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THE UNIVERSITY OF TOKYO

Abstract

Graduate School of Information Science and Technology, Department of
Information Physics and Computing

Doctor of Philosophy

CUBIC-Cloud: An Integrative Computational Framework Towards
Community-Driven Whole-Mouse-Brain Mapping

by Tomoyuki Mano

Recent advancements in tissue clearing technologies have offered unparalleled op-
portunities for researchers to explore the whole mouse brain at cellular resolution.
With the expansion of this experimental technique, however, a scalable compu-
tational framework is demanded to efficiently analyze and integrate whole-brain
mapping datasets collected by the research community. To that end, here I present
CUBIC-Cloud, a cloud-based framework to quantify, visualize and share whole mouse
brain data.

In chapter 1, I will review the previous whole mouse brain mapping projects, and
explain how tissue clearing and light-sheet microscopy imaging method is bringing
anew breakthrough in this landscape. Based on these observations, I will outline the
software challenges that needs to be addressed to achieve more scalable and efficient
whole brain mapping. Chapter 2 describes the experimental methods and software
implementation details. In chapter 3, I will explain the CUBIC-Cloud framework
and describe the front-facing functionalities to allow researchers to upload, analyze
and publish the whole brain mapping data. I also show that the serverless archi-
tecture used in CUBIC-Cloud allows the system to dynamically scale its computa-
tional power depending on the load by the user. In chapter 4, using CUBIC-Cloud
framework, I will present some novel whole mouse brain mapping results to demon-
strate the usability of the proposed framework. First, I investigated the brain-wide
distribution of various cell types, including PV, SST, ChAT, Th and Ibal express-
ing cells. Second, I reconstructed neuronal activity profile under pharmacological
perturbation using c-Fos immunostaining. Third, a brain-wide connectivity map-
ping by pseudo-typed Rabies virus will be demonstrated. Together, CUBIC-Cloud
provides an integrative platform to advance scalable and collaborative whole-brain

mapping.
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Chapter 1

Introduction

The researches on anatomical understanding of the brain blossomed in the early 20th
century by the pioneering work by Cajal and Golgi. Since then, the neuroscientists
have explored the microscopic structures of various kinds of neurons of diverse or-
ganisms. Combined with single-cell recording of the electrophysiological properties
and molecular identification of the ion channels and pumps, our understanding of
a single neuron, a computational unit of the brain, has been vastly advanced. How-
ever, it is almost certainly true that a single cell alone cannot produce "intelligence"
as we know or recognize. This suggests that, in order to elucidate the fundamen-
tal principals of the neural computation, we require the system-wide and trans-scale
understanding of large neuronal ensembles, connecting molecules, cells and the sys-
tem.

In the modern biology, massive observation of the complex system is the central
driving force. It is exemplified by the long list of "omics" approaches found in the
present day: Genomics, proteomics, transcriptomics, connectomics and so on. Those
omics approaches have been successful in picturing the landscape of the complex
biological systems or phenomena. Starting from the landscape obtained thereby,
scientists were often given new ideas to delve into the particular details. Naturally,
scientists have employed the omics approaches to understand the neuronal systems,
and the brain-wide map (or atlas) have been created for various organisms. These
brain-wide map typically describe the gene expression at various locations, as well
as the connectivity of the neurons across the regions. Although it is not trivial to pre-
dict the dynamical behavior of the brain from these static pictures, having a compre-
hensive cellular-resolution brain map is the foundation of successful neuroscience
research and thus of enormous value.

In this thesis paper, I will describe the new computational framework to collect
and analyze brain-wide gene expression and neural connections of the mouse brain.
Furthermore, I will present some of the whole-brain analysis results obtained by the
proposed method.

In this chapter, I will overview the background theories and experiments, and
identify the unsolved challenges. I will begin this chapter by reviewing some of the
existing whole-brain mapping data sets and their contributions to the neuroscience
(chapter 1.1). Then, I will describe the new experimental techniques called "tissue
clearing" and "light-sheet fluorescence microscopy", which, when combined, enable
to collect high-quality 3D brain images at much higher throughput than previous
approaches (chapter 1.2). These sections are highly important, because present pa-
per describes a novel software to analyze the brain image data obtained by tissue
clearing and light-sheet microscopy. Next, I will overview the existing computa-
tional methods to analyze the 3D brain images (chapter 1.3). Lastly, I will postulate
the software challenges in the tissue clearing-based brain mapping researches, and
introduce the problems that will be addressed in the present paper (chapter 1.4).
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1.1 Whole-brain mapping of the mouse

In neuroscience research, the mouse (Mus musculus) is one of the most intensively
studied animal, due to the high genetic and physiological relevance with human and
the availability in the laboratory (Laurent, 2020). Although the mouse brain anatomy
has been studied over a century, the efforts to generate comprehensive and digital
brain atlas was initiated after early 2000s, when megapixel-scale digital image sen-
sors and powerful computer hardware capable of processing massive images were
made available. In parallel, advances in genetic manipulation, as well as the viral
gene delivery techniques, offered opportunities to label specific cells in the brain.

In this section, I will visit the previous studies attempting to construct the com-
prehensive brain map of the mouse, which will give the foundation of the present
study. I should note that there are primarily two goals of brain mapping: mapping
of the gene expression and mapping of the neural connectivity. The former (dis-
cussed in chapter 1.1.1) defines the cellular diversity within the brain and links the
genotypes and the neural functions. The latter (discussed in chapter 1.1.2) forms the
structural foundation underlying neural computing.

1.1.1 Mapping of the gene expression of the whole mouse brain

Fundamentally, it would be reasonable to assume that the logic of neural wiring and
functions are written in the genome of the organism. In this regard, mapping of the
spatial gene expression within the brain is of high importance, because it provides
the links between the genes and the neural functions. For example, if a certain gene
is known to be a risk factor of psychiatric diseases, researchers can look up the spa-
tial expression of that gene and identify the candidate brain regions which may be
responsible for the phenotypes. This example suggests that gene expression map is
a highly useful platform where researchers can mine potentially interesting research
hypothesis. From the opposite perspective, researchers can deepen the insight after
they obtain some experimental findings. For example, if an interesting electrophys-
iological response is obtained from a certain brain region, researchers can look up
the gene expression map and evaluate what kind of cells are present in the area. An-
other benefit may be that theorists are able to construct more realistic brain model
by taking into account the real distribution of diverse neuronal and glial subtypes.

Based on these scientific motivations, researchers have generated the spatial gene
expression map of the mouse brain using different modalities. Among those, here I
will describe three modern and popular approaches. It should be noted that, at the
present, no single dataset is complete on its own. Each dataset has its own charac-
teristics (such as coverage of the brain areas, the variety of the genes targeted, and
spatial resolution), and researchers would need to navigate themselves to an appro-
priate dataset depending on their purpose.

The first approach is to use in situ hybridization (ISH). ISH uses nucleic acid
probes having complementary sequence to that of the targeted gene. ISH labeling
can target virtually any genes by synthesizing DNA or RNA probes, and thus has a
great flexibility. Using this approach, the first comprehensive gene expression map
of the mouse brain was reported by Allen Brain Atlas project (Lein et al., 2007). In
this project, researchers developed robot-assisted high-throughput pipeline to pre-
pare serial tissue sections and perform ISH staining and imaging. As a result, they
obtained the brain-wide spatial expression of over 20,000 genes. Using this mas-
sive dataset, they delineated over 1,000 distinct brain regions (Dong, 2008), which
has now become the standard in the mouse neuroscience research. Furthermore,
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they made the resulting dataset available online, prompting researchers to explore
the data using an interactive viewer or programmatically though Allen Brain Atlas
APIs (Lau et al., 2008; Ng et al., 2009). Such data scientific environment facilitated
the follow-up studies which reported more advanced and detailed analysis (Thomp-
son et al., 2008; Ero et al., 2018). Following the first success of the Allen Brain Atlas,
the brain-wide ISH data at several developmental stages was reported (Thompson
etal., 2014).

The second approach is by the use of Cre driver transgenic mouse. In this ap-
proach, Cre recombinase is inserted in the mouse genome under the promoter of the
targeted gene, and the expression of the fluorescent protein (FP) is activated upon
Cre-mediated recombination. In contrast to ISH, this approach requires a generation
of transgenic mouse for each gene to be investigated. However, since the tissue is
endogenously labeled with fluorescent proteins and no post-staining is required, it
offers unique advantages in imaging. Using this method, Kim et al revealed the
whole-brain map of three major subtypes of gamma-aminobutyric acid (GABA)-
ergic neurons, which express parvalbumin (PV), somatostatin (SST) and vasoactive
intestinal peptide (VIP), respectively (Kim et al., 2017). Using similar approach, the
whole-brain map of cholinergic neurons was recently reported (Li et al., 2018).

The third approach to reveal the spatial gene expression pattern is by the single-
cell RNA sequencing (scRNA-seq) method. Here, thousands of individual cells
are extracted from the tissue, each attached with the original coordinate in the tis-
sue, and the mRNA expression of each cell is quantified by the next-generation se-
quencer. This approach offers widest coverage of the genes (essentially all genes in
the genome) in one experiment. However, because the throughput of the experiment
is determined by the speed of the sequencer, the number of cells that can be quan-
tified (and hence the spatial coverage) is limited. So far, comprehensive scRNA-seq
data set of the mouse cortex (Tasic et al., 2016; Tasic et al., 2018) and hypothalamus
(Campbell et al., 2017; Chen et al., 2017) have been reported. Recently, brain-wide
census of the scRNA-seq was reported (Zeisel et al., 2018), covering about 1 million
cells. As a complementary approach, Ortiz et al., 2020 performed mRNA transcrip-
tomics analysis on a regular grid on a brain tissue (a few hundred micrometer pitch).
This approach does not offer information on single-cell expression, but provides a
brain-wide spatial coverage.

1.1.2 Mapping of the neural connectivity of the whole mouse brain

Reconstructing the circuit diagram of the brain is critical to understand how infor-
mation is processed or memorized by the neural system. In particular, in the biolog-
ical brains, multiple computations are executed in parallel in various brain regions,
and the outputs are then integrated in other brain regions. This observation requires
researchers to study the neural connectivity at the system scale. When discussing
the mapping of the neural connectivity, it should be clarified that the approaches
can be categorized into three types: macro-, micro-, and meso-scopic approaches.

Macroscopic approaches aims to reveal the global information flow in the brain.
Technically, this is usually done by diffusion magnetic resonance imaging (MRI)
tractography methods. Although this approach can only capture the bundles of long
projecting axons, the technique can scan the entire 3D brain. Using this method, a
macroscopic connectome map of the mouse brain was reported (Calabrese et al.,
2015).
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Microscopic approaches aim to reconstruct the neural connection with nanome-
ter resolution, and the neuronal circuitries are described with synaptic detail. Usu-
ally, to acquire such high-resolution images, electron microscopy (EM) is used. Be-
cause the throughput of the electron microscope is limited, the scanning of the whole-
brain poses a significant challenge. Even though the nanometer-resolution connec-
tome of nematode (C. elegans) was achieved as early as in 1986 (White et al., 1986), it
was not until the late 2010’s when the EM-based connectome of the Drosophila brain
was reported (Zheng et al., 2018; Scheffer et al., 2020). Compared to the Drosophila
brain (0.01 mm? in volume), the adult mouse brain is larger by four orders of mag-
nitude (about 400 mm? in volume), and thus, the connectomic analysis using EM
have been done only in the partial mouse brain areas (Kasthuri et al., 2015; Motta
et al., 2019). To overcome this limitation, a novel methodology was recently pro-
posed, where a use of lattice light-sheet microscopy with physical sample expansion
enabled ~ 50 nm resolution (Gao et al., 2019), which may allow to scan large brain
tissues with synaptic resolution by using light microscope.

The last approach, the mesoscopic connectomics analysis, is most relevant to
the present paper. The first comprehensive mesoscopic connectomics analysis of
the mouse brain was reported in 2014 by the Allen Mouse Brain Connectivity Atlas
project (Oh et al., 2014; Harris et al., 2019). In this study, they used adeno-associated
viral vectors (AAVs) carrying green fluorescent protein (GFP) and injected AAVs to
over 300 sites in the brain. The infected neurons express GFP in the soma and axon,
which visualizes the projection from the infected area. This approach is called meso-
scopic, because the connectivity is quantified by the fluorescence intensity, reflecting
the density of the axons. The density of axon correlates with the actual neural con-
nectivity, but strong axon density does not guarantee that there is a strong synaptic
connection (i.e. axon may be just passing through that area without having synaptic
contacts). In this regard, this approach is termed mesoscopic, because it can offer
semi-quantitative neural connectivity at the whole-brain scale. Other AAV-based
brain-wide mesoscopic connectivity mapping datasets were independently gener-
ated by Zingg et al., 2014 and by Hunnicutt et al., 2014.

Use of glycoprotein gene-deleted rabies viral vectors (RVAG) is another pow-
erful tool to reveal the brain-wide connectivity (Callaway and Luo, 2015). This
approach can be positioned somewhere between microscopic and mesoscopic con-
nectome analysis. Once infected to a neuron (called a starter cell), RV spreads via
synaptic connections exclusively in the retrograde direction. By introducing the
deletion of the glycoprotein, the virus can be engineered so that the viral infection
stops when the virus travels across synapse once (Wickersham et al., 2007). By using
this method, researchers can selectively label neurons that have direct synaptic input
to the starter cells. Brain-wide connectome analysis using RV have been performed
targeting a diverse brain regions (Watabe-Uchida et al., 2012; Ahrlund-Richter et al.,
2019; Yeo et al., 2019).

Yet another approach is to reconstructing the detailed neuron morphology (ax-
ons and dendrites) using high-resolution light microscope data. Due to the lower
resolution, this approach cannot identify complete synaptic contacts as is done in
EM analysis. Instead, the imaging devices are fast enough to cover the entire mouse
brain, offering unique and complementary modality to fill the gap between EM-
based and mesoscopic connectome analysis (Gong et al., 2016; Han et al., 2018; Lin
et al., 2018; Winnubst et al., 2019).
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1.1.3 Serial section-based imaging devices for whole-brain mapping

Before moving on, I would like to dedicate a small section to describe the imaging
devices used to acquire the whole mouse brain data sets described in the previous
two sections. Because the visible light (400 nm to 700 nm in wavelength) does not
penetrate deep into the tissue (only a few hundred micrometers), to acquire 3D im-
age of large tissue such as mouse brain, the tissue need to be physically sectioned.

The most conventional approach is to prepare a consecutive series of thin tis-
sue slices using cryostat machine. This approach is simple and readily reproducible
with standard laboratory equipment. However, aligning consecutive tissue slices af-
ter microscope imaging is not an easy task due to the mechanical distortions of the
tissues. Because of this, the 3D reconstruction artifacts (i.e. discontinuity between
slices) are often introduced, which prohibits the accurate registration of the brain
with the reference tissue. Another drawback of serial sectioning is that the experi-
mental procedure is laborious and a certain kind of automation must be devised to
scale up the data collection. Indeed, a custom-made robot was invented in the initial
Allen Brain Atlas project (Lein et al., 2007).

To overcome the limitations of the serial sectioning, two-photon serial tomogra-
phy (TPST) and the related methods have been invented (Ragan et al., 2012; Zheng
et al., 2013; Economo et al., 2016). In this so-called block-face imaging approach, a
surface of the 3D tissue is imaged using two-photon or single-photon confocal scan-
ning microscope. Following the imaging, a high-precision vibratome is used to cut a
thin slice off the tissue (usually around 50 pm), exposing a new surface for imaging.
The whole-tissue scanning proceeds by alternating between imaging and sectioning
phases. With this approach, alignment between slices are made much easier allow-
ing more accurate 3D reconstruction. However, due to the fact that the speed of the
point-scanning microscopy is limited compared to wide-field imaging, and the finite
amount of time is needed to slice the tissue sequentially, this approach suffers rela-
tively long scanning time, often reaching several days for complete scanning of the
mouse brain. Due to this limitation, the imaging was often performed with coarse
(50-100 pm) z-step size and the missing slices are interpolated computationally (Kim
et al., 2017). Recently, FAST method was proposed, where the use of Nipkow spin-
ning disk confocal microscopy significantly improved the imaging speed, at the cost
of moderate image resolution (Seiriki et al., 2017). Block-face imaging techniques
also lack the accessibility to many post-staining methods, such as ISH and immunos-
taining. This is because the diffusion of the nucleic acid probes or antibodies into the
tissue proceeds very slowly, several orders magnitude slower than the imaging and
sectioning speed. Hence, in most of the block-face imaging applications, the speci-
men needs to be genetically labeled using fluorescent proteins.

1.2 Tissue clearing and light-sheet fluorescence microscopy

As I discussed in the previous section, the imaging methods based on physical sec-
tioning is a very powerful imaging technique to acquire 3D brain images. However,
several inherent limitations of these methods were also outlined, which partly ex-
plains why such imaging instruments have not spread in the research field. To over-
come these limitations, a fundamentally different approach must be taken. In recent
years, one of the most promising approach is to use tissue clearing and light-sheet
microscopy.

Tissue clearing literally means chemical treatments to transform the biological
tissue into a transparent material so that the light can travel through the tissue
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without being optically disrupted (i.e. refraction and scattering), while keeping the
molecules of interest (e.g. proteins and nucleic acids) intact. The original idea of
tissue clearing was pioneered by German anatomist, Dr. Spalteholz, in early 20th
century (Spalteholz, 1914). The power of tissue clearing for biological imaging ap-
plications became recognized about a hundred years later, by the work by Dodt et
al in 2007 (Dodt et al., 2007). The innovation by Dr. Dodt was the idea of com-
bining tissue clearing with light-sheet fluorescence microscope (LSFM), another old
technique born in early 20th century'. The Renaissance of hundred-years-old tech-
niques embracing the current digital and biological technology offered unparalleled
data acquisition throughput of 3D tissues with resolutions that can easily resolve
single cells.

Tissue clearing and LSFM have been extensively used in the present paper to
collect whole-brain images. Therefore, in the following sections, I will review the
technical principles of the tissue clearing methods (chapter 1.2.1) and light-sheet
microscopy imaging (chapter 1.2.2), along with some of the milestone applications
(chapter 1.2.3).

1.2.1 Tissue clearing techniques

After the work by Dr. Dodt, a significant amount of researches have been carried out
to improve the performance of the clearing methods, and dozens of protocols have
been reported thus far. As more and more chemicals effective in tissue clearing have
been identified, the researchers are gaining a general understanding of the tissue
clearing chemistry (Tainaka et al., 2016; Ueda et al., 2020).

The light gets scattered or refracted in the tissue because of the inhomogeneous
refractive index (RI) in the intra- and extracellular compartments. Namely, the tis-
sue is mainly consisted of lipid bilayer (RI ~ 1.45), water (RI = 1.33) and protein
molecules (RI ~~ 1.50 to 1.55). Light propagation within the tissue is disrupted at the
boundaries of these cellular structures. Therefore, the key concept of tissue clearing
is homogenizing the refractive index in the tissue.

In so-called hydrophobic clearing methods (such as BABB (Dodt et al., 2007),
3DISCO (Ertuirk et al., 2012) and iDISCO (Renier et al., 2014)), the water in the tissue
is removed (dehydration) by immersing the tissue in organic solvents. Subsequently,
the tissue is immersed in another organic solvents to elute the lipids (delipidation),
rendering the tissue essentially a cross-linked protein gel. Lastly, the tissue is im-
mersed in high-RI medium (RI =~ 1.55) so that the refractive index of the tissue en-
vironment is matched with that of the protein (RI matching). These chemical treat-
ment is able to make relatively large organs (e.g. the mouse brain) almost completely
transparent. However, especially in the early daysz, many of the hydrophobic clear-
ing methods quenched the signal of the fluorescent proteins. In addition, some of the
organic compounds were hazardous and needs careful handling in the laboratory.

To address these problems, researchers later developed so-called hydrophilic
clearing methods (such as Scale (Hama et al., 2011), SeeDB (Ke, Fujimoto, and Imai,
2013) and CUBIC (Susaki et al., 2014)). In hydrophilic clearing methods, the lipid

'The original form of the light-sheet microscope (then called "ultramicroscope") was invented by
Zsigmondy and Siedentopf in 1902. Zsigmondy won the Nobel prize in chemistry in 1925 for the
invention of ultramicroscope. Before introduction to biological imaging, ultramicroscope has been
used in physics experiments to, for example, observe the Brownian motion of the colloidal particles
suspended in 3D space.

Recently, researchers have developed organic solvent based clearing methods that are able to pre-
serve or recover the fluorescent proteins signals, such as FDISCO (Qi et al., 2019) and vDISCO (Pan
etal., 2019).
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in the tissue is removed by the water-soluble chemicals, such as detergents and
aminoalchohols. Urea may be used to enhance the permeability. After delipidation
is complete, the tissue is immersed in RI matching solution. RI matching solution
typically contains molecules with high water solubility and high polarizability (such
as sugar and contrast agents), which typically reaches RI value between 1.45 to 1.52.
In general, hydrophilic clearing is able to minimize the quenching of the FPs, allow-
ing genetical or viral labeling of cells.

Soon after the invention of the hydrophilic reagents, another key element of tis-
sue clearing was realized: the decolorization (Tainaka et al., 2014). In the mouse
brain and body, heme is the most dominant light-absorbing compound. With the
presence of heme, light cannot travel deep into the tissue even if the effective RI
homogenization is performed. At present, several chemical compounds are known
(such as aminoalcohols) that can effectively elute the heme and other pigmentation
(Tainaka et al., 2014; Zhao et al., 2020; Pende et al., 2020).

It is also important to mention the importance of tissue fixation in the context of
tissue clearing chemistry (Gradinaru et al., 2018). By applying appropriate fixation
method, one can effectively keep the molecules of interest intact, while removing
other unwanted molecules. The most popular fixation method is the application of
paraformaldehyde (PFA). PFA efficiently reacts with the amino acids and cross-link
the proteins in the tissue, while lipid components do not react. Therefore, one can
wash out the lipid components while keeping the proteins during delipidation step.
Although PFA fixation is highly suitable for many of the clearing methods, one can
engineer the fixation chemistry to further enhance the clearing performance. Such
approach is called hydrogel-based clearing methods, and the idea was pioneered by
CLARITY method (Chung et al., 2013). In CLARITY method, the tissue was em-
bedded in acrylamide polymer network. This enabled the tight fixation of the small
chemicals (such as mRNA and nuerotransmitters) that would otherwise be washed
out. Further, hydrogel embedding enhanced the structural rigidity of the tissue, al-
lowing to use rather harsh conditions to accelerate the delipidation using heat or
electric fields (Chung et al., 2013; Tomer et al., 2014). Later generations of tissue-
hydrogel engineering (such as MAP (Ku et al., 2016), SHIELD (Park et al., 2019) and
ELAST (Ku et al., 2020)) further enhanced the flexible manipulation of the tissue’s
mechanical, chemical and physical properties.

Lastly, I will discuss the labeling methods for the cleared tissue. Many of the
latest tissue clearing methods nicely preserve the signals from fluorescent proteins
(FPs). Thus, if a reporter mouse line is available, researchers can reliably image the
labelled cells. In addition, expression of the FP may be introduced by the injection of
AAV or RV. Other powerful labeling approach is the immunostaining (Renier et al.,
2014; Susaki et al., 2020; Zhao et al., 2020). Intriguingly, the tissue homogenization
steps in tissue clearing increases the permeability of the tissue, so that relatively large
macromolecules such as antibodies can diffuse into the tissue more rapidly than the
untreated one. In the hydrogel-based methods, the polymer-enhanced tissue may
also be beneficial in transporting the fluorescent probes or antibodies into the deep
tissue using pH, heat or electric fields (Kim et al., 2015a; Murray et al., 2015; Yun
et al., 2019). The last frontier of the labeling methods for tissue clearing would be
ISH labeling. Although ISH labeling of cleared tissue has been demonstrated in a
small block of tissues (Chung et al., 2013; Park et al., 2019), the generally applicable
method for whole-brain ISH labeling is yet to be demonstrated.
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FIGURE 1.1: Schematic of the light-sheet fluorescence microscope (LSFM)

A. The illustration showing the standard configuration of the LSFM. B. The illustration of
the beam wait diameter (wy) and the Rayleigh range (ZR).

1.2.2 Light-sheet fluorescence microscopy

Once the tissue is cleared, one can use light microscope to observe the 3D tissue.
Conventionally, to acquire 3D fluorescence images, the confocal microscope (Paw-
ley, 2006) has been, and still is, used. For the purpose of large tissue imaging such as
mouse brain, however, the light-sheet fluorescence microscopy (LSFM) (Power and
Huisken, 2017) was proved to be an extremely powerful solution.

In the LSFM, the specimen is illuminated by a thin sheet of laser light (typically
1 pm to 10 pm thickness), and the fluorophores located in the illuminated plane is
selectively excited (Figure 1.1 A). The emitted fluorescence is then collected by the
second objective lens, which is orthogonally positioned with respect to the illumi-
nation lens, and imaged onto a digital image sensor (Figure 1.1 A). In contrast to
the point scanning approaches used in the confocal microscopes, the LSFM collects
a two-dimensional image in one capture, instead of a point. This allows massively
improved image acquisition speed. Indeed, with the latest techniques, the whole
mouse brain scan can be completed within 10 minutes (in the case of macroscopic
scan (~ 6 um)) (Voigt et al., 2019) to several hours (in the case of high resolution scan
(~ 0.6 ym)) (Tomer et al., 2014; Matsumoto et al., 2019).

There are essentially two types of implementations of LSFM. In the first ap-
proach, a laser sheet is generated by focusing a beam with a cylindrical lens. This
approach is often called the ultramicroscope (terminology used by Zsigmondy) or
selective plane illumination microscope (SPIM) (Huisken et al., 2004). The second
approach is called digital scanned laser light-sheet fluorescence microscopy (DSLM)
(Keller et al., 2008; Silvestri et al., 2012; Tomer et al., 2014). In DSLM, one-dimensional
laser beam is rapidly scanned vertically using a galvo mirror to generate a virtual
plane of light. Both approaches have their own advantages and disadvantages (for
more information, see the review by Power and Huisken, 2017).

In LSFM, the laser sheet is not a perfect plane, but rather is a focusing beam.
Because a focusing beam has an axially stretched profile, one can effectively regard
the region near the beam waist as a homogeneous sheet (Figure 1.1 A, B). Given the
beam waist diameter wy (defined by the distance where the intensity becomes 1/¢?
of the peak), the effective width of the sheet is characterized by the Raylegih range,
Zr, where the beam diameter is equal to v/2wy (Figure 1.1 B). If the beam is a normal
Gaussian beam, the relationship between beam waist wy and the Rayleigh range Zr
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is given by the following formula (Power and Huisken, 2017):

Twd
ZRr = 3 (1.1)
where ) is the wavelength of the light. This means that, as the light sheet is made
thinner, the effective area usable for light sheet decreases quadratically. This trade-
off between the axial resolution and the field of view (FOV) is a very important
consideration in designing LSFM.

To overcome this trade-off, several optical techniques have been proposed. One
of the idea is to use non-Gaussian beam which has more elongated profile along the
propagation direction, such as Bessel (Gao et al., 2014), Airy (Vettenburg et al., 2014)
and lattice (Chen et al., 2014; Chang et al., 2019) light sheet. The other, and very
simple, approach is tiling several light-sheet whose focus is shifted by the Rayleigh
range (Gao, 2015). A "continuous" version of the tiled light sheet approach is called
the axially swept light sheet microscope (ASLM) (Dean et al., 2015; Chakraborty et
al., 2019). In this setup, a focus position of the light sheet is continuously swept along
the propagation axis. The sweep of the light sheet focus is synchronized with the
rolling shutter of the sCMOS camera, which allows to reject the out-of-focus signal.
In the present paper, some data were acquired by tiled-light sheet microscope, and
others were acquired with ASLM-based microscope (see chapter 2.1.3).

1.2.3 Applications of tissue clearing to whole-brain/body imaging

In the previous two chapters, I have reviewed the tissue clearing and LSFM imaging
methods. By combining these novel technologies, a handful of innovative applica-
tions have been demonstrated thus far.

In terms of the circuit mapping, researchers used CLARITY method together
with rabies virus injection to identify the brain-wide input to the dopamine neu-
rons in the ventral tegmental area (VTA) and substantia nigra, compact part (SNc)
(Menegas et al., 2015). In another study, a long-range projection from paravalubmin-
positive neurons in the globus pallidus, external segment (GPe) have been recon-
structed at single-cell level using SHIELD method (Park et al., 2019).

One of the broadly useful application of tissue clearing is the imaging of imme-
diate early genes (IEGs), such as c-Fos, Arc and Egrl. The expression of the IEGs are
enriched in the neuron with high activity having frequent firing (Sagar, Sharp, and
Curran, 1988). Thus, IEG expression amount can be used as a proxy to reconstruct
the neural activity profile from the post-fixed brain tissues. The expression amount
of IEGs can be visualized at whole-brain scale by genetically introducing fluores-
cent proteins or by post-staining with antibodies. Brain-wide quantification of the
IEGs have been performed under various experimental conditions, such as light ex-
posure (Susaki et al., 2014), drug administration (Tatsuki et al., 2016; Renier et al.,
2016; Salinas et al., 2018) and behavioral stimulation (Renier et al., 2016; Roy et al.,
2019). These researches have successfully identified neural clusters responsible for a
particular brain function.

Another important branch of tissue clearing is imaging of the peripheral nervous
system. Because the sensory and motor axons extends over a long distance, a 3D vol-
umetric observation and quantification via tissue clearing is crucial. Some clearing
methods are capable of transforming the bones clear, allowing the whole-spine or
whole-body imaging of the nervous system (Tainaka et al., 2014; Yang et al., 2014;
Renier et al., 2014; Greenbaum et al., 2017; Jing et al., 2018; Cai et al., 2019).
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Brain vasculature is of significant interest in neuroscience, since neurons are one
of the most energy-demanding cells in the body and an efficient and dynamically
tubable energy delivery is essential. Because the blood vessels form a complex 3D
structure, the study of vascular system was enormously challenging with conven-
tional 2D slice methods. Motivated by this challenge, researchers have recently de-
veloped methods to image 3D vascular structure by tissue clearing and chemical
labeling of the veins and arteries (Kirst et al., 2020; Todorov et al., 2020; Miyawaki
et al., 2020). Using these methods, a complete atlas of mouse brain vasculature have
been created (Kirst et al., 2020; Todorov et al., 2020).

Although applications of tissue clearing is most developed in mouse brain re-
searches, the methods can be applied to other organs or other species with mini-
mal modification of the protocols. So far, researchers applied tissue clearing to non-
human primate brains (Susaki et al., 2014), human brains and other organs (Inoue
et al., 2019; Zhao et al., 2020), along with other vertebrate or invertebrate organisms
(Pende et al., 2020).

As an important milestone in tissue clearing technique advancements, the re-
searchers from Ueda group reported the construction of CUBIC-Atlas (Murakami et
al., 2018). Here, the researchers combined high-performance and expansion-assisted
tissue clearing, high-resolution LSFM imaging and high-throughput image analy-
sis to digitally record all of the cell nuclei present in the mouse brain (amounting
to approximately 100 million cells). As a result, a single-cell resolution map of the
3D mouse brain named CUBIC-Atlas was generated. CUBIC-Atlas serves an central
role in the present paper (chapter 3.1.1).

1.3 Automatic analysis methods for 3D brain images

Using the tissue clearing and LSFM imaging described in chapter 1.2, researchers
can rapidly acquire 3D brain images with single-cell-resolution. To reach biological
discovery, however, those images must be extensively and carefully analyzed. Im-
portantly, the dataset from whole-brain scanning is massive; in the case of mouse
brain imaging, the raw data amount in uncompressed 16 bit image format ranges
from 15 GB (in the case of macroscopic scan (~ 6 um)) to 10 TB (in the case of high
resolution scan (~ 0.6 pm)). If multi-color imaging is performed, these numbers are
multiplied by the number of the chanels. Hence, manually annotating and analyz-
ing the entire image is practically not possible, and an automated image analysis
routine must be developed to gain quantitative understanding. In this section, I re-
view the existing algorithms and software used in 3D brain mapping applications.
Reflecting the common analysis steps of the cleared tissue imaging, the section di-
vides into three parts. First, I review the cell detection/segmentation methods used
in the cleared tissue imaging (chapter 1.3.1). Then I visit the brain registration al-
gorithms to accurately align multiple brains (chapter 1.3.2). Finally, I will mention
the use of cloud computing platforms to accelerate the analysis of big image data
(chapter 1.3.3).

1.3.1 Cell detection and segmentation

The first step in image analysis is identifying the objects of interest (e.g. cell body;, cell
nuclei, axons or dendrites). In some applications, knowing the total number of the
objects may be sufficient (object detection), while in other applications, a detailed
morphology of the object may be necessary (object segmentation). Although such
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object detection/segmentation task is very basic in biology, when it is applied to
whole tissue scale images, it presents significant challenges.

The first difficulty lies in the fact that the object morphology and brightness as
well as the background noise levels varies depending on the brain region. To over-
come this, one often needs to design a customized set of image filters and thresh-
olding scheme optimized to a specific data set (Renier et al., 2016; Murakami et al.,
2018; Kirst et al., 2020). To avoid the need to manually design a complicated image
processing routine, the unsupervised learning approach can be used (Amat et al,,
2015; Matsumoto et al., 2019). If a sufficiently large training data set is available, su-
pervised learning approaches, such as deep convolutional neural networks (CNN),
may be used (Kim et al., 2015b; Pan et al., 2019).

The second challenge is the massiveness of the image data. Modern microscopes
for whole tissue scanning can easily produce terabytes of images within a few hours
(Wan, McDole, and Keller, 2019). To keep up with such enormous data production
speed, image analysis program must be optimized and parallelized. Hence, many
programs now embrace the power of graphic processing units (GPUs) (Amat et al.,
2015; Murakami et al., 2018).

1.3.2 Brain registration

The second important step is brain registration. Here, registration means a computa-
tion of transformation to align the shape of one brain (moving image) with that of the
reference (fixed image). Because tissues or organs can elastically deform their shape,
linear (i.e. rigid or affine) transformation is not enough to correct for the individual
differences, and thus a non-rigid transformation must be considered. By running
registration, brains from different experiments/subjects can be virtually overlaid to-
gether, allowing voxel-by-voxel comparison and quantification. The algorithms for
3D image registration is most advanced in medical or clinical applications, which
deals with 3D images of human organs such as brains acquired by magnetic res-
onance imaging (MRI) or computed tomography (CT) scans. Consequently, these
algorithms are adopted and optimized for the brain registration of other organisms,
such as mouse.

Mathematically, the 3D deformable registration is formulated as follows. Let F’
and M denote the fixed and moving image, respectively, and ¢ represent the map-
ping of the voxel coordinates from M to I. The deformable image registration at-
tempts to find ¢* which minimizes the cost function:

¢" = arg ;ﬂin {=Lsim(F, M(9)) + Lreg(¢)} (1.2)

Here, M (¢) is image M warped by ¢, Lsim(+, -) measures the similarity between two
images, and L. (¢) represents the regularization term to force the ¢ to be smooth.

There are several common formulations for ¢, Lgm, and L,cs. The popular choice
of image similarity metrics (Lsim) includes squared sum of intensity differences (SSD),
normalized cross-correlation (NCC), and normalized mutual information (NMI). To
enforce smoothness in ¢, L, is often given by the "bending energy", which is given
by the L2-norm of the second-derivatives of the vector field ¢ (Rueckert et al., 1999).
Other approach is to compute the Jacobian matrix of the vector field and evaluate
the sign of determinant value (Mok and Chung, 2020).

¢ is often formulated as a displacement vector field. Algorithms based on this
formulation includes Demons (Thirion, 1996) and free-form deformation with b-
splines (Rueckert et al., 1999). Other approach formulate ¢ as the diffeomorphic
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transformation, which is advantageous in ensuring the topology preservation and
the exactness of the inverse transformation. Popular diffeomorphic registration meth-
ods include diffeomorphic Demons (Vercauteren et al., 2009) and symmetric image
normalization method (SyN) (Avants et al., 2008). Furthermore, researchers recently
started to explore the possibility of using deep neural networks as a universal func-
tion to generate a transformation between images (Balakrishnan et al., 2018; Mok
and Chung, 2020). Combined with optimization methods developed in deep neural
networks and GPU-accelerated computing, these learning-based approaches offer
comparable accuracy with the conventional iterative minimization methods, while
significantly reducing the time required to compute the warp.

In the mouse brain mapping literature, two registration algorithms are most pop-
ularly used. The ClearMap framework (Renier et al., 2016) uses elastix (Klein et al.,
2010), which essentially implements the deformable registration using 3D b-spline.
In the CUBIC pipeline (Susaki et al., 2014; Susaki et al., 2015), symmetric diffeomor-
phic transformation (SyN) algorithm implemented in ANTs library is used (Avants
et al., 2008). SyN was shown to be one of the most accurate method in the com-
prehensive benchmarking studies (Klein et al., 2009; Nazib, Fookes, and Perrin,
2018). However, SyN is computationally demanding and requires long computa-
tion time, while B-Spline deformation in elastix is relatively fast in computation and
gives moderate accuracy.

1.3.3 Bigimage data analysis using modern cloud computing

As I have reviewed in the previous sections, the current 3D brain mapping tech-
niques can easily produce multi-terabyte scale image data in single experiment. To
keep up with this enormous data production rate, computational analysis, as well
as the storage, needs to be scaled accordingly. To pursue scalable and universally
available solution, researchers have started to utilize modern cloud computing plat-
forms.

Automated segmentation of cell morphology is of highest demand in many ap-
plications. Particularly, advances in deep neural network have provided ever more
accurate algorithms. However, applying deep learning models to large image data
requires multi-GPU compute environment, and the number and the type of GPU
required may be different between training and inference phase. To dynamically
and flexibly utilize those hardware resources, cloud computing is suitable than lo-
cal workstations, and several software solutions have been proposed (Haberl et al.,
2018; Bannon et al., 2018; Falk et al., 2019; Wu et al., 2019). Some of these software
are designed to be deployed on the public cloud platforms provided by companies
like Google or Amazon, rather than the private cloud owned by the research insti-
tute. This design choice allows the developer to (1) use platform-specific functional-
ities and APIs to enrich the features and accelerate the development and (2) allocate
virtually unlimited number of CPUs and GPUs to scale the computation. On the
other hand, this design choice presents the unique and interesting challenge, which
is that the architecture of the program directly determines the cost billed by the pub-
lic cloud provider. Due to this fact, optimizations are not limited to the algorithm
and the code, but also include how the cloud resources should be managed (Bannon
et al., 2018; Wu et al., 2019).

Another important use of cloud computing is the storage of the large image data.
In addition to the advantage that the storage space in cloud can effectively grow un-
limitedly, the more important point is sharing of the data. In the present day, the
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network speed is often the bottleneck when transferring large data between labora-
tories. Rather than copying local data to another location, a more sensible approach
is to store data in the cloud, and let many users access the common data (i.e. the
model where user come to the data, instead of data go to the user). To facilitate such
scheme, many cloud-native storage system for large array data have been proposed
(Kleissas et al., 2019; Katz and Plaza, 2019). In these storage system, the large 3D
array is stored in a chunked format, so that a subvolume can be quickly retrieved.

Based on the cloud-native storage system, web-based image viewers have been
developed (Saalfeld et al., 2009; Boergens et al., 2017; Dorkenwald et al., 2020). These
software allows the user to see the massive image data through a web browser, as
well as annotate the images. Image annotation is important to manually segment
the object of interest, prepare training data set for machine-learning based image
analysis, or proof-reading the automatically generated predictions.

1.4 Towards community-driven mouse brain mapping

AsThave reviewed in the previous chapters, tissue clearing and LSFM imaging now
offer a novel method to rapidly scan the high-quality 3D brain images with sin-
gle cell resolution. With these technological advancements, the field is entering an
era where whole-brain mapping projects, which conventionally required institution-
scale resources and efforts, can be carried out by individual laboratories, or even by
a single researcher.

In this regard, I argue that the current technological stage can be thought anal-
ogous to the dawn of genome sequencing technology in early 2000s. The initial
sequencing of the human genome was achieved by approximately 12 years of col-
lective efforts and over a hundred million dollars of financial investment (Lander et
al., 2001; Venter et al., 2001). Now, with the advent of the next-generation sequencer,
human genome can be sequenced within a day at around a thousand dollars. Con-
sequently, genome sequencing became accessible to any researchers, and the col-
lection of genome sequences of human as well as other organisms are carried out
worldwide, offering opportunities for big data-driven discoveries as we appreciate
today.

This presumed parallelism between genomics and brain mapping is the key
starting point of the present thesis (Figure 1.2). If this parallelism is assumed, it
suggests that brain mapping could potentially follow the same trajectory as what
genome science have achieved. Namely, it may be possible to establish a distributed
data collection scheme where individual researchers across the globe perform whole
mouse brain mapping experiments and share the resulting dataset. Such community-
supported brain mapping scheme will accelerate the collection of brain mapping
data targeting diverse genes and neural circuits under various experimental condi-
tions, potentially providing substantially wider coverage than the existing, centrally-
generated whole-brain mapping datasets such as Allen Brain Atlas.

However, because tissue clearing-based brain mapping is still an emerging tech-
nique, hardly any studies have addressed the problem of integration and sharing of
the data across laboratories. Consequently, the brain mapping data is usually stored
in isolation within the laboratory, and never re-analyzed in later studies. Thus, the
main purpose of this paper is to propose a software solution to allow effective inte-
gration of whole mouse brain datasets distributedly collected by researchers.

In composing this study, I first clarify the motivations and potential benefits of
sharing brain mapping data (chapter 1.4.1). Then I mention previous attempts to
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integrate mouse brain anatomy dataset across published studies, and explain why
the present approach using tissue clearing-based 3D imaging can offer qualitatively
different paradigm (chapter 1.4.2). Next, I discuss the insights learned from other
databasing attempts in related discipline of science, including genmonics (chap-
ter 1.4.3) and human neuroimaging using magnetic resonance imaging (MRI) (chap-
ter 1.4.4). Based on these observations, in chapter 1.4.5, I will formulate the chal-
lenges that needs to be addressed in designing a software for distributed brain map-
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FIGURE 1.2: The proposed parallelism between genomics and brain mapping.

1.4.1 Why share brain mapping data?

To motivate the present study, it is important to clarify why data sharing is important
in the whole mouse brain mapping studies.

The first consideration point is the richness and reusability of the whole brain
mapping data. Whole brain data is enormously complex, composed of over thou-
sands of 2D images and contains 10* to 10® targeted cells. Although automatic image
analysis methods exist (as discussed in chapter 1.3), it is still practically not feasible
to analyze the whole-brain data from all possible aspects. When publishing a paper,
the authors would only describe the novel findings relevant in that study, and other
potentially interesting observation would remain undocumented. In this sense, I
argue that whole-brain dataset is similar to genome sequence data in nature. By
depositing the complete brain mapping result in a data sharing platform, it offers
opportunities for other researchers to re-analyze the result to address different bio-
logical questions.

The second benefit of data sharing is that it allows to collect a massive amount
of datasets that are far beyond the scope of a single study, and run a meta-analysis
to discover new insights. A successful example of such population meta-analysis
can be found in the human neuroimaging field (see chapter 1.4.4), where researchers
were able to reconstruct the default mode network (DMN) of the cortex from the
population data of resting state fMRI measurement (Biswal et al., 2010). Another ex-
ample includes the construction of the forward model to predict the brain activation
from the stimuli, and the reverse model to predict the stimuli from the brain acti-
vation map (Yarkoni et al., 2011; Yannick, Bertrand, and Gael, 2014), using the large
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fMRI dataset. Such large-scale meta-analysis scheme would be equally applicable to
mouse brain mappings. For example, by aggregating the whole-brain IEG measure-
ments (chapter 1.2.3), one may be able to relate the brain-wide activity profile and
the mouse behaviour.

The third benefit is that the data sharing platform allows to compare the gene
expression or neural connection under diverse experimental conditions. It is impor-
tant to note that the existing mouse brain databases such as Allen Brain Atlas usu-
ally investigate the brain of the healthy adult wild-type mouse. In many biological
researches, however, the brains in perturbed state (such as certain disease, environ-
mental or developmental conditions) offer valuable insights, and thus of the major
interest of many researchers. Indeed, in the genomics, the genome data of individu-
als having drastic phenotypes (such as diseases) have been instrumental in discov-
ering the gene mutations. Because such interests are question specific, centrally-led
database would not be able to determine which condition would be of high impact in
the research community. Rather, such focused data collection would be driven by a
group of researchers having common interest or question. A data sharing platform
would encourage such collaborative data collection. A community-driven mouse
brain sharing platform, by its construction, would be able to offer the dataset that
are highly demanded by the researchers.

1.4.2 Previous attempts to integrate mouse brain anatomy data

AsThavereviewed in chapter 1.1, most of the currently existing mouse brain database
were generated by large projects, such as Allen Brain Atlas (Lein et al., 2007; Oh
et al.,, 2014), Brain Architecture project (Kim et al., 2017) and MouseLight project
(Winnubst et al., 2019). These databases are led by a single or multiple leading insti-
tutions, and did not offer the opportunities for external researchers to submit data.
The efforts to integrate the anatomy data from different studies are surprisingly un-
explored in this field, largely due to the lack of motivation to do so, and the difficulty
of mapping slice image data to the 3D reference brain space. Nonetheless, such con-
cept was recently explored independently by Fiirth et al., 2018 and by Chen et al.,
2019. These frameworks both assume that a series of tissue slice images are given as
input, and the images are aligned with the reference brain to allow accurate integra-
tion of multiple brains. These frameworks also offer simple web services to share
the resulting data. However, the web service is still at proof-of-concept stage (e.g.
minimal or no graphical user interface and undocumented set of APIs) and needs
further developments to be used as a foundational data repository that serves the
community.

In the present paper, I assume that the input is given as a 3D whole mouse brain
image, a novel scheme which has never been explored before. This design choice of-
fers unique advantages qualititatively different from the previous tissue slice-based
approaches. First, by having the complete 3D image of the brain, the mapping of
the brain is made more accurate and easier, because the registration can take into
account the 3D structural context. Second, by restricting to only whole brain data,
the database records are made more homogeneous, offering better experiences for
the future data mining projects. Thirdly, having the complete 3D image of the brain
means that the dataset contains the "internal control". To illustrate this, let us con-
sider the brain activity reconstruction using IEGs (as discussed in chapter 1.2.3). If
a researcher combines multiple datasets from several brain mapping studies, and
attempts to identify the brain region affected by a certain stimuli, analysis must also
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consider the regions that should not be affected (control regions). Having the com-
plete 3D image means that one can reliably test those null hypothesis, and ensure
the choice and quality of the data. Further, one can normalize the signal strength by
looking at the distribution of the whole data. Indeed, such analysis is very common
in the meta-analysis of human fMRI studies (see chapter 1.4.4). If a partial brain data
is given, such verification and normalization is not possible, and data miner cannot
eliminate the possibility of the experimental artifacts.

1.4.3 Database framework for genomics

To design a data sharing framework for whole-brain mapping, it is fruitful to review
the database frameworks developed in genomics, where the community sharing of
the data is among the most advanced and successful.

The core infrastructure for the collection and archiving of the sequence data is
organised by International Nucleotide Sequence Database Collaboration (INSDC)
(Arita, Karsch-Mizrachi, and Cochrane, 2020), which is a international collaboration
of the DNA Data Bank of Japan (DDB]J), the European Nucleotide Archive (ENA)
and GenBank. As of 2020, INSDC hosts over 9 petabytes of data contributed by
the research community. All sequence data in the database (except for the studies
involving human privacy) are publicly available through the internet access without
use restrictions or licensing requirements. Individual sequence data submitted to the
database are given a unique and permanent accession number, which can be used
to reference the data in the published literature. In addition, all sequence data is
accompanied with the reference to the study and the identity of the data depositor
to keep track of the source of information.

Building upon this database, a variety of web-based tools are provided to query,
analyze and visualize the data. For instance, BLAST (Altschul et al., 1990; Altschul et
al., 1997) provides sequence similarity search, which rapidly scans through massive
database and finds the similar sequence. Another frequently used tool is Genome-
Browser (Karolchik, Hinrichs, and Kent, 2009), which provides an interactive visual-
ization tool to display the genome sequence accompanied by a series of annotations.

Since its launch, genome databases have served central role in biological and
medical researches with a wide spectrum of use cases. In the light, day-to-day use
cases, researcher would search whether the certain domain in the protein amino acid
sequence is conserved across species, which often indicates the functional center of
the protein. In the most data-intensive use cases, researchers would run genome-
wide association studies (GWAS) using the massive dataset of human genome, to
discover the mutations that is linked to a certain phenotype, such as diseases.

The insights that are applicable to mouse brain database are several fold. First,
the success of genome database may be attributed to the design where sequence
alignment and search are offered as a cloud computing service. By having this de-
sign, all deposited sequence data are processed and indexed using the same algo-
rithm, which ensures the consistency in the database. Further, by allowing users to
run complex query in the cloud, users do not need to download the large data to the
local computer. Second, the development of web-based tools that allow to quickly
analyze and visualize the data was a quite successful effort. Web-based tools alle-
viate the need to install specialized software on the user’s computer. Further, web-
based tool allows to share the analysis results with collaborators by sharing the link
(Karolchik, Hinrichs, and Kent, 2009). These features greatly enhance the user expe-
rience, especially for the biology experts who may not have extensive knowledge on
informatics.
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1.4.4 Database framework for MRI-based human neuroimaging

Genomic database platforms provide one of the ideal forms of the scientific data
sharing. As a more directly related discipline to the present study, next I review the
data sharing efforts in the human neuroimaging field.

Since the very early days of the human neuroimaging using MRI instruments,
the importance of the data sharing was recognized in the field. Consequently, sev-
eral database platforms to store the raw image data have been developed, including
fMRIDC (Van Horn et al., 2001), INDI (Mennes et al., 2013), OpenfMRI (Poldrack
et al., 2013) and connectomeDB (Hodge et al., 2016). Common in all platforms, indi-
vidual submitted brains are aligned with the reference brain, and are given a unique
ID so that the data can be referenced from the published literature. In addition to
the storage of the raw image data, there are several platforms that aim to collect
"curated" neuroimaging dataset, such as SumsDB (Dickson, Drury, and Van Essen,
2001), NeuroValut (Gorgolewski et al., 2016) and BALSA (Van Essen et al., 2017).
The "curated" data here means some kind of processed MRI data and includes a di-
verse data formats. For example, NeuroVault is designed to collect unthresholded
voxel-wise statistical maps showing the activated or repressed areas extracted from
the fMRI measurements. BALSA, on the other hand, is designed to accumulate any
kind of analysis results generated by Connectome Workbench software.

The raw image database and curated database are complementary in terms of its
mission and usage. Fundamentally, the raw image data is the source of all research
results, so the sharing of it is essential. However, fMRI studies often produce hun-
dreds of gigabytes of image data in one study, placing a large load on the database
management as well as the database user. Furthermore, re-analysis of the raw im-
age data (especially task-based fMRI data) can be quite laborious, often requiring
the precise knowledge of the experimental design. Curated data, on the other hand,
allows the data miner to skip the tedious handling of the raw images, and are often
more favorable in situations involving meta-analysis of the MRI data.

Compared to genomics, the data sharing of the human neuroimaging commu-
nity is rather dispersed, and the efforts in the data integration are still ongoing. This
is partly because the human neuroimaging dataset are more diverse in the format
than genome sequences. Especially in cognitive studies using fMRI, the diversity
of the format comes from the complicated design of the tasks, where the task in-
struction, stimuli and repose are different. To overcome this diversity problem and
achieve a coherent data organization, the importance in the common ontology to de-
scribe the experimental design is being recognized, and the ontology sets specialized
in human cognitive studies have been proposed, such as CogPO (Turner and Laird,
2012).

Despite the challenges in exchanging diverse neuroimaging data, the neuroimag-
ing databases have been used in many studies to derive novel discoveries. For
example, by integrating hundreds of human brain imaging data, the spontaneous
brain activity at the resting state (also called the default mode network) was de-
coded (Biswal et al., 2010). Integration of many brain data is also indispensable in
generating ever more precise parcellation of the human brain (Glasser et al., 2016).
In other studies, researchers have integrated fRMI datasets from serveral studies and
constructed a model to predict the neural response from the stimuli (forward infer-
ence) or predict the stimuli from the neural response (reverse inference) (Yarkoni et
al., 2011; Yannick, Bertrand, and Gael, 2014).

There are several insights that may be instructive in designing database for mouse
brain mapping. First, a separation of raw image database and the curated database
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would be reasonable. Second, it is easy to foresee that the mouse brain mapping
would also face the challenges in the diversity of the dataset. As discussed in chap-
ter 1.1, there are diverse experimental methods to label the gene expression or neural
connectivity. Thus, an organized framework to describe the sample information as
well as the experimental conditions would be essential.

1.4.5 Software challenges towards community-driven mouse brain map-
ping
Based on the observations in the previous section, here I formulate the software

challenges and requirements that needs to be addressed in designing a data sharing
platform for whole brain mapping.

1. Standardization of the data

In order to create a homogeneous collection of brain mapping data, the data
standardization procedure must be meticulously defined. This involves the
choice of the reference brain, and the mapping strategies to register individual
brain to the reference. Further, the input data format must be rigidly defined.
Definition of the input data format is deeply linked with the scope of the data
that the platform aims to collect.

2. Web-based interface

This is perhaps quite obvious in the present day, but the platform should be
constructed in the cloud space to provide superior accessibility through the
internet. Important consideration is that the system should offer both progra-
matic and graphical interface to serve different type of users (as discussed in
chapter 1.4.3 and 1.4.4). For the light use cases, the framework should present
graphical user interfaces (GUISs) to provide interactive user experience. On the
other hand, for the users attempting deep data mining, or for the integration
with third party applications, the framework should offer programmatic ac-
cess to the service.

3. Cloud-based end-to-end analysis

As discussed in chapter 1.3, the tissue clearing-based whole brain mapping
can produce over hundreds of gigabytes image data. Due to this massive size,
the analysis poses significant challenges to most of the experimentalist, who
do not necessarily have expertise in high-performance computing or power-
ful computer resources. For this reason, I postulate that the software should
provide the entire data analysis workflow, not just the service for data sharing.
This approach is modeled after the ecosystem offered by BALSA and Connec-
tome Workbench software in human brain imaging. Connectome Workbench
provides an integrated analysis environment for the human MRI data, and it
seamlessly connects with BASLA platform to share the analysis results.

4. Scalability of the system

In designing the system, the scalability must be carefully considered. Although
the number of users may not be large at the initial stage, the number could
grow rapidly in the future. Indeed, according to the PubMed search, between
2019 to 2020, 193 papers have been published which contain the word "tis-
sue clearing" in the title or in the abstract®. These papers can be the potential
contributers to the data sharing platform. Thus, the system should be able to
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flexibly grow to support hundreds of users, without needing to rewrite the
server program.

5. A comprehensive description of the data

As discussed in the human neuroimaging databases, labeling each data entry
with organized and consistent description is the key to the successful data in-
tegration. The necessary tags, and potentially the appropriate ontology, must
be carefully designed.

In the following chapters, I will present the software implementation that ad-
dresses the requirements outlined above, named CUBIC-Cloud (chapter 3). Some
aspect of the system is still experimental, but it offers a set of functionalities to pro-
vide a novel cloud environment to analyze and share whole mouse brain data.

Further, I will demonstrate the usability of the proposed CUBIC-Cloud frame-
work in a variety of neuroscientific applications (Chapter 4). The demonstrated
applications cover the major interests in neuroanatomical research, including (1)
mapping the distribution of cell types (Chapter 4.1), (2) reconstuction of the neu-
ral activity profiles by IEGs (Chapter 4.3) and (3) identification of the brain-wide
circuitry using rabies virus (Chapter 4.5). Together, I propose a community-driven
whole-brain mapping scheme built around CUBIC-Cloud.

5The PubMed (https://pubmed.ncbi.nlm.nih.gov) search result by the following
query command: (tissue clearing[Title/Abstract]) AND (("2019/01/01"[Date -
Publication] : "2020/12/04" [Date - Publication]))


https://pubmed.ncbi.nlm.nih.gov
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Chapter 2

Materials and Methods

2.1 Sample preparation and data collection

2.1.1 Experimental animals

Wild-type C57BL/6N mice were purchased from CLEA Japan Inc. or Japan SLC
Inc and housed in Ueda laboratory’s mouse facility. AppNL-SF/NL-GF mice were
provided by RIKEN BioResource Research Center (RBRC No. RBRC06344) (Saito
et al., 2014). Kiss1-Cre mouse was purchased from The Jackson Laboratory (Kiss1-
tm1.1(Cre/EGFP)Stei/], stock no. 017701), and housed and maintained by Touhara
laboratory at the University of Tokyo. All experimental procedures and housing con-
ditions were approved by the Animal Care and Use Committee of The University of
Tokyo.

2.1.2 Tissue clearing and staining

To collect brain tissue from the mouse, animals were anesthetized by an overdose of
pentobarbital (> 100 mg/kg), then transcardially perfused with 10 mL of phosphate-
buffered saline (PBS) and 20 mL of 4% paraformaldehyde (PFA). The dissected brain
was post-fixed in 4% PFA overnight at 4 °C and stored in PBS until use in the exper-
iments.

To clear brain tissues, I followed the second-generation CUBIC protocol (Tainaka
etal., 2018). In addition, tissue staining was performed following CUBIC-HV method
(Susaki et al., 2020). For the completeness, here I describe the step-by-step protocols
of the CUBIC and CUBIC-HV.

PFA-fixed brain was first immersed in 50%-diluted CUBIC-L solution (10% (wt/wt)
N-butyldiethanolamine, 10% (wt/wt) Triton X-100 in water) for overnight at 25 °C
under gentle shaking. The brain was then immersed in 100% CUBIC-L solution
for two to three days at 37 °C under gentle shaking. After PBS wash, the brain
was placed in the nuclear staining solution. In the nuclear staining solution, nu-
clear staining dye was diluted in nuclear staining buffer (5% (wt/wt) Quadrol, 10%
(wt/wt) Triton X-100, 10% (wt/wt) urea, 500 mM NaCl in water; Urea was omitted
in some of the experiments). Depending on the nuclear staining dye, the following
condition was used:

e SYTOX-G (Thermo Fisher, #57020): 1/2500 dilution from the stock, incubate
for 5 days

e BOBO-1 (Thermo Fisher, #B3582): 1/400 dilution from the stock, incubate for
5 days

¢ RedDot2 (biotium, #40061): 1/150 dilution from the stock, incubate for 3 days
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If immunostaining step was not required, the brain was washed with PBS and
subsequently processed by RI matching solution. Otherwise, the staining was per-
formed with the following procedure. Nuclear stained brain was first washed with
10mM HEPES solution (25 °C under gentle shake). In some of the antibodies, to
enhance the permeability of the tissue, hyaluronidase treatment was optionally ap-
plied with the following procedure (see Table 2.1). First, the brain was immersed in
a solution containing 10 mM CAPSO and 150 mM NaCl (37 °C under gentle shake
for 2 hours). Then, the brain was immersed in hyaluoridase solution (20 mg/mL
hyaluronidase, 10 mM CAPSO, 150 mM NaCl in water) for 24 hours at 37 °C un-
der gentle shake. Then, the brain was washed by the buffer (200 mM NaCl, 0.1%
(vol/vol) Triton X-100, 5% (vol/vol) MeOH in 50 mM carbonate-bicarbonate buffer
adjusted to pH = 10.0). After the optional hyaluronidase treatment, the brain was
immersed in the HEPES-TSC buffer (10 mM HEPES, 10% (vol/vol) TritonX-100, 0.2
M Na(l, 0.5% (wt/vol) casein) for more than 1.5 hours under gentle shake at 32 or
37 °C. The HEPES-TSC buffer was occasionally supplied with 2.5% (wt/wt) Quadrol
and 0.5M urea (see Table 2.1). The primary antibody was pre-mixed with secondary
antibody in the HEPES-TSC buffer for 1.5 hours at 37 °C under gentle shake. Then,
the brain was immersed in staining buffer. Incubation temperature and duration
varied depending on the antibody (see Table 2.1). After the primary incubation, the
brain was optionally incubated at 4 °C for 1 to 5 days (see Table2.1).

Lastly, the brain was processed by RI matching solution. The brain was first
immersed in 50%-diluted CUBIC-R+ solution (45% (wt/wt) antipyrine, 30% (wt/wt)
Nicotinamide, 0.5% (vol/vol) N-butyldiethanolamine) for overnight at 25 °C under
gentle shake. On the next day, the brain was moved in 100% CUBIC-R+ solution and
incubated for 3 days at 25 ° under gentle shake.

After RI matching, the brain was ready for imaging. To rigidly mount the sample
on the microscope, the brain was embedded in a transparent agarose gel, following
the method described by Matsumoto et al., 2019.

2.1.3 Imaging with light-sheet fluorescence microscopy

To image cleared brains, two different LSFM was used in the present study, depend-
ing on the experiment.

The first LSFM device (named GEMINI system) was custom-built by Olympus
Inc. (for details please also see (Susaki et al., 2020)). GEMINI was equipped with 488,
532, 594 and 642 nm diode or DPSS lasers (SOLE-6, Omicron). The laser sheet was
generated by a cylindrical lens and the sheet thickness was adjustable by a mechan-
ical slit. For detection, the microscope was equipped with 0.63X macro-zoom ob-
jective lens (MVPLAPO 0.63X, Olympus) and 0.63-6.3X variable zoom optics (MVX-
ZB10, Olympus), giving 0.4X to 4X total magnification. After passing a suitable flu-
orescence filter, the fluorescence signal was captured by sCMOS camera (Zyla 5.5,
Andor). To achieve homogeneous light-sheet thickness throughout the field of view,
GEMINI was equipped with tiled-light sheet mechanisms (see Chapter 1.2.2). In this
setup, the sheet thickness was approximately 10 pm and the rectangular strip width
was 1500 pm, which required 6 image strips to cover the entire brain.

The second LSFM device (named RapidScope) was developed and maintained
by the imaging core of the International Research Center for Neurointelligence (IRCN)
at the University of Tokyo. RapidScope was equipped with 488, 532, 594 and 642 nm
diode or DPSS lasers (OBIS, Coherent). The laser sheet was generated by DSLM
mechanism (see Chapter 1.2.2). In addition, axially-swept light sheet mechanism
was implemented using electrically-driven liquid lenses (see Chapter 1.2.2). This



23

2.1. Sample preparation and data collection

(s81

oipen -/8G- “UoTeasayounuu
Q) skep y1 desz| ! wo\ mw (+) mwm m%ﬁ%w w%msaa 00T/T |  (6¥0E6# ‘PuoSsforg) 0149
ym  1H3]  9snow-npue
(800-285
-IIT#  “YdIeasayjounuwruwif
(+) skep 01 Do TE () O | vosspep  pegronprexery SL/1 (Sosce# 15D) s04->
WM 93] qqey-Buy
(1£792-€10#
(94p paz e yum
(+) sAep 01 Do T€ ) (+) 0S/1 | 0eM) T dmdsjowr saydepe
pajesniuod - £paoup) VN Surpurg-wnmoed  PazIuof
21N NGO (981-£85
) -GII#  “Yoraeasayjounuuu] (697G T-05# ‘ZznI1D) eyueg)
) shep g1 Do Ll | + ﬁo,%oms.O (+) uosyOe) PG ION[IeX[Y 0¢/1 ase[Axo1pAy QUISOIAT,
pse ym  egH3]  asnow-fjuy
(800
[o1peny -/8G-TTT# “YdIeasayyounuu (0588.1qe4# “wredqe)
) skep 01 Do GC %G (+) -w uosyoe() FEG JIonjje 002/1 aserdjsuenAjede  auroyD
X3V Yim HI] J1qqey nuy
(800-£8S-CT1#
[oxpend “YoIeasayjounuuuy uos FSEIVING
*) sdep 0z Do &€ %ST *) SPe[)  F6S  IonpIexsy OL/T | aodim) — unessoyewios
Ym  egH3] asnow puy
(G81-£9T-GTT# “yo1eas
orpen,
*) sdep 0z Do 5 ﬁ ﬁo\ m.mm (+) | -ooununuy uospe() g45 0S/1 Tuemg) EEMMWN\WMM
’ M qeq D3] asnowr puy .
uon awn N asep
e 5, w ..Horumww .M%MMMM AAYIPPY e Apoqnue Arepuodeg uonnyI(y Apoquiue ArewrrrJ

suonrpuod 3urure)s Apoquuy :1°Z 414V],




24 Chapter 2. Materials and Methods

mechanism allowed homogeneous resolution in XYZ. For detection, the microscope
was equipped with 0.63X macro-zoom objective lens (MVPLAPO 0.63X, Olympus)
and 0.63-6.3X variable zoom optics (MVX-ZB10, Olympus), giving 0.4X to 4X total
magnification. After passing a suitable fluorescence filter, the fluorescence signal
was captured by sCMOS camera (pco.edge 5.5, PCO).

For each dye/FP, the following laser and fluorescence filter pair was used: Alex-
aFluor 594 [Ex: 594 nm, Em: 641/75 nm bandpass (FF02-641/75-32, Semrock)],
Cy3 [Ex: 532 nm, Em: 585/40 nm bandpass (FF01-585/40-32, Semrock)], SYTOX-G,
BOBO-1 and GFP [Ex: 488 nm, Em: 520/40 nm bandpass (FF01-520/44-32, Sem-
rock)], RedDot2 [Ex: 642nm, Em: 708/75 nm bandpass (FF01-708/75-32, Semrock)],
mCherry [Ex: 594 nm, Em: 628/32 nm bandpass (FF01-628/32-32, Semrock)].

2.1.4 Imaging the fluorescent bead embedded in cleared tissue

An essential prerequisite for whole-brain analysis using tissue clearing is that the
image quality is identical throughout the entire brain, without attenuation or blur-
ring. To validate this condition, I imaged the fluorescent beads embedded in the
tissue with LSFM and measured the spot profile.

1.0 pm-diameter green-yellow fluorescent beads (Thermo Fisher, #F8765) were
diluted in PBS (the final bead concentration was 0.9 x 107 particles/ml). This bead-
mixed PBS solution was perfused in mice, prior to the PFA perfusion. Because the
bead surface was modified with amine, PFA was able to cross-link and fix the beads
within the tissue. After tissue clearing with CUBIC, the whole brain was imaged us-
ing the macro-zoom LSFM (GEMINI) with XYZ voxel resolution of 6.45x6.45x7.0 pm
(Figure 2.1 A). Then, single and well-isolated bead particles were manually picked
up (n > 15 for each brain region). Subsequently, the mean spot profiles were com-
puted and fitted with Gaussian. The fitted sigma values from six regions were all
within 4.4 to 4.9 ym (lateral) and 5.3 to 6.7 ym (axial) (Figure 2.1 B), validating ho-
mogeneous image quality throughout the entire brain. Given the digital sampling
frequency (6.5 pm) of the microscope used, this result was nearly the ideal PSF.

2.1.5 Rabies virus production and injection

Note: RV and AAV production and injection was done by Dr. Murata and Dr. Miyamichi
from Touhara laboratory at the University of Tokyo. For the completeness, I describe the virus
production and injection protocols here.

The following AAV vectors were generated de novo by PENN vector core using the
corresponding plasmids. AAV serotype 9 CAG-FLEx-TCb (1.5 x 10'? gp/ml) was
made using the plasmid described previously (Miyamichi et al., 2013). Here TCb
stands for TVA-mCherry expression cassette optimized to increase mCherry bright-
ness. To generate AAV serotype 9 CAG-FLEx-0G (4.5 x 10'3 gp/ml), engineered and
optimized glycoprotein (0G) (Kim et al., 2016) sequence was ligated to pAAV-FLEX
sequence from pAAV-FLEX-GFP (Addgene).

Preparation of rabies virus was conducted by using the RVAG-GFP, B7GG and
BHK-EnvA cells as previously described (Osakada and Callaway, 2013). The EnvA-
pseudotyped RVAG-GFP+EnvA titer was estimated to be 1.0 x 10? infectious par-
ticles/ml based on serial dilutions of the virus stock followed by infection of the
HEK293-TVAS800 cell line.

For trans-synaptic tracing using rabies virus, about 20 nL of mixture of AAV9
CAG-FLEx-TCb and CAG-FLEx-0G (diluted to 1.5 x 10'? gp/ml each) was injected
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FIGURE 2.1: Measurement of the fluorescent bead embedded in the cleared tissue

A. Representative sagittal slice (virtually reconstructed from horizontal-major 3D image
stack) showing the fluorescent beads embedded in tissue. B. Bead spot profiles measured
in six brain regions. Lateral and axial profiles were fitted with Gaussian, respectively, and
the fitted curves are shown along with the raw data points. The fitted sigma values (with
95% confidence interval) of the Gaussian are also shown. The number of particles used to
average the spot profile are shown in the graph.

into the ARH of Kiss1-Cre mice. The first AAV transduced a TVA receptor fused with
mCherry for EnvA. The second AAV transduced RV glycoprotein (0G) playing a
predominant role in the trans-synaptic transport of RV. The injection coordinate was
P1.1, LO.2, V5.9 (distance in mm from the Bregma for the posterior [P], and lateral
left [L] positions and from the brain surface for the ventral [V] position). Three
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weeks later, 30 nL of Rabies AG-GFP+EnvA was injected into the same brain region
to initiate trans-synaptic tracing. Because there is no cognate receptor for EnvA in
the mouse brain, RVAG+EnvA only infects TVA-expressing cells. oG expression
from the second AAV complements the RVAG, allowing retrograde monosynaptic
tracing from Cre-expressing cells. Seven days later, brains were sampled for CUBIC
treatment.

2.2 Image analysis methods used in CUBIC-Cloud
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FIGURE 2.2: Cell counting method and its accuracy

A. The cell detection workflow overview (also see Chapter 2.2.1). B-J. Accuracy evaluation
of the cell counting algorithm. True positive rate (TPR), positive predictive value (PPV) and
F1 score were evaluated for seven label types in more than five brain regions. Ground truth
was prepared by two independent annotators.

The cell detection from 3D brain image data was performed with the following
procedure (Figure 2.2 A). Because the raw 3D brain image data contained noises
and high-intensity background which varied depending on the brain region, sim-
ple image filtering approaches did not work sufficiently well to isolate labelled cells.
Thus, I used ilastik (Sommer et al., 2011; Berg et al., 2019) software. ilastik accepts
hand-crafted image features, and uses random forest algorithm to classify the 3D
voxels into distinct classes. ilastik was chosen over other cell segmentation soft-
ware/library, because (1) ilastik can be trained with sparse annotation data set,
which reduced the cost of having to prepare dense annotation and (2) the code was
highly parallelized and scalable to many-core servers. To train the classifier, manual
annotation images were prepared. In this study, three classes were defined, which
were (1) signals of interest, i.e., cells labelled by FPs or antibodies (2) bright but false
signals, such as non-specific binding of antibodies to vascular structures or neurites
extending from cell bodies and (3) background (i.e. void space). Typically, 5,000 to
10,000 voxels were annotated as class 1 per one dataset. To increase the robustness,
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at least two brains with identical labelling conditions were annotated. Image anno-
tation was performed using ITK-SNAP software (Yushkevich et al., 2006). Next, fol-
lowing the ilastik workflow, image feature descriptors were selected, which was fed
into the random forest algorithm. For PV, Sst, ChAT, Th, Ibal, c-Fos, RV-GFP and
AAV-mCherry images, the selected descriptors were Gaussian (o = 0.3, 0.7 voxel),
Gaussian gradient magnitude (o = 0.7 voxel), difference of Gaussian (c = 0.7, 1.0,
1.6, 3.5 voxel) and Hessian of Gaussian eigenvalues (o = 1.0, 1.6, 3.5 voxel). For the
analysis of 6E10-labeled AP images, difference of Gaussian (¢ = 5.0 voxel) and Hes-
sian of Gaussian eigenvalues (o = 5.0 voxel) were additionally included, so that the
larger spatial context was taken into account. Then, hyperparameters in random
forest algorithm was automatically optimized by ilastik.

By applying the voxel classifier trained above to each brain image, a probability
image was produced, where the value of each voxel represents the probability of that
voxel being class 1. The probability value was given in the range [0, 1]. Using this
probability image, a custom Python program was used to isolate individual cells in
the following way. First, the probability threshold, P, = 0.7, was applied to make
a binarized image. Then, connected voxels were searched and merged together, to
find individual objects. If the identified object volume was larger than a threshold,
Vin, it was sent to the object separation routine. The object separation routine simply

finds local maxima with an exclusion distance 7y = Vti/ 3, Vin was heuristically de-
termined to be V;;, = 4% = 64 for PV, Sst, c-Fos, Ibal, Rabeis-GFP and AAV-mCherry,
and V;, = 53 = 125 for ChAT and Th. For AB plaque segmentation, V;, = oo was
used. In this way, all of the single cells from the 3D brain image is isolated. The final
output was written in a comma-separated values (CSV) format, which recorded the
XYZ position, the mean and maximum fluorescent intensity over the object, and the
volume of the object.

Accuracy of the above explained cell detection procedure was extensively evalu-
ated by comparing automated counting results with manual cell counting (Figure 2.2
B-H). Manual cell counting was performed by cropping a small cubic image volume
(50 or 75 or 100 voxels, depending on the cell density) from brain images which were
not used in machine learning training. Well-trained human annotators (n = 2) inde-
pendently marked all of the cells present in the image and typically yielded 100-200
marked cells. Image annotation was performed using ITK-SNAP software (Yushke-
vich et al., 2006). Cells annotated by both human and algorithm were regarded as
true positives. Cells annotated by human but not by algorithm was regarded as
false negative. Cells annotated by algorithm but not by human were regarded as
false positives. Then, true positive rate (TPR, also called sensitivity) and positive
predictive value (PPV, also called precision) were evaluated for the ground truth an-
notation prepared by each human annotator. To quantify the overall performance,
F1 score, defined as F'1 = 2 x (PPV x TPR)/(PPV + TPR), was also evaluated.
For most of the label types and brain regions, our cell detection algorithm robustly
demonstrated good F1 scores, with average score being 0.80 (PV), 0.83 (Sst), 0.88
(ChAT), 0.80 (Th), 0.88 (Ibal), 0.83 (c-Fos) and 0.89 (GFP).

2.2.2 Brain registration

CUBIC-Cloud uses the symmetric image normalization (SyN) algorithm implemented
in ANTs library (Avants et al., 2008) to run registration between CUBIC-Atlas ("fixed"
brain) and individual brain sample ("moving" brain). First, nuclear staining image of
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FIGURE 2.3: Brain registration method used in CUBIC-Cloud

A. Normalized cross-correlation (NCC) value between two brains after registration. Mean
NCC values of each coronal slice are plotted. 20 brains from different mice were indepen-
dently registered onto CUBIC-Atlas. Individual profiles (thin lines with light colors) as well
as the mean (thick green line) are shown. B. Representative brain registration result. CUBIC-
Atlas (cyan) and registered brain (magenta) are overlaid. C. Voxel-wise NCC value map
computed for the images shown in B.

the "moving" image was downscaled to a voxel size of 50x50x50 um. Nuclear stain-
ing image of CUBIC-Atlas was downscaled to a voxel size of 80x80x80 pm. Con-
sidering the sample’s physical expansion by clearing treatment (2.2X for CUBIC-
Atlas and 1.5X for CUBIC-R+ treated brains), this downscaling operation resulted
in an effective voxel size of about 35x35x35 pm in both images. The registration
first computed affine transformation to coarsely align the orientation and size, us-
ing mutual information as the optimizer metric. Subsequently, non-linear warping
was computed by SyN algorithm, which optimized the warp field by maximizing
the normalized cross-correlation (NCC) between the two images under diffeomor-
phic regularization (Avants et al., 2008). Given image /(x) and image .J(x), the NCC
value between I and J at the voxel position x is given by

~

(7,7
121171

where (A, B) represents the inner product taken over a local window with radius
R centered at position x. |A| is the L2 norm of the vector computed over a local
window with radius R. Here, I(x) = I(x) — p7(x) means the subtraction of the
local mean, where local mean p;(x) is computed over a local window with radius R
centered at position x. R = 4 (voxels) was used in all analysis.

The representative registration result is visualized in Figure 2.3 B, along with the
NCC value heatmap (Figure 2.3 C). To show the reproducibility of the registration,
20 individual brains were mapped onto CUBIC-Atlas with identical registration pa-
rameters. The mean NCC value of each coronal planes were computed and plotted

NCO(I, J,x) = (2.1)
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(Figure 2.3 A). 20 independent curves overlap with each other, meaning that the op-
timization attempt by the registration reached saturation. NCC value tends to show
higher value in the olfactory area and cerebellum, due to the presence of more dis-
tinct structural features.

2.3 Details on data analysis

2.3.1 Whole-brain analysis of RV-injected brains

After AAV and RV injection, Kiss1-Cre mice (13- or 14-week-old at the time of brain
sampling) were cleared, stained, imaged and analyzed as described in the corre-
sponding sections in Chapter 2. Brains were stained with nuclear staining dye (Red-
Dot2, Biotium, #40061).

As a negative control experiment, AAV and RV injection was performed using
BALB/c wild-type mice brain (n = 3). After clearing, the whole-brain image was ob-
tained by LSFM. No GFP or mCherry signals were observed by manual inspection,
confirming the absence of Cre-indepentent leakage of AAV vectors and specificity of
the virus delivery (data not shown).

Starter cells were searched by identifying dual positive (mCherry+ and GFP+)
cells. For each channel, cell counting was independently performed, and the center
of the mass of the detected cell was obtained. For each mCherry+ cells, if a GFP+
cell was present within a distance of 24 um, the cell was counted as starter!. Occa-
sionally, slight voxel shift (typically no more than 4 voxels) occurred between GFP
and mCherry channels, which was presumably caused by slight misalignment be-
tween the 488 nm and 594 nm illumination laser or drift of the specimen during
scanning. To correct this, small 3D volumes with distinct features (typically (X,Y,Z)
= (50,50,20) voxels, n = 4 or n = 3) from mCherry and GFP channels were cropped,
and the voxel shift was computed by registering two images using ANTs, where
transformation was restricted to only translation. Then, the cell coordinates were
corrected by the mean of the computed shift.

To carry out statistical analysis of input cell numbers between male and female
brains, I used the normalized cell count, n,0:m i, Where 7 represents the ID of the
brain region. Denoting the raw cell number of each brain region as n;aw,i, Pnorm,i iS

simply expressed as nnorm,i = Nraw,i/(D; raw,i)-

2.4 Implementation details of CUBIC-Cloud

2.4.1 Cloud infrastructure built upon serverless architecture

The schematic illustration of the cloud architecture is shown in Figure 2.4. CUBIC-
Cloud is constructed using the serverless architecture and deployed on the Ama-
zon Web Service (AWS). When user accesses the web site, the static site content is
distributed by CloudFront. CloudFront is responsible for caching, managing secure
connection through SSL/TLS and web application firewall (WAF) to reject malicious
access. Then, static web contents are fetched from S3 bucket and returned to the
user. User authentication is handled by Cognito. Once authenticated, users can ac-
cess the protected API endpoints securely using json web token (JWT). All REST
API requests are routed by API Gateway. API Gateway forwards most of the API

"Note that because the CUBIC-cleared tissue was expanded by a factor of ~1.5, this was roughly 16
um in untreated tissue.
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FIGURE 2.4: Architecture of CUBIC-Cloud

The diagram shows the schematic architecture of CUBIC-Cloud (see Chapter 2.4.1 for de-
tails).

request to Lambda. Lambda is the most essential serverless computing unit in AWS,
which can execute a low-workload tasks which would complete in milliseconds to
a few seconds. In CUBIC-Cloud, computation that do not require CPU power such
as read and write operation on the database, are all handled by Lambda. Lambda
handlers have access to various back-end resources, including the databases and the
data buckets. As a serverless non-SQL database, DynamoDB, was used to store in-
formation on users, brains, notebooks, and studios. Large data files (such as images
and csv tables) were stored in S3.

Once a user uploads the brain data, the upload completion event is triggered
from S3 to start a "preprocessing” task in the ECS cluster. Preprocessing includes
brain registration, transformation, and data conversion. ECS automatically launches
anew EC2 instance, pulls the Docker container from ECR registry, and initiate a new
task. The task execution is orchestrated by StepFunctions. Notebook tasks (i.e. gen-
erating plots) are similarly orchestrated by StepFunctions, except that the runtime is
either Lambda or Fargate, depending on the required memory size of the task.

The cloud application stack was written with AWS’s Cloud Development Kit
(CDK) framework for Python (https://github.com/aws/aws—-cdk). The API
handlers executed by Lambda are written in Python and boto3 library (https://
github.com/boto/boto3) was used to manipulate other AWS resources, such as
DynamoDB and S3. The graphical user interfaces (GUIs) on the web browser was
created using Vue.js framework (https://github.com/vuejs/vue).

2.4.2 Implementation of the 3D brain viewer

CUBIC-Cloud offers a point-cloud based interactive 3D brain viewer, a feature called
studio. The viewer is written in JavaScript, and runs in the standard web browsers,
including Google Chrome and Firefox. It uses WebGL (https://www.khronos.
org/webgl/) for hardware accelerated 3D rendering. Threejs library (https://
github.com/mrdoob/three. js/)was used to write code for graphics rendering.
The core of the point cloud rendering engine was adopted from the open-source
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project, Potree (Schuetz, 2016). Following the implementation of Potree, the raw
point cloud data is converted into a chunked format, where the whole point cloud
was divided and stored in a multi-resolution hierarchical structure (octree structure).
This octree-formatted data was stored in the server with a UNIX-based file paths, so
that the chunk can be fetched from the client through standard GET HTTP request.
The octree-formatted point cloud data was automatically generated as a part of the
preprocessing task in the CUBIC-Cloud server. On the client side, point cloud data is
adaptively queried in response to user’s viewpoint, in which a portion of the points
near the viewer’s camera was loaded with high priority.

Each point can be attached with several attributes, including the brain region ID
and fluorescent intensity. Points may be colored or filtered using these attributes.
For example, points may be given gradient colors based on their fluorescence inten-
sity values, or regions in specific brain regions may be selectively shown using the
point’s region ID.
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Chapter 3

Results 1: Construction of
CUBIC-Cloud

In chapter 1.4, I formulated the software challenges that will be required in effective
integration of the whole-brain datasets collected by neuroscience research commu-
nity. Based on this motivation, I implemented a cloud-based application for whole
mouse brain analysis, which I named CUBIC-Cloud. The CUBIC-Cloud web site is
hosted at https://cubic—cloud.com.

In summary, CUBIC-Cloud offers the following functionalities:

¢ Uploading the brain data to the cloud, and automatically register it to the ref-
erence brain.

Constructing the user’s own brain repository in the cloud.

Run 3D interactive visualization of the brains using "studio".

Run quantification of the brains using "notebook".

Sharing and publishing of the brain data, studio and notebook results.

Below, I will explain the design considerations and rationals of the cloud system
design (chapter 3.1). Then I describe the front-facing software functionalities (chap-
ter 3.2) and the back-end implementation details (chapter 3.3). A step-by-step user
guide of CUBIC-Cloud is provided in Appendix B.

Contribution statement: The majority of the CUBIC-Cloud application stack was de-
signed and implemented by the author. The cloud server development was assisted
by R. G. Yamada and S. Horiguchi. The development of the web graphical user
interface was assisted by Tecotec Inc.

3.1 CUBIC-Cloud: Considerations and rationals

3.1.1 Choice of the reference brain

Mapping of the submitted brains to the reference brain is the most important step
in CUBIC-Cloud. Therefore, the choice of the reference brain needs to be carefully
considered.

In this study, the following three mouse brain atlas were considered as candi-
dates. The first two candidates were provided by Allen Mouse Brain Common Co-
ordinate Framework version 3 (CCFv3) (Wang et al., 2020). In CCFv3, two variant
formats are provided. The Nissl staining atlas (Figure 3.1 B) is a brain structure la-
beled with Nissl staining, constructed from the serial sectioning imaging method.
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A B Allen Brain Atlas
(Nissl image)

CUBIC-Atlas

Cc Allen Brain Atlas D Brain region annotation
(Average template) (CCFv3)

FIGURE 3.1: Comparison of the mouse brain atlas

A-C. Representative sagittal slice from CUBIC-Atlas (A), Allen Brain Atlas Nissl staining
image (B) and Allen Brain Atlas Averaged brain (C). The enlarged view of the hippocampus
is shown in the lower panel. D. The brain area annotation from CCFv3. Each brain areas are
colored by a unique RGB value.

The averaged template (Figure 3.1 C) is a brain structure constructed from the av-
erage of 1600 adult mouse brains, scanned with serial two photon tomography vi-
sualizing the autofluorescence of the tissue. In CCFv3, brain region annotation is
provided, which is aligned with Nissl image and average template (Figure 3.1 D).
The third candidate is CUBIC-Atlas (Figure 3.1 A) (Murakami et al., 2018). CUBIC-
Atlas was constructed by tissue clearing and high-resolution LSFM imaging. The
brain region annotation was imported from CCFv3 via semi-automatic registration.
Thus, effectively the same brain area annotation from CCFv3 are defied on CUBIC-
Atlas.

In the present study, CUBIC-Atlas was used as the reference brain based on the
following considerations.

¢ Nisslimage from CCFv3 contains artifacts arising from the serial sectioning (as
is evident in the zoom-in view of the hippocampus in Figure 3.1 B). Due to the
concern that this artifact cause unexpected errors in registration, Nissl image
from CCFv3 was rejected.

¢ Average template of CCFv3 records the autofluorescence of the tissue. On the
other hand, CUBIC-Atlas records the nuclear staining. Some brain structure,
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such as the layers of the cortex and the hippocampus, are more clearly visible
in nuclear staining images. For this reason, nuclear staining was evaluated to
be a better structural marker.

e CUBIC-Atlas offers information about the absolute number of cells in each
anatomical regions, which is useful when normalization by the total cell num-
ber is necessary. This information is not present in CCFv3.

Nonetheless, it is important to point out that the mouse brain atlas is constantly
renewed over the years, so there is a possibility to a newer reference brain. Thus,
in the current implementation, CUBIC-Cloud stores the atlas version information as
meta-information for each of the brain.

3.1.2 Data format

The next important consideration is defining the data format accepted in the cloud
system. As discussed in the human neuroimaging database (chapter 1.4.4), a sepa-
ration of raw image database and the curated database would be more reasonable
approach, since the they would require different mission and software design. In
this study, CUBIC-Cloud was designed to collect curated whole mouse brain data.
In particular, CUBIC-Cloud accepts the whole-brain mapping data represented in
point cloud format. This is a representation where each cell segmented from the raw
image is abstracted as a single point, carrying the following biological information:

¢ XYZ position of the center of the mass.
* Mean and maximum fluorescent intensity over the object.
¢ The volume of the object.

This design choice was made because most of the brain mapping project would be
most interested in the quantification of the number and the expression level of the
targeted cells. For example, in the gene expression mapping applications (Chap-
ter 1.1.1), the goal is to quantify the number of cells expressing the gene and the
amount of the gene expression of each cell, of all brain areas. Thus, point abstraction
still gives essential biological information that is of interest in most of the studies,
while drastically reducing the file size from raw images.

It is certainly true that the point cloud abstraction may not be sufficient to rep-
resent all biological information. Other possible input formats are vectors (e.g. to
represent neural fibers) and polygons (e.g. to represent detailed morphology of the
cells and synapses). Accepting these various data format is highly attractive, but
considering that CUBIC-Cloud is the first experimental attempt toward data shar-
ing, I considered that these advanced formats will be better treated in the future
developments. Possible integration with other abstracted data format will be dis-
cussed in Chapter 5.2.3.

In addition to the point cloud data, users would need to submit brain structure
image to run brain registration. In the current implementation, the structural infor-
mation should be supplied as the whole-brain nuclear staining image.

In summary, CUBIC-Cloud requires the user to submit the following data: (1)
whole-brain nuclear staining image and (2) the list of labeled cells represented as
point cloud.
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3.1.3 Labeling scheme of the brain data

One of the important lessons from the human neuroimaging database platforms is
that the coherent and organized labeling of the brain data facilitates the re- and meta-
analysis (Chapter 1.4.4). Based on this requirement, CUBIC-Cloud lets the users
to supply various attributes to the brain data. The attributes currently available
includes the following:

¢ Title of the data.
* Mouse line information (useful for transgenic animals).
¢ Age of the mouse.

¢ Label tags. Each tag has its own URL, where users can read the informa-
tion on the labeling targets (for example, antibody target or fluorescent protein
drivers)

¢ Project tags. Each tag has its own URL, where users can read the information
on the experimental conditions.

¢ Link to the published paper.
¢ Free text notes to describe other information

Usually, one set of experiment would study several brains with the identical condi-
tion to evaluate the statistical significance. The "project tag" will be useful to link
the brains collected under the same experiment. The "label" tag would usually indi-
cate the protein name targeted by the experiment. Using this attribute, one would
be able to search several experiments that targeted the protein of interest across the
database.

Currently, to maximize the ease of use and flexibility, no ontology sets are defined
to describe the above attributes. Depending on the future uses by the community,
though, the mandatory use of the defined ontology may be beneficial.

3.2 CUBIC-Cloud workflow

The standard user workflow of CUBIC-Cloud is illustrated in Figure 3.2. In sum-
mary, the workflow divides into (1) tissue clearing and image collection, (2) single
cell detection, and (3) uploading the data to CUBIC-Cloud, where brain registration,
brain-wide quantification and visualization are performed.

3.2.1 Uploading brain data

The first step of the CUBIC-Cloud workflow is to collect the whole-brain images and
upload it to the cloud. For those users that are only interested in the mining of the
public datasets, this step may be skipped.

In the present study, second-generation CUBIC method was used to clear the
brain tissue (Tainaka et al., 2018) (see chapter 2.1.2). The cloud system should be
compatible with other clearing methods, as long as the similar level of tissue trans-
parency and morphological preservation is ensured (more discussion on this in chap-
ter 5.2.1). The cleared tissue was scanned with LSFM (see Chapter 2.1.3). As de-
scribed in chapter 3.1.2, one of the channel was used for nuclear staining and the
other channels were for the labeling of the cells targeted in the experiment.
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FIGURE 3.2: Overview of CUBIC-Cloud workflow

The second step of the workflow is isolation of single cells using automated ob-
ject segmentation to prepare the cell data in point cloud format. In the proposed
pipeline, machine learning-based cell segmentation software, ilastik (Sommer et al.,
2011), was used (see chapter 2.2.1). ilastik was highly suitable for the cell segmenta-
tion of the whole-brain image data sets, because it is fast enough to handle whole-
brain images and comes with a GUI to interactively train a machine learning model.
However, since the cell segmentation task is highly dependent on the experiment
settings, the users may use their own custom segmentation method. As long as
the final output follows the CUBIC-Cloud-specified format, CUBIC-Cloud is able to
process those data as well.

User would then use the GUI to upload two data files (nuclear staining image
and segmented cell table) to CUBIC-Cloud. Once data upload is complete, the up-
loaded brain is placed in the "preprocessing"” task in the cloud. The main purpose
of preprocessing is running brain registration to map the submitted brain to the ref-
erence brain coordinate (for more information, see Chapter 2.2.2), along with other
post-processing of the data. After the preprocessing is complete, the data is regis-
tered in the user’s cloud brain repository, and is ready to be used in visualization
and quantitative analysis.

3.2.2 Organizing brain repository

By uploading the brains to the cloud, users can construct their own brain repository
in the cloud. All uploaded brain initially goes to the user’s private storage space, so
at this point the brains are not publicly visible. The list of the brains in the user’s
brain repository can be viewed in a table. Users would add appropriate attributes to
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the brain data (as discussed in Chapter 3.1.3) to organize their brain database. User
can search or filter the brains using the attributes attached to the brain.

3.2.3 Visualizing whole-brain data

A CUBIC-Cloud studio: User interface B Search by regions
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FIGURE 3.3: Studio function offered in CUBIC-Cloud

A. Overview of the user interface. B. User can show only the selected brain regions. C.
Arbitrary number of brains from the database can be overlaid with user-defined colors. D.
Section view with arbitrary angle and arbitrary thickness can be created. E. User can touch
a single point and query the information about the cell.

Whole-brain data uploaded to CUBIC-Cloud typically contains tens of thou-
sands to millions of single-cells scattered in 3D space. Intuitively understanding
and navigating through such complex dataset is a big challenge. Modeling after
GenomeBrowser (Karolchik, Hinrichs, and Kent, 2009), CUBIC-Cloud offers a web-
based interactive 3D brain viewer, a feature called "studio” (Figure 3.3). The studio is
a light-weight point cloud renderer that natively runs on the web browser using We-
bGL framework. Here, brain data is visualized as a point cloud, where each point
corresponds to a single cell isolated from the raw raster data. In the server, point
cloud data is stored in a hierarchical chunked format (see Chapter 2.4.2). This al-
lows the client application to adaptively query the points based on the position of the
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user’s point of view. This adaptive querying mechanism allows to efficiently visu-
alize enormous number of cells in real time even with a limited network bandwidth
and graphics power. Each point carries various biological attributes such as inten-
sity values from the raw image, object volume and the brain region IDs. The studio
is able to render the points based on these attributes. For example, the renderer can
assign gradient of colors based on the intensity value of the cell. Combined with
maximum intensity projection (MIP) rendering, this gives effective "see-through"
view of the brain, where regions with high intensity values are highlighted.

Other useful user functions include the following.

Pan, rotate and zoom: Users can manipulate the model with a simple mouse
interaction. The interface is compatible with touch screens on mobile and
tablet devices.

Region view (Figure 3.3 B): User can show the selected brain region and hide
other regions. This feature is useful to focus on the regions deep in the brain.
User would select which regions to show via GUI, where the hierachical anatom-
ical regions are displayed as a tree.

Overlaying multiple brains (Figure 3.3 C): Arbitrary number of brains can be
overlaid together, each with user-defined color. This feature is possible because
all brains in the repository is pre-aligned with the reference. Using this func-
tion, user would visually inspect the co-localization of the cells in two different
datasets.

Section view (Figure 3.3 D): User can selectively see the sections from the 3D
volume. The orientation and the thickness of the section can be freely changed,
either using navigation GUI or by typing numerical values in the text box.

Movie generation: Users can record the movie in which the camera moves
along the trajectory defined by the user. In addition, some preset motions are
available, such as simple rotation.

3.24 Quantifying whole-brain data
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FIGURE 3.4: Representative applet GUIs offered in the notebook.

A. An applet to analyze the layer-wise density or expression levels of the isocortex. B. An
applet to generate a cartoon-style whole-brain map of cell density or expression levels.
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The studio tool described in the previous section is useful in gaining qualitative
and visual understanding of the whole-brain data. To get quantitative understand-
ing of the data, CUBIC-Cloud offers a "notebook", a feature that allows users to
create various kinds of graphs with simple GUIs without writing codes (Figure 3.4).
As the name signifies, the notebook allows the user to organize their analysis based
on a notebook-like document and add different kind of analysis under the single
document. The user first select the brains to analyze from their own brain database
or from the public brain repository. Then, several pre-defined applets are provided,
which allows users to quantify the number, the volume and the intensity of the cells,
in a number of different ways. For example, in Figure 3.4 A, an applet to run layer-
wise analysis of the isocortex is shown. In Figure 3.4 B, an applet to create a cartoon-
style heatmap showing the cell density or gene expression level is shown. Users can
download the generated graphs in raster or vector format as well as the raw numer-
ical values in CSV format. The notebook is intended for simple and quick inspection
of the data, and the current collection of applets cover most of the common quan-
tification tasks. If a custom analysis is needed, the user can simply download the
reference-aligned brain data to the local machine and run customized analysis.

3.2.5 Sharing and publishing

The important concept of CUBIC-Cloud is sharing and publishing. With sharing,
user can grant access to the brain data to other specific users. This feature is useful
when exchanging data with internal or external research collaborators. User can
choose read only or read and write access depending on how the data should be
managed.

In addition to sharing with specific users, users can opt to publish their brain data
in the CUBIC-Cloud’s public repository. Once published, any users can view the
brain. When a data is published, a hard copy of the data is created and registered in
the database, to ensure the persistence of the data. Published data are given unique
ID value so that the data can be accessed via URL or API request.

The share and publish capability are also supported for the notebooks and stu-
dios. Using this feature, users can transparently show their analysis results to the
research community. To demonstrate this concept, over 60 brain data investigated in
this study is deposited on CUBIC-Cloud public repository, as well as the notebooks
and studios that performed the analysis.

3.2.6 Client APIs

The functionalities described so far all involves graphical interfaces, which would be
useful to quickly and intuitively operate the software. CUBIC-Cloud also provides
programmatic access to the service via REST APIs. These APIs would be useful for
those who upload the brain data in a large batch, or those downloading brains from
the public repository. In Table 3.1, some of the representative API endpoints are
shown. Complete documentation of the CUBIC-Cloud API as well as the software
development kit (SDK) for Python is under preparation as of this writing and will
be made available soon.

3.3 Implementation of CUBIC-Cloud

CUBIC-Cloud’s entire application stack is deployed on the cloud computing infras-
tructures offered by Amazon Web Service (AWS). The cloud is constructed using the
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TABLE 3.1: Example list of CUBIC-Cloud API

API endpoint Description Parameters

GET /brains Get a list of brains. type (private, shared
or public), sortkey
(e.g. date or title),
keyword (keyword
search)

POST /brains Upload a new brain. NA

GET /brains/:item_id | Get abrain data by ID. | NA

GET Download selected raw | what (raw or trans-

/brains/downloads/ data by brain ID. formed cell table, raw

sitem_id or transformed struc-
ture image)

GET Publish a brain by ID. NA

/brains/public/:item_id
GET /notebooks

Get a list of notebooks | type (private, shared
or public), sortkey
(e.g. date or title)
(many parameters
specifying the task)
type (private, shared
or public), sortkey
(e.g. date or title)

NA

POST /notebooks/
ditem_id/cells/cell_id
GET /viewer/studios

Run appelet task and
generate a graph
Get a list of studio

GET /viewer/studios/ | Launch a studio

launch/:item_id

serverless architecture (Adzic and Chatley, 2017). Serverless architecture has zero
real (physical) server instances that are always running; instead, the cloud is com-
posed by connecting microservices, which are dynamically invoked by events, and
the computational resources are allocated by the cloud provider automatically on
demand.

In designing CUBIC-Cloud, serverless approach was particularly advantageous
compared to conventional cloud construction approaches in several ways. First,
because CUBIC-Cloud is a scientific application, the concurrent access by the user
would be not high (presumably up to tens of users at the same time), but the com-
putational demand by each user could be potentially very high (for example, mak-
ing large query to the database or submitting many brains to the cloud), meaning
that the load on the system would be highly pulsatile. Therefore, the cloud sys-
tem should be able to dynamically scale the computational power in response to
a surge of the computational demand. In the conventional approach, such system
would require a complex code base to dynamically launch or shutdown the phys-
ical servers, using frameworks like Kubernetes. By adopting serverless approach,
this development cost is significantly mitigated, which is highly suitable for a small
team of developers in scientific laboratories. Furthermore, serverless approach al-
lows to flexibly divide the entire cloud system into a collection of microservices, in
stead of a large monolithic application. Each microservices can independently re-
quest the CPU and memory resources as well as the runtime environment. Thus,
the cloud system can be constructed in a modular manner, a welcoming feature for
CUBIC-Cloud where a lot of prototyping is attempted.
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FIGURE 3.5: Implementation of the preprocessing task

A. Preprocessing task is orchestrated using AWS Step Functions framework. The schematic
state transition model of the preprocessing is presented. B. The schematic diagram showing
the cluster scaling.

The implementation details are described extensively in chapter 2.4.1. Here I
particularly describe the automatic scaling of the preprocessing cluster, which is the
core of the CUBIC-Cloud system. Preprocessing task is designed around the state
machine model using AWS Step Functions framework (Figure 3.5 A). Once a user
uploads the brain data, a upload completion event is fired from the storage system
(S3). This event triggers the initiation of the state machine. First, Lambda (serverless
compute unit provided in AWS) checks if the CPU allocation is below the limit im-
posed by AWS. Currently, standard AWS user account can request up to 1500 CPU
cores at one time. If the running CPU core exceeds this limit, the task is placed in
the wait queue, and job re-submission is attempted periodically. If the CPU alloca-
tion is available, a new compute instance (offered by AWS EC2) is launched. In the
current implementation, c5.9xlarge instance type (36 CPU cores and 72 GB of RAM)
is used. Although larger instance types are offered in EC2, ANTs registration pro-
gram did not reduce execution time significantly if more than 40 CPU cores were
used, presumably due to the memory access overheads. Thus, 36 CPU cores were
determined to be optimal in terms of the execution time and the cost. As soon as
the EC2 instance is launched and ready to use, a preprocessing program packaged
in the Docker container is executed in the instance.

Preprocessing program first compute the registration between the submitted brain
and the reference brain (see chapter 2.2.2), and outputs the transformation fields to
map the coordinate from one brain to the other. Next, the computed transformation
is applied to the cell table, so that the cell coordinates are mapped to the coordinate
system of the CUBIC-Atlas. Then, a chunked point cloud data is generated for 3D
visualization (see chapter 2.4.2). Lastly, a summary information of the analysis is
created, and the brain is registered in the user’s database.
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The above preprocessing task takes about 1 hour of execution time. Once the
preprocessing task is completed, the EC2 instance is quickly shutdown. When no
preprocessing task is in the queue, the system CPU usage is zero, meaning that the
idling cost is effectively zero. The schematic diagram showing the behavior of the
cluster scaling is shown in Figure 3.5 B.

With this implementation, CUBIC-Cloud is able to process 41 (=1500/36) brains
simultaneously, while consuming zero CPU during idle time. All other elements of
the cloud system (such as fetching data or submitting notebook applet jobs) are also
implemented with serverless construction (see chapter 2.4.1). Therefore, the entire
cloud system can flexibly scale depending on the load.

3.4 Deployment and actual use cases

CUBIC-Cloud was initially released to the public in August 2020. Since then, sev-
eral pilot users have signed up to try the cloud service. As an example use case,
here I will describe a project where my colleague and I investigated the whole-brain
parvalbumin (PV) expression (the result is reported in Chapter 4.2).

In this project, 60 whole-brain data were acquired (24 brains in the first batch
and 36 brains in the second batch). After the data acquisition of the first batch (24
brains), these brains were uploaded to CUBIC-Cloud using a custom Python script
utilizing CUBIC-Cloud’s REST API. Upon the submission of 24 brains, the cloud sys-
tem successfully scaled the cluster, resulting in 864 CPU cores running in parallel (24
x 36 CPUs). All data were processed within about 1.5 hours and the cluster success-
fully scaled out, leaving zero CPU core in the cluster. Without the cloud system, this
calculation would have taken over a day, given that a single machine with 36 CPU
cores is available as a local machine. Remarkably, thanks to the CUBIC-Cloud’s in-
frastructure, such high-performance computing can be carried out without requiring
much programming expertise. Indeed, in this project, my colleague (Mr. Kon), who
does not have extensive programming skill, was able to analyze the whole-brain
data with minimal effort. This use case demonstrates the usability and scalability of
CUBIC-Cloud.
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Chapter 4

Results 2: Analysis of Whole
Mouse Brain Using CUBIC-Cloud

The construction of CUBIC-Cloud software was described in Chapter 3. CUBIC-
Cloud is a novel software framework for analysis, visualization and sharing of whole
mouse brain data. In this chapter, I will use CUBIC-Cloud framework to analyze var-
ious kinds of whole mouse brain data and demonstrate the utility of CUBIC-Cloud
in neuroscience research. In chapter 4.1, I investigate the brain-wide distribution of
five major neuronal and glial cell types visualized with whole-tissue immunostain-
ing method. In chapter 4.2, I will expand the results of chapter 4.1 and explore the
developmental changes of the PV-expressing neurons, ranging from juvenile to aged
mouse brains. In chapter 4.3, the expression c-Fos gene is investigated to reveal the
cellular clusters activated or repressed by pharmacological intervention. In chap-
ter 4.4, I will study the brain-wide deposition of A plaques of Alzheimer’s disease
model mouse. Lastly, the comprehensive mapping of the neural circuitry using ra-
bies virus (RV) is demonstrated in chapter 4.5. These applications cover the major
portion of the interest by the neuroanatomical studies, and thus show the generality
of the CUBIC-Cloud framework.

Most of the data reported in this paper (except for the results described in chap-
ter 4.2, which is unpublished) is deposited on CUBIC-Cloud public repository. The
published data amounts to over 50 whole mouse brains, which provides a unique
and comprehensive dataset for neuroscience research and demonstrates the concept
of data sharing.

Note: The abbreviations of the brain region names are frequently used in this chapter,
which follow the ontology defined by the Allen Brain Atlas. The look-up table can
be found in Table 4.1.

4.1 Mapping whole-brain cell-type distribution

Contribution statement: The brain sampling, clearing and staining were done by M.
Shimizu and K. Kon. LPS injection experiment described in chapter 4.1.4 was per-
formed by K. Kon. LSFM imaging and data analysis were conducted by the author.

The gene expression (hence the cell-type distribution) in the brain is dynamically
modulated by various developmental, behavioral and environmental factors, as dis-
cussed in the introduction (chapter 1.1.1). Understanding of the whole-brain state
by means of the quantification of the gene expression at single cell resolution is thus
of significant value. As the first application of CUBIC-Cloud, here I demonstrate the
mapping of various cell-types in the adult mouse brain using 3D immunostaining
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(Susaki et al., 2020). I studied the basal distribution of four neuronal subtypes of the
wild-type mouse brain (chapter 4.1.1 to 4.1.2) and a subtype of glial cells, microglia
(chapter 4.1.4). Together, these results present a comprehensive cellular map of the
mouse brain, which would be a valuable resource for the neuroscientists. These
brain datasets are openly available at the CUBIC-Cloud repository.

4.1.1 Whole-brain analysis of PV expressing cells and SST expressing
cells
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FIGURE 4.1: Whole-brain overview of the cell-type mapping

A-D. Whole-brain views of the investigated cell-types. The rendering was generated by
CUBIC-Cloud’s studio. Each dot (i.e. single cell) was assigned a pseudo-color based on its
fluorescence intensity from the immunostaining image, reflecting the expression level. E-H.
Pie chart showing the demography of the investigated cell-types in the major brain divisions.
The ratio was computed by the number of the cells.

Parvalbumin-expressing (PV+) neurons and somatostatin-expressing (SST+) neu-
rons are two major subtypes of the inhibitory neurons. Both PV+ and SST+ neurons
underlie in essential cortical functions, including critical period regulation (Takesian
and Hensch, 2013), learning (Donato, Rompani, and Caroni, 2013), and mental dis-
orders such as schizophrenia (Lewis et al., 2012). Here, 8-weeks-old male C57BL /6N
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FIGURE 4.2: Density heatmap of the various cell-types across brain areas

The density of the investigated cell-types represented as a heatmap. Regions outside of the
isocortex are shown here. Brain region acronyms follow the ontology defined by the Allen
Brain Atlas.

mouse brain (n = 4) were cleared, imaged and analyzed following the methods de-
scribed in Chapter 2. Brains were triple-stained with PV antibody conjugated with
Cy3, SST antibody conjugated AlexaFluor 594 and nuclear staining dye (BOBO-1).
LSFM images were obtained with (X,Y,Z) = (6.5, 6.5, 7.0) pm voxel resolution.

Figure 4.1 A, B presents the whole-brain overview of the PV+ and SST+ cell dis-
tribution, respectively. The total number of PV+ cells detected in my analysis was
(6.1£0.7) x 105, while SST+ cells amounted to (6.740.3) x 10° (mean & STD). While
the largest majority of PV+ and SST+ neurons were found in the cortex, these cell
types were universally distributed in the brain stem and in the cerebellum as well
(Figure 4.1 E, F).

Within the isocortex, PV+ neurons were most densely populated in somatosen-
sory and auditory areas (~ 3000-4000 cells/mm?), followed by motor and visual
areas (~ 2000 cells/mm?) (Figure 4.3 A, B). PV+ neurons were scarce in the associa-
tion areas (as low as 200 cells/mm?), including ORB, PL and ILA. Compared to PV+
neurons, SST+ neurons were found across all isocortical areas with similar density
(~ 3000-4000 cells/mm? (Figure 4.3 D, E). In terms of the cell density across layers,
almost no PV cells were found in layer 1, and the PV+ cell density reached the max-
imum in layer 4 or 5 (Figure 4.3 A,C). SST+ neurons had a similar trend, and the
density was highest in layer 4 or 5 (Figure 4.3 D,F).

In terms of the expression levels per cell, again, PV+ neurons showed large vari-
ance across cortical areas. As shown in Figure 4.4 A to F, some of the regions, like
SSp-m and VISp, had a long tail in the distribution of the expression level, meaning
that there is a population of neurons expressing a high amount of PV. On the other
hand, regions like ILA and ECT had a very short tailed profile, meaning that the
most of the cells have a weak PV expression. In a stark contrast, the expression dis-
tribution of SST+ neurons were quite homogeneous across cortical areas (Figure 4.4
G to L). This contrast between PV and SST rejects the possibility that the gene ex-
pression inhomogeneity of PV was an artifact from the staining or brain scanning.
In the cortex, the PV expression level is known to be correlated with the glutamate
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FIGURE 4.3: The density of the PV+, SST+ and ChAT+ neurons in the isocortex.

A,D,G. The density of the PV+, SST+, and ChAT+ neurons, respectively, in all areas in the
isocortex is presented as a heatmap. B,E,H. The average across the layers of the data pre-
sented in A, D, G, respectively. C,EI. The average across the regions of the data presented
in A, D, G, respectively.

decarboxylase 67 (GAD67) expression level, which reflects the inhibitory power of
the neuron (Donato, Rompani, and Caroni, 2013). Thus, the inhomogeneity of the
PV expression may reflect the differences in the computation logic across different
cortical areas.

The distribution of PV+ and SST+ cells in the subcortical areas are summarized
as follows (Figure 4.2). Within the striatum, PV+ cells were observed with moderate
density (a few hundred cells per mm?®), while they were almost entirely absent in the
LS and the anterior, central, intercalated and medial amygdalar nucleus (AAA, CEA,
IA and MEA). SST+ cells were universally observed in all areas in the striatum, with
the average density of the striatum being 1100 cells/mm?3. The thalamus contained
low numbers of PV+ cells, except that dense PV+ cells were present in the RT and PP.
The thalamus contained low numbers of SST+ cells. In the hypothalamus, altough
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FIGURE 4.4: The expression level distributions in the major areas of the isocortex.

A. The distribution of PV expression levels per cell in the isocortex. Each column (i.e. the
region) was normalized so that the peak equals to 1.0. B. The values of SSp-m, VISp, ILA and
ECT were extracted from A and replotted as a distribution curve. C-F. Raw PV immunos-
taining images in SSp-m (B), VISp (C), ILA (D), and ECT (D). G. The distribution of SST
expression levels per cell in the isocortex. Each column (i.e. the region) was normalized so
that the peak equals to 1.0. H. The values of SSp-m, VISp, ILA and ECT were extracted from
A and replotted as a distribution curve. I-L. Raw SST immunostaining images in SSp-m (I),
VISp (J), ILA (K) and ECT (L).

PV+ cells were scarce, many nuclei contained medium to high density of SST+ neu-
rons. Within the midbrain, PV+ cells were particularly abundant in the IC and SNr,
while SST+ cells were most frequently observed in the RAmb. Within the pons and
medulla, the NTB, SOC and NLL contained relatively high density of both PV+ and
SST+ cells, while sparsely scattered populations were observed in other areas. In the
cerebellum, there were a large number of PV+ neurons in Purkinje layers. Distinct
SST+ cell clusters were found in the NOD and FL.
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4.1.2 Whole-brain analysis of ChAT expressing cells

Next, I investigated the neurons expressing choline acetyltransferase (ChAT), a pro-
tein maker for the neurons that produce the neurotransmitter acetylcholine. Acetyl-
choline plays important signaling roles in the central nervous system (CNS), govern-
ing attention, learning and memory, sleep, and arousal (Everitt and Robbins, 1997).
A degeneration of cholinergic neurons in the basal forebrain is recognized as a major
hallmark of Alzheimer’s disease (Mufson et al., 2008). 8-weeks-old male C57BL /6N
mouse brain (n = 4) were cleared, imaged and analyzed following the methods de-
scribed in Chapter 2. Brains were doubled-stained with ChAT antibody conjugated
AlexaFluor 594 and nuclear staining dye (SYTOX-G). LSFM images were obtained
with (X,Y,Z) = (6.5, 6.5, 7.0) pm voxel resolution.

The total number of ChAT+ cells detected in my analysis was (6.5 + 0.2) x 10%
(mean £ STD). Figure 4.1 C presents the whole-brain overview of the ChAT+ cell
distribution. About half of ChAT+ cells were concentrated in the region collectively
called the basal forebrain, which includes part of the striatum and pallidum (Fig-
ure 4.1 G). Continuously spreading from these regions, some ChAT+ cells were
present in the hypothalamus, including lateral, medial and anteroventral preoptic
areas (LPO, MPO, AVP) and SO. Other cholinergic neuron rich regions included
PPN of the midbrain and LDT of the pons. In addition, ChAT+ neurons were ag-
gregated in cranial nerve nucleus, including oculomotor nucleus (III), motor nu-
cleus of trigeminal (V), abducens nucleus (VI), facial motor nucleus (VII) and hy-
poglossal nucleus (XII) (Figure 4.2). Within the isocortex, there were sparse (less
than 100 cells/mm?) populations of ChAT+ neurons. These neurons expressed very
low amount of ChAT, compared to ChAT+ cells in the subcortical regions. These
ChAT+ neurons were most dense in layer 2/3 or 4 (Figure 4.3 G and I).

4.1.3 Whole-brain analysis of TH expressing cells

Next, I investigated the neurons expressing tyrosine hydroxylase (TH), a protein
maker for the catecholamine-secreting neurons, which include neurotransmitters
dopamine, adrenaline and noradrenaline. 8-weeks-old male C57BL /6N mouse brain
(n = 4) were cleared, imaged and analyzed following the methods described in
Chapter 2. Brains were doubled-stained with TH antibody conjugated AlexaFluor
594 and nuclear staining dye (SYTOX-G). LSFM images were obtained with (X,Y,Z)
= (6.5, 6.5, 7.0) pm voxel resolution.

The total number of Th+ cells detected in my analysis was (6.9+1.2) x 10 (mean
+ STD). Figure 4.1 D presents the whole-brain overview of the TH+ cell distribution.
The majority of the detected TH neurons were localized in well-known dopaminer-
gic cell groups (A8 to A16) and noradrenergic cell groups (Al to A7) (Dahlstrom
and Fuxe, 1964). Dopaminergic cell groups include the RR, SN, rostral and central
linear nucleus raphe (RL and CLI) and VTA, which form the A8, A9 and A10 in the
midbrain. Within the hypothalamus, TH neurons were clustered in the periventricu-
lar hypothalamic nucleus, anterior, posterior, intermediate and propotic parts (PVa,
PVp, PVi, PVpo), ARH, ZI and ADP, which form A11-A15 cell groups. TH neurons
were numerous in the olfactory area (A16), selectively localized in the glomerular
layer. Noradrenergic cell groups formed distinct bands crossing several nuclei in
the medulla and pons, which included the LRN, NTS and DMX, which form Al and
A2. In the pons, a particularly high density was observed in and around LC, which
forms A6. No significant population of TH+ cells were observed in the isocortex,
hippocampus, cortical subplate, striatum and pallidum.
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4.1.4 Whole-brain analysis of Ibal expressing cells
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FIGURE 4.5: The distribution of Ibal+ in the whole mouse brain.

A. Whole-brain view of all Ibal+ cells. Each dot (i.e. single cell) was assigned a pseudo-color
based on its fluorescence intensity from the immunostaining image, reflecting the expression
level. B. Density of Iba+ cells in major brain divisions. C. The density of the Ibal+ cells in the
isocortex is presented as a heatmap. D. The average across the layers of the data presented
in C. E. The average across the regions of the data presented in C. F. Cartoon-style heatmap
showing the Ibal+ cell density across all brain regions.

Ionized calcium-binding adapter molecule 1 (Ibal) is a cell-type marker for mi-
croglia. Microglia plays an key role in the active immune defense in the CNS, among
many other important functions. As a model system to study the immune response
of the body and the brain, lipopolysaccharides (LPS), a purified extract of the outer
membrane of Gram-negative bacteria, is often used. In this chapter, I will describe
an experiment where I investigated the gene expression change of microglia upon
LPS-induced inflammation.
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FIGURE 4.6: Mean Ibal expression level per cell, comparing saline- and LPS-
administered conditions.

A,B. The mean Ibal expression level per cell in the isocortex, comparing saline- and LPS-
administered conditions. Fold change in the expression level (I1,ps/Isaline) is shown in A.
C. Heatmap showing mean Ibal expression level per cell in all brain regions outside the
isocortex, comparing saline- and LPS-administered conditions.

(i.

In the experiment, 1 mg/kg of LPS was administered to mice via intraperitoneal
p.) injection (n = 7). The control group was administered saline (n = 7). Twenty-

four hours after injection, the brains were dissected. Then, the brains were cleared,
imaged and analyzed following the methods described in Chapter 2. Brains were
doubled-stained with Ibal antibody and nuclear staining dye (SYTOX-G). LSFM im-
ages were obtained with (X,Y,Z) = (6.5, 6.5, 7.0) pm voxel resolution.

I first describe the observation on normal (i.e. saline-administered) Ibal express-

ing (Ibal+) cell distribution. The total number of Ibal+ cells detected in my analysis
was (2.7240.14) x 10° (n = 7), ubiquitously residing in all brain areas (Figure 4.5 A).
The average cell density was highest in the cortical areas (6000 to 8000 cells/mm?),
intermediately dense in the brain stem (~ 4500 cells/mm?) and lowest in the cerebel-
lum (Figure 4.5 B). Overall, the standard deviations of the Ibal+ cell density between
animals were usually as small as 5%, implying the highly regulated microglial prolif-
eration. In the isocortex, all areas had almost same density of Ibal+ cells (Figure 4.5
C,D). In terms of the laminar structures, layer 1 and layer 6 had slightly lower den-
sity, while layer 2/3, 4 and 5 contained almost same density (Figure 4.5 C,E). In the
subcortical areas, some regions had particularly high Ibal+ cell density, including
amygdala nucleus, globus pallidus, external segment (GPe) and substantia nigra,
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reticular part (SNr) (Figure 4.5 F).

I next compared Ibal expression levels, as well as absolute Ibal+ cell count, be-
tween LPS- and saline-administered groups. In the isocortex, no areas displayed
significant change in the Ibal+ cell density (p > 0.1), however, the mean expression
level per cell was increased significantly in all areas (p < 0.05) (Figure 4.6 B). The
elevated Ibal expression is known to be correlated with microglial activation (Ito et
al., 1998). Intriguingly, the fold change in terms of the expression level was almost
constant across all areas, sitting at around 1.5 (Figure 4.6 A). One region, RSPv, had
slightly higher increase (2.0-fold) than other areas. This may be due to the fact that
RSPv is neighboring to the third ventricle (v3), where cytokines produced from the
inflammation may be more concentrated in cerebrospinal fluid (CSF).

Outside the isocortex, most regions showed significant increases in Ibal expres-
sion amount (Figure 4.6 C), revealing the brain-wide response to the inflammation
state. It was confirmed that the increase in Ibal expression was markedly high in
the SFO and 10O, which are part of ircumventricular organs (CVOs) having highly
permeable blood-brain barrier (BBB) (Furube et al., 2018). On the other hand, Ibal
expression amount barely changed in cerebellum.

4.2 Mapping whole-brain neural development: The PV neu-
rons

Contribution statement: The brain sample preparation, clearing and staining was done
by K. Kon and the author. LSFM imaging and data analysis was conducted by the
author.

In chapter 4.1, the distribution of major neuronal and glial cell types were investi-
gated using whole-brain imaging and CUBIC-Cloud analysis framework. The re-
sults presented were all collected from adult (~ 8-weeks-old) mouse brains. Cru-
cially, the landscape of the gene expression within the brain dynamically changes
throughout the course of development and aging, which calls for the developmental
analysis of the gene expression. However, the amount of data required to trace the
developmental changes increases linearly with the number of time points, making
the brain-wide survey of the developmental gene expression an extremely difficult
task. The high-throughput imaging enabled by LSFM and scalable data analysis
powered by cloud computing may provide an effective solution to this challenge. A
distributed and collaborative data acquisition facilitated by cloud-based data shar-
ing would further accelerate the research. To demonstrate such possibility, here I
will investigate the whole-brain development of the parvalbumin (PV) expressing
neurons.

To survey a comprehensive expression pattern of PV neurons covering the mouse’s
entire life span, the C57BL/6N wild-type mouse brains from 10 different ages were
collected' (3-, 4-, 5-, 6-, 8-, 10-, 12- and 14-weeks, 8- and 24-months-old males). Fol-
lowing the methods described in chapter 2, the brains were cleared and triple-stained
with PV antibody conjugated with AlexaFluor 594, Ibal antibody and nuclear stain-
ing dye (SYTOX-G). Here, only the results of PV neurons are presented, and the re-
sults of Ibal cell analysis will be published elsewhere. LSFM images were obtained
with (X,Y,Z) = (6.5, 6.5, 6.5) um voxel resolution.

'The analysis of 1-weeks-old and 2-weeks-old brains were attempted but was not successful, due
to the difficulty of the immunostaining and the fact that the PV neurons in the cortex are born at the
end of the second postnatal week (Bitzenhofer, Pépplau, and Hanganu-Opatz, 2020).
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FIGURE 4.7: The PV expression within the cortical areas across the mouse brain
development.

A. The representative PV immunostaining images showing ten cortical areas at different
developmental stages. B. Relative number of PV+ cells in the isocrotex. For the raw cell
count C; ; of region j at age i, the relative cell count C; ; was calculated as C; ; = (C;; —
+ 24 Crj)/ % > Crj. Then, the columns (i.e. the brain regions) were clustered using
Ward’s method. C, D, E. The distribution of PV immunostaining signal intensity per cell,
computed over three cortical areas, SSp-bfd (D), ACAv (D) and RSPagl (E), respectively. For
the color and age correspondence, refer to the inset of the panel.

Figure 4.7 A shows the raw PV immunostaining images of selected cortical areas
at different ages. As shown in these images, the PV expression in general is kept at
similar levels across different ages, spanning from juvenile (3-weeks-old) to aged (2-
years-old). This observation is quantified in Figure 4.7 B, where the relative number
of PV+ cells are presented. The columns (i.e. the brain regions) were hierarchically
clustered using Ward’s method, which revealed several distinct categories. In the
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first cluster (blue), which included visual (VIS) and auditory (AUD) cortex, I ob-
served a trend that the number of PV+ cells are relatively low in 3-weeks-old brain,
after which the number stays at almost the same level. The second large cluster
(yellow and orange) contained the motor (MO), sensory (SS) and retrosplenial (RSP)
areas, where the number of PV+ cells stayed almost constant from 3-weeks-old to
2-years-old. The orange and yellow clusters differed in that the slight decrease at
2-years-old brain was observed in the orange cluster. The third cluster (light and
dark green) was rather noisy, but there is a small transient increase in the number
of PV+ cells at 4-weeks-old. In addition to the number of PV+ cells, I also inves-
tigated the PV expression amount per cell in each brain area, revealing some areas
showing drastic changes. For example, in the SSp-bfd, the PV expression decreased
in 8-months- and 2-years-old brain (Figure 4.7 C). In the ACAv and RSPagl, the PV
expression transiently increased in 4-weeks-old, then decreased as aging (Figure 4.7
D).

Compared to the cortical areas, the PV gene expression in the subcortical areas
changed more drastically across the mouse life span. The reticular nucleus of the
thalamus (RT) is populated with a dense PV+ neurons. The analysis revealed that
the number of PV+ cells in RT gradually decreased from 3-weeks-old until the 2-
years-old (Figure 4.8 C, D). In the zona incerta (ZI), the number of PV+ cells rapidly
decreased from 3-weeks-old to 5-weeks-old, and stabilized afterwards (Figure 4.8 E,
F). In the anterior pretectal nucleus (APN), the number of PV+ cells continuously
decreased until 2-years-old, at which point PV+ cells were almost entirely absent
(Figure 4.8 G, H). The globus pallidus, external segment (GPe) is another major hub
of PV+ neurons, and the number of PV+ neurons in GPe slightly decreased over
aging, but not as significantly as RT, ZI or APN (Figure 4.8 A, B). Lastly, the decrease
in the PV+ cells were also observed in the inferior colliculus (IC), which is a relay
nuclei of auditory inputs (Figure 4.8 I, J). The decrease was more evident in the
ventral portion of the IC, while the superficial layer PV+ neurons were not strongly
affected.

Intriguingly, RT, ZI and APN are functionally related in that these nuclei send in-
hibitory inputs to the first-order and higher-order thalamic nuclei (Giber et al., 2008;
Li et al., 2020), while GPe primarily projects to non-thalamic nuclei including STN
and SN (Park et al., 2019). Thus, the decrease in PV+ neurons over development in
RT, ZI and APN may reflect the changes in the sensory processing and gating.

The RT is a relatively large nuclei having spatially heterogeneous functions and
projection patterns. A close inspection revealed that the changes in PV+ expression
in the RT was spatially heterogeneous (Figure 4.9 A). The decrease in the PV+ cell
number as well as the PV expression levels were most pronounced at around the
middle part of the RT along anterior-posterior axis (Figure 4.9 B, C, D, E). On the
other hand, the anterior and posterior end of the RT, respectively, showed relatively
small decrease in PV. According to a recent study (Li et al., 2020), there are distinct
two types of neurons in RT, which selectively project to first-order and higher-order
thalamic nuclei, respectively. These neurons can be roughly differentiated by the ex-
pression of Sppl and Ecell proteins, respectively. In the future studies, it would be
interesting to investigate how much of these neuron types are lost during develop-
ment and aging.
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FIGURE 4.8: The PV expression within the subcortical areas across the mouse brain
development.

The panels of the leftmost column shows the p value map calculated by comparing the
number of PV+ cells of 3-weeks-old and 10-months-old mouse brains. The following three
columns show the raw PV immunostaining images corresponding to the boxed regions in
the p value map, taken from 3-weeks-old, 10-weeks-old and 2-years-old mouse brain, re-
spectively. The rightmost panels show the number of PV+ cells in the corresponding brain
regions. A, B. Globus pallidus (GPe). C, D. Reticular nucleus of the thalamus (RT). E, F.
Zona incerta (ZI). G, H Anterior pretectal nucleus (APN). I, J Inferior colliculus (IC).

4.3 Mapping whole-brain neuronal activity profile using IEGs
labeling

Contribution statement: LPS injection was performed by K. Kon and the author. The
brain clearing and staining was done by K. Kon. LSFM imaging and data analysis
were conducted by the author.

The next important application domain of CUBIC-Cloud is to reconstruct the neu-
ronal activity profile by imaging the protein expressions of immediate early genes
(IEGs) such as c-Fos. As was described in the introduction (Chapter 1.2.3), such au-
tomated analysis would allow comprehensive identification of cellular clusters that
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FIGURE 4.9: The PV expression within the RT across the mouse brain development.

A. Raw PV immunostaining images showing the RT at consecutive coronal positions. The
regions highlighted by red is the RT. B. The heatmap showing the difference of the number of
PV+ cells between 2-years-old and 3-weeks-old mouse brain. The difference was normalized
as A = (Cayrs — Cawis)/Cswis. C. The heatmap showing the difference of the PV expression
level between 2-years-old and 3-weeks-old mouse brain. The difference was normalized in
the same way as in B. D. The number of the PV+ cells within the RT at each coronal positions.
E. The mean PV expression level per cell within the RT at each coronal sections. For the color
and age correspondence, refer to the inset of the panel.

underlie an animal’s behavioral phenotype. Reciprocally, one could define an an-
imal’s phenotype in a bottom up manner based on the activity pattern of neuron
ensembles.

Particularly, IEG-based activity reconstruction would be suitable to track rela-
tively slow neural dynamics, such as wake-sleep cycles. As a model system to ex-
plore this application, here I studied the IEG profile under the administration of
lipopolysaccharides (LPS). As described in Chapter 4.1.4, LPS administration in-
duces the acute inflammation, accompanied with a prolonged sleep which lasts for
several hours. The neural mechanism causing the sleep behavior upon LPS-induced
inflammation is not fully elucidated yet. Thus, I investigated the whole-brain IEG
profile under LPS administration.

150 ng/kg LPS were administered to mice via intraperitoneal injection at CT =
14, and the brains were sampled between CT = 16 and 17. Following the methods
described in Chapter 2, the brains were cleared and double-stained with c-Fos anti-
body conjugated with AlexaFluor 594 and nuclear staining dye (SYTOX-G).

Figure 4.10 A shows the whole-brain 3D rendering of the detected c-Fos express-
ing cells. I comprehensively searched for the activated or repressed brain regions
by both region-wise and voxel-wise statistical analysis. As a result, it was found
that the c-Fos expressions in some of the isocortical areas were reduced, which in-
cluded motor and somatosensory areas, presumably reflecting the mouse’s resting



58 Chapter 4. Results 2: Analysis of Whole Mouse Brain Using CUBIC-Cloud

A B Saline LPS
c-Fos
Py
w
l
-
S
1]
c
©
w
PERI& ECT
10000
. Fluorescent intensity (AU)
w
I decr. 09PN ey
-
(8] 4 2 0 2 4
%]
o
-}

e ——————
Fluorescent intensity (AL)

incr.

llog (ol

p value map

decr,

Saline #1

Fos intensity {AU)
12000

(MIP of 200 um thickness)

2500

LPS #1

2 o 2 3000 . § - 2 2 1000 o
8 = 8 — — & 8 —
+ 4000 . + B § 5 1500 + 750
{3 k3 3
& & 2000 1 & I é w l
'gzooo 'g n g T gmou g 0 2
P 2 1000 5 4 =
l "B el - R
E E
2 oM 3 olE z o I 2 ol

& & & &

FIGURE 4.10: Whole-brain analysis of c-Fos expression level changes induced by
LPS administration

A. Whole-brain views of c-Fos+ cells, showing saline (upper) and LPS (lower) administered
brains. Each point (i.e. single cell) was assigned a pseudo-color based on its fluorescence
intensity. B. Magnified 3D view of A, where the left isocortex was selectively displayed.
Orientation arrows stand for R (right), D (dorsal) and P (posterior). C. P-value heatmap
showing the isocortex regions whose c-Fos+ cell density was significantly affected by LPS. P-
value was computed by comparing the c-Fos+ cell count. The color lookup table is log scaled
(base 10), where red color represents the regions that were activated (i.e. more c-Fos+ cells)
by LPS, and blue represents the repressed regions. Regions with no statistical significance (p
> 0.05) were assigned a gray color. D. Distinct brain regions activated by LPS. The top row
shows the voxel-wise p-value map. Color lookup table follows that of C. The second and
third rows are the raw c-Fos images of saline- and LPS-administered group, respectively. The
forth row shows the number of c-Fos+ cells of the identified regions. *p < 0.05, **p < 0.01,
Welch’s t-test. See Table 4.1 for the definitions of brain region acronyms.
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FIGURE 4.11: Voxel-wise p-value heatmap showing the affected regions by LPS.

p-values of individual voxels were computed by c-Fos+ cell count between saline- and LPS-
administered groups. The color lookup table is log scaled (base 10), where red color rep-
resents the regions that were activated (i.e. more c-Fos+ cells) by LPS, and blue represents
the repressed regions. Voxels with no significance (p > 0.05) were uncolored. Background
is nuclear staining image of CUBIC-Atlas for navigation. Step between consecutive slices is
0.34 mm.

state (Figure 4.10 B and C). I also found that some distinct brain nuclei were acti-
vated by LPS. Among those, the most notable regions included the bed nuclei of the
stria terminalis (BST), paraventricular hypothalamic nucleus (PVH), paraventricu-
lar nucleus of the thalamus (PVT), central amygdalar nucleus (CEA), parabrachial
nucleus (PB), nucleus of the solitary tract (NTS) and dorsal motor nucleus of the va-
gus nerve (DMX) (Figure 4.10 D). BST, PVH and CEA share common functions in
that they respond to stress exposure through intricate interactions (Hsu et al., 1998;
Choi et al., 2007). NTS and DMX receive inputs from the vagal nerves, which would
transmit the inflammation-induced signals from the gut nerve.
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Within the BST, a specific subdivision (the oval region; ovBST) was strongly acti-
vated by LPS (Figure 4.10 D). Indeed, according to a recent study, ovBST is responsi-
ble for the inflammation-induced aronexia (Wang et al., 2019). ovBST receives inputs
from CEA and PB, which were also found to be activated in my analysis. There-
fore, the present result was able to successfully identify elevated c-Fos expressions
in these spatially separated yet functionally related regions.

I also observed heterogeneous c-Fos activation in the PVT. In terms of the num-
ber of c-Fos+ cells, the increase in number was more pronounced in the posterior
PVT (pPVT) than the anterior PVT (aPVT) (Figure 4.12, A, B and C). In terms of the
expression level, both pPVT and aPVT showed similar level of increase (Figure 4.12
D and E). Recently, Gao et al. (Gao et al., 2020) identified two classes of distinct
neurons in PVT. Type I neurons, densely located in the pPVT, responds to aversive
stimuli. On the other hand, type Il neurons, dominantly located in the aPVT, become
silent upon aversive stimuli. It is also reported that the type II neurons were active
during sleep. In the pPVT, our observation aligns with the insight by Gao, where
the activated population was likely Type I neurons. In the aPVT, our result might re-
flect the mixed response of the type Il neurons, where aversive inflammatory stimuli
and induced sleep were both present. It should also be noted that Type I neurons in
the pPVT project to CEA, ILA and ACB. I indeed observed that ILA and ACB were
weakly activated (Figure 4.11).
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FIGURE 4.12: Whole-brain Analysis of c-Fos Expression Level Changes by LPS
Administration

A. Plot of c-Fos+ cells in PVT. Cells are pseudo-colored with their intensity values. Pink
(blue) dots are from LPS (saline) administered brains, respectively. B. The number of c-Fos+
cells in the PVT in 10 divisions along the anterior-posterior (AP) axis. C. The number of
c-Fos+ cells in the anterior and posterior half of the PVT. The boundary between anterior
and posterior region was set at the center of the PVT along AP axis. D. The c-Fos expression
levels per cell in the PVT in 10 divisions along the anterior-posterior (AP) axis. E. The c-Fos
expression levels per cell in the anterior and posterior half of the PVT. *p < 0.05, **p < 0.01,
Welch’s t-test.

4.4 Whole-brain analysis of Alzheimer’s disease model mouse

Contribution statement: The brain preparation, clearing and staining were done by H.
Ono. LSFM imaging and data analysis were conducted by the author.

I next applied CUBIC-Cloud analysis framework to quantitatively understand the
pathological state of the Alzheimer’s disease (AD) model mouse. To demonstrate
this, the whole brain from an AppNF-GF/NL-GF AD model mouse (Saito et al., 2014)
(9- to 10-months-old) was cleared and stained by anti-A3 antibody (n = 4). In LSFM
images, AP plaques were observed as dim blobs often accompanying a bright spot at
the core. Although the plaques are not cells, their blob-looking appearance allowed
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FIGURE 4.13: Whole-brain Analysis of A Plaques Accumulation in AD Model
Mouse Brain

A. Density of AP plaques (number of plaques/mm?) in major brain divisions (n = 4). B.
Volume ratio of A@ plaque in major brain divisions (n = 4), computed as (total plaque vol-
ume in the region)/(region volume). C. Distribution of effective radius of AB plaques in the
isocortex, hippocampus (HPF), striatum (STR), midbrain (MB) and cerebellum (CB) (n = 4).
D,E. The volume ratio of Af plaques in the isocortex (n = 4). F Layer-wise average of D. G.
Cartoon heatmap showing the Af plaque volume ratio in each brain region (n = 4). H-L.
Raw 6E10 immunostaining images around SNr (H), VMH (I), TRS and MEPO (J), LDT and
DTN (K) and MH, LH and PVT (L).

to use the same analysis pipeline of CUBIC-Cloud designed for single-cell analysis.
Of note, no plaque staining pattern was observed in the control wild-type mouse
brain (9- to 10-month-old, n = 3, data not shown).

I first quantified the density (number of individual plaques per volume) and the
volume ratio (computed as (total plaque volume in the region)/(region volume)). In
both metrics, A plaque amounts were highest in the cerebral cortex and cereberal
nuclei, and relatively lower amount of plaques were observed in the brain stem and
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cerebellum (Figure 4.13 A and B). The mean effective radius of the plaque (com-
puted as r = {3V/(47)}'/® where V is the plaque volume) tended to be larger in the
isocortex and hippocampus and smaller in cerebellum (Figure 4.13 C). Within the
isocortex, a relatively stronger accumulation of A plaques were observed in visual
and auditory areas, whereas plaques were relatively sparse in in medial frontal areas
(Figure 4.13 D and E). Layer-wise abundance of Af3 plaque showed concave profile,
with its peak in layer 4 (Figure 4.13 F). The whole-brain cartoon heatmap showing
the AP volume ratio is shown in Figure 4.13 G. In the brain stem, the plaque volume
ratio was typically 0.5% to 1.0%. Some brain stem regions, however, showed notably
larger or smaller amount of A accumulation. For example, SNr and VMH had rela-
tively higher amount of AB compared to the neighboring regions (Figure 4.13 H and
I). On the other hand, the ARH, right next to VMH, had almost no Aj3 plaques (Fig-
ure 4.13 I). I also observed that the regions around the ventricles showed relatively
lower amount of plaques, including TRS, DTN, MH, LH and PVT (Figure 4.13 J, K
and L).

Together, these heterogeneous development of AB plaques may reflect the patho-
logical nature of the AD model mouse. Comparison with other AD model mouse
lines, such as the recent whole-brain quantification results reported by Liebmann et
al., 2016, would be fruitful in elucidating the basic AD pathology.

4.5 Analysis of ARHX*I* neuron circuits using Rabies Virus

Contribution statement: The AAV and RV virus production and injection was per-
formed by Dr. E. A. Susaki, Dr. K. Murata and Dr. K. Miyamichi. The brain clearing
and staining were done by R. Tanaka. LSFM imaging and data analysis were con-
ducted by the author.

In the previous chapters,  have demonstrated the whole-brain mapping of cell types,
IEGs and the disease markers using CUBIC-Cloud. As the last application domain
of CUBIC-Cloud, here I report the whole-brain connectivity analysis using pseudo-
typed rabies virus (RV) (Chapter 1.1.2).

In this experiment, I focused on a population of neurons that secrete kisspeptin
(a neuropeptide encoded by KissI gene) located in the aruate nucleus of hypothala-
mus (ARH), hereafter termed as ARHK*!*. Those neurons were shown to play an
important role in reproduction behavior in mammals by regulating pulsatile release
of gonadotrophin-releasing hormone (GnRH) at around 0.3 to 1.0 pulses per hour
(Herbison, 2018). Intriguingly, the pulse frequency changes through estrus cycle in
females but not in males. As such, I investigated the neural inputs to ARHEK#ss1+ pey-
rons to search the mechanism of pulse generationmodulation on the basis of neural
circuitry.

To achieve cell-type specific targeting of virus infection, the Cre/loxP system and
RV trans-synaptic tracing combined with Cre-dependent AAV vectors were used
(Miyamichi et al., 2013) (Figure 4.14 A, Chapter 2.1.5). To identify the sexually di-
morphic circuity, injections were performed in both male and female brains. After
virus injection, brains were cleared by CUBIC reagents and analyzed by CUBIC-
Cloud pipeline (see Chapter 2).

I first checked the localization of the starter cells (GFP+ and mCherry+) to ensure
that the injection was successful and the starter cells were well confined within ARH
(Figure 4.14 B). In the present study, the criteria in selecting successful injection was
defined as more than 45% of starter cells were localized in ARH or PVp?. With this
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FIGURE 4.14: Whole-brain analysis of input cell populations projecting to
ARHF®* neurons

A. Virus injection scheme. AAV carrying mCherry, TVA receptor and optimized glycopro-
tein (0G) was injected to ARH of Kiss1-Cre transgenic mouse, followed by injection of mod-
ified Rabies virus carrying GFP. Cells expressing both mCherry and GFP are the starter cells.
B. Quantification of starter cell localization. The ratio was computed by dividing the cell
count in each region by the total number of starter cells. The total number of starter cells each
sample is shown on the right end of the heatmap. C. Whole-brain view of all input cells. D.
Total cell count and the distribution of input cells. Only male brains were considered here. E.
Cell density heatmap of all brain regions (excluding the isocortex and cerebellum, where no
input cells were detected). The mean of male and female brains are shown. F. The plot shows
extremely sparse input cell populations in previously unidentified brain regions. Only male
brains were considered here. G. Raw GFP (black) and nuclear staining (RedDot2, purple)
images showing the regions identified in F. Macro view (top) and zoomed-in view (bottom)
are shown. See Table 4.1 for the definitions of brain region acronyms.

criteria, out of 20 injections, n = 3 and n = 4 brains were assessed as successful for
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male and female, respectively (Figure 4.14 B).

The whole-brain overview of all input (GFP+ and mCherry-) cells are shown in
Figure 4.14 C. The present analysis identified (3.1 4 0.5) x 10? input cells in the male
brain (n = 3), the majority of which (> 85%) were located within the hypothala-
mus (Figure 4.14 D). As is shown in Figure 4.14 E, ARHX*!* neurons receive inputs
from dozens of discrete structures throughout the forebrain and brainstem, includ-
ing the striatum (LS), pallidum (BST), thalamus (PVT), hypothalamus (MPO, MPN,
AHN, PVH, DMH, VMH and PH), hippocampal formation (HATA and SUB), mid-
brain (MRN and PAG), and pons (PB). Remarkably, extremely sparse populations,
only a few dozens of cells per region, were reproducibly identified (Figure 4.14 F
and G). In terms of cell density, those populations were often equivalent to less
than 10 cell/mm3, which could be easily overlooked with slice-based approaches.
These sparse populations were not documented in the past literature studying the
ARHFK®1* neurons (Yeo et al., 2019).

I next performed statistical analysis comparing the number of input cells be-
tween male and female brains (Chapter 2.3.1). Overall, binary connectivity differ-
ences (i.e. zero in one sex and some finite number in the other sex) were not ob-
served. Weak differences were suggested in LS, MPO, MPN and AVP (Figure4.15),
which are neighboring with each other. The difference was most pronounced in LSr,
which is known to inhibit the lordosis behavior during mating interactions (Tsuka-
hara, Kanaya, and Yamanouchi, 2014). The sexually dimorphic circuit from LSr to
PAG is known, where female brains contain more neurons in LSr that project to PAG
(Tsukahara and Yamanouchi, 2002). The present result suggest that LSr sends sex-
ually dimorphic projection to ARHK*1*. The identities of these populations can be
fully characterized in the future studies.

Of note, using RV injection and slice-based observation, Wang et al., 2015 in-
vestigated the input cell population of pro-opiomelanocortin (POMC) neurons and
agouti-related peptide (AgRP) neurons in the ARH, another dominant cell types in
the ARH. The brain areas containing the input cells to ARHX*!* neurons largely
overlaped with those of POMC neurons and AgRP neurons. In some areas, how-
ever, interesting differences were observed. For example, in VTA and NI, no input
cells were detected for ARHX*I* while some input cells were reported to exist for
POMC and AgRP. On the other hand, BMA, PA, SE, CEA, SI, TRS, PIL, MRN and
PB contained small number of input cells to ARHX®!* neurons (Figure 4.14), while
they were not reported for POMC and AgRP neurons. This absence of input cells
may reflect the actual biological differences, or it may reflect the superior sensitivity
of our experimental methods to detect sparse populations.

2Note that area annotated as PVp in the Allen Brain Atlas belongs to a part of ARH in the Paxinos
atlas (Paxinos and Franklin, 2012).
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FIGURE 4.15: Sexually dimorphic projection to ARHX*!* neurons

A. P-value heatmap where the number of input cells were compared between male and
female brains. The color lookup table is log scaled (base 10), where red color represents the
regions where more input cells were found in female brains, and blue represents the inverse.
Regions with no statistical significance (p > 0.05) were assigned a gray color. B. Raw GFP
(black) and nuclear staining (RedDot2, purple) images around lateral septal nucleus (LS)
and medial prepoptic area (MPO). The images are digitally reconstructed sagittal sections.
Maximum intensity project (MIP) spanning 300 pm thickness. C-H. The plot shows the
normalized input cell count in regions where sexual dimorphisms were suggested. *p <
0.05, **p < 0.01; Welch's t-test. See Table 4.1 for the definitions of brain region acronyms.
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TABLE 4.1: Abbreviations of the brain areas

Abbreviations of anatomical structures
Abbreviation | Full name
AAA Anterior amygdalar area
ACB Nucleus accumbens
ADP Anterodorsal preoptic nucleus
AHN Anterior hypothalamic nucleus
ARH Arcuate hypothalamic nucleus
AUDd Dorsal auditory area
AUDp Primary auditory area
AUDpo Posterior auditory area
AUDv Ventral auditory area
AVP Anteroventral preoptic nucleus
BST Bed nuclei of the stria terminalis
CEA Central amygdalar nucleus
CLI Central linear nucleus raphe
DMH Dorsomedial nucleus of the hypothalamus
DMX Dorsal motor nucleus of the vagus nerve
DTN Dorsal tegmental nucleus
ECT Ectorhinal area
FL Flocculus
HATA Hippocampo-amygdalar transition area
IA Intercalated amygdalar nucleus
IC Inferior colliculus
ILA Infralimbic area
(@) Inferior olivary complex
LC Locus ceruleus
LDT Laterodorsal tegmental nucleus
LH Lateral habenula
LRN Lateral reticular nucleus
LS Lateral septal nucleus
LPO Lateral preoptic area
MEA Medial amygdalar nucleus
MH Medial habenula
MOp Primary motor area
MOs Secondary motor area
MRN Midbrain reticular nucleus
MPN Medial preoptic nucleus
MPO Medial preoptic area
NLL Nucleus of the lateral lemniscus
NOD Nodulus (X)
NTB Nucleus of the trapezoid body
NTS Nucleus of the solitary tract
ORB Orbital area (ORB)
PAG Periaqueductal gray
PB Parabrachial nucleus
PH Posterior hypothalamic nucleus
PL Prelimic area
PP Peripeduncular nucleus
PVH Paraventricular hypothalamic nucleus
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Continuation of Table 4.1
Abbreviation | Full name
PVa Periventricular hypothalamic nucleus, anterior part
PVi Periventricular hypothalamic nucleus, intermediate part
PVp Periventricular hypothalamic nucleus, posterior part
PVpo Periventricular hypothalamic nucleus, preoptic part
PVT Paraventricular nucleus of the thalamus
RAmb Midbrain raphe nuclei
RL Rostral linear nucleus raphe
RR Midbrain reticular nucleus, retrorubral area
RSPagl Retrosplenial area, lateral agranular part
RSPd Retrosplenial area, dorsal part
RSPv Retrosplenial area, ventral part
RT Reticular nucleus of the thalamus
SFO Subfornical organ
SNc Substantia nigra, compact part
SNr Substantia nigra, reticular part
SO Supraoptic nucleus
SOC Superior olivary complex
STN Subthalamic nucleus
SSs Supplemental somatosensory area
SSp-bfd Primary somatosensory area, barrel field
SSp-11 Primary somatosensory area, lower limb
SSp-m Primary somatosensory area, mouth
SSP-n Primary somatosensory area, nose
SSp-tr Primary somatosensory area, trunk
SSp-ul Primary somatosensory area, upper limb
SSp-un Primary somatosensory area, unassigned
SUB Subiculum
TRS Triangular nucleus of septum
VISal Anterolateral visual area
VISam Anteromedial visual area
VISl Lateral visual area
VISli Laterointermediate area
VISp Primary visual area
VISpl Posterolateral visual area
VISpm posteromedial visual area
VISpor Postrhinal area
VMH Ventromedial hypothalamic nucleus
VTA Ventral tegmental area
Z1 Zona incerta

End of Table
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Chapter 5

Discussion

In this study, I presented an integrated computational framework for single-cell-
resolution whole-mouse-brain analysis, named CUBIC-Cloud. The study started
with postulating the parallelism between genomics and brain mapping, and I pro-
posed to develop a data integration platform for brain mapping research to promote
a genomics-like distributed and collaborative data collection scheme (Chapter 1.4).
Inspired by the data integration platforms developed in genomics and in human
MRI field, I postulated that the framework should provide (1) a standardization
strategy by mapping individual brain to the reference, (2) web-based graphical and
programmatic interfaces, (3) a cloud-based toolkit to visualize and quantify the brain
data, (4) scalable cloud design for computing and storage and (5) a coherent and or-
ganized description of the data records. As I have shown in this study, CUBIC-Cloud
addressed these requirements by designing a new software stack embracing the lat-
est cloud technologies, widely available for researchers in neuroscience (Chapter 3).

Further, I demonstrated the usability of the software in a wide range of neurosci-
entific applications (Chapter 4). Thanks to the scalable cloud system and the stan-
dardized analysis routine, this paper successfully analyzed over 120 whole mouse
brain, a number which is unheard of in the previous whole brain mapping studies
conducted by a single researcher. Thus, the present study illustrates the next gen-
eration of the whole mouse brain mapping, with a scalable cloud computing and
seamless integration with the open brain repository. Later in this chapter, I will out-
line the expected future use cases of CUBIC-Cloud (Chapter 5.1).

Nonetheless, the current form of the cloud system should never be considered
perfect. AsI constructed the system and used the system in real applications, dozens
of technical and scientific improvements were discovered. In Chapter 5.2, I will visit
these insights obtained through the engagement in this research project, and lay out
the future extensions of CUBIC-Cloud.

The whole-brain mapping by tissue clearing and LSFM imaging has just been
established in the past few years, and is therefore an emerging technique. The true
potential of this novel experimental technique is yet to be seen in the future stud-
ies. To conclude this thesis paper, I will postulate some of the important research
perspectives in this field, and discuss how CUBIC-Cloud may contribute to such
challenges (Chapter 5.3).

5.1 Expected future use cases of CUBIC-Cloud

In chapter 4, I demonstrated the applications of CUBIC-Cloud in three major do-
mains that are of interest in neuroscience research: (1) mapping of the cell-type and
the gene expression, (2) reconstruction of the neural activity profile by IEG quan-
tification and (3) neural circuit mapping using rabies virus. Importantly, thanks to
the tissue clearing-based 3D imaging and cloud-assisted image analysis, dozens of
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whole-brain images can be acquired and analyzed within a few weeks. Therefore,
the results presented in this paper will encourage future studies to further acceler-
ate the whole-brain mapping with various labeling targets in a diverse experimental
conditions. As the whole-brain mapping gains more momentum in the research
tield, CUBIC-Cloud may be able to serve as a central hub to integrate the data by
many independent studies.

In Chapter 4.1, I showed the whole-brain mapping of five major cell-types. By
using whole-brain immunostaining, I quantified the absolute number as well as the
expression levels of the PV+, SST+, ChAT+, TH+ and Ibal+ cells, respectively. The
data sets presented here establishes a valuable starting point to further explore how
the distribution of the cell types are modified under behavioral, environmental, de-
velopmental or genetical perturbations. To explore such direction, in this paper I
constructed the developmental trajectory of the PV expression of the whole mouse
brain (Chapter 4.2). The analysis revealed drastic changes in PV expression in sev-
eral brain areas, including RT, ZI and APN. Interestingly, RT, ZI and APN, which
are spatially separated apart, share similar function that they project to thalamic nu-
clei and are thought to modulate the sensory processing. The biological meanings
of the age-related decrease of PV+ neurons in these areas are to be elucidated in the
future studies. Remarkably, the results reported here exemplifies that, using the rich
whole-brain dataset, interesting research hypothesis and questions can be generated
purely in a data-driven way. This illustrates the unique and remarkable contribution
that the the proposed analysis framework can make to the neuroscience research in
general.

Built upon the brain-wide cell-type map reported in this study, the future studies
would further expand the dataset by targeting different type of cells or performing
the experiment under different conditions. For example, autism spectrum disorder
(ASD) causes abnormalities in the brain development, and is known to disrupt the
expression of various genes in the cortex, including PV. It would be interesting to
collect the developmental PV expression map of the ASD model animals, and com-
pare with the healthy mouse’s development map reported in this study. The gene
expression mapping would also be fruitful in evaluating the efficacy of the drug
treatment of these ASD model animals. Such comprehensive analysis of the disease
model mouse would not be possible by a single laboratory, and necessitates the col-
laboration of many researchers. In such situations, CUBIC-Cloud provides a useful
platform to exchange the data.

In chapter 4.3, I demonstrated the brain-wide neural activity reconstruction via
IEG imaging. As an example case, I performed the injection of LPS, and compre-
hensively identified brain regions that were activated or repressed by the drug treat-
ment. The same experimental and computational paradigm can be used to study
the neural activation under pharmacological or behavioral conditions. If a sufficient
number of such data is accumulated in CUBIC-Cloud, I envision that it would enable
a new paradigm of brain mapping which allows researchers to construct a model to
predict the behavior from the activity profile or predict the activity given some be-
havioral or environmental input. Such forward and inverse inference problem has
been extensively explored in human fMRI studies (see chapter 1.4.4). Single-cell-
resolution brain activity mapping could potentially address such brain decoding
question with a completely different modality. Already, there are several interest-
ing IEG mapping results in the literature. The study by Renier et al., 2016 identified
brain regions that were activated during parental behavior of the female mouse. The
recent study by Roy et al., 2019 successfully identified neuron ensembles engaged in
the recall of a certain event (called engram cells). It would have substantial impact to
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integrate these IEG mapping results to advance IEG-based neural decoding research.

In chapter 4.5, I revealed the brain-wide projection to the ARHX**!* neurons us-
ing RVAG tracing technique. With this analysis, I was able to identify extremely
sparse populations (less than 10 cell/mm?®) which was not known in the previous
literature. In the conventional, literature-based studies, such small population might
not have been documented at all, even if researchers were able to discovered them.
By uploading the mapping result to CUBIC-Cloud, these minor populations are
equally and unequivocally recorded, and other researchers may be able to visit the
data later to discover a functional meaning of such small populations. This is where
the value of databasing of the RVAG tracing data is exemplified, and encourages
future RVAG tracing studies to deposit the data in the same way.

5.2 Future extensions of CUBIC-Cloud

5.2.1 Compatibility with other clearing methods

Current implementation of CUBIC-Cloud is optimized for the brain images obtained
by the CUBIC clearing method. Although CUBIC is one of the most popularly used
clearing method in the field, other clearing methods may be more suitable for cer-
tain experimental requirements. In addition, clearing methods are constantly evolv-
ing over the years, so new methods with better characteristics may emerge in the
future. Further, there are population of researchers who use block-face imaging de-
vices to scan the whole brain (Chapter 1.1.3). To expand the user community of
CUBIC-Cloud, the compatibility with other clearing methods needs to be carefully
evaluated. It is known that the structural deformation introduced by the clearing
method differs depending on the protocol. For example, some of the clearing meth-
ods are optimized to preserve the native brain structure (Hama et al., 2015), while
hydrophobic clearing methods tend to shrink the brain (Pan et al., 2016) and hy-
drophilic methods including CUBIC tend to expand the brain. Usually, registration
of the brains processed by the same clearing method is easy. Registration of the
brains processed by different clearing methods, whose tissue deformation charac-
teristics are significantly different, may be challenging. In the AppendixB.1, I at-
tempted the registration of CUBIC- and iDISCO-cleared brain. The brain registra-
tion was successful in many of the brain regions, except for the olfactory bulb where
the tissue deformation characteristics were markedly different between CUBIC and
iDISCO. To fix this error, I presume that the full-automatic registration methods are
not applicable, and requires requires manual annotations on the landmark points in
two images.

One possible way to overcome this problem would be to prepare "gateway brains".
For example, to register iDISCO cleared brain to the reference brain (cleared by CU-
BIC), one would first prepare a representative iDISCO cleared brain (called G), and
determine the correct transformation between G and reference, possibly involving
human corrections. This representative brain (G) is the gateway brain. Then, to map
any given iDISCO cleared brains (called X), one would first compute the transfor-
mation between X and G. After that, one would apply the two transformation in a
sequential manner, to gain a correct mapping from X to the reference. The implemen-
tation along this line would be critically important so that the users of CUBIC-Cloud
can choose the clearing methods most suited for their experimental purpose.
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5.2.2 Cell segmentation in cloud

In the present study, ilastik (Sommer et al., 2011) was used to segment single cells
from whole-brain images, computed on the local machines. This design choice was
made partly because of the development cost to provide an entirely new cell segmen-
tation program that natively runs in the cloud. However, ilastik consumes substan-
tial computer resources (typically 45 minutes of runtime using 30 CPU cores), and
such compute resources may not be readily available at all neuroscience laboratories
working on brain mapping. Therefore, to offer ideal usability and accessibility, it is
important to migrate cell segmentation task to the cloud so that all computational
procedures will be completed within the cloud.

Rather than building a custom cell segmentation software from scratch, it is prob-
ably wise to integrate with the existing cloud-based cell segmentation frameworks
(Haberl et al., 2018; Bannon et al., 2018; Falk et al., 2019; Wu et al., 2019). In par-
ticular, DeepCell 2.0 by (Bannon et al., 2018) proposes an interesting use of cloud
for cell segmentation. Their framework not only offer user-friendly graphical inter-
faces, but also offer means to share the training image datasets, as well as the trained
neural networks, with other users. This approach would allow researchers to eas-
ily reproduce the image analysis developed by other researchers, or to train a more
genelalized neural network by using a massive pool of training data sets provided
by the user community. Integration of CUBIC-Cloud with such open and scalable
cell segmentation platform may facilitate even more productive collaboration within
the user community.

5.2.3 Cloud storage of the raw image data

In the current implementation, CUBIC-Cloud asks the user to submit the segmented
cell data to the cloud. However, as demonstrated in human neuroimaging field
(Chapter 1.4.4), it is easy to imagine that the data miners may wish to visit the raw
image data to extract further information not present in the segmented cell data.
CUBIC-Cloud does provide an optional field in the brain data where user can fill the
URL to the raw image data. The problem is that in the current form management
policy of the raw image data is not precisely defined, and is solely dependent on the
user’s own action.

In the present study, I have prepared a private cloud server powered by CAT-
MAID (Saalfeld et al., 2009) to provide a web-based interactive viewer to access
the raw image data collected in the present study (The server is hosted at http:
//cubic-atlas.riken. jp/). However, setting up and maintaining a private
server is not a realistic solution for most of the users, and thus calls for a estab-
lishment of the public image data repository. Fortunately, there are several public
repository to deposit large biological image data. For instance, IDR (Williams et
al., 2017) offers an open platform to allow any researchers to deposit the raw im-
age data. Another collective effort is being advanced by NueroData project (Vogel-
stein et al., 2018). Relying upon these platforms for raw image storage would be
a sensible solution. However, because these platforms are designed for general bi-
ological /neuroscientific researches, there may be missing components in terms of
functionalities and the ontology set to describe the data. Community-wide involve-
ment and initiatives are thus needed to provide a optimal solution for raw image
data storage of the mouse brain mapping.
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5.2.4 Mapping of the partial brain data

The core concept of CUBIC-Cloud is that it is optimized and designed for whole-
brain imaging datasets. However, there is certainly a value to relax this core concept
and accept partial brain data. At the present day, the availability of LSFM devices
capable of imaging whole mouse brain is still limited, and many neuroscientists use
tissue clearing to scan the partial brain data, such as half hemisphere or thick brain
sections. Furthermore, many neuroscience researches focus on particular region of
the brain, so the whole brain scan may not be necessary for these researches. Hence,
it implies that a significant portion of tissue clearing applications collect partial brain
data.

In the literature, many algorithms to map partial brain data to the complete 3D
brain space have beeen proposed, often embracing the deep neural networks (Song
et al., 2018; Chen et al., 2019). By introducing these methods to CUBIC-Cloud’s core
functionality, the system can be extended to accept partial brain datasets. In doing
s0, a careful redesign of the database must be addressed, to maintain the coherence
of the deposited data within the database.

5.3 Going beyond CUBIC-Cloud

To conclude this thesis paper, here I will discuss some of the important future re-
search directions of the tissue clearing-based brain imaging and associated infor-
matics and database infrastructures.

5.3.1 Integration with live neural recording modalities

On its own, tissue clearing can reveal only static information of the brain, such as
neural connections and gene expressions. For the better understanding of neural
computation mechanisms, an effective integration of static structure and dynami-
cal neural firing is indispensable. In particular, two-photon calcium imaging and
electrophysiological recordings (including single-cell patch clamp and local field
potential measurement by high-density microelectrode array) are two powerful ap-
proaches to measure the in vivo neural activity. The less explored yet important
research direction of tissue clearing would be integrating with these live-recording
modalities and accurately mapping the recording result to the reference brain space.
Notably, the live neural recording methods and tissue clearing methods are orthog-
onal experimental method and can readily be combined; that is, after the recording
of neural activity, the same brain can be processed by tissue clearing and imaged by
LSFM.

There are several benefits of combining neural recording and tissue clearing.
First, tissue clearing-based post 3D imaging allows the precise identification of the
absolute position of the recorded neurons. In physiology experiments, although
the coarse positioning may possible, the exact position of the observed region un-
der two-photon microscope or electrophysiological probe is usually not known. By
processing the recorded brain with tissue clearing and scanning the whole brain
with LSFM, it becomes possible to identify exactly which cells were recorded at
single-cell resolution level. In the case of in vivo imaging, the relative positioning
of the recorded neuron may be a good feature to identify the same group of cells
in the post-fixed whole-brain scanning image. In the case of electrophysiological
recording, one could fluorescently label the probe shank to mark the regions where
the probe was inserted through. If such analysis is made possible, one can map
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many neural recordings obtained from different experiments/animals to the same
reference brain space using whole-brain registration. Furthermore, post-fixed 3D
imaging enables to identify the gene expression of the recorded neuron by immuno-
labeling, further enriching the information. Identification of the projection of the
recorded neuron via virus injection would also be possible.

Encouragingly, the combination of high-density microelectrode array recording
and tissue clearing has been demonstrated recently (Allen et al., 2019), successfully
registering multiple recording sessions to the common atlas space. I expect that the
research field will see more and more such applications, where live recorded brain
tissue are post-processed by tissue clearing to extract further information and finally
mapped to the reference space. In such exciting research avenue, I expect that a
data integration platform like CUBIC-Cloud would further increase its value. In
this scenario, the data sharing platforms would need to be completely reimagined,
to allow researchers to share not only the static structural information, but also the
dynamical neural recordings aligned to the reference brain. Despite the software
challenges, the value of such database cannot be overstated.

5.3.2 Brain mapping of other organisms

In this paper, I have repeatedly used the analogy between genomics and brain map-
ping. If this analogy is assumed, it is important to notice that the genome sequenc-
ing technology was rapidly applied to various organisms, and the whole genome
sequence of thousands of organisms are now available. One can now perform com-
parative analysis of diverse organisms to obtain valuable insights on the protein
functions and structures which diverged or converged across the evolution. Based
on this observation, I suggest that the next frontier of the whole-brain imaging tech-
nology would lie in advancing the brain mapping of diverse organisms.

Indeed, in the present day, a detailed neuroanatomy is only known in major
model organisms, such as nematodes, zebrafish, fruit flies and mouse. In other,
often-called non-model organisms, their neuroanatomy has been rarely investigated
(Laurent, 2020). Conventionally, the difficulty was the labour and cost to scan the
entire brain tissue. Now with the tissue clearing-based whole-brain imaging, this
process can be drastically accelerated. Fortunately, because brain tissue composition
is chemically common across organisms, the existing tissue clearing methods can be
generally applicable to clear the brain of other organisms, such as insects (Pende et
al., 2020), marmoset (Susaki et al., 2014), and human (Park et al., 2019; Zhao et al.,
2020). Once the brain is cleared, LSFM can be used to rapidly scan the entire brain to
survey the gene expression and neural connectivity, in the same way as mouse brain
imaging.

If the comprehensive brain map of various organisms become available, researchers
can perform comparative analysis across species, just as what is done in genomics.
From the comparative analysis, one can, for example, search for common circuit mo-
tifs involved in certain information processing conserved across evolution. Other
possibility is to survey convergent evolution, where the same functionality (such as
vision) is acquired and implemented by completely different circuit structures.

To facilitate the brain mapping of various organisms, the importance of the cen-
tral hub to integrate such data is once again recognized. The current implementation
of the CUBIC-Cloud is solely designed for the analysis of mouse brains. Nonethe-
less, the analysis pipeline such as cell segmentation and registration would be easily
reusable in the analysis of different organisms.
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Since the pioneering work by Dodt et al., 2007, the tissue clearing-based whole-
brain imaging has witnessed a rapid development during the 2010s. In the next
decade, I am excited to see the technique to further evolve and expand its horizon.
As the technique is integrated with other live-recording modalities and applied to di-
verse organisms, the importance of scalable image analysis and data sharing would
further increase. Future software infrastructure developments, including ones dis-
cussed here, will pave the path toward bottom-up and data-driven elucidation of
neuronal functions and circuitry.
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Brain Registration Methods

A.1 Brain registration of iDISCO-cleared brain
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FIGURE A.1: Registration of iDISCO-cleared brain and CUBIC-cleared brain

A. Representative result images of registration between iDISCO- and CUBIC-cleared brains.
The brains were stained with nuclear staining dyes. B. Normalized cross-correlation (NCC)
value between two brains after registration. Mean NCC values of each coronal slice are
plotted. Shown in green colors are the results of iDISCO-cleared brains (n = 2). Shown in
purple is the value of CUBIC-cleared brains (mean of n = 7 brains). C. Voxel-wise NCC
value map computed for the images shown in D. D. Representative brain registration result.
iDISCO (magenta) and CUBIC(cyan) are overlaid. Pointed by arrowheads are the region
where the alignment was not accurate.

Different clearing methods cause different deformation to the brain tissue, which
makes the brain registration difficult across clearing methods. For example, hy-
drophobic methods in general shrinks the tissue (Ertiirk et al., 2012; Renier et al.,
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2014; Pan et al., 2016), whereas hydrophilic methods tend to expand the tissue (Mu-
rakami et al., 2018). To ask whether the proposed registration method used in CUBIC-
Cloud is compatible with other clearing methods, here I prepared iDISCO-cleared
brain and investigated the registration accuracy.

iDISCO (Renier et al., 2014) is organic solvent-based clearing technique and is
one of the most popularly used methods due to the high tissue transparency and
compatibility with immunostaining. I collected 8-weeks-old C57BL/6N wild-type
male mouse brain (n = 2) and cleared the tissue following the iDISCO method.
The protocol followed the steps described in (Renier et al., 2016), with the following
modifications: (1) the immunostainig step was skipped, and (2) the nuclear staining
with TO-PRO-3 (ThermoFisher, #I3605) was applied after the tissue permeabiliza-
tion step. The cleared tissue was imaged with LSFM with (X,Y,Z) = (6.5, 6.5, 7.0) um
voxel resolution. As the imaging oil, the microscope specimen chamber was filled
with HIVAC F-4 (Shin-Etsu Silicones), instead of dibenzyl ether (DBE) used in the
standard iDISCO method.

The acquired whole-brain nuclear staining image was downscaled to (X,Y,Z) =
(30, 30, 30) um voxel resolution. Then it was aligned with the CUBIC-Atlas us-
ing CUBIC-Cloud’s registration program with the identical parameter sets as the
CUBIC-cleared brain.

The representative registration result is shown in Figure A.1 A. A series of coro-
nal slice images are shown in Figure A.1 D, along with the corresponding normal-
ized cross-correlation (NCC) values represented as a heatmap (Figure A.1 C). The
mean of NCC in each coronal slice was plotted in Figure A.1 B. As is shown in this
plot, the iDISCO-brain registration resulted in similar NCC values as CUBIC-brain
registration in most of the brain areas, indicating that the registration method was
able to align the iDISCO-cleared brain with the comparable accuracy. However, the
registration accuracy was particularly worse in the olfactory bulb (Figure A.1 A and
B). Indeed, the morphology of olfactory bulb is strongly affected in the CUBIC clear-
ing process, where the organ is expanded and a gap between left and right bulb is
widened. This misalignment could be corrected by supplying the manually anno-
tated landmarks specifying the corresponding point in the fixed and moving images
(Krupa et al., 2020). In conclusion, the current registration method used in CUBIC-
Cloud is able to accurately align the iDISCO-cleared brains except for the olfactory
areas.
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CUBIC-Cloud Documentation

B.1 Step-by-step user guide

In this chapter, a simplified user guide of the CUBIC-Cloud is provided. Users can
follow the procedures explained here to start using CUBIC-Cloud. Briefly, the pro-
cedure divides into the following steps

¢ Account setup (Chapter B.1.1)

¢ Preparing brain data (Chapter B.1.2)

¢ Uploading brain data (Chapter B.1.3)

* Managing the brain database (Chapter B.1.4)

* Running analysis using notebook (Chapter B.1.5)
¢ Visualizing brains using studio (Chapter B.1.6)

The GUI design and operations are subjected to the changes in the future updates
of the software. The complete and up-to-date documentation of CUBIC-Cloud is
available online at https://cubic—cloud.com/docs/.

B.1.1 Account setup

The first step to get started with CUBIC-Cloud is creating an account. All users must
be logged in with their own account to analyze their own data, as well as to view
the published data in the public repository.

To create an account, the user first visit the CUBIC-Cloud’s home page. Then,
click the "Sign in” button at the top-right corner of the web page, or directly go to
https://cubic-cloud.com/signin. Next, click on a blue button saying “Cre-
ate account” (Figure B.1 A). By following the GUI dialogue, users can set the email
address and the password of their own account (Figure B.1 B).

Once a new account is created, users can log in their account. Once logged in,
users are recommended to set the account profile. This information is not manda-
tory, but it is used when a user publishes data in the public repository. To update
the account profile, click “Account profile” under the user icon on the top-right corner
((Figure B.1 C).

B.1.2 Preparing brain data

In this section I will explain how the user should prepare a whole-brain data to
upload and analyze using CUBIC-Cloud. CUBIC-Cloud requires the user to prepare
the following data to run analysis


https://cubic-cloud.com/docs/
https://cubic-cloud.com/signin
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FIGURE B.1: Account setup at CUBIC-Cloud

A, B. A GUI window to create a new user account. C. A GUI window to update user profile
information.

¢ Structure image: This is a nuclear staining image of the whole mouse brain.
This image is used to run brain registration.

¢ Cell table: This is a table which lists the cells in point cloud format extracted
from the raw image.

Preparing structure image

To obtain this data, user should stain their brain tissue with the nuclear staining dyes
and acquire the whole-brain scan image. So far, the following dyes are tested and
validated to work in CUBIC-Cloud.

RedDot2 (Biotium #40061)
BOBO-1 (ThermoFisher #B3582)
SYTOX-G (ThermoFisher #57020)
PI (ThermoFisher #P1304MP)

Before uploading to CUBIC-Cloud, users are requested to rescale the image
voxel size to 50 pm. This operation can be done using any common image anal-
ysis software, such as Image]J (Schindelin et al., 2012). Then the image should be
saved in uncompressed, unsigned 16bit TIFF format.

Importantly, the 3D image stack should be organized in a horizontal-major or-
der, as defined in Figure B.2. This means that the Oth index of the 3D array should
correspond to Z, 1st index to Y, and 2nd index to X. If other ordering of the 3D array
index is used by the user, it should be rearranged accordingly.

Preparing cell table

As discussed in Chapter 3.1.2, CUBIC-Cloud accepts the whole-brain data in point
cloud format. This data should be supplied in a comma-separated values (csv) table
format.

To generate the point cloud data, users may use the Python program offered by
the current study. The source code and the documentation is available at https:
//github.com/DSPsleeporg/ecc.
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Users can choose to use their own cell detection/segmentation program if they
wish, as long as the output table follows the format defined here. The table should
contain columns named X, Y and Z, which records the center of the mass of the cell
in the XYZ coordinate. Here the unit must be pm, not voxels. X, Y and Z columns
are mandatory, and other columns are optional and can be left blank. However, for
example, when a user wants to quantify the expression levels or the cell volume,
these columns must be supplied. The column named deltal represents the signal in-
tensity of the cell, after subtraction of the background intensity. The column named
BG means the background intensity around the cell. The column named vol means
the volume of the cell, represented in pm?3.

When creating a cell table, the XYZ coordinate ordering must follow that of the
CUBIC-Atlas, which is defined as follows (Figure B.2).

¢ Raw camera image (horizontal section) is viewed from the dorsal side. This
means that the anatomical left hemisphere comes to the left-hand side of the
image.

* Xaxis is a left-right axis, where x becomes larger as it goes to right.

* Y axis is an anterior-posterior axis, where y becomes larger as it goes to poste-
rior.

* Z axis is a dorsal-ventral axis, where z becomes larger as it goes to ventral.

< B

Posterior

+Z

Inferior
(Ventral)

FIGURE B.2: Brain coordinate system used in CUBIC-Cloud

B.1.3 Uploading brain data

In the previous section, I explained the procedures to prepare the data. Next step is
to upload this data to CUBIC-Cloud to start the analysis.

To start uploading, click "Database” button in the left toolbar, which will show
a list of data in the user’s private storage space. Then, find a button saying “New”
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and click it, which will open a new dialogue window (Figure B.3 B). In this dia-
logue, a user can set various attributes of the brain, such as the title, mouse strain
name, age and free-text notes. In addition, here user can supply the "Cell labels" tag,
which represents the labeling method and targets used. "Experiment label" is used
to link different samples collected in a same batch of experiment. After filling these
attributes, user would select the structure image and the cell table from the local
computer’s file system. Once this is done, hit ‘Upload’ button to start uploading.

After the upload is complete, uploaded data will automatically be placed in a
preprocessing job queue. The preprocessing job includes data conversion, registra-
tion, and image transformation. In the current version, the preprocessing normally
takes about 1 hour. Once preprocessing is complete, users can analyze the data in
notebooks or in studios.

B.1.4 Managing the brain database

& CUBIC-Cloud  New

£ Database Arrangement B3

FIGURE B.3: Interfaces for brain database and uploads

A. A GUI window to view the brain data list. B. A GUI window to upload a new brain data.
C. A GUI window to view the detailed information of the brain.

When a user uploads a brain data to the cloud, the data is initially stored in the
user’s private database. Users can view the list of the brains by clicking "My list”
button under “Database” in the left toolbar (Figure B.3 A). The rows can be sorted by
the column values, which user can specify by clicking on the header row.

To view the details of the individual item, click on the title of the brain (Figure B.3
C). Here, users can view and edit various information attached with the item. In
addition, users can download the raw data from this window.

Sharing data

Using share function, a user can let other users access and modify the brain data. The
share recipient users can analyze the shared brain data in their notebook, or create a
customized visualization using the 3D viewer. To share a brain data, navigate to the
”...” button at the top right of the brain detail window, and select “"Share” from the
pull-down list. Then, enter the email address of the user, whom you are granting
access. Choose either read only or read and write access permission. To remove the
user from the shared list, simply click the “Remove” button.
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Publishing data

Publish allows the user to register a brain data in CUBIC-Cloud public brain repos-
itory, where anyone can freely view the data. To publish a brain data, navigate to
the “...” button at the top right of the brain detail window, and select "Share” from
the pull-down list. Then click "Publish” button. The publish operation cannot be
undone, so this operation must be executed with care.

B.1.5 Running analysis using notebook
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FIGURE B.4: Interfaces for notebook

A. A GUI window to edit the notebook titles and select brains. B. A GUI window to select
the graph type. C. A GUI window to edit the graph parameters.

Using notebook users can run diverse whole-brain analysis and generate plots
using graphical interfaces. User can access the list of notebooks by clicking on the
"Notebooks” button in the left toolbar.

To create a new notebook, click “New"” button in the notebook list page. When a
new notebook window opens, first set the title and other additional notes (Figure B.4
A). Next, choose the brains to be analyzed (Figure B.4 A). Then, click "Add graph”,
and choose the type of a graph (Figure B.4 B). Next, set the parameters required to
generate the graph using the text boxes and pulldown menus (Figure B.4 C). Finally,
hit “Plot” button to start generating a graph. Graph generation executed in the cloud
server takes between 10 seconds to a several minutes, depending on the type of the
graph. Once a graph generation is complete, the generated graph is presented in
the GUI (Figure B.4 C). The graphs can be downloaded in vector or raster format, as
well as in the table format which records the raw numerical values.

Notebooks can be shared and published in the same manner as the brain data.
When sharing or publishing a notebook, the brain data included in the notebook is
also shared or published, respectively.

B.1.6 Visualizing brains using studio

Using studios, users can create a custom visualization of the brain data using inter-
active 3D brain viewer. Users can access the list of studios by clicking on the “Studio”
button in the left toolbar.

To create a new studio, click “New” button in the studio list page. When a new
studio window opens, first set the title and other additional notes. Multiple brains
can be virtually overlayed using the studio. Click the “Add brain” button, and a pop-
up window will show up where user can select the brains from the list (Figure B.5
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Note: All brains in the studio will be automatically made publi

Shared users
Note: All brains in the studio

T

FIGURE B.5: Interfaces for studio

A. A GUI window to select the brains. B. A GUI window to set the appearance of the point
cloud. C. A GUI window to share and publish the studio.

A). The appearance settings (such as color, intensity value range and opacity) can
be adjusted for each brain (Figure B.5 B). After these parameters are set, click the
"Launch viewer” button to open a viewer (Figure 3.3).

User can manipulate the viewer using an intuitive mouse click and dragging.
Dragging with left click button on the mouse rotates the camera position, while
dragging with right click button translates the camera. The mouse wheel controls
the zoom. Other interesting visualizations, such as slice views and region-specific
views, can be created by following the GUI instructions.

Studios can be shared and published in the same manner as the brain data ((Fig-
ure B.5 C). When sharing or publishing a studio, the brain data included in the studio
is also shared or published, respectively.
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