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Abstract

The objectives of this thesis are twofold: first, to establish a unifying framework of

inverse problems for acoustic measurement, especially considering nonlinear saturation

effects; and second, to propose practical methods for two specific topics of acoustic mea-

surement, the restoration of saturated sound signals and the estimation of sound fields,

where existing and proposed theories on inverse problems are fully utilized. Most current

methods related to acoustic measurement problems are classified as linear inverse prob-

lems, where a linear relationship between the target acoustic quantity and the observed

signal is assumed. In practice, however, observation is often affected by nonlinear satura-

tion effects in various situations of acoustic measurement, which cannot be dealt with in

these methods. The former part of this thesis presents a new formulation for inverse prob-

lems with nonlinear saturation effects and also provides efficient algorithms to solve the

proposed formulation. In the latter part, several practical methods for restoring saturated

sound signals and estimating sound fields are proposed on the basis of the methodological

framework presented in the former part. Also, experimental evaluations are provided in

comparison with other current practical methods proposed in the corresponding fields,

and the validity of the proposed methods is demonstrated.
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of estimating various acoustic quantities from indi-

rect observation, as illustrated in Figure 1.1, which is referred to as the acoustic mea-

surement problem. Here, the term “acoustic quantity” will be used in a broad sense

to include (temporal) sound signals, (spatio-temporal) sound fields, and various other

acoustic-related parameters. Acoustic measurement techniques, as well as other measure-

ment techniques, not only are an end in themselves but also form the foundation of a wide

variety of applications. In automatic speech recognition [1,2] and computational auditory

event analysis [3, 4], for example, speech signals or environmental sound signals have to

be captured with a certain degree of accuracy. As another example, sound field measure-

ment techniques have various applications in spatial audio technologies, including binaural

reproduction [5,6], sound field reproduction [7,8], and spatial active noise control [9]. Par-

ticularly in recent decades, so much progress has been made in these applications that it

is now possible, or almost possible, to put these techniques into practice in the real world.

Also, an accurate measurement (calibration) of the directivity and frequency response of

sensors such as microphones and loudspeakers can be regarded as one type of acoustic

Fig. 1.1: Acoustic measurement problem.
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measurement problem, which will improve the performance of these applied techniques

and broaden their scope.

As well as the variety of target acoustic quantities, there are diverse types of sensing

devices and systems used in acoustic measurement. These can be classified on the basis of

their principles (e.g., transduction mechanisms) and also their functions (e.g., directivity

and frequency response). Therefore, various combinations of situations are possible in

acoustic measurement problems. Although each of them seems a different problem at first

glance, we can often find common characteristics in their underlying mathematical models.

This abstract viewpoint, based not on the physical mechanism or application but on the

mathematical model, is often taken in the research field called inverse problems [10–13],

and it is effective because various seemingly independent problems can be treated in a

unified manner.

1.2 Classification of Acoustic Measurement Problems

From the viewpoint of inverse problems, acoustic measurement problems are typically

classified depending on whether or not the superposition principle, i.e., linearity between

the acoustic quantity of interest and the observed signal, holds in the observation. A

typical example of linear observation is the sampling of sound signals [14–16]. Also, in

the measurement of sound fields using multiple microphones [8,17–25], the superposition

property holds well regardless of the microphones’ directivity and frequency response as

long as the observed signal is within their dynamic range. These problems can be dealt

with as linear inverse problems, and many useful theories and efficient algorithms have

been proposed and investigated for linear inverse problems, although they have not been

fully applied in the context of acoustic measurement. On the other hand, for example,

in sound source localization problems [26–28] and sensor localization problems [29, 30],

the target quantity, i.e., the positions of the sound sources or sensors, and the observed

signals have a complex nonlinear relationship even if an ideal observation within the

dynamic range is achieved. These problems are usually studied with further mathematical

classification and are beyond the scope of this thesis.

In addition to the above classification, the intrinsic nonlinearity of sensing devices and

systems is also important, even though little attention has been paid to it in the liter-

ature related to acoustic measurement problems. For example, capacitive microphones

have complex nonlinear behaviors caused by elastic and electrostatic forces [31], and

(pre)amplifiers have nonlinear saturation effects owing to the transfer characteristics of

transistors [32]. The degree of nonlinearity depends on the design of the sensors and the

input intensity; inexpensive systems often suffer from a non-negligible degree of nonlinear-

ity. Therefore, even in acoustic measurement problems that are typically categorized as

linear ones, the above nonlinearities have to be considered under such non-ideal conditions.
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1.3 Scope and Objectives

The theoretical scope of this thesis includes linear inverse problems as a special case and

also covers saturation effects arising in observation systems, which are one of the most

common nonlinear phenomena but have not been considered in most existing studies on

acoustic measurement problems. Although not all nonlinear effects such as hysteresis

can be described as saturation, the overall behaviors of observation systems can often be

well approximated by it [33]. At least, nonlinearities caused by (pre)amplifiers are mod-

eled well as saturation effects, i.e., a monotonic relationship between input and output

signals [32]. Therefore, a unifying framework for inverse problems considering nonlinear

saturation effects is helpful in improving estimation accuracy in various situations. Con-

versely, the establishment of such a framework will also lead to the practical realization

of novel measurement systems suffering severe saturation effects but having advantages

in other aspects, such as sampling rate, signal-to-noise ratio, manufacturing cost, and

nondestructivity.

While dealing with abstract theories on inverse problems, this thesis also focuses on

two specific topics of acoustic measurement problems: the restoration of saturated sound

signals and the estimation of sound fields. This is not intended only to provide applica-

tions of the theories presented in this thesis; it is also motivated by the fact that even

existing theories on linear inverse problems have not been fully applied in current methods

of acoustic measurement. From both academic and practical viewpoints, it is desirable

to reduce the gap between abstract theories in inverse problems and practical methods

in the fields of application. In particular, even in cases of linear observation, estimation

accuracy of current practical methods can be improved by exploiting several theories on

Hilbert spaces [34, 35], and these theories are proven to be effective also in formulations

considering nonlinear saturation effects. Other possible applications, such as the estima-

tion of room transfer functions and head-related transfer functions, are not described in

detail in this thesis; however, it is expected that efficient estimation methods for various

other acoustic quantities can also be established in a similar manner on the basis of the

presented methodology.

On the basis of the above discussion, the objectives of this thesis are

• to establish a unifying framework of inverse problems considering nonlinear satura-

tion effects;

• to propose efficient estimation methods for sound signals and sound fields, where

existing and proposed theories on inverse problems are fully applied.

Here, the objectives are given rather abstractly; they are reiterated in more detail after

summarizing related studies in Chapter 2.
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Fig. 1.2: Outline of thesis.

1.4 Outline

The organization of this thesis is given in Figure 1.2. Chapter 2 introduces the mathe-

matical framework of an inverse problem for acoustic measurement, which is formulated

as an optimization problem of a certain class, summarizes its related studies, and clarifies

current problems to be addressed in this thesis. In Chapter 3, a new formulation for the

inverse problems defined in Chapter 2 is proposed, and its theoretical comparison with

other current formulations is discussed. Efficient optimization algorithms for the proposed

formulation are also provided. Chapters 4 and 5 deal with two different specific topics of

acoustic measurement problems, which are structured independently from each other but

both are based on the theoretical framework provided in Chapters 2 and 3. These two

chapters are not just application examples; each of them includes several contributions in

the corresponding research field. Chapter 4 focuses on restoration problems of saturated

sound signals, whereas Chapter 5 focuses on sound field estimation problems. Finally,

Chapter 6 concludes this thesis.

1.5 Mathematical Notations

Since many mathematical symbols will be used throughout this thesis, they will be defined

independently in each chapter unless explicitly referred to. However, the following basic

notations are used throughout this thesis.

• N: set of all natural numbers including zero
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• Z: set of all integers
– Jm,nK: set of all integers between m and n inclusive (m,n ∈ Z, m ≤ n)

• R: set of all natural numbers

• C: set of all complex numbers

– i: imaginary unit in C
– z∗: complex conjugate of z (z ∈ C)

• Sn: unit circle or sphere in Rn+1 (n ∈ {1, 2})
•
∫
x∈X

f(x) dµ: integral of f over X with respect to the Lebesgue measure (f is a

measurable function on a measurable set X ⊆ R)
•
∫
x∈Sn f(x) dχ: circular or spherical integral of f (f is a measurable function on Sn,
n ∈ {1, 2})
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Chapter 2

Related Studies and Problem

Statements

The goals of this chapter are to provide a mathematical formulation of an acoustic mea-

surement problem, which will be described as an optimization problem called an inverse

problem, and to clarify current difficulties in dealing with this problem. For these goals,

a general framework of inverse problems is introduced first in Section 2.1. In Section 2.2,

by focusing on several characteristics in acoustic measurement, the mathematical class

of inverse problems of interest is clarified, which also defines a practical class of acoustic

measurement problems within the scope of the theories provided in this thesis. Section 2.3

provides an overview of related studies, and the problems to be addressed in this thesis

are stated in Section 2.4.

2.1 General Framework of Inverse Problem

An inverse problem is a process of determining or estimating a quantity of interest from its

indirect observation, whose theory has been under intensive investigation in engineering,

applied mathematics, and many other fields. A mathematical description of an inverse

problem is given as follows. Let U and S denote sets consisting of all possible candidates

for quantities of interest and observed signals, respectively. Then, the relationship between

the quantity of interest and the observed signal, called a forward problem, is given by a

forward operator, which is a mapping from U to S, i.e.,

A : U → S. (2.1)

In other words, from the quantity of interest u ∈ U , the observed signal s ∈ S (in a

noise-free case) is given by

s = A(u). (2.2)

In the context of an inverse problem, the forward operator A is assumed to be given. The

goal of the inverse problem is to estimate the unknown quantity u ∈ U from the given

observed signal s ∈ S.
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If A is bijective and there is no observation noise, the estimation problem is simple,

at least in the mathematical sense, because for any given s ∈ S, there exists a unique

u ∈ U satisfying (2.2). Unfortunately, these conditions are not satisfied in many practical

situations. In acoustic measurement problems, in particular, we often face the following

situations:

• The quantity of interest is an infinite-dimensional vector, whereas the observed

signal is a finite-dimensional vector.

• The observation is affected by noninjective saturation effects.

• The observation is affected by noises.

In such cases, one cannot determine the unknown quantity uniquely from the observed

signal only by (2.2). Therefore, one has to exploit some physical, statistical, or empirical

assumption on the target quantity (and sometimes also on the observational noise) and

to determine the most “reasonable” one on the basis of some criterion. This strategy can

be formulated as the following optimization problem:

minimize
u∈U

Q(u) := Ls(u) +R(u). (2.3)

Here, Q : U → R ∪ {∞} is an objective function evaluating the overall reasonability of

the quantity of interest, Ls : U → R ∪ {∞} is a loss function evaluating the consistency

between the quantity of interest and the observed signal, and R : U → R ∪ {∞} is a

regularization function evaluating the reasonability of the quantity of interest based on

some prior knowledge or assumption independently of the observation. Hereafter, the term

“inverse problem” is defined to mean the estimation problem of the quantity of interest

based on (2.3), which is also often called an ill-posed inverse problem*1 in the literature.

Once the problem of (2.3) has been defined, its optimal solution is determined in the

mathematical sense. In practice, however, it is not always a trivial task to obtain the

optimal solution of (2.3); rather, only a few specific cases admit (computable) closed-form

solutions. Instead, iterative algorithms are typically used in a large class of optimiza-

tion problems, where approximate solutions are generated sequentially. Here, it should

be noted that the available algorithms and their characteristics, such as the convergence

property and computational cost, depend on the class of the objective function. Owing to

these algorithmic factors, even if the validity of the formulation is supported from stochas-

tic or other perspectives, it does not necessarily yield accurate and efficient estimation

*1 This does not correspond to the well-known definition given by Hadamard [36]. In Hadamard’s

definition, the inverse problem is said to be well-posed if the following three conditions are satisfied:

• existence of the solution, i.e., surjectivity of A,

• uniqueness of the solution, i.e., injectivity of A,

• stability of the solution, i.e., continuity of the inverse of A (under certain a topology on U and S),
and otherwise said to be ill-posed. However, the definition given in the manuscript is also often

used depending on the context.
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Fig. 2.1: Examples of monotone and Lipschitz continuous functions.

in practice. Hence, to establish a “good” estimation method, one has to simultaneously

consider formulation and optimization algorithms, which is one of the distinctive features

in considering inverse problems.

2.2 Acoustic Measurement as Inverse Problems

As described in Section 1.3, the acoustic measurement of interest in this thesis is modeled

as a combination of linear observation and nonlinear saturation effects. These observa-

tional settings can be described mathematically as a forward problem in Section 2.1 with

the following conditions:

• U is a Hilbert space over K ∈ {R,C} with an inner product ⟨·, ·⟩U : U × U → K.

• S is a finite-dimensional Hilbert space over K with an inner product ⟨·, ·⟩S : S×S →
K.

• A can be decomposed as A = f ◦ D, where D : U → S is a bounded linear

mapping and f : S → S is a (possibly nonlinear) cyclically monotone and Lipschitz

continuous mapping.

The definitions of a Hilbert space and a bounded linear mapping are given in Ap-

pendix A.1. One of the main contributions of this thesis is to take the nonlinear function

f into consideration; if f is the identity mapping, the above conditions correspond to

those of linear inverse problems. Here, a mapping f : S → S is said to be cyclically
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Fig. 2.2: Superposition of sound signals.

monotone if there exists some positive-definite linear mapping Λ : S → S satisfying

N∑
n=1

⟨
z(n+1), f(z(n+1))− f(z(n))

⟩
Λ
≥ 0 (2.4)

for all N ∈ N and z(1), . . . , z(N+1) ∈ S such that z(N+1) = z(1). Here, ⟨·, ·⟩Λ : S × S → K
is an inner product induced by Λ, defined as ⟨z, w⟩Λ := ⟨z,Λw⟩S for z, w ∈ S. For such

Λ, f is also said to be cyclically monotone with respect to Λ, more specifically. A simple

case is when S = RN with N ∈ N and f is an elementwise monotonically nondecreasing

and Lipschitz continuous function (see Figure 2.1, for example), where Λ can be taken

as any diagonal matrix with positive diagonal elements. Note that cyclically monotone

functions are not necessarily invertible as shown by this figure.

Here, acoustic measurement problems have been defined in an abstract form. To make

it easier to understand specific situations, several practical examples are provided briefly

with an intuitive explanation (with as little mathematical formulation as possible) in the

following subsections, which will be described again in more detail with a mathematical

formulation in later chapters on specific applications.

2.2.1 Measurement of Sound Signal

A sound signal is described as a relation from time to amplitude, which means that it

can be regarded as a function, for example, from R to R for a continuous-time signal

and from Z to R for a discrete-time signal. Therefore, in the measurement of a sound
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signal, U can be defined as a function space, and the summation in this space can be

regarded intuitively as a superposition of sounds (see Figure 2.2). Furthermore, a linear

constraint, such as square integrability or bandlimitation, can also be exploited on U .
For example, the scalar multiplication and superposition of bandlimited signals are also

bandlimited; therefore, all bandlimited signals also constitute a linear space. Such spaces

can be regarded as Hilbert spaces with an appropriate definition of an inner product.

The measurement of a sound signal is basically realized by sampling the output signal

resulting from the target sound via a linear time-invariant system. A linear time-invariant

system is described by its impulse response; the output signal is given by the convolution

of the input signal and the impulse response. Since the convolution is a linear operation

with respect to input signals for a fixed impulse response, and the sampling is also a lin-

ear processing, the relationship between the input and sampled signals can be described

using a linear mapping. If the saturation effect can be regarded as an elementwise process-

ing (without any hysteresis characteristics), it can be modeled by a cyclically monotone

mapping.

2.2.2 Measurement of Sound Field

Let Ω be a two-dimensional or three-dimensional (nonempty open) region of interest. A

sound field in Ω is described by a function u : Ω × R → R, where u(r, t) denotes the

(infinitesimal) variation of acoustic pressure from its equilibrium value at position r ∈ Ω

and time t ∈ R. When Ω does not include any sound sources, u can be well modeled as a
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solution of the following wave equation [37]:(
∆− 1

c2
∂2

∂t2

)
u = 0, (2.5)

where ∆ is the Laplace operator and c ∈ R denotes the speed of sound, which is assumed

to be constant in Ω. This is obviously a linear equation; scalar multiples and sums of

solutions of (2.5) also satisfy (2.5). If we consider a time-harmonic sound field given by

u(r, t) = ũ(r) exp(−iωt) (r ∈ Ω, t ∈ R) (2.6)

with ũ : Ω→ C and an angular frequency ω ∈ R (the harmonic time dependence exp(−iωt)
will be used in this thesis according to conventions in the field of spatial acoustics [37]),

ũ satisfies the following Helmholtz equation [37]:

(∆ + k2)ũ = 0, (2.7)

which is also a linear equation. As described above, all solutions of the wave equation or

Helmholtz equation constitute a linear space, where the summation in this space can be

regarded intuitively as a superposition of sound fields (see Figure 2.3). Also, a more specific

class of sound fields, such as superpositions of plane-wave functions, can be considered as

a linear space U , which is often useful in theoretical treatment. Such spaces have infinite

dimensions; however, they can be regarded as Hilbert spaces with appropriate definitions

of inner products.

Consider the measurement of a sound field using multiple microphones with (given)

arbitrary directivities, frequency responses, and sampling times. Since directivities and

frequency responses are linear characteristics, the relationship between a target sound

field and sampled signals can be described using a linear mapping. If the saturation effect

can be regarded as an elementwise processing, it can be modeled as a cyclically monotone

mapping even if the saturation characteristics are different for each microphone.

2.2.3 Other Applications

Although the above examples are the main applicational interest in this thesis, the pre-

sented theories are also applicable in the measurement of various other acoustic quanti-

ties. For example, various linear characteristics of microphones, such as directivity and

frequency response, can be regarded in an abstract manner as a linear mapping describing

the relationship between input sound signals or sound fields and output signals. The set of

all linear mappings between two given linear spaces can also be regarded as a linear space

in a natural manner, and obtaining an output signal from a given input signal can be

regarded as a linear processing with respect to the unknown linear characteristics. There-

fore, the proposed model can also be used in such situations. As another example, a room

impulse response, which describes an impulse response between two arbitrary source and



12 Chapter 2 Related Studies and Problem Statements

receiver positions in a given reverberant environment, can also be regarded in an abstract

manner as a linear mapping describing the relationship between a direct sound field and a

reverberant sound field. In principle, any acoustic quantity allowing such representation

is also within the scope of the theories presented in this thesis.

2.3 Related Studies

This section introduces several previous studies related to inverse problems of interest in

this thesis to clarify current difficulties to be addressed.

2.3.1 Overview of Iterative Methods for Continuous Optimization

As described in Section 2.2, optimization problems of interest in this thesis are defined on

Hilbert spaces, which means that they are classified as continuous optimization problems.

As a preliminary for discussing inverse problems from algorithmic perspectives, this sec-

tion gives an overview of iterative algorithms for continuous optimization problems. The

notions of convexity, (Fréchet) derivative, and proximal operator will be used hereafter,

whose definitions are given in Appendix A.2.

Although there have been numerous iterative algorithms for continuous optimization

proposed in the literature [38–44], their underlying approaches are classified mainly into

three types: the smooth optimization approach, majorization-minimization approach, and

proximal approach. First, many well-established algorithms, such as gradient descent

methods, nonlinear conjugate gradient descent methods, Newton’s method, and quasi-

Newton methods, are based on the use of the first-order or second-order derivatives of the

objective function [38, 40, 41, 45, 46]; such an approach is here referred to as the smooth

optimization approach. These are classical but still standard methods, and a wide variety

of modification and acceleration methods have also been proposed in the literature. The

convergence property has been well investigated under some additional conditions, such

as the Lipschitz continuity of the derivative of an objective function. This approach is

widely applicable to differentiable objective functions; however, the class of differentiable

functions has no longer been sufficiently comprehensive in the field of inverse problems

ever since the concept of sparsity emerged in this field [47, 48]. In recent decades, a wide

variety of nonsmooth regularization functions promoting the sparsity of a target quantity

(in a certain representation) have been demonstrated to be effective in various inverse

problems including acoustic measurement [22,24,25]. Therefore, an alternative scheme is

required to solve such nonsmooth optimization problems.

Various iterative algorithms based on a majorization-minimization approach [44, 49]

have been proposed to solve smooth and nonsmooth optimization problems. A key idea

of the majorization-minimization approach is the design of a surrogate function described
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as follows. LetQ : U → R∪{∞} be an original objective function and Q̆ : U×U → R∪{∞}
be a function satisfying the following conditions:

• Q(u) ≤ Q̆(u, v) for all u, v ∈ U .
• Q(u) = Q̆(u, u) for all u ∈ U .

Such a function Q̆ is called a surrogate function of Q. If one can design a surrogate

function Q̆ that can be easily minimized with respect to the first variable for any fixed

second variable, a sequence of approximate solutions u(0), u(1), . . . ∈ U can be obtained by

u(k+1) = arg min
u∈U

Q̆(u, u(k)) (2.8)

with an arbitrary initial value u(0) ∈ U . Note that there exist various surrogate functions

for one objective function. Although the practical efficiency of the algorithm highly de-

pends on the design of the surrogate function, the obtained sequence is always guaranteed

to decrease or keep the value of the objective function, which is proved from the inequality

Q(u(k+1)) ≤ Q̆(u(k+1), u(k)) ≤ Q̆(u(k), u(k)) = Q(u(k)). (2.9)

However, it is generally difficult to confirm the convergence of a generated sequence to

a global or local optimal solution. Another drawback of this approach is the lack of a

comprehensive way to design “good” surrogate functions for a wide class of objective

functions. For example, consider an optimization problem of the following form:

minimize
u∈U

Q(u) := Q1(u) + · · ·+QN (u) (2.10)

with N ∈ N and Q1, . . . , QN : U → R ∪ {∞}. Obviously, the summation of surrogate

functions for Q1, . . . , QN is a surrogate function of Q. However, even if one can design

good surrogate functions for each of Q1, . . . , QN , their summation is not necessarily easy

to minimize for the first variable. Therefore, one has to consider the compatibility of

multiple surrogate functions.

Nonsmooth optimization problems have also been tackled from another viewpoint,

called a proximal approach [43]. A major characteristic in this approach is the use of

a proximal operator, which is also defined via an optimization problem but computable

in closed form for various practically used nonsmooth functions. Although the details will

be provided in Chapter 3, in combination with the concept of the alternating direction

method of multipliers [50], several sophisticated optimization algorithms based on the

proximal approach are applicable to functions belonging to the following classes:

1. a differentiable function whose gradient is Lipschitz continuous and available as a

computable operator,

2. a function whose proximal operator is available as a computable operator,
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3. a composite function of a bounded linear operator and a function satisfying condi-

tion 1 or 2, and

4. a finite summation of functions, each of which satisfies condition 3.

Here, consider again the optimization problem of (2.10). In contrast to the majorization-

minimization approach, the proximal approach is generally applicable as long as each of

Q1, . . . , QN belongs to the above class; therefore, one does not need to consider the com-

patibility between them. Moreover, in a manner similar to that in the smooth optimization

approach, the convergence of a generated sequence to a global or local optimal solution is

guaranteed under quite general conditions, and there are also various acceleration methods

in the proximal approach.

In any of the approaches described above, the convexity of an objective function takes

an important role. In most iterative algorithms, convergence to a global optimal solu-

tion is guaranteed for convex objective functions. For nonconvex objective functions, on

the other hand, only convergence to some local optimal solution is guaranteed in most

algorithms; therefore, the goodness of the obtained solution often depends on the initial

solution and parameters used in the algorithm. In the context of inverse problems, various

convex and nonconvex formulations, especially for regularization functions, have been pro-

posed; an appropriate choice depends on the situation. However, a convex formulation is

useful at least in the following two respects. First, when a convex formulation gives a bet-

ter performance than nonconvex ones or a practically sufficient performance, even if not

better performance, the convex formulation is preferable owing to its reliable convergence

independent of the initial solution. Second, a solution obtained by some convex formu-

lation can also be used as an initial solution in another nonconvex formulation. Since a

good initial solution is obtained by the convex formulation, the use of this initial solution

is expected to give a better performance than that of baseless or random initial solutions

even in the nonconvex formulation. For the convex formulation of (2.3), of course, the

loss function should be convex.

2.3.2 Linear and Nonlinear Inverse Problems

Consider again the inverse problem of (2.3) with the assumptions given in Section 2.2.

When f is the identity mapping (i.e., when saturation effects can be ignored), this inverse

problem is called a linear inverse problem, and there have been numerous works on reg-

ularization methods and optimization algorithms for linear inverse problems [47, 51, 52]

including those related to acoustic measurement [22,24,25,53]. In linear inverse problems,

the quadratic loss function, denoted hereafter by L
(quad)
s : U → R ∪ {∞}, is used in most

cases. The quadratic loss function is defined as

L(quad)
s (u) :=

1

2
∥f(Lu)− s∥2Λ (u ∈ U) (2.11)
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with a positive-definite bounded linear mapping Λ : S → S, where ∥ · ∥Λ : S → [0,∞)

is the norm induced by the inner product ⟨·, ·⟩Λ. In this case, the optimization problem

takes the following form:

minimize
u∈U

Q(u) :=
1

2
∥f(Lu)− s∥2Λ +R(u), (2.12)

which is also called regularized least squares. In linear inverse problems, the quadratic

loss function has several mathematically tractable properties, such as convexity and dif-

ferentiability. Hence, the main topic in the research of linear inverse problems is the

formulation of a regularization function exploiting various prior knowledge on the target

quantity and the optimization theory for problems having the form of (2.12).

On the other hand, when f is nonlinear, as in the problem of interest in this thesis,

the inverse problem is called a nonlinear inverse problem. In contrast to linear inverse

problems, there are relatively few works on nonlinear inverse problems related to acoustic

measurement, especially with optimization algorithms. It is difficult, or almost impossible,

to obtain useful results for a general nonlinear inverse problem owing to its excessive

generality. For example, consider the commonly used regularized least squares given by

(2.12) in cases of nonlinear f . The regularization methods proposed in linear inverse

problems are expected to be effective also in this case, at least in a theoretical sense,

because the role of regularization is independent of the observation. From the optimization

viewpoint, however, the situation changes significantly. Owing to the nonlinearity (and

possible nondifferentiability) of f , the quadratic loss function is not necessarily convex or

even differentiable in general; therefore, well-established optimization algorithms proposed

in linear inverse problems do not necessarily work well, or might not even be applicable,

in nonlinear inverse problems. As seen in this example, the mathematical tractability of

the loss function is also important in considering nonlinear inverse problems.

2.3.3 Previous Works with Respect to Loss Function

There are several previous works on nonlinear inverse problems related to those of interest

in this thesis [54–57]. Although these works focus on a specific application, called a signal

declipping problem, the underlying theories and formulations can be generalized to the

problem defined in Section 2.2. In these works, tractable formulations of loss functions

are provided, which can be classified into two types: the hard constraint function [55] and

the soft consistency function [54,56,57].

The hard constraint function, hereafter denoted by L
(hard)
s : U → R ∪ {∞}, is defined

as

L(hard)
s (u) :=

{
0 (Du ∈ f−1(s))

∞ (Du ∈ S \ f−1(s))
, (2.13)

where f−1(s) ⊆ S is defined as f−1(s) := {z ∈ S | f(z) = s}. For s ∈ image(f), this
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function is proper, lower-semicontinuous, lower-bounded, and convex because f−1(s) is a

nonempty, closed, and convex set (see Section 3.2 for a proof). Furthermore, this function

can be decomposed as

L(hard)
s = H(hard)

s ◦D (2.14)

with a function H
(hard)
s : S → R ∪ {∞} defined as

H(hard)
s (z) :=

{
0 (z ∈ f−1(s))

∞ (z ∈ S \ f−1(s))
. (2.15)

Here, the proximal operator of H
(hard)
s is given by

proxγ
H

(hard)
s

(z) := projf−1(s)(z) (z ∈ S) (2.16)

for any γ ∈ (0,∞), where projf−1(s)(·) : S → S denotes the orthogonal projection into

f−1(s). In many practical cases, this proximal operator can be calculated easily. For

example, if S = RN with N ∈ N and f is given by an elementwise operation as

f(z) =

 f1(z1). . .
fN (zN )

 (z := [z1, . . . , zN ]T ∈ RN ) (2.17)

with monotonically nondecreasing functions f1, . . . , fN : R→ R, we have

projf−1(s)(z) =

 projf−1(s1)(z1)

. . .
projf−1(sN )(zN )

 (z := [z1, . . . , zN ]T) (2.18)

for any s := [z1, . . . , zN ]T ∈ image(f). Therefore, the proximal operator can be reduced to

simple univariable operations. Using this proximal operator, several iterative algorithms

based on the proximal approach can be applied with an arbitrary regularization function

whose proximal operator or derivative is available. The hard constraint loss function was

proposed for noise-free situations (e.g., the signal restoration problem from a hard clipping

effect caused by an analog-to-digital converter is focused on in [55]). Conversely, this loss

function is not suitable in noisy observation because it leaves no margin for inconsistency.

On the other hand, the soft consistency function, hereafter denoted by L
(soft)
s : U →

R ∪ {∞}, is defined as

L(soft)
s (u) := min

z∈f−1(s)

{
1

2
∥Du− z∥2S

}
(u ∈ U). (2.19)

For s ∈ image(f), this function is also proper, lower-semicontinuous, lower-bounded, and

convex because f−1(s) is a nonempty, closed, and convex set. Furthermore, this function

can be decomposed as

L(soft)
s = H(soft)

s ◦D (2.20)
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with a function H
(soft)
s : S → R ∪ {∞} defined as

H(soft)
s (z) := min

w∈f−1(s)

{
1

2
∥z − w∥2S

}
(z ∈ S). (2.21)

Here, H
(hard)
s is differentiable, whose derivative is given by

∇H(hard)
s (z) = z − projf−1(s)(z). (2.22)

Since this derivative is 1-Lipschitz continuous, several algorithms based on the proximal

approach can be applied with various regularization functions. In contrast to the hard

clipping function, the soft clipping function seems to be suitable for noisy observations at

first glance since inconsistency between u and s is allowed to some extent. Indeed, Rencker

et al. [57] discussed the influence of observational noises before saturation effects. However,

this loss function is also discontinuous with respect to s in general; therefore, even a

small observational noise after saturation may markedly affect the estimation results. In

addition, these two loss functions are defined only for s ∈ image(f); if s takes a value

outside image(f) owing to the observation noise, one cannot even use these formulations

since f−1(s) becomes an empty set. Hence, a robust loss function with a continuous

sensitivity to s is desired for acoustic measurement problems considering observation noises

after saturation effects.

2.4 Problem Statements

By summarizing Section 2.3, one can see the following facts with respect to the acoustic

measurement problems of interest in this thesis:

• An effective formulation of a loss function that is mathematically tractable and

robust against observation noises after saturation effects is still to be established.

• Various regularization functions have been proposed in the literature, and the ap-

propriate choice depends on the target quantity and situation.

On the basis of the above discussion, the main objectives in this thesis are as follows:

• to design a formulation allowing both high estimation accuracy (especially robust-

ness against observational noises after saturation) and computational efficiency;

• to provide an optimization algorithm for the above formulation that can be used

comprehensively with various classes of regularization functions;

• to apply the proposed framework to several practical problems with appropriate

regularization methods and demonstrate the validity of the proposed estimation

methods by experiments in comparison with other current methods.

The first two objectives are related to the abstract (case-independent) methodology, which
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will be described in Chapter 3, and the last one is related to the concrete (case-dependent)

applications, which will be described in Chapters 4 and 5.
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Chapter 3

Proposed Formulation and

Optimization Algorithms

This chapter presents a new formulation of a loss function that is robust to observation

noises and also mathematically tractable from the optimization viewpoint. Section 3.1

provides the definition and several properties of the proposed loss function, whose proofs

are given in Section 3.2. Section 3.3 gives a comparison between the proposed and previous

formulations. In Sections 3.4 and 3.5, optimization theories and algorithms are provided

for Hilbertian and non-Hilbertian regularization functions, respectively.

3.1 Proposed Loss Function

Let Λ : S → S be a positive-definite bounded linear mapping such that f is monotone

with respect to Λ. Moreover, let F : S → R be a potential function of f (in the sense of

the Fréchet derivative with respect to the inner product ⟨·, ·⟩Λ), i.e.,

∇ΛF = f, (3.1)

where ∇ΛF : S → S denotes the derivative of F with respect to the inner product ⟨·, ·⟩Λ.
Such a function is given by

F (z) = F (w) +

∫ 1

0

⟨f(w + t(z − w)), z − w⟩Λ dt (z ∈ S) (3.2)

with arbitrary w ∈ S; however, the concrete form of F is not significant because it does

not appear in the proposed estimation algorithm. Note that the existence of the potential

function is guaranteed by the cyclical monotonicity of f [58]. Then, the proposed loss

function Ls : U → R ∪ {∞} is defined for s ∈ image(f) as

Ls(u) := F (Du)− F (z)− ⟨s,Du− z⟩Λ (u ∈ U) (3.3)

with arbitrary z ∈ f−1(s). Note that (3.3) is well defined regardless of the choice of z in

(3.3) and w in (3.2) (see Section 3.2 for a proof).

Here, the proposed loss function satisfies the following divergence-like properties:
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1. Ls(u) ≥ 0 for all u ∈ U and s ∈ image(f).

2. Ls(u) = 0 if and only if s = f(Du) for all u ∈ U and s ∈ image(f).

Moreover, it also satisfies the following two properties:

3. Ls(u) is differentiable and convex with respect to u ∈ U for any fixed s ∈ image(f).

4. Ls(u) is continuous and convex with respect to s ∈ image(f) for any fixed u ∈ U .

Proofs of the above four properties are provided in Section 3.2. In particular, the derivative

of Ls (with respect to the inner product ⟨·, ·⟩S), denoted by ∇Ls : U → U , is given by

∇Ls(u) = D∗Λ(f(Du)− s) (u ∈ U). (3.4)

Moreover, since f is Lipschitz continuous by the assumption in Section 2.2, ∇Ls : U → U
is also Lipschitz continuous with a Lipschitz constant Lip(f)× ∥DD∗Λ∥op, where Lip(f)

denotes the minimum Lipschitz constant of f and ∥ · ∥op denotes the operator norm.

This loss function is defined only for s ∈ image(f) in the strict sense. However, by

omitting the terms irrelevant to u ∈ U from (3.3), an essentially equivalent loss function

L̃s : U → R ∪ {∞} can be defined as

L̃s(u) := F (Du)− ⟨s,Du⟩Λ (u ∈ U) (3.5)

for any s ∈ S regardless of whether s is in image(f) or not. This extension is practically

significant since s may take a value outside image(f) owing to observation noises. Note

that such an extension is impossible in the previous hard constraint loss function and soft

consistency loss function.

3.2 Proofs for Properties of Proposed Loss Function

As a preliminary, several basic properties with respect to f are briefly summarized. Let

F ∗ : S → R ∪ {∞} be the convex conjugate [40] of F , defined as

F ∗(w) := sup
z∈S
{⟨w, z⟩Λ − F (z)} (z ∈ S). (3.6)

Then, from the differentiability of F , we have

f(z) = s⇔ F ∗(s) = ⟨s, z⟩Λ − F (z) (3.7)

and therefore

∂ΛF
∗(s) = f−1(s) (3.8)

for z, s ∈ S, where ∂ΛF ∗(s) ⊆ S denotes the subderivative of F ∗ at s ∈ S with respect

to the inner product ⟨·, ·⟩Λ. Moreover, since the subderivative of the convex function is a

closed convex set from its definition, we have the closedness and convexity of f−1(s) for

any s.



3.2 Proofs for Properties of Proposed Loss Function 21

Using these properties, the propositions described in Section 3.1 will be proved. First,

the independence with respect to w ∈ S in (3.2) and z ∈ f−1(s) in (3.3) is proved as

follows. From (3.1), we have

Ls(u) =

∫ 1

0

⟨f(z + t(Du− z))− s,Du− z⟩Λ dt (u ∈ U) (3.9)

for any w ∈ S in (3.2), which means Ls is well defined independently of w. Also, again

from (3.1), we have

(F (z′)− ⟨s, z′⟩Λ)− (F (z)− ⟨s, z⟩Λ) =
∫ 1

0

⟨f(z + t(z′ − z))− s, z′ − z⟩Λ dt (3.10)

for any z, z′ ∈ f−1(s). Here, from the convexity of f−1(s), we have f(z + t(z′ − z)) = s

for all t ∈ [0, 1]. Therefore, we obtain

(F (z′)− ⟨s, z′⟩Λ)− (F (z)− ⟨s, z⟩Λ) = 0 ∀z, z′ ∈ f−1(s), (3.11)

which means Ls is well defined independently of z ∈ f−1(s) in (3.3).

Next, the four properties of the proposed loss function given in Section 3.1 will be

proved. In (3.9), we have

⟨f(z + t(Du− z))− s,Du− z⟩Λ ≥ 0 ∀t ∈ [0, 1] (3.12)

from the cyclical monotonicity of f . Therefore, we have the first property, i.e., Ls(u) ≥ 0.

The second property can be obtained from the following proposition:

w ∈ f−1(s)⇔ F (w)− F (z) = ⟨s, w − z⟩Λ , (3.13)

where z is an arbitrary element of f−1(s). First, we have

w ∈ f−1(s)⇔ w ∈ ∂ΛF ∗(s)

⇔ F ∗(y) ≥ F ∗(s) + ⟨y − s, w⟩Λ ∀y ∈ S
⇒ F ∗(f(w)) ≥ F ∗(s) + ⟨f(w)− s, w⟩Λ . (3.14)

On the other hand, from the definition of F ∗, the following relation holds for any z, w ∈ S:

F (w)− F (z)− ⟨f(z), w − z⟩Λ
= F ∗(f(z))− F ∗(f(w))− ⟨f(z)− f(w), w⟩Λ
≥ 0. (3.15)

Therefore, we obtain

w ∈ f−1(s)⇒ F (w)− F (z)− ⟨s, w − z⟩Λ = 0. (3.16)

Conversely, from the relation

F (w)− F (z)− ⟨s, w − z⟩Λ = 0⇔ F ∗(f(w))− F ∗(s) = ⟨f(w)− s, w⟩Λ (3.17)
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and the inequality

F ∗(y)− F ∗(f(w)) ≥ ⟨y − f(w), w⟩Λ ∀y, w ∈ S, (3.18)

we have

F (w)− F (z)− ⟨s, w − z⟩Λ = 0⇔ F ∗(y)− F ∗(s) ≥ ⟨y − s, w⟩Λ
⇔ w ∈ ∂ΛF ∗(s)

⇔ w ∈ f−1(s). (3.19)

Therefore, we obtain the second property.

The third property can be obtained immediately from (3.3) and (3.1). For the fourth

property, first we obtain

Ls(u) = F ∗(s)− F ∗(Du)− ⟨s− f(Du), Du⟩Λ (u ∈ U) (3.20)

from (3.15). Here, let Γu : S → R ∪ {∞} be defined for fixed u ∈ U as

Γu(s) := Ls(u) (s ∈ S). (3.21)

Since F ∗ is convex, Γu is continuous in image(f) and convex, whose subderivative is given

by

∂ΛΓu(s) =
{
z −Du

∣∣ z ∈ f−1(s)
}
. (3.22)

3.3 Comparison with Previous Formulations

This section provides a theoretical comparison between the proposed loss function and

the three loss functions described in Section 2.3, i.e., the quadratic loss function, hard

constraint loss function, and soft consistency loss function. First, the proposed loss func-

tion and quadratic loss function have continuous sensitivity with respect to the observed

signal, whereas the other two functions do not. This continuity is desired in cases where

observation noises are added after saturation effects. From an optimization viewpoint, on

the other hand, the proposed loss function, as well as the hard constraint loss function and

soft consistency loss function, is preferable to the quadratic loss function owing to its con-

vexity and differentiability. From the above discussion, one can see that the proposed loss

function has both robustness against observation noises and mathematical tractability.

These properties are also summarized in Table 3.1. Moreover, for an intuitive explana-

tion, examples in the one-dimensional case, i.e., S = R, are shown in Figures 3.1, 3.2,

and 3.3. One can see discontinuity in the vertical direction where f is partially constant

in Figure 3.3, whereas Figure 3.1 shows continuity over the entire domain in both the

vertical and horizontal directions. Also, nonconvexity in the horizontal direction can be

seen in Figure 3.2, whereas Figure 3.1 shows convexity in both the vertical and horizontal

directions.
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Fig. 3.1: Examples of proposed loss function.
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Fig. 3.2: Examples of quadratic loss function.
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Fig. 3.3: Examples of soft consistency loss function.

Table 3.1: Properties of loss functions.

Convexity
Continuity with respect to

observed signal

Proposed loss function Yes Yes

Quadratic loss function No Yes

Hard constraint loss function Yes No

Soft consistency loss function Yes No

3.4 Optimization Theories and Algorithms for Hilbertian

Regularization

First, consider the specific case of the Hilbertian regularization, i.e.,

R(u) =
λ

2
∥u∥2U (u ∈ U), (3.23)

where λ ∈ (0,∞) is a constant parameter called a regularization parameter. This for-

mulation is also called the Tikhonov–Phillips regularization. Compared with the general

(non-Hilbertian) case, the Hilbertian regularization yields the following three tractable

properties:
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• existence of the closed-form solution in cases of linear observation;

• availability of the representer theorem;

• differentiability.

These properties are discussed in detail in the following subsections.

3.4.1 Closed-Form Solution for Linear Observation

When f is the identity mapping, i.e.,

f(z) = z (z ∈ S), (3.24)

the loss function is represented as

Ls(u) =
1

2
∥Du− s∥2Λ (u ∈ U), (3.25)

i.e., the proposed loss function corresponds to the quadratic loss function. In this case,

the problem of (2.3) has the same form as the ordinary linear regression with Tikhonov–

Phillips regularization, and its solution can be obtained in a closed form as follows. First,

the objective function is given by

Q(u) =
1

2
∥Du− s∥2Λ +

λ

2
∥u∥2U (u ∈ U), (3.26)

which can be rewritten as

Q(u) = u∗(D∗ΛD + λIU )u− u∗D∗Λs− s∗ΛDu+ ∥s∥2S (u ∈ U), (3.27)

where IU is the identity mapping on U . Here, u∗ and D∗ are the adjoints of u and D,

respectively, whose definition is given in Appendix A.1. Since D∗ΛD + λIU is positive-

definite and therefore invertible, it can be further rewritten as

Q(u) =
[
u− (D∗ΛD + λIU )

−1D∗Λs
]∗
(D∗ΛD + λIU )

[
u− (D∗ΛD + λIU )

−1D∗Λs
]

+ s∗
[
ΛD(D∗ΛD + λIU )

−1D∗Λ + IS
]
s (u ∈ U). (3.28)

Again from the positive definiteness of D∗ΛD + λIU , i.e., u
∗(D∗ΛD + λIU )u > 0 for all

u ∈ U \ {0}, we can see that Q is minimized at u(opt) ∈ U given by

u(opt) = (D∗ΛD + λIU )
−1D∗Λs. (3.29)

At first glance, the calculation of (D∗ΛD+λIU )
−1 seems difficult for infinite-dimensional

U . Actually, this infinite-dimensional calculation can be avoided by using the identity

(D∗ΛD + λIU )
−1D∗Λ = D∗Σ(K + λΣ)−1 with Σ := Λ−1 and K := DD∗, from which we

obtain

u(opt) = D∗Σ(K + λΣ)−1s. (3.30)
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In this form, (K + λΣ)−1 can be calculated since DD∗ + λΣ is a linear mapping on a

finite-dimensional linear space S, i.e., it admits a matrix representation. This formula is

computationally useful also when U has a finite but much larger dimension than S since

it allows dimensional reduction in the calculation of the matrix inversion.

Here, it should be noted that u(opt) can be represented in the form of

u(opt) = D∗α (3.31)

with certain α ∈ S. Actually, this property holds for more general cases, which is described

in the following section.

3.4.2 Representer Theorem

When f is nonlinear, the optimization problem takes the following form:

minimize
u∈U

Q(u) := Hs(Du) +
λ

2
∥u∥2U , (3.32)

where Hs : S → R ∪ {∞} is defined as

Hs(z) := F (z)− ⟨s, z⟩Λ (z ∈ S). (3.33)

In this case, it is generally difficult to obtain the closed-form solution of (3.32); however,

there are several general properties given as follows. First, the objective function is convex

and coercive even when s ∈ S \ image(f); therefore, there always exists a unique optimal

solution. Here, the coerciveness can be proved as follows. For arbitrary u0 ∈ U \ {0}, let
q : R→ R ∪ {∞} be defined as

q(t) := Q(tu0) (t ∈ R), (3.34)

which can be rewritten as

q(t) = F (tz0)− t ⟨s, z0⟩Λ +
λ

2
t2∥u0∥2U (t ∈ R). (3.35)

From the differentiability of F , q is also differentiable, whose derivative is given by

∂q(t)

∂t
= ⟨f(tz0)− s, z0⟩Λ + λ∥u0∥2U t

= ⟨f(tz0)− f(t0), z0 − 0⟩Λ + λ∥u0∥2U t+ ⟨f(0)− s, z0⟩Λ . (3.36)

Here, from the monotonicity of f , the term ⟨f(tz0)− f(t0), z0 − 0⟩Λ is nonnegative for all

t ∈ R. Therefore, we have

lim
t→∞

∂q(t)

∂t
=∞, (3.37)

which yields the coerciveness of Q.

Moreover, from the representer theorem [34,59–63], one can see that the optimal solution

of (3.32) lies within a finite-dimensional linear subspace given as coimage(D), called the
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coimage of D. The coimage can be regarded as a generalization of the row space in matrix

algebra to general Hilbert spaces, and coimage(D) is characterized by

coimage(D) = image(D∗). (3.38)

In particular, the representer theorem states that any optimal solution u(opt) ∈ U of

minimize
u∈U

Q(u) := H(Du) + g(∥u∥U ) (3.39)

with an arbitrary function H : U → R ∪ {∞} and an arbitrary strictly monotonically

increasing function g : [0,∞)→ R admits a representation in the form of

u(opt) = D∗α (3.40)

with certain α ∈ S [34,60–63]. We can easily see that (3.32) satisfies the above conditions

of the representer theorem and that the optimal α in (3.40) is given as a solution of

minimize
α∈S

Q(∗)(α) := Hs(Kα) +
λ

2
∥α∥2K . (3.41)

Here, K : S → S is a bounded linear mapping called the Gram operator generated by

D∗, which is defined as K := DD∗, and ∥ · ∥K is a seminorm on S induced by the inner

product ⟨·, ·⟩K : S × S → K, defined as ⟨α, α′⟩K := ⟨α,Kα′⟩S for α, α′ ∈ S. Therefore,

we only need to seek the optimal solution within the finite-dimensional Hilbert space S
instead of the original Hilbert space U . This technique of dimensional reduction is often

used in the field of machine learning, especially in function interpolation methods called

kernel methods [64], because of its affinity with theories on reproducing kernel Hilbert

spaces [65]. As shown above, however, it can also be used in more general situations

including acoustic measurement problems, which is described in later chapters in more

detail.

3.4.3 Optimization Algorithms

Since the optimization problem of (3.41) is convex and differentiable, many well-

established iterative algorithms are available. Here, two iterative algorithms are provided

as Algorithms 1 and 2.

Algorithm 1 is based on the gradient descent method with a constant step size param-

eter. Several acceleration methods, such as Nesterov’s one [46], can also be applied. Note

that the derivative of Q(∗) with respect to the inner product ⟨·, ·⟩K is used here, which is

denoted by ∇KQ
(∗) : S → S and given by

∇KQ
(∗)(α) = Λ(f(Kα)− s) + λα (α ∈ S), (3.42)

instead of the derivative with respect to the inner product ⟨·, ·⟩S , given by

∇Q(∗)(α) = KΛ(f(Kα)− s) + λKα (α ∈ S). (3.43)
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Algorithm 1 Gradient descent algorithm for Hilbertian regularization

Require: α ∈ S, γ ∈ (0, 2/(Lip(f)× ∥KΛ∥op + λ))

repeat

α← α− γ[Λ(f(Kα)− s) + λα]

end

return û = D∗α

This is to keep the correspondence of the metric between the two spaces, i.e., the equality

⟨u, u′⟩U = ⟨α, α′⟩K , (3.44)

holding for any u, u′ ∈ U and α, α′ ∈ S satisfying u = D∗α and u′ = D∗α′. In other

words, Algorithm 1 can also be interpreted as the gradient descent method of Q in the

original space U with the inner product ⟨·, ·⟩U . However, the convergence itself can be

guaranteed even when the derivative given in (3.43) is used with γ ∈ (0, 2/(Lip(f) ×
∥K2Λ∥op + λ∥K∥op)).

On the other hand, Algorithm 2 is based on the majorization-minimization approach,

which is derived as follows. First, from the Lipschitz continuity of f , we have [66]

F (z) ≤ F (w) + ⟨f(w), z − w⟩Λ +
β

2
∥z − w∥2Λ ∀z, w ∈ S (3.45)

for β ∈ (0,Lip(f)], where the equality holds for z = w. Therefore, we can define a

surrogate function Q̆(∗)(α, α′) : S × S → R ∪ {∞} as

Q̆(∗)(α, α′) =
β

2
∥K(α− α)∥2Λ + ⟨f(Kα′),K(α− α′)⟩Λ +Hs(Kα

′)

− ⟨s,Kα⟩Λ +
λ

2
∥α∥2K (α, α′ ∈ S). (3.46)

This surrogate function is a quadratic function with respect to the first variable; therefore,

it can be minimized in a closed form, and we can obtain Algorithm 2. Since this algorithm

can be regarded as an iterative operation of the regularized least squares, it is referred

here to as the iterative least squares algorithm. Although the calculation of (K + γλΣ)−1

is required in this algorithm, it can be calculated before we obtain the observed signal s.

Note that this algorithm gives the closed-form solution when f is the identity mapping

and γ = 1, which can be confirmed by comparison with (3.30).

3.5 Optimization Theories and Algorithms for

Non-Hilbertian Regularization

Next, we consider more general cases of non-Hilbertian regularization. In practical situa-

tions, such regularization functions are often used in the context of sparsity-based inverse
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Algorithm 2 Iterative least squares algorithm for Hilbertian regularization

Require: α ∈ S, γ ∈ (0, 1/Lip(f)]

repeat

α← (K + γλΣ)−1[Kα− γ(f(Kα)− s)]
end

return û = D∗α

problems.

3.5.1 Classification of Non-Hilbertian Regularization

Although the term “non-Hilbertian” can be used in a wide sense, most practically used

non-Hilbertian regularization functions are designed for promoting sparsity. A typical

example of a sparsity-promoting function is the lp norm or pseudonorm function [47] on

RN with N ∈ N and 0 < p < 2, i.e.,

R(u) =

N∑
n=1

|u1|pp (u := [u1, . . . , uN ]T ∈ RN ). (3.47)

As in this example, many sparsity-promoting regularization functions have nondifferen-

tiable points. However, practically used nonsmooth regularization functions can be classi-

fied into the following two types. One is a function R : U → R∪{∞} that is “majorizable”

by a quadratic function, whose surrogate function, denoted by R̆ : U × U , is given by

R̆(u, u′) = ⟨u, u⟩W (u′) + C(u′) (3.48)

with some constant C(u′) ∈ R and (easily computable) positive-definite bounded linear

mapping W (u′) : U → U , where ⟨·, ·⟩W (u′) : U × U → K is the inner product induced by

W (u′). The lp norm or pseudonorm functions defined above are typical examples of such

functions [47]. For these functions, we can apply the majorization-minimization approach.

The other is a function R : U → R ∪ {∞} whose proximable operator is available. The

l1 norm function is a typical example of such functions [43]. For these functions, we can

apply the proximal approach. Note that, in either approach, the convexity of R is not

required. Although it is difficult to guarantee the convergence to the global solution for

nonconvex R, a wide variety of regularization functions, which exhibit high performance

in practice, can be used with these approaches.

3.5.2 Optimization Algorithm

Here, two iterative algorithms are provided as Algorithms 3 and 4. Algorithm 3 is based on

the proximal approach, which is called the proximal-linearized alternating direction method
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Algorithm 3 PL-ADMM algorithm for non-Hilbertian regularization

Require: u ∈ U , v ∈ S, z ∈ S, ρ ∈ (0,∞), γ ∈ (0, 1/(ρ∥K∥op)], µ ∈ (0, 1/(ρ + ∥Λ∥op ×
Lip(f))]

repeat

u← proxγR(u− γD∗[v + ρ(Du− z)])
z ← z − µ (Λ(f(z)− s)− [v + ρ(Du− z)])
v ← v + ρ(Du− z)

end

return û = u

Algorithm 4 Iterative reweighted least squares algorithm for non-Hilbertian regulariza-

tion

Require: u ∈ U , γ ∈ (0, 1/Lip(f)]

repeat

u← (D∗ΛD + γW (u))−1D∗Λ[Du− γ(f(Du)− s)]
end

return û = u

of multipliers (PL-ADMM) [50,66]. This algorithm can be applied when the proximal op-

erator of R is available. Algorithm 4 is based on the majorization-minimization approach,

which is called the iterative reweighted least squares algorithm [47]. This algorithm can

be applied when the surrogate function of R is given by (3.48).
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Chapter 4

Restoration of Saturated Sound

Signal

This chapter focuses on specific applicational problems of the restoration of saturated

sound signals. Although the basic framework follows the theories provided in Chapters 2

and 3, experimental comparisons with other signal restoration methods are also presented.

In Section 4.1, the research background and related studies on restoration problems of

saturated sound signals are summarized. Signal restoration methods based on two different

strategies are proposed in Sections 4.2 and 4.3.

4.1 Research Background

Saturation is an essentially inevitable nonlinear phenomenon in the measurement of any

types of signals including sound signals. Highly distorted signals due to this phenomenon

not only degrade their perceptual quality [67,68] but also have negative effects in various

applications at later stages [69]. Restoring such signals is of great interest as a common

problem to be solved.

There have been many attempts to solve this problem or related ones in the litera-

ture [54–56, 69–76]. In [70], the signal is restored using oversampling (i.e., sampling with

a frequency higher than the Nyquist rate, which is determined by the Nyquist–Shannon

sampling theorem [16]). Since no other assumptions are imposed on target signals, this

method is expected to be applicable to a wide variety of signals, although observation

richer than usual is required. However, only a specific saturation effect, a hard clipping

effect, is considered in this method, and its theory cannot be applied directly to various

saturation effects caused by sensors and amplifiers.

Sparsity-based signal restoration methods have also attracted considerable attention

for their restoration accuracy in various practical situations [54–56, 71, 73–76]. In these

methods, some sparse structure on the target signal is assumed, and an optimization

problem is formulated to induce the sparsity of the estimated signal, which is evaluated

by a sparsity-promoting regularization function, while keeping the consistency between the
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estimated signal and the observed signal, which is evaluated by a loss function. Obviously,

such a sparsity assumption is not necessarily satisfied for all possible signals; however, it

is reported to work well practically for various signals observed in the real world. In these

methods, the hard constraint loss function and soft consistency loss function described in

Section 2.3 are used. Therefore, the formulated optimization problems can be solved using

various iterative algorithms based on the proximal approach [54–56, 76]. These methods

exhibit high restoration accuracy for real data as well as for artificially created data in

noise-free cases, or at least in noisy cases only before saturation effects. These assumptions

are justified, for example, when considering a hard clipping effect caused by an analog-to-

digital converter. When considering saturation caused by sensors and amplifiers, on the

other hand, we often need to consider observation noises after saturation effects; however,

there has been little theoretical or experimental investigation for such cases.

The following sections present new comprehensive signal restoration algorithms appli-

cable to noisy observation on the basis of the loss function proposed in Chapter 3, which

exhibits a continuous sensitivity against the observed signal, as opposed to the loss func-

tions proposed in other previous works. Section 4.2 presents a restoration method where

only the bandlimitation of target signals is assumed as in [70]. This method is applicable

to various saturation functions and sampling schemes, including oversampling and more

general nonuniform sampling. Section 4.3 presents a sparsity-based restoration method.

In this method, the basic framework follows that proposed in [55]; however, the use of the

proposed loss function leads to a significant improvement in restoration accuracy in noisy

cases. In each section, experimental results are also provided to demonstrate the validity

of the proposed method.

4.2 Signal Restoration from Nonuniform Samples

4.2.1 Formulation

A bandlimited signal can be modeled as a function u : R→ R that admits the form of

u(t) =
1√
2π

∫
ω∈Ω

û(ω) exp(iωt) dµ (t ∈ R) (4.1)

with some û ∈ L2(Ω,C), where Ω := [−ωmax, ωmax] denotes the bandlimitation of the

signal with ωmax ∈ (0,∞). Let F denote the function transformation from û to u in

(4.1), i.e., the inverse Fourier transform, and L̃2(Ω,C) be the set defined as

L̃2(Ω,C) := {û ∈ L2(Ω,C) | û(−ω) = û(ω)∗ ∀ω ∈ Ω} . (4.2)

Then, the set of all bandlimited signals can be given by

U :=
{

F û
∣∣∣ û ∈ L̃2(Ω,C)

}
. (4.3)
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Moreover, let ⟨·, ·⟩U : U × U → R be an inner product defined as

⟨u, v⟩U :=

∫
t∈R

u(t)v(t) dµ. (4.4)

Then, U is a real Hilbert space with an inner product ⟨u, v⟩U and, as noted in [14, 15], a

reproducing kernel Hilbert space with a reproducing kernel κ : R× R→ R given by

κ(t, t′) :=
ωmax

π
sinc(ωmax(t− t′)) (t, t′ ∈ R), (4.5)

i.e., the following equality holds:

⟨κ(·, t), u⟩U = u(t) (u ∈ U , t ∈ R). (4.6)

Here, sinc(·) : R→ R is the unnormalized sinc function defined as

sinc(z) :=

{
sin(z)/z z ∈ R \ {0}
1 z = 0

. (4.7)

Consider a signal sampled at N ∈ N points t1, . . . , tN ∈ R with a nonlinear saturation

effect. The relationship between the unknown bandlimited signal u ∈ U and the observed

signals s1, . . . , sN ∈ R is given by

sn = f0(u(tn)) + ϵn (n ∈ J1, NK), (4.8)

where f0 : R → R is a monotonically nondecreasing and Lipschitz continuous function

representing the saturation effect and ϵ1, . . . , ϵN ∈ R denote the observation noises. From

(4.6), the above relationship can be rewritten as

s = f(Du) + ϵ, (4.9)

where s ∈ RN and ϵ ∈ RN are defined as

s :=

 s1...
sN

 , ϵ :=

 ϵ1...
ϵN

 , (4.10)

D : U → RN is a bounded linear operator defined as

Du :=

 ⟨κ1, u⟩U...
⟨κN , u⟩U

 (u ∈ U), (4.11)

and f : RN → RN is a monotone mapping defined as

f(z) :=

 f0(z1)...
f0(zN )

 (z := [z1, . . . , zN ]T ∈ RN ). (4.12)
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Here, κ1, . . . , κN ∈ U are defined as

κn(t) = κ(tn, t) (t ∈ R, n ∈ J1, NK). (4.13)

According to the theories described in Chapter 3, the following optimization problem

is formulated to estimate the unknown signal:

minimize
u∈U

Q(u) := Hs(Du) +
λ

2
∥u∥2U , (4.14)

where λ ∈ (0,∞) is the regularization parameter and Hs : RN → R ∪ {∞} is defined as

Hs(z) :=

N∑
n=1

(F0(zn)− snzn) (z := [z1, . . . , zN ]T ∈ RN ) (4.15)

with F0 : R → R being a primitive function of f0. Then, we can apply the representer

theorem to (4.17), which guarantees that the optimal solution u(opt) ∈ U admits the form

of

u(opt) = D∗α(opt) =

N∑
n=1

α(opt)
n κn (4.16)

with certain α(opt) := [α
(opt)
1 , . . . , α

(opt)
N ]T ∈ RN . Here, α(opt) can be obtained as the

optimal solution of

minimize
α∈RN

Q(∗)(α) := Hs(Kα) +
λ

2
αTKα, (4.17)

where K ∈ RN×N is defined as

K :=

 κ(t1, t1) . . . κ(t1, tM )
...

. . .
...

κ(tM , t1) . . . κ(tM , tM )

 . (4.18)

This objective function is proper, convex, and differentiable, whose gradient is given by

∇Q(∗)(α) := K(f(Kα)− s+ λα) (α ∈ RN ). (4.19)

4.2.2 Numerical Simulations

Numerical simulations of signal restoration were conducted using Julia v.1.2.0. The fol-

lowing four conditions were compared in the restoration of saturated signals: the proposed

method (denoted by Proposed), the method with the soft consistency loss function (de-

noted by Soft consistency), the regularized least squares (denoted by RLS), and the

combination of Proposed and RLS (denoted by Proposed+RLS). The restoration

results of unsaturated signals (denoted by Unsaturated) were also investigated. The

detailed settings are described below.
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Table 4.1: Results of bandlimited signal estimation (50 trials).

Condition NMSE: mean ± standard deviation

Proposed −19.67± 3.64 dB

Soft consistency −15.94± 3.87 dB

RLS −16.84± 2.19 dB

Proposed+RLS −21.70± 3.25 dB

Unsaturated −25.66± 3.70 dB

The bandlimitation of the target signal was set as ωmax := 2πfmax with fmax = 100Hz.

The true signal, denoted by utrue ∈ U , was defined as

utrue(t) :=

200∑
ν=0

aνsinc(ωmaxt− νπ), (4.20)

where a0, . . . , a200 were sampled independently from the univariate real normal distribu-

tion with mean 0 and variance 1. The signal was sampled at N = 500 points, where

t1, . . . , tN were sampled independently from the uniform distribution on [0, 1] s. For Pro-

posed, Soft consistency, RLS, and Proposed+RLS, the following saturation function

was used:

f0(z) := tanh(z) (z ∈ R), (4.21)

where tanh(·) : R→ R is the hyperbolic tangent function defined as

tanh(z) :=
exp(z)− exp(−z)
exp(z) + exp(−z)

. (4.22)

For Unsaturated, on the other hand, f0 was set as the identity mapping. Observation

noises ϵ1, . . . , ϵN were sampled independently from the univariate real normal distribution

with mean 0 and variance 10−3×S, where S is the average power of the noise-free observed

signals (i.e., the signal-to-noise ratio was 30 dB).

In Proposed and Unsaturated, the unknown signal was estimated by solving the

optimization problem of (4.17) with λ = 10−3 and an initial solution of zero vector. In

Soft consistency, the optimization problem

minimize
u∈U

QSoft(u) :=
1

2
∥Du− projf−1(s)(Du)∥22 +

λ

2
∥u∥2U (4.23)

with λ = 10−3 was used to estimate the signal. Here, for each n ∈ J1, NK, the signal sn

was discarded when it was outside the range of fn owing to the observation noise since

f−1
n (sn) cannot be defined for such sn. On the basis of the representer theorem, as in

Proposed, the optimal solution was obtained by solving

minimize
α∈RN

Q
(∗)
Soft(α) :=

1

2
∥Kα− projf−1(s)(Kα)∥22 +

λ

2
αTKα (4.24)
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True signal Estimated signal Observed data

(a) Proposed. (b) Soft.

(c) RLS. (d) Proposed+RLS.

(e) Unsaturated.

Fig. 4.1: Results of bandlimited signal estimation in [0.25, 0.75] s in the first trial. The

NMSEs were (a) −23.33, (b) −18.28, (c) −20.89, (d) −24.20, and (e) −24.56 dB.

with an initial solution of zero vector. In RLS, the optimization problem

minimize
u∈U

QRLS(u) :=
1

2
∥f(Du)− s∥22 +

λ

2
∥u∥2U (4.25)

with λ = 10−3 was used to estimate the signal. On the basis of the representer theorem,

the optimal solution was obtained by solving

minimize
α∈RN

Q
(∗)
RLS(α) :=

1

2
∥f(Kα)− s∥22 +

λ

2
αTKα (4.26)
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with an initial solution of zero vector. In Proposed+RLS, (4.17) was solved first, and

then (4.26) was solved using the obtained solution of (4.17) as the initial solution. For

the optimization method, the nonlinear conjugate gradient method in Optim.jl [77] was

used with the default settings.

As an evaluation criterion, the normalized mean squared error (NMSE) was used, which

was defined as

NMSE := 10 log10

∑
i∈Ieval

|utrue(t(i)eval)− uest(t
(i)
eval)|2∑

i∈Ieval
|utrue(t(i)eval)|2

(dB). (4.27)

Here, uest ∈ U denotes the estimated signal, and the evaluation points {t(i)eval}i∈Ieval were

set as equally spaced points from 0 s to 1 s with intervals of 0.001 s.

The results are provided in Table 4.1, where the mean and standard deviation of the

NMSEs were calculated over 50 trials since several parameters were randomly determined.

The true and estimated signals in the first trial are also plotted in Figure 4.1. The estima-

tion accuracy for Soft consistency was lowest, indicating its lack of robustness against

observation noises after saturation effects. Also, the estimation accuracy forRLS was low,

which was considered to be due to its nonconvexity; the estimated signal might have fallen

into local optimal solutions. On the other hand, the estimation accuracy for Proposed

was higher than that for RLS, and it was further improved by Proposed+RLS, which

was even close to that for Unsaturated. One possible reason why Proposed+RLS

outperformed Proposed is the formulation of RLS being well suited for Gaussian noises;

it can be interpreted formally as a maximum a posteriori (MAP) estimation when the

observation noises follow normal distributions. From these results, one can see that an

accurate estimation was achieved using the formulation of (4.17), which could also be

used as an initial solution in the optimization for a different formulation.

4.3 Restoration of Saturated Sound Signal Based on

Signal Sparsity

4.3.1 Formulation

Consider the restoration problem of a discrete-time signal, denoted by z := [z1, . . . , zN ]T ∈
RN , from its saturated observation, denoted by s := [s1, . . . , sN ]T ∈ RN . The relationship

between z and s is given by

sn = f0(zn) + ϵn (n ∈ J1, NK), (4.28)

where ϵ1, . . . , ϵN ∈ R denote the observation noises and f0 : R→ R is a Lipschitz contin-

uous and monotonically nondecreasing function representing the saturation effect. Here-

after, the following simplified vector notation will be used:

s = f(z) + ϵ, (4.29)
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where f : RN → RN is defined as the elementwise mapping of f0 and ϵ ∈ RN is defined

as ϵ := [ϵ1, . . . , ϵN ].

Many signals observed in the real world have some “sparse” structure. Here, z is

assumed to be generated by a sparse vector u ∈ RM via a given linear mapping D :

RM → RN called a synthesis operator, i.e., z = Du. Then, the typical formulation for the

sparsity-based signal restoration problem is given by [55]

minimize
u∈RM

∥u∥0 s.t. Hs(Du) ≤ ε. (4.30)

Here, Hs : RN → R∪{∞} is a loss function, i.e., Hs(z) evaluates the consistency between

z and s under f , ε ∈ [0,∞) is a constant parameter representing the maximum allowable

inconsistency, and ∥ · ∥0 : RM → N is the l0 pseudonorm, i.e, ∥u∥0 denotes the number of

nonzero elements of u ∈ RM . Since the l0 pseudonorm takes a discrete value in N, (4.30)
is equivalent to the problem of seeking the minimum k ∈ N satisfying Hs(Dû(k)) ≤ ε,

where û(k) ∈ RM is the solution of

minimize
u∈RM

Hs(Du) s.t. ∥u∥0 ≤ k. (4.31)

Therefore, we can solve (4.30) by solving (4.31) for each incremental k ∈ N until a stopping

criterion, i.e., Hs(Dû(k)) ≤ ε, is satisfied. In practice, the stopping criterion can be

replaced by another one, as long as it evaluates the consistency between Dû(k) and s.

Here, let Rk(·) : RN → R ∪ {∞} be the indicator function defined as

Rk(u) :=

{
0 ∥u∥0 ≤ k
∞ otherwise

. (4.32)

Then, (4.31) is equivalent to

minimize
u∈RM

Hs(Du) +Rk(u) (4.33)

and the proximal operator of Rk, denoted by Hk : RM → RM , in particular, is given as the

hard thresholding operator, which sets all but the largest (in absolute terms) k elements

of the input vector to zeros.

In [55], the use of the hard constraint function is proposed, where an ADMM-based

approach called the SPADE algorithm is provided. For application to noisy cases, a new

algorithm using the loss function given in Section 3.1 is proposed.

4.3.2 Signal Restoration Algorithm

Consider the optimization problem of (4.33) with the loss function Hs : RN → R ∪ {∞}
defined as

Hs(z) :=

N∑
n=1

(F0(zn)− snzn) (z := [z1, . . . , zN ]T ∈ RN ). (4.34)
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Algorithm 5 Proposed signal restoration algorithm

Require: u ∈ RM , y ∈ RN , v ∈ RN , ρ ∈ (0,∞), γ ∈ (0, 1/(ρ∥D∥2op)], µ ∈ (0, 1/(ρ +

Lip(f))]

repeat

k ← k + 1

u← Hk (u− γD∗[v + ρ(Du− y)])

y← y − µ ([f(y)− s]− [v + ρ(Du− y)])

v← v + ρ(Du− y)

until a stopping criterion is satisfied

return z = Dx

Table 4.2: Normalized mean squared errors for data 1 (female voice) with σ = 0.

Condition τ = 0.1 τ = 0.2

Proposed −6.89 dB −14.72 dB
Hard constraint −11.75 dB −15.65 dB
Soft consistency −6.08 dB −13.26 dB
Minimum norm −3.24 dB −6.96 dB

Table 4.3: Normalized mean squared errors for data 1 (female voice) with σ = 10−3.

Condition τ = 0.1 τ = 0.2

Proposed −6.55 dB −14.08 dB
Hard constraint −4.79 dB −10.53 dB
Soft consistency −4.75 dB −10.50 dB
Minimum norm −3.93 dB −8.30 dB

Its derivative is given by

∇Hs(z) = f(z)− s. (4.35)

Therefore, several algorithms, such as proximal gradient descent [78] and PL-ADMM [66],

are available to solve (4.33). Here, a PL-ADMM-based signal restoration algorithm is

provided as Algorithm 5.

4.3.3 Numerical Experiments

Numerical experiments of signal restoration were conducted to demonstrate the restoration

performance of the proposed method. The proposed method (denoted by Proposed)
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was compared with similar algorithms where the hard constraint loss function and soft

consistency loss function were used (denoted by Hard constraint and Soft consistency,

respectively). Here, in Hard constraint and Soft consistency, Algorithm 5 was used

where the update rule for y was replaced by

y← projf−1(s)(v/ρ+Du) (4.36)

and

y← y − µ
(
[y − projf−1(s)(y)]− [v + ρ(Du− y)]

)
, (4.37)

respectively.

For audio examples, i.e., true z, two data of human voices taken from the RWCP-SP99

database [79] were used. Each data was around 3 s, sampled at 16 kHz with 16 bit encod-

ing, and normalized so that its maximum absolute value was equal to 1. The nonlinear

saturation effect was set as

f0(z) :=


−τ z ∈ (−∞,−π

2 τ ]

τ sin(z/τ) z ∈ (−π
2 τ,

π
2 τ)

τ z ∈ (π2 τ,∞)

(4.38)

with two values of τ , i.e., τ = 0.1 and τ = 0.2. The observational noises ϵ ∈ RN were

added after saturation effects, where each element of ϵ was determined independently

according to the univariate normal distribution with mean 0 and variance σ2. Here, two

values of σ were investigated, i.e., σ = 0 and σ = 10−3.

As a preprocessing, s was projected into Range(f), i.e., sn was projected into [−τ, τ ]
for each n ∈ J1, NK. In each method, framewise analysis was applied as follows. First, let

Nframe = 1024 and Nshift = Nframe/8. Then, each observed data was first padded with

Nframe −Nshift zeros at the beginning. Then, the signal was restored by Algorithm 5 per

every Nframe samples with shift Nshift. The end of the data was also padded with zeros

as in the beginning. Finally, each framewise restored data was multiplied by 1/8, and the

whole restored data was obtained by their summation. In the framewise restoration, D

was defined as the inverse discrete cosine transform (IDCT), which is a unitary matrix.

The parameters were set as ρ = 0.1, γ = 1/ρ, and µ = 1/(ρ + 1) since ∥D∥op = 1 and

Lip(f) = 1. Note that the update rules of Hard constraint correspond to those of the

SPADE algorithm [55] in these settings. The initial values for u, y, and v were set as

zero vectors. The stopping condition was defined as ∥f(Du)− s∥2 ≤ ε with ε = 0.5.

As an evaluation criterion, the normalized mean squared error (NMSE) was used, which

was defined as

NMSE(ẑ, ztrue) := 10 log10
∥ẑ− ztrue∥22
∥ztrue∥22

, (4.39)
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Table 4.4: Normalized mean squared errors for data 2 (male voice) with σ = 0.

Condition τ = 0.1 τ = 0.2

Proposed −9.28 dB −16.98 dB
Hard constraint −12.20 dB −17.72 dB
Soft consistency −8.55 dB −16.13 dB
Minimum norm −4.46 dB −9.05 dB

Table 4.5: Normalized mean squared errors for data 2 (male voice) with σ = 10−3.

Condition τ = 0.1 τ = 0.2

Proposed −8.74 dB −16.15 dB
Hard constraint −6.39 dB −12.31 dB
Soft consistency −6.33 dB −12.30 dB
Minimum norm −5.26 dB −10.29 dB

where ẑ and ztrue respectively denote the restored and true signals. Also, as a baseline, a

minimum-norm inversion of f to s, i.e.,

ẑmin = arg min
z∈f−1(s)

(∥z∥2) , (4.40)

was defined (denoted by Minimum norm). The results are shown in Tables 4.2, 4.3,

4.4, and 4.5. One can see that Proposed achieved the lowest NMSEs for σ = 10−3,

and also that NMSEs for Proposed showed relatively little degradation in noisy cases

compared with those for Hard constraint and Soft consistency. This is considered

to be due to the continuity of the loss function. In particular, for Hard constraint

and Soft consistency, it is difficult to restore the signal such that its true amplitude

is outside [−τ, τ ] but the observed amplitude is within [−τ, τ ] owing to the observation

noise because of the discontinuity of the loss functions. These results demonstrated the

robustness of the proposed method compared with other current methods.
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Chapter 5

Measurement of Sound Field

This chapter focuses on practical problems of sound field measurement. As in Chapter 4,

the methodological framework is based on Chapter 3; however, several contributions are

presented to improve estimation accuracy in comparison with other current sound field

estimation methods. In Section 5.1, the research background and related studies on

sound field estimation problems are summarized. Sections 5.2 and 5.3 present sound

field estimation methods focusing on different topics and also provide the results of their

experimental evaluations.

5.1 Research Background

Capturing a sound field is an essential technique for its analysis, visualization, and other

related applications. In the field of spatial audio, in particular, sound field estimation

techniques using multiple sensors (i.e., microphones) have attracted considerable atten-

tion owing to their wide variety of applications, such as the reproduction of a captured

sound field using loudspeakers [7,8,80,81] or headphones [5,6,19] and spatial active noise

control [9, 82,83].

Sound field estimation methods are classified on the basis of whether sound sources

are allowed to exist inside the target region [25, 26, 84–86] or not [8, 17, 18, 20, 21, 87]. In

general, the former case is much more difficult than the latter and often requires additional

assumptions, such as the spatial sparsity of the source distribution and a reverberant-free

condition. This chapter focuses on the sound field estimation inside a source-free target

region as shown in Figure 5.1. Note that sound sources may also exist outside the target

region in this context.

There are a large number of sound field estimation methods for source-free target re-

gions, which can be further classified on the basis of whether a continuous distribution

of sensors is assumed or not. For example, many well-established methods are based on

the use of a planar, linear, spherical, cylindrical, or circular array of sensors with specific

directivity (e.g., omnidirectional or bidirectional) [7, 88, 89]. In these methods, a sound

field is described analytically from the boundary values observed by the sensor arrays
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Wave source

Sensor

 

Target region

Fig. 5.1: Problem setting of sound field estimation.

on the basis of the Kirchhoff–Helmholtz integral equation or the Rayleigh integral equa-

tion [37]. Therefore, the complete reconstruction of the sound field can be achieved in

principle as long as errors caused by the discretization of the sensor distribution and the

observation noises are small enough to be ignored. However, the implementation of such

arrays is difficult except for in a specially designed environment, which limits their scope

of practical application.

There have also been several methods allowing a discrete sensor distribution. For ex-

ample, in [20], a sound field is expanded by spherical wavefunctions [90] up to a certain

truncation order, and their coefficients are estimated by solving a linear equation de-

scribing the relationship between the unknown coefficients and the observed signals. As

seen in this work, most methods allowing a discrete sensor distribution are based on the

representation of a sound field using a finite number of certain basis functions and the

estimation of their coefficients by solving the linear equation. In this approach, however,

basis functions are often chosen in an empirical manner, and their inappropriate setting

may degrade estimation accuracy.

This chapter presents sound field estimation methods based on theories of Hilbert space.

By considering sound fields as elements of an infinite-dimensional Hilbert space as in Sec-

tion 2.2, the empirical (and possibly inappropriate) choice of a finite number of basis

functions can be avoided in the proposed methods; this is the first such attempt in the

literature concerning sound field estimation methods allowing a discrete sensor distribu-

tion. Section 5.2 presents a basic framework of the proposed estimation method in cases

where linear observation with arbitrary sensor directivity is assumed, which falls into a

simple linear inverse problem with Hilbertian regularization described in Section 3.4 from

an optimization viewpoint. However, a flexible formulation of an inner product inducing
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the regularization function is proposed, from which we can exploit prior information on

the source direction if available to improve the estimation accuracy. Section 5.3 presents

a field estimation method considering a nonlinear saturation effect; this is also the first

such attempt in the field of spatial audio.

5.2 Sound Field Estimation Exploiting Prior Information

on Source Direction

This section presents a sound field estimation method exploiting prior information on the

source direction. Since linear observation is considered here, sound fields and observed

signals are considered in the angular frequency domain for theoretical convenience.

5.2.1 Preliminaries

First, we provide preliminaries on the representation of sound fields and the modeling of

sensor directivities.

5.2.1.1 Representation of Sound Fields

Let Ω ⊆ R3 be a simply connected open subset of R3 and u : Ω→ C be a sound field in Ω

at a fixed angular frequency ω ∈ R, i.e., u(r) denotes the sound pressure at r ∈ Ω. If Ω

does not include any sound sources, u can be well modeled as a solution of the following

(homogeneous) Helmholtz equation [37]:

(∆ + k2)u = 0, (5.1)

where ∆ denotes the Laplace operator and k := ω/c is the wavenumber with c ∈ (0,∞)

being the speed of sound, which is assumed to be constant in Ω. A typical modeling of u

satisfying (5.1) is a superposition of plane-wave functions as follows:

u(r) =

∫
x∈S2

ũ(x) exp(−ikx ◦ r) dχ (r ∈ Ω). (5.2)

Here, ũ ∈ L2(S2,C) represents the complex amplitude of plane waves arriving from each

direction. Let P denote a transform of functions from ũ to u defined as (5.2) and U be

an infinite-dimensional function space defined as

U := {Pũ | ũ ∈ L2(S2,C)} . (5.3)

In what follows, the tilde symbol over a letter denotes the inverse of P (e.g., ũ := P−1u).

Although U does not include all the solutions of (5.1), any solution of (5.1) can be approx-

imated arbitrarily by functions in U in the sense of the uniform convergence on compact

sets (see Appendix B.1 for a proof). Therefore, a sound field estimation problem can be

regarded practically as a process of determining a function u within U on the basis of

some criterion.
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5.2.1.2 Modeling of Sensor Directivity

Consider a single sensor with a certain directivity located at r0 ∈ Ω in a sound field

u ∈ U . Its directivity can be modeled as the directional function γ ∈ L2(S2,C), i.e., γ(x)
denotes the sensor’s response to the plane wave arriving from the direction x ∈ S2. For

example, omnidirectional, bidirectional, and first-order sensors are respectively modeled

with constant parameters y ∈ S2 and ζ ∈ [0, 1] as follows.

Omnidirectional:

γ(x) := 1 (x ∈ S2)
Bidirectional:

γ(x) := y ◦ x (x ∈ S2)
First-order:

γ(x) := ζ + (1− ζ)y ◦ x (x ∈ S2)

In many practical cases including the above examples, the directivity γ can be well rep-

resented using finite-order spherical harmonic functions as

γ(x)∗ =

N∑
ν,µ

cν,µYν,µ(x) (x ∈ S2), (5.4)

where N ∈ N is the maximum order,
∑N

ν,µ is the abbreviated form of
∑N

ν=0

∑ν
µ=−ν ,

and Yν,µ(·) : S2 → C denotes the spherical harmonic function of order ν ∈ N and degree

µ ∈ J−ν, νK (see [90] for the definition and [91] for an efficient computational algorithm).

Here, the complex conjugate on the right-hand side of (5.4) is used to simplify later

discussion.

Since u can be expanded around r0 as

u(r) =

∫
x∈S2

ũ(x) exp(−ikx ◦ r0) · exp(−ikx ◦ (r − r0)) dχ (r ∈ Ω), (5.5)

the observed signal s0 ∈ C of the sensor is given by

s0 =

∫
x∈S2

ũ(x) exp(−ikx ◦ r0)γ(x) dχ+ ϵ0, (5.6)

where ϵ0 ∈ C is the observation noise. Hereafter, the simplified notation

s0 = Fu+ ϵ (5.7)

is used, where F : U → C is a functional defined as

Fu :=

∫
x∈S2

ũ(x) exp(−ikx ◦ r0)γ(x) dχ (u ∈ U). (5.8)

In addition, F is referred to as an observation operator of the sensor. Note that F is a

linear functional on U , which means the superposition principle in the observation.
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5.2.2 Formulation

LetM ∈ N sensors be located arbitrarily in Ω as shown in Figure 5.1. For eachm ∈ J1,MK,
the position, directivity, and observed signal of the mth sensor are respectively denoted

by rm ∈ Ω, γm ∈ L2(S2,C), and sm ∈ C, and they are assumed to be given. In this case,

the observation operator of the mth sensor, denoted by Fm, is given for each m ∈ J1,MK
by

Fmu :=

∫
x∈S2

ũ(x) exp(−ikx ◦ rm)γm(x) dχ (u ∈ U). (5.9)

We consider the following formulation of sound field estimation problems:

minimize
u∈U

Q(u) :=

M∑
m=1

1

σ2
m

|Fmu− sm|2 + λ∥u∥2U , (5.10)

where σ1, . . . , σM ∈ (0,∞) are dispersion parameters representing the observational un-

certainty, λ ∈ (0,∞) is a regularization parameter, and ∥ · ∥U : U → [0,∞) is a norm on

U , which is defined later. The first term of (5.10) is a loss term, which represents the

deviation between the predicted values F1u, . . . ,FMu and the observed values s1, . . . , sM .

On the other hand, the second term is a regularization term, which evaluates the reason-

ability of u independently of the observation. If we can design the norm ∥ · ∥U so that

the sound fields that are likely to occur have small norms, the solution of (5.10) will be

induced to such sound fields. Therefore, it is desirable to design an appropriate norm

exploiting prior information of sound fields.

On the basis of the above discussion, we introduce the norm ∥ · ∥U over U defined as

∥u∥U :=

(∫
x∈S2

|ũ(x)|2

w(x)
dχ

) 1
2

(u ∈ U). (5.11)

Here, w : S2 → (0,∞) is a directional weighting function defined as

w(x) :=
1

4πC(β)
exp(βη ◦ x) (x ∈ S2), (5.12)

where β ∈ [0,∞) and η ∈ S2 are constant parameters and C(β) is a scaling constant (so

that w satisfies
∫
x∈S2 w(x) dχ = 1) defined as

C(β) :=

{
1 (β = 0)

(exp(β)− exp(−β))/(2β) (β ∈ (0,∞))
. (5.13)

This function w is also known as the probability density function of the von Mises–Fisher

distribution used in directional statistics [92]. Note that w(x) takes a large value when x

is close to η, especially in the case of large β. Therefore, by using this norm in (5.10), we

can impose large penalties for sound fields originating from sound sources in a direction
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away from η while imposing small penalties for sound fields from sound sources in a

direction close to η. When β = 0, on the contrary, the solution of (5.10) will be induced

relatively to a diffuse field. The weighting function w can be further generalized by using

a linear combination of (5.12) for different parameters β and η, which is useful in cases

of multiple sound sources. This extension is discussed in Section 5.2.2.3 after the basic

concept of the proposed method is described.

5.2.2.1 Closed-Form Solution

Let ⟨·, ·⟩U be an inner product on U defined as

⟨u1, u2⟩U :=

∫
x∈S2

ũ1(x)
∗ũ2(x)

w(x)
dχ (u1, u2 ∈ U). (5.14)

Then, (U , ⟨·, ·⟩U ) is a complex Hilbert space because it is isomorphic to the Hilbert space

L2(S2,C) with the weighted L2 inner product. Therefore, the optimization problem of

(5.10) can be solved in a closed form as shown in Section 3.4, which is reiterated as follows.

First, using this inner product ⟨·, ·⟩U , we can write the objective function as

Q(u) =

M∑
m=1

1

σ2
m

|⟨vm, u⟩U − sm|
2
+ λ ⟨u, u⟩U (u ∈ U), (5.15)

where v1, . . . , vM ∈ U are given by

vm(r) :=

∫
x∈S2

w(x)γm(x)∗ exp(−ikx ◦ (r − rm)) dχ (r ∈ Ω, m ∈ J1,MK).
(5.16)

Then, we can apply the representer theorem [34, 60], which guarantees that the solution

of (5.10), denoted by u(opt), has the form of

u(opt) =

M∑
m=1

α(opt)
m vm (5.17)

with some α(opt) := [α
(opt)
1 , . . . , α

(opt)
M ]T ∈ CM . Here, α(opt) can be obtained by solving

the following optimization problem:

minimize
α∈CN

Q(∗)(α) := (Kα− s)HΣ−1(Kα− s) + λαHKα, (5.18)

which is given by substituting u =
∑M

m=1 αmvm with α := [α1, . . . , αM ]T in (5.15). Here,

s ∈ CM , Σ ∈ CM×M , and K ∈ CM×M are defined as

s :=

 s1· · ·
sM

 , Σ :=

σ
2
1 0

. . .

0 σ2
M

 , K :=

K1,1 . . . K1,M

...
. . .

...
KM,1 . . . KM,M

 (5.19)
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Fig. 5.2: Directionally weighted spherical wavefunctions of order ν = 0 and degree µ = 0

plotted in xy-plane (r = [x, y, 0]T). (a) β = 0; (b) β = 2; (c) β = 5; (d) β = 25.

with

Km1,m2
:= ⟨vm1 , vm2⟩U

=

∫
x∈S2

w(x)γm1(x)γm2(x)
∗ exp(−ikx ◦ (rm1 − rm2)) dχ

(m1,m2 ∈ J1,MK). (5.20)

Finally, by solving (5.18), we obtain

α(opt) = (K+ λΣ)−1s, (5.21)

and u(opt) is given by substituting (5.21) into (5.17). Therefore, the remaining problems

are the calculations of v1, . . . , vM and K.

5.2.2.2 Directionally Weighted Spherical Wavefunctions and Directionally Weighted

Translation Operators

As noted in Section 5.2.1.2, the directivities of various sensors can be well modeled by

finite-order spherical harmonic functions. Suppose γ1, . . . , γM can be represented as

γm(x)∗ =

Nm∑
ν,µ

cm,ν,µYν,µ(x) (x ∈ S2, m ∈ J1,MK) (5.22)



5.2 Sound Field Estimation Exploiting Prior Information on Source Direction 49

2 1 0 1 2
x

2

1

0

1

2
y

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (r
ea

l p
ar

t)

(a)

2 1 0 1 2
x

2

1

0

1

2

y

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (r
ea

l p
ar

t)

(b)

2 1 0 1 2
x

2

1

0

1

2

y

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (r
ea

l p
ar

t)

(c)

2 1 0 1 2
x

2

1

0

1

2

y

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (r
ea

l p
ar

t)

(d)

Fig. 5.3: Directionally weighted spherical wavefunctions of order ν = 1 and degree µ = 1

plotted in xy-plane (r = [x, y, 0]T). (a) β = 0; (b) β = 2; (c) β = 5; (d) β = 25.

with N1, . . . , NM ∈ N. Then, by substituting (5.12) and (5.22) into (5.16) and (5.20) and

solving the integrals (see Appendix B.2 for detailed derivations), we obtain

vm(r) =

Nm∑
ν,µ

cm,ν,µφν,µ(r − rm) (r ∈ Ω, m ∈ J1,MK), (5.23)

Km1,m2
=

Nm1∑
ν1,µ1

Nm2∑
ν2,µ2

c∗m1,ν1,µ1
cm2,ν2,µ2

T ν2,µ2
ν1,µ1

(rm1
− rm2

) (m1,m2 ∈ J1,MK),
(5.24)

where

φν,µ(r) :=
1

C(β)
ξν,µ(kr + iβη) (r ∈ R3, ν ∈ N, µ ∈ J−ν, νK), (5.25)

T ν2,µ2
ν1,µ1

(r) :=
1

C(β)
Θν2,µ2

ν1,µ1
(kr + iβη)

(r ∈ R3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K) (5.26)
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with

ξν,µ(z) :=
1

iν
jν

((
z21 + z22 + z23

) 1
2

)
yν,µ

(
z

(z21 + z22 + z23)
1
2

)
(z := [z1, z2, z3]

T ∈ C3, ν ∈ N, µ ∈ J−ν, νK), (5.27)

Θν2,µ2
ν1,µ1

(z) :=

ν1+ν2∑
ν3,µ3

G(ν1, µ1; ν2, µ2; ν3, µ3)ξν3,µ3(z)

(z ∈ C3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K). (5.28)

Here, jν(·) : C → C is the νth-order spherical Bessel function of the first kind, yν,µ(·) :

C3 → C is the normalized homogeneous harmonic polynomial [90] of order ν and degree

µ (i.e., a homogeneous harmonic polynomial satisfying yν,µ(x) = Yν,µ(x) for x ∈ S2), and
G(·) denotes the Gaunt coefficient with a slight modification regarding complex conjuga-

tion, which is defined as

G(ν1, µ1; ν2, µ2;µ3;µ3)

:=

∫
x∈S2

Yν1,µ1(x)
∗Yν2,µ2(x)Yν3,µ3(x)

∗ dχ

(ν1, ν2, ν3 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K, µ3 ∈ J−ν3, ν3K). (5.29)

The closed-form expression of (5.29) can be obtained using the formulae in [90], and an

efficient computational algorithm is proposed in [93]. Note that (5.27) is well defined

independently from branches of the 1/2-power function and can also be defined at z =

[z1, z2, z3]
T ∈ C3 such that z21 + z22 + z23 = 0 by using limit values because these points are

removable singularities.

When β = 0, it can be immediately shown that (5.25) and (5.26) correspond respec-

tively to the usual spherical wavefunction and translation operator [21, 81, 87] (except

for the constant coefficients). Therefore, (5.25) and (5.26) are hereafter referred to as

a directionally weighted spherical wavefunction and a directionally weighted translation

operator, respectively. Several examples of directionally weighted spherical wavefunctions

are shown in Figure 5.2, where k = 10 and η = [cos(π/3), sin(π/3), 0]T. One can see that

these functions become close to the plane-wave function arriving from η as β increases.

As a special case, consider the observation with omnidirectional sensors, i.e., γm(x) =

1 (x ∈ S2, m ∈ J1,MK). Here, we obtain

vm(r) =
√
4πφ0,0(r − rm) (r ∈ Ω, m ∈ J1,MK), (5.30)

Km1,m2
=
√
4πφ0,0(rm1

− rm2
) (m1,m2 ∈ J1,MK). (5.31)

In this case, the proposed method corresponds to kernel ridge regression [94] with the

kernel function κ : Ω× Ω→ C defined as

κ(r1, r2) :=
√
4πφ0,0(r1 − r2) (r1, r2 ∈ Ω), (5.32)
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i.e., (U , ⟨·, ·⟩U ) is a reproducing kernel Hilbert space [65] generated by κ.

5.2.2.3 Extension to Multiple Sound Sources

The proposed method can be easily extended to cases of multiple sound sources. The

weighting function w can be generalized as

w(x) :=

L∑
l=1

alC(βl) exp(βlηl ◦ x) (x ∈ S2), (5.33)

where L ∈ N, a1, . . . , aL ∈ [0, 1], β1, . . . , βL ∈ [0,∞), and η1, . . . ,ηL ∈ S2 are the constant

parameters satisfying
∑L

l=1 al = 1. Then, the directionally weighted spherical wavefunc-

tions and directionally weighted translation operators are given by

φν,µ(r) :=

L∑
l=1

al
C(βl)

ξν,µ(kr + iβlηl) (r ∈ R3, ν ∈ N, µ ∈ J−ν, νK), (5.34)

T ν2,µ2
ν1,µ1

(r) :=

L∑
l=1

al
C(βl)

Θν2,µ2
ν1,µ1

(kr + iβlηl)

(r ∈ R3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K), (5.35)

and v1, . . . , vM and K can be obtained by substituting (5.34) and (5.35) into (5.23) and

(5.24), respectively.

5.2.3 Comparison with Previous Methods

This section describes a comparison between the proposed method and the previous

method proposed in [20] (also introduced as the general sampling array approach in [8]),

which is hereafter referred to as the truncation method. In the truncation method, the

sound field u ∈ U is expanded at a given expansion center r0 ∈ Ω by the spherical

wavefunctions up to a certain truncation order N ∈ N as

u(r) ≈
N∑
ν,µ

ůν,µψν,µ(r) (r ∈ Ω), (5.36)

where ůν,µ ∈ C is the expansion coefficient of order ν ∈ N and degree µ ∈ J−ν, νK, and
ψν,µ ∈ U denotes the basis functions given by

ψν,µ(r) := φ̂ν,µ(r − r0) (r ∈ Ω, ν ∈ J0, NK, µ ∈ J−ν, νK) (5.37)

with φ̂ν,µ(·) : R3 → C being the (usual) spherical wavefunction defined as

φ̂ν,µ(r) := ξν,µ(k(r − r0)) (r ∈ R3, ν ∈ N, µ ∈ J−ν, νK). (5.38)

Then, we obtain the relationship between the expansion coefficients and the observed

signals as

s = Dů+ ϵ, (5.39)
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where D ∈ CM×(N+1)2 and ů ∈ C(N+1)2 are defined as

D :=

 F1ψ0,0 . . . F1ψN,N

...
. . .

...
FMψ0,0 . . . FMψN,N

 , ů :=

 ů0,0...
ůN,N

 . (5.40)

Here, from [90], we have

Fmψν,µ =

Nm∑
ν′,µ′

T̂ ν′,µ′

ν,µ (r0 − rm)cm,ν′,µ′ (m ∈ J1,MK, ν ∈ J0, NK, µ ∈ J−ν, νK)
(5.41)

with T̂ ν′,µ′

ν,µ (·) : R3 → C being the (usual) translation operator defined as

T̂ ν′,µ′

ν,µ (r) := Θν′,µ′

ν,µ (kr) (z ∈ C3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K).
(5.42)

From (5.39), ů can be obtained by the regularized least squares as

ů = DH(DDH + λIM )s, (5.43)

and the estimated sound field uest ∈ U can be written in the form of

uest =

N∑
n=1

αmvm. (5.44)

Here, α := [α1, . . . , αM ]T is given by

α = (K+ λIM )−1s (5.45)

with K := DDH, whose (m1,m2)th element Km1,m2
∈ C is given by

Km1,m2 =

Nm1∑
ν1,µ1

Nm2∑
ν2,µ2

c∗m1,ν1,µ1
cm2,ν2,µ2

N∑
ν′,µ′

T̂ ν′,µ′

ν1,µ1
(r0 − rm1)

∗T̂ ν′,µ′

ν2,µ2
(r0 − rm2) (5.46)

for each m1,m2 ∈ J1,MK, and v1, . . . , vM ∈ U is given by

vm(r) =

Nm∑
ν,µ

cm,ν,µ

N∑
ν′,µ′

T̂ ν′,µ′

ν,µ (r0 − rm)φ̂ν′,µ′(r − rm) (r ∈ Ω). (5.47)

Here, from the addition theorems for spherical Bessel functions [81,90], we have∑
ν′,µ′

T̂ ν′,µ′

ν1,µ1
(r0 − rm1)

∗T̂ ν′,µ′

ν2,µ2
(r0 − rm2) = T̂ ν′,µ′

ν1,µ1
(rm1 − rm2) (5.48)

and ∑
ν′,µ′

T̂ ν′,µ′

ν,µ (r0 − rm)φ̂ν′,µ′(r − r0) = φ̂ν,µ(r − rm), (5.49)
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Fig. 5.4: True sound field under free-field condition at 500Hz plotted in xy-plane (r =

[x, y, 0]T m).

where
∑

ν,µ is the abbreviated form of
∑∞

ν=0

∑ν
µ=−ν . These equalities mean that K and

v1, . . . , vM respectively converges to K and v1, . . . , vM in the proposed method with β = 0

(and Σ = IM ) as N → ∞ independently of the setting of r0. In the truncation method,

the estimation depends on the position r0 and the truncation order N . In the proposed

method, on the other hand, the infinite-dimensional modeling of sound fields enables us

to estimate the sound field independently of r0 and N .

5.2.4 Numerical Experiments

Numerical experiments of sound field estimation using a microphone array were conducted

to demonstrate the performance of the proposed method. The sound field in air was

considered, and the speed of sound was set as c = 340m/s. The proposed method was

compared with the truncation method [20] described in Section 5.2.3. In addition, the

proposed method for β = 0 (no prior information) was also investigated for comparison.

Hereafter, the notation of temporal frequency is used instead of angular frequency.

5.2.4.1 Estimation of Plane-Wave Field under Free-Field Condition

In a three-dimensional free field, 64 microphones were located on a sphere with a radius of

1.0m centered at the origin. Their positions were determined according to the spherical

t-design [95]. Each microphone was modeled as a cardioid microphone oriented outward,

i.e., the observed signals s1, . . . , sM in a sound field u were given by

sm =
1

2
u(rm)− 1

2ik

∂

∂ym
u(rm) + ϵm (m ∈ J1,MK). (5.50)

Here, for each m ∈ J1,MK, ym denotes the outward unit normal vector on the sphere

at rm, ∂/∂ym denotes the directional derivative along the direction ym, and ϵm denotes
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Fig. 5.5: NMSE plotted against frequency under free-field condition.

the observation noise of the mth microphone. For u ∈ U , these microphones can be

equivalently modeled by the following directivities:

γm(x) =
1

2
+

1

2
ym ◦ x (x ∈ S2, m ∈ J1,MK). (5.51)

Furthermore, these directivities γ1, . . . , γM can be represented as (5.22) with

cm,ν,µ =


√
π (ν = 0)

2π
3 Y1,µ(ym)∗ (ν = 1)

0 (ν ≥ 2)

(m ∈ J1,MK). (5.52)

The true sound field utrue was set as a single plane wave, which was defined as

utrue(r) := exp(−ikxinc ◦ r) (r ∈ R3) (5.53)

with xinc = [1, 0, 0]T (note that xinc denotes the incident direction, not the traveling

direction). An example of the true sound field is shown in Figure 5.4, where the black

line denotes the boundary of the microphone array. The observed signals were calculated

using (5.50), and the observation noises were sampled independently from the circularly

symmetric complex normal distribution with zero mean and a variance of 10−2×S, where
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Fig. 5.6: Relationship between parameters and NMSE under free-field condition. (a)

500Hz; (b) 1000Hz.

S denotes the average power of the noise-free signals (i.e., the signal-to-noise ratio was

20 dB).

In the proposed method, σ1, . . . , σN were set as 1 and λ was set as 10−2. For prior

information, we used the weighting function defined in (5.12). Here, we defined η :=

[cos θ, sin θ, 0]T for θ ∈ [0, π/2] (θ = 0 means accurate prior information and a large θ

means inaccurate information), and different values of β and θ were investigated.

In the truncation method, the truncation order was determined as N = 7 so that the
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Fig. 5.7: Estimated sound fields under free-field condition at 500Hz plotted in xy-plane

(r = [x, y, 0]T m). (a) Proposed method (β = 0); (b) proposed method (β = 4, θ = π/6);

(c) proposed method (β = 16, θ = π/6); (d) truncation method.

number of unknown coefficients corresponds to the number of microphones, i.e., 64. The

global origin r0 (center of the spherical wavefunction expansion) was set at the center of

the spherical microphone array. The regularization parameter in the matrix inversion was

set at λ = 10−2 as in the proposed method.

As an evaluation criterion, the normalized mean squared error (NMSE) was used, which

was defined as

NMSE := 10 log10

∑
i∈Ieval

|utrue(r(i)eval)− uest(r
(i)
eval)|2∑

i∈Ieval
|utrue(r(i)eval)|2

(dB). (5.54)

Here, uest denotes the estimated sound field, and the evaluation points {r(i)eval}i∈Ieval were

set as all grid points with an interval of 0.1m on and inside the surface of the spherical

microphone array.

First, the relationship between frequency and NMSE is plotted in Figure 5.5. We can see

that the NMSEs for the proposed method (β = 0) were almost the same as those for the

truncation method at low frequencies and were lower than those for the truncation method

at high frequencies. This is considered to be because the finite number of basis functions

used in the truncation method is not sufficient to represent the true sound field at high



5.2 Sound Field Estimation Exploiting Prior Information on Source Direction 57

2 1 0 1 2
x (m)

2

1

0

1

2
y 

(m
)

30

20

10

0

No
rm

al
ize

d 
er

ro
r (

dB
)

(a)

2 1 0 1 2
x (m)

2

1

0

1

2

y 
(m

)

30

20

10

0

No
rm

al
ize

d 
er

ro
r (

dB
)

(b)

2 1 0 1 2
x (m)

2

1

0

1

2

y 
(m

)

30

20

10

0

No
rm

al
ize

d 
er

ro
r (

dB
)

(c)

2 1 0 1 2
x (m)

2

1

0

1

2

y 
(m

)

30

20

10

0

No
rm

al
ize

d 
er

ro
r (

dB
)

(d)

Fig. 5.8: Normalized error distributions under free-field condition at 500Hz plotted in

xy-plane (r = [x, y, 0]T m). (a) Proposed method (β = 0); (b) proposed method (β = 4,

θ = π/6); (c) proposed method (β = 16, θ = π/6); (d) truncation method.

frequencies. Among the proposed methods, the NMSEs for θ = 0 were lower than those for

the other conditions, and even the NMSEs for θ = π/6 (i.e., inaccurate prior information)

were lower than those for β = 0. For further investigation, the NMSEs at different θ and β

are plotted at frequencies of 500 and 1000Hz in Figure 5.6. It can be seen that for θ = 0,

the NMSE decreased as β increased, and for θ > 0, the NMSE took a minimum value at a

certain value of β. This is considered to be because the estimation was strongly affected

by inaccurate prior information in cases of large β for θ > 0. The best value of β varied

depending on θ and the frequency, and their quantitative relationship seems complex;

however, at least, many conditions achieved lower NMSEs than the condition of β = 0.

These results indicate that even rough prior information on the source direction improves

the estimation accuracy in the proposed method. We also show examples of the estimated

sound fields and (pointwise) normalized error distributions at 500Hz in Figures 5.7 and

5.8, respectively. In this example, the NMSEs were (a) −4.87, (b) −18.20, (c) −24.74,
and (d) −1.18 dB. The tendencies described above can also be seen in these results.
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Fig. 5.9: True sound field under reverberant condition (Γreflect = 0.8) at 500Hz plotted

in xy-plane (r = [x, y, 0]T m).

5.2.4.2 Estimation of Monopole Field under Free-Field and Reverberant Condition

In a 6m × 4m × 3m rectangular room with its center defined as the origin, the same

spherical microphone array as used in the previous experiments was placed with its center

positioned at [−1, 0, 0]T m. The reverberation in the room was simulated by the image-

source method [96], where image sources were considered up to the 20th reflection order.

Here, the reflection coefficients were set as Γreflect ∈ {0, 0.4, 0.8} for all six wall surfaces,

where each of the above three values was investigated (Γreflect = 0 corresponds to the

free-field condition). In these settings, the reverberation time (from Sabine’s formula)

and reverberation radius (critical distance) [97] were respectively 0.13 s and 1.35m for

Γreflect = 0.4, and 0.30 s and 0.88m for Γreflect = 0.8.

The true sound field utrue was set as a superposition of two monopole functions, whose

direct wave component was defined as

utrue(r) =

2∑
q=1

A(q) exp(ik∥r − r
(q)
src∥2)

4π∥r − r
(q)
src∥2

(r ∈ R3) (5.55)

with A(1) = 15m, r
(1)
scr = [2.5, 0, 0]T m, A(2) = 10im, and r

(1)
scr = [1, 1, 1]T m. An example

of the true sound field is shown in Figure 5.9, where the black line denotes the boundary

of the microphone array and the blue dots denote the positions of the sound sources

projected into the xy-plane. The observed signals were calculated using (5.50), and the

observation noises were added in the same way as in the previous experiments.

In the proposed method, σ1, . . . , σN and λ were set to be the same as in the previous

experiments. For prior information, we used the weighting function defined in (5.33) with
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Fig. 5.10: NMSE plotted against frequency. (a) Γreflect = 0; (b) Γreflect = 0.4; (c) Γreflect =

0.8.

L = 3, where we defined

β1 = β2 = β, β3 = 0, (5.56)

η1 = [1, 0, 0]T, η2 =

[
2√
6
,
1√
6
,
1√
6

]T
, (5.57)

a1 = a2 =
1− a
2

, a3 = a (5.58)

using the parameters β ∈ [0,∞) and a ∈ [0, 1]. We defined β3 = 0 for the third weighting

to represent the reverberant component and investigated different β and a. In the trunca-

tion method, the same parameters as in the previous experiments were used. The NMSE

was used as an evaluation criterion.

First, the relationship between frequency and NMSE is plotted in Figure 5.10. Under

the free-field condition, i.e., Γreflect = 0, one can see tendencies similar to the previous

experimental results. Under the reverberant conditions, the NMSEs for the proposed

method (β = 6, a = 0) increased with Γreflect, which was due to the fact that the regu-

larization term for a = 0 takes a large value for reverberant components. On the other

hand, the proposed method (β = 6, a = 0.5) achieved lower NMSEs than the proposed

method (β = 0) at most frequencies, although the performance improvement decreased



60 Chapter 5 Measurement of Sound Field

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

a

20

15

10

5

NM
SE

 (d
B)

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

a

14

12

10

8

6

4

NM
SE

 (d
B)

(b)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

a

7.0

6.5

6.0

5.5

5.0

4.5

4.0

NM
SE

 (d
B)

(c)

Fig. 5.11: Relationship between parameters and NMSE. (a) Γreflect = 0; (b) Γreflect = 0.4;

(c) Γreflect = 0.8.

as Γreflect increased. The reduced effectiveness is considered to be related to the extent

of reverberation; in highly reverberant environments, even sound fields originating from

monopole sources become close to diffuse fields, which makes it difficult to improve the

estimation performance by using a directional weighting.

For further investigation, the NMSEs for different a and β at 500Hz are plotted in

Figure 5.11. Also, in this case, most conditions achieved lower NMSEs than β = 0, which

indicates again that even rough prior information contributes to the improvement of esti-

mation performance. We also show examples of the estimated sound fields and normalized

error distributions for Γreflect = 0.8 at 500Hz in Figures 5.12 and 5.13, respectively. In

this example, the NMSEs were (a) −5.22, (b) −5.90, and (c) −3.90 dB. The tendencies

described above can also be seen in these results.

Finally, to investigate how the above results generalize, we conducted the same evalua-

tions for two different source positions, i.e., r
(1)
src and r

(2)
src , and several accuracies of prior

information, i.e., η1 and η2. The source positions were sampled randomly according to the

uniform distribution on the entire room excluding a ball with a radius of 2.0m centered at

[−1, 0, 0]T m. The directions η1 and η2 were sampled randomly so that the angle between

ηl and the true direction of the lth source from the center of the spherical microphone

array was θ ∈ {0, π/6, π/3} for each l ∈ {1, 2}, where each of the three values of θ was
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Fig. 5.12: Estimated sound fields under reverberant condition (Γreflect = 0.8) at 500Hz

plotted in xy-plane (r = [x, y, 0]T m). (a) Proposed method (β = 0); (b) proposed method

(β = 6, a = 0); (c) proposed method (β = 6, a = 0.5).

investigated. Figure 5.14 shows the relationship between NMSE averaged over 20 trials

and frequency for different values of a, β, and Γ. For θ = 0 (i.e., accurate prior infor-

mation), one can see that the performance improvement using the directional weighting

can be generalized in various settings of source positions. Moreover, the proposed method

(β = 6, a = 0.5, θ = π/6) exhibited lower NMSEs than the proposed method (β = 0).

For Γ = 0.8, the NMSEs for these two conditions were very close; however, the proposed

method (β = 6, a = 0.5, θ = π/6) showed slightly lower NMSEs at most frequencies.

These results mean that a certain degree of inaccurate prior information can be used in
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Fig. 5.13: Normalized error distributions under reverberant condition (Γreflect = 0.8) at

500Hz plotted in xy-plane (r = [x, y, 0]T m). (a) Proposed method (β = 0); (b) proposed

method (β = 4, a = 0.5); (c) proposed method (β = 4, a = 0).

the proposed method.

5.3 Sound Field Estimation Considering Saturation Effect

This section presents a sound field estimation method from saturated observation. Al-

though two-dimensional time-harmonic sound fields are considered and sensors with spe-

cific directivity are used here for theoretical simplicity, this method can be extended to

three-dimensional sound fields with multiple frequency components and arbitrary sensor
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Fig. 5.14: Relationship between parameters and NMSE averaged over 20 trials. (a)

Γreflect = 0; (b) Γreflect = 0.4; (c) Γreflect = 0.8.

directivity. Since the nonlinear saturation effect is considered, sound fields are described

here in the time domain, in contrast to that in Section 5.2.
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5.3.1 Formulation

Consider the following two-dimensional acoustic wave equation:(
∆− 1

c2
∂2

∂t2

)
u(r, t) = 0 (r ∈ R2, t ∈ R). (5.59)

Here, u(r, t) ∈ R denotes the sound pressure at a position r ∈ R2 and a time t ∈ R,
and c ∈ (0,∞) denotes the speed of sound. One of the solutions for (5.59) is a complex

sinusoidal plane wave function defined as

upw(r, t) := exp (−ikx ◦ r − iωt) (r ∈ R2, t ∈ R), (5.60)

where ω ∈ (0,∞) denotes an angular frequency, k := ω/c is the wavenumber, and x ∈ S1
denotes a unit vector representing the incident direction of the plane wave. As a super-

position of plane waves, the time-harmonic incident sound field with angular frequency ω

can be well modeled as

u(r, t) =

∫
x∈S1

Re (ũ(x) (−ikx ◦ r − iωt)) dχ (r ∈ R2, t ∈ R) (5.61)

with ũ ∈ L2(S1,C). Let P denote a transform of functions from ũ to u defined as (5.61)

and (U , ⟨·, ·⟩U ) be an infinite-dimensional real Hilbert space defined as

U = {Pũ | ũ ∈ L2(S1,C)} (5.62)

and

⟨u1, u2⟩U :=

∫
x∈S1

Re (ũ1(x)
∗ũ2(x)) dχ, (5.63)

respectively, where ũ1, ũ2 ∈ L2(S1,C) are functions satisfying u1 = Pũ1 and u2 = Pũ2.

Suppose M ∈ N pressure-gradient microphones are located at r1, . . . , rM ∈ R2, and

let t1, . . . , tPm
∈ R with Pm ∈ N be the sampling times of the mth microphone for each

m ∈ J1,MK. Moreover, for each m ∈ J1,MK, let fm : R→ R be defined as

fm(z) :=


−τm z ∈ (−∞,−τm]

z z ∈ (−τm, τm)

τm z ∈ [τm,∞)

(m ∈ J1,MK) (5.64)

with τm ∈ [0,∞], which denotes the nonlinear saturation effect of the mth microphone.

Then, the relationship between the unknown sound field u ∈ U and the observed signal

of the mth microphone at the sampling time tp, denoted by sm,p ∈ R, is given by

sm,p = fm(Dm,pu) + ϵm,p (5.65)

for each m ∈ J1,MK and p ∈ J1, PmK, where ϵm,p ∈ R denotes the observation noise and

Dm,p is a linear functional defined as

Dm,pu := Gm
∂

∂ym
u(rm, tp) (u ∈ U). (5.66)
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Here, for each m ∈ J1,MK, Gm ∈ R and ym ∈ R denote the gain and the direction of

the mth microphone, respectively, and ∂/∂ym denotes the directional derivative along the

direction ym.

According to the theories described in Chapter 3, the following optimization problem

is formulated to estimate the sound field:

minimize
u∈U

Q(u) :=

M∑
m=1

Pm∑
p=1

1

σ2
m

(Fm(Dm,pu)− sm,pDm,pu) +
λ

2
∥u∥2U . (5.67)

Here, F1, . . . , FM : R→ R are primitive functions of f1, . . . , fM , respectively, σ1, . . . , σM ∈
(0,∞) are dispersion parameters representing the observational uncertainty, and λ ∈
(0,∞) is a regularization parameter. For each m ∈ J1,MK and p ∈ J1, PmK, the functional
Dm,p can be represented as

Dm,pu = ⟨vm,p, u⟩U (u ∈ U) (5.68)

with

vm,p(r, t) = 2πkGmJ1(k∥r − rm∥2) cos(∠(r − rm)− ∠ym) cos(ω(t− tp)), (5.69)

where Jν(·) : R → R is the νth-order Bessel function of the first kind for ν ∈ N and

∠(·) : R2 → [0, 2π) denotes the polar angle of the vector. The derivation is given in

Appendix B.3. Therefore, we can apply the representer theorem to (5.67), and the optimal

solution u(opt) ∈ U is guaranteed to admit the form of

u(opt) =

M∑
m=1

Pm∑
p=1

αm,pvm,p (5.70)

with certain α(opt) := [α
(opt)
1,1 , . . . , α

(opt)
1,P1

, . . . , α
(opt)
M,1 , . . . , α

(opt)
M,PM

] ∈ RN , where

N :=
∑M

m=1 Pm. Here, α(opt) can be obtained as the solution of the following

optimization problem:

minimize
α∈RN

Q(∗)(α) := H(Kα) +
λ

2
αTKα, (5.71)

where

s :=

 s1
...

sM

 (5.72)

with sm := [sm,1, . . . , sm,Pm
]T for each m ∈ J1,MK, Hs : RN → R is defined as

Hs(z) :=

M∑
m=1

Pm∑
p=1

1

σ2
m

(Fm(zm,p)− sm,pzm,p)

(z := [z1,1, . . . , z1,P1
, . . . , zM,1, . . . , zM,PM

] ∈ RN ), (5.73)
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Table 5.1: Results of sound field estimation (50 trials).

Condition NMSE: mean ± standard deviation

Proposed −12.33± 5.01 dB

Soft consistency −6.97± 3.65 dB

Unsaturated −17.25± 4.30 dB

and K ∈ RN×N is defined as

K :=

K1,1 . . . K1,M

...
. . .

...
KM,1 . . . KM,M

 (5.74)

with Km1,m2
∈ RPm1×Pm2 given by

Km1,m2
:=


K1,1

m1,m2
. . . K

1,Pm2
m1,m2

...
. . .

...

K
Pm1

,1
m1,m2 . . . K

Pm1
,Pm2

m1,m2

 (5.75)

for each m1,m2 ∈ J1,MK. Furthermore, Kp1,p2
m1,m2

∈ R is given by

Kp1,p2
m1,m2

= −πk2Gm1Gm2 [J2(k∥rm2 − rm1∥2) cos(2∠(r2 − r1)− ∠ym1 − ∠ym2)

− J0(k∥rm2
− rm1

∥2) cos(∠ym2
− ∠ym1

)] · cos(ω(tp2
− tp1

))
(5.76)

for each m1,m2 ∈ J1,MK, p1 ∈ J1, Pm1
K, and p2 ∈ J1, Pm2

K (see Appendix B.3 for deriva-

tion). Then, the objective function of (5.71) is convex and partially differentiable, whose

gradient is given by

∇Q(∗)(α) = KΣ−1(f(Kα)− s) + λKα (α ∈ RN ). (5.77)

Here, Σ ∈ RN×N is given by

Σ :=

σ
2
1I1 0

. . .

0 σ2
MIM

 . (5.78)

5.3.2 Numerical Experiments

Numerical experiments were conducted using Julia v.1.2.0. In the two-dimensional free

field R2, M = 12 pressure-gradient microphones were located, whose positions r1, . . . , rM

were determined according to the uniform distribution on the square region [−2, 2]m ×
[−2, 2]m. The true sound field was determined as

utrue(r, t) :=

10∑
ν=−10

Re (aνJν(k∥r∥2) exp(iν∠r − iωt)) (5.79)
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with c = 340m/s, ω = 2πf, f = 100Hz, and a−10, . . . , a10 sampled independently from

the univariate circular-symmetric complex normal distribution with mean 0 and variance

1. With respect to the microphones’ parameter, for each m ∈ J1,MK, Pm was set as 10,

tm,1, . . . , tm,Pm were sampled independently from the uniform distribution on [0, 0.01] s,

ym was sampled from the uniform distribution on S1, and Am was set as 1/k. The fol-

lowing two conditions were compared: the proposed method (denoted by Proposed) and

the method with the soft consistency loss function (denoted by Soft consistency). The

restoration results of unsaturated signals (denoted by Unsaturated) were also investi-

gated. For Proposed and Soft consistency, τm was set as 0.5 for each m ∈ J1,MK.
For Unsaturated, τm was set as ∞ for each m ∈ J1,MK. Observation noises were added

to the observed signals, which were sampled independently from the circularly symmet-

ric complex normal distribution with mean 0 and variance 10−3 × S, where S denotes

the average power of the noise-free signals (i.e., the signal-to-noise ratio was 30 dB). In

Proposed and Unsaturated, the unknown signal was estimated by solving the opti-

mization problem of (5.67) with an initial solution of zero vector. In Soft consistency,

the optimization problem

minimize
u∈U

QSoft(u) :=

M∑
m=1

Pm∑
p=1

1

2σ2
m

(Dm,pu− projf−1
m (sm,p)

(Dm,pu))
2 +

λ

2
∥u∥2U (5.80)

was used to estimate the signal. As a preprocessing, s was projected into the range of

f . On the basis of the representer theorem, as in Proposed, the optimal solution was

obtained by solving

minimize
α∈RN

Q
(∗)
Soft(α) :=

1

2
∥Kα− projf−1(s)(Kα)∥2Σ−1 +

λ

2
αTKα (5.81)

with an initial solution of zero vector. For all conditions, the parameters in the optimiza-

tion problem were set as λ = 10−3 and σm = 1 for each m ∈ J1,MK. For the optimization

method, the nonlinear conjugate gradient method in Optim.jl [77] was used with the

default settings.

As an evaluation criterion, the normalized mean squared error (NMSE) was used, which

was defined as

NMSE := 10 log10

∑
i∈Ieval

∑
j∈Jeval

|utrue(r(i)eval, t
(j)
eval)− uest(r

(i)
eval, t

(j)
eval)|2∑

i∈Ieval

∑
j∈Jeval

|utrue(r(i)eval, t
(j)
eval)|2

(dB).

(5.82)

Here, uest denotes the estimated sound field, and the evaluation points {r(i)eval}i∈Ieval and

{t(i)eval}j∈Jeval
were set respectively as all grid points with an interval of 0.05m in the square

region [−2, 2]m × [−2, 2]m and equally spaced points from 0 s to 0.01 s with an interval

of 0.001 s.
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(a) True sound field. (b) Estimated sound field (Proposed).

(c) Estimated sound field (Soft consistency). (d) Estimated sound field (Unsaturated).

Fig. 5.15: Results of sound field estimation at t = 0 s in the first trial. The NMSEs were

(b) −17.15, (c) −6.82, and (d) −17.83 dB. The saturation distortion was −8.07 dB.

The results from 50 trials are shown in Table 5.1. The saturation distortion defined

as 10 log10 ∥ssat − sunsat∥22/∥sunsat∥22 was also calculated, where ssat and sunsat denote the

saturated and unsaturated noise-free observed signals, respectively. Its mean ± standard

deviation for 50 trials was −10.18± 3.87 dB. In addition, we show the true and estimated

sound fields in the first trial in Figure 5.15. Here, pairs of red and blue circles represent

the position and orientation of the pressure-gradient microphones; the direction from the

blue circle to the red circle corresponds to the direction of the derivative observed using

the pressure-gradient microphone. Even under the saturation effects, Proposed achieved

an estimation performance relatively close to that of Unsaturated, compared with the

value of the saturation distortion. We can also see that Proposed outperformed clipped

Soft consistency, as was the case in the experiments in Section 4.2.
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Chapter 6

Conclusion

The objectives of this thesis were (1) to establish a unifying framework of inverse problems

for acoustic measurement, especially considering nonlinear saturation effects, and (2) to

propose efficient estimation methods for sound signals and sound fields, where existing

and proposed theories on inverse problems are fully utilized.

In Chapter 2, the mathematical framework of an inverse problem for acoustic measure-

ment was introduced. The inverse problem of interest was formulated as an optimization

problem of a certain class, whose objective function consists of a loss function and a reg-

ularization function, and its related studies were summarized. Finally, current problems

to be addressed to achieve the objectives given above were clarified.

To overcome the theoretical difficulties shown in Chapter 2, a new formulation for

inverse problems of interest was presented in Chapter 3. A theoretical comparison be-

tween the proposed formulation and other current formulations was given, and it was

shown that the proposed formulation achieves both robustness against observation noise

and mathematical tractability from an optimization viewpoint, which are not achieved

simultaneously in other current formulations. Efficient optimization algorithms for the

proposed formulation were also provided for various classes of regularization functions.

Chapters 4 and 5 focused on different specific topics of acoustic measurement problems,

both on the basis of the theoretical framework provided in Chapters 2 and 3. In Chapter 4,

signal restoration methods for saturated sound signals were proposed. In this chapter, two

different methods were proposed: one based on the bandlimitation of the target signal and

the other based on the sparsity of the target signal. In Chapter 5, sound field estimation

methods were proposed. First, an estimation method exploiting prior information on the

source direction was presented. In this method, linear observation was assumed; however,

several contributions were made by utilizing theories on Hilbert spaces in comparison with

other current methods. Second, a sound field estimation method considering nonlinear

saturation effects was also proposed. The experimental results indicated that the proposed

method achieved high estimation accuracy even from saturated observed signals.
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A

Mathematical Definitions

A.1 Hilbert Space

Definition A.1. A set U is called a linear space over K ∈ {R,C} if the following

conditions are satisfied:

• u+ (v + w) = u+ (v + w) for all u, v, w ∈ U .
• u+ v = v + u for all u, v ∈ U .
• There exists an element 0 ∈ U such that u+ 0 = u for all u ∈ U .
• For each u ∈ U , there exists an element −u ∈ U such that u+ (−u) = 0.

• a(u+ v) = au+ av for all a ∈ K and u, v ∈ U .
• (a+ b)u = au+ bu for all a, b ∈ K and u ∈ U .
• a(bu) = (ab)u for all a, b ∈ K and u ∈ U .
• 1u = u for all u ∈ U , where 1 denotes the multiplicative identity of K.

Definition A.2. A set U is called an inner product space over K ∈ {R,C} with an

inner product ⟨·, ·⟩U : U × U → K if the following conditions hold:

• ⟨u, a(v + w)⟩U = a ⟨u, v⟩U + a ⟨u,w⟩U for all a ∈ K and u, v, w ∈ U .
• ⟨v, u⟩U = ⟨u, v⟩∗U for all u, v ∈ U .
• ⟨u, u⟩U > 0 for all u ∈ U \ {0}.

In addition, U is called a Hilbert space over K with an inner product ⟨·, ·⟩U if the

following condition is satisfied:

• Every Cauchy sequence (un)n∈N ∈ UN (with respect to the distance induced by

the inner product ⟨·, ·⟩U ) converges to some point in U .

Here, a sequence (un)n∈N ∈ UN is called a Cauchy sequence if for every ε ∈ (0,∞),
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there exists some N ∈ N such that ∥un− um∥U < ε for all n,m ∈ N satisfying n ≥ N
and m ≥ N .

Definition A.3. Let U and V be Hilbert spaces over K ∈ {R,C} with inner products

⟨·, ·⟩U : U × U → K and ⟨·, ·⟩V : V × V → K, respectively. A mapping Φ : U → V is

called a linear mapping if the following conditions are satisfied:

• Φ(u+ u′) = Φu+Φu′ for all u, u′ ∈ U .
• Φ(au) = a(Φu) for all a ∈ K and u ∈ U .

Furthermore, a linear mapping φ is said to be bounded if the following condition is

satisfied:

• There exists some M ∈ (0,∞) such that ∥φu∥V ≤M∥u∥U for all u ∈ U .

Definition A.4. Let U be a Hilbert space over K ∈ {R,C} with an inner product

⟨·, ·⟩U : U × U → K. For u ∈ U , the adjoint of u, denoted by u∗ : U → K is defined as

the bounded linear mapping given by

u∗v = ⟨u, v⟩U (v ∈ V). (A.1)

Definition A.5. Let U and V be Hilbert spaces over K ∈ {R,C} with inner products

⟨·, ·⟩U : U × U → K and ⟨·, ·⟩V : V × V → K, respectively. For a bounded linear

mapping Φ : U → V, the adjoint of Φ, denoted by Φ∗ : V → U is defined as the unique

bounded linear mapping satisfying

⟨Φu, v⟩V = ⟨u,Φ∗v⟩U ∀u ∈ U , v ∈ V. (A.2)

A.2 Optimization Theory

Definition A.6. Let U be a linear space over K ∈ {R,C}. A function Q : U →
R ∪ {∞} is said to be convex if the following condition is satisfied.
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• Q(tu+ (1− t)v) ≤ tQ(u) + (1− t)Q(v) for all u, v ∈ U and t ∈ [0, 1].

Definition A.7. Let U be a Hilbert space over K ∈ {R,C} with an inner product

⟨·, ·⟩U : U ×U → K. A function Q : U → R∪{∞} is said to be (Fréchet) differentiable

at u ∈ U if there exists some v ∈ U satisfying

lim
h→0

Q(u+ h)−Q(u)− ⟨v, h⟩U
∥h∥U

= 0,

and such v, denoted by ∇Q(u) and called the (Fréchet) derivative, is unique if it

exists.

Definition A.8. Let U be a Hilbert space over K ∈ {R,C} with an inner product

⟨·, ·⟩U : U × U → K. For a function Q : U → R ∪ {∞}, the proximal operator of Q,

denoted by proxγQS → U , is defined for γ ∈ (0,∞) as

proxγQ(u) := arg min
v∈U

(
Q(v) +

1

2γ
∥v − u∥2U

)
.
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B

Theories on Wave Equation and

Helmholtz Equation

This appendix provides supporting mathematical theories for Chapter 5. The mathemat-

ical notations used in this appendix follow those in Chapter 5.

B.1 Approximation by Plane-Wave Functions

This section shows that for any solution u of (5.1), bounded closed set ΩK ⊂ Ω, and

positive number ε, there is a function uapprox in U (defined as (5.3)) satisfying

|u(r)− uapprox(r)| < ε ∀r ∈ ΩK . (B.1)

First, from the boundedness of ΩK , there is an open ball B ⊃ ΩK centered at the origin.

For such B, from the Lax–Malgrange theorem [98,99] (note that the Helmholtz equation

is an elliptic partial differential equation), there is a function uLM : B → C satisfying

(∆ + k2)uLM = 0 and

|u(r)− uLM(r)| < ε/2 ∀r ∈ ΩK . (B.2)

Moreover, from [100], uLM admits the spherical wavefunction expansion

uLM(r) =
∑
ν,µ

ůLM,ν,µφ̂ν,µ(r) (r ∈ B). (B.3)

Here, for ν ∈ N and µ ∈ J−ν, νK, ůLM,ν,µ ∈ C denotes the expansion coefficients, and

φ̂ν,µ(·) : C3 → C is defined in (5.38). This series converges uniformly on ΩK ; therefore,

there is some N ∈ N satisfying

|uLM(r)− uLM,N (r)| < ε/2 ∀r ∈ ΩK , (B.4)

where uLM,N : Ω→ C is defined as

uLM,N (r) :=

N∑
ν,µ

ůLM,ν,µφ̂ν,µ(r) (r ∈ Ω). (B.5)
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From (B.2) and (B.4), we obtain

|u(r)− uLM,N (r)| < ε ∀r ∈ ΩK . (B.6)

On the other hand, from the equality (see Appendix B.2)

φ̂ν,µ(r) =
1

4π

∫
x∈S2

exp(−ikr ◦ x)Yν,µ(x) dχ (r ∈ R3), (B.7)

uLM,N is shown to be in U . Therefore, by taking uapprox := uLM,N , we obtain (B.1).

B.2 Derivation of Directionally Weighted Spherical

Integrals

First, the equality

ξν,µ(z) =
1

4π

∫
x∈S2

exp(−iz ◦ x)Yν,µ(x) dχ (z ∈ C3, ν ∈ N, µ ∈ J−ν, νK) (B.8)

will be proved as follows. Let Ξ(·) : C3 → C be defined as

Ξ(z) :=
1

4π

∫
x∈S2

exp(−iz ◦ x) dχ (z ∈ C3). (B.9)

Since exp(−iz ◦x) can be represented as a convergent power series with respect to x, we

can apply the integral formula in [101] and obtain the following equality:

Ξ(z) =

∞∑
n=0

(−1)nn!
(2n+ 1)!

(z21 + z22 + z23)
n

= j0

(
(z21 + z22 + z23)

1
2

)
(z := [z1, z2, z3]

T ∈ C3). (B.10)

Moreover, let Yν,µ be differential operators obtained by replacing variables of the poly-

nomials yν,µ formally with the corresponding partial differentials. Then, from (B.9), we

obtain

(Yν,µΞ)(z) =
(−i)ν

4π

∫
x∈S2

exp(−iz ◦ x)Yν,µ(x) dχ (z ∈ C3, ν ∈ N, µ ∈ J−ν, νK).
(B.11)

On the other hand, from Hobson’s theorem [90] and (B.10), the following equality holds:

(Yν,µΞ)(z) =

[(
1

z

d

dz

)ν

j0(z)

∣∣∣∣
z=(z2

1+z2
2+z2

3)
1
2

]
yν,µ(z)

=
(−1)ν

(z21 + z22 + z23)
ν
2
jν

((
z21 + z22 + z23

) 1
2

)
yν,µ(z)

= (−1)νjν
((
z21 + z22 + z23

) 1
2

)
yν,µ

(
z

(z21 + z22 + z23)
1
2

)
(z := [z1, z2, z3]

T ∈ C3, ν ∈ N, µ ∈ J−ν, νK). (B.12)
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From (B.11) and (B.12), we obtain (B.8).

Next, the equality

Θν2,µ2
ν1,µ2

(z) =
1

4π

∫
x∈S2

exp(−iz ◦ x)Yν1,µ1(x)
∗Yν2,µ2(x) dχ

(z ∈ C3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K) (B.13)

will be proved as follows. From the linearization formula of the spherical harmonic func-

tions [90], we obtain

Yν1,µ1(x)
∗Yν2,µ2(x) =

ν1+ν2∑
ν3,µ3

G(ν1, µ1; ν2, µ2; ν3, µ3)Yν3,µ3(x)

(x ∈ S2, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K). (B.14)

Using this formula and (B.8), we obtain (B.13) as

1

4π

∫
x∈S2

exp(−iz ◦ x)Yν1,µ1
(x)∗Yν2,µ2

(x) dχ

=

ν1+ν2∑
ν3,µ3

G(ν1, µ1; ν2, µ2; ν3, µ3) ·
1

4π

∫
x∈S2

exp(−iz ◦ x)Yν3,µ3
(x) dχ

=

ν1+ν2∑
ν3,µ3

G(ν1, µ1; ν2, µ2; ν3, µ3)ξν3,µ3
(z)

(z ∈ C3, ν1, ν2 ∈ N, µ1 ∈ J−ν1, ν1K, µ2 ∈ J−ν2, ν2K). (B.15)

B.3 Derivation of Adjoint Representation of

Pressure-Gradient Microphone

Let u ∈ U be represented as (5.2) with ũ ∈ L2(S1,C). Then, we have

Dm,pu = Gm

∫
x∈S1

ũ(x)(−ikx ◦ ym) exp(−ix ◦ rm − iωtp) dχ

(u ∈ U , m ∈ J1,MK, p ∈ J1, PmK). (B.16)

Therefore, vm,p can be represented as

vm,p(r, t) = Gm

∫
x∈S1

Re ((ikx ◦ ym) exp(ix ◦ rm + iωtp) exp(−ix ◦ r − iωt)) dχ

= Gm

∫
x∈S1

Re (exp(−ix ◦ (r − rm))(ikx ◦ ym) exp(−ω(t− tp)) dχ

(r ∈ R2, t ∈ R) (B.17)

for each m ∈ J1,MK and p ∈ J1, PmK. Here, from the formulae for Bessel functions for the

first kind [102]

1

2π

∫
x∈S1

exp(−ix◦z) exp(iν∠x) dχ =
1

iν
Jν(∥z∥2) exp(iν∠z) (z ∈ R2, ν ∈ Z), (B.18)
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J−ν(z) = (−1)νJν(z) (z ∈ R, ν ∈ Z), (B.19)

and the equality

x ◦ ym = cos(∠x− ∠ym) (x ∈ S1, m ∈ J1,MK), (B.20)

the integral in (B.17) can be calculated as

vm,p(r, t) = 2πkGmJ1(k∥r − rm∥2) cos(∠(r − rm)− ∠ym) cos(ω(t− tp))
(r ∈ R2, t ∈ R, m ∈ J1,MK, p ∈ J1, PmK). (B.21)

Furthermore, Kp1,p2
m1,m2

can be represented as

Kp1,p2
m1,m2

= ⟨vm1,p1 , vm2,p2⟩U

= Gm1Gm2

∫
x∈S1

Re((ikx ◦ ym2)(−ikx ◦ ym1) exp(ix ◦ (rm2 − rm1))

· exp(iω(tp2
− tp1

))) dχ

(m1,m2 ∈ J1,MK, p1 ∈ J1, Pm1
K, p2 ∈ J1, Pm2

K). (B.22)

Here, from (B.18), (B.19), and

(x ◦ ym1)(x ◦ ym2) = cos(∠x− ∠ym1) cos(∠x− ∠ym1)

=
1

2
(cos(2∠x− ∠ym1 − ∠ym2)− cos(∠ym2 + ∠ym1))

(x ∈ S1, m1,m2 ∈ J1,MK), (B.23)

the integral in (B.22) can be calculated as

Kp1,p2
m1,m2

= −πk2Gm1Gm2 [J2(k∥rm2 − rm1∥2) cos(2∠(r2 − r1)− ∠ym1 − ∠ym2)

− J0(k∥rm2
− rm1

∥2) cos(∠ym2
− ∠ym1

)] · cos(ω(tp2
− tp1

))

(m1,m2 ∈ J1,MK, p1 ∈ J1, Pm1
K, p2 ∈ J1, Pm2

K). (B.24)


