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Abstract

The emergence of digital tools has opened up an opportunity for ordinary people to
create visual content digitally, such as images and videos. However, many steps still
have to be done manually and are time-consuming in the creative workflow. Many
methods that go beyond classical low-level filters have been introduced, such as
image segmentation, owing to the recent evolution of machine learning methods.

Image-to-image translation (I2IT) is a task to convert an image in one domain
to a corresponding image in another domain. I2IT is essential since many tasks in
visual content creation are I2IT. Recent works have established a unified solution
for supervised I2IT using convolutional neural networks (CNN). All one has to do
is to prepare many pixel-aligned input-target image pairs for supervised learning.
However, sometimes it is impossible or significantly hard in terms of time amd cost
to collect the paired data. In this thesis, we have tackled several I2IT tasks that suffer
from the aforementioned issue by exploring underlying priors to form an image.

First, we address the task of tracing photographs to create line drawings. We
propose a two-stage extract-and-refine model to immitate the tracing workflow and
present a self-supervised loss to learn the refinement process. We confirm that our
model produces much more clean and expressive line drawings and illustrate two
practical applications.

Second, we propose a novel task of adding a non-directional shading effect on an
image. Inspired by approaches for a real-time approximation of global illumination
in rendering, we propose to generate ambient occlusion (AO) map from an input
image as a proxy task. We show that our model trained on synthetic RGB-AO
pairs dataset performs well on a broad range of images and illustrate image editing
applications: image composition and geometry-aware contrast enhancement.

Third, we address the task of shadow removal and detection. We derive a pipeline
to synthesize the dataset from a classical physically-grounded shadow illumination
model. We demonstrate that shadow removal and detection models trained on the
dataset from our pipeline generalizes well to a broad range of datasets, thanks to the
synthesized data’s fidelity and diversity.
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Chapter 1

Introduction

1.1 Learning-based I2IT and Content Creation

Content creation is a way for conveying thoughts and express ideas through some
medium such as images, sounds, texts, and a combination of any of them. Technology
to support content creation has changed drastically by the emergence of digital
tools, enabled by a substantial increase in computers’ speed and capacity in the past
half-century. In addition to professional designers and artists, millions of novice
users can easily create digital content using off-the-shelf software on their laptops,
such as Adobe Photoshop, Microsoft Powerpoint, and Autodesk Maya for visual
content creation. In the last decade, many methods based on machine learning
research using neural networks (NNs) have been introduced to the digital tools.
Such methods do not generally aim to replace the whole creation process. Instead,
they aim to automate manual tasks that still exist in digital creation workflow (e.g.,
image matting) and spare users’ time and effort to concentrate on more creative
works.

In this thesis, our focus is in image-to-image translation (I2IT). In I2IT, an image xxx
is converted to another image yyy that meets the requirement (e.g., grayscale to RGB
images in the case of image colorization). Isola et al. [12] named the conversion
as image-to-image translation, which is analogous to language translation. This
operation has been quite common in content creation workflow. For instance, many
classical filters have already been deployed in commercial software for visual content
creation. The advantage of learning-based approaches such as those based on
convolutional neural network (CNN) is in mainly two ways:
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• It offers a unified approach to fast approximation of existing various image
filters, which sometimes are very slow [13].

• It enables us to create any new conversion task by just giving examples for
the training [12, 14], without trying to represent the conversion using complex
equations.

Owing to the versatility, I2IT has been applied to a broad range of problems.
We describe some super-concepts and tasks related to them. The first is image
enhancement, which is to improve the interpretability or perception of information
in images, such as image denoising [15, 16], image debluring [17–19], image super-
resolution [20, 21], image inpainting [22–25] and image colorization [26–29]. The
second is guided image synthesis, which is to generate an image from less complex
image-like data or user inputs, such as label-to-image [12, 14, 30, 31], sketch-to-
image [32, 33], and pose / skeleton-to-image [34, 35]. The third is image manipulation,
which is to change the style of an image at various levels, such as style transfer [2, 36–
38], semantic manipulation [39–43], and attribute manipulation [44–46].

In this thesis, the aim is to infer the underlying geometric structure of images
essential for a single image manipulation by I2IT. Photos we see every day are the
projection of the 3D scene on the 2D plane. However, without accurate capture
or very precise estimation of the 3D scene such as surface geometry and lighting,
humans can perform many geometry relevant tasks from a single image. We are
motivated by this and propose some I2IT tasks by a learning-based approach in
two areas, (i) shape extraction and (ii) shading manipulation in content creation.
The rest of the introduction chapter is organized as follows. In Sec. 1.2, we discuss
challenges common to all learning-based approaches for I2IT, which we also should
overcome. In Sec. 1.3, we present an overview of our approach for shape extraction.
In Sec. 1.4, we present an overview of our approach for shading manipulation.

1.2 Research Challenges

We first explain one of the most fundamental approach for learning-based I2IT,
Pix2pix [12]. Then we describe the research challenges common among many
learning-based I2IT models. Pix2pix is based on generative adversarial network
(GAN) [47]. GAN is a framework for estimating generative models by jointly opti-
mizing two models: a generator G that captures data distribution and a discriminator
D that judges whether a sample is coming from real distribution (i.e., training data)
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rather than fake distribution (i.e., an output of G). Pix2pix not only learns the
mapping but also learns a loss function to facilitate training by D simultaneously.
For the paired supervision, (xxx, yyy) are sampled. Random variable zzz are sampled
from a prior distribution such as standard normal distribution. The optimization is
performed as follows:

G∗,D∗ = argmin
G

argmax
D

LcGAN(G,D)+λLL1(G), (1.1)

whereλ is a hyper-parameter to balance the two objectives. The first termLcGAN(G,D)
is based on conditional GAN (cGAN) [48]. G takes both xxx and zzz as the inputs, and
generate the image G(xxx,zzz). The objective is expressed as:

LcGAN(G,D) = Exxx,yyy
[
logD(xxx, yyy)

]
+Exxx,zzz

[
log (1−D (xxx,G (xxx,zzz)))

]
. (1.2)

The second term Lreg(G) is for simply solving a regression task. As the metric, L1
distance is used to suppress blurry outputs:

Lreg(G) = E(xxx,yyy),zzz
[∥∥∥yyy−G (xxx,zzz)

∥∥∥
1

]
. (1.3)

Despite the versatility, there are several drawbacks to Pix2pix. The first drawback
is that the result is limited to low-resolution and not realistic images, especially when
generating photorealistic images from sparse or simple inputs. Recent approaches
have tackled this issue by introducing new NN building blocks, such as multi-scale
discriminator / generator [30] and spatially-adaptive normalization (SPADE) [31].
The second drawback is that there is minor stochasticity in the outputs despite
zzz. This drawback has been addressed by imposing some cycle-consistency using
encoder for zzz [49] or adding regularization loss [50] on zzz, and using conditional
generative flow [51].

The last and most significant drawback is that it is sometimes difficult or
impossible to obtain the paired data (xxx, yyy). This issue is fatal when the objective
is to modify semantic attributes such as facial expressions. Recent approaches
have tried to learn the mapping from unpaired data {xxx1,xxx2, ...} and {yyy1, yyy2, ...} such
as CycleGAN [14] and DiscoGAN [52]. These approaches are further extended to
tackle harder tasks, such as many-to-many or example-guided mapping [40, 53] and
translation between multiple domains [44, 46, 41, 42]. However, the performance
of these approaches are still behind their supervised counterparts in fidelity and
efficiency, and most of them are not deployed for real products compared to the
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supervised I2IT models. In contrast to the task-agnostic approaches to improve I2IT,
our primal focus is to enhance the performance of supervised I2IT by developing
new networks and losses based on task-specific priors in this thesis.

1.3 Shape Extraction

In the first half of the thesis, we address I2IT for shape extraction. Specifically, we
are interested in line drawings made by a human. These drawings can capture
the semantics of a scene in different levels of abstraction and are one of the most
fundamental components for artwork creation. We develop an approach to obtain
line drawing images by I2IT.

In Chapter 2, we present a new computational model for automatically tracing
high-resolution photographs to create expressive line drawings. We define expressive
lines as those that convey important edges, shape contours, and large-scale texture
lines necessary to accurately depict the overall structure of objects (similar to those
found in technical drawings) while still being sparse and artistically pleasing. Given
a photograph, our algorithm extracts expressive edges and creates a clean line
drawing using CNN. We construct two new datasets for the face / body and manga
background domain and employ end-to-end trainable fully-convolutional CNN to
learn the model in a data-driven manner. The model consists of two networks to
cope with two sub-tasks, extracting coarse lines and refining them to be more clean
and expressive, inspired by the artistic workflow. We also propose an automatic
data generation method to facilitate the training of the latter task. The experimental
results qualitatively and quantitatively demonstrate the effectiveness of our model.
We further illustrate two practical applications, manga background generation and
coloring books.

1.4 Shading Manipulation

In the latter half of the thesis, we address I2IT for manipulating shading in a single
image. Shading changes the image remarkably since it serves as an important visual
cue for a human to perceive 3D information from a single image. However, shading is
hard to infer from a single image since it results from a complex interaction between
lights and the geometry of a scene in 3D space. We take inspiration from a global
illumination model in computer graphics in Chapter 3 and an image formation
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equation considering illumination and reflectance in Chapter 4 to develop novel
approaches for shading manipulation.

In Chapter 3, we focus on ambient occlusion (AO), which offers adding a non-
directional shading effect that darkens enclosed and sheltered areas. It is not
physically accurate but widely used to approximate the global illumination effect
for real-time computer graphics rendering. We present RGB2AO, a novel task to
generate AO from a single RGB image input instead of screen space buffers such as
depth and normal. RGB2AO aims to enhance two 2D image editing applications:
image composition and geometry-aware contrast enhancement. We first collect a
synthetic dataset consisting of pairs of RGB images and AO maps. Subsequently,
we propose a model for RGB2AO by supervised learning of CNN, considering the
3D geometry of the input image and data augmentation strategy specific to AO.
Experimental results quantitatively and qualitatively demonstrate the effectiveness
of our model.

In Chapter 4, we focus on adding a directional shading effect. Shadow removal
is essential for pre-processing in computer vision since strong shadow degrades
the performance of object recognition tasks such as object detection, as shown
in [54]. We present SynShadow, a novel large-scale synthetic shadow/shadow-
free/matte image triplets dataset, and a pipeline to synthesize it. We extend a
classical physically-grounded shadow illumination model and synthesize a shadow
image given an arbitrary combination of a shadow-free image, a matte image, and
shadow attenuation parameters. Recent shadow removal approaches all train I2IT
models on real paired shadow/shadow-free or shadow/shadow-free/mask image
datasets. However, obtaining a large-scale, diverse, and accurate dataset has been
a big challenge, and it limits the performance of the learned models on shadow
images with unseen shapes/intensities. Owing to the diversity, quantity, and
quality of SynShadow, we demonstrate that shadow removal models trained on
SynShadow perform well in removing shadows with diverse shapes and intensities
on a challenging USR benchmark. Furthermore, we show that merely fine-tuning
from a SynShadow-pre-trained model improves existing shadow detection and
removal models.





Chapter 2

Learning to Trace: Expressive Line
Drawing Generation from
Photographs

2.1 Introduction

Tracing is a fundamental step in the creation of artworks. When artists trace a
photograph, this process is similar to extracting expressive lines while suppressing
trivial ones. Tracing a photograph does not mean following visually salient edges;
sometimes, a wavy line is simplified to a straight line, disconnected lines are joined
into a single line, or some texture-like lines are ignored, to make the traced line
drawing more expressive, clean, and editable. It has a diverse range of applications.
For example, manga (i.e., Japanese comic) artists trace photographs of indoor or
outdoor scenes to produce line drawings that are subsequently processed to create
background scenes for manga.

Despite the importance of tracing a photograph, it is still challenging for both
humans and machines. Even for professional artists, it may be very tedious and
time-consuming. It can take several hours for manga artists to process a single
photograph since they trace a lot of expressive lines carefully. For novice users, it may
be beyond their capability. For machines, it is not always clear which texture lines
are important to keep and which we should remove because tracing a photograph
requires the semantic understanding of objects and scenes. Furthermore, subtle
gradients are sometimes actually important lines. For example, the edges around the
nose are sometimes very subtle, while artists do not miss to trace them. Although one
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Figure 2.1: Examples produced by our model. Given an input photograph on the
left, our model automatically generates a line drawing image on the right. The
photograph of the woman is from svklimkin (Public Domain). (best viewed with
zoom and in color.)

may try to compose some low-level image processing filters to replace the process,
they cannot incorporate the semantic understanding thus the results contain small
textures and other spurious lines, giving a look of filtered photographs but not line
drawings, as we will later show in Sec. 2.6.1.

In this chapter, we aim to convert a photograph to a line drawing automatically
in a raster format, as shown in Fig. 2.1. The produced line drawing should be
expressive in that it conveys important edges, shape contours, and large-scale texture
lines that are necessary to accurately depict the overall structure of an object, which is
similar in spirit in Suggestive Contour [55] for rendering 2D images from 3D shapes.
The produced line drawing should also be clean so that it is still artistically pleasing
and fulfill the following requirements as many as possible for further editing:

• The lines are smooth but not fragmented or interrupted.

• There are no small texture-like line and noise.

• The width and intensity of the lines are consistent.

We propose to learn such tracing rules by training a convolutional neural network
(CNN). It is challenging in two points. The first point is in a lack of data. It
should consist of photograph and line drawing pairs, but collecting them costs a lot
because they should be from the works of professional workers. Even if they are
collected, the number of data is still not enough to learn all the rules sufficiently. The
second point is in the density and complexity of lines that the learned model must

https://www.flickr.com/photos/svklimkin/35839546712/
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produce. Applying existing machine-learning-based 2D edge detection methods for
photographs such as [56], which are originally designed for detecting a sparse set of
edges, fails to fulfill the requirements.

We describe how we solve this task. First, we first curate datasets for two
domains: face / body and manga background (manga BG) by collecting paired
photographs and line drawings from artists and carefully-designed 3D renderings.
Second, for the generation model, we propose an end-to-end trainable CNN that
consists of two modules: the generator and the restorer. The generator extracts coarse
lines, while the restorer refines the lines to be clean and expressive. We augment
the dataset with synthetically-deteriorated line drawings to strengthen the restorer’s
ability of refinement. Results show that our model can produce cleaner and more
expressive line drawings than compared approaches regarding subjective evaluation.
We further demonstrate potential applications that use the line drawing results
generated from our model to render a manga BG image or a coloring book.

In summary, our contributions are as follows:

• The first reported approach to automatically produce expressive line drawings
from photographs.

• A novel CNN architecture that can generate very clean and expressive line
drawings. Our model is fast and can produce high-resolution results (we can
process a 4096×3072 image in 1.57 seconds).

• A new dataset for learning to trace from photographs.

• Manga and coloring book applications of the proposed photograph tracing
method.

2.2 Related Work

2.2.1 2D Edge Detection

Method

Edge detection methods from a single 2D image are usually designed so that
the results can be further used for mid-level to high-level vision tasks, such as
optical flow estimation, image segmentation, and object proposal generation. The
history of edge detection is very long. We only refer to representative works in
this chapter. Early approaches for edge detection find boundaries by convolving
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the input grayscale image with pre-defined local derivative filters [57]. More
recent approaches combine local color and texture cues and employ learning-based
techniques [58, 3, 59]. However, the performance of these methods is still far below
that of human perception.

Recently, methods based on deep CNN have achieved remarkable progress in
this field [60, 61]. HED [60] can detect multi-scale edges simultaneously by fusing
hierarchical representations extracted from fully-convolutional CNN. However, the
lines extracted by HED are very blurry and thick. LPCB [56] proposes a new loss
function to enhance the crispness. However, we show that LPCB still performs
poorly in our setting to produce crisp and expressive line drawing. We propose a
two-stage model by augmenting priors for artistic plausibility inspired by the recent
line drawing generation methods.

Dataset

The BSDS500 dataset [3], which mainly contains object boundaries, has been used
for both training and evaluation of edge detection algorithms for a long time. [4]
introduce Contour Drawing, which is a new dataset of contour drawings. It not only
contains object boundaries, but also visually salient inner edges such as occluding
contours, and visually salient background edges.

There are two points that our datasets for face / body and manga BG differ from the
existing datasets. First, the number of lines to be extracted in images in our tracing
datasets are much larger than those in the existing datasets to capture fine details,
which is necessary for artworks. Second, the lines drawn by artists follow some
expressive but sometimes visually subtle edges and do not necessarily follow the
visually salient edges, which we show examples in Sec. 2.4. We collect our tracing
datasets to learn such rules in a data-driven fashion.

2.2.2 3D Non-Photorealistic Rendering

It is possible to generate line drawings by non-photorealistic rendering (NPR)
algorithms from 3D geometry nowadays [62]. A recent study [63] on how artists
draw a single 3D object provides artists with a 3D model rendered from a given
viewpoint and illumination and asks them to draw it to create a line drawing. They
showed that the average matching rate of line drawings created by artists with
those by existing NPR-based algorithms was around 80%. Although the number
and variety of 3D objects are increasing, it is still tricky to compose a whole target
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(a) Input xxx (b) Baseline model, G(xxx) (c) Our model, R(G(xxx))

Figure 2.2: Comparison with the results of the baseline model G and our model
for face / body. The lines extracted by G are very blurry and choppy. The lines are
with inconsistent intensity and thickness, and fail to preserve adequate details for
the eye of the person. On the other hand, our model can produce much less blurry
and choppy lines with consistent intensity and thickness owing to the restorer R.
For more details of these models, please refer to Sec. 3.4. Photograph of Assembleia
Legislativa do Parana (Public Domain). (best viewed with zoom and in color.)

scene or object consisting of a lot of 3D models manually. In contrast, our model
uses a 2D photograph as the input to produce line drawings. We argue that it is
complementary to the NPR-based approach. It only requires a 2D reference image
as the input. The process of the proposed line drawing generation is fully automatic,
and the runtime is independent of image complexity, i.e., a number of lines.

2.2.3 Line Drawing Generation

Converting a grayscale rough sketch image to a simplified clean line drawing image
[64, 5, 65–67] has been studied. The most successful approach [67] is based on a fully-
convolutional encoder-decoder CNN. The key technique in [67] is line normalization,
which makes it possible to normalize the stroke width of raster line drawing images.
By combining line normalization and weighted L1 loss, the network could produce
clean and crisp line drawing images based on supervised learning on rough sketch
and line drawing pairs. However, generating a line drawing from a photograph is a
much more difficult problem than that from a rough sketch. A number of the edges
in a photograph is significantly larger than that in a rough sketch. The edges are
sometimes ambiguous due to noises and blur. The thickness of the edge immensely
varies because some edges are far away while some edges are very close to the
camera. The extracted lines by supervised learning are not very clean and expressive
as we will later show in Fig. 2.2 even when employing [67]. To overcome this, we
further use the restoration network to refine the lines.

Another related work is line drawing restoration from an old sketch image such
as blueprints drawn in old papers [1]. There are two sources of datasets in their

https://www.flickr.com/photos/legislativopr/24813351028/
https://www.flickr.com/photos/legislativopr/24813351028/
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(a) Supervised (b) Sasaki et al. (c) Proposed
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Figure 2.3: Overview of our model in the training phase, compared with different
approaches. A red arrow indicates the loss computation for optimization. (a)
Supervised learning encourages G(xxx) to match yyy. (b) Sasaki et al. [1] use both (xxx, yyy)
from a real dataset and (xxxs, yyys, yyy

∗
s) from a synthetic dataset. (c) Our model only has

access to (xxx, yyy, yyy∗) from a real dataset, where yyy∗ is automatically generated from yyy as
described in Sec. 2.3.3.

approach: (i) pairs of an input old sketch image and a manually annotated clean
sketch image and (ii) triplets of a clean sketch image which is composed of simple
primitive shapes, a grayscale automatically deteriorated sketch image by simulating
many types of distortions, and an RGB sketch image deteriorated automatically by
augmenting textures of old papers. Using these synthetic triplets in addition to the
real pairs, they trained a CNN to do restoration of deteriorated line drawing images.
Although our model is similar in spirit to [1] in employing two sub-networks for the
line extraction and refinement, their work does not apply to our learning-to-trace
task. This is because we are not able to create the synthetic triplets because there is
no reasonable way to synthesize a complex photograph from the corresponding line
drawing image directly. Thus, we re-design the objective functions and the models
to learn from the real pairs only.

Pencil-sketch generation is another related area [68]. The pencil drawing images
consist of lines with various intensity and thickness, and sometimes a lot of regions
are filled with textures and shadows. Accurately reproducing such effect has been
investigated a lot [69, 38]. In contrast, the generated line drawing images of our
model are clean and smooth, have lines consistent in width and intensity, and should
not have texture-like lines and noise, as we discussed in Sec. 2.1.
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2.3 Proposed Method

We propose an end-to-end trainable model for learning to trace. The model produces
a line drawing that (i) only focuses on expressive lines and (ii) produces clean
results (e.g., no noise and broken edges). To achieve this, we use two sub-networks,
the generator G and the restorer R, each of which focuses on one of these tasks.
G is responsible for extracting coarse lines by modeling long-range interactions
between pixels and suppressing small and useless lines given xxx. R is responsible
for producing clean and expressive lines by considering nearby pixels given G(xxx).
At the testing phase, given an input RGB photograph xxx ∈R3×W×H, we extract the
coarse lines as a intermediate grayscale image G(xxx) ∈ R1×W×H, and subsequently
obtain refined lines as a final grayscale image R(G(xxx)) ∈R1×W×H. There is no need
for any post-processing since R(G(xxx)) produced by our model is already clean and
expressive while preserving adequate details.

At the training phase, we have access to a dataset D which consists of pairs of xxx
and a ground truth line drawing yyy ∈R1×W×H. The most straightforward approach
that one may come up with is to train G, which we call the baseline model, by
supervised learning yyy ≈ G(xxx) on D. However, the lines produced by G are not clean
and expressive, as shown in Fig. 2.2 due to the small number of D. We employ
R on top of G to perform characteristics of restoration. This enables us to use an
additional source of data for training. Given a clean ground truth line drawing
yyy, we randomly generate a deteriorated line drawing yyy∗ ∈ R1×W×H using some
low-level manipulations such as blurring and adding noises. The point is that we
can incorporate a prior of ground truth line drawings for generating clean and
expressive results by learning yyy ≈ R(yyy∗).

In Sec. 2.3.1, we show architectural details of G and R. In Sec. 2.3.2, we explain
the objective functions for optimizing G and R jointly. In Sec. 2.3.3, we illustrate how
to generate synthetically deteriorated line drawing images yyy∗.

2.3.1 Model Architecture

Architectural Details for Two Sub-networks

G and R are both fully-convolutional encoder-decoder CNN. In the encoder, G and R
decrease the resolution in three stages down to 1/8 of the original size. In the decoder,
G and R increase the resolution in three stages to the original size by nearest neighbor
upsampling followed by convolutional layers. All the values in the input and the
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output of G and R are within the range of [0.0,1.0]. For the detailed configuration of
G and R, please refer to the supplementary material.

2.3.2 Optimization

We employ the approach of [67] for supervised learning of a baseline model. Let a
predicted image aaa and ground truth image bbb, the weighted L1 loss LWL1 used in [67]
is computed as follows:

LWL1(aaa,bbb) = |(aaa− bbb)⊙ (111+γ(111−bbb))|, (2.1)

where ⊙ denotes element-wise multiplication and γ is a weighting hyper-parameter
to. If γ equals to zero, the loss is similar to L1 loss (i.e., mean absolute error (MAE)).
If the γ is larger than one, the loss put more weight on the line predictions being
correct rather than the white backgrounds. Using LWL1 as the loss function Lbase, the
baseline model is optimized as follows:

G∗ = argmin
G
E(xxx,yyy)∼D Lbase(G(xxx), yyy). (2.2)

We employ multi-task learning to improve the performance of the extraction and
the refinement process jointly:

L joint =Lbase(G(xxx), yyy)+αLaux(R(G(xxx)), yyy)+βLres(R(yyy∗), yyy), (2.3)

G∗,R∗ = argmin
G,R

E(xxx,yyy,yyy∗)∼D L joint, (2.4)

where α and β are hyperparameters. Lres is for learning the restoration process using
the pair of the clean line drawing yyy and the deteriorated line drawing yyy∗. Laux is
an auxiliary loss function to stabilize the training. Without Laux, our model is not
end-to-end trained. As the error metrics, L1 loss and the weighted L1 loss in Eq. (2.1)
are used for Lres and Laux, respectively. The difference among the baseline model,
our model, and Sasaki et al. [1] in the training phase is shown in Fig. 2.3.

2.3.3 Synthetic Line Drawing Deterioration

We explain how to process a ground truth line drawing yyy to a deteriorated line
drawing yyy∗ in detail. Examples of the deteriorated line drawing images are shown in
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Input Output (fill) output (blur)

Figure 2.4: Example of the synthetic line deterioration for face / body. For visualization,
we crop the images with the size of 384×384.

Fig. 2.4. With the chance of 75%, we applied the following deterioration algorithms
independently with a randomly sampled value σ ∈ [0.0,1.0]:

• Fading: yyy∗ = yyy+σ
1+σ . This operation does not change the originally white pixels

while fading originally black pixels.

• Blur: A two-dimensional Gaussian filter with the standard deviation σ is
applied.

• Fill: For each yyy, we randomly generate 10 to 50 holes whose sizes are between
16×16 pixels to 40×40 pixels. Further, we randomly generate 100 to 500 holes
whose sizes are between 2×2 pixels to 16×16 pixels. For each hole, we perform
one of the following three operations randomly with the chance of 1

3 ; (i) Fading
(described above). (ii) Turning pixels white. (iii) yyy∗ = σyyy+ (1−σ)ttt, where ttt is a
texture patch randomly cropped from a cloud-like texture generated by the
cloud filter in Adobe Photoshop [70]. This operation is for learning to remove
texture-like dense edges.

We can synthesize diverse and unlimited number of yyy∗ by choosing the low-level
manipulations randomly during the training.

2.4 Dataset

Since there is no dataset that can meet our demand, we have collected new datasets
of photograph and line drawing pairs in two domains: face / body and manga BG. We
briefly describe each dataset.
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2.4.1 Face / Body

A total of 139 photograph and line drawing pairs are collected. The photographs are
collected from Helen dataset [71], Adobe Stock, and our personal collection to cover
a diverse set of photographs. The resolution of the images ranges from 602×602
to 1,946×2,432. We asked professional artists to draw line drawings from these
photographs. A few examples were collected from one artist at first. Subsequently,
the other artists were asked to follow the way of drawing to collect the rest of the
dataset. Only the silhouette is drawn for the hair region because it might be more
subjective to get the line drawings on hair with consistent styles from different artists.
Lines in the background are ignored unless they are very salient. Examples of the
dataset are shown in Fig. 2.5. The width of the lines is not consistent among samples
and strokes.

2.4.2 Manga BG

A total of 174 photograph and line drawing pairs are collected. Some of the examples
are shown in Fig. 2.6. It is hard to ask the artists to draw the lines from scratch
because the number of lines is enormous. Therefore, we use two existing resources:
(i) 92 pairs are from synthetically rendered examples from 3D models of New York
City from NONECG [72]. We use Mental Ray for Maya and render the images
by Contour Shader. (ii) 82 pairs are collected from stock photos for manga artists.
The resolution of the images ranges from 3,750×5,000 to 17,008×11,304. When
collecting the pairs from existing resources, there are many mismatches between
a photograph and corresponding line drawing because artists sometimes do not
faithfully follow lines in a photograph, ignore some parts, or add some parts. These
mismatches are not negligible. To overcome this problem, we manually add mask
annotations mmm ∈R1×W×H, where each value in mmm is either one (i.e., valid) or zero (i.e.,
invalid). We extend the weighted L1 in Eq. (2.1) to take mmm as the third argument and
compute the loss function as follows:

LWL1(aaa,bbb,mmm) = |mmm⊙ (aaa− bbb)⊙ (111+γ(111−bbb))|. (2.5)
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Figure 2.5: Example of photograph and line drawing pairs that we have collected
for face / body. The photographs on the right are the cropped patches of those on the
left. There may not be strongly visible contour along the nose, but the artists draw
one in because it is artistically important. The photograph on the left and middle
is from yurolaitsalbert - stock.adobe.com and Jean - stock.adobe.com, respectively.
(best viewed with zoom and in color.)

2.5 Training

We train two models for face / body and manga BG, separately. For faster and stable
training, we first pre-trained G following Eq. (2.2) and use this G as the starting point
for our model and all the compared approaches. All the methods in this chapter
were trained using Adam [73] optimizer for a fair comparison. We applied line
normalization by nimble model [67] so that the line width is two pixels in the ground
truth line drawing image yyy. The images whose longest side is over 2,000 pixels were
resized so that the longest side is 2,000 pixels to reduce computational cost during
training.

In Sec. 2.5.1, we explain the detailed process of pre-training. In Sec. 2.5.2, we
refer to the detailed process of our joint learning of G and R. In Sec. 2.5.3, we briefly
describe data augmentation operations used for both pre-training and joint training.

https://stock.adobe.com/jp/images/group-of-successful-businessmen-discussion-important-plans/135137176
https://stock.adobe.com/images/sexy-woman-in-white-shirt-posing-on-the-beach/133429106


18 Learning to Trace: Expressive Line Drawing Generation from Photographs

Figure 2.6: Example of photograph and line drawing pairs that we have collected
for manga BG. Only the cropped patches are shown due to the limited space. Only
the silhouettes of plants are drawn since we want to manually draw the interior
regions later, although there are visually very salient edges inside them. We can also
see that even the rendered images on the right has the mismatches. (best viewed
with zoom and in color.)

2.5.1 Pre-training

We can improve the ability of our network to learn with a small training set by
pre-training some part of G on another task. For manga BG generation, we adopted
the encoder of ResNet50 pre-trained on ImageNet [74] classification task. For face /
body generation, we adopted a network that is similar to G stated in Sec. 2.3.1 and is
pre-trained on a portrait dataset [75] for facial part segmentation. Subsequently, G
was trained for 30,000 iterations with a learning rate of 1.0×10−3 and a batch size of
8, following Eq. (2.2).

2.5.2 Joint Learning

G and R were trained jointly for 10,000 iterations with a learning rate of 1.0×10−4 and
a batch size of 4, following Eq. (2.4). For the weighting parameter γ in the weighted
L1 loss in Eq. (2.1), we empirically set γ = 2 and γ = 0 for face / body and manga BG,
respectively. For the joint optimization of our model, we set (α,β) = (0.1,10.0) in
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Eq. (2.3). With a probability of 10%, we just copied yyy to create yyy∗ instead of the
deterioration because if the lines extracted by G are already clean, there is no need
for refinement.

2.5.3 Data Augmentation

Since the number of photograph and line drawing pairs is limited, we performed a
large amount of data augmentation to enhance the generalization capability of our
model. We applied random scaling between the range of 0.5 to 1.5 with 1.0 being the
original scale, random flipping with the probability of 0.5, random rotation between
the range of −0.25 to 0.25 with 0.0 being the original angle, and random cropping to
384×384 for both the input and output image pairs. Besides, we randomly changed
the contrast, saturation, hue, and brightness of the input image.

2.6 Experiments

We evaluated our model on various high-resolution photographs. The photographs
are down-sampled if the length of the longer edge is larger than 2000 pixels. Following
the existing works for line drawing generation [65–67], we perform qualitative
evaluation and user study. For two reasons, we did not employ OIS/ODS, which
are used for the quantitative evaluation of coarse edge detection. First, mismatches
between a photograph and corresponding line drawing are not negligible in our
dataset for quantitavie comparison, as we have already explained in Sec. 2.4. Second,
matching the predicted pixels to the ground truth pixels in calculating OIS/ODS
is computationally very expensive and very slow in our case. We found it almost
impossible in our setting since the number of ground truth pixels in our face /
body and manga BG are enormously larger than those of BSDS500 and Contour
Drawing.

2.6.1 Comparison with Existing Methods

To emphasize the importance of developing an appropriate model for learning to
trace, we compared our model against the following comparable approaches:

• Canny: As a classical hand-crafted method for edge detection, we tested the
Canny edge detector [57].
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Input Canny [57] Photoshop [70]

Pix2pixHD [30] LPCB [56] Ours

Figure 2.7: Comparison with the previous approaches for face / body. The first and
third rows show the whole input image, while the second and fourth rows show the
areas highlighted in red and blue in the input image. Note that no pre-processing
and post-processing is applied. We can see that our approach clearly outperforms
the other approaches regarding cleanness and expressiveness. The photograph is
from Brenda Rochelle (Public Domain). (best viewed with zoom and in color.)

• PhotoShop: As an existing tool, we tested Photoshop [70]. We made a single
filter composed of some existing filters built in PhotoShop such as ‘Find edges‘
and ‘Dust & Scratches‘ to make the extracted image clean and expressive as
much as possible by adjusting hyper-parameters. The filter is used for all the
images while keeping the hyper-parameters fixed.

• Pix2pixHD: Line drawing generation from photographs can be regarded as
I2IT. In Pix2pixHD [30], the authors proposed novel adversarial loss, and
multi-scale discriminator/generator to enable better high-resolution image
generation than pix2pix [12]. We tested an off-the-shelf implementation of
Pix2pixHD.

https://www.flickr.com/photos/141221117@N03/35810721725/
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Input Canny [57] Photoshop [70]

Pix2pixHD [30] LPCB [56] Ours

Figure 2.8: Comparison with the previous approaches for manga BG. The first and
third rows show the whole input image, while the second and fourth rows show the
areas highlighted in red and blue in the input image. Note that no pre-processing
and post-processing is applied. We can see that our approach outperforms the other
approaches regarding cleanness and expressiveness. (best viewed with zoom and
in color.)

• LPCB: As a learnable CNN for edge detection, we tested LPCB [56]. Since the
result of LPCB is still very blurry, we post-processed the result by binarization
and morphological line thinning. Please refer to the supplementary material
for the results without post-processing.

Qualitative Evaluation

The results of all the approaches for face / body are shown in Fig. 2.7. Canny and
Photoshop produce a lot of artifacts and too short edges, and the results are far from
line drawing images. Pix2pixHD captures rough outlines but fails to preserve details
in the face and clothes. LPCB captures both rough and fine features, but the lines are
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Table 2.1: Results of the user study. Each number indicates the percentage where
our result is preferred over a compared method. Chance rate is at 50%.

face / body manga BG

Canny [57] 91.6% 77.2%
Photoshop [70] 70.0% 82.4%
Pix2pixHD [30] 68.4% 56.8%

LPCB [56] 82.0% 93.2%
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Figure 2.9: Visualization of the preference rate of our model over the compared
model for each image in the user study. The percentage inside the parentheses
indicates the average preference rate.

fragmented and interrupted. On the other hand, our model produces the cleanest
and most expressive line drawing images without any post-processing.

The results of all the approaches for manga BG are shown in Fig. 2.8. We can
see that Canny and Photoshop produce texture-like cluttered lines in the region of
plants. The result of LPCB is wavy and sometimes makes no sense. Pix2pixHD
seems to capture both coarse and fine details, but there are often texture-like edges
and cluttered lines at a closer look. On the other hand, our model produces the
cleanest and most expressive line drawing images. For more results, please refer to
the supplementary material.

User Study

Since the qualitative evaluation discussed above is highly subjective, we performed
a perceptual user study among comparable methods by cloud workers on Amazon
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Table 2.2: Results of the user study in the ablation study. Each number indicates the
percentage where our result is preferred over a compared method. Chance rate is at
50%.

face / body manga BG

G only 58.4% 75.2%
G + adv. 61.6% 61.2%

Mechanical Turk. We used 25 high-resolution photographs for evaluating the model.
We displayed results from two different models from the same photograph side-by-
side on a webpage in random order. Each subject was asked to choose the best one.
As a result, we collected 250 votes from 10 subjects for evaluating the model trained
on each dataset, and the results are shown in Table 2.1. We can see that our model is
more preferred than the other methods. We additionally discuss how much the AMT
workers votes are consistent with each other in the user study in Sec. 2.6.1. We sort
the preference rate on each of the user study images and show the result in Fig. 2.9.
As expected, judging the generated line drawing images’ quality is relatively hard,
but the voters are usually consistent with each other.

2.6.2 Ablation Study

We performed an ablation study regarding the choice of networks, training objectives
and hyper-parameters.

G only: Training only the generator G by Eq. (2.2) is a strong baseline method.
However, it produces lines with inconsistent intensity and thickness, as shown in
Fig. 2.2. Our model is superior also in the user study, as shown in Table 2.2.

G and adv.: One may argue that optimizing G using line normalization and
adversarial learning used in [12] can achieve our goal. However, we found it
inefficient and prone to produce small noise-like edges, as shown in Fig. 2.10. Our
model is superior also in the user study, as shown in Table 2.2.

Architecture choices: One may argue that our model does not fully understand
the contextual information. We found that initializing the generator with the pre-
trained model as described in Sec. 2.5.1 is enough. Although we tried to combine
the result of the semantic segmentation trained on ADE20K [76] for manga BG or a
portrait dataset [75] for face / body in addition to the input photograph, we did not
observe remarkable improvement. Employing skip-connections between an encoder
and a decoder is popular in image translation, but we found it unnecessary for our
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Input G and adv. Ours

Figure 2.10: Comparison with our model and ’G and adv’. Our model generates less
blurry and choppy results. (best viewed with zoom and in color.)

setting. A self-attention mechanism such as the one employed in [77] would be
another option. However, we could not apply it due to its high memory usage for
HD image generation.

Hyper-parameters: We optimize Eq. (2.4), which have two hyper-parameters α
and β. Setting α too high or low causes degradation in the produced line drawing,
as shown in Fig. 2.11. We also observed that setting too small β causes the same
degradation as setting α too high.
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Input α = 0.0 α = 0.1 α = 1.0

Figure 2.11: Ablation study by changing α in Eq. (2.4). Setting too high α results in
some artifacts and blurry lines (α = 1.0) while setting too low αmakes the restorer
remove some important outlines (α = 0.0). For visualization, a 300×500 patch from
a photograph is used as the input photograph.

2.6.3 Comparison with Sasaki et al.

One may argue that Sasaki et al. [1] can be trained with only real pairs of photograph
and line-drawing (xxx, yyy). Since we cannot generate the synthetic triplets dataset as
we discuss in Sec. 2.2.3 and Fig. 2.3, the best we can do is to train G and R so that
G(xxx)+R(xxx,G(xxx)) matches yyy by weighted L1 loss Eq. (2.1). For fair comparison, we
use G which is pre-trained on Eq. (2.2). We did not observe clear visual improvement
over the baseline model optimized by Eq. (2.1). Our results obtained 80.0% and 82.8%
preference rate over the results of the model described above for manga BG and face /
body, respectively.

2.6.4 Comparison with Style Transfer

We also compared our model with style transfer. In addition to the input image, the
style transfer algorithm takes a single target image as the reference for the stylization.
The original algorithm of style transfer [78] with iterative optimization with multiple
steps of forward and backward inference using a CNN is very slow. Therefore, we
tested [2], which requires only one step of forwarding inference at the test time. We
picked one of the images from the dataset we used to train our model as the style
target image. The result is shown in Fig. 2.12. We can see that this approach cannot
produce clean and expressive line drawing images.
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Input Ours

Style target [2]

Figure 2.12: Comparison with the approach of style transfer [2] and our model for
face / body. The style image is chosen from the training dataset for face / body and
pre-processed by the line normalization. The result obtained by the style transfer
contained a lot of blurry gray regions and failed to capture artistically salient parts
such as the nose and the eyes. Photograph of Paradox Wolf (Public Domain). (best
viewed with zoom and in color.)

2.6.5 Comparison with Existing Datasets

To emphasize the importance of collecting a dataset that is suitable for each domain,
we trained our model on BSDS500 [3] and Contour Drawing [4], and show the results
in Fig. 2.13. We observe a significant difference. In face / body, it can be seen that the
model trained on BSDS500 and Contour Drawing only captured a rough outline
of the person such as the boundary between body and background and ignored
expressive parts such as eyes and mouths. This trend was also remarkable in manga
BG.

2.6.6 Effect of Input Scale

While our model is automatic, the users can control the simplicity of the output
by downscaling or upsampling the input image based on their intent, as shown in
Fig. 2.14. The output of our model is simplified and loses some fine details as the
input image is getting smaller. Although we perform a large amount of the data
augmentation, our model is sometimes sensitive to the changes in the scale of the
input image. The users also can easily search the scale of the input image to obtain
the best result for their own use case.

https://www.flickr.com/photos/ctcwired/24806065080/
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Input BSDS500 Contour Drawing face / body

Input BSDS500 Contour Drawing manga BG

Figure 2.13: Comparison with the model trained on different datasets. The model
trained on BSDS500 [3] and Contour Drawing [4] only captured rough outlines. The
photograph in the first row is from U.S. Department of Agriculture (Public Domain).
(best viewed with zoom and in color.)

2.6.7 Computation Time

Our model can take images with arbitrary sizes as the input. We tested images with
various input sizes initialized randomly and show the average time on 100 runs on
a GPU in Table 2.3 using our model for manga BG. For an image taken by iPhone5
(typically 4096×3072), our model could process it in about 1.6 seconds. If we have
a much larger image, we can break it into small patches and process each of them
individually. The result shows that our model is practical and can be applied in
real-world scenarios.

https://www.flickr.com/photos/usdagov/33775932980/
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Input s = 1 s = 0.5 s = 0.25

Figure 2.14: Result of the line drawing generation by our model for face / body on
scaled versions of the input image (1365× 2048). The scaling done with respect
to the input image is denoted as s, where s = 1 denotes maintaining the original
resolution. s = 1 maintained the clean background and captured the eyes and the
mouth sufficiently while losing some important outlines around the hair. As the
input resolution becomes smaller, our model only captures simplified outlines. Note
that we train our model to produce lines whose width is two pixels by the line
normalization regardless of the scale of the input image. Photograph of Owen Lucas
(Public Domain). (best viewed with zoom and in color.)

2.6.8 Vectorization as Post-processing

Although our model can extract clean line drawings that can be used for further
editing, converting the output image into a vector format is also possible. A vector
format is popular because of the precision, compactness, and editability. For example,
a user can change width for some lines to control the attention of the viewer. We
show the example processed by the automatic vectorization of [5] in Fig. 2.15. We
can see that some errors at junctions are fixed and some wavy lines are converted to
very straight lines, while some parts are missed by the vectorization.

2.7 Applications

Using our model, we demonstrate two possible downstream applications: manga
BG generation and coloring books.

https://www.flickr.com/photos/owen_lucas_photography/15185049006/
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Table 2.3: Computation time for our model. NVIDIA TITAN Xp GPU is used for the
benchmarking.

Image size Pixels Time [s]

512×512 262,144 0.05
1024×1024 1,048,576 0.14
2048×2048 4,194,304 0.52
4096×3072 12,582,912 1.57

Input Output Vector output Vector output
(low simplicity) (high simplicity)

Figure 2.15: Example of vectorization using [5] as the post-processing. Since the
output of our model is already clean, we can directly vectorize the line drawing
without any pre-processing. For visualization, we use a 256×256 patch. We show
two vectorized outputs by changing the hyper-parameter to control the simplicity in
[5]. (best viewed with zoom and in color.)

2.7.1 Manga BG Generation

Manga is composed of two layers: line drawing and halftone screen. Halftone screen
is a pre-defined pattern that expresses visual effects such as textures and shadows
[79]. Manga artists first draw a clean line drawing and subsequently add a halftone
screen layer to express fine details. When they draw complex scenes (e.g., streets,
buildings, and landmarks), they often trace a reference photograph to create a line
drawing, which is a very tedious and time-consuming process. We argue that our
model can help this process. Given the reference photograph, our model creates a
line drawing automatically. They can add some lines to depict more details, remove
some unnecessary parts, or just use it without any modification. An example of the
collaboration with our model and the artist is shown in Fig. 2.16. An artist simply
added some halftone screens digitally on top of the extracted line drawing layer to
make a scene for manga BG.
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Input Output Output with
halftone screens

Figure 2.16: From left to right: an input photograph, the line drawing image
produced by our model for manga BG, the comic image produced by the artist based
on the generated line drawing. Note that the artist only added halftone screens and
did not modify the line drawing itself. Photograph of Netfalls - stock.adobe.com.
(best viewed with zoom and in color.)

Richness-Preserving Manga Screening [80] was developed for automatic genera-
tion of the halftone screen layer. The authors even show that they can generate manga
BG images in a fully-automatic way by employing an existing edge extractor [81]
for the line drawing layer. We argue that our model can also be used for the line
drawing layer in their process.

2.7.2 Coloring Books

A coloring book is a book with line drawing images to which users are intended to
add colors by some artistic media such as pencils, crayons, and paints. We argue
that our line drawing generation model is a new tool to create the coloring book. An
example of the collaboration with our model and the artist is shown in Fig. 2.17. Since
our line drawing generation model captures expressive lines adequately, the artist
was able to create the artwork by simply adding some colors, without modifying the
lines.

https://stock.adobe.com/./chapters/photo2line/images/sailing-in-the-sea/55921684
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Figure 2.17: From top to bottom: an input photograph, the line drawing image
produced by our model for face / body, the artwork produced by the artist based on
the generated line drawing. Photograph of REDPIXEL - stock.adobe.com. (best
viewed with zoom and in color.)

2.8 Limitations and Discussion

One limitation of our model is that the produced lines have some faults both locally
and globally, and one may realize that the lines are not produced by a human but
by some computational algorithm at a closer look. Although we show that raster
image vectorization algorithms such as [5] are effective to some extent in Sec. 2.6.8,
this process is still computationally very slow and misses some lines. The future
direction of this chapter should be joint learning of line extraction and vectorization.
Interactive line drawing generation assisted by neural networks [67] would also be
helpful to fix the faults by user interaction.

Another limitation of our work is that our datasets for training are limited in size,
and thus we struggle on objects or scenes that are not included in the dataset for the
training. Some examples of the failure cases of our model are shown in Fig. 3.10. We

https://stock.adobe.com/images/team-at-work-concept/216576096
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Figure 2.18: Examples of the failure cases of our model. The output on the left
failed to capture boundary between the fluffy hair and the background because the
boundary is ambiguous. The output on the right contained texture-like edges ahead
of the handrail because there is no annotation for grass in manga BG. The photograph
on the left is from Javier Ortiz (Public domain). (best viewed with zoom and in
color.)

believe we can address this limitation by collecting the more high-quality annotation
for images with more diverse scenes by professional workers.

Changing the thickness of the lines based on contents would be another future
work. This is because the lines are often drawn with different width by human based
on some factors such as the importance of the edge and distance from the camera in
a photograph. However, predicting the exact width is probably difficult in current
learning-based approach, since such criterion may differ based on the subject or even
on the context.

https://www.flickr.com/photos/roberto69/33616640604/


Chapter 3

RGB2AO: Ambient Occlusion
Generation from RGB Images

3.1 Introduction

Ambient occlusion (AO) [82, 83] is an important rendering technique in 3D computer
graphics that significantly improves the visual quality of renders. Ambient occlusion
works by darkening the regions in the image where the local scene geometry is
concave, where neighboring surfaces shadow or occlude part of the ambient lighting.
AO-based rendering is highly effective in adding realistic shading to renders that
otherwise often look flat due to the lack of physically accurate global illumination
effects. This technique has thus received much attention in the graphics community
since its inception. It has benefited from multiple improvements to its efficiency,
leading to its widespread use in real-time applications such as video games [84, 85].

Interestingly, the idea of applying ambient occlusion has been appreciated in
other areas beyond 3D computer graphics. Professional artists working with 2D
content have also developed creative techniques leveraging AO-like information
to enhance the realism and impression of their artworks, such as photographs,
painting, and illustrations. In particular, it has been demonstrated that applying
AO-like shading effect in RGB images in the wild would enable multiple practical
applications [86, 87], such as the ones shown in Fig. 3.1:

• 2D image composition: simply pasting an object (e.g., cars, boxes, and bottles)
onto a background image (e.g., road and table) would look like the object is
floating mid-air in the image. Adding AO around the inserted object would
make the composite visually pleasing.
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Figure 3.1: Ambient Occlusion (AO) generation from a single image with our
RGB2AO framework. Given an RGB image (left), our model automatically generates
an ambient occlusion map (center). We show two applications of applying the
generated AO map effect: image composition (in the first row) and geometry-aware
contrast enhancement (in the second row) on the right. The input images are from
Adobe Stock. (best viewed with zoom and in color.)

• Geometry-aware contrast enhancement: it can be used to (de)emphasize
or exaggerate the geometry in a photograph, providing a user control on
perceivable depth.

Conventional techniques for computing AO, however, require 3D information
about the scene such as depth buffers, surface normals, or even the whole scene
geometry [85, 88, 89]. As such, these AO techniques are limited to the rendering of
3D scenes and cannot generate AO from RGB images. To achieve the aforementioned
effects for 2D image composition and contrast enhancement, artists often need to
manually construct the AO information themselves through a tedious AO map
painting process [87, 90, 91].

This chapter introduces the novel task of AO generation from a single RGB
image, so that it applies to 2D image editing applications that we have described
above. One possible approach to this task would be to compute depth information
from the input image with monocular depth estimation methods [92–94] and apply
conventional screen-space AO generation from it to obtain the AO map. In our
experiments, however, we found this simple approach fails to generate sound AO
maps. We observe that while state-of-the-art depth prediction performance has
rapidly improved recently, the depth prediction results are still coarse and not
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accurate enough to be used with existing screen-based approaches that typically
assume ground-truth depth values.

In this chapter, we present RGB2AO, a learning-based AO generation framework
that learns to generate the AO map directly from the input image. Users can then use
the generated AO map for editing tasks such as compositing or contrast enhancement.
We develop our RGB2AO framework with an I2IT model based on a convolutional
neural network. In addition, our model extends a recent I2IT model to account
for the 3D geometry of scenes. We also explore data augmentation strategy that is
specific and beneficial to AO generation. Our contributions encourage the network
to learn to predict an accurate AO map from an RGB input alone.

A key challenge for single image AO generation is the lack of data with ground-
truth AO maps for training. To address this challenge, we contribute a large-scale
synthetic dataset with thousands of RGB-AO pairs. We construct our dataset from a
large number of high-quality 3D scenes that we render realistically. Experimental
results show that our model can produce more favorable results compared to existing
methods quantitatively.

In summary, our contributions are as follows:

• We introduce the novel task of image-based ambient occlusion generation. To
this end, we develop a CNN-based AO generation model considering the 3D
geometry of the scenes. To the best of our knowledge, we provide the first
approach to infer AO from a single RGB image automatically.

• We contribute a large-scale dataset dedicated to AO generation. This dataset
consists of a large number of images with associated accurate ground-truth
AO maps.

• We demonstrate the effectiveness of our RGB2AO framework in the application
of our AO generation as a filter for 2D image composition and geometry-aware
contrast enhancement.

3.2 Related Work

3.2.1 Ambient Occlusion

Ambient occlusion (AO) [82, 83] is a fast global illumination model that approximates
the amount of light reaching a point on a surface considering occlusion by objects
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and surfaces around them. With reduced computational cost compared to ray-
tracing, AO can produce realistic lighting effects such as soft shadows around objects.
Real-time AO computation usually requires 2D depth and normal buffer input
with respect to the camera viewpoint. AO generation algorithms usually randomly
sample nearby pixels and infer AO for each pixel independently. Many algorithms
have been proposed to achieve a good tradeoff between accuracy and speed, such
as SSAO [95, 96], HBAO [89], and ASSAO [97]. AO was generalized to directional
occlusion by Ritschel et al. [98], adding directional shadows and color to the original
AO darkening effect. Other similar perceptual effects using only the depth buffer
were proposed, such as the unsharp masking operator [99].

Recently, data-driven methods using neural networks have been proposed for
AO generation, e.g., NNAO [88] and Deep Shading [100]. They perform better than
classical AO computation methods in the same runtime. In NNAO, the authors first
collected a large number of paired depth/normal buffers and AO maps and trained
a multi-layer perceptron (MLP). Deep Shading [100] confirms that CNN is better
than MLP or classical methods for AO generation, in that it allows larger receptive
fields through a stack of convolution and down-sampling layers. Our approach and
those approaches are similar in spirit in employing neural networks for predicting
the screen-space AO effect. However, those methods assume access to accurate
screen-space buffers such as depth and normal. In contrast, our RGB2AO directly
generates screen-space AO without an accurate estimation of normal and depth.

3.2.2 Intrinsic Image Decomposition

Intrinsic image decomposition [101] separates an image into a reflectance layer
and a shading layer. Recent methods such as [102, 103] show promising results on
real-world scenes. However, there is no clear way to extract AO from their shading
estimation. Although shading and AO have an almost similar look under spatially
uniform and non-directional lighting, our focus is on AO generation in real-world
scenes that contain a diverse set of materials and objects lit by complex illumination.
[104] detects AO from multiple images captured with varying illumination. [105]
detects normal, reflectance, and illumination from shading. In comparison, our
proposed method focuses on generating the AO of a whole scene from a single
image.

Most related to our work, Innammorati et al. [106] decomposes a single RGB
image into diffuse albedo, diffuse illumination, and specular shading and ambient
occlusion. Their method aims to estimate AO that is already present in an image. In
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contrast, we generate reasonable AO that is not present by inferring geometry and
semantics. We emphasize that estimation and generation are entirely different tasks.
This difference becomes clear in applications such as image composition, where
there is no AO present between the foreground and background in the image, as
shown in Sec. 3.6.1.

3.2.3 Image Editing

Image Composition Image composition is one of the most common tasks in image
editing. In image composition, a foreground region of one image is extracted and
pasted to a background region of another image. Generating realistic composited
images requires a plausible match for both contexts and appearances. Given a
composited image and a mask to identify the foreground, image harmonization
methods try to match the appearance of the foreground to that of the background (or
vice versa) using global statistics [107–110], gradient domain [111, 112], or supervised
learning [113, 6, 114]. However, these approaches only modify inside the foreground
region and do not consider the effect of placement, such as occlusion by the placed
foreground region itself. For example, those methods cannot produce the soft shadow
underneath a car on a sunny day. To the best of our knowledge, our RGB2AO is the
first attempt to produce such an effect in image composition.

Image Relighting Lighting estimation from a single image has long been stud-
ied [115]. There has been much progress in this field thanks to data-driven ap-
proaches for both outdoor scenes [116, 117] and indoor scenes [118, 119]. Estimated
lighting condition is used to photo-realistically render 3D objects into background
images with many lighting conditions. However, our RGB2AO aims for inserting
2D objects, and these approaches cannot be applied.

3.2.4 Depth Estimation

Monocular depth estimation from a single RGB image is a fundamental task and has
long been studied [120–123]. Recent methods try to encourage smoother gradient
changes and sharp depth discontinuities [93] or obtain a model that generalizes well
on datasets unseen during training [94]. However, estimating depth that is accurate
enough to generate AO on top of it is very hard, as we will later show in Sec. 3.5.3.
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𝒑

𝝎

Figure 3.2: Overview of how AO is computed. A hemisphere of rays ω⃗ωω is constructed
for a given point p⃗ on a surface. Red (blue) arrows are rays that are (not) occluded
by surrounding surfaces.

3.3 AO Formation Model

We briefly summarize how AO is typically computed and used to approximate
global illumination in computer graphics. Given a surface point ppp shown in Fig. 3.2,
ambient occlusion illumination AO(ppp, n⃗) is defined as follows [96]:

AO(ppp, n⃗) =
1
π

∫
Ω

V(ω⃗ωω,ppp)max
(
0, ω⃗ωω · n⃗

)
dω⃗ωω , (3.1)

where n⃗ is the surface normal at point ppp, and V(ω⃗ωω,ppp) ∈ {0,1} is the visibility
function over the normal-oriented hemisphere Ω, and V(ω⃗ωω,ppp) is one if a ray starting
from ppp intersects an occluder within some fixed distance from ppp and otherwise zero.
The range of AO(ppp) is 0 ≤ AO(ppp) ≤ 1, where ppp is zero when ppp is fully visible, and ppp is
one when the whole hemisphere at ppp is occluded.

Computing integrals in Eq. (3.1) for each point of a 3D scene is requires excessive
computational cost for real-time rendering. To generate a plausible AO efficiently
for a specific camera viewpoint, most approaches use information from the screen-
space buffers such as depth and normal of neighboring pixels to speed up the
computation [95, 96, 89].

Let xxx ∈R3×H×W be an RGB image, where H and W represent height and width
of the image. Applying Eq. (3.1) on each pixel of xxx, we obtain its corresponding
grayscale AO yyy ∈RH×W. An example of the generated yyy is shown in Fig. 3.3. Here,
we instead plot the values of 1− yyy for the purpose of intuitive visualization. We call
1− yyy the AO map. When applying the AO effect to create a new image xxx′′′ ∈R3×H×W,
each pixel in xxx′′′ is computed by multiplying its color value by the corresponding
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AO map RGB image (AO off) RGB image (AO on)

Figure 3.3: Ambient occlusion effect applied to an RGB image. Ambient occlusion
works by darkening the regions in the image according to the local scene geometry.
This effect is achieved by multiplying the AO map (left) to the RGB image (middle)
to obtain the enhanced render (right).

pixel in the AO map:
x′i jk =

(
1− a · y jk

)
·xi jk , (3.2)

where i is the index for the channel dimensions, and j, k are the indices for the pixel
dimensions, 0 ≤ a ≤ 1 is an arbitrary chosen scaling factor. When a = 0, the image is
not modified (x′i jk = xi jk). When a = 1, Eq. (3.2) is reduced to x′i jk =

(
1− y jk

)
·xi jk.

In the following sections, we describe how we approximate Eq. (3.1) by using
only RGB information.

3.4 Proposed Method

We propose an end-to-end trainable neural network model for AO generation from
a single image. First, we describe the baseline approach following recent conditional
GAN methods for I2IT in Sec. 3.4.1. We subsequently describe our AO generation
model in Sec. 3.4.2. We propose two extensions: (i) multi-task learning of AO and
depth prediction (in Sec. 3.4.2) and (ii) data augmentation that is specific to AO
generation (in Sec. 3.4.2).

3.4.1 Baseline Model

Here we briefly introduce a recent I2IT model for our baseline. Given a set of
images {..., (xxxi, yyyi)}, the objective is to obtain a generator G that converts xxx to yyy. To
obtain a better G, conditional GAN methods for I2IT such as Pix2pix [12] introduce
a discriminator D that aims to distinguish real images from generated images.
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Conditional GANs model the conditional distribution of real images by the following
minimax game:

min
G

max
D
LGAN(G,D), (3.3)

where the objective function LGAN(G,D) is defined as

LGAN(G,D) = E(xxx,yyy)[logD(xxx, yyy)]+Exxx[log(1−D(xxx,G(xxx)))], (3.4)

where we use Exxx ≜ Exxx∼pdata(x) and E(xxx,yyy) ≜ E(xxx,yyy)∼pdata(x,y).

To have larger and better receptive field, Pix2pixHD [30] uses multi-scale dis-
criminators D1, ...,DN. An input to Dn is down-sampled by a factor of 2n−1. Then,
Eq. (3.3) becomes as follows:

min
G

max
D1,...,DN

N∑
k=1

LGAN(G,Dk). (3.5)

Pix2pixHD [30] also introduces a feature matching loss that matches an inter-
mediate representation of a discriminator from the real and the synthesized image.
Given the i-th layer feature extractor of discriminator Dk as D(i)

k , the feature matching
loss LFM(G,Dk) is as follows:

LFM(G,Dk) = E(xxx,yyy)

T∑
i=1

1
Ni

[
||D(i)

k (xxx, yyy)−D(i)
k (xxx,G(xxx))||1

]
, (3.6)

where Ni indicates the total number of elements in each layer and T is the total
number of layers. Thus, the full objective is as follows;

min
G


 max

D1,...,DN

N∑
k=1

LGAN(G,Dk)

+α N∑
k=1

LFM(G,Dk)

 , (3.7)

where α is a hyper-parameter to balance the two terms.

3.4.2 AO Generation Model

In this chapter, we have a set of triplets {..., (xxxi, yyyi,dddi)}, where xxxi ∈R
3×H×W, yyyi ∈R

1×H×W,
dddi ∈ R

1×H×W indicate an RGB image, an AO map, and a depth map, respectively.
Our objective is to obtain a best generator G that converts xxx to yyy. We extend the
baseline model in Sec. 3.4.1 in two points that are specific to AO generation: (i)
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Figure 3.4: RGB2AO model overview. We develop a fully convolutional network for
AO map generation from an input RGB image. We extend a variant of the Hourglass
network to enable multi-task learning, so as to encourage the learned feature to
capture geometry-aware information relevant to the AO generation task.

multi-task learning of AO and depth and (ii) data augmentation by randomizing
AO distribution.

Multi-task Learning of AO and Depth

Simultaneously inferring both AO and depth is beneficial because ambient occlusion
is closely related to 3D geometry of a scene. As shown in Fig. 3.4, we introduce a
depth estimation model F that takes xxx and generates the depth F(xxx) ∈R1×W×H. For F,
we use a similar CNN with G and share the encoder part for multi-task learning. For
loss functions, we adopt loss functions used in MegaDepth [93].

LD(F) =Ldata(F)+γLgrad(F), (3.8)

where γ is a hyper-parameter and Ldata(F) and Lgrad(F) are called scale-invariant
data term and multi-scale scale-invariant gradient matching term, respectively.
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Scale-Invariant Data Term Let ri be the residual of values between predicted
and ground truth log-depth at pixel position i, Ldata(F) is defined as follows:

Ldata(F) =
1
n

n∑
i=1

(ri)
2
−

1
n2

 n∑
i=1

ri

2 , (3.9)

where n is the number of valid depth values in the ground truth depth maps.
Multi-Scale Scale-Invariant Gradient Matching Term Lgrad(F) is defined as

follows:
Lgrad(F) =

1
n

∑
k

∑
i

(|▽xrk
i |+ |▽yrk

i |), (3.10)

where rk
i is the log-depth residual at position i and scale k.

Therefore, the full objective is as follows:

min
G,F


 max

D1,...,DN

N∑
k=1

LGAN(G,Dk)

+α N∑
k=1

LFM(G,Dk)+βLD(F)

 . (3.11)

Here, β is a hyper-parameter to balance the multi-task learning.

AO augmentation

Our synthetic dataset used for training contains RGB images devoid of AO-like effects.
However, those effects are already present to some unknown extent on real-world
images. In order for our method to generalize to real captured images, we propose
to augment the input RGB images by adding some AO darkening during training.
Formally, we use Eq. (3.2) to generate a new image, with the scaling factor a taken
from the uniform distributionU(amin,amax). We empirically set (amin,amax) = (0.0,0.5).
This AO augmentation is applied on each image with probability p = 0.75, leaving
25% of the images without AO effects during training.

3.4.3 Dataset

To train our data-driven RGB2AO model, triplets of RGB-AO-depth data are required.
We have collected a synthetic dataset since there is no dataset available. The dataset
consists of 8590 triplets of RGB-AO-depth data in a resolution of 1920×1120. The
dataset is rendered from 3D scenes using Maya [124] with Arnold renderer for
ray-tracing. Each rendered data has its unique view, and we manually sample the
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Figure 3.5: Dataset for image-based AO generation. We show some samples from our
large-scale synthetic data for AO generation. From top to bottom: RGB images, AO
maps, and depth maps. The data is created from high-quality 3D scenes covering a
wide range of scene content. The images as well as the corresponding AO maps and
depth maps are rendered using Maya with the Arnold ray-tracing based renderer.

Table 3.1: Dataset statistics.

Subset # 3D scenes # images

Train 21 7188
Validation 3 397

Test 4 1005

view to cover a broad range of situations, as shown in Fig. 3.5. Most of the scenes
come from typical indoor scenes such as kitchen, living room, and bedroom while
we include some outdoor scenes and non-photorealistic scenes. We also manually
compose some scenes that contain objects on the floor or cars on the synthetic ground
to cover possible situations.

For rendering, we use a perspective camera with the focal length of 18 to make
the view wide enough for indoor situations. We set the “falloff” parameter for the
AO in Arnold to 0.2. We found that using larger values caused the AO to spread very
far from the objects making it harder for the model to infer. In addition to RGB and
AO, we also rendered a screen-space depth buffer to see whether simultaneously
estimating 3D geometry information benefits the AO generation.
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3.5 Experiments

3.5.1 Network Architecture

For the generator G, we used a variant of a hourglass network used in monocular
depth estimation [92]. The hourglass network consists of multiple convolutions by a
variant of inception [125] and down-sampling, followed by multiple convolutions
and up-sampling, interleaved with skip connections. We duplicate skip-connection
parts and decoder parts for multi-task learning, as shown in Fig. 3.4. Since it is a
fully convolutional network, it can be applied to images with arbitrary sizes during
the test phase. For the discriminator D, we used a discriminator which is identical to
the one used in Pix2pixHD [30].

3.5.2 Training

G and D were trained for 100 epochs starting with a learning rate of 2.0×10−4 and a
batch size of 6 with Adam optimizer [73]. We kept the learning rate for the first 50
epochs and then linearly decay the rate to zero over the next 50 epochs. It took about
a day for the training to finish. For the hyper-parameters we set (α,β,γ) = (1.0,1.0,0.5)
in all the experiments. Since the number of samples in the dataset is limited, we
also performed massive standard data augmentation to enhance the generalization
capability of our model. We changed contrast, brightness, saturation, and hue of
each image. All the images were resized to 384×224. During training, the images
were randomly flipped and cropped to 352× 192. During testing, images were
center-cropped to 352×192 for the quantitative evaluation.

3.5.3 AO Generation Performance

We performed the quantitative evaluation on our synthetic dataset to prove the
validity of our model for AO generation. We split the images in our dataset into
train, validation, and test subsets so that each does not share the same 3D scenes, as
shown in Table 3.1. The quantitative evaluation was performed on the images with
no AO applied in the test subset.

Evaluation Metrics

We evaluated the performance of AO generation methods by comparing the generated
AO maps with the corresponding ground-truth AO maps over the whole testing set.
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In addition to mean absolute error (MAE) and mean squared error (MSE), we used
the following evaluation metrics:

• SSIM: Structural similarity (SSIM) index [126] is widely used in quantifying
the perceptual similarity between two images. Higher is better.

• LPIPS: Learned Perceptual Image Patch Similarity (LPIPS) metric [127] is
a recently developed measure for perceptual similarity assessment. LPIPS
uses features extracted from CNN trained on a dataset of human perceptual
similarity judgments on image pairs. Lower is better.

Compared Methods

To the best of our knowledge, there is no existing image-based AO generation method
in the literature. In this experiment, we evaluated the AO generation performance
of our method and compared it with the following methods: (i) screen-space AO
methods on top of monocular depth estimation results or (ii) Innamorati et al. [106]’s
model originally for AO estimation.

Depth Estimation + Screen-Space AO We first trained a monocular depth
estimation network, which we call RGB2D for short, using the same dataset. We
further improved the quality of the generated depth map by applying bilateral
filter [128] to smooth the predicted depth values. For training the RGB2D model,
we used the same network with F to extract depth. Second, we applied different
screen-space AO generation methods on top of the resulting depth estimation results
to obtain the final AO map. We experimented with the following three variants.

• RGB2D+SSAO: We used a traditional AO generation method, SSAO [96].

• RGB2D+CNN: We used a CNN that is almost similar to G for a fair comparison.
Only the difference is changing the input from a three-channel RGB image to a
one-channel depth map.

• RGB2D (fixed) + CNN: One may argue that monocular depth estimation
methods trained on a mixture of various datasets can be used to extract fine
depth without training on our dataset. We tested a pre-trained monocular
depth estimation method TMRDE [94], which generalizes well to an unseen
dataset, without training.

Innamorati et al. We compare three methods derived from Innamorati et al. [106]’s
model.
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Table 3.2: Experimental results of AO generation on our synthetic dataset. ↓ and ↑
indicate that lower and higher is better, respectively.

MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

RGB2D+SSAO 0.0848 0.0193 0.611 0.524
RGB2D+CNN 0.0785 0.0181 0.687 0.484

RGB2D(fixed)+CNN 0.0797 0.0186 0.689 0.549
Innamorati-est 0.0952 0.0215 0.671 0.423

Innamorati-ft-est 0.0655 0.0120 0.764 0.311
Innamorati-ft-gen 0.0668 0.0107 0.763 0.329

Ours 0.0589 0.0103 0.767 0.235

• Innamorati-est: We directly run publicly available Innamorati et al.’s model
which is trained on their own dataset.

• Innamorati-ft-est: We finetuned Innamorati et al.’s model on our dataset for
AO estimation. Because the task is AO estimation, we used pairs of RGB with
AO and AO as the input and the target of the model, respectively.

• Innamorati-ft-gen: For a fairer comparison, we finetuned the model on our
dataset for AO generation. We applied the L2 loss to the occlusion output
only. We ignored the other outputs and losses because they are irrelevant or
detrimental. For example, the reconstruction loss forces the network to detect
the AO present and thus unfairly hurt the network’s ability to generate missing
AO.

Results

Accuracy Quantitative results are shown in Table 3.2. Our model outperforms both
types of approaches in each metric by a significant margin. We show generated AO
on an excerpt of the test set in Fig. 3.6. The Screen-Space AO approaches fail to
capture many of the details on real images, because they rely heavily on monocular
depth estimation results, which does not capture the high-frequency details for
accurate SSAO computation. This demonstrates the importance of learning a direct
RGB-to-AO mapping.

Innamorati et al.-based approaches produce very blurry outputs even if the model
is finetuned for AO generation. This demonstrates the importance of the choice of
the networks and loss functions specialized for AO generation.
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Figure 3.6: Comparison of AO generation methods on the test subset of our collected
synthetic dataset with no AO present in the input image. (best viewed with zoom
and in color.)

Speed We benchmarked our model on several image resolutions. Since our
model is a fully convolutional network, it can take images with arbitrary aspect
ratios as input. We tested images initialized randomly and show the average time on
100 runs on a TITAN V GPU. Our model runs at about 15 FPS and 8 FPS for 384×224
and 768×448 inputs, respectively.

3.5.4 Ablation Study

Contribution of Proposed Components

We performed quantitative evaluation by changing components of our model and the
result is shown in Table 3.3. Both of the two components are essential to achieve the
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Table 3.3: An ablation study on our proposed components. (i) and (ii) indicate
AO augmentation (Sec. 3.4.2) and multi-task learning of AO and depth predic-
tion (Sec. 3.4.2), respectively. ↓ and ↑ indicate that lower and higher is better,
respectively.

(i) (ii) MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

0.0622 0.0110 0.748 0.243
✓ 0.0600 0.0103 0.760 0.235

✓ 0.0607 0.0107 0.755 0.241
✓ ✓ 0.0589 0.0103 0.767 0.235

Table 3.4: An ablation study on changing amax in our AO augmentation (Sec. 3.4.2)
during training.

amax 0.0 0.25 0.5 0.75 1.0

SSIM ↑ 0.755 0.762 0.767 0.764 0.762

best result. Surprisingly, the model without both AO augmentation and multi-task
learning already clearly surpasses all the compared methods in Table 3.2. This is
due to our choice of networks and loss functions specific to AO generation. We
performed an ablation study about these choices in the supplementary material.

AO Augmentation

AO augmentation that we propose in Sec. 3.4.2 has one hyper-parameter amax, where
0.0 ≤ amax ≤ 1.0, to control the strength of the AO effect that we apply during training.
Bigger amax leads to include images with much AO effect during training. We tested
different amax and the result is shown in Table 3.4. As we increase amax from 0.0 (no
AO effect applied) to increase the AO effect, the performance was steadily improved
until amax = 0.5. However, it decreased when amax > 0.5. This indicates that including
images with excessive AO effect is harmful to improve the performance.

3.6 Applications

AO generation is useful for many image editing and enhancement tasks. We
demonstrate its ability to improve 2D image composition and for increasing contrast
in a geometry-aware manner. We edit the input RGB image using the generated AO
by the simple element-wise multiplication following Eq. (3.2). We set the scaling
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Input (mask) Input (RGB) DIH [6]
DIH [6]

+ AO magnification Generated AO

Figure 3.7: Example results on 2D image composition. Our method adds a plausible
shadow-like effect on both the foreground and background region using the generated
AO. Our method is complementary to DIH [6], which only changes the appearance
inside the foreground region. Images in the second and third row are from DIH.
Images in the first and fourth row from Adobe Stock. (best viewed with zoom and
in color.)

factor a = 1.0 in Eq. (3.2) to show all the results in this section. The experiments are
performed on images of size 384×224. Larger input images can be handled by (i)
resizing the image to a lower resolution, (ii) estimating AO, (iii) resizing it back to
the original resolution, and (iv) multiplying the generated AO with the input. We
show some examples of processing high-resolution images in the supplementary
material.

3.6.1 2D Image Composition

For image composites to look realistic, the lighting of the inserted object must match
the background scene. Prior harmonization methods such as [6] have been developed
to address this. Additionally, the object will cast shadows or otherwise affect the
lighting of the scene around it. While lighting estimation methods have been used to
insert 3D objects, inserting 2D objects is more complicated. With our AO generation,
we can address this. Given a composited image, we can apply the generated AO
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to make it look more realistic as the AO will darken the contact regions around the
composited object to simulate the shadows and help ground the object in the scene.

User Study To evaluate the effectiveness of our image composition results on real
images quantitatively, we performed a user study. We created a set of 26 images that
covers a wide variety of real examples, where some objects are composited (e.g., cups,
cars, and chairs). Some of the images were taken from the evaluation set of Deep
Image Harmonization (DIH) [6]. Some example results are shown in Fig. 3.7. To
show that our method is complementary to existing image harmonization methods,
we used the harmonized image by DIH as an input to our RGB2AO model. We
showed the two images to the subject and asked which one looks more realistic. As
a result, a total of 9 subjects participated in this study, with a total of 324 votes. Our
method obtained 80% of the votes (260 votes) over the compared method, showing a
clear preference for our method on this composition task.

Discussion One limitation of RGB2AO applied to 2D image composition is that
our composition sometimes changes some regions of the background image, where
compositing the foreground region should not affect. For example, in the third
and fourth row of Fig. 3.7, boundaries between walls and floors were exaggerated
apparently, but the composition of objects should not affect those regions. A practical
solution is to let users choose the region where the generated AO is multiplied.
Extending the current AO generation to automatically propose regions is a promising
research direction for future work.

3.6.2 Geometry-Aware Image Contrast

We can apply the generated AO map as an image filter for RGB images in order to
improve image contrast in such a way as to emphasize the depth in the image. We
enumerate some usages:

Avoiding Flat Look Images without sufficient contrast appear flat and dull.
Applying pixel-level contrast enhancement methods can improve the image appeal,
but might break its overall coherence. For example, shadows may become either
over- or under-exposed. Instead, our method allows applying contrast in a geometry-
aware manner by using AO to darken the right areas based on the scene geometry.
Some example results are shown in Fig. 3.8. For comparison, we also tested an
auto-contrast enhancement method, Auto Contrast in Adobe Photoshop. We can
see that our geometry-aware image contrast behaves entirely differently from Auto
Contrast from the second and third columns in Fig. 3.8.
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Input Auto Contrast
Geometry-Aware
Image Contrast Generated AO Estimated AO

Figure 3.8: Comparison between our AO-based contrast enhancement and Auto
Contrast in Adobe Photoshop. Note how Auto Contrast changes the global appear-
ance of the image while our technique focuses on darkening object boundaries such
as the bottles (red) and under the sofa (blue) in the first row. AO estimation struggles
to detect AO under real photos with complex illumination, such as the boundary
between the wall and the ceiling in the third row. Images in the first and second
rows from Adobe Stock. (best viewed with zoom and in color.)

One may argue that AO estimation can perform similarly on real photos where
no AO is missing. We drop AO augmentation part from our model and train it for
AO estimation using pairs of RGB with AO on and AO map. We show the result of
AO generation and estimation in the fourth and fifth columns in Fig. 3.8, respectively.
Real photos can contain full AO if the scenes are lit only by spatially uniform and non-
directional lighting. However, real scenes are usually lit by complex illumination,
making the visible AO reduced and making the AO estimation difficult, as we can
see. Thus, we believe that AO generation is different from AO estimation even in real
photos, and it is suitable for our downstream application, geometry-aware contrast
enhancement.

Manipulating Non-Photorealistic Images The usage of our RGB2AO model is
not limited to photorealistic RGB images. Some artists have tried to depict AO-like
soft shadows on illustrations manually by brush or some other tools. In contrast,
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Geometry-Aware
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Figure 3.9: Results of our RGB2AO on non-photorealistic images. Images from
Adobe Stock.

our RGB2AO model can do it in a fully-automatic way. Results of manipulated
non-photorealistic illustration images are shown in Fig. 3.9. We can see that our
model can generate plausible AO on everyday objects (e.g., chairs, plants, and pots)
and scenes (e.g., room).

3.7 Limitations and Discussion

One limitation of our RGB2AO model is that the model struggles on families of
objects and scenes that are not under-represented in the dataset for training. Some
examples of the failure cases are shown in Fig. 3.10. Collecting larger datasets with
more diverse scenes would alleviate this type of errors.

Another limitation is that our RGB2AO can only handle non-directional shadow-
like effects. Augmenting our AO generation framework with lighting prediction in
addition to geometry understanding can potentially handle such directional shadow
or inter-reflection. We hope our proposed method paves the way for future work in
this direction.
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Input Generated AO AO Magnification

Figure 3.10: Failure case examples. Our model failed to obtain AO on the bottom of
bottles and a ball in the first and second row, due to the lack of similar content in the
training data. Images from Adobe Stock. (best viewed with zoom and in color.)





Chapter 4

Learning from Synthetic Shadows for
Shadow Detection and Removal

4.1 Introduction

Shadows are prevalent in nature. Detecting and manipulating shadows is essential in
many computer vision and computer graphics downstream tasks [129–131]. Research
on shadow removal has advanced drastically by learning-based methods [132–134],
especially by convolutional neural networks (CNN) [131, 9, 135, 136]. These methods
are usually trained on pairs of shadow and shadow-free images of identical scenes in a
supervised manner. In order to make these pairs, we must first take a photo of a scene
with shadows and then take another photo after removing the occluder. Additionally,
we should manually or automatically annotate a binary mask indicating the presence
of shadows if the model requires mask information. This process dramatically limits
the number and variety of collectible scenes and can cause noisy/biased supervision.
Shadow removal models learned from such data do not generalize well to broad
real-world shadow images, as discussed in [10]. Besides, there is no guarantee
that shadow-free regions are unchanged under the sunlight conditions, making the
paired training images unreliable.

Some approaches have been proposed to overcome this challenge. The first
approach [10] learns the model on unpaired shadow and shadow-free images. It is
prevalent in many image-to-image translation tasks (e.g., CycleGAN [14]), but the
optimization is under-constrained, and shadow models learned from unpaired data
often perform poorly. The second approach [8] augments the existing paired triplets
datasets, but the variety of images produced by this approach is limited because it
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Figure 4.1: Overview of our shadow synthesis pipeline. It can efficiently synthesize
diverse and realistic shadow/shadow-free/matte image triplets. The triplet can be
obtained from arbitrary combination of a background image, shadow shape, and
shadow attenuation property. Note that matte is not binary.

just slightly darken or enlighten shadows given a triplet. The third approach [7]
obtains a new shadow image given a combination of shadow-free and mask image
pairs. However, the variety of generated shadows is limited, especially in terms of
shadow intensity. This is because the mapping between them is learned fully in a
data-driven way from the existing shadow datasets, which is a severe bottleneck, as
we have mentioned above.

In this paper, we tackle the mentioned challenge in shadow removal by generating
a large-scale, diverse, yet realistic shadow/shadow-free/matte triplets dataset for
supervised learning. As shown in Fig. 4.1, in our pipeline, a shadow image is
composed of three components; (i) a shadow-free image as a background, (ii)
a grayscale matte image indicating where the shadows are observed, and (iii)
parameters indicating the shadow attenuation property. We find that regarding
these components to be independent of each other is essential compared to the
previous composition approach [7]. For (iii), we extend a physically-grounded
shadow illumination model [137]. We transform the model so that simply randomly
sampling a set of parameters of it enables us to obtain diverse but realistic shadow
attenuation.

Similar to the condition of existing shadow removal datasets, we assume all the
occluder objects are outside the camera view in practice. We separate the generation
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process into two independent parts, shadow matte generation (offline) and shadow
composition using a shadow illumination model extending [137] (online), as shown
in Fig. 4.1. In the offline step, we render shadow matte images from publicly available
3D models. In the online step, we randomly sample the three components and then
synthesize a shadow image from them. The online step is computationally very
cheap, and we can obtain new and diverse triplets on-the-fly during the training of
neural network models.

Based on the pipeline, we propose a new dataset called SynShadow, containing
shadow/shadow-free/matte image triplets synthesized from rendered 10,000 matte
images and about 1,800 background images. We train a variety of shadow detection
and removal models on it to demonstrate its usefulness. We demonstrate that
simply fine-tuning from a SynShadow-pre-trained model improves existing shadow
detection and removal models. We demonstrate robust shadow removal results on
challenging USR [10] dataset, outperforming both supervised and unsupervised
learning models trained on existing datasets in a user study. We provide empirical and
detailed analysis of the synthesis pipeline’s design and demonstrate its superiority
over existing shadow synthesis methods.

In summary, our contributions are as follows:

• We present SynShadow, a large-scale dataset of shadow/shadow-free/matte
image triplets, and the pipeline to synthesize the diverse and realistic triplets.

• We demonstrate the usefulness of SynShadow in improving various existing
CNN models for shadow detection/removal by fine-tuning and achieving
robust shadow removal on more challenging inputs.

4.2 Related Work

4.2.1 Shadow Removal Methods and Datasets

Shadow removal is essential mainly in two aspects; (i) it is useful as a pre-processing
step for downstream applications that are not robust to shadow (e.g., document
recognition [138–141]) and (ii) it will give a perceptually better photo to users (e.g.,
in portraits [142]). Classical approaches remove shadows via user interaction [11] or
hand-crafted features [132, 143–145]. The emergence of CNN enables shadow re-
moval to learn from shadow/shadow-free image pairs, or shadow/shadow-free/mask
triplets [9, 135, 136] by regressing all the pixel values directly. In this approach,
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researchers have been trying to efficiently fuse both global and local contexts such
as a multi-stream network [9], a two-stage approach [135], a direction-aware at-
tention mechanism [136], or a recurrent module [146]. In contrast to these works,
SP+M [8] proposes a shadow image decomposition-based approach. First, given
an input shadow image, SP+M predicts parameters of a physical shadow illumi-
nation model [137] to generate a relit image. Second, it predicts a shadow matte
layer to blend the input shadow image and the relit image to generate the final
de-shadowed image. We show that our SynShadow can improve the performance of
both approaches.

The datasets for shadow removal that we have discussed about are constructed by
taking a photo with shadows and then taking another photo of the scene by removing
the occluder. This approach suffers from several limitations, as discussed by [10].
First, it is a very time-consuming process, resulting in a limited number of unique
scenes in the exiting shadow removal datasets. Second, it limits the diversity of the
collected shadow shapes since some occluder such as buildings and trees cannot be
removed. Third, the training pairs may have color/luminosity inconsistency or a
slight shift in the camera view since the camera exposure, pose, and environmental
lighting may change during the pair collection process.

Mask-ShadowGAN (MSGAN) [10] proposes to learn shadow removal from
unpaired and diverse shadow/shadow-free images by extending CycleGAN [14].
CycleGAN was modified to learn a mapping from a set of a shadow-free image
and a binary shadow mask to a single shadow image and vice versa. However,
learning from unpaired data is quite unstable, and even shadow-free regions are
often retouched, resulting in unnatural/undesired color/texture shifts. In contrast, we
convert diverse shadow-free images into the paired triplets for supervised learning
to cope with this limitation.

4.2.2 Shadow Synthesis

Existing approaches for synthesizing diverse and realistic shadow images are divided
into three.

The first approach is to render shadow/shadow-free image pairs directly using
a 3D renderer. Sidorov et al. [147] renders these pairs in urban landscape from a
computer game. However, these images are significantly different from popular
benchmarks for shadow removal, SRD [9] and ISTD [135], because most of the
occluder in these images is inside the camera view. Gryka et al. ’s work [133] for
user-guided shadow removal first loads it to a 3D renderer, places automatically-
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segmented silhouettes of real objects, and renders shadows on the background by
ray-tracing. However, their rendering results may be physically incorrect because
the renderer has no access to the background image’s material information. We
composite shadows on background images with the help of shadow illumination
model [137] that directly models the relationship between shadow and shadow-free
images.

The second approach is to augment existing real datasets, which we call shadow
augmentation. Le et al. [8] use the same shadow illumination model with our approach.
Specifically, given a shadow/shadow-free/binary mask triplet, they estimate the
parameters of the shadow illumination model and only slightly perturb the shadow
attenuation slope (by a scaling factor ranging from 0.8 to 1.2) to create slightly
different shadow images. However, there are two drawbacks. First, the variety
of the generated shadow images is not diverse since they only augment existing
datasets and cannot generate the images from a new scene. Second, they regard
these parameters as being dependent of physical conditions in the scene of the given
triplet. The parameters obtained from one triplet cannot be transferred to another
triplet. On the other hand, using our proposed parameter randomization of the
shadow illumination model, we can synthesize shadow/shadow-free/matte image
triplets given arbitrary combinations of shadow-free background images and shapes
of occluder objects.

The third approach is composing shadows given an arbitrary shadow-free image
as a background, which we call shadow composition. Cun et al. [7] propose Shadow
Matting GAN (SMGAN), which composes realistic shadows given a shadow-free
image and a randomly sampled shadow mask using CNN. However, there are
two drawbacks. First, SMGAN itself is learned from existing real shadow/shadow-
free/mask image triplets, which also limits the variety of shadows that SMGAN
can generate in terms of shadow intensity. Second, SMGAN assumes a one-to-one
correspondence between shadow-free/mask pair collections and shadow image
collections for learning the mapping between them. This is unrealistic because an
unlimited number of shadow images with varying shadow intensity can be possible
given a shadow-free/mask image pair. In contrast, we generate hundreds of different
shadow images of a scene with varying shadow intensity given the same pair.

There are some recent papers on shadow generation [148–150]. However, they
are not applicable to our setting. ARShadowGAN [148] and RGB2AO [149] are
for casting shadows caused by the occluder inside the camera view. Wang et al. ’s
work [150] is limited to a scene where a video from a single viewpoint is available.
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4.2.3 Shadow Detection

Traditional approaches for shadow detection develop a physical model based on
illumination invariant assumption [143, 151–153] or employ various hand crafted
features [129, 132, 134, 154–157]. Recent approaches use CNN [131, 158, 159] and
try to effectively capture global and local context [135, 136, 160, 161]. DSDNet [162]
proposes to mine hard-positive/negative regions in the existing dataset and develop
losses and modules to attend these regions explicitly. Being orthogonal to DSDNet,
we synthesize a large-scale dataset including various hard-positive/negative regions
and let the detection models learn from them implicitly.

Collecting datasets for shadow detection is essential since prevalent approaches
are data-hungry. Existing datasets are classified into three: (i) when the occluder is
outside the camera view [9, 135], (ii) when the occluder is inside the camera view
[159, 163], and (iii) mixture of both [54]. We show that our synthetic dataset is useful
to improve the performance of shadow detection models for the case (i).

4.3 SynShadow Pipeline

Our goal is to synthesize a large number of triplets (xxxs,xxxns,andmmm). xxxs
∈ RH×W×3,

xxxns
∈RH×W×3, and mmm ∈RH×W indicate a shadow image, a shadow-free image, and a

shadow matte, respectively. H and W indicate the height and width of the images,
respectively. All the values in xxxs, xxxns, mmm are between zero and one. Our pipeline
consists of two steps, as shown in Fig. 4.1: shadow matte generation and shadow
composition. We assume that we can compose any shadow matte on random
background images only when occluders are outside the image.

In Sec. 4.3.1, we briefly summarize the shadow illumination model used in [8, 137]
formulating the relation between shadow and shadow-free pixels. In Sec. 4.3.2, we
explain how to synthesize shadow given an arbitrary combination of (xxxns, mmm) using
the illumination model. In Sec. 4.3.3, we explain how to obtain diverse shadow matte
images.

4.3.1 Preliminary: Shadow Illumination Model

In [137], the model is derived from the image formation equation proposed in [164]:

I(p,λ) = L(p,λ)R(p,λ), (4.1)
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where I(p,λ) is a scalar value indicating the intensity of the light reflected from the
point p at the wavelength λ. L and R indicate the luminance and the reflectance,
respectively. The model assumes a single primary light source and an ambient light
as the sources of illumination. It is further assumed that the shadow is cast solely by
the primary light source (e.g., the sun in outdoor scenes). If p is shadow-free (i.e., lit),
L at p can be expressed as a sum of two terms:

L(p,λ) = Ld(p,λ)+La(p,λ), (4.2)

where Ld is the direct illumination and La is the ambient illumination. Therefore, the
intensity Ilit(p,λ) we see at p is expressed as

Ilit(p,λ) = Ld(p,λ)R(p,λ)+La(p,λ)R(p,λ). (4.3)

In the case where some objects occlude the primary light source from the point p
and shadows are casted, the reflected intensity Idark is

Idark(p,λ) = a(p)La(p,λ)R(p,λ), (4.4)

where a(p) is a factor indicating the attenuation of the ambient illumination by the
occluder. a(p) is assumed to have roughly the same spectral distribution from all
incident directions. It is thus assumed to be independent of λ. By combining Eq. (4.3)
and Eq. (4.4), the relation between Ilit and Idark is formulated as follows:

Ilit(p,λ) = Ld(p,λ)R(p,λ)+
1

a(p)
Idark(p,λ). (4.5)

When a photo is taken, the actual color at a pixel in the photo corresponding to the
3D point p in the scene is obtained by integrating the both sides of Eq. (4.5) with the
camera’s spectral response functions. This operation is assumed not to change the
affine nature of the relationship between the shadowed and illuminated intensities.
Thus, the relation between Ilit and Idark at any pixel for the k-th color channel (k = 0,
1, and 2 for red, green, and blue) are expressed as follows:

Ilit
k = αk+γ Idark

k , (4.6)

where both αk and γ are scalar values. Thus, the shadow attenuation property of a
3D scene is represented by αk and γ. These parameters depend on camera and scene
properties, such as the material of surfaces and lighting conditions. Shor et al. [137]
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Figure 4.2: Parameters (l0, l1, l2,s1) we introduce for analysis.

demonstrated that it applies well to actual photos, even though it is not perfect due
to the presence of noise and the variations in the reflectance of surfaces.

4.3.2 Shadow Synthesis

Here we describe the proposed shadow synthesis pipeline. Let a shadow free image
be xxxns. We first obtain an image xxxdark

∈RH×W×3, where all the pixels are sheltered
and have the same attenuation property. We use the affine model in Eq. (4.6) to
compute xxxdark from xxxns:

xns
i jk = αk+γ xdark

i jk (4.7)

⇐⇒ xdark
i jk =

1
γ

xns
i jk−
αk

γ
, (4.8)

where i and j indicate indices for row and column axes, respectively, for all the
images.

The final image with shadows in some regions, xxxs, is obtained by composing xxxns

and xxxdark by alpha composition using the shadow matte mmm as the alpha factor;

xs
i jk = (1−mi j)xns

i jk+mi jxdark
i jk . (4.9)

We next discuss how to sample αk and γ to produce both plausible and di-
verse shadows. This is unknown and non-trivial. We provide observation for
understanding the relation of αk and γ. To clearly explain it, we convert αk and
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Shadow Shadow-free mask Shadow Shadow-free mask

Figure 4.3: Visualization of the shadow attenuation for each RGB channel in ISTD+
and SRD+ training set. The left and right side are the visualization of an example
triplet from ISTD+ and SRD+ training set, respectively. We fit linear functions
regressing xdark

i jk from xns
i jk for each channel and show the estimated functions as the

lines.

γ to four parameters (l0, l1, l2,s1) as shown in Fig. 4.2. Formally, this is written as:
s1 =

1−α1
γ , lk = αk. Given a shadow/shadow-free/mask image triplet in the ISTD [8]

and SRD [9] datasets, we visualize the relationship between the intensity of pixels in
the shadowed region in Fig. 4.3. We confirm that the shadow illumination model
in [137] holds. Besides, we observe that (l0, l1, l2) correlate to each other, and often
the relation is l0 > l1 > l2. We conjecture that this is because the ambient light is from
the blueish sky in outdoor scenes, which is also suggested in [156].

Based on this observation, we parametrize the shadow illumination model that
covers a plausible but diverse range of shadows. Inspired by domain randomiza-
tion [165], we obtain a set of parameters, where each of them is easy to sample
from an interpretable yet straightforward prior distribution and independent of
each other. Since lk’s are dependent of each other based on the observation, we
further introduce ∆l0 = l0− l1 and ∆l2 = l2− l1 and sample (l1,s1,∆l0,∆l2). We employ
a uniform distributionU(a,b) for both l1 and s1. (a,b) = (0.0,0.25) and (a,b) = (0.1,0.9)
are employed for l1 and s1, respectively. We employ normal distributionN(µ,σ) for
both ∆l0 and ∆l2. (µ,σ) = (0.05,0.025) and (µ,σ) = (−0.05,0.025) are employed for ∆l0
and ∆l2 for R and B channel, respectively.
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Input Matte OursSMGAN

Figure 4.4: Difference between Shadow Matting GAN (SMGAN) [7] and our shadow
composition model. Note that SMGAN takes a binary mask input.

Finally, xxxdark is computed as follows:

xdark
i jk =


s1

1.0−l1
(xns

i jk− lk) if xns
i jk− lk ≥ 0.0,

0 if xns
i jk− lk < 0.0.

(4.10)

If the slope of the shadow attenuation s1
1.0−l1

is larger than one, it is unnatural. In
that case we re-sample (l1,s1,∆l0,∆l2) to stabilize the quality of the sampled shadow
images.

We show the result of our shadow composition in Fig. 4.4. While SMGAN only
generates a single shadow image given an input image and a matte, our composition
model is able to create various shadow images. We show the comparison of the
datasets for shadow removal in Fig. 4.5. Although the composited shadow may not
fully match the background geometry, we can obtain realistic and diverse shadows.

4.3.3 Shadow Matte Generation

We obtain a shadow matte mmm, where mi j = 1 if the pixel is inside the umbra, 0≤mi j ≤ 1
if the pixel is in the penumbra, and mi j = 0 otherwise. We put a light, occluder
objects, a camera, and a virtual plane in Blender1 as shown in Fig. 4.6. We capture
the virtual plane through the camera, obtain the amount of light reaching each point,
and normalize the amount to obtain the shadow matte. Note that all the occluder
objects are assumed to be outside the camera view, and thus they are not apparent

1https://www.blender.org/
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ISTD [135] SRD [9] GTAV [147] SynShadow

Figure 4.5: Comparison of the datasets for shadow removal. Shadows in GTAV are
mostly caused by occluder objects inside the camera, while shadows in ISTD, SRD,
and SynShadow are caused by those outside the camera.

in the final shadow/shadow-free/matte images. Therefore, we need the geometric
relation of the light, the occluder, the camera, and the virtual plane. We randomly
scale, translate, and rotate each component to generate a diverse shadow matte. We
sample occluder and light as follows.

Occluder: We use AMASS [166] and ShapeNet [167], which are collections of
publicly available 3D models as the occluder objects. We ignore the material or
other information of the models and only use their geometric information. AMASS
contains a large number of captured human 3D mesh sequences. We randomly
sample 3D meshes from AMASS to obtain 3D human meshes. For common objects,
we randomly sample 3D meshes from 26 object categories that are often seen in
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Figure 4.6: Overview of the occluder projection.

outdoor scenes from ShapeNet. In a single capture, we sample up to two models,
where each model is either a human or an ordinary object.

Light: By changing the radius of the spherical light in Blender, a different
penumbra can be obtained in the same geometrical configuration. We randomly
sample various radii to obtain a diverse variety of penumbras for the same scene.
Note that there is no need to randomize the brightness of the light. We will randomize
this parameter separately later using the shadow illumination model.

4.4 Experiments on Shadow Removal

4.4.1 Datasets, Models, and Evaluation Metrics

We evaluate the potential of SynShadow comparing with other datasets by using
several state-of-the-art algorithms. Note that we are not proposing novel techniques
for shadow removal but a new dataset.

Datasets

We employed three datasets, ISTD+, SRD+, and USR, for evaluating shadow removal
performance.

ISTD+: ISTD+ [8] consists of shadow/shadow-free/mask image triplets. Note
that the mask is represented in a binary format. It has 1,330 and 540 triplets for
training and testing, respectively. It is a color-adjusted version of ISTD [135] to cope
with a color inconsistency issue between the shadow images and their corresponding
shadow-free images caused by the triplet collection process. Although all the prior
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works used the original ISTD, [8] showed that ISTD is not appropriate for evaluating
shadow removal methods fairly.

SRD+: SRD+ has 2,675 and 406 shadow/shadow-free/mask image triplets for
training and testing, respectively. SRD+ is based on SRD [9]. We found that the
original train-test split of SRD is inappropriate since images coming from the identical
background are both in the training and testing sets, as shown in Table B.1. Therefore,
we re-split SRD so that there is no overlap of scenes in the two sets and removed
near-duplicate images. SRD initially consists of shadow/shadow-free image pairs.
Mask for shadow region is extracted following [7].

USR: USR [10] consists of unpaired 2,445 shadow images and 1,770 shadow-free
images. It is more challenging than ISTD+/SRD+ because it contains diverse shadows.
It consists of thousands of different diverse scenes, while SRD and ISTD are only
comprised of hundreds of scenes. The shadow images are split into 1,956 and 489
images for training and testing, respectively.

We also describe the detailed configuration of SynShadow.

SynShadow: We generate 10,000 shadow matte images to generate SynShadow
as described in Sec. 4.3. The shadow-free images are obtained from USR.

Models

We employed three approaches.

Supervised learning: Supervised learning models are trained on paired shadow/shadow-
free images such as ISTD+, SRD+, and SynShadow. We mainly employed the best
recent models, decomposition-based SP+M [8] and regression-based DHAN [7]. We
also employed regression-based DSC. For a fair comparison, when we train models
on SynShadow, training details such as learning schedule and hyper-parameters
are similar to those used for training on ISTD+/SRD+. Note that the codes of
ST-CGAN [9], DeshadowNet [135], and ARGAN [146] are not publicly available,
and we could not evaluate their performance on ISTD+/SRD+ unfortunately.

Unsupervised learning: Unsupervised learning models are trained on unpaired
shadow/shadow-free images. Following [10], we tested MSGAN [10] and Cycle-
GAN [14]. We also trained these models on SRD+/ISTD+ in an unpaired manner for
a more fair comparison with supervised learning models.

Traditional methods: We tried Guo et al. [132] and Gong et al. [132]. Note that
Gong et al. [11] is an interactive method that requires the user’s manual input.
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Table 4.1: RMSE comparison with the state-of-the-art methods in LAB color space.
Gong et al. [11]* is an interactive method. I/S is short for ISTD+ or SRD+, so that the
dataset for training and evaluation is similar. SS is short for SynShadow.

Tested on ISTD+ SRD+
Metrics S NS ALL S NS ALL

Methods Trained on

(a) Traditional
Guo et al. [132] - 22.3 4.3 7.1 24.3 6.5 10.3
Gong et al. [11]* - 14.4 3.4 5.1 18.5 3.9 7.0

(b) Unsupervised
MSGAN [10] USR 24.7 6.9 9.9 30.3 11.0 15.1

CycleGAN [14] USR 25.6 7.4 10.2 29.9 11.5 15.4
MSGAN [10] I/S 14.1 7.6 8.6 16.5 7.6 9.5

CycleGAN [14] I/S 14.3 7.9 8.9 17.5 7.5 9.6

(c) Supervised
SP+M [8] SS 11.3 3.6 4.9 11.6 4.1 5.7
DHAN [7] SS 9.7 4.0 4.9 13.8 5.1 6.9
SP+M [8] I/S 8.5 3.6 4.4 12.2 3.4 5.3
DHAN [7] I/S 7.4 4.8 5.2 12.7 5.9 7.4
DSC [136] I/S 8.3 4.6 5.2 16.2 5.8 8.0

(d) Supervised, pre-trained on SynShadow
SP+M [8] I/S 6.9 3.4 4.0 10.9 3.6 5.2
DHAN [7] I/S 6.6 4.2 4.6 10.6 5.6 6.6

Evaluation Metrics

We followed all the prior works on shadow removal in quantitative evaluation.
We used root-mean-square error (RMSE) in LAB color space between the ground
truth and predicted shadow-free images. RMSE is reported for all pixels (ALL).
Additionally, RMSE is reported for only shadow pixels (S) and only non-shadow
pixels (NS). Smaller RMSE indicates better performance.

4.4.2 Experiments on ISTD+/SRD+ Datasets

We demonstrate how we can use SynShadow to improve the supervised shadow
removal models on the existing shadow removal datasets, ISTD+ and SRD+. We
considered two scenarios for using SynShadow:
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Input DSC [136] DHAN [7] SP+M [8] DHAN-ft SP+M-ft Ground truth

Figure 4.7: Qualitative comparison of shadow removal models. Results in top and
bottom two rows are from models trained and evaluated on ISTD+ and SRD+,
respectively. DHAN-ft and SP+M-ft indicates DHAN and SP+M pre-trained on
SynShadow and later fine-tuned on each dataset.

Zero-shot: We trained the models on SynShadow and evaluated them on
ISTD+/SRD+ test set.

Fine-tuning: We pre-trained the models on SynShadow, fine-tuned them on
ISTD+/SRD+ train set, and evaluated them on ISTD+/SRD+ test set.

Quantitative Evaluation

The results are shown in Table 4.1. We discuss the results in each scenario.

Zero-shot: Models trained on SynShadow (the first two rows in group c) outper-
formed unsupervised learning (group b) and traditional methods (group a) that do
not use the ISTD+/SRD+ dataset for training. Furthermore, the model trained on
SynShadow is almost compatible with most of the supervised learning models (the
last three rows in group c) trained and evaluated on a similar dataset.

Fine-tuning: When we fine-tuned SynShadow-pre-trained models (group d) for
each specific dataset, we constantly obtained the best results.

Qualitative Evaluation

In Fig. 4.7, we show the visual comparison of some supervised learning models
discussed in Table 4.1. The fine-tuned model’s improvement is attributed to not
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Table 4.2: Comparison by changing the training/fine-tuning dataset in shadow
removal. Top two results in each setting are highlighted in red and blue, respectively.
SS is short for SynShadow.

Tested on ISTD+ SRD+
Model SP+M DHAN SP+M DHAN
Metrics S NS ALL S NS ALL S NS ALL S NS ALL

Training
GTAV 26.9 4.5 8.0 28.1 10.9 13.6 GTAV 27.8 4.1 9.1 32.5 7.2 12.6
SRD+ 14.9 3.8 5.6 12.2 6.3 7.2 SRD+ 12.2 3.4 5.3 12.7 5.9 7.4

SS 11.3 3.6 4.9 9.7 4.0 4.9 SS 11.6 4.1 5.7 13.8 5.1 6.9
ISTD+ 8.5 3.6 4.4 7.4 4.8 5.2 ISTD+ 14.9 4.5 6.7 16.6 8.1 9.9

Fine-tuning
GTAV→ISTD+ 7.8 3.6 4.2 7.2 4.2 4.7 GTAV→SRD+ 11.9 3.6 5.4 13.0 5.6 7.2
SRD+→ISTD+ 7.6 3.5 4.1 7.2 4.7 5.1 ISTD+→SRD+ 11.9 3.4 5.2 11.8 5.5 6.8

SS→ISTD+ 6.9 3.4 4.0 6.6 4.2 4.6 SS→SRD+ 10.9 3.6 5.2 10.6 5.6 6.6

modifying non-shadow areas (the 1st and 2nd rows) and improved relit estimation
(the 3rd and 4th rows).

Transferability of Shadow Removal Datasets

We performed more detailed analysis on transferability of many shadow removal
datasets listed in Fig. 4.5. We again consider both zero-shot and fine-tuning setting
in Table 4.2.

Zero-shot: The result is shown in the upper half of Table 4.2. When the domain
of datasets for training and evaluation is different, the models trained on SynShadow
perform best. Surprisingly, the DHAN model trained on SynShadow even performs
better than those trained on similar domain of datasets for training and evaluation.
We conjecture that regression-based models may overfit to a small dataset.

Fine-tuning: The result is shown in the lower half of Table 4.2. We can clearly
see the advantage of pre-training on SynShadow, compared to the other datasets.

Ablation Study

We perform ablation study on how to generate shadow images.
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Table 4.3: Ablation study on design of randomizing parameters in the shadow
illumination models. SP+M [8] is trained on each variant for quantitative evaluation.
Top two results in each setting are highlighted in red and blue, respectively.

Tested on ISTD+ SRD+
Metrics S NS ALL S NS ALL

Color jitter 39.3 4.6 10.1 44.0 4.6 13.0
Color jitter (dark) 10.8 4.7 5.6 11.4 4.7 6.1
Gamma correction 23.3 3.9 6.9 33.6 4.1 10.3

Independent 13.4 4.0 5.4 12.6 4.2 6.0
Zero intercepts 14.9 3.7 5.4 13.2 4.2 6.1

Similar intercepts 23.3 3.5 6.7 18.9 4.0 7.1
Non-biased intercepts 12.1 5.5 6.6 12.8 5.9 7.3

Proposed 11.3 3.6 4.9 11.6 4.1 5.7

Shadow Model We tested various settings on how to generate the affine shadow
illumination model parameters (l0, l1, l2,s1). Five variants including the proposed
method are tested:

• Independent params: (l0, l1, l2,s1), are randomized independently. Note that
the range of each parameter is similar to our setting.

• Zero intercepts: l1 is fixed at 0.0. Note that l0 and l2 are still randomized with
respect to l1.

• Similar intercepts: The relation between (l0, l1, l2) is l0 = l1 = l2. In this case, the
shadow attenuation is assumed to be similar in RGB channels.

• Non-biased intercepts: We set µ = 0.0 in randomizing parameters.

• Proposed: This is based on our proposal, and we did not try any of the above
modifications.

We also tested some possible approaches for generating shadow images directly
by simple low-level image filtering operations. In all the cases, we used the same
shadow-free and matte images as those used for obtaining SynShadow.

• Color jitter: We tried color jitter, which is often used for image augmentation,
for each RGB channel to make the shadow images. In this case, attenuation in
each channel is assumed to be independent of each other. We followed a paper
for portrait shadow manipulation [142], where color jitter is formulated as a
3×3 color correction matrix.
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Figure 4.8: Ablation study on changing the number of images used for shadow-free
and matte images. The result of the SP+M model trained on ISTD+ is reported.

• Color jitter (dark): We found that the original implementation of [142] some-
times makes the shadowed region brighter. We limited the range of color jitter
so that the shaded region is always darker for a fair comparison.

• Gamma correction: We tried gamma correction to make the shadow images.
We compute xdark

i jk = (xns
i jk)y, where 1.5 ≤ y ≤ 3.0 is randomly sampled to produce

diverse shadows.

Comparison among all the variants is shown in Table 4.3. The proposed methods
performed much better than the other variants in both datasets. This result stresses
the importance of carefully setting the range in our proposed randomization of
parameters and selecting the proper shadow model.

Number of shadow-free and matte images We perform additional ablation study
on changing the number of shadow-free images and matte images in Fig. 4.8. The
number of shadow-free and matte images used in SynShadow is 1,770 and 10,000,
respectively. We randomly sample only a fraction of the datasets and trained the
SP+M model on the ISTD+ dataset. We observe that changing the number of
shadow-free images affects the performance mostly while changing those of matte
images affect RMSE slightly. Collecting more shadow-free images would further
enhance the utility of SynShadow.
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Table 4.4: Comparison of models trained on different datasets. User study results on
the USR testing set is reported.

(a) Model: SP+M [8]

Trained on Rating

ISTD+ 2.00 ± 1.02
SRD+ 1.52 ± 0.83

SynShadow 3.00 ± 1.40

(b) Model: DHAN [7]

Trained on Rating

ISTD+ 2.52 ± 1.18
SM-ISTD+ 1.68 ± 0.96

SRD+ 2.67 ± 1.17
SM-SRD+ 2.43 ± 1.16

SynShadow 3.07 ± 1.19

Table 4.5: Comparison with unsupervised learning and traditional approaches. User
study results on the USR testing set is reported. Gong et al. [11]* is an interactive
method.

Method Rating

Guo et al. [132] 1.71 ± 1.21
Gong et al. [11]* 2.61 ± 1.24

MSGAN [10] 2.37 ± 1.37
DHAN (SynShadow) 3.25 ± 1.2
SP+M (SynShadow) 3.00 ± 1.45

4.4.3 Experiments on USR

User Study

We performed a user study since there is no paired supervision for quantitative
evaluation in the USR dataset. The models trained on SynShadow are compared
with the best approaches from supervised/unsupervised/traditional methods. 30
shadow images are randomly chosen from the testing set. We displayed results
from a single input on a webpage in random order at the same time. Unlike the
user study in the MSGAN paper [10], we showed the original input as a reference
so that the evaluators can notice the difference between the results and the input.
We asked Amazon Mechanical Turk workers to rate each result on a scale from
1 (bad) to 5 (excellent). 300 votes are obtained from 10 users, and we report the
mean and standard deviation of the ratings in Table 4.4. Since comparing results
from an arbitrary combination of methods and datasets at once is very difficult, we
performed several experiments.



74 Learning from Synthetic Shadows for Shadow Detection and Removal

Table 4.6: Comparison with shadow augmentation approach proposed in [8]. User
study results on the USR testing set is reported.

Trained on Rating

ISTD+ 1.94 ± 1.05
Augmented ISTD+ 2.12 ± 1.05

SynShadow (BG-ISTD+) 2.81 ± 1.29

Fixed supervised learning model, different datasets: We fixed the model and
changed the dataset for supervised learning to demonstrate the significance of
SynShadow. First, we show the result using the SP+M model in Table 4.4a. The
result of the model trained on SynShadow obtained much better ratings compared
to those trained on the other datasets. Second, we show the result using the DHAN
model in Table 4.4b. For comparison with an existing shadow composition method,
SMGAN [7], we report the results using additional datasets. Following [7], we
combined images generated by SMGAN with the ISTD+ and SRD+ datasets, and
obtained SM-ISTD+ and SM-SRD+, respectively. Although SM-ISTD+, SM-SRD+,
and SynShadow internally use USR shadow-free images, the model trained on
SynShadow performed the best.

Comparison with unsupervised learning or traditional approaches: SP+M and
DHAN models trained on SynShadow are compared with traditional approaches
and unsupervised learning approaches in Table 4.5. Both methods obtained much
better ratings than the compared approaches. Fig. 4.9 shows the visual comparisons.
The previous best approach for the USR dataset, MSGAN [10], tends to fail to focus
only on the shadow region, resulting in drastic unwanted changes in textures in the
shadow-free areas. Therefore, supervised learning on the diverse data, even though
they are synthetic, is essential for robust shadow removal.

Comparison with shadow augmentation: In Table 4.6, we compare our approach
with the shadow augmentation approach [8] using the SP+M model. Specifically,
we consider the following settings in addition to the original ISTD+ dataset:

• Augmented ISTD+: Following [8], we augmented existing shadow/shadow-
free/mask triplets in the original ISTD+ dataset. Please refer to the third
paragraph in Sec. 4.2.2 for details.

• SynShadow (BG-ISTD+): For unbiased evaluation, we used shadow-free im-
ages in the original ISTD+ dataset as the background for obtaining SynShadow.
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Input Guo et al. [132] Gong et al. [132] MSGAN [10] DHAN (SS) SP+M (SS)

Figure 4.9: Qualitative comparison of shadow removal methods on USR test set. SS
stands for SynShadow.

Although [8]’s augmentation contributed to the improved rating, the model based on
SynShadow obtained a much better rating, even when the shadow-free images are
from the ISTD+ dataset. This result further highlights the importance of adequately
randomizing the shadow illumination model as we propose, compared to [8].

Ablation Study on Components of Shadow Synthesis Framework

For a more detailed analysis of how each randomized component of our shadow
synthesis framework contributes to the improved removal result in the USR dataset,
we compared the removal results by changing two factors of our pipeline:

• Shadow shape: We tested shadow masks from the ISTD+ and SRD+ datasets,
and shadow masks/matte from rendered 3D models.

• Composition: We tested the shadow illumination model and SMGAN [7] for
comparison.

As shown in Fig. 4.10, choosing the shadow illumination model instead of SMGAN
significantly boosts the shadow removal results. This result also suggests the
importance of the proposed illumination randomization.
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Shadow shape ISTD+ SRD+ 3D models 3D models 3D models
Composition SM-ISTD+ SM-SRD+ SM-ISTD+ SM-SRD+ Our model

Input Removal results

Figure 4.10: Ablation study on the choice of shadow composition model and source
of shadow shape evaluated on USR test set. As a shadow removal model, we used
SP+M [8]. SM-ISTD+ indicates SMGAN [7] trained on ISTD+ dataset.

4.5 Experiments on Shadow Detection

4.5.1 Evaluation Metrics

Following the prior works, we used the balance error rate (BER) [134] for quantitative
evaluation.

BER = 1−0.5× (
Ntp

Np
+

Ntn

Nn
), (4.11)

where Ntp, Ntn, Np, and Nn indicate the numbers of true positives, true negatives,
shadow pixels, and non-shadow pixels, respectively. A lower score indicates better
performance. BER is reported for all pixels (ALL). Additionally, BER is reported for
only shadow pixels (S) and only non-shadow pixels (NS).

4.5.2 Models and Datasets

For models, we used two models, DSDNet++ and BDRAR [161]. We modified
DSDNet [162], and only use weighted binary cross-entropy loss for training, and did
not use Distraction-aware Shadow (DS) loss proposed in the original DSDNet. This
is because we observed that it harms BER in our fine-tuning setting. We call this
variant DSDNet++.
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Input DSC [136] BDRAR [161] DSDNet [162] BDRAR-ft DSDNet†-ft Ground truth

Figure 4.11: Comparison of shadow detection models evaluated on ISTD test set.
BDRAR-ft and DSDNet†-ft denotes BDRAR and DSDNet† trained on SynShadow
and fine-tuned on ISTD train set, respectively.

For datasets, we use the ISTD testing set for the evaluation. For the training/fine-
tuning, we additionally consider the SBU dataset [159] consisting of 4085 and 638
images for training and evaluation, respectively.

4.5.3 Experiments on ISTD Dataset

We first trained shadow detection models on SynShadow and then fine-tuned them
on the ISTD dataset. We show some example shadow detection results in Fig. 4.11.
We observe that models trained on SynShadow and fine-tuned on the ISTD dataset
can better distinguish correct shadow regions and challenging fake shadow regions
such as tiles and dark areas by only employing pre-training and fine-tuning strategies.
The quantitative evaluation results are shown in Table 4.7. The fine-tuned results
clearly outperform the compared results, having almost 50% lower BER scores
than the current best model, DSDNet. Most of the improvement is attributed to
non-shadow regions.
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Table 4.7: Quantitative shadow detection results evaluated on ISTD test set. Top two
results in each setting are highlighted in red and blue, respectively.

Method S NS ALL

Supervised
Stacked-CNN [159] 7.96 9.23 8.60

scGAN [160] 3.22 6.18 4.70
ST-CGAN [135] 2.14 5.55 3.85

DSC [136] 3.85 3.00 3.42
BDRAR [161] 0.50 4.87 2.69
DSDNet [162] 1.36 2.98 2.17

Supervised, pre-trained on SynShadow
BDRAR 0.62 1.57 1.10

DSDNet† 1.13 1.04 1.09

For more detailed analysis, we performed a comparison by changing the dataset
for training and fine-tuning in Table 4.8. The model trained on SynShadow (2.74
BER in the ISTD dataset) is already comparable to most of the state-of-the-art models
except the DSDNet model in Table 4.7. We observe that SynShadow provides a better
pre-trained model than GTAV [147], SRD+, and SBU for fine-tuning on ISTD by
comparing the fourth and fifth rows in each table. This result supports our argument
that SynShadow provides complementary information compared to the existing
datasets.

We took the same procedure for the SBU dataset. However, there was no
performance improvement in BER. We conjecture that this is due to the nature of the
datasets. Most of the shadows in the SBU dataset are caused by occluder objects
visible in the camera view. In contrast, many shadows in the ISTD dataset are caused
by occluder objects invisible from the camera, which we also assume.

4.6 Limitations and Discussion

We discuss some of the limitations in SynShadow below.

Objects inside the view: It cannot handle the shadow cast by objects inside the
view. However, we would like to argue that there are many applications where we
want to remove shadows cast by objects outside the view, such as document and
portrait shadow removal, as we discussed in Sec. 4.2.1.
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Table 4.8: Comparison by changing the dataset for training and fine-tuning of shadow
detection models. Evaluation is performed on ISTD test set. Top two results in each
setting are highlighted in red and blue, respectively. SS is short for SynShadow.

Model DSDNet† BDRAR
Metrics S NS ALL S NS ALL

Training
GTA 15.83 19.37 17.60 12.83 46.67 29.75

SRD+ 10.68 2.36 6.52 4.63 8.64 6.64
SBU 7.19 2.14 4.66 7.75 2.10 4.92
SS 1.37 4.10 2.74 2.32 3.17 2.74

ISTD 1.07 3.01 2.04 0.50 4.87 2.69

Fine-tuning
GTA→ISTD 1.24 1.98 1.61 0.74 2.89 1.81

SRD+→ISTD 0.74 2.89 1.81 0.41 3.85 2.13
SBU→ISTD 1.02 2.07 1.55 0.64 2.55 1.59
SS→ISTD 1.13 1.04 1.09 0.62 1.57 1.10

Uneven surface: It assumes flat surfaces thus cannot explicitly cast shadows
on uneven surfaces. Viewers can sometimes find that the synthesized images look
unnatural. However, we can see some improved shadow removal results on uneven
surfaces in Fig. 4.7. Thus, shadow removal models can benefit from the proposed
pipeline due to diverse shadows.

Multiple lights: It is not straightforward to extend the shadow illumination
model to work in environments where there are multiple primary lights, which can
occur only in complex indoor scenes. However, we believe that shadow removal
is often required for avoiding strong shadow effects, which is usually caused by a
single primary light like the sun or the brightest light in indoor scenes.





Chapter 5

Conclusions

To cope with the data scarcity problem in supervised I2IT, we had a closer look on
the image formation process in this thesis. We proposed physically or artistically
motivated NN modules and data synthesis pipeline for more efficient and robust
optimization of I2IT models. We tackled three topics in I2IT: from photo to line-
drawing, from photo to ambient occlusion, from shadow to shadow-free images.

In Chapter 2, we presented the new approach for automatic photograph tracing
using neural networks. Given a photograph with an arbitrary size, our model
produces the clean and expressive line drawing images automatically in a raster
format. Our model which consists of two encoder-decoder based CNN is end-to-
end trainable, able to learn from noisy annotations, and very fast (e.g., 1.57s for a
4096×3072 RGB image) on a GPU. We showed that our model can produce more
favorable results than comparable approaches. We also demonstrated the potential
applications of our model in collaboration with artists to make manga BG images
and coloring books.

In Chapter 3, we presented RGB2AO, a novel task that generates AO from a single
RGB image with arbitrary size. Our model for RGB2AO is a fully convolutional
CNN specially designed for this task by extending an I2IT model in two points: data
augmentation specific for AO and joint inference of 3D-geometry information by
multi-task learning. We showed that our model can generate AO adequately. We also
applied the generated AO to two image modification tasks, contrast enhancement
and 2D image composition, and showed remarkable results that would not be
possible without our AO-based modification.

In Chapter 4, we presented SynShadow, a large-scale synthetic dataset of
shadow/shadow-free/matte image triplets, by integrating the shadow illumina-
tion model, 3D models, and the shadow-free image collections. This was enabled by
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introducing some assumptions such as occluder objects being outside the camera
view and a flat surface for the shadow projection. We showed that SynShadow is
very useful. SynShadow-trained shadow removal models outperformed existing
approaches by achieving the best rating in a user study on the challenging USR
dataset. Fine-tuning SynShadow-pre-trained models achieved up to about 50% BER
reduction on the ISTD dataset in shadow detection, and up to about 10% RMSE
reductions on the ISTD+ and SRD+ datasets in shadow removal, compared to the
best-performing approaches. We hope our proposed shadow synthesis pipeline
paves the way for future work to detect and remove diverse and challenging shad-
ows, benefitting from the growing number of 3D models and shadow-free image
collections.

Future Directions

In visual content creation, there are many interesting topics for future research.
We focus on some trends, list advantages and disadvantages, and discuss some
directions.

Unconditional Generative Models Owing to the recent development of GAN,
photorealistic, diverse, and high-quality images can now be generated from randomly
sampled latent codes such as StyleGAN variants [168, 169]. Recent works use these
models as fixed pre-trained models, and utilize them for image editing. These
works find ways to embed images into the latent codes of unconditional GAN
models [170, 171], and find editing vector in the latent codes space to alter specific
attributes [172, 173]. The advantage of these works is versatility; modifying any
attribute can be achieved in principle, unlike conditional GANs trained to change
the only specific type of attributes [44, 45]. However, the edited results often contain
unnecessary changes due to the entanglement of multiple attributes in latent codes,
and large-scale datasets are required. In addition to disentanglement, how we can
benefit from these approaches (i) for data-scarce domains such as comics and (ii) for
various types of user interaction beyond simple labels such as scribble inputs would
be an interesting research question.

Generation in More Structured Format Although 2D raster image generation has
been well studied, generation in other formats is less explored. Vector graphics
are widely used in digital graphics since its scalability and editability. Little effort
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has been paid for the generation of vector graphics using NNs, since they usually
have complex structures. Recently some works have been emerging. For example,
logo images in well-known SVG format are generated by sequence generation using
transformers [174] in DeepSVG [175]. Some works introduce a differentiable renderer
for vector graphics to use raster-based loss functions and iterative optimization
procedures [176, 177]. However, current approaches cannot generate complex
topology from scratch, or adding/removing elements during optimization.

Efficient Models for Deployment Enormous number of research papers have been
published recently and the results are undoubtedly promissing. However, some of
them are still far from deployment for real products due to its high computational
costs. A model for a single task can be compressed using various techniques used
for classification such as quantization and distillation as shown in [178, 179]. Still,
packing dozens of tasks into a single unified model is required to deploy many tasks
efficiently.
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Appendix A

Supplementary Results on Ambient
Occlusion Generation

A.1 Ablation Study

We performed ablation study on our AO generation model from three viewpoints.
Loss Functions We show that selecting an appropriate loss functions is important.

We tested L1, L2, and SSIM loss functions, which are used in Deep Shading [100]
for AO generation from ground truth depth and normal buffer. The comparison
of models optimized by different loss functions is shown in Table A.1. Our model
performs better, especially in LPIPS and MAE. To see the difference, we show some
results in Fig. A.1. Our results are significantly better than the others in that they
have less blur and artifacts.

Models We show that selecting an appropriate CNN model is important. In
Table A.2, we show comparison with different models used in previous works.

• Enc-Dec: encoder-decoder is widely used in image-to-image translation such
as Pix2pix [12]. We used ’resnet-6blocks’ model with two down/up-sampling
operations and six residual blocks from Pix2pix.

• UNet: Variants of UNets are widely used in intrinsic image decomposition [180]
and screen-space AO algorithm using CNN [100]. We used ’unet-128’ model
with seven down/up-sampling operations from Pix2pix.

• Innarmorati: Innarmorati et al. [106] designed another variant of UNet. We
considered two variants. ’Innarmorati-sc’ is the model trained from scratch.
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Table A.1: Ablation study on loss functions for AO generation. For fair comparison,
all the models are optimized with our AO augmentation and multi-task learning. ↓
and ↑ indicate that lower and higher is better, respectively.

MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

L1 0.0599 0.0102 0.764 0.303
L2 0.0615 0.0094 0.758 0.287

SSIM 0.0605 0.0096 0.786 0.250
Ours 0.0589 0.0103 0.767 0.235

Table A.2: Ablation study on different models for AO generation. For fair comparison,
all the models are optimized with AO augmentation and without the multi-task
learning. ↓ and ↑ indicate that lower and higher is better, respectively.

MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓ #params

Enc-Dec 0.0659 0.0120 0.766 0.258 7.8M
UNet 0.0650 0.0119 0.745 0.277 41.8M

Innarmorati-sc 0.0686 0.0129 0.743 0.293 8.5M
Innarmorati-ft 0.0669 0.0126 0.741 0.291 8.5M

CAN 0.0828 0.0187 0.663 0.398 0.08M
Hourglass 0.0600 0.0103 0.760 0.235 5.4M

’Innarmorati-ft’ is the model fine-tuned based on the weights obtained in their
model for AO estimation.

• CAN: context aggregation networks [13] is used to approximate a wide variety
of standard low-level image processing operators by CNN trained on input-
output pairs. We used ’CAN32+AN’ model.

We use Hourglass [92] network, and it performs significantly better in LPIPS despite
of the smaller number of parameters of the CNN. One reason may be that it has a larger
receptive field by inception module [125], which uses several convolutional layers
with different kernel size in parallel. This is essential to capture interaction among
large objects and stuff (e.g., ground, wall, ceiling) consistently for AO generation.
Although fine-tuning Innarmorati et al. [106]’s model trained for AO estimation in
their dataset for a single object helps to improve the result slightly compared to
the model trained from scratch, we observe that selecting the appropriate network,
hourglass, is much more important.

Resolution We show that our model performs better if it is trained and
evaluated on larger resolution inputs. We trained and evaluated our model on
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Figure A.1: Comparison of AO generation models optimized by different loss
functions tested on our synthetic dataset. Our results have less blur and artifacts.
(best viewed with zoom and in color.)

two times larger input resolution (448× 768). The model trained on larger input
resolution performs better in almost all the metrics, as shown in Table A.3. This
trend is also clear in the results shown in Fig. A.2.

A.2 Results on High Resolution Inputs

We show that our model can process high resolution images (e.g., 1024×2048) easily
and successfully. This is done as follows: (i) resizing the image to a lower resolution,
(ii) estimating AO, (iii) resizing it back to the original resolution, and (iv) multiplying
the generated AO with the input. Some results of AO generation on real high
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Table A.3: Ablation study on the resolution that the model is trained and evaluated
on for AO generation. For fair comparison, the images for evaluation are not
center-cropped during testing. ↓ and ↑ indicate that lower and higher is better,
respectively.

Input resolution MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

224×384 0.0566 0.0097 0.778 0.234
448×768 0.0561 0.0097 0.834 0.220

Table A.4: Comparison of different models for AO estimation. ↓ and ↑ indicate that
lower and higher is better, respectively.

Network Loss MAE ↓ MSE ↓ SSIM ↑ LPIPS ↓

w/o depth info.
Innamorati L2 0.0498 0.0064 0.836 0.220
Innamorati Innamorati 0.0500 0.0064 0.836 0.217
Innamorati ours 0.0491 0.0070 0.835 0.191
Hourglass L2 0.0445 0.0051 0.847 0.204
Hourglass Innamorati 0.0476 0.0055 0.833 0.225
Hourglass ours 0.0420 0.0052 0.856 0.163

w/ depth info.
Hourglass ours 0.0414 0.0051 0.857 0.162

resolution images are shown in Fig. A.3, Note that AO generation is performed on
the resized low-resolution image (384 pixels on the larger side).

A.3 Additional Experiments on AO Estimation

We show that our model also performs better than the existing AO estimation
model [106] with minimal modification. We trained AO estimation model using
different networks and loss functions from pairs of (i) multiplication of RGB and
AO and (ii) AO map. We did not use our proposed AO augmentation in all the
experiments, because it is specialized for AO generation. The result is shown in
Table A.4. Similarly to the ablation study of AO generation in Sec. A.1, selecting
proper network and loss functions are both important to achieve the best performance
in AO estimation.
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Input
Generated AO

(384×224 model)
Generated AO

(768×448 model) Ground Truth AO

Figure A.2: Results from models trained on different input resolutions. The model
trained on the lower resolution performs poorly. For example, generated AO is
inconsistent along the boundary of planes or objects (from the first to third row),
texture on flat surface is mistakenly detected as the source of AO (in the fourth row),
unnatural and sharp AO change (in the fifth and sixth row), and missing AO around
small objects (in the seventh row). (best viewed with zoom and in color.)
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Input Generated AO AO magnification

Figure A.3: Results on real high resolution images (2048 pixels for the larger side).
Due to file size limitation, the larger side is further resized to 512 pixels. Note that
‘Generated AO‘ images are predicted on low resolution (384 pixels for the larger
side) and then up-sampled. (best viewed with zoom and in color.)
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Supplementary Results on Synthetic
Shadow Generation

B.1 Further Analysis on SRD and SRD+

We find that the original train-test split of SRD [9] is inappropriate since images
coming from the identical background are both in training and testing set. These
images likely share the almost similar shadow attenuation property, because the
scenes are captured with nearly the same camera and outdoor lighting condition,
as shown in Fig. B.1. We argue that this makes the evaluation of shadow removal
models using SRD unfair.

To prove the argument, we made SRD+ by re-splitting SRD so that there is
no overlap of the background images in the two sets and removed duplicated
images. We run various methods for shadow removal on both SRD and SRD+. As
is done in all the experiments for shadow removal, we reported RMSE in 640×480
image resolution. The lower value indicates better performance. We tested both
regression-based methods (e.g., MSGAN [10], CycleGAN [14], DHAN [7]) and
decomposition-based methods (e.g., SP+M [8]).

First, we show that SRD+ is less challenging in Table B.1. We first trained a model
on a different dataset other than SRD and SRD+, and then evaluated on both SRD+
and SRD. We observe the clear performance improvement on all the methods when
we used SRD+ instead of SRD for the evaluation.

Second, the performance of regression-based methods clearly drops when we
switch the dataset for training and evaluation from SRD to SRD+ as shown in Table B.2.
This result supports our argument because regression-based methods can ’cheat’
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Figure B.1: Examples of the scene overlap between the train-test split in SRD [9].
The images in the odd and even columns are from the training and testing set,
respectively. The left pair seems to be near duplicates. The right pair share the
exactly the same background.

Table B.1: Training/evaluation on a different dataset. SRD+ is less challenging
compared to SRD in terms of RMSE.

Evaluated on
SRD+ SRD

S NS ALL S NS ALL

Trained on: USR
CycleGAN 29.9 11.5 15.4 31.5 11.7 16.5

MSGAN 30.3 11.0 15.1 31.0 11.1 16.0

Trained on: ISTD+
DHAN 16.6 8.1 9.9 19.9 9.2 11.8
SP+M 14.9 4.5 6.7 17.5 6.0 8.8

by just memorizing examples used for training if there is the background overlap
between the training and test set. The only exception is the decomposition-based
SP+M.

B.2 Additional Results on Shadow Removal and Shadow
Detection

We show the more results of supervised-learning-based shadow removal models
trained on different datasets. The result is shown in Fig. B.2 and Fig. B.5 for SP+M [8]
and DHAN [7], respectively. We also show more results comparing the models
trained on SynShadow with traditional approaches and unsupervised learning
approaches in Fig. B.3. We show some failure cases that even the best shadow
removal models trained on SynShadow cannot still handle in Fig. B.4. We hope to
solve them by collecting the more diverse and large-scale data in the future work.
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Table B.2: Training/evaluation on a same dataset. There is a remarkable performance
drop in the regression-based methods when we used SRD+ instead of SRD, which
suggests that the original split of SRD is inappropriate.

Trained / evaluated on
SRD+ SRD

S NS ALL S NS ALL

CycleGAN [14] 17.5 7.5 9.6 17.2 6.0 8.7
MSGAN [10] 16.5 7.6 9.5 12.3 5.4 7.1

DHAN [7] 12.7 5.9 7.4 8.5 4.1 5.1
SP+M [8] 12.2 3.4 5.3 11.3 4.3 6.0
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Input ISTD+ SRD+ SS

Figure B.2: Results of SP+M [8] trained on different datasets and tested on USR [10]
test set. SS is short for SynShadow.
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Input Guo et al. [132] Gong et al. [132] MSGAN [10] SP+M [8] (SS) DHAN [7] (SS)

Figure B.3: Qualitative comparison of shadow removal methods on USR [10] test set.
SS stands for SynShadow.



112 Supplementary Results on Synthetic Shadow Generation

Input Guo et al. [132] Gong et al. [132] MSGAN [10] SP+M [8] (SS) DHAN [7] (SS)

Figure B.4: Failure cases of shadow removal models. SS stands for SynShadow.
Failure cases are due to (i) very strong shadows (the first and second row), (ii)
non-uniform shadows (the third and fourth row), (iii) shadows with complex or
unseen shape (from the fifth to seventh row), and (iv) very bright background (from
the eighth to tenth row).
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Input ISTD+ SRD+ SM-ISTD+ SM-SRD+ SS

Figure B.5: Results of DHAN [7] trained on different datasets and tested on USR [10]
test set. SS is short for SynShadow. SM-ISTD+ and SM-SRD+ indicates ISTD+ and
SRD+ augmented by SMGAN generated images, respectively.
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