U ←

{[
x
y

]
| x = y

}
Then, we can directly show that 3-tuple (P, e, U) satisfies the Assumptions 4.1 and 4.2. Set
W ← 1.

Proposition 4.4. We have Wλ > 1 and dM(fl(X)) < dM(X) for all X ∈ R2.

We have shown that the non-negativity of e (Assumption 4.1) is not a redundant condition in
Section 4.6.1.

4.4.4 Relation to Markov Process

It is known that any Markov process on finite states converges to a unique distribution (equi-
librium) if it is irreducible and aperiodic (see e.g., Norris [1998]). Theorem 4.1 includes this

100

4. Over-smoothing of Non-linear Graph Neural Networks

proposition as a special case with M = 1, C = 1, and Wl = 1 for all l ∈ N+. This is essentially
the direct consequence of Perron – Frobenius’ theorem (see e.g., Meyer [2000]).

Let S := {1, . . . , N} be a finite discrete state space. Consider a Markov process on S charac-
terized by a symmetric transition matrix P = (pij)i,j∈[N] ∈ RN×N such that P ≥ 0 and P1 = 1
where 1 is the all-one vector. We interpret pij as the transition probability from a state i to j. We
associate P with a graph GP = (VP , EP) by VP = [N] and (i, j) ∈ EP if and only if pij > 0.
Since P is symmetric, we can regard GP as an undirected graph. We assume P is irreducible
and aperiodic 1. Perron – Frobenius’ theorem (see, e.g., Meyer [2000]) implies that P satisfy the
assumption of Corollary 4.3 with M = 1.

Fact 4.1 (Perron – Frobenius). Let the eigenvalues of P be λ1 ≤ · · · ≤ λN . Then, we have
−1 < λ1, λN−1 < 1, and λN = 1. Further, there exists unique vector e ∈ RN such that e ≥ 0,
‖e‖ = 1, and e is the eigenvector for the eivenvalue 1.

Corollary 4.4. Let λ := maxn=1,...,N−1 |λn|(< 1) andM := {e ⊗ w | w ∈ RC}. If sλ < 1,
then, for any initial valueX1, Xl exponentially approachesM as l→∞.

If we set C = 1 and Wl = 1 for all l ∈ N+, then, we can inductively show that Xl ≥ 0 for any
l ≥ 2. Therefore, we can interpret Xl as a measure on S. Suppose further that we take the initial
value X1 as X1 ≥ 0 and X⊤

1 1 = 1 so that we can interpret X1 as a probability distribution on
S. Then, we can inductively show that Xl ≥ 0, X⊤

l 1 = 1 (i.e., Xl is a probability distribution on
S), and Xl+1 = σ(PXlWl) = PXl for all l ∈ N+. In conclusion, the corollary is reduced to the
fact that if a finite and discrete Markov process is irreducible and aperiodic, any initial probability
distribution converges exponentially to an equibrilium. In addition, the the rate λ corresponds to
the mixing time of the Markov process.

4.5 Application to Graph Neural Networks

4.5.1 GCNs

We formulate a GCN [Kipf and Welling, 2017] without readout operations [Gilmer et al., 2017]
using the dynamical system in the previous section and derive a sufficient condition in terms of
the spectra of underlying graphs in which layer stacking nor non-linearity are not helpful for node
classification.

Let G = (V,E) be an undirected graph where V is a set of nodes and E is a set of edges. We
denote the number of nodes in G by N = |V | and identify V with [N] by fixing an order of V .
We associate a C dimensional signal to each node. X in the previous section corresponds to con-
catenation of the signals. GCNs iteratively update signals on V using the connection information
and weights.

Let A := (1{(i,j)∈E})i,j∈[N] ∈ RN×N be the adjacency matrix and D := diag(deg(i)i∈[N]) ∈
RN×N be the degree matrix of G where deg(i) := |{j ∈ V | (i, j) ∈ E}| is the degree of node

1A symmetric matrix A is called irreducible if and only if GA is connected. We say a graph G is aperiodic if the
greatest common divisor of length of all loops in G is 1. A symmetric matrix A is aperiodic if the graph GA induced
by A is aperiodic.

101

4. Over-smoothing of Non-linear Graph Neural Networks

i. Let Ã := A + IN , D̃ := D + IN be the adjacent and degree matrix of graph G augmented
with self-loops. We define the augmented normalized Laplacian [Wu et al., 2019a] of G by ∆̃ :=

IN−D̃− 1
2 ÃD̃− 1

2 and set P := IN−∆̃. Let L,C ∈ N+ be the layer and channel sizes, respectively.
For weights Wl ∈ RC×C (l ∈ [L]), we define a GCN associated with G by f = fL ◦ · · · ◦f1 where
fl : RN×C → RN×C is defined by fl(X) := σ(PXWl)

2. We are interested in the asymptotic
behavior of the output X(L) of the GCN as L→∞.

Suppose G has M connected components and let V = V1 t · · · tVM be the decomposition of
the node set V into connected components. We denote an indicator vector of the m-th connected
component by um := (1{n∈Vm})n∈[N] ∈ RN . The following proposition shows that GCN satisfies
the assumption of Corollay 4.3 (see Appendix 4.A.6 for proof).

Proposition 4.5. Let λ1 ≤ · · · ≤ λN be the eigenvalue of P sorted in ascending order. Then,
we have −1 < λ1, λN−M < 1, and λN−M+1 = · · · = λN = 1. In particular, we have
λ := maxn=1,...,N−M |λn| < 1. Further, em := D̃

1
2um for m ∈ [M] are the basis of the

eigenspace associated with the eigenvalue 1.

Theorem 4.2. For any initial value X(0), the output of l-th layer X(l) satisfies dM(X(l)) ≤
(sλ)ldM(X(0)). In particular, dM(X(l)) exponentially converges to 0 when sλ < 1.

In the context of node classification tasks, we can interpret this corollary as the “information
loss" of GCNs in the limit of infinite layers. For two nodes i, j ∈ V , we denote i ∼ j if nodes
i and j are in a same connected component and their degrees are identica. For any X ∈ M, if
i ∼ j, then, we have Xi = Xj , that is, the column vectors of X corresponding to nodes i and j
are identical. It means that we cannot distinguish these nodes using X . In this sense,M only has
information about connected components and node degrees and we can interpret this theorem as
the exponential information loss of GCNs in terms of the layer size. Similarly to the discussion in
the previous section, X(l) converges to the trivial fixed point 0 when s < 1 (remember λN = 1).
An interesting point is that even if s ≥ 1, X(l) can suffer from this information loss.

We note that the rate sλ in Theorem 4.2 depends on the spectra of the augmented normalized
Laplacian, which is determined by the topology of the underlying graph G. Hence, our result
explicitly relates the topological information of graphs and asymptotic behaviors of GNNs.

4.5.2 Asymptotic Behavior of GCNs on Erdős – Rényi Graphs

Theorem 4.2 gives us a way to characterize the asymptotic behaviors of GCNs via the spectral
distributions of the underlying graphs. To demonstrate this, we consider an Erdős – Rényi graph
GN,p [Erdös and Rényi, 1959, Gilbert, 1959], which is a random graph that has N nodes and
whose edges between two distinct nodes appear independently with probability p ∈ [0, 1], as an
example. First, consider a (non-random) graph G with M connected components. Let 0 = µ̃1 =
· · · = µ̃M < µ̃M+1 ≤ · · · ≤ µ̃N < 2 be eigenvalues of the augmented normalized Laplacian of G
(see, Proposition 4.5) and set λ := minm=M+1,...,N |1 − µ̃m|(< 1). By Theorem 4.2, the output
of GCN “loses information" as the layer size goes to infinity when the largest singular values of

2Following the original paper [Kipf and Welling, 2017], we use one-layer MLPs (i.e., Hl = 1 for all l ∈ N+.).
However, our result holds for the multi-layer case

102

4. Over-smoothing of Non-linear Graph Neural Networks

weights are strictly smaller than λ−1. Therefore, the closer the positive eigenvalues µm are to 1,
the broader range of GCNs satisfies the assumption of Theorem 4.2.

For an Erdős – Rényi graph GN,p, Chung and Radcliffe [2011] showed that when logN
Np = o(1),

the eigenvalues of the (usual) normalized Laplacian except for the smallest one converge to 1 with
high probability (see Theorem 2 therein)3. We can interpret this theorem as the convergence
of Erdős-Rényi graphs to the complete graph in terms of graph spectra. We can prove that the
augmented normalized Laplacian behaves similarly (Lemma 4.6). By combining this fact with the
discussion in the previous paragraph, we obtain the asymptotic behavior of GCNs on the Erdős –
Rényi graph. See Appendix 4.A.5 for the complete proof.

Theorem 4.3. Consider a GCN on the Erdős-Rényi graph GN,p such that logN
Np = o(1) as a

function of N . For any ε > 0, if the supremum s of the maximum singular values of weights in
the GCN satisfies s < s0 := 1

7

√
Np−p+1
log(4N/ε) , then, for sufficiently large N , the GCN satisfies the

condition of Theorem 4.2 with probability at least 1− ε.

Theorem 4.3 requires that an underlying graph is not extremely sparse. For example, suppose
the node size is N = 20, 000, which is the approximately the maximum node size of datasets we
use in experiments, and the edge probability is p = logN/N . Then, each node has the order of
Np ≈ 4.3 adjacent nodes.

Under the condition of Theorem 4.3, the upper bound s0 → ∞ as N → ∞. It means that if
the graph is sufficiently large and not extremely sparse, most GCNs suffer from the information
loss. For the dependence on the edge probability p, s0 is an increasing function of p, which means
the denser a graph is, the more quickly graph convolution operations mix signals on nodes and
move them close to each other.

Theorem 4.3 implies that GNNs perform poorly on dense NNs. More aggressively, we can
hypothesize that the sparsity of practically available graphs is one of the reasons for the success of
GNNs in node classification tasks. To confirm this hypothesis, we artificially add edges to citation
networks to make them dense in the experiments and observe the failure of GNNs as expected (see
Section 4.6.3).

4.5.3 GCNs Defined by Normalized Laplacian

In Section 4.5.1, we defined P using the augmented normalized Laplacian ∆̃ by P = IN − ∆̃.
We can alternatively use the usual normalized Laplacian ∆ instead of the augmented one to define
P and apply the theory developed in Section 4.3. We write the normalized Laplacian version as
P∆ := IN − ∆. The only obstacle is that the smallest eigenvalue λ1 of P∆ can be equal to −1,
while that of P is strictly larger than −1 (see, Proposition 4.5). This corresponds to that fact the
largest eigenvalue of ∆̃ is strictly smaller than 2, while that for ∆ can be 2. It is known that the
largest eigenvalue of ∆ is 2 if and only if the graph has a non-trivial bipartite connected component
(see, e.g., Chung and Graham [1997]). Therefore, we can develop a theory using the normalized
Laplacian instead of the augmented one in parallel for such a graph G.

In Section 4.5.2, we characterized the asymptotic behavior of GCN defined by the augmented
normalized Laplacian via its spectral distribution (see also Lemma 4.6 of Appendix 4.A.5). We can

3Chung et al. [2004] and Coja-Oghlan [2007] proved similar theorems.

103

4. Over-smoothing of Non-linear Graph Neural Networks

derive a similar claim for GCN defined via the normalized Laplacian using the original theorem
for the normalized Laplacian in Chung and Radcliffe [2011] (Theorem 7 therein). The normalized
Laplacian version of GCN is advantegeous over the one made from the augmented one because
we know its spectral distribution for broader range of random graphs. For example, Chung and
Radcliffe [2011] proved the convergence of the spectral distribution of the normalized Laplacian
for Chung-Lu’s model [Chung and Lu, 2002], which includes power law graphs as a special case
(see, Chung and Radcliffe [2011, Theorem 4]).

4.5.4 Over-smoothing in Link Prediction Tasks

Although our primary focus is node prediction tasks, our theory has implications for link prediction
tasks (Section 2.2.2), too. Roughly speaking, if a link prediction model predicts edges’ existence
via a GCN’s output, the model suffers from the over-smoothing in the same way as node prediction
models.

Let us formalize our link prediction task. Suppose we are given a graph G = (V,E) and a
collection of node features X ∈ RN×C . The edge set E contains edges for training only. The goal
is to output Z ∈ {0, 1}N×N where Zij indicates the existence or non-existence of an edge between
the node pair i and j. Let X(l) ∈ RN×C be a set of node representations at the l-th layer of a ReLU
GCN (Section 4.5.1). We consider a link prediction model of the form Zij = f(X

(L)
i , X

(L)
j),

where f : RC × RC → {0, 1} is some (possibly learnable) function.
We define the "information-less" invariant space M in the same way as Section 4.5.1. Let

X ∈M and consider two node pairs (i, j) and (i′, j′). By the discussion similar to Section 4.5.1,
if i ∼ i′ and j ∼ j′, we have (Xi, Xj) = (Xi′ , Xj′). In this sense, if a link prediction model
computes the existence of an edge from representations of the node pair of the edge, it cannot
extract any information for any link prediction task from the invariant space M. Theorem 4.2
implies that a link prediction model of this type suffers from the over-smoothing problem in the
same condition as the corresponding node prediction model.

4.5.5 Remark on Previous Study about Over-smoothing for Non-linear GNNs

The old version (version 2) of the preprint of Luan et al. [2019]4 formulated a theorem that explains
the over-smoothing of non-linear GNNs. Specifically, Theorem 1 of the paper claims that if a graph
does not have a bipartite component and the input distribution is continuous, the rank of the output
of a GCN converges to the number of connected components of the underlying graph as the layer
size goes to infinity almost surely. However, it is not true in general as we give a counterexample.

We restate Theorem 1 of Luan et al. [2019]. Let G be a simple undirected graph with N
nodes and k connected components such that it does not have a bipartite component. Let L =
D̃−1/2ÃD̃−1/2 ∈ RN×N be the augmented normalized Laplacian of G. Let F ∈ N+ and Wn ∈
RF×F be the weight of the n-th layer for n ∈ N+. For the input X ∈ RN×F , we define the output
Yn ∈ RN×F of the n-th layer of a GCN by Yn = σ(L · · ·σ(LXW0) · · ·Wn) where σ is the ReLU
function. We assume the input X is drawn from a continuous distribution on RN×F . Then, the

4https://arxiv.org/abs/1906.02174v2 (Retrieved on December, 2nd, 2020)

104

https://arxiv.org/abs/1906.02174v2

4. Over-smoothing of Non-linear Graph Neural Networks

theorem claims that we have limn→∞ rank(Yn) = k almost surely with respect to the distribution
of X .

We construct a conterexample. Consider a graph G consisting of N = 4 nodes whose adja-
cency matrix is

A =

1 1 1 1
1 1 1 0
1 1 1 0
1 0 0 1

 .

Note that G is connected (i.e., k = 1) and is not bipartite. We make a GCN with F = 3 channels
and whose weight matrices are Wn = I3 (the identity matrix of size 3) for all n ∈ N. For the
distribution of the input X , we consider an absolutely continuous distribution with respect to the
Lebesgue measure on R4×3 such that P (X ≥ 0) > 0 (here, X ≥ 0 means the element-wise
comparison). For example, the standard Gaussian distribution satisfies the condition.

Since L ≥ 0, we have Yn = LnX if X ≥ 0. Let L = P⊤ΛP be the diagonalization of L
where P ∈ O(4) is an orthogonal matrix of size 4. Since rank(L) = 3, we have rank(Λn) = 3
for any n (we can assume that Λ44 = 0 without loss of generality). Therefore, under the condition
X ≥ 0, we have

rank(Yn) = 3 ⇐⇒ rank(P⊤ΛnPX) = 3

⇐⇒ X ∈ {P−1
[
B v

]⊤ | B ∈ R3×3 is invertible, v ∈ R3}.

Note that the last condition is independent of n. Since the set of invertible matrices is dense in the
set of all matrices of the same size (with respect to the standard topology of the Euclidean space),
we have P ({rank(Yn) = 3 for all n ∈ N}) > 0. Therefore, we have limn→∞ rank(Yn) = 3 with
a non-zero probability.

4.6 Experiments

4.6.1 Synthesis Data: One-step Transition

We numerically investigate how the transition f(X) := σ(PXW) changes inputs using the vector
field V (X) := f(X)−X5. For this purpose, we set N = 2, M = 1, and C = 1. Let λ1 ≤ λ2 be
the eigenvalues of P . We choose W as |λ2|−1 ≤ W < |λ1|−1 so that Theorem 4.1 is applicable
but is not reduced to the trivial situation (see, Appendix 4.4.2). We choose the eigenvector e ∈ R2

associated with λ2 in two ways as described below. See Appendix 4.B.1 for the concrete values
of P , e, and W . Figure 4.1 shows the visualization of V . First, we choose the non-negative
eigenvector e so that it satisfies Assumption 4.1 (Case 1). We see that the transition function f
uniformly decreases the distance from M. This is consistent with the consequence of Theorem
4.1. Next, we choose the eigenvector e =

[
e1 e2

]⊤ such that the signs of e1 and e2 differ
(Case 2), which violates Assumption 4.1. We see that M is not invariant under f and f does
not uniformly decrease the distance from M. Therefore, we cannot remove the non-negativity
assumption from Theorem 4.1.

5Since we consider the one-step transition only, we omit the subscript l from fl, Xl, and Wl.

105

4. Over-smoothing of Non-linear Graph Neural Networks

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 4.1: Visualization of vector field V (X) := f(X) −X induced by the one-step transition.
Color maps indicate the absolute value |V (X)| at the point X . Dotted lines are the subspaceM.
Left: Case 1. Right: Case 2. Best view in color.

0.0 2.5 5.0 7.5 10.0
Layer Index

60
50
40
30
20
10

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.5, s=0.1, lambda=0.063
Actual
Theorem

0 2 4 6 8 10
Layer Index

4

2

0

2

4

6

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.1, s=10.0, lambda=0.195
Actual
Theorem

Figure 4.2: Distances to the invariant space M and their upper bounds. Solid lines are the log
relative distance defined by y(l) = log(dM(X(l))/dM(X(0))) and dotted lines are upper bound
y(l) = l log(sλ), where X(0) is the input signal and X(l) is the output of the l-th layer.

4.6.2 Synthesis Data: Distance to Invariant Space

We evaluate the distance to the invariant space M using synthesis data. We randomly gener-
ate an Erdős – Rényi graph, a GCN on it, and an input signal X(0). We compute the distance
between the l-th intermediate output X(l) and the invariant space M for various edge proba-
bility p and maximum singular value s. Figure 4.2 plots the logarithm of the relative distance
y(l) = log dM(X(l))

dM(X(0))
with respect to the layer index l. From Theorem 4.1, we know that it is upper

bounded by y(l) = l log(sλ). We see that this bound well approximates the actual value when sλ
is small. On the other hand, it is loose for large sλ. We leave tighter bounds for dM in such a case
for future research.

106

4. Over-smoothing of Non-linear Graph Neural Networks

2 4 6 8
Layer Size

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

s = 0.5
s = 1.05
s = 3.0
s = 10.0
Unnormalized

0 20 40 60 80
Iteration

2.0

2.5

3.0

3.5

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3

Figure 4.3: Node prediction results on Noisy Cora. Left: Effect of the maximum singular values
on weights on model performance. The horizontal dotted line indicates the chance rate (30.2%).
The error bar is the standard deviation of 3 trials. Right: Transition of maximum singular values
during training. See Appendix 4.C.3 for results using other datasets. Best view in color.

4.6.3 Real Data: Effect of Maximum Singular Values on Performance

Theorem 4.2 implies that if s is smaller than the threshold λ−1, we cannot expect deep GCN to
achieve good prediction accuracy. Conversely, if we can successfully train the model, s should
avoid the region s ≤ λ−1. We empirically confirm these hypotheses using real datasets.

We use Cora, CiteSeer, and PubMed [Sen et al., 2008], which are standard citation network
datasets. The task is to classify the genre of papers using word occurrences and citation rela-
tionships. We regard each paper as a node and citation relationship as an edge. Due to space
constraints, we focus on Cora in the main article. See Appendix 4.B.3 and 4.C.3 for the other
datasets. The discussion in Section 4.5.2 implies that Theorem 4.2 can support a wide range of
GCNs when the underlying graph is relatively dense. However, the citation networks are too
sparse to examine the aforementioned hypotheses — Theorem 4.2 gives a non-trivial result only
when 1 ≤ s < λ−1 ≈ 1 + 3.62 × 10−3. To circumvent this, we make noisy versions of citation
networks by randomly adding edges to graphs. Through this manipulation, we can increase the
value of λ−1 to 1.11.

Figure 4.3 (left) shows the accuracy for the test dataset in terms of the maximum singular
values and the number of graph convolution layers. We can observe that when GCNs whose
maximum singular value s is out of the region s < λ−1 outperform those inside the region in
almost all configurations. Furthermore, the accuracy of GCNs with s = 10 are better than those
without normalization (unnormalized). Figure 4.3 (right) shows the transition of the maximum
singular values of the weights during training when we use a three-layered GCN. We can observe
that the maximum singular value s does not shrink to the region s ≤ λ−1. In addition, when
the layer size is small and predictive accuracy is high, GCNs gradually increase s from the initial
value and avoid the region. In conclusion, the experiment results are consistent with the theorems.

4.6.4 Real Data: Effect of Signal Component Perpendicular To Invariant Space

We can decompose the output X of a model as X = X0 + X1 (X0 ∈ M, X1 ∈ M⊥). Ac-
cording to the theory, X0 has limited information for node classification. We hypothesize that

107

4. Over-smoothing of Non-linear Graph Neural Networks

2 1 0 1
Log of Relative Perpendicular Component

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Noisy Cora (R=0.545, p=4.880e-03)

s=0.5
s=1.05
s=3.0
s=10.0
unnormalized

Figure 4.4: The logarithm of the relative perpendicular component log t(X) and prediction accu-
racy on Noisy Cora.

the model emphasizes the perpendicular component X1 to perform good predictions. To quantita-
tively evaluate it, we define the relative magnitude of the perpendicular component of the output
X by t(X) := X1/X0. Figure 4.4 compares this quantity and the prediction accuracy on the noisy
version of Cora (see Appendix 4.C.4 for other datasets). We observe that these two quantities are
correlated (R = 0.545). If we remove GCNs have only one layer (corresponding to right points
in the figure), the correlation coefficient is 0.827. This result does not contradict to the hypothesis
above 6.

4.7 Discussion

Applicability to GNNs on Sparse Graphs We have theoretically and empirically shown that
when the underlying graph is sufficiently dense and large, the threshold λ−1 is large (Theorem 4.2
and Section 4.6.3), which means many graph CNNs are eligible. However, real-world graphs are
not often dense, which means that Theorem 4.2 is applicable to very limited GCNs. In addition,
Coja-Oghlan [2007] theoretically proved that if the expected average degree of GN,p is bounded,
the smallest positive eigenvalue of the normalized Laplacian of GN,p is o(1) with high probability.
The asymptotic behaviors of GNNs on sparse graphs are left for future research.

Remedy for Over-smoothing Based on our theory, we can propose several techniques for miti-
gating the over-smoothing phenomena. One idea is to (randomly) sample edges in an underlying
graph. The sparsity of practically available graphs could be a factor in the success of GNNs.

6We cannot conclude that large perpendicular components are essential for good performance, since the maximum
singular value s is correlated to the accuracy, too.

108

4. Over-smoothing of Non-linear Graph Neural Networks

Assuming this hypothesis is correct, there is a possibility that we can relive the effect of over-
smoothing by sparsification. Since we can never restore the information in pruned edges if we
remove them permanently, random edge sampling could work better as FastGCN [Chen et al.,
2018a] and GraphSAGE [Hamilton et al., 2017] do. Another idea is to scale node representations
(i.e., intermediate or final output of GNNs) appropriately so that they keep away from the invariant
spaceM. Our proposed weight scaling mechanism takes this strategy. Recently, Zhao and Akoglu
[2020] has proposed PairNorm to alleviate the over-smoothing phenomena. Although the scaling
target is different – they rescaled signals whereas we normalized weights – theirs and ours have
similar spirits.

GNNs with Large Weights Our theory suggests that the maximum singular values of weights
in a GCN should not be smaller than a threshold λ−1 because it suffers from information loss for
node classification. On the other hand, if the scale of weights are very large, the model complexity
of the function class represented by GNNs increases, which may cause large generalization errors.
Therefore, from a statistical learning theory perspective, we conjecture that the GNNs with too-
large weights perform poorly, too. A trade-off should exist between the expressive power and
model complexity and there should be a “sweet spot" on the weight scale that balances the two.

Relation to Double Descent Phenomena Belkin et al. [2019] pointed out that modern deep
models often have double descent risk curves: when a model is under-parameterized, a classical
bias-variance trade-off occurs. However, once the model has a large capacity and perfectly fits the
training data, the test error decreases as we increase the number of parameters. To the best of our
knowledge, no literature reported the double descent phenomena for GNNs (it is consistent with
the picture of the classical U-shaped risk curve in the previous paragraph). It is known that double
descent phenomena do not occur in some situations, especially depending on regularization types.
For example, while Belkin et al. [2019] employed the interpolating hypothesis with the minimum
norm, Mei and Montanari [2019] found that the double descent was alleviated or disappeared
when they used Ridge-type regularization techniques. Therefore, one can hypothesize the over-
smoothing is a cause or consequence of regularization that is more like a Ridge-type rather than
minimum-norm inductive bias.

Limitations in GNN Architectures Our analysis is limited to GNNs with the ReLU activation
function because we implicitly use the property that ReLU is a projection onto the cone {X ≥ 0}
(Appendix 4.A.2, Lemma 4.3). This fact enables the ReLU function to get along with the non-
negativity of eigenvectors associated with the largest eigenvalues. Therefore, it is far from trivial
to extend our results to other activation functions such as the sigmoid function or Leaky ReLU
[Maas et al., 2013]. Another point is that our formulation considers the update operation [Gilmer
et al., 2017] of GNNs only and does not take readout operations into account. In particular, we
cannot directly apply our theory to graph classification tasks in which each sample is a graph.

Over-smoothing of Residual GNNs Considering the correspondence of GNNs and Markov
processes (see Appendix 4.4.4), one can imagine that residual links do not contribute to alleviating
the over-smoothing phenomena because adding residual connections to a GNN corresponds to

109

4. Over-smoothing of Non-linear Graph Neural Networks

converting a Markov process to its lazy version. When a Markov process converges to a stable
distribution, the corresponding lazy process also converges eventually under certain conditions.
It implies that residual links might not be helpful. However, Li et al. [2019] reported that GNNs
with as many as 56 layers performed well if they added residual connections. Considering that,
the situation could be more complicated than our intuitions. The analysis of the role of residual
connections in GNNs is a promising direction for future research.

4.8 Chapter Conclusion

In this chapter, to understand the over-smoothing problem, an empirically observed phenomena
that deep non-linear GNNs do not perform well, we analyzed their asymptotic behaviors by in-
terpreting them as a dynamical system that includes GCN and Markov process as special cases.
We gave theoretical conditions under which GCNs suffer from the information loss in the limit of
infinite layers. Our theory directly related the expressive power of GNNs and topological informa-
tion of the underlying graphs via spectra of the Laplacian. It enabled us to leverage spectral and
random graph theory to analyze the expressive power of GNNs. To demonstrate this, we consid-
ered GCN on the Erdős – Rényi graph as an example and showed that when the underlying graph
is sufficiently dense and large, a wide range of GCNs on the graph suffer from information loss.
Based on the theory, we gave a principled guideline for how to determine the scale of weights
of GNNs and empirically showed that the weight normalization implied by our theory performed
well in real datasets. One promising direction of research is to analyze the optimization and statis-
tical properties such as the generalization power [Verma and Zhang, 2019] of GNNs via spectral
and random graph theories.

4.A Proofs

4.A.1 Proof of Proposition 4.1

Proof. For any u ∈ U⊥ and v ∈ U , by symmetry of P , we have

〈Pu, v〉 = (Pu)⊤v = u⊤P⊤v = u⊤Pv = 〈u, Pv〉.

Since U is an invariant space of P , we have Pv ∈ U . Hence, we have 〈u, Pv〉 = 0 because
u ∈ U⊥. We obtain Pu ∈ U⊥ by the definition of U⊥.

4.A.2 Proof of Theorem 4.1

As we wrote in the main article, it is enough to show the following lemmas (definition of mis-
cellaneous variables are as in Section 4.3). Remember that λ = supn∈[N−M] |λn| and slh is the
maximum singular value of Wlh

Lemma 4.1. For any X ∈ RN×C , we have dM(PX) ≤ λdM(X).

Lemma 4.2. For any X ∈ RN×C , we have dM(XWlh) ≤ slhdM(X).

110

4. Over-smoothing of Non-linear Graph Neural Networks

Lemma 4.3. For any X ∈ RN×C , we have dM(σ(X)) ≤ dM(X).

Proof of Lemma 4.1. Since P is a symmetric linear operator on U⊥, we can choose the orthonor-
mal basis (em)m=M+1,...,N of U⊥ consisting of the eigenvalue of P |U⊥ . Let λm be the eigenvalue
of P to which em is associated (m = M + 1, . . . , N). Note that since the operator norm of P |U⊥

is λ, we have |λm| ≤ λ for all m = M +1, . . . , N . Since (em)m∈[N] forms the orthonormal basis
of RN , we can uniquely write X ∈ RN×C as X =

∑N
m=1 em ⊗ wm for some wm ∈ RC . Then,

we have d2M(X) =
∑N

m=M+1 ‖wm‖2 where ‖ · ‖ is the 2-norm of a vector. On the other hand,
we have

PX =

N∑
m=1

Pem ⊗ wm

=

M∑
m=1

Pem ⊗ wm +

N∑
m=M+1

Pem ⊗ wm

=
M∑

m=1

Pem ⊗ wm +

N∑
m=M+1

em ⊗ (λmwm)

Since U is invariant under P , for any m ∈ [M], we can write Pem as a linear combination
of en(n ∈ [M]). Therefore, we have d2M(PX) =

∑N
m=M+1 ‖λmwm‖2. Then, we obtain the

desired inequality as follows:

d2M(PX) =
N∑

m=M+1

‖λmwm‖2

≤ λ2
N∑

m=M+1

‖wm‖2

≤ λ2
N∑

m=M+1

‖wm‖2

= λ2d2M(X).

Proof of Lemma 4.2. Using the same decomposition of X as the proof in Lemma 4.1, we have

XWlh =
N∑

m=1

em ⊗ (W⊤
lhwm)

=
M∑

m=1

em ⊗ (W⊤
lhwm) +

N∑
m=M+1

em ⊗ (W⊤
lhwm).

111

4. Over-smoothing of Non-linear Graph Neural Networks

Therefore, we have

d2M(XWlh) =
N∑

m=M+1

‖W⊤
lhwm‖2

≤ s2lh

N∑
m=M+1

‖wm‖2

= s2lhd
2
M(X).

Proof of Lemma 4.3. We choose (em)m=N−M+1,...,N as in the proof of Lemma 4.1. We denote
X = (Xnc)n∈[N],c∈[C] and en = (emn)m∈[N], respectively. Let (e′c)c∈[C] be the standard basis of
RC . Then, (en⊗e′c)n∈[N],c∈[C] is the orthonormal basis of RN×C , endowed with the standard inner
product as a Euclid space. Therefore, we can decompose X as X =

∑N
n=1

∑C
c=1 ancen⊗e′c where

anc = 〈X, en ⊗ e′c〉 =
∑N

m=1Xmcemn. Then, we have d2M(X) =
∑N

n=M+1 ‖
∑C

c=1 ance
′
c‖2,

which is further transformed as

d2M(X) =
N∑

n=M+1

∥∥∥∥∥
C∑
c=1

ance
′
c

∥∥∥∥∥
2

=

N∑
n=M+1

C∑
c=1

a2nc

=

C∑
c=1

(
N∑

n=1

a2nc −
M∑
n=1

a2nc

)

=
C∑
c=1

(
‖X·c‖2 −

M∑
n=1

〈X·c, en〉2
)
,

where X·c is the c-th column vector of X . Similarly, we have

d2M(σ(X)) =
C∑
c=1

(
‖X+

·c ‖2 −
M∑
n=1

〈X+
·c , en〉2

)
,

where we denote σ(X) = (X+
nc)n∈[N],c∈[C] in shorthand. Therefore, the inequality follow from

the following lemma.

Lemma 4.4. Let x ∈ RN and v1, . . . , vM ∈ RN be orthonormal vectors (i.e., 〈vm, vn〉 = δmn)
satisfying vm ≥ 0 for all m ∈ [M]. Then, we have ‖x‖2 −

∑M
m=1〈x, vm〉2 ≥ ‖x+‖2 −∑M

m=1〈x+, vm〉2 where x+ := max(x, 0) for x ∈ R.

Proof. The value ‖y‖2 −
∑M

m=1〈y, um〉2 is invariant under simultaneous coordinate permutation
of y and um’s. Therefore, we can assume without loss of generality that the coordinate of x are

112

4. Over-smoothing of Non-linear Graph Neural Networks

sorted: x1 ≤ . . . ≤ xL < 0 ≤ xL+1 ≤ · · · ≤ xN for some L ≤ N . Then, we have

‖x‖2 − ‖x+‖2 =
L∑

n=1

x2n. (4.1)

When L = 0, the sum in the right hand side is treated as 0. On the other hand, writing as
vm = (vnm)n∈[N], direct calculation shows

M∑
m=1

〈x, vm〉2 − 〈x+, vm〉2 =
M∑

m=1

(L∑
n=1

xnvnm

)2

− 2

L∑
n=1

N∑
l=L+1

xnxlvnmvlm

 . (4.2)

Let Im := {n ∈ [N] | vnm > 0} be the support of vm for m ∈ [M]. We note that if m 6= m′ ∈
[M], we have Im ∩ Im′ = ∅ since if there existed n ∈ Im ∩ Im′ , we have

0 = 〈vm, vm′〉 ≥ vnmvnm′ > 0,

which is contradictory. Therefore,

N∑
m=1

(
L∑

n=1

xnvnm

)2

=

N∑
m=1

 ∑
n∈Im∩[L]

xnvnm

2

≤
N∑

m=1

 ∑
n∈Im∩[L]

x2n

 ∑
n∈Im∩[L]

v2nm

 (∵ Cauchy–Schwarz inequality)

≤
N∑

m=1

 ∑
n∈Im∩[L]

x2n

 (∵ ‖vm‖2 = 1)

≤
L∑

n=1

x2n. (4.3)

We used the fact that Im’s are disjoint and vnm = 0 if n 6∈ ∪mIm in the first equality above.
Further, we have xnxlvnmvlm ≤ 0 for 1 ≤ n ≤ L and L+ 1 ≤ l ≤ N by the definition of L and
non-negativity of vm. By combining (4.1), (4.2), and (4.3), we have

M∑
m=1

〈x, vm〉2 − 〈x+, vm〉2 ≤
L∑

n=1

x2n = ‖x‖2 − ‖x+‖2.

Proof of Theorem 4.1. By Lemma 4.1, 4.2, and 4.3, we have

dM(fl(X)) = dM(σ(· · ·σ(σ(︸ ︷︷ ︸
H times

PX)Wl1)Wl2 · · ·WlHl
))

113

4. Over-smoothing of Non-linear Graph Neural Networks

≤ dM(σ(· · ·σ(σ(︸ ︷︷ ︸
H−1 times

PX)Wl1)Wl2 · · ·)WlHl
)

≤ slHl−1dM(σ(· · ·σ(σ(︸ ︷︷ ︸
H−1 times

PX)Wl1)Wl2 · · ·)WlHl−1))

· · ·

≤

(
Hl∏
h=1

slh

)
dM(PX)

≤ sldM(PX)

≤ slλdM(X).

4.A.3 Proof of Proposition 4.2

Proof. Since λ is the operator norm of P |U⊥ , the assumption implies that the operator norm of
P itself is no less than λ. Therefore, we have ‖PXWl‖F ≤ λ‖XWl‖F ≤ slλ‖X‖F. On the
other hand, since σ(x)2 ≤ x2 for any x ∈ R, we have ‖σ(X)‖F ≤ ‖X‖F for any X ∈ RN×C .
Combining the two, we have ‖fl(X)‖F ≤ ‖PXWl‖F ≤ slλ‖X‖F.

4.A.4 Proofs of Proposition 4.3 and Proposition 4.4

Proof of Proposition 4.3. By definition, we have dM(X) = |x2|. On the other hand, direct cal-
culation shows that fl(X) =

[
(WµX1)

+ (WλX2)
+
]⊤ and dM(fl(X)) = (WλX2)

+ where
x+ := max(x, 0) for x ∈ R. Since W > λ−1 and x2 > 0, we have dM(fl(X)) > dM(X).

Proof of Proposition 4.4. First, note that e′ := 1√
2

[
1 −1

]⊤ is the eigenvector of P associated to
λ: Pe′ = λe′. For X = ae+ be′ (a, b > 0), the distance between X andM is dM(X) = |b|. On
the other hand, by direct computation, we have

f(X) = σ(PXW) =

[
0 λb√

2

]⊤
(if b ≥ 0),[

−λb√
2

0
]⊤

(if b < 0).

Therefore, the distance between f(X) and M is dM(f(X)) = λ|b|/2. Since λ < 2, we have
dM(f(X)) < dM(X) for any X ∈ R2.

4.A.5 Proof of Theorem 4.3

We follow the proof of Theorem 2 of Chung and Radcliffe [2011]. The idea is to relate the spectral
distribution of the normalized Laplacian with that of its expected version. Since we can compute

114

4. Over-smoothing of Non-linear Graph Neural Networks

the latter one explicitly for the Erdős-Rényi graph, we can derive the convergence of spectra. We
employ this technique and derive similar conclusion for the augmented normalized Laplacian.

First, we consider genral random graphs not restricted to Erdős-Rényi graphs. Let N ∈ N+,
and P = (pij)i,j∈[N] be a non-negative symmetric matrix (meaning that pij ≥ 0 for any i, j ∈
[N]). Let G be an undirected random graph with N nodes such that an edge between i and j is
independently present with probability pij . Let A and D be the adjacency and the degree matrices
of G, respectively (that is, Aij ∼ Ber(pij), i.i.d.). Define the expected node degree of node i

by ti :=
∑N

j=1 pij . Let Ã := A + IN , D̃ := D + IN and define Ā := E[Ã] = P + IN and
D̄ := E[D̃] = diag(t1, . . . , tN) + IN correspondingly. We define the augmented normalized
Laplacian ∆̃ of G by ∆̃ := IN − D̃− 1

2 ÃD̃− 1
2 and its expected version by ∆̄ := IN − D̄− 1

2 ĀD̄− 1
2

7. For a symmetric matrix X ∈ RN , we define its eigenvalues, sorted in ascending order by
λ1(X) ≤ · · · ≤ λN (X) and its operator norm by ‖X‖ = maxn∈[N] |λn(X)|.

Lemma 4.5 (Ref. Chung and Radcliffe [2011] Theorem 2). Let δ := minn∈[N] tn be the minimum
expected degree of G. Set k(ε) := 3(1 + log(4/ε)). Then, for any ε > 0, if δ + 1 > k(ε) logN ,
we have

max
n∈[N]

∣∣∣λn(∆̃)− λn(∆̄)
∣∣∣ ≤ 4

√
3 log(4N/ε)

δ + 1

with probability at least 1− ε.

Proof. By Weyl’s theorem, we have maxn∈[N]

∣∣∣λn(∆̃)− λn(∆̄)
∣∣∣ ≤ ‖∆̃ − ∆̄‖. Therefore, it is

enough to bound ‖∆̃ − ∆̄‖. Let C := IN − D̄− 1
2 ÃD̄. By the triangular inequality, we have

‖∆̃− ∆̄‖ ≤ ‖∆̃− C‖+ ‖C − ∆̄‖. We will bound these terms respectively.
First, we bound ‖C − ∆̄‖. Direct calculation shows C − ∆̄ = −D̄− 1

2 (A − P)D̄− 1
2 . Let

Eij ∈ RN×N be a matrix defined by

(Eij)kl =

{
1 if (i = k and i = l) or (i = l and j = k),
0 otherwise.

We define the random variable Yij by

Yij :=
Aij − pij√

ti + 1
√
tj + 1

Eij .

Then, Yij’s are independent and we have C− ∆̄ =
∑N

i,j=1 Yij . To apply Theorem 5 of Chung and
Radcliffe [2011] to Yij’s, we bound ‖Yij − E[Yij]‖ and ‖

∑N
i,j=1 E[Y 2

ij]‖. First, we have

‖Yij − E[Yij]‖ = ‖Yij‖ ≤
‖Eij‖√

ti + 1
√
tj + 1

≤ (δ + 1)−1.

7Note that E[∆̃] 6= ∆̄ in general due to the dependence between Ã and D̃.

115

4. Over-smoothing of Non-linear Graph Neural Networks

Since

E[Y 2
ij] =

pij − p2ij
(ti + 1)(tj + 1)

{
Eii + Ejj (if i 6= j),
Eii (if i = j),

we have ∥∥∥∥∥∥
N∑

i,j=1

E[Y 2
ij]

∥∥∥∥∥∥ =

∥∥∥∥∥∥
N∑

i,j=1

pij − p2ij
(ti + 1)(tj + 1)

Eii

∥∥∥∥∥∥
= max

i∈[N]

 N∑
j=1

pij − p2ij
(ti + 1)(tj + 1)

≤ max

i∈[N]

 N∑
j=1

pij
(ti + 1)(tj + 1)

≤ (δ + 1)−1.

By letting a←
√

3 log(4N/ε)
δ+1 , M ← (δ+1)−1, v2 ← (δ+1)−1 and applying Theorem 5 of Chung

and Radcliffe [2011], we have

Pr(‖C − ∆̄‖ > a) ≤ 2N exp

(
− a2

2(δ + 1)−1 + 2(δ + 1)−1a/3

)
≤ 2N exp

(
−3 log(4N/ε)

2(1 + a/3)

)
.

By the definition of k(ε), we have a < 1 if δ + 1 > k(ε) log n. For such δ, we have

Pr(‖C − ∆̄‖ > a) ≤ 2N exp

(
−3 log(4N/ε)

2(1 + a/3)

)
≤ 2N exp (− log(4N/ε)) (∵ a < 1)

=
ε

2
. (4.4)

Next, we bound ‖∆̃ − C‖. First, since a < 1, by Chernoff bound (see, e.g. Angluin and
Valiant [1979], Hagerup and Rüb [1990])), we have

Pr(|di − ti| > a(ti + 1)) ≤ 2 exp

(
−a2(ti + 1)

3

)
≤ 2 exp

(
−a2(δ + 1)

3

)
=

ε

2N
.

116

4. Over-smoothing of Non-linear Graph Neural Networks

Therefore, if |di − ti| ≤ a(ti + 1), then we have∣∣∣∣∣
√

di + 1

ti + 1
− 1

∣∣∣∣∣ ≤
∣∣∣∣di + 1

ti + 1
− 1

∣∣∣∣ (∵ |
√
x− 1| ≤ |x− 1| for x ≥ 0)

=

∣∣∣∣di − ti
ti + 1

∣∣∣∣
≤ a.

Therefore, by union bound, we have

‖D̄− 1
2 D̃

1
2 − IN‖ = max

i∈[N]

∣∣∣∣∣
√

di + 1

ti + 1
− 1

∣∣∣∣∣ ≤ a

with probability at least 1 − ε/2. Further, since the eigenvalue of the augmented normalized
Laplacian is in [0, 2] by the proof of Proposition 4.5, we have ‖IN −∆̃‖ ≤ 1. By combining them,
we have

‖∆̃− C‖ = ‖(D̄− 1
2 D̃

1
2 − IN)(IN − ∆̃)D̃

1
2 D̄− 1

2 + (IN − ∆̃)(I − D̃
1
2 D̄− 1

2)‖

≤ ‖(D̄− 1
2 D̃

1
2 − IN‖‖D̃

1
2 D̄− 1

2 ‖+ ‖I − D̃
1
2 D̄− 1

2 ‖
≤ a(a+ 1) + a. (4.5)

From (4.4) and (4.5), we have

‖∆̃− ∆̄‖ ≤ ‖∆̃− C‖+ ‖C − ∆̄‖
≤ a+ a(a+ 1) + a

≤ a2 + 3a

≤ 4a (∵ a < 1)

with probability at least 1− ε by union bound.

Let N ∈ N+ and p > 0. In the case of the Erdős-Rényi graph GN,p, we should set P =
p(JN − IN) where JN ∈ RN×N are the all-one matrix. Then, we have Ā = pJN + (1 − p)IN ,
D̄ = (Np − p + 1)IN , and ∆̄ = p

Np−p+1(NIN − JN). Since the eigenvalue of JN is N (with
multiplicity 1) and 0 (with multiplicity N − 1), the eigenvalue of ∆̄ is 0 (with multiplicity 1) and

Np
Np−p+1 (with multiplicity N − 1). For GN,p, δ is the expected average degree (N − 1)p. Hence,
we have the following lemma from Lemma 4.5:

Lemma 4.6. Let ∆̃ be its augmented normalized Laplacian of the Erdős-Rényi graph GN,p. For
any ε > 0, if Np−p+1

logN > k(ε) := 3(1 + log(4/ε)), then, with probability at least 1− ε, we have

max
i=2,...,N

∣∣∣∣λi(∆̃)− Np

Np− p+ 1

∣∣∣∣ ≤ 4

√
3 log(4N/ε)

Np− p+ 1
.

117

4. Over-smoothing of Non-linear Graph Neural Networks

Corollary 4.5. Consider GCN on GN,p. Let Wl be the weight of the l-th layer of GCN and sl
be the maximum singular value of Wl for l ∈ N+. Set s := supl∈N+

. Let ε > 0. We define

k(ε) := 3(1 + log(4/ε)) and l(N, p, ε) = 1−p
Np−p+1 + 4

√
3 log(4N/ε)
Np−p+1 . If Np−p+1

logN > k(ε) and

s ≤ l(N, ε)−1, then, GCN on GN,p satisfies the assumption of Theorem 4.2 with probability at
least 1− ε.

Proof of Theorem 4.3. Since logN
Np = o(1), for fixed ε, we have

Np− p+ 1

logN
>

Np

logN
> k(ε)

for sufficiently large N . Further, Np→∞ as N →∞ when logN
Np = o(1). Therefore, we have

(1− p)2

Np− p+ 1
≤ 1

Np
≤ (7− 4

√
3)2 log

(
4N

ε

)
for sufficiently large N . Hence.

1− p

Np− p+ 1
≤ (7− 4

√
3)

√
log(4N/ε)

Np− p+ 1
.

Therefore, we have l(N, p, ε) ≤ 7
√

log(4N/ε)
Np−p+1 . Therefore, if s ≤ 1

7

√
Np−p+1
log(4N/ε) , then we have

s ≤ l(N, p, ε)−1.

4.A.6 Proof of Proposition 4.5

Proof. Let µ̃1 ≤ · · · ≤ µ̃N be the eigenvalue of the augmented normalized Laplacian ∆̃, sorted
in ascending order. Since P = IN − ∆̃, it is enough to show µ̃1 = · · · = µ̃M = 0, µ̃M+1 > 0,
and µ̃N < 2. For the first two, the statements are equivalent to that ∆̃ is positive semi-definite and
that the multiplicity of the eigenvalue 0 is same as the number of connected components 8. This is
well-known for Laplacian or its normalized version (see, e.g., Chung and Graham [1997]) and the
proof for ∆̃ is similar. By direct calculation, we have

x⊤∆̃x =
1

2

N∑
i,j=1

aij

(
xi√
di + 1

− xj√
dj + 1

)2

for any x =
[
x1 · · · xN

]⊤ ∈ RN . Therefore, ∆̃ is positive semi-definite and hence µ̃1 ≥ 0.
Suppose temporally that G is connected. If x ∈ RN is an eigenvector associated to 0, then,

by the aformentioned calculation, xi√
di+1

and xj√
dj+1

must be same for all pairs (i, j) such that

aij > 0. However, since G is connected, xi√
di+1

must be same value for all i ∈ [N]. That means
the multiplicity of the eigenvalue 0 is 1 and any eigenvector associated to 0 must be proportional

8The former statement is identical to Lemma 1 and latter one is the extension of Lemma 2 of Wu et al. [2019a].

118

4. Over-smoothing of Non-linear Graph Neural Networks

to D̃
1
21. Now, suppose G has M connected components V1, . . . , VM . Let ∆̃m be the augmented

normalized Laplacians corresponding to each connected component Vm for m ∈ [M]. By the
aformentioned discussion, ∆̃m has the eigenvalue 0 with multiplicity 1. Since ∆̃ is the direct sum
of ∆̃′

ms, the eigenvalue of ∆̃ is the union of those for ∆̃m’s. Therefore, ∆̃ has the eigenvalue 0

with multiplicity M and em = D̃
1
21m’s are the orthogonal basis of the eigenspace.

Finally, we prove µ̃N < 2. Let µN be the largest eigenvalue of the normalized Laplacian
∆ = D− 1

2 (D −A)D− 1
2 , where D− 1

2 ∈ RN×N is the diagonal matrix defined by

D
− 1

2
ii =

{
deg(i)−

1
2 (if deg(i) 6= 0)

0 (if deg(i) = 0)
.

Note that D− 1
2D

1
2 nor D

1
2D− 1

2 are not equal to the identity matrix IN in general. However, we
have

L = D
1
2D− 1

2LD− 1
2D

1
2 (4.6)

where L = D −A is the (unnormalized) Laplacian. Therefore, we have

µ̃N = max
x ̸=0

x⊤∆̃x

‖x‖

= max
x ̸=0

x⊤D̃− 1
2LD̃− 1

2x

‖x‖

= max
x ̸=0

x⊤D̃− 1
2D

1
2D− 1

2LD− 1
2D

1
2 D̃− 1

2x

‖x‖
(∵ (4.6))

= max
x ̸=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖x‖

= max
x ̸=0

D
1
2 D̃− 1

2 x ̸=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖x‖

= max
x ̸=0

D
1
2 D̃− 1

2 x ̸=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖D
1
2 D̃− 1

2x‖
‖D

1
2 D̃− 1

2x‖
‖x‖

≤ max
x ̸=0

D
1
2 D̃− 1

2 x ̸=0

(D
1
2 D̃− 1

2x)⊤∆(D
1
2 D̃− 1

2x)

‖D
1
2 D̃− 1

2x‖
max
x ̸=0

D
1
2 D̃− 1

2 x≠0

‖D
1
2 D̃− 1

2x‖
‖x‖

≤ max
y ̸=0

y⊤∆y

‖y‖
max
x̸=0

‖D
1
2 D̃− 1

2x‖
‖x‖

= µN max
n∈[N]

(
deg(i)

deg(i) + 1

) 1
2

≤ µN .

119

4. Over-smoothing of Non-linear Graph Neural Networks

Therefore, we have µ̃N ≤ µN
9. Since maxi∈[N]

(
deg(i)

deg(i)+1

) 1
2
< 1, the equality µ̃N = µN holds

if and only if µN = 0, that is, G has N connected components. On the other hand, it is known
that µN ≤ 2 and the equality holds if and only if G has non-trivial bipartite graph as a connected
component (see, e.g., Chung and Graham [1997]). Therefore, µ̃N = µN and µN = 2 does not
hold simultaneously and we obtain µN < 2.

4.B Experiment Settings

4.B.1 Experiments in Section 4.6.1

We set the eigenvalue of P to λ1 = 0.5 and λ2 = 1.0 and randomly generated P until the
eigenvector e associated to λ2 satisfies the condition of each case described in the main article.
We set W = 1.2 and used the following values for each case as P and e.

Case 1

P =

[
0.7469915 0.2499819
0.2499819 0.7530085

]
, e =

[
0.7028392
−0.71134876

]
.

Case 2

P =

[
0.6899574 −0.2426827
−0.2426827 0.8100426

]
, e =

[
0.61637234
−0.78745485

]
.

4.B.2 Experiments in Section 4.6.2

We randomly generated an Erdős – Rényi graph GN,p with N = 1000 and randomly generated
a one-of-K hot vector for each node and embed it to a C-dimensional vector using a random
matrix whose elements were randomly sampled from the standard Gaussian distribution. Here,
K = 10 and C = 32. We treated the resulting single as the input signal X(0) ∈ RN×C . We
constructed a GCN with L = 10 layers and C channels. All parameters were i.i.d. sampled
from the Gaussian distribution whose standard deviation is same as the one used in LeCun et al.
[2012]10 and multiplied a scalar to each weight matrix so that the largest singular value equals to
a specified value s. We used three configurations (p, s) = (0.1, 0.1), (0.5, 1.0), (0.5, 10.0). λ of
the generated GCNs are 0.063, 0.197, 0.194, respectively. See Appendix 4.6.2 for the results of
other configurations of (p, s).

9Theorem 1 of Wu et al. [2019a] showed that this inequality strictly holds when G is simple and connected. We do
not require this assumption.

10This is the default initialization method for weight matrices in Chainer and Chainer Chemistry.

120

4. Over-smoothing of Non-linear Graph Neural Networks

Table 4.1: Dataset specifications for original citation networks. The threshold λ−1 in the table
indicates the upper bound of Corollary 4.2.

#Node #Edge #Class Chance Rate Threshold λ−1

Cora 2708 5429 6 30.2% 1 + 3.62× 10−3

CiteSeer 3312 4732 7 21.1% 1 + 1.25× 10−3

PubMed 19717 44338 3 39.9% 1 + 9.57× 10−3

4.B.3 Experiments in Section 4.6.3

Dataset

We used the Cora [McCallum et al., 2000, Sen et al., 2008], CiteSeer [Giles et al., 1998, Sen et al.,
2008], and PubMed[Sen et al., 2008] datasets for experiments. We obtained the preprocessed
dataset from the code repository of Kipf and Welling [2017]11. Table 4.1 summarizes specifica-
tions of datasets and their noisy version (explained in the next section).

The Cora dataset is a citation network dataset consisting of 2708 papers and 5429 links.
Each paper is represented as the occurence of 1433 unique words and is associated to one
of 7 genres (Case Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Re-
inforcement Learning, Rule Learning, Theory). The graph made from the citation links has
78 connected components and the smallest positive eigenvalue of the augmented Normalized
Laplacian is approximately µ̃ = 3.62 × 10−3. Therefore, the upper bound of Theorem 4.2 is
λ−1 = (1 − µ̃)−1 ≈ 1 + 3.62 × 10−3. 818 out of 2708 samples are labelled as “Probabilistic
Methods", which is the largest proportion. Therefore, the chance rate is 818/2708 = 30.2%.

The CiteSeer dataset is a citation network dataset consisting of 3312 papers and 4732 links.
Each paper is represented as the occurence of 3703 unique words and is associated to one of 6
genres (Agents, AI, DB, IR, ML, HCI). The graph made from the citation links has 438 con-
nected components and the smallest positive eigenvalue of the augmented Normalized Lapla-
cian is approximately µ̃ = 1.25 × 10−3. Therefore, the upper bound of Theorem 4.2 is
λ−1 = (1 − µ̃)−1 ≈ 1 + 1.25 × 10−3. 701 out of 2708 samples are labelled as “IR", which
is the largest proportion. Therefore, the chance rate is 701/3312 = 21.1%.

The PubMed dataset is a citation network dataset consisting of 19717 papers and 44338 links.
Each paper is represented as the occurence of 500 unique words and is associated to one of 3
genres (“Diabetes Mellitus, Experimental", “Diabetes Mellitus Type 1", “Diabetes Mellitus Type
2"). The graph made from the citation links has 438 connected components and the smallest
positive eigenvalue of the augmented Normalized Laplacian is approximately µ̃ = 9.48 × 10−3.
Therefore, the upper bound of Theorem 4.2 is λ−1 = (1 − µ̃)−1 ≈ 1 + 9.57 × 10−3. 7875
out of 19717 samples are labelled as “Diabetes Mellitus Type 2", which is the largest proportion.
Therefore, the chance rate is 7875/19717 = 39.9%.

121

4. Over-smoothing of Non-linear Graph Neural Networks

Table 4.2: Dataset specifications for noisy citation networks. The threshold λ−1 in the table
indicates the upper bound of Corollary 4.2.

Original Dataset #Edge Added Threshold λ−1

Noisy Cora 2500 Cora 2495 1.11
Noisy Cora 5000 Cora 4988 1.15
Noisy CiteSeer CiteSeer 4991 1.13
Noisy PubMed PubMed 24993 1.17

Noisy Citation Networks

We summarize the properties of noisy citation networks in Table 4.2.
We created two datasets from the Cora dataset: Noisy Cora 2500 and Noisy Cora 5000. Noisy

Cora 2500 is made from the Cora dataset by uniformly randomly adding 2500 edges, respectively.
Since some random edges are overlapped with existing edges, the number of newly-added edges
is 2495 in total. We only changed the underlying graph from the Cora dataset and did not change
word occurences (feature vectors) and genres (labels). The underlying graph of the Noisy Cora
dataset has two connected components and the smallest positive eigenvalue is µ̃ ≈ 9.62 × 10−2.
Therefore, the threshold of the maximum singular values of in Theorem 4.2 has been increased to
λ−1 = (1−µ̃)−1 ≈ 1.11. Similarly, Noisy Cora 5000 was made by adding 5000 edges uniformaly
randomly. The number of newly added edges is 4988 and the graph is connected (i.e., it has only
1 connected component). µ̃ and λ are µ̃ ≈ 1.32× 10−1 and λ = (1− µ̃)−1 ≈ 1.15, respectively.

We made the noisy version of CiteSeer (Noisy CiteSeer) and PubMed (Noisy PubMed), in
the similar way, by adding 5000 and 25000 edges uniformly randomly to the datasets. Since
some random edges were overlapped with existing edges, 4991 and 24993 edges are newly added,
respectively. This manipulation reduced the number of connected component of the graph to 3. µ̃
is approximately 1.11×10−1 (Noisy CiteSeer) and 1.43×10−1 (Noisy PubMed) and λ−1 = (1−
µ̃)−1 is approximately 1.13 (Noisy CiteSeer) and 1.17 (Noisy PubMed), respectively. Figure 4.5
(right) shows the spectral distribution of the augmented normalized Laplacian For comparison, we
show in Figure 4.5 (left) the spectral distribution of the normalized Laplacian for these datasets12.

Model Architecture

We used a GCN consisting of a single node embedding layer, one to nine graph convolution layers,
and a readout operation [Gilmer et al., 2017], which is a linear transformation common to all nodes
in our case. We applied softmax function to the output of GCN. The output dimension of GCN
is same as the number of classes (i.e., seven for Noisy Cora 2500/5000, six for Noisy CiteSeer,
and three for Noisy PubMed). We treated the number of units in each graph convolution layer as
a hyperparameter. Optionally, we specified the maximum singular values s of graph convolution
layers. The choice of s is either 0.5 (smaller than 1), s1 (in the interval {1 ≤ s < λ−1}), 3 and 10

11https://github.com/tkipf/gcn (Retrieved on December, 2nd, 2020)
12Due to computational resource problems, we cannot compute the spectral distributions for PubMed and Noisy

Pubmed.

122

https://github.com/tkipf/gcn

4. Over-smoothing of Non-linear Graph Neural Networks

0 500 1000 1500 2000 2500
Index

0.0

0.5

1.0

1.5

2.0
Ei

ge
nv

al
ue

Cora
Noisy Cora 2500
Noisy Cora 5000

0 500 1000 1500 2000 2500
Index

0.0

0.5

1.0

1.5

2.0

Ei
ge

nv
al

ue

Cora
Noisy Cora 2500
Noisy Cora 5000

0 1000 2000 3000
Index

0.0

0.5

1.0

1.5

2.0

Ei
ge

nv
al

ue

CiteSeer
Noisy CiteSeer

0 1000 2000 3000
Index

0.0

0.5

1.0

1.5

2.0

Ei
ge

nv
al

ue

CiteSeer
Noisy CiteSeer

Figure 4.5: Spectral distribution of Laplacian for the citation network datasets. Left: normalized
Laplacian. Right: augmented normalized Laplacian. Top: Cora and Noisy Cora (2500, 5000).
Bottom: CiteSeer and Noisy CiteSeer.

(larger than λ−1). We used s1 = 1.05 for Noisy Cora 2500, Noisy CiteSeer, and Noisy PubMed,
and s1 = 1.1 for Noisy Cora 5000 and Noisy CiteSeer so that s1 is not close to the edges of the
the interval {1 ≤ s < λ−1}.

Performance Evaluation Procedure

We split all nodes in a graph (either Noisy Cora 2500/5000 or Noisy CiteSeer) into training,
validation, and test sets. Data split is the same as the one done by Kipf and Welling [2017]. This
is a transductive learning [Pan and Yang, 2010] setting because we can use node properties of
the validation and test data during training. We trained the model three times for each choice of
hyperparemeters using the training set and defined the objective function as the average accuracy
on the validation set. We chose the combination of hyperparameters that achieves the best value
of objective function. We evaluate the accuracy of the test dataset three times using the chosen
combination of hyperparameters and computed their average and the standard deviation.

Training

At initialization, we sampled parameters from the i.i.d. Gaussian distribution. If the scale of
maximum singular values s was specified, we subsequently scaled weight matrices of graph con-

123

4. Over-smoothing of Non-linear Graph Neural Networks

Table 4.3: Hyperparameters of the experiment in Section 4.6.3. X ∼ LogUnif[10a, 10b] denotes
the random variable log10X obeys the uniform distribution over [a, b]. “Learning rate" corre-
sponds to α when “Optimization algorithm" is Adam [Kingma and Ba, 2015].

Name Value

Unit size {10, 20, . . . , 500}
Epoch {10, 20, . . . , 100}
Optimization algorithm {SGD,MomentumSGD,Adam}
Learning rate LogUnif[10−5, 10−2]

volution layers so that their maximum singular values were normalized to s. The loss function
was defined as the sum of the cross entropy loss for all training nodes. We train the model using
the one of gradient-based optimization methods described in Table 4.3.

Hyperprameters

Table 4.3 shows the set of hyperparameters from which we chose. Since we compute the repre-
sentations of all nodes at once at each iteration, each epoch consists of 1 iteration. We employ
Tree-structured Parzen Estimator [Bergstra et al., 2011] for hyperparameter optimization.

Implementation

We used Chainer Chemistry13, which is an extension library for the deep learning framework
Chainer [Tokui et al., 2015, 2019], to implement GCNs and Optuna [Akiba et al., 2019] for hyper-
parameter tuning. We conducted experiments in a signel machine which has 2 Intel(R) Xeon(R)
Gold 6136 CPU@3.00GHz (24 cores), 192 GB memory (DDR4), and 3 GPGPUs (NVIDIA Tesla
V100). Our implementation achieved 68.1% with Dropout [Srivastava et al., 2014] (2 graph con-
volution layers) and 64.2% without Dropout (1 graph convolution layer) on the test dataset. These
are slightly worse than the accuracy reported in Kipf and Welling [2017], but are still comparable
with it.

4.B.4 Experiments in Section 4.6.4

The experiment settings are almost same as the experiment in Section 4.6.3. The only difference
is that we did not train the node embedding layer, which we put before convolution layers of a
GCN, while we did in Section 4.6.3. This is because we wanted to see the the effect of convolu-
tion operations on the perpendicular component of signals, while we interested in the prediction
accuracy in real training settings in the previous experiment.

13https://github.com/pfnet-research/chainer-chemistry (Retrieved on December, 2nd, 2020)

124

https://github.com/pfnet-research/chainer-chemistry

4. Over-smoothing of Non-linear Graph Neural Networks

4.C Additional Experiment Results

4.C.1 Experiments in Section 4.6.1

Figure 4.6 (Case 1) and Figure 4.7 (Case 2) show the vector field V for various W . Parameters
other than W are same as experiments in Section 4.6.1 (detail values are available in Section
4.B.1).

4.C.2 Experiments in Section 4.6.2

Figure 4.8 shows the relative log distance of signals and their upper bound for various edge prob-
ability p and the maximum singular value s. Note that we generate a new graph for each configu-
ration of (p, s). Therefore, different configurations may have different graphs and hence different
λ even they have a same edge probability p in common.

4.C.3 Experiments in Section 4.6.3

Predictive Accuracy Figure 4.9 shows the comparison of predictive performance in terms the
maximum singular value and layer size when the dataset is Noisy Cora 5000 (left) and Noisy
Citeseer (right), respectively. Concrete values are available in Table 4.4.

Transition of Maximum Singular Values Figure 4.10 – 4.13 show the transition of weight of
graph convolution layers during training when the dataset is Noisy Cora 2500, Noisy Cora 5000,
and Noisy CiteSeer, respectively. We note that the result of 3-layered GCN from the Noisy Cora
2500 is identical to Figure 4.3 (right) of the main article.

4.C.4 Experiments in Section 4.6.4

Figure 4.14 shows the logarithm of relative perpendicular component and prediction accuracy on
Noisy Cora, Noisy CiteSeer, and Noisy PubMed datasets. We use Pearson R as a correlation
coefficient. If GCNs have only one layer, it has more large relative perpendicular components
(corresponding to right points in the figures) than GCNs which have other number of layers. The
correlation between the logarithm of relative perpendicular components and prediction accuracies
are 0.827(p = 6.890× 10−6) for Noisy Cora, 0.524(p = 1.771× 10−2) for Noisy CiteSeer, and
0.679(p = 1.002×10−3) for Noisy PubMed, if we treat the one-layer case as outliers and remove
them.

125

4. Over-smoothing of Non-linear Graph Neural Networks

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=0.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4.6: Vector field V for various weights W for Case 1. Top left: W = 0.5. Top right:
W = 1.0. Middle left: W = 1.2 (same as Figure 4.1 in the main article). Middle right: W = 1.5.
Bottom left: W = 2.0. Bottom right: W = 4.0. Best view in color.

126

4. Over-smoothing of Non-linear Graph Neural Networks

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=0.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=1.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
W=4.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.7: Vector field V for various weights W for Case 2. Top left: W = 0.5. Top right:
W = 1.0. Middle left: W = 1.2 (same as Figure 4.1 in the main article). Middle right: W = 1.5.
Bottom left: W = 2.0. Bottom right: W = 4.0. Best view in color.

127

4. Over-smoothing of Non-linear Graph Neural Networks

Table 4.4: Accuracy in terms of maximum singular value of weights and layer size. “U" in the
right most column indicates the accuracy of GCN without weight normalization.

Noisy Cora 2500

Maximum Singular Value

Depth 1 1.05 3 10 U

1 0.389± 0.101 0.429± 0.090 0.552± 0.014 0.632± 0.007 0.587± 0.008
3 0.273± 0.051 0.309± 0.017 0.580± 0.058 0.661± 0.003 0.494± 0.041
5 0.319± 0.000 0.267± 0.059 0.462± 0.065 0.602± 0.004 0.326± 0.029
7 0.261± 0.076 0.262± 0.080 0.407± 0.021 0.501± 0.017 0.279± 0.129
9 0.261± 0.080 0.319± 0.000 0.284± 0.109 0.443± 0.014 0.319± 0.000

Noisy Cora 5000

Maximum Singular Value

Depth 1 1.1 3 10 U

1 0.301± 0.080 0.333± 0.099 0.557± 0.004 0.561± 0.019 0.555± 0.016
3 0.245± 0.066 0.247± 0.076 0.370± 0.041 0.587± 0.009 0.286± 0.066
5 0.274± 0.048 0.237± 0.070 0.257± 0.076 0.535± 0.031 0.319± 0.000
7 0.263± 0.080 0.297± 0.031 0.260± 0.074 0.339± 0.060 0.319± 0.000
9 0.262± 0.081 0.258± 0.064 0.262± 0.080 0.261± 0.082 0.318± 0.002

Noisy CiteSeer

Maximum Singular Value

Depth 0.5 1.1 3 10 U

1 0.461± 0.018 0.467± 0.012 0.490± 0.016 0.494± 0.006 0.495± 0.009
3 0.438± 0.027 0.436± 0.010 0.450± 0.019 0.462± 0.007 0.417± 0.061
5 0.285± 0.008 0.371± 0.016 0.373± 0.011 0.425± 0.007 0.380± 0.024
7 0.213± 0.006 0.282± 0.011 0.309± 0.012 0.385± 0.007 0.308± 0.012
9 0.182± 0.005 0.242± 0.030 0.303± 0.021 0.325± 0.003 0.229± 0.033

Noisy Pubmed

Maximum Singular Value

Depth 0.5 1.1 3 10 U

1 0.488± 0.039 0.636± 0.006 0.641± 0.010 0.632± 0.002 0.631± 0.010
3 0.442± 0.027 0.426± 0.026 0.658± 0.004 0.661± 0.005 0.631± 0.013
5 0.431± 0.033 0.431± 0.034 0.561± 0.083 0.641± 0.004 0.424± 0.093
7 0.428± 0.032 0.443± 0.051 0.449± 0.035 0.619± 0.011 0.440± 0.041
9 0.413± 0.009 0.438± 0.039 0.539± 0.052 0.569± 0.042 0.473± 0.031

128

4. Over-smoothing of Non-linear Graph Neural Networks

0.0 2.5 5.0 7.5 10.0
Layer Index

40

30

20

10

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.01, s=0.1, lambda=0.643
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.01, s=1.0, lambda=0.649

Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

0

5

10

15

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.01, s=10.0, lambda=0.640
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

50

40

30

20

10

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.1, s=0.1, lambda=0.195
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

25

20

15

10

5

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.1, s=1.0, lambda=0.195
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

4

2

0

2

4

6

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.1, s=10.0, lambda=0.196
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

60

40

20

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.9, s=0.1, lambda=0.021
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

40

30

20

10

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.9, s=1.0, lambda=0.021
Actual
Theorem

0.0 2.5 5.0 7.5 10.0
Layer Index

20

15

10

5

0

Lo
g

Re
la

tiv
e

Di
st

an
ce

p=0.9, s=10.0, lambda=0.021
Actual
Theorem

Figure 4.8: The distance dM to the invariant space M and the upper bound inferred by The-
orem 4.1. The edge probability p takes 0.01(top), 0.1, 0.9(bottom) and the maximum singu-
lar value s takes 0.1(left), 1.0, 10(right). Blue lines are the log relative distance defined by
y(l) := log dM(X(l))

dM(X(0))
and orange dotted lines are upper bound y(l) := l log(sλ), where X(0)

is the input signal and X(l) is the output of the l-th layer. Best view in color.

129

4. Over-smoothing of Non-linear Graph Neural Networks

2 4 6 8
Layer Size

0.2

0.3

0.4

0.5

0.6
Ac

cu
ra

cy
s = 0.5
s = 1.1
s = 3.0
s = 10.0
Unnormalized

2 4 6 8
Layer Size

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

s = 0.5
s = 1.1
s = 3.0
s = 10.0
Unnormalized

2 4 6 8
Layer Size

0.4

0.5

0.6

Ac
cu

ra
cy

s = 0.5
s = 1.05
s = 3.0
s = 10.0
Unnormalized

Figure 4.9: Effect of the maximum singular values of weights on predictive performance. Horizon-
tal dotted lines indicate the chance rates (30.2% for Noisy Cora 5000, 21.2% for Noisy CiteSeer,
and 39.9% for Noisy PubMed). The error bar is the standard deviation of 3 trials. Left: Noisy
Cora 5000. Right: Noisy CiteSeer. Bottom: Noisy Pubmed. Best view in color.

130

4. Over-smoothing of Non-linear Graph Neural Networks

Noisy Cora 2500

0 20 40 60
Iteration

2

4

6

8

10

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1

0 20 40 60 80
Iteration

2.0

2.5

3.0

3.5

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3

0 20 40 60
Iteration

1.5

2.0

2.5

3.0

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

0 10 20 30 40
Iteration

1.900

1.925

1.950

1.975

2.000

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

2 4 6 8
Iteration

1.8

1.9

2.0

2.1

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 4.10: Transition of maximum singular values of GCN during training using Noisy Cora
2500. Top left: 1 layer. Top right: 5 layers. Bottom left: 7 layers. Bottom right: 9 layers.

131

4. Over-smoothing of Non-linear Graph Neural Networks

Noisy Cora 5000

0 20 40 60
Iteration

2.5

5.0

7.5

10.0

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1

2 4 6 8
Iteration

1.9

2.0

2.1

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3

2 4 6 8
Iteration

1.5

1.6

1.7

1.8

1.9

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

2 4 6 8
Iteration

1.6

1.8

2.0

M
ax

im
um

 S
in

gu
la

r V
al

ue
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

2 4 6 8
Iteration

1.6

1.8

2.0

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 4.11: Transition of maximum singular values of GCN during training using Noisy Cora
5000. Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom:
9 layers.

132

4. Over-smoothing of Non-linear Graph Neural Networks

Noisy CiteSeer

0 20 40 60 80
Iteration

2

4

6

8

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1

0 20 40 60
Iteration

2.0

2.2

2.4

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3

0 20 40 60
Iteration

1.94

1.96

1.98

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

0 25 50 75 100
Iteration

1.90

1.95

2.00

M
ax

im
um

 S
in

gu
la

r V
al

ue
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

0 20 40 60 80
Iteration

1.5

2.0

2.5

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 4.12: Transition of maximum singular values of GCN during training using Noisy CiteSeer.
Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom: 9
layers.

133

4. Over-smoothing of Non-linear Graph Neural Networks

Noisy PubMed

0 20 40 60
Iteration

2

3

4

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1

0 20 40 60
Iteration

2

3

4

5

6

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3

0 20 40 60
Iteration

1.75

1.80

1.85

1.90

1.95

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

0 20 40 60 80
Iteration

1.6

1.8

2.0

M
ax

im
um

 S
in

gu
la

r V
al

ue
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

0 20 40 60
Iteration

1.90

1.95

2.00

2.05

M
ax

im
um

 S
in

gu
la

r V
al

ue

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 4.13: Transition of maximum singular values of GCN during training using Noisy PubMed.
Top left: 1 layer. Top right: 3 layers. Middle left: 5 layers. Middle right: 7 layers. Bottom: 9
layers.

134

4. Over-smoothing of Non-linear Graph Neural Networks

2 1 0 1
Log of Relative Perpendicular Component

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

Noisy CiteSeer (R=0.580, p=2.367e-03)

s=0.5
s=1.05
s=3.0
s=10.0
unnormalized

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
Log of Relative Perpendicular Component

0.40

0.45

0.50

0.55

0.60
Ac

cu
ra

cy

Noisy PubMed (R=0.416, p=3.860e-02)

s=0.5
s=1.05
s=3.0
s=10.0
unnormalized

Figure 4.14: Logarithm of relative perpendicular component and prediction accuracy. Left: Noisy
CiteSeer. Right: Noisy PubMed. p in the title represents the p-value for the Pearson R coefficients.

135

Chapter 5

Optimization and Generalization
Analysis of Multi-scale Graph Neural
Networks through Gradient Boosting

In this chapter, we elucidate how skip connections affect the performance of GNNs. As we have
seen in the previous chapter, Graph Neural Networks (GNNs) are difficult to make themselves
deeper due to the over-smoothing problem. Multi-scale GNNs are a promising approach for
mitigating the over-smoothing problem. However, there is little explanation of why it works
empirically from the viewpoint of learning theory. In this chapter, we derive the optimiza-
tion and generalization guarantees of transductive learning algorithms that include multi-scale
GNNs. Using the boosting theory, we prove the convergence of the training error under weak
learning-type conditions. By combining it with generalization gap bounds in terms of trans-
ductive Rademacher complexity, we show that a test error bound of a specific type of multi-
scale GNNs that decreases corresponding to the number of node aggregations under some con-
ditions. Our results clarifies when multi-scale structures of GNNs are effective against the over-
smoothing problem. We apply boosting algorithms to the training of multi-scale GNNs for real-
world node prediction tasks. We confirm that its performance is comparable to existing GNNs,
and the practical behaviors are consistent with theoretical observations. Code is available at
https://github.com/delta2323/GB-GNN.

5.1 Introduction

Graph Neural Networks (GNNs) [Gori et al., 2005, Scarselli et al., 2009] are an emerging deep
learning model for analyzing graph structured-data. They have achieved state-of-the-art perfor-
mances in node prediction tasks on a graph in various fields such as biochemistry [Duvenaud et al.,
2015], computer vision [Yang et al., 2018], and knowledge graph analysis [Schlichtkrull et al.,
2018]. While they are promising, the current design of GNNs suffers from over-smoothing [Li
et al., 2018b, Oono and Suzuki, 2020a], as we have seen in Chapter 4. Several studies suspected
that this is the cause of the performance degradation of deep GNNs and devised methods to miti-

136

https://github.com/delta2323/GB-GNN

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

gate it [Rong et al., 2020, Zhao and Akoglu, 2020]. Among others, multi-scale GNNs [Liao et al.,
2019b, Nguyen et al., 2017, Xu et al., 2018] are a promising approach as a solution for the over-
smoothing problem. These models are designed to combine the subgraph information at various
scales, for example, by bypassing the output of the middle layers of a GNN to the final layer.

Although multi-scale GNNs empirically have resolved the over-smoothing problem to some
extent, little is known how it works theoretically. To justify the empirical performance from the
viewpoint of statistical learning theory, we need to analyze two factors: generalization gap and
optimization. There are several studies to guarantee the generalization gaps [Du et al., 2019a,
Garg et al., 2020, Jacot et al., 2018, Scarselli et al., 2018, Verma and Zhang, 2019]. However,
to the best of our knowledge, few studies have provided optimization guarantees. The difficulty
partly originates owing to the inter-dependency of predictions. That is, the prediction for a node
depends on the neighboring nodes, as well as its feature vector. It prevents us from extending the
optimization theory for inductive learning settings to transductive ones.

In this chapter, we propose the analysis of multi-scale GNNs through the lens of the boosting
theory [Huang et al., 2018, Nitanda and Suzuki, 2018]. Our idea is to separate a model into two
types of functions – aggregation functions G that mix the representations of nodes and transfor-
mation functions B, typically common to all nodes, that convert the representations to predictions.
Accordingly, we can interpret a multi-scale GNN as an ensemble of supervised models and incor-
porate analysis tools of inductive settings. We first consider our model in full generality and prove
that as long as the model satisfies the weak learning condition (w.l.c.), which is a standard type
of assumption in the boosting theory, it converges to the global optimum. By combining it with
the evaluation of the transductive version of Rademacher complexity [El-Yaniv and Pechyony,
2009], we give a sufficient condition under which a particular type of multi-scale GNNs has the
upper bound of test errors that decreases with respect to depth (the number of node aggregation
operations) under the w.l.c. This is in contrast to usual GNNs suffering from the over-smoothing
problem. Finally, we apply multi-scale GNNs trained with boosting algorithms, termed Gradi-
ent Boosting Graph Neural Network (GB-GNN), to node prediction tasks on standard benchmark
datasets. We confirm that our algorithm can perform favorably compared with state-of-the-art
GNNs, and our theoretical observations are consistent with the practical behaviors.

Our contributions in this chapter can be summarized as follows:

• We propose the analysis of transductive learning models via the boosting theory and derive
the optimization and generalization guarantees under the w.l.c. (Theorem 5.1, Proposition
5.2).

• As a special case, we give the test error bound of a particular type of multi-scale GNNs that
monotonically decreases with respect to the number of node aggregations (Theorem 5.2).

• We apply GB-GNNs, GNNs trained with boosting algorithms, to node prediction tasks on
real-world datasets. We confirm that GB-GNNs perform favorably compared with state-of-
the-art GNNs, and theoretical observations are consistent with the empirical behaviors.

137

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

5.2 Related Work

Graph-based Transductive Learning Algorithms Graph-based transductive learning algo-
rithms operate on a graph given a priori or constructed from the representations of samples. For
example, spectral graph transducer [Joachims, 2003] and the algorithm proposed in Belkin et al.
[2004] considered the regularization defined by the graph Laplacian. Another example is the label
propagation algorithm [Zhou et al., 2004], which propagates label information through a graph.
The extension of label propagation to deep models achieved state-of-the-art prediction accuracy
in semi-supervised tasks appeared in computer vision [Iscen et al., 2019]. Recently, GNNs [Gori
et al., 2005, Scarselli et al., 2009] have been used to solve node prediction problems as a trans-
ductive learning task, where each sample point is represented as a node on a graph, and the goal
is to predict the properties of the nodes. GNNs, especially MPNN-type (message passing neural
networks) GNNs [Gilmer et al., 2017], differ from the aforementioned classical transductive learn-
ing algorithms because it mixes representations of sample points directly thorough the underlying
graph.

Over-smoothing and Multi-scale GNNs Multi-scale GNNs [Abu-El-Haija et al., 2019a,b,
Busch et al., 2020, Liao et al., 2019b, Luan et al., 2019, Nguyen et al., 2017, Xu et al., 2018] are a
promising approach for mitigating the over-smoothing problem using the information of subgraphs
at various scales. For example, the Jumping Knowledge Network [Xu et al., 2018] were intention-
ally designed to solve the over-smoothing problem by aggregating the outputs of the intermediate
layers to the final layer. However, to the best of our knowledge, there is no theoretical explanation
of why multi-scale GNNs can perform well against the over-smoothing problem. We proved that a
specific instantiation of our model has a test error bound that monotonically decreases with respect
to depth, thereby providing the evidence for the architectural superiority of multi-scale GNNs for
the over-smoothing problem.

Boosting Interpretation of Deep Models Boosting [Freund, 1995, Schapire, 1990] is a type
of ensemble method for combining several learners to create a more accurate one. For example,
gradient boosting [Friedman et al., 2000, Mason et al., 2000] is a de-facto boosting algorithm
owing to its superior practical performance and easy-to-use libraries [Chen and Guestrin, 2016,
Ke et al., 2017, Prokhorenkova et al., 2018]. Veit et al. [2016] interpreted Residual Network
(ResNet) [He et al., 2016] as a collection of relatively shallow networks. Huang et al. [2018],
Nitanda and Suzuki [2018] gave another interpretation as an ensemble model and evaluated its
theoretical optimization and generalization performance. In particular, Nitanda and Suzuki [2018]
employed the notion of (functional) gradient boosting. Similar to these studies, we interpret a
GNN as an ensemble model to derive the optimization and generalization guarantees.

AdaGCN (AdaBoosting graph convolutional network), which has been recently proposed
by Sun et al. [2019], is the closest to our study. They interpreted a multi-scale GCN (graph
convolutional network) [Kipf and Welling, 2017] as an ensemble model and trained it using Ad-
aBoost [Freund and Schapire, 1995]. Although their research demonstrated the practical superi-
ority of the boosting approach, we would argue that there is room for exploration in their theory.
For example, they used the Vapnik—Chervonenkis (VC) dimension to evaluate the generalization

138

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

gap. However, it is known that the VC dimension cannot explain the empirical behaviors of Ad-
aBoost [Schapire et al., 1998] (see also [Mohri et al., 2018, Section 7.3]). Besides, they did not
give optimization guarantees of AdaGCNs. In contrast, our primary goal is to devise methodolo-
gies for multi-scale GNNs with a solid theoretical backbone. To realize it, we tackle the non-i.i.d.
nature of node prediction tasks and derive the optimization and refined generalization guarantees.

Generalization Analysis of GNNs in Transductive Settings It is not trivial to define the ap-
propriate notion of generalization in a transductive learning setting because we do not need to
consider the prediction accuracy of sample points that are not in a given dataset. We define the
generalization gap as of discrepancy between the training and test errors in terms of the random
partition of a full dataset into training and test datasets [El-Yaniv and Pechyony, 2009, Vapnik,
1982] (see Section 5.4.2 for the precise definition). This definition can admit the dependency be-
tween sample points. Furthermore, Pechyony and El-Yaniv [2009] showed that any generalization
gap bound in this setting is automatically translated to the bound of the corresponding i.i.d. set-
ting. We employed the transductive version of Rademacher complexity, introduced by El-Yaniv
and Pechyony [2009] to bound generalization gaps. Similarly to supervised settings, we have the
transductive version of model complexities such as the VC dimension and variants of Rademacher
complexity [Tolstikhin et al., 2014, 2015]. We also have transductive PAC-Bayes bounds [Bégin
et al., 2014] and stability-based bounds [Cortes et al., 2008, El-Yaniv and Pechyony, 2006] for
generalization analysis.

Although several research have studied generalization of GNNs [Du et al., 2019a, Garg et al.,
2020, Jacot et al., 2018, Scarselli et al., 2018, Verma and Zhang, 2019], to the best of our knowl-
edge, none of them satisfies for our purpose. Scarselli et al. [2018] derived the upper bound of
the VC dimension of GNNs. However, the derivation is specific to their model and does not apply
to other GNNs. Du et al. [2019a] incorporated the idea of Neural Tangent Kernels [Jacot et al.,
2018] and derived a generalization gap by reducing it to a kernel regression problem. However,
they considered graph prediction problems, where each sample point itself is represented as a
graph drawn from some distribution, while our problem is a node prediction problem. Verma and
Zhang [2019] derived the generalization gap bounds for node prediction tasks using the stability
argument. However, they only considered a GNN with a single hidden layer. It is not trivial to
extend their result to multi-layered and multi-scale GNNs. Similarly to our study, [Garg et al.,
2020] employed the (inductive) Rademacher complexity. However, because they did not discuss
the optimization guarantee, we cannot directly derive the test error bounds from their analysis.

5.3 Problem Settings

5.3.1 Transductive Learning

We review the problem setting of transductive learning problems explained in Section 2.7.6. Let
X and Y be spaces of feature vectors and labels, respectively. Let N ∈ N+ be the sample size and
V := [N] be the set of indices of the sample. For each sample point i ∈ V , we associate a feature-
label pair (xi, yi) ∈ X×Y . Let Vtrain and Vtest be the set of training and test samples, respectively,
satisfying Vtrain ∩ Vtest = ∅ and Vtrain ∪ Vtest = V . We denote the training and test sample sizes

139

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

𝑔(#)𝑋(#&') 𝑋(#)

𝑏(#&') 𝑏(#)

+

𝑋())……
𝑋(')
= 𝑋

𝑏(') 𝑏())

𝑌,

𝑁

𝜂(') 𝜂(#&') 𝜂(#) 𝜂())

Figure 5.1: Schematic view of the model. g(t) : XN → XN ∈ G(t) and b(t) : XN → ŶN ∈ B(t)
are aggregation and transformation functions, respectively, and η(t) is the learning rate at the t-th
iteration. We assume Ŷ = R in Sections 5.4 and 5.5 and X = RC in Section 5.5.

by M := |Vtrain| and U := |Vtest|, respectively. Given the collection of features X = (xi)i∈V and
labels (yi)i∈Vtrain for the training data, the task is to construct a predictor h : X → Ŷ such that
h(xi) is close to yi for all i ∈ Vtest (we define it precisely in Section 5.4.1). Here, Ŷ denotes the
range of the predictor. For later use, we define Q := 1

M + 1
U .

5.3.2 Gradient Boosting

We briefly present an overview of the gradient boosting method [Friedman, 2001, Mason et al.,
2000], which is also called the restricted gradient descent [Grubb and Bagnell, 2011]. Let H be a
subset of Hilbert space (e.g., a collection of predictors). Given a functional L : H → R (e.g., train-
ing error), we want to find the minima of L. Gradient boosting solves this problem by iteratively
updating the predictor h(t) ∈ H at each iteration t by adding a weak learner f (t) near the steepest
direction of L. Although a general theory can admit thatH is infinite-dimensional (known as func-
tional gradient boosting), it is sufficient for our purpose to assume that H is finite-dimensional.
Let F (t) ⊂ H a hypothesis space of weak learners at iteration t ∈ N+. Gradient boosting at-
tempts to find f (t) ∈ F (t) such that f (t) ∈ argminf∈F(t) d(−∇L(h(t)), f) holds true, and the
step size η(t) > 0. Here, d is some distance on H and ∇L(h) is the (Fréchet) derivative of L at
h. We update the predictor by h(t+1) = h(t) + η(t)f (t). Because we cannot solve the minimiza-
tion problem above exactly in most cases, we resort to an approximated algorithm that can find
the solution near the optimal one (corresponding to Definition 5.1 below in our setting). Several
boosting algorithms such as AdaBoost, Arc-x4 [Breiman, 1998], Confidence Boost [Schapire and
Singer, 1999], and Logit Boost [Friedman et al., 2000] fall into this formulation by appropriately
selecting L, d and η(t)’s [Mason et al., 2000].

5.3.3 Models

Figure 5.1 shows a schematic view of the model considered in this chapter. It consists of two types
of components: aggregation functions g(t) : XN → XN that mix the representations of sample
points and transformation functions b(t) : XN → ŶN that make predictions from representations.
We specify a model by defining the set of aggregation and transformation functions at each itera-

140

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

tion t, denoted by G(t) and B(t), respectively. If we use the same function classes G(t) and B(t) for
all t, we shall omit the superscript (t). Typically, a transformation function b ∈ B(t) is a broadcast
of the same function, i.e., b is of the form b = (b0, . . . , b0) for some b0 : X → Ŷ . However, we
do not assume this until necessary. We define the hypothesis space F (t) at the t-th iteration by
F (t) := {b(t) ◦ g(t) ◦ · · · ◦ g(1) | b(t) ∈ B(t), g(s) ∈ G(s)(s ∈ [t])}. Given g(s) ∈ G(s) selected at
the s = 1, . . . , t − 1 iterations, we choose g(t) ∈ G(t) and b(t) ∈ B(t) to construct a weak learner
f (t)(X) := b(t)(g(t)(X(t−1))) and update the representation X(t) := g(t)(X(t−1)). When t = 1,
we define f (1)(X) := b(1)(X) and X(1) := X . We do not select g(1), nor do we update the
representation. Algorithm 1 shows the overall training algorithm.

5.4 Main Theorems

5.4.1 Optimization

In this section, we focus on a binary classification problem. Accordingly, we set Y = {0, 1}
and Ŷ = R. For δ ≥ 0, we define ℓδ(ŷ, y) := 1[(2p − 1)y♯ < δ], where p = sigmoid(ŷ) =
(1 + exp(−ŷ))−1. Note that ℓδ=0 is the 0–1 loss. Because it is difficult to optimize ℓδ, we define
the sigmoid cross entropy loss ℓσ(ŷ, y) := −y log p− (1− y) log(1− p) as a surrogate function.
For a predictor h : X → Ŷ , we define the test error by R(h) := 1

U

∑
n∈Vtest

ℓδ(h(xn), yn), and
training errors by R̂(h) := 1

M

∑
n∈Vtrain

ℓδ(h(xn), yn) and L̂(h) := 1
M

∑
n∈Vtrain

ℓσ(h(xn), yn).
Because it is sufficient to make predictions of given samples, the values of a predictor outside of
the samples do not affect the problem. Therefore, we can and do identify a predictor h with a
vector Ŷ := (h(x1), . . . , h(xN))⊤ ∈ ŶN . Accordingly, we represent R(Ŷ) := R(h) (same is
true for other errors). Similarly to previous studies [Grubb and Bagnell, 2011, Nitanda and Suzuki,
2018], we assume the following learnability condition to obtain the optimization guarantee.

Definition 5.1 (Weak Learning Condition). Let α > β ≥ 0, and g ∈ RN , we say Z ∈ RN

satisfies (α, β, g)-weak learning condition (w.l.c.) if it satisfies ‖Z − αg‖2 ≤ β‖g‖2. We say a
weak learner f : XN → ŶN = RN satisfies (α, β, g)-w.l.c. when f(X) does.

The following proposition provides a handy way to check the empirical satisfiability of w.l.c. It
ensures that the weak learner and negative gradient face the same “direction". Using the arugment
similar to Grubb and Bagnell [2011], we show that our w.l.c. is equivalent to the AdaBoost-style
learnability condition [Huang et al., 2018].

Proposition 5.1. Let Z, g ∈ RN such that g 6= 0. There exists α > β ≥ 0 such that Z satisfies
(α, β, g)-w.l.c. if and only if 〈Z, g〉 > 0. Further, when Z ∈ {±1}N , this is equivalent to the
condition that there exists δ ∈ (0, 1] such that

∑N
n=1wn1{sign(gn) 6= Zn} ≤ 1−δ

2 where wn =
gn
∥g∥1 .

See Section 5.A.1 for the proof. Under the condition, we have the following optimization
guarantee.

Theorem 5.1. Let T ∈ N+ and αt > βt ≥ 0 (t ∈ [T]). Define γt :=
α2
t−β2

t

α2
t

and ΓT :=
∑T

t=1 γt.

If Algorithm 1 finds a weak learner f (t) for any t ∈ [T], its output Ŷ ∈ ŶN satisfies R̂(Ŷ) ≤
(1+eδ)L̂(Ŷ (1))

2MΓT
. In particular, when γt is independent of t, the right hand side is O(1/T).

141

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Algorithm 1 Training Algorithm

input Features X ∈ XN . Labels yi ∈ Y (i ∈ Vtrain). #iterations T . w.l.c. params (αt, βt)t∈[T].
output A collection of predictions Ŷ ∈ ŶN for all sample points.

Find b(1) ∈ B(1) and η(1) > 0.
X(1) ← X .
Ŷ (1) ← η(1)b(1)(X).
for t = 2 . . . T + 1 do

Find b(t) ∈ B(t) and g(t) ∈ G(t) and set f (t)(X)← b(t)(g(t)(X(t−1))).
Ensure 1

M f (t) satisfies (αt, βt,−∇L̂(Ŷ (t−1)))-w.l.c.
X(t) ← g(t)(X(t−1)).
Ŷ (t) ← Ŷ (t−1) + η(t)f (t)(X).

end for
t∗ = argmint∈[T−1] ‖∇L̂(Ŷ (t))‖2,1.
Ŷ ← Ŷ (t∗).

Note that γt is the lower bound of the cosine value of the angle between f (t)(X) and−∇L̂(Ŷ).
The proof strategy is similar to that of [Nitanda and Suzuki, 2018, Theorem 1] in that we bound
the gradient of the training loss (Lemma 5.1) and apply a Kurdyka-Łojasiewicz-like inequality
(Lemma 5.2). See Section 5.A.2 for the proof. We shall confirm that the w.l.c. holds empirically in
the experiments in Section 5.7.1 and discuss the provable satisfiability of the w.l.c. in Section 5.8.

5.4.2 Generalization

We follow the problem setting of El-Yaniv and Pechyony [2009]. For fixed M ∈ N+, we create
a training set by uniformly randomly drawing M sample points without replacement from V
and treating the remaining U sample points as a test set. We think of training and test errors
as random variables with respect to the random partition of V . El-Yaniv and Pechyony [2009]
introduced the Rademacher complexity for transductive learning and derived the generalization
gap bounds. We obtain the following proposition by applying it to our setting. For a hypothesis
space F ⊂ {X → Ŷ}, we denote its transductive Rademacher complexity by R(F). We define
S := 4(M+U)(M∧U)

(2(M+U)−1)(2(M∧U)−1) , which is close to 1 when M and U are sufficiently large. See
Section 5.A.3 for the definition of R(·) and the proof of the proposition.

Proposition 5.2. There exists a universal constant c0 > 0 such that for any δ′ > 0, with a
probability of at least 1 − δ′ over the random partition of samples, the output Ŷ of Algorithm 1
satisfies

R(Ŷ) ≤ R̂(Ŷ) +

T∑
t=1

η(t)R(F (t)) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
.

142

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

5.5 Application to Multi-scale GNNs

We shall specialize our model and derive a test error bound for multi-scale GNNs that is monoton-
ically decreasing with respect to T . In later sections, we assume X = RC for some C ∈ N+. We
continue to assume that Y = {0, 1} and Ŷ = R. First, we specialize B(t) as a parallel application
of the same transformation function for a single sample point of the form

B(t) := {(fbase, . . . fbase)⊤ | fbase ∈ B
(t)
base} (5.1)

for some B(t)base ⊂ {X → Ŷ}. By assuming this structure, we can evaluate the transductive
Rademacher complexity in a similar way to the inductive case. We take multi layer perceptrons
(MLPs) as base functions for an example (see Proposition 5.4 for the general case). Let L ∈ N+

C = (C1, . . . , CL+1) ∈ NL+1
+ and B > 0 such that C1 = C and CL+1 = 1. We define

B(t)base = B
(t)
base(C, L, B̃(t), σ) as a collection of L-layered MLPs with width C:

B(t)base :=
{
x 7→ σ(· · ·σ(xW (1)) · · ·W (L−1))W (L) | ‖W (l)

·c ‖1 ≤ B̃(t) for all c ∈ [Hl+1]
}
.

(5.2)
Here, W (l) ∈ RCl×Cl+1 for l = 1, . . . , L1 and σ : R → R is a 1-Lipschitz function such that
σ(0) = 0 (e.g., ReLU and sigmoid). We apply σ to a vector in an element-wise manner. For
t ∈ N+, P̃ (t) ∈ RN×N , and C̃(t) > 0, we use the aggregation functions G(t) = G(t)(P̃ (t), C̃(t))
defined by

G(t) := {X 7→ P̃ (t)XW |W ∈ RC×C | ‖W·c‖1 ≤ C̃(t) for all c ∈ [C]}. (5.3)

When we have a graph G whose nodes are identified with sample points, typical choices of P̃ (t) are
the (normalized) adjacency matrix A of G, its augmented variant Ã used in GCN2, (normalized)
graph Laplacian, or their polynomial used in e.g., LanczosNet [Liao et al., 2019b]. We can evaluate
Rademacher complexity as follows. By combining it with Propositions 5.2 and Theorem 5.1, we
obtain test error bounds for multi-scale GNNs. See Sections 5.A.4 and 5.A.5 for the proof.

Proposition 5.3. Suppose we use B(t) and G(t) defined above. Let D(t) =
2
√
2(2B̃(t))L−1

∏t
s=2 C̃

(s) and P (t) :=
∏t

s=2 P̃
(s). We have R(F (t)) ≤ 1√

MU
D(t)‖P (t)X‖F.

Theorem 5.2. Suppose we use B(t) and G(t) defined above. Let T ∈ N+ and αt > βt ≥ 0
(t ∈ [T]). Suppose Algorithm 1 with the learning rate η(t) = 4

αt
finds a weak learner f (t) for any

t ∈ [T]. Then, for any δ′ > 0, with a probability of at least 1− δ′, its output satisfies

R(Ŷ) ≤ (1 + eδ)L̂(Ŷ (1))

2MΓT
+

4√
MU

T∑
t=1

D(t)‖P (t)X‖F
αt

+ c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
. (5.4)

In particular, if ΓT = Ω(T ε) for some ε > 0, the first term is asymptotically monotonically
decreasing with respect to T . If α−1

t D(t)‖P (t)‖op = O(ε̃t) for some ε̃ ∈ (0, 1) independent of T ,
the second term is bounded by a constant independent of T .

1As usual, we can take into account of bias terms by preprocessing the input as RC 3 x 7→ (x, 1) ∈ RC+1

2Let D be the degree matrix of G and D̃ = D + I . We define Ã := D̃− 1
2 (A+ I)D̃− 1

2 [Kipf and Welling, 2017].

143

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Analogy to AdaBoost Bounds By interpreting T as the depth of a GNN, this theorem clarifies
how the information of intermediate layers helps to mitigate the over-smoothing problem, that is,
the deeper a model is, the better it is. Theorem 5.2 is similar to typical test error bounds for Ad-
aBoost in that it consists of monotonically decreasing training error terms and model complexity
terms independent of T (e.g., [Mohri et al., 2018, Corollay 7.5]). While hypothesis spaces are
fixed for all iterations t in the AdaBoost case, they can vary in our case due to the representation
mixing caused by G(t)’s. The condition on ‖P‖op ensures that the hypothesis space does not grow
significantly.

Trade-off between Model Complexity and Weak Learning Condition There is a trade-off
between the model complexity and the satisfiability of the w.l.c. Suppose we use the normal-
ized adjacency matrix A as P̃ (t) for all t (we can alternatively use the augmented version Ã).
If the underlying graph is connected and non-bipartite, then, it is known that the eigenvalues
of A satisfies 1 = λ1 > λ2 ≥ · · · ≥ λN > −1 (e.g., [Chung and Graham, 1997, Lemma
1.7], [Oono and Suzuki, 2020a, Proposition 1]). Let (ξn)n∈[N] be the orthonormal basis con-
sisting of eigenvectors of A and we decompose X as Xc =

∑N
n=1 ancξn (anc ∈ R). We

denote X̃(t) := P (t)X . Assume that |λn|’s are small for n ≥ 2. On the one hand, we have
‖X̃(t)‖2F = ‖X‖2F −

∑
n≥2

∑C
c=1(1 − λ2t

n)a
2
nc. Therefore, the model complexity terms decrease

rapidly with respect to t. On the other hand, we have X̃(t)
c = ξ1ca1c +

∑N
n=2 λ

t
nξnanc. Therefore,

X̃(t) degenerates to a rank-one vector of the form ξ1 ⊗ v (v ∈ RC) quickly under the condition.
Since it is known that (ξ1)i ∝ deg(i)

1
2 where deg(·) is the node degree (e.g., see Chung and

Graham [1997]), X̃(t) has little information for distinguishing nodes other than node degrees (cor-
responding to the information-less spaceM in Oono and Suzuki [2020a]). Therefore, it is hard
for weak learners to satisfy w.l.c. using the smoothened representations X̃(t). We shall discuss the
large model complexity case in Section 5.8.

General Transformation Functions We have used MLPs as a specific choice of B(t). More
generally, by using the proposition below, we can reduce the computation of the transductive
Rademacher complexity to that of the inductive counterpart without any structural assumption on
B(t) other than the parallel function application of the form Equation (5.1). See Section 5.A.6 for
the proof. Note that if the order of training and test sample sizes are same, this bound does not
worsen the dependency on sample sizes. This assumption corresponds to the case where the ratio
r defined below satisfies r = Θ(1) as a function of N .

Proposition 5.4. Let r := U
M . Suppose B(t) is of the form Equation (5.1) for some B(t)base.

Use Equation (5.3) as G(s) for s ∈ [t]. Define F (t)
base ⊂ {X → Ŷ} by

F (t)
base := {x 7→ f(xW (2) · · ·W (t)) | f ∈ B(t)base, ‖W

(s)
c· ‖1 ≤ C̃(s),∀c ∈ [C], s = 2, . . . , t}.

We denote the (non-transductive) empirical Rademacher complexity of F (t)
base conditioned

on P (t)X by R̂ind(F
(t)
base;P

(t)X) (see Definition 5.5). Then, we have R(F (t)) <
(1+r)2

r R̂ind(F
(t)
base;P

(t)X).

144

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Computational Complexity The memory-efficiency is an advantage of the boosting algorithm.
When we train the model without fine-tuning, we do not have to retain intermediate weights and
outputs. Therefore, its memory usage is constant w.r.t. T , assuming that the memory usage of
transformation functions b(t) are the same. This is in contrast to the ordinal GNN models trained
in an end-to-end manner. Fine-tuned models use memory proportional to the depth T .

5.6 Practical Improvements

Learning Kernels The one-layer transformation of a GNN X 7→ AXW can be considered as
a kernelized linear model whose Gram matrix is K = AXX⊤A. This interpretation motivates
us to select aggregate functions by learning appropriate kernels from data. We employ kernel
target alignment (KTA) [Cortes et al., 2012, Cristianini et al., 2002] typically used in the context
of kernel methods. Specifically, for Z ∈ RN×C , we denote its Gram matrix K[Z] ∈ RM×M of
the training data by K[Z]ij := ZiZ

⊤
j for i, j ∈ Vtrain. We define the correlation ρ by ρ(Z,Z ′) :=

⟨K[Z],K[Z′]⟩
∥K[Z]∥F∥K[Z′]∥F . Given a set of aggregation functions G(t)KTA, we choose the aggregation function

g(t) such that g(t) ∈ argmax
g∈G(t)

KTA

ρ(g(X(t−1)), Y) is approximately valid3. If we can assume
graph structures that represent the relationships of sample points, we can utilize them to define
G(t)KTA. For example, we used the linear combinations of various powers of the adjacency matrix
in our experiments.

Input Injection A matrix P ∈ RN×N defines the aggregation model GP := {X 7→ PX} as
we do in Section 5.7.1. Typical choices of P are the (normalized) adjacency matrix, a GCN-
like augmented normalized adjacency matrix, or the (normalized) graph Laplacian. If we choose
P ′ := ρP + (1 − ρ)IN for some ρ ∈ [0, 1], it aggregates the representations in a lazy manner
using P . In the similar spirit of Nitanda and Suzuki [2020], Zhang [2019], there is another type
of lazy aggregation that allows us to inject the information of unmixed features directly to the
representations. Specifically, for ρ ∈ [0, 1], we define the input injection model GII(ρ, P) by

GII(ρ, P) := {X 7→ ρPX + (1− ρ)X(1)}.

On one hand, GII(ρ, P) equals GP when ρ = 1. On the other hand, when ρ = 0, GII(ρ, P)
ignores the effect of the representation mixing and employs the original features. We can identify
GII(ρ, P) with {(X,X ′) 7→ (ρPX+(1−ρ)X ′, X ′)}. Therefore, if we redefine a new input space
as X ′ := X × X , which means that we double the input channel size, and preprocess features as
xi 7→ (xi, xi) for each i ∈ V , we can think the input injection model as an example of our model.
For the augmented normalized adjacency matrix Ã, we refer to the model that uses GII(ρ, Ã) as
the set of aggregation functions G(t) and the set of MLPs as B(t) for all t as GB-GNN-II. We
conducted the same experiment as the one we do in Section 5.7.1 using GB-GNN-II. The result is
reported in Section 5.D.1.

3When the task is a classification in which Y = [K], we identify Y ∈ YN with the matrix consisting of one-hot
vectors: Ỹ = (ỹ1, . . . , ỹN)⊤ ∈ RN×K with ỹnk = 1{yn = k}.

145

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Fine Tuning After the training using boosting algorithms, we can optionally fine-tune the whole
model. For example, if each component of the model is differentiable, we can train it in an end-
to-end manner using backpropagation. Because fine-tuning does not increase the Rademacher
complexity, it does not worsen the generalization gap bound. Therefore, if fine-tuning does not
increase the training error, it does not worsen the test error theoretically. However, because it is
not true in all cases, we should compare the model with and without fine-tuning and select the
better of the two in practice.

5.7 Experiments

5.7.1 Node Prediction Tasks

To confirm that boosting algorithms can train multi-scale GNNs practically and our theoreti-
cal observations reflect practical behaviors, we applied our models, coined Gradient Boosting
Graph Neural Networks (GB-GNN), to node classification tasks on citation network. We used
Cora [McCallum et al., 2000, Sen et al., 2008], CiteSeer [Giles et al., 1998, Sen et al., 2008],
and PubMed [Sen et al., 2008] datasets. We used SAMME [Hastie et al., 2009], an extension of
AdaBoost for multi-class classification tasks, as a boosting algorithm. We considered two variants
as aggregation functions G: the multiplication model GÃ by the augmented normalized adjacency
matrix Ã consisting of a singleton GÃ := {X 7→ ÃX} and the KTA model GKTA (we refer to
them as GB-GNN-Adj and GB-GNN-KTA, respectively). We employed MLPs with single hidden
layers as transformation functions B. See Section 5.C.1 regarding the further experiment setups.
In Section 5.D.1, we report the performance of three types of model variants that use (1) MLPs
with different layer size, (2) Input Injection, which is another node aggregation strategy similar to
GCNII [Chen et al., 2020b], and (3) SAMME.R, a different boosting algorithm.

Table 5.1 presents the prediction accuracy. It is noteworthy that boosting algorithms greedily
train the models and achieve comparable performance to existing GNNs trained in an end-to-
end manner by backpropagation. Fine-tuning enhanced the performance of GB-GNN-KTA in the
Cora dataset. However, whether it works well depends on model–dataset combinations. One fine-
tuned model failed due to the memory error. There are two reasons. First, our implementation
naively processes all nodes at once. Second, memory consumption of fine-tuning models increase
proportionally to the depth T . These problems are not specific to our model but common to end-
to-end deep GNN models. We can solve them by node mini-batching.

Figure 5.2 shows the transition of loss values and angle between the obtained weak learners
f (t) and negative gradients −∇L̂(Ŷ (t)) during the training of GB-GNN-Adj using the CiteSeer
dataset. Both training and test errors keep decreasing until GB-GNN has grown up to be a deep
model with as many as 40 weak learners. Accordingly, the angle is acute within this period,
meaning that the w.l.c. is satisfied by Proposition 5.1. In later iterations, the training and test
errors saturate, and the angle fluctuates. These behaviors are consistent with Theorem 5.2, which
implies that the training and test error bounds monotonically decrease under the w.l.c. We observed
similar behaviors for MLPs with various layer sizes.

146

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.1: Accuracy of node classification tasks. Numbers denote the (mean) ±
(standard deviation)(%) of ten runs. (∗) All runs failed due to GPU memory errors. (∗∗) We
have cited the result of Kipf and Welling [2017]. See Section 5.D.2 for more comprehensive
comparisons with other GNNs.

Model Cora CiteSeer PubMed

GB-GNN Adj. 79.9± 0.8 70.5± 0.8 79.4± 0.2
Adj. + Fine Tuning 80.4± 0.8 70.8± 0.8 79.0± 0.5
KTA 80.9± 0.9 73.1± 1.1 79.1± 0.4

KTA + Fine Tuning 82.3± 1.1 70.8± 1.0 N.A.(∗)

GCN(∗∗) – 81.5 70.3 79.0

0 20 40 60
Iteration t

60

40

20

Tr
ai

n
Lo

ss

1 hidden layers, CiteSeer

0 20 40 60
Iteration t

40

20

Te
st

 L
os

s

1 hidden layers, CiteSeer

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, CiteSeer

Figure 5.2: Behaviors of GB-GNN-Adj during training using the CiteSeer dataset. (Left) The
transition of the training loss, (Middle) test loss, (Right) angle cos θ(t) between weak learners and
negative gradients.

147

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.2: ROC-AUC of GB-GNN for link prediction tasks. Numbers denote the (mean) ±
(standard deviation)(%) of ten runs. For VGAE, we have cited the result of Kipf and Welling
[2016].

Model Cora CiteSeer PubMed

GB-GNN 95.8± 3.38 98.7± 0.89 92.9± 1.84
VGAE 91.4± 0.01 90.8± 0.02 94.4± 0.02

5.7.2 Link Prediction Tasks

Although our main interest is node prediction tasks, we can apply our model to other graph ML
tasks. To show this, we applied GB-GNN to link prediction tasks on citation networks. In a link
prediction task, we are given a graph and a collection of node features. The edge set is partially
observable and contains edges for training only. The goal is to predict accurately predict whether
given any node pair has an edge between them. See Section 5.C.2 for details of the experiment
settings.

Table 5.2 shows the results. We compare GB-GNN with Variational Graph Auto-Encoder
(VGAE) [Kipf and Welling, 2016]. We see that GB-GNN performs better than the baseline model
in two out of three datasets and comparably with the baseline model in the other dataset.

5.8 Discussion

Satisfiability of Weak Learning Condition The key assumption of our theory is the w.l.c. (Def-
inition 5.1). Although we have observed in Section 5.7.1 that the w.l.c. empirically holds, it is a
natural question whether we can provably ensure it. To obtain the guaranteed w.l.c., the model
must be sufficiently expressive so that it can approximate all possible values of the negative gra-
dient. We can show that gradient descent can find a weak learner made of an overparameterized
MLP that the w.l.c. holds with high probability, by leveraging the optimization analysis in the NTK
regime [Arora et al., 2019, Du et al., 2019b] (see Section 5.B for details). However, the guaran-
teed w.l.c. comes at the cost of large model complexity, as evident the following proposition (see
Section 5.A.7 for the proof).

Proposition 5.5. Let V,Vg ⊂ RN , and α > β ≥ 0 such that {−1, 0, 1}N ⊂ Vg. If for any g ∈ Vg,
there exists Z ∈ V such that Z satisfies (α, β, g)-w.l.c., then, we have R(V) ≥ α2−β2

α .

Let Vg be the set of possible values that can be taken by the negative gradient and V be the
space of outputs of weak learners at a specific iteration. Then, if we want weak learners to satisfy
the w.l.c., its Rademacher complexity is inevitably as large as Ω(1) (assuming that α and β are
independent of M). We leave the problem for future work whether there exists a setting that
simultaneously satisfies the following conditions: (1) the w.l.c. (or similar conditions) provably
holds, (2) training of weak learners is tractable, and (3) the model has a small complexity (such as
the Rademacher complexity).

148

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Choice of Transformation Functions In Section 5.5, we used an L-layered MLP with L1 norm
constraints as a transformation function B(t). The test error bound in Theorem 5.2 can exponen-
tially depend on L via the constant D(t). Since this problem occurs in inductive MLPs, too, many
studies derived generalization bounds that avoid this exponential dependency [Arora et al., 2018,
Nagarajan and Kolter, 2019, Wei and Ma, 2019]. We can incorporate them to obtain tighter bounds
using Proposition 5.4.

Choice of Node Aggregation Functions We considered a linear aggregation model as G(t)
in Section 5.7.1 because GNNs that consist of linear node aggregations and non-linear MLPs is
practically popular in the GNN research, such as SGC [Wu et al., 2019a], gfNN [NT and Maehara,
2019], and APPNP [Klicpera et al., 2019]. Theoretically, NT and Maehara [2019], Oono and
Suzuki [2020a] claimed that non-linearity between aggregations is not essential for predictive
performance.

We can alternatively use non-linear aggregation models. For example, consider the model
X 7→ σ(P̃ (t)XW) with the same L1 constraints as Equation (5.3) as G(t), where σ : R → R is
the ReLU function. Adding the non-linearity σ changes two things. First, ‖P (t)X‖F in the bound
of Theorem 5.2 is replaced with

∏t
s=2 ‖P̃ (s)‖op‖X‖F. It makes the interpretation of the trade-off

discussed in Section 5.5 impossible, and the bound looser, essentially because the bound loses the
information of eigenvectors. Second, the bound for Rademacher complexity of F (t) is multiplied
by 2t. It changes the condition for the monotonically decreasing test error bound with respect to
T from α−1

t D(t)‖P (t)‖op = O(ε̃t) to a stricter one α−1
t 2tD(t)

∏t
s=2 ‖P̃ (s)‖op = O(ε̃t).

With that being said, we do not have a definitive answer whether linear aggregation models are
truly superior to non-linear ones — we may be able to use techniques similar to Oono and Suzuki
[2020a] for the first problem and refined analyses could eliminate the 2t term for the second
problem.

5.9 Chapter Conclusion

In this chapter, to investigate the role of skip connections in GNNs, we analyzed a certain type
of transductive learning models, including multi-scale GNNs. We derived their optimization and
generalization guarantees under the weak learnability condition (w.l.c.). Our idea was to inter-
pret multi-scale GNNs as an ensemble of weak learners and apply boosting theory. As a special
case, we showed that a particular type of multi-scale GNNs has a generalization bound that is
decreasing with respect to the number of node aggregations under the condition. To the best of
our knowledge, this is the first result that multi-scale GNNs provably avoid the over-smoothing
from the viewpoint of learning theory. We confirmed that our models, coined GB-GNNs, worked
comparably to existing GNNs, and that their empirical behaviors were consistent with theoretical
observations. We believe that exploring deeper relationships between the w.l.c. and the underlying
graph structures such as graph spectra is a promising direction for future research.

149

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

5.A Proof of Theorems and Propositions

We give proofs for the theorems and propositions in the order they appeared in the main paper.

5.A.1 Proof of Proposition 5.1

We prove the more detailed claim. Proposition 5.1 is a part of the following proposition. The
third condition below means that the prediction Z is better than a random guess as a solution
to the binary classification problem on the training dataset weighed by wn’s. The proof for the
equivalence of the second and third conditions are similar to that of [Grubb and Bagnell, 2011,
Theorem 1]

Proposition 5.6. Let Z, g ∈ RN such that g 6= 0. The followings are equivalent

1. There exist α, β such that α > β ≥ 0 and Z satisfies (α, β, g)-w.l.c.

2. 〈Z, g〉 > 0.

Under the condition, for any r ∈ [sin2 θ, 1), we can take α := C, β := rC, and ‖Z − αg‖2 =
β‖g‖2, where

cos θ =
〈Z, g〉
‖Z‖2‖g‖2

, C :=
〈Z, g〉 ±

√
〈Z, g〉2 − (1− r2)‖Z‖2‖g‖2
(1− r2)‖g‖22

.

Suppose further Z ∈ {±1}N , then, the conditions 1 and 2 are equivalent to

3. There exists δ ∈ (0, 1] such that
∑N

n=1wn1{sign(gn) 6= Zn} ≤ 1−δ
2 where wn = gn

∥g∥1 .

Proof. (1. =⇒ 2.) We have

‖Z − αg‖2 ≤ β‖g‖2 ⇐⇒ ‖Z‖22 − 2α〈Z, g〉+ α2‖g‖22 ≤ β2‖g‖22

⇐⇒ 〈Z, g〉 ≥ ‖Z‖
2
2

2α
+

α2 − β2

2α
‖g‖22 > 0. (5.5)

(2. =⇒ 1.) For k > 0, we define

r̃(k) :=
‖Z − kg‖2
k‖g‖2

.

Then, by direct computation, we have

r̃(k)2 =
‖Z‖22
‖g‖22

(
γ − 〈Z, g〉

‖Z‖22

)2

+ 1− 〈Z, g〉2

‖Z‖22‖g‖22
.

where γ := k−1. Therefore, r̃(k) is a quadratic function of γ that takes the minimum value sin2 θ

at γ = ⟨Z,g⟩
∥Z∥22

> 0. Therefore, for any r ∈ [sin2 θ, 1) there exists k0 > 0 such that r̃(k0) = r. Then,
by setting α := k0 and β := rk0, we have α > β ≥ 0 and

‖Z − αg‖2 = r̃(k0)α‖g‖2 = rα‖g‖2 = β‖g‖2.

150

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

By solving r̃(k0) = r, we obtain α = C and β = rC.
(1. =⇒ 3.) Define w+ :=

∑N
n=1wn1{Zn = sign(gn)} and w− :=

∑N
n=1wn1{Zn 6=

sign(gn)}. By definition, we have w+ + w− = ‖w‖1 = 1.

〈Z, g〉 =
N∑

n=1

Zngn

=
N∑

n=1

Znwn‖g‖1 sign(gn)

= ‖g‖1(w+ − w−). (5.6)

Therefore, using the reformulation Equation (5.5) of the assumption, we have

w+ − w− =
〈Z, g〉
‖g‖1

≥ 〈Z, g〉
‖g‖2

√
N

(∵ Cauchy–Schwraz inequality))

≥
√
N

2α‖g‖2
+

α2 − β2

2α

‖g‖2√
N

(∵ Equation (5.5) and ‖Z‖22 = N)

≥ 2

√
1

2α

α2 − β2

2α
(∵ AM–GM inequality)

=

√
1− β2

α2
.

Set δ :=
√
1− β2

α2 . By the assumption α > β ≥ 0, we have δ ∈ (0, 1]. Therefore, we have

w+ =
1

2
(w+ + w−) +

1

2
(w+ − w−)

≥ 1

2
(w+ + w−) +

δ

2

=
1 + δ

2
,

which is equivalent to w− ≤ 1
2(1− δ).

(3. =⇒ 2.) Using the same argument as Equation (5.6), we have

〈Z, g〉 = ‖g‖1(w+ − w−).

By the assumption, we have

w− ≤ 1− δ

2
(w+ + w−)

⇐⇒ w+ ≥ 1 + δ

2
(w+ + w−)

151

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

⇐⇒ w+ − w+ + w−

2
≥ 1 + δ

2
(w+ + w−)− w+ + w−

2

⇐⇒ 1

2
(w+ − w−) ≥ δ

2
(w+ + w−)

Therefore, we have

〈Z, g〉 = ‖g‖1(w+ − w−)

= ‖g‖1δ(w+ + w−)

= ‖g‖1δ > 0.

5.A.2 Proof of Theorem 5.1

Assumption 5.1. ℓ : Ŷ × Y → R is a non-negative C2 convex funxtion with respect to the first
variable and satisfies |∇2

ŷℓ(ŷ, y)| ≤ A for all ŷ ∈ Ŷ and y ∈ Y .

Proposition 5.7. The sigmoid cross entropy loss ℓσ satisfies Assumption 5.1 with A = 1
4 .

Lemma 5.1. Suppose the loss function ℓ satisfies Assumption 5.1 with A > 0. Define the training
error L̂ by L̂(Ŷ) := 1

M

∑M
n=1 ℓ(ŷn, yn) for Ŷ ⊤ = (ŷ1, . . . , ŷN)⊤. Suppose Algorithm 1 with the

learning rate η(t) = 1
Aαt

finds a weak learner f (t) for any t ∈ [T]. Then, we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
2AL̂(Ŷ (1))

M
.

Proof. First, we define C
(t)
f := (2αt)

−1 and C
(t)
L :=

α2
t−β2

t
2αt

. Note that we have by definition

γt = 4C
(t)
f C

(t)
L . (5.7)

We denote Z(t)⊤ = (z
(t)
1 , . . . , z

(t)
N)⊤ := 1

M f (t)(X)⊤ and (ŷ
(t)
1 , . . . , ŷ

(t)
N)⊤ := Ŷ (t)⊤. Since Z(t)

satisfies (αt, βt,−∇L̂(Ŷ (t−1)))-w.l.c., we have

‖Z(t) + αt∇L̂(Ŷ (t−1))‖F ≤ βt‖∇L̂(Ŷ (t−1))‖F
⇐⇒ ‖Z(t)‖2F + 2αt〈Z(t),∇L̂(Ŷ (t−1))〉+ α2

t ‖∇L̂(Ŷ (t−1))‖2F ≤ β2
t ‖∇L̂(Ŷ (t−1))‖2F

⇐⇒ 〈Z(t),∇L̂(Ŷ (t−1))〉+ C
(t)
f ‖Z

(t)‖2F ≤ −C
(t)
L ‖∇L̂(Ŷ

(t−1))‖2F. (5.8)

Since η(t) =
2C

(t)
f

A , we have

〈∇L̂(Ŷ (t−1)), Z(t)〉+ Aη(t)

2
‖Z(t)‖2F ≤ −C

(t)
L ‖∇L̂(Ŷ

(t−1))‖2F.

152

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

By Taylors’ theorem, and Assumption 5.1, we have

ℓ(ŷ(t)n , yn) ≤ ℓ(ŷ(t−1)
n , yn) + 〈∇ŷℓ(ŷ

(t−1)
n , yn), ŷ

(t)
n − ŷ(t−1)

n 〉+ A

2
‖ŷ(t)n − ŷ(t−1)

n ‖22.

By taking the average in terms of n, we have

L̂(Ŷ (t)) ≤ L̂(Ŷ (t−1)) +
1

M

M∑
n=1

〈∇ŷℓ(ŷ
(t−1)
n , yn), y

(t)
n − y(t−1)

n 〉+ A

2M

M∑
n=1

‖y(t)n − y(t−1)
n ‖22.

By the definition of Ŷ (t)’s, we have

ŷ(t)n − ŷ(t−1)
n = η(t)Mz(t)n .

Therefore, we have

L̂(Ŷ (t)) ≤ L̂(Ŷ (t−1)) + η(t)
M∑
n=1

〈∇ŷℓ(ŷ
(t−1)
n , yn), z

(t)
n 〉+

1

2
η(t)2AM

M∑
n=1

‖z(t)n ‖22

≤ L̂(Ŷ (t−1)) + η(t)
N∑

n=1

〈∇ŷℓ(ŷ
(t−1)
n , yn), z

(t)
n 〉+

1

2
η(t)2AM

N∑
n=1

‖z(t)n ‖22

≤ L̂(Ŷ (t−1)) + η(t)M〈∇ŷL̂(Ŷ (t−1)), Z(t)〉+ 1

2
η(t)2AM‖Z(t)‖2F

≤ L̂(Ŷ (t−1))− η(t)MC
(t)
L ‖∇L̂(Ŷ

(t−1))‖2F (∵ Equation (5.8))

= L̂(Ŷ (t−1))−
2MC

(t)
f C

(t)
L

A
‖∇L̂(Ŷ (t−1))‖2F (∵ Definition of η(t))

= L̂(Ŷ (t−1))− Mγt
2A
‖∇L̂(Ŷ (t−1))‖2F (∵ Equation (5.7))

Rearranging the term, we get

γt‖∇L̂(Ŷ (t−1))‖2F ≤
2A

M

(
L̂(Ŷ (t−1))− L̂(Ŷ (t))

)
.

By taking the summation in terms of t, we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
2A

M

(
L̂(Ŷ (1))− L̂(Ŷ (T+1))

)
≤ 2AL̂(Ŷ (1))

M
.

We used the non-negativity of the loss function L̂ in the final inequality.

Lemma 5.2. Assume the loss function is the cross entropy loss. Let δ ≥ 0. For any Ŷ ∈ ŶN , we
have

R̂(Ŷ) ≤ (1 + eδ)‖∇L̂(Ŷ)‖2,1

153

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Proof. Same as [Nitanda and Suzuki, 2018, Proposition C].

Proof of Theorem 5.1. Since we use the cross entropy loss, by Lemma 5.2, we have

R̂(Ŷ) ≤ (1 + eδ)‖∇L̂(Ŷ)‖2,1 (5.9)

By the definition of Ŷ , t∗, and Γ, we have

ΓT ‖∇L̂(Ŷ)‖2,1 =

(
T∑
t=1

γt

)
‖∇L̂(Ŷ (t∗))‖2,1

≤
T∑
t=1

γt‖∇L̂(y(t))‖22,1

≤
T∑
t=1

γt‖∇L̂(y(t))‖2F (5.10)

From Lemma 5.1 with A = 1
4 (Proposition 5.7), we have

T∑
t=1

γt‖∇L̂(Ŷ (t))‖2F ≤
L̂[Ŷ (1)]

2M
(5.11)

Combining Equation (5.9), Equation (5.10), and Equation (5.11), we have

R̂(Ŷ) ≤ (1 + eδ)L̂[Ŷ (1)]

2MΓT
.

5.A.3 Proof of Proposition 5.2

The proof is basically the application of [El-Yaniv and Pechyony, 2009, Corollary 1] to our setting.
We recall the definition of the transductive Rademacher complexity introduced by El-Yaniv and
Pechyony [2009].

Definition 5.2 (Transductive Rademacher Complexity). For p ∈ [0, 12] and V ⊂ RN , we define

R(V, p) := QEσ

[
sup
v∈V

σ · v
]
,

Here, Q = 1
M + 1

U and σ = (σ1, . . . , σN) is an sequence of i.i.d. random variables whose
distribution is P(σi = 1) = P(σi = −1) = p and P(σi = 0) = 1 − 2p. In particular, we denote
R(V) := R(V, p0) where p0 =

MU
(M+U)2

.

We introduce the notion of the (weighed) sum of sets.

154

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Definition 5.3. For V1, . . . ,VT ⊂ RN and α1, . . . , αT ∈ R, we define their (weighted) sum∑T
t=1 αtVt by

T∑
t=1

αtVt :=

{
T∑
t=1

αtvt

∣∣∣∣∣ vt ∈ Vt
}
.

We define the hypothesis space H by H :=
∑T

t=1 η
(t)F (t). Note that any output Ŷ of Algo-

rithm 1 satisfies Ŷ ∈ H. We can compute the Rademacher complexity of the sum similarly to the
inductive case.

Proposition 5.8. For V1,V2 ⊂ RN , a1, a2 ∈ R and p ∈ [0, 12], we have R(a1V1 + a2V2) ≤
|a1|R(V1) + |a2|R(V2).

Proof. Take any realization σ of the N i.i.d. transductive Rademacher variable of parameter p.
For any v = a1v1 + a2v2 ∈ a1V1 + a2V2 (v1 ∈ V1, v2 ∈ V2), we have

〈σ, v〉 = 〈σ, a1v1〉+ 〈σ, a2v2〉 ≤ |a1| sup
v1∈V1

〈σ, v1〉+ |a2| sup
v1∈V2

〈σ, v2〉.

By taking the supremum of v, we have

sup
v∈V1+V2

〈σ, v〉 ≤ |a1| sup
v1∈V1

〈σ, v1〉+ |a2| sup
v2∈V2

〈σ, v2〉.

The proposition follows by taking the expectation with respect to σ.

Proof of Proposition 5.2. Let H =
∑T

t=1 η
(t)F (t). By [El-Yaniv and Pechyony, 2009, Corollary

1], with probability of at least 1− δ′ for all Ŷ ′ ∈ H, we have

R(Ŷ ′) ≤ R̂(Ŷ ′) +R(H) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
.

Since the output Ŷ of Algorithm 1 satisfies Ŷ ∈ H, we have

R(Ŷ) ≤ R̂(Ŷ) +R(H) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
. (5.12)

By Proposition 5.8, we have

R(H) ≤
T∑
t=1

η(t)R(F (t)). (5.13)

Combining Equation (5.12) and Equation (5.13) concludes the proof.

155

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

5.A.4 Proof of Proposition 5.3

We shall prove Proposition 5.9, which is more general than Proposition 5.3. To formulate it, we
first introduce the variant of the transductive Rademacher complexity.

Definition 5.4 ((Symmetrized) Transductive Rademacher Complexity). For V ⊂ RN and p ∈
[0, 1/2], we define the symmetrized transductive Rademacher complexity R(V, p) by

R(V, p) := QEσ

[
sup
v∈V
|〈σ, v〉|

]
.

We denote R(V) := R(V, p0) for p0 = MU
(M+U)2

. For F ⊂ {X → Ŷ}, we denote R(F , p) :=

R(V, p) where V = {(f(X1), . . . , f(XN)))⊤ | f ∈ F}, where X1, . . . XN are feature vectors of
the given training dataset defined in Section 5.4.1.

We refer to the transductive Rademacher complexity defined in Definition 5.2 as the unsym-
metrized transductive Rademacher complexity if necessary4. Note that we have by definition

R(V, p) ≤ R(V, p). (5.14)

Using the concept of the symmetrized transductive Rademacher complexity, we state the main
proposition of this section.

Proposition 5.9. Let p ∈ [0, 1/2]. Suppose we use G(t) and B(t) defined by Equation (5.1)
and Equation (5.2) as a model. Define D(t) = 2

√
2(2B̃(t))L−1

∏t
s=2 C̃

(s) and P (t) :=
∏t

s=2 P̃
(s).

Then, we have
R(F (t), p) ≤

√
2pQB(t)‖P (t)X‖F.

We shall prove this proposition in the end of this section. El-Yaniv and Pechyony [2009]
proved the contraction property of the unnsymmetrized Rademacher complexity. We prove the
contraction property for the symmetrized variant.

Proposition 5.10. Let V ⊂ RN , p ∈ [0, 1/2]. Suppose ρ : R → R is Lρ-Lipschitz and ρ(0) = 0.
Then, we have

R(ρ ◦ V, p) ≤ 2LρR(V, p),

where ρ ◦ V := {(ρ(v1), . . . , ρ(vN))⊤ | v = (v1, . . . , vN)⊤ ∈ V}.

Proof. First, by the definition R and ρ(0) = 0, we have

R(V ∪ {0}, p) = R(V, p),
R(ρ ◦ (V ∪ {0}), p) = R((ρ ◦ V) ∪ {0}, p) = R(ρ ◦ V, p).

Therefore, we can assume without loss of generality that 0 ∈ V . Then, we have

R(ρ ◦ V, p) = QEσ sup
v∈V
|〈σ, ρ(v)〉|

4We are not aware the standard notion used to tell apart the complexities defined in Definitions 5.2 and 5.4. The
notion of (un)symmetrized is specific to this paper.

156

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

≤ QEσ sup
v∈V
〈σ, ρ(v)〉+QEσ sup

v∈V
〈σ,−ρ(v)〉

= R(ρ ◦ V, p) +R(−ρ ◦ V, p), (5.15)

where σ = (σ1, . . . , σN) are the i.i.d. transducive Rademacher variables of parameter p. We used
0 ∈ V and ρ(0) = 0 in the inequality above. By the contraction property of the unsymmetrized
transductive Rademacher complexity ([El-Yaniv and Pechyony, 2009, Lemma 1]), we have

R(ρ ◦ V, p) ≤ LρR(V, p)
R(−ρ ◦ V, p) ≤ LρR(V, p)

By combining them with Equation (5.14) and Equation (5.15), we have

R(ρ ◦ V, p) ≤ 2LρR(V, p) ≤ 2LρR(V, p).

Proof of Proposition 5.9. The proof is the extension of [Mohri et al., 2018, Exercises 3.11] to the
transductive and multi-layer setting. See also the proof of [Nitanda and Suzuki, 2018, Theorem 3].
First, we note that the multiplication X 7→ P̃ (s)X in G(s) and the multiplication X 7→ XW (s−1) ∈
RC×C in G(s−1) are commutative operations. Therefore, we have

F (t)(X) := {(z1, . . . , zN) | f ∈ B(t)base, ‖W
(s)
·c ‖1 ≤ C(s) for all c ∈ [C] and s = 2, . . . , t},

where zn := f(xnW
(2) · · ·W (t)) and xn := (P (t)X)n ∈ RC . Therefore, it is sufficient that we

first prove the proposition by assuming P̃ (s) = IN for all s = 2, . . . , t and then replace X with
P (t)X .

We define J (s) ⊂ RN be the set of possible values of any channel of the s-th representations
and H(l) ⊂ RN be the set of possible values of any output channel of the l-th layer of an MLP.
More concretely, we define

J (1) := {X·c | c ∈ [C]},

J (s+1) :=

{
C∑
c=1

zcwc

∣∣∣∣∣ zc ∈ J (s), ‖w‖1 ≤ C̃(s+1)

}
,

for s = 1, . . . t− 1. Similarly, we define

H(1) := J (t),

H̃(l+1) :=

Cl+1∑
c=1

zcwc

∣∣∣∣∣∣ zc ∈ H(l), ‖w‖1 ≤ B̃(t)

 ,

H(l+1) := σ ◦ H̃(l+1) = {σ(z) | z ∈ H̃(l+1)}.

for l = 1, . . . , L. By the definition of F (t), we have {f(X) | f ∈ F (t)} = H̃(L+1). On one hand,
we can bound the Rademacher complexity of H̃(l) as

Q−1R(H̃(l+1), p) = Eσ

 sup
∥w∥1≤B̃(l),Z·c∈H(l)

∣∣∣∣∣∣
N∑

n=1

σn

Cl+1∑
c=1

Zncwc

∣∣∣∣∣∣

157

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

= Eσ

 sup
∥w∥1≤B̃(l),Z·c∈H(l)

∣∣∣∣∣∣
Cl+1∑
c=1

wc

N∑
n=1

σnZnc

∣∣∣∣∣∣

= B̃(t)Eσ

[
sup

Z∈H(l)

∣∣∣∣∣
N∑

n=1

σnZn

∣∣∣∣∣
]

= B̃(t)Q−1R(H(l), p). (5.16)

On the other hand, since σ is 1-Lipschitz, by the contraction property (Proposition 5.10), we
bound the Rademacher complexity ofH(l+1) as

R(H(l+1), p) ≤ 2R(H̃(l+1), p). (5.17)

By combining Equation (5.16) and Equation (5.17), we have the inductive relationship.

R(H(l+1), p) ≤ 2B̃(t)R(H(l), p). (5.18)

Using the similar argument to J (s)’s, for s ∈ 2, . . . , t− 1, we have

R(J (s+1), p) ≤ C̃(s)R(J (s), p). (5.19)

Let Pc ∈ RC be the projection matrix onto the c-th coordinate. Then, for the base step, we can
evaluate the Rademacher complexity of J (1) as

Q−1R(J (1), p) = Eσ

[
max
c∈[C]

∣∣∣∣∣
N∑

n=1

σnXnc

∣∣∣∣∣
]

= Eσ

[
max
c∈[C]

∣∣∣∣∣
(

N∑
n=1

σnXn

)
Pc

∣∣∣∣∣
]

≤ Eσ

[
max
c∈[C]

‖Pc‖op

∥∥∥∥∥
N∑

n=1

σnXn

∥∥∥∥∥
2

]

≤ Eσ

∥∥∥∥∥
N∑

n=1

σnXn

∥∥∥∥∥
2

≤

√√√√Eσ

C∑
c=1

(
N∑

n=1

σnXnc

)2

(∵ Jensen’s inequality)

=

√√√√Eσ

C∑
c=1

N∑
n,m=1

σnσmXncXmc

=

√√√√ C∑
c=1

N∑
n=1

2p(Xnc)2 (5.20)

=
√
2p‖X‖F. (5.21)

158

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Here, we used in Equation (5.20) the equality

Eσσmσn = 2pδmn, (5.22)

which is shown by the independence of transductive Rademacher variables. By using the inequal-
ities we have proved so far, we obtain

R(F (t), p) = R(H̃(L+1), p)

= 2R(H(L), p) (∵ Equation (5.17))

≤ 2(2B̃(t))L−1R(H(1), p) (∵ Equation (5.18))

≤ 2(2B̃(t))L−1R(J̃ (t), p) (∵ Definition ofH(1))

≤ 2(2B̃(t))L−1

(
t∏

s=2

C̃(s)

)
R(J̃ (1), p) (∵ Equation (5.19))

≤ √pQD(t)‖X‖F, (∵ Equation (5.21))

where we used D(t) = 2
√
2(2B̃(t))L−1

∏t
s=2 C̃

(s). Therefore, the proposition is true for P̃ (s) =
IN for all s = 2, . . . , t. As stated in the beginning of the proof, we should replace X with P (t)X
in the general case.

Proof of Proposition 5.3. By applying Proposition 5.9 with p = p0 = MU
(M+U)2

and using Equa-
tion (5.14), we have

R(F (t)) ≤ R(F (t), p0) ≤

√
MU

(M + U)2
QD(t)‖P (t)X‖F =

D(t)‖P (t)X‖F√
MU

.

5.A.5 Proof of Theorem 5.2

Proof. By Proposition 5.2, with probability 1− δ′, we have

R(Ŷ) ≤ R̂(Ŷ) +
T∑
t=1

η(t)R(F (t)) + c0Q
√
M ∧ U +

√
SQ

2
log

1

δ′
. (5.23)

By Theorem 5.1, we have

R̂(Ŷ) ≤ (1 + eδ)L̂(Ŷ (1))

2MΓT
. (5.24)

By Proposition5.3, we have

R(F (t)) ≤ D(t)‖P (t)X‖F√
MU

(5.25)

159

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

By applying Equation (5.24) and Equation (5.25) to Equation (5.23) and substituting the learning
rate η(t) = 4

αt
, we obtained Equation (5.4). In particular, when ΓT = O(T ε), the first term of

Equation (5.4) is O(T−ε), which is asymptotically monotonically decreasing (assuming δ, Ŷ (1),
and M is independent of T). When α−1

t B(t)‖P (t)‖top = O(ε̃t), the second term of Equation (5.4)
is bounded by

4√
MU

T∑
t=1

D(t)‖P (t)X‖F
αt

≤ 4
√
2‖X‖F√
MU

T∑
t=1

B(t)‖P (t)‖op
αt

≲ ‖X‖F√
MU

1

1− ε̃
.

The upper bound is independent of T (assuming that ‖X‖F, M , and U are independent of T).

5.A.6 Proof of Proposition 5.4

First, we recall the usual (i.e., inductive) version of the Rademacher complexity. We employ the
following definition.

Definition 5.5 ((Inductive) Empirical Rademacher Complexity). ForFbase ⊂ {X → Ŷ} and Z =
(z1, . . . , zN) ∈ XN , we define the (inductive) empirical Rademacher complexity R̂ind(Fbase)
conditioned on Z by

R̂ind(Fbase;Z) :=
1

N
Eε

[
sup

f∈Fbase

N∑
n=1

εnf(zn)

]
,

where ε = (ε1, . . . , εN) is the i.i.d. Rademacher variables defined by P(εi = 1) = P(εi = −1) =
1/2.

Proof of Proposition 5.4. Similarly to Proposition 5.9 it is sufficient that we first prove the propo-
sition by assuming P̃ (s) = IN for all s = 2, . . . , t and then replace X with P (t)X . By definition,
the transductive Rademacher variable of parameter p = 1/2 equals to the (inductive) Rademacher
variable. Therefore, we have

Q−1R(F (t), 1/2) = Eσ

[
sup

f∈F(t)

N∑
n=1

σnf(X)n

]

= Eσ

 sup
fbase∈B

(t)
base,∥W (s)∥1≤C̃(s)

N∑
n=1

σnfbase(XW (2) · · ·W (t))

= NR̂ind(F

(t)
base;X). (5.26)

Since p0 := MU
(M+U)2

< 1/2, by the monotonicity of the transductive Rademacher complexity
(see El-Yaniv and Pechyony [2009, Lemma 1]), we have

R(F (t)) = R(F (t), p0) < R(F (t), 1/2). (5.27)

160

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

The proposition follows from Equation (5.26) and Equation (5.27) as follows

R(F (t)) < QNR̂ind(F
(t)
base;X) =

(1 + r)2

r
R̂ind(F

(t)
base;X)

5.A.7 Proof of Proposition 5.5

Proof. We denote p0 = MU
(M+U)2

. Let σ1, . . . , σN be the i.i.d. transductive Rademacher variable of

parameter p0. Since {−1, 0, 1}N ⊂ Vg, for any realization of σ = (σ1, . . . , σN), we have σ ∈ Vg.
By the assumption, there exists Zσ ∈ V such that

‖Zσ − ασ‖2 ≤ β‖σ‖2.

Set Cf := (2α)−1 and CL := α2−β2

2α . Similarly to the proof of Theorem 5.1, we have

‖Zσ − ασ‖2 ≤ β‖σ‖2
⇐⇒ ‖Zσ‖22 − 2α〈Zσ,σ〉+ α2‖σ‖22 ≤ β2‖σ‖22
⇐⇒ Cf‖Zσ‖22 + CL‖σ‖22 ≤ 〈Zσ,σ〉.

Therefore, we have

Q−1R(V) = Eσ

[
sup
Z∈F
〈σ, Z〉

]
≥ Eσ [〈σ, Zσ〉]
≥ Eσ

[
CL‖σ‖22 + Cf‖fσ‖22

]
≥ Eσ

[
CL‖σ‖22

]
= CL · 2Np0.

In the last equality, we used Equation (5.22). Therefore, we have R(F) ≥ 2CLNp0Q = α2−β2

α .

5.B Provable Satisfiability of Weak Learning Condition using Over-
parameterized Models

In this section, we show that there exists a model that for any w.l.c. parameters α and β, we can find
a weak learner which probably satisfies the w.l.c. using the gradient descent algorithm. To ensure
the w.l.c., the set of transformation functions Bmust be sufficiently large so that it can approximate
all possible values of the negative gradient−∇L̂ can take. We can accomplish it by leveraging the
universal approximation property of MLPs, similarly to graph isomorphism networks (GIN) [Xu
et al., 2019], but for a different purpose. We adopt the recent studies that proved the global
convergence of over-parameterized MLPs trained by a tractable algorithm (e.g., Arora et al. [2019],
Du et al. [2019b]).

161

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Let R ∈ N+. For the parameter Θ = (θri) ∈ RR×N , we consider an MLP with a single hidden
layer fΘ : RC → R defined by

fΘ(x) :=
1√
R

R∑
r=1

arσ(θ
⊤
r·x),

where ar ∈ {−1, 1} and σ is the ReLU activation function: σ(x) := x ∨ 0 (we apply ReLU
in an element-wise manner for a vector input). We define the set of transformation functions
B := {(fΘ, . . . , fΘ) | Θ ∈ RR×N}. At the t-th iteration, given a gradient ∇L̂(Ŷ (t−1)), we
initialize the model with ar

i.i.d.∼ Unif({−1, 1}) and θri
i.i.d.∼ N (0, I) independently and train it

with the gradient descent to optimize Θ by minimizing the mean squared error between the output
of the model and the properly normalized negative gradient. Using the result of [Du et al., 2019b],
we obtain the following guarantee.

Proposition 5.11. Suppose Algorithm 1 finds g(s) ∈ G(s) (s ∈ [t]) such that X(t) = g(t) ◦ · · · ◦
g(1)(X) =

[
x1 · · · xN

]⊤ ∈ RN×C (xi ∈ RC) satisfies the conditions that xi 6= 0 for all
i ∈ [N] and xi ∦ xj for all i 6= j ∈ [N]. Let δ, α, β > 0. Then, there exists R = O(N6δ−3) such
that for all ∇L̂(Ŷ (t−1)), with a probability of at least 1− δ, the gradient descent algorithm finds
b(t) ∈ B(t) such that the t-th weak learner f (t) satisfies the (α, β,−∇L̂(Ŷ (t−1)))-w.l.c.

Proof. We define H∞ ∈ RN×N by H∞
ij := Ew∼N (0,I)[x

⊤
i xj1{w⊤xi ≥ 0}1{w⊤xj ≥

0}]. Let λ0 be the lowest eigenvalue of H∞. Under the assumption, we know λ0 >
0 by Theorem 3.1 of Du et al. [2019b]. We train the parameter Θ·c· using the dataset
((x1,−α[L̂(Ŷ (t−1)]1), . . . , (xN ,−α[L̂(Ŷ (t−1))]N). We denote the parameter of the MLP at the
k-th iteration of the gradient descent by Θ(k). We denote the output of the model fΘ(k) by
u(k) := (fΘ(k)(x1), . . . , fΘ(k)(xN))⊤. By [Du et al., 2019b, Theorem 4.1], with probability
1− δ, we have

‖u(k) + α∇L̂(Ŷ (t−1))‖2 ≤
(
1− ηλ0

2

)k

‖u(k) + α∇L̂(Ŷ (t−1))‖2,

where η = O
(

λ0
N2

)
. Set

k := log

(
β‖∇L̂(Ŷ (t−1))‖2

‖u(0) + α∇L̂(Ŷ (t−1))‖2 ∨ 1

)(
log

(
1− ηλ0

2

))−1

.

Then, with probability 1− δ, we have

‖u(k) + α∇L̂(Ŷ (t−1))‖2 ≤ β‖∇L̂(Ŷ (t−1))‖2,

which means u(k) satisfies (α, β,−∇L̂(Ŷ (t−1)))-w.l.c.

Remark 5.1. Du et al. [2019b] assumed that any feature vector x of the training data satisfies
‖x‖ = 1. However, as commented in Du et al. [2019b], we can loosen this condition as follows:
there exists clow, chigh > 0 such that any feature vector x satisfies clow ≤ ‖x‖ ≤ chigh.

Although this instantiation provably satisfies the w.l.c. with high probability, its model com-
plexity is extremely large because it has as many as O(N6) parameters. As we saw in Section 5.8,
such a large model complexity is inevitable as long as the gradient can take arbitrary values.

162

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.3: Dataset specifications.

#Node #Edge #Class (K) Chance Rate

Cora 2708 5429 6 30.2%
CiteSeer 3312 4732 7 21.1%
PubMed 19717 44338 3 39.9%

5.C Experiment Settings

5.C.1 Experiments in Section 5.7.1 (Node Prediction Tasks)

Dataset

We used the Cora [McCallum et al., 2000, Sen et al., 2008], CiteSeer [Giles et al., 1998, Sen et al.,
2008], and PubMed [Sen et al., 2008] datasets. Each dataset represents scientific papers as the
nodes and citation relationships as the edges of a graph. For each paper, the genre of this paper
is associated as a label. The task is to predict the genre of papers from word occurrences and the
citation relationships. Table 5.3 shows the statistics of datasets. We obtained the preprocessed
dataset from the code repository of Kipf and Welling [2017]5 and split each dataset into train,
validation, and test datasets in the same way as experiments in Kipf and Welling [2017].

Model

As shown in Table 5.6 in Section 5.D.1, we have tested four base models: GB-GNN-Adj,
GB-GNN-KTA, GB-GNN-II, and GB-GNN-SAMME.R. For each model, we consider three types
of variants: (1) the base model, (2) the model with fine tuning, and (3) models with different
layer sizes (L = 0, 2, 3, 4), We have shown the result of variants (1) and (2) of GB-GNN-Adj and
GB-GNN-KTA in the main paper. See Section 5.D.1 for the results of other models.

Node Aggregation Functions For the aggregation functions G, we used the matrix multiplica-
tion model with the augmented normalized adjacency matrix Ã of the underlying graph GÃ (for
GB-GNN-Adj) and the KTA model GKTA (for GB-GNN-KTA). We also employed the input in-
jection model with the augmented normalized adjacency matrix GII(ρ, Ã) (for GB-GNN-II). For
the KTA models, we used GKTA := {g : X 7→ wX +

∑Ndeg

k=0 wkÃ
2kX | w,wk ∈ R}. We treat

weights w and wk’s in GKTA as learnable parameters and the mixing parameter ρ of GII(ρ, Ã) as a
hyperparameter.

Boosting Algorithms We used two boosting algorithms SAMME and SAMME.R. SAMME is
the default boosting algorithm and is applied to GB-GNN-Adj, GB-GNN-KTA, and GB-GNN-II.
We used SAMME.R in combination with the matrix multiplication model GÃ only (for GB-GNN-
SAMME.R).

5https://github.com/tkipf/gcn (Retrieved on December 2, 2020)

163

https://github.com/tkipf/gcn

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Transformation Functions For the transformation functions B, we used MLPs with ReLU ac-
tivation functions that have L = 0, . . . , 4 hidden layers followed by the argmax operation. We
showed results for the L = 1 model in the main paper. See Section 5.D.1 for other models.

The SAMME algorithm assumes that each weak learner outputs one of label categories, while
SAMME.R assumes that the probability distribution over the set of categorical labels. Therefore,
we added the argmax operation to the MLPs when we used SAMME and the softmax operation to
the MLPs when SAMME.R,

We only imposed soft restrictions on MLPs in the models using regularization methods such
as Dropout and weight decay. This is different from the MLP model defined in Section 5.5 in the
main paper, which hard-thresholded the norms of weights and bias.

We treat weights in the MLP as trainable parameters and treat architectural parameters (e.g.,
unit size) other than the layer size L as hyperparameters (see Table 5.4 for the complete hyperpa-
rameters).

Training

We used the SAMME or SAMME.R algorithm to train the model. At the t-th iteration, we give
X(t−1) and Y as a set of feature vectors and labels, respectively to the model. We picked B
training sample points randomly and trained the transformation functions B(t) using them. We
used a gradient-based optimization algorithm to minimize the cross entropy between the prediction
of the weak learner and the ground truth labels. We initialized the model (i.e., MLP) using the
default initialization method implemented in PyTorch.

For the aggregation model G(t), if it does not have a learnable parameter, that is, if G(t) consists
of a single function, we just applied the function to convert X(t−1) into X(t). For the KTA model,
which has learnable parameters w and wk’s, we trained the model g using a gradient-based op-
timization to maximize the correlation between gram matrices created from transformed features
g(X(t−1)) and labels Y . The correlation is defined as follows:

〈K[g(X(t−1))],K[Y]〉
‖K[g(X(t−1))]‖F‖K[Y]‖F

,

where K is the operator that takes the outer product of training sample points defined in Sec-
tion 5.6. We initialized weights w and wk’s with 1.

After the training using boosting algorithm, we optionally trained the whole model as fine-
tuning. When we used SAMME, we replaced the argmax operation in the transformation functions
B with the softmax function along class labels to make the model differentiable. When we used
SAMME.R, we did not change the same architecture in the training and fine tuning phases. We
trained the whole model in an end-to-end manner using a gradient-based optimization algorithm
to minimize the cross entropy between the prediction of the model and the ground truth label.

Evaluation

We split the dataset into training, validation, and test datasets. For each hyperparameter, we trained
a model using the training dataset and evaluated it using the validation dataset. We defined the per-
formance of a set of hyperparameters as the accuracy on the validation dataset at the iteration that

164

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.4: Hyperparameters of node prediction experiments in Section 5.7.1. X ∼ LogUnif[a, b]
means the random variable log10X obeys the uniform distribution over [a, b]. (∗) For KTA + Fine
Tuning setting, we reduce the number of weak learners to 40 due to GPU memory constraints. (∗∗)
Learning rate corresponds to α when Optimization algorithm is Adam Kingma and Ba [2015].

Category Name Value

Boosting #Weak learners {1, 2, . . . , 100 (40(∗))}
Minibatch size B {1, 2, . . . , |Vtrain|}
Clipping value LogUnif[−10,−5]

Model Epoch {10, 20, . . . , 100}
Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Momentum LogUnif[−10,−1]
Weight decay LogUnif[−10,−1]
Unit size {10, 11, . . . , 200}
Dropout {ON(ratio=0.5),OFF}

Input Injection Mixing ratio ρ Unif[0, 1]
Kernel Target Alignment Epoch {5, 6, . . . , 30}

Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Degree Ndeg 3

Fine Tuning Epoch {1, 2, . . . , 100}
Optimization algorithm {SGD,Adam,RMSProp}
Learning rate(∗∗) LogUnif[−5,−1]
Momentum LogUnif[−10,−1]
Weight decay LogUnif[−10,−1]

maximizes the validation accuracy. If a model has a fine-tuning phase, we used the accuracy after
the fine-tuning as the performance. We chose the set of hyperparameters that maximizes the per-
formance using a hyperparameter optimization algorithm. We employed Tree-structured Parzen
Estimator [Bergstra et al., 2011] and for hyperparameter optimization and the median stopping
rule implemented in Optuna for pruning unpromising sets of hyperparameters. Table 5.4 shows
the set of hyperparameters. We define the final performance of the model as the accuracy on the
test dataset attained by the optimized set of hyperparameters.

For each pair of the dataset and the model, we ran the above evaluation ten times and computed
the mean and standard deviation of the performance.

Implementation and Computational Resources

Experimental code is written in Python3. We used PyTorch [Paszke et al., 2019] and Ignite for
the implementation and training of models, Optuna [Akiba et al., 2019] for the hyperparameter
optimization, NetworkX [Hagberg et al., 2008] for preprocessing graph objects, and SciPy [Vir-

165

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

tanen et al., 2020] for miscellaneous machine learning operations. We ran each experiment on a
docker image (OS: Ubuntu18.04) built on a cluster. The image has two CPUs and single GPGPUs
(NVIDIA Tesla V100).

5.C.2 Experiments in Section 5.7.2 (Link Prediction Tasks)

Dataset

We assume that the raw dataset consists of a graph (V,E) with N = |V | nodes and a collection
of C0-dimensional node features X ∈ RN×C0 . We refer to the element of E as a positive edge.
We divide the set of positive edges E into training, validation and test samples and denote them
by E+

train, E+
val, and E+

test, respectively. We define Nt := |E+
t | (t ∈ {train, val, test}). Let

E := (V × V) \ E be the set of node pairs that do not have an edge. In a link prediction tasks,
we are given a graph (V,E+

train) with a collection of node features X . The goal is to output
Y ∈ {0, 1}N×N where Yij indicates the existence or non-existence of an edge between the node
pair i and j.

For evaluation, we made negative edge sets for validation and test in the same way as Kipf
and Welling [2016] as follows. We sampled Nval edges uniformly randomly without replacement
from E treated them as negative validation edges. We denote the set of sampled edges by E−

val.
Similarly, we sampled Ntest edges uniformly randomly without replacement from E \E−

val treated
them as negative test edges. We denote the set of sampled edges by E−

test.
We used three citation networks datasets: Cora, CiteSeer, and PubMed. See Table 5.3 for

the dataset specifications. We used the same train/validation/test dataset partition as the one used
in Kipf and Welling [2016]6. Note that the dataset only contains positive edges and randomly
generate negative edges at the time of training Therefore, negative edges can differ for each ex-
periment runs. Also, the sampled negative edges can be different from experiments in Kipf and
Welling [2016].

Model

The model consists of GB-GNN and a link predictor module. GB-GNN makes node representa-
tions and the link predictor module outputs the probability of the edge existence using a pair of
node representations.

We used GB-GNN-adj with the transformation function B being a ReLU MLP with a single
hidden layer as a GB-GNN model. Specifically, at the t-th iteration, we computed node represen-
tations Z(t) ∈ RN×C as follows:

X(t) = Ãt−1X,

Z
(t)
i = MLP

(t)
B (X

(t)
i) (i ∈ V).

Here, X ∈ RN×C0 is the collection of input feature vectors, Ã is the augmented normalized adja-
cency matrix, and MLP

(t)
B is an MLP that serves as a transform function b(t) at the t-th iteration.

MLP
(t)
B has a single hidden layer with C hidden units and C output units.

6https://github.com/tkipf/gae (Retrieved on December 2, 2020)

166

https://github.com/tkipf/gae

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

We fed the representations Z(t) to the link predictor module to obtain edge probabilities. More
concretely, for a node pair i, j ∈ V , the link predictor module computes the edge probability pij
between i and j as follows:

Z ′
i = sigmoid(Z

(t)
i),

Z ′
j = sigmoid(Z

(t)
j),

Z ′
ij = MLP

(t)
link(Z

′
i||Z ′

j),

pij = sigmoid(Z ′
ij).

Here, sigmoid is the sigmoid function and || is the vector concatenation operator, and MLP
(t)
link is

a ReLU MLP at the t-th iteration. MLP
(t)
link has a single hidden layer with 2C hidden units and a

single output unit.

Training

First, we sampled Ntrain node pairs from (V × V) \ E+
train with replacement and treated them as

negative training edges. We denote the set of sampled edges by E−
train. At the t-th iteration, we

randomly sampled Bw data points from E+
train and E−

train without replacement, respectively. We
trained the t-th weak learner in a end-to-end manner using E+

train and E−
train. That is, we train the

t-th MLPs MLP
(t)
B and MLP

(t)
link simultaneously using a gradient-based optimization algorithm.

The training objective is the sigmoid cross-entropy between the predicted edge probability and the
label (i.e., existence or non-existence of edges).

We used SAMME.R as an ensemble algorithm.

Evaluation

The evaluation protocol was the same as the one used in the node prediction tasks in Section 5.7.1
except one point. Specifically, the objective of hyperparameter optimization is the area under
the ROC curve (ROC-AUC) on the validation dataset, which was the accuracy on the validation
dataset in Section 5.7.1. See Section 5.C.1 for the full evaluation protocol. Table 5.5 shows
hyperparameters of the model and its training.

Implementation and Computational Resources

The implementation and computational resources are the same as the ones in Section 5.C.1.

5.D Additional Experiment Results

5.D.1 More Results for Model Variants

Table 5.6 shows the result of the prediction accuracies of models that use MLPs with various layer
size L as transformation functions B(t). It also shows the results for the input injection model (GB-
GNN-II) and the SAMME.R model (GB-GNN-SAMME.R) we have introduced in Section 5.C.1.

167

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.5: Hyperparameters of link prediction experiments in Section 5.7.2

Category Name Value

Boosting #Weak learners T {10, 11, . . . , 100}
Weak learner sample size Bw {1, 2, . . . , 1024}
Minibatch size B {1, 2, . . . , Bw}
Clipping value LogUnif[−5,−2]

Model Epoch {10, 11, . . . , 1000}
Optimization algorithm {SGD,Adam,RMSProp}
Learning rate LogUnif[−4,−1]
Momentum LogUnif[−10,−1]− 10−10

Weight decay LogUnif[−10,−1]− 10−10

Unit size C {10, 11, . . . , 1024}
Dropout {ON(ratio=0.5),OFF}

Figure 5.3–5.5 show the experiment results for GB-GNN-adj with L = 0, . . . , 4 layers using
the Cora, CiteSeer, and PubMed datasets. Figure 5.3 shows the transition of the training loss.
Figure 5.4 shows the transition of the test loss. Figure 5.5 shows the transition of the cosine values
between the negative gradient −∇L̂(Ŷ (t−1)) and the weak learner f (t) at the t-th iteration.

5.D.2 Performance Comparison with Existing GNN Models

Table 5.7 shows the accuracies of node prediction tasks on citation networks for various GNN
models. We borrowed the results of the official repository of Deep Graph Library (GDL)7 [Wang
et al., 2019a], a package for deep learning on graphs.

7https://github.com/dmlc/dgl (Retrieved on December 2, 2020)

168

https://github.com/dmlc/dgl

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

0 20 40 60 80
Iteration t

10.0

7.5

5.0

2.5

Tr
ai

n
Lo

ss

0 hidden layers, Cora

0 20 40 60
Iteration t

40

20

Tr
ai

n
Lo

ss

1 hidden layers, Cora

0 10 20 30 40
Iteration t

15

10

5

Tr
ai

n
Lo

ss

2 hidden layers, Cora

0 10 20 30
Iteration t

10.0

7.5

5.0

2.5

Tr
ai

n
Lo

ss

3 hidden layers, Cora

0 20 40 60
Iteration t

10

5

Tr
ai

n
Lo

ss

4 hidden layers, Cora

0 20 40
Iteration t

60

40

20

Tr
ai

n
Lo

ss

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

60

40

20

Tr
ai

n
Lo

ss

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

80

60

40

Tr
ai

n
Lo

ss

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

80

60

40

20

Tr
ai

n
Lo

ss

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

100

50

Tr
ai

n
Lo

ss

4 hidden layers, CiteSeer

0 5 10
Iteration t

60

40

20

Tr
ai

n
Lo

ss

0 hidden layers, PubMed

0 20 40 60
Iteration t

100

50

Tr
ai

n
Lo

ss

1 hidden layers, PubMed

0 20 40
Iteration t

100

75

50

25

Tr
ai

n
Lo

ss

2 hidden layers, PubMed

0 20 40 60
Iteration t

300

200

100

0

Tr
ai

n
Lo

ss

3 hidden layers, PubMed

0 10 20
Iteration t

300

200

100

Tr
ai

n
Lo

ss

4 hidden layers, PubMed

Figure 5.3: Train loss transition of GB-GNN-adj for the Cora (1st and 2nd rows), CiteSeer (3rd
and 4th rows), and PubMed (5th and 6th rows) datasets.

169

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

0 20 40 60 80
Iteration t

7.5

5.0

2.5

Te
st

 L
os

s

0 hidden layers, Cora

0 20 40 60
Iteration t

30

20

10

Te
st

 L
os

s

1 hidden layers, Cora

0 10 20 30 40
Iteration t

15

10

5

Te
st

 L
os

s

2 hidden layers, Cora

0 10 20 30
Iteration t

6

4

2

Te
st

 L
os

s

3 hidden layers, Cora

0 20 40 60
Iteration t

8

6

4

2

Te
st

 L
os

s

4 hidden layers, Cora

0 20 40
Iteration t

40

20

Te
st

 L
os

s

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

40

20

Te
st

 L
os

s

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

60

40

20

Te
st

 L
os

s

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

40

20

Te
st

 L
os

s

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

75

50

25

Te
st

 L
os

s

4 hidden layers, CiteSeer

0 5 10
Iteration t

50

40

30

20

Te
st

 L
os

s

0 hidden layers, PubMed

0 20 40 60
Iteration t

75

50

25

Te
st

 L
os

s

1 hidden layers, PubMed

0 20 40
Iteration t

80

60

40

20

Te
st

 L
os

s

2 hidden layers, PubMed

0 20 40 60
Iteration t

200

100

0

Te
st

 L
os

s

3 hidden layers, PubMed

0 10 20
Iteration t

200

100

Te
st

 L
os

s

4 hidden layers, PubMed

Figure 5.4: Test loss transition of GB-GNN-adj for the Cora (1st and 2nd rows), CiteSeer (3rd and
4th rows), and PubMed (5th and 6th rows) datasets.

170

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

0 20 40 60 80
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, Cora

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, Cora

0 10 20 30 40
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, Cora

0 10 20 30
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, Cora

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, Cora

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, CiteSeer

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, CiteSeer

0 5 10 15
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, CiteSeer

0 20 40 60 80
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, CiteSeer

0 10 20 30
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, CiteSeer

0 5 10
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

0 hidden layers, PubMed

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

1 hidden layers, PubMed

0 20 40
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

2 hidden layers, PubMed

0 20 40 60
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

3 hidden layers, PubMed

0 10 20
Iteration t

1.0

0.5

0.0

0.5

1.0

Co
sin

e

4 hidden layers, PubMed

Figure 5.5: Direction of weak learners for GB-GNN-adj for the Cora (1st and 2nd rows), CiteSeer
(3rd and 4th rows), and PubMed (5th and 6th rows) datasets.

171

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.6: Accuracy of node classification tasks on citation networks. L denotes the number of
hidden layers. Numbers are (mean) ± (standard deviation) of ten runs. (∗) All runs failed due to
GPU memory errors.

L Cora CiteSeer PubMed

GB-GNN-Adj 0 79.4± 1.9 70.3± 0.5 78.8± 0.7
1 79.9± 0.8 70.5± 0.8 79.4± 0.2
2 79.9± 1.3 68.5± 1.3 78.9± 0.6
3 77.4± 0.8 64.4± 1.5 78.0± 0.5
4 75.6± 2.6 60.7± 1.7 77.9± 0.6

GB-GNN-Adj. + Fine Tuning 1 80.4± 0.8 70.8± 0.8 79.0± 0.5

GB-GNN-KTA 0 80.0± 0.8 70.0± 1.8 79.4± 0.1
1 80.9± 0.9 73.1± 1.1 79.1± 0.4
2 79.8± 1.3 68.8± 1.1 79.1± 0.4
3 78.5± 0.9 65.2± 1.5 78.4± 0.8
4 76.0± 2.5 65.6± 1.7 78.0± 0.7

GB-GNN-KTA + Fine Tuning 1 82.3± 1.1 70.8± 1.0 N.A.(∗)

GB-GNN-II 0 79.2± 1.3 71.4± 0.3 79.3± 0.5
1 79.8± 1.3 71.3± 0.5 79.4± 0.3
2 79.9± 0.8 69.8± 1.1 79.3± 0.3
3 78.7± 1.7 66.7± 1.9 79.2± 0.6
4 75.4± 2.0 65.1± 2.5 78.6± 0.7

GB-GNN-II + Fine Tuning 1 80.8± 1.3 70.8± 0.9 79.2± 0.8

GB-GNN-SAMME.R 0 81.0± 0.8 70.4± 0.7 78.9± 0.3
1 82.2± 1.2 71.6± 0.5 78.8± 0.3
2 80.5± 0.8 67.4± 1.1 78.9± 0.3
3 79.6± 1.1 64.4± 1.4 78.8± 0.5
4 78.9± 1.8 64.6± 1.3 78.1± 0.6

GB-GNN-SAMME.R + Fine Tuning 1 82.1± 1.0 71.3± 0.8 79.4± 0.4

172

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Table 5.7: Accuracy comparison with baseilne GNN models. Created from the official repository
of DGL as of May 23rd, 2020. Adj.: Matrix multiplication model GÃ by the normalized adjacency
matrix Ã. KTA: Kernel target alignment model GKTA. II: Input injection model GII. FT: Fine
Tuning. Paper: accuracies are cited from the paper in the Ref. column. DGL: accuracies are cited
from the official implementation of DGL. (∗) Not available due to GPU memory errors. (∗∗) Not
available from the DGL repository.

Model Source Framework Cora Citeseer Pubmed

GB-GNN-Adj – PyTorch 79.9 70.5 79.4
-Adj + FT 80.4 70.7 79.0
-KTA 80.9 73.1 79.4
-KTA + FT 82.3 70.8 N.A.(∗)

-II 79.8 71.4 79.4
-II + FT 80.8 70.8 79.2
-SAMME.R 82.2 71.6 78.8
-SAMME.R + FT 82.1 71.3 79.4

GCN [Kipf and Welling, 2017] Paper – 81.5 70.3 79.0
DGL PyTorch 81.0 70.2 78.0

TensorFlow 81.0 70.7 79.2
TAGCN [Du et al., 2017] Paper – 83.3 71.4 79.4

DGL PyTorch 81.2 71.5 79.4
MXNet 82.0 70.2 79.8

GraphSAGE [Hamilton et al., 2017] DGL PyTorch 83.3 71.1 78.3
MXNet 81.7 69.9 79.0

MoNet [Monti et al., 2017] DGL PyTorch 81.6 N.A.(∗∗) 76.3
MXNet 81.4 N.A.(∗∗) 74.8

GAT [Veličković et al., 2018] Paper – 83.0 72.5 79.0
DGL PyTorch 84.0 70.9 78.6

TensorFlow 84.2 70.9 78.5
SGC [Wu et al., 2019a] Paper – 83.0 72.5 79.0

DGL PyTorch 84.2 70.9 78.5
DGI [Veličković et al., 2019] Paper – 82.3 71.8 76.8

DGL PyTorch 81.6 69.4 76.1
TensorFlow 81.6 70.2 77.2

APPNP [Klicpera et al., 2019] Paper – 85.0 75.7 79.7
DGL PyTorch 83.7 71.5 79.3

MXNet 83.7 71.3 79.8

173

Conclusion

Summary and Follow-up Work

In this dissertation, we study how structures in DL models affect their theoretical characteristics
to fill the gap between theory and practice of DL. Toward this goal, we posed these questions in
the introduction.

Problem 1. Why do skip connections promote predictive performance of CNNs?

Problem 2. Can non-linearity mitigate over-smoothing of GNNs caused by node aggregations?

Problem 3. What is the role of skip connections in GNNs? How do they affect the over-smoothing?

First, we analyzed the approximation and estimation abilities of ResNet-type CNNs in Chap-
ter 3 to answer Problem 1. We have shown that the approximation error of ResNet-type CNNs
is at least as good as corresponding block-sparse FNNs. Using this correspondence, we derived
estimation error bounds for ResNet-type CNNs. In particular, ResNet-type CNNs have the min-
imax optimality in non-parametric regression problems when the true function is in Hölder class
without imposing L0 constraints on CNN parameters, as opposed to FNNs in which no optimality
result is known in this setting. Our analysis gave a theoretical explanation for the superiority of
skip connections from the viewpoint of sparsity.

It was left as future work to explore when ResNet-type CNNs can achieve better approxima-
tion or estimation error rates than FNNs. As follow-up work, Kohler et al. [2020] proved that
when the true function is a hierarchical max-pooling model, the estimation error rate of CNNs
was input-dimension-free. They defined the order of the hierarchical max-pooling model and re-
placed the input dimension in the rate with the order (see the paper for the precise definition).
Although Kohler et al. [2020] did not prove the lower bound for FNNs, their result suggested that
CNNs can achieve better rates than FNNs for sufficiently high-dimensional data.

We have shown that skip connections remove unrealistic sparse constraints from FNNs while
preserving the minimax optimality. This result posed one question: is the minimax optimality
without sparse constraints specific to ResNet-type CNNs? After the study of Chapter 3, Shen
et al. [2019] proved the minimax optimality of dense FNNs for the β-Hölder functions (β ∈
(0, 1]) and Lu et al. [2020] for β-times continuous differential functions (i.e., β ∈ N+). That is,
general FNNs or CNNs have the same properties in common in these settings. These results do
not contradict our results because they did not deny the minimax optimality of dense ResNet-type
CNNs.

174

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Next, we considered Problem 2, that is, the expressive power of GNNs, particularly loss of
expressive power caused by the over-smoothing problem in Chapter 4. We interpreted the forward
propagation of a GNN as a discrete-time dynamics and defined the over-smoothing as the conver-
gence to an invariant space that is "information-less" for node prediction tasks. We derived the
exponential convergence of a ReLU GCN to the invariant space whose rate is determined by an
underlying graph’s spectra. Since this rate was the same as the one for linear GCNs, our result im-
plied that the ReLU non-linearity does not contribute to mitigating the over-smoothing problem.
Although our study is the first theoretical explanation of over-smoothing for non-linear GNNs, our
analysis is restricted to ReLU GCNs.

A limitation of our study was that the applicable GNN model was ReLU GCNs without bias
terms. After the study of Chapter 4, several studies have extended our results to other GNN mod-
els. Cai and Wang [2020] proved the over-smoothing of GCNs with the Leaky-ReLU activation
functions. They used the same "information-less" invariant space as ours. However, differently
from our analysis, they employed the Dirichlet energy as a criterion of over-smoothing. Another
work is Huang et al. [2020]. They extended our analysis to more general GNNs, including ReLU
GCNs with bias terms, ReLU GCNs with skip connections, and APPNP (Section 2.6.1).

Our study related the expressive power of GNNs with the spectral distribution of underlying
graphs. Several studies used our analysis tools to justify their proposed methods theoretically. For
example, DropEdge [Rong et al., 2020] randomly pruned edges in underlying graphs to mitigate
over-smoothing. From our theory’s viewpoint, DropEdge tweaked the spectral distribution of
underlying graphs and relaxed the condition on weight scales under which GNNs were destined
to over-smoothing.

Finally, we study Problem 3 in Chapter 5. To understand the role of skip connection in GNNs,
we derived the optimization and generalization bounds of multi-scale GNNs. Our analysis’s key
was to interpret a multi-scale GNN as an ensemble of single-path GNNs and apply boosting the-
ory. The derived test error bounds are similar to ones for AdaBoost. Our result suggests that
when we can sufficiently train subnetworks at each scale, the multi-scale structure induced by skip
connections has guaranteed predictive power to solve the node prediction task at hand, even if the
over-smoothing problem can happen. The problem of our analysis is that parameters in the weak
learning assumptions are not directly computable. We need further consideration for the direct
relationship between experimentally observable quantities and the optimization and generaliza-
tion bounds. Another problem is that our theory is not directly applicable to end-to-end learning
models. Whether the theory is specific to GNNs trained with boosting algorithms or universal to
multi-scale GNNs is left for future research.

In parallel to our study, Zhu et al. [2020] recently explained the effectiveness of multi-scale
structure from the viewpoint of homophily. Homophily is a property of graph-structured data
where neighboring nodes are likely to have the same label. They showed that many standard GNN
models such as GCN and GAT did not perform well under a low homophily regime. Based on
this observation, they proposed H2GCN, a new multi-scale GNN model. They showed that adding
multi-scale structures made GNN models work better in high and low homophily regimes.

175

5. Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through
Gradient Boosting

Future Perspective

Continuous Model One approach for analyzing DL models is to lift them to their continuous
counterparts. For example, we can think of a ResNet-type CNN as the Euler scheme discretization
of a function obeying the corresponding continuous-time ODE, a continuous temporal limit of
ResNet. There are two other types continuous limits: one is spatial continuity that takes the
infinite limit of input dimensions and the other one is integral representation that takes the limit
of an infinite number of intermediate layer units, including the analysis known as the mean-field
regime [Nitanda and Suzuki, 2017, Chizat and Bach, 2018, Mei et al., 2018].

These approaches benefit from translating complex problems in a narrow space into easier
problems in a large space. For example, in the mean-field regime analysis, we can transform a
non-convex optimization problem in a finite-dimensional space into a convex optimization prob-
lem in an infinite-dimensional space. In addition, these approaches enable us to bring various
mathematical tools such as functional analysis, (partial) differential equation theory, and optimal
control theory.

Several studies have investigated the continuous limit of ResNet-type CNNs and GNNs, which
were our primary interest. Neural ODE [Chen et al., 2018c] is a practical model that can be thought
of as a ResNet-type model. CGCN [Xhonneux et al., 2020] explained in Section 2.6.1 have is a
continuous GNN continuous in the temporal direction. Regarding the spatial continuity, node
aggregation operations of GNNs can be intuitively thought of as a discretization of the heat equa-
tion. Another approach of spatial continuity is to use Graphon, a way of taking to the continuous
limit of graphs (see, e.g., Lovász [2012]). This approach is useful for analyzing graph classifica-
tion tasks and model transferability [Ruiz et al., 2020, Keriven et al., 2020], that is, the model’s
generalization ability to graphs with different sizes.

We expect that the idealization of a model by continuity reveals the model’s essential nature
and thus clarifies the impact of model structures on theoretical and empirical behaviors.

Unified Theory for Model Structures We have seen that structures in DL models significantly
impact their theoretical properties, not only the expressive power but also the optimization and
generalization abilities. We believe this study takes a step further in understanding the role of
structures in DL models and provides a principled methodology for searching for new structures.

Nevertheless, we have analyzed model structures individually. For example, graph convo-
lution operations were proposed to extend CNN convolution to arbitrary graphs, on the ground
that both CNNs and GNNs should capture inductive biases that neighbor nodes are highly cor-
related. However, it is known that GNNs have phenomena that are not observed in CNNs. The
over-smoothing problem we addressed in Chapter 4 is one such examples. Therefore, we adopted
different approaches to analyzing skipped connections of CNNs and GNNs in Chapters 3 and 5,
respectively.

Considering the wide variety of structures, not restricted to three examples we dealt with
in this study, the development of unified theories that encompass various models gives further
understanding of the role of structures in DL models.

176

Bibliography

S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan, G. V. Steeg,
and A. Galstyan. MixHop: Higher-order graph convolutional architectures via sparsified
neighborhood mixing. In Proceedings of the 36th International Conference on Machine
Learning (ICML), volume 97 of Proceedings of Machine Learning Research, pages 21–29.
PMLR, 2019a.

S. Abu-El-Haija, B. Perozzi, A. Kapoor, and J. Lee. N-GCN: Multi-scale graph convolutionfor
semi-supervised node classification. In Conference on Uncertainty in Artificial Intelligence
(UAI), 2019b.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19, pages 2623–2631, New York, NY, USA,
2019. ACM. ISBN 978-1-4503-6201-6. doi: 10.1145/3292500.3330701.

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities
of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8):831–838,
2015.

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings.
Journal of Computer and system Sciences, 18(2):155–193, 1979.

S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets via
a compression approach. volume 80 of Proceedings of Machine Learning Research, pages
254–263. PMLR, 2018.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and general-
ization for overparameterized two-layer neural networks. In Proceedings of the 36th Inter-
national Conference on Machine Learning (ICML), volume 97 of Proceedings of Machine
Learning Research, pages 322–332. PMLR, 2019.

J. Atwood and D. Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems 29, pages 1993–2001. Curran Associates, Inc., 2016.

A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

177

BIBLIOGRAPHY

A. R. Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14(1):115–133, 1994.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local rademacher complexities. The Annals of
Statistics, 33(4):1497–1537, 2005.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

L. Bégin, P. Germain, F. Laviolette, and J.-F. Roy. Pac-bayesian theory for transductive learning.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research, pages 105–113. PMLR,
2014.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large
graphs. In International Conference on Computational Learning Theory, pages 624–638.
Springer, 2004.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849–15854, 2019.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing Systems 24, pages 2546–2554. Curran
Associates, Inc., 2011.

H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely con-
nected deep neural networks. SIAM Journal on Mathematics of Data Science, 1(1):8–45,
2019.

L. Breiman. Arcing classifier (with discussion and a rejoinder by the author). The Annals of
Statistics, 26(3):801–849, 1998.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. Spectral networks and locally connected networks
on graphs. In International Conference on Learning Representations (ICLR2014), CBLS,
April 2014, 2014.

D. Busbridge, D. Sherburn, P. Cavallo, and N. Y. Hammerla. Relational graph attention networks.
arXiv preprint arXiv:1904.05811, 2019.

J. Busch, J. Pi, and T. Seidl. PushNet: Efficient and adaptive neural message passing. arXiv
preprint arXiv:2003.02228, 2020.

C. Cai and Y. Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

178

BIBLIOGRAPHY

J. Chen, T. Ma, and C. Xiao. FastGCN: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018a.

L. Chen, J. Li, J. Peng, T. Xie, Z. Cao, K. Xu, X. He, and Z. Zheng. A survey of adversarial
learning on graphs. arXiv preprint arXiv:2003.05730, 2020a.

M. Chen, J. Pennington, and S. Schoenholz. Dynamical isometry and a mean field theory of
RNNs: Gating enables signal propagation in recurrent neural networks. In Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 873–882. PMLR, 2018b.

M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks.
In Proceedings of Machine Learning and Systems 2020, pages 3730–3740. 2020b.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems 31, pages 6571–6583.
Curran Associates, Inc., 2018c.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
785–794. ACM, 2016.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems 31,
pages 3036–3046. Curran Associates, Inc., 2018.

E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, and A. Dai. Learning the graphical
structure of electronic health records with graph convolutional transformer. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 606–613, 2020.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

A. Choromanska, Y. LeCun, and G. B. Arous. Open problem: The landscape of the loss surfaces of
multilayer networks. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of The 28th
Conference on Learning Theory, volume 40 of Proceedings of Machine Learning Research,
pages 1756–1760. PMLR, 2015.

F. Chung and L. Lu. Connected components in random graphs with given expected degree se-
quences. Annals of combinatorics, 6(2):125–145, 2002.

F. Chung and M. Radcliffe. On the spectra of general random graphs. the electronic journal of
combinatorics, 18(1):215, 2011.

F. Chung, L. Lu, and V. Vu. The spectra of random graphs with given expected degrees. Internet
Mathematics, 1(3):257–275, 2004.

F. R. Chung and F. C. Graham. Spectral graph theory. Number 92 in CBMS Regional Conference
Series in Mathematics. American Mathematical Soc., 1997.

179

BIBLIOGRAPHY

T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical CNNs. In International Conference
on Learning Representations, 2018.

A. Coja-Oghlan. On the laplacian eigenvalues of Gn,p. Combinatorics, Probability and Comput-
ing, 16(6):923–946, 2007.

C. Cortes, M. Mohri, D. Pechyony, and A. Rastogi. Stability of transductive regression algorithms.
In Proceedings of the 25th international conference on Machine learning (ICML), pages 176–
183, 2008.

C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered
alignment. Journal of Machine Learning Research, 13(28):795–828, 2012.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On kernel-target alignment. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 367–373. MIT Press, 2002.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song. Adversarial attack on graph
structured data. volume 80 of Proceedings of Machine Learning Research, pages 1115–1124.
PMLR, 2018a.

H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song. Syntax-directed variational autoencoder for
structured data. In International Conference on Learning Representations, 2018b.

N. De Cao and T. Kipf. MolGAN: An implicit generative model for small molecular graphs. ICML
2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
2018.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Information Processing Systems 29,
pages 3844–3852. Curran Associates, Inc., 2016.

J. Du, S. Zhang, G. Wu, J. M. Moura, and S. Kar. Topology adaptive graph convolutional networks.
arXiv preprint arXiv:1710.10370, 2017.

S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu. Graph neural tangent
kernel: Fusing graph neural networks with graph kernels. In Advances in Neural Information
Processing Systems 32, pages 5723–5733. Curran Associates, Inc., 2019a.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations
(ICLR), 2019b.

R. M. Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes.
Journal of Functional Analysis, 1(3):290–330, 1967.

180

BIBLIOGRAPHY

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and
R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In Ad-
vances in Neural Information Processing Systems 28, pages 2224–2232. Curran Associates,
Inc., 2015.

R. El-Yaniv and D. Pechyony. Stable transductive learning. In International Conference on Com-
putational Learning Theory, pages 35–49. Springer, 2006.

R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and its applications. Journal
of Artificial Intelligence Research, 35:193–234, 2009.

P. Erdös and A. Rényi. On random graphs I. Publicationes Mathematicae (Debrecen), 6:290–297,
1959.

F. Fan, D. Wang, and G. Wang. Universal approximation by a slim network with sparse shortcut
connections. arXiv preprint arXiv:1811.09003, 2018.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Y. Freund. Boosting a weak learning algorithm by majority. Information and computation, 121
(2):256–285, 1995.

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory, pages
23–37. Springer, 1995.

J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression: a statistical view of
boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):
337–407, 2000.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a mech-
anism of visual pattern recognition. In Competition and Cooperation in Neural Nets, pages
267–285, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg. ISBN 978-3-642-46466-9.

H. Gao and S. Ji. Graph u-nets. volume 97 of Proceedings of Machine Learning Research, pages
2083–2092. PMLR, 2019.

V. K. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural
networks. arXiv preprint arXiv:2002.06157, 2020.

E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: an automatic citation indexing system.
In Proceedings of the third ACM conference on Digital libraries, pages 89–98. ACM, 1998.

181

BIBLIOGRAPHY

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In Proceedings of the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR,
2017.

E. Giné and R. Nickl. Mathematical foundations of infinite-dimensional statistical models, vol-
ume 40. Cambridge University Press, 2015.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural net-
works. volume 9 of Proceedings of Machine Learning Research, pages 249–256. JMLR
Workshop and Conference Proceedings, 2010.

R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik. Au-
tomatic chemical design using a data-driven continuous representation of molecules. ACS
central science, 4(2):268–276, 2018.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Pro-
ceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734. IEEE, 2005.

A. Grover, A. Zweig, and S. Ermon. Graphite: Iterative generative modeling of graphs. volume 97
of Proceedings of Machine Learning Research, pages 2434–2444. PMLR, 2019.

A. Grubb and D. Bagnell. Generalized boosting algorithms for convex optimization. In Proceed-
ings of the 28th International Conference on Machine Learning (ICML), pages 1209–1216,
2011.

G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and A. Aspuru-Guzik.
Objective-reinforced generative adversarial networks (organ) for sequence generation mod-
els. arXiv preprint arXiv:1705.10843, 2017.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function
using NetworkX. In G. Varoquaux, T. Vaught, and J. Millman, editors, Proceedings of the
7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Information processing letters, 33(6):
305–308, 1990.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Ad-
vances in Neural Information Processing Systems 30, pages 1024–1034. Curran Associates,
Inc., 2017.

182

BIBLIOGRAPHY

W. L. Hamilton. Graph Representation Learning, volume 14. Morgan and Claypool, 2020.

D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

D. Han, J. Kim, and J. Kim. Deep pyramidal residual networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class AdaBoost. Statistics and its Interface, 2(3):
349–360, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level perfor-
mance on ImageNet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163, 2015.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal processing
magazine, 29(6):82–97, 2012.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

S. Honda, H. Akita, K. Ishiguro, T. Nakanishi, and K. Oono. Graph residual flow for molecular
graph generation. arXiv preprint arXiv:1909.13521, 2019.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-
proximators. Neural networks, 2(5):359–366, 1989.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2018.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-excitation networks. IEEE
Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020a. ISSN 0162-8828. doi:
10.1109/TPAMI.2019.2913372.

183

BIBLIOGRAPHY

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687,
2020b.

F. Huang, J. Ash, J. Langford, and R. Schapire. Learning deep ResNet blocks sequentially using
boosting theory. In Proceedings of the 35th International Conference on Machine Learn-
ing (ICML), volume 80 of Proceedings of Machine Learning Research, pages 2058–2067.
PMLR, 2018.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2261–2269. IEEE, 2017.

W. Huang, Y. Rong, T. Xu, F. Sun, and J. Huang. Tackling over-smoothing for general graph
convolutional networks. arXiv preprint arXiv:2008.09864, 2020.

M. Imaizumi and K. Fukumizu. Deep neural networks learn non-smooth functions effectively. In
Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine Learning
Research, pages 869–878. PMLR, 2019.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456. PMLR,
2015.

A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Label propagation for deep semi-supervised learn-
ing. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
5070–5079, 2019.

K. Ishiguro, S.-i. Maeda, and M. Koyama. Graph warp module: an auxiliary module for
boosting the power of graph neural networks in molecular graph analysis. arXiv preprint
arXiv:1902.01020, 2019.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in Neural Information Processing Systems 31, pages 8571–
8580. Curran Associates, Inc., 2018.

W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph
generation. volume 80 of Proceedings of Machine Learning Research, pages 2323–2332.
PMLR, 2018.

W. Jin, Y. Li, H. Xu, Y. Wang, and J. Tang. Adversarial attacks and defenses on graphs: A review
and empirical study. arXiv preprint arXiv:2003.00653, 2020.

T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the 20th
International Conference on Machine Learning (ICML), pages 290–297, 2003.

184

BIBLIOGRAPHY

C. Johnson. Stabilization of linear dynamical systems with respect to arbitrary linear subspaces.
Journal of Mathematical Analysis and Applications, 44(1):175–186, 1973.

J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei. Image
retrieval using scene graphs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

J. Johnson, A. Gupta, and L. Fei-Fei. Image generation from scene graphs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

P. C. Kainen, V. Kůrková, and M. Sanguineti. Approximating multivariable functions by feedfor-
ward neural nets. In Handbook on Neural Information Processing, pages 143–181. Springer,
2013.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. LightGBM: A highly
efficient gradient boosting decision tree. In Advances in Neural Information Processing Sys-
tems 30, pages 3146–3154. Curran Associates, Inc., 2017.

N. Keriven, A. Bietti, and S. Vaiter. Convergence and stability of graph convolutional networks
on large random graphs. arXiv preprint arXiv:2006.01868, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

J. Klicpera, A. Bojchevski, and S. Günnemann. Combining neural networks with personalized
pagerank for classification on graphs. In International Conference on Learning Representa-
tions (ICLR), 2019.

J. M. Klusowski and A. R. Barron. Approximation by combinations of ReLU and squared ReLU
ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on Information Theory, 64(12):
7649–7656, 2018.

M. Kohler, A. Krzyzak, and B. Walter. On the rate of convergence of image classifiers based on
convolutional neural networks. arXiv preprint arXiv:2003.01526, 2020.

V. Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization. The
Annals of Statistics, 34(6):2593–2656, 2006.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012.

185

BIBLIOGRAPHY

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-0782. doi: 10.1145/
3065386. URL https://doi.org/10.1145/3065386.

M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. volume 70
of Proceedings of Machine Learning Research, pages 1945–1954. PMLR, 2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9–48. Springer, 2012.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 2013.

H. Lee, R. Ge, T. Ma, A. Risteski, and S. Arora. On the ability of neural nets to express distribu-
tions. In Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings
of Machine Learning Research, pages 1271–1296. PMLR, 2017.

G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE International Conference on Computer Vision, pages 9267–9276,
2019.

G. Li, C. Xiong, A. Thabet, and B. Ghanem. Deepergcn: All you need to train deeper gcns. arXiv
preprint arXiv:2006.07739, 2020a.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 6389–6399. Curran
Associates, Inc., 2018a.

Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018b.

Y. Li, R. Zemel, and M. Brockschmidt. Gated graph sequence neural networks. In International
Conference on Learning Representations, 2016.

Y. Li, R. Yu, C. Shahabi, and Y. Liu. Diffusion convolutional recurrent neural network: Data-
driven traffic forecasting. In International Conference on Learning Representations, 2018c.

Y. Li, W. Jin, H. Xu, and J. Tang. Deeprobust: A pytorch library for adversarial attacks and
defenses. arXiv preprint arXiv:2005.06149, 2020b.

R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun, and R. Zemel.
Efficient graph generation with graph recurrent attention networks. In Advances in Neural
Information Processing Systems 32, pages 4255–4265. Curran Associates, Inc., 2019a.

186

https://doi.org/10.1145/3065386

BIBLIOGRAPHY

R. Liao, Z. Zhao, R. Urtasun, and R. Zemel. LanczosNet: Multi-scale deep graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2019b.

H. Lin and S. Jegelka. ResNet with one-neuron hidden layers is a universal approximator. In Ad-
vances in Neural Information Processing Systems 31, pages 6169–6178. Curran Associates,
Inc., 2018.

Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song. Heterogeneous graph neural networks
for malicious account detection. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM ’18, pages 2077–2085. Association for
Computing Machinery, 2018.

L. Lovász. Large networks and graph limits, volume 60. American Mathematical Soc., 2012.

J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions. arXiv
preprint arXiv:2001.03040, 2020.

Y. Lu, A. Zhong, Q. Li, and B. Dong. Beyond finite layer neural networks: Bridging deep ar-
chitectures and numerical differential equations. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 3276–3285. PMLR, 2018.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: a view
from the width. In Advances in Neural Information Processing Systems 30, pages 6231–6239.
Curran Associates, Inc., 2017.

S. Luan, M. Zhao, X.-W. Chang, and D. Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. In Advances in Neural Information Processing Systems 32,
pages 10943–10953. Curran Associates, Inc., 2019.

Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang. Graph convolutional networks with eigenpooling. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, pages 723–731. ACM, 2019. ISBN 978-1-4503-6201-6. doi:
10.1145/3292500.3330982.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic
models. In in ICML Workshop on Deep Learning for Audio, Speech and Language Process-
ing, 2013.

K. Madhawa, K. Ishiguro, K. Nakago, and M. Abe. Graphnvp: An invertible flow model for
generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boosting algorithms as gradient descent. In
Advances in Neural Information Processing Systems 12, pages 512–518. MIT Press, 2000.

A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

187

BIBLIOGRAPHY

S. Mei and A. Montanari. The generalization error of random features regression: Precise asymp-
totics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.
doi: 10.1073/pnas.1806579115.

S. Mendelson. Improving the sample complexity using global data. IEEE transactions on Infor-
mation Theory, 48(7):1977–1991, 2002.

C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.

H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network.
Advances in Computational Mathematics, 1(1):61–80, 1993.

G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41,
1995.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adver-
sarial networks. In International Conference on Learning Representations, 2018.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT Press,
2018.

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric deep
learning on graphs and manifolds using mixture model cnns. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5115–5124, 2017.

V. Nagarajan and Z. Kolter. Deterministic PAC-bayesian generalization bounds for deep networks
via generalizing noise-resilience. In International Conference on Learning Representations,
2019.

H. Nguyen, S. Maeda, and K. Oono. Semi-supervised learning of hierarchical representations of
molecules using neural message passing. arXiv preprint arXiv:1711.10168, 2017.

A. Nitanda and T. Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv
preprint arXiv:1712.05438, 2017.

A. Nitanda and T. Suzuki. Functional gradient boosting based on residual network perception. In
Proceedings of the 35th International Conference on Machine Learning (ICML), volume 80
of Proceedings of Machine Learning Research, pages 3819–3828. PMLR, 2018.

A. Nitanda and T. Suzuki. Functional gradient boosting for learning residual-like networks with
statistical guarantees. In Proceedings of the Twenty Third International Conference on Arti-
ficial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research,
pages 2981–2991. PMLR, 2020.

J. R. Norris. Markov chains. Number 2 in Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge university press, 1998.

188

BIBLIOGRAPHY

H. NT and T. Maehara. Revisiting graph neural networks: All we have is low-pass filters. arXiv
preprint arXiv:1905.09550, 2019.

K. Oono and T. Suzuki. Approximation and non-parametric estimation of ResNet-type convo-
lutional neural networks. volume 97 of Proceedings of Machine Learning Research, pages
4922–4931. PMLR, 2019.

K. Oono and T. Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020a.

K. Oono and T. Suzuki. Optimization and generalization analysis of transduction through gra-
dient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33, 2020b.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to
the web. Technical Report 1999-66, November 1999.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2010.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

D. Pechyony and R. El-Yaniv. Theory and Practice of Transductive Learning. PhD thesis, Com-
puter Science Department, Technion, 2009.

D. Perekrestenko, P. Grohs, D. Elbrächter, and H. Bölcskei. The universal approximation power
of finite-width deep ReLU networks. arXiv preprint arXiv:1806.01528, 2018.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 701–710. Association for Computing Machinery, 2014.
ISBN 9781450329569. doi: 10.1145/2623330.2623732.

P. Petersen and F. Voigtlaender. Equivalence of approximation by convolutional neural networks
and fully-connected networks. arXiv preprint arXiv:1809.00973, 2018a.

P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Networks, 108:296–330, 2018b.

A. Pinkus. Density in approximation theory. Surveys in Approximation Theory, 1:1–45, 2005.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. CatBoost: Unbiased
boosting with categorical features. In Advances in Neural Information Processing Systems
31, pages 6638–6648. Curran Associates, Inc., 2018.

189

BIBLIOGRAPHY

Y. Rong, W. Huang, T. Xu, and J. Huang. DropEdge: Towards deep graph convolutional networks
on node classification. In International Conference on Learning Representations (ICLR),
2020.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

L. Ruiz, L. F. Chamon, and A. Ribeiro. Graphon neural networks and the transferability of graph
neural networks. arXiv preprint arXiv:2006.03548, 2020.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. volume 5 of Proceedings of Machine
Learning Research, pages 448–455, Hilton Clearwater Beach Resort, Clearwater Beach,
Florida USA, 2009. PMLR.

B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, and A. Aspuru-Guzik. Optimizing dis-
tributions over molecular space. an objective-reinforced generative adversarial network for
inverse-design chemistry (organic), Aug 2017.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

F. Scarselli, A. C. Tsoi, and M. Hagenbuchner. The Vapnik–Chervonenkis dimension of graph and
recursive neural networks. Neural Networks, 108:248–259, 2018.

R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine learning, 37(3):297–336, 1999.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. The annals of statistics, 26(5):1651–1686, 1998.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. In European Semantic Web Conference,
pages 593–607. Springer, 2018.

J. Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. Annals of Statistics, 48(4):1875–1897, 2020.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classification
in network data. AI magazine, 29(3):93–93, 2008.

W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding and improving convolutional neural
networks via concatenated rectified linear units. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 2217–2225. PMLR, 2016.

190

BIBLIOGRAPHY

Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by number of neu-
rons. arXiv preprint arXiv:1906.05497, 2019.

M. Simonovsky and N. Komodakis. Graphvae: Towards generation of small graphs using varia-
tional autoencoders. In International Conference on Artificial Neural Networks, pages 412–
422. Springer, 2018.

S. Sonoda and N. Murata. Neural network with unbounded activation functions is universal ap-
proximator. Applied and Computational Harmonic Analysis, 43(2):233–268, 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:
1929–1958, 2014.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

K. Sun, Z. Lin, and Z. Zhu. AdaGCN: Adaboosting graph convolutional networks into deep
models. arXiv preprint arXiv:1908.05081, 2019.

L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, and B. Li. Adversarial attack and defense on graph
data: A survey. arXiv preprint arXiv:1812.10528, 2018.

T. Suzuki. Fast generalization error bound of deep learning from a kernel perspective. In Proceed-
ings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 1397–1406. PMLR, 2018.

T. Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces: optimal rate and curse of dimensionality. In International Conference on Learning
Representations, 2019.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations,
2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the im-
pact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, pages 4278–4284. AAAI Press, 2017.

M. Telgarsky. Benefits of depth in neural networks. In 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 1517–1539. PMLR,
23–26 Jun 2016.

191

BIBLIOGRAPHY

T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and M. Sugiyama. Coupling-based in-
vertible neural networks are universal diffeomorphism approximators. Advances in Neural
Information Processing Systems, 33, 2020.

S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework
for deep learning. In Proceedings of Workshop on Machine Learning Systems (LearningSys)
in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS),
2015.

S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi, B. Vogel,
and H. Yamazaki Vincent. Chainer: A deep learning framework for accelerating the research
cycle. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2002–2011. ACM, 2019.

I. Tolstikhin, G. Blanchard, and M. Kloft. Localized complexities for transductive learning. In
Proceedings of The 27th Conference on Learning Theory, volume 35 of Proceedings of Ma-
chine Learning Research, pages 857–884. PMLR, 2014.

I. Tolstikhin, N. Zhivotovskiy, and G. Blanchard. Permutational rademacher complexity. In Inter-
national Conference on Algorithmic Learning Theory, pages 209–223. Springer, 2015.

A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer Publishing Company, In-
corporated, 1st edition, 2008. ISBN 0387790519, 9780387790510.

V. Vapnik. Estimation of Dependences Based on Empirical Data: Springer Series in Statistics
(Springer Series in Statistics). Springer-Verlag, 1982.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shal-
low networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 550–558. Curran Associates,
Inc., 2016.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm. Deep graph infomax.
In International Conference on Learning Representations (ICLR), 2019.

S. Verma and Z.-L. Zhang. Stability and generalization of graph convolutional neural networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1539–1548. ACM, 2019.

192

BIBLIOGRAPHY

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Mill-
man, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature
Methods, 17:261–272, 2020.

M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.
1017/9781108627771.

M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma, Z. Huang,
Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and Z. Zhang. Deep Graph Library:
Towards efficient and scalable deep learning on graphs. ICLR Workshop on Representation
Learning on Graphs and Manifolds, 2019a.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph attention
network. In The World Wide Web Conference, WWW ’19, pages 2022–2032. Association for
Computing Machinery, 2019b. ISBN 9781450366748. doi: 10.1145/3308558.3313562.

C. Wei and T. Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. In Advances in Neural Information Processing Systems 32, pages 9725–9736.
Curran Associates, Inc., 2019.

B. Weisfeiler and L. A.A. A reduction of a graph to a canonical form and an algebra arising during
this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation,
8(7):1341–1390, 1996.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional
networks. volume 97 of Proceedings of Machine Learning Research, pages 6861–6871.
PMLR, 2019a.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural
networks. arXiv preprint arXiv:1901.00596, 2019b.

L.-P. Xhonneux, M. Qu, and J. Tang. Continuous graph neural networks. In Proceedings of
Machine Learning and Systems 2020, pages 7258–7267. 2020.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

193

BIBLIOGRAPHY

H. Xu, Y. Li, W. Jin, and J. Tang. Adversarial attacks and defenses: Frontiers, advances and
practice. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, pages 3541–3542. Association for Computing Machin-
ery, 2020a. ISBN 9781450379984.

H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain. Adversarial attacks and
defenses in images, graphs and text: A review. International Journal of Automation and
Computing, 17(2):151–178, Apr 2020b.

K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka. Representation learning on
graphs with jumping knowledge networks. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
5453–5462. PMLR, 2018.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph R-CNN for scene graph generation. In
Proceedings of the European Conference on Computer Vision, pages 670–685, 2018.

M. Yao and T. Jiliang. Deep Learning on Graphs. Cambridge University Press, 2020.

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:
103–114, 2017.

D. Yarotsky. Universal approximations of invariant maps by neural networks. arXiv preprint
arXiv:1804.10306, 2018.

Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph represen-
tation learning with differentiable pooling. In Advances in Neural Information Processing
Systems 31, pages 4800–4810. Curran Associates, Inc., 2018.

J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec. GraphRNN: Generating realistic graphs
with deep auto-regressive models. volume 80 of Proceedings of Machine Learning Research,
pages 5708–5717. PMLR, 2018.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph transformer networks. In Advances
in Neural Information Processing Systems 32, pages 11983–11993. Curran Associates, Inc.,
2019.

W. W. Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4):452–473, 1977.

A. Zaeemzadeh, N. Rahnavard, and M. Shah. Norm-preservation: Why residual networks can
become extremely deep? IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

194

BIBLIOGRAPHY

C. Zang and F. Wang. Moflow: An invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, pages 617–626, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403104.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph neural network.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, pages 793–803. Association for Computing Machinery, 2019.

J. Zhang. Gresnet: Graph residuals for reviving deep graph neural nets from suspended animation.
arXiv preprint arXiv:1909.05729, 2019.

J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Yeung. Gaan: Gated attention networks for
learning on large and spatiotemporal graphs. In Proceedings of the Thirty-Fourth Conference
on Uncertainty in Artificial Intelligence, pages 339–349, 2018.

Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE Transactions on Knowl-
edge and Data Engineering, pages 1–1, 2020. doi: 10.1109/TKDE.2020.2981333.

L. Zhao and L. Akoglu. Pairnorm: Tackling oversmoothing in {gnn}s. In International Conference
on Learning Representations, 2020.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In Advances in Neural Information Processing Systems 16, pages 321–328. MIT
Press, 2004.

D.-X. Zhou. Universality of deep convolutional neural networks. arXiv preprint
arXiv:1805.10769, 2018.

J. Zhou and O. G. Troyanskaya. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature methods, 12(10):931, 2015.

P. Zhou and J. Feng. Understanding generalization and optimization performance of deep CNNs.
In Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 5960–5969. PMLR, 2018.

J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020.

M. Zitnik, M. Agrawal, and J. Leskovec. Modeling polypharmacy side effects with graph convo-
lutional networks. Bioinformatics, 34(13):457–466, 2018.

D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial attacks on neural networks for graph
data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’18, pages 2847–2856. Association for Computing Machinery,
2018. ISBN 9781450355520.

195

	Introduction
	Structures in Deep Learning Models
	Residual Networks (ResNets)
	Graph Neural Networks (GNNs)
	Over-smoothing of GNNs
	GNNs with Skip Connections
	Organization of Dissertation
	Notation

	Background
	ResNet-type CNNs
	Convolution Operation
	Vanishing and Exploding Gradient Problems
	Residual Networks
	Representative Models

	Machine Learning on Graphs
	Graph Types
	Task Types
	Transductive Learning
	Application Fields
	Challenges

	GNNs Overview
	Role of GNNs
	MPNN-type GNNs
	GraphNet
	Pooling

	Spectral Graph Theory
	Definition
	Graph Fourier Transform
	Graph Convolution Operator

	Convolution-based GNNs
	General Form
	Variants
	Over-smoothing of Linear GNNs
	GCN variants for Heterogeneous Graphs

	GNNs with Skip Connections
	ResNet-type GNNs
	Multi-scale GNNs

	Statistical Learning Theory
	Inductive Learning Setting
	ERM estimator
	Uniform Bound via Model Complexity
	Fast Rate
	Minimax Optimality
	Transductive Learning Setting

	Approximation and Non-parametric Estimation Analysis of ResNet-type Convolutional Neural Networks
	Introduction
	Related Work
	Problem Settings
	Empirical Risk Minimization
	Convolutional Neural Networks
	Block-sparse Fully-connected Neural Networks

	Main Theorems
	Approximation
	Estimation

	Applications
	Barron Class
	Hölder Class

	Discussion
	Chapter Conclusion
	Proofs
	Definitions of General CNNs and FNNs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proofs of Corollary 3.2 and Corollary 3.3
	Proofs of Corollary 3.4 and Corollary 3.5
	Proofs of Theorem 3.3 and Theorem 3.4

	Over-smoothing of Non-linear Graph Neural Networks
	Introduction
	Related Work
	Problem Settings
	Main Results
	Convergence of Dynamical System
	Convergence to Trivial Fixed Point
	Strictness of Main Theorem
	Relation to Markov Process

	Application to Graph Neural Networks
	GCNs
	Asymptotic Behavior of GCNs on Erdős – Rényi Graphs
	GCNs Defined by Normalized Laplacian
	Over-smoothing in Link Prediction Tasks
	Remark on Previous Study about Over-smoothing for Non-linear GNNs

	Experiments
	Synthesis Data: One-step Transition
	Synthesis Data: Distance to Invariant Space
	Real Data: Effect of Maximum Singular Values on Performance
	Real Data: Effect of Signal Component Perpendicular To Invariant Space

	Discussion
	Chapter Conclusion
	Proofs
	Proof of Proposition 4.1
	Proof of Theorem 4.1
	Proof of Proposition 4.2
	Proofs of Proposition 4.3 and Proposition 4.4
	Proof of Theorem 4.3
	Proof of Proposition 4.5

	Experiment Settings
	Experiments in Section 4.6.1
	Experiments in Section 4.6.2
	Experiments in Section 4.6.3
	Experiments in Section 4.6.4

	Additional Experiment Results
	Experiments in Section 4.6.1
	Experiments in Section 4.6.2
	Experiments in Section 4.6.3
	Experiments in Section 4.6.4

	Optimization and Generalization Analysis of Multi-scale Graph Neural Networks through Gradient Boosting
	Introduction
	Related Work
	Problem Settings
	Transductive Learning
	Gradient Boosting
	Models

	Main Theorems
	Optimization
	Generalization

	Application to Multi-scale GNNs
	Practical Improvements
	Experiments
	Node Prediction Tasks
	Link Prediction Tasks

	Discussion
	Chapter Conclusion
	Proof of Theorems and Propositions
	Proof of Proposition 5.1
	Proof of Theorem 5.1
	Proof of Proposition 5.2
	Proof of Proposition 5.3
	Proof of Theorem 5.2
	Proof of Proposition 5.4
	Proof of Proposition 5.5

	Provable Satisfiability of Weak Learning Condition using Over-parameterized Models
	Experiment Settings
	Experiments in Section 5.7.1 (Node Prediction Tasks)
	Experiments in Section 5.7.2 (Link Prediction Tasks)

	Additional Experiment Results
	More Results for Model Variants
	Performance Comparison with Existing GNN Models

	Conclusion

