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Abstract

Tan Van Vu

Thermodynamic relations on irreversibility in nonequilibrium systems

Physical systems in the real world are basically operated and maintained in nonequilib-

rium states. To carry out a particular function, the system unavoidably consumes energy

from some resources or exchanges energy with its surroundings somehow. It is well known

that thermodynamic systems undergoing irreversible processes are always accompanied by

thermodynamic costs, which place fundamental limits on systems’ operational performance.

For example, molecular motors convert the chemical energy stored in ATP into a directed

movement; thus, the more energy is dissipated, the farther the motor can travel. Moreover,

one might intuitively expect a trade-off relation between the dissipation cost and the fluctu-

ation of the displacement. Unveiling such latent relations distinguishes the possible from the

impossible and deepens our understanding of the underlying mechanisms of physical systems,

thus providing insights into the design principles of optimal artificial machines.

Over the past few decades, there has been a flurry of research to understand the thermo-

dynamics of small systems, resulting in two comprehensive frameworks: stochastic thermo-

dynamics and quantum thermodynamics. Stochastic thermodynamics mainly focuses on the

thermodynamic aspects of classical systems far from equilibrium, whereas quantum thermo-

dynamics deals with quantum systems in which quantum effects emerge. These theoretical

frameworks allow us to investigate the physical properties of microscopic systems that are

subject to significant fluctuations. One of the central quantities in thermodynamics is entropy

production, which characterizes the irreversibility of thermodynamic processes. In nonequi-

librium steady-state systems, entropy production quantifies the amount of heat dissipated

into the environment. In the context of biological processes, entropy production reflects the

free energy lost in the spontaneous relaxation to perform a specific function. Furthermore,

entropy production sets universal limits on the efficiency of thermal machines, such as heat

engines and refrigerators. Therefore, revealing new relations on irreversibility and estimating

the degree of irreversibility have become important research topics.

In recent years, a powerful inequality known as thermodynamic uncertainty relation

(TUR) has been discovered for nonequilibrium systems described by Markov jump processes

and overdamped Langevin equations. The TUR asserts a trade-off between the uncertainty

of time-integrated currents (a statistical measure) and entropy production (a thermodynamic

measure), i.e., high precision of currents is unattainable without increasing the associated en-

tropy production. Remarkably, the TUR not only quantifies our intuition — higher accuracy



vi

requires more cost — for the first time but also imposes a lower bound on entropy production

in terms of moments of currents. Nevertheless, questions remain about how entropy produc-

tion constrains the current fluctuation in other stochastic dynamics and whether a tighter

lower bound on entropy production can be derived given additional information.

Such research questions are addressed in two separate parts of this thesis. In the first part

of this thesis, we focus on investigating the TUR in various dynamics from both theoretical

and practical perspectives. Motivated by the numerical fact that the TUR is no longer valid

in some stochastic dynamics, we derive novel TURs for a wide range of observables, which

are not limited to time-integrated currents. Employing an information-theoretical approach,

we obtain TURs for steady-state underdamped Langevin dynamics and for Langevin systems

driven by an external time-dependent control protocol. Our derived bounds indicate that

the entropy production cannot solely constrain the fluctuation of observables in the finite

times, and other complementary contributions such as the dynamical activity are required.

Going beyond the Markovian systems and adopting another approach based on the fluctuation

theorem, we derive TURs for non-Markovian systems, including time delay, measurement and

feedback control, and semi-Markov processes. The obtained TURs imply that in addition

to the entropy production, non-Markovian contributions such as the information flow and

memory effects play an important role in suppressing observable fluctuations. Along with

theoretical results, we also propose a TUR-based method, which exactly estimates entropy

production for overdamped Langevin dynamics and returns a tightest lower bound of entropy

production for Markov jump processes. The proposed method provides an effective and

efficient tool to infer dissipation in biological and physical systems from experimental data.

In the second part of the thesis, we aim to tighten the lower bound of the total entropy pro-

duction, thus sharpening the second law of thermodynamics. Specifically, we derive geometri-

cal bounds on the irreversibility in both quantum and classical Markovian open systems that

satisfy the detailed balance condition. Using information geometry, we prove that irreversible

entropy production is bounded from below by a modified Wasserstein distance between the

initial and final states, thus strengthening the Clausius inequality in the reversible-Markov

case. The modified metric can be regarded as a discrete-state generalization of the Wasser-

stein metric, which has been used to bound dissipation in continuous-state Langevin systems.

Notably, the derived bounds can be interpreted as the quantum and classical speed limits, im-

plying that the associated entropy production constrains the minimum time of transforming

a system state.

The thesis presents various thermodynamic relations on the irreversibility of thermo-

dynamic processes, which connect physical quantities such as dissipation, thermodynamic

length, observable fluctuations, dynamical activity, and evolution speed in both classical and

quantum open systems.
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Chapter 1

Introduction

1.1 Background and motivation

Thermodynamics is a phenomenological theory that studies heat and work, and their relation

to energy and physical properties of matter. The theory of thermodynamics is originally in-

vented with the purpose of investigating the working principle of heat engines, and then has

been rapidly developed into several related branches such as statistical mechanics, nonequi-

librium thermodynamics, and chemical thermodynamics. Since all systems in real world in-

evitably exchange energy with their surroundings in some form, thermodynamics has become

a crucial framework to study a wide variety of problems in both science and engineering.

The framework of thermodynamics is basically built upon five axioms, which are commonly

known as the laws of thermodynamics. The two central laws of these are the first and

second laws, which are the statements about energy conservation and the irreversibility of

thermodynamic processes, respectively. The first law states that the change of internal energy

3� is determined by the amount of work X, exerted on the system and the heat X& dissipated

from the system to the environment,

3� = X, − X&. (1.1)

The second law of thermodynamics can be stated in multiple ways. The Clausius theorem [1]

claims that for a thermodynamic system exchanging heat with a reservoir and undergoing a

thermodynamic cycle,

−
∮

X&

)
≤ 0, (1.2)

where ) denotes the temperature of the reservoir at a particular instant in time. The equality

of Eq. (1.2) is attained for quasistatic processes, naturally suggesting us define a state function

( for reversible processes as 3( = −X&/) . The quantity ( is indeed the thermodynamic entropy

of the system. Considering a cycle that takes the system from state � to state � under a

irreversible process and transforms back to � along a reversible path, the Clausius inequality

implies

Δ(tot B Δ( + Δ(m ≥ 0, (1.3)

where Δ( B (�−(� is the entropy change of the system and Δ(m B
∫ �
�
X&/) can be regarded

as the entropy change of the reservoir. Equation (1.3) is exactly a formula of the second law



2 Chapter 1. Introduction

of thermodynamics, which affirms that the total entropy production of the system and the

reservoir is always nonnegative. Notably, the second law has an important implication for the

arrow of time — all thermodynamic processes have a preferred direction (that increases the

total entropy). Nevertheless, the traditional thermodynamics deals only with macroscopic

systems being in (local) equilibrium states and with thermodynamic processes that bring the

system from an equilibrium state to another one, during which fluctuations are negligible.

Over the last two decades, substantial progresses have been made in studying thermody-

namics of small systems that are subject to significant fluctuations and driven out of equilib-

rium. A comprehensive theoretical framework, named stochastic thermodynamics [2–4], has

been developed, allowing us to investigate thermodynamic properties of microscopic dynamics

beyond the linear response regime [5, 6]. The notions of heat, work, and entropy production

have been extended, and the first and second laws of thermodynamics have been established

to the level of individual trajectories [7]. Because of non-negligible fluctuations, these ther-

modynamic quantities are no longer deterministic, but stochastic. Beyond the classical limit,

one has to invoke the framework of quantum thermodynamics [8–10] to include quantum ef-

fects such as coherence, correlation, and entanglement. Quantum thermodynamics transfers

the notions in the classical thermodynamics to quantum systems and derives analogs of the

conventional thermodynamic relations in the quantum regime from the established quantum

principles.

A key quantity in thermodynamics is entropy production, which is commonly used to

quantify the degree of irreversibility of physical processes. From a qualitative perspective,

entropy production characterizes the possibility of observing the time-reversed process; that

is, the larger entropy production, the less likely the time-reversed process will occur. Quan-

titatively, entropy production indicates the amount of heat dissipated to the environment in

nonequilibrium steady-state systems and the free energy lost in thermal relaxation processes.

Moreover, the positivity of entropy production imposes fundamental limits on the efficiency

of heat engines and the information-erasure cost via Landauer’s principle [11–13]. The im-

portant role of entropy production in thermodynamics suggests that a better understanding

of entropy production could lead to new directions in physics and other related fields. To

date, the formulation of entropy production and the investigation of its properties have been

extensively developed in various contexts, from classical to quantum systems [14].

Due to fluctuations in small systems, entropy production can be negative for some trajec-

tory but is always nonnegative on average. Intriguingly, a universal property regarding the

symmetry of the probability distribution of stochastic entropy productions was discovered

as the fluctuation theorem [15–20], from which the second law of thermodynamics can be

derived. The fluctuation theorem is a prominent result and has been applied to solve various

problems in physics and biology. In recent years, the thermodynamic uncertainty relation

(TUR), quantifying a trade-off between the fluctuation of an arbitrary current and the en-

tropy production, has been another important discovery in nonequilibrium statistical physics

[21]. Qualitatively, the TUR indicates that it is impossible to attain a small fluctuation with-

out increasing dissipation quantified by the entropy production in the system. Unlike the

fluctuation theorem, which is an equality encoding the distribution of entropy production,
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the TUR is an inequality formulated as

Var[q]
〈q〉2 ≥ 2

Δ(tot
, (1.4)

where q is an arbitrary time-integrated current and 〈q〉 and Var[q] B 〈q2〉−〈q〉2 are its mean

and variance, respectively. For instance, a current that is antisymmetric under time reversal

can be the distance traveled by a molecular motor or the heat flux in thermal machines. The

TUR was first derived for biomolecular processes and later proven for continuous-time Markov

jump processes [22, 23] and overdamped Langevin systems [24]. Subsequently, the violation

of the bound has been found for other dynamics, e.g., for discrete-time Markov chains [25]

and transport systems [26]. The TUR has been intensively refined in other contexts including

both classical and quantum systems [27–48]. A remarkable application of the TUR is the

estimation of entropy production (or dissipation) [49–51]. Generally, the underlying dynamics

of the system are required to evaluate the dissipation. Nevertheless, the TUR enables a way

to estimate dissipation without such prior knowledge of the system. That is, by observing

various fluctuating currents, one can infer a lower bound on entropy production. In addition

to entropy production, the current fluctuation is also lower bounded by the dynamical activity

(which is also known as frenesy [52]) [29, 36],

Var[q]
〈q〉2 ≥ 1

〈=〉 , (1.5)

where 〈=〉 denotes the average number of jumps between states in a Markov jump process.

Notably, the bound in Eq. (1.5) is valid for generic counting observables and will be called

the kinetic uncertainty relation (KUR) hereafter.

The TUR and KUR have two important implications. First, the (time-antisymmetric)

entropy production and the (time-symmetric) dynamical activity constrain current fluctua-

tions in nonequilibrium processes. To achieve high precision of currents, both dissipation and

frenesy need to be increased. Given these two quantities, the order of fluctuations can be

approximately estimated without knowing the microscopic details of the underlying dynam-

ics. Second, the TUR sets a lower bound on entropy production; thus, dissipation during a

finite-time process can be robustly inferred if the first and second moments of currents are

provided. Nowadays, with the advent of the experimental techniques, such statistical informa-

tion of fluctuating currents in small systems can be accessible without difficulty. Therefore,

the TUR provides a powerful tool for thermodynamic inference, which especially benefits

research in biology.

In this thesis, we investigate thermodynamic relations on irreversibility in nonequilibrium

systems, focusing on the role of irreversibility in suppressing fluctuations and the refinement

of the positivity of entropy production. These points are separately addressed in the two

parts of the thesis.

In the first part, we put the TUR in a broader range of stochastic dynamics including non-

Markovian systems, and study the connection between irreversibility and current fluctuations.

The TUR is originally derived for steady-state continuous-time Markov jump processes, thus

holding for overdamped Langevin systems. However, its violation can be numerically found
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in other dynamics such as underdamped systems [53], Langevin systems driven by a control

protocol [54], and non-Markovian systems [55–57]. This implies that entropy production

cannot solely constrain current fluctuations in such dynamics. Thereby, we derive novel TURs

and find that in addition to entropy production, other physical quantities such as dynamical

activity, information flow, and memory terms are necessary to suppress fluctuations. These

additional terms originate from the time-reversal symmetry breaking and the non-Markovian

nature. Along with the theoretical investigation, we also consider the application of the TUR

in the estimation of entropy production. The TUR establishes a saturable lower bound on

entropy production in terms of moments of time-integrated currents. Nonetheless, from the

practical point of view, it remains challenges to accurately infer entropy production from the

observed data without access to details of the underlying dynamics. Accordingly, we propose a

TUR-based method to exactly estimate entropy production of steady-state systems described

by overdamped Langevin equations [58]. In the case of Markov jump processes, the method

returns the tightest lower bound on entropy production. The study results confirm that

fluctuations contain a wealth of information about physical processes and can be effectively

exploited for thermodynamic inference.

In the second part, we refine the second law of thermodynamics for Markovian systems via

a geometrical approach [59]. Most macroscopic natural phenomena are irreversible, although

their microscopic physical processes are generally time-symmetric. According to the second

law of thermodynamics, a system undergoing an irreversible process generates (on average) a

positive entropy amount. This bound can be saturated only when operations are performed

in the infinite-time quasistatic limit. However, as real processes must be completed in finite

time, they are accompanied by a certain dissipation. Tightening the lower bound on entropy

production not only deepens our understanding of how much heat must be dissipated, but also

provides insights into quantum technologies such as quantum computation [60] and quantum

heat engines [61]. Considering each possible state of the system as a point on a manifold,

we prove that the entropy production is bounded from below by a modified Wasserstein

distance between the initial and final states. This implies that the entropy production can

be geometrically characterized beyond the linear response regime, thus shedding light on the

problem of minimizing dissipation in discrete-state systems. Our study result also reveals

that irreversibility constrains the state-transformation speed in quantum systems.

The thesis elucidates various relations between irreversibility and observable fluctua-

tions, and characterizes irreversibility of thermodynamic processes from both information-

theoretical and geometrical perspectives.

1.2 The structure of the thesis

The remainder of the thesis is organized as follows.

In chapter 2, we briefly introduce the framework of stochastic thermodynamics in both

continuous-state Langevin systems and discrete-state Markov jump processes. The descrip-

tion of stochastic thermodynamics in this chapter is sufficient to understand all the results

presented in the thesis. The notions of heat, work, and entropy production are generalized to

the level of individual trajectories, and these thermodynamic quantities become stochastic.



1.2. The structure of the thesis 5

The first and second laws of thermodynamics are then established and have analogous forms

as in the classical thermodynamics. In addition, various versions of the fluctuation theorems

and their derivations are also described.

Chapter 3 presents the framework of quantum thermodynamics and relevant concepts.

The thermodynamics of closed and open quantum systems are discussed in a general setup.

For systems that are weakly coupled to thermal reservoirs, several approximations can be

applied, and the Lindblad master equation describing the dynamics of the reduced state is

obtained. The notions of heat, work, and entropy production for open quantum systems

governed by the Lindblad master equation are introduced.

In chapter 4, we consider Langevin systems for which the original TUR is inapplicable

and derive novel TURs using the Cramér-Rao inequality. First, we focus on steady-state un-

derdamped Langevin systems, in which the inertial effects cannot be neglected. The violation

of the TUR is numerically found, which motivates us to investigate the relation between irre-

versibility and current fluctuations. We find that both irreversibility and dynamical activity

complementarily constrain fluctuations of time-integrated currents. We illustrate our results

with two systems, a single-well potential system and a periodically driven Brownian particle

model, and numerically verify the inequalities. Next, we study Langevin systems driven by an

arbitrary time-dependent protocol. For such systems, fluctuations of observables cannot be

bounded solely by entropy production, even with an exponential bound. Therefore, we derive

TURs for arbitrary observables satisfying a scaling condition in both overdamped and under-

damped regimes. We prove that the observable fluctuation is constrained by both entropy

production and a kinetic term. The derived bounds are applicable to both current and non-

current observables and hold for arbitrary time-dependent protocols, thus providing a wide

range of applicability. We illustrate our universal bounds with the help of three systems: a

dragged Brownian particle, a Brownian gyrator, and a stochastic underdamped heat engine.

In chapter 5, we pay attention to non-Markovian systems and derive TURs for systems in-

volving time delay, measurement and feedback control, and semi-Markov processes. First, we

consider time-delayed Langevin systems and prove that the fluctuation of arbitrary dynamical

observables is constrained by the Kullback-Leibler divergence between the distributions of the

forward path and its reversed counterpart. Specifically, for observables that are antisymmet-

ric under time reversal, the fluctuation is bounded from below by a function of a quantity that

can be identified as a generalization of the total entropy production in Markovian systems.

We also provide a lower bound for arbitrary observables that are odd under position reversal.

The term in this bound reflects the extent to which the position symmetry has been broken

in the system and can be positive even in equilibrium. Our results hold for finite observa-

tion times and a large class of time-delayed systems because detailed underlying dynamics

are not required for the derivation. We numerically verify the derived uncertainty relations

using two single time-delay systems and one distributed time-delay system. Next, we inves-

tigate the uncertainty of dynamical observables in classical systems manipulated by repeated

measurements and feedback control; the precision should be enhanced in the presence of an

external controller but limited by the amount of information obtained from the measure-

ments. We prove that the entropy production and the information quantity constrain from

below the fluctuation of arbitrary observables that are antisymmetric under time reversal.
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The information term is the sum of the mutual entropy production and the Kullback-Leibler

divergence, which characterizes the irreversibility of the measurement outcomes. The result

holds for finite observation times and for both continuous- and discrete-time systems. We

apply the derived relations to study the precision of a flashing Brownian ratchet. Last, we

generalize the TUR and KUR for semi-Markov processes. Explicitly, we prove that, unlike in

the Markovian case, the fluctuation of time-antisymmetric observables is bounded not only

by entropy production but also by a memory term. For generic observables, we analogously

show that the fluctuation is bounded by both dynamical activity and a memory term. Our

results indicate that memory plays an important role in the bounds. Interestingly, with a

proper form of the waiting-time distribution, the memory can decrease the observable fluctu-

ation. When the waiting-time distribution is Poissonian (i.e., the process becomes Markov),

the memory terms vanish, and the derived bounds reduce to the conventional bounds.

Chapter 6 closes the first part of the thesis, where we study a practical application of

the TUR in thermodynamic inference. According to the TUR, we propose a deterministic

method to estimate the entropy production from a single trajectory of system states. We

explicitly and approximately compute an optimal current that yields the tightest lower bound

using predetermined basis currents. Notably, the obtained tightest lower bound is intimately

related to the multidimensional TUR. By proving the saturation of the TUR in the short-time

limit, the exact estimate of the entropy production can be obtained for overdamped Langevin

systems, irrespective of the underlying dynamics. For Markov jump processes, because the

attainability of the TUR is not theoretically ensured, the proposed method provides the

tightest lower bound for the entropy production. When entropy production is the optimal

current, a more accurate estimate can be further obtained using the integral fluctuation

theorem. We illustrate the proposed method using three systems: a four-state Markov chain,

a periodically driven particle, and a multiple bead-spring model. The estimated results in all

examples empirically verify the effectiveness and efficiency of the proposed method.

In chapter 7 which corresponds to the second part, we geometrically characterize irre-

versibility in Markovian systems and refine the positivity of entropy production. Particularly,

we derive geometrical bounds on the irreversibility in both quantum and classical Markovian

open systems that satisfy the detailed balance condition. Using information geometry, we

prove that irreversible entropy production is bounded from below by a modified Wasserstein

distance between the initial and final states, thus strengthening the Clausius inequality in the

reversible-Markov case. The modified metric can be regarded as a discrete-state generaliza-

tion of the Wasserstein metric, which has been used to bound dissipation in continuous-state

Langevin systems. Notably, the derived bounds can be interpreted as the quantum and clas-

sical speed limits, implying that the associated entropy production constrains the minimum

time of transforming a system state. We illustrate the results on several systems and show

that a tighter bound than the Carnot bound for the efficiency of quantum heat engines can

be obtained.

Chapter 8 ends the thesis with the conclusion and discussion on future research directions.

The last four chapters of the thesis are mainly based on the following works, which have

been published in:
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• T. Van Vu and Y. Hasegawa,

“Uncertainty relations for underdamped Langevin dynamics”,

Phys. Rev. E 100, 032130 (2019).

© 2019 American Physical Society. Chapter 4 is based on this publication.

• T. Van Vu and Y. Hasegawa,

“Thermodynamic uncertainty relations under arbitrary control protocols”,

Phys. Rev. Research 2, 013060 (2020).

© 2020 American Physical Society. Chapter 4 is based on this publication.

• T. Van Vu and Y. Hasegawa,

“Uncertainty relations for time-delayed Langevin systems”,

Phys. Rev. E 100, 012134 (2019).

© 2019 American Physical Society. Chapter 5 is based on this publication.

• T. Van Vu and Y. Hasegawa,

“Uncertainty relation under information measurement and feedback control”,

J. Phys. A: Math. Theor. 53, 075001 (2020).

© 2020 IOP Publishing Ltd. Chapter 5 is based on this publication.

• T. Van Vu and Y. Hasegawa,

“Generalized uncertainty relations for semi-Markov processes”,

J. Phys.: Conf. Ser. 1593, 012006 (2020).

© 2020 IOP Publishing Ltd. Chapter 5 is based on this publication.

• T. Van Vu, V. T. Vo, and Y. Hasegawa,

“Entropy production estimation with optimal current”,

Phys. Rev. E 101, 042138 (2020) (selected as an Editors’ Suggestion).

© 2020 American Physical Society. Chapter 6 is based on this publication.
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Chapter 2

Stochastic thermodynamics

In this chapter, we briefly introduce the framework of stochastic thermodynamics with the

help of continuous-state systems described by Langevin equations, as well as discrete-state

systems governed by Markov jump processes. We describe how the notions of heat, work, and

entropy production are generalized to the level of stochastic trajectories. In addition, we also

demonstrate the fluctuation theorems and their derivations in the above-mentioned dynamics.

The content of this chapter is basically in line with the great explanation in Refs. [3, 62].

2.1 Microscopic dynamics

2.1.1 Langevin systems

To efficiently introduce the main concepts of stochastic thermodynamics, we consider a Brow-

nian particle confined in a one spatial dimension. The particle is immersed in a thermal

reservoir at the temperature ) , and may be driven by an external agent through the control

parameter _. The state of the system (i.e., the particle) at time C is represented by its posi-

tion G(C) and velocity E(C). The dynamics of the particle are governed by the underdamped

Langevin equation:
3G

3C
= E, <

3E

3C
= −WE + � (G, _) + b (C), (2.1)

where < is the particle mass, � (G, _) = −mG* (G, _) + 5 (G, _) is a systematic force exerted

on the particle, and b (C) is the Gaussian white noise with mean 〈b (C)〉 = 0 and correlation

〈b (C)b (C ′)〉 = 2�X(C − C ′). We assume that changes in the system do not affect the equilibrium

state of the reservoir (i.e., the reservoir instantly returns to equilibrium), and there is no

correlation between them. In equilibrium, the diffusion constant � and the friction coefficient

W are related by the Einstein relation � = :B)W, which is also known as the fluctuation-

dissipation theorem. In order to make entropy dimensionless, we set Boltzmann’s constant

to unity, :B ≡ 1. The force � (G, _) consists of two contributions. The first term arises from a

conservative potential * (G, _) and the second from an external force 5 (G, _) that is applied to

the particle directly. The control parameter _ is varied from _(0) = _0 to _(g) = _g according

to some prescribed protocol. The interaction between the system and the reservoir is reflected

by the thermal noise b (C) and the friction force −WE.
Two equivalent representations corresponding to Eq. (2.1) are the Fokker–Planck equation

(FPE) [63, 64] and the path integral. Let ?(G, E, C) be the probability distribution function
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to find the particle at state (G, E) at time C, then the time evolution of ?(G, E, C) obeys the

following FPE:

mC ?(G, E, C) = L[?(G, E, C)] = −mG [E?(G, E, C)] − mE
{

1

<

[
−WE + � (G, _) − )W

<
mE

]
?(G, E, C)

}
(2.2)

= −mG 9G (G, E, C) − mE 9E (G, E, C), (2.3)

where 9G (G, E, C) and 9E (G, E, C) are the probability currents given by

9G (G, E, C) = E?(G, E, C), (2.4)

9E (G, E, C) =
1

<

[
−WE + � (G, _) − )W

<
mE

]
?(G, E, C). (2.5)

In the absence of the external control _(C) and the external force 5 (G, _), the system will relax

to an equilibrium state (a Maxwell–Boltzmann distribution) after a sufficiently long time.

Specifically,

lim
C→∞

?(G, E, C) = ?eq (G, E) = C exp

[
− 1

)

(
<E2

2
+* (G)

)]
, (2.6)

where C is the normalizing constant. However, it is not the case when the system is simulta-

neously coupled to multiple reservoirs at different temperatures. In this scenario, the system

will reach a nonequilibrium steady state.

While the FPE describes the dynamics of the probability distribution, the path integral

quantifies the likelihood of observing a trajectory Γ = {G(C), E(C)}0≤C≤g as a stochastic realiza-

tion of the process. Specifically, the conditional likelihood of the trajectory Γ given the initial

state (G(0), E(0)) can be expressed as

P(Γ|G(0), E(0)) = N exp(−A[Γ]), (2.7)

where N is a normalization term and A[Γ] is an Onsager–Machlup action functional, defined

as

A[Γ] =
∫ g

0

1

4)W
[< ¤E + WE − � (G, _)]23C. (2.8)

Note that the Ito product has been employed in the action functional above. Particularly,

the crossing term
∫ g
0
W� (G, _)E3C should be interpreted as

∫ g
0
W� (G, _) · E3C, where · denotes

the Ito product1. On the other hand, if the Stratonovich convention is employed, it should

be interpreted as
∫ g
0
W� (G, _) ◦ E3C, where ◦ denotes the Stratonovich product2. Rewriting A

in the Stratonovich-type integral leads to a slightly different expression of P as

P(Γ|G(0), E(0)) = N exp
( gW
2<

)
exp

(
−

∫ g

0

1

4)W
[< ¤E + WE − � (G, _)]23C

)
. (2.9)

1The Ito integral is the limit of the pre-point discretization, i.e.,
∫
Λ(G) · 3G = lim →∞

∑ −1
:=0 Λ(G: ) (G:+1 −

G: ).
2In the Stratonovich convention, the integral is the limit of the mid-point discretization, i.e.,

∫
Λ(G) · 3G =

lim →∞
∑ −1
:=0 Λ

(
G:+G:+1

2

)
(G:+1 − G: ).
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Consequently, the path probability P(Γ) is given by

P(Γ) ∝ ?(G(0), E(0), 0) exp

(
−

∫ g

0

1

4)W
[< ¤E + WE − � (G, _)]23C

)
, (2.10)

which is known as the path integral representation. For further details, see the Appendix

A.2. Hereafter, the Stratonovich product is implicitly used unless stated otherwise. As will

be shown later, these representations are useful in establishing and justifying the notions of

heat and entropy production in stochastic thermodynamics of microscopic dynamics.

The first law.—Energy is exchanged between the system, the reservoir, and the external

agent for each stochastic realization of the given process. Now, we wish to formulate the

first law of thermodynamics (the law of energy balance) on the trajectory level. To this end,

we need to identify the internal energy, heat, and work along a single trajectory. Since, the

reservoir exerts a force −WE + b on the particle, (WE − b) ◦ 3G is the energy dissipated from the

system to the reservoir. Note that the Stratonovich product allows us to use usual rules of

calculus about the differentials. This energy transfer is then defined as the heat,

3@ B (WE − b) ◦ 3G. (2.11)

With this definition, 3@ denotes the amount of heat that the reservoir received from the

system. Using the Langevin equation (2.1), the heat can be rewritten as

3@ =

(
� (G, _) − < 3E

3C

)
◦ 3G =

(
5 (G, _) − < 3E

3C
− mG* (G, _)

)
◦ 3G. (2.12)

Note that

<
3E

3C
◦ 3G = < 3E

3C
◦ E3C = 3

(
<E2

2

)
, (2.13)

mG* (G, _) ◦ 3G = 3* (G, _) − m_* (G, _) ◦ 3_. (2.14)

Substituting these relations into Eq. (2.12), we obtain

3

(
<E2

2
+* (G, _)

)
= −3@ + (m_* (G, _) ◦ 3_ + 5 (G, _) ◦ 3G) . (2.15)

Identifying the internal energy 4 of the system as the sum of kinetic and potential energy,

4 B
<E2

2
+* (G, _), (2.16)

then Eq. (2.15) uniquely defines the stochastic work as

3F B m_* (G, _) ◦ 3_ + 5 (G, _) ◦ 3G = 34 + 3@. (2.17)

As seen, the work increment arises from changing the potential (at fixed particle position)

and applying a non-conservative force to the particle. Equation (2.17) can be regarded as the

microscopic expression of the first law of thermodynamics.
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Now, integrating heat and work along the stochastic trajectory Γ, we obtain following

expressions:

@ [Γ] =
∫ g

0

[� (G, _) − < ¤E] ◦ ¤G3C, (2.18)

F [Γ] =
∫ g

0

[
m_* (G, _) ◦ ¤_ + 5 (G, _) ◦ ¤G

]
3C, (2.19)

where the dot denotes the time derivative. Consequently, the first law of thermodynamics on

the level of an individual trajectory can be written as

Δ4 = −@ [Γ] + F [Γ] = <
2

[
E(g)2 − E(0)2

]
+* (G(g), _g) −* (G(0), _0). (2.20)

Note that Eq. (2.20) holds for an arbitrary realization of the stochastic process. Both heat

and work are path-dependent quantities, whereas the internal energy is path-independent and

depends only on the starting and ending points.

The second law.—To derive the second law on the level of single trajectories, we need

to define the corresponding entropy productions of the system and the reservoir. The entropy

production ΔBm of the reservoir can be associated with the heat dissipated from the system

to the reservoir as

ΔBm [Γ] B @ [Γ]/). (2.21)

The stochastic entropy of the system can be defined as the Shannon entropy [7]

B(C) B − ln ?(G, E, C), (2.22)

where ?(G, E, C) is the solution of the FPE in Eq. (2.3). Thus, the change in the system entropy

is obtained as ΔB[Γ] = − ln ?(G(g), E(g), g)+ln ?(G(0), E(0), 0). Consequently, the total entropy

change along a trajectory is defined as ΔBtot [Γ] B ΔB[Γ] + ΔBm [Γ]. In the following, we will

show that the ensemble average of ΔBtot is always positive,

〈ΔBtot [Γ]〉 =
∫
P(Γ)ΔBtot [Γ]DΓ ≥ 0, (2.23)

which is exactly the second law of thermodynamics. To this end, we consider a time-reversed

(backward) process of the given (forward) process as follows. A phase space point (G, E) is

sampled from the final distribution ?(G(g), E(g), g) and the corresponding point (G,−E) is

set to the initial state. Subsequently, the particle is driven under a time-reversed control

parameter _† (C) = _(g − C) from C = 0 to C = g. For each trajectory Γ = {G(C), E(C)}0≤C≤g ,
we define a time-reversed trajectory Γ† = {G(g − C),−E(g − C)}0≤C≤g . Then, the probability of

observing the trajectory Γ† in the backward process is

PB [Γ†] ∝ ?(G(g), E(g), g) exp

(
−

∫ g

0

1

4)W
[< ¤E − WE − � (G, _)]23C

)
. (2.24)

Here, the subscript B is referred to as the backward process. Combining Eqs. (2.10) and

(2.24), the log of ratio of the path probabilities in the forward and backward processes can
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be calculated as

ln
P(Γ)
PB (Γ†)

= − ln ?(G(g), E(g), g) + ln ?(G(0), E(0), 0) − 1

)

∫ g

0

[< ¤E − � (G, _)] ◦ ¤G3C (2.25)

= ΔB[Γ] + ΔBm [Γ] = ΔBtot. (2.26)

Thus, the total entropy production 〈ΔBtot〉 can be rewritten as

〈ΔBtot [Γ]〉 =
∫
P(Γ) ln P(Γ)

PB (Γ†)
DΓ =: � (P||PB). (2.27)

Since the Kullback–Leibler (KL) divergence � (P||PB) is always nonnegative, the inequal-

ity 〈ΔBtot [Γ]〉 ≥ 0 is immediately proved. It is worth noting that the stochastic entropy

production ΔBtot [Γ] can be negative for some trajectory Γ.

Now let us examine the ensemble average of the entropy production rate. First, the rate

of the system entropy production ¤B(C) reads

¤B(C) = −mC ?(G, E, C)
?(G, E, C) −

mG ?(G, E, C)
?(G, E, C) ◦ ¤G −

mE ?(G, E, C)
?(G, E, C) ◦ ¤E (2.28)

Combining this with the rate of the reservoir entropy production, ¤Bm (C) = −[< ¤E−� (G, _)]◦ ¤G/) ,

gives an expression of the total entropy production rate ¤Btot as

¤Btot (C) = −
mC ?(G, E, C)
?(G, E, C) −

[
mG ?(G, E, C)
?(G, E, C) +

< ¤E − � (G, _)
)

]
◦ ¤G − mE ?(G, E, C)

?(G, E, C) ◦ ¤E (2.29)

=
mC ?(G, E, C)
?(G, E, C) −

[
mG ?(G, E, C)
?(G, E, C) −

� (G, _)
)

]
◦ ¤G −

[
mE ?(G, E, C)
?(G, E, C) +

<E

)

]
◦ ¤E (2.30)

Taking the ensemble average in Eq. (2.30) and performing some calculus calculations, we

obtain

〈¤Btot (C)〉 =
∬

<2

)W

9 ir (G, E, C)2
?(G, E, C) 3G3E, (2.31)

where 9 ir (G, E, C) is the irreversible current, given by

9 ir (G, E, C) B − 1

<

[
WE + )W

<
mE

]
?(G, E, C). (2.32)

To obtain Eq. (2.31), we have used the natural boundary conditions of ?(G, E, C) and the

relations 〈6(G, E, C)◦ ¤G〉 =
∬
6(G, E, C) 9G (G, E, C)3G3E and 〈6(G, E, C)◦ ¤E〉 =

∬
6(G, E, C) 9E (G, E, C)3G3E

for an arbitrary function 6(G, E, C). In equilibrium, this irreversible current vanishes; thus, the

total entropy production is zero. However, if the system is in a nonequilibrium steady state,

〈¤Btot (C)〉 is always positive.

Dynamics without inertia.—When the time resolution of our interest is much larger

than </W (i.e., g � </W), Eq. (2.1) can be approximated by the following equation without

the inertia term,

W ¤G = � (G, _) + b (C). (2.33)
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This equation is known as the overdamped Langevin equation. The FPE describing the time

evolution of the probability distribution ?(G, C) is written as

mC ?(G, C) = −mG
{
W−1 [� (G, _) − )mG] ?(G, C)

}
= −mG 9G (G, C), (2.34)

where 9G (G, C) B W−1 [� (G, _) − )mG] ?(G, C) is the probability current. The path integral rep-

resentations in the Ito and Stratonovich conventions, respectively, are as follows:

P(Γ) ∝ ?(G(0), 0) exp

(
−

∫ g

0

1

4)W
[W ¤G − � (G, _)]23C

)
, (2.35)

P(Γ) ∝ ?(G(0), 0) exp

(
−

∫ g

0

{
1

4)W
[W ¤G − � (G, _)]2 + 1

2W
mG� (G, _)

}
3C

)
. (2.36)

Following the same idea as in the underdamped case, the heat and work can be defined as

@ [Γ] B
∫ g

0

� (G, _) ◦ ¤G3C, (2.37)

F [Γ] B
∫ g

0

[
m_* (G, _) ◦ ¤_ + 5 (G, _) ◦ ¤G

]
3C. (2.38)

Similarly, construct a backward process with the initial distribution ?(G, g) and the time-

reversed control protocol _† (C) = _(g − C), then the total entropy production can be expressed

as

〈ΔBtot [Γ]〉 =
∫
P(Γ) ln P(Γ)

PB (Γ†)
DΓ = � (P||PB) ≥ 0, (2.39)

where Γ† = {G(g − C)}0≤C≤g is the time-reversed trajectory of Γ. The total entropy production

〈ΔBtot〉 can also be calculated via the following integral formula:

〈ΔBtot [Γ]〉 =
∫ g

0

〈¤Btot (C)〉3C, (2.40)

where the entropy production rate 〈¤Btot (C)〉 is given by

〈¤Btot (C)〉 =
∫

W

)

9G (G, C)2
?(G, C) 3G ≥ 0. (2.41)

When the control parameter _ is time independent, the system will reach a stationary

state ?ss (G, _) after a long time. In the absence of the external force (i.e., 5 (G, _) = 0), this

stationary state becomes the thermal equilibrium, given by

?eq (G, _) = exp {[F (_) −* (G, _)]/)} , (2.42)

where F (_) is the free energy defined as

F (_) B −) ln

{∫
exp[−* (G, _)/)]3G

}
. (2.43)
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Herein we exclusively focus on the case that a genuine nonequilibrium steady state will finally

be reached,

?ss (G, _) = exp[−q(G, _)], (2.44)

where q(G, _) is referred to as a nonequilibrium potential. This can be achieved in the pres-

ence of the nonconservative force 5 (G, _) or under coupling to multiple reservoirs at different

temperatures. In this case, the systematic force � (G, _) can be expressed in terms of the

steady-state probability current 9ssG (G, _) as

� (G, _) = W 9ssG (G, _)/?ss (G, _) − )mGq(G, _). (2.45)

Using this relation, the heat can be decomposed into two contributions [65],

@ [Γ] = @hk [Γ] + @ex [Γ], (2.46)

where the housekeeping heat @hk is the heat required to maintain the nonequilibrium steady

state and the excess @ex is the heat associated with changing the control parameter _. Specif-

ically, @hk and @ex explicitly read

@hk [Γ] =
∫ g

0

W
9ssG (G, _)
?ss (G, _) ◦ ¤G3C, (2.47)

@ex [Γ] = −)
∫ g

0

mGq(G, _) ◦ ¤G3C = ) [−Δq +
∫ g

0

m_q(G, _) ¤_3C], (2.48)

where Δq B q(G(g), _g) − q(G(0), _0). The total entropy production can be decomposed

into two contributions as ΔBtot = ΔBa + ΔBna, where ΔBa = @hk/) and ΔBna = ΔB + @ex/)
are the so-called adiabatic and nonadiabatic entropy productions, respectively, and their

ensemble averages are nonnegative. By noticing that 9G (G, C)/?(G, C) − 9ssG (G, _)/?ss (G, _) =
−W−1)mG (ln[?(G, C)/?ss (G, _)]) and∫

?(G, C) 9
ss
G (G, _)
?ss (G, _)

(
9G (G, C)
?(G, C) −

9ssG (G, _)
?ss (G, _)

)
3G = −W−1)

∫
9ssG (G, _)mG

(
?(G, C)
?ss (G, _)

)
3G = 0, (2.49)

one can derive the explicit expressions of these entropy production rates as [66]

〈¤Ba (C)〉 =
∫

W?(G, C)
)

(
9ssG (G, _)
?ss (G, _)

)2

3G, (2.50)

〈¤Bna (C)〉 =
∫

W?(G, C)
)

(
9G (G, C)
?(G, C) −

9ssG (G, _)
?ss (G, _)

)2

3G, (2.51)

which immediately prove the positivity of both adiabatic and nonadiabatic entropy produc-

tions.

2.1.2 Markov jump processes

We consider a system with a finite set of states {=}. The system is in contact with a single

reservoir at the inverse temperature V = )−1. Due to interaction with the environment, the
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stochastic transition from state < to state = occurs with a rate '=< (C). These transition

rates may be controlled by an external protocol _(C). In the absence of the external control,

the system always relaxes to a unique equilibrium state irrespective of the initial distribution,

provided that the system is ergodic (i.e., any two states are connected via several transitions).

Let ?= (C) be the probability that the system is in state = at time C, then the dynamics of

?= (C) obey the master equation,

mC ?= (C) =
∑
<(≠=)

['=< (C)?< (C) − '<= (C)?= (C)] =
∑
<(≠=)

9=< (C), (2.52)

where 9=< (C) B '=< (C)?< (C) − '<= (C)?= (C) is the probability current. For each state, the

instantaneous total exit rate is defined as −'== (C) =
∑
<(≠=) '<= (C). Let Γ = {=(C)}0≤C≤g be

a stochastic trajectory that starts at state =(0) = =0 and jumps at time C 9 from =−
9

to =+
9

for

each 9 = 1, . . . , �, and ends up at =(g) = =g . Here, � denotes the number of jumps in the

trajectory Γ. The conditional probability for a trajectory evolving without any jump is given

by ?(=(B) = <, ∀B ∈ [0, C] |=(0) = <) = exp
(∫ C

0
'<< (B)3B

)
. Thus, the probability of observing

the trajectory Γ under the given dynamics can be calculated as

P(Γ) = ?=0
(0) exp

(∫ C1

C0

'=0=0
(B)3B

) �∏
9=1

'=+
9
=−
9
(C 9 ) exp

(∫ C 9+1

C 9

'=+
9
=+
9
(B)3B

)
, (2.53)

where C0 = 0 and C�+1 = g.

Now, let us establish the notions of heat, work, and entropy production on the level

of individual trajectories. Let �= (C) be the instantaneous energy of state = at time C.

We assume that the transition rates satisfy the (global) detailed balance condition (DBC),

'<= (C)4−V�= (C) = '=< (C)4−V�< (C) for all < ≠ =. This assumption implies that the probability

distribution ?
eq
= (C) ∝ 4−V�= (C) is the instantaneous equilibrium state of the system. Work

along the trajectory Γ can be defined in analogy to Eq. (2.19) as

F [Γ] B
∫ g

0

m_�=(C) (C) ¤_3C, (2.54)

which is the change of energy due to the external control parameter. On the other hand,

each jump from state =−
9

to state =+
9

is associated with a change of energy, �=−
9
(C 9 ) − �=+

9
(C 9 ),

which can be regarded as the heat dissipated from the system to the reservoir. Therefore,

heat along the trajectory can be defined as

@ [Γ] B
�∑
9=1

[�=−
9
(C 9 ) − �=+

9
(C 9 )] = )

�∑
9=1

ln
'=+

9
=−
9
(C 9 )

'=−
9
=+
9
(C 9 )

. (2.55)

The first law of thermodynamics on the single-trajectory level is then represented as

Δ4 = −@ [Γ] + F [Γ] = �=g (g) − �=0
(0). (2.56)
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Taking the ensemble average of each of these thermodynamic quantities gives explicit expres-

sions,

〈@ [Γ]〉 =
∫ g

0

∑
<≠=

[�< (C) − �= (C)]'=< (C)?< (C)3C, (2.57)

〈F [Γ]〉 =
∫ g

0

∑
=

mC�= (C)?= (C)3C, (2.58)

〈Δ4〉 =
∑
=

�= (g)?= (g) −
∑
=

�= (0)?= (0). (2.59)

Then, the relation −〈@ [Γ]〉 + 〈F [Γ]〉 = 〈Δ4〉 can be verified as follows:

−〈@ [Γ]〉 + 〈F [Γ]〉 =
∫ g

0

∑
<≠=

[�= (C) − �< (C)]'=< (C)?< (C)3C +
∫ g

0

∑
=

mC�= (C)?= (C)3C (2.60)

=
1

2

∫ g

0

∑
<≠=

[�= (C) − �< (C)] 9=< (C)3C +
∫ g

0

∑
=

mC�= (C)?= (C)3C (2.61)

=

∫ g

0

∑
<≠=

�= (C) 9=< (C)3C +
∫ g

0

∑
=

mC�= (C)?= (C)3C (2.62)

=

∫ g

0

∑
=

�= (C)
∑
<(≠=)

9=< (C)3C +
∫ g

0

∑
=

mC�= (C)?= (C)3C (2.63)

=

∫ g

0

∑
=

�= (C)mC ?= (C)3C +
∫ g

0

∑
=

mC�= (C)?= (C)3C (2.64)

=

∫ g

0

mC

(∑
=

�= (C)?= (C)
)
3C = 〈Δ4〉. (2.65)

Here, we have used the equality 9<= (C) = − 9=< (C) in the third line and Eq. (2.52) in the fifth

line.

The stochastic entropy on the single-trajectory level can be analogously defined. Using

the Shannon entropy, the system entropy can be defined as B(C) B − ln ?=(C) (C), and the

corresponding entropy production is then obtained as ΔB = − ln ?=g (g)+ln ?=0
(0). The entropy

production of the reservoir can be calculated using the heat transferred from the system as

ΔBm B V@ [Γ] =
�∑
9=1

ln
'=+

9
=−
9
(C 9 )

'=−
9
=+
9
(C 9 )

. (2.66)

The total entropy production then reads

ΔBtot = ΔB + ΔBm. (2.67)

Note that this stochastic quantity can be negative; nevertheless, its ensemble average 〈ΔBtot〉
is always nonnegative, which is regarded as the second law of thermodynamics. The inequality

〈ΔBtot〉 ≥ 0 can be proved in several ways. Taking the continuous limit, the entropy production
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rates of the system and the reservoir can be expressed as

¤B(C) = −
mC ?=(C) (C)
?=(C) (C)

−
∑
9

X(C − C 9 ) ln
?=+

9
(C 9 )

?=−
9
(C 9 )

, (2.68)

¤Bm (C) =
∑
9

X(C − C 9 ) ln
'=+

9
=−
9
(C 9 )

'=−
9
=+
9
(C 9 )

. (2.69)

Consequently, the total entropy production rate reads

¤Btot (C) = −
mC ?=(C) (C)
?=(C) (C)

+
∑
9

X(C − C 9 ) ln
'=+

9
=−
9
(C 9 )?=−

9
(C 9 )

'=−
9
=+
9
(C 9 )?=+

9
(C 9 )

, (2.70)

and its ensemble average can be calculated as

〈¤Btot (C)〉 =
1

2

∑
<≠=

['=< (C)?< (C) − '<= (C)?= (C)] ln
'=< (C)?< (C)
'<= (C)?= (C)

≥ 0. (2.71)

Note that (G − H) ln(G/H) ≥ 0 for all G, H > 0. The positivity of 〈ΔBtot〉 is then affirmed from

the relation 〈ΔBtot〉 =
∫ g
0
〈¤Btot (C)〉3C.

The total entropy production can also be expressed in terms of the path probabilities in

the forward and backward processes, as in Eq. (2.27). Consider the backward process in which

the initial distribution is {?= (g)} and the control parameter is time reversed, i.e., '†<= (C) B
'<= (g − C). For each trajectory Γ, define the time-reversed trajectory Γ† = {=† (C)}0≤C≤g that

starts at state =† (0) = =g and jumps at time C†
9
= g − C�− 9+1 from =+

�− 9+1 to =−
�− 9+1 for each

9 = 1, . . . , �, and ends up at =† (g) = =0. The probability of observing the path Γ† under the

backward dynamics is

PB (Γ†) = ?=g (g) exp

(∫ g

C�

'=g=g (B)3B
) �∏
9=1

'=−
�− 9+1=

+
�− 9+1
(C�− 9+1) exp

(∫ C�− 9+1

C�− 9

'=−
�− 9+1=

−
�− 9+1
(B)3B

)
.

(2.72)

Note that =−1 = =0, =+
�
= =g , and =+

9
= =−

9+1. From Eqs. (2.53) and (2.72), we have

ln
P(Γ)
PB (Γ†)

= − ln ?=g (g) + ln ?=0
(0) +

�∑
9=1

ln
'=+

9
=−
9
(C 9 )

'=−
9
=+
9
(C 9 )

= ΔB + ΔBm = ΔBtot. (2.73)

Consequently, the total entropy production can be written in terms of the KL divergence as

〈ΔBtot〉 =
∫
P(Γ) ln P(Γ)

PB (Γ†)
DΓ = � (P||PB) ≥ 0. (2.74)

Equations (2.71) and (2.74) mathematically prove the second law of thermodynamics for the

Markov jump processes.

Local detailed balance condition.— In the analysis above, we have assumed that the

DBC is fulfilled. In the following, we discuss the case where the DBC is violated (e.g., when

the system is simultaneously in contact with multiple reservoirs at different temperatures).

For systems that do not fulfill the DBC, the probability currents { 9<=} do not vanish even
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when a steady state is reached. Since steady fluxes are maintained at steady state, basically

one cannot assign internal energies to all states such that the DBC holds. In such scenario,

the transition rates are assumed to satisfy the local DBC,

ln
'<= (C)
'=< (C)

= Δ(<=, ∀< ≠ =. (2.75)

The local DBC implies that each jump from state = to state < is associated with a change

Δ(<= in the entropy of the reservoirs. With this assumption, the change in the entropy of the

reservoirs along the trajectory Γ can be written as in Eq. (2.66), and accordingly the form of

the total entropy production rate remains unchanged as in Eq. (2.70).

Let ?ss
= (_C ) denote the stationary distribution of the system when the control parameter

is fixed to _C . Similar to the case of overdamped Langevin dynamics, the entropy production

of the reservoir can be split into the housekeeping and excess contributions as

ΔBm = ΔBhk + ΔBex, (2.76)

where ΔBhk and ΔBex characterize, respectively, the entropy changes associated with main-

taining the corresponding steady state and with the time-dependent driving, and given by

ΔBhk B
�∑
9=1

ln
?ss
=−
9
(_C 9 )'=+9=−9 (C 9 )

?ss
=+
9

(_C 9 )'=−9 =+9 (C 9 )
, (2.77)

ΔBex B −
�∑
9=1

ln
?ss
=−
9
(_C 9 )

?ss
=+
9

(_C 9 )
. (2.78)

The total entropy production ΔBtot can be decomposed into the adiabatic and nonadiabatic

contributions as [67]

ΔBtot = ΔBa + ΔBna, (2.79)

where ΔBa = ΔBhk and ΔBna = ΔB + ΔBex. It is worth noting that the averages of these

contributions are both nonnegative, ΔBa ≥ 0 and ΔBna ≥ 0. When the system satisfies the

DBC, ΔBa = 0. On the other hand, if the time scale of the relaxation is smaller than that

of the control parameter, it is easy to check that the nonadiabatic term vanishes on average,

〈ΔBna〉 = 0.

2.2 Fluctuation theorems

Historically, a fluctuation theorem was first numerically discovered in the simulation of sheared

fluids [15, 68]. Shortly thereafter, related fluctuation theorems were proved for deterministic

dynamics [16], stochastic dynamics [18, 69–72], and Hamiltonian systems [73, 74]. For detailed

reviews of fluctuation theorems, see Refs. [19, 75–77]. In what follows, we present several

fluctuation theorems and their derivations. The key ingredient underlying the derivations of

fluctuation theorems is time reversal (i.e., they are basically dependent on the construction

of the time-reversed process).
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Integral fluctuation theorems.—As shown in the previous section, the stochastic en-

tropy production can be expressed in terms of the path probabilities in the forward and

backward processes, provided that the backward process is properly constructed with the

time-reversed control protocol. Specifically, the stochastic entropy production reads

ΔBtot [Γ] = ln
P(Γ)
PB (Γ†)

, (2.80)

which can be rewritten as 4−ΔBtot [Γ]P(Γ) = PB (Γ†). Taking the integral of both sides of this

equality over all possible trajectories Γ, we obtain the rigorous relation

〈4−ΔBtot〉 = 1. (2.81)

This equality is known as the integral fluctuation theorem (IFT) for the total entropy pro-

duction. If the distribution ?(ΔBtot) is Gaussian, then the IFT implies

〈〈ΔBtot〉〉 = 2〈ΔBtot〉, (2.82)

which relates the mean and variance of ΔBtot. Applying Jensen’s inequality to the convex

function 4−G , the second law of thermodynamics can be immediately obtained

1 = 〈4−ΔBtot〉 ≥ 4−〈ΔBtot 〉 ⇒ 〈ΔBtot〉 ≥ 0. (2.83)

There are two important implications that can be derived from the IFT. First, the IFT

indicates that the probability of negative entropy production is nonzero except the degenerate

case [i.e., the probability distribution function of the total entropy production in the forward

process is a delta function, ?(ΔBtot) = X(ΔBtot)]. The second law of classical thermodynamics

(which deals with macroscopic systems whose fluctuations are negligible) states that the

entropy production is always nonnegative; however, this is not the case for small systems,

in which fluctuations are significant and a trajectory accompanying by a negative entropy

production can be observed. On the other hand, it may take an infinite amount of time to

observe such trajectories at the macroscopic limit. Second, an upper bound on the probability

of negative entropy production can be derived as a result. Particularly, for an arbitrary

number \ > 0, we can prove that

?(ΔBtot < −\) ≤
∫ −\

−∞
?(ΔBtot)4−\−ΔBtot3ΔBtot ≤ 4−\ . (2.84)

This inequality implies that the probability that entropy production is less than −\ vanishes

at least exponentially with \.

Conjugate dynamics and unification of IFTs.—In the derivation of the IFT for the

total entropy production, we have employed the original dynamics under time reversal in the

backward process. However, more general IFTs can be obtained as well by constructing a

generic backward process using a conjugate dynamics. For simplicity, hereafter we consider

only the case of overdamped Langevin systems. The same results can be analogously derived

for Markov jump processes. For a trajectory Γ† = {G† (C)}, a conjugate dynamics are governed
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by the overdamped Langevin equation,

W† ¤G† = �† (G†, _†) + b†, (2.85)

where the noise satisfies 〈b†〉 = 0 and 〈b† (C)b† (C ′)〉 = 2)†W†X(C − C ′). In what follows, we

consider only the case that the friction coefficient and the temperature are unchanged, W† = W

and )† = ) . The conjugate dynamics can be defined from the original one via a one-to-one

mapping as follows:

{G(C), _(C), �} ↦→ {G† (C), _† (C), �†}. (2.86)

First, one can consider the backward process as a stochastic realization of the original

dynamics under time reversal, i.e.,

G† (C) = G(g − C), _† (C) = _(g − C), �† (G, _) = � (G, _). (2.87)

By assigning a general distribution function ?f (G) [instead of ?(G, g)] to the initial distribution

in the backward process, the following relation can be easily derived [7],〈
4−ΔBm ?f (G(g))/?(G(0), 0)

〉
= 1. (2.88)

In the absence of the external force, considering the case that the system starts from an

equilibrium distribution ?(G, 0) = ?eq (G, _0) = exp {[F (_0) −* (G, _0)]/)} and setting ?f (G) =
?eq (G, _g) = exp {[F (_g) −* (G, _g)]/)} in the backward process, we obtain

〈4−ΔBm+(ΔF−Δ4)/) 〉 = 1⇒ 〈4−F/) 〉 = 4−ΔF/) , (2.89)

where ΔF = F (_g) −F (_0) denotes the free energy difference between two equilibrium states.

The relation in Eq. (2.89) is known as the Jarzynski equality [73], which was originally derived

for a Hamiltonian dynamics. The Jarzynski equality indicates that the free energy difference,

which is a genuine equilibrium quantity, can be estimated from nonequilibrium measurements

of work.

Second, one can employ a dual dynamics without time reversal for the backward process

[78],

G† (C) = G(C), _† (C) = _(C), �† (G, _) = � (G, _) − 2W
9ssG (G, _)
?ss (G, _) . (2.90)

Note that this dual dynamics keep the stationary distribution unchanged and reverse the

sign of the stationary current, i.e., ?ss (G, _)† = ?ss (G, _) and 9ssG (G, _)† = − 9ssG (G, _). Choosing

?f (G) = ?(G, 0), we can calculate the log-ratio of path probabilities as

ln
P(Γ)
PB (Γ†)

=

∫ g

0

[
9ssG (G, _)
) ?ss (G, _) ◦ (W ¤G − � (G, _)) +

W

)

(
9ssG (G, _)
?ss (G, _)

)2

− mG
(
9ssG (G, _)
?ss (G, _)

)]
3C (2.91)

= @hk [Γ]/). (2.92)

To obtain the last line, we have used the relation � (G, _) =
[
W 9ssG (G, _) + )mG ?ss (G, _)

]
/?ss (G, _)

and the stationary property mG 9
ss
G (G, _) = 0. Consequently, the IFT for the house keeping heat
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can be obtained [79]

〈4−@hk/) 〉 = 1. (2.93)

This can also be regarded as the IFT for the adiabatic entropy production, 〈4−ΔBa〉 = 1.

Last, we consider the following dual-reversed dynamics:

G† (C) = G(g − C), _† (C) = _(g − C), �† (G, _) = � (G, _) − 2W
9ssG (G, _)
?ss (G, _) . (2.94)

Assume that the system is initially in a nonequilibrium steady state, ?(G, 0) = ?ss (G, _0), then

choosing ?f (G) = ?ss (G, _g) yields the following equality:

ln
P(Γ)
PB (Γ†)

= Δq + @ex [Γ]/). (2.95)

Thus, the IFT for the excess heat can also be analogously obtained,

〈4−(Δq+@ex/) )〉 = 1. (2.96)

This equality is also known as the Hatano–Sasa relation [65]. When the system starts from

an arbitrary distribution ?(G, 0), then choosing ?f (G) = ?(G, g) results in the following IFT:

〈4−(ΔB+@ex/) )〉 = 1. (2.97)

Since ΔBna = ΔB+@ex/) , Eq. (2.97) indicates that the nonadiabatic entropy production follows

the IFT, 〈4−ΔBna〉 = 1.

Detailed fluctuation theorems.—A stronger class of fluctuation theorems, called de-

tailed fluctuation theorems (DFTs), can be obtained under some special conditions. Let us

turn to the definition of ?(ΔBtot) and perform the following calculations:

?(ΔBtot) =
∫

X

(
ΔBtot − ln

P(Γ)
PB (Γ†)

)
P(Γ)DΓ (2.98a)

=

∫
4ΔBtotX

(
ΔBtot − ln

P(Γ)
PB (Γ†)

)
PB (Γ†)DΓ (2.98b)

=

∫
4ΔBtotX

(
ΔBtot + ln

PB (Γ†)
P(Γ)

)
PB (Γ†)DΓ (2.98c)

=

∫
4ΔBtotX

(
−ΔBtot − ln

PB (Γ†)
P(Γ)

)
PB (Γ†)DΓ† (2.98d)

= 4ΔBtot ?B (−ΔBtot). (2.98e)

Here, ?B (·) denotes the probability distribution function of quantity ΔB†tot = ln[PB (Γ†)/P(Γ)]
in the backward process. When the forward and backward processes are identical, i.e., P ≡
PB, the DFT for the total entropy production can be obtained,

?(ΔBtot)
?(−ΔBtot)

= 4ΔBtot . (2.99)

This can be achieved with time-reversal symmetry systems that satisfy two conditions: (i) the
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initial and final distributions are the same, ?(G, 0) = ?(G, g), and (ii) the control parameter is

time symmetric, _(C) = _(g − C). These conditions are fulfilled, for example, with steady-state

systems under a fixed control parameter or with periodic systems driven by a time-symmetric

control protocol.

Now, we consider the setup in which the Jarzynski relation was obtained in Eq. (2.89).

Let ?(F) and ?B (F) be the probability distributions of work exerted on the system in the

forward and backward processes, respectively. Then, following the same steps as in Eq. (2.98),

we arrive at the following relation:

?(F)
?B (−F)

= 4 (F−ΔF)/) , (2.100)

which is also known as the Crooks fluctuation theorem [17]. When the initial distributions

in the forward and backward processes are the same equilibrium distributions and the con-

trol protocol is time symmetric, the free energy difference vanishes, ΔF = 0, and P ≡ PB.

Consequently, the DFT for work can be immediately derived,

?(F)
?(−F) = 4

F/) . (2.101)
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Chapter 3

Quantum thermodynamics

This chapter briefly introduces quantum thermodynamics, which establishes the concepts of

heat, work, and entropy production in the quantum regime. The notions of entropy and

thermal state and the description of quantum dynamics of closed and open systems are intro-

duced. The first and second laws of thermodynamics are described for generic open quantum

systems, especially for quantum dynamics governed by the Lindblad master equation. The

content of this chapter is partially based on the explanation in Ref. [80].

3.1 Entropy and the thermal state

Given a density matrix d, von Neumann introduced the notion of entropy of d, called the von

Neumann entropy, defined by

((d) B −tr {d ln d} = −
∑
=

?= ln ?=, (3.1)

where d =
∑
= ?= |k=〉〈k= | is the spectral decomposition of d, {?=} are nonnegative eigenvalues,

and {|k=〉} are the corresponding eigenvectors satisfying
∑
= |k=〉〈k= | = �. It can be observed

that the von Neumann entropy is equal to the Shannon entropy of the distribution given

by the eigenvalues of the density matrix. Let us discuss some important properties of the

von Neumann entropy. First, this entropy is always nonnegative and well-defined. The zero

entropy is attained when d is a pure state. From Eq. (3.1), one can easily prove that the von

Neumann entropy is bounded from above as ((d) ≤ ln dimH , where H is the Hilbert space

of the density matrices. Notably, if a density matrix d�� ∈ S(H� ⊗ H�) is a pure state,

then ((d�) = ((d�), where d� = tr� {d��} and d� = tr� {d��}. Moreover, the von Neumann

entropy is subadditive, ((d�⊗ d�) = ((d�) +((d�), and is invariant under unitary transforms,

((d) = ((*d*†). In the context of thermodynamics, the von Neumann entropy is commonly

used to characterize the entropy of quantum systems.

An important quantity which measures the difference between two density matrices is the

quantum relative entropy, defined by

((d1 | |d2) B tr {d1 ln d1 − d1 ln d2} . (3.2)
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This relative entropy is always nonnegative but not a measure of “distance” because ((d1 | |d2) ≠
((d2 | |d1). Analogous to the von Neumann entropy, the relative entropy is invariant under

unitary transforms, ((d1 | |d2) = ((*d1*
† | |*d2*

†), and is subadditive, ((d� ⊗ d� | |f� ⊗ f�) =
((d� | |f�) + ((d� | |f�). Moreover, it is a jointly convex function, i.e., \((d1 | |f1) + (1 −
\)((d2 | |f2) ≥ ((\d1 + (1 − \)d2 | |\f1 + (1 − \)f2) for all \ ∈ [0, 1]. When d1 and d2 com-

mute, [d1, d2] = 0, the quantum relative entropy reduces to the KL divergence between two

distributions given by the eigenvalues of the density matrices,

((d1 | |d2) =
∑
=

?= ln
?=

@=
, (3.3)

where d1 =
∑
= ?= |k=〉〈k= | and d2 =

∑
= @= |k=〉〈k= |. The most intriguing property of the

relative entropy is that it is contractive under a physical map. That is

((d1 | |d2) ≥ ((Λ[d1] | |Λ[d2]) (3.4)

for arbitrary density matrices d1, d2 and completely positive trace-preserving map Λ.

In the canonical ensemble, the thermal state (Gibbs state) is given by

deq = 4−V� //, / = tr
{
4−V�

}
, (3.5)

where � denotes the Hamiltonian of the system, V = 1/) is the inverse temperature, and / is

the partition function. If the system is in contact with a thermal reservoir, then the thermal

state is expected to well describe the system when it reaches equilibrium. The thermal state

is also closely related to the von Neumann entropy via a principle of maximal entropy. That

is the thermal state maximizes the von Neumann entropy under the condition of a fixed

mean energy 〈�〉. For any state d that has the same mean energy as the thermal state (i.e.,

tr {d�} = tr {deq�}), we have

((d) = −tr {d ln d} = −tr {d ln deq} − ((d | |deq) (3.6)

≤ −tr {d ln deq} = −tr {deq ln deq} = ((deq). (3.7)

Here, we have used the fact ((d | |deq) ≥ 0. An equivalent statement with the principle

of maximal entropy is that the thermal state minimizes the mean energy for a fixed von

Neumann entropy.

3.2 Closed quantum systems

We consider a quantum system that does not exchange any heat or matter with the surround-

ings. If the system is initially in some pure state |k(0)〉, then the time evolution of the pure

state |k(C)〉 is described by the Schrödinger equation,

mC |k(C)〉 = −
8

ℏ
� (C) |k(C)〉, (3.8)
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where � (C) is the time-dependent Hamiltonian of the system, which can be driven by an

external controller. Throughout this thesis, the Planck constant is set to unity, ℏ = 1, for

simplicity. The solution of |k(C)〉 can be represented in terms of the unitary propagator * (C)
as

|k(C)〉 = * (C) |k(0)〉, (3.9)

where * (C) = T exp
{
−8

∫ C
0
� (B)3B

}
. The time ordering operator T means that in the power

series expansion the Hamiltonians under the multiple integrals must be ordered from the

left to the right in decreasing order of their time-arguments. When the Hamiltonian is time

independent, the unitary propagator reads * (C) = exp(−8�C). Next, we consider the case that

the system starts from a mixed state characterized by the density matrix

d(0) =
∑
=

?= |k= (0)〉〈k= (0) |, (3.10)

where {?=}= are positive weights satisfying
∑
= ?= = 1 and {|k= (0)〉}= are normalized pure

states. From the linearity of the Schrödinger equation, the state of the system at time C can

be explicitly calculated as

d(C) =
∑
=

?=* (C) |k= (0)〉〈k= (0) |*† (C) = * (C)d(0)*† (C). (3.11)

Differentiating both sides of Eq. (3.11) with respect to time C, a motion equation for the

density matrix can be obtained,

mC d(C) = −8[� (C), d(C)], (3.12)

where [-,. ] ≔ -. − .- denotes the commutator. Equation (3.12) is referred to as the von

Neumann equation.

Now, let us establish the first law of thermodynamics in closed systems. The internal

energy of the system at time C can be defined as

� (C) B tr {� (C)d(C)} . (3.13)

Then the change of the internal energy of the system during time period g is given by

Δ� B � (g) − � (0) =
∫ g

0

[tr {mC� (C)d(C)} + tr {� (C)mC d(C)}] 3C. (3.14)

The first term in the right-hand side corresponds to the energy change caused by the action

of the external agent on the Hamiltonian and thus can be identified as the work exerted on

the system,

Δ, B

∫ g

0

tr {mC� (C)d(C)} 3C. (3.15)

Consequently, the second term can be determined as the heat transferred from the surround-

ings into system,

− Δ& B
∫ g

0

tr {� (C)mC d(C)} 3C. (3.16)
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Since mC d(C) = −8[� (C), d(C)], one can easily derive that Δ& = 0. This is reasonable because

the closed system does not exchange heat with the surroundings. Equation (3.14) can be

rewritten as Δ� = Δ, − Δ& = Δ, , which is regarded as the first law of thermodynamics.

From this relation, one can see that the internal energy in closed systems is changed only due

to the work done on the system.

Analogous to the Shannon entropy in the classical case, it is common to employ the von

Neumman entropy to characterize the entropy of quantum systems. One can check that the

von Neumann entropy ((d) does not change under unitary dynamics,

((d(C)) = −tr
{
* (C)d(0)*† (C) ln[* (C)d(0)*† (C)]

}
= −tr {d(0) ln d(0)} = ((d(0)). (3.17)

This means that the entropy production in the unitary dynamics is always zero, leading to

an important physical implication. That is, to reduce the system entropy we have to let the

system interact with another system (e.g., a heat bath).

The analysis above is based on the formulation in the Schrödinger picture. In the next

sections, we introduce other useful pictures and discuss their relevance.

3.2.1 Heisenberg picture

In the Schrödinger picture, the density matrix d(C) evolves in time according to the von

Neumann equation. In contrast, the Heisenberg picture is an equivalent description which

transfers the time dependence from the density matrix to the operators on the same Hilbert

space. That is the density matrix does not change with time, whereas the operators carry

time dependence. Assume that at initial time C = 0, the quantum states in both pictures

coincide, d� (0) = d(0), then the operators in these pictures are related through the following

transformation:

�� (C) = *† (C)�(C)* (C), (3.18)

where the operator �(C) in the Schrödinger picture can be time-dependent. Hereafter, the

subscript � is referred to as the Heisenberg picture. It is easy to see that the expectation

value of the physical observable �(C) is identical in both pictures,

〈�� (C)〉 = tr {�� (C)d� (0)} = tr
{
�(C)* (C)d(0)*† (C)

}
= tr {�(C)d(C)} = 〈�(C)〉. (3.19)

Differentiating both sides of Eq. (3.18) with respect to time C, we obtain the Heisenberg

equation of motion of �� (C) as

3

3C
�� (C) = 8[�� (C), �� (C)] + (mC �(C))� , (3.20)

where �� (C) = *† (C)� (C)* (C) is the system Hamiltonian in the Heisenberg picture. When

both the Schrödinger operator �(C) and the Hamiltonian � (C) are time-independent, �� (C) =
� and Eq. (3.20) becomes

3

3C
�� (C) = 8[�, �� (C)] . (3.21)
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3.2.2 Interaction picture

Interaction picture is a more general representation which recovers both the Schrödinger

picture and the Heisenberg picture in some limits. Unlike in the aforementioned pictures

(in which either the density matrices or the operators carry time dependence), both of the

density matrices and the operators in the interaction picture evolve in time. As will be shown

in the next section, the interaction picture is useful to derive a master equation describing

motion of the density matrix in open quantum systems.

We start with decomposing the Hamiltonian of the system as the sum of two parts,

� (C) = �0 + �1 (C). (3.22)

The explicit forms of these terms depend upon the particular problem under consideration.

In general, �0 can be the sum of the Hamiltonians of subsystems and �1 (C) is thus the

Hamiltonian induced by interaction between subsystems. Here we assume that �0 is time-

independent. Subsequently, the unitary time evolution operators *0 (C) and *� (C) are intro-

duced,

*0 (C) B exp(−8�0C), (3.23)

*� (C) B *
†
0 (C)* (C). (3.24)

Using these operators, the density matrix and the operator in the interaction picture can be

defined in the following:

d� (C) B *� (C)d(0)*†� (C), (3.25)

�� (C) B *
†
0 (C)�(C)*0 (C). (3.26)

One can observe that the expectation of the observable �(C) remains unchanged,

〈�(C)〉 = tr
{
�(C)*0 (C)*� (C)d(0)*†� (C)*

†
0 (C)

}
= tr {�� (C)d� (C)} . (3.27)

The time evolution of the density matrix can be described by the von Neumann equation,

3

3C
d� (C) = −8[�� (C), d� (C)], (3.28)

where �� (C) = *†0 (C)�1 (C)*0 (C) denotes the interaction Hamiltonian in the interaction picture.

Equation (3.28) is consistent with the von Neumann equation in the interaction picture. It

can also be rewritten in the integral form as

d� (C) = d� (0) − 8
∫ C

0

[�� (B), d� (B)]3B. (3.29)



30 Chapter 3. Quantum thermodynamics

3.3 Open quantum systems

We consider an open system ( that is coupled to another quantum system ', which is con-

sidered as a reservoir1 throughout this thesis. Unlike in the case of closed systems, the open

system ( exchanges heat with the reservoir due to interaction between them. The composite

system (+' is assumed to be a closed system and follows the unitary dynamics. However, the

state of the system ( is affected not only by the internal dynamics but also by interaction with

the reservoir, and thus no longer obeys the unitary dynamics. In what follows, the system (

is referred to as the reduced system and its state is called the reduced state or the reduced

density matrix.

Let H( and H', respectively, denote the Hilbert spaces of the system and the reservoir,

then the Hilbert space of the composite system is the tensor product space H = H( ⊗ H'.

The total Hamiltonian of the composite system is given by

� (C) = �( (C) ++ (C) + �', (3.30)

where �( (C) is the time-dependent Hamiltonian of the system (, �' is the free Hamiltonian of

the reservoir, and + (C) is the Hamiltonian characterizing the interaction between the system

and the reservoir. The density matrix of the composite system evolves according to the

unitary dynamics,

mC d(C) = −8[� (C), d(C)], (3.31)

and can be expressed in terms of the unitary propagator as

d(C) = * (C)d(0)*† (C). (3.32)

The reduced density matrix d( (C) can be obtained by taking the partial trace over the reser-

voir,

d( (C) = tr' {d(C)} = tr'
{
* (C)d(0)*† (C)

}
. (3.33)

We assume that the initial state of the composite system is an uncorrelated product state

d(0) = d( (0) ⊗ d', where d' is some reference state of the reservoir, for example, the thermal

equilibrium state. Given a fixed time C, then the time evolution of the system state can be

regarded as a dynamical map ΛC : H( → H(, which transforms the initial state d( (0) to the

final state d( (C). The relation between this dynamical map and the unitary evolution of the

composite system is described in Fig. 3.1. The map ΛC can be completely characterized by

operators pertaining to the Hilbert space H(. Using the spectral decomposition, the reference

state of the reservoir can be represented as

d' =
∑
a

_a |ia〉〈ia |, (3.34)

where {_a}a are nonnegative eigenvalues satisfying
∑
a _a = 1 and the eigenvectors {|ia〉}a

form an orthonormal basis in the space H'. Substituting this representation of the reference

1The reservoir considered here is an environment that has an infinite number of degrees of freedom such
that the frequencies of the reservoir modes form a continuum.
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d(0) = d( (0) ⊗ d'
unitary evolution

d(C) = * (C)d(0)*† (C)

d( (0)
dynamical map

d( (C) = ΛC [d( (0)]
tr' tr'

Figure 3.1: Commutative diagram showing the action of a dynamical map
Λ.

state to Eq. (3.33), one can perform calculations of the partial trace and obtain

d( (C) = tr'

{
* (C)d( (0) ⊗

∑
a

_a |ia〉〈ia |*† (C)
}

(3.35)

=
∑̀
〈i` |* (C)d( (0) ⊗

∑
a

_a |ia〉〈ia |*† (C) |i`〉 (3.36)

=
∑̀
,a

√
_a 〈i` |* (C) |ia〉d( (0)

√
_a 〈ia |*† (C) |i`〉 (3.37)

=
∑̀
,a

 `a (C)d( (0) †`a (C) = ΛC [d( (0)], (3.38)

where operators { `a (C)} are defined as  `a (C) B
√
_a 〈i` |* (C) |ia〉. These operators are

called Kraus operators and Eq. (3.38) is called the Kraus operator sum representation of the

dynamical map ΛC . It should be noted that the operators { `a (C)} satisfy the condition∑̀
a

 †`a (C) `a (C) =
∑̀
,a

√
_a 〈ia |*† (C) |i`〉

√
_a 〈i` |* (C) |ia〉 (3.39)

=
∑
a

_a 〈ia |*† (C)
∑̀
|i`〉〈i` |* (C) |ia〉 (3.40)

=
∑
a

_a 〈ia |*† (C)* (C) |ia〉 (3.41)

= �( , (3.42)

which ensures that the trace of the density matrix is preserved under the map ΛC , tr {d( (C)} =
tr {ΛC [d( (0)]} = tr {d( (0)} = 1. The linearity and positivity of the map ΛC can also be easily

confirmed as below:

ΛC [01d1 + 02d2] = 01ΛC [d1] + 02ΛC [d2], (3.43)

〈q|ΛC [d] |q〉 =
∑
=

?= |〈q| `a (C) |k=〉|2 ≥ 0 ∀|q〉, (3.44)

where the spectral decomposition d =
∑
= ?= |k=〉〈k= | has been used.

In the following sections, we focus on the thermodynamic aspect and discuss the first and

second laws of thermodynamics in open quantum systems. We assume that the reservoir is a

thermal bath at the inverse temperature V = 1/) , and the reference state of the reservoir is a

thermal equilibrium state,

d' = d
eq
'
≔ exp(−V�')//' . (3.45)
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Here, /' = tr {exp(−V�')} is the partition function.

3.3.1 The first law

Analogous to the case of closed quantum systems, the work done on the system can be defined

as the energy change of the composite system,

Δ, B tr {� (g)d(g)} − tr {� (0)d(0)} =
∫ g

0

tr
{ ¤� (C)d(C)} 3C = ∫ g

0

tr
{
[ ¤�S (C) + ¤+ (C)]d(C)

}
3C.

(3.46)

Here, we have used the fact that tr {� (C) ¤d(C)} = 0. The heat transferred from the system to

the reservoir is determined via the change in the internal energy of the reservoir,

Δ& B tr {�'d(g)} − tr {�'d(0)} =
∫ g

0

tr {�' ¤d(C)} 3C = −
∫ g

0

tr {[�S (C) ++ (C)] ¤d(C)} 3C.
(3.47)

The energy change of the system ( is contributed by the internal Hamiltonian and the inter-

action term,

Δ� B tr {[�( (g) ++ (g)]d(g)} − tr {[�( (0) ++ (0)]d(0)} . (3.48)

Given the definitions of internal energy, heat, and work above, the first law of thermodynamics

can be written as

Δ� = Δ, − Δ&. (3.49)

Note that this relation is always valid irrespective of whether the initial state of the composite

system is a product state or not.

3.3.2 The second law

Next we establish the second law of thermodynamics for open quantum systems [81]. We

consider the case that the system is initially in the product state d(0) = d( (0) ⊗ deq
'

. The

entropy of the system at time C is characterized by the von Neumann entropy

((C) = −tr {d( (C) ln d( (C)} , (3.50)

where d( (C) = tr' {d(C)} is the density matrix of the system ( at time C. Since the von

Neumann entropy is invariant under the unitary dynamics, we have

− tr {d(g) ln d(g)} = −tr {d(0) ln d(0)} = −tr {d( (0) ln d( (0)} − tr
{
d

eq
'

ln deq
'

}
. (3.51)

Using this equality, the entropy production of the system during time period g can be calcu-

lated as

Δ( B −tr {d( (g) ln d( (g)} + tr {d( (0) ln d( (0)} (3.52)

= −tr {d(g) ln d( (g)} + tr {d(g) ln d(g)} − tr
{
d

eq
'

ln deq
'

}
(3.53)

= −tr
{
d(g) ln

[
dS (g) ⊗ deq

'

]}
+ tr {d(g) ln d(g)} + tr

{
(d' (g) − deq

'
) ln deq

'

}
. (3.54)
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The entropy production of the reservoir is associated with the heat transferred from the

system as

Δ(m B VΔ& = V [tr {�'d(g)} − tr {�'d(0)}] = tr
{
[d(g) − d(0)] ln deq

'

}
. (3.55)

Taking the sum of these entropy productions, we obtain the following formula for the total

entropy production,

Δ(tot B Δ( + Δ(m = � (d(g) | |d( (g) ⊗ deq
'
). (3.56)

Since the relative entropy is always nonnegative, the second law of thermodynamics is im-

mediately derived, Δ(tot ≥ 0. Equation (3.56) implies that the total entropy production can

be quantified via correlation between the system and the reservoir. Δ(tot is equal to zero

if and only if d(g) = d( (g) ⊗ deq
'

, which means that the system and the reservoir remain

uncorrelated.

3.4 Quantum master equations

In the previous section, we have showed that the time evolution of the state of the reduced

system ( can always be described by a family of dynamical maps {ΛC }C≥0. Since these dynam-

ical maps depend on the unitary propagator and the degrees of freedom of the reservoir, it is

generally difficult to obtain a closed motion equation of the reduced density matrix without

further approximations. Under the condition of short correlation times (i.e., memory effects

can be neglected in the reduced system dynamics), the concept of a quantum dynamical

semigroup can be adopted, and a quantum Markovian master equation describing the motion

of d( (C) can be mathematically derived. Basically, memory effects are always present due to

the coupling between the system and the reservoir; however, they can be safely ignored in

the weak coupling limit. In what follows, we first discuss the property of quantum dynamical

semigroups and demonstrate a mathematical derivation of the Markovian quantum master

equation. Then, we present a microscopic derivation that clarifies the physical conditions

underlying the Markovian approximation. Finally, we discuss the first and second laws of

thermodynamics for systems whose dynamics obey the quantum master equation.

The dynamical maps {ΛC }C with Λ0 = �( have the semigroup property if the following

condition holds,

ΛC = ΛC−BΛB ∀0 ≤ B ≤ C. (3.57)

Under certain conditions, the map ΛC can be expressed in terms of a semigroup generator L
as

ΛC = exp(LC), (3.58)

from which the first-order differential equation describing the motion of the reduced density

matrix can be readily obtained,
3

3C
d( (C) = L(d( (C)). (3.59)

In the following, we will investigate a general form of the generator L. To this end, we choose

an orthonormal basis {�=}1≤=≤# 2 of the Hilbert space H(, where # = dimHS. Specifically,
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the operators �= can be chosen to satisfy

〈�=, �<〉 B tr
{
�†=�<

}
= X=< ∀=, < = 1, . . . , #2, (3.60)

�# 2 = �(/
√
#, and tr {�=} = 0 for all 1 ≤ = ≤ #2 − 1. Such construction of the basis is always

possible, for example, the set of Pauli matrices is a good choice for the # = 2 case and the

generalized Gell-Mann matrices can be used for the general case. From the completeness of

the basis, the Kraus operators  `a can be expressed in terms of {�=} as

 `a =
∑
=

〈�=,  `a〉�=. (3.61)

Consequently, the dynamical map ΛC [d(] can be written in the following form:

ΛC [d(] =
# 2∑
=,<=1

2=< (C)�=d(�†<, (3.62)

where 2=< (C) is given by

2=< (C) =
∑̀
,a

〈�=,  `a〉〈�<,  `a〉∗. (3.63)

One can easily verify that the matrix C = [2=<]#
2

=,<=1 is Hermitian and positive semidefinite.

From Eq. (3.62), one can take the short-time limit and obtain

L(d() = lim
C→0

ΛC [d(] − d(
C

(3.64)

= −8[�, d(] + {�, d(} +
# 2−1∑
=,<=1

0=<�=d(�
†
<. (3.65)

Here, {-,. } = -. + .- denotes the anticommutator and

0# 2# 2 = lim
C→0

2# 2# 2 (C) − #
C

, (3.66)

0=< = lim
C→0

2=< (C)
C
∀(=, <) ≠ (#2, #2), (3.67)

� =
1
√
#

# 2−1∑
==1

0=# 2�=, (3.68)

� =
1

2#
0# 2# 2 �( +

1

2
(� + �†), (3.69)

� =
1

28
(�† − �). (3.70)

Note that � is Hermitian and the matrix A = [0=<]#
2−1

=,<=1 is Hermitian and positive semidefi-

nite. Since ΛC is a trace-preserving map, the following equality must hold for all d(,

0 = tr {L(d()} = tr

{(
2� +

# 2−1∑
=,<=1

0=<�
†
<�=

)
d(

}
, (3.71)
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which immediately derives

� = −1

2

# 2−1∑
=,<=1

0=<�
†
<�=. (3.72)

Hence, a standard form of the generator L is obtained as follows:

L(d() = −8[�, d(] +
# 2−1∑
=,<=1

0=<

(
�=d(�

†
< −

1

2

{
�†<�=, d(

})
. (3.73)

Since A is self-adjoint and positive, one can diagonalize A using a unitary matrix U = [D=<]
as

UAU† = diag(W1, . . . , W# 2−1), (3.74)

where {W=} are nonnegative eigenvalues of A. Defining the new matrices {!=} via the relation,

�= =

# 2−1∑
<=1

D<=!<, (3.75)

we get the following diagonal form of the generator L,

L(d() = −8[�, d(] +
# 2−1∑
==1

W=

(
!=d(!

†
= −

1

2

{
!†=!=, d(

})
. (3.76)

We make some remarks regarding Eq. (3.76). First, this form of the generator L is math-

ematically derived under some Markovian conditions without any physical justifications. It

can be concluded that the master equation of a quantum Markovian process satisfying the

semigroup property can always be written in this form. The Hermitian � can be interpreted

as the Hamiltonian of the system (plus a correction called the Lamb shift). The operators

!= are usually referred to as the Lindblad operators (or jump operators), and Eq. (3.59) is

known as the Lindblad master equation [82]. The nonnegative coefficients W= play the role of

relaxation rates for the different decay modes of the open system. Moreover, one can prove

that the dynamical map in the Lindblad form is always a positive trace-preserving map.

In the following section, we provide a microscopic derivation of the Lindblad master equa-

tion that justifies physical conditions under which Markovian assumptions are reasonable.

3.4.1 Microscopic derivation

We consider the case that the system is weakly coupled to the reservoir. For simplicity,

the system Hamiltonian �( is assumed to be time-independent. It is convenient to use

the interaction picture to derive the Lindblad master equation with the decomposition �0 =

�(+�' and �1 (C) = + (C). Then *0 (C) = 4−8�( C ⊗4−8�'C and d� (C) = *†0 (C)d(C)*0 (C). According

to Eq. (3.29), the density matrix of the composite system can be written as

d̃(C) = d̃(0) − 8
∫ C

0

[�� (B), d̃(B)]3B, (3.77)
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where the symbol ∼ in the density matrix is used to indicate the interaction picture instead

of the subscript �. Inserting Eq. (3.77) into Eq. (3.28) and taking the partial trace over the

reservoir, we obtain

3

3C
d̃( (C) = −

∫ C

0

tr' {[�� (C), [�� (B), d̃(B)]]} 3B. (3.78)

Here, we have assumed that tr' {[�� (C), d̃(0)]} = 0. In order to eliminate the term d̃(B) in the

right-hand side of Eq. (3.78), we perform the Born approximation, which assumes that the

coupling between the system and the reservoir is weak and the state of the composite system

can be approximated by a tensor product state, d̃(C) ≈ d̃( (C) ⊗ d̃'. Consequently, Eq. (3.78)

becomes
3

3C
d̃( (C) = −

∫ C

0

tr' {[�� (C), [�� (B), d̃( (B) ⊗ d̃']]} 3B. (3.79)

Next, the Markov approximation is applied, which replaces d̃( (B) in the right-hand side of

Eq. (3.79) by d̃( (C). Equation (3.79) now reads

3

3C
d̃( (C) = −

∫ C

0

tr' {[�� (C), [�� (B), d̃( (C) ⊗ d̃']]} 3B, (3.80)

which is known as the Redfield equation. Performing the variable transformation B → C − B
in the integral and setting the upper limit to infinity, we further obtain

3

3C
d̃( (C) = −

∫ ∞

0

tr' {[�� (C), [�� (C − B), d̃( (C) ⊗ d̃']]} 3B. (3.81)

In general, the interaction Hamiltonian + can be written in the following form:

+ =
∑
U

�U ⊗ �U, (3.82)

where �U and �U are Hermitians. We then define the operators

�U (l) B
∑

n<−n==l
Π=�UΠ<, (3.83)

where {n=} denote the eigenvalues of the system Hamiltonian �(, and Π= is the projection onto

the eigenspace corresponding to the eigenvalue n=. From the equality �(Π= = Π=�( = n=Π=,

one can easily verify the following relations:

[�( , �U (l)] = −l�U (l), (3.84)

[�( , �†U (l)] = +l�†U (l). (3.85)

Furthermore, the operators �U in the interaction picture read

48�( C �U (l)4−8�( C = 4−8lC �U (l), (3.86)

48�( C �†U (l)4−8�( C = 4+8lC �†U (l). (3.87)
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Note that [�( , �†U (l)�U′ (l)] = 0, �†U (l) = �U (−l), and
∑
l �U (l) =

∑
l �

†
U (l) = �U.

Hence, the interaction Hamiltonian + can be written as

+ =
∑
U,l

�U (l) ⊗ �U =
∑
U,l

�†U (l) ⊗ �†U, (3.88)

and its form in the interaction picture is given by

�� (C) = 48 (�(+�')C+4−8 (�(+�')C =
∑
U,l

4−8lC �U (l) ⊗ �U (C) =
∑
U,l

4+8lC �†U (l) ⊗ �†U (C), (3.89)

where �U (C) = 48�'C�U4
−8�'C is the interaction picture operator of �U. Now, inserting

Eq. (3.89) into Eq. (3.81), we obtain

3

3C
d̃( (C) =

∫ ∞

0

tr' {�� (C − B) d̃( (C) ⊗ d̃'�� (C) − �� (C)�� (C − B) d̃( (C) ⊗ d̃'} 3B + h.c. (3.90)

=
∑
l,l′

∑
U,U′

48 (l
′−l)CΓUU′ (l)

[
�U′ (l) d̃( (C)�†U (l′) − �†U (l′)�U′ (l) d̃( (C)

]
+ h.c.

(3.91)

Here, h.c. indicates the Hermitian conjugated terms and

ΓUU′ (l) B
∫ ∞

0

48lBtr
{
�†U (C)�U′ (C − B) d̃'

}
3B. (3.92)

Assuming that d' is a stationary state of the reservoir, i.e., [�', d'] = 0, then the reservoir

correlation functions are homogeneous in time,

tr
{
�†U (C)�U′ (C − B) d̃'

}
= tr

{
�†U (B)�U′ (0) d̃'

}
. (3.93)

This implies that the quantities ΓUU′ (l) are time-independent. However, it is not the case

when the reservoir is in a squeezed vacuum state. The time scale g( of the intrinsic evolution

of the system can be defined as the typical value of |l − l′ |−1 for l ≠ l′. When the time

resolution of our interest is large compared to this intrinsic time scale (i.e., C � g(), all the

non-secular terms (i.e., the terms for which l ≠ l′) oscillate rapidly and can be averaged

out. This final approximation is known as the rotating wave approximation, which was

conventionally applied to quantum optical systems. As a result, the following equation is

obtained,

3

3C
d̃( (C) =

∑
l

∑
U,U′

ΓUU′ (l)
[
�U′ (l) d̃( (C)�†U (l) − �†U (l)�U′ (l) d̃( (C)

]
+ h.c. (3.94)

To proceed further, it is convenient to divide ΓUU′ (l) into Hermitian and non-Hermitian

parts,

ΓUU′ (l) =
1

2
WUU′ (l) + 8cUU′ (l), (3.95)

where WUU′ (l) = ΓUU′ (l) + ΓUU′ (l)∗ =
∫ ∞
−∞ 4

8lBtr
{
�
†
U (B)�U′ (0) d̃'

}
3B. Inserting the decom-

position of ΓUU′ (l) into Eq. (3.94) and transforming back to the Schrödinger picture via the
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relation d̃( (C) = 48�( C d( (C)4−8�( C , we finally arrive at the master equation,

3

3C
d( (C) = −8[�(+�LS, d( (C)]+

∑
l

∑
U,U′

WUU′ (l)
[
�U′ (l)d( (C)�†U (l) −

1

2

{
�†U (l)�U′ (l), d( (C)

}]
.

(3.96)

Here, �LS B
∑
l

∑
U,U′ cUU′ (l)�†U (l)�U′ (l) is referred to as the Lamb shift Hamiltonian

since it leads to a Lamb-type renormalization of the unperturbed energy levels induced by

the system-reservoir coupling. Note that �LS and �( commute (i.e., [�LS, �] = 0), and

the matrix [WUU′ (l)] is positive since it is the Fourier transform of the positive matrix[
tr

{
�
†
U (B)�U′ (0) d̃'

}]
. Consequently, one can diagonalize the matrix [WUU′ (l)] and write

the master equation in the diagonal form as

3

3C
d( (C) = −8[�( + �LS, d( (C)] +

∑
l,:

W: (l)
[
!: (l)d( (C)!†: (l) −

1

2

{
!
†
:
(l)!: (l), d( (C)

}]
,

= −8[�( + �LS, d( (C)] + D(d( (C)), (3.97)

where D(d) B ∑
l,: W: (l)

[
!: (l)d!†: (l) −

1
2

{
!
†
:
(l)!: (l), d

}]
is usually called dissipator,

which characterizes the non-unitary evolution of the density matrix. In practice, the non-

Hermitian Lamb shift term �LS is sometimes neglected for ease of analysis.

Relaxation to equilibrium and detailed balance condition.—Assuming that the

reservoir is a thermal bath at the inverse temperature V = 1/) , then in the absence of the

external control, the system is expected to relax to the Gibbs state irrespective of the initial

state,

d
eq
(
≔ exp(−V�()//( , (3.98)

where /( = tr {exp(−V�()} is the partition function. We can prove that if the system is

ergodic and the coefficients W: (l) satisfy the detailed balance condition, then the above

expectation is met. The system is said to be ergodic if the relations

[-, !†
:
(l)] = [-, !: (l)] = 0 ∀:, l (3.99)

imply that - is proportional to the identity �(. The detailed balance condition is analogous

to the classical case, stating that

W: (l) = 4VlW: (−l). (3.100)

3.4.2 Heat, work, and entropy production

Consider an open quantum system whose dynamics are described by the Lindblad master

equation,

3

3C
d( (C) = −8[�( (C), d( (C)] +

∑
l,:

W: (l)
[
!: (l)d( (C)!†: (l) −

1

2

{
!
†
:
(l)!: (l), d( (C)

}]
, (3.101)
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where the Lamb shift term has been neglected. The system Hamiltonian is possibly time-

dependent. Then, the internal energy, heat, and work can be defined as

� (C) B tr {�( (C)d( (C)} , (3.102)

¤&(C) B −tr {�( (C) ¤d( (C)} , (3.103)

¤, (C) B tr
{ ¤�( (C)d( (C)} , (3.104)

where the dot denotes the time derivative. The heat Δ& =
∫ g
0
¤&(C)3C characterizes the energy

loss of the system induced by the change of the density matrix due to the interaction with the

reservoir. Thus, it can be regarded as the heat transferred from the system to the reservoir. On

the other hand, the work Δ, =
∫ g
0
¤, (C)3C expresses the energy change caused by the external

agent acting on the Hamiltonian. With these definitions, the first law of thermodynamics can

be established as

tr {�( (g)d( (g)} − tr {�( (0)d( (0)} = Δ� = Δ, − Δ&. (3.105)

To define entropy production, we assume that the system has an instantaneous equilibrium

state deq
(
(C) B exp(−V�( (C))//( (C), i.e., L(deq

(
(C)) = 0. Then, the total entropy production

rate ftot (C) can be the sum of the system entropy production rate and the heat flow to the

reservoir,

ftot (C) = ¤((C) + V ¤&(C), (3.106)

where ¤((C) = −tr { ¤d( (C) ln d( (C)} is the von Neumann entropy flux of the system. Plugging

the expressions of ¤((C) and ¤&(C) into Eq. (3.106), we have

ftot (C) = −tr { ¤d( (C) ln d( (C)} − Vtr {�( (C) ¤d( (C)} (3.107)

= −tr
{
¤d( (C) [ln d( (C) − ln deq

(
(C)]

}
(3.108)

= − 3
3C
((d( (C) | |deq

(
(C)), (3.109)

where the time derivative does not act on deq
(
(C). The positivity of the entropy production rate

can be proved using the monotonicity of the relative entropy under information processing,

ftot (C) = −
3

3C
((d( (C) | |deq

(
(C)) (3.110)

= lim
ΔC→0

((d( (C) | |deq
(
(C)) − ((d( (C + ΔC) | |deq

(
(C))

ΔC
(3.111)

= lim
ΔC→0

((d( (C) | |deq
(
(C)) − ((Λ∗ [d( (C)] | |Λ∗ [deq

(
(C)])

ΔC
≥ 0. (3.112)

Here, Λ∗ B 4LΔC is a Lindblad map satisfying Λ∗ [d( (C)] = d( (C + ΔC) and Λ∗ [deq
(
(C)] = deq

(
(C).

Since

((d1 | |d2) ≥ ((Λ[d1] | |Λ[d2]) (3.113)
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for arbitrary density matrices d1, d2 and completely positive trace-preserving map Λ, we have

((d( (C) | |deq
(
(C)) ≥ ((Λ∗ [d( (C)] | |Λ∗ [deq

(
(C)]), (3.114)

from which Eq. (3.112) is immediately obtained. For thermal relaxation processes (i.e., the

Hamiltonian and jump operators are time-independent), the total entropy production can be

explicitly calculated as

Δ(tot =

∫ g

0

ftot (C)3C = −
∫ g

0

3

3C
((d( (C) | |deq

(
)3C (3.115)

= ((d( (0) | |deq
(
) − ((d( (g) | |deq

(
) ≥ 0. (3.116)
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Chapter 4

Thermodynamic uncertainty

relations in Langevin systems

This chapter is devoted to investigating TURs for Langevin systems. It is of particular interest

that the TUR is valid for overdamped Langevin systems [24, 83]. However, overdamped dy-

namics, which are only approximate descriptions of underdamped dynamics, can dramatically

fail to capture thermodynamic quantities such as the entropy production [84–86]. Therefore,

it is natural to ask whether the TUR is valid for underdamped systems; and more impor-

tantly, if not, whether there exists an analogous bound for such systems. We answer this

question by numerically demonstrating that the TUR is actually violated; subsequently, we

derive a new TUR which holds for finite observation times. Interestingly, the derived TUR

indicates that the dynamical activity is on a par with entropy production to constrain the

current fluctuation.

Physical systems used in experiments, such as heat engines, are often driven by external

controllers. Nevertheless, in such non-stationary systems, the original TUR seems to be

violated. This fact motivates us to derive TURs for Langevin systems under arbitrary control

protocols. The derived TURs are applicable to both current and noncurrent observables that

satisfy a scaling condition. The analytical and numerical results indicate that the observable

fluctuation is constrained not only by entropy production but also by a kinetic term in both

overdamped and underdamped systems.

4.1 Bounds for steady-state underdamped Langevin sys-

tems

In this section, we study TUR for steady-state underdamped Langevin dynamics, wherein

damping does not suppress inertial effects. Regarding the validity of the TUR, we numerically

found that it does not universally hold. Therefore, the original bound cannot be utilized for

general underdamped systems. By applying information inequalities to systems, we derive

new bounds for both scalar and vector currents in the steady state. Specifically, we prove that

the relative fluctuation of a current is bounded from below by a quantity involving entropy

production and the average dynamical activity. This activity term is a kinetic aspect of the

system and plays a central role in characterizing its dynamics [87–92]. The results imply that



42 Chapter 4. Thermodynamic uncertainty relations in Langevin systems

the current fluctuation is constrained not only by entropy production but also by dynamical

activity. We empirically verify the derived bounds via numerical simulations. In addition, we

show that our approach can be applied to the derivation of an uncertainty relation for active

matter systems, which have recently attracted considerable interest [93–100].

4.1.1 Main results

We consider a general underdamped system of # particles, wherein the particle 8 is in contact

with a heat reservoir in equilibrium at temperature )8. The dynamics of the system are

described by a set of coupled equations as follows:

¤A8 = E8 , <8 ¤E8 = −W8E8 + �8 (r) + b8 , (4.1)

where the dots indicate time derivatives, r = [A1, . . . , A# ]> and v = [E1, . . . , E# ]> denote posi-

tions and velocities, respectively; <8 and W8 are the mass and the damping coefficient of particle

8, respectively; �8 (r) = −mA8* (r) + 58 (r) is the total acting force with the potential * (r); and

the b8’s are zero-mean white Gaussian noises with variances 〈b8 (C)b 9 (C ′)〉 = 2)8W8X8 9X(C − C ′).
Throughout this study, Boltzmann’s constant is set to :B = 1. The time evolution of the

phase-space probability distribution function, %(r, v, C), can be described by the Kramers

equation

mC%(r, v, C) =
#∑
8=1

[
−mA8 �A8 (r, v, C) − mE8 �E8 (r, v, C)

]
, (4.2)

where �A8 (r, v, C) = E8%(r, v, C) and �E8 (r, v, C) = 1/<8
[
−W8E8 + �8 (r) − )8W8/<8mE8

]
%(r, v, C).

Hereafter, we focus exclusively upon the steady state, in which the system has stationary

distribution %ss (r, v) and probability currents �ss
A8
(r, v) and �ss

E8
(r, v).

Let � ≡ [r(C), v(C)]C=TC=0 denote a phase-space trajectory that starts at the point
(
r0, v0

)
≡

(r(0), v(0)) and has length T . The entropy production characterizes the irreversibility in

the system and has been generalized to the level of stochastic trajectories [7]. Along the

trajectory �, the entropy production can be defined as ΔBtot [�] ≡ ln
(
P[�]/P† [�†]

)
, which

is a comparison of the probabilities of the forward path � and its time-reversed counterpart

�† ≡ [r(T − C),−v(T − C)]C=TC=0 [101–103]. Here, P[�] and P† [�†] are the probabilities of

observing the forward path � and its time-reversed path �†, respectively. Because the initial

distribution in the time-reversed process is %(r(T ), v(T ),T), the entropy production can be

decomposed as

ΔBtot [�] = − ln
%(r(T ), v(T ),T)
%(r(0), v(0), 0) + ln

P[� |r(0), v(0)]
P[�† |r(T ),−v(T )]

, (4.3)

where the first and second terms in the right-hand side of Eq. (4.3) correspond to the system

entropy production and the medium entropy production, respectively. Using stochastic ther-

modynamics [3, 103], we can show that the entropy production rate, which includes changes
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in the system entropy and the medium entropy, is as follows:

f =

#∑
8=1

∬
3r3v

<2
8

)8W8

�ir
E8
(r, v)2

%ss (r, v) , (4.4)

where �ir
E8
(r, v) is the irreversible current given by �ir

E8
(r, v) = −1/<8

[
W8E8 + )8W8/<8mE8

]
%ss (r, v).

The detailed calculation of f is provided in Appendix A.1. For an arbitrary trajectory �, we

consider a generalized observable-type current, Θ[�] =
∫ T
0
3C �(r)> ◦ ¤r, where � ∈ R#×1 is

the projection function and ◦ denotes the Stratonovich product. Our aim is to derive a lower

bound on the fluctuation of the current Θ[�].
To derive our results, let us consider the auxiliary dynamics

¤A8 = E8 , <8 ¤E8 = �8, \ (r, v) + b8 , (4.5)

where \ is a perturbation parameter and �8, \ (r, v) is the force acting upon particle 8. The

detailed form of �8, \ (r, v) will be determined later. For an arbitrary function 5 [�], let

〈 5 〉\ ≡
∫
D� 5 [�]P\ [�] and Var\ [ 5 ] ≡ 〈( 5 − 〈 5 〉\ )2〉\ . Here, P\ [�] is the probability of

observing the trajectory � generated by the auxiliary dynamics. It can be expressed in a

path-integral form as [104]

P\ [�] = N%ss
\ (r0, v0)

#∏
8=1

exp (−A8 [�]) , (4.6)

where A8 [�] ≡
∫ T
0
3C

(
<8 ¤E8 − �8, \ (r, v)

)2 /(4)8W8) is an Onsager–Machlup action functional,

%ss
\
(r0, v0) is the stationary distribution of the auxiliary dynamics, and N is a term indepen-

dent of \. The integral in the action functional is interpreted as the continuum limit of an

Ito sum with pre-point discretization. Note that writing the crossing term
∫
3C ¤E8�\,8 (r, v) in

Stratonovich integral (i.e., mid-point discretization) results in a different form of the path in-

tegral. However, it can be shown that both pre- and mid-point discretization schemes reduce

to the same path-integral representation in the case of additive noise (see Appendix A.2).

Hereafter, the notations 〈··〉 and 〈··〉\ imply averages taken over ensembles in the original

and auxiliary dynamics, respectively. In the steady state, the average of the current becomes

〈Θ〉\ = T
∬
3r3v�(r)>J ss

A , \
(r, v), where J ss

A , \
(r, v) = v%ss

\
(r, v) is the vector of probability

currents in the auxiliary dynamics. Since 〈Θ〉\ is a function of \, i.e., 〈Θ〉\ = k(\), we can

consider Θ as an estimator of k(\). The precision of this estimator is bounded from below

by the reciprocal of the Fisher information as [33]

Var\ [Θ]
(m\ 〈Θ〉\ )2

≥ 1

I(\) , (4.7)

where I(\) ≡ −
〈
m2
\

lnP\
〉
\

is the Fisher information, which can be calculated via the path

integral in Eq. (4.6). Equation (4.7) is known as the Cramér–Rao inequality, and indicates

a trade-off between the precision of an estimator and the Fisher information. The analogy

between this inequality and the TUR has been utilized to derive the original bound [33, 105].

Next, we use the virtual-perturbation technique [44] and consider the auxiliary dynamics with
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the following force:

�8, \ (r, v) = −(1 + \)W8E8 + (1 + \)2�8 (r) +
)8W8

<8
(1 − (1 + \)3)

mE8%
ss (r, v/(1 + \))

%ss (r, v/(1 + \)) . (4.8)

When \ = 0, �8, \ (r, v) = −W8E8 + �8 (r) and the auxiliary dynamics become the original

ones. Verifying that these auxiliary dynamics have a stationary distribution %ss
\
(r, v) =

%ss (r, v/(1 + \))/(1 + \)# is easy. The average current in the auxiliary dynamics is related to

that in the original dynamics as 〈Θ〉\ = (1 + \)〈Θ〉; thus, we have m\ 〈Θ〉\ = 〈Θ〉. By letting

\ = 0 in Eq. (4.7), we obtain the following inequality:

Var[Θ]
〈Θ〉2 ≥ 2

Σ
, (4.9)

where Σ = 2I(0) = T (9f + 4Υ) +Ω and

Υ =

#∑
8=1

( 1

)8W8
〈�8 (r)2〉 − 3

W8

)8
〈E2
8 〉 + 4

W8

<8

)
, (4.10)

Ω = 2

〈( #∑
8=1

E8mE8%
ss (r, v)/%ss (r, v)

)2
〉
− 2#2. (4.11)

Inequality (4.9) is the main result and holds for an arbitrary time scale and general under-

damped systems. The detailed derivation is provided in Appendix A.3. As seen, the derived

bound is not equal to the reciprocal of entropy production as is the original bound (which will

be shown to be violated in underdamped systems). In addition to the entropy production, the

derived bound also contains Υ, which involves the moments of the forces and velocities, and

a boundary term Ω, which is always nonnegative, as Ω = 2〈
[
m\ ln %ss

\
(r0, v0)

]2〉\=0. In the

long-time limit, i.e., T → ∞, the boundary term can be neglected. Thus, our result reduces

to a bound that was derived in Ref. [106] for a one-dimensional system using large deviation

theory. Since the kinetic term Υ can be estimated from the experimental data, our bound

can be applied to quantify the entropy production for underdamped systems as in Ref. [49],

where the original bound has been used to infer a lower bound on entropy production for

overdamped systems.

Considering the equality condition of the derived bound, the lower bound in Eq. (4.9)

can be attained if and only if the equality condition in Eq. (4.7) is satisfied with \ = 0.

Equivalently, m\ lnP\ [�] |\=0 = ` (Θ[�] − k(0)) must hold for an arbitrary trajectory �,

where ` is a scaling coefficient. However, it can be proven that this lower bound cannot be

attained (the detailed proof is provided in Appendix A.4).

So far, we have considered currents with projection functions involving only r. Here,

we derive a bound for a certain class of more general currents, Θ[�] =
∫ T
0
3C �(r, v)> ◦ ¤r,

wherein the projection function involves the velocity variables. Suppose that �(r, v) satisfies

�(r, (1+\)v) = (1+\)3�(r, v) for all \ ∈ R and for some nonnegative number 3. For example,

�(r, v) can be a vector of homogeneous polynomials of v (i.e., all nonzero terms have the

same degree 3 with respect to v). From the relationship 〈Θ〉\ = (1 + \)3+1〈Θ〉, we have
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m\ 〈Θ〉\ |\=0 = (3 + 1)〈Θ〉. Consequently, we obtain the following bound:

Var[Θ]
〈Θ〉2 ≥ 2(3 + 1)2

Σ
. (4.12)

When the projection function contains only r, i.e., 3 = 0, Eq. (4.12) reduces to Eq. (4.9).

4.1.2 Physical interpretation of the bound

Now, we interpret the physical meaning of the term Υ in the bound. In the original dynamics,

the action functional in the path integral with mid-point discretization is [107]

Am
8 [�] ≡

∫ T

0

3C

[
1

4)8W8
(<8 ¤E8 + W8E8 − �8)2 −

W8

2<8

]
. (4.13)

The functional Am
8

can be decomposed into two contributions: the time-antisymmetric (S)
and time-symmetric (K8 , K∗8 ) components as −Am

8
[�] = S8 [�] + K8 [�] + K∗8 [�] [108], where

S8 [�] = −
∫ T

0

3C
1

2)8
(<8 ¤E8 − �8) ◦ E8 ,

K8 [�] =
∫ T

0

3C

[
1

4)8W8

(
2<8 ¤E8 ◦ �8 − W2

8 E
2
8 − �2

8

)
+ W8

2<8

]
,

K∗8 [�] = −
∫ T

0

3C
<2
8
¤E2
8

4)8W8
. (4.14)

The time-antisymmetric part corresponds to the integrated entropy flux from the system into

the reservoirs and is thermodynamically consistent with the definition of medium entropy

production ΔBm [�] ≡
∑#
8=1

1
)8

∫ T
0
3C (W8E8 − b8) ◦ E8. The kinetic term K∗

8
relates to the mean

square acceleration of the particles and may quantify an amount of activity. However, K∗
8

should be interpreted as part of the functional measure; it determines the functional space

over which to integrate [109]. In particular, K∗
8

collects trajectories for which 3E2
8
/3C remains

finite when 3C → 0. The time-symmetric term K8 is identified as the dynamical activity, which

has been introduced in the literature [110–114]. In discrete-state Markov-jump processes, the

dynamical activity characterizes the time scale of the system and serves as an essential term

in the speed-limit inequality [92] and the kinetic uncertainty relation [36]. Taking the average

of K8, we explicitly obtain

〈K8〉 =
T
4

(
1

)8W8
〈�8 (r)2〉 − 3

W8

)8
〈E2
8 〉 + 4

W8

<8

)
. (4.15)

It can be easily confirmed that Υ = 4
∑#
8=1〈K8〉/T . Therefore, the term Υ in the derived

bound is exactly the average dynamical activity. This implies that the current fluctuation

in underdamped systems is not only constrained by the entropy production but also by its

dynamical activity.

To clarify the role of dynamical activity in the bound, let us consider equilibrium systems

(i.e., the external force 58 (r) = 0 and the temperature )8 = ) for all 8 = 1, . . . , #), where the
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entropy production vanishes. The steady-state distribution is of a Maxwell–Boltzmann type,

%ss (r, v) = C exp

[
− 1

)

(
1

2

#∑
8=1

<8E
2
8 +* (r)

)]
, (4.16)

where C is the normalizing constant. The average dynamical activity is always positive, i.e.,

〈K8〉 = T
(
〈�8 (r)2〉/()W8) + W8/<8

)
/4 > 0. The average current does not always vanish as in

the equilibrium overdamped systems, for example, for �(r, v) = v. Therefore, the fluctuation

of a current in equilibrium is bounded only by the average dynamical activity.

In the following, we provide an explanation regarding why the dynamical activity appears

in the lower bound of the current fluctuation in underdamped dynamics. For general Langevin

systems, the probability currents can be decomposed into irreversible and reversible compo-

nents [102]. In overdamped dynamics, which involves only the even variables, reversible cur-

rents are absent from the decomposition and the probability currents are irreversible. Both

the entropy production and current fluctuation can be characterized via these probability

currents. Therefore, the current fluctuation can be bounded solely by the associated entropy

production. However, this is not the case for underdamped dynamics. Unlike in the case of

overdamped dynamics, both irreversible and reversible currents exist in the decomposition of

underdamped dynamics. Both types of currents jointly characterize the current fluctuation.

Moreover, the entropy production is quantified via the irreversible currents, as in Eq. (4.4),

and the dynamical activity is quantified via the reversible currents. Consequently, in under-

damped dynamics, the current fluctuation is constrained not only by the entropy production

but also by the dynamical activity.

4.1.3 Multidimensional TUR

Generally, there are correlations between currents in real-world systems. Simultaneously

observing multiple currents is expected to yield more statistical information concerning the

distribution. Therefore, the multidimensional TUR, which includes several currents in the

observable, provides a tighter bound than does scalar TUR [105]. Such a bound can be applied

to a study of the trade-off relationship between power and efficiency in steady-state heat

engines [105, 115]. Here, we derive the multidimensional TUR for underdamped systems. We

consider a vector observable � ∈ R"×1, defined by �[�] =
∫ T
0
3C �(r) ◦ ¤r, where � ∈ R"×#

is an arbitrary matrix-valued function of r. By applying the information inequality for a

multivariate estimator, we obtain (see Appendix A.5.1)

Cov\ [�] � I(\)−1m\ 〈�〉\m\ 〈�〉>\ , (4.17)

where Cov\ [�] = [Cov\ [Θ8;Θ 9 ]] ∈ R"×" is the covariance matrix of the estimator � and the

matrix inequality X � Y indicates that X−Y is positive semi-definite. Here, Cov\ [Θ8;Θ 9 ] =
〈Θ8Θ 9〉\ − 〈Θ8〉\ 〈Θ 9〉\ . Considering the same auxiliary dynamics as in Eq. (4.8), we obtain

the multidimensional TUR as

Cov[�] � 2

Σ
〈�〉〈�〉>. (4.18)
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Figure 4.1: Schematic diagrams of systems used in simulations. (a) The
particle is confined in a single-well potential * (A) ∝ A2=. There is no external
force, and the system is in equilibrium. (b) The Brownian particle is driven
out of equilibrium by a constant external force 5nc under a periodic potential
* (A) ∝ cos(2c=A/!).

From Eq. (4.18), one can derive various bounds for current fluctuation. For instance, in

the case of two-dimensional currents, i.e., � = [Θ1,Θ2]>, the condition of the positive semi-

definite matrix yields a tighter bound:

Var[Θ1] ≥
2

Σ
〈Θ1〉2 + sup

Θ2

(
Cov[Θ1;Θ2] − 2

Σ
〈Θ1〉〈Θ2〉

)2
Var[Θ2] − 2

Σ
〈Θ2〉2

. (4.19)

In addition to the variance of individual currents, this inequality also involves the correlation

of two currents. A remarkable point in Eq. (4.19) is that, if a current Θ1 satisfies Var[Θ1] =
2〈Θ1〉2/Σ, then Cov[Θ1;Θ2] = 2〈Θ1〉〈Θ2〉/Σ holds for an arbitrary nonvanishing current Θ2.

Although the equality condition of the derived bound cannot be attained, inequalities like

Eq. (4.19) provide insight into the correlation of currents. In particular, for overdamped

dynamics, the current Θtot of stochastic total entropy production with a specific form of the

drift function satisfies the equality condition [33]; thus, Cov[Θtot;Θ] = 2〈Θ〉 for an arbitrary

current Θ, which expresses a universal property of stochastic entropy production. Another

direction is to derive an inequality directly from the definition of the positive semi-definite

matrix, x> (Cov[�] − 2〈�〉〈�〉>/Σ)−1 x ≥ 0 for all x ∈ R"×1 (if X is a non-singular, positive

semi-definite matrix, then so isX−1). By choosing x = 〈�〉, we obtain the following inequality

(see Appendix A.5.2):

〈�〉>Cov[�]−1〈�〉 ≤ Σ
2
, (4.20)

which relates the means and covariances of multiple currents. For uncorrelated currents, i.e.,

Cov[Θ8;Θ 9 ] = X8 9Var[Θ8], one can obtain the following inequality from Eq. (4.20):

"∑
8=1

〈Θ8〉2
Var[Θ8]

≤ Σ
2
. (4.21)

Equation (4.21) can be considered a generalization of Eq. (4.9). We note that inequalities

analogous to Eqs. (4.20) and (4.21) have been derived for overdamped Langevin dynamics in

Ref. [105]. However, they do not hold for general underdamped systems, although our derived

bounds are always satisfied.
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Figure 4.2: Numerical verification of the bounds. We randomly sample
parameters and numerically solve the Langevin equation 106 times with the
time step ΔC = 10−4. The parameter ranges are <, W, U, ) ∈ [0.1, 10] and
T ∈ [1, 10]. The dashed line depicts each saturated case of the bounds. For
the single-well potential system, we calculate Eeq ≡ 8〈Θ〉2/(ΣVar[Θ]), which
should satisfy Eeq ≤ 1, and plot Eeq as a function of Σ with green circles. All
circular points are located below the line, thus empirically verifying the de-
rived bound [Eq. (4.12)]. Here, = ∈ [1, 3]. For the Brownian particle model,
we evaluate Eneq ≡ 2〈Θ〉2/{(Σ −Ω)Var[Θ]} since accurate calculation of Ω
is difficult; Eneq is plotted as a function of Σ−Ω with orange squares. Since
Ω is nonnegative, the derived bound [Eq. (4.9)] is empirically verified if
Eneq ≤ 1 holds. It is possible that Eneq > 1 despite the derived bound be-
ing satisfied. We also simultaneously calculate Econ ≡ 2〈Θ〉2/(Tf · Var[Θ]),
which corresponds to the original bound [Eq. (1.4)], and plot it as a function
of Tf with violet triangles. Econ > 1 indicates that the original bound is
violated. As seen, all square points lie below the dashed line and the derived
bound is empirically verified. By comparison, many triangular points are
located above the line, thus implying that the original bound is violated.
Here, ! = 1, 5nc ∈ [0.1, 10] and = ∈ [1, 10].



4.1. Bounds for steady-state underdamped Langevin systems 49

4.1.4 Numerical illustration

We illustrate our results [Eqs. (4.9) and (4.12)] with the aid of two systems. We first consider

an equilibrium system under the symmetric single-well potential * (A) = UA2=/(2=) with = as

a positive integer, as illustrated in Fig. 4.1(a). The total force acting upon the particle is

� (A) = −UA2=−1. For this system, the dynamical activity Υ and the boundary term Ω can be

calculated analytically as

Υ =
U2

)W

( U

2=)

)−2+1/= � (2 − 1
2= )

� ( 1
2= )

+ W
<
, Ω = 4, (4.22)

where � (I) =
∫ ∞
0
3G GI−14−G is the gamma function. Since the entropy production vanishes, Σ

can be expressed as Σ = 4TΥ+ 4. We consider current Θ[�] =
∫ T
0
3C E2, which is proportional

to the accumulated kinetic energy of the particle. According to Eq. (4.12), the bound on this

current fluctuation reads Var[Θ]/〈Θ〉2 ≥ 8/Σ, which is illustrated in Fig. 4.2. We find that

the bound is satisfied for all selected parameter settings.

Next, we study a Brownian particle circulating on a ring of circumference ! under a

periodic potential * (A) = U!/(2c=) cos (2c=A/!), with integer = > 0 (see Fig. 4.1(b) for il-

lustration). The total force acting upon the particle is � (A) = −mA* (A) + 5nc, where 5nc is a

constant external force that drives the particle out of equilibrium. In the steady state, the

entropy production rate becomes f = 5nc〈E〉/) . We validate the derived bound for current

Θ[�] =
∫ T
0
3C ¤A, which corresponds to the accumulated distance traveled by the particle. Ac-

cording to Eq. (4.9), we have Var[Θ]/〈Θ〉2 ≥ 2/Σ. This and the original bound are illustrated

in Fig. 4.2. We find that the original bound can be violated; thus, Eq. (1.4) does not hold

for general underdamped systems. In comparison, our bound is always satisfied and, thus,

Eq. (4.9) is empirically verified.

4.1.5 TUR for active matter systems

We consider a model system of active matter, namely, active Ornstein–Uhlenbeck particles

(AOUPs), as has been studied in the literature [98, 99]. The system contains # self-propelled

particles, which extract energy from the surrounding environment and exhibit self-induced

motion. The dynamics of the particle 8 are governed by

¤A8 = −`mA8Φ(r) + [8 , g ¤[8 = −[8 + b8 , (4.23)

where ` is the mobility of particles, Φ(r) is an interaction potential, b8’s are zero-mean

Gaussian white noises with properties 〈b8 (C)b 9 (C ′)〉 = 2�8X8 9X(C − C ′), and [8’s are Ornstein–

Uhlenbeck processes with variances 〈[8 (0)[ 9 (C)〉 = �8X8 94
−|C |/g/g. Here, g is the persistent

time. In the g → 0 limit, [8’s become white noises with delta-function variances and A8’s

become Markovian processes. It is interesting that the force that drives the system out

of equilibrium arises from the nonequilibrium environment. To develop stochastic thermo-

dynamics for the system, a mathematical mapping to an underdamped dynamics has been

conducted by introducing velocity variables [98–100]. Specifically, taking the time derivative
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of Eq. (4.23), the system dynamics can be mapped to the following underdamped dynamics:

¤A8 = E8 , g ¤E8 = −E8 − `
(
1 + g

#∑
:=1

E:mA:

)
mA8Φ(r) + b8 . (4.24)

By applying our approach to these underdamped dynamics, an uncertainty relation for an

arbitrary observable Θ[�] =
∫ T
0
3C �(r)> ◦ ¤r can be obtained as follows:

Var[Θ]
〈Θ〉2 ≥ 2

Σ
, (4.25)

where Σ = T (9f + 4Υ0) +Ω and

Υ0 =

#∑
8=1

1

�8

〈
g`

#∑
9=1

E8E 9m
2
A8A 9
Φ(r) − 2

( #∑
9=1

E 9

[
X8 9 + g`m2

A8A 9
Φ(r)

] )2

+ 3�8
g

(
1 + g`m2

A8
Φ(r)

) 〉
.

(4.26)

The detailed derivation of the bound is given in Appendix A.6. We note that the definition of

the total entropy production in the AOUPs system is not unique and depends on the chosen

coarse-grained model. The definition employed here is the same as in Ref. [98].

4.1.6 Concluding remarks and discussion

In summary, we have derived the bounds on the current fluctuation in underdamped Langevin

dynamics using information inequalities. Our results indicated that the current fluctua-

tion is constrained not only by the entropy production but also by the average dynam-

ical activity. The derived bound can be used as a tool for estimating thermodynamic

quantities from the experimental data. Deriving a bound for general currents of the form∫
3C [�1 (r, v)> ◦ ¤r + �2 (r, v)> ◦ ¤v] requires further investigation.

4.2 Bounds for systems driven by arbitrary control pro-

tocol

In this section, we focus on extending the applicability of TURs that have been derived for

currents in steady-state systems. Considering general Langevin systems driven by an arbi-

trary time-dependent control protocol, we derive uncertainty relations for both current and

noncurrent observables that satisfy a scaling condition. We prove for both overdamped and

underdamped systems that the observable fluctuation is bounded by entropy production and

a kinetic term. Notably, the derived bounds are not static; however, they are dynamic with

respect to the observables and are tighter than the original for a broad class of observables.

When the target system is unidirectionally affected by other systems, we prove a tighter

bound for observables in the target system. That is, fluctuations of the observables are not

constrained by the dissipation costs of other systems but by the information flows between

them and the target system. Our results allow the investigation of arbitrary Langevin sys-

tems, ranging from relaxation processes to externally controlled systems such as stochastic
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heat engines. We apply the results to investigate three systems: a dragged Brownian particle,

a Brownian gyrator, and a stochastic underdamped heat engine.

4.2.1 Main results

For the sake of simplicity, we will describe our results with one-dimensional systems. The

generalization to multidimensional systems is straight-forward. Unlike in most previous stud-

ies, where the system is assumed to be in a stationary or in a transient regime, here, the

system starts from an arbitrary distribution at time C = 0 and is subsequently driven by an

external control protocol _ up to time C = g. When _ is absent, it becomes a relaxation

process. Let Γ denote the trajectory of system states during this time interval and q(Γ) be

a trajectory-dependent observable which can be time-symmetric. We aim to derive a bound

on the relative fluctuation of q(Γ).
We consider observables that satisfy the scaling condition: q(\Γ) = \^q(Γ) for some

constant ^ > 0 and for all \ ∈ R. Given a trajectory Γ = [G(C)]C=g
C=0 , this can be satisfied with

a current q(Γ) =
∫ g
0
3C G^−1 ◦ ¤G or a noncurrent observable q(Γ) =

∫ g
0
3C G^ . Here, ◦ denotes

the Stratonovich product and the dot indicates the time derivative. Moreover, q can be a

discrete-time observable, e.g., q(Γ) = ∑
8 28G(C8)^ , where 0 ≤ C8 ≤ g is the predetermined time

and 28 is an arbitrary coefficient. From a practical perspective, measurements are discretely

performed in most cases; thus, the acquisition of continuous-time observables may be difficult.

Consequently, a bound on such discrete-time observables provides a useful tool with regard

to thermodynamic inference problems. It is noteworthy that these noncurrent observables

cannot be applied with the TURs previously reported. Hereafter, we consider these three

types of observables.

Bounds for a full system

First, we consider a general overdamped Langevin system, whose dynamics are governed by

the following equation:

¤G = � (G, _) + b, (4.27)

where � (G, _) is the total force and b is a zero-mean Gaussian white noise with variance

〈b (C)b (C ′)〉 = 2�X(C − C ′). Here, � > 0 denotes the noise intensity. Throughout this chapter,

Boltzmann’s constant is set to :B = 1. Let d(G, C) denote the probability distribution function

of the system being in state G at time C. Then, its time evolution can be described using the

Fokker–Planck equation as mC d(G, C) = −mG 9 (G, C), where 9 (G, C) = � (G, _)d(G, C) − �mGd(G, C)
is the probability current. The dynamical solution of this differential equation is uniquely

determined if the initial distribution d(G, 0) = di (G) is given.

As our first main result, we prove that the observable fluctuation is bounded as

〈q〉2
〈〈q〉〉 ≤

1

^2
(2〈f〉 + jo + ko) , (4.28)
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where jo := 〈
∫ g
0
3C Λo (G, C)〉 is a kinetic term and ko := 〈(GmGdi/di)2〉di

− 1 is a nonnegative

boundary value that can be neglected for long observation times. Here, Λo = [(mG [G�])2 −
4�mG (G�) − 4�m2

G (G�)]/2� is a function in terms of force and position.

Next, we consider a general underdamped Langevin system, where inertial effects cannot

be neglected. The system consists of a particle being in contact with an equilibrium heat

bath. Its dynamics are described by the following equations:

¤G = E, < ¤E = −WE + � (G, _) + b, (4.29)

where <, W are the mass and friction coefficient of the particle, respectively. Let d(G, E, C)
be the phase-space probability distribution function of the system at time C. Assuming that

the system evolves from an initial distribution d(G, E, 0) = di (G, E); then, d(G, E, C) follows the

Fokker–Planck equation, mC d(G, E, C) = −mG 9G (G, E, C) −mE 9E (G, E, C), where 9G (G, E, C) = Ed(G, E, C)
and 9E (G, E, C) = 1/< [−WE + � (G, _) − �/<mE ]d(G, E, C) are probability currents. Since the

position G and the velocity E are the freedom degrees of the system, the trajectory can be

written as Γ = [G(C), E(C)]C=g
C=0 .

For observables that satisfy the scaling condition, we prove that

〈q〉2
〈〈q〉〉 ≤

1

^2
(2〈f〉 + ju + ku) , (4.30)

where ju := 〈
∫ g
0
3C Λu (G, E, C)〉 is a kinetic term and ku := 〈[(GmGdi + EmE di)/di]2〉di

− 4 is a

nonnegative boundary term that can be neglected for large g. Here, Λu = [(� − GmG�)2 −
4W2E2 + 8W�/<]/2�. Inequality (4.30) is our second main result. The detailed derivations of

the bounds and the generalization to the multidimensional case are presented in Appendix

B.1 and B.2, respectively.

We make several remarks about our main results [Eqs. (4.28) and (4.30)]. These inequali-

ties hold for arbitrary protocol _, arbitrary initial distribution di, and finite observation time

g; thus, they are also valid for steady-state systems. Interestingly, the derived bounds in-

volve the scaling power ^; as ^ is large enough, the bounds become tighter than the original

[Eq. (1.4)]. Moreover, unlike the reported bounds, which deal only with currents, our bounds

are applicable for current, noncurrent, and discrete-time observables, as well as for linear

combinations of these observables with the same scaling power.

In addition to entropy production, the bounds contain kinetic terms j{o, u}. They are

averages of observables, which can be calculated based on the observed trajectories. As

will be shown later, these terms play an important role in the bounds, i.e., the observable

fluctuation cannot be solely bounded by the entropy production, even with the exponential

bound (4 〈f〉 −1)/2. Furthermore, the fluctuation of a noncurrent observable, 〈q〉2/〈〈q〉〉, may

not vanish in equilibrium, for example, for q(Γ) =
∫ g
0
3C G2, while entropy production always

does, i.e., 〈f〉 = 0. In this scenario, j{o, u} are the key quantities that constrain fluctuations

of such noncurrent observables.

We provide an intuitive explanation regarding why kinetic terms appear in the bounds.

Entropy production, which is quantified via irreversible currents of probability density, char-

acterizes the strength of the currents in the system. Zero entropy production implies that
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Figure 4.3: Illustration of multipartite interacting systems described by
Langevin equations. The target system X is unidirectionally affected by
other systems Y1, . . . ,Y# . The total entropy production 〈f〉 of the full
system (including X,Y1, . . . ,Y# ) can be decomposed into nonnegative com-
ponents as 〈f〉 = 〈fG〉 +

∑#
8=1〈fH8 〉, in which each component represents the

contribution of the entropy production from each corresponding system.

there is no current in the system. Therefore, its genuine contribution to the bounds is the con-

straint on fluctuations of currents. To constrain fluctuations of noncurrent components (e.g.,

time-symmetric changes), another complement to entropy production, which is identified here

as j, is necessary [91].

With respect to attaining the derived bounds, one can show that the exact equality condi-

tion cannot be attained (from the equality condition of the Cauchy–Schwarz inequality) [53].

Unlike original TUR, which is saturated near equilibrium [33], attaining the derived bounds

is not ensured in such regimes. As shown later, the bounds become tight for long observation

times. For short observation times, a gap exists between the fluctuations of the observables

and the derived bounds. This occurs due to the dominance of the boundary terms, ko,u.

Bounds for a subsystem

Let us consider a situation where the target system X undergoes unidirectional interactions

with other systems Y1, . . . ,Y# . Each of these systems is coupled to a distinct thermal reser-

voir. We assume that X does not affect the dynamics of Y8 for all 8, while each system Y8 can

arbitrarily affect other systems (see Fig. 4.3 for the illustration). An example of this situation

is a system that involves continuous-time imperfect measurement and feedback control. The

systems {Y8} correspond to the errors in the readout when performing measurements on X.

These errors instantly affect the system dynamics of X via feedback control. For simplicity,

we consider the case # = 1, and the system states of X and Y are represented by variables G

and H, respectively. The dynamics of X and Y are governed by the following equations:

¤G = �G (G, H, _) + bG , (4.31)

¤H = �H (H, _) + bH , (4.32)

where bG and bH are uncorrelated zero-mean Gaussian white noises satisfying 〈bI (C)bI (C ′)〉 =
2�IX(C − C ′), for each I ∈ {G, H}. Let di (G, H) := d(G, H, 0) denote the distribution function at
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time C = 0. The corresponding Fokker–Planck equation reads mC d(G, H, C) = −
∑
I∈{G,H } mI 9I (G, H, C),

where 9I = �Id − �ImId is the probability current.

The entropy production of the full system (including both X and Y) is given by

〈f〉 =
∫ g

0

3C

∫
3G3H

(
9G (G, H, C)2
�Gd(G, H, C)

+
9H (G, H, C)2

�Hd(G, H, C)

)
. (4.33)

It can be rewritten as 〈f〉 = 〈fG〉 + 〈fH〉, where 〈fI〉 =
∫ g
0
3C

∫
3G3H 9I (G, H, C)2/�Id(G, H, C) ≥

0 is the entropy production contribution from I ∈ {G, H}. Moreover, 〈fG〉 can be further

decomposed as 〈fG〉 = 〈ΔBG〉 + 〈@G〉/�G + �G [116], where 〈ΔBG〉 denotes the change in the

Shannon entropy of X, 〈@G〉 denotes the heat flow from X to the reservoir, and �G represents

information flow into and out of X. Note that because of information exchanged between X
and Y, 〈ΔBG〉 + 〈@G〉/�G can be negative.

For arbitrary observables involving only G and satisfying the scaling condition with the

scaling power ^, we can prove that

〈q〉2
〈〈q〉〉 ≤

1

^2
(2〈fG〉 + jG + kG), (4.34)

where jG := 〈
∫ g
0
3C ΛG (G, H, C)〉 is a kinetic term and kG := 〈(GmGdi/di)2〉di

− 1 is a nonnegative

boundary value. Here, ΛG = [(mG [G�G])2 − 4�GmG (G�G) − 4�Gm
2
G (G�G)]/2�G . Inequality (4.34)

is our third main result. Note that the bound in Eq. (4.28) also holds for this situation when

we consider a full system that includes both X and Y. The difference between these bounds

[Eqs. (4.28) and (4.34)] is that the former contains terms that originate from all the systems,

i.e., X and Y, while the latter only involves contributions from X. Focusing on the entropy

production term, 〈fG〉, the bound in Eq. (4.34) implies that the fluctuations of the observables

in X are not constrained by the dissipation in Y but by that in X, 〈ΔBG〉 + 〈@G〉/�G , and the

information flow between X and Y, �G . This implication agrees with intuition. In general, the

bound in Eq. (4.34) is tighter than that in Eq. (4.28) and reduces to the same one when there

is no interaction between X and Y. A bound for underdamped systems can be analogously

derived. The derivation of Eq. (4.34) is provided in Appendix B.3.

4.2.2 Numerical illustration

In this section, we illustrate our results with the help of three systems, as follows.

Dragged Brownian particle

First, we investigate a dragged Brownian particle confined in a harmonic potential * (G, _) =
2(G − _)2/2, where 2 > 0 is a constant [see Fig. 4.4(a) for illustration]. The total force is

� (G, _) = −mG* (G, _), and the particle position is governed by the following equation:

¤G = 2(_ − G) + b. (4.35)



4.2. Bounds for systems driven by arbitrary control protocol 55

Figure 4.4: (a) Schematic diagram of the dragged Brownian particle with
the control protocol _. Bound on fluctuations of the observables under (b)
time-linear, (c) time-periodic, and (d) time-symmetric protocols [Eq. (4.37)].
The dashed-dotted, dashed, dotted, thin, and thick solid lines represent the
fluctuations 〈qc〉2/〈〈qc〉〉, 〈qpos〉2/〈〈qpos〉〉, 〈qnc〉2/〈〈qnc〉〉, the exponential

bound (4 〈f〉 − 1)/2, and the derived bound 2〈f〉 + jo +ko, respectively. The
derived bound is always satisfied, while the exponential bound is violated
for all three cases. The observation time g is varied, while the remaining
parameters are fixed as 2 = 1, U = 1, V = 2, and � = 1.

We consider three cases: (a) a time-linear protocol _(C) = UC, (b) a time-periodic protocol

_(C) = U sin(VC), and (c) a time-symmetric protocol

_(C) =

UC, 0 ≤ C ≤ g/2,

U(g − C), g/2 < C ≤ g,
(4.36)

where U and V are positive constants. We assume that the system is initially in equilibrium

with the distribution di (G) ∝ exp(−2G2/2�). We consider three observables: a current rep-

resenting the particle’s displacement qc (Γ) = G(g) − G(0), the final position qpos(Γ) = G(g),
and a noncurrent observable qnc (Γ) =

∫ g
0
3C G, which represents the area under the trajectory.

These observables satisfy the scaling condition with ^ = 1, i.e., q(\Γ) = \q(Γ). According to

the derived bound [Eq. (4.28)], inequality

〈q〉2
〈〈q〉〉 ≤ 2〈f〉 + jo + ko (4.37)

should be satisfied for all q ∈ {qc, qpos, qnc}. All the terms in this bound can be analytically

calculated in the following.

Let d(G, C) be the probability distribution function of G at time C. Since the force is linear,

the distribution is Gaussian, i.e., d(G, C) = N(G; `(C), o(C)), where `(C) and o(C) are the mean

and variance, respectively. The initial conditions are `(0) = 0, o(0) = �/2. From the
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Fokker–Planck equation, we obtain

¤̀ (C) = 2 [_(C) − `(C)] , o(C) = �

2
. (4.38)

Solving the differential equation [Eq. (4.38)] with respect to `(C), we obtain

`(C) = 2
∫ C

0

3B 4−2 (C−B)_(B). (4.39)

Using the Laplace transform, the analytical solution of Eq. (4.35) can be expressed as

G(C) = `(C) + G04
−2C +

∫ C

0

3B 4−2 (C−B)b (B). (4.40)

From Eq. (4.40), we obtain

〈[G(C) − `(C)] [G(C ′) − `(C ′)]〉 = �

2
4−2 |C−C

′ | . (4.41)

The observable averages can be analytically calculated, i.e., 〈qc〉 = 〈qpos〉 = `(g) and 〈qnc〉 =∫ g
0
3C `(C). Analogously, the variances of the observables are obtained as 〈〈qc〉〉 = 2� (1 −

4−2g)/2, 〈〈qpos〉〉 = �/2, and 〈〈qnc〉〉 = 2� (4−2g + 2g − 1)/23. The terms in the bound can be

analytically calculated as

〈f〉 = 2
2

�

∫ g

0

3C (_(C) − `(C))2, (4.42)

jo = 22g − 22

2�

∫ g

0

3C
[
4`(C)2 + 3_(C)2 − 8_(C)`(C)

]
, (4.43)

ko = 2. (4.44)

We illustrate the bound [Eq. (4.37)] in Fig. 4.4(b)–(d), where the derived bound is always

satisfied and the exponential bound is violated. As seen, for short observation times, a gap

exists between the bound and the fluctuation. However, as g is increased, the gap is reduced

and the bound becomes tight.

Brownian gyrator

Next, we study a Brownian gyrator [117], which is a minimal microscopic heat engine that

has recently been experimentally realized in an electronic and a colloidal system [118, 119].

The system consists of a particle with two degrees of freedom, x = [G1, G2]>, trapped in

an elliptical harmonic potential * (x) = [D1 (G1 cosU + G2 sinU)2 + D2 (−G1 sinU + G2 cosU)2]/2,

where D1, D2 > 0 are stiffnesses along its principal axes, and U is the rotation angle. The

particle is simultaneously in contact with two heat baths at different temperatures acting

in perpendicular directions [Fig. 4.5(a)]. The particle position follows overdamped Langevin

equations,

W8 ¤G8 = −mG8* (x) + b8 , (8 = 1, 2), (4.45)
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Figure 4.5: Schematic diagrams of (a) the Brownian gyrator and (b) the
stochastic underdamped heat engine. A cyclic period consists of four steps:
isothermal expansion for a time gℎ [(1) → (2)], instantaneously cooling the
heat bath to temperature )2 [(2) → (3)], isothermal compression for a time
g2 [(3) → (4)], and instantaneously heating the heat bath to temperature )ℎ
[(4) → (1)]. The solid and dashed lines represent the probability distribution
d(G, C) and the potential * (G, _), respectively.

where W8 is the friction coefficient and b8 is the zero-mean Gaussian white noise with covariance

〈b8 (C)b 9 (C ′)〉 = 2X8 9W8)8X(C − C ′). Here, )1 ≠ )2 are the temperatures of the heat baths. In

generic cases, i.e., D1 ≠ D2, the potential is asymmetric and a systematic gyrating motion of

the particle around the potential minimum is induced due to the flow of heat. The interesting

observable is the accumulated torque exerted by the particle on the potential

qt (Γ) =
∫ g

0

3C
[
G1mG2* (x) − G2mG1* (x)

]
. (4.46)

This observable is time-symmetric; thus, all TURs previously reported cannot be applied.

Since qt (\Γ) = \2qt (Γ), the following bound on torque fluctuation should be satisfied:

〈qt〉2
〈〈qt〉〉

≤ 〈f〉
2
+ jo + ko

4
. (4.47)

We illustrate Eq. (4.47) in Fig. 4.6(a). The fluctuation 〈qt〉2/〈〈qt〉〉 is numerically evaluated,

while 〈f〉, jo, and ko are analytically calculated. As seen, the bound is always satisfied when

the observation time g is varied. Positive entropy production is needed to generate a nonzero

torque. However, the fluctuation cannot be bounded solely by entropy production, even with

the exponential bound (4 〈f〉 − 1)/2.

Stochastic underdamped heat engine

Lastly, we consider a stochastic underdamped heat engine comprising a particle trapped in

a harmonic potential * (G, _) = _G2/2 [120] [see Fig. 4.5(b)]. The particle is embedded in a

heat bath, whose temperature ) is cyclically varied to operate the system as a heat engine.

Its dynamics are described using the Langevin equation,

< ¤E = −WE − _G + b, (4.48)
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Figure 4.6: (a) Bound on the fluctuation of the accumulated torque
[Eq. (4.47)]. The system is in steady state, wherein the distribution is
Gaussian. The dashed-dotted, dashed, and solid lines represent the fluc-
tuation 〈qt〉2/〈〈qt〉〉, the exponential bound (4 〈f〉 − 1)/2, and the derived
bound (2〈f〉 + jo + ko)/4, respectively. The derived bound is always sat-
isfied, while the exponential bound is not. The parameters are U = c/4,
W1 = W2 = 10, D1 = 1, D2 = 4, )1 = 1, and )2 = 4. (b) Bound
on fluctuations of the power output and the accumulated kinetic energy
[Eq. (4.50)]. The fluctuations 〈qp〉2/〈〈qp〉〉, 〈qv〉2/〈〈qv〉〉, the exponential

bound (4 〈f〉 − 1)/2, and the derived bound (2〈f〉 + ju + ku)/4 are depicted
by the dashed-dotted, dotted, dashed, and solid lines, respectively. The
fluctuations exceed the exponential bound, while they are always smaller
than the derived bound. The initial distribution di is a centered Gaus-
sian with variances 〈G2〉 = 10, 〈E2〉 = 1, and 〈GE〉 = 0. The parameters are
< = 1, W2 = Wℎ = 0.1, )2 = 1, )ℎ = 4, _2 = 0.1, _ℎ = 2, and g2 = gℎ = g/2.

where the noise variance is 〈b (C)b (C ′)〉 = 2W)X(C − C ′). We employ a time-linear protocol [121]

_(C) =

_ℎ + (_2 − _ℎ)C/gℎ , 0 ≤ C < gℎ ,

_2 + (_ℎ − _2) (C − gℎ)/g2 , gℎ ≤ C < g,
(4.49)

where gℎ , g2 are the coupling times to the hot and cold heat baths, respectively, and g = gℎ+g2
is the total observation time. The work F exerted on the particle during the period is equal

to F(Γ) =
∫ g
0
3C m_* (G, _) ¤_. We consider two observables: the power output qp = −F/g and

the accumulated kinetic energy qv =
∫ g
0
3C E2. Since q(\Γ) = \2q(Γ), fluctuations of these

observables are bounded as
〈q〉2
〈〈q〉〉 ≤

〈f〉
2
+ ju + ku

4
(4.50)

for q ∈ {qp, qv}. We assume that the initial distribution di (G, E) is Gaussian and illustrate

Eq. (4.50) in Fig. 4.6(b). As shown, the derived bound is always satisfied, while the fluctua-

tions cannot be constrained by the exponential bound.

We illustrate the implication of our results for the power output of heat engines. The

original TUR has been exploited to derive a bound on the fluctuation of power output in

steady-state heat engines [115]. It indicates that a steady-state heat engine operating with

Carnot’s efficiency [� = 1 − )2/)ℎ and delivering work with a finite fluctuation is impossible.

However, our bound does not imply this consequence in the same manner as the original

bound. It has been shown that one can construct a cyclic Brownian heat engine operating

with efficiency asymptotically close to [� at nonzero power output with vanishing fluctuations

[122]. Our bound is applicable to such an engine and such arbitrary heat engines described



4.2. Bounds for systems driven by arbitrary control protocol 59

using Langevin dynamics.

4.2.3 Concluding remarks and discussion

Recent studies have made advances in generalizing TURs. It has been shown that a TUR is a

direct consequence of the detailed fluctuation theorem, regardless of the underlying dynamics

[39, 46, 56]. This bound is more applicable than the original, i.e., it holds for arbitrary currents

and arbitrary dynamics as long as the fluctuation theorem is provided. However, it pays the

cost of a weaker predictive power. A generalization to systems with a broken symmetry, known

as the hysteretic TUR, has been conducted [43, 123]. This bound requires the evaluation of

currents and entropy production in the backward process, having the following form:

(〈q〉 + 〈q〉b)2
〈〈q〉〉 + 〈〈q〉〉b

≤ exp

(
〈f〉 + 〈f〉b

2

)
− 1, (4.51)

where 〈··〉b denotes averages taken over an ensemble in the backward experiment. Another

extension that holds for arbitrary dynamics reads [45, 55]

〈q〉2
〈〈q〉〉 ≤

4 〈f̃〉 − 1

2
, (4.52)

where 〈f̃〉 is the Kullback–Leibler divergence between distributions of the forward path and

its reversed counterpart in the system. However, 〈f̃〉 is not equal to the entropy production

〈f〉, except in steady-state systems with time-reversal symmetry. Despite the generalities of

Eqs. (4.51) and (4.52), it is difficult to infer the entropy production from these bounds.

Based on information theory, we have derived bounds for both current and noncurrent

observables in overdamped and underdamped regimes. These bounds universally hold for

arbitrary protocols and arbitrary initial distributions. The results demonstrate that the

fluctuations of observables are constrained not only by entropy production but also by a

kinetic term. In all studied examples, we have shown that the exponential bound of entropy

production, (4 〈f〉−1)/2, cannot constrain the fluctuation. For the case of multipartite systems

where the dynamics of the target system are unidirectionally affected by other systems, we

have proved a tighter bound. This bound reveals that the fluctuations of observables in

the target system are not constrained by the dissipation costs of other systems but by the

information flow between them and the target system.

Our results serve as a useful tool for estimation tasks in general Langevin systems. Infor-

mation inequalities have successfully been applied to derive many important thermodynamic

bounds, such as the sensitivity-precision trade-off [33], a quantum TUR [42], and the speed

limit [124]. Extending our approach to other classical and quantum systems or finding a

hyper-accurate observable [125] would be interesting.
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Chapter 5

Thermodynamic uncertainty

relations in non-Markovian

systems

The TUR has been mainly investigated for Markovian systems. However, in the real world,

“non-Markov is the rule, Markov is the exception,” as remarked by N. G. van Kampen. For

instance, the time delay that causes non-Markovian dynamical behavior inevitably exists in

many real-world stochastic processes such as gene regulation [126, 127], biochemical reaction

networks [128], and control systems involving a feedback protocol [129–131]. It is well-known

that time delay can completely alter system dynamics, e.g., delay-induced oscillations [126].

Recently, Ref. [132] has shown that even a small delay time leads to finite heat flow in the

system. Despite the importance of delay in many classical and quantum systems, thermody-

namic analysis of such systems remains challenging [133, 134]. In addition, feedback control

by an external protocol that depends on the measurement outcome is ubiquitous in both

physics and biology and plays important roles in the study of nonequilibrium systems. The

thermodynamics of feedback control [135–144] provides a crucial framework for analysing sys-

tems in the presence of Maxwell’s demon, which can extract work from the system beyond

the limit set by the conventional second law. The system performance can be significantly en-

hanced by applying the measured information about itself; moreover, such information could

improve the precision of observables such as the displacement of a molecular motor [145, 146].

This chapter focuses on studying TURs in non-Markovian systems, such as time-delayed

Langevin dynamics, systems involving measurement and feedback control, and semi-Markov

processes. The obtained TURs reveal that the non-Markovian signatures such as information

flow and memory effects play an important role in the suppression of current fluctuations.

5.1 Bounds for time-delayed Langevin systems

In this section, we study the TUR for general dynamical observables that are antisymmetric

under conjugate operations such as time or position reversal. First, we define a trajectory-

dependent quantity f [cf. Eq. (5.5)], whose average is the Kullback–Leibler (KL) divergence

between the distributions of the forward path and its conjugate counterpart. In the absence
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of time delay and under time reversal, f is identified as the trajectory-dependent total en-

tropy production in Markovian systems. Starting from the point that the joint probability

distribution of f and the observable obeys the strong detailed fluctuation theorem, we prove

that the relative fluctuation of the observable is lower bounded by 2/(4 〈f〉 − 1). This implies

that the time irreversibility in the system constrains the fluctuation of observables that are

odd under time reversal. For observables that are antisymmetric under position reversal, the

bound reflects the degree of position-symmetry breaking in the system. The derived bound

holds for arbitrary observation times and for a large class of time-delayed systems such as

continuous- or discrete-time systems with multiple or distributed delays. We numerically

verify the validity of the derived inequality in three systems wherein 〈f〉 can be analytically

obtained.

5.1.1 Model

To clearly illustrate the results, we consider here a single time-delayed system with dynamical

variables x(C) = [G1 (C), . . . , G# (C)]>, as described by the following set of coupled Langevin

equations:

¤x = F (x,xg) + ξ, (5.1)

where xg ≡ x(C − g), F (x,xg) ∈ R# is a drift force, ξ(C) = [b1 (C), . . . , b# (C)]> is zero-mean

white Gaussian noise with covariance 〈b8 (C)b 9 (C ′)〉 = 2�8X8 9X(C − C ′), and g ≥ 0 denotes the

delay time in the system. Here, �8’s denote the noise intensity. Equation (5.1) is interpreted

as Ito stochastic integration. Throughout this chapter, Boltzmann’s constant is set to :B = 1.

Let %(x, C) be the probability distribution function for the system to be in state x at time C.

Then, the corresponding Fokker–Planck equation (FPE) is expressed as [147, 148]

mC%(x, C) = −
#∑
8=1

mG8 �8 (x, C), (5.2)

where

�8 (x, C) =
∫

3y �8 (x, y)%(y, C − g;x, C) − �mG8%(x, C)

= �8 (x)%(x, C) − �8mG8%(x, C)
(5.3)

is the probability current. Here,

�8 (x) =
∫

3y �8 (x, y)%(y, C − g |x, C) (5.4)

is an effective force obtained by taking the delay-averaged integration of the variable y and

%(y, C − g;x, C) is a joint probability density for a system that takes value x at time C and y

at time C − g. Generally, solving %(y, C − g;x, C) results in an infinite hierarchy of equations,

where =-time probability distribution depends on the (=+1)-time one. Therefore, it is difficult

to analytically obtain the effective force �8 (x), except in linear systems.

We define X[B,4] ≡ {x(C)}C=4C=B as a trajectory that begins at C = B and ends at C = 4. Let

P(X[B,4]) be the probability of observing the trajectory X[B,4] . For each trajectory X[B,4] ,
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we consider a conjugate trajectory X†[B,4] defined by X†[B,4] ≡ {x
† (C)}C=4C=B . Assuming that

we observe the system during a time interval [0, )], we then define a trajectory-dependent

quantity f(X[0,) ]), which is the ratio of the probabilities of observing the forward path and

its conjugate counterpart, as follows:

f ≡ ln
P(X[0,) ])
P(X†[0,) ])

. (5.5)

For the sake of simplicity, we use the notation X, omitting the time interval, to indicate

X[0,) ] . If the conjugate operation satisfies the property (X†)† = X, then f is odd under it,

i.e., f(X†) = −f(X). Hereafter, we consider conjugate operations that satisfy this property.

Introducing the probability distribution %(f) =
∫
DX X(f −f(X))P(X), we show that %(f)

satisfies the fluctuation theorem, i.e.,

%(f)
%(−f) = 4

f . (5.6)

Equation (5.6) can be derived as follows:

%(f) =
∫
DX X(f − f(X))P(X)

=

∫
DX X(f − f(X))4f (X)P(X†)

= 4f
∫
DX X(f − f(X))P(X†)

= 4f
∫
DX† X(f + f(X†))P(X†)

= 4f%(−f). (5.7)

Equation (5.6) implies that f satisfies the integral fluctuation theorem, i.e., 〈4−f〉 = 1. By

applying Jensen’s inequality 〈4−f〉 ≥ 4−〈f〉, we have 〈f〉 ≥ 0. The average value of f can

also be interpreted as the KL divergence between the distributions P and P†

〈f〉 = DKL [P||P†] =
∫
DX P(X) ln P(X)

P† (X)
, (5.8)

where P† (X) ≡ P(X†). From Eq. (5.8), 〈f〉 becomes zero only when P(X) = P(X†) for all

trajectories X.

Let us discuss the conjugate operations that will be used here. The most conventional

one is time reversal, i.e., x† (C) = εx() − C). Here, n8 = ±1 for even and odd variables G8,

respectively. For systems where both even and odd variables exist, a reversed trajectory

X† can be generated under forward dynamics. Therefore, f is mathematically well defined.

In this case, 〈f〉 is a measure of the time-reversal symmetry breaking in the system. For

steady-state systems involving only even variables, f can be decomposed as

f = − ln
%ss (x()))
%ss (x(0)) + ln

P(X|x(0))
P(X† |x† (0))

, (5.9)
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Figure 5.1: Illustration of the conjugate operations. For simplicity, we
assume here that the system involves only even variables. For the trajectory
X ≡ {G(C)}C=)

C=0 , its reversed counterpart is X† ≡ {G† (C)}C=)
C=0 , where G† (C) is

equal to G() − C) (or −G(C)) under time reversal (or position reversal). Here,
) denotes the observation time.

where %ss (·) is the steady-state distribution and P(·|·) is the conditional path probability.

When the time delay vanishes, f is identified as the total entropy production along a trajec-

tory in Markovian systems [3]; the first and second terms in the right-hand side of Eq. (5.9)

correspond to the system and medium entropy production, respectively. Under time reversal,

〈f〉 can be considered a generalization of total entropy production for time-delayed systems

[149, 150]. It is worth noting that this generalization of entropy production is mathematical

and that it is generally difficult to assess its relation to the thermodynamic notion of entropy

production [151], except in Markovian processes where an explicit connection was established

[7, 152]. Another possible conjugate operation is position reversal, i.e., x† (C) = κ−x(C). Here,

κ ∈ R# is a constant that can basically take an arbitrary value, except in systems involving

=th-time-derivative variables, where = ∈ N>0. For these systems, κ must be carefully chosen

to ensure that a reversed trajectory can be generated by forward dynamics. In particular,

κ must be set to ^8 = 0 for all such variables G8. For example, if the system variables are

the position and velocity of a particle, i.e., x(C) = [A (C), ¤A (C)]>, where A (C) is the particle’s

position, then the reversed trajectory {x† (C)} = {^1 − A (C), ^2 − ¤A (C)} can be generated by the

forward dynamics only if ^2 = 0. Under this conjugate operation, 〈f〉 reflects the degree of

position-symmetry breaking with respect to the position κ/2 in the system. In the remain-

ing part of the section, we consider the κ = 0 case. To distinguish when each operation is

employed, we use subscripts C and ? to refer time reversal and position reversal, respectively.

The conjugate operations are illustrated in Fig. 5.1.

Because 〈f〉 is the KL divergence between forward and reversed trajectories and trajectory-

based quantities were previously measured [153–157], 〈f〉 is in principle experimentally mea-

surable. As will be shown in the examples, 〈f〉 can be analytically calculated for several

classes of systems. In what follows, we investigate a more detailed form of f with respect to

conjugate operations for the system defined in Eq. (5.1). For ) > g, the path probability can

be rewritten
P(X[0,) ]) = P(X[g,) ] |X[0,g ])P(X[0,g ]),

P(X†[0,) ]) = P(X
†
[g,) ] |X

†
[0,g ])P(X

†
[0,g ]),

(5.10)

where P(X[g,) ] |X[0,g ]) is the probability of observing X[g,) ] , conditioned on X[0,g ] . We note

that under time reversal, X†[0,g ] = {εx()−C)}
C=g
C=0 . The conditional probability can be calculated
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via the path integral as

P(X[g,) ] |X[0,g ]) = N exp

(
−

#∑
8=1

S8 (X[0,) ])
)
, (5.11)

where S8 (X[0,) ]) is the stochastic action given by

S8 (X[0,) ]) =
∫ )

g

3C

[
( ¤G8 − �8 (x,xg))2

4�8
+
mG8�8 (x,xg)

2

]
, (5.12)

and N is a positive term independent of the trajectory. Equation (5.11) can be obtained

by discretizing the Langevin equation [cf. Eq. (5.1)] and evaluating the path probability

via the occurrence probability of the noise trajectory [158]. The cross term
∫
3C �8 (x,xg) ¤G8

in Eq. (5.12) should be interpreted as
∫
3C �8 (x,xg) ◦ ¤G8, where ◦ denotes the Stratonovich

product. Using Eq. (5.10), the average of f can be decomposed as

〈f〉 =
〈
ln
P(X[g,) ] |X[0,g ])
P(X†[g,) ] |X

†
[0,g ])

〉
+

〈
ln
P(X[0,g ])
P(X†[0,g ])

〉
. (5.13)

In the long-time limit, i.e., ) →∞, the first term in the right-hand side of Eq. (5.13) becomes

dominant as the second term is only a boundary value. Neglecting the contribution of this

boundary term and plugging Eq. (5.11) into Eq. (5.13), 〈fC 〉 and 〈f?〉 can be approximated

as

〈fC 〉 ≈
1

2

#∑
8=1

〈∫ ) −g

0

3C

[
( ¤G8 + �8 (x,x−g))2

2�8
+ mG8�8 (x,x−g)

]
−

∫ )

g

3C

[
( ¤G8 − �8 (x,xg))2

2�8
+ mG8�8 (x,xg)

]〉
,

〈f?〉 ≈
1

2

#∑
8=1

〈∫ )

g

3C

[(
¤G8
�8
− �8 (x,xg) − �8 (−x,−xg)

2�8
− mG8

)
◦ (�8 (x,xg) + �8 (−x,−xg))

]〉
.

(5.14)

For general systems, it is difficult to obtain more detailed forms of 〈fC 〉 and 〈f?〉 than those

in Eq. (5.14), except in linear systems. 〈fC 〉 becomes zero when the system is in equilibrium

because 〈fC 〉 characterizes the time reversibility of the system. Contrastingly, 〈f?〉 can be

positive even in the equilibrium system so long as the symmetry with respect to position

reversal is broken.

5.1.2 Main results

In this section, we derive the TUR for an arbitrary dynamical observable z (X), which is anti-

symmetric under the conjugate operation, i.e., z (X†) = − z (X). This antisymmetric property

can be satisfied, e.g., for generalized currents of the form z (X) =
∫ )
0
3C �(x)> ◦ ¤x under time

reversal, or for observables z (X) =
∫ )
0
3C Γo (x) or z (X) =

∫ )
0
3C �e (x)> ◦ ¤x under position

reversal. Here, Γo (x) and �e (x) are arbitrary odd and even functions, respectively.

In Ref. [39], we derived a modified variant of the TUR using the fluctuation theorem for

Markovian processes. Regardless of the underlying dynamics, the bound holds for as long

as the fluctuation theorem is valid. Here, we apply the same technique and derive the TUR
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for time-delayed systems. First, we show that the joint probability distribution of f and z,

%(f, z), obeys the fluctuation theorem; this can be proved analogously as follows:

%(f, z) =
∫
DX X(f − f(X))X( z − z (X))P(X)

=

∫
DX X(f − f(X))X( z − z (X))4f (X)P(X†)

= 4f
∫
DX X(f − f(X))X( z − z (X))P(X†)

= 4f
∫
DX† X(f + f(X†))X( z + z (X†))P(X†)

= 4f%(−f,− z). (5.15)

Inspired by Ref. [159], where the statistical properties of entropy production were obtained

from the strong detailed fluctuation theorem, we derive the TUR solely from Eq. (5.15).

Based on the following relation:

1 =

∫ ∞

−∞
3f

∫ ∞

−∞
3 z %(f, z)

=

∫ ∞

0

3f

∫ ∞

−∞
3 z (1 + 4−f)%(f, z), (5.16)

we introduce a probability distribution &(f, z) ≡ (1 + 4−f)%(f, z), defined over [0,∞) ×
(−∞,∞). Using the distribution &(f, z), the moments of f and z can be expressed in an

alternative way as follows:

〈f2:〉 =
〈
f2:

〉
&
,

〈 z2:〉 =
〈
z2:

〉
&
,

〈f2:+1〉 =
〈
f2:+1 tanh

(f
2

)〉
&
,

〈 z2:+1〉 =
〈
z2:+1 tanh

(f
2

)〉
&
,

(5.17)

where 〈··〉& denotes the expectation with respect to &(f, z). Applying the Cauchy–Schwarz

inequality to 〈 z〉, we obtain

〈 z〉2 =
〈
z tanh

(f
2

)〉2

&
≤ 〈 z2〉&

〈
tanh

(f
2

)2
〉
&

. (5.18)

The last term in the right-hand side of Eq. (5.18) can be further upper bounded. We find

that 〈
tanh

(f
2

)2
〉
&

≤ tanh

(
〈f〉
2

)
. (5.19)

Equation (5.19) is obtained by first noticing that tanh
(
f
2

)2 ≤ tanh
[
f
2 tanh

(
f
2

) ]
for all f ≥ 0.

Thereafter, by applying Jensen’s inequality to the concave function tanh(G), we obtain〈
tanh

[f
2

tanh
(f

2

)]〉
&
≤ tanh

(〈f
2

tanh
(f

2

)〉
&

)
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= tanh

(
〈f〉
2

)
. (5.20)

From Eqs. (5.18) and (5.19), we have

〈 z〉2 ≤ 〈 z2〉 tanh

(
〈f〉
2

)
. (5.21)

By transforming Eq. (5.21), we obtain the following TUR for the observable z:

Var[ z]
〈 9〉2 =

〈 z2〉 − 〈 z〉2
〈 z〉2 ≥ 2

4 〈f〉 − 1
. (5.22)

The inequality in Eq. (5.22) is the main result. For observables that are antisymmetric under

time (or position) reversal, the term 〈f〉 in the bound should be replaced by 〈fC 〉 (or 〈f?〉).
In the limit g → 0, the system [cf. Eq. (5.1)] becomes a continuous-time Markovian process,

with the conventional TUR providing a lower bound on the current fluctuations as in Eq. (1.4).

Since 4 〈f〉−1 ≥ 〈f〉, the derived bound is looser than the conventional bound. Regarding this

difference, there are two possible explanations. Firstly, it is because there is no requirement

on the details of the underlying dynamics of the system considered in the derivation. It was

proven that the conventional bound does not hold for discrete-time Markovian processes [25,

160]. Contrastingly, the derived bound holds for both continuous- and discrete-time systems.

The lower bound in Eq. (5.22) is the same as that in Ref. [25] in which the TUR was derived

in the long-time limit for discrete-time Markovian processes. Secondly, the derived bound

also holds for non-current observables, and differs from the conventional bound that holds

only for current-type observables defined by z (X) =
∫ )
0
3C �(x)> ◦ ¤x.

5.1.3 Numerical illustration

In this section, we study the derived bound with the help of three systems. The first two

steady-state systems are embedded in a Markovian heat reservoir, whereas the third is in

contact with a non-Markovian environment, i.e., a heat reservoir with memory effects. Unlike

the conventional TUR, which was derived for steady-state systems, our bound holds even

for non-steady-state systems. Therefore, in the last system, we focus on a non-steady state.

For steady-state systems, %ss (x) and J ss (x) denote the probability distribution and the

probability current, respectively.

One-dimensional system

We study a one-dimensional linear system whose drift term is given by

� (G, Gg) = −0G − 1Gg + 5 , (5.23)

where 0, 1, and 5 are the given constants satisfying the conditions 0 > 1 > 0, 5 > 0. It

is easy to see that 〈G〉 = 5 , where 5 = 5 /(0 + 1). The system has a Gaussian steady-state

distribution that exists for arbitrary delay time g because the force is linear, . We introduce
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a new stochastic variable I, defined as I = G − 5 . The FPE corresponding to I reads as

mC%(I, C) = −mI [� (I)%(I, C)] + �m2
I %(I, C), (5.24)

where � (I) =
∫
3H (−0I − 1H) %(H, C − g |I, C). At the steady state, the probability current

vanishes, i.e., �ss (I) = � (I)%ss (I) − �mI%ss (I) = 0. Here, %ss (I) denotes the steady-state

distribution. Let q(C) = 〈I(0)I(C)〉 be the time-correlation function of I; it was shown that

q(C) = �+4−2 |C | + �−42 |C | for all |C | ≤ g [147, 161], where 2 =
√
02 − 12, �± = 1/2 [q(0) ± �/2],

and

q(0) = 〈I2〉 = �

2

2 + 1 sinh(2g)
0 + 1 cosh(2g) . (5.25)

First, we consider the TUR for observables that are antisymmetric under time reversal. Ac-

cording to Eq. (5.22), the following inequality should be satisfied:

〈 z〉2
Var[ z] ≤

4 〈fC 〉 − 1

2
. (5.26)

Since evaluating 〈fC 〉 for ) > g necessitates complicated calculations, we consider only the

case of ) ≤ g in which the path probability P(X[0,) ]) can be calculated analytically as [133]

P(X[0,) ]) ∝ exp

[
− 1

4�

∫ )

0

3C

(
¤G + 2G − 2 5

)2
]
× (5.27)

exp
©­­«−

2

2�

[
�+4−2)

(
G(0) − 5

)
− �−

(
G()) − 5

)]2

�2
+4
−22) − �2

−

ª®®¬ .
It can be confirmed that P(X) = P(X†); thus, 〈fC 〉 = 0. Consequently, Eq. (5.26) implies

that an arbitrary observable that is antisymmetric under time reversal vanishes on average,

i.e., 〈 z〉 = 0. For the current-type observable defined by z (X) =
∫ )
0
3C Λ(G) ◦ ¤G(C), where Λ(G)

is an arbitrary projection function, one can easily check that 〈 z〉 = )
∫ ∞
−∞ 3IΛ(I + 5 )�

ss (I) = 0.

Generally, this can be proven as

〈 z〉 =
∫
DX z (X)P(X)

=
1

2

(∫
DX z (X)P(X) −

∫
DX† z (X†)P(X†)

)
= 0.

(5.28)

Next, let us consider the TUR for non-current observables that are antisymmetric under

position reversal. Specifically, we validate the TUR for the observable z (X) =
∫ )
0
3C G, repre-

senting the area under the trajectory. The average of the observable is 〈 z〉 = ) 〈G〉 = ) 5 . For

) ≤ g, using the path integral, f? can be calculated as

f? = ln
P(X[0,) ])
P(X†[0,) ])

=
2 5

�

∫ )

0

3C ( ¤G + 2G)

+ 22 5

�

�+4−2) G(0) − �−G())
�+4−2) + �−

.

(5.29)
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Figure 5.2: Numerical verification of the TUR in one- and two-dimensional
systems. The dashed line represents the saturated TUR. In the one-
dimensional system, E? is plotted as a function of 〈f?〉 with triangular
points. The parameter ranges are 0, 5 , �, g, ) ∈ [0.01, 2], and 1 ∈ (0, 0).
In the two-dimensional system, EC and ẼC are plotted as functions of 〈fC 〉
with circular and square points, respectively. The parameter ranges are the
same as in the one-dimensional system, except ) ∈ [0.01, g]. E? ≤ 1, EC ≤ 1,

and ẼC ≤ 1 imply that the derived TUR is satisfied.

Because the system is in the steady state, we obtain

〈f?〉 =
(
2) + 2

�+4−2) − �−
�+4−2) + �−

)
2 5

2

�
. (5.30)

The variance of the observable can also be obtained analytically as follows:

Var[ z] =
〈∫ )

0

3C

∫ )

0

3B

(
G(C) − 5

) (
G(B) − 5

)〉
=

∫ )

0

3C

∫ )

0

3B q(C − B)

=

∫ )

0

3C

∫ )

0

3B

(
�+4

−2 |C−B | + �−42 |C−B |
)

=
2

22

[
�+

(
4−2) + 2) − 1

)
+ �−

(
42) − 2) − 1

)]
.

(5.31)

We define

E? ≡
2〈 z〉2

Var[ z]
(
4 〈f? 〉 − 1

) , (5.32)

this should satisfy E? ≤ 1. Using Eq. (5.30) and Eq. (5.31), one can numerically evaluate E?
and verify the TUR for ) ≤ g. For the ) > g case, one can calculate 〈f?〉 via Eq. (5.14) and

obtain

〈f?〉 =
) 5 2

�
+

(
2g + 2

�+4−2g − �−
�+4−2g + �−

)
2 5

2

�
. (5.33)
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From Eq. (5.33), it can be concluded that decreasing the force 5 or increasing the noise

intensity � both result in higher current fluctuation, which is consistent with our intuition.

In the long-time limit ) →∞, we have lim)→∞ )−1Var[ z] = j′′z (0), where jz (:) is the scaled

cumulant generating function defined by jz (:) = lim)→∞ )−1 ln〈4: z〉. Using discrete Fourier

series, one can obtain jz (:) = : 5 + �:2/(0 + 1)2 (see Appendix C.1). Therefore, the derived

bound can be confirmed for ) →∞ as

Var[ z]
〈 z〉2 =

2�

) 5 2
≥ 2

〈f?〉
≥ 2

4 〈f? 〉 − 1
. (5.34)

Finally, we run numerical simulations to calculate Var[ z] (for ) > g) and verify the bound.

We randomly select parameters (0, 1, 5 , �, g, )) and repeat the simulations 2×106 times for

each selected parameter setting using time step ΔC = 10−4. We plot E? as a function of 〈f?〉 as

the triangular points in Fig. 5.2. The ranges of the parameters are given in the corresponding

caption. As seen, all triangular points are located below the dashed line, which corresponds

to the saturated case of the bound; thus, the derived TUR is empirically validated in this

system.

Due to the presence of external force 5 , the position symmetry with respect to 0 is broken

in the system. The degree of broken symmetry is reflected via the quantity 〈f?〉, which is

always positive and is a monotonically increasing function of 5 . Therefore, the derived bound

implies that increasing 5 results in a lower fluctuation. From a different point of view, since

z = ) 5 +
∫ )
0
3C I, increasing 5 enlarges the mean 〈 z〉 but keeps the variance Var[ z] unchanged.

Consequently, the fluctuation of the observable decreases when 5 → ∞, which is consistent

with the conclusion obtained from the TUR.

Two-dimensional system

Here, we consider a simple two-dimensional system with drift force

F (x,xg) =
[
−0G1 + 1G2,g

−0G2 − 1G1,g

]
, (5.35)

where 0 > 1 > 0 are the given constants and G8,g ≡ G8 (C − g). The noise intensities are

set to �1 = �2 = �. This system is manipulated under a parabolic potential with linear

delay feedback. The steady-state distribution %ss (x) of the system is Gaussian, i.e., %ss (x) ∝
exp

(
−1/2x>�−1x

)
, because the force is linear. Here, � is the covariance matrix with elements

Φ8 9 = q8 9 (0), and q8 9 (I) = 〈G8 (C)G 9 (C+I)〉 denotes the time-correlation function. The analytical

form of this function can be obtained for |I | ≤ g (see Appendix C.2.1). When ) ≤ g, 〈fC 〉 can

be calculated using a path integral (see Appendix C.2.2)

〈fC 〉 =
4�2

12

(
1 − 4−22)

)[
(�+11)2 + �2

12

]
4−22) −

[
(�−11)2 + �2

12

] , (5.36)
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where 2 =
√
02 − 12 and

�±11 =
�

22
× (2 ± 0)4±2g
0 cosh(2g) + 2 sinh(2g) ,

�12 =
�

22
× 1

0 cosh(2g) + 2 sinh(2g) .
(5.37)

As seen, due to the time delay, 〈fC 〉 is positive; this implies that the time-reversal symmetry

in the system is broken.

Now, we validate the TUR for the following current-type observable

z (X) =
∫ )

0

3C [(−0G1 + 1G2) ◦ ¤G1 + (−0G2 − 1G1) ◦ ¤G2] . (5.38)

We consider only the ) ≤ g case, where 〈fC 〉 can be analytically obtained. The effective forces

are also linear and can be calculated explicitly (see Appendix C.2.3)

�1 (x) = −0G1 + 1G2, �2 (x) = −0G2 − 1G1, (5.39)

where

0 =
2 (0 cosh(2g) + 2 sinh(2g))
0 sinh(2g) + 2 cosh(2g) ,

1 =
12

0 sinh(2g) + 2 cosh(2g) .
(5.40)

The average of the observable is then obtained as

〈 z〉 = )
∫

3x
[
(−0G1 + 1G2)�ss

1 (x) + (−0G2 − 1G1)�ss
2 (x)

]
=

2�)12

0 cosh(2g) + 2 sinh(2g) ,
(5.41)

which is always positive for an arbitrary delay time. Equation (5.41) reveals that increasing

1, �, or ) leads to a higher average current. We also consider a non-current observable

z̃ (X) = sign[ z (X)], which represents the sign of the observable z; this observable is ob-

viously antisymmetric under time reversal. We define EC ≡ 2〈 z〉2/
[
Var[ z]

(
4 〈fC 〉 − 1

) ]
and

ẼC ≡ 2〈 z̃〉2/
[
Var[ z̃]

(
4 〈fC 〉 − 1

) ]
, which should satisfy EC ≤ 1 and ẼC ≤ 1. We run numerical

simulations with the same settings as in the one-dimensional system, and plot EC and ẼC as

functions of 〈fC 〉 with circular and square points, respectively, in Fig. 5.2. As seen, all circu-

lar and square points lie below the dashed line, thus empirically verifying the derived bound.

During the simulation, we have not seen any violation of the inequality Var[ z]/〈 9〉2 ≥ 2/〈fC 〉.
We conjecture that for continuous-time systems, the fluctuation of arbitrary currents is lower

bounded by 2/〈fC 〉.
Now, we examine the relationship between the term 〈fC 〉 and the heat dissipated from the

system to the environment. The heat can be identified as the work done by the system on

the environment [62, 133] and quantified as

Δ& =

∫ )

0

3C [�1 (x,xg) ◦ ¤G1 + �2 (x,xg) ◦ ¤G2] . (5.42)
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Figure 5.3: The quantity 〈fC 〉 and the average dissipated heat 〈Δ&〉 in
the two-dimensional system. Parameter 0 is varied from 1 to 5, while other
parameters are fixed as 1 = 1, � = 1, ) = 0.5, and g = 1.

Its average can be calculated analytically as

〈Δ&〉 = ) 〈(−0G1 + 1G2,g)2 + (0G2 + 1G1,g)2 − 20�〉

= )
[
2(02 + 12)q11 (0) + 401q12 (g) − 20�

]
= 2�)12 × cosh(2g)

0 cosh(2g) + 2 sinh(2g) .

(5.43)

Equation (5.43) shows that the average dissipated heat is always nonnegative, i.e., 〈Δ&〉 ≥ 0.

We plot 〈fC 〉 and 〈Δ&〉/� in Fig. 5.3 to illustrate how these quantities are related. We vary

the value of 0, while keeping other parameters unchanged. As seen, 〈fC 〉 and 〈Δ&〉 show a

strong correlation. When 0 is increased, both 〈fC 〉 and 〈Δ&〉 decrease. In particular, 〈Δ&〉
decreases with order $ (0−1), while 〈fC 〉 declines exponentially. Indeed, we can prove that

〈fC 〉 ≤ 〈Δ&〉/� (see Appendix C.2.4). Consequently, it can be concluded that

Var[ z]
〈 z〉2 ≥ 2

4 〈Δ&〉/� − 1
, (5.44)

which is a direct consequence of the derived bound. In the region 0 ≥ 3, 〈fC 〉 is almost zero;

this indicates that the system is near equilibrium. Nonetheless, 〈Δ&〉 slowly converges to zero

due to the time delay. Therefore, the term 〈fC 〉 characterizes the irreversibility in the system

better than 〈Δ&〉 does.

Dragged particle in a non-Markovian heat reservoir

We study a harmonic oscillator of a unit-mass colloidal particle immersed in a heat reservoir

at inverse temperature V with memory effects [162–165]. The center of the harmonic potential

* (G, _(C)) = :/2(G−_(C))2 is dragged by an external protocol _(C). The dynamics of the system
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are governed by the following generalized Langevin equation:

¥G(C) = −
∫ C

0

3B W(C − B) ¤G(B) − mG* (G, _(C)) + [(C), (5.45)

where W(C) = (W0/g2)4−|C |/g2 is the friction memory kernel and [(C) is the zero-mean Gaussian

colored noise with variance 〈[(C)[(C ′)〉 = V−1W(C − C ′). Here, g2 denotes the memory time of

the heat reservoir and W0 is a positive constant. It is obvious that the system has distributed

time delays.

Hereafter, we consider a time-symmetric protocol given by

_(C) =

UC, if 0 ≤ C < )/2,

U() − C), if )/2 ≤ C ≤ ),
(5.46)

where U > 0 is a constant. This protocol satisfies the condition _(C) = _() − C). Suppose that

the system is initially in equilibrium, i.e., the initial distribution is of a Maxwell–Boltzmann

type, %(G, E, 0) = C exp
(
−V

[
E2/2 +* (G, _(0)

] )
. Here, E ≡ ¤G is the velocity and C is the

normalization constant. Subsequently, the system is coupled with a non-Markovian heat

reservoir and driven out of equilibrium by the protocol _(C) during the time interval [0, )].
The heat exchanged between the system and the heat reservoir is defined as

Δ& =

∫ )

0

3C

[∫ C

0

3B W(C − B) ¤G(B) − [(C)
]
◦ ¤G(C)

= −
∫ )

0

3C [ ¥G(C) + : (G(C) − _(C))] ◦ ¤G(C).
(5.47)

Because the trajectory X[0,) ] is uniquely specified if the noise trajectory η ≡ {[(C)}C=)C=0 and

the initial condition k(0) ≡ [G(0), E(0)] are given, the path probability P(X[0,) ] |k(0)) can be

expressed by the occurrence probability of the noise trajectory η as follows:

P(X|k(0))DX = P(η)Dη. (5.48)

Since the noise is Gaussian, the probability of observing trajectory η is calculated as

P(η) ∝ exp

(
−1

2

∫ )

0

3C

∫ )

0

3C ′ [(C)� (C, C ′)[(C ′)
)
, (5.49)

where � (C, C ′) is the inverse of the time-correlation function of the noise and defined as follows:∫ )

0

3C ′� (C, C ′)V−1W(C ′ − C ′′) = X(C − C ′′). (5.50)
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Figure 5.4: Numerical verification of the TUR in the system of a dragged
colloidal particle. The parameter ranges are U, V, W0, g2 , : ∈ [0.1, 2], and
) ∈ [1, 10]. Var[ z]/〈 z〉2 is plotted as a function of 〈fC 〉 with violet circles.
The dashed line represents the derived bound 2/(4 〈fC 〉 − 1). All circular
points lie above the line; thus, the derived bound is empirically verified.

Plugging Eq. (5.49) into Eq. (5.48), the path probability can be readily obtained as

P(X[0,) ] |k(0)) = N exp

[
− 1

2

∫ )

0

3C

∫ )

0

3C ′� (C, C ′)

×
{
¥G(C) +

∫ C

0

3B W(C − B) ¤G(B) + : (G(C) − _(C))
}

×
{
¥G(C ′) +

∫ C′

0

3B′ W(C ′ − B′) ¤G(B′) + : (G(C ′) − _(C ′))
}]
,

(5.51)

where N is a Jacobian term that is independent of the trajectories. The quantity fC can be

expressed as

fC = ln
%(G(0), E(0), 0)
%(G()),−E()), 0) + ln

P(X[0,) ] |k(0))
P(X†[0,) ] |k† (0))

. (5.52)

Here, k† (0) ≡ [G()),−E())]. Using the formula of the path probability in Eq. (5.51), we can

prove that the second term in the right-hand side of Eq. (5.52) is equal to the dissipated heat

[166]:

ln
P(X[0,) ] |k(0))
P(X†[0,) ] |k† (0))

= VΔ&. (5.53)

We now verify the derived TUR with the current z (X) =
∫ )
0
3C ¤G(C) = G()) − G(0), which

expresses the displacement of the particle. Since this current is odd under time reversal, the

inequality Var[ z]/〈 z〉2 ≥ 2/(4 〈fC 〉 − 1) should be satisfied. The fluctuation of this current

and the derived bound can be calculated analytically. First, we have that 〈G(0)〉 = 〈E(0)〉 =
0, 〈G(0)2〉 = (:V)−1, and 〈E(0)2〉 = V−1. The average current is 〈 z〉 = 〈G())〉 − 〈G(0)〉 = 〈G())〉.
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The variance of the current becomes

Var[ z] = 〈G())2〉 − 〈G())〉2 + 〈G(0)2〉 − 2〈G(0)G())〉. (5.54)

From Eq. (5.47), the average dissipated heat can be calculated as

〈Δ&〉 = 1

2
〈E(0)2 − E())2〉 + :

2
〈G(0)2 − G())2〉

+ :U
〈∫ )

) /2
3C G(C) −

∫ ) /2

0

3C G(C)
〉
.

(5.55)

The average of the boundary term in Eq. (5.52) is〈
ln

%(G(0), E(0), 0)
%(G()),−E()), 0)

〉
=
V

2

〈
E())2 − E(0)2 + :

(
G())2 − G(0)2

)〉
.

(5.56)

Combining Eqs. (5.55) and (5.56), we readily obtain

〈fC 〉 = :UV
〈∫ )

) /2
3C G(C) −

∫ ) /2

0

3C G(C)
〉
. (5.57)

Using the Laplace transform, analytical forms of 〈 z〉, Var[ z], and 〈fC 〉 can be obtained (see

Appendix C.3 for detailed calculations). We randomly sample parameters (U, V, W0, g2 , :, ))
and evaluate 〈 z〉, Var[ z], and 〈fC 〉 using Eq. (C.59). The parameter ranges are given in the

caption of Fig. 5.4. As seen in this figure, the derived bound is satisfied for all parameter

settings. In the region 〈fC 〉 < 1, some circular points touch the line, which implies that

the derived bound is attainable when the system is near equilibrium. As in the example of

the two-dimensional system, we find that Var[ z]/〈 z〉2 ≥ 2/〈fC 〉 is satisfied for all selected

parameters. This evidence strengthens the conjecture made in the preceding example.

We next consider a physical interpretation of the term 〈fC 〉 in this system. From Eqs. (5.52)

and (5.53), we have

〈fC 〉 =
〈
ln

%(k(0), 0)
%(k† (0), 0)

〉
+ V〈Δ&〉. (5.58)

As seen, there are two contributions in 〈fC 〉, the boundary term
〈
ln %(k(0), 0)/%(k† (0), 0)

〉
and the dissipated heat V〈Δ&〉. Neglecting this boundary value, one can approximate 〈fC 〉 ≈
V〈Δ&〉. This implies that 〈fC 〉 can be interpreted as the average dissipated heat in the system.

We note that for general cases, i.e., the protocol is time asymmetric, this is not the case.

5.1.4 Concluding remarks and discussion

In summary, we derived the TUR for the time-delayed systems. We provided two bounds

on the relative fluctuations of general dynamical observables that are antisymmetric under

conjugate operations. For observables that are antisymmetric under time reversal, the fluc-

tuation is lower bounded by 2/(4 〈fC 〉 − 1), where 〈fC 〉 can be considered a generalization of

the total entropy production. On the other hand, the fluctuation of observables that are odd
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under position reversal is constrained by 〈f?〉, which reflects the degree of position-symmetry

breaking in the system. These results hold for an arbitrary observation time. Because it is

not necessary to know the underlying dynamics of the systems, the derived TUR holds for

a large class of continuous- and discrete-time systems. The bound can be used as a tool to

estimate a hidden thermodynamic quantity in real-world systems that involve time delays

from finite-time experimental data.

From the results in the numerical experiment, we conjectured that the fluctuation of

arbitrary time-integrated currents in continuous-time systems is bounded from below by the

reciprocal of 〈fC 〉. Proving this inequality would substantially improve the bound and requires

further investigation.

5.2 Bounds for systems with measurement and feedback

control

Here, we study TUR for steady-state systems involving repeated measurements and feedback

control; in particular, we define a lower bound on the fluctuation of arbitrary dynamical

observables that are antisymmetric under time reversal. We prove that Var[O]/〈O〉2, where

〈O〉 and Var[O] are respectively the mean and the variance of the arbitrary observable O, is

lower bounded by a function of 〈f〉 [cf. Eq. (5.59)], which denotes a quantity reflecting the

thermal cost and mutual entropy production. Due to the information flow, the observable

fluctuation is bounded from below not only by the dissipated heat but also by the quantity

of information obtained from the external controller. The inequality is valid for arbitrary

observation times and for discrete- or continuous-time systems because the derivation does

not require the underlying dynamics. In addition, for Langevin dynamics involving continuous

measurement and feedback control, we provide a tighter bound on the fluctuation of time-

integrated currents.

Then, we apply the results to the study of a flashing ratchet [167–170], in which the asym-

metric potential is switched between on and off to induce a directed motion. The investigated

device is a nonequilibrium Brownian ratchet, which has been applied for modeling biological

processes such as actin polymerization [171] and ion transportation [172]. To analyze the

observable uncertainty under feedback control, we consider a flashing ratchet using imperfect

information about the system state to rectify the motion of a diffusive particle; the ratchet

acts as a Maxwell’s demon by utilizing the measured information to maximize the instant

velocity. Besides the mean velocity, which is the most common quantity used for transport

characterization, the relative fluctuation of the displacement, reflecting its precision, is an-

other important attribute. We also empirically verify the derived bound for the displacement

of both discrete- and continuous-state ratchets. To the best of our knowledge, this is the first

time that a lower bound on the precision of an information ratchet is provided.

5.2.1 Model

We consider a classical Markovian system manipulated by repeated feedback, where an ex-

ternal controller uses the acquired information to evolve the system. The system state is
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measured along a trajectory and the outcome is utilized to update the control protocol. The

time and state space of the system can be discrete or continuous. We assume that every

transition is reversible, i.e., if the transition probability from state G to state G ′ is nonzero,

the reversed transition probability from G ′ to G is positive.

Suppose that we observe the system during a time interval [0,T]. Let X and M be

the trajectories of its states and measurement outcomes, respectively; their time-reversed

counterparts are therefore denoted as X† and M†. Then, we define the following trajectory-

dependent quantity:

f(X,M) ≡ ln
PF (X,M)
PR (X†,M†)

, (5.59)

where PF (X,M) and PR (X†,M†) are the joint probabilities of observing trajectories in the

forward and time-reversed processes, respectively. As shown latter, the quantity 〈f〉 con-

strains the fluctuation of the time-antisymmetric observables. We can easily confirm that f

satisfies the integral fluctuation theorem

〈4−f〉 = 1. (5.60)

By applying the Jensen inequality to Eq. (5.60), we can readily obtain 〈f〉 ≥ 0. This inequality

can be considered as the second law of thermodynamics for a full system (e.g., system and

controller), while f can be identified as its total entropy production.

5.2.2 Main results

Discrete measurement and feedback control

Now, let us apply the measurement and feedback control to the system from time C = 0 up

to the time C = T . For simplicity, we define C0 ≡ 0, C# ≡ T . Suppose that we perform

measurements discretely at the predetermined times C0, C1, . . . , C#−1 and the measurement

outcomes are M = {<0, <1, . . . , <#−1}. The measurement times are C8 = 8ΔC (8 = 0, . . . , #),
where ΔC = T/# denotes the time gap between two consecutive measurements. Let X =

{G0, G1, . . . , G# } be the system states during the control process, where G8 denotes the system

state at time C = C8 for each 8 = 0, . . . , #; then, the measurement and feedback schemes are

as follows. First, at the time C = C0, the observable is measured with outcome <0, and the

system is then driven with the protocol _(<0) from C = C0 to C = C1. At each subsequent

time C = C8 (8 = 1, . . . , # − 1), the measurement is performed and the corresponding outcome

is <8. The protocol is immediately changed from _(<8−1) to _(<8), and it remains constant

until the time C8+1. The procedure is repeated up to the time C = C# , which ends with

the protocol _(<#−1). Herein, it is assumed that the time delay required for measuring

and updating the protocol can be ignored. The measurement error is characterized using a

conditional probability ?(<: |G: ), where G: denotes the actual system state, while <: denotes

the measurement outcome at time C: . This implies that the outcome depends on only the

system’s state immediately before the measurement. In the sequel, we assume that the system

is in the steady state under the measurement and feedback control.
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Following Ref. [173], we consider a time-reversed process in which X† = {G# , . . . , G0},M† =
{<#−1, . . . , <0} and the measurements are performed at times C†

8
= T − C#−8 for each 8 =

0, . . . , # − 1. Since the control protocol is time-independent (i.e., it depends only on the

measurement outcome), we have PF = PR ≡ P. Taking the ratio of the probabilities of the

forward path and its conjugate counterpart, we obtain [173]

f = ln
P(X,M)
P(X†,M†)

= ΔB + ΔBm + ΔBi, (5.61)

where each term in the right-hand side of Eq. (5.61) is expressed as follows:

ΔB = ln
%ss (G0)
%ss (G# )

,

ΔBm = ln

[
#−1∏
8=0

F(G8+1, C8+1 |G8 , C8 , <8)
F(G8 ,T − C8 |G8+1,T − C8+1, <8)

]
,

ΔBi = ln

[
#−1∏
8=0

?(<8 |G8)
?(<8 |G8+1)

]
,

(5.62)

where %ss (G) denotes the steady-state distribution of the system and F(G ′, C ′ |G, C, <) denotes

the transition probability. The first term ΔB and second term ΔBm denote the change in

the system entropy and the medium entropy, respectively. The last term ΔBi involves the

probability that characterizes the error in measurements; thus, it can be considered as an in-

formation quantity. When ?(< |G) is the same uniform distribution for all G, the measurement

is completely random and does not provide any valuable information. In this case, ΔBi = 0,

which shows that the system does not obtain any information from measurements. Since

〈ΔB + ΔBm + ΔBi〉 ≥ 0, we have 〈ΔB + ΔBm〉 ≥ −〈ΔBi〉. This implies that the entropy production

of the system can be negative because of the effect of measurement and feedback control.

Next, we derive a lower bound on the fluctuation of the arbitrary dynamical observ-

ables that are antisymmetric under time reversal. In particular, we focus on a bound for

Var[O]/〈O〉2, where O satisfies the antisymmetric condition O[X†] = −O[X]. Current-type

observables always satisfy this condition.

By considering %(f) as the probability distribution of f, i.e., %(f) =
∫
DXDM X(f −

f(X,M))P(X,M), we can show that f satisfies the strong detailed fluctuation theorem

%(f)
%(−f) = 4

f . (5.63)

We have previously demonstrated that a generalized TUR can be derived from the detailed

fluctuation theorem (DFT) [39]. This derivation does not require detailed underlying dynam-

ics and can be flexibly applied to other systems if the strong DFT is valid. Based on Ref. [39],

we can prove that the observable fluctuation is bounded from below by a term involving 〈f〉
as follows:

Var[O]
〈O〉2 ≥ csch2

[
5

(
〈f〉
2

)]
= csch2

[
5

(
〈ΔB + ΔBm〉 + 〈ΔBi〉

2

)]
, (5.64)

where 5 (G) denotes the inverse function of G tanh(G). This lower bound is analogous to that

utilized in Ref. [46], where the TUR was derived from exchange fluctuation theorems for



5.2. Bounds for systems with measurement and feedback control 79

heat and particle exchange between multiple systems. In addition to the system entropy

production 〈ΔB + ΔBm〉, the information term, 〈ΔBi〉, also appears in the bound. Inequality

(5.64) demonstrates that the precision of the arbitrary observables is constrained not only by

the entropy production but also by the information obtained from the system measurement.

Since csch2 ( 5 (G)) is a decreasing function of G, the fluctuation of observables is reduced

when the information quantity increases. If we consider the limit ΔC → 0, i.e., the time

gap between two consecutive measurements vanishes, the measurement and feedback control

become continuous; therefore, this bound is also valid for the continuous-measurement case

if 〈f〉 is well defined in such limit (by properly constructing trajectories X and M and their

corresponding time-reversed counterparts X† andM†). The detailed derivation of Eq. (5.64)

is provided in Appendix D.1.

Since csch2 [ 5 (〈f〉/2)] ≥ 2/(4 〈f〉 − 1), the bound in Eq. (5.64) is tighter than that in

Ref. [25], where the TUR is derived for discrete-time Markovian processes in the long-time

limit. However, the derived bound is not as tight as the conventional bound 2/〈f〉. This

happens because the derived inequality holds for both continuous- and discrete-time systems,

while the conventional bound is valid only for the formers [160]. In Section 5.2.3, we show

that the conventional bound is actually violated for a discrete-time model.

Continuous measurement and feedback control

Here, we discuss systems involving continuous measurement and feedback control; in partic-

ular, we consider a Langevin system whose state variable is G. For simplicity, the system is

assumed to be one-dimensional. The extension to multidimensional systems is straightfor-

ward. The system dynamics is governed by the following equation:

¤G = 5 (G, <) + b, (5.65)

where the dot indicates the time derivative and 5 (G, <) is the force depending on G and the

measurement outcome <. b is the zero-mean Gaussian white noise with variance 〈b (C)b (C ′)〉 =
2�GX(C − C ′), where �G denotes the noise intensity of b.

The measurement error is commonly incorporated by adding another zero-mean Gaussian

noise, 4, to the read-out of G, i.e., < = G + 4. Since the white noise fluctuations are violent, we

assume that 4 is a colored noise. Specifically, 4 is modeled by the Ornstein–Uhlenbeck (OU)

process as

¤4 = −4 + [, (5.66)

where [ is the zero-mean Gaussian white noise with variance 〈[(C)[(C ′)〉 = 2�4X(C − C ′). �4
denotes the noise intensity of [ and also reflects the magnitude of the measurement error. To

ensure a clear illustration, we use the OU process to model the measurement error; however,

another modeling of the noise does not affect the result as long as the noise is modeled by

equilibrium overdamped Langevin dynamics (i.e., when the dynamics of 4 is described as

¤4 = 6(4) +[, where 6(4) denotes a proper function). In the sequel, we show that the analytical

form of 〈f〉 is independent of the form of 6(4).
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Now, to investigate the analytical form of 〈f〉, let us discretize the problem and take the

continuous-time limit at the end. Let X = [G0, G1, . . . , G# ] and M = [<0, <1, . . . , <#−1] be

the trajectories of the system states and measurement outcomes, respectively, in the forward

process. Here, G8 ≡ G(8ΔC), <8 ≡ <(8ΔC) and ΔC = T/#. Their time-reversed counterparts in

the backward process are X† = [G# , G#−1, . . . , G0] and M† = [<# , <#−1, . . . , <1]. Defining

48 ≡ <8−G8, the joint path probabilities, P(X,M) and P(X†,M†), can be expressed as follows:

P(X,M) ∝ %ss (G0, <0) exp

(
−
#−1∑
8=0

[G8+1 − G8 − 5 (G8 , <8)ΔC]2

4�GΔC

)
× exp

(
−
#−1∑
8=1

[48 − 48−1 (1 − ΔC)]2

4�4ΔC

)
, (5.67)

P(X†,M†) ∝ %ss (G# , <# ) exp

(
−
#−1∑
8=0

[G8 − G8+1 − 5 (G8+1, <8+1)ΔC]2

4�GΔC

)
× exp

(
−

#∑
8=2

[48−1 − 48 (1 − ΔC)]2

4�4ΔC

)
. (5.68)

Using Eqs. (5.67) and (5.68) and taking the ΔC → 0 limit, we then obtain

〈f〉 =
〈
ln
P(X,M)
P(X†,M†)

〉
=

1

�G

〈∫ T

0

3C 5 (G, <) ◦ ¤G
〉
, (5.69)

where ◦ denotes the Stratonovich product. This expression can be used for the numer-

ical evaluation of 〈f〉. We note that 〈f〉 is a limit of the discrete sum 1/�G
∑
8 (G8+1 −

G8) [ 5 (G8+1, <8+1) + 5 (G8 , <8)]/2. When 5 (G, <) is differentiable, 〈f〉 is equivalent to the limit

of the sum 1/�G
∑
8 (G8+1 − G8) 5 ((G8+1 + G8)/2, (<8+1 + <8)/2). However, when 5 (G, <) is non-

differentiable, it is not the case and the former should be employed.

Let us investigate the information contribution of 〈f〉 = T f̄, where f̄ denotes the total

entropy production rate. We can decompose f̄ into two positive terms as follows [116, 174]:

f̄ = f̄G + f̄4, (5.70)

where f̄I = (̄I + &̄I/�I ≥ 0 denotes the entropy production rate contributed from I, for

each I ∈ {G, 4}. Here, (̄I = −
∫
3G34 �I (G, 4)mI ln %ss (G, 4) denotes the rate of change of the

Shannon entropy, while &̄I =
∫
3G34 �I (G, 4)�I (G, 4) denotes the heat flow from I into the

environment. Note that �G (G, 4) = 5 (G, G + 4) and �4 (G, 4) = −4 are the forces and �I (G, 4) =
�I (G, 4)%ss (G, 4) −�ImI%ss (G, 4) is the probability current in the corresponding Fokker–Planck

equation. The flow of information from 4 to G,

�̄4→G = −
∫

3G34 �4 (G, 4)m4 ln
%ss (G, 4)

%ss (G)%ss (4) , (5.71)

is (minus) the variation of the mutual information between G and 4 [175]

� (G; 4) =
∫

3G34 %ss (G, 4) ln %ss (G, 4)
%ss (G)%ss (4) . (5.72)
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Since the noise is in equilibrium, we have that
∫
3G �4 (G, 4) = 0. Consequently, we obtain that

&̄4 = 0 and �̄4→G = (̄4. Thus, f̄4 = �̄4→G ≥ 0 and f̄ = f̄G + �̄4→G . This implies that, in addition

to the system entropy production, f̄G , there is a positive information flow, �̄4→G , from the

controller into the system, corresponding to the information contribution in 〈f〉.
As regards Langevin systems [Eq. (5.65)] involving continuous measurements, a tighter

bound can be obtained; more specifically, for arbitrary time-integrated currents being O[X] =∫ T
0
3C Λ(G) ◦ ¤G, where Λ(G) is an arbitrary projection function, we can prove that

Var[O]
〈O〉2 ≥ 2

〈f〉 =
2

T (f̄G + �̄4→G)
. (5.73)

This lower bound is analogous to the conventional one [Eq. (1.4)] and tighter than that in

Eq. (5.64). The result implies that the fluctuation is bounded not only by entropy production,

f̄G , but also by information flow, �̄4→G . The larger the information contribution is, the higher

the precision of the observables. When there is no feedback to the system, �̄4→G = 0, and 〈f〉
becomes the system entropy production. The detailed derivation of Eq. (5.73) is provided in

Appendix D.2.

5.2.3 Numerical illustration

We apply the derived uncertainty relation to study the precision of a flashing ratchet, which

is a model of Brownian ratchet. First, we describe the conception of the flashing ratchet in

the presence of external controller that utilizes information obtained from the measurements

to rectify a directed motion. Afterward, we use both discrete- and continuous-state models

of flashing ratchet to validate the derived bound. Both the continuous- and discrete-time

ratchets are considered in the discrete-state system.

Let us introduce a flashing ratchet comprising of an overdamped Brownian particle in

contact with an equilibrium heat bath at temperature ) . The particle evolves under an

external asymmetric potential + (G), which can be either on or off depending on the feedback

control. The dynamics of the particle can be described by the Langevin equation:

W ¤G = _(G)� (G) + b, (5.74)

where G denotes the position of the particle, W denotes the friction coefficient and b denotes

white Gaussian noise with zero mean and time correlation 〈b (C)b (C ′)〉 = 2W)X(C − C ′). The

force is given by � (G) = −mG+ (G), where + (G) is periodic with + (G + !) = + (G), and ! denotes

the period of the potential. The term _(G) denotes a control protocol that takes value 1 or 0,

corresponding to switching on or off the potential.

In the previous conducted studies [169, 176], the protocol _(G) can be determined by

_(G) = Θ(� (G)), where Θ(I) denotes the Heaviside function given by Θ(I) = 1 if I > 0 and

0 otherwise. This indicates that the potential is turned on only when the net force applied

to the particles is positive. The measurements in these studies were assumed to be perfect,

i.e., there is no error in the measurement outcome of the sign of � (G). This feedback control

strategy was shown to be the best possible strategy for maximizing the average velocity of one
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particle. However, it is not the best strategy for collective flashing ratchet, where more than

one particle exists. Taking a more realistic model into account, Refs. [177, 178] studied the

flashing ratchet with imperfect measurement. The error in the estimation of the sign of � (G)
occurs with a probability A ∈ [0, 0.5]. Equivalently, the potential is switched wrongly with

probability A, i.e., the potential can be turned off when � (G) > 0 or turn on when � (G) ≤ 0

with probability A.

Discrete-measurement and discrete-state case

In all the studies discussed so far, measurements are continuously executed, which is difficult

to implement from the perspective of experimental realization. Moreover, there is a redun-

dancy in the information that is obtained from continuous measurements; thus, leading to an

inefficient implementation from the perspective of energetic cost. We consider a discrete-state

flashing ratchet with discretely repeated measurements and feedback control in what follows.

Continuous-time model.—We consider a one-dimensional discrete-state flashing ratchet

studied without using feedback control in Refs. [168, 179]. The ratchet comprises a Brown-

ian particle and has discrete states = located at position =ΔG (= ∈ Z), where ΔG denotes the

distance between neighboring states. The particle is only allowed to jump between adjacent

states, i.e., the particle cannot instantly transit from state < to state =, for |< − =| > 1. The

periodic potential is approximated by N = N1 +N2 states, as illustrated in Fig. 5.5. For each

= ∈ Z, = ≡ = (mod N) is defined as the remainder of the Euclidean division of = by N . Suppose

that the particle is in state =, then the potential should be turned off if 0 ≤ = < N1 and turned

on otherwise, i.e., if N1 ≤ = < N . This is an ideal control protocol, which maximizes the

instant velocity of the particle. Moreover, when the measurement is performed, there exists

an error due to the noise and the potential is switched wrongly with a probability A ∈ (0, 1).
Particularly, the conditional probability that characterizes the measurement error is given as

follows:

?(B |G) =


A, if B = 1 and 0 ≤ G < N1,

A, if B = 0 and N1 ≤ G < N ,

1 − A, otherwise,

(5.75)

where B = 1 and B = 0 show that the potential is switched on and off, respectively, while G

denotes the system state when executing the measurement.

When the potential is on, the transition rate Γ=,< from state < to state = is given by

Γ=+1,= = ^1, Γ=,=+1 = :+^
−1
1 , ∀= : = = 0, . . . ,N1 − 1,

Γ=+1,= = ^
−1
2 , Γ=,=+1 = :+^2, ∀= : = = N1, . . . ,N − 1,

Γ=,< = 0, ∀ |< − =| > 1.

(5.76)

Herein, :+ > 0 reflects the asymmetry in transitions due to a load force, +max denotes the

peak of the potential, and

^1 = exp

[
− +max

2N1:B)

]
, ^2 = exp

[
− +max

2N2:B)

]
. (5.77)
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Figure 5.5: Illustration of discrete-state flashing ratchet, where N =

6, N1 = 2 and N2 = 4. In the presence of the ratchet potential, the par-
ticle transits between adjacent states with predetermined rates. However,
when the potential is off, the ratchet obeys a random walk with forward and
backward transition rates equal to 1 and :+, respectively.

When :+ = 1, i.e., there is no load force, the transition rates satisfy the local detailed balance

Γ=+1,=
Γ=,=+1

= exp

(
+= −+=+1
:B)

)
, (5.78)

where += denotes the potential at state =, given by

+= =


+max=/N1, if = = 0, . . . ,N1 − 1,

+max (N − =)/N2, if = = N1, . . . ,N − 1.
(5.79)

Hereafter, we set :B) = 1. In the continuous limit, i.e., N → ∞, the discrete potential

converges to the following continuous sawtooth potential:

+ (G) =

+maxG/(0!), if 0 ≤ G ≤ 0!,

+max (! − G)/[(1 − 0)!] , if 0! < G ≤ !,
(5.80)

where 0 = limN→∞ (N1/N) is a given constant. Let %= (C) denote the probability of the system

at state = and time C. Thus, the probability distribution is governed by the master equation

mC%= (C) =
∑
<

[
Γ=,<%< (C) − Γ<,=%= (C)

]
. (5.81)

When the potential is off, the dynamics of the particle becomes a continuous-time random

walk with forward and backward transition rates equal to 1 and :+, respectively.

Let P(G0, 0, B; G1,ΔC) denote the probability that the system is at state G0 at time C = 0

with the measurement outcome B and being in state G1 at time C = ΔC. Since the system is

periodic, we define the probability distribution Q(G0, 0, B; G1,ΔC) for G0 ∈ [0,N −1] and G1 ∈ Z
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as follows:

Q(G0, 0, B; G1,ΔC) =
∑
<,=

P(=, 0, B;<,ΔC)X=,G0X<−=,G1−G0 . (5.82)

We note that Q(G0, 0, B; G1,ΔC) is normalized, i.e.,
∑N−1
G0=0

∑
G1∈Z

∑1
B=0Q(G0, 0, B; G1,ΔC) = 1. The

average of the system entropy production is equal to zero since the system is in the steady

state. Therefore, the quantity 〈f〉 can be evaluated as

〈f〉 = #
〈
ln
F(G1,ΔC |G0, 0, B)
F(G0,ΔC |G1, 0, B)

+ ln
?(B |G0)
?(B |G1)

〉
Q

, (5.83)

where the average is taken with respect to the probability distribution Q(G0, 0, B; G1,ΔC).
Discrete-time model.—Let us consider a discrete-time model of flashing ratchet, where

the control protocol is the same as that of the continuous-time model. Its dynamics is de-

scribed by a Markov chain

%= (C + g) =
∑
<

Λ=,<%< (C), (5.84)

where g denotes the time step and Λ=,< denotes the transition probability from state < to =.

To be consistent with the continuous-time model, the probability Λ=,< is set as follows. The

ratchet transits between states with the following probabilities when the potential is on are

given by

Λ=,< =


gΓ=,<, if < ≠ =,

1 − g
(
Γ=+1,= + Γ=−1,=

)
, if < = =.

(5.85)

When the potential is off, the ratchet becomes a discrete-time random walk with the transition

probabilities given by Λ=,=−1 = g, Λ=,=+1 = g:+, Λ=,= = 1 − g(1 + :+) and Λ=,< = 0 for all

|< − =| > 1. Moreover, the time step must be properly chosen to ensure the positivity of the

transition probabilities, i.e.

g ≤ min

{
1

1 + :+
,

1

max=
[
Γ=+1,= + Γ=−1,=

] } . (5.86)

In addition, the gap time between two consecutive measurements should be a multiple of time

step, i.e., ΔC/g ∈ N. The term 〈f〉 can be evaluated analogously as in Eq. (5.83).

Bound on the precision of the discrete-state ratchet.—Now, we verify the derived

bound for the following observable:

O[X] = G# − G0. (5.87)

This observable is a current, which represents the distance travelled by the particle. The rel-

ative fluctuation, Var[O]/〈O〉2, reflects the precision of the ratchet. According to Eq. (5.64),

the inequality Var[O]/〈O〉2 ≥ csch2 [ 5 (〈f〉/2)] should be satisfied. We conduct stochas-

tic simulations for both the continuous- and discrete-time models and numerically evaluate

the precision, Var[O]/〈O〉2 and the bound term, 〈f〉. For each random parameter setting,

(N1,N , +max, :+, A,ΔC,T), we collect 107 realizations for the calculation. The ranges of the

parameters are shown in the caption of Fig. 5.6. We plot Var[O]/〈O〉2 as a function of 〈f〉 in
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Figure 5.6: Numerical verification of the derived uncertainty relation
in the discrete-state flashing ratchet system. The circular and triangular
points denote the simulation results of the continuous- and discrete-time
models, respectively. csch2 [ 5 (〈f〉/2)] and 2/〈f〉 are depicted by solid and
dashed lines, respectively. The parameter ranges are N ∈ [3, 30], N1 ∈
[1,N/2], +max ∈ [0.1, 10], :+ ∈ [0.1, 10] and A ∈ (0, 0.5). The remaining
parameters are ΔC ∈ [0.01, 1], T ∈ [2, 10] in continuous-time model, while
g ∈ [0.1, 0.5], ΔC/g ∈ [1, 10], T/g ∈ [10, 100] in discrete-time model.

Figure 5.7: (a) The uncertainty and the total entropy production 〈f〉
corresponding to the measurement error in the discrete-time model. Un-
certainty and entropy production are depicted by circular and triangular
points, respectively. (b) The entropy productions, 〈ΔB + ΔBm〉 and 〈ΔBi〉,
as functions of the measurement error. 〈ΔB + ΔBm〉 and 〈ΔBi〉 are de-
picted by star and square points, respectively. The measurement error,
A, is varied from 0.05 to 0.95, while the remaining parameters are fixed:
N = 4, N1 = 2, +max = 1, :+ = 1, ΔC = 0.35, T = 3.5 and g = 0.35.

Fig. 5.6, where the circular and triangular points represent the results of the continuous- and

discrete-time models, respectively. We depict the saturated case of the derived bound and

the conventional bound by solid and dashed lines, respectively. As shown in Fig. 5.6, all the

points are located above the solid line; thus, the validity of the derived bound is empirically

verified. However, several triangular points lie below the dashed line, which implies that the

conventional bound is violated.

We plot the uncertainty in the observable and the total entropy production as functions

of measurement error parameter, A, in Fig. 5.7(a). When A decreases to 0 or increases to 1,
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more information is obtained from measurement. Therefore, this results in higher entropy

production and lower uncertainty. It is interesting that the uncertainty in observable declines

exponentially when A is either decreased from 0.5 to 0 or increased from 0.5 to 1. When A

is increased to 1, the error in the measurements leads to a reverse motion to the left side.

In Fig. 5.7(b), we plot 〈ΔB + ΔBm〉 and 〈ΔBi〉 as functions of A. As seen, 〈ΔB + ΔBm〉 becomes

negative when A ≥ 0.65, while 〈f〉 is always positive. This implies that in this case, the

controller works as a kind of Maxwell’s demon.

Continuous-measurement and continuous-state case

Finally, we consider a continuous-state flashing ratchet under continuous measurement. Its

dynamics is governed by the following equations:

W ¤G = _(<)� (G) + b,

< = G + 4.
(5.88)

Here, � (G) = −mG+ (G) [the form of + (G) is given in Eq. (5.80)], 4 is the OU process defined as

in Eq. (5.66) and the protocol _(<) is a periodic function, i.e., _(<) = _(< + !), defined as

_(<) =


0, if 0 ≤ < ≤ 0!,

1, if 0! < < < !.
(5.89)

We verify the bound derived in Eq. (5.73) with the current O[X] =
∫ T
0
3C ¤G = G(T )−G(0), which

expresses the ratchet displacement. According to Eq. (5.73), the inequality Var[O]/〈O〉2 ≥
2/〈f〉 should be satisfied. We randomly sample the parameters and run computer simulations

to evaluate 〈O〉, Var[O] and 〈f〉. For each parameter setting, we collect 107 trajectories by

using the Euler–Maruyama method with the time step ΔC = 10−4. Var[O]/〈O〉2 is plotted

as a function of 〈f〉 in Fig. 5.8. Since all the points are located above the line, the derived

bound is empirically verified.

The ratchet precision is evaluated also by the Peclet number [168], which is defined as

follows:

Pe =
〈E〉
D
, (5.90)

where 〈E〉 and D are, respectively, the mean velocity and the effective diffusion coefficient of

the ratchet. Substituting

〈E〉 = lim
T→∞

〈O〉
T , D = lim

T→∞

Var[O]
2T (5.91)

into Eq. (5.90), we obtain

Pe = lim
T→∞

2〈O〉
Var[O] , (5.92)

which indicates that Pe is proportional to the inverse of the Fano factor: the larger Pe, the

higher the ratchet precision. From the derived bound, we can readily obtain the following
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Figure 5.8: Numerical verification of the uncertainty relation in the
continuous-state flashing ratchet. Var[O]/〈O〉2 and 2/〈f〉 are represented
by the circles and the solid line, respectively. The parameter ranges are
+max ∈ [0.5, 2], 0 ∈ [0.1, 0.5], �G , �4 ∈ [10−3, 100] and T ∈ [0.1, 2]. The
remaining parameters are fixed: W = 1 and ! = 1.

upper bound on Pe:

Pe ≤ 〈f〉〈O〉 . (5.93)

This inequality can be rewritten as Pe × 〈O〉 ≤ 〈f〉, which implies a trade-off between the

ratchet precision and the distance travelled, i.e., with a fixed energy cost 〈f〉, a ratchet cannot

attain both a high precision and a long displacement.

5.2.4 Concluding remarks and discussion

We derived the uncertainty relation for steady-state systems involving repeated measurements

and feedback control. We showed that the relative fluctuation of arbitrary observables that are

antisymmetric under time reversal is constrained from below by 〈f〉, which is the sum of the

entropy production and the mutual information. For Langevin dynamics involving continuous

measurement, we also demonstrated a tighter bound from below on the fluctuation of time-

integrated currents. Then, we empirically validated the derived bound for the displacement

of a flashing ratchet.

The bound for the discrete-measurement case was derived from the fluctuation theorem,

which holds for both continuous- and discrete-time systems. Although the measurements

were performed discretely, we did not observe any violation of the conventional bound in the

stochastic simulations for the continuous-time ratchet, i.e., Var[O]/〈O〉2 ≥ 2/〈f〉 held for all

the parameter settings in the continuous-time model. We remark that proving this inequality

could significantly improve the bound and, thus, requires further investigation.

We note that an independent related result has been obtained in Ref. [123], where the

authors derive an uncertainty relation for systems involving measurement and feedback con-

trol. The relation holds even when the time-symmetry is broken (i.e., PF ≠ PR) and includes
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not only thermodynamic quantities in the forward experiment but also those in the backward

experiment. When PF = PR, the lower bound reduces to 2/(4 〈f〉 − 1), which is not tight as

Eqs. (5.64) and (5.73).

5.3 Bounds for semi-Markov systems

It is well-known that Markov jump processes are memoryless, i.e., the jump probability is

independent of the elapsed time since the last jump occurred. However, most processes

in nature, ranging from physical [180–182] to biological [183, 184] systems, typically have

memory effects due to hidden and unobserved variables. Therefore, Markov processes cannot

provide reliable approximations for many stochastic dynamics. To effectively model such

systems, semi-Markov processes may be required. In contrast to Markov processes, semi-

Markov processes have a memory and have successfully been applied to study chemical and

biological systems [185–187]. It is a fundamental question to ask how the fluctuation of

observables is constrained in the presence of memory.

In this section, we generalize the uncertainty relations, TUR and KUR, for semi-Markov

processes. Using the Cramér–Rao inequality, we prove that the fluctuation of observables

is constrained not only by entropy production, either dynamical activity but also by mem-

ory terms characterized by waiting-time distributions. When the waiting-time distribution

is Poissonian, the memory terms vanish, and our bounds reduce to the conventional ones.

Therefore, the derived bounds can be regarded as generalizations of the TUR and the KUR.

Our results also reveal whether the memory can cooperatively constrain the fluctuation of

observables or not.

5.3.1 Semi-Markov processes

In this section, we give a brief introduction of semi-Markov processes, including the definition,

statistic properties, and total entropy production. More details on the structure and the

properties of semi-Markov processes can be found in Refs. [188, 189].

Definition and notions

Following Ref. [189], we describe here the definition and notions of semi-Markov processes. We

consider continuous-time jump processes on a finite space Ω. Unlike in the Markov cases, semi-

Markov processes have non-Poissonian waiting-time distributions. The probability of a jump

from state G to H at a certain time depends only on the states G, H, and the time C since the last

jump occurred. Specifically, transitions in the process are characterized by a density function

 (G, H, C). This function satisfies the normalization condition, i.e.,
∑
H∈Ω

∫ ∞
0
3C  (G, H, C) = 1

for all G ∈ Ω. Using function  (G, H, C), we define the waiting-time distribution at state G,

 (G, C), and the transition probability from G to H regardless of the waiting time, ?(G, H), as

follows:

 (G, C) :=
∑
H∈Ω

 (G, H, C), ?(G, H) :=

∫ ∞

0

3C  (G, H, C). (5.94)



5.3. Bounds for semi-Markov systems 89

It is obvious that
∫ ∞
0
3C  (G, C) = 1 and

∑
H∈Ω ?(G, H) = 1. The effective escape rate _̄(G) is

equal to the reciprocal of the average waiting time and can be calculated as

_̄(G) :=

(∫ ∞

0

3C C (G, C)
)−1

. (5.95)

When the waiting time does not depend on the future state, but depends only on the present

state, i.e.,  (G, H, C) = ?(G, H) (G, C), we say that the semi-Markov process is time-direction

independence. Hereafter, we exclusively focus on processes satisfying this condition. Note

that, when  (G, C) = _(G)4−_(G)C , the process becomes Markov.

In the stationary state, the probability distribution c(G) satisfies the relation
∑
H∈Ω 9 (G, H) =

0, where 9 (G, H) is the probability current defined by

9 (G, H) = c(G)_̄(G)?(G, H) − c(H)_̄(H)?(H, G). (5.96)

Total entropy production

Let Γ = [G0, C1, G1, C2, . . . , G=−1, C=, G=] be a trajectory observed during the time interval [0, )].
Here, C8 (1 ≤ 8 ≤ =) denotes the time that a jump from state G8−1 to G8 occurred and 0 ≤ C1 <
C2 < · · · < C= ≤ ) . At the start time C = 0, the system is already at state G0, and its age is

stationarily distributed. The probability distribution of path Γ has the following density:

P[Γ] = c(G0)_̄(G0)^(G0, G1, C1) (G1, G2, C2 − C1) . . .  (G=−1, G=, C= − C=−1)^(G=, ) − C=). (5.97)

Here,

^(G, H, C) :=

∫ ∞

C

3g (G, H, g), ^(G, C) :=

∫ ∞

C

3g (G, g). (5.98)

For each trajectory Γ, considering its time-reversed counterpart Γ† = [G=, ) − C=, G=−1, ) −
C=−1, . . . , G1, ) − C1, G0]. The total entropy production characterizes the irreversibility in the

system and can be defined by the log-ratio of probabilities of observing forward and time-

reversed trajectories as

f[Γ] := ln
P[Γ]
P[Γ†]

. (5.99)

From the equality 〈4−f〉 = 1, one can easily prove that 〈f〉 ≥ 0, which represents the second

law in thermodynamics. Using the formula of the path probability in Eq. (5.97), we obtain

f = ln c(G0) − ln c(G=) +
=∑
8=1

ln
_̄(G8−1)?(G8−1, G8)
_̄(G8)?(G8 , G8−1)

. (5.100)

The first term in the right-hand side of Eq. (5.100), ln c(G0)−ln c(G=), represents the change in

the system entropy. The second term is interpreted as the entropy flux into the environment.

In the stationary state, the average entropy production is equal to

〈f〉 =
〈
=∑
8=1

ln
c(G8−1)_̄(G8−1)?(G8−1, G8)
c(G8)_̄(G8)?(G8 , G8−1)

〉
=
)

2

∑
G,H

9 (G, H) ln c(G)_̄(G)?(G, H)
c(H)_̄(H)?(H, G)

. (5.101)
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5.3.2 Main results

We consider a generic observable O[Γ] = ∑=−1
8=0 W(G8 , G8+1), where W : Ω×Ω ↦→ R is a real-valued

function. When W(G, H) is asymmetric, i.e., W(G, H) = −W(H, G), O is a time-antisymmetric

observable and called a current. We modify the original dynamics by a perturbation parameter

\ and obtain a modified dynamics. Let P\ [Γ] be the probability of observing the trajectory

Γ in the modified dynamics, then by applying the Cauchy–Schwarz inequality to (m\ 〈O〉\ )2,

we obtain [33]
〈〈O〉〉\
(m\ 〈O〉\ )2

≥ 1

I(\) , (5.102)

where I(\) := 〈[m\ lnP\ (Γ)]2〉 = −〈m2
\

lnP\ (Γ)〉 is the Fisher information, which places a

lower bound on the precision of unbiased estimators. Here 〈··〉\ and 〈〈··〉〉\ denote the mean

and variance in the modified dynamics. Equation (5.102) is also known as the Cramér–Rao

inequality in the context of estimation theory.

Thermodynamic bound on fluctuations of currents

Consider a modified process with the following waiting-time kernel:

 \ (G, C) = (1 + UG\) (G, (1 + UG\)C), ?\ (G, H) =
(1 + UGH\)?(G, H)

1 + UG\
. (5.103)

Here, UGH and UG are defined as follows:

UGH = 1 −
(
c(H)_̄(H)?(H, G)
c(G)_̄(G)?(G, H)

)1/2
, UG =

∑
H∈Ω

UGH ?(G, H). (5.104)

When \ = 0, the modified dynamics become the original ones. Note that when \ � 1, both

1 + UG\ and 1 + UGH\ are ensured to be positive; thus,  \ (G, C) and ?\ (G, H) are well defined.

It can be easily confirmed that they satisfy normalization conditions, i.e.,
∫
3C  \ (G, C) = 1

and
∑
H∈Ω ?\ (G, H) = 1 for all G. This modified dynamics have the following properties: (i)

the effective escape rates are scaled _̄\ (G) = (1 + UG\)_̄(G), (ii) the stationary distribution

remains unchanged c\ (G) = c(G), and (iii) the probability currents are scaled 9\ (G, H) =
(1+\) 9 (G, H). Since O is a current, its average can be expressed as 〈O〉 = ) ∑

G,H W(G, H) 9 (G, H)/2.

Consequently, the average of current O in the modified dynamics is scaled 〈O〉\ = (1 + \)〈O〉;
thus, m\ 〈O〉\ = 〈O〉. The path probability density in the modified dynamics is expressed as

P\ [Γ] = c\ (G0)_̄\ (G0)^\ (G0, G1, C1) \ (G1, G2, C2 − C1) . . .  \ (G=−1, G=, C= − C=−1)^\ (G=, ) − C=)

= c(G0) (1 + UG0\)_̄(G0)
=−1∏
8=0

(1 + UG8 G8+1\)?(G8 , G8+1)
=−1∏
8=1

 (G8 , (1 + UG8 \) (C8+1 − C8))

×
∫ ∞

C1

3g (G0, (1 + UG0\)g) (1 + UG=\)
∫ ∞

) −C=
3g (G=, (1 + UG=\)g). (5.105)
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Using Eq. (5.105), the Fisher information I(0) can be calculated as

I(0) =
〈
=−1∑
8=0

U2
G8 G8+1

〉
−

〈
U2
G0
5 (G0, C1) + U2

G=
5 (G=, ) − C=) +

=−1∑
8=1

U2
G8
6(G8 , C8+1 − C8)

〉
, (5.106)

where 5 (G, C) := C2m2
C ln

∫ ∞
C
3g  (G, g) and 6(G, C) := C2m2

C ln (G, C). The first term in the right-

hand side of Eq. (5.106) can be reduced to a closed form as〈
=−1∑
8=0

U2
G8 G8+1

〉
= )

∑
G,H

c(G)_̄(G)?(G, H)
[
1 −

(
c(H)_̄(H)?(H, G)
c(G)_̄(G)?(G, H)

)1/2
]2

= )
∑
G,H

(√
c(G)_̄(G)?(G, H) −

√
c(H)_̄(H)?(H, G)

)2

. (5.107)

Applying the inequality (√
0 −
√
1

)2

≤ 1

4
(0 − 1) ln 0

1
(5.108)

to Eq. (5.107), we obtain〈
=−1∑
8=0

U2
G8 G8+1

〉
≤ )

4

∑
G,H

9 (G, H) ln c(G)_̄(G)?(G, H)
c(H)_̄(H)?(H, G)

=
〈f〉
2
. (5.109)

Finally, by letting \ = 0 in Eq. (5.102), we obtain the following bound on the fluctuation of

currents:
〈〈O〉〉
〈O〉2 ≥

2

〈f〉 + jC
, (5.110)

where jC is a memory term defined as

jC := −2

〈
U2
G0
5 (G0, C1) + U2

G=
5 (G=, ) − C=) +

=−1∑
8=1

U2
G8
6(G8 , C8+1 − C8)

〉
. (5.111)

Equation (5.110) is our first main result. When the process becomes Markov, 5 (G, C) = 6(G, C) =
0, thus, jC = 0, and the derived inequality reduces to the conventional TUR.

Kinetic bound on fluctuations of generic observables

Consider another modified semi-Markov process with the following waiting-time kernel:

 \ (G, C) = (1 + \) (G, (1 + \)C), ?\ (G, H) = ?(G, H). (5.112)

Unlike in the previous modification, we change only the waiting-time distribution and keep

the transition probabilities unchanged. When \ = 0, the modified process becomes the original

one. It can be easily confirmed that
∫
3C  \ (G, C) = 1 and

∑
H∈Ω ?\ (G, H) = 1 for all G ∈ Ω.

This modified dynamics have the following properties: (i) the effective escape rates are scaled

_̄\ (G) = (1 + \)_̄(G), and (ii) the stationary distribution remains unchanged c\ (G) = c(G). In

the stationary state, the average of O can be calculated as 〈O〉 = ) ∑
G,H W(G, H)c(G)_̄(G)?(G, H).
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It is easy to verify that 〈O〉\ = (1 + \)〈O〉; thus, m\ 〈O〉\ = 〈O〉. Since

P\ [Γ] = c\ (G0)_̄\ (G0)^\ (G0, G1, C1) \ (G1, G2, C2 − C1) . . .  \ (G=−1, G=, C= − C=−1)^\ (G=, ) − C=)

= c(G0) (1 + \)_̄(G0)
=−1∏
8=0

?(G8 , G8+1)
=−1∏
8=1

(1 + \) (G8 , (1 + \) (C8+1 − C8))

× (1 + \)
∫ ∞

C1

3g (G0, (1 + \)g) (1 + \)
∫ ∞

) −C=
3g (G=, (1 + \)g). (5.113)

Using Eq. (5.113) and performing simple calculations, we obtain an expression of I(0)

I(0) = 〈=〉 −
〈
5 (G0, C1) + 5 (G=, ) − C=) +

=−1∑
8=1

6(G8 , C8+1 − C8)
〉
. (5.114)

The first term in the right-hand side of Eq. (5.114) is equal to the average number of jumps

occurred during observation time and is identified as the dynamical activity of the system. It

can be analytically calculated as

〈=〉 = )
∑
G,H

c(G)_̄(G)?(G, H) = )
∑
G

c(G)_̄(G). (5.115)

Substituting \ = 0 in Eq. (5.102), we obtain a kinetic bound on the fluctuation of observables

〈〈O〉〉
〈O〉2 ≥

1

〈=〉 + j:
, (5.116)

where j: is a memory term defined by

j: := −
〈
5 (G0, C1) + 5 (G=, ) − C=) +

=−1∑
8=1

6(G8 , C8+1 − C8)
〉
. (5.117)

Equation (5.116) is our second main result. In the Markovian case, j: = 0, and our result

covers the conventional KUR derived for Markov processes.

We make several remarks about our main results, Eqs. (5.110) and (5.116). The derived

bounds hold for arbitrary observation times and are generalizations of the conventional bounds

[Eqs. (1.4) and (1.5)]. When the waiting-time distribution satisfies 5 (G, C) ≤ 0, 6(G, C) ≤ 0 for

all G ∈ Ω, the memory terms are positive; thus, the bounds are lower than the conventional

bounds. This implies that memory can reduce the fluctuation of observables in such cases;

for example, when the waiting-time distributions are Gamma distributions,

 (G, C) = 1
0G
G C

0G−14−1G C

� (0G)
, (5.118)

where � (I) is the Gamma function and 0G > 1, 1G > 0 are constants. It is worth note that

the bounds are tighter than the conventional ones when j < 0 (e.g., when 0G < 1).
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5.3.3 Concluding remarks and discussion

In summary, we have derived finite-time bounds on the fluctuation of observables in steady-

state semi-Markov processes. For observables that are antisymmetric under time reversal, we

prove that the fluctuation is bounded not only by entropy production but also by the memory

term jC . For generic observables, the memory term j: and dynamical activity simultaneously

constrain the fluctuation. The memory terms can be positive or negative, depending on the

form of the waiting-time distribution. The sign of the memory terms indicates whether

memory can reduce the fluctuation of observables or not. Our results can be applied to study

fluctuations in stochastic systems modeled by semi-Markov processes, such as dynamics of

kinesin molecules [190] and biochemical reaction networks [191–193] where several reactions

are unobserved, or the network topology is not fully revealed. Moreover, we anticipate that

the derived bound [Eq. (5.110)] can be used to infer dissipation in living systems whose

underlying dynamics are semi-Markov.
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Chapter 6

Entropy production estimation

with optimal current

Recent studies have made considerable advances in the entropy production inference based

on the time-series data [49, 50, 194, 195]. Inference strategies can be generally classified

into two classes: direct and indirect. The authors in Ref. [49] employed the former class

to quantify dissipation for systems described by the additive-noise Langevin equations; the

detailed dynamics of the system (e.g., drift terms and probability fluxes) were estimated, and

the associated entropy production was subsequently approximated by either a spatial or a

temporal average. However, with an increase in the dimensionality, this strategy becomes

computationally costly, and prohibitive amount of data is required to accurately estimate

the underlying dynamics. Furthermore, the direct strategy is not applicable to situations

wherein the full freedom degrees of the system cannot be observed in the experiments (e.g.,

some hidden variables exist due to the resolution limit of the measuring instrument [196, 197]).

Alternatively, an indirect strategy based on the TUR has been proposed [49, 50]. The TUR

imposes the following bound for steady-state systems described by continuous-time Markov

jump processes and overdamped Langevin dynamics:

Σ ≥ 2〈q〉2
g〈〈q〉〉 , (6.1)

where q is an arbitrary time-integrated current, 〈q〉 and 〈〈q〉〉 := 〈q2〉 − 〈q〉2 are its mean

and variance, respectively, g is the observation time, and Σ is the entropy production rate.

Theoretically, a lower bound of entropy production can be obtained using TUR. Specifically,

when the equality in Eq. (6.1) is attained, the exact entropy production inference is possible

[50]. TUR appears to be a powerful tool for entropy production inference; however, an efficient

method is still in development from the practical perspective.

In this chapter, we propose a deterministic method of entropy production estimation

that is based on the TUR for classical Markovian dynamics. We compute a current that

maximizes the lower bound (i.e., minimizes its relative fluctuation) and is referred to as the

optimal current. For overdamped Langevin dynamics, we rigorously prove that TUR can

be saturated in the short-time limit with the current of entropy production, even when the

system is arbitrarily far from equilibrium. Therefore, entropy production can be accurately
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estimated via the fluctuation of the optimal current in the short-time limit. For Markov jump

processes, we construct a counterexample in which TUR is unattainable with the current

of entropy production. Accordingly, entropy production is not guaranteed to be exactly

estimated as in the case of Langevin dynamics. In this case, our method provides the tightest

possible lower bound on the entropy production. However, given that entropy production is

the optimal current, exact estimate can be further obtained by combining our method with the

fluctuation theorem. We illustrate our approach with the help of three systems: a four-state

Markov jump process, a periodically driven nonlinear system, and a tractable bead-spring

model. The results demonstrate that the proposed method produces accurate estimates of

entropy production for Langevin systems, and the tightest lower bound for Markov jump

processes. Notably, the computed optimal current accurately approximates the stochastic

entropy production, which agrees with the theory that the entropy production is one of the

optimal currents in the Langevin dynamics.

6.1 Proposed method

In this section, we describe our method of entropy production estimation for both Markov

jump processes and Langevin dynamics. First, we discuss the strategy of entropy production

estimation on the basis of TUR. Then, we explain in detail how to efficiently estimate entropy

production in practice. The procedure of entropy production estimation is illustrated in

Fig. 6.1.

6.1.1 Entropy production estimation on the basis of TUR

The lower bound of entropy production rate can be estimated from TUR [Eq. (6.1)] as

Σ ≥ Σ̂g := max
q

2〈q〉2
g〈〈q〉〉 , (6.2)

where the maximum is taken over all possible currents. The inequality (6.2) immediately

suggests us a simple way to obtain the lower bound of entropy production rate as follows: (i)

observing a variety of currents in the system and calculating the fluctuation of each current;

(ii) setting the maximum of {2〈q〉2/g〈〈q〉〉} as a lower bound on Σ. Despite its simplicity,

there are several issues when employing this strategy. First, there is no theory that supports

the number and the detailed forms of currents needed to yield a good estimate. Moreover,

it is also difficult to assess whether the present maximum value is the tightest bound or not.

Clearly, if the explicit form of the optimal current is known in advance, one can observe

such current and readily obtain the tightest bound for the entropy production rate. Given

the underlying dynamics, a recent study has proposed a method to analytically calculate the

optimal current, which is called the hyper-accurate current [125]. Without accessibility to the

details of dynamics, it is impossible to attain an exact form. In Ref. [49], the authors used

the Monte Carlo method to randomly sample the optimal current. However, the resulted

current is only sub-optimal when the system is strongly driven from equilibrium. In the next
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Figure 6.1: (a) Schematic diagram of entropy production estimation. A

trajectory Γ = {G(C)}C=Tobs

C=0 of the steady-state system is observed by a mea-
suring instrument. Then, the entropy production rate Σ is estimated solely
from this single trajectory. (b) Schematic diagram of the trajectory-split
process. The observed trajectory of length Tobs is split into multiple sub-
trajectories of length g (� Tobs). Note that the sub-trajectories can be
overlapped in the splitting phase to increase the number of samples.

subsection, we propose a deterministic strategy to efficiently approximate the optimal current

from a single trajectory.

To obtain an exact estimate of the entropy production rate, the saturation in Eq. (6.2) is

required, i.e., Σ̂g = Σ. Recently, the authors in Ref. [50] have stated that the equality can be

attained in the short-time limit with the current f of entropy production, i.e.,

2〈f〉2
g〈〈f〉〉

g→0−−−−→ Σ, or F :=
〈〈f〉〉
〈f〉

g→0−−−−→ 2. (6.3)

Here, we use the relation of 〈f〉 = gΣ, and F denotes the Fano factor of f. Equation

(6.3) implies that for short observation times, f is the optimal current, and its Fano factor

F converges to 2. However, we show that this statement holds for overdamped Langevin

dynamics, but not for the Markov jump processes. As shown below, we rigorously prove

that for systems described by overdamped Langevin equations, the Fano factor of entropy

production always converges to 2 in the short-time limit. Regarding Markov jump processes,

we construct a counterexample, in which F can be arbitrarily large even in the short-time

limit. In conclusion, the entropy production rate can be accurately estimated for Langevin

dynamics. However, only the tightest lower bound on the entropy production rate can be

obtained for Markov jump processes.
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Saturation of TUR for Langevin dynamics in the short-time limit

We prove that TUR is saturated with the current of entropy production in the g → 0 limit.

We consider a general multivariate Langevin system, whose dynamics are described by un-

correlated Ito stochastic differential equations,

¤G8 = �8 (x) +
√

2�8 (x)b8 (C), (6.4)

where x = [G1, . . . , G# ]> is the vector of variables. The current of stochastic entropy produc-

tion can be expanded up to the first order of g as

f(Γ) =
∫ g

0

3C ϕ(x)> ◦ ¤x = ϕ(x0)> (xg − x0) +$ (g), (6.5)

where ϕ(x) := [�8 (x)−1 9ss8 (x)/?ss (x)]> ∈ R#×1, and 9ss
8
(x) = �8 (x)?ss (x) −mG8 [�8 (x)?ss (x)]

is the probability current. The average of entropy production is given by [102]

〈f〉 = g
∫

3x
#∑
8=1

9ss
8
(x)2

�8 (x)?ss (x) . (6.6)

Using the short-time propagator [63], the transition probability can be written as

?(xg |x0) =
#∏
8=1

1√
4c�8 (x0)g

exp

(
−
[G8,g − G8,0 − g�8 (x0)]2

4�8 (x0)g

)
. (6.7)

Here, G8,0 := G8 (0), G8,g := G8 (g), and ?(xg |x0) denotes the conditional probability distribution

that the system is in xg at time C = g, given that the system is initially in x0 at time C = 0.

Using Eqs. (6.5)–(6.7), the variance of entropy production can be analytically calculated as

〈〈f〉〉 = 〈f2〉 − 〈f〉2

=

∫
3x0 ?

ss (x0)
∫

3xg ?(xg |x0)

×
[
ϕ(x0)> (xg − x0) +$ (g)

]2 +$ (g2)

= 2g

∫
3x

#∑
8=1

9ss
8
(x)2

�8 (x)?ss (x) +$ (g
2)

= 2〈f〉 +$ (g2).

(6.8)

Note that to obtain the third equality, means and covariances of xg − x0 are calculated by

employing properties of the Gaussian distribution given in Eq. (6.7). Specifically, 〈G8,g−G8,0〉 =
g�8 (x0) and 〈(G8,g −G8,0) (G 9 ,g −G 9 ,0)〉 = X8 9

[
g2�8 (x0)2 + 2�8 (x0)g

]
, where the average is taken

over distribution ?(xg |x0) and x0 is fixed. Subsequently, the Fano factor can be written as

F = 〈〈f〉〉〈f〉 = 2 +$ (g). (6.9)

Thus, one can easily confirm that the Fano factor of entropy production converges to 2 as

g → 0; equivalently, TUR is saturated in the short-time limit with the current of entropy
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production.

Counterexample for the unattainability of TUR in Markov jump processes

We show an example of Markov jump processes, in which TUR is not saturated with the

current of entropy production in the short-time limit. Explicitly, we consider a ring-type

Markov chain with # states, {1, 2, . . . , #}. For each 8 = 1, . . . , #, a forward jump from state

8 to state 8 + 1 occurs at the rate of :+ > 0, and a backward jump from state 8 + 1 to state

8 occurs at the rate of :− > 0. Here, state # + 1 is identical to state 1. There are no other

transitions between nonconsecutive states. In the short-time limit, i.e., g → 0, the mean and

variance of entropy production can be calculated as

〈f〉 = g(:+ − :−) ln
:+
:−
, (6.10)

〈〈f〉〉 = g(:+ + :−)
(
ln
:+
:−

)2

+$ (g2). (6.11)

Subsequently, we can obtain the Fano factor F of entropy production

F = 〈〈f〉〉〈f〉
g→0−−−−→ :+ + :−

:+ − :−
ln
:+
:−
. (6.12)

It is observed that F can be arbitrarily large and does not converge to 2 in the vanishing-time

limit. Because

ln
:+
:−
≥ 2

:+ − :−
:+ + :−

, ∀:+, :− > 0, (6.13)

we have F ≥ 2 as g → 0. F → 2 only when :+/:− → 1, which means that the system is

near equilibrium. This agrees with the conclusion in previous studies [33, 83] that TUR is

asymptotically saturated near equilibrium for the current of entropy production.

6.1.2 Approximation of the optimal current

Let C = {q8 (Γ)}=8=1 be a set of predetermined basis currents such that an arbitrary current can

be approximately formed as a linear combination of these currents. Here, Γ denotes a given

trajectory, and = is the number of basis currents. The construction of C (i.e., how to define the

detailed form of each basis current q8) will be described in the next subsection. We assume

that the optimal current can be expressed in terms of basis currents as qopt (Γ) =
∑=
8=1 28q8 (Γ),

where c = [21, . . . , 2=]> ∈ R=×1 is the coefficient vector. Then, the mean and variance of qopt

can be analytically calculated via the basis currents as

〈qopt〉 = c>µ, (6.14)

〈〈qopt〉〉 = c>Ξc, (6.15)

where µ := [〈q1〉, . . . , 〈q=〉]> ∈ R=×1 and Ξ := [〈q8q 9〉−〈q8〉〈q 9〉] ∈ R=×= denote the means and

the covariance matrix of basis currents, respectively. The computation of qopt is equivalent
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to finding the optimal value of c that maximizes the following function:

J (c) =
〈qopt〉2

〈〈qopt〉〉
=
E(c)2
V(c) , (6.16)

where E(c) = c>µ and V(c) = c>Ξc. Fortunately, this optimization problem can be solved

analytically. Since J (c) is scale-invariant with respect to c, i.e., J (^c) = J (c) ∀^ ≠ 0, we can

add an equality constraint, E(c) = 1. Consequently, the maximizing J (c) and minimizing

V(c) optimizations are equivalent. The latter optimization can be exactly solved using the

Lagrange multipliers method. We consider the Lagrangian function

L(c, _) = 1

2
V(c) − _(E(c) − 1). (6.17)

Taking the partial derivative of L with respect to 28 (8 = 1, . . . , =) and _, we obtain

0 = m28L(c, _) =
=∑
9=1

2 9Ξ8 9 − _`8 , (8 = 1, . . . , =), (6.18)

0 = m_L(c, _) = 1 −
=∑
8=1

28`8 . (6.19)

By solving Eqs. (6.18) and (6.19), the explicit solution is obtained

_ = (µ>Ξ−1µ)−1, c = (µ>Ξ−1µ)−1Ξ−1µ. (6.20)

Thus, the maximum value of J (c) is

Jmax := max
c
J (c) = µ>Ξ−1µ. (6.21)

Since the fluctuation of the optimal current qopt obeys TUR, we have

2〈qopt〉2

g〈〈qopt〉〉
=

2Jmax

g
=

2µ>Ξ−1µ

g
≤ Σ. (6.22)

Equation (6.22) implies that Σ̂g = 2Jmax/g is the tightest lower bound for the entropy pro-

duction rate Σ for the given set of basis currents C. Because TUR can be saturated in the

short-time limit for Langevin dynamics, this lower bound is expected to be exactly the en-

tropy production rate. Moreover, as shown later, an arbitrary current in the Markov jump

process can always be exactly expressed in the form of a linear combination of basis currents;

thus, 2Jmax/g is the tightest lower bound on entropy production rate for arbitrary observation

times. Using the coefficient vector c obtained in Eq. (6.20), the optimal current can be readily

calculated as qopt =
∑=
8=1 28q8. The inequality µ>Ξ−1µ ≤ gΣ/2 is also a consequence of the

multidimensional TUR [53, 105], which provides a tighter bound than that of the scalar TUR

[Eq. (6.1)]. Here, our analysis indicates that the multidimensional TUR has a remarkable

application in entropy production estimation, which was not revealed until now.

We summarize the procedure of estimating entropy production rate in the following.



6.1. Proposed method 101

Algorithm 1 Estimation of the entropy production rate

Require: a given trajectory of system states Γ = {G(C)}C=Tobs

C=0

Ensure: the estimated entropy production rate Σ̂g

1: Define a set of basis currents C = {q1, . . . , q=}
2: Split Γ into sub-trajectories {Γ: } of length g as [see Fig. 6.1(b)]

3: Compute `8 = 〈q8〉,Ξ8 9 = 〈q8q 9〉 − 〈q8〉〈q 9〉 using {Γ: }
4: Calculate optimal coefficients c = (µ>Ξ−1µ)−1Ξ−1µ
5: Return Σ̂g = 2µ>Ξ−1µ/g

The statistical values of q8 can be numerically approximated from sub-trajectories as

〈q8〉 =
1

NΓ

∑
:

q8 (Γ: ), (6.23)

〈q8q 9〉 =
1

NΓ

∑
:

q8 (Γ: )q 9 (Γ: ), (6.24)

where NΓ := |{Γ: }| denotes the number of sub-trajectories.

6.1.3 Construction of basis currents

Here, we describe the construction of basis currents for continuous-time Markov jump pro-

cesses and overdamped Langevin dynamics.

Markov jump process

We consider a system modeled by the continuous-time Markov jump process on a finite

countable state space Ω. Its dynamics are governed by the master equation

mC ?(H, C) =
∑
I∈Ω

[
?(I, C)FIH − ?(H, C)FHI

]
, (6.25)

where ?(H, C) denotes the probability distribution at time C, and FHI denotes the transition

rate from state H to state I. We assume that FIH > 0 whenever FHI > 0, and the system always

relaxes to a unique steady state in the long-time limit. Let ?ss (H) denote the steady-state

distribution, which satisfies
∑
I∈Ω

[
FIH ?

ss (I) − FHI ?ss (H)
]
= 0, ∀H ∈ Ω.

Given a trajectory Γ = [G(C)]gC=0, a generic current in the system can be represented as

q(Γ) =
∑
H<I

WHI

∫ g

0

3C (XG (C−) ,HXG (C+) ,I − XG (C−) ,IXG (C+) ,H), (6.26)

where WHI ’s are arbitrary real numbers, and G(C−) and G(C+) denote the state of the system

immediately before and after a jump, respectively. Defining the set of basis currents as

C = {qHI}H<I , where qHI (Γ) =
∫ g
0
3C (XG (C−) ,HXG (C+) ,I − XG (C−) ,IXG (C+) ,H) is a current that counts

the net number of jumps between H and I. Then, arbitrary current q can be written in terms

of basis currents {qHI} as q(Γ) = ∑
H<I WHIqHI (Γ). For example, the current of stochastic
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entropy production has the form [3]

f(Γ) =
∑
H<I

ln
?ss (H)FHI
?ss (I)FIH

qHI (Γ), (6.27)

which corresponds to the case WHI = ln ?ss (H)FHI/?ss (I)FIH. Because arbitrary currents can

always be expressed as a linear combination of basis currents {qHI}, the optimal current qopt

can be accurately computed. Equivalently, the tightest lower bound on entropy production

rate can be always obtained.

In special cases, the entropy production rate can, in principle, be accurately estimated us-

ing additional steps, even when the optimal current does not saturate the TUR. If the entropy

production is the optimal current, i.e., f = Uqopt, where U is an unknown scaling factor, then

Σ can be estimated by employing the integral fluctuation theorem as follows. First, U can

be determined by examining whether the relation 〈4−f〉 = 1 holds or not. Specifically, this

is equivalent to solving equation Ψ(U) = NΓ, where Ψ(U) = ∑
: 4
−Uqopt (Γ: ) . Here, we consider

the case that the trajectory Γ is well sampled, i.e., both negative and positive values are con-

tained in {qopt (Γ: )}: . Since Ψ(U) is a convex function and Ψ(0) = NΓ, Ψ(−∞) = Ψ(∞) = ∞,

this equation has at most one nonzero solution, which can be, if exists, efficiently computed

using the Newton–Raphson method. After obtaining U, the entropy production rate can be

readily estimated as Σ̂g = U〈qopt〉/g. It was proved that the entropy production is the optimal

current for the long-time limit [22]. However, the stochastic entropy production tends to be

positive in this limit and the negative samples are rare. Thus, the equation Ψ(U) = NΓ may

have only the trivial solution U = 0, which means that the entropy production rate cannot be

further estimated.

Langevin dynamics

For simplicity, we consider a one-dimensional system, whose dynamics are described by the

Langevin equation,

¤G = � (G) +
√

2� (G)b (C), (6.28)

where � (G) is the force, � (G) > 0 is the diffusion term, and b is the zero-mean Gaussian white

noise with a variance of 〈b (C)b (C ′)〉 = X(C − C ′). The noise term in Eq. (6.28),
√

2� (G)b, is

interpreted in the Ito sense. Boltzmann’s constant and the friction coefficient are set to unity

throughout this study. Let ?(G, C) denote the probability distribution function of the system

state at time C. Then, the corresponding Fokker–Planck equation is written as

mC ?(G, C) = −mG 9 (G, C), (6.29)

where 9 (G, C) = � (G)?(G, C) − mG [� (G)?(G, C)] is the probability current. Again, we focus exclu-

sively on the steady state, where ?(G, C) = ?ss (G) and 9 (G, C) = 9ss. The current of stochastic

entropy production is expressed as [102]

f(Γ) =
∫ g

0

3C i(G) ◦ ¤G, (6.30)
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where i(G) := 9ss/� (G)?ss (G) and ◦ denotes the Stratonovich product.

A generic time-integrated current takes the form of q(Γ) =
∫ g
0
3C 5 (G) ◦ ¤G, where 5 (G) is

the projection function. The entropy production current corresponds to the case of 5 (G) =
i(G). We consider a finite set of basis currents defined as q8 (Γ) =

∫ g
0
3C 58 (G) ◦ ¤G, where

58 (G) is the basis function. We seek basis functions that have a rich representation, i.e., an

arbitrary function 5 (G) can be well approximated by a linear combination of { 58 (G)}=8=1 for

the certain region of G. For example, { 58 (G)} can be trigonometric functions of the Fourier

basis, {sin(8G), cos(8G)}, or Gaussian radial basis function kernels, exp
[
−(G − G8)2/2o2

8

]
, where

G8 and o8 are the center and the bandwidth of the kernel, respectively. As other choices,

{ 58 (G)} can be orthogonal polynomials such as Legendre or Chebyshev polynomials [198]. In

all examples, we employ trigonometric functions and Gaussian kernels and determine that

they provide excellent approximations. Theoretically, increasing the number of basis currents

will enhance the representation ability. However, as shown later, the truncation of = to some

order is sufficient to obtain good estimates.

Once the basis functions { 58 (G)} are determined, the corresponding set of basis currents

is C = {q8}, where q8 (Γ) =
∫ g
0
3C 58 (G) ◦ ¤G. Using the coefficient vector, which is calculated

via means and covariances of basis currents using Eq. (6.20), one can construct the optimal

current as qopt (Γ) =
∫ g
0
3C 5opt (G) ◦ ¤G, where 5opt (G) =

∑
8 28 58 (G).

6.2 Applications

In this section, we apply the proposed method to three systems: the four-state Markov jump

process, the periodically driven particle, and the bead-spring model. For each system, we

run a simulation and obtain a single trajectory of length Tobs, from which we estimate the

entropy production rate. Specifically, for Langevin systems, we use the Euler method to

numerically solve system dynamics with a time step of ΔC = 10−4. To examine the stability of

the proposed method, we independently perform 20 estimations and calculate the mean and

standard deviation of the estimates for each parameter setting.

6.2.1 Four-state Markov jump process

We consider the four-state Markov jump process [22], whose transition rates are given as

follows:

[FHI] =


0 :+ :+ :−

:− 0 :+ :+

:− :− 0 :+

:+ :− :− 0


, (6.31)

where :+ and :− are positive parameters [see Fig. 6.2(a) for illustration]. When :+ = :−, the

system relaxes to an equilibrium after a long period of time. By solving the master equation,
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one can readily obtain the steady-state distribution

[?ss (H)] = 1

10:2
− + 12:−:+ + 10:2

+


4:2
− + 2:−:+ + 2:2

+
3:2
− + 4:−:+ + :2

+
:2
− + 4:−:+ + 3:2

+
2:2
− + 2:−:+ + 4:2

+


. (6.32)

Using [?ss (H)], the entropy production rate can be immediately calculated

Σ =
∑
H<I

[
?ss (H)FHI − ?ss (I)FIH

]
ln
?ss (H)FHI
?ss (I)FIH

. (6.33)

We apply the proposed method to estimate the tightest lower bound on the entropy

production rate from the single trajectory Γ of length Tobs = 104, which is obtained from

the simulation using the Gillespie algorithm [199]. The value of :− is fixed to 1, while :+ is

varied in the range of [1, 5]. We illustrate the estimated results in Fig. 6.2(b). As seen, the

estimated lower bound on Σ is tight and coincides with the actual entropy production rate

when the system is close to equilibrium, i.e., when :+/:− → 1. When :+/:− � 1, the gap

between the estimate value and the actual value increases, which implies that TUR cannot be

saturated in this regime even with the short-time limit. We also generate random coefficients

WHI ∈ [−1, 1] and form random currents qr =
∑
H<I WHIqHI . We evaluate the fluctuation of

each random current, 2〈qr〉2/g〈〈qr〉〉 (which is a lower bound on Σ), and plot the result in the

same figure. Clearly, the estimated lower bound Σ̂g , which is based on the optimal current,

is always better than the one that is based on each individual random current.

We investigate the form of the computed optimal current by measuring the distance be-

tween the coefficients of qopt and those of the entropy production f. Specifically, we normalize

the coefficient vectors, γ̂ = γ/‖γ‖2, and calculate their inner product. Here, ‖ · ‖2 denotes

the Euclidean norm. We vary :+ and plot the cosine similarities in Fig. 6.2(c). The cosine

similarity between γ1 and γ2 is defined as γ̂1 · γ̂2, where · denotes the inner product of two

vectors. Interestingly, the inner products are always approximately equal to 1, which implies

that qopt is identical to the current of entropy production (by ignoring the scaling factor).

Thus, f = Uqopt, where U ∈ R is the unknown scaling factor. Therefore, we use the fluctua-

tion theorem to further estimate the entropy production rate, as demonstrated in the previous

section (i.e., not the lower bound but the exact value of Σ). We solve equation Ψ(U) = NΓ
using the Newton–Raphson method to find the nontrivial solution U ≠ 0. Then, we estimate

the entropy production rate as Σ̂g = U〈qopt〉/g. We plot the estimated results in Fig. 6.2(b).

As illustrated, the method in combination with the fluctuation theorem produces accurate

estimates even when the system is far from equilibrium.

6.2.2 Periodically driven particle

Next, we consider a Brownian particle that circulates on a ring with a circumference of 2c [33],

and its dynamics are governed by the Langevin equation with � (G) = [0 + sin(G)] [1 + cos(G)]
and � (G) = [0 + sin(G)]2, where 0 > 1 and 1 ≥ 0 are the parameters. The effective potential
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Figure 6.2: (a) Schematic diagram of the four-state Markov jump process
whose states are fully connected. (b) Estimation of the entropy production
rate. The blue solid line represents the actual entropy production rate,
while the green solid line with dots represents its estimated tightest lower
bound. The error bar depicts the standard deviation of the estimated values.
The violet circles denote the lower bound on the basis of individual random
currents. The orange dots with error bars represent the estimated values by
combining the proposed method with the fluctuation theorem. When the
entropy production is the optimal current, Σ can be accurately estimated
with the help of the fluctuation theorem. (c) Cosine similarities between
the coefficients of the computed optimal current and those of the entropy
production current. As shown, all inner products are close to 1 for all
:+ ∈ [1, 5], which empirically indicates that the entropy production is the
optimal current. Parameter :+ is varied while the remaining parameters are
fixed as :− = 1,Tobs = 104, and g = 10−2.



106 Chapter 6. Entropy production estimation with optimal current

Figure 6.3: (a) Estimation of the entropy production rate Σ in the peri-
odically driven particle system. The blue solid line depicts the theoretical
entropy production rate. The orange solid line with dots represents the mean
of the estimates of Σ, and the error bars represent the standard errors. The
inset shows how the estimation results are affected when the length Tobs

is changed (at 1 = 3). (b) Comparison between the projection function of
the computed optimal current, 5opt (G), and that of the entropy production
current (which is theoretically the optimal one), i(G), in two cases: = = 11
and = = 21 basis currents, when 1 = 5. The solid, dotted, and dashed lines
represent i(G), 5opt (G) (= = 11), and 5opt (G) (= = 21), respectively. The
result shows that the optimal current is well approximated in both cases.
The parameters are fixed as 0 = 2,Tobs = 104, and g = 10−2.
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is

* (G) = −1

2
[0 + sin(G)]2 − 1[0G − cos(G)], (6.34)

which is illustrated in Fig. 6.3(a). Although the system is nonlinear, the steady-state distri-

bution can be analytically calculated

?ss (G) = 2

0 + sin(G) , (6.35)

where 2 > 0 is the normalization constant such that
∫ 2c

0
3G ?ss (G) = 1. The entropy production

rate is given by

Σ =

∫ 2c

0

3G
( 9ss)2

� (G)?ss (G) = 1
2, (6.36)

where 9ss = 12 is the probability current. It has been shown that the equality of TUR can be

exactly attained with the current of entropy production [33]

f(Γ) =
∫ g

0

3C i(G) ◦ ¤G (6.37)

for arbitrary observation time g, where i(G) = 1/[0 + sin(G)].
To compute the optimal current, we employ basis currents with the following projection

functions:

58 (G) =


1 + cos(<G), if 8 = 2< + 1,

1 + sin(<G), if 8 = 2<,
(6.38)

for 8 = 1, . . . , =. Here, 1 is added to each projection function to avoid vanishing currents. We

fix 0 = 2 and vary 1 in the range of [0, 5]. For each parameter setting, we use = = 21 basis

currents to approximate the optimal current. We plot the mean and the standard error of

the estimated results over 20 independent trajectories in Fig. 6.3(a). It is observed that the

estimated value Σ̂g and the actual entropy production rate Σ agree well for all 1. The errors

are always small even when Σ increases, which confirms the stability of our method. We also

investigate the effect of the length of the trajectory on the estimation result. We vary the

value of Tobs in the range of [102, 104] and plot the results in the inset of the same figure. As

illustrated, the estimator is unbiased for all finite lengths of the trajectory. The mean of the

estimated values is always approximately equal to the actual entropy production rate, even

when the trajectory is not long. Compared to when Tobs is large, the standard error tends

to increase when Tobs is small. This occurs due to the limited length of the trajectory (i.e.,

there are statistical errors in the calculation of moments of basis currents).

We define

5opt (G) :=
=∑
8=1

28 58 (G), (6.39)

which is the projection function of the computed optimal current. We plot 5opt (G) and i(G)
in Fig. 6.3(b) to examine whether the computed function is close to the optimal one or not.

We consider two cases: using = = 11 and = = 21 basis currents. We find that 5opt (G) and

i(G) are almost identical in both cases, which implies that the theoretically optimal current is

approximated well by our method, even when using a small number of basis currents, = = 11.
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6.2.3 Bead-spring model

Finally, we consider a nonequilibrium system that consists of # beads that are coupled in one

dimension [49]. Each bead is in contact with a thermal reservoir at different temperature.

The dynamics of the system are described by the multivariate Langevin equation

¤x = Ax +
√

2Dξ, (6.40)

where x = [G1, . . . , G# ]> denotes the positions of the beads, and A ∈ R#×# and D ∈ R#×#

are the drift and diffusion terms, respectively. Note that D = diag(�1, . . . , �# ) is a diagonal

matrix, and the noises that affects each bead are uncorrelated. Because the forces are linear,

the steady-state distribution is Gaussian,

?ss (x) = 1√
(2c)# |C|

exp

(
−1

2
x>C−1x

)
. (6.41)

Here, C is the covariance matrix of x, given by C8 9 = 〈G8G 9〉 − 〈G8〉〈G 9〉. The probability current

in the Fokker–Planck equation is

jss (x) = (Ax − D∇x) ?ss (x) = (A + DC−1)x?ss (x). (6.42)

The current of stochastic entropy production reads f(Γ) =
∫
3C ϕ(x)> ◦ ¤x, where

ϕ(x) = D−1jss (x)/?ss (x) = (D−1A + C−1)x. (6.43)

Then, the entropy production rate is analytically obtained

Σ =

∫
3xjss (x)>ϕ(x) = Tr

[
D−1ACA> − C−1D

]
, (6.44)

where Tr[·] is the trace operator that calculates the sum of elements on the main diagonal.

First, we consider the case of # = 2 beads with the drift and diffusion terms given by

A =

[
−2: :

: −2:

]
, D =

[
)ℎ 0

0 )2

]
. (6.45)

Here, : > 0 is the stiffness of the springs, and )ℎ ≥ )2 > 0 are the temperatures of the thermal

reservoirs that are coupled to each bead. From Eq. (6.44), the entropy production rate can

be analytically calculated

Σ =
: ()ℎ − )2)2

4)ℎ)2
. (6.46)

We use <2 Gaussian kernels to approximate the optimal current. Specifically, for each

8 = 1, . . . , <2, we define

58 (x) = exp

[
− (x − x8)

>B−1 (x − x8)
2

]
, (6.47)

where x8 is the kernel center and B is the kernel bandwidth. From the given trajectory, we
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calculate x = [G1, G2]>, where Ga := 10 + maxC {|Ga (C) |}. Then, x8 and B are determined as

follows:

x8 =

[
(0.5 + (8 − 1)%<) ΔG1 − G1

(0.5 + b(8 − 1)/<c) ΔG2 − G2

]
, (6.48)

B =

[
ΔG2

1 0

0 ΔG2
2

]
, (6.49)

where ΔGa = 2Ga/< (a = 1, 2), % denotes the remainder of the Euclidean division, and b·c
denotes the floor function. Equation (6.48) indicates that the kernel centers are uniformly

sampled over the region of interest, [−G1, G1] × [−G2, G2]. The optimal current is approximated

using = = 2<2 basis currents as

qopt (Γ) =
∫

3C

<2∑
8=1

[
28,1 58 (x) ◦ ¤G1 + 28,2 58 (x) ◦ ¤G2

]
,

=

∫
3C fopt (x)> ◦ ¤x. (6.50)

Here, fopt (x) := Cfb (x), C is the matrix of coefficients given by

C :=

[
21,1 22,1 . . . 2<2 ,1

21,2 22,2 . . . 2<2 ,2

]
, (6.51)

and fb (x) := [ 51 (x), . . . , 5<2 (x)]>.

We vary the temperature ratio )2/)ℎ in the range of [0.1, 1] and test the effectiveness

of our method using = = 50 basis currents (i.e., < = 5). For each parameter setting, we

collect a trajectory of length Tobs = 104, from which we estimate the entropy production rate.

We independently perform 20 estimations and obtain the mean and standard error of the

estimated values. As illustrated in Fig. 6.4(a), on average, the estimator always produces an

exact estimate of the entropy production rate, even when the system is far from equilibrium.

The inset shows the performance of the estimator when the length of the trajectory is changed.

Although the estimated values are biased for finite lengths, they converge to the exact values

when Tobs is increased. In addition, the standard errors also decrease when the length Tobs is

sufficiently long.

We investigate whether the projection function of the computed optimal current, fopt (x),
is close to that of the entropy production current, ϕ(x). We plot fopt (x) and ϕ(x) as vector

fields in Fig. 6.4(b). It is observed that these vector fields are in an excellent agreement in both

direction and magnitude. This implies that f(Γ) (which is the theoretically optimal current

in the short-time limit) is well approximated by the linear combination of the constructed

basis currents.
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Figure 6.4: (a) Estimation of the entropy production rate in the two-bead
system. The blue solid line represents the actual entropy production rate
Σ. The orange solid line with dots depicts the estimated values Σ̂g , while
the error bars indicate standard deviations. Blue and orange solid lines
almost overlap, which implies that Σ is accurately estimated. The inset
shows the performance of the estimator when the length of the trajectory
is changed. With an increase in Tobs, the estimated value converges to the
exact value of Σ with high stability. (b) Comparison between the projection
function of the computed optimal current, fopt (x) (upper panel), and that
of the entropy production current, ϕ(x) (lower panel). Two vector fields
show the same behavior in both direction and magnitude, which empirically
verifies that the optimal current is approximated well. (c) Estimation of the
entropy production rate in the five-bead system. The blue and orange solid
lines represent the actual entropy production rate Σ and the estimate Σ̂g ,
respectively. The error bars depict the standard deviations of the estimated
values. The inset shows the estimation performance when the length Tobs

of the trajectory is varied. Parameter )ℎ is varied while the remaining
parameters are fixed as : = 1 (two-bead) and 4 (five-bead), )2 = 10,Tobs =

104, and g = 10−2.
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Next, we consider a five-bead system, whose drift and diffusion terms are

A =



−2: : 0 0 0

: −2: : 0 0

0 : −2: : 0

0 0 : −2: :

0 0 0 : −2:


, (6.52)

D =
1

4



4)ℎ 0 0 0 0

0 3)ℎ + )2 0 0 0

0 0 2)ℎ + 2)2 0 0

0 0 0 )ℎ + 3)2 0

0 0 0 0 4)2


. (6.53)

For this system, the entropy production rate is equal to

Σ =
: ()ℎ − )2)2 (111)2

ℎ
+ 430)ℎ)2 + 111)2

2 )
495)ℎ)2 (3)ℎ + )2) ()ℎ + 3)2)

. (6.54)

Again, we employ Gaussian kernels, whose centers and bandwidth are analogously determined

as in the two-bead case. We use = = 160 basis currents to approximate the optimal current

and plot the estimated results in Fig. 6.4(c). As shown, the estimator is unbiased for all

temperature ratios )2/)ℎ even when the dynamics are strongly driven from equilibrium. The

inset in the same figure illustrates the statistics of the estimated values when the length Tobs

is changed. The estimator is biased for small Tobs but rapidly converges to the exact value

when Tobs is increased, which is analogous to the two-bead case.

In the end, we compare the performance of our estimator, Σ̂g , with that of the two

estimators proposed in Ref. [49], Σ̂TUR and Σ̂temp. Herein, we will briefly describe these two

estimators (see Ref. [49] for details). The thermodynamic force of the entropy production is

estimated as ϕ̂(x) = D−1ĵss (x)/?̂ss (x), where ĵss (x) and ?̂ss (x) are estimators of jss (x) and

?ss (x), respectively. Subsequently, Σ̂TUR estimates the lower bound of the entropy production

rate by utilizing the TUR with the current
∫
3C ϕ̂(x)> ◦ ¤x. On the other hand, Σ̂temp directly

estimates the entropy production rate via its temporal average, Σ̂temp = T −1obs

∫ Tobs

0
3C ϕ̂(x)>◦ ¤x.

It is worth noting that these two estimators require knowledge of the diffusion matrix D, while

our estimator does not rely on such information.

To evaluate the performance of the estimators, we vary the trajectory length Tobs = 1.2 ×
10; (1 ≤ ; ≤ 4) and focus on the convergence of each estimator. We examine two temperature

ratios, )2/)ℎ = 0.1 and )2/)ℎ = 0.5, using both the two and five-bead models. The parameter

values and experimental settings are the same as used in Ref. [49]. We calculate the mean

and standard deviation of the ratio Σ̂/Σ using 10 independent estimations and plot them in

Fig. 6.5. As illustrated, our estimator shows the best convergence in all cases. When the

trajectory length Tobs is short, Σ̂g is prone to overestimating the actual entropy production

rate because the trajectory does not provide sufficient information to accurately calculate the

mean and variance of each basis current. However, when Tobs is sufficiently long, Σ̂g always

obtains accurate estimates. Notably, for the five-bead model with )2/)ℎ = 0.5, estimators
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Figure 6.5: Performance of the different estimators. We compare our
estimator herein, Σ̂g , with the two estimators used in Ref. [49], Σ̂TUR and
Σ̂temp. The mean and standard deviation of each ratio Σ̂/Σ are calculated
using 10 independent estimations via the two-bead model with (a) )2/)ℎ =
0.1, (b) )2/)ℎ = 0.5, and via the five-bead model with (c) )2/)ℎ = 0.1,
(d) )2/)ℎ = 0.5. The results of the estimators Σ̂g , Σ̂TUR, and Σ̂temp are
depicted using circles, diamonds, and squares, respectively. The dashed line
represents the actual ratio, which equals 1. Our estimator shows the best
convergence and always provides accurate estimates when Tobs is sufficiently
long. Notably, for the five-bead model with )2/)ℎ = 0.5, estimators Σ̂TUR

and Σ̂temp show slow convergence, while Σ̂g rapidly converges to the actual
entropy production rate. The length Tobs of the observed trajectory is varied,
while the remaining parameters are fixed to : = 1 (two-bead) and ≈ 3.215
(five-bead), )2 = 25, ΔC = 10−3, and g = 10−2.

Σ̂TUR and Σ̂temp slowly converge and return inaccurate estimates even when Tobs is long. In

contrast, our estimator rapidly converges to the actual entropy production rate and provides

the best estimate.

6.3 Concluding remarks and discussion

Indirect inference on the basis of the TUR has several advantages over the direct one. First,

it can robustly estimate a lower bound on entropy production even in the presence of hidden

variables, while the direct strategy cannot. This situation is common in the biological context,

where the full degrees of freedom are often inaccessible. Second, for Langevin dynamics

involving multiplicative noises, the accurate estimation of both the drift and diffusion terms

is not a simple task, especially in the high-dimensional case. Moreover, the errors that

occurred in the estimation of these quantities can be accumulated in the phase of calculating

entropy production, which potentially affects the accuracy of estimate. In contrast, inference

that is based on the TUR does not require to know the underlying dynamics, e.g., whether

the noises are additive or multiplicative.

In summary, the method for estimating entropy production based on the TUR was pro-

posed. Three examples, including Markov jump processes and Langevin dynamics, were

studied to illustrate the effectiveness of the proposed method. It was shown that the entropy

production rate can be accurately estimated for Langevin dynamics using the short-time

limit. The results demonstrate that the estimates are significantly consistent with the theo-

retical entropy production rates, even when the system is far from equilibrium. The proposed
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method always effectively performs, regardless of whether the noise is additive or multiplica-

tive. Further, it was empirically confirmed that the optimal current, which is proportional

to the entropy production in the short-time limit, can be successfully approximated by the

linear combination of predetermined basis currents. Thus, the entropy production current

can be accurately inferred by integrating our method with the fluctuation theorem. Namely,

one can infer not only the average of entropy production but also its probability distribution.

For Markov jump processes, our method provides the tightest lower bound for the entropy

production rate. If the condition that the entropy production current is the optimal one is

given, then an exact estimate can be obtained through the combination with the integral

fluctuation theorem.

From a practical perspective, the proposed algorithm can be easily implemented and is

computationally efficient (i.e., all numerical computations can be performed in parallel). The

Monte Carlo sampling utilized in Ref. [49] suffers from a local optimum when the dynamics

are strongly driven; thus, it can be replaced by our method, which always produces a global

optimum. Unlike in Ref. [50], where the details of underlying dynamics (e.g., the system

entropy, heat, and work) are required to form the optimal current, the proposed method does

not require such prior knowledge of the dynamics.

We discuss some possible future research directions. This study focused on estimating

entropy production; however, the proposed method should also apply to the estimation of the

Fisher information, which is lower bounded by means and covariances of multiple observables

[124]. Moreover, it is of interest to test our method with the experimental data. For example,

one can estimate the dissipation cost in the motor protein F1-adenosine triphosphatase [200]

from the trajectory of the rotational angles, whose dynamics are governed by the Langevin

equation. Along with studies of applications, further research on theoretical guarantees of the

proposed method is desirable. Basically, the longer the input trajectory is, the more accurate

estimate can be obtained. However, a full investigation regarding the relationship between the

error of estimate and the trajectory length is beyond the scope of this study. The development

of theoretical bounds on the error with respect to the length needs to be addressed. Besides,

overcoming the curse of dimensionality in entropy production estimation remains an open

problem. Although our proposed method works well in the five-dimensional model, it is still

challenging to handle genuinely high-dimensional Langevin systems. A considerable number

of basis functions may be required to obtain an accurate approximation of the optimal current,

which leads to a substantial computational cost. As an alternative solution, one can estimate

with multiple sets, whose number of basis currents is limited, and assigns the largest estimated

value as the lower bound of the entropy production rate.
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Chapter 7

Bounds on irreversibility in

Markovian systems

In recent years, many studies have characterized the dissipation of thermodynamic processes

using information geometry [201–211], which is the application of techniques from differential

geometry to the manifolds of probability distributions and density matrices [212]. Reference

[213] showed that entropy production in a closed driven quantum system is bounded from

below by the Bures length between the final state and the corresponding equilibrium state.

Following a similar approach, Ref. [214] determined a geometrical upper bound for the

equilibration processes of open quantum systems. As is well known, in classical systems near

equilibrium, irreversible entropy production is related to the distance between thermodynamic

states [215, 216]. Meanwhile, a lower bound on dissipation in terms of the Wasserstein

distance [217] has been defined for nonequilibrium Markovian systems described by Langevin

equations [218–220]. Information geometry is useful for deriving other important relations,

such as speed limits [124, 221–223], quantum work fluctuation-dissipation relations [224], and

the efficiency-power trade-off in microscopic heat engines [225].

In this chapter, we enlarge the family of these universal relations by investigating quan-

tum and classical open systems that satisfy the detailed balance condition. These systems

obey reversible Markovian dynamics and can be modeled as coupled to an infinite thermal

reservoir. Examples include equilibration processes, which have received considerable interest

in nonequilibrium physics [8, 226–228]. Specifically, we derive geometrical lower bounds on

the entropy production in reversible Markovian systems described by master equations. The

spaces of quantum states and discrete distributions are treated as Riemannian manifolds, on

which the time evolution of a system state is described by a smooth curve. By defining a

modified Wasserstein metric, we prove that the entropy production is bounded from below by

the square of the geodesic distance between the initial and final states divided by the process

time [cf. Eqs. (7.55) and (7.64)]. The derived bounds strengthen the Clausius inequality of

the second law for reversible Markovian systems. They can also be regarded as generaliza-

tions of the bounds reported in Refs. [218, 220] to the discrete-state quantum and classical

systems. The equality of these bounds is attained only when the system dynamics follow the

shortest paths. Our modified metric is a quantum generalization of the Wasserstein metric,
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which measures the distance between two distributions and is widely used in optimal trans-

port problems [217]. Interestingly, the obtained inequalities can be interpreted as speed limits

[92, 229–235], which establish the trade-off relations between the speed and dissipation cost

of a state transformation. We numerically illustrate the results on a quantum Otto engine

and a classical two-level system.

7.1 Differential geometry and information geometry

Differential geometry studies (smooth) manifolds, and it aims to characterize the global prop-

erties of manifolds. A smooth manifold is, in general, a multi-dimensional space that is locally

flat and on which one can perform calculus. Information geometry applies techniques in differ-

ential geometry to study the geometrical structure of the manifolds of classical and quantum

states. Here, the classical and quantum states are the probability distributions over the clas-

sical phase space and the density matrices over the quantum Hilbert space, respectively. The

set of these states can be treated as a smooth Riemannian manifold equipped with a proper

metric. Geometrically studying thermodynamic quantities such as heat, work, and entropy

production not only allows us to discover new thermodynamic relations but also opens up

new avenues for solving optimization problems.

To understand the results presented in this chapter, we briefly describe only some relevant

concepts of information geometry. The interested reader should refer to the book [212] for

a detailed explanation of other important concepts such as the Riemannian connection and

dual connections.

7.1.1 Smooth manifolds

Following a great description in Ref. [236], we briefly explain the concept of smooth manifolds.

First, we start with a formal definition of topological manifolds — the most basic type of

manifolds — in the following.

Definition 7.1. " is a topological manifold of dimension = if it satisfies the following prop-

erties:

1. " is a Hausdorff space: for every pair of distinct points ?, @ ∈ ", there are disjoint

open subset *,+ ⊆ " such that ? ∈ * and @ ∈ + .

2. " is second-countable: there exists a countable basis for the topology of ".

3. " is locally Euclidean of dimension =: each point of " has a neighborhood that is

homeomorphic to an open subset of R=.

The second property says that there exists a countable set � of open subsets of " such

that every open subset of " can be written as a union of elements of some subsets of �. For

example, the Euclidean space R= is second-countable because the set of the open balls �G (n)
with radius n ∈ Q≥0 and center points G ∈ Q= is a countable basis. The third property means
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that for each point ? ∈ ", one can find an open subset * ⊆ " containing ?, and open subset

*̂ of R=, and a homeomorphism1 i : * → *̂.

Coordinate charts

A coordinate chart on " is a pair (*, i) where * is an open subset of " and i : * → *̂ is

a homeomorphism from * to an open subset *̂ = i(*) ⊆ R=. By definition of a topological

manifold, each point ? ∈ " is contained in the domain of some chart (*, i). Given a chart

(*, i), we call the set * a coordinate domain and the map i a (local) coordinate map, and

the component functions (G1, . . . , G=) of i, defined by i(?) = [G1 (?), . . . , G= (?)], are called

local coordinates on *. If (*, i) and (+, k) are two charts such that *∩+ ≠ ∅, the composite

map k ◦ i−1 : i(* ∩ +) → k(* ∩ +) is called the transition map from i to k. Two charts

(*, i) and (+, k) are said to be smoothly compatible if either *∩+ = ∅ or the transition map

k ◦ i−1 is a diffeomorphism2. A collection of charts whose domains cover " is called an atlas

for ". An atlas � is called a smooth atlas if any two charts in � are smoothly compatible

with each other.

Definition 7.2. A smooth atlas is a set of charts � = {(*8 , i8)}8∈� such that

1. " = ∪8∈�*8.

2. The transition maps i8 9 = i 9 ◦ i−18 are diffeomorphisms.

In general, there are many possible atlases that give the same smooth structure. Nonethe-

less, a smooth structure can be defined as an equivalence class of smooth atlases. An equiva-

lence relation on smooth atlases can be defined in the following manner. Two smooth atlases

� and �′ are equivalent if � ∪ �′ is again a smooth atlas. A smooth atlas � on " is max-

imal if it is not properly contained in any larger smooth atlas. An equivalence class of this

equivalence relation is called a smooth structure � on ", and the maximal atlas associated

with � is denoted by ��.

With the above definitions in place, we can then define a smooth manifold as the following.

Definition 7.3. Let " and � be, respectively, a topological manifold and a smooth structure

on " with maximal atlas ��. Then the pair (", ��) is called a smooth manifold.

Let us examine some examples of smooth manifolds.

Example 7.1. (Euclidean spaces) For each positive integer number =, the Euclidean space

R= is a smooth manifold with the smooth structure determined by the atlas consisting of the

single chart (R=, idR= ), where id" denotes the identity function from " to ".

Example 7.2. (Spaces of matrices) Let "=×= (R) denote the set of = × = matrices with real

entries. Since an arbitrary matrix in "=×= (R) can be represented as a real vector of length

=2, "=×= (R) is a smooth manifold of dimension =2. Analogously, the space "=×= (C) of = × =
complex matrices is a smooth manifold of dimension 2=2.

1A homeomorphism is a continuous bijective map whose inverse is also continuous.
2A diffeomorphism is a differentiable bijective map whose inverse is also differentiable.
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Example 7.3. (Unit spheres) For an integer = > 0, let us consider the unit =-sphere

S= B
{
(G1, . . . , G=+1) ∈ R=+1 |

=+1∑
8=1

G2
8 = 1

}
. (7.1)

We will show that S= is a smooth manifold of dimension =. Let B= denote the =-dimensional

open unit ball,

B= B
{
(G1, . . . , G=) ∈ R= |

=∑
8=1

G2
8 < 1

}
. (7.2)

For each index 8 = 1, . . . , = + 1, let *+
8

denote the subset of R=+1 where the 8-th coordinate is

positive,

*+8 B
{
(G1, . . . , G=+1) ∈ R=+1 | G8 > 0

}
. (7.3)

It is easy to check that the set *+
8
∩ S= is the graph of the function

G8 =

√
1 − (G2

1 + · · · + G2
8−1 + G2

8+1 + · · · + G2
=). (7.4)

Similarly, *−
8

is the set where G8 < 0, and *−
8
∩ S= is the graph of

G8 = −
√

1 − (G2
1 + · · · + G2

8−1 + G2
8+1 + · · · + G2

=). (7.5)

Thus, each subset *±
8
∩S= is locally an Euclidean space of dimension =, and i±

8
: *±

8
∩S= → B=

are local coordinate maps for S=. Since each point of S= is included in some chart of the

atlas � B {(*+
8
∩ S=, i+

8
), (*−

8
∩ S=, i−

8
)}=+1
8=1 , S= is a topological manifold of dimension =.

Moreover, one can easily confirm that for any 1 ≤ 8, 9 ≤ = + 1, the transition map i±
8
◦ i±

9

is a diffeomorphism; thus, � is a smooth atlas. Subsequently, S= is a smooth manifold of

dimension =.

Throughout this chapter, we consider only smooth manifolds that have a global coordi-

nate system. In the quantum case, " can be the space of density operators d, which are

positive (i.e., d ≥ 0) and have unit trace (i.e., tr d = 1). Meanwhile, in classical discrete-

state systems, " can be the collection of discrete distributions p = [?1, . . . , ?# ]>, where

?= ≥ 0 and
∑#
==1 ?= = 1. We use the standard notation 〈·, ·〉 of the scalar inner product, i.e.,

〈x, y〉 = x>y and 〈 5 (G), 6(G)〉 =
∫
R#

5 (G)>6(G)3G for the classical case and 〈-,.〉 = tr
{
-†.

}
for the quantum case.

In order to define geometric notions such as lengths and angles on a vector space, we have

to introduce a proper metric (which is an inner product between two tangent vectors). The

most suitable metrics for smooth manifolds are Riemannian metrics, which will be discussed

in the following.

7.1.2 Riemannian metrics

In the Euclidean space, the inner product between two vectors can be defined in a conventional

way, 〈u, v〉 = ∑#
==1 D=E=. This inner product allows us to define lengths of vectors and angles

between them in the Euclidean geometry. Transferring these ideas to manifolds, a Riemannian
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metric can be defined as a smooth symmetric covariant 2-tensor field that is positive definite

at each point.

Definition 7.4. Given a smooth manifold ", a Riemannian metric 6? is an inner product

on the tangent space )?" at each point ? on the manifold, which satisfies the following

conditions:

1. Bilinearity: 6? (D, E) : )?" × )?" → R is a bilinear function, i.e., D ↦→ 6? (D, E) and

E ↦→ 6? (D, E) are both linear functions.

2. Symmetry: 6? (D, E) = 6? (E, D).

3. Positive-definiteness: 6? (D, D) > 0 for all D ≠ 0.

A smooth manifold equipped with a Riemannian metric is called a Riemannian manifold.

For smooth manifolds involving complex numbers, the properties of bilinearity and symmetry

should be properly modified since the inner product 6? could be a complex number. To

provide a better understanding of the concept of metrics, let us review some Riemannian

metrics in the following.

Example 7.4. (The Euclidean metric) One simplest example of a Riemannian metric is the

Euclidean metric on R=. Given two tangent vectors u, v ∈ )?", the Euclidean metric is

defined as

6? (u, v) B D1E1 + · · · + D=E= = 〈u, v〉. (7.6)

It is obvious that the Euclidean metric satisfies the three above conditions of a Riemannian

metric.

Example 7.5. (Product metrics) If ("1, 6
1) and ("2, 6

2) be Riemannian manifolds, then

the product manifold "1 × "2 has a natural product metric 6 = 61 ⊕ 62, given by

6? ((u1,u2), (v1, v2)) B 61
?1
(u1, v1) + 62

?2
(u2, v2), (7.7)

where u8 , v8 ∈ )?8"8.

A Riemannian metric allows us to define the length of a curve. The length of an arbitrary

smooth curve W(C) : [0, g] → " with respect to the metric 6 can be defined as

ℓ(W) B
∫ g

0

√
6W ( ¤W(C), ¤W(C))3C. (7.8)

It is easy to check that this definition is independent of parameterization. The distance

between two points ? and @ on the manifold can then be defined as the length of the shortest

path that connects two points,

3 (?, @) B inf
W
{ℓ(W) | W(0) = ?, W(g) = @} . (7.9)

3 (?, @) is called the geodesic distance between points ? and @. Note that except some par-

ticular cases, obtaining the analytical form of 3 (?, @) is, in general, difficult.
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Another important quantity is the divergence of the path, given by

J (W) B g

∫ g

0

6W ( ¤W(C), ¤W(C))3C. (7.10)

Applying the Cauchy–Schwarz inequality, a relation between ℓ and J can be obtained,

ℓ(W)2 =
(∫ g

0

√
6W ( ¤W(C), ¤W(C))3C

)2

≤
∫ g

0

3C

∫ g

0

6W ( ¤W(C), ¤W(C))3C = J (W), (7.11)

or equivalently ℓ(W) ≤ J (W)1/2. The divergence J (W) is also called the energy or action along

the path. In the thermodynamics context, ℓ(W) and J (W) are referred to as the thermo-

dynamic length and the thermodynamic divergence, respectively. An important connection

between the geodesic distance and the divergence is stated in the following theorem.

Theorem 7.1. The geodesic distance between two points is equal to the infimum of square

root of the divergence taken over all possible paths,

3 (?, @) = inf
W

{
J (W)1/2 | W(0) = ?, W(g) = @

}
. (7.12)

Proof. We broadly follow the approach used in Theorem 5.4 of Ref. [237]. In order to prove

the theorem, we will show that 3 (?, @) ≤ infW
{
J (W)1/2

}
and 3 (?, @) ≥ infW

{
J (W)1/2

}
. The

former is obvious since 3 (?, @) = infW {ℓ(W)} ≤ infW
{
J (W)1/2

}
. Thus, we need only prove the

latter. For an arbitrary positive number n > 0 and a smooth curve {W(C)} connecting ? and

@, we define

^n (C) B
∫ C

0

(
n + 6W ( ¤W(B), ¤W(B))

)1/2
3B, C ∈ [0, g] . (7.13)

One can easily see that ^n is strictly increasing with ^n (g) C (n > 0; thus, its inverse map

hn : [0, (n ] → [0, g] is well defined, with

3

3I
hn = (n + 6W ( ¤W(C), ¤W(C)))−1/2, (7.14)

where I = ^n (C). Set Wn = W ◦ hn , then Wn is a curve connecting ? and @ with Wn (0) = ? and

Wn ((n ) = @. Thus, we have

inf
W
{J (W)} ≤ (n

∫ (n

0

6Wn ( ¤Wn (I), ¤Wn (I)))3I (7.15a)

= (n

∫ g

0

6W ( ¤W(C), ¤W(C)))
n + 6W ( ¤W(C), ¤W(C))

(n + 6W ( ¤W(C), ¤W(C)))1/23C (7.15b)

≤ (n
∫ g

0

(n + 6W ( ¤W(C), ¤W(C)))1/23C = (2
n . (7.15c)

Here we have used the variable transformation I = ^n (C) to obtain Eq. (7.15b) and the

inequality 6W ( ¤W(C), ¤W(C))) ≤ n + 6W ( ¤W(C), ¤W(C)) to obtain Eq. (7.15c). Taking the n → 0 limit,

we get

inf
W
{J (W)} ≤ ℓ(W)2. (7.16)
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Consequently, we obtain infW
{
J (W)1/2

}
≤ infW{ℓ(W)} = 3 (?, @), which completes the proof.

�

We can see that the equality in Eq. (7.12) is attained with a constant-speed path {W(C)},
i.e., 6W ( ¤W(C), ¤W(C)) ≡ const for all C ∈ [0, g], which can be derived from the equality condition

of the Cauchy–Schwarz inequality.

Note that there is an infinite number of metrics on a smooth manifold, as long as the

linearity, symmetry, and positive-definite conditions are met. Notably, there exists a family

of monotone metrics that are contractive under physical maps [238–240], and a representative

of which is the Fisher information metric [241, 242]. In the following, we briefly introduce

the class of monotone metrics.

7.1.3 Monotone metrics

For the sake of generality, we consider the manifold " of quantum states on the #-dimensional

Hilbert space. The tangent space {)d"}d is then the collection of traceless Hermitian opera-

tors. A Riemannian metric 6d is said to be monotone if 6d (-, -) ≥ 6Λ(d) (Λ(-),Λ(-)) for an

arbitrary - ∈ )d" and an arbitrary completely positive trace-preserving map Λ. It should

be noted that the corresponding geodesic distance 3 (·, ·) of a monotone metric is contractive

under Λ, i.e.,

3 (d, f) ≥ 3 (Λ(d),Λ(f)), (7.17)

for any density matrices d, f ∈ ". Considering 3 (·, ·) as a measure of distinguishability,

Eq. (7.17) implies that the distinguishability between two states always decreases under in-

formation processing. The monotone metrics thus provide a Riemannian geometric measure

of distinguishability within the classical and quantum settings. The family of such monotone

metrics is completely characterized by the Morozova, Čencov, and Petz theorem [238]. A

function 5 (G) : R+ → R+ which is operator monotone (i.e., 5 (-) ≤ 5 (. ) for any positive semi-

definite operators - ≤ .) and self-inverse (i.e., 5 (G) = G 5 (1/G) and 5 (1) = 1) is called the

Morozova-Čencov (MC) function. Then, any monotone metric can be written in the following

form up to a constant factor,

6d (-,. ) =
1

4
tr

{
-2 5 (Ld,Rd).

}
, (7.18)

where -,. ∈ )d", Ld and Rd are two linear superoperators defined as Ld- = d- and

Rd- = -d, and

2 5 (G, H) B 1

H 5 (G/H) (7.19)

is a symmetric function, 2 5 (G, H) = 2 5 (H, G). Using the spectral decomposition of the density

operator d =
∑#
9=1 ? 9 | 9〉〈 9 |, the metric can be explicitly written as

6d (m\ d, m\ d) =
1

4


#∑
9=1

|〈 9 |m\ d | 9〉|2
? 9

+ 2
∑
9<;

2 5 (? 9 , ?;) |〈 9 |m\ d |;〉|2
 , (7.20)
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where \ is a parameter (which can be time C). As can be seen in Eq. (7.20), there are two

separate contributions in the metric 6d. The first contribution in terms of populations {? 9 }
of d corresponds to the classical Fisher information metric at the probability distribution

{? 9 }#9=1. The second contribution is purely a quantum term, which is due to the coherence

between ¤d and d with respect to the eigenbasis of d.

It has been shown [243] that any MC function must satisfy 5min (G) ≤ 5 (G) ≤ 5max (G),
where 5min (G) = 2G/(1 + G) and 5max (G) = (1 + G)/2 are the minimal and maximal func-

tions, respectively. The maximal one corresponds to the quantum Fisher information metric,

whereas the Wigner-Yanase information metric is characterized by an intermediate MC func-

tion, 5WY (G) = (1 +
√
G)2/4. As mentioned above, obtaining the analytical expression for the

geodesic distance of a metric is a difficult task. Fortunately, the geodesic distance induced by

the quantum Fisher information metric can be explicitly calculated as [244]

3QF (d, f) = arccos
[√
� (d, f)

]
, (7.21)

where � (d, f) = tr
{√√

df
√
d
}2

is the Uhlmann fidelity, and that induced by the Wigner-

Yanase information metric is [245]

3WY (d, f) = arccos [�(d, f)] , (7.22)

where �(d, f) = tr
{√
d
√
f
}

is the quantum affinity. In the classical setting (i.e., all off-

diagonal elements are zero), all monotone metrics reduce exactly to the classical Fisher infor-

mation metric,

6? (m\p, m\p) =
1

4

#∑
==1

(m\ ?=)2
?=

, (7.23)

and the corresponding geodesic distance is given by 3CF (p, q) = arccos
(∑#

==1

√
?=@=

)
.

In the following, we will exclusively focus on the (quantum) Fisher information metric

and explain its important properties.

Fisher information and Fisher information metric

Let us consider an estimation problem of an unknown parameter \, which is embedded in

the state d\ of a physical system. The information of the parameter \ is extracted by

means of positive operator-valued measure (POVM) ΠG satisfying
∑
G ΠG = I. The conditional

probability of obtaining a measurement outcome G8, given a certain value of the parameter \,

is determined by the Born rule:

?(G8 |\) = tr
{
d\ΠG8

}
. (7.24)

An unbiased3 estimator Λ\ then provides an estimate Λ(G) based on the measurement out-

come G. According to the Cramér–Rao inequality, the accuracy of the unbiased estimator Λ\

3An estimator is said unbiased if its mean value coincides with the unknown parameter, i.e., 〈Λ\ 〉 =∑
G ? (G |\)Λ\ (G) = \.
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is bounded from below by the classical Fisher information,

〈〈Λ\ 〉〉 ≥
1

I(\) , (7.25)

where 〈〈Λ\ 〉〉 B 〈Λ2
\
〉−〈Λ\ 〉2 is the variance of Λ\ and I(\) is the classical Fisher information,

given by

I(\) =
〈
[m\ ln ?(G |\)]2

〉
=

∑
G

[m\ ?(G |\)]2
?(G |\) . (7.26)

By introducing the symmetric logarithmic derivative (SLD) ! \ , defined as the self-adjoint

operator satisfying the equation

m\ d\ =
1

2
(d\! \ + ! \ d\ ) , (7.27)

the Fisher information can be expressed in terms of ! \ as

I(\) =
∑
G

<(tr {d\ΠG! \ })2
tr {d\ΠG}

. (7.28)

Here, we have used the relation m\ ?(G |\) = tr {m\ d\ΠG} = <(tr {d\ΠG! \ }), and <(I) denotes

the real part of a complex number I.

Given a state d\ , the Fisher information can be maximized over all possible POVMs {ΠG}.
Applying the inequality |tr

{
-†.

}
|2 ≤ tr

{
-†-

}
tr

{
.†.

}
, one can prove that [246]

I(\) ≤
∑
G

����� tr {d\ΠG! \ }√
tr {d\ΠG}

�����2 = ∑
G

�����tr
{ √

d\
√
ΠG√

tr {d\ΠG}

√
ΠG! \

√
d\

}�����2 (7.29a)

≤
∑
G

tr {ΠG! \ d\! \ } = tr {! \ d\! \ } = tr
{
d\!

2
\

}
C IQF (\). (7.29b)

The quantity IQF (\) is known as the quantum Fisher information, which constrains the

precision of unbiased estimators as

〈〈Λ\ 〉〉 ≥
1

IQF (\)
. (7.30)

Equation (7.30) is the quantum Cramér–Rao bound. The SLD ! \ can be written as

! \ = 2

∫ ∞

0

exp(−d\ C)m\ d\ exp(−d\ C). (7.31)

In terms of the eigenbasis of d\ , ! \ reads

! \ = 2
∑
9 ,;

〈 9 |m\ d\ |;〉
? 9 + ?;

| 9〉〈; |. (7.32)
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Inserting Eq. (7.32) into IQF = tr
{
d\!

2
\

}
, we obtain an explicit form of the quantum Fisher

information as

IQF (\) =
∑
9

|〈 9 |m\ d\ | 9〉|2
? 9

+ 4
∑
9<;

|〈 9 |m\ d\ |;〉|2
? 9 + ?;

. (7.33)

On the other hand, substituting the MC function 5max (G) = (1 + G)/2 into Eq. (7.20) gives an

explicit expression of the quantum Fisher information metric,

6d\ (m\ d\ , m\ d\ ) =
1

4


#∑
9=1

|〈 9 |m\ d\ | 9〉|2
? 9

+ 4
∑
9<;

|〈 9 |m\ d\ |;〉|2
? 9 + ?;

 . (7.34)

Combining Eqs. (7.33) and (7.34) derives the following relation:

IQF (\) = 46d\ (m\ d\ , m\ d\ ). (7.35)

7.1.4 Wasserstein distance

The Wasserstein distance is a metric on probability distributions and is closely connected

to the concept of optimal transport. Roughly speaking, it measures the minimal cost to

transform a distribution ?(G) of a mass into another distribution @(G) on the same space.

The problem of optimal transport — how to optimally transport a pile of earth into another

pile that is the same in volume but may be different in shape — was originally initiated by

Monge. Subsequently, it was reformulated by Kantorovich to a more well-defined problem

in terms of transport planning via the coupling of probability measures. The Wasserstein

distance is exactly a special case of Kantorovich’s problem where the cost function is !=-

norm. Interestingly, from the fluid mechanics point of view, a variational formula for the

!2-Wasserstein distance was developed by Benamou and Brenier, allowing us to interpret

the Wasserstein distance as a Riemannian distance on the infinite-dimensional manifold of

probability distribution functions.

In the following, we present a brief description of the Wasserstein distance and discuss

it in the context of thermodynamics. For details of the optimal transport problem and a

full history and description of the Wasserstein distance, see the excellent book [217]. For

simplicity, we consider only probability distributions on a continuous-state space.

Imagine that we have two probability distribution functions ? and @ on the space R# and

each of the functions is associated with a distribution of a mass. Monge’s optimal transport

problem is to find a one-to-one map i : R# → R# that minimizes the objective function,

W= (?, @)= = inf
i

∫
R#
‖x − i(x)‖=?(x)3x, (7.36)

where the infimum is over all i satisfying ?(x) = @(i(x)) | det(∇i(x)) |. Intuitively, the

quantityW= (?, @) measures the minimal cost one needs to transform the mass of distribution

? to that of distribution @ with respect to the transport cost ‖ · ‖=. However, there is an issue

in this formulation regarding the non-existence of transport maps, i.e., the map i might not

exist in the discrete case. Fortunately, this issue was resolved by the relaxation of Kantorovich,

which led to the following definition.
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Definition 7.5. Let ?(x) and @(x) be the probability distribution functions with finite =-th

moments over the space R# , the !=-Wasserstein distance is defined as

W= (?, @)= = inf
c

{∫
R#×R#

‖x − y‖=c(x, y)3x3y
�� c ∈ Π(?, @)} .

Here, Π(?, @) denotes the set of joint probability distributions whose marginal distributions

coincide with ? and @, respectively.

The Wasserstein distance is indeed a measure of distance and satisfies the triangle inequal-

ity, W= (?1, ?3) ≤ W= (?1, ?2) + W= (?2, ?3) for arbitrary probability distribution functions

?8 (8 = 1, 2, 3) with finite =-th moments. In Kantorovich’s problem, the !=-norm cost function

‖x − y‖= is replaced by a generic cost function 2(x, y) : R# × R# → R. A dual formulation

for the Wasserstein distance can also be obtained

W= (?, @)= = sup
q,k

{∫
R#

q(x)?(x)3x −
∫
R#

k(y)@(y)3y
�� q(x) − k(y) ≤ ‖x − y‖=,∀x, y} ,

(7.37)

where k, q : R# → R are integrable functions. In the case of = = 1, a more simple repre-

sentation for the !1-Wasserstein distance known as the Kantorovich-Rubinstein duality was

derived,

W1 (?, @) = sup
q

{∫
q(x) [?(x) − @(x)]3x

�� |q(x) − q(y) | ≤ ‖x − y‖,∀x, y} . (7.38)

In general, it is difficult to obtain a closed form forW= (?, @), except the case where = = 2 and

?, @ are both normal distributions. Specifically, if ? ∼ N(µ? ,Σ?) and @ ∼ N(µ@ ,Σ@), then

W2 (?, @)2 = ‖µ? − µ@ ‖2 + tr

{
Σ? + Σ@ − 2

√√
Σ?Σ@

√
Σ?

}
. (7.39)

Due to the difficulty in computing the !2-Wasserstein distance, a lower bound is often taken

into consideration. It was proven that W2 (?, @)2 can be bounded from below in terms of

means and variances of ? and @ as [247]

W2 (?, @)2 ≥ ‖µ? − µ@ ‖2 + tr

{
Σ? + Σ@ − 2

√√
Σ?Σ@

√
Σ?

}
, (7.40)

where µ? ,Σ? (µ@ ,Σ@) are mean and covariance matrices of the distribution ? (@).

Importantly, the !2-Wasserstein distance can be cast in the setting of fluid mechanics.

Theorem 7.2. (Benamou-Brenier formula) Given two probability distribution functions ?(x)
and @(x), the !2-Wasserstein distance can be written as

W2 (?, @)2 = inf

{
g

∫ g

0

∫
R#
‖ν (x, C)‖2`(x, C)3x3C

�� mC` + ∇G · (ν`) = 0, `(·, 0) = ?, `(·, g) = @
}
.

For details of a proof, see Proposition 1.1 in Ref. [248]. This reformulation enables us

to find a numerical scheme for computing the !2-Wasserstein distance. In the following, we

make some remarks regarding the relevance of the Benamou-Brenier formula.
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First, with this formulation the distanceW2 (?, @) can be interpreted as a Riemannian dis-

tance on the infinite-dimensional Riemannian manifold of probability distribution functions.

For each distribution function `(x), the tangent space )`" can be defined as

)`" B
{
D(x) : R# → R

�� ∃w(x) : R# → R# s.t. D + ∇G · (w`) = 0
}
. (7.41)

Then, a Riemannian metric 6` : )`" × )`" → R can be defined as

6` (D1, D2) B 〈w1 (x)`(x)1/2,w2 (x)`(x)1/2〉. (7.42)

With this defined metric, one can see thatW2 (?, @) is exactly the geodesic distance between

? and @,

W2 (?, @)2 = inf
`

{
g

∫ g

0

6` (mC`, mC`)3C
}
. (7.43)

Second, from the Benamou-Brenier formula, a lower bound on dissipation for Langevin

dynamics can be derived [218–220]. Here we show a sketch proof of the bound using the

Benamou-Brenier formula. For simplicity, let us consider a one-dimensional system described

by the overdamped Langevin equation

¤G = U 5 (G, C) +
√

2U)b, (7.44)

where U is the particle mobility, 5 (G, C) is the drift term, ) is the bath temperature, and b is

the white Gaussian noise satisfying 〈b (C)〉 = 0 and 〈b (C)b (C ′)〉 = X(C − C ′). The total entropy

production during period g can be explicitly expressed as

Δ(tot =
1

U)

∫ g

0

∫
R
a(G, C)2?(G, C)3G3C, (7.45)

where a(G, C) = U [ 5 (G, C) − )mG ln ?(G, C)] is the probability current satisfying the Fokker–

Planck equation mC ?(G, C) + mG [a(G, C)?(G, C)] = 0. Let {?(G, C)}0≤C≤g be the curve described by

the system dynamics, then the total entropy production can be written in terms of thermo-

dynamic divergence along the curve as

Δ(tot =
1

U)

∫ g

0

6? (mC ?, mC ?)3C =
1

U)g
J (?). (7.46)

Consequently, the following bound can be immediately obtained by noticing from Eq. (7.43)

that W2 = inf`{J (`)1/2},

Δ(tot ≥
W2 (?(G, 0), ?(G, g))2

U)g
. (7.47)

The inequality (7.47) implies that given the initial and final distribution functions, the dis-

sipation required to transform ?(G, 0) to ?(G, g) is always bounded from below by the !2-

Wasserstein distance between these distribution functions. This implication sheds light on the

problem of finding the optimal control protocol that minimizes the dissipation in overdamped

Langevin systems [218]. The universality and the significance of the bound in Eq. (7.47)

actually motivate us to generalize the result to discrete-state quantum and classical systems.
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7.1.5 Gradient flow

Given a functional E(?) and a Riemannian metric 6? on the manifold ", the gradient flow

under metric 6? of E equals the flow associated with the dynamics of ?(C) if

6? (mC ?, D) = −〈∇?E(?), D〉, ∀D ∈ )?". (7.48)

An important implication of the gradient-flow structure is that the time derivative of the

functional E can be expressed in terms of the Riemannian metric. Specifically, inserting

D = mC ? into Eq. (7.48), we readily obtain

3E(?)
3C

= −6? (mC ?, mC ?). (7.49)

Taking the time integral over [0, g], the decrease in E can be related to the divergence along

the path described by the dynamics of ?(C) as

ΔE B E(?(0)) − E(?(g)) =
∫ g

0

6? (mC ?, mC ?)3C = J (?)/g. (7.50)

For the relaxation process of an overdamped Langevin system, we can show that the gradient

flow of free energy E(?) = U)� (? | |?eq) under the Wasserstein metric is associated with its

Fokker–Planck dynamics. Here, ?eq (G) = exp [(� −* (G))/)] is the equilibrium distribution

and* (G) is the potential energy. Note that the drift term is obtained from the potential energy

as 5 (G) = −mG* (G). In order to prove the above relation, we need only verify Eq. (7.48) with

6? defined in Eq. (7.42). Noticing that an arbitrary tangent vector D(G) ∈ )?" can be written

as D(G) = −mG [F(G)?(G)] for some F(G) and ∇?E(?) = U) [ln(?/?eq) − 1], one can calculate

the inner product as follows:

−〈∇?E(?), D〉 = 〈∇?E(?), mG [F(G)?(G)]〉 (7.51a)

= U)

∫
R

(
ln

?(G)
?eq (G) − 1

)
mG [F(G)?(G)]3G (7.51b)

= −U)
∫
R
F(G)?(G)mG

(
ln

?(G)
?eq (G) − 1

)
3G (7.51c)

= U)

∫
R
F(G)?(G) [ 5 (G)/) − mG ln ?(G)] 3G (7.51d)

=

∫
R
a(G)F(G)?(G)3G (7.51e)

= 〈a(G)?(G)1/2, F(G)?(G)1/2〉 (7.51f)

= 6? (mC ?, D). (7.51g)

Thus, the relation 6? (mC ?, D) = −〈∇?E(?), D〉 is proved.
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7.2 Main results

7.2.1 Bounds for open quantum systems

We first consider an open quantum system that is weakly coupled to a heat bath at the inverse

temperature V. The time evolution of the density operator d(C) of this system is described

by the Lindblad master equation [82, 249]:

¤d = L(d) B −8[� (C), d] + D(d), (7.52)

where L is the Lindblad operator, � (C) is the Hamiltonian, andD(d) is the dissipator given by

D(d) B ∑
`,l U` (l)

[
2!` (l)d!†` (l) −

{
!
†
` (l)!` (l), d

}]
. Here, {·, ·} is the anti-commutator

and !` (l) is a jump operator that satisfies !†` (l) = !` (−l) and [!` (l), �] = l!` (l).
Note that jump operators and coupling coefficients can be time-dependent, but we omit the

time notation for simplicity. We also assume that the detailed balance condition U` (l) =
4VlU` (−l) is satisfied and the system is ergodic [250] (i.e., [!` (l), -] = 0 for all `, l if and

only if - is proportional to the identity operator). These assumptions are sufficient conditions

for the Gibbs state deq (C) B 4−V� (C)//V (C) to be the instantaneous stationary state of the

Lindblad master equation, i.e., L[deq (C)] = 0 [251, 252], where /V (C) is the partition function.

The entropy growth of the open system during time period g is Δ(tot =
∫ g
0
ftot (C)3C, where

ftot (C) = ¤(+V ¤& is the entropy production rate [80]. Here, ¤( = −tr { ¤d(C) ln d(C)} denotes the von

Neumann entropy flux of the system and ¤& = −tr {� (C) ¤d(C)} denotes the heat flux dissipated

from the system to the bath. The entropy production rate can be rewritten as ftot (C) =
−〈ln d(C) − ln deq (C), ¤d(C)〉 = − 3

3C
((d(C) | |deq (C)), where ((d1 | |d2) B tr {d1 (ln d1 − ln d2)} is the

relative entropy of d1 with respect to d2, and the time derivative does not act on deq (C).
ftot (C) is non-negative because the relative entropy is monotonic under completely positive

trace-preserving maps; thereby, one can obtain the Clausius inequality Δ(tot ≥ 0.

We now construct an operator Kd, and alternatively express the Lindblad master equation

[Eq. (7.52)] in the form ¤d = Kd (− ln d + ln deq) (see Appendix E.1.1). For an arbitrary density

operator d, we define a tilted operator [d] \ (-) B 4−\/2
∫ 1

0
4B\ dB-d1−B3B, where \ is a real

number. Using this operator, Kd can be explicitly constructed as Kd (k) B 8V−1 [k, d] +Od (k).
Here,

Od (k) B
∑̀
,l

4−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l), k])] (7.53)

is a self-adjoint positive operator, which can be interpreted as a quantum analog of the

Onsager matrix. For an arbitrary smooth curve {W(C)}0≤C≤g , there exists a unique vector

field of traceless self-adjoint operators {a(C)}0≤C≤g such that ¤W(C) = KW [a(C)] for all C. Ex-

ploiting this representation, one can define a metric 6 under which the gradient flow of the

instantaneous relative entropy equals the flow associated with the system dynamics [253–256].

Specifically, we define the metric 6W ( ¤W, ¤W) = 〈a,KW (a)〉, which is always non-negative because

〈a,KW (a)〉 = 〈a,OW (a)〉 ≥ 0. Although the operator a(C) is implicitly obtained from ¤W(C), it can

be regarded as the generalized thermodynamic force, and 6W ( ¤W, ¤W) is the quantum dissipation

function [6]. This can be clarified as considering the path generated by the system dynamics,

i.e., ¤d = Kd (q) and 6d ( ¤d, ¤d) = ftot (C), where q = −(ln d − ln deq) + 2 is a traceless self-adjoint
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operator. In addition to the thermodynamic length ℓ(W), the thermodynamic divergence of a

path, defined as [215]

ℓq (W)2 B g

∫ g

0

6W ( ¤W, ¤W)3C, (7.54)

is a measure of the dissipation along the path. Note that by the Cauchy–Schwarz inequality,

ℓq (W) ≥ ℓ(W). A modified Wasserstein distance between two states d0 and dg can be defined as

Wq (d0, dg) B infW{ℓq (W)}, where the infimum is taken over smooth curves with end points d0

and dg . For relaxation processes,Wq is exactly the geodesic distance induced by the defined

metric4. It has been shown that a clear-cut definition of the quantum Wasserstein distance, by

the direct generalization of the classical one, is not achievable [257]. Our generalization here

is based on the Benamou–Brenier flow formulation of the original !2-Wasserstein [248, 255,

256]. Other generalized metrics based on quantum couplings [257–259] and the Kantorovich–

Rubinstein duality [260] have also been proposed in the literature. From the definition of

Wq, the first main result is a geometrical lower bound of the entropy production:

Δ(tot ≥
Wq (d(0), d(g))2

g
. (7.55)

Inequality (7.55) indicates that the irreversible entropy production is lower bounded by

the distance between the initial and final states. This bound is stronger than the con-

ventional second law of thermodynamics; it can also be interpreted as a quantum speed

limit, as it limits the time required to transform the system state. The limit is governed

by dissipation and the geometrical distance between states. To generalize the result to the

infinite-dimensional Hilbert space, the existence and the construction of the operator a(C)
in the definition of the metric must be clarified. Since the distance Wq is usually difficult

to compute explicitly, we provide a lower bound of Wq in terms of the trace-like distance

dT (d0, dg) =
∑#
==1 |0= − 1= |, where {0=} and {1=} are increasing eigenvalues of d0 and dg , re-

spectively. Specifically, we prove thatWq (d0, dg)2 ≥ dT (d0, dg)2/4AT (see Appendix E.1.3) ,

where AT B g−1
∫ g
0

∑
`,l U` (l)‖!` (l)‖2∞3C characterizes the time scale of the quantum sys-

tem and ‖- ‖∞ denotes the spectral norm of the operator -. Note that this lower bound on

Wq is not invariant under the well-known unitary transformation of jump operators, because

the conditions of jump operators uniquely determine the parameterization of the dynamics.

Consequently, the entropy production is also bounded from below by the trace-like distance

between the initial and final states, given by

Δ(tot ≥
dT (d(0), d(g))2

4gAT
. (7.56)

The Hamiltonian and jump operators of a system must be time-independent in order to

equilibrate with the environment and reach a steady state. Thus, during equilibration, the

entropy production can be bounded by the distance dE (d0, dg) = |tr {� (d0 − dg)} | of the

4Since ℓq (W) ≥ ℓ (W), we have Wq (d0, dg ) ≥ infW {ℓ (W) } in the general case. However, for relaxation
processes (i.e., the operator KW is time-independent), it can be shown that Wq (d0, dg ) = infW {ℓ (W) }, where
the equality is attained with a constant-speed path [237].
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average energy change (see Appendix E.1.4),

Δ(tot ≥
dE (d(0), d(g))2

gAE
, (7.57)

where AE B
∑
`,l U` (l)l2‖!` (l)‖2∞. A tighter bound in terms of the square of the heat

current to the reservoir [261],

Δ(tot ≥

(∫ g
0
| ¤& |3C

)2

gAE
, (7.58)

and another bound in terms of the change in entropy of the system,

Δ(tot ≥
|Δ( |2
Υ

, (7.59)

can also be obtained. Here, Υ B
∫ g
0
〈ln d,Od (ln d)〉3C is a system-dependent quantity. How-

ever, these bounds are not tight in the zero-temperature limit, as compared to the bound

reported in Ref. [13]. Inequalities (7.56) and (7.57) provide lower bounds not only on the

entropy production, but also on the equilibration time, which is an essential quantity in

quantum-state preparation [262], and which aids our understanding of thermalization [8]. In

applications, the equilibration time can be approximated without solving the Lindblad master

equation, which may be time-consuming in the weak coupling limit. The dissipation-current

trade-off relation [263], which unveils the role of coherence between energy eigenstates in

realizing a dissipation-less heat current, can also be derived using our geometrical approach

(see Appendix E.1.5).

The system becomes classical when the initial density matrix has no coherence in the

energy eigenbasis of the Hamiltonian. In what follows, we present the analysis for classical

systems.

7.2.2 Bounds for classical systems

Next, we consider a discrete-state system in contact with a heat bath at the inverse temper-

ature V. During a time period g, stochastic transitions between the states are induced by

interactions with the heat bath. The dynamics obey a time-continuous Markov jump process

and are described by the master equation:

¤?= (C) =
∑
<(≠=)

['=< (C)?< (C) − '<= (C)?= (C)] , (7.60)

where ?= (C) is the probability of finding the system in state = at time C, and '<= (C) is

the (possibly time-dependent) transition rate from state = to state < (1 ≤ = ≠ < ≤ #).

We assume an irreducible system in which the transition rates satisfy the detailed balance

condition '=< (C)4−VE< (C) = '<= (C)4−VE= (C) for all < ≠ =, where E= (C) is the instantaneous

energy of state = at time C. When the transition rates are time-independent, the system

always relaxes to a unique equilibrium state after a sufficiently long time, irrespective of its

initial state. Herein, we define the instantaneous equilibrium state peq (C) as ?eq
= (C) ∝ 4−VE= (C) .
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Within the stochastic thermodynamics framework [3], the irreversible entropy production

Δ(tot is quantified by the change in the system’s Shannon entropy and the heat flow dissi-

pated into the environment. Specifically, Δ(tot =
∫ g
0
ftot (C)3C, where ftot (C) = f(C) + fM (C)

is the total entropy production rate. The terms f(C) = ∑
<,= '<=?= ln(?=/?<) and fM (C) =∑

<,= '<=?= ln('<=/'=<) define the entropy production rates of the system and medium, re-

spectively. Under the detailed balance condition, the entropy production rate can be explicitly

calculated as ftot (C) = 〈f (C), ¤p(C)〉 = − 33C � (p(C) | |p
eq (C)), where f (C) B −∇?� (p(C) | |peq (C)) is

a vector of thermodynamic forces, and the time derivative does not act on peq (C). Here,

� (p| |q) = ∑
= ?= ln(?=/@=) is the relative entropy between the distributions p and q, and

∇? B [m?1
, . . . , m?# ]> denotes the gradient with respect to p. The second law of thermo-

dynamics, Δ(tot ≥ 0, is affirmed from the positivity of the entropy production rate ftot (C).
In the following analysis, we will sharpen the lower bound of Δ(tot using the geometrical

distance between the initial state p(0) and the final state p(g).
The master equation [Eq. (7.60)] can be alternatively written as ¤p(C) = K? (C)f (C) (see

Appendix E.2.1), where K? (C) is a symmetric positive semi-definite matrix, given by

K? (C) B
∑
=<<

'=< (C)?eq
< (C)Φ

(
?= (C)
?

eq
= (C)

,
?< (C)
?

eq
< (C)

)
E=<. (7.61)

Here, Φ(G, H) = (G − H)/[ln(G) − ln(H)] is the logarithmic mean of G, H > 0 and E=< = [48 9 ] ∈
R#×# is a matrix with 4== = 4<< = 1, 4=< = 4<= = −1, and zeros in all other elements.

The symmetric matrix K? is actually the Onsager matrix [6], which linearly relates the ther-

modynamic forces to the probability currents. For an arbitrary smooth curve {γ (C)}0≤C≤g ,
there exists a unique vector field {v(C)}0≤C≤g such that ¤γ (C) = KW (C)v(C) and 〈1, v(C)〉 = 0,

where 1 B [1, . . . , 1]> is an all-ones vector. We can thus define the Riemannian metric

6W ( ¤γ, ¤γ) = 〈v,KWv〉, which is always non-negative. Using this metric, the thermodynamic

divergence of a curve can be defined as

ℓc (γ)2 B g

∫ g

0

6W ( ¤γ, ¤γ)3C. (7.62)

The modified Wasserstein distance between two points p0 and pg is then defined asWc (p0,pg) B
infW {ℓc (γ)}, where the infimum is taken over all smooth curves connecting p0 and pg on the

manifold. Notably, this distance is bounded from below by the total variation distance (see

Appendix E.2.4),

Wc (p0,pg)2 ≥
dV (p0,pg)2

2AV
, (7.63)

where AV B g−1
∫ g
0

∑
<≠= '<= (C)W= (C)3C is the average dynamical activity along the geodesic

path {γ (C)}0≤C≤g . The dynamical activity AV characterizes the time scale of the system. The

bound in Eq. (7.63) can be further refined by replacing the dynamical activityAV by a smaller

term called the partial dynamical activity (see Appendix E.2.4 for details of the derivation).

It is worth noting that the defined metric is not equivalent to the traditional discrete version

of the classical Wasserstein metric. In practice, Wc can be numerically calculated by the

geodesic equation (see Appendix E.2.3), which computes the shortest path between two points.

Defining h(C) B f (C) − #−1〈1, f (C)〉1, one observes that ¤p(C) = K? (C)h(C) and 〈1,h(C)〉 = 0.
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As ftot (C) = 〈h(C),K? (C)h(C)〉, gΔ(tot is exactly the thermodynamic divergence of the path

described by the system dynamics. As the second main result, we obtain the following bound:

Δ(tot ≥
Wc (p(0),p(g))2

g
. (7.64)

Inequality (7.64) provides a stronger bound than the Clausius inequality of the second law,

and is valid as long as the transition rates satisfy the detailed balance condition. Geometri-

cally, Eq. (7.64) can be considered as a discrete-state generalization of the relation between

dissipation and the Wasserstein distance, which has been studied in continuous-state Marko-

vian dynamics governed by Langevin equations [218, 220]. Concretely, Eq. (21) in Ref. [218]

and Eq. (2) in Ref. [220] are referred to as the continuum analogs of Eq. (7.64). Our gen-

eralization newly and appropriately connects these thermodynamic and geometric quantities

in the discrete case. Therefore, it is applicable to the many discrete physical phenomena in

biological and quantum physics.

Tighter speed limit

All the derived bounds above can be interpreted as speed limits. The authors in Ref. [92]

proved the following classical speed limit:

g ≥ gtot B
dV (p(0),p(g))2

2Δ(totA
, (7.65)

where A B g−1
∫ g
0

∑
<≠= '<= (C)?= (C)3C is the average dynamical activity along the path

described by the master equation of the distribution p(C). With our geometrical approach,

we can prove a tighter bound defined as

g ≥ dV (p(0),p(g))2
2Δ(totApar

C gpar ≥ gtot, (7.66)

where Apar B g−1
∫ g
0

∑
par(<)≠par(=) '<= (C)?= (C)3C ≤ A is the partial dynamical activity.

Here, par(=) = 1 if ?= (0) > ?= (g) and par(=) = −1 if ?= (0) ≤ ?= (g). This new bound

indicates that the transformation time is not constrained by the total dynamical activity, but

by the partial dynamical activity induced by transitions between states in X− and X+, where

X− B {= | 1 ≤ = ≤ #, ?= (0) ≤ ?= (g)},

X+ B {= | 1 ≤ = ≤ #, ?= (0) > ?= (g)}.

Here, the subset X− (X+) includes states whose probability must be increased (decreased).

The conclusion agrees well with our intuition from the viewpoint of optimal transport, that

is, in transforming p(0) to p(g), transitions between states in different subsets X− and X+
are more essential than those between states in the same subset X− or X+. The details of the

derivation can be found in Appendix E.2.4.
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7.3 Numerical illustration

First, we illustrate the bounds derived in Eqs. (7.56) and (7.57) on a quantum Otto heat engine

[264–266], which consists of a two-level atom with the Hamiltonian � (C) = l(C)fI/2. This

system is alternatively coupled to two heat baths at different inverse temperatures [one hot,

one cold, V: = 1/): (: = ℎ, 2)], and is cyclically operated through four steps as demonstrated

in Fig. 7.1(a). During adiabatic expansion (compression), the isolated system unitarily evolves

during time g0, and its frequency changes from lℎ → l2 (l2 → lℎ). The dynamics in each

isochoric process : = ℎ, 2 are described by the Lindblad master equation [80]:

¤d = −8[�: , d] + U: =̄(l: ) (2f+df− − {f−f+, d})

+U: (=̄(l: ) + 1) (2f−df+ − {f+f−, d}),
(7.67)

where the frequency is fixed at l: , f± = (fG ± 8fH)/2, U: is a positive damping rate, and

=̄(l: ) = (4V:l: − 1)−1 is the Planck distribution. The density operator d in this thermaliza-

tion process is analytically solvable [267] and the total entropy production can be explicitly

evaluated as Δ(:tot = ((d(0) | |deq) − ((d(g: ) | |deq), where g: denotes the process time. Equa-

tions (7.56) and (7.57) constrain Δ(:tot within the distances dT and dE, as numerically verified

in Fig. 7.1(b). Note that unlike the classical case [228], Δ(:tot in generic thermalization pro-

cesses is not bounded by the relative entropy ((d(0) | |d(g: )).
The total entropy production in each cycle is the sum of those in the hot and cold isochoric

processes; that is, Δ(tot = Δ(
ℎ
tot + Δ(2tot. Assuming a stationary-state system, let &ℎ and &2

denote the heat taken from the hot bath and the heat transferred to the cold bath, respectively.

From the inequality Δ(tot = Vℎ&ℎ − V2&2 ≥ 0 imposed by the second law, one can prove that

the engine efficiency cannot exceed the Carnot efficiency [ B 1 − &2
&ℎ
≤ 1 − Vℎ

V2
C [C. From

the derived bounds, we can tighten the bound on the efficiency of the quantum Otto engine.

Applying Eqs. (7.56) and (7.57) to isochoric processes, one readily obtains Vℎ&ℎ − V2&2 ≥ g,
where

g Bmax
{
dT (d1, d4)2/4gℎAℎ

T, dE (d1, d4)2/gℎAℎ
E

}
+max

{
dT (d2, d3)2/4g2A2T, dE (d2, d3)2/g2A2E

}
. (7.68)

Here, d8 denotes the density operator at the beginning of process 8 (1 ≤ 8 ≤ 4), A:
T B

U: (2=̄(l: ) + 1), and A:
E B l2

:
U: (2=̄(l: ) + 1) for each : = ℎ, 2. Consequently, the efficiency

can be bounded from above as [ ≤ [C − g

V2&ℎ
C [G. This bound is numerically verified in

Fig. 7.1(c), which plots the efficiency against the l2/lℎ ratio.

Next, we numerically verify the bound derived in Eq. (7.64) in a time-driven two-level

classical system. The instantaneous energies of states 1 and 2 are E1 (C) = V−1 ln[(1 − 0 +
1(C + 1)/g)/(0 − 1C/g)] and E2 (C) = 0, respectively, where 0 < 1 < 0 < 1 are constants. Their

respective transition rates are '12 (C) = 1, '21(C) = 4VE1 (C) . The probability distribution and

entropy production are analytically calculated as ?1 (C) = 0− 1C/g and Δ(tot = 1g
−1

∫ g
0

ln[(1−
0+1(C+1)/g)/(1−0+1C/g)]3C, respectively. The entropy production and modified Wasserstein

distance are plotted as functions of time g in Fig. 7.1(d). The entropy production at all
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Figure 7.1: Numerical verification. (a) Quantum Otto engine: A two-level
atom undergoes two isochoric and two adiabatic processes. (b) Thermaliza-
tion process of the two-level atom. Plotted are Δ(tot (solid line), d2

T
/4gAT

(dashed line), d2
E
/gAE (dash-dotted line), and ((d(0) | |d(g)) (dotted line).

Parameters are V: = 1, l: = 1, U: = 10−3, and d(0) = (I2 + 0.1fG − 0.5fH +
0.8fI)/2. Here, I2 denotes the 2 × 2 identity matrix and {fG , fH , fI } is a
set of Pauli matrices. (c) Engine efficiency [ (solid line), Carnot efficiency
[C (dash-dotted line), and the derived efficiency bound [G (dashed line), as
functions of the cold-to-hot ratio of operating frequency. The inset plots the
power output % of the engine over the same frequency-ratio range. Param-
eters are V2 = 1, Vℎ = 0.1, Uℎ = U2 = 10−3, and g0 = g2 = gℎ = 1. (d) Clas-
sical two-level system. Plotted are Δ(tot (solid line) and Wc (p(0),p(g))2/g
(dashed line). Parameters are fixed as 0 = 0.7, 1 = 0.4.
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Figure 7.2: Numerical verification of the derived bound on the three-
level classical system. Δ(tot (solid line), Wc (p(0),p(g))2/g (dashed line),
and � (p(0) | |p(g)) (dash-dotted line) during the thermalization process of
a three-level system. Parameters are set as V = 1, F12 = 1, F23 = 2, F13 =

0, E1 = 3, E2 = −0.5, E3 = 6, and p(0) = [0.1, 0.1, 0.8]>.

times was tightly bounded from below by the distance Wc. This result numerically verifies

Eq. (7.64).

Finally, we illustrate the derived bound on the thermalization process of a three-level

system. The transition rates are time-independent and equal to

'<= = F<=4
V (E=−E<)/2sech[V(E= − E<)/2], (7.69)

where F<= = F=< are nonnegative constants. Evidently, the transition rates satisfy the

detailed balance conditions '<=?
eq
= = '=<?

eq
< . According to Eq. (7.64) in the main text, the

entropy production is bounded from below by the modified Wasserstein distance as

Δ(tot ≥
Wc (p(0),p(g))2

g
. (7.70)

The total entropy production can be explicitly expressed as Δ(tot = � (p(0) | |peq)−� (p(g) | |peq).
In thermalization processes satisfying the detailed balance conditions, Ref. [228] proved that

the relative entropy satisfies the reverse triangle inequality:

� (p(0) | |peq) ≥ � (p(0) | |p(g)) + � (p(g) | |peq). (7.71)

Subsequently, the entropy production during thermalization processes is bounded from below

by an information-theoretical quantity of the initial and final states, Δ(tot ≥ � (p(0) | |p(g)).
For fixed transition rates, Fig. 7.2 plots the entropy production, modified Wasserstein dis-

tance, and relative entropy as functions of time g. In this figure, the distance termW2
c (p(0),p(g))/g

and the relative entropy always lie below the entropy production Δ(tot. The modified Wasser-

stein distance is tight in the short-time regime, whereas the relative entropy saturates in the

long-time limit. Therefore, these two bounds complementarily characterize the irreversibility

in thermalization processes.
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7.4 Concluding remarks and discussion

In this chapter, we derived the geometrical bounds of irreversibility in both quantum and clas-

sical open systems, thus strengthening the Clausius inequality of the second law of thermo-

dynamics. These bounds are significant, because they constrain the total entropy production

from below by the distance between the initial and final states on the manifold. Furthermore,

the study results elucidate that, beyond the linear response regime, the entropy production

can be geometrically characterized. This finding sheds light on the problem of minimizing

dissipation in discrete-state systems by methods of optimal control [218]. Interpreting the

bounds as speed limits shows that the state-transformation speed is constrained by dissipa-

tion in quantum systems. By investigating the information-geometrical structure underlying

the system dynamics, we lay the foundations for obtaining useful thermodynamic relations.

Exploring analogous bounds in generic systems, which violate the detailed balance condition,

and for higher cumulants of dissipation [268, 269], would be promising research directions.
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Chapter 8

Conclusion

This chapter concludes with the research results presented in the thesis and a prospect in

future research directions.

In this thesis, we elucidated thermodynamic relations on irreversibility in nonequilibrium

systems. In the first part, we derived novel TURs for various stochastic dynamics that cannot

be covered by the original one. Notably, we derived the bounds for steady-state underdamped

dynamics and Langevin systems driven by arbitrary control protocols in both overdamped

and underdamped regimes (chapter 4). We also obtained TURs for non-Markovian systems

involving time delay, measurement and feedback control, and semi-Markov processes (chap-

ter 5). Our findings revealed that other quantities such as dynamical activity, information

flow, and memory terms are on par with entropy production in constraining fluctuations of

finite-time observables. In addition to the theoretical approach, we proposed a TUR-based

method to accurately infer entropy production without knowing details of microscopic dynam-

ics (chapter 6). In the second part, we refined the conventional second law of thermodynamics

for Markovian systems satisfying the detailed balance condition. We showed that the entropy

production is lower bounded by a geometrical distance between the initial and final states

(chapter 7). This study result has two important implications. First, beyond the linear re-

sponse regime, entropy production can be associated with the thermodynamic divergence of

the path described by the system dynamics with an appropriate Riemannian metric. Second,

entropy production constrains the time required to transform the state of an open quantum

system.

Some open questions remain to be addressed. First, although the TUR does not, in

general, hold for finite-time currents in underdamped Langevin systems, it seems that the

TUR is still valid in a long observation time. Proving the validity of the TUR or finding a

counterexample for long-time underdamped dynamics would be significant progress. Second,

the TUR has been mainly investigated for classical systems. Several attempts to extend the

uncertainty relations to the quantum regime have been made. These bounds can be regarded

as quantum analogs of the KUR, which relate the dynamical activity and counting observables

in open quantum systems subject to continuous measurement. A genuine generalization of the

TUR for quantum systems thus remains veiled. Last, it has been shown that irreversibility

in the thermal relaxation of classical open systems is bounded from below by the relative

entropy between the initial and final distributions. However, a straightforward extension to

the quantum case does not work, i.e., the relative entropy between the initial and final states
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cannot be a lower bound on irreversibility. This suggests that an appropriate modification of

the bound may be needed. Revealing such information-theoretical bounds not only improves

our understanding of irreversibility but also provides an efficient way to estimate entropy

production.
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Appendix A

For the sake of convenience, we consider a more general system whose dynamics are described

by

¤A8 = E8 , <8 ¤E8 = �8 (r, v) + b8 , (A.1)

where �8 (r, v) =
∑#
9=1 E 9�8 9 (r)+�8 (r) and 〈b8 (C)b 9 (C ′)〉 = 2�8X8 9X(C−C ′). The system employed

in the paper can be obtained by substituting

�8 9 (r) ← −X8 9W8 , �8 ← )8W8 . (A.2)

A.1 Calculation of entropy production rate

Following Ref. [102], we calculate the entropy production rate. Let us consider an infinitesimal

time interval [C, C + 3C], in which r ≡ r(C), v ≡ v(C), r′ ≡ r(C + 3C), and v′ ≡ v(C + 3C). From the

definition of the entropy production in Eq. (4.3), the entropy production in this time interval

is given by

3ΔBtot = −3 (ln %(r, v, C)) + ln
P[r′, v′, C + 3C |r, v, C]
P[r,−v, C + 3C |r′,−v′, C] . (A.3)

By using the short time propagator, we can express the transition probability as

P[r′, v′, C + 3C |r, v, C] =
#∏
8=1

<8√
4c�83C

exp

[
− (<83E8 − �8 (r, v)3C)

2

4�83C

]
, (A.4)

where 3E8 = E
′
8
−E8. The force �8 (r, v) can be decomposed into reversible and irreversible parts

as �8 (r, v) = �ir
8
(r, v) + �rev

8
(r, v), where �ir

8
(r, v) = ∑#

9=1 E 9�8 9 (r) and �rev
8
(r, v) = �8 (r).

Analogously, we also have

P[r,−v, C + 3C |r′,−v′, C] =
#∏
8=1

<8√
4c�83C

exp

[
−

(
<83E8 −

[
−�ir

8
(r, v) + �rev

8
(r, v)

]
3C

)2
4�83C

− 1

<8
mE8�

ir
8 (r, v)3C

]
. (A.5)

We note that in the case of additive noise, the discretization schemes in the forward and

backward paths are independent. However, for multiplicative noise, there is a constraint on

the discretization. That is, if the evaluation points in the forward path are 0r′ + (1− 0)r and
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0v′ + (1 − 0)v, then in the backward path, they should be 1r + (1 − 1)r′ and 1v + (1 − 1)v′,
where 1 = 1 − 0. Here, we have employed the discretization with 0 = 0 and 1 = 1. Using

Eqs. (A.4) and (A.5), we obtain

ln
P[r′, v′, C + 3C |r, v, C]
P[r,−v, C + 3C |r′,−v′, C] =

#∑
8=1

[
<8

�8
�ir
8 (r, v)3E8 −

1

�8
�ir
8 (r, v)�rev

8 (r, v)3C +
1

<8
mE8�

ir
8 (r, v)3C

]
.

(A.6)

The change in the system entropy is written in Ito rules as

−3 (ln %(r, v, C)) = − 1

%(r, v, C) mC%(r, v, C)3C −
1

%(r, v, C)

#∑
8=1

mA8%(r, v, C)3A8 −
1

%(r, v, C)

#∑
8=1

mE8%(r, v, C)3E8

−
#∑
8=1

�8

<2
8
%(r, v, C)

[
m2
E8
%(r, v, C) − 1

%(r, v, C)
(
mE8%(r, v, C)

)2]
.

(A.7)

Plugging Eqs. (A.6) and (A.7) into Eq. (A.3), we obtain

3ΔBtot =

#∑
8=1

[
<8

�8
�ir
8 (r, v)3E8 −

1

�8
�ir
8 (r, v)�rev

8 (r, v)3C +
1

<8
mE8�

ir
8 (r, v)3C

]
− 1

%(r, v, C) mC%(r, v, C)3C −
1

%(r, v, C)

#∑
8=1

mA8%(r, v, C)3A8 −
1

%(r, v, C)

#∑
8=1

mE8%(r, v, C)3E8

−
#∑
8=1

�8

<2
8
%(r, v, C)

[
m2
E8
%(r, v, C) − 1

%(r, v, C)
(
mE8%(r, v, C)

)2]
.

(A.8)

In the steady state, i.e., %(r, v, C) = %ss (r, v), the average entropy production can be calcu-

lated as

〈3ΔBtot〉 =
∬

3r3v%ss (r, v)〈3ΔBtot |r, v〉, (A.9)

where 〈3ΔBtot |r, v〉 can be evaluated by replacing terms in 3ΔBtot such that 3A8 = E83C and

<83E8 = �8 (r, v)3C. Then, we obtain

〈3ΔBtot〉 =
#∑
8=1

∬
3r3v

[
1

�8
%ss (r, v)�ir

8 (r, v)2 +
%ss (r, v)
<8

mE8�
ir
8 (r, v) − E8mA8%ss (r, v)

− �8 (r, v)
<8

mE8%
ss (r, v) − �8

<2
8

m2
E8
%ss (r, v) + �8

<2
8
%ss (r, v)

(
mE8%

ss (r, v)
)2 ]

3C

=

#∑
8=1

∬
3r3v

(
�ir
8
(r, v)%ss (r, v) − �8/<8mE8%ss (r, v)

)2
�8%

ss (r, v) 3C

=

#∑
8=1

∬
3r3v

<2
8

�8

�ir
E8
(r, v)2

%ss (r, v) 3C, (A.10)

where �ir
E8
(r, v) = 1/<8

[
�ir
8
(r, v) − �8/<8mE8

]
%ss (r, v). Finally, the entropy production rate

is given by

f ≡ 〈3ΔBtot〉
3C

=

#∑
8=1

∬
3r3v

<2
8

�8

�ir
E8
(r, v)2

%ss (r, v) . (A.11)
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Now, by setting

�8 9 (r) ← −X8 9W8 , �8 ← )8W8 , (A.12)

the irreversible current becomes �ir
E8
(r, v) = −1/<8

[
W8E8 + )8W8/<8mE8

]
%ss (r, v), and the en-

tropy production rate reads

f =

#∑
8=1

∬
3r3v

<2
8

)8W8

�ir
E8
(r, v)2

%ss (r, v) . (A.13)

A.2 Path integral

We discretize time by dividing the interval [0,T] into  equipartitioned intervals with a time

step ΔC, where T =  ΔC, C: ≡ :ΔC, A:
8
≡ A8 (C: ), and E:

8
≡ E8 (C: ) (superscripts denote points in

a temporal sequence). Discretization of Eq. (A.1) yields

A:+18 − A:8 = E:8 ΔC,

<8 (E:+18 − E:8 ) = �8 (A:8 , E:8 )ΔC + ΔF:8 ,
(A.14)

where ΔF:
8
≡ F:+1

8
− F:

8
= F8 (C:+1) − F8 (C: ) is a Wiener process with the following properties:

〈ΔF:8 〉 = 0, 〈ΔF:8 ΔF:
′
8′ 〉 = 2X88′X::′�8ΔC. (A.15)

A stochastic trajectory � ≡
[
r0, v0, r1, v1, r2, v2, . . . , r , v 

]
is specified given W ≡ [Δw0,Δw1, . . . ,Δw −1]

and (r0, v0). The probability density function of the Wiener processes Δw: is given by

Eq. (A.16):

P[W] =
#∏
8=1

 −1∏
:=0

%(ΔF:8 ) =
#∏
8=1

 −1∏
:=0

1
√

4c�8ΔC
exp

[
−
(ΔF:

8
)2

4�8ΔC

]
. (A.16)

Let us change the variables in Eq. (A.16) from W =
[
Δw0,Δw1, . . . ,Δw −1] to V =

[v1, v2, . . . , v ]. From Eq. (A.14), the determinant of the Jacobian matrix is���� m (v1, . . . , v )
m (Δw0, . . . ,Δw −1)

���� = #∏
8=1

 −1∏
:=0

1

<8
, (A.17)

given that the determinant of triangular matrices is a product of their diagonal elements.

Using Eqs. (A.14), (A.16), and (A.17), we obtain

P[� |r0, v0] =
(
#∏
8=1

 −1∏
:=0

<8√
4c�8ΔC

)
exp

−
#∑
8=1

ΔC

4�8

 −1∑
:=0

(
<8 (E:+18

− E:
8
)

ΔC
− �8 (A:8 , E:8 )

)2 . (A.18)

In the limit  →∞, we obtain the path integral in Eq. (A.19).

P[� |r0, v0] = N
#∏
8=1

exp

[
− 1

4�8

∫ T

0

3C (<8 ¤E8 − �8 (r, v))2
]

(A.19)
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By substituting such that �8 = )8W8 and �8 (r, v) = −W8E8 + �8 (r), we have

P[� |r0, v0] = N
#∏
8=1

exp

[
− 1

4)8W8

∫ T

0

3C (<8 ¤E8 + W8E8 − �8 (r))2
]
. (A.20)

The path integral in Eq. (A.19) is a continuous limit of the Ito sum, which can be transformed

to a Stratonovich integral via the following rule:∫ T

0

3C ¤E8 · �8 (r, v) =
∫ T

0

3C ¤E8 ◦ �8 (r, v) −
�8

<2
8

∫ T

0

3C mE8�8 (r, v), (A.21)

where · and ◦ denote the Ito and Stratonovich products, respectively. The path integral using

the mid-point discretization is then expressed as

P[� |r0, v0] = N
#∏
8=1

exp

[
− 1

4�8

∫ T

0

3C

{
(<8 ¤E8 − �8 (r, v))2 +

2�8
<8

mE8�8 (r, v)
}]
. (A.22)

For one-dimensional underdamped dynamics

¤A = E, < ¤E = −WE + � (A) + b (C), (A.23)

the path probability written as the Stratonovich integral becomes

P[�|A0, E0] = N exp

(
T W
2<

)
exp

[
− 1

4)W

∫ T

0

3C (< ¤E + WE − � (A))2
]
, (A.24)

which is consistent with the result in Ref. [107].

A.3 Bound on the fluctuation of currents

Let %ss (r, v) be the steady-state distribution of the original dynamics. Now, we consider the

following auxiliary dynamics

¤A8 = E8 , <8 ¤E8 = �8, \ (r, v) + b8 , (A.25)

where

�8, \ (r, v) = (1 + \)
#∑
9=1

E 9�8 9 (r) + (1 + \)2�8 (r) +
�8

<8
(1 − (1 + \)3)

mE8%
ss (r, v/(1 + \))

%ss (r, v/(1 + \)) . (A.26)

We note that when \ = 0, �8, \ (r, v) =
∑#
9=1 E 9�8 9 (r) + �8 (r) and the auxiliary dynamics

become the original ones. The corresponding Kramers equation of this dynamics is

mC%\ (r, v, C) =
#∑
8=1

[
−mA8 �A8 , \ (r, v, C) − mE8 �E8 , \ (r, v, C)

]
, (A.27)
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where

�A8 , \ (r, v, C) = E8%\ (r, v, C), �E8 , \ (r, v, C) = 1/<8
[
�8, \ (r, v) − �8/<8mE8

]
%\ (r, v, C). (A.28)

It can be easily proven that the steady-state distribution of the auxiliary dynamics is %ss
\
(r, v) =

%ss (r, v/(1+\))/(1+\)# . Since 〈Θ〉\ = (1+\)〈Θ〉 ⇒ m\ 〈Θ〉\ = 〈Θ〉, the Cramér-Rao inequality

when letting \ = 0 reads
Var[Θ]
〈Θ〉2 ≥ 1

I(0) . (A.29)

The Fisher information can be calculated as

I(0) = −
〈
m2
\ ln %ss

\ (r0, v0)
〉
\=0
+ 1

2

〈∫ T

0

3C

#∑
8=1

1

�8

(
m\�8, \ (r, v)

)2〉
\=0

(A.30)

=

〈[
m\ ln %ss

\ (r0, v0)
]2

〉
\=0
+ T

2

#∑
8=1

1

�8

〈(
m\�8, \ (r, v)

)2〉
\=0

(A.31)

=

〈[
m\ ln %ss

\ (r0, v0)
]2

〉
\=0
+ T

2

#∑
8=1

1

�8

〈( #∑
9=1

E 9�8 9 (r) + 2�8 (r) − 3
�8

<8

mE8%
ss (r, v)

%ss (r, v)

)2
〉

(A.32)

=

〈[
m\ ln %ss

\ (r0, v0)
]2

〉
\=0
+

T
2

#∑
8=1

1

�8

〈
4

(
�8 (r) −

#∑
9=1

E 9�8 9 (r)
)2

+ 9<2
8

(
�ir
E8
(r, v)

%ss (r, v)

)2

+ 12<8
�ir
E8
(r, v)

%ss (r, v)

(
�8 (r) −

#∑
9=1

E 9�8 9 (r)
)〉
.

(A.33)

In Eq. (A.33), we used the relation that �ir
E8
(r, v) = 1/<8

[∑#
9=1 E 9�8 9 (r)%ss (r, v) − �8/<8mE8%ss (r, v)

]
.

Now, we transform each term in I(0). The first term, which is a boundary value, can be

evaluated as 〈[
m\ ln %ss

\ (r0, v0)
]2

〉
\=0

=

〈( #∑
8=1

E8mE8%
ss (r, v)/%ss (r, v)

)2
〉
− #2. (A.34)

The second term in I(0) can be transformed as〈(
�8 (r) −

#∑
9=1

E 9�8 9 (r)
)2

〉
= 〈�8 (r)2〉 +

〈( #∑
9=1

E 9�8 9 (r)
)2

〉
− 2

#∑
9=1

〈E 9�8 (r)�8 9 (r)〉. (A.35)

The third term is equal to the entropy production rate

#∑
8=1

<2
8

�8

〈(
�ir
E8
(r, v)

%ss (r, v)

)2〉
=

#∑
8=1

∬
3r3v

<2
8

�8

�ir
E8
(r, v)2

%ss (r, v) = f. (A.36)
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The last term can be calculated as〈
<8�

ir
E8
(r, v)

%ss (r, v)

(
�8 (r) −

#∑
9=1

E 9�8 9 (r)
)〉
=

#∑
9=1

〈E 9�8 (r)�8 9 (r)〉 −
〈( #∑

9=1

E 9�8 9 (r)
)2

〉
− �8
<8
〈�88 (r)〉.

(A.37)

Collecting the terms in Eqs. (A.34)–(A.37), we can rewritte I(0) as

I(0) = 1

2
[T (9f + 4Υ) +Ω] , (A.38)

where

Υ =

#∑
8=1

1

�8

(
〈�8 (r)2〉 − 2

〈( #∑
9=1

E 9�8 9 (r)
)2

〉
+

#∑
9=1

〈E 9�8 (r)�8 9 (r)〉 −
3�8
<8
〈�88 (r)〉

)
, (A.39)

Ω = 2

〈( #∑
8=1

E8mE8%
ss (r, v)/%ss (r, v)

)2
〉
− 2#2. (A.40)

The bound in Eq. (A.29) then becomes

Var[Θ]
〈Θ〉2 ≥ 2

T (9f + 4Υ) +Ω . (A.41)

Now, by substituting �8 9 (r) = −X8 9W8 and �8 = )8W8 into Υ, we have

Υ =

#∑
8=1

1

)8W8

(
〈�8 (r)2〉 − 2W2

8 〈E2
8 〉 − W8 〈E8�8 (r)〉 +

3)8W
2
8

<8

)
. (A.42)

Since

〈E8�8 (r)〉 = W8 〈E2
8 〉 −

)8W8

<8
, (A.43)

Υ can be further simplified as

Υ =

#∑
8=1

(
1

)8W8
〈�8 (r)2〉 − 3

W8

)8
〈E2
8 〉 + 4

W8

<8

)
. (A.44)

Finally, we obtain the bound
Var[Θ]
〈Θ〉2 ≥ 2

Σ
, (A.45)

where Σ = T (9f + 4Υ) +Ω.

A.4 Equality condition of the derived bound

The equality condition of the derived bound is that the following relation,

m\ lnP\ [�] |\=0 = ` [Θ[�] − k(0)] , (A.46)
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holds for an arbitrary trajectory �. Using the formula of the path integral, we have

m\ lnP\ [�] |\=0 = m\ ln %ss
\ (r0, v0)

��
\=0
+

#∑
8=1

1

2�8

∫ T

0

3C m\�8, \
(
¤E8 − �8, \

) �����
\=0

= − # −
#∑
8=1

E0
8
mE8%

ss (r0, v0)
%ss (r0, v0)

+
#∑
8=1

1

2�8

∫ T

0

3C

(
−W8E8 + 2�8 (r) −

3�8
<8

mE8%
ss (r, v)

%ss (r, v)

)
· (<8 ¤E8 + W8E8 − �8 (r))

= − # −
#∑
8=1

E0
8
mE8%

ss (r0, v0)
%ss (r0, v0) +

#∑
8=1

1

2<8

∫ T

0

3C

(
W8 +

3�8
<8

mE8

(
mE8%

ss (r, v)
%ss (r, v)

))
+

#∑
8=1

1

2�8

∫ T

0

3C

(
−W8E8 + 2�8 (r) −

3�8
<8

mE8%
ss (r, v)

%ss (r, v)

)
◦ (<8 ¤E8 + W8E8 − �8 (r)) .

(A.47)

Therefore, Eq. (A.46) is equivalent with

− # −
#∑
8=1

E0
8
mE8%

ss (r0, v0)
%ss (r0, v0) +

#∑
8=1

1

2�8

∫ T

0

3C

(
−W8E8 + 2�8 (r) −

3�8
<8

mE8%
ss (r, v)

%ss (r, v)

)
◦ (<8 ¤E8 + W8E8 − �8 (r))

= `

[∫ T

0

3C �(r)> ◦ ¤r − k(0)
]
−

#∑
8=1

1

2<8

∫ T

0

3C

(
W8 +

3�8
<8

mE8

(
mE8%

ss (r, v)
%ss (r, v)

))
.

(A.48)

Since the left-hand side of Eq. (A.48) contains ¤v while the right-hand side does not, Eq. (A.48)

only holds for all trajectories when the term ¤v disappears, i.e., when

− W8E8 + 2�8 (r) − 3
�8

<8

mE8%
ss (r, v)

%ss (r, v) = 0 (A.49)

for all r, v. Consequently, Eq. (A.48) becomes

−#−
#∑
8=1

E0
8
mE8%

ss (r0, v0)
%ss (r0, v0) = `

[∫ T

0

3C �(r)> ◦ ¤r − k(0)
]
−
#∑
8=1

1

2<8

∫ T

0

3C

(
W8 +

3�8
<8

mE8

(
mE8%

ss (r, v)
%ss (r, v)

))
.

(A.50)

Now, we take the partial derivative of both sides of Eq. (A.49) with respect to E8 to obtain

W8 +
3�8
<8

mE8

(
mE8%

ss (r, v)
%ss (r, v)

)
= 0. (A.51)

Using Eq. (A.51), we can simplify Eq. (A.50) to be

− # −
#∑
8=1

<8

3�8
E0
8

(
−W8E0

8 + 2�8 (r0)
)
= `

[∫ T

0

3C �(r)> ◦ ¤r − k(0)
]
. (A.52)

As can be seen, the term in the left-hand side of Eq. (A.52) is only dependent on the initial

point of the trajectory, [r0, v0], while the term in the right-hand side depends entirely on the

trajectory �. Therefore, Eq. (A.52) does not hold for all trajectories, thus implying that the

equality condition of the derived bound cannot be attained.
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A.5 Multidimensional TUR

A.5.1 Derivation of Eq. (4.17)

Following Ref. [270], here we show a proof of Eq. (4.17). First, noticing that

m\ 〈�〉\ = m\
∫
D�P\ [�]�[�] =

∫
D�P\ [�]�[�]m\ lnP\ [�] = E[�[�]m\ lnP\ [�]],

(A.53)

where E[·] denotes the average taken over all possible trajectories. Since E[m\ lnP\ [�]] =
m\

∫
D�P\ [�] = 0, Eq. (A.53) can be written

m\ 〈�〉\ = Cov[�; m\ lnP\ ] . (A.54)

Now, consider the following vector:(
�[�]

m\ lnP\ [�]

)
∈ R("+1)×1, (A.55)

whose covariance matrix, (
Cov[�] Cov[�; m\ lnP\ ]

Cov[�; m\ lnP\ ]> Cov[m\ lnP\ ]

)
, (A.56)

is positive semi-definte and is equal to(
Cov[�] m\ 〈�〉\
m\ 〈�〉>\ I(\)

)
. (A.57)

Using the fact that if a matrix X is positive semi-definte, then so is Y >XY , we have that(
I −I(\)−1m\ 〈�〉\

) (
Cov[�] m\ 〈�〉\
m\ 〈�〉>\ I(\)

) (
I

−I(\)−1m\ 〈�〉>\

)
(A.58)

is also positive semi-definite, where I ∈ R"×" is the identity matrix. After performing some

matrix multiplications in Eq. (A.58), we obtain that the matrix

Cov[�] − I(\)−1m\ 〈�〉\m\ 〈�〉>\ (A.59)

is positive semi-definite, i.e., Cov[�] � I(\)−1m\ 〈�〉\m\ 〈�〉>\ .

A.5.2 Derivation of Eq. (4.20)

By substituting x = 〈�〉 into x> (Cov[�] − 2〈�〉〈�〉>/Σ)−1 x ≥ 0, we have

〈�〉>
(
Cov[�] − 2〈�〉〈�〉>/Σ

)−1 〈�〉 ≥ 0. (A.60)
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Using the Sherman–Morrison formula,

(A + uv>)−1 = A−1 − A
−1uv>A−1

1 + v>A−1u , (A.61)

where A ∈ R=×= and u, v ∈ R=, Eq. (A.60) can be transformed as follows:

〈�〉>
(
Cov[�] − 2〈�〉〈�〉>/Σ

)−1 〈�〉 =〈�〉> (
Cov[�]−1 + 2Cov[�]−1〈�〉〈�〉>Cov[�]−1/Σ

1 − 2〈�〉>Cov[�]−1〈�〉/Σ

)
〈�〉

=I + 2I2/Σ
1 − 2I/Σ ≥ 0,

(
I = 〈�〉>Cov[�]−1〈�〉 ≥ 0

)
⇔ 1 − 2I/Σ ≥ 0

⇔ 〈�〉>Cov[�]−1〈�〉 ≤ Σ
2
.

(A.62)

A.6 TUR for active matter systems

The dynamics in Eq. (4.24) can be obtained from Eq. (A.1) by plugging <8 ← g, �8 9 (r) ←
−X8 9 − g`m2

A8A 9
Φ(r), �8 (r) ← −`mA8Φ(r). According to Eq. (A.41), we have

Var[Θ]
〈Θ〉2 ≥ 2

T (9f + 4Υ0) +Ω
, (A.63)

where Ω is defined as in Eq. (A.40) and Υ0 is given by

Υ0 =

#∑
8=1

1

�8

(
〈�8 (r)2〉 − 2

〈( #∑
9=1

E 9�8 9 (r)
)2

〉
+

#∑
9=1

〈E 9�8 (r)�8 9 (r)〉 −
3�8
<8
〈�88 (r)〉

)
. (A.64)

In the steady state, we have

0 =
#∑
8=1

[
mA8 �

ss
A8
(r, v) + mE8 �ss

E8
(r, v)

]
=

#∑
8=1

[
mA8 [E8%ss (r, v)] + 1

<8
mE8

[
#∑
9=1

E 9�8 9 (r)%ss (r, v)
]
+ 1

<8
mE8 [�8 (r)%ss (r, v)] − �8

<2
8

m2
E8
%ss (r, v)

]
.

(A.65)

Using the relation in Eq. (A.65) and taking integration by parts, we obtain for 8 ≠ 9

〈E 9�8 (r)�8 9 (r)〉 = −<8
∑
:

〈
E8E:mA:�8 (r)

〉
−

∑
;≠ 9

〈E;�8 (r)�8; (r)〉 − 〈�8 (r)2〉. (A.66)

Hence,
#∑
9=1

〈E 9�8 (r)�8 9 (r)〉 = −〈�8 (r)2〉 − <8
#∑
9=1

〈
E8E 9mA 9�8 (r)

〉
. (A.67)
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By plugging Eq. (A.67) into Eq. (A.64), we have

Υ0 = −
#∑
8=1

1

�8

(
<8

#∑
9=1

〈
E8E 9mA 9�8 (r)

〉
+ 2

〈( #∑
9=1

E 9�8 9 (r)
)2

〉
+ 3�8
<8
〈�88 (r)〉

)
. (A.68)

Next, substituting <8 ← g, �8 9 (r) ← −X8 9 −g`m2
A8A 9
Φ(r), �8 (r) ← −`mA8Φ(r) into Eq. (A.68),

we obtain

Υ0 =

#∑
8=1

1

�8

〈
g`

#∑
9=1

E8E 9m
2
A8A 9
Φ(r) − 2

( #∑
9=1

E 9

[
X8 9 + g`m2

A8A 9
Φ(r)

] )2

+ 3�8
g

(
1 + g`m2

A8
Φ(r)

)〉
.

(A.69)

The TUR for the active matter system is then given as follows:

Var[Θ]
〈Θ〉2 ≥ 2

Σ
, (A.70)

where Σ = T (9f + 4Υ0) +Ω.
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B.1 Derivation of the bounds for a full system

To obtain Eqs. (4.28) and (4.30), we employ information-theoretic inequality with the per-

turbation technique [24]. We modify the force in the original system with a perturbation

parameter \ and obtain new auxiliary dynamics. For a given trajectory Γ, let P\ (Γ) denote

the path probability of observing Γ in the auxiliary dynamics. According to the Cramér–Rao

inequality [33], the precision of the observable q is bounded by the Fisher information as

(m\ 〈q〉\ )2
〈〈q〉〉\

≤ I(\). (B.1)

Here, I(\) := 〈(m\ lnP\ (Γ))2〉\ = −〈m2
\

lnP\ (Γ)〉\ is the Fisher information. Inequality (B.1)

can be proven by applying the Cauchy–Schwarz inequality to (m\ 〈q〉\ )2 as follows:

(m\ 〈q〉\ )2 =
(
m\

∫
DΓP\ (Γ)q(Γ)

)2

=

(∫
DΓP\ (Γ) (q(Γ) − 〈q〉\ )m\ lnP\ (Γ)

)2

≤ 〈〈q〉〉\ I(\).

(B.2)

For overdamped systems, we consider the auxiliary dynamics, ¤G = �\ (G, C) + b, where

�\ (G, C) = \� (G/\, _) + � (1 − \2) mGd(G/\, C)
d(G/\, C) . (B.3)

Analogously, for underdamped systems, the dynamics are modified as < ¤E = �\ (G, E, C) + b,
where

�\ (G, E, C) = −WE + \� (G/\, _) +
�

<
(1 − \2) mE d(G/\, E/\, C)

d(G/\, E/\, C) . (B.4)

When \ = 1, these auxiliary dynamics become the original ones. The distributions of aux-

iliary dynamics in the overdamped and underdamped cases are d\ (G, C) = d(G/\, C)/\ and

d\ (G, E, C) = d(G/\, E/\, C)/\2, respectively. In both cases, the observable average is scaled as

〈q〉\ = \^ 〈q〉; thus, m\ 〈q〉\ |\=1 = ^〈q〉. The path probability using the pre-point discretization
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can be expressed via the path-integral representation as

P\ (Γ) = Nod\ (G(0), 0) exp

(
−

∫ g

0

3C
( ¤G − �\ (G, C))2

4�

)
(B.5)

for the overdamped case and

P\ (Γ) = Nud\ (G(0), E(0), 0) exp

(
−

∫ g

0

3C
(< ¤E − �\ (G, E, C))2

4�

)
(B.6)

for the underdamped case. Here, No and Nu are terms independent of \. Note that entropy

production 〈f〉 is
∫ g
0
3C

∫
3G 9 (G, C)2/�d(G, C) in overdamped systems and

∫ g
0
3C

∫
3G3E 9 ir (G, E, C)2/�d(G, E, C)

in underdamped systems. Here, 9 ir (G, E, C) = −1/< [WE + �/<mE ]d(G, E, C) is the irreversible

probability current. Consequently, performing simple algebraic calculations, one can show

that I(1) is equal to 2〈f〉 + jo + ko for the overdamped case and to 2〈f〉 + ju + ku for the

underdamped case. By letting \ = 1 in Eq. (B.1), we obtain the uncertainty relations given

in Eqs. (4.28) and (4.30).

B.2 Bounds for multidimensional systems

We consider =-dimensional systems with variables x = [G1, G2, . . . , G=]>. We consider ob-

servables that satisfy the scaling condition: q(\Γ) = \^q(Γ), where ^ > 0 is a real con-

stant. Specifically, we focus on three types of observables: a current observable q(Γ) =∫ g
0
3C �c (x)> ◦ ¤x, a noncurrent observable q(Γ) =

∫ g
0
3C Λnc (x), and a discrete-time observ-

able q(Γ) = ∑
8 28Λnc (x(C8)), where �c (x) and Λnc (x) satisfy that �c (\x) = \^−1�c (x) and

Λnc (\x) = \^Λnc (x). By employing the same modified dynamics as in Appendix B.1, one

can show that the probability currents and distribution function in the auxiliary dynam-

ics are scaled as d\ (x, C) = d(x/\, C)/\=, 9\ (x, C) = 9 (x/\, C)/\=−1 for overdamped cases

and d\ (x, v, C) = d(x/\, v/\, C)/\2=, 9\ (x, v, C) = 9 (x/\, v/\, C)/\2=−1 for underdamped cases.

Consequently, it is easy to verify that 〈q〉\ = \^ 〈q〉. For =-dimensional overdamped systems

described as

¤G8 = �8 (x, _) + b8 , (8 = 1, . . . , =), (B.7)

the uncertainty relation reads

〈q〉2
〈〈q〉〉 ≤

1

^2
(2〈f〉 + jo + ko) , (B.8)

where the terms in the right-hand side of Eq. (B.8) are defined by

jo :=

∫ g

0

3C

∫
3xΛo (x, C)d(x, C), (B.9)

ko :=
〈( =∑

8=1

G8mG8 di/di

)2〉
di

− =2. (B.10)
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Here, Λo =
∑=
8=1

(
�2
8
− 4�8�8 − 4�8mG8�8

)
/2�8 and �8 = �8 +

∑=
9=1 G 9mG 9�8. Analogously, for

=-dimensional underdamped systems described as

¤G8 = E8 , < ¤E8 = −W8E8 + �8 (x, _) + b8 , (8 = 1, . . . , =), (B.11)

the bound has the following form:

〈q〉2
〈〈q〉〉 ≤

1

^2
(2〈f〉 + ju + ku) , (B.12)

where the terms in the right-hand side of Eq. (B.12) are defined by

ju :=

∫ g

0

3C

∫
3x3vΛu (x, v, C)d(x, v, C), (B.13)

ku :=
〈[ =∑

8=1

(
G8mG8 di + E8mE8 di

)
/di

]2〉
di

− 4=2. (B.14)

Here, Λu =
∑=
8=1 [(�8 −

∑=
9=1 G 9mG 9�8)2 − 4W2

8
E2
8
+ 8W8�8/<8]/2�8.

B.3 Derivation of the bound for a subsystem

We consider the following auxiliary dynamics:

¤G = \�G (G/\, H, _) + �G (1 − \2) mGd(G/\, H, C)
d(G/\, H, C) + bG , (B.15)

¤H = �H (H, _) + bH , (B.16)

Unlike the previous modifications, we change only the dynamics of the target system, X,

and keep those of other systems, Y, unchanged. It can be verified that the distribution of

this dynamics is scaled as d\ (G, H, C) = d(G/\, H, C)/\, while the probability currents are scaled

as 9G, \ (G, H, C) = 9G (G/\, H, C) and 9H, \ (G, H, C) = 9H (G/\, H, C)/\. Subsequently, by applying the

same procedure as in Appendix B.1, one can obtain Eq. (4.34).
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C.1 Scaled cumulant generating function of observables

Here we calculate the scaled cumulant generating function (SCGF) of the observable z (X) =∫ )
0
3C G in the long-time limit ) → ∞. Note that z = ) 5 +

∫ )
0
3C I. By imposing periodic

boundary conditions on the trajectories, I(C) can be expanded in a discrete Fourier series

[271] as

I(C) =
∞∑

==−∞
I=4
−8l=C , (C.1)

where the coefficient I= can be calculated via inverse transforms

I= =
1

)

∫ )

0

3C I(C)48l=C , (C.2)

where l= = 2c=/) . By substituting Eq. (C.1) into the Langevin equation, we obtain

(0 + 148l=g − 8l=)I= = b=, (C.3)

with 〈b=b<〉 = 2�/)X=,−<. The current z can then be expressed as z = ) 5 + )I0 = ) 5 +
)b0/(0 + 1). Substituting z into the definition of the SCGF, we obtain

jz (:) = lim
)→∞

)−1 ln
〈
exp

(
:) ( 5 + b0/(0 + 1))

)〉
= : 5 + lim

)→∞
)−1 ln

(∫ ∞

−∞
3b0 %(b0) exp [:)b0/(0 + 1)]

)
, (C.4)

where %(b0) =
√
)/(4c�) exp

[
−)b2

0/(4�)
]
. Taking the integration in Eq. (C.4), we get

jz (:) = : 5 + �:2/(0 + 1)2.
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C.2 Detailed derivations in the two-dimensional system

C.2.1 Time-correlation function

Here, we calculate the stationary time-correlation function q8 9 (I) = 〈G8 (C)G 9 (C + I)〉. Using the

same method as in Ref. [147] for arbitrary I ≥ 0, we have

3

3I
q11 (I) = −0q11 (I) + 1q21 (g − I) + 〈G1 (C)b1 (C + I)〉,

3

3I
q12 (I) = −0q12(I) − 1q11 (g − I) + 〈G1 (C)b2 (C + I)〉,

3

3I
q21 (I) = −0q21 (I) + 1q22 (g − I) + 〈G2 (C)b1 (C + I)〉,

3

3I
q22(I) = −0q22(I) − 1q12 (g − I) + 〈G2 (C)b2 (C + I)〉.

(C.5)

From the Fokker–Planck equation, we have

0 =
3

3C
〈G2

1〉 = −20q11 (0) + 21q21 (g) + 2�. (C.6)

On the other hand, from Langevin equation, we also obtain

0 =
3

3C
〈G2

1〉 = −20q11 (0) + 21q21 (g) + 2〈G1 (C)b1 (C)〉. (C.7)

Comparing Eq. (C.6) and Eq. (C.7), we obtain the relation 〈G1 (C)b1 (C)〉 = �. Similarly,

we also get 〈G2 (C)b2 (C)〉 = �, 〈G1 (C)b2 (C)〉 + 〈G2 (C)b1 (C)〉 = 0. Because the noise is irrelevant

to the past states of the system, we have 〈G8 (C)b 9 (C + I)〉 = 0, ∀I > 0. Using the Fourier

transform g(l) =
∫ ∞
−∞ 3C 4

8lCg(C) for an arbitrary function g(C), we obtain the relation that

x(l) =H (l)ξ(l). Here, H (l) is a response function matrix in the frequency domain, given

by

H (l) = 1

(0 − 8l)2 + 12482lg
×

(
0 − 8l 148lg

−148lg 0 − 8l

)
. (C.8)

The time-correlation function can be calculated via an inverse Fourier transform of the spec-

tral density S (l) given by

S (l) = 2H (l)DH∗ (l), (C.9)

where D = diag(�, �) ∈ R2×2 and H∗ is the complex conjugate transpose of H. Since

(11 (l) = (22 (l), (12 (l) + (21 (l) = 0, we readily obtain

q11 (I) = q22 (I), q12 (I) + q21(I) = 0. (C.10)

Using the relations in Eq. (C.10), we obtain that for 0 ≤ I ≤ g

32

3I2
q11(I) = (02 − 12)q11 (I). (C.11)
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The solution of time-correlation function q11 (I) in Eq. (C.11) has the following form:

q11 (I) = U cosh(2I) + V sinh(2I), (C.12)

where 2 =
√
02 − 12 and U, V are constants determined via the conditions:

3

3I
q11 (I)

����
I→0

= −�, q12(I) |I→0 = 0. (C.13)

Finally, we obtain that for 0 ≤ I ≤ g

q11 (I) = q22(I) = �+114
−2I + �−114

2I , (C.14)

q12 (I) = −q21 (I) = �12 (4−2I − 42I) , (C.15)

where

�±11 =
�

22
× (2 ± 0)4±2g
0 cosh(2g) + 2 sinh(2g) , (C.16)

�12 =
�

22
× 1

0 cosh(2g) + 2 sinh(2g) . (C.17)

Because q11 (I) is an even function and q12 (I) is an odd function, we readily obtain that for

|I | ≤ g,
q11(I) = q22 (I) = �+114

−2 |I | + �−114
2 |I | ,

q12(I) = −q21 (I) = �12 (4−2I − 42I) .
(C.18)

C.2.2 Path integral

Because the process is Gaussian, the path probability is given by

P(X) ∝ exp

(
−1

2

∫ )

0

3C

∫ )

0

3C ′ [G1 (C) G2 (C)]
[
Γ11 (C, C ′) Γ12(C, C ′)
Γ21 (C, C ′) Γ22(C, C ′)

] [
G1 (C ′)
G2 (C ′)

])
, (C.19)

where Γ8 9 (C, C ′) is the inverse of the stationary time-correlation function q8 9 (I) defined via the

following relation:∫ )

0

3B

[
q11(C − B) q12(C − B)
q21(C − B) q22(C − B)

] [
Γ11 (B, C ′) Γ12(B, C ′)
Γ21 (B, C ′) Γ22(B, C ′)

]
=

[
X(C − C ′) 0

0 X(C − C ′)

]
. (C.20)

Now, we discretize the problem and take the continuum limit at the end. We divide the time

interval [0, )] into # equipartitioned intervals with a time step n = )/#, where C: = :n (: =
0, . . . , #) and G:1 = G1 (C: ), G:2 = G2 (C: ) (superscripts denote points in a temporal sequence).

Equation (C.19) then reads

P(G0
1, G

0
2, C0; . . . ; G#1 , G

#
2 , C# ) ∝ exp

(
−1

2

∑
8, 9

[
G81Γ

8 9

11G
9

1 + G
8
1Γ
8 9

12G
9

2 + G
8
2Γ
8 9

21G
9

1 + G
8
2Γ
8 9

22G
9

2

] )
, (C.21)
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and Eq. (C.20) corresponds to the following equation:

2∑
?=1

#∑
9=0

q
8 9
<?Γ

9:
?= = X<=X8: , (C.22)

where q
8 9
<? ≡ q<? (C 9 − C8). The matrices Γ<= (1 ≤ <, = ≤ 2) can be analytically calculated

and have the following form:

Γ11 = Γ22, Γ12 = −Γ21,

Γ0#
11 = Γ#0

11 =
4−#2n

(
�+11�

−
11 + �2

12

)
(�+11 − �−11)

(
(�−11)2 + �2

12 −
(
(�+11)2 + �2

12

)
4−2#2n

) ,
Γ
8 9

11 = 0, ∀ 1 < |8 − 9 | < #,

Γ
8 9

11 =
−4−2n

(�+11 − �−11) (1 − 4−22n )
, ∀ |8 − 9 | = 1,

Γ8811 =
1 + 4−22n

(�+11 − �−11) (1 − 4−22n )
, ∀ 0 < 8 < #,

Γ00
11 = Γ

##
11 =

4−22n
[
(�−11)2 + �2

12 −
(
(�+11)2 + �2

12

)
4−2(#−1)2n

]
(�+11 − �−11) (1 − 4−22n )

[
(�−11)2 + �2

12 − ((�+11)2 + �2
12)4−2#2n

] ,
Γ0#

12 = −Γ#0
12 =

−�124
−#2n

(�−11)2 + �2
12 − ((�+11)2 + �2

12)4−2#2n
,

Γ
8 9

12 = 0, ∀ |8 − 9 | ≠ #.

(C.23)

Using the result in Eq. (C.23), the quadratic form in Eq. (C.21) can be obtained explicitly as∑
8, 9

[
G81Γ

8 9

11G
9

1 + G
8
1Γ
8 9

12G
9

2 + G
8
2Γ
8 9

21G
9

1 + G
8
2Γ
8 9

22G
9

2

]
=

1

�+11 − �−11

(
2∑
8=1

#∑
:=1

(G:
8
− 4−2n G:−1

8
)2

1 − 4−22n − 1

Ω)

2∑
8=1

[
�2

12

(
4−#2n G0

8 − G#8
)2

+
(
�+114

−#2n G0
8 − �−11G

#
8

)2
])

− 2�124
−#2n

Ω)

(
G0

1G
#
2 − G#1 G0

2

)
,

(C.24)

where Ω) = (�−11)2 + �2
12 − ((�+11)2 + �2

12)4−22) . Taking the continuum limit n → 0, # → ∞,

with #n = ) gives [133]

lim
n→0

#∑
:=1

(G:
8
− 4−2n G:−1

8
)2

1 − 4−22n =
1

22

∫ )

0

3C ( ¤G8 (C) + 2G8 (C))2 . (C.25)
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Finally, we obtain the expression of the path probability for ) ≤ g:

P(X) ∝ exp

(
−

2∑
8=1

∫ )

0

3C
[ ¤G8 (C) + 2G8 (C)]2

4�

)
× exp

(
2

2�Ω)

2∑
8=1

{
�2

12

[
4−2) G8 (0) − G8 ())

]2 +
[
�+114

−2) G8 (0) − �−11G8 ())
]2

})
× exp

(
�124

−2)

Ω)
[G1 (0)G2 ()) − G1 ())G2 (0)]

)
.

(C.26)

C.2.3 Analytical form of the effective forces

We calculate the analytical form of the effective force �8 (x) from its definition. We note that

�8 (x) cannot be completely determined from the steady-state FPE, i.e.,
∑2
8=1 mG8 [�8 (x)%(x, C)−

�mG8%(x, C)] = 0. Specifically, if the effective force takes the form �8 (x) =
∑2
9=1 W8 9G 9 , then

one obtains W11 = W22 = −�/q11 (0), W12 + W21 = 0. Here, we use the path integral to calculate

�8 (x). From the definition, we have

�8 (v) =
∫

3u �8 (v,u)%(u, C − g |v, C) =
∫

3u �8 (v,u)%(v, C;u, C − g)/%(v, C)

=

∫
3u

�8 (v,u)
%(v, C)

∫ v

u

DX P(X),
(C.27)

where the integration is taken over all trajectories X that start from u at time C − g and end

at v at time C. The first term in the path probability can be simplified further using the

well-known expression of the transition probability for Smoluchowski processes [63, 133]∫ G (g)

G (0)
DX exp

(
−

∫ g

0

3C
[ ¤G(C) + 2G(C)]2

4�

)
∝ exp

(
− 2

2�

[G(g) − G(0)4−2g]2

1 − 4−22g

)
. (C.28)

Consequently, we obtain

�8 (v) =
∫

3u
�8 (v,u)
%(v, C) � (v,u), (C.29)

where

� (v,u) ∝ exp

(
− 2

2�

‖v − u4−2g ‖2
1 − 4−22g + 2

2�Ωg

(
�2

12‖4−2gu − v‖2 + ‖�+114
−2gu − �−11v‖2

)
+ �124

−2g

Ωg
[D1E2 − D2E1]

)
.

(C.30)

Taking the integration in Eq. (C.29), we obtain

�1 (x) = −
2 (0 cosh(2g) + 2 sinh(2g))
0 sinh(2g) + 2 cosh(2g) G1 +

12

0 sinh(2g) + 2 cosh(2g) G2,

�2 (x) = −
2 (0 cosh(2g) + 2 sinh(2g))
0 sinh(2g) + 2 cosh(2g) G2 −

12

0 sinh(2g) + 2 cosh(2g) G1.

(C.31)
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C.2.4 Proof of inequality 〈fC〉 ≤ 〈Δ&〉/�

Here we provide a proof of 〈fC 〉 ≤ 〈Δ&〉/� for ) ≤ g. By simple calculations, we can show

that

〈fC 〉 =
412 (1 − 4−22) )

[12 + (2 + 0)2422g] 4−22) − [12 + (2 − 0)24−22g] . (C.32)

For convenience, we define * ≡ 12 + (2 + 0)2422g and + ≡ 12 + (2 − 0)24−22g . Then, 〈fC 〉 can

be rewritten as

〈fC 〉 =
412 (1 − 4−22) )
*4−22) −+ . (C.33)

From Eq. (5.43), we also have

〈Δ&〉
�

= 2)12 × cosh(2g)
0 cosh(2g) + 2 sinh(2g) . (C.34)

Therefore, 〈fC 〉 ≤ 〈&〉/� is equivalent to

2(1 − 4−22) )
*4−22) −+ ≤ ) ×

cosh(2g)
0 cosh(2g) + 2 sinh(2g) . (C.35)

To prove inequality (C.35), we will show that

5 ()) ≤ cosh(2g)
0 cosh(2g) + 2 sinh(2g) , (C.36)

where

5 ()) = 2(1 − 4−22) )
) (*4−22) −+) . (C.37)

First, taking the derivative of 5 ()), we have

35 ())
3)

=
422)

(
*4−22) ++422) − [* ++ + 22) (+ −*)]

)
)2

(
* −+422)

)2 . (C.38)

Since 4I ≥ 1+ I, ∀I ∈ R, we have *4−22) ++422) − [* ++ + 22) (+ −*)] ≥ 0; thus, 35 ())/3) ≥
0. Consequently, we obtain 5 ()) ≤ 5 (g) for all ) ≤ g. Therefore, to prove Eq. (C.36), we

need to prove only that

5 (g) ≤ cosh(2g)
0 cosh(2g) + 2 sinh(2g) . (C.39)

Inequality (C.39) is equivalent to

42g − 4−2g ≤ 2g (42g + 4−2g) , (C.40)

which is always satisfied because for all I ≥ 0,

3

3I
[I(4I + 4−I) − (4I − 4−I)] = I(4I − 4−I) ≥ 0,

[I(4I + 4−I) − (4I − 4−I)] |I=0 = 0.

(C.41)

This implies that 〈fC 〉 ≤ 〈Δ&〉/� for ) ≤ g.
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C.3 Analytical calculations in the dragged colloidal par-

ticle model

Applying the Laplace transform to Eq. (5.45), we obtain

B2G̃(B) − BG(0) − E(0) + W̃(B) (BG̃(B) − G(0)) + :G̃(B)

= :_̃(B) + [̃(B).
(C.42)

Here, 5̃ (B) =
∫ ∞
0
3C 5 (C)4−BC is the Laplace transform of an arbitrary function 5 (C). The

solution to Eq. (5.45) is

G(C) = � (C)G(0) + � (C)E(0) +
∫ C

0

3C ′� (C − C ′) [:_(C ′) + [(C ′)] , (C.43)

where � (C) and � (C) are given by

� (C) = L−1
{

W̃(B) + B
B2 + BW̃(B) + :

}
, (C.44)

� (C) = L−1
{

1

B2 + BW̃(B) + :

}
. (C.45)

Here, L−1{·} denotes the inverse Laplace transform. We note that � (C) and � (C) satisfy the

following differential equations:

¤� (C) = −:� (C), (C.46)

¤� (C) = � (C) −
∫ C

0

3C ′ W(C − C ′)� (C ′), (C.47)

with initial conditions � (0) = ¤� (0) = 1 and � (0) = ¤� (0) = 0. Now, we calculate � (C). Since

W̃(B) = W0/(Bg2 + 1), we have

� (C) = L−1
{ B + 0
B3 + 0B2 + 1B + 2

}
, (C.48)

where 0 = 1/g2, 1 = : + W0/g2, and 2 = :/g2. The roots of the polynomial B3 + 0B2 + 1B + 2 are

characterized by the following quantity:

& = −0
212

108
+ 1

3

27
+ 0

32

27
− 012

6
+ 2

2

4
. (C.49)

In particular, the polynomial has three real roots when & < 0, one real root and two complex

roots when & > 0, and a multiple root when & = 0. Here, we consider only the case & > 0

(i.e., the underdamped case). The denominator can be decomposed as

B3 + 0B2 + 1B + 2 = (B + ?) (B + @ + 8l) (B + @ − 8l), (C.50)

where

? =
0

3
− � − �, @ = 0

3
+ � + �

2
, l =

√
3

2
(� − �). (C.51)
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Here, constants � and � are given by

� =
3

√
−0

3

27
+ 01

6
− 2

2
+

√
&,

� =
3

√
−0

3

27
+ 01

6
− 2

2
−

√
&.

(C.52)

Then, � (C) and � (C) can be obtained as

� (C) = 214
−?C + 224

−@C sin(lC + q),

� (C) = 1 − :
∫ C

0

3C ′� (C ′),
(C.53)

where

21 =
0 − ?

(? − @)2 + l2
, 22 =

1

l

√
(0 − @)2 + l2

(? − @)2 + l2
, (C.54)

sin q =
l(? − 0)√

((0 − @)2 + l2) ((? − @)2 + l2)
, (C.55)

cos q =
(0 − @) (? − @) + l2√

((0 − @)2 + l2) ((? − @)2 + l2)
. (C.56)

Once the functions � (C) and � (C) are obtained, the fluctuation of the current and the derived

bound can be calculated immediately. From Eq. (C.43), we have

〈G(C)〉 = :
∫ C

0

3C ′� (C − C ′)_(C ′), (C.57)

〈G(0)G(C)〉 = � (C)〈G(0)2〉. (C.58)

Consequently, we obtain the following results:

� (C) = 1 − :21 (1 − 4−?C )
?

− :22 (l cos q + @ sin q − 4−@C [l cos(lC + q) + @ sin(lC + q)])
@2 + l2

,

〈G())〉 = :U
[∫ ) /2

0

3C � () − C)C +
∫ )

) /2
3C � () − C) () − C)

]
=
:U21 (4−?) /2 − 1)2

?2
+ :U22

(@2 + l2)2
[
2@l

(
cos q − 24−@) /2 cos(l)/2 + q) + 4−@) cos(l) + q)

)
+ (@2 − l2)

(
sin q − 24−@) /2 sin(l)/2 + q) + 4−@) sin(l) + q)

) ]
,

〈G())2〉 = (:V)−1� ())2 + V−1� ())2 + :2

(∫ )

0

3C � () − C)_(C)
)2

+ V−1 W0

g2

∫ )

0

3C

∫ )

0

3C ′� () − C)� () − C ′)4−
|C−C′ |
g2 ,

〈fC 〉 = :2UV

[∫ )

) /2
3C

∫ C

0

3C ′� (C − C ′)_(C ′) −
∫ ) /2

0

3C

∫ C

0

3C ′� (C − C ′)_(C ′)
]
.

(C.59)
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D.1 Derivation for discrete measurement and feedback

control

First, we note that the joint probability distribution of f and O, %(f,O), obeys the strong

DFT

%(f,O) = 4f%(−f,−O). (D.1)

Equation (D.1) can be readily obtained as follows:

%(f,O)

=

∫
DZ X(f − f(X,M))X(O − O[X])P(X,M)

=

∫
DZ X(f − f(X,M))X(O − O[X])4f (X,M)P(X†,M†)

= 4f
∫
DZ X(f − f(X,M))X(O − O[X])P(X†,M†)

= 4f
∫
DZ† X(f + f(X†,M†))X(O + O[X†])P(X†,M†)

= 4f%(−f,−O).

(D.2)

Here, DZ ≡ DXDM and DZ† ≡ DX†DM†. Inspired by Ref. [159], where the statis-

tical properties of entropy production were obtained from the strong DFT, we derive the

uncertainty relation mainly from Eq. (D.1). By observing that

1 =

∫ ∞

−∞
3f

∫ ∞

−∞
3O %(f,O)

=

∫ ∞

0

3f

∫ ∞

−∞
3O (1 + 4−f)%(f,O), (D.3)

we introduce a probability distribution &(f,O) ≡ (1 + 4−f)%(f,O), which is defined over

[0,∞) × (−∞,∞). The first and second moments of f and O can be expressed with respect
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to the distribution &(f,O) as follows:

〈f〉 =
〈
f tanh

(f
2

)〉
&
, 〈f2〉 =

〈
f2

〉
&
,

〈O〉 =
〈
O tanh

(f
2

)〉
&
, 〈O2〉 =

〈
O2

〉
&
,

(D.4)

where 〈. . . 〉& denotes the expectation with respect to &(f,O). By applying the Cauchy–

Schwarz inequality to 〈O〉, we obtain

〈O〉2 =
〈
O tanh

(f
2

)〉2

&
≤ 〈O2〉&

〈
tanh2

(f
2

)〉
&
. (D.5)

The last term in the right-hand side of Eq. (D.5) can be further upper bounded. We observe

that 〈
tanh2

(f
2

)〉
&
=

〈
tanh2

[
5

(f
2

tanh
(f

2

))]〉
&

≤ tanh2 [ 5 (〈f〉/2)] .
(D.6)

The equality in Eq. (D.6) is obtained from the fact that 5 (G) is the inverse function of

G tanh(G). The inequality in Eq. (D.6) can be obtained as follows. First, we show that j(G) =
tanh2 [ 5 (G)] is a concave function over [0, +∞). Indeed, using the relation 5 (G) tanh [ 5 (G)] = G
and performing simple calculations, we obtain

32j(G)
3G2

=
4 (4 5 (G) − sinh [4 5 (G)])
(2 5 (G) + sinh [2 5 (G)])3

. (D.7)

Since 4 5 (G) ≤ sinh [4 5 (G)], we have 32j(G)/3G2 ≤ 0, ∀ G ≥ 0; thus, implying that tanh2 [ 5 (G)]
is a concave function. Applying Jensen’s inequality to this function, we obtain〈

tanh2
[
5

(f
2

tanh
(f

2

))]〉
&

≤ tanh2

[
5

(〈f
2

tanh
(f

2

)〉
&

)]
= tanh2 [ 5 (〈f〉/2)] .

(D.8)

From Eqs. (D.5) and (D.6), we have

〈O〉2 ≤ 〈O2〉 tanh2 [ 5 (〈f〉/2)] . (D.9)

By transforming Eq. (D.9), we obtain the derived bound [Eq. (5.64)] for the observable O.

D.2 Derivation for continuous measurement and feed-

back control

Let %(G, 4, C) be the probability distribution function of the joint system [Eqs. (5.65) and

(5.66)]. Its time evolution is described by the Fokker–Planck equation as follows:

mC%(G, 4, C) = −mG�G (G, 4, C) − m4�4 (G, 4, C), (D.10)
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where �G (G, 4, C) = 5 (G, G+4)%(G, 4, C)−�GmG%(G, 4, C) and �4 (G, 4, C) = −4%(G, 4, C)−�4m4%(G, 4, C)
are probability currents. Hereafter, we focus exclusively on the nonequilibrium steady state,

for which the probability distribution and currents are %ss (G, 4) and J ss (G, 4) ≡ [�ss
G (G, 4), �ss

4 (G, 4)]>,

respectively.

We use the Cramér–Rao inequality [33] and the perturbation technique [44] to derive

the uncertainty relation for the systems under consideration. Let us consider an auxiliary

dynamics described by

¤G = 5 (G, G + 4) + \ �
ss
G (G, 4)
%ss (G, 4) + b,

¤4 = −4 + \ �
ss
4 (G, 4)
%ss (G, 4) + [,

(D.11)

where \ is a perturbation parameter. When \ = 0, this auxiliary dynamics becomes the

original one. Let %ss
\
(G, 4) be the stationary distribution of this auxiliary dynamics; %ss

\
(G, 4) =

%ss (G, 4) can be easily confirmed. The probability current of the auxiliary dynamics is scaled

as follows:

�ss
\,G (G, 4) = (1 + \)�ss

G (G, 4). (D.12)

Let X = {G(C)}C=T
C=0 and E = {4(C)}C=T

C=0 be the trajectories of the system states and the noise,

respectively. In the auxiliary dynamics, the path probability using the Ito discretisation is

expressed as

P\ (X, E) ∝ %ss
\ (G(0), 4(0)) exp

(
− 1

4�G

∫ T

0

3C

[
¤G − 5 (G, G + 4) − \ �

ss
G (G, 4)
%ss (G, 4)

]2
)

× exp

(
− 1

4�4

∫ T

0

3C

[
¤4 + 4 − \ �

ss
4 (G, 4)
%ss (G, 4)

]2
)
.

(D.13)

For an arbitrary function q(X), we define 〈q〉\ =
∫
DXDE P\ (X, E)q(X) and Var\ [q] =

〈(q − 〈q〉\ )2〉\ . Since 〈O〉\ is a function of \, we can consider O as one of its estimators.

According to the Cramér–Rao inequality, the precision of this estimator is lower bounded by

the Fisher information I(\) as follows:

Var\ [O]
(m\ 〈O〉\ )2

≥ 1

I(\) , (D.14)

where I(\) ≡ −〈m2
\

lnP\ (X, E)〉\ . Since 〈O〉\ = T
∫
3G

∫
34Λ(G)�ss

\,G
(G, 4), we have 〈O〉\ =

(1+\)〈O〉 and, thus, m\ 〈O〉\ = 〈O〉. Moreover, through some algebraic calculations, we obtain

I(0) = T
2

∫
3G

∫
34
J ss (G, 4)>D−1J ss (G, 4)

%ss (G, 4) =
1

2�G

〈∫ T

0

3C 5 (G, G + 4) ◦ ¤G
〉
, (D.15)

where D ≡ diag(�G , �4) ∈ R2×2. As shown, the Fisher information is directly proportional

to 〈f〉, i.e. I(0) = 〈f〉/2. By letting \ = 0 in Eq. (D.14), we readily obtain

Var[O]
〈O〉2 ≥ 2

〈f〉 . (D.16)
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Hereafter, we denote by L(H) and ℌ(H) the sets of linear and self-adjoint operators, re-

spectively, on a complex Hilbert space H with dimension # > 0. The inner product 〈·, ·〉 is

defined as 〈x, y〉 = x>y for x, y ∈ R#×1 (classical case) and 〈-,.〉 = tr
{
-†.

}
for -,. ∈ L(H)

(quantum case).

E.1 Open quantum systems

E.1.1 Alternative expression of the Lindblad master equation

Here we show that the Lindblad master equation can be written as

¤d = Kd (− ln d + ln deq), (E.1)

where Kd : a ↦→ 8V−1 [a, d] + Od (a). The operator Od is defined by

Od (a) B
∑̀
,l

4−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l), a])] . (E.2)

For any density operator d =
∑
= ?= |=〉〈=|, where

∑
= ?= = 1 and {|=〉}= are orthonormal

eigenvectors, we can express the tilted operator as

[d] \ (-) = 4−\/2
∫ 1

0

4B\ dB-d1−B3B =
∑
=,<

Φ(4\/2?=, 4−\/2?<)〈=|- |<〉|=〉〈< |. (E.3)

Here, Φ(G, H) is the logarithmic mean of two positive numbers G and H, given by Φ(G, H) =
(G − H)/[ln(G) − ln(H)] for G ≠ H and Φ(G, G) = G. As deq = 4−V� //V and [ln d, d] = 0, we have

8V−1 [− ln d + ln deq, d] = −8[�, d]. Thus, we need only show that

Od (− ln d + ln deq) =
∑̀
,l

U` (l)
[
2!` (l)d!†` (l) −

{
!†` (l)!` (l), d

}]
. (E.4)

To this end, we first show that [d] \ ( [-, ln d] − \-) = 4−\/2-d − 4\/2d- for an arbitrary

operator - ∈ L(H) and \ ∈ R. This can be achieved through the following transformation:

[d] \ ( [-, ln d] − \-) = 4−\/2
∫ 1

0

4\B4B ln d (- ln d − ln d- − \-)4 (1−B) ln d3B (E.5a)
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= −4−\/2
∫ 1

0

[
4\B4B ln d (ln d + \)-4 (1−B) ln d + 4\B4B ln d- (− ln d)4 (1−B) ln d

]
3B

(E.5b)

= −4−\/2
∫ 1

0

3

3B

[
4 (ln d+\)B-4 (1−B) ln d

]
3B (E.5c)

= 4−\/2 (-4ln d − 4ln d+\-) (E.5d)

= 4−\/2-d − 4\/2d-. (E.5e)

Next, applying the relation [!†` (l), �] = −l!†` (l), one immediately obtains

[d]Vl ( [!†` (l),− ln d + ln deq]) = [d]Vl ( [!†` (l),− ln d − V�]) (E.6a)

= −[d]Vl ( [!†` (l), ln d] + V[!†` (l), �]) (E.6b)

= −[d]Vl ( [!†` (l), ln d] − Vl!†` (l)) (E.6c)

= 4Vl/2d!†` (l) − 4−Vl/2!†` (l)d. (E.6d)

Consequently, as !†` (l) = !` (−l) and U` (l) = 4VlU` (−l), one can verify Eq. (E.4) as

follows:

Od (− ln d + ln deq) (E.7a)

=
∑̀
,l

4−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l),− ln d + ln deq])] (E.7b)

=
∑̀
,l

4−Vl/2U` (l) [!` (l), 4Vl/2d!†` (l) − 4−Vl/2!†` (l)d] (E.7c)

=
∑̀
,l

U` (l)
[
−4−Vl!` (l)!†` (l)d + !` (l)d!†` (l) + 4−Vl!†` (l)d!` (l) − d!†` (l)!` (l)

]
(E.7d)

=
∑̀
,l

{
U` (l)

[
!` (l)d!†` (l) − d!†` (l)!` (l)

]
+ U` (−l)

[
!` (−l)d!†` (−l) − !†` (−l)!` (−l)d

]}
(E.7e)

=
∑̀
,l

U` (l)
[
2!` (l)d!†` (l) −

{
!†` (l)!` (l), d

}]
. (E.7f)

E.1.2 Properties of the quantum Wasserstein metric

Here we provide several useful properties regarding the defined metric.

Lemma E.1. The inner product 〈·,Od (·)〉 satisfies the conjugate-symmetry condition 〈b,Od (a)〉 =
〈a,Od (b)〉∗ for all operators a, b ∈ L(H). Here, ∗ denotes the complex conjugate.

Proof. For an arbitrary operator - ∈ L(H) and \ ∈ R, we have

〈b, [-, [d] \ ( [-†, a])]〉 = tr
{
b† [-, [d] \ ( [-†, a])]

}
(E.8a)

= tr
{
[b†, -] [d] \ ( [-†, a])

}
(E.8b)

=
∑
=,<

Φ(4\/2?=, 4−\/2?<)〈=| [-†, a] |<〉〈< | [b†, -] |=〉, (E.8c)
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where we have used Eq. (E.3) in Eq. (E.8c). Swapping b and a, one obtains

〈a, [-, [d] \ ( [-†, b])]〉∗ =
∑
=,<

Φ(4\/2?=, 4−\/2?<)〈=| [-†, b] |<〉∗〈< | [a†, -] |=〉∗ (E.9a)

=
∑
=,<

Φ(4\/2?=, 4−\/2?<)〈< | [b†, -] |=〉〈=| [-†, a] |<〉 (E.9b)

= 〈b, [-, [d] \ ( [-†, a])]〉. (E.9c)

As Od (a) =
∑
`,l 4

−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l), a])], Eq. (E.9c) implies that

〈a,Od (b)〉∗ = 〈b,Od (a)〉. (E.10)

�

From Eq. (E.8c), one observes that

〈b, [-, [d] \ ( [-†, b])]〉 =
∑
=,<

Φ(4\/2?=, 4−\/2?<) |〈=| [-†, b] |<〉|2 ≥ 0. (E.11)

Therefore, 〈b,Od (b)〉 ≥ 0 for an arbitrary operator b. Equality is attained only when

[!†` (l), b] = 0 for all ` and l. When b is a self-adjoint operator, i.e., b† = b, we have

〈b,Kd (b)〉 = 〈b,Od (b)〉 ≥ 0.

Proposition E.2. A self-adjoint operator a satisfies Kd (a) = 0 if and only if a is spanned by

I# .

Proof. As Kd (I# ) = 0, we need only show that if Kd (a) = 0, then a is spanned by I# . Noting

that 0 = 〈a,Kd (a)〉 = 〈a,Od (a)〉, we find that 〈a,Od (a)〉 = 0 only when [!†` (l), a] = 0 for all

` and l. As the dynamics of the quantum system are ergodic, this implies that a is spanned

by I# .

�

Proposition E.3. Kd (a) is a traceless self-adjoint operator for all a ∈ ℌ(H).

Proof. The expression

Kd (a) = 8V−1 [a, d] + Od (a) = 8V−1 [a, d] +
∑̀
,l

4−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l), a])] (E.12)

is a linear combination of commutators. Therefore, tr
{
Kd (a)

}
= 0 is immediately derived.

Note that (8V−1 [a, d])† = 8V−1 [a, d], so we need only show that Od (a) is self-adjoint. Using

the relations [d] \ (-)† = [d]−\ (-†), [-,. ]† = [.†, -†], 4−Vl/2U` (l) = 4Vl/2U` (−l), and

!
†
` (l) = !` (−l), we can prove that Od (a) is self-adjoint as follows:

Od (a)† =
∑̀
,l

4−Vl/2U` (l) [!` (l), [d]Vl ( [!†` (l), a])]† (E.13)

=
∑̀
,l

4−Vl/2U` (l) [[d]Vl ( [!†` (l), a])†, !` (l)†] (E.14)
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=
∑̀
,l

4Vl/2U` (−l) [[d]−Vl ( [a, !` (l)]), !` (−l)] (E.15)

=
∑̀
,l

4Vl/2U` (−l) [!` (−l), [d]−Vl ( [!†` (−l), a])] (E.16)

= Od (a). (E.17)

�

Lemma E.4. For an arbitrary density operator d and traceless self-adjoint operator o, there

exists a unique traceless self-adjoint operator a such that o = Kd (a).

Proof. Let B = {j 9 ,: }1≤ 9 ,:≤# denote the set of generalized Gell-Mann matrices, which span

the space of operators in the complex Hilbert space H . Specifically, j 9 ,: can be expressed as

follows:

j 9 ,: =



�:, 9 + � 9 ,: , if 9 < :,

8(�:, 9 − � 9 ,: ), if 9 > :,√
2

9 ( 9+1)

(∑ 9

;=1
�;,; − 9� 9+1, 9+1

)
, if 9 = : < #,

#−1I# , if 9 = : = #,

(E.18)

where � 9 ,: denotes a matrix with 1 in the 9 :-th entry and 0 elsewhere. In this construction,

each j 9 ,: is a Hermitian matrix and tr
{
j 9 ,:

}
= X 9# X:# for all ( 9 , :). For convenience, we

define a set B B B \ {j# ,# }. For arbitrary traceless self-adjoint operator -, there exists

real coefficients 2 9 ,: ∈ R such that - =
∑
9 ,: 2 9 ,: j 9 ,: . Taking the trace of both sides of the

equation, we obtain 0 = tr {-} = ∑
9 ,: 2 9 ,:tr

{
j 9 ,:

}
= 2# ,# . This implies that - can be

expressed as a linear combination of matrices in B with all real coefficients.

By propositions E.2 and E.3, Kd (j 9 ,: ) is obviously a nonzero traceless self-adjoint operator

for all ( 9 , :) ≠ (#, #). We now show that {Kd (j 9 ,: )} ( 9 ,:)≠(# ,# ) is an independent set, i.e.,∑
( 9 ,:)≠(# ,# ) 2 9 ,:Kd (j 9 ,: ) = 0 only when 2 9 ,: = 0 for all 9 , :. Indeed, by the linearity of Kd,

we have ∑
( 9 ,:)≠(# ,# )

2 9 ,:Kd (j 9 ,: ) = Kd
( ∑
( 9 ,:)≠(# ,# )

2 9 ,: j 9 ,:

)
= 0. (E.19)

Under proposition E.2,
∑
( 9 ,:)≠(# ,# ) 2 9 ,: j 9 ,: must be spanned by I# (= #j# ,# ), i.e.,∑

( 9 ,:)≠(# ,# )
2 9 ,: j 9 ,: = −2# ,# j# ,# (E.20)

for some 2# ,# . This is equivalent to
∑

1≤ 9 ,:≤# 2 9 ,: j 9 ,: = 0. As B is a basis of H , this

equivalence requires that 2 9 ,: = 0 for all 9 , :.

Because {Kd (j 9 ,: )} ( 9 ,:)≠(# ,# ) has #2 − 1 elements, we can add another matrix q to form

a new basis of H . In terms of the elements of the new basis, I# can then be expressed as

I# = Iq +
∑

( 9 ,:)≠(# ,# )
2 9 ,:Kd (j 9 ,: ), (E.21)

where I is some complex number. Taking the trace of both sides of Eq. (E.21), we obtain

# = I tr {q}, which indicates that I ≠ 0. Therefore, q can be expressed in terms of I# and
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{Kd (j 9 ,: )} ( 9 ,:)≠(# ,# ) as

q = I−1
[
I# −

∑
( 9 ,:)≠(# ,# )

2 9 ,:Kd (j 9 ,: )
]
. (E.22)

Equation (E.22) implies that an arbitrary matrix can be expressed as a linear combination of

elements in the following set:

S B {I# } ∪ {Kd (j 9 ,: )} ( 9 ,:)≠(# ,# ) . (E.23)

Equivalently, S is a basis of H . Consequently, because Kd (j 9 ,: ) is traceless and self-adjoint,

an arbitrary traceless self-adjoint operator o can be expressed in terms of {Kd (j 9 ,: )} ( 9 ,:)≠(# ,# )
with real coefficients {2 9 ,: } as

o =
∑

( 9 ,:)≠(# ,# )
2 9 ,:Kd (j 9 ,: ) = Kd

( ∑
( 9 ,:)≠(# ,# )

2 9 ,: j 9 ,:

)
. (E.24)

Defining the traceless self-adjoint operator a B
∑
( 9 ,:)≠(# ,# ) 2 9 ,: j 9 ,: , one readily obtains o =

Kd (a). Finally, to prove the uniqueness of a, we assume two traceless self-adjoint operators a1

and a2 such that o = Kd (a1) = Kd (a2), thenKd (a1−a2) = 0. Applying the result in proposition

E.2, we have a1 − a2 = II# for some I ∈ C. Thus, I# = tr {II# } = tr {a1 − a2} = 0 ⇒ I = 0,

which implies the uniqueness of a.

�

Lemma E.5. Given an arbitrary traceless self-adjoint operator a, the equality 〈a+_I# ,Kd (a+
_I# )〉 = 〈a,Kd (a)〉 holds for an arbitrary number _ ∈ C.

Proof. Since Kd (a + _I# ) = Kd (a) + Kd (_I# ) = Kd (a), we have

〈a + _I# ,Kd (a + _I# )〉 = 〈a + _I# ,Kd (a)〉 (E.25a)

= 〈a,Kd (a)〉 + 〈_I# ,Kd (a)〉 (E.25b)

= 〈a,Kd (a)〉 + _∗tr
{
Kd (a)

}
(E.25c)

= 〈a,Kd (a)〉, (E.25d)

where we have used the traceless property of Kd obtained in proposition E.3. �

E.1.3 Lower bound of the quantum Wasserstein distance in terms

of the trace-like distance

Here we derive the lower bound of the quantum Wasserstein distance Wq (d0, dg) in terms

of the trace-like distance. From the definition of the quantum Wasserstein distance, given a

fixed positive number X > 0, there exists a smooth curve d(C) with end points d0 and dg such

that

g

∫ g

0

〈a,Kd (a)〉3C ≤ Wq (d0, dg)2 + X. (E.26)
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Here, a(C) ∈ ℌ(H) is a traceless self-adjoint operator that satisfies ¤d(C) = Kd [a(C)]. Let d(C) =∑
= ?= (C) |=(C)〉〈=(C) | be a spectral decomposition with an orthogonal basis 〈=(C) |<(C)〉 = X=<,

and define the self-adjoint operator q(C) B ∑
= 2= |=(C)〉〈=(C) |, where |2= | ≤ 1 are real constants

to be determined later. Evidently, q(C) commutes with d(C), i.e., [q, d] = 0. Now, using the

relations ¤d = 8V−1 [a, d] + Od (a) and 〈q, [a, d]〉 = 0, we have∑
=

2= [?= (g) − ?= (0)] = tr

{∫ g

0

q(C) ¤d(C)3C
}

(E.27a)

=

∫ g

0

〈q, 8V−1 [a, d] + Od (a)〉3C (E.27b)

=

∫ g

0

〈q,Od (a)〉3C (E.27c)

≤
(∫ g

0

〈q,Od (q)〉3C
)1/2 (∫ g

0

〈a,Od (a)〉3C
)1/2

(E.27d)

≤
(
g−1

∫ g

0

〈q,Od (q)〉3C
)1/2 (

Wq (d0, dg)2 + X
)1/2

. (E.27e)

The first term in the last inequality (E.27e) can be rewritten as

〈q,Od (q)〉 =
∑̀
,l

4−Vl/2U` (l)〈q, [!` (l), [d]Vl ( [!†` (l), q])]〉 (E.28a)

=
∑̀
,l

4−Vl/2U` (l)tr
{
[q, !` (l)] [d]Vl ( [!†` (l), q])

}
(E.28b)

=
∑̀
,l

4−Vl/2U` (l)〈[!†` (l), q], [d]Vl ( [!†` (l), q])〉. (E.28c)

Before proceeding, we prove the following result.

Proposition E.6. For an arbitrary operator -, a real number \, and density operator d, the

inequality

〈-, [d] \ (-)〉 ≤
1

2
(4\/2 + 4−\/2)‖- ‖2∞ (E.29)

holds, where ‖- ‖∞ denotes the spectral norm of the operator -.

Proof. Using Eq. (E.3), we have

〈-, [d] \ (-)〉 =
∑
=,<

Φ(4\/2?=, 4−\/2?<)〈=|- |<〉〈< |-† |=〉. (E.30)

Applying the inequality Φ(G, H) ≤ (G + H)/2 and the relation
∑
= |=〉〈=| = I# , we obtain

〈-, [d] \ (-)〉 ≤
1

2

∑
=,<

(
4\/2?= + 4−\/2?<

)
〈=|- |<〉〈< |-† |=〉 (E.31a)

=
1

2

∑
=,<

4\/2?=〈=|- |<〉〈< |-† |=〉 +
1

2

∑
<,=

4−\/2?<〈< |-† |=〉〈=|- |<〉 (E.31b)

=
1

2

∑
=

4\/2?=〈=|--† |=〉 +
1

2

∑
<

4−\/2?<〈< |-†- |<〉 (E.31c)
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≤ 1

2

∑
=

4\/2?=‖- ‖2∞ +
1

2

∑
<

4−\/2?<‖- ‖2∞ (E.31d)

=
1

2
(4\/2 + 4−\/2)‖- ‖2∞. (E.31e)

Here we applied two facts: 〈=|--† |=〉 ≤ ‖- ‖2∞ in Eq. (E.31d) and
∑
= ?= = 1 in Eq. (E.31e). �

Returning to our problem, we apply proposition E.6 with - = [!†` (l), q] and \ = Vl, and

hence obtain

〈[!†` (l), q], [d]Vl ( [!†` (l), q])〉 ≤
1

2
(4−Vl/2+4Vl/2)‖ [!†` (l), q] ‖2∞ ≤ 2(4−Vl/2+4Vl/2)‖!` (l)‖2∞.

(E.32)

Here, we used the inequalities ‖ [-,. ] ‖∞ ≤ ‖-. ‖∞ + ‖.- ‖∞ and ‖-. ‖∞ ≤ ‖- ‖∞‖. ‖∞ for all

-,. ∈ L(H). Consequently, we have

〈q,Od (q)〉 ≤ 2
∑̀
,l

4−Vl/2U` (l) (4−Vl/2 + 4Vl/2)‖!` (l)‖2∞ = 4
∑̀
,l

U` (l)‖!` (l)‖2∞. (E.33)

From Eqs. (E.27e) and (E.33), we easily obtain the following inequality:

Wq (d0, dg)2 + X ≥
(∑= 2= [?= (g) − ?= (0)])2

4g−1
∫ g
0

∑
`,l U` (l)‖!` (l)‖2∞3C

. (E.34)

Setting 2= = sign[?= (g) − ?= (0)] and taking the limit X → 0 in Eq. (E.34), a lower bound of

the quantum Wasserstein distance is obtained as

Wq (d0, dg) ≥
∑
= |?= (g) − ?= (0) |

2
√
g−1

∫ g
0

∑
`,l U` (l)‖!` (l)‖2∞3C

. (E.35)

From Eq. (E.35), we wish to bound the Wasserstein distance by the trace-like distance

dT (d0, dg) =
∑#
==1 |0= − 1= |, where 01 ≤ 02 ≤ · · · ≤ 0# and 11 ≤ 12 ≤ · · · ≤ 1# are in-

creasing eigenvalues of d0 and dg . Given two arrays of real numbers, {G=} and {H=}, one can

prove that ∑
=

|G= − H= | ≥
∑
=

|G= − Hj (=) |, (E.36)

where {j(=)} is a permutation of {=} such that Hj (=) ≥ Hj (<) if G= ≥ G<. Therefore,
∑
= |?= (g)−

?= (0) | ≥ dT (d0, dg), so the bound in terms of the trace-like distance is written as

Wq (d0, dg) ≥
dT (d0, dg)

2
√
g−1

∫ g
0

∑
`,l U` (l)‖!` (l)‖2∞3C

. (E.37)

E.1.4 Lower bound of the entropy production in terms of the average

energy-change distance

Here we derive the lower bound of the entropy production Δ(tot in terms of the distance

dE (d0, dg) = |tr {� (d0 − dg)} |. The Lindblad master equation can be expressed as ¤d(C) =
−8[�, d(C)] + Od [q(C)], where q(C) B − ln d(C) + ln deq. Using the relations tr {� [�, d]} = 0
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and Δ(tot =
∫ g
0
〈q,Od (q)〉3C, we obtain

|tr {� (d0 − dg)} | =
����tr {

�

∫ g

0

¤d(C)3C
}���� (E.38a)

=

����∫ g

0

〈�,Od (q)〉3C
���� (E.38b)

≤
(∫ g

0

〈�,Od (�)〉3C
)1/2 (∫ g

0

〈q,Od (q)〉3C
)1/2

(E.38c)

=

(∫ g

0

〈�,Od (�)〉3C
)1/2 √

Δ(tot. (E.38d)

The first term in Eq. (E.38d) can be rewritten as

〈�,Od (�)〉 =
∑̀
,l

4−Vl/2U` (l)〈�, [!` (l), [d]Vl ( [!†` (l), �])]〉 (E.39a)

=
∑̀
,l

4−Vl/2U` (l)tr
{
[�, !` (l)] [d]Vl ( [!†` (l), �])

}
(E.39b)

=
∑̀
,l

4−Vl/2U` (l)〈[!†` (l), �], [d]Vl ( [!†` (l), �])〉. (E.39c)

Applying proposition E.6 with - = [!†` (l), �] and \ = Vl, one obtains

〈[!†` (l), �], [d]Vl ( [!†` (l), �])〉 ≤
1

2
(4−Vl/2 + 4Vl/2)‖ [!†` (l), �] ‖2∞

=
1

2
(4−Vl/2 + 4Vl/2)l2‖!` (l)‖2∞. (E.40)

Consequently, we have

〈�,Od (�)〉 ≤
1

2

∑̀
,l

4−Vl/2U` (l) (4−Vl/2 + 4Vl/2)l2‖!` (l)‖2∞ =
∑̀
,l

U` (l)l2‖!` (l)‖2∞.

(E.41)

From Eqs. (E.38d) and (E.41), we readily obtain the following inequality:

Δ(tot ≥
dE (d0, dg)2

g
∑
`,l U` (l)l2‖!` (l)‖2∞

. (E.42)

A tighter bound in terms of the square of the heat current can be analogously obtained.

Applying the Cauchy–Schwarz inequality, we have∫ g

0

| ¤& |3C =
∫ g

0

|tr {� ¤d(C)}| 3C (E.43a)

=

∫ g

0

|〈�,Od (q)〉|3C (E.43b)

≤
(∫ g

0

〈�,Od (�)〉3C
)1/2 (∫ g

0

〈q,Od (q)〉3C
)1/2

(E.43c)

=

(∫ g

0

〈�,Od (�)〉3C
)1/2 √

Δ(tot. (E.43d)
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Subsequently, applying Eq. (E.41), we obtain

Δ(tot ≥

(∫ g
0
| ¤& |3C

)2

g
∑
`,l U` (l)l2‖!` (l)‖2∞

. (E.44)

This bound is a quantum version of the classical bound reported in Ref. [261], in which the

total entropy production is bounded from below by the square of the heat current.

Analogously, we can also derive a lower bound on Δ(tot in terms of the change of entropy

Δ( of the system. First, we can bound Δ( from above as

|Δ( | ≤
∫ g

0

|tr { ¤d(C) ln d(C)} |3C (E.45a)

=

∫ g

0

|〈ln d,Od (q)〉|3C (E.45b)

≤
(∫ g

0

〈ln d,Od (ln d)〉3C
)1/2 (∫ g

0

〈q,Od (q)〉3C
)1/2

(E.45c)

=
√
Υ
√
Δ(tot, (E.45d)

where Υ B
∫ g
0
〈ln d,Od (ln d)〉3C. Then, the total entropy production can be bounded from

below as

Δ(tot ≥
|Δ( |2
Υ

. (E.46)

Equivalently, the heat dissipated to the environment can be bounded from below as

Δ& ≥ V−1
(
−Δ( + |Δ( |

2

Υ

)
. (E.47)

This bound is relevant to the inequality reported in Ref. [13], Δ& ≥ Q(S−1 (−Δ()). However,

the bound in Eq. (E.47) is not tight in the zero-temperature limit.

E.1.5 Current-dissipation trade-off

Here we derive a trade-off relation between the heat current and dissipation, i.e., we derive

an upper bound on the ratio �2/ftot, where � B tr {� (C) ¤d(C)} is the heat flow from the heat

bath to the system and ftot is the total entropy production rate, which characterizes the

irreversibility. Using the relations ¤d(C) = −8[� (C), d(C)] + Od [q(C)] and ftot = 〈q(C),Od [q(C)]〉
and applying the Cauchy–Schwarz inequality, we obtain

�2 = |tr {� (C) ¤d(C)} |2 = |〈� (C),Od [q(C)]〉|2 (E.48a)

≤ 〈� (C),Od [� (C)]〉〈q(C),Od [q(C)]〉 (E.48b)

= 〈� (C),Od [� (C)]〉ftot. (E.48c)

Note that

〈� (C),Od [� (C)]〉 =
∑̀
,l

4−Vl/2U` (l)〈[!†` (l), � (C)], [d]Vl ( [!†` (l), � (C)])〉 (E.49a)
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=
∑̀
,l

4−Vl/2U` (l)l2〈!†` (l), [d]Vl (!†` (l))〉. (E.49b)

From Eq. (E.31c), one can prove that

〈� (C),Od [� (C)]〉 ≤
1

2

∑̀
,l

4−Vl/2U` (l)l2
[
4Vl/2tr

{
!†` (l)!` (l)d

}
+ 4−Vl/2tr

{
!` (l)!†` (l)d

}]
(E.50a)

=
∑̀
,l

U` (l)l2tr
{
!†` (l)!` (l)d

}
(E.50b)

= tr {Ld} , (E.50c)

where L B
∑
`,l U` (l)l2!

†
` (l)!` (l). Decomposing d = dbd + dnd, where

dbd =
∑
4

Π4dΠ4, (E.51a)

dnd =
∑
4≠4′

Π4dΠ4′ , (E.51b)

and Π4 is the projection to the eigenspace of � with eigenvalue 4. As [!†` (l)!` (l), � (C)] = 0,

[!†` (l)!` (l),Π4] = 0 for all 4. Therefore, the coherence between eigenstates with different

energies vanishes in tr {Ld}, i.e., tr {Ld} = tr {Ldbd}. The trade-off relation between the heat

current and dissipation is thus obtained as

�2

ftot
≤ 〈�,Od (�)〉 ≤ tr {Ldbd} . (E.52)

This inequality, known as the current-dissipation trade-off relation [263], implies that the

ratio �2/ftot is not enhanced by coherence between eigenstates with different energies, but is

enhanced by coherence between degenerate energy eigenstates.

E.1.6 Invalidity of the bound in terms of the relative entropy

Here we prove that the total entropy production in thermalization processes cannot be

bounded from below by the relative entropy between the initial and final states. In ther-

malization processes, the dynamics of the density operator are governed by the Lindblad

equation

¤d = −8[�, d] +
∑̀
,l

U` (l)
[
2!` (l)d!†` (l) −

{
!†` (l)!` (l), d

}]
. (E.53)

The total entropy production can be explicitly expressed as Δ(tot = ((d(0) | |deq)−((d(g) | |deq),
where ((d1 | |d2) B tr {d1 (ln d1 − ln d2)} is the relative entropy of d1 with respect to d2. If

the relative entropy satisfies the reverse triangle inequality:

((d(0) | |deq) ≥ ((d(0) | |d(g)) + ((d(g) | |deq), (E.54)

then Δ(tot ≥ ((d(0) | |d(g)) and the dissipation can be further bounded by the quantum Fisher

information and Wigner–Yanase metrics [214]. However, this inequality holds in the classical
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case [228] but not in the general quantum case. As a simple counterexample, consider that

U` (l) → 0 for all ` and l. In this vanishing coupling limit, the total entropy production

vanishes because the relative entropy is invariant under a unitary transform. On the other

hand, ((d(0) | |d(g)) is always positive because d(C) is changed under the internal dynamics;

thus Δ(tot < ((d(0) | |d(g)).

E.1.7 Quantum Otto heat engine

Consider a quantum Otto heat engine consisting of a two-level atom, whose energy levels (the

excited state |4〉 and the ground state |6〉) are changed by an external controller. The atom

is alternatively coupled with two heat baths at different inverse temperatures Vℎ < V2, and

undergoes two isochoric and two adiabatic processes. The system Hamiltonian is given by

� (C) = l(C)fI/2, where fI = |4〉〈4 | − |6〉〈6 | is the Pauli matrix in the I direction. The heat

engine is cyclically operated as follows:

1. During adiabatic expansion in time g0, the frequency changes from lℎ to l2, and work

is produced due to the change in internal energy. Here, the word adiabatic means that

the system is isolated from the heat baths and there is no heat exchange during the

process, although jumps between energy eigenstates may occur.

2. During the cold isochore in time g2, the atom is in contact with the cold bath and

the frequency l2 remains unchanged. In this process, heat &2 is transferred from the

working medium to the cold bath.

3. During adiabatic compression in time g0, the frequency is reversed from l2 to lℎ and

work is done on the medium.

4. During the hot isochore in time gℎ, the atom is in contact with the hot bath and the

frequency lℎ is fixed. In this process, heat &ℎ is extracted from the hot bath by the

working medium.

During the adiabatic process, the dynamics of the density matrix are governed by the von

Neumann equation

¤d(C) = −8[� (C), d(C)] . (E.55)

During an isochoric process : = ℎ or 2, the atom is thermalized and the time evolution of the

density matrix follows the Lindblad master equation [80]:

¤d(C) = −8[�: , d(C)] + D: [d(C)], (E.56)

where the dissipator D: [·] is defined by

D: [d] = U: =̄(l: ) (2f+df− − {f−f+, d}) + U: (=̄(l: ) + 1) (2f−df+ − {f+f−, d}). (E.57)

Here, �: = l:fI/2, f± = (fG±8fH)/2, U: is a positive damping rate, and =̄(l: ) = (4V:l:−1)−1

is the Planck distribution.
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Analytical solution of the density matrix

In the stationary state, the density matrix can be analytically calculated as

d(C) = (4_(C) + 4−_(C) )−14_(C)fI , (E.58)

where _(C) is a periodic function satisfying _(C + g) = _(C) with g = 2g0 + gℎ + g2. In the

following analysis, we determine the analytical form of _(C). For any operators - and . , one

can prove that

4−_-.4_- =
∞∑
==0

(−_)=
=!
[-,. ]=, (E.59)

where the nested commutator is recursively defined as [-,. ]= = [-, [-,. ]=−1] and [-,. ]0 =
. . Using the relations [fI , f+] = 2f+ and [fI , f−] = −2f−, one readily obtains

[fI , f+]= = (+2)=f+, (E.60a)

[fI , f−]= = (−2)=f−. (E.60b)

Subsequently,

4−_fIf+4
_fI =

∞∑
==0

(−_)= (2)=
=!

f+ = 4
−2_f+ ⇔ 4_fIf+ = 4

2_f+4
_fI , (E.61a)

4−_fIf−4
_fI =

∞∑
==0

(−_)= (−2)=
=!

f− = 4
2_f− ⇔ 4_fIf− = 4

−2_f−4
_fI . (E.61b)

Noting that f+f− = (I2 +fI)/2 and f−f+ = (I2 −fI)/2, the dissipator term can be calculated

as

D: [4_fI ] = U: =̄(l: ) (2f+4_fIf− − {f−f+, 4_fI }) + U: (=̄(l: ) + 1) (2f−4_fIf+ − {f+f−, 4_fI })
(E.62a)

= 2
[
U: =̄(l: ) (4−2_f+f− − f−f+) + U: (=̄(l: ) + 1) (42_f−f+ − f+f−)

]
4_fI (E.62b)

= U:
[
=̄(l: ) (4−2_ − 1) + (=̄(l: ) + 1) (42_ − 1)

+
{
=̄(l: ) (4−2_ + 1) − (=̄(l: ) + 1) (42_ + 1)

}
fI

]
4_fI .

(E.62c)

Inserting Eqs. (E.58) and (E.62) into Eq. (E.56), we obtain[
− 4

_ − 4−_
4_ + 4−_ + fI

]
¤_(C) = U:

[
=̄(l: ) (4−2_ − 1) + (=̄(l: ) + 1) (42_ − 1) (E.63)

+
{
=̄(l: ) (4−2_ + 1) − (=̄(l: ) + 1) (42_ + 1)

}
fI

]
, (E.64)

which is satisfied if _(C) obeys the following differential equation:

¤_(C) = U:
[
=̄(l: ) (4−2_ + 1) − (=̄(l: ) + 1) (42_ + 1)

]
. (E.65)
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This equation can be analytically solved for _(C). The result is

_(C) =



_(g0), if 0 ≤ C < g0,
1
2 ln

[
=̄(l2)42U2 (2=̄(l2 )+1) (C−g0 )−I2
(=̄(l2)+1)42U2 (2=̄(l2 )+1) (C−g0 )+I2

]
, if g0 ≤ C < g0 + g2 ,

_(2g0 + g2), if g0 + g2 ≤ C < 2g0 + g2 ,
1
2 ln

[
=̄(lℎ)42Uℎ (2=̄(lℎ )+1) (C−2g0−g2 )−Iℎ
(=̄(lℎ)+1)42Uℎ (2=̄(lℎ )+1) (C−2g0−g2 )+Iℎ

]
, if 2g0 + g2 ≤ C < g,

(E.66)

where the constant I: can be explicitly determined through the boundary conditions as

I2 = [2=̄(l2) + 1]
(

=̄(l2)
2=̄(l2) + 1

− =̄(lℎ)
2=̄(lℎ) + 1

) / [
1 + 1 − 4−2U2 (2=̄(l2)+1)g2

42Uℎ (2=̄(lℎ)+1)gℎ − 1

]
, (E.67a)

Iℎ = [2=̄(lℎ) + 1]
(

=̄(lℎ)
2=̄(lℎ) + 1

− =̄(l2)
2=̄(l2) + 1

) / [
1 + 1 − 4−2Uℎ (2=̄(lℎ)+1)gℎ

42U2 (2=̄(l2)+1)g2 − 1

]
. (E.67b)

Thermodynamics and efficiency

For each 1 ≤ 8 ≤ 4, let d8 denote the density matrix at the beginning of process 8. Note that

the density matrix is unchanged during the adiabatic processes, i.e., d1 = d2 and d3 = d4.

During an isochoric process, a heat quantity &2 = tr {�2 (d2 − d3)} is transferred to the cold

bath, or a heat quantity &ℎ = tr {�ℎ (d1 − d4)} is extracted from the hot bath. The total

work , extracted from the working medium is

−, =

∫ g0

0

tr {mC� (C)d(C)} 3C+
∫ g−gℎ

g0+g2
tr {mC� (C)d(C)} 3C = tr {d1 (�2 − �ℎ)}+tr {d3 (�ℎ − �2)} .

(E.68)

By conservation of energy, we have −, +&ℎ −&2 = 0. The efficiency [ is then defined as

[ B
,

&ℎ
= 1 − &2

&ℎ
. (E.69)

The total entropy produced during the isochoric processes is

Δ(ℎtot = Δ(ℎ − Vℎ&ℎ ≥ 0, (E.70a)

Δ(2tot = Δ(2 + V2&2 ≥ 0, (E.70b)

where Δ(ℎ = tr {d4 ln d4} − tr {d1 ln d1} and Δ(2 = tr {d2 ln d2} − tr {d3 ln d3} are the changes

in the von Neumann entropy during the hot and cold isochoric processes, respectively. As

Δ(ℎ + Δ(2 = 0, V2&2 − Vℎ&ℎ ≥ 0 follows from the second law of thermodynamics. Using this

inequality, one can prove that [ cannot exceed the Carnot efficiency, given by

[ ≤ 1 − Vℎ
V2
C [C. (E.71)

In the following, we tighten the bound on the efficiency. According to Eqs. (7.56) and (7.57),

the total entropy productions during the isochoric processes are bounded from below by the
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distances dT (·, ·) and dE (·, ·) as follows:

Δ(ℎtot = Δ(ℎ − Vℎ&ℎ ≥ max

{
dT (d1, d4)2

4gℎAℎ
T

,
dE (d1, d4)2

gℎAℎ
E

}
, (E.72)

Δ(2tot = Δ(2 + V2&2 ≥ max

{
dT (d2, d3)2

4g2A2T
,
dE (d2, d3)2
g2A2E

}
. (E.73)

Here, A:
T B U: (2=̄(l: ) + 1) and A:

E B l2
:
U: (2=̄(l: ) + 1) for : = ℎ or 2. From Eqs. (E.72)

and (E.73), we obtain

V2&2 − Vℎ&ℎ ≥ max

{
dT (d1, d4)2

4gℎAℎ
T

,
dE (d1, d4)2

gℎAℎ
E

}
+max

{
dT (d2, d3)2

4g2A2T
,
dE (d2, d3)2
g2A2E

}
C g.

(E.74)

Consequently, a tighter bound on [ is obtained as

[ ≤ [C −
g

V2&ℎ
C [G. (E.75)

E.2 Classical Markov jump processes

E.2.1 Alternative expression of the classical master equation

We now show that the master equation ¤p = Rp can be expressed as ¤p = K?f , where R = ['<=]
with '== = −

∑
<(≠=) '<=, K? =

∑
1≤=<<≤# '=<?

eq
<Φ

(
?=
?

eq
=
,
?<
?

eq
<

)
E=<, and f = −∇p� (p| |peq).

Here, ∇p B [m?1
, . . . , m?# ]>. Specifically, we need to show that

(K?f )= =
∑
<(≠=)

['=<?< − '<=?=] (E.76)

holds for all =. Indeed, using the relations 5= = −(ln ?= − ln ?eq
= − 1) and '=<?

eq
< = '<=?

eq
= ,

Eq. (E.76) can be verified as follows:

(K?f )= =
∑
<(≠=)

'=<?
eq
<Φ

(
?=

?
eq
=

,
?<

?
eq
<

)
(E=<f )= (E.77a)

=
∑
<(≠=)

'=<?
eq
<Φ

(
?=

?
eq
=

,
?<

?
eq
<

)
( 5= − 5<) (E.77b)

=
∑
<(≠=)

'=<?
eq
<

?=/?eq
= − ?</?eq

<

ln ?= − ln ?eq
= − ln ?< + ln ?eq

<

(ln ?< − ln ?eq
< − ln ?= + ln ?eq

= ) (E.77c)

=
∑
<(≠=)

'=<?
eq
<

(
?<

?
eq
<

− ?=

?
eq
=

)
(E.77d)

=
∑
<(≠=)

['=<?< − '<=?=] . (E.77e)

E.2.2 Properties of the matrix K?

The matrix K? is symmetric and positive semi-definite. Its properties are given below.
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Lemma E.7. For an arbitrary distribution p satisfying ?= > 0 for all =, ker(K?) = {v ∈
R#×1 | v ∝ 1}.

Proof. As the system is irreducible, there exists a set of #−1 unordered pairs, Y = {(8, 9) | '8 9 ≠
0}, such that for arbitrary states = ≠ <, there is a path = = 80 → 81 → · · · → 8: = < and

(8; , 8;+1) ∈ Y for all 0 ≤ ; ≤ : − 1. Assuming v ∈ ker(K?), we have

0 = 〈v,K?v〉 =
∑

1≤=<<≤#
'=<?

eq
<Φ

(
?=

?
eq
=

,
?<

?
eq
<

)
(E< − E=)2. (E.78)

This expression means that E8 − E 9 = 0 for all (8, 9) ∈ Y, or equivalently, v ∝ 1. �

Lemma E.8. There exists a vector v for which ¤p = K?v. Such a vector is unique under the

condition 〈1, v〉 = 0.

Proof. For any v satisfying K?v = 0 [i.e., v ∈ ker(K?)], then v ∝ 1⇒ v> ¤p = 0; equivalently,

¤p ∈ ker(K?)⊥. According to the Fredholm alternative, the equation ¤p = K?v always has

a nonzero solution v. Defining v B v − #−1〈1, v〉1, we can write ¤p = K?v and 〈1, v〉 = 0.

Assume that there exist two solutions v1 and v2 satisfying 〈1, v1〉 = 〈1, v2〉 = 0. We then have

K? (v1 −v2) = 0⇒ v1 −v2 = 21 for some 2 ∈ R. Moreover, 〈1, v1 −v2〉 = 0⇒ #2 = 0⇒ 2 = 0,

which proves the uniqueness of v. �

E.2.3 Geodesic equation of the modified Wasserstein distance

We here derive the geodesic equation that determines the shortest path between two distribu-

tions p0 and pg . To this end, we consider the following functional, which is minimized along

the geodesic path {p(C)}0≤C≤g :

J [p(C)] =
∫ g

0

〈v(C),K?v(C)〉3C, (E.79)

where v(C) and p(C) are related through ¤p(C) = K?v(C). Consider an arbitrary perturbation

path {q(C)}0≤C≤g that satisfies q(0) = q(g) = 0 and
∑
= @= (C) = 0 for all 0 ≤ C ≤ g. Because

the functional J [γ (C)] is minimized when γ = p, the function Θ(n) = J [p(C) + nq(C)] has a

minimum at n = 0, so Θ′(0) = 0. The functional evaluated at γ = p + nq can be written as

J [p(C) + nq(C)] =
∫ g

0

〈ϑ(C),K?+n @ϑ(C)〉3C, (E.80)

where ϑ(C) is determined from ¤p(C) + n ¤q(C) = K?+n @ϑ(C). From Eq. (E.80), we have

0 = Θ′(0) =
∫ g

0

[
〈mnϑ(C),K?v(C)〉 + 〈v(C), mnK?+n @v(C)〉 + 〈v(C),K?mnϑ(C)〉

]
n=0

3C. (E.81)

Hereafter, we omit the notation of evaluating at n = 0 for conciseness. The first and third

terms in Eq. (E.81) are equal by symmetry of K?; that is, 〈mnϑ(C),K?v(C)〉 = 〈v(C),K?mnϑ(C)〉.
Taking the partial derivative of both sides of ¤p(C) + n ¤q(C) = K?+n @ϑ(C) with respect to n and
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evaluating at n = 0, we obtain

¤q(C) = mnK?+n @v(C) + K?mnϑ(C) ⇒ 〈v(C),K?mnϑ(C)〉 = 〈v(C), ¤q(C)〉 − 〈v(C), mnK?+n @v(C)〉.
(E.82)

From Eqs. (E.81) and (E.82), we have

0 =

∫ g

0

[
2〈v(C), ¤q(C)〉 − 〈v(C), mnK?+n @v(C)〉

]
3C = −

∫ g

0

[
2〈 ¤v(C), q(C)〉 + 〈v(C), mnK?+n @v(C)〉

]
3C.

(E.83)

Since

mnK?+n @ =
∑

1≤=<<≤#
'=<?

eq
< mnΦ

(
?= + n@=
?

eq
=

,
?< + n@<
?

eq
<

)
E=<, (E.84)

we have

〈v(C), mnK?+n @v(C)〉 =
∑
<,=

'<= [E< (C) − E= (C)]2Ψ
(
?= (C)
?

eq
= (C)

,
?< (C)
?

eq
< (C)

)
@= (C) = 〈r(C), q(C)〉, (E.85)

where Ψ(G, H) = [G −Φ(G, H)]/[G(ln G − ln H)] and

A= (C) B
∑
<

'<= [E< (C) − E= (C)]2Ψ
(
?= (C)/?eq

= (C), ?< (C)/?eq
< (C)

)
. (E.86)

From Eqs. (E.83) and (E.85), we have∫ g

0

〈2 ¤v(C) + r(C), q(C)〉3C = 0. (E.87)

Because {q(C)}0≤C≤g is an arbitrary perturbation path, the term in the inner product must be

zero, i.e., ¤v(C) + r(C)/2 = 0. Finally, the geodesic equation that determines the shortest path

between states p0 and pg is obtained as follows:


¤p(C) − K?v(C) = 0,

¤v(C) + 1

2
r(C) = 0,

(E.88)

with boundary conditions p(0) = p0 and p(g) = pg .

E.2.4 Lower bound of the modified Wasserstein distance in terms of

the total variation distance

Here we derive the lower bound of the Wasserstein distance in terms of the total variation

distance, dV (p, q) =
∑
= |?= − @= |. In variational form, the distance dV (p, q) can be expressed

as

dV (p, q) = max
‖w ‖∞≤1

{w> (p − q)} = max
‖w ‖∞≤1

〈w,p − q〉, (E.89)

where the maximum is taken over all real vectors w = [F1, . . . , F# ]> and ‖w‖∞ B max= |F= |.
Equality is attained when F= = sign(?= − @=). Here, the sign function sign(G) of G is defined

as sign(G) = 1 for G ≥ 0 and −1 otherwise. By definition of the modified Wasserstein distance,



E.2. Classical Markov jump processes 181

given a fixed positive number X > 0, there exists a smooth curve p(C) with end points p0 and

pg such that

g

∫ g

0

〈v,K?v〉3C ≤ Wc (p0,pg)2 + X. (E.90)

Here, v(C) ∈ R#×1 is determined from ¤p(C) = K?v(C). For an arbitrary vector w with ‖w‖∞ ≤
1, we have

〈w,pg − p0〉 =
∫ g

0

〈w,K?v〉3C (E.91a)

≤
(∫ g

0

〈w,K?w〉3C
)1/2 (∫ g

0

〈v,K?v〉3C
)1/2

(E.91b)

≤
(
g−1

∫ g

0

〈w,K?w〉3C
)1/2 (

Wc (p0,pg)2 + X
)1/2

. (E.91c)

To further bound the first term in Eq. (E.91c), we apply the inequalities Φ(G, H) ≤ (G + H)/2
and (F= − F<)2 ≤ 4, and obtain

〈w,K?w〉 =
∑
<>=

'=<?
eq
<Φ

(
?=

?
eq
=

,
?<

?
eq
<

)
〈w,E=<w〉 (E.92a)

=
∑
<>=

'=<?
eq
<Φ

(
?=

?
eq
=

,
?<

?
eq
<

)
(F= − F<)2 (E.92b)

≤ 2
∑
<>=

'=<?
eq
<

(
?=

?
eq
=

+ ?<
?

eq
<

)
(E.92c)

= 2
∑
<>=

['=<?< + '<=?=] . (E.92d)

Consequently, we have

Wc (p0,pg)2 + X ≥
〈w,p0 − pg〉2

2g−1
∫ g
0

∑
<>= ['=< (C)?< (C) + '<= (C)?= (C)]3C

. (E.93)

Taking the maximum over all w and the limit X→ 0, we obtain

Wc (p0,pg)2 ≥
dV (p0,pg)2

2AV
, (E.94)

where AV B g−1
∫ g
0

∑
<≠= '<= (C)W= (C)3C is the average dynamical activity along the geodesic

path {γ (C)}0≤C≤g . The dynamical activity characterizes the time scale of the system. As it

indicates the time-symmetric changes in the system, it plays important roles in nonequilib-

rium phenomena [52]. From Eqs. (7.64) and (E.94), the classical speed limits of the state

transformation are obtained as

g ≥ Wc (p(0),p(g))2
Δ(tot

≥ dV (p(0),p(g))2
2Δ(totAV

. (E.95)

These inequalities imply a trade-off relation between the time needed to transform the sys-

tem state and the physical quantities such as entropy production and dynamical activity.

Specifically, a fast transformation necessitates high dissipation and frenesy. The last bound
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in the inequality (E.95) is analogous to, but distinct from, a bound derived in Ref. [92]. In

the earlier study, AV is replaced by the average dynamical activity along the path described

by the time evolution of the system.

We can derive a bound that is tighter than Eq. (E.94). First, we divide the set of states

N = {1, . . . , #} into two subsets N = X− ∪ X+, where

X− B {= | 1 ≤ = ≤ #, ?= (0) < ?= (g)}, (E.96)

X+ B {= | 1 ≤ = ≤ #, ?= (0) ≥ ?= (g)}. (E.97)

For convenience, we define par(=) B −1 if = ∈ X− and par(=) B 1 if = ∈ X+. Then, dV (p0,pg) =
〈w,p0 − pg〉, where F= = par(=). From Eq. (E.92b), noticing that (F= − F<)2 = 0 if = and

< belong to the same subset X− or X+, and (F= − F<)2 = 4 if = and < belong to different

subsets, we have

〈w,K?w〉 ≤ 2
∑

<>= & par(<)≠par(=)
'=<?

eq
<

(
?=

?
eq
=

+ ?<
?

eq
<

)
(E.98a)

= 2
∑

<∈X− , =∈X+
['<=?= + '=<?<] = 2

∑
par(<)≠par(=)

'<=?=. (E.98b)

Subsequently, we obtain a tighter bound as

Wc (p0,pg)2 ≥
dV (p0,pg)2

2Apar
V

, (E.99)

where Apar
V B g−1

∫ g
0

∑
par(<)≠par(=) '<= (C)W= (C)3C is the average of the partial dynamical

activity along the geodesic path {γ (C)}0≤C≤g . SinceApar
V involves only transition rates between

states in X− and X+, Apar
V ≤ AV.

Following the same approach (i.e., applying Eq. (E.91) for the path described by the

system dynamics), we obtain

〈w,pg − p0〉 =
∫ g

0

〈w,K?h〉3C (E.100a)

≤
(∫ g

0

〈w,K?w〉3C
)1/2 (∫ g

0

〈h,K?h〉3C
)1/2

(E.100b)

=

(∫ g

0

〈w,K?w〉3C
)1/2 √

Δ(tot. (E.100c)

Analogously, we can prove that

g ≥ dV (p(0),p(g))2
2Δ(totApar

, (E.101)

where Apar B g−1
∫ g
0

∑
par(<)≠par(=) '<= (C)?= (C)3C is the average of the partial dynamical

activity along the path described by the time evolution of the system. Obviously, Eq. (E.101)

is tighter than the bound reported in Ref. [92]. The newly obtained bound indicates that the

speed of the state transformation is not constrained by the total dynamical activity, but by

the partial dynamical activity induced by transitions between states in X− and X+.
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75R. J. Harris and G. M. Schütz, “Fluctuation theorems for stochastic dynamics”, J. Stat.

Mech.: Theory Exp. 2007, P07020 (2007).

76E. M. Sevick, R. Prabhakar, S. R. Williams, and D. J. Searles, “Fluctuation theorems”,

Annu. Rev. Phys. Chem. 59, 603–633 (2008).

77M. M. Mansour and F. Baras, “Fluctuation theorem: A critical review”, Chaos 27, 104609

(2017).

78V. Y. Chernyak, M. Chertkov, and C. Jarzynski, “Path-integral analysis of fluctuation

theorems for general Langevin processes”, J. Stat. Mech.: Theory Exp. 2006, P08001

(2006).

79T. Speck and U. Seifert, “Integral fluctuation theorem for the housekeeping heat”, J. Phys.

A 38, L581 (2005).

80H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univer-

sity Press, New York, 2002).

81M. Esposito, K. Lindenberg, and C. V. den Broeck, “Entropy production as correlation

between system and reservoir”, New J. Phys. 12, 013013 (2010).

82G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun. Math.

Phys. 48, 119–130 (1976).
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219E. Aurell, K. Gawȩdzki, C. Mej́ıa-Monasterio, R. Mohayaee, and P. Muratore-Ginanneschi,

“Refined second law of thermodynamics for fast random processes”, J. Stat. Phys. 147,

487–505 (2012).

https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1103/PhysRevLett.51.1127
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1103/PhysRevLett.101.090602
https://doi.org/10.1103/PhysRevLett.101.090602
https://doi.org/10.1103/PhysRevLett.115.260603
https://doi.org/10.1103/PhysRevLett.115.260603
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevLett.121.030605
https://doi.org/10.1103/PhysRevLett.121.030605
https://doi.org/10.1103/PhysRevE.98.032106
https://doi.org/10.1209/0295-5075/124/20001
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.1103/PhysRevE.101.022110
https://doi.org/10.1073/pnas.1915676117
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/PhysRevLett.121.160602
https://doi.org/10.1103/PhysRevLett.99.100602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1007/s10955-012-0478-x


Bibliography 195

220A. Dechant and Y. Sakurai, “Thermodynamic interpretation of Wasserstein distance”,

arXiv preprint arXiv:1912.08405 (2019).
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